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Abstract

This article investigates speech feature enhancement based on deep bidirectional recurrent neu-
ral networks. The Long Short-Term Memory (LSTM) architecture is used to exploit a self-learnt
amount of temporal context in learning the correspondences of noisy and reverberant with undis-
torted speech features. The resulting networks are applied to feature enhancement in the con-
text of the 2013 2nd Computational Hearing in Multisource Environments (CHiME) Challenge
Track 2 task, which consists of the Wall Street Journal (WSJ-0) corpus distorted by highly non-
stationary, convolutive noise. In extensive test runs, different feature front-ends, network training
targets, and network topologies are evaluated in terms of frame-wise regression error and speech
recognition performance. Furthermore, we consider gradually refined speech recognition back-
ends from baseline ‘out-of-the-box’ clean models to discriminatively trained multi-condition
models adapted to the enhanced features. In the result, deep bidirectional LSTM networks pro-
cessing log Mel filterbank outputs deliver best results with clean models, reaching down to 42 %
word error rate (WER) at signal-to-noise ratios ranging from -6 to 9 dB (multi-condition CHiME
Challenge baseline: 55 % WER). Discriminative training of the back-end using LSTM enhanced
features is shown to further decrease WER to 22 %. To our knowledge, this is the best result
reported for the 2nd CHiME Challenge WSJ-0 task yet.

Keywords: automatic speech recognition, feature enhancement, deep neural networks, Long
Short-Term Memory

1. Introduction

Decoding of large vocabulary speech in unfavorable acoustic conditions, especially in hands-
free scenarios involving interfering noise sources and room reverberation, is still a major chal-
lenge for today’s automatic speech recognition (ASR) systems despite decades of research on this
topic. Robustness of ASR systems can be addressed at different stages of the recognition process
(Schuller et al., 2009), and successful systems usually employ a combination of them (Barker
et al., 2013). Popular techniques comprise front-end speech enhancement, such as by micro-
phone array processing (Maas et al., 2011; Nesta et al., 2013) or monaural speech de-noising
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techniques (Rennie et al., 2008; Raj et al., 2010), as well as improvements in the back-end by
model adaptation (Gales and Wang, 2011) or improved ASR architectures taking into account
additional sources of information, such as neural networks (Hinton et al., 2012; Seltzer et al.,
2013; Geiger et al., 2013). ‘In between’ one can also address noise-robust features — a popular
expert crafted feature extraction scheme is RASTA-PLP (Hermansky et al., 1992) — or feature
enhancement, defining a mapping from noisy to noise free speech features. An example for a
data-based, non-parametric technique for feature enhancement is histogram equalization (de la
Torre et al., 2005; Wollmer et al., 2011a).

Furthermore, feature enhancement by recurrent neural networks has been considered
(Parveen and Green, 2004; Maas et al., 2013). In particular, bidirectional Long Short-Term
Memory (BLSTM) recurrent neural networks (RNNs) have been employed by Wollmer et al.
(2013) for feature enhancement in highly non-stationary noise, by mapping noisy cepstral fea-
tures to clean speech cepstral features, and have been shown to outperform traditional RNNs on
this task. In (Weninger et al., 2013), we have successfully applied the BLSTM methodology to
both ASR tasks (small and medium vocabulary) of the 2013 2nd CHiME Speech Separation and
Recognition Challenge (Vincent et al., 2013), which features highly non-stationary convolutive
noise recorded from a real home environment over a period of several weeks. There, our BLSTM
approach outperformed a similar approach using conventional RNNs on a small vocabulary task
(Maas et al., 2013). In this article we proceed to a larger scale evaluation of BLSTM-RNNs and
other types of neural networks — including feedforward neural networks — in a medium vocabu-
lary task.

With respect to our earlier study (Weninger et al., 2013), this article presents several improve-
ments of network topology and training, resulting in further performance gains. Furthermore, a
goal of our present study is to clarify which parts of the performance gain can be attributed to
refined ASR back-ends and which to better feature enhancement. In particular, we consider fea-
ture mappings from noisy and reverberated to close-talk features with deep network topologies,
as well as feature enhancement in the logarithmic Mel frequency domain instead of the cepstral
domain. We also investigate whether measures of the network regression performance are cor-
related to ASR performance, which involves much more complicated likelihood functions than
typically used in network training. We also take into account the effect of using multi-condition
training with reverberated and noisy speech, feature transformations, and discriminative back-
end training separately. All these points have not been addressed in our earlier work (Weninger
etal., 2013).

In the following, we will first outline our feature enhancement methodology before describing
the experimental setup including a brief outline of the CHiME Challenge data and presenting the
results.

2. Feature Enhancement

2.1. Deep LSTM Recurrent Neural Networks

In this article, we use deep LSTM recurrent neural networks (RNNs) for speech feature
enhancement. By that, we combine several ideas that have been successfully applied to speech
recognition tasks: using multiple hidden layers for increasingly higher level representations of
the input features (Hinton et al., 2012; Graves et al., 2013), exploiting temporal context by using
recurrent neural networks with an internal state that is preserved over time by using the LSTM
architecture (Gers et al., 2000; Graves, 2008), and supervised learning of non-linear mappings
from noisy and reverberant to clean features (Maas et al., 2013; Weninger et al., 2013).
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Let us denote the noisy input features in time frame ¢ by X, and the corresponding clean
features by s,. We use deep LSTM-RNNs with N layers to generate an estimate of the clean
speech features §; by the following iterative procedure:

h = x, (1)
n) ._ (1) (Ja(n=1) (1)
h" = £"(h"".h"). 2)
5 = W(N),(N-H)th) + bN+D 3)
forn =1,...,Nand ¢t = 1,...,T, where T is the number of frames in the utterance. h;")

denotes the hidden feature representation of time frame ¢ at level n. In the above and in the
ongoing, W1 denotes the feed-forward connection weights from layer n to the next layer
(n = 0: input layer, n = N: output layer), while W 5 > 0, contains the ‘self-loop’ weights
implementing the recurrent structure; b denotes bias vectors.

