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Figure 1: lllustration of the basic idea of bilateral AR telepresence. Both participants (shown in purple) see their opposite conversation partner
(shown in blue) overlaid as 3D presences onto their own immediate surroundings. The avatars are integrated as full-sized virtual objects and
mirror the movement, gesturing etc. of the respective participant. As the remote user moves about, the avatar might appear to move through

local obstacles.

ABSTRACT

This paper presents an AR videoconferencing approach merging
two remote rooms into a shared workspace. Such bilateral AR
telepresence inherently suffers from breaks in immersion stemming
from the different physical layouts of participating spaces. As a
remedy, we develop an automatic alignment scheme which ensures
that participants share a maximum of common features in their
physical surroundings. The system optimizes alignment with regard
to initial user position, free shared floor space, camera positioning
and other factors. Thus we can reduce discrepancies between dif-
ferent room and furniture layouts without actually modifying the
rooms themselves. A description and discussion of our alignment
scheme is given along with an exemplary implementation on real-
world datasets.

Index Terms: H.4.3 [Information Systems Applications]: Com-
munications Applications—Computer Conferencing, Teleconfer-
encing, and Videoconferencing;

1 INTRODUCTION

To date, videoconferencing and telepresence are mostly limited to
flat displays or unwieldy, immersive setups. However, recent work
by Maimone et al. [14] shows how our conversation partners can
be augmented directly into our surroundings. This leads us to the
question of how to define the common environment in which we
hold such conversations. Current work in augmented reality (AR)
videoconferencing can be split into two categories: Remote sup-
port scenarios [1, 6, 21, 17] and conversation scenarios [2, 14, 11].
The remote support scenarios usually immerse the remote advisor
in a local scene while the AR component is intended to commu-

*e-mail: Lehment@tum.de
fe-mail: Daniel. Merget@tum.de
*e-mail: Rigoll@tum.de

nicate annotations or markers to the local user. The surroundings
of the remote advisor are disregarded and not communicated to the
local user. Meanwhile, previous research in conversation scenarios
tends to focus on the accurate display of users in empty rooms or
resorts to “window” analogies [12, 11] in order to avoid conflicts
between heterogeneous surroundings. Previous work in immersive
telepresence avoided the problem entirely by replacing the real sur-
roundings with a virtual consensus reality, as in [5, 10].

Recent advances in AR display technology [13] and afford-
able 3D scanning solutions [19, 16] suggest a new option: Bilat-
eral telepresence between two participants where both rooms are
merged into a common consensus reality. In this scenario, the re-
mote user is rendered into the local user’s office as an avatar. Con-
versely, the local user appears as an avatar in the remote office as
well. This mutual telepresence is especially well suited for conver-
sations including non-verbal communication, e.g., posture, gestur-
ing etc.

Figure 2: Bad alignment leading to conversation partner placed
within wall. Affected part of pointcloud overlaid in red.

It is important to note that participating spaces usually do not
have the same layout. A typical conflict might appear as follows:
We stand in front of a large table in a conference room while our
conversation partner’s surroundings are far more cramped. As we



walk through our spacious room, our remote avatar appears to walk
right into her cubicle wall, shattering the illusion of co-presence.
Fig. 2 shows such a conflict.

In order to deal with such discrepancies in our environments, we
aim to create a reality-based consensus space which uses 3D scans
of both rooms to identify common layout features. In an initial
optimization stage, the rooms are aligned for minimal discrepan-
cies. The data generated during the alignment can then be used for
visualizing remote obstacles to the local user in the course of the
meeting.

2 SYSTEM OVERVIEW

The entire bilateral AR telepresence system must fulfill four fun-
damental tasks: It must generate the consensus reality from room
models, display the remote user and possible boundaries in the con-
sensus reality, simultaneously exchange avatar data of the users and
finally manage any interaction with additional AR content. The dis-
play of the remote users relates to an already very active field of on-
going research [14, 13]. Transmitting the avatars can be achieved
either by puppeteering a pre-built avatar with pose tracking data
[20, 24] or by streaming a live point cloud [8]. Interaction with
AR content is an extensively studied topic [3, 18]. Since each task
easily warrants its own paper, we focus this contribution on the gen-
eration of a consensus reality and start by formulating the require-
ments.

As the scenario is focussed on conversation, we want partici-
pants to start the meeting facing each other. The common free space
should be as large as possible. There are usually a number of obsta-
cles, such as tables, desks, walls, etc., so we must avoid initializing
any user within such obstacles. Meetings might involve the display
or manipulation of AR content, so there should be consensus sur-
faces on which these can be placed. A suitable surface might be
a table present on both sides of the conversation. Finally, we can
also consider the geometry of the rooms in order to achieve parallel
fitting of walls.

