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ABSTRACT
In this paper we present a study of the influence of alcohol intoxication on an automatic speaker verification
system. It is widely known that alcohol intoxication affects one’s speech in many ways, but it remains to
be studied how well a system can recognise a person affected by alcohol intoxication. Using the Alcohol
Language Corpus as speech database and a text-independent GMM-UBM speaker verification system, we
perform experiments to analyse the effects of alcohol intoxication in detail. In different experimental setups,
using recordings in either sober or alcoholised condition for speaker enrolment or testing, the influence of
intoxication on the error rate of the speaker verification system is investigated. Compared to the base-
line experiment without alcohol intoxication, the results indicate a generally negative influence of alcohol
intoxication on the verification system. This influence is larger for female speakers compared to males.

1. INTRODUCTION

It is known that alcohol intoxication as well as some
other factors such as health state, stress and fatigue af-
fect one’s speech [1, 2]. This holds in, for instance, the
content of the speech and the physical acoustic signal.
Thereby, the speech can be affected in two ways: degra-
dation of the neurological function of human and degra-
dation of the motor control ability. There exist several
studies related to the effects of alcohol on speech. A re-
view of these effects is given in [3]. The study presented
in [4] confirms that the fundamental frequency and its
range are raised with increasing intoxication. In [5],
one of the first studies trying to detect intoxication from
speech is presented. In [6], changes in glottal pulse pa-
rameters were used to detect alcohol intoxication. A
relatively large speech corpus containing recordings un-
der alcoholised and sober condition is presented in [7]:
the Alcohol Language Corpus (ALC). It contains alco-
holised speech recordings taken in an automotive en-
vironment, and enables reliable studies on the topic of
intoxication influence on automatic speech processing
systems. In the Interspeech 2011 Speaker State Chal-
lenge [8, 9], the ALC data were used as a benchmark to
test systems for intoxication recognition. Following this
challenge, the effect of alcohol intoxication on human

speech was studied in more detail. For example, in [10],
results showed that human listeners use prosodic infor-
mation to detect alcohol intoxication. In [11], alcohol in-
toxication was regarded as a different accent of a speaker,
and phonetic, phonotactic and prosodic cues were used to
detect intoxication. Furthermore, text-based features can
be an indicator for alcohol intoxication [12].

Although there have been several studies investigating
the influence of intoxication on the characteristics of
human speech, there are no studies, to the best of our
knowledge, on the direct influence of alcohol intoxica-
tion on speech processing systems like automatic speech
or speaker recognition. Thus, it is interesting to inves-
tigate the influence of alcohol intoxication on a speaker
recognition system and to discover the performance of a
speaker recognition system using the alcoholised speech
from the ALC corpus. Generally, it is expected that us-
ing alcoholised speech degrades the system’s ability to
recognise speakers. There are several possible applica-
tions of speaker recognition systems where alcohol in-
toxication may influence the system performance, such
as home access systems, telephone hotlines or access
systems to public events with lots of drunk people. An
interesting question is to what degree the performance is
influenced by alcohol intoxication. Also, to what extent
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is a speaker harder to recognise if he/she is intoxicated
and the speaker model was built using ‘sober’ data? Ad-
ditionally, it seems interesting to know if, in a speaker
verification system, using alcoholised or sober impostors
influences the system performance. Furthermore, does it
help to use alcoholised recordings as training data? Fi-
nally, when alcoholised data are used for target model
creation, how well can the system recognise sober speak-
ers?

In this paper, we thus analyse the effects of alcohol intox-
ication on a speaker verification system. Using record-
ings in sober and alcoholised condition from the same
set of speakers, the influence of intoxication can directly
be measured in terms of recognition performance. A
state-of-the-art speaker verification system applying the
Gaussian Mixture Model (GMM) approach with a Uni-
versal Background Model (UBM) and Linear Frequency
Cepstral Coefficients (LFCCs) is used for experiments
with the ALC data for training and evaluation. Several
experiments are conducted, using either sober or alco-
holised speech material for model training and for the
true speaker and impostor trials.

