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Abstract

The goal of this thesis is to evaluate model predictive control (MPC) in the context
of constrained redundant robot manipulators. At first MPC is applied to linear
systems and compared with traditional finite-horizon optimal control. In the second
part the model predictive- and finite-horizon kinematic control strategy proposed
by Schuetz [1] is implemented. Additionally an alternative MPC and finite hori-
zon control algorithm is developed based on the shooting method. To contrast these
methods with the widely-used ’instantaneous’ kinematic control, a simulation is car-
ried out, where a redundant manipulator is controlled to perform obstacle avoidance.
In this simulation it is shown that Schuetz’ algorithm only approximates the optimal
solution. This is achieved by demonstrating that the newly suggested method yields
lower accumulated cost-values for the finite horizon than Schuetz’ method.

Zusammenfassung

Das Ziel dieser Arbeit ist es, modellprädiktive Regelung (MPC) auf redundante
Robotermanipulatoren anzuwenden und das Verhalten zu untersuchen. Dazu wird
MPC im ersten Teil bei linearen Systemen eingesetzt und analysiert. Im zweiten
Teil wird die modellprädiktive Regelung für Roboterkinematiken von Schütz [1] im-
plementiert. Zusätzlich wird eine alternative MPC-Regelung und Optimalsteuerung
vorgeschlagen, die auf dem Schieß-Verfahren basiert. In einer Simulation werden
diese beiden Methoden mit der weitverbreiteten ”instantanen” Kinematik-Regelung
verglichen. Es wird ein Szenario simuliert, in dem der Manipulator Hindernissen
ausweicht. Dabei wird festgestellt, dass der Algorithmus von Schütz’ nur eine
Näherung für das Optimum liefert und die neu entwickelte Methode näher am Op-
timum liegt. Dies wird dadurch gezeigt, dass die Kostenfunktion bei der vorgeschla-
genen Methode niedrigere Werte liefert als bei der Methode von Schütz.
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Chapter 1

Introduction

1.1 Motivation

One of the main reasons why robots are not ready to support humans in everyday-
life yet is their insufficient ability to adapt to changing tasks and environments. To
fulfill its tasks even in complicated environments the robot needs a high degree of
redundancy e.g. to avoid obstacles and joint limits. Resolving this redundancy in a
useful way poses a major problem to ongoing research. A promising approach is to
convert abstract manipulation tasks into simple objective functions that reward for
keeping distance to obstacles, avoiding singularities and joint limits as well as mini-
mizing the actuation energy. Up to date the most common approach is to calculate
the optimal joint speeds to minimize the cost at the current time-instant only. This
is referred to as ”local” or ”instantaneous” control and benefits from relatively low
computational burden. However it does not provide an optimal solution and leads
to myopic behavior. It also requires an adjustment of parameters like the collision
avoidance gain for each situation. A controller is needed that does not only account
for the present situation but also for the future evolution of constraints and tasks
by finding the optimal behavior in a moving time window. This leads to the idea of
Model-Predictive Control which will be addressed in this thesis.

1.2 Related Work

Model predicitve control originated from the process industry and only recently
came into focus of robotics researchers. In 2000 Poignet and Gautier [2] suggested
a MPC-style control scheme for a manipulator that consists of performing a feed-
back linearization and using Predictive Functional Control, a variant of MPC. In
2011 Tassa et al. [3] proposed a method based on differential dynamic program-
ming (DDP) to compute MPC for dynamic systemes like a full-size humanoid
robot including contacts. However this algorithm approximates the dynamics and
smoothens the contacts making it diffcult to employ it in real-world environments.
In 2014 Schuetz [1] suggested a model-predictive kinematic controller to find optimal
nullspace-velocities for a redundant manipulator. His work is based on Nakamura’s
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formulation of the optimal control problem of redundancy.