Our solution utilizes pre-recorded models of the participating
spaces. The scans are assumed to consist of triangulated meshes
which cover each user’s entire local workspace. Our approach is
constrained to rooms with uninterrupted, level floors and avail-
able knowledge of users’ positions and headings at the moment
of initialization. The process of automatic model building for in-
door rooms is already covered extensively in previous literature
[22, 19, 16], with a number of commercial and free systems avail-
able.

Each room is observed by three to four RGB-D cameras (Kinect
and BumblebeeXB3). The controller of each camera acts as an in-
dependent server, providing a compressed RGB-D image stream of
the local user as well as intrinsic and extrinsic calibration data. In
order to exclude static background and furniture, the PBAS fore-
ground segmentation provided by Hofmann et al. [7] is used. For
compression, the FFMPEG library is used: RGB data is sent as
a stream of JPG images, while depth data is transmitted using the
lossless PNG format, yielding a typical frame size of around 15
kBytes per camera (640 x 480 resolution). This data is captured
by the conversation partner’s session managment engine, translated
into 3D point clouds and then rendered into a composite represen-
tation of the remote user using the calibration data. Other than pre-
built avatars, the use of point clouds allows for the communication
of lip movement and complex gestures [14]. The composite point
cloud avatar is then augmented into the view of the scene, e.g, using
a video-see-through HMD as shown in Fig. 5. The existing room
models inform the occlusion handling for the point clouds.

3 COMPUTING THE CONSENSUS REALITY

Before we can begin to formulate an alignment scheme for the
users’ rooms, we have to define a metric for quantifying alignment.

In a first step, the consensus reality is segmented into five types of
spaces. Each space is treated as a separate map (M). Most interac-
tions take place in space which is unoccupied for both user “A” and
user “B” (Mg). Other interactions are centered around common
work surfaces (Mg), such as tables of similar height. There are
also spaces which are blocked by physical objects for both users
(Mco). Finally, there are obstacles which are present in only one
of the users’ environments (Mg, Mpo). All these spaces are com-
puted from the pre-recorded triangular mesh models of each room
and the relative positions of their floor plane origins ® = {x,y, 6. }.

In order to reduce computational complexity, we project both 3D
meshes orthographically into their own floor plane, resulting in two
2D maps of maximum vertex heights relative to the floor (M4, Mp).
Thus a 10m x 10m sampling grid with 50 pixel/» would correspond
to two 500 x 500 arrays of floating point values. Common image
processing techniques can be applied to these maps. Space behind
walls is set to a fixed maximum value (e.g., 3m), the floor planes
have zero height. Two exemplary maps can be seen in Fig. 3, with
the zero-height floor surfaces colored for easier recognition.

The advantage of reducing to a 2D map becomes apparent for
complex room scans: Regardless of the number of vertices in the
meshes, after these are mapped to the floor plane the subsequent
optimization will run only on the fixed-size maps. Therefore op-
timization with complex meshes would require more operations in
the initial mapping stage, but not in the repeated optimization steps
afterwards.

Following the mapping, the floorplan Mp of room B is translated
and rotated to My using @ and overlaid over My of room A. As
illustrated in Fig. 3, we can now compute the free space Mg(p, ®)
for a given pose ®, processing each discrete map pixel p = (x,y) in
parallel. We assume every object less than cqoor = 0.1 m tall to be
part of the floor plane.

MF(I’: (D) = {(1) gsemax(MA (p)7Mg)(p)) < Cioor (1)

Two boolean operations yield maps of unilateral obstacles for the
rooms A and B.

Mo (p; ®) = (-Mg (p)) AMu(p) 2)
Mgo(p; ®) = (-Ma(p)) AMg (p) A3)

The consensus obstacles are found likewise by a simple AND
operation on the two maps:

Mco(p, @) = My (p) AMZ (p) )

Analysing the difference in height on the consensus obstacles
provides us with a map of consensus work surfaces. We assume an
acceptable height difference of cgif = 10 cm and maximum height
of ¢max = 1.5m:

My(p) if |[Ma(p) — Mg (p)|| < cairr
Amax (My(p),Mp(p)) < cmax ©)
0 else

MS (p, (1)) =

Besides the segmentation into these five types of space, the ob-
servability of the users is cruical for the AR videoconference. For
an optimal alignment, both users should be observed by at least one
camera throughout the common meeting space. Therefore a set of
observability maps is computed for each user’s room. As each cam-
era broadcasts its calibration data, their view cones can be mapped
to the floor planes for both rooms. Thus, the maps Méiew and My,
show the number of cameras observing each spot in room A and
B respectively. Observability score maps are then computed by
adding the number of cameras for each floor element and dividing
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Figure 3: Basic approach for consensus space computation: Two rooms are mapped to the 2D floor plane, users’ positions (shown in blue
and purple) are remapped accordingly. The transformation ® is applied to the room B. Both maps are then overlaid and the energy terms are
computed. For instance, the area mapped in green shows common free floorspace for a given pose used for computing Ejee ().
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Figure 4: Exemplary calculation of mutual observability score Mpgs(®) for two scenes with two cameras each. Only the region marked in red
permits user tracking and recording by two cameras in both rooms. Regions marked in green are visible by at least one camera in each scene.
The red region is visible by both cameras in each scene, providing best observability

by the number N%2% of desired views. For room A, this is expressed
as follows:

A : A
MSBS(p) — {llwview (p)/ \r,ril:‘); ;ﬁxview (p) < N\I/Iilg\); 6)

For a floor section to be mutually observable, there must be at
least one camera in room A and one camera in room B providing
observations of a user standing in this section. The mutual observ-
ability score Mpps is computed using the partial observability score
maps and a given alignment pose @. The process is visualized in
Fig. 4. We can then combine the observability score map with the
free space map to gain the observable free space map Mgogs:

Mogs(p, ®) = min (MSBS (p), M&gs (p, w)) @)
Mrogs (P, ®) = Mogs (p, ®) x Mg(p, @) ®)

So far we have described how to compute the different maps
for a given pose ®. Based on these maps, an optimization stage
computes the optimal alignment of both participating rooms. The
alignment problem is formulated as an energy maximization prob-
lem, where the partial energy terms correspond to the requirements
outlined in Sec. 2.

The binary term o (@) = {0,1} helps in avoiding undesired
configurations and dominates the energy function. It is set to “0”

alibration Data etc.

for poses where one user is initialized within an obstacle, no line of
sight is possible or other essential problems arise. Thus we avoid
having a single strong partial term promoting an otherwise unfa-
vorable configuration. The term serves as an abortion flag during
optimization, further reducing computational overhead.

The term Ef..(®) ensures a maximum shared floor space. We
discard inaccessible regions of the observable free space floorplan
Mgogs (@) by applying a morphological erosion operation with a
circular kernel (@ 1 m = twice avg. male shoulder width), resulting
in the map M%rgdB% (w). In addition, the free space must be mutually
observable, i.e., on both sides there must be at least one camera
which provides RGB-D data for this area. The alignment aims to
find common regions in which each user is observed by as many

cameras as possible by using the observability score Mf;rOOdB% (p, ®).
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The term Ejprox (@) penalizes close initial user positions, as to
prevent initializing users in the same space. In preparation, users’
positions X, and X{? are mapped to the 2D plane of room A. The
decay factor Aprox ensures that a proximity of d(®) = dp,ge between
users returns a score of Eprox (@) = 0.95, i.e., 95% of the maximum

Session
Handler

| UDP: Uompressea RZ>1B-

e =V
ther Cameras...
Modul R
Camera Module PNG | d

Figure 5: 3D point cloud transmission chain for a single camera module. The session handler receives data from several cameras and renders

the remote user point cloud according to the perspective of the local user.



possible score for this term:

d((D) = HXICJD _XaHeuclid. (10)
Aprox = —10¢(5%) / (diade — dimin)° (11)
_1—exp(—Aprox - (d(®) — dimin)?)  ifd(®) > dmin
Eprox(®) = {0 and op(w)=0 else
(12)

Since users prefer to face each other at the moment of initial-
ization, the term Epe,q(®) increases for small angles between each
user’s heading and the connecting vector to the other conversation
partner’s position. The users’ 2D headings relative to the floormap
of room A are denoted as D, and D’, the decay factor of the expo-
nential is set to Apeaq = —10g(5%)/(90°)2. A relative angle of 90°
therefore yields a partial score of Ef,_ (®) = 0.05:

Oa—sp(@) = cos~ ! (X} ~Xa) D) (13)
Efeaa(©) =exp (*AheadeAaB(w)z) (14)
O (@) = cos™' (X, —X}) - D) (15)
Epaq(@) = exp (_lheadeB—m(w)z) (16)
Enead(@) = 0.5-EL 4 (@) +0.5-EE_ (o) (17)

The term Eg,¢(®) increases for large common surfaces such as
a table present in both rooms. The computation is nearly identi-
cal to Efee (@), except that the map Mg is used instead of M%ro"dBes.
For scenarios where a minimum surface size is desired, the term
Emins(@) is set to “1” only if an sufficiently large, uninterrupted
common surface Ay, is available.

