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ABSTRACT

Speech de-noising algorithms often suffer from introduction of artifacts, either by removal of parts of the
speech signal, or imperfect noise reduction causing the remaining noise to sound unnatural and disturbing.
This contribution proposes to spatially distribute monaural noisy speech signals based on single-channel
source separation, in order to improve the perceived speech quality. Stereo up-mixing is utilized on the
estimated speech and noise sources instead of simply suppressing the noise. This paper investigates the case
of non-negative matrix factorization (NMF) speech enhancement applied to high levels of non-stationary
noise. NMF-based and spectral subtraction speech enhancement algorithms are evaluated in a listening
test in terms of speech intelligibility, presence of interfering noises and overall quality with respect to the
unprocessed signal. In the result, the listening test provides evidence for superior noise reduction by NMF, yet
also a drop in perceived speech quality that is not covered by the employed set of common objective metrics.
However, stereo up-mixing of NMF-separated speech and noise delivers high subjective noise reduction while
preserving the perceived speech quality.

1. INTRODUCTION approach taken in this paper is based on a fixed speech
The present paper deals with NMF-based single-channel model and adaptive noise models. Because conventional
speech enhancement. The algorithm is supposed to sep-  noise estimators are very well suited for capturing the
arate speech from a noisy recording, which remains a stationary background noise, we have proposed hybrid
challenging problem, especially in the presence of highly =~ NMF models in [9] that combine static with adaptive
non-stationary noise. Some application fields of this task ~ noise models.

can be found in telephonic communications [1], hearing
aids [2], automatic speech recognition [3], speaker recog-
nition [4] or emotion recognition [5]. NMF can be applied
in various fields like image processing [6], music tran-
scription [7], etc. In the case of audio applications one
factor contains spectral features whereas the other factor
contains temporal activations of these features. This prop-
erty can be exploited to separate different sources, given
spectral models of each source.

A crucial problem of speech enhancement is that it can
lead to information loss in the speech signal, as is reflected
by some objective metrics like Sources to Artifacts Ra-
tio (SAR) [10]. In the present study, when considering
subjective measures, this loss of speech quality becomes
even more significant. Although noise is suppressed, the
filtered speech might be perceived as less intelligible than
the unfiltered speech — in other words, the noise suppres-
sion is achieved at the cost of producing artifacts.

Many ‘classic’ single-channel speech enhancement algo-  To remedy this issue this paper proposes an approach
rithms such as [8] are based on an estimation of a static which avoids the artifacts introduced by the attempt to
noise model. However, a static noise model is not capable suppress the noise. Instead, the present approach per-
of adapting to non-stationary noises such as transients, = forms a spatial redistribution of noise and speech. In
which occur in many applications. In contrast, the NMF  natural listening scenarios, the human auditory system
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can exploit spatial cues in order to separate speech and
noise. However, when faced with single channel (mono)
signals containing a mix of speech and noise, such spatial
cues are not available.

In this paper, we investigate an up-mixing approach with
the goal to obtain a spatial separation of speech and noise.
Up-mixing by source separation has already successfully
been used for musical applications [11, 12, 13], but to
our knowledge, is has not been exploited for speech en-
hancement. Fitzgerald [11] applied up-mixing to prior
separated instruments and vocals. He used different meth-
ods for the separation of drums, pitched instruments and
vocals. The separation of vocals also included NMF. Each
separated source might contain artifacts, but the sum of
all sources is equal to the original artifact-free mono file.
According to Fitzgerald, the artifacts are also not notice-
able for a stereo upmixed output if the pan positions for
each source are not too extreme.

In its simplest form, upmixing of a mono signal leads to a
stereo signal with spatial (left/right) information. A more
sophisticated spatial simulation of sound sources can be
found in the work of Gerzon [14]. In our approach we
use straightforward amplitude panning; nevertheless, the
subjective measures show a massive improvement of per-
ceptual speech quality. Let us now outline the employed
de-noising algorithms before turning to the evaluation and
discussion.

2. METHODOLOGY

2.1. Non-Negative Matrix Factorization

NMEF calculates two non-negative factors W € R’!*" and
H € R" such that their product A = WH approximates
a given matrix V € R’ The method is based on mini-
mizing an error function D(V,WH).

In the case of speech separation the columns of W repre-
sent characteristic spectra of speech, such as phonemes,
or spectra of noise sounds. The rows of H represent cor-
responding activations of the spectra contained in W.

In general NMF algorithms use a modified version of
gradient descent; in order to maintain non-negativity the
gradients are split into positive and negative parts and
multiplicative updates are used.

