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Abstract—In this article we address the problem of distant
speech recognition for reverberant noisy environments. Speech
enhancement methods, e.g., using non-negative matrix factor-
ization (NMF), are succesful in improving the robustness of
ASR systems. Furthermore, discriminative training and feature
transformations are employed to increase the robustness of
traditional systems using Gaussian mixture models (GMM). On
the other hand, acoustic models based on deep neural networks
(DNN) were recently shown to outperform GMMs. In this work,
we combine a state-of-the art GMM system with a deep Long
Short-Term Memory (LSTM) recurrent neural network in a
double-stream architecture. Such networks use memory cells in
the hidden units, enabling them to learn long-range temporal
context, and thus increasing the robustness against noise and
reverberation. The network is trained to predict frame-wise
phoneme estimates, which are converted into observation likeli-
hoods to be used as an acoustic model. It is of particular interest
whether the LSTM system is capable of improving a robust state-
of-the-art GMM system, which is confirmed in the experimental
results. In addition, we investigate the efficiency of NMF for
speech enhancement on the front-end side. Experiments are
conducted on the medium-vocabulary task of the 2nd ‘CHiME’
Speech Separation and Recognition Challenge, which includes
reverberation and highly variable noise. Experimental results
show that the average word error rate of the challenge baseline
is reduced by 64 % relative. The best challenge entry, a noise-
robust state-of-the-art recognition system, is outperformed by
25 % relative.

Index Terms—noise robust speech recognition, long short-
term memory, non-negative matrix factorization, multi-stream
recognition.

I. INTRODUCTION

Automatic speech recognition (ASR) in realistic acoustic
conditions, e. g., involving room reverberation and interfering
noise sources, is still a major research challenge. System
robustness can be achieved by several strategies at different
levels [1]. On the one hand, the speech signal can be enhanced
by denoising [2], [3]. Monaural signal separation techniques
such as non-negative matrix factorization (NMF) [4] are
especially useful for cases where multi-channel audio with

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.

J. Geiger, F. Weninger, B. Schuller and G. Rigoll are with the Institute
for Human-Machine Communication, Technische Universitit Miinchen, Mu-
nich, Germany (e-mail: geiger @tum.de, weninger @tum.de, schuller@tum.de,
rigoll@tum.de)

B. Schuller is also with the Department of Computing, Imperial College
London, UK

M. Wollmer is with the BMW Group, Munich, Germany

J. F. Gemmeke is with the department ESAT, KU Leuven, Belgium (e-mail:
jgemmeke @amadana.nl )

Manuscript accepted for publication on April 07, 2014

a specified microphone placement is not available. Further-
more, robust features such as RASTA-PLP [5], feature en-
hancement techniques [6], or feature transformations such
as Linear Discriminant Analysis (LDA) [7] can improve
the system robustness. On the other hand, robust models
and decoding methods are often employed, including multi-
condition training and/or discriminative training, e.g., using
the Maximum Mutual Information (MMI) principle [8]. In
addition, methods such as vector Taylor series (VTS) can be
applied to adapt the acoustic model to noisy speech [9]. Such
approaches addressing the robustness of the back-end of the
recognition system were mostly developed for conventional
systems using Gaussian mixture models (GMMs). Recently,
deep neural networks (DNNs) gained popularity in speech
recognition due to improved acoustic modeling performance
compared to GMMs [10]. In [11], the potential of DNNs for
robust ASR was demonstrated. In this work we consider a
system using a Long Short-Term Memory (LSTM) recurrent
neural network (RNN) as an acoustic model and NMF-based
speech enhancement for robust ASR. We want to study the
effects of combining the LSTM network with a state-of-the-
art GMM system in a double-stream architecture. Furthermore,
we investigate the influence of speech enhancement on the
different acoustic models.

A. Related Work

Recently, RNNs have been applied in a tandem system for
robust ASR [12]. Deep RNNs with end-to-end training are also
capable of being used for speech recognition on their own,
without an HMM framework [13]. One shortcoming of con-
ventional RNNS is that the amount of context they use decays
exponentially over time (the well-known vanishing gradient
problem [14]). To overcome this problem, the LSTM concept
has been introduced [15]. An LSTM-RNN exploits a self-
learned amount of temporal context, which makes it especially
suited for a speech recognition task involving reverberation
and additive noise. Previously, we suggested using LSTM
networks for noise-robust spelling recognition in a tandem
HMM-LSTM system [16]. The application of LSTM networks
in a double-stream system was first introduced in [17] for
conversational speech recognition, where LSTM phoneme
predictions improved a simple triphone HMM system. Multi-
stream HMM systems were initially proposed to combine
independent feature streams [18]. For example, in this way,
GMMs can be fused with NNs [19] or with NMF-based sparse
coding techniques [20] for increased robustness.
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Building upon the first CHiME Speech Separation and
Recognition Challenge [21], in its second installment [22], a
medium-vocabulary speech recognition track was introduced
by using the Wall Street Journal (WSJO) read speech corpus.
Together with degradation introduced by room reverberation
and highly non-stationary additive noise, this proved to be
a challenging recognition scenario. In our successful contri-
butions to the Ist and 2nd CHiME challenges, we used a
GMM-LSTM multi-stream system in combination with NMF
speech enhancement [23]-[25]. An LSTM network was used
to generate frame-wise phoneme predictions, largely improv-
ing the performance of the maximum likelihood (ML) trained
HMM baseline system. The HMM system employed NMF
speech enhancement in its front-end. However, up to now, the
LSTM approach has never been combined with discrimina-
tively trained HMM systems. Since in previous work, it was
always combined with a ML-trained HMM-GMM system, it
is not clear whether the LSTM approach will also lead to
such large improvements in combination with a state-of-the-
art discriminatively trained GMM system.