The energy terms discussed so far are utilitarian in nature. In
order to promote visually pleasing alignments, the term Eggew (®)
returns high values for alignments in which walls and environment
boundaries are aligned in parallel. In a first step, a probabilistic
Hough transform [15] identifies major linear wall segments in room
A. Their main angular directions are computed and collected in a
histogram %A,wall' A function fi . (6) is assigned to each his-
togram peak 6;, with wrap-around terms added to account for the
180° — 0° discontinuity. We can then test parallel alignment by
generating a second angular direction histogram %”(fwan for room
B, applying the current rotation from ® and calculating the func-
tions fll)eak( 0) for each peak 0p in t%”éfwau. Egkew (@) is computed
as the normalized sum of these peak terms using a standard skew
deviation of cgew = 36°:

: A
Joeak(0) = exp <—0~5' (E) ) 18)

LY max, (fieac(®8)) — (19)

Eggew(0) = ~B

peaks Bpe P,
As the direction of alignment is the only parameter, the term only
depends on the rotational component g of an alignment pose. Its
influence on the total energy term is decidedly less pronounced for
smaller and cluttered rooms, since the solution space is already
heavily constrained. Our analysis of real-world rooms in Sec. 4
therefore focuses on the remaining terms.

We combine these partial energy terms into a single energy term
by addition. In order to enforce limits on user placement, the pre-
viously introduced binary term af can abort further computation
and forcibly return E(®) = 0 . Thus we can avoid initializing users
in remote walls or too close to each other. Additional weighting

factors ax allow reducing or disabling certain energy terms

E(CO) =0OlfreeEfree (CO) + O‘proprrox (0)) + aheadEhead(w)
+ asurfEsurf(m) + aminsEmins (0)) + askewEskew (0)) (20

The setting of weighting factors depends on the size of the par-
ticipating spaces. In case of cramped spaces, there are few options
for alignment without placing one user inside a wall or outside of
observability. Large spaces on the other hand allow for more com-
plex adjustments, as long as there is sufficient observability. Table 1
gives some typical settings for conversation scenarios in different
types of space. In case of rooms of different size, the smaller room
usually dictates the constraints on weighting factors.

\ Table 1: Typical weighting factors for conversation scenario |
Room Ofree Oprox Ohead Osurf Omins Oskew
<5m? | 10 | 02 0 0.5 0 0

<10m®> | 1.0 | 05 0.5 0.5 0 0

> 10m? 1.0 0.5 0.5 0.75 0.5 0.5

The resulting optimization problem is non-convex with a three-
dimensional solution space for @. For producing the illustrations in
this paper a hierarchical brute-force solver is used, stepping over a
fixed solution space range. Since any pose which sets o to zero
will be discarded, our implementation progressively checks each
knock-out condition as it computes the energy terms and discards
an alignment as soon as o = 0. As the computation of the con-
sensus reality alignment is performed only once at the start of each
teleconference, real-time performance is not relevant.

4 APPLICATION TO REAL DATASETS

The suitability of our approach to automatically generated datasets
was examined using a large office dataset provided by Steinbriicker
et al. [22]. From this dataset, two rooms were isolated and remeshed
using a screened Poisson approach [9] in order to close holes in the
data. The floor plane origins and initial user positions were defined
manually. As can be seen in Fig. 6, the resulting alignment provides
a large common workspace and ensures that both users start facing
each other.

In order to examine the effect of the different energy terms more
closely, we created a second dataset for which two rooms at our
institute were scanned. The “ReconstructMe” software was used
together with a Kinect camera to create 2 x 2 x 2m> partial scans.
These were then stitched together, resurfaced using a screened Pois-
son approach [9] and downsampled to the desired resolution by
quadric edge collapsing [4] (see Fig. 1 and 3). The origins are set
to be approximately in the middle of the free floor space.

As Fig. 6 shows, the alignment scheme successfully finds a solu-
tion which places both users in a position about 1.5m apart, facing
each other. Additionally, there is a consensus floor surface of ap-
prox. 2m x 2m and a consensus work surface on the tables (which
happen to be about the same height). The alignment was performed
with active hierarchical optimization on a Sm x Sm sampling grid
at 30 pixel/p.

In order to verify the decoupling between model complexity and
processing time, the alignment was repeated for decreasing reso-
lutions of both models. As shown in Tab. 2, the time 7,5, spent
on aligning the maps is indeed independent from model complex-
ity. All data was computed on an i7-3770 CPU with 16 GB RAM,
using 3DVIA Studio for rendering and scene management.