The rest of the paper is organised as follows: In Sec-
tion 2, the theoretical concepts and processes of auto-
matic speaker recognition and the employed system are
introduced. Section 3 presents the experimental meth-
ods and shows the results of the experiments. Finally, in
Section 4, some conclusions are given.

2. EMPLOYED SPEAKER VERIFICATION SYS-
TEM

Speaker verification refers to a task where an unknown
speaker claims to be a specific identity and the system
should make the decision whether to confirm or deny the
claimed identity. Speaker verification is also known as
speaker authentication; it is a voice match between the
speaker’s speech and the true identity. A speaker ver-
ification system is composed of two distinct processes:
an enrolment process and a recognition process. In the
enrolment process, a target speaker model is trained af-
ter a model adaption with the background model (or
world model). The feature parameters for training sta-
tistical models, including both the world model and tar-
get model, are extracted from the speech signal in the
first place. In the recognition process, the feature vectors
of an unknown speaker are compared with the speaker
model, giving a score of similarity between them both.

Background
model

Decision yes/no

Training

Decision
logic

Background
training

data

Target
training

data

Trial
data

Adaptation Target models

+ Claimed identity

Fig. 1: Functionality of the employed speaker verifica-
tion system

The decision module makes a final decision based on the
similarity score and a threshold.

2.1. GMM-UBM System

GMM-UBM is a well-established approach in speaker
recognition [13]. The functionality of a GMM-UBM sys-
tem, as it is applied in this work, is depicted in Fig. 1.
In GMM-based text-independent speaker recognition, a
world model or universal background model (UBM) is
trained with the Expectation Maximisation (EM) algo-
rithm for usually five to ten iterations from a large set
of speakers, resulting in a single model to represent the
speaker-independent distribution of features. The UBM
is then used as a common reference for training of the
other speaker models. When a new speaker is enrolled
to the system, the UBM parameters are adapted to the
feature distribution of the new speaker. It is to be no-
ticed that the world model is trained with the Maximum
Likelihood Parameter Estimation (ML), where the cri-
terion here is to maximise the likelihood of the data
that are computed by the model. On the contrary, the
target speaker model training is realised by maximis-
ing the a posteriori probability that the claimed iden-
tity is true. This method is called maximum a posteri-
ori (MAP) adaptation. The approach of training a back-
ground model with the ML method and then adapting to
the target model training using the MAP criterion is re-
ferred to as GMM-UBM [14].

We applied the following system parameters: For world
model building, 1 024 Gaussian distributions were used.
Preliminary experiments were performed where the
number of mixture components was altered. Results
showed the general trend that doubling the number of
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components (starting from 64 distributions) decreased
the equal error rate (EER), at the cost of higher compu-
tational complexity. Therefore, 1 024 distributions were
chosen. The number of iterations for training the world
model was set to 6, during which 10 % of the frames were
taken for each iteration. For target speaker model build-
ing, five iterations were used, in which 100 % frames
were used. Smaller numbers of iterations led to similar
results. However, when using less than 2 iterations, the
EER increases drastically. The MAP regulation mean
factor was set to 7, which proved to be a good choice.
Finally, in the step for computing both the true speaker
and impostor scores, we computed only the first 10 top
Gaussian distributions. Our speaker recognition system
is built based on the open-source platforms ALIZE and
LIA RAL [15].

2.2. Feature Extraction

The feature extraction was carried out with 16 Lin-
ear Frequency Cepstral Coefficients (LFCCs). Com-
pared to conventional Mel Frequency Cepstral Coeffi-
cients (MFCCs), LFCCs showed to perform better in
speaker recognition tasks especially for female voices,
due to the shorter vocal tract in females and the result-
ing higher formant frequencies. LFCCs can better cap-
ture the spectral characteristic in the high frequency re-
gion [16]. By adding the first order derivatives, log en-
ergy and delta energy, we obtain a feature vector of the
size of 34 dimensions. Features are extracted every 10
ms from Hamming windows with a length of 20 ms. Fea-
ture extraction was performed with the SPro toolkit1.