In the study presented in [26], a speech enhancement
method using spatial and spectral cues was capable of im-
proving a noise-robust small-vocabulary recognition system
that utilized DNNs. In our work, we consider only spectral
features (without additional information such as spatial cues),
to enable a fair comparison. On the other hand, in [11], a
DNN ASR system could not be improved by applying feature
enhancement in the front-end.

B. Contribution

We now combine the LSTM approach with a state-of-the-art
discriminatively trained ASR system, additionally making use
of an NMF-based speech enhancement approach. In particular,
we want to address the following research questions: (1), is the
LSTM system capable of improving a state-of-the-art noise-
robust HMM-GMM ASR system? Our experimental results
will affirm this question. Furthermore, (II), what is the influ-
ence of speech enhancement in combination with our back-end
recognition system? The robustness of the LSTM network has
already been demonstrated (e.g., in [16]) and therefore it is
unclear whether the combination of a state-of-the-art HMM-
GMM and an LSTM system can be further improved by
applying speech enhancement in the front-end. Our results will
show that, while the employed speech enhancement method
improves the GMM system, this is not the case for the LSTM
system.

C. Overview

A flow chart of the evaluated ASR system is depicted in
Fig. 1. On the back-end side, a double-stream architecture is
used for acoustic modeling. In addition to a GMM acoustic
model, a deep bidirectional LSTM network generates frame-
wise phoneme estimates, which are converted into observation
likelihoods to be used as an acoustic model in the HMM
framework. Both acoustic models are always trained in a
multi-condition fashion, using noise-free and noisy data. On
the front-end side, our system can optionally use NMF speech
enhancement (independently for both streams), exploiting an
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Fig. 1. Block diagram of the evaluated system: The central component
is a multi-stream HMM fusing GMM and LSTM acoustic models. Speech
enhancement, using NMF, is optionally applied prior to feature extraction.
For the GMM stream, feature transformations (as explained in later sections)
can be employed.

exemplar-based approach where noisy speech is decomposed
into additive combinations of speech and noise training seg-
ments.

The described system is evaluated on the original medium-
vocabulary task of the 2nd CHiME Speech Separation and
Recognition Challenge [22]. We will demonstrate the influence
of different system components on the recognition perfor-
mance and show that our system strongly outperforms the
challenge baseline as well as the best-performing challenge
entry.

The employed methods (HMM-GMM, NMF speech en-
hancement and LSTM) are described in Sections II, III,
and IV, respectively. Details about the experimental setup
and parametrization of algorithms are given in Section V.
The results of our experiments are presented and discussed
in Section VI, before concluding in Section VII.

II. HMM-GMM-BASED SPEECH RECOGNITION

We use a state-of-the-art HMM-GMM ASR system, as it
was described by Tachioka et al. in [27]. This system is
implemented with the Kaldi speech recognition toolkit [28]. In
addition to ML training, it uses discriminative learning (DL)
and various feature transformation (FT) methods. Discrimi-
native training is performed using boosted Maximum Mutual
Information (bMMI) as proposed in [8]. The MMI principle
aims at maximizing the posterior probabilities of the correct
utterances, given the trained models. By applying bMMI, a
weight is introduced, strengthening the influence of hypotheses
with a higher error. For bMMI, the objective function is

(Xr | M, )" pr(sr)
- g
3.

PAIM i (s)e e (1
where r = 1,... , R are the training utterances, and X,. are the
corresponding feature sequences. M, is the HMM sequence
of sentence s, s, is the reference transcription of utterance r,
K is the acoustic scale, p, is the likelihood of the acoustic
model with the parameters A, and p;, is the language model
likelihood. The last term in the denominator is the boosting

Forenrr(A
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weight, where b > 0 is the boosting factor and A(s,s,) is
the phone accuracy of sentence s given the reference s,. In
addition to model-space bMMI, we apply feature-space bMMI
as well. The introduction of the boosting factor incorporates
the concept of a soft margin that is proportional to the errors
in a hypothesized sentence.

Furthermore, techniques for feature transformation are em-
ployed. Feature transformations can improve the class separa-
tion and address the speaker variability in the training data.
Channel variability, such as different channels and additive
noise or reverberation, can also be compensated by feature
transformations. Linear discriminant analysis (LDA) is applied
on ‘stacked” MFCC vectors extracted from multiple signal
frames (centered around the current frame) and reduces these
high-dimensional features to a smaller dimension. The neces-
sary class labels are obtained by aligning the triphone HMM
states. There are too few data to train full-covariance mod-
els, because of the high-dimensional acoustic feature space.
Therefore, diagonal-covariance models, which do not consider
correlations between features, are used instead. We use a
maximum likelihood linear transform (MLLT), as described
in [29], for decreasing the correlations between features. The
combination of LDA and MLLT exploits context to reduce
the influence of non-stationary noise, and correlations between
feature dimensions that were introduced by noise are removed.
To address the problem of large variations among speakers,
speaker adaptive training (SAT) is applied: During the ML
training procedure, feature-space maximum likelihood linear
regression (f-MLLR), which is the same as constrained MLLR
[30], is applied to estimate a speaker-dependent transform.
The estimated transform is subsequently used during model
re-estimation. First, a tight-beam decoding is performed to re-
estimate the SAT transform (the speaker identities are known),
before doing a final decoding pass.