From Eqn. 1, 2, and 3, it is obvious that the enhanced speech frame §; depends on the previous
inputs and also the previous enhanced frames §;_1,§;_5, . ... This way, recurrent neural networks
are able to model speech feature dynamics both in the input and output, rather than doing frame
by frame enhancement. In contrast to other studies using recurrent neural networks for speech
de-noising (Maas et al., 2013), our networks employ the LSTM activation function Lg") instead
of the typically used simple sigmoid-like functions. The crucial point is to augment the activation
function of each cell with a state variable ¢, that is preserved by means of a recurrent connection
with weight 1. This enables the network to store inputs over longer periods of time; for example,
noise frames without speech can be valuable of enhancing noisy speech frames in the future. It
also resolves the ‘vanishing gradient problem’ where the influence of inputs on the output would
decrease exponentially over time in conventional RNNs, making them difficult to train using
gradient descent (Bengio et al., 1994). The hidden layer activations correspond to the states of
the cells scaled by the activations of the ‘output gates’,

h{"” = 0" ® tanh(c"),

where ® denotes element-wise multiplication and tanh is applied element-wise. For CE"), the
following definition holds:

¢’ =£"” @) +i" @ tanh (W DRV £ WOORY 4 ). @)

There, f,(") is the activation of the ‘forget gate’ that can scale the state variable and probably reset
it to zero. Furthermore, iﬁ") is the activation of the input gate that regulates the ‘influx’ from
the feedforward and recurrent connections. Similarly to (4), the activations of the output gates
o,, input gates i, and forget gates f; are non-linear functions of weighted combinations of hg"_l)
(feedforward connections) and h@l (recurrent connections). In particular, instead of multiplying
the hidden layer activations from the previous time step with a static weight as in a traditional
RNN, the network ‘learns when to forget’ (Gers et al., 2000). Details can be found in (Graves,
2008; Graves et al., 2013). It has been shown in the context of speech recognition that using
the LSTM activation function provides a self-learnt amount of temporal context to the network,
which seems to be superior to relying on a manually defined amount of ‘stacked’ input feature
frames (Wollmer et al., 2011b).



The parameters W and b are learned by backpropagation through time from noisy and clean
training data (cf. Section 3.3). The sum of the squared deviations between §; and the original
clean speech s, (sum of squared errors, SSE) is used as error function,

d= (siy= s 5)
tf

In case that §; and s, are log spectra, this function is related to the log spectral distance (Gray
and Markel, 1976).

2.2. Bidirectional Extension

So far, the automaton structure given by (1, 2, 3) can exploit acoustic context from previous
frames. For automatic speech recognition, where whole utterances are decoded, future context
can be used as well. This results in the concept of bidirectional networks. Each layer of a
bidirectional network consists of two independent layers, one of which applies (2, 3) in the order
t =1,...,T as above (forward layer) and the other in the reverse order, i.e., replacing r — 1 by
t + 1 for the recurrent connections and iterating over t = 7, ..., 1 (backward layer).

For each time step ¢, the activations of the n-th forward (—) and backward (<) layer are
collected in a single vector

h" = [hi’”; h§”>] : 6)

Both the forward and backward layers in the next level (n + 1) ‘see’ this entire vector as in-
put. Thus, conceptually, in a deep BLSTM network one processes the sequence forward, then
backward, collects the activations and uses them as input for a forward and backward pass on
the sequence on the next level, etc. Alternatively to (6), one can consider ‘subsampling layers’
(Graves, 2008) performing the operation

h" = tanh (Wsub*") [hﬁ”); hﬁ")]) : (7
with trainable low-rank weight matrices W) for p = 1,...,N — 1. We found this very

useful for information reduction between the layers, reducing training time without decreasing
performance, in contrast to simply using less hidden units.

3. Experimental Setup

3.1. The 2nd CHiME Challenge Corpus

In this article, we perform evaluations on the medium vocabulary (5k) task of the 2013
2nd CHiME Challenge (Vincent et al., 2013). It consists of reverberated and noisy utterances
corresponding to artificially degraded versions of the the speaker independent development and
evaluation test sets of the Wall Street Journal corpus of read speech (WSJ-0). It is split into
disjoint sets with 84, 10, and 8 training, development, and test speakers, each comprising dif-
ferent prompts (si-tr_s, si_-dt_05 and si_et_05). The monophonic original utterances have been
convolved with stereophonic room impulse responses measured in a domestic environment, and
overlaid with realistic, stereophonic noise recorded in the same environment at signal-to-noise
ratios (SNRs) from -6 to 9 dB, in steps of 3 dB. Instead of artificially scaling speech and noise to
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resemble various SNRs, segments matching a specific SNR are selected from the noise record-
ings. Thus, noise types differ among SNRs and range from household appliances to music and
to interfering speakers. The full set of utterances is used at all SNRs in each of the development
and test sets. Thus, there are 6 X 409 = 2454 development, and 6 x 330 = 1980 test utterances.
A noisy training set is provided in addition, which comprises randomly selected, disjoint subsets
of WSJ-0 training utterances at each SNR. Thus, the number of training utterances in the noisy
training set is the same as in the original WSJ-0 corpus (7 138). The training and development
sets are also provided in a noise-free, but reverberated version to allow for evaluation of de-
noising algorithms. The total length of the training, development, and test set is 14.5, 4.5, and
4 hours. While the Challenge data is stereophonic, in our study we only consider simple beam-
forming and subsequent monaural processing (cf. below). The 2nd CHiME Challenge corpus is

made publicly available for WSJ-0 licensees'.

3.2. Feature Enhancement Front-End

Our contribution to the 2nd CHiME Challenge itself (Weninger et al., 2013), and a related
contribution using standard RNNs (Maas et al., 2013) considered only Mel frequency cepstral
coefficients (MFCCs) as input and output of the feature enhancement networks. Using MFCCs
is mainly an ad-hoc solution motivated by their use in the speech recognition back-end; in par-
ticular, HMMs with diagonal covariance Gaussian mixtures.