The error function used in this paper is the generalized
Kullback-Leibler divergence. It has shown already good

results in previous work [15]:

Y
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According to [6] and [16] update rules are then given by:
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1 is an all-one matrix. These rules are applied for K
iterations.

2.2. Semi-supervised NMF for speech separa-
tion

In order to separate the speech from a noisy recording
we use semi-supervised NMF as in [1, 9]. The dictionary
matrix W is represented as concatenation of speech com-
ponents W) and noise components W In our work,
the speech dictionary is learned from clean speech data
by performing NMF and keeping the first factor (spectra).
During the separation the speech components are fixed
and only the activations are calculated.

The NMF signal model A is equal to the sum of the speech
approximation AY =W H®) and the noise approxima-
tion A" = wHM:

A=AE £ AM 4)

The semi-supervised NMF used in this paper updates the
noise components during the separation using multiplica-
tive rules, thus fitting the noise model to the observations
of noisy speech. A Wiener filter for the original spectro-
gram V is constructed from the speech and noise estimates
AL and A,

For real-time applications like speech enhancement in
mobile phones NMF can be applied online. The online
NMF used for this paper considers a few time frames
from the past as temporal context in a ‘sliding window’
approach. Noise models are adapted over time to fit the
incoming observations of noisy speech. This approach
is presented in [1]. Further improvements of the NMF
algorithm can be achieved by enforcing sparsity during
the learning phase [17].

2.3. Hybrid semi-supervised NMF
The hybrid approach combines conventional noise estima-
tors with NMF. It was proposed in previous work [9]. A
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noise estimate B is computed by an unsupervised method
such as minimum statistics [8]. It can be incorporated
such that the noise estimate is given by:

AW — W) g + (]h(b)) ®B ®)]

where 1 is an all-one column vector of dimension m and
h®) e Rf” is a row vector. ® is the Hadamard product.
Intuitively the first part of the sum models non-stationary
parts of the noise whereas the second summand models
stationary (background) noises. Previous work has shown
that constant activations 4%) can be reasonably assumed
[9]. For this paper the components of h®) are set a-priori
to 1, corresponding to ‘full confidence’ into the static
noise model B.

3. EXPERIMENTS

3.1. Experimental Setup

The methods are evaluated on mixtures of speech and
noise from publicly available corpora. Spontaneous
speech from the Buckeye corpus [18] is used to reflect use
cases such as speech enhancement in wideband telephone
channels or multimedia retrieval in web videos. In order
to simulate realistic noise, we consider the CHiME 2011
Challenge [19] background noise corpus. This corpus
contains sounds recorded in a domestic environment with
stationary and non-stationary noises.

Because the focus of this paper lies on a systematic and
comparative subjective evaluation of different enhance-
ment algorithms, only six (randomly chosen) recordings
of lengths between 10 and 20 seconds are considered.
These were mixed with noise at SNRs between -9 dB and
12 dB. More extensive objective evaluations were already
done in previous work [17], [9].

NMF is applied to magnitude spectrograms computed us-
ing Hamming windows of 32 ms length with 50% overlap.
Speaker-dependent speech dictionaries are learned from
a 1-minute set of (clean) utterances that is disjoint from
the set of test utterances. A generic speech dictionary is
trained using a subset of the 40 speakers included in the
Buckeye corpus. Each speech dictionary consists of 25
components.

The evaluation compares the original noisy speech with
speech separated by different methods:

e spectral subtraction based on minimum statistics [8]

e online semi-supervised hybrid NMF (generic dictio-
nary matrix, K = 1 iteration per frame)

e online semi-supervised hybrid NMF (speaker-
dependent dictionary matrix, K = 2 iterations per
frame)

The algorithms uses 2 noise components and a sliding
window length of 336 ms, which is an appropriate setting
according to previous evaluations of hybrid NMF [9]; it
has been shown that hybrid NMF needs less iterations
than conventional semi-supervised NMF to achieve good
separation results. In informal listening tests, the NMF
version using only 1 iteration and a generic speaker model
turned out to be a ‘softer’ version that produces less arti-
facts, probably due to less overfitting to the observations.

3.2. Objective Evaluation

The objective evaluation compares different measures.
The standard source separation metrics are Sources to
Distortion Ratio (SDR), Sources to Interferences Ratio
(SIR) and Sources to Artifacts Ratio (SAR) [10]. Since
these metrics are based on simple energy ratios and do not
take into account how the speech distortions are perceived
by the human hearing, [20] introduced new metrics for the
perceptual quality assessment of audio source separation.
They performed listening tests where the listeners were
instructed to rate the enhanced speech signal on a scale
from 1 to 5 (1=bad, 2=poor, 3=fair, 4=good, 5=excellent)
according to:

e the speech signal distortion (Csig)
e the intrusiveness of the background noise (Cbak)

e the overall quality (Covl)

Based on their listening test they built a regression model
to predict these scores based on several objective mea-
sures.