III. NMF SPEECH ENHANCEMENT

The speech enhancement component of our system uses
exemplar-based spectrogram factorization algorithms previ-
ously employed in noise robust ASR experiments on the
Aurora-2, SPEECON and CHiME/GRID datasets [25], [31].
In short, noisy Mel-magnitude spectra are decomposed as a
sparse, non-negative linear combination of speech and noise
dictionary atoms. The activations of the speech atoms are then
used to obtain an estimate of the clean speech. In order to
capture time context, atoms span multiple time frames and
utterances are decoded using a sliding-window method:

J K

VaV=AD 4+ A0 =S W+ S W h, @
j=1 k=1

where V is a B x T dimensional spectrogram representing the
current window of the observed noisy speech, B is the number
of spectral bands, and 7' the number of consecutive frames in
a windowed spectrogram. The spectrograms A(*) and A(™ are
estimates for its speech and noise content, respectively, W are
B x T dimensional dictionary atoms, and h their activation
weights. We denote the number of speech atoms by J and
similarly the noise dictionary size by K.
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Fig. 2. Long Short-Term Memory block, containing a memory cell and the
input, output, and forget gates

The coefficients h; and hj, are obtained through supervised
NMF by minimizing the KL-divergence between V and \Y%
regularized with a sparsity constraint on the activations [25].
After factorization, we estimate clean and noise estimates
of the noisy speech spectra by overlap-adding the sliding
windows. With these, we estimate the Wiener filter used to do
speech enhancement [25]. The choice for speech enhancement
rather than feature enhancement allows us more freedom in the
feature extraction of the double-stream recognizer.

The dictionary atoms are formed by exemplars, spectro-
grams directly extracted from spectrograms [32]. Preliminary
experiments on the CHIME development set revealed that
the use of exemplars yields better results compared to the
learnt representations of speech and noise used in previous
and related work [33], [34].

IV. LSTM ACOUSTIC MODELING

As an alternative to GMM acoustic modeling, an LSTM
network is used to generate frame-wise phoneme estimates, as
first proposed in [17]. The observation likelihoods are derived
from these phoneme estimates.

A. LSTM RNN

LSTM networks were introduced in [15]. Compared to a
conventional RNN, the hidden units are replaced by so-called
memory blocks. These memory blocks can store information
in the cell variable c¢;. In this way, the network can exploit
long-range temporal context.

Each memory block consists of a memory cell and three
gates: the input gate, output gate, and forget gate, as depicted
in Fig. 2. These gates control the behavior of the memory
block. The activation vector of each gate is computed as, for
example for the input gate,

iy =0(Wayixe + Whihi_1 + Weiei1 + b)) 3)

where W is a weight matrix, =, is the input vector at time step
t, h,_1 is the hidden state vector of the previous time step,
b; denotes the input bias vector, and o is a sigmoid function,
causing each gate either to be open or closed. The forget gate
can reset the cell variable which leads to ‘forgetting’ the stored
input ¢;, while the input and output gates are responsible for
reading input from a; and writing output to h;, respectively:

¢ =f, @ci—1 + 1 @ tanh(W ey + Wichi—1 + b.) (4)
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ht =0+ ® tanh(ct) (5)

where ® denotes element-wise multiplication and tanh is also
applied in an element-wise fashion. Each memory block can
be regarded as a separate, independent unit. Therefore, the
activation vectors ¢;, 0;, f,, and c; are all of same size as
hy, i.e., the number of memory blocks in the hidden layer.
Furthermore, the weight matrices from the cells to the gates
are diagonal, which means that each gate is only dependent
on the cell within the same memory block.

In addition to LSTM memory blocks, we use bidirectional
RNNs [35]. A bidirectional RNN can access context from
both temporal directions, which makes it suitable for speech
recognition, where whole utterances are decoded. This is
achieved by processing the input data in both directions
with two separate hidden layers. Both hidden layers are then
fed to the output layer. The combination of bidirectional
RNNs and LSTM memory blocks leads to bidirectional LSTM
networks [36], where context from both temporal directions
is exploited. An NN composed of more than one hidden
layer is referred to as a deep NN [10]. By stacking multiple
(potentially pre-trained) hidden layers on top of each other,
increasingly higher level representations of the input data
are created (deep learning). When multiple hidden layers are
employed, the output of the network is (in the case of a
bidirectional RNN) computed as

— —
Y, = Wh%yhiv + W;Nyh,{V + by, (6)
— —
where hiv and hiv are the forward and backward activations
of the N-th (last) hidden layer, respectively. Furthermore, a
softmax activation function is used at the output,

exp(yt”)

5/ )
S exp(ur’”)
to generate probabilities for the targets, in our case for all
possible phonemes j =1,..., P.