However, recent studies on deep neural network based speech recognition (Hinton et al.,
2012; Graves et al., 2013) directly use logarithmic Mel filterbank outputs (Log-FB). The rationale
behind using Log-FB is to let the network derive a suited higher-level feature extraction strategy
by itself. Furthermore, we also consider Log-FB as training targets. Since Log-FB are correlated
with each other, this resembles multi-task regularization of the network and is thus expected to
help generalization. 26 Log-FB covering the frequency range from 20-8 000 Hz are used, as is
often done in ASR. We add delta coefficients both to the input and output; using them as targets
is similar in spirit to the proposal by Seltzer and Droppo (2013) to use multi-frame information
as training targets in neural network based speech recognition, which again serves to improve
generalization. As additional feature in input and output, we use root-mean-square (RMS) energy
with deltas. For the MFCC features, we also add acceleration coefficients (second order deltas),
and we perform cepstral mean normalization (CMN) to (partially) compensate channel effects.
Thus, in the MFCC case, the network input and output exactly correspond to the ASR front-end
used in the HTK CHiME baseline (Vincent et al., 2013). In the Log-FB case, the outputs can be
converted to MFCCs by simply applying a Discrete Cosine Transformation (DCT) (Young et al.,
2006), cf. below. Log-FB features are investigated with and without log spectral subtraction,
which is the Log-FB domain equivalent of CMN (Gelbart and Morgan, 2001). For transparency,
feature extraction is done using HTK, using the MFCC_E_D_A_Z, FBANK_E_D and FBANK_E_D_Z
types of features with the default parameters (Young et al., 2006).

Prior to feature extraction, the stereophonic signals are down-mixed to monophonic audio by
averaging channels, corresponding to simple delay-and-sum beam-forming. This is useful for the
CHiME Challenge track 2 data where the speaker is positioned at a frontal position with respect
to the microphone, and is hence exploited in the baseline system by Vincent et al. (2013).

All features are globally mean and variance normalized. To this end, we compute the global
means and variances of the noise-free and the noisy training set feature vectors and perform mean

Thttp://spandh.dcs.shef.ac.uk/chime_challenge/ — last retrieved January 2014
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and variance normalization of the network training targets and the network inputs accordingly.
This normalization was found to be very important for performance; in particular, it ensures that
features with large variance due to noise do not ‘mask’ important information in features with
lower variance such as delta coefficients.

3.3. Network Training

Feature enhancement BLSTM networks are trained on the task to map the features of the
noisy training set of the above mentioned corpus to a noise-free training set. In a first set of ex-
periments, we consider de-noising only, i.e., learning mappings of noisy to clean features within
the same acoustic environment. As a consequence, the output features will still be reverberated,
and they will be used for decoding with a model adapted to the reverberated training data. This
corresponds to our contribution to the 2nd CHiME Challenge (Weninger et al., 2013). In this
article, we additionally consider learning mappings from noisy and reverberated to ‘fully clean’
(noise-free, close-talk microphone speech ) features, i.e., the network also learns feature-space
de-reverberation. There, we also consider deep learning with pre-training, where the first lay-
ers are trained to de-noising and subsequent layer(s) are trained to perform de-reverberation.
While the CHIME WSJ-0 corpus also contains noise context for each utterance, we use only the
‘isolated’ utterances, i.e., the end-pointed speech segments.

We train the networks through on-line gradient descent with a learning rate of 10~ and a
momentum of 0.9. Prior to training, all weights are randomly initialized with Gaussian random
numbers (mean 0, standard deviation 0.1). The on-line gradient descent algorithm applies weight
changes after processing each utterance, using a random order of utterances in each training
epoch to alleviate overfitting. Using on-line learning was found to drastically speed up conver-
gence and increase generalization compared to batch learning. Zero mean Gaussian noise with
standard deviation 0.1 is added to the input activations in the training phase, and an early stopping
strategy is used in order to further help generalization. The latter is implemented as follows: We
evaluate the overall SSE (5) on the development set after every fifth epoch. We abort training as
soon as no improvement of the SSE on the development set has been observed during 30 epochs.
The network that achieved the best SSE on the development set (across all six SNRs) is chosen
as the final network.

Most of the applied BLSTM networks have three hidden layers consisting of 2M, 128, and
2M LSTM cells as described above, where M is the input and output feature dimension (39
for MFCC, 54 for Log-FB). Each memory block contains one memory cell. This topology was
empirically determined on a similar speech feature enhancement task (Wollmer et al., 2013).
In case that noisy features are mapped to clean features, we also consider networks with four
hidden layers incorporating 2M, 128, 2M, and 2M LSTM cells. The rationale behind this is
that mapping to clean features is a more complex task than just removing noise, which also
involves de-reverberation. Besides training the four hidden layers without additional constraints,
we also aim at enforcing structure by pre-training of the first three hidden layers. In particular,
we add a fourth hidden layer to the three-layer network which has been trained to map noisy and
reverberated to noise-free reverberated features, and then run additional training epochs using
the same inputs, but clean features as targets. For the sake of consistency, the training parameters
are set based on our previous experience with RNN-based enhancement of conversational speech
in noise (Wollmer et al., 2013). Our LSTM training software is publicly available?.

Zhttps://sourceforge.net/p/currennt — last retrieved January 2014
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3.4. Baseline Networks

To verify the effectiveness of BLSTM networks for feature enhancement, we also consider
simpler network architectures: bidirectional RNNs (BRNNs) and feedforward neural networks
(FNN). Bidirectional RNNs are obtained by replacing LE") in Eqn. 2 by the hyperbolic tangent
function tanh(W®~D-™h{"~D 4 W(”)’(”)hf'i)l ), and in the case of FNN, tanh(W®~D-®h{""D) Since
the latter does not take into account context which is vital for speech processing tasks, in the case
of FNN we replace X, by [X,—7; - ;X ] in Eqn. 1 where 7 is a fixed parameter representing
the context length, i.e., features are stacked into a column ‘super’vector. We use 7~ = 4, i.e., nine
frame context windows. In analogy to RNNs, FNNs are trained on the task to provide a clean
speech estimate §, of x,, which is the center frame of the context window.