1.3 Greedy Control

The most primitive way to perform optimal control for a discrete time system is
”Greedy Control” [4], herein also called instantaneous optimal control. We assume
the following model 1.1 with state xk, input uk and cost function q:

xk+1 = F (xk,uk) (1.1)

k = 0, 1, ..., N

u(t) ∈ U ∈ Rm, x(t) ∈ X ∈ Rn

minimize:
N∑
k=0

q(u,xk+1, t) ∈ R (1.2)

Then the input of greedy control at time t can be found by solving the m-dimensional
minimization problem 1.3 at each time step:

uk = argmin
uk

{q(uk,xk+1) | uk ∈ U , xk+1 = F (xk,uk) ∈ X} (1.3)

The Controller of 1.3 calculates the input uk that results in the minimum cost q
at instant k. It does neither account for future nor past costs. In most cases using
greedy control the cost summed up over the time interval k = 0, 1, ..., N is not the
globally optimal cost, i.e. there exists another input sequence u′k that gives a lower
cost:

N∑
k=0

qk(uk,xk+1) ≥
N∑
k=0

qk(u
′
k,x

′
k+1) (1.4)

1.4 General Problem Formulation of Optimal Con-

trol

Model-predictive control evolved from the methods of optimal control. The general
definition of optimal control is:

minimize: J = h(x(tf ), tf ) +

∫ tf

t0

g(x(t),u(t), t)dt (1.5)

subject to : ẋ = a(x(t),u(t), t) (1.6)

As stated in [5], the goal of optimal control is to find the input u ∈ Rm so that the
cost function J in 1.5 is minimized for any kind of non-linear, time-varying model
1.6. The control is operating between an initial time t0 and a final time tf . In the
cost function J the instantaneous cost g(x(t),u(t), t) is integrated over time and
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the final stage cost h(x(tf )) is added to it. Both the input u and the state x have
to be within the admissible sets U ,X respectively.

J∗ = h(x∗(tf ), tf ) +

∫ tf

t0

g(x∗(t),u∗(t), t)dt (1.7)

≤ h(x(tf ), tf ) +

∫ tf

t0

g(x(t),u(t), t)dt (1.8)

∀u(t) ∈ U , x ∈ X (1.9)

Equations 1.7 and 1.8 express that if there exists an optimal input u∗(t) and an
optimal state trajectory x∗(t) then these two yield the optimal cost value J∗. This
value has to be lower than the cost caused by any other non-optimal input u(t).
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Chapter 2

Control of Linear Systems

In this chapter the theory of linear optimal control and linear model-predictive
control is revised and several simulations are carried out showing the characteris-
tic properties of these control schemes. This serves as a basis for nonlinear robot
kinematic control which will be the focus of chapter 2.

2.1 Linear Optimal Control

This section deals with discrete time systems and controls only. However this does
not mean a loss of generality since any continuous linear model can be discretized
and controlled with the methods presented here.

minimize: J0(x0,U 0) = x′NPxN +
N−1∑
k=0

(x′kQxk + u′kRuk) (2.1)

subject to: xk+1 = Axk +Buk, k = 0, 1, ..., N − 1 (2.2)

Q = Q′ � 0, P = P ′ � 0, R = R′ � 0 (2.3)

A discrete time state space model with input vector uk ∈ Rm and state vector
xk ∈ Rn and initial state x0 = x(0) is used. The index k denotes the time step
ranging from 0 to N . Matrix Q and R are the stage cost for the state and input
respectively whereas P is called the final stage cost. All cost matrices have to be
symmetric and positive (semi)-definite to ensure J being positive at all times. J
containing the state x will cause the controller to drive the system to the origin
with minimal cost. First this section will focus on the regulation problem, later the
tracking problem is discussed.

2.1.1 Batch Approach

The most straightforward method to solve the linear optimal control problem 2.1 to
2.3 is by finding a way of expressing the cost J as a function of the the initial state
x(0) and the sequence of control inputs U 0 = [u′0, ...,u

′
N−1] ∈ RmN . According to

Borelli [6, p. 166] this can be done using the following expression:
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x0

x1
...
xN


︸ ︷︷ ︸

X

=


I
A
...
AN


︸ ︷︷ ︸
Sx

x0 +


0 . . . . . . . 0
B 0 . . . 0

AB
. . . . . .

...
...

. . . . . .
...