For network training, we use on-line gradient descent by
backpropagation through time, where weight changes are
applied after processing one utterance in each training epoch.
Training utterances are ‘shuffled’ (presented in random order)
to improve generalization in on-line learning. The cross en-
tropy is employed as an error function for training. Our LSTM
software is publicly available'.

p(bD|x;) = 7

B. LSTM Phoneme Prediction

For a phoneme prediction LSTM, the input vectors x; of
the network correspond to the employed acoustic features,
whereas the output y, represents frame-wise activations for
each phoneme. In order to use phonemes as training targets, a
forced alignment of the baseline HMM recognizer with clean
data is obtained.

During decoding, a phoneme prediction is derived from the
network output activations,

bi = argmax (p(b|@1)),j = 1,..., P ®)
J

Uhttps://sourceforge.net/p/currennt

leading to one phoneme prediction per frame. The process
of LSTM decoding and generating the phoneme prediction is
summarized in the function

These frame-wise phoneme predictions are used to obtain
the likelihood p(b¢|s;) for the acoustic model in the following
way. Using the development set, the frame-wise phoneme
predictions are evaluated and all confusions are counted and
stored in the phoneme confusion table C' as row-normalized
probabilities: R

C(i,j) =p(b=jlb=1).
Although the phoneme confusions are estimated on the devel-
opment set, the performance generalizes well to the test set.
The likelihood p(x¢|s:) (observation given HMM state) is then
obtained by using the mapping b = m(s) from HMM states to
phonemes. Since the LSTM works with monophones, triphone
structures are ignored here, mapping triphone HMM states to
the corresponding monophones. The acoustic likelihoods are
therefore computed as

pr(xe]se) = C(m(sy), L(xy)). (11)

Thus, instead of directly predicting the probability p(s¢|x;)
with the network and using Bayes’ theorem to obtain obser-
vation likelihoods, as in a typical hybrid system, the network
converts the output scores p(b:|x;) to discrete phoneme pre-
dictions b using Eqn. (8). These phoneme predictions are
evaluated on the development set. By storing the confusions
in C and normalizing the rows of C, this matrix constitutes
a discrete probability table for p(b;|b;). For HMM decoding,
the likelihoods p(x;|s;) are required, which are now approxi-
mated by p(L(x;)|m(s;)) = p(be|bs), exploiting the surjective
mapping from states to phonemes. Thereby, the confusions of
the network are ‘learned’ in the conditional probability table C'
and used to derive the observation likelihoods p(x¢|s;). These
likelihoods are now expected to have a high discriminative
power. With this method, the RNN needs fewer output nodes
(as compared to predicting state posteriors), which makes it
easier to train.

Phoneme classification experiments in [37] support our
choice of using bidirectional LSTM RNNs instead of other
network architectures. In that work, bidirectional LSTMs
were shown to perform better than feedforward networks
or traditional RNNs without LSTM cells. To underpin this
statement, in our experimental section, we will additionally
show results where a feedforward network is employed for
phoneme prediction instead of an LSTM.

(10)

C. Double-Stream Decoding

In order to combine GMM acoustic modeling and LSTM
phoneme predictions, we employ a double-stream HMM sys-
tem. In every time frame ¢, the double-stream HMM has
access to two independent information sources, pg(a¢|s:)
and py (x|s¢), the acoustic likelihoods of the GMM and the
LSTM predictions, respectively. The double-stream emission
probability is computed as

p(@e|se) = pa(@e]se)™ - pr(@e]se)® ™, (12)
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where the variable A € [0, 2] denotes the stream weight of the
GMM stream.

V. EXPERIMENTAL SETUP
A. Evaluation Database

Experiments are conducted on the medium-vocabulary task
of the 2nd CHiME Challenge [22]. This database consists of
utterances from the WSJO 5k vocabulary read speech corpus,
convolved with real binaural impulse responses measured
in a domestic environment, and mixed with realistic noise
backgrounds recorded in the same environment. The impulse
responses were measured for a fixed position 2 m in front of a
head and torso simulator. The background noise contains a rich
collection of sound sources from a lounge and kitchen such
as electronic and kitchen appliances, noise produced by the
inhabitants (such as footsteps, laughter or background speech),
and noise from outside. Speech utterances are temporally
placed in the background noise such that different signal-to-
noise ratios (SNRs), from -6 to 9dB, in steps of 3dB, are
obtained. The training set contains 7 138 utterances from 83
speakers summing up to 14.5 hours (forming the WSJO SI-
84 training set), in clean, reverberated and reverberated+noisy
form. For the development set, 409 noisy utterances from 10
other speakers are provided at all six different SNRs, leading to
a total number of 2 454 utterances (4.5 h in total). The test set
includes 330 noisy utterances from 12 speakers, at all SNRs
(1980 recordings or 4 h in total). All noisy utterances are
also provided in an embedded form, where 10 s of surrounding
background noise are included. Word error rate (WER) is used
as an evaluation measure. For each evaluated system, we report
the average WER across all SNRs, and for some systems also
the WER for each of the six different SNR values.

B. Preprocessing and Feature Extraction

While the challenge data are stereophonic, we consider
only single-channel signals. These signals are obtained by
averaging over both channels. For the employed database,
this corresponds to a delay-and-sum beam-forming, since the
target speaker is located at a fixed position in front of the
microphones (azimuth 90 degrees).