Another predicted mean opinion score (MOS) is the
Perceptual Evaluation of Speech Quality (PESQ) score,
which is the most widespread measure for perceptual
speech quality assessment. However, PESQ has been
designed for the evaluation of speech codecs and is not
directly aimed at other applications (in particular, speech
denoising).

The individual scores for each sample are shown in figure
2 where as figures 3, 4 display the average values of
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these objective measures. Each corner of the net plot
corresponds to a sample.

The plots show that NMF achieves the best ratings for
nearly all measures. Figure 2 confirms this result for the
individual samples. Only the SAR is rather low. Espe-
cially figure 4 shows that NMF achieves a better separa-
tion of speech than spectral subtraction, but at the cost
of producing more artifacts. Although this tendency is
not depicted by the predicted MOS values, it will be con-
firmed by the subjective results of the next section.

Average (simulated) MOS values

3.5 Oroi
noisy
3 4
2.5 4 .
M spectral subtraction
2 4
1.5 - .
O NMF generic speaker
1 4
0.5 mNMF
0 4 T T T 1

Csig Cbak Covl PESQ

Fig. 3: Average mean opinion score predictors - speaker-
dependent NMF achieves the highest scores in all cate-
gories. Notably, NMF outperforms the traditional spectral
subtraction for these measures.

Average source separation criteria
14

12 | Onoisy

M spectral subtraction
O NMF generic speaker

B NMF

o N B O

SDR SIR SAR

Fig. 4: Average source separation criteria - the plot shows
that speaker-dependent NMF achieves the best separation,
but it may not provide the best speech quality (in terms of
SAR).

3.3. Subjective Evaluation

For a user-centered assessment of the quality of a speech
separation algorithm, subjective tests were conducted.
Three different properties of the obtained audio signals

were evaluated: the sound quality, the intelligibility of
speech and the amount of interfering sounds. Three cor-
responding subjective hearing scores were then defined
accordingly.

In the conducted listening tests, the subjects listened to
each sound individually, in a blind fashion (without know-
ing which sound they heard) and in a random order. To
assess the consistency of the ratings, half of the sounds
occurred twice in the test (subjects were not informed
of this fact). The listening was performed through head-
phones and took place in a quiet room. The subjects were
then asked the following questions:

e Which is the grade of speech quality in this sample?
(similar to Csig)

e Which is the grade of speech intelligibility in this
sample?

e Which is the grade of interfering sounds in this sam-
ple? Interfering sounds are meant to be all the sounds
not belonging to the main speaker. (similar to Cbak)

The subjects could listen to the sounds as many times as
they wanted, before and between these questions. The
grades were given as integers in a scale from -3 to +3, -3
meaning the worst and +3 the best subjectiv quality. This
gives rise to the Subjective Speech Quality score (SSQ),
the Subjective Speech Intelligibility score (SSI) and the
Subjective Separation of Noise score (SSN).

15 subjects participated in the evaluation (12 male, 3 fe-
male, mean age = 29.7, standard deviation = 5.5). 13 of
them have at least a master’s degree in electrical engineer-
ing or related fields and have background in audio signal
processing. All participants are non-native, yet very expe-
rienced English speakers. Participants were not paid for
their service. None of them reported hearing loss.

In order to reduce the burden on the subjects all samples
were cut to 10 seconds (starting from the beginning). Each
sample appears in different versions: the speech enhanced
versions that were already evaluated in the last section
plus a stereo version of online hybrid NMF. This version
is produced using the sox tool !. A spatial situation is
simulated where the speaker stands in front of the listener
and the background noise comes from somewhere on the
left; this is achieved by straightfoward amplitude panning,

Thttp://sox.sourceforge.net/
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Covl MOS values (simulated)
1

. PESQ

Fig. 2: Netplots of the objective measures for each individual sample. The plots show that the ratings are pretty
consistent over the depicted samples. The speaker-dependent NMF enhancement (as opposed to NMF with a generic
speaker model) achieves the best scores for all measures but SAR, which means that it produces good speech-noise
separations, but the resulting speech signal contains serious artifacts.

i.e., mixing 90 percent of the noise on the left output, 10
percent of the noise on the right output, 50 percent of the
speech on the left output and 50 percent of the speech on
the right output.