3. EXPERIMENTS

This section describes the employed speech corpus, ex-
perimental setup and results.

3.1. The Alcohol Language Corpus

Experiments are performed using the ALC data for train-
ing and testing. ALC is a publicly available speech
database. It contains recordings from 162 german speak-
ers (78 female and 84 male) from 5 locations in Ger-
many, ages 21 – 75 years (mean age 31 years). It cov-
ers a variety of speech styles and speaker types. For
each speaker, recordings containing read, spontaneous
and command & control speech in various forms were
taken. This means that the recordings contain a certain

1http://www.irisa.fr/metiss/guig/spro/

amount of realistic conversational speech. Thus, further
research can benefit from the diversity of the database
and produce realistic results. To build the corpus, the
speakers underwent a systematic intoxication test. Each
speaker chose voluntarily her/his blood alcohol concen-
tration (BAC). In the corpus, the BAC values range from
0.28 to 1.75 per mill2. The required amount of alco-
hol for individuals was estimated with the Watson- and
Widmark formula [17]. Speakers had to take a break
of twenty minutes after having consumed the estimated
amount of alcohol. Then the speaker underwent a breath
alcohol concentration (BRAC) test and a blood sample
test. A 15-minute ALC speech test for each individual
speaker followed immediately, so that the changes due to
fatigue and some other factors were reduced. The sec-
ond recording was taken after two weeks; it lasted for
30 minutes under sober condition, which means without
alcohol intoxication.

3.2. Experimental Setup

The partition of data sets for the experiments is shown
in Table 1. The UBM is created using 20 recordings
each from 51 speakers. For each speaker, the recordings
were randomly selected. For target model training, true
speaker trials, and impostor trials, the same 44 speak-
ers were selected, using 30 utterances per speaker (sum-
ming up to 4.0 hours of speech data for each set). The
speakers that are used for UBM training and for the tri-
als are selected from the training and development set,
respectively, as defined in the Interspeech 2011 Speaker
State Challenge. In the case of intoxicated recordings,
the BAC values from those 44 speakers are in the range
from 0.3 to 1.7 per mill, with a variance of 0.09 per mill.
30 recordings are used to create the target models for
each speaker. For the true speaker trials, each feature
vector of a speech segment was tested against the only
true target speaker model. On the other hand, for the
impostor trails, we tested those feature vectors of each
speech segment against 10 randomly picked faked iden-
tities to obtain a score for impostors. Thus, each experi-
ment is composed of 1 320 true speaker trials and 13 200
impostor trials, summing up to 14 520 trials in total.

Considering that in a real world application most of the
speech recordings made by subjects are without alcohol
influence, we built the UBM in all our experiments with
sober data only, though it would also be interesting to

2Per mill BAC by volume (standard in most central and eastern Eu-
ropean countries)
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speakers recordings per spk.

train UBM 51 20
train target 44 30

true speaker trial 44 30
impostor trial 44 30

Table 1: Data sets used for the experimental setup

design experiments in which we train the UBM using
mixed data or only alcoholised. For target model train-
ing and true speaker trials, we tested both settings, i. e.,
using sober or alcoholised recordings. Using alcoholised
recordings for target model training can be considered
a variant of multi-condition training, since the UBM is
trained with sober data. We examined the influence of
two kinds of impostors: sober and alcoholised, in or-
der to find out if there was some difference that impostor
tests could make to the system performance in verifying
speakers under alcohol intoxication.