All features are extracted from frames of 25ms and a
frame shift of 10 ms. The baseline HMM-GMM system uses
standard MFCCs, i.e., 13 coefficients with their delta and
acceleration coefficients, whereas for the advanced HMM-
GMM the features are processed using feature frame stacking
and LDA projection (as described in the following section).
The LSTM network uses logarithmic Mel filter bank (Log-
FB) features (instead of MFCCs) that are also complemented
by their delta and acceleration coefficients. The choice of
features follows other recent studies that use NNs for speech
recognition [10], [13], [38]. We use 26 Log-FB (plus root-
mean-square energy) covering the frequency range from 20
— 8000 Hz, computed with the same frame size and shift as
applied for the MFCCs.

C. Parameterization

1) HMM-GMM Recognizer: Parameterization and training
of HMM-GMM acoustic models in our system is the same

as described in [27] and works as follows: 40 phonemes
(including silence) are integrated in context-dependent tri-
phone models with 2 500 states and a total number of 15000
Gaussians. First, models are trained with clean training data
applying the ML principle. Next, ML training is continued
with reverberated training data, using the alignments and
triphone tree structures from the clean models. Then, isolated
noisy training data are used for training. In the experimental
section, this basic system (using only ML training) is referred
to as the ML GMM acoustic model. From this setup, an
advanced system is created using discriminative training and
feature transformations. First, another set of ML training
iterations is performed after applying the described feature
transformations, using the noisy training data. Here, the 13
static MFCC coefficients of nine consecutive frames are con-
catenated together and LDA is applied to reduce the resulting
117 dimensional vector to 40 dimensions. The LDA uses the
2500 aligned triphone HMM states as classes. Subsequently,
features are transformed using MLLT and model re-estimation
is done. Afterwards, an f-MLLR transform is estimated for
SAT, leading to another set of model re-estimation iterations.
Based on the resulting acoustic models, discriminative training
is performed with the noisy training data, using model-space
and feature-space bMMI with a boosting factor of b = 0.1.
During decoding, the language model weight is tuned for each
system to minimize the average word error rate across all
SNRs on the development set.

2) NMF Speech Enhancement: All factorization operates
on Mel-magnitude spectra, with B = 40 bands. The window
length is 7" = 20 frames, and a window shift of one frame is
used.

From the reverberated isolated utterances in the training
data, 10000 speech exemplars were extracted by random
sampling. Two noise dictionaries were used: a fixed noise
dictionary of 4000 exemplars randomly extracted from the
embedded utterances in the noisy training set, and a noise
dictionary extracted from the 10 seconds of embedding noise
in the noisy utterance that is being decoded. This second noise
dictionary consists of all exemplars that can be extracted from
the 1000 frames of noise: 2 - 500 — 7"+ 1 = 981 exemplars.
This brings the total number of exemplars in the dictionary
to 14981. An additional experiment is performed in order to
demonstrate the effect of exploiting the embedding noise. For
that experiment a fixed noise dictionary of 4981 exemplars is
used, without exploiting the knowledge of surrounding noise.

The sparsity for the speech was set at 0.075 times the
average L; norm of the fixed part of the dictionary (speech
and noise jointly). The noise sparsity was set at 0.5 times the
speech sparsity. The number of iterations was kept constant at
400. These values were tuned using a small random subset of
the AURORA-4 corpus.

3) LSTM Configuration: LSTM network parameters are
estimated with multi-condition training, using the combination
of the reverberated noisy-free and noisy training sets. The
inputs to the LSTM network are globally mean and variance
normalized. To this end, the global means and variances are
computed from the reverberated noise-free and noisy training
set features. In addition to the input and output layers, the
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employed bidirectional LSTM network is made of three hidden
layers (making it a deep NN), where 81, 128, and 90 hidden
units are employed. These values correspond to the number
of memory blocks in each of the two temporal directions. The
number of input nodes corresponds to the length of the feature
vector (81 in case of Log-FB), while the number of output
nodes is equal to the number of phonemes, which is 40 in our
case. LSTM topologies were chosen according to previously
performed experiments on similar databases. The networks
are trained through gradient descent with a learning rate of
107° and a momentum of 0.9. During training, zero mean
Gaussian noise with standard deviation 0.6 is added to the
inputs in order to further improve generalization. All weights
were randomly initialized from a Gaussian distribution with
mean 0 and standard deviation 0.1. The average cross entropy
error per sequence on the development set is evaluated after
every fifth epoch in the training phase. Using an early stopping
strategy, training is aborted as soon as no improvement on the
development set can be observed during 25 epochs.