AN−1B . . . . . . . B


︸ ︷︷ ︸

Su


u0

u1
...

uN−1


︸ ︷︷ ︸

U0

(2.4)

In Equation 2.4 the sequence of states is given by the vector X = [x′0, ..., x
′
N ] ∈

Rn(N+1). In shorter form 2.4 can be written as:

X = Sxx(0) + SuU 0 (2.5)

After inserting X and U 0 and defining Q̄ and R̄ the cost function J0 of 2.1 can be
rewritten in the following form:

J0(x(0),U 0) = X ′Q̄X +U ′0R̄U 0 (2.6)

Q̄ = diag{Q, ...,Q,P } R̄ = diag{R, ...,R} (2.7)

Note that the final stage cost P has been moved to the last element of the diagonal
of the Q̄ matrix. Using 2.5 equation 2.6 can be written as follows:

J0(x(0),U 0) = U ′0 (Su′Q̄Su + R̄)︸ ︷︷ ︸
H

U 0 (2.8)

+ 2x′(0) (Sx′Q̄Su)︸ ︷︷ ︸
F

U 0 + x′(0) (Sx′Q̄Sx)︸ ︷︷ ︸
Y

x(0) (2.9)

= U ′0HU 0 + 2x′(0)FU 0 + x′(0)Y x(0) (2.10)

Hence J0 is a quadratic form depending on the input sequence U 0 and the initial
state x(0). The optimal input is obtained by computing the gradient of J0 with
respect to U 0 and setting to zero.

∂

∂U 0

J0 = 0 (2.11)

U ∗0(x0) = −H−1F ′x(0) (2.12)

U ∗0(x0) = −(Su′Q̄Su + R̄)−1(Sx′Q̄Su)′x(0) (2.13)

In equations 2.12 and 2.13 we can see that the optimal input sequence is solely
depending on the initial state and the model information being the matrices A and
B.
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Solving the Tracking Problem The batch approach discussed above deals with
the regulation problem. The tracking problems can be solved by introducing the
reference vector wk ∈ Rn for k = 1...N and subtracting it from the state vector xk
in the cost function:

min: J0(x0,U0) = (xN −wN )
′P (xN −wN ) +

N−1∑
k=0

[(xk −wk)
′Q(xk −wk) + u′kRuk)]

By definingW = [w′1, ...,w
′
N−1]′ the equation above can be written in batch format:

J0(x(0),U 0) = (X ′ −W ′)Q̄(X −W) +U ′0R̄U 0 (2.14)

Q̄ = diag{Q, ...,Q,P } R̄ = diag{R, ...,R} (2.15)

After computing the multiplication and substituting by several variables 2.14 be-
comes:

J0 = U ′0HU 0 + 2(x′(0)F − k)U 0 + L (2.16)

H = Su′Q̄Su + R̄ (2.17)

F = Sx′Q̄Su (2.18)

Y = Sx′Q̄Sx (2.19)

k =W ′Q̄Su (2.20)

L = x′(0)Y x(0)−W ′Q̄W − 2x(0)Su′Q̄W (2.21)

Hence J0 is a quadratic positive definite function of U 0 and the optimal control
input can be found by deriving with respect to U 0 and proceeding as in 2.11.

2.1.2 Introduction to Dynamic Programming

Besides the Batch approach there exist several other mathematical concepts to cal-
culate an optimal input minimizing an objective function. In this section Bellman’s
Dynamic Programming (DP) techniques will be presented briefly and the application
to linear systems is demonstrated in a simulation. Although Dynamic Programming
will not be used for nonlinear control in chapter 2 it shall be explained and evalu-
ated in this section, since it helps to better understand the fundamental principles
of optimal control.



12 CHAPTER 2. CONTROL OF LINEAR SYSTEMS

Bellman’s Principle of Optimality:

For a trajectory x0,x
∗
1, ...,x

∗
N to be optimal, the trajectory starting from

an intermediate point x∗j ,x
∗
j+1, ...,x

∗
N must also be optimal.

x∗0

x∗N

x∗j

Figure 2.1: Bellman’s Principle of Optimality

According to Borrelli [6, p. 152] the DP-scheme works as follows: The optimal cost-
to-go function, in literature also referred to as the value-function, is defined as the
lowest possible cost to go from an intermediate point xj to the final point xn.