As FNN topologies, we investigate both ‘symmetric’ hidden layers (3 X 256 units) as well
as a structure that reduces information layer by layer (486, 256, and 108 hidden units), matching
the size of the first hiddden layer to the input layer and the size of the third layer to two times
the size of the output layer. BRNNs have the same size as BLSTM-RNNs (108, 128, 108 hidden
units). Since BLSTM-RNNs have many more parameters than FNNs or BRNNs of the same
hidden layer size, we also investigate a smaller BLSTM net (81, 96, and 81 hidden units) whose
number of parameters compares to the simpler architectures. For a fair comparison, both BRNNs
and FNNs were trained using the same stochastic gradient descent algorithm as BLSTM-RNNS,
using random initialization. We tuned the learning rate for FNNs and BRNNSs on the development
set and found that best performance with FNN was obtained with 107, as opposed to 10~ for
the BLSTM-RNNSs, requiring more training epochs until convergence. BRNNs required setting
the learning rate as low as 1073 in order for training to converge.

3.5. Obtaining ASR Features

As detailed above, the first step of ASR feature extraction is presenting the frame-wise noisy
features (MFCC or Log-FB) x to the trained network and computing the denoised features § as
the output activations. In principle, cepstral mean normalized MFCC features with deltas output
by a network can be used ‘as is’ in the speech recognizer. However, due to the normalization
of the training targets, § will be (approximately) mean and variance normalized, which does
not match the features used to train the baseline models. Thus, to be able to use the enhanced
features in a ‘plug-and-play’ fashion, i.e., without any recognizer modification, the global mean
and variance normalization is reverted after obtaining the enhanced MFCC features, to ensure
compatibility with the means and variances of the trained recognition models. More specifically,
each enhanced feature vector is multiplied element-wise with the corresponding variances of the
noise-free training set, and the mean feature vector of the noise-free training set is added. For
the Log-FB features, deltas output by the network are thrown away, the MVN is reverted as
above, and cepstral mean normalized MFCC features with delta and acceleration coefficients are
computed from the Log-FB features output by the network.

4. Speech Recognition Back-Ends

In the following, we now describe the speech recognition back-ends we use for evaluating
our feature enhancement procedure.



4.1. Baseline models

We evaluate the performance of the enhanced features using the baseline models provided by
the Challenge organizers, as well as re-trained models using enhanced features. The baseline is
implemented using HTK (Young et al., 2006) based on the WSJ-0 ‘recipe’ by Vertanen (2006).
From these models, a ‘reverberated’ baseline model is generated by an Expectation Maximiza-
tion (EM) Maximum Likelihood (ML) algorithm on the reverberated training set. Four EM-ML
iterations are used. The ‘noisy’ baseline model is created by four additional EM-ML iterations
using the training set with convolutive noise. From these ‘noisy’ models, we derive ‘re-trained’
models simply by repeating the multi-condition training step using features that have been pro-
cessed by our enhancement networks. This is done to investigate to which extent distortions by
enhancement can be compensated by model re-training. Furthermore, it is expected that feature
de-noising and de-reverberation results in lower feature variance, requiring model adaptation.
In contrast, using the baseline models without modification serves to estimate the ‘compatibil-
ity’ of enhanced features with their clean counterparts used to train the ASR models. From an
application point of view, it corresponds to a ‘plug-and-play’ configuration — in other words, a
scenario where the recognizer back-end is a ‘black box’ and only the feature extraction front-end
is known.

4.2. Discriminatively trained models with feature transformations

The training procedure used to generate the CHiME baseline models does not use many state-
of-the-art ASR techniques, such as feature transformations and discriminative training. Thus, it
is of crucial interest to investigate whether the performance of state-of-the-art ASR, such as the
back-end used by Tachioka et al. (2013) for their (winning) contribution to the CHiME Challenge
track 2, can also be improved by our feature enhancement technique. This system is implemented
with the Kaldi speech recognition toolkit (Povey et al., 2011). The ‘recipe’ for training the back-
end is publicly available?. Discriminative training is performed using boosted Maximum Mutual
Information (MMI) as proposed by Povey et al. (2008). The MMI principle aims at maximising
the posterior probabilities of the correct utterances, given the trained models. Boosted MMI
(bMMI) introduces a weight, strenghtening the influence of hypotheses with a higher error. For
bMMI, the objective function is

p/l(Xr|Ms,)KpL(Sr)
ZS p/l(XrlMs)KpL(s)e*bA(S,S,) 4

R
Fommr() = ) log (8)
r=1

where r = 1...R are the training utterances and X, the corresponding feature sequences,
M is the HMM sequence of sentence s, s, is the reference transcription of utterance r, « is the
acoustic scale, p, is the likelihood of the acoustic model with the parameters A, and p; is the
language model likelihood. The last term in the denominator is the boosting weight, where b > 0
is the boosting factor and A(s, s,) is the phoneme accuracy of sentence s given the reference s,.

Furthermore, techniques for feature transformation are employed. Feature transformation
can improve the class separation and address the speaker variability in the training data. Lin-
ear discriminant analysis (LDA) is applied on stacked MFCCs and reduces the resulting high-
dimensional feature vector to a smaller dimension. The necessary classes are obtained by align-
ing the tri-phone HMM states. By that, robustness to noise and reverberation can be addressed,

3http://spandh.dcs.shef.ac.uk/chime_challenge/W SJOpublic/CHiME2012-WSJ0-Kaldi_0.03.tar.gz — last retrieved
January 2014
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Figure 1: Evaluation of BLSTM feature de-noising: R? of enhanced and noisy MFCC features (1-12) and RMS energy
(E) with noise-free MFCC features on the CHiME 2013 track 2 development set. De-Noised (MFCC): BLSTM output =
enhanced MFCC; De-Noised (Log-FB): MFCCs generated from enhanced Log-FB features output by BLSTM.