VI. EXPERIMENTS AND RESULTS
A. GMM vs. LSTM

First, we want to study the effects of combining the em-
ployed LSTM method with the two different GMM acoustic
models: the standard system using only ML training or the
advanced discriminatively trained system employing LDA,
MLLT and SAT. Experimental results for the resulting four
system combinations are displayed in Table I. Our ML-trained
GMM acoustic model (first row) and the discriminatively
trained system including all feature transformations (second
row) correspond to the systems described by Tachioka et al.
in [27], except that we apply beam-forming (cf. Section V-B),
which brings an absolute improvement of about 7 % in average
WER. Combining GMM and LSTM acoustic modeling in the
double-stream system (GMM stream weight A = 1.0) leads to
further large improvements in WER. The ML-trained HMM
is improved by almost 30 % relatively. More impressively, the
discriminatively trained HMM can also vastly be improved
(18 % relative) by adding the LSTM predictions. The relative
improvements are nearly the same for all SNRs. For compar-
ison, results for a standard DNN, taken from [39], are listed
in Table I. The DNN acoustic model had 3 hidden layers
and 500k parameters and is thus comparable to the LSTM
employed in our study. Because it is not speaker-adapted
(though it still uses the LDA+MLLT feature transformation),
the DNN is not able to beat the GMM. Beyond that, the
performance is also weaker than the GMM-LSTM double-
stream system. A phoneme prediction DNN (employed in the
same way as the LSTM, and described in more detail later in
this section) performs significantly worse than the LSTM.

The stream weight A in Eqn. (12) controls the trade-
off between the influence of the GMM and LSTM acoustic
model likelihoods. When setting A = 2, the HMM uses only
the GMM acoustic model (though with an exponent of 2).
Accordingly, A = 0 means that the system uses only the
information from the LSTM stream. Fig. 3 shows the average
WER for different stream weights. Of particular interest are
the results with A = 0.0 and A\ = 2.0. The GMM alone

TABLE I
WER (in %) on the development set when combining different GMM
acoustic models with the LSTM

Acoustic Model SNR [dB] Mean
GMM LSTM | -6 -3 0 3 6 9
ML - 68.5 59.0 50.3 443 39.7 345 494
DL+FT - 529 430 346 267 235 19.0 333
ML v 537 432 352 298 267 221 35.1
DL+FT v 452 344 275 215 192 157 27.3
DNN [39] 572 459 362 306 264 233 36.6
DL+FT DNN| 50.9 40.6 32.6 258 226 18.7 31.9
44 T T T
42 4
40 E
? 38} E
£ 36 D
« 34 - 4
z 32} g
30 E
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26 1 1
0 0.5 1 1.5 2

GMM stream weight

Fig. 3. Average WER (development set) for different HMM decoding stream
weights \. Values of 0.0 and 2.0 correspond to using only the LSTM or GMM
acoustic model, respectively.

(36.0 %) performs better than the LSTM (43.4 %), This might
appear contrastive to the conclusion that DNN acoustic models
perform better than GMMs [10]. However, only the advanced
GMM (including DL+FT) beats the LSTM, while the LSTM
approach outperforms the standard ML-trained GMM. In ad-
dition, the employed LSTM only models monophones. Further
improvements are expected when modeling context-dependent
HMM states. In this case, the model complexity needs to
be increased and the resulting higher number of trainable
parameters might require unsupervised pre-training of the
network. The best performance of the double-stream system
is achieved with a stream weight of A = 1.0 (27.3 %). In all
other reported experiments, we therefore use a stream weight
of A = 1.0. These results show that, even if the LSTM acoustic
model alone performs worse than the GMM, the GMM system
can greatly benefit from the combination with the LSTM
predictions in the double-stream setup.

In order to demonstrate the merits of the chosen LSTM
RNN architecture, we trained different feedforward DNNs for
phoneme recognition. Table II shows the framewise phoneme
error rate on the development set for these experiments. A
layer size of 400 hidden units was chosen for the DNNs,
with either 3 or 4 hidden layers. Feature frame stacking
(incorporating 7 neighboring frames) was applied to exploit
temporal context. The phoneme recognition results show that
the DNN cannot reach the performance of the LSTM network.
What can also be seen is that adding the fourth layer to the
DNN (and thereby adjusting the number of parameters to
the LSTM) brings no improvement. In that case, the missing
pre-training or initialization of the DNN becomes noticeable.
Compared to the DNN, the LSTM is better structured and
thus easier to train. The DNN with 3 layers and feature frame
stacking was also used to obtain the results in the last row in
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TABLE 11
Framewise phoneme error rate (PER) on the development set, comparing an
LSTM with different DNNs with or without feature frame stacking.

Network Layers # Weights PER [%]
DNN 3x400 370k 59.5
DNN (feature stacking) 3x400 490k 51.8
DNN (feature stacking) 4x400 650k 52.1
LSTM 81-128-90 660k 358

o o
=y ®

Sensitivity
°
2

0.2

0

-0.22

50 40 30 20 -10_ 0 10 20 30 40 50
Context

Fig. 4. Sensitivity (mean + standard deviation) of network outputs to input
nodes of neighboring time frames.

Table I.

In [40], a methodology was proposed to analyze the amount
of context that is exploited by an LSTM network. From the
sequential Jacobian [37],

dy,”

axif)

Ji = (13)
which corresponds to the derivative of the network outputs
yt(] ) with respect to network inputs fo) at different time
steps (given as a relative position compared to time step
t), the sensitivity is computed by summing up the absolute
magnitudes of the derivatives over all input units ¢ and output
units j and all time steps ¢ and normalizing them:

S I
maxy, > > |Jgtf,|

This sensitivity can be considered as a measure of the
contribution of input nodes to the activity at the output of the
network. Fig. 4 shows the sensitivity (mean 4 standard devi-
ation over time steps t) of a randomly chosen sequence (with
SNR of -6 dB) in the development set. In particular, the plot
shows the average sensitivity of the outputs with respect to the
inputs from £50 frames of context. For example, considering
a sensitivity threshold of 0.2, the network exploits roughly
30 frames (300 ms) of past and future information. The
standard deviation (dashed lines) shows that there is a higher
variability in using past context. In comparison to standard
DNNs, which usually exploit context of around 10 frames via
feature frame stacking [10], the employed LSTM architecture
has access to a much larger amount of context information.
For a standard DNN, the amount of context could be increased
by using larger windows for feature frame stacking. However,
this would increase the number of trainable parameters of
the network. An advantage of the LSTM topology is that the

Sy = (14)

TABLE III
Influence of NMF enhancement (enhancing training and/or testing data) on
the two different GMM systems (avg. WER on the development set). Two
NMF configurations are tested, where one of them uses a context noise
dictionary and the other does not.