Since half of the stimuli were randomly selected to appear
twice, we can measure the reliability of the score values
by the intra-rater agreement. 1t is defined as the mean
rank (Spearman’s) correlation coefficient of the first and
second rating of the control stimuli that were played twice.
Another measure of interest is the inter-rater agreement.
It shows the consistency between the ratings by different
participants. It is calculated as the rank correlation of
individual ratings with the mean of all other ratings. Note
that in this case, ratings are averaged for the stimuli played
twice. The agreement values are shown in table 1. The
low mean and high standard deviation values for SSN hint
that the grade of interfering sounds seems hard to measure
and the participants seem to have different opinions about
it. Noises can be perceived different depending on the
listener. Looking at the inter-rater agreement values for
SSQ and SSI there is a reasonable consistency between
the ratings of different participants.

In order to compare the rating results for different sep-
aration algorithms mean ratings are calculated. These
values are shown in figure 5. To avoid the problem that
some raters might give all stimuli a higher or lower rating
than others, also normalized ratings are considered (fig-
ures 6 and 7). The normalization is done by calculating
the difference between a rating and the mean rating for

Average subjective measures

ul il

Onoisy

O spectral subtraction

B NMF generic speaker
-0.5 -
L B NMF
- B NMF stereo
-1.5 L
2
ssQ SSI SSN

Fig. 5: Average subjective measures. The original noisy
speech is compared to separated speech and stereo mixed
noise and speech. The stereo stimuli achieved nearly the
same perceptual speech quality. Although nothing is left
out for the stereo stimuli, they achieved a much higher
noise separation score (SSN).

the participant and scaling it with the reciprocal standard
deviation. However, comparing both plots there are no
qualitative differences.

Considering the speech quality (SSQ) and speech intelli-
gibility (SSI), the stereo method significantly outperforms
the mono separated speech, according to a two-tailed
paired t-test (p < 0.001). An interesting result is that
the NMF using a generic speaker model and only 1 iter-
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Average normalized subjective measures
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$SQ SSI SSN

Fig. 6: Average subjective measures normalized (for each
participant) by subtracting the mean and dividing by the
standard deviation.

<O noisy
- -spectral subtraction
A~NMF generic speaker
—e—NMF

===NMF stereo

Fig. 7: Average normalized subjective measures for each
sample - each corner corresponds to an individual sample.

ation provides better subjective ratings than the speaker
dependent version. This result is not at all covered by the
objective measures. In fact, in contrast to the objective
evaluation the on-line NMF algorithms based on speaker
dependent models do not provide the best ratings in any
category; this may be due to overfitting to the observa-
tions.

Looking at the SSN ratings, the stereo stimuli contain-
ing speech and noise seem to contain the same grade of
interfering noise as the mono stimuli containing the esti-
mated speech. The differences in noise separation scores
(SSN) between NMF online hybrid mono/stereo and the
original noisy speech are also significant according to a

Table 1: The intra-rater and inter-rater agreements (rank
correlation coefficients) as a measure of rating consis-
tency.

SSQ SSI SSN

mean intra-rater agreement | 0.51 0.50 0.40
=+ std. dev. +0.13  +0.18 =£0.30

mean inter-rater agreement | 0.60 0.61 0.34
=+ std. dev. +0.12  +0.12 +£0.25

t-test (p < 0.001). This is a very interesting result, since
in terms of energy, the stereo stimuli contain exactly as
much noise as the original noisy speech. This can be
attributed to the fact that the spatial distribution of speech
and noise facilitates human source separation.

4. CONCLUSIONS

The evaluations show that NMF speech separation sup-
presses noise at the cost of producing artifacts. These
artifacts are shown by the objective measure SAR, but
they seem not as significant as the loss of speech qual-
ity in the subjective evaluation. Overall the comparison
between objective measures and a subjective evaluation
reveals that some tendencies of the subjective evaluation
are not covered by any objective metric. We believe that
this is due to ‘unnaturally’ sounding speech and noise
increasing the cognitive load of the listeners because the
sounds cannot be explained by human experience. Such
‘semantic’ issues are not captured by simple energy or
other acoustic feature based objective measures. For this
reason, the subjective intelligibility and speech quality of
the original noisy signal is often rated better than the en-
hanced signal, in contrast to the objective measures. The
stereo-up-mixing restores the original subjective speech
quality and intelligibility while significantly reducing the
perceived grade of interfering sounds — which, again, can-
not be explained by any objective measure we know of,
since the sum of the noise components remains unchanged
by enhancement. Future work will hence concentrate on
noise source clustering and advanced auditory scene ren-
dering and on improved objective measures to evaluate
the rendering quality for the up-mixing case.
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