assuming that these distortions occur in regular temporal patterns which can be expressed as
feature dimensions not related to phonetic information, and hence be discarded. There are too
few data to train full-covariance models, because of the high-dimensional acoustic feature space.
Therefore, diagonal-covariance models, which do not consider correlations between features, are
used instead. Several transformations for decreasing the correlations between features have been
proposed. We use maximum likelihood linear transform (MLLT), as described in (Saon et al.,
2000). Additionally, large variations among speakers degrade the performance of the acoustic
models. To address this problem, speaker adaptive training (SAT) (Anastasakos et al., 1997)
is applied: Before the ML training procedure, feature-space maximum likelihood linear regres-
sion (f-MLLR), which is the same as constrained MLLR (Gales, 1998), is applied to estimate
a speaker-dependent transform for each speaker. The estimated transform is then used during
model re-estimation in training. During decoding, speaker identities are assumed to be known.
First, a tight-beam decoding is performed on all test utterances of a single speaker to obtain a first
pass transcription, which is used to re-estimate the SAT transform, before doing a final decoding.

Parameterization and training of acoustic models follows (Tachioka et al., 2013) and works
as follows: 40 phonemes (including silence) are integrated in context-dependent triphone models
with 2 500 states and a total number of 15000 Gaussians. First, models are trained with clean
training data applying the ML principle. Next, ML training is continued with reverberated train-
ing data, using the alignments and triphone tree structures from the clean models. Then, isolated
noisy training data are used for training. Another set of ML training iterations is then performed
after applying the described feature transformations, using the noisy training data. Here, first,
the 13 static MFCC coefficients of nine consecutive frames are concatenated together and LDA
is applied to reduce the resulting 117 dimensional vector to 40 dimensions. The LDA uses the
2500 aligned tri-phone HMM states as classes. Subsequently, features are transformed using
MLLT and model re-estimation is done. Afterwards, an f-MLLR transform is estimated for SAT,
leading to another set of model re-estimation iterations. Based on the resulting acoustic models,
discriminative training is performed with the noisy training data, using bMMI with a boosting
factor of b = 0.1.



Table 1: ASR evaluation of BLSTM feature de-noising (MFCC, Log-FB). Word error rates (% WER) on CHIME 2013
track 2 development set using baseline HMM-MFCC recognizer trained by EM-ML on reverberated noise-free training
set (si_tr_s). SSub: (log) spectral subtraction.

WER [%] SNR [dB] Mean
FE Domain -6 -3 0 3 6 9
— 86.25 8279 76.08 71.35 63.04 5587 | 72.56
MFCC 69.57 6223 53.83 4851 43.18 37.15 | 5241
Log-FB 62.59 55.84 47.80 4382 38.25 34.68 | 47.16
Log-FB + SSub | 63.57 55.38 48.02 43.76 38.75 3548 | 47.49

5. Results and Discussion

5.1. Regression Performance

Before turning to task-based ASR evaluation, let us first investigate the feature enhancement
performance in terms of regression error. We compute the determination coefficient R> (squared
Pearson correlation coefficient) of the noise free features with (i) the unprocessed noisy MFCC
features, (ii) the MFCC features output by the MFCC enhancement network, and (iii) the MFCC
features computed from the output of the Log-FB enhancement network. We did not consider the
correlation of Log-FB outputs with Log-FB ‘ground truth’ because we are mostly interested in
comparing the two types of enhancement in the context of ASR using MFCC features. From the
results displayed in Figure 1, it can be seen that BLSTM feature enhancement always improves
over the noisy baseline. Furthermore, lower order MFCCs are predicted with slightly higher
precision by the Log-FB enhancement network while the MFCC enhancement network is better
at predicting higher order MFCCs. This is somewhat expected since the error function averages
over frequency bands in the first case and over MFCCs in the second case — thus low quefrencies
are given more weight in the error calculation for the Log-FB enhancement network. However,
lower order MFCCs seem to be easier to enhance than higher order MFCCs regardless of the
actual type of features used in the network. Especially for high MFCCs at higher SNRs, we
observe a drop in performance by Log-FB instead of direct MFCC enhancement (e.g., MFCC 12
at 9dB SNR, Log-FB: R? = 46, MFCC: R? = .51). Conversely, e.g., enhancement of the MFCC
1 at -6 dB SNR works considerably better when using Log-FB as features in the enhancement
network (Log-FB: R? = .73, MFCC R? = .67). Overall, these results are quite promising since
it is expected that higher performance on the lower order MFCCs achieved by Log-FB domain
enhancement would result in ASR performance gains. This hypothesis will be verified below.

5.2. ASR Performance

We begin our ASR evaluation of BLSTM enhanced features by considering BLSTM de-
noising, i.e., learning mappings between noisy and noise-free features within the same acoustic
environment. As acoustic models, we use the ‘reverberated’ CHiME baseline models (Vincent
et al., 2013). Evaluation is done on the CHiME 2013 track 2 development set (test set results will
be given below for selected systems). The resulting word error rates (WER) are shown in Table
1. It can be seen that by enhancing the MFCCs directly, one obtains an improvement of 20 %
absolute (28 % relative) in terms of WER. Using Log-FB outputs as net input and target, WER
is further decreased by 5 % absolute (10 % relative), reaching 47.16 % average WER across the

10



Table 2: ASR evaluation of alternative network topologies in Log-FB domain enhancement. FNNs using nine frames of
input context to enhance center frame. # Wts: number of weights in network. Word error rates (% WER) on CHIME 2013
track 2 development set using baseline HMM-MFCC recognizer trained by EM-ML on reverberated noise-free training
set (si_tr_s).

% WER SNR [dB] Mean
Network Layers #Wts | -6 -3 0 3 6 9
BLSTM  81-96-81 305k | 63.36 55.22 48.71 44.28 38.05 34.39 | 47.34

BRNN 108-128-108 | 159k | 76.44 69.68 60.90 58.49 52.32 47.62| 60.91
FNN 256-256-256 | 270k | 74.78 68.27 59.79 5491 49.54 43.60 | 58.48
FNN 384-384-384 | 503k | 76.26 69.68 60.96 56.99 50.07 45.79 | 59.96
FNN 486-256-108 | 395k | 76.37 68.86 60.88 5593 49.82 46.87 | 59.79

six SNRs. Using log spectral subtraction (SSub) on the filterbank outputs cannot further improve
results. Thus, it seems that the mapping from noisy to clean features can best be learnt in the
‘raw’ log spectral domain.