Enhancement Context

Acoustic Model train test yes no
GMM (ML) - - 494

GMM (ML) - v 503 515
GMM (ML) v v 424 443
GMM (DL+FT) - - 333

GMM (DL+FT) - v 293 3038
GMM (DL+FT) v v 308 325

amount of exploitable context is independent of the number
of parameters.

B. Influence of Speech Enhancement

Now we study the influence of NMF speech enhancement
as a preprocessing step to GMM and/or LSTM training and/or
decoding. Enhancing the training and test data can be regarded
as feature-space noise-adaptive training. It can also be seen
as a way of minimizing the mismatch between training and
test data: enhancing only test data leads to a mismatch that
may degrade recognition performance. Applying the speech
enhancement only to the test data corresponds more to a
‘plug-and-play’ mode, where we regard the back-end of the
recognition system as a constant and just enhance the input to
the system. Furthermore, this simplifies the training procedure,
since the signal enhancement approach is not required to be
performed on the training set, which is generally much larger
than the test set. In this setup, the system is not adapted
to the artifacts introduced by the speech enhancement. A
comparison of enhancing only the test data or also the training
material (using only the GMM acoustic model) is shown in
Table III. Rows 1 and 4 can also be found in Table I (as
rows 1 and 2, respectively). We first discuss the results of the
NMF configuration that exploits knowledge of context noise.
In case of the ML model, when only the test data are enhanced,
the system performance undergoes a slight degradation; the
artifacts introduced by the NMF cancel out any improvements
due to the enhancement. When creating matched conditions
between the training and test data (through enhancing also the
training set), NMF is able to decrease the WER of the ML
model to 42.4 %. While processing the training data increases
the computational cost of model training, the process is triv-
ially parallelizable and can easily be accelerated using modern
GPU hardware [41] and advanced optimization methods [42].
If the GMM acoustic model is discriminatively trained and
feature transformations (LDA, MLLT, SAT) are applied, the
WER is slightly better when enhancing only the test data. In
this case, the mismatch between training and test data (that
is introduced by the signal enhancement) is compensated by
the SAT transform; a speaker-dependent feature transform is
estimated with f-MLLR in batch mode for the (enhanced) test
data. Presumably, this feature transform not only adapts to
the target speaker, but also on the enhancement. Not using
the context noise dictionary for NMF enhancement leads to
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TABLE IV
Influence of applying NMF enhancement on the training and/or testing data
for the LSTM, in combination with the two different GMM systems (which
use enhanced (enh.) data in all cases), showing WER on the development
set.

LSTM
Enhancement
Acoustic Model train test Mean WER
GMM (ML, enh.) + LSTM - - 322
GMM (ML, enh.) + LSTM - v 35.6
GMM (ML, enh.) + LSTM v v 33.6
GMM (DL+FT, enh.) + LSTM - - 25.1
GMM (DL+FT, enh.) + LSTM - v 27.4
GMM (DL+FT, enh.) + LSTM v v 25.9

TABLE V
Test set evaluation (WER in %) of our ASR systems with NMF enhancement
(enh.), with context or without (nc), and LSTM phoneme predictions and
comparison to related approaches.

SNR [dB]
System 6 3 0 3 6 9 Mean
Other systems for CHiME 2013 track 2 task
Baseline noisy GMM [22] 70.4 63.1 584 51.1 453 41.7 | 55.0
NMF, noisy GMM [33] 61.9 55.6 50.9 43.5 39.1 374 | 48.1
NMF, GMM (ML)+LSTM [24] 57.4 49.0 42.5 374 32.6 29.7 | 414
GMM (DL+FT) [27] 54.7 45.1 36.0 28.6 244 214 | 35.0
Blind source extraction [43] 422 38.4 327 292 269 237 | 322
Bin. mask., GMM (DL+FT) [39]44.1 35.5 28.1 21.2 174 14.8 | 26.9
DNN [44] 42.1 31.7 247 194 164 143 | 248
RDNN [44] 38.1 29.1 23.0 17.9 150 13.6 | 22.8
Examined Systems
GMM (DL+FT) 46.4 362 28.5 21.6 17.9 157 | 27.7
GMM (DL+FT, enh.) 40.0 30.8 24.5 18.8 15.7 14.1 | 24.0
GMM (DL+FT) + LSTM 37.1 27.2 22.5 16.7 139 11.8 | 21.5
GMM (DL+FT, nc-enh.)+LSTM 35.2 26.3 20.7 16.2 134 12.0 | 20.6
GMM (DL+FT, enh.) + LSTM  33.8 25.7 20.3 15.5 13.0 11.9 | 20.0

a slight degradation in all tested configurations. Since the
amount of required context is only small, we thus use the
variant that exploits the knowledge of embedding noise in all
other experiments with NMF enhancement.