J∗j→N(xj) = minuj ,...,uN−1
p(xN) +

N−1∑
k

q(xk,uk) (2.22)

subj. to xk+1 = g(xk,uk), k = j, ..., N − 1 (2.23)

h(xk,uk) ≤ 0 (2.24)

xN ∈ Xf (2.25)

Here g(xk,uk) is any dynamic system equation, h(xk,uk) is a vector of inequality
constraints and Xf denotes the final region. The optimal cost-to-go J∗j→N(xj) only
depends on the state xj. In Equation 2.26 Bellman’s Principle of Optimality is used
to express the cost-to-go from instant j − 1, J∗j−1→N as a sum of the minimal stage
cost q(xj−1,uj−1) and the minimal cost-to-go from instant j, J∗j→N :

J∗j−1→N(xj−1) = minuj−1
q(xj−1,uj−1) + J∗j→N(xj) (2.26)

subj. to xk+1 = g(xk,uk), k = j, ..., N − 1 (2.27)

h(xj−1,uj−1) ≤ 0 (2.28)

xj ∈ Xj→N (2.29)

Here Xj→N is the set of xj that can be steered into xN .
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Using 2.26 the original optimization problem over N time-steps can be converted
into a series of N optimizations over one time-step: Starting with the final state
cost,

J∗N→N(xN) = p(xN) (2.30)

XN→N = Xf (2.31)

the algorithm proceeds backwards in time:

J∗N−1→N(xN−1) = minuN−1
q(xN−1,uN−1) + J∗N→N(g(xN−1,uN−1)) (2.32)

subj. to h(xN−1,uN−1) ≤ 0

g(xN−1,uN−1) ∈ XN→N
...

J∗0→N(x0) = minu0 q(x0,u0) + J∗1→N(g(x0,u0)) (2.33)

subj. to h(x0,u0) ≤ 0

g(x0,u0) ∈ X1→N , x0 = x(0)

It is important to note that in case of nonlinear models or nonconvex cost-functions
it is difficult to find analytic forms for J∗j→N and therefore the value-function has
to be approximated at grid points in the state space of xj for each step 1...N . For
higher dimensional system this can lead to great computational complexity.

x
N − 1

J∗

xn
x0

J∗N−2→N(xN−2)

J∗N−1→N(xN−1)

p(xN)

computing backwards
NN − 2...

t

Figure 2.2: Dynamic Programming for the case of a single statevariable x

2.1.3 Recursive Approach for Linear Systems

In this section the Dynamic Programming algorithm is applied on the control of a
linear system as explained in [6, p. 167]. The optimal cost-to-go or value function
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starting from state xj is:

J∗j→N(xj) = min
uj ,...,uN−1

x′NPxN +
N−1∑
k=j

x′kQxk + u′kRuk (2.34)

Applying the principle of optimality, the optimization can be broken down in series
of one-step optimizations. The optimal cost-to-go from xN−1 to xN can be written
as:

J∗N−1→N(xN−1) = min
uN−1

x′NPNxN + x′N−1QxN−1 + u′N−1PuN−1 (2.35)

PN = P (2.36)

After eliminating xN with xN = AxN−1 +BuN−1 in 2.35 the optimal one step
cost-to-go depends on xN−1 and uN−1:

J∗N−1→N(xN−1) = min
uN−1

{x′N−1(A′PNA+Q)xN−1 (2.37)

+ 2xN−1(A′PNB)uN−1 (2.38)

+ u′N−1(B′PNB +R)PuN−1} (2.39)

By deriving with respect to uN−1 the optimal input for time-step N −1 is obtained:

u∗N−1 = −(B′PNB +R)−1B′PNAxN−1 (2.40)

This expression can be inserted in 2.37, thus the optimal one step cost-to-go
J∗N−1→N(xN−1) now only depends on xN−1 and no more on uN−1:

J∗N−1→N(xN−1) = x′N−1PN−1xN−1 (2.41)

with: PN−1 = A′PNA+Q−A′PNB(B′PNB +R)−1B′PNA (2.42)

Going further backwards in time for one step, the optimal cost-to-go from xN−2 to
xN can be expressed using 2.42:

J∗N−2→N(xN−2) = min
uN−2

x′N−1PN−1xN−1 + x′N−2QxN−2 + u′N−2RuN−2 (2.43)

For the optimal input at instant N − 2 we obtain a similar result as 2.40:

u∗N−2 = −(B′PN−1B +R)−1B′PN−1AxN−2 (2.44)

Again inserting it into 2.43 yields an expression for J∗N−2→N(xN−2) that only depends
on xN−2:

J∗N−2→N(xN−2) = x′N−2PN−2xN−2 (2.45)

with: PN−2 = A′PN−1A+Q−A′PN−1B(B′PN−1B +R)−1B′PN−1A
(2.46)
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Note that PN−2 uses PN−1, thus a matrix recursion has been established. By
continuing in this manner the optimal control input at some arbitrary instant k can
be described as:

u∗(k) = −(B′P k+1B +R)−1B′P k+1Ax(k) (2.47)

for k = 0, ..., N − 1

P k = A′P k+1A+Q−A′P k+1B(B′P k+1B +R)−1B′P k+1A (2.48)

According to equation 2.47 the optimal input at time-step k can be understood as
a state-feedback of state x(k). Here the regulation problem was solved, it is also
possible to handle the regulation problem but not addressed here.

2.1.4 Simulation with Batch Approach and Dynamic Pro-
gramming

For testing the two algorithms presented before two controllable, one dynamically
stable and one dynamically unstable system are defined as follows:

3. Order Stable System:

G(s) =
(s+ 1)(s+ 2)

(s+ 1− j)(s+ 1 + j)(s+ 3)
(2.49)

The transfer function above is converted to a discrete time state-space representation
with a discretization time of ∆t = 0.1s.

xk+1 =

2.5415 −1.0763 0.6065
2.0000 0 0

0 0.5000 0

xk +

0.5000
0
0

uk; x(0) =

1
1
1

 (2.50)

yk =
(
0.1813 −0.1562 0.1343

)′
xk (2.51)

3. Order Unstable System:

G(s) =
(s+ 1)(s+ 2)

(s+ 1− j)(s+ 1 + j)(s− 3)
; ∆t = 0.1s (2.52)

xk+1 =

3.1505 −1.6247 0.5526
2.0000 0 0

0 1.0000 0

xk +

0.5000
0
0

uk; x(0) =

1
1
1

 (2.53)

yk =
(
0.2436 −0.2098 0.09012

)′
xk (2.54)

For the cost function variables Q,P and R the following values are chosen:

Q =

100 0 0
0 100 0
0 0 100

 ; P =

10 0 0
0 10 0
0 0 10

 ; R = 500 (2.55)
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Figure 2.3: Evolution of the states over time for stable system and unstable system

Figure 2.3 shows the evolution of the states over time for the stable system (left)
and the unstable system (right). In this simulation the regulation problem is solved
i.e. the state is driven to the origin with minimum cost. The state trajectories for
both algorithm match each other showing the equivalence of the two approaches.
The same behavior can be observed for the inputs:
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Figure 2.4: Control Inputs calculated by Batch- and DP-Approach, for stable and
unstable System

While giving exactly the same behavior, the ideas of batch approach and DP-
approach are fundamentally different. For the batch approach the sequence of opti-
mal inputs is calculated once and then applied to the system in a feed-forward style.
By contrast the DP approach uses a state-feedback (see 2.47) that is given by the
matrix recursion 2.48. Using DP in a control loop is more efficient than using the
Batch Approach since the latter would recalculate the whole sequence of optimal
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inputs at every step. This means that the inversion of the possibly large matrix in
2.13 would have be to solved over and over again. According to [6, p. 167] a remedy
to this problem is the partial inversion of 2.13 which will not be addressed here.

2.2 Model-Predictive Control

2.2.1 The Idea of Model-Predictive Control

The term model predictive control does not describe a specific control algorithm it
rather characterizes control strategies that have the following features in common:

• The control is based on a model of the system

• The optimal input is determined in a way to minimize an objective function
within a moving horizon

• The optimal input trajectory is recalculated in every cycle. Only the first
sample of input trajectory is applied to the plant.

Before explaining the idea of model-predictive control the concept of finite horizon
control shall be introduced.

Plant

u∗1,u
∗
2, ...,u

∗
N−1

x0

x∗1,x
∗
2...,x

∗
N

y∗1,y
∗
2, ...,y

∗
N

xk+1 = Axk +Buk

u∗1,u
∗
2, ...,u

∗
N

Calculate
x∗1,x

∗
2, ...,x

∗
Nw0...wN

Figure 2.5: Finite Horizon Control

The concept of finite horizon control as depicted in figure 2.5 is to perform an op-
timization from instant 1...N using the initial state x0 and the reference trajectory
w0, ...,wN . The optimal input sequence u∗1, ...,u