Regarding the performance of BLSTM in comparison to simpler network architectures, i.e.,
bidirectional RNN and feedforward networks with input frame stacking, we find that BLSTM
significantly outperforms both BRNN and FNN (Table 2). This corroborates our earlier results
with neural network based feature enhancement (Wollmer et al., 2013). Comparing the number
of parameters of the networks, it can be seen that the superiority of BLSTM is not simply due
to increasing model complexity in terms of weights. In particular, the BLSTM network with
81, 96, and 81 units per layer performs almost equally to the larger network considered above,
while FNNs with the same number of parameters perform significantly worse (58.48 % WER
with the FNN with 3 X 256 units having 270k weights, vs. 47.34 % with the BLSTM having
305 k weights). Further increasing the FNN size to 384 units per layer, or adjusting the hidden
layer size to the size of the adjacent input and output layers (486-256-108 topology) does not
improve performance. Generally, the fact that larger networks do not improve performance could
be attributed to the limited amount of training data in the CHiME Challenge. Furthermore,
we observe that BRNNs perform slightly worse than FNNs with stacked inputs, pointing at
the difficulty of training conventional RNNs through standard gradient descent. The fact that
BLSTM modeling outperforms feature frame stacking is in accordance with the results reported
by Wollmer et al. (2011b) for neural network based phoneme recognition.

Next, in Table 3, we consider the performance of BLSTM de-noised and de-reverberated fea-
tures in the close-talk recognizer. The baseline WER of this recognizer applied to the CHIME
development set is very high (89.43 % on average and 82.07 % even at 9 dB SNR). However, a
drastic drop in WER occurs when applying feature enhancement in the MFCC domain (50.79 %
WER, using the same network topology as above). Again, when using Log-FB outputs as en-
hancement domain, we obtain further improvement down to 46.97 % WER (using the same net-
work topology as for de-noising). When simply using a fourth layer, results are much worse
(51.52 % WER), pointing at overfitting due to the increased number of parameters. When we use
the above-mentioned deep training technique for mapping to clean features, we obtain 47.76 %
WER, which is, however, below the result with simple training of a three-layer network. Switch-
ing to the zero mean log spectral domain, direct training of three- or four-layer networks does
not reach the performance obtained with deep training. In the result, the lowest average WER we
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Table 3: ASR evaluation of BLSTM feature de-noising and de-reverberation. Word error rates (% WER) on CHIME 2013
track 2 development set using baseline HMUM-MFCC recognizer trained by EM-ML on close-talk microphone WSJ-0
training set (si-tr_s). SSub: (log) spectral subtraction. 3+1 layers: 4 layer network with pre-training of 3 layers (see
text).

WER [%] Layers SNR [dB] Mean

FE Domain -6 -3 0 3 6 9

Baseline (no enhancement)
— | — [9408 9297 9151 89.92 86.03 82.07 | 89.43
With BLSTM feature enhancement

MEFCC 3 70.10 61.16 52.34 47.66 3897 34.51 | 50.79
Log-FB 3 65.34 57.58 48.18 41.78 36.5 3244 | 46.97
Log-FB 4 69.97 6249 5271 4728 4123 3541 | 51.52
Log-FB 3+1 66.53 59.27 48.6 43.08 3649 32.57 | 47.76
Log-FB + SSub 3 65.92 5853 4834 42.19 36.65 31.36 | 47.17
Log-FB + SSub 4 6548 5747 47.62 4249 3597 31.70 | 46.79

Log-FB + SSub 3+1 65.07 56.85 47.03 41.51 35.56 30.90 | 46.15

attain with the unmodified close-talk recognizer is at 46.15 %, which is a 48 % relative reduction
with respect to using unenhanced features. In comparison, a four-layer network achieves 46.79 %
average WER and a three-layer network 47.17 % WER. These rates are significantly worse (true
average WER differences > .45 and >.65 with 95 % confidence, according to a one-tailed t-test,
treating WER per SNR as independent observations). Comparing the results to those obtained
with the reverberated ASR models and BLSTM de-noising without de-reverberation, we find that
the latter works better at lower SNRs and performs worse at higher SNRs. This can be attributed
to higher variances of the reverberated ASR models.

In the following, let us further investigate the relation between back-end refinement and front-
end enhancement. The most obvious back-end adaptation is to consider multi-condition training
using noisy data, as is done in the CHiME ‘noisy’ baseline acoustic models. As front-end en-
hancement, we investigate Log-FB de-noising (yielding best results with the reverberated mod-
els) and Log-FB de-noising and de-reverberation with log spectral subtraction (best results with
the clean models). Results are shown in Table 4.

Without any front-end enhancement, the CHiME multi-condition baseline yields an average
WER of 58.27 % on the development set, improving by over 40 % absolute with respect to the
clean models. With BLSTM de-noising, an additional improvement of 8 % absolute WER is
observed. If we re-train the multi-condition models using the BLSTM de-noised training set,
average WER is decreased to 43.38 %. The gain by re-training is especially visible at higher
SNRs. When using BLSTM de-noising and de-reverberation, we obtain additional improvements
in the re-trained multi-condition models at higher SNRs (> 3 dB), at the expense of reduced
accuracy at lower SNRs. This is in line with the observations made above without noisy training.