There are two types of errors in a speaker verifica-
tion system: false rejection (FR) and false acceptance
(FA) [18]. The threshold θ is applied in the decision
making process. With a higher threshold, more identity
claims would be rejected, resulting in more false rejec-
tions but fewer false acceptances. On the contrary, when
the threshold θ is set to some lower value, more claims
would be accepted, so we get more false acceptance but
few false rejections. Thus, setting the threshold θ is a
trade-off between two types of errors. The probabili-
ties for false rejections and false acceptances, Pf r and
Pf a are obtained during experiments, specifically in the
test phase by computing the numbers of errors of each
type. The couple error rates Pf r and Pf a are both func-
tions of the threshold. Thus, we can plot Pf a as a func-
tion of Pf r. This curve is known as the detection error
trade-off (DET) curve. It has been a standard method to
represent the system operating characteristic [19]. In a
speaker recognition system where the true and impostor
speaker scores can be assumed as being Gaussian dis-
tributed and having the same variance, the DET curve
would be linear and have a slope of −1. In practice, the
score distributions are very close to Gaussians though not
exactly, which ensures the capability of representing the
system performance. The DET curve is a more linear
graph, compared to the traditional Receiver Operating
Characteristic (ROC) curve, so it is more intuitive to read
[20, 21]. Another metric used to evaluate the system per-

UBM tr.tgt true trial impostor EER[%]

Exp. 1 S S S S 8.1
Exp. 2 S S A S 12.9
Exp. 3 S S A A 12.3

Exp. 4 S A S S 10.9
Exp. 5 S A A S 8.1
Exp. 6 S A A A 7.9

Table 2: Alcohol intoxication setup (S: sober, A: alco-
holised) for UBM training, target training (tr.tgt), true
speaker trials and impostor trials, and results in terms of
EER.

formance is the EER. It corresponds to the intersection
of the DET curve with the bisector line and indicates the
operating point in the DET curve where Pf r = Pf a. An
issue with EER is that it indicates an arbitrary decision
threshold, showing the overall performance of the sys-
tem [22].

3.3. Results

This section shows the relevant results of the experi-
ments that were performed as described above. The per-
formance was evaluated by plotting the DET curve and
computing the EER. Various experimental setups with
different configurations of sober or intoxicated data and
corresponding results are shown in Table 2.

As the target models are trained separately with sober
(Exp. 1-3) and alcoholised (Exp. 4-6) data, we compare
the results separately within these two setups.

In the first part of the experiments, the target model is
trained using only sober data. Fig. 2 illustrates the DET
curves for Experiments Exp. 1–3. Exp. 1 (solid line) can
be considered the baseline experiment, since only sober
recordings are used for training and testing. The EER of
the baseline system is 8.1 %. Using alcoholised data for
both true and impostor trials (Exp. 3), results in an EER
of 12.3 %. The difference in EER between these two se-
tups is 4.2 %, which means that, when having sober tar-
get models and test with alcoholised data, the system’s
EER is generally 4.2 % worse than with only sober data.
For Exp. 2, true trials use alcoholised data and imposter
trials are done with sober recordings. In this case, the
EER is increased to 12.9 %.

Next, let us take a closer look at Exp. 4, Exp. 5, and
Exp. 6 in Table 2. These experiments are conducted
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under the condition that the target speaker models are
trained using alcoholised data. The corresponding DET
curves are shown in Fig. 3. The solid curve is gener-
ated with the setup for Exp. 4 and has an EER of 10.9 %,
the dashed line represents Exp. 5 (EER 8.1 %), while the
dashed-dotted one is the result of Exp. 6 and has an EER
of 7.9 %. Comparing these three curves, we can see that,
when we train the target with alcoholised data, then test
with only sober data, the EER is 3% worse, compared
to the ‘matched-condition’ experiment, when alcoholised
data are used for testing.

Finally, we observe the impostor tests, which were taken
using sober or alcoholised data in different experiments
in Table 2. For instance, we compare Exp. 2 and Exp. 3.
They show the EERs of 12.9 % and 12.3 %. The com-
parison yields that slight differences exist between these
two setups of impostor trials. The increase of EER from
12.3 % to 12.9 % is attributed to a higher Pf a. Since the
target models are trained with sober data, using sober im-
postors increases the number of false alarms, compared
to when using alcoholised impostors. A similar observa-
tion can be made by comparing Exp. 5 and Exp. 6, which
have EERs of 8.1 %, 7.9 %, respectively; yet, this differ-
ence is not statistically significant. However, even when
target models are trained with alcoholised data, using
sober impostors increases Pf a. This could lead to the as-
sumption (even if the difference is not significant) that
the target models are not fully adapted to the alcoholised
case.