Next we examine the influence of speech enhancement as
a preprocessing step to the LSTM system (when used in
conjunction with the GMM system). The experimental results
of different setups are listed in Table IV. Here, the GMM
system uses the best enhancement setup as determined in
Table III (matched for the ML system and mismatched for
the DL+FT system). Altogether, in this setup (GMM system
sees enhanced data), no improvement can be observed by also
using enhanced speech as input to the LSTM system. The best
result (row 4) is achieved with the LSTM system (without
NMF) in combination with the advanced GMM system (with
enhancement in mismatched conditions). This is the overall
best WER we obtained on the development set.

C. Test Set Results

Finally, Table V shows results on the CHIME Challenge test
set. Generally, the results show the same tendencies as on the
development set.

From our systems, we include the unenhanced GMM-only
system (with DL and FT). Furthermore, we report results

where NMF enhancement or the LSTM double-stream system,
or both are applied. Here, following the results from Sec-
tion VI-B, we apply enhancement in mismatched condition for
the GMM, and the LSTM works with unenhanced data (row
4 in Table IV). The results for the official challenge baseline
(multi-condition ML-trained HMM-GMM using MFCCs) are
shown in the first row of the table (55.0 % average WER).
This was improved with NMF enhancement exploiting long-
context speech and noise models by Hurmalainen et al. [33]
by 13% relative. In our original contribution to the chal-
lenge [24], we used the same NMF enhancement approach
as proposed in the present study, together with an earlier
version of the LSTM multi-stream system, in combination
with the official challenge baseline. This system reduced the
WER to 41.4%. An alternative recognition system for the
challenge was provided by Tachioka et al. in [27], which,
compared to the official baseline, uses LDA, MLLT, SAT and
discriminatively trained HMM-GMMs, resulting in a WER of
35.0 %. This result is surpassed (8 % relative) by the approach
proposed by Nesta et al. [43]. Their system works mainly on
the front-end side, exploiting blind source extraction, and using
the challenge baseline recognizer. Including binary feature
masking into the front-end of the system in [27] improved
the result by 23 % relative, which was the challenge entry
with the best results [39]. In [44], a well-tuned DNN and
a recurrent DNN were evaluated on the CHIiME task. These
systems outperform the best GMM baseline. Our systems
are also based on the GMM system described in [27]. First,
performing the simple beam-forming method as described in
Section V-B leads to a relative improvement of 21 %, down
to an average WER of 27.7 %. By adding NMF enhancement
to this system, this result is improved by 13 % relatively. The
GMM-LSTM system brings a larger improvement, yielding a
WER of 21.5 %. Finally, when both NMF enhancement and
the LSTM double-stream system are exploited, we achieve a
WER of 20.6 % without exploiting context in NMF, or 20.0 %
with context. Compared to the official challenge baseline,
this is a relative improvement of 64 %. The best challenge
entry is beaten by 25 % relative. Notably, our best system
also surpasses the DNN and recurrent DNN results presented
in [44].

VII. CONCLUSIONS

We have presented a system for noise-robust ASR that
exploits exemplar-based speech enhancement and combines
GMM acoustic modeling with phoneme predictions from a
deep bidirectional LSTM RNN.

In particular, we were interested in the following questions:
(D), when a state-of-the art discriminatively trained HMM-
GMM system including feature transformations is used instead
of the simple baseline, can the LSTM predictions still lead to
an improvement? Our results (cf. Table I) revealed that the
LSTM brings large improvements to both GMM systems. The
other open question we wanted to address was, (II), whether
speech enhancement (in our case NMF) can still improve
a DNN-based recognition system. The results presented in
Section VI-B show that the NMF enhancement approach was
capable of improving the GMM system by 12 % relative.
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What’s more, also in the GMM-LSTM system, enhancing the
GMM input improves the WER (27.3 % vs. 25.1 %). However,
when the GMM sees enhanced features, additionally enhanc-
ing the input to the LSTM brings no further improvement. Due
to the improved memory of the LSTM network, the system is
already very robust. These results are in contrast to the finding
in [26], where a speech enhancement approach was able to
improve a DNN ASR system. However, in those experiments,
the enhancement approach had access to spatial information,
while in our experiments, the enhancement and recognition
systems work without this information. On the other hand,
our experiments confirm the results presented in [11], where a
feature enhancement method could not improve a DNN ASR
system in a positive way.

Overall, the experimental results showed that the novel
combination of a state-of-the-art GMM and an LSTM is highly
efficient. The system achieved large improvements in WER
and outperformed all entries to the 2nd CHiME Challenge (as
well as comparable DNN systems) while being compliant with
the challenge guidelines, leading to the best current result on
this database. On the test set, the challenge baseline, a standard
HMM system, had an average WER of 55.0 %, whereas with
our best system, a WER of 20.0 % was obtained.

Future work will concentrate on finding out whether other
speech enhancement approaches are able to improve the LSTM
system. Furthermore, it will be interesting to investigate how
the LSTM performs in the hybrid setup where it predicts HMM
states instead of phonemes.
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