The system proposed by Tachioka et al. (2013) exploiting LDA, MLLT and SAT with fM-
LLR adaptation achieves better results without front-end enhancement than the best CHIME
baseline system with front-end enhancement (40.00 % average WER)*. However, using BLSTM

“#Note that this result is much better (6 % absolute WER difference) than the corresponding result reported by Tachioka
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Table 4: ASR evaluation of BLSTM enhanced features in multi-condition trained models: EM-ML trained CHiME Chal-
lenge baseline models and discriminatively trained models using feature transformations (see text). Multi-condition
training using unenhanced (= no re-training) and enhanced (= re-training) noisy and reverberated CHIiME training
set. Feature enhancement (FE) type: de-noising with Log-FB front-end (Table 3) or de-noising + de-reverberation with
Log-FB + SSub front-end (Table 3). Evaluation on CHIME 2013 track 2 development set.

WER [%] | Retraining SNR [dB] Mean
FE type -6 -3 0 3 6 9

EM-ML trained recognizer (Vincent et al., 2013)

73.17 6743 59.89 5571 49.07 44.34 | 58.27

de-noising X 62.68 56.89 51.36 4790 43.02 4094 | 50.47
de-noising v 57.74 51.14 4385 39.10 3554 32.88 | 43.38
+de-rev. X 6549 6022 5479 50.10 47.87 4392 | 53.73
+de-rev. v 62.34 5339 45.17 3893 34.17 29.63 | 43.94

EM-ML trained recognizer with feature transformations (Tachioka et al., 2013)

— — 59.63 49.97 40.60 34.72 29.56 25.52 | 40.00
de-noising X 46.35 3794 31.20 2745 23.60 21.12 | 31.28
de-noising v 4945 41.08 33.18 29.31 25.14 22.05 | 33.37

+de-rev. X 48.77 39.21 33.04 27.26 24.52 21.26 | 32.34
+de-rev. v 55.60 46.79 38.69 31.60 27.57 22.78 | 37.17

Boosted MMI trained recognizer with feature transformations (Tachioka et al., 2013)
56.47 47.12 3847 31.86 27.50 23.32 | 37.46

de-noising X 4791 4030 33.09 2822 25.11 2270 | 32.89
de-noising v 43.71 3512 27.66 2490 2155 18.56 | 28.58
+de-rev. X 57.86 50.48 4436 39.81 36.63 33.49 | 43.77
+de-rev. v 4731 37.65 30.15 2430 20.83 18.00 | 29.71

de-noising, we gain another 8.7 % absolute accuracy improvement (31.28 % WER) ‘on top’. In-
terestingly, we find results to be best in a ‘plug-and-play’ setup where the feature transformations
are estimated on noisy data instead of enhanced data — thus, there seems to be a larger mismatch
in the enhanced features than in the noisy features across training and development set. This
could be due to the networks being trained speaker-independently — in the future, we could in-
vestigate enhancement on the features after applying the SAT transformation.

Finally, we observe that BLSTM feature enhancement is also complementary to discrimina-
tive training using boosted MMI. Boosted MMI and feature transformations without front-end
enhancement yield 37.46 % WER, while the best combination (BLSTM de-noising, feature trans-
formations, boosted MMI training using enhanced noisy data) results in 28.58 % average WER
on the development set. Notably, when using boosted MMI training using unenhanced data and
evaluating using de-noised and de-reverberated data, results are vastly degraded (43.77 % WER)
while reasonable results are obtained with re-training (29.71 % WER) — this probably indicates
in a large mismatch of the phoneme errors on unenhanced and enhanced data, leading to over-
fitting.

Since fMLLR adaptation, as used by Tachioka et al. (2013), requires the utterances of each

et al. (2013), because for a fair comparison we use beam-forming as in the CHiME baseline.
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Figure 2: Influence of language model weight on WER on CHIME 2013 track 2 development set for noisy features,
BLSTM de-noising and de-reverberation.

speaker to be processed at once, it is not suitable for real-time applications such as dialog sys-
tems; it is thus of interest to also consider results without adaptation (and hence without SAT).
In this case, best performances (not shown in Table 4) are obtained using the de-noising (not
de-reverberation) front-end, with recognizer re-training, leading to 35.87 % (instead of 33.37 %)
average WER in the EM-ML and 30.82 % (instead of 28.58 %) WER in the discriminatively
trained recognizer (without de-noising and without SAT: 46.07 %, 45.13 %).

For the results reported so far (Table 1, 3, and 4), a constant language model weight (i) of 15
has been used for a fair comparison of results. However, we found that since ‘cleaner’ features
yielded generally higher acoustic likelihoods, the language model weight should be increased
accordingly. We determined an optimal weight u* € {9, 10, 11,...,20} on the development set.
Results are displayed in Figure 2. It can clearly be seen that the ‘cleaner’ the features, the higher
the language model weight has to be for optimal performance. In the boosted MMI system using
feature transformations, u* = 11 yields 34.18 % WER without BLSTM feature enhancement;
28.10 % WER are obtained at y* = 17 with BLSTM de-noising; for BLSTM de-noising and de-
reverberation, y* = 20, resulting in 28.66 % WER. For comparison, let us note that the best FNN
in the best back-end (LDA-MLLT, SAT, fMLLR adaptation, boosted MMI) achieved 33.22 %
WER, which is significantly (more than 4 % absolute) better than the noisy baseline but clearly
below the BLSTM result.

We now proceed to evaluate selected ASR systems (combinations of back-ends and BLSTM
front-ends) on the official CHiME Challenge track 2 test set, and compare to other state-of-the-
art approaches. Results are shown in Table 5. The best system without back-end modification
(using close-talk acoustic models) yields 42.06 % average WER across SNRs from -6 to 9 dB.
This is much better than the result using noise compensation only in the back-end by multi-
condition training, in the same HMM framework (55.01 %, Vincent et al. (2013)). It also outper-
forms a state-of-the-art approach for feature enhancement in the linear Mel frequency domain
using non-negative matrix factorization (NMF) (Geiger et al., 2013), which gives 48.07 % WER.
Combining BLSTM feature enhancement and multi-condition training results in 39.24 % WER,
which is a noticeable improvement but also indicates the limits of the basic HMM recognizer
framework. Still, this result is better than our previous result with multi-stream HMM fusion of
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Table 5: Final CHIiME 2013 track 2 test set evaluation of ASR systems with BLSTM feature enhancement and comparison
to related approaches.