It is interesting to note the influence of the binary term qg on
the final result. As shown in Fig. 7, disabling this term can lead
to unsatisfactory alignment of the users’ positions. High values
for Efree (@) and Egyf( @) tend to dominate the energy function and
lead to poses where users are placed too close together, within walls
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Figure 6: Alignment of two real rooms with users (blue and purple, represented as silhouettes and view-cones). Top row shows alignment with
our own dataset, bottom row shows alignment using the dataset provided by Steinbriicker et al. [22]. Common free floor space shown in green,
common work surfaces in yellow. Obstacles of Room B not present in Room A shown in light pink. Full coverage by 6 cameras per room.

| Table 2: Processing time over model complexity |

Faces per Room Tmap A Tmap B falign
100 1.28 ms 1.04 ms 9967.11 ms
1k 2.92 ms 2.52 ms 9989.55 ms
10k 17.27 ms 16.88 ms 10022.6 ms
100k 87.57 ms 73.20 ms 10192 ms
M 690.16 ms | 689.95ms | 9967.06 ms

or not facing each other. This is best illustrated by comparing the
total energy terms E(®) computed with and without the o term.
As Fig. 8 illustrates, without the constraints the energy function
develops a twisting tube shape due to the proximity and heading
terms, overlaid by the free floor space and consensus surface terms.
So even in cases where the proximity Epmx(a)) and heading terms
FEhead (@) become minimal, there are high contributions by Efee ()
and Eg, (). Meanwhile, the missing constraints allow for poses
placing the users within obstacles. Once the constraints are enacted
by setting o to zero for undesired poses, the total energy E(w) is
drastically simplified, as illegal poses lead to E(®jjjegal) = 0.

Even when using the binary term to ensure compliant poses,
there are initial conditions where our system cannot find an optimal
solution. For example, if one of the users starts the initialization
while facing a wall, the heading term E}e,q(®) will come into con-
flict with the free floor space term Efee (). Future research should
be dedicated to detecting and resolving such scenarios. A possi-
ble solution might be a gradual relaxation of alignment constraints
or even non-rigid mapping of remote spaces, e.g., by adaption of
redirected walking [23] for AR conferencing. For best results with
our approach, both users should be facing a large free space during
initialization.

Figure 7: Example of illegal user placement seen from Room B after
disabling hierachical optimization. Note the blue user position within
the remote obstacle, marked red / light pink.

The adaption of the room alignment to different camera place-
ments is shown in Fig. 9. In case of larger rooms, the inclusion
of the mutual observability score allows the algorithm to center the
alignment on floor space with best coverage by multiple cameras
for both participants. In case of smaller rooms, there is usually less
room for adaption. It should be noted that currently only the num-
ber of cameras pointed at a position is considered, without regard
for the actual angle of observation or obstruction by furniture. Fu-
ture work might thus aim to provide feedback to the users as they
distribute cameras for optimal coverage of arbitrary rooms.

5 CONCLUSIONS & OUTLOOK

In this paper the problem of heterogeneous user surroundings in bi-
lateral AR videoconferencing was examined. We began by identi-
fying the requirements on a bilateral telepresence scenario, ranking
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Figure 8: Comparison between total energy with hierarchical opti-
mization enabled (left) and disabled (right). Lighter tones indicate
higher values.

Figure 9: Adaption of room alignment to different camera place-
ments. Consensus free space shown in green. Initial user heading
restrictions were loosend for this example.

them by importance. These requirements were translated into an
optimization scheme running on 2D maps of the two rooms. We
went on to demonstrate an implementation of this optimized align-
ment using real-world scans.

This initial alignment scheme is applicable to any AR videocon-
ferencing scenario where a mutual inclusion of both users’ environ-
ments is desired. Theoretically, our algorithm should be extensible
to more participating rooms once the brute-force solver used in this
paper is substituted for a more efficient optimization algorithm. The
aligned floor maps produced by our approach can also be rendered
in order to communicate established boundaries to the conversation
partners (e.g., walls). Rendering the floorplan into the AR view
helps to avoid obstacles and in finding consensus work surfaces.
However, the actual implementation of this rendering depends on
the chosen display and is therefore outside the scope of this paper.

As first affordable consumer head mounted displays (HMDs) are
appearing on the horizon, we can soon expect to see our avatars
walk in far-away offices and visit relatives in distant cities. The
approach presented here brings this vision closer to realization
by finding the proverbial common ground between participants,
while simultaneously preserving the proper etiquette of not walk-
ing through other people’s walls.
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