It is to be noticed that all three results in Fig. 3 are better
when comparing to the results in Fig. 2. One can see the
difference when comparing the baseline system (8.1 %)
against Exp. 6 (7.9 %), or Exp. 3 (12.3 %) against Exp. 4
(10.9 %). These interesting results may indicate that (un-
der the assumption that p(A) = p(S), which, however, is
generally not true), it might generally be better to train
target models using alcoholised data rather than sober
data to obtain a better system performance. This is a re-
sult of the fact that in Exp. 4-6, the target models are
adapted from a sober background model, using alco-
holised data, which can be regarded as a sort of multi-
condition training.

The experimental results are then further analysed for the
differences between male and female speakers. We com-
pared the results of the experiment with sober data only
(Exp. 1) with the results obtained by using sober models
and alcoholised trial data (Exp. 3), separately for male
and female speakers. These results are shown in Table 3.
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Fig. 2: Speaker verification DET curves when target
models are trained using sober data. Solid line: sober
trials (Exp. 1, 8.1 % EER); dashed line: alcoholised true
speaker trials and sober impostor trials (Exp. 2, 12.9 %
EER); dashed-dotted line: alcoholised trials (Exp. 3,
12.3 % EER). For explanation of experimental configu-
rations, cf. Table 2.

For male speakers, using alcoholised recordings for test-
ing increased the EER by 3.5 %, while, for female speak-
ers, the EER increased by 4.8 %. Thus, in our experi-
ment, alcohol intoxication has a larger effect on female
speakers compared to male speakers. However, in order
to be able to draw general conclusions, more experiments
need to be performed, since the sample size is not large
enough to produce statistically significant results in our
case.

4. CONCLUSIONS

In this work, an automatic speaker verification system
based on GMM-UBM approach is used for analysing the
influence of speaker alcohol intoxication on the system
performance. A set of experiments was conducted with
different configurations of using alcoholised or sober
data for training or testing. The results were shown and
discussed in detail, generally indicating a negative in-
fluence of alcohol intoxication on the speaker verifica-
tion system in the case of mismatched conditions. We
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Fig. 3: Speaker verification DET curves when target
models are trained using alcoholised data. Solid line:
sober trials (Exp. 4, 10.9% EER); dashed line: al-
coholised true speaker trials and sober impostor trials
(Exp. 5, 8.1 % EER) ; dashed-dotted line: alcoholised tri-
als (Exp. 6, 7.9% EER). For explanation of experimental
configurations, cf. Table 2.

also found that training target speaker models with alco-
holised data always gives a better result than using sober
data. This can be attributed to the usage of sober data for
background model training, which, in combination with
alcoholised data for target model training, can be con-
sidered as multi-condition training. An analysis of the
results showed that alcohol intoxication had a larger in-
fluence on females compared to males.

Future work could explore the system performance based
on different degrees of alcohol intoxication or different
speech styles, to find out how verification rates are af-
fected gradually by varying conditions. Approaches for
multi-task learning could be used to directly detect intox-
ication and recognise the speaker. Here we playn to adapt
and use our methods developped for detecting overlap-
ping speech: explpoiting linguistic information [23] or
using neural networks for classification [24]. Another
idea is to apply techniques to optimise the intoxicated
case, such as techniques for session variability or chan-
nel compensation, e. g., Joint Factor Analysis [25], in
which the two states of our system (sober or alcoholised)

EER[%] male female

Exp. 1 8.8 7.1
Exp. 3 12.3 11.9

difference +3.5 +4.8

Table 3: Gender-dependent results, comparing the EER
in the case of taking only sober data (Exp. 1) or taking
sober data for training and alcoholised data for testing
(Exp. 3).

could be regarded as different ‘telephone channels’. Fur-
thermore, it would be interesting if directly addressing
the effects of alcohol intoxication (e. g., increased F0 or
range of F0) and trying to reverse them can help to in-
crease the robustness of a speaker recognition system to
alcohol intoxication.
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