WER [%]
SNR [dB] Mean
-6 -3 0 3 6 9

Systems using BLSTM feature enhancement
BLSTM de-noising + de-reverberation / base WSJ-0
61.55 50.64 4384 37.04 3194 2733 ‘ 42.06
BLSTM de-noising / CHIME multi-condition baseline
53.18 4497 40.65 3432 3239 2993 ‘ 39.24
BLSTM de-noising / feat. transf. + MMI
3555 27.11 2240 1745 16.14 14.29 ‘ 22.16
BLSTM de-noising + de-rev. / feat. transf. + MMI
37.79 2871 2337 1870 1541 12.70 \ 22.78

Other systems for CHiME 2013 track 2 task
CHiME multi-condition baseline (Vincent et al., 2013)

70.43  63.09 5842 51.06 4532 41.73 ‘ 55.01
NMF / CHiME multi-condition baseline (Geiger et al., 2013)
61.85 5558 5094 4351 39.14 37.40 ‘ 48.07
BLSTM-HMM double-stream recognizer (Geiger et al., 2013)
58.57 50.07 43.94 37.06 32.67 28.25 ‘ 41.76
Binary masking / feat. transf. + MMI (Tachioka et al., 2013)
44,12 3546 28.12 2120 1743 14.83 ‘ 26.86

FNN feature enhancement / feat. transf. + MMI
42.11 33.08 26.17 2143 18.08 16.05 ‘ 26.15

multi-condition EM-ML trained MFCC-GMMs and a BLSTM phone recognizer (Geiger et al.
(2013), 41.76 % WER). In this work, a deep BLSTM was used as a secondary acoustic model
providing frame-wise phoneme probabilities, instead of performing front-end enhancement. Us-
ing the BLSTM front-end, but changing the back-end to a state-of-the-art system exploiting
feature transformations and discriminative training (Tachioka et al., 2013), 22.16 and 22.78 %
WER are obtained in combination with BLSTM de-noising and de-noising / de-reverberation.
This is, to the best of our knowledge, the best recorded score on the CHiME 2 track 2 test set
at the time of this writing, and a 17 % relative improvement over our previous best result in
the challenge (26.73 % WER, cf. (Weninger et al., 2013)). The BLSTM result also outperforms
FNN feature enhancement by 4 % absolute; in turn, FNN enhancement in the front-end seems to
perform slightly better than binary masking (Tachioka et al., 2013).

6. Conclusion and Outlook

We have demonstrated the efficacy of data-based feature enhancement using deep recurrent
neural networks for ASR in non-stationary convolutive noise. Enhancement has yielded signif-
icant improvements for every single ASR system investigated in this study. Reasonable results
have been achieved even with unmodified close-talk acoustic models, which otherwise fail at
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decoding the CHiME utterances. Best results on the 2013 2nd CHiME Challenge track 2 task’
have been achieved by combining enhancement with feature transformations and discrimina-
tive HMM training. An average WER of 22.16 % is measured, whereas simple multi-condition
HMM training yields an average WER of 55.01 %. The improvements by the proposed BLSTM
feature enhancement method are all the more noticeable since it does not directly exploit pho-
netic information. Still, our method has been shown to be complementary with approaches that
do, such as using LDA and MMI in back-end recognizer training. While other neural network
approaches such as FNN enhancement with feature frame stacking also provide complementary
gains to these back-end improvements, BLSTM enhancement has delivered most promising re-
sults on the CHiME task. In future research, it will be interesting to investigate how the use of
more training data (such as noisy speech from arbitrary sources), also in generative pre-training,
affects the performance of FNN, RNN, and BLSTM-RNN. For example, Mohamed et al. (2012)
report phoneme error reductions in the order of 1 % absolute (5 % relative) on the TIMIT database
by pre-training.

An advantage of the proposed method over data-based monaural Mel or Fourier domain
feature enhancement by NMF (Weninger et al., 2012; Hurmalainen et al., 2011) is that the com-
plexity of the model does not depend on the amount of training data, and that most of the com-
putational complexity involved is shifted to a training phase, while evaluation can be done very
efficiently — in contrast to typical NMF approaches involving little to no model pre-training but
considerable effort in model evaluation. Despite the temporal dependencies in recurrent neural
networks, they can be trained efficiently on graphics processing units (GPUs), as can be verified
by the interested reader, by downloading our open-source CUDA RecurREnt Neural Network
Toolkit (CURRENNT, cf. above). CURRENNT is delivered with a subset of the CHiME 2013
feature enhancement task as use case.

In contrast to other enhancement techniques such as factorial models (Rennie et al., 2008;
Weninger et al., 2012), our approach learns frame-by-frame correspondences between distorted
and clean training features. Hence, the most straightforward approach to generate training data is
to algorithmically apply distortions to clean data, as done in the CHiME Challenges and previous
evaluations such as the AURORA-4 database. Still, realistic training data is not trivial to obtain
(it could be done, e.g., by loudspeaker playback and recording in various settings involving real
noise and reverberation). A more promising approach might be to use semi-supervised learn-
ing, initialized by large amounts of systematically generated training data using combinations of
speech and noise corpora, and continuing using real noisy and reverberated speech for which no
‘clean’ counterpart exists.

One important issue in deep learning methods, as compared to ‘blind’ de-noising and de-
reverberation approaches, is generalization to unseen test scenarios. In the future, this might be
improved by extended multi-task regularization, i.e., including additional training targets such
as noise magnitudes or phonetic information. A related approach would be to use deep learn-
ing to add a phoneme classification layer on top of the feature enhancement layers, in order to
further improve performance of BLSTM phoneme predictors (cf. Geiger et al. (2013)) in chal-
lenging settings. Including noise context, i.e., training on noisy streams instead of end-pointed
but corrupted speech data, might also help generalization — we already have evidence that LSTM
networks are very well suited to voice activity detection in noise (Eyben et al., 2013).

SNote that our result could not have been an official competition result in the Challenge, because learning a mapping
between noisy and clean features was not allowed as per the Challenge guidelines (Vincent et al., 2013).
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