∗
N−1 is then applied to the plant

in a feed-forward manner. However in practice finite horizon control requires large
computational power for long task durations, especially when using fine prediction
intervals.
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Model predictive control is avoiding this problem by using a relatively short hori-
zon that is constantly shifting with time. As shown in figure 2.6 the optimal input
sequence u∗k,u

∗
k+1, ...,u

∗
k+N and optimal state trajectory x∗k,x

∗
k+1, ...,x

∗
k+N is com-

puted in every cycle and only the first optimal input u∗k is sent to plant. Model
predictive control also establishes a state feedback since it uses the current state xk
for the starting point of each recurring optimization. By contrast to finite-horizon
control where the horizon is as long as the task itself, for MPC much shorter hori-
zons can be used while still achieving satisfactory results. However the trajectory of
MPC is different from the global optimum, although with increasing horizon length
MPC’s behavior gets more and more similar to the result of finite horizon control.

Plant

u∗k

xk+1,yk+1

xk+1 = Axk +Buk

xk

x0

u∗k,u
∗
k+1, ...,u

∗
k+N

Predict
x∗k+1,x

∗
k+2, ...,x

∗
k+N

wk, ...,wk+N

Figure 2.6: Model-Predictive Control

Model predictive control has become very popular in the industry due to the follow-
ing reasons:

• Mulitvariable Control possible

• Constraints to state and control input can be implemented in a simple manner

• The control is guided by the future reference trajectory and not only by the
current reference, the same holds for the constraints

• If the system has dead times, they can be eliminated

However MPC’s major drawbacks are:

• It its difficult to formally proof stability in case of complex systems

• The computational burden rapidly increases with longer horizons or by adding
constraints

• If the cost is non-quadratic or the system is nonlinear the optimal control law
cannot by calculated analytically, thus numerical techniques have to be used
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2.2.2 Generalized Predictive Control

Generalized predictive control (GPC) is an algorithm that can be used for linear sys-
tems and has been commercially successful in the process industry for applications
like the control of distillation columns. In this section GPC shall be implemented in
order to understand its characteristic behavior. The following introduction to GPC
is based on Camacho [7].

GPC uses a discrete time model called controlled autoregressive integrated moving
average model (CARIMA). For SISO-systems this is:

A(z−1)y(t) = z−dB(z−1)u(t− 1) + C(z−1)
e(t)

4
(2.56)

with delay d and 4 = 1− z−1

A(z−1) = 1 + a1z
−1 + a2z

−2 + a3z
−3 + ...+ anaz

−na (2.57)

B(z−1) = b0 + b1z
−1 + b2z

−2 + b3z
−3 + ...+ bnbz

−nb (2.58)

C(z−1) = 1 + c1z
−1 + c2z

−2 + c3z
−3 + ...+ cncz

−nc (2.59)

The model with output y(t) and input u(t) is disturbed by the white noise e(t). The
model is defined by A,B,C which are polynomials in z−1. The polynomial C can
be chosen to color the white noise, however for simplicity it is assumed to equal 1.
The cost J in GPC is given by the following equation:

J =
N∑
j=0

{
[ŷ(t+ j)− w(t+ j)]2 +4u(t+ j − 1)2

}
(2.60)

The reference trajectory is given by w(t) for a horizon length N , the control input
increment is denoted by 4u(t). ŷ(t+ j|t) are the predicted outputs for instant t+ j
when applying the computed optimal input.
The goal of GPC is to determine the sequence of future inputs u(t), ..., u(t+N − 1)
in order to minimize the cost function 2.60. To achieve this ŷ(t), ..., ŷ(t + N) has
to be expressed as a function of the future inputs explicitly. This is accomplished
by splitting up y into a free response yfree(t) that only depends on the past in-
puts ufree(t) and a forced response yforced(t) that only depends on the future input
changes uforced(t) (see figure 2.7). yfree(t) and yforced(t) are obtained by splitting up
u into a signal ufree(t) that equals u(t) until t remaining constant afterwards and
another signal, uforced(t)) that is zero until t and equals the future inputs increments
after t.
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u(t)

t t

y(t)

t

ufree(t)

t

uforced(t)

t

yfree(t)

t

yforced(t)

Figure 2.7: Dividing Control Input to obtain Free and Forced Response

In order to extract the forced and the free response from the model a diophantine
equation is introduced:

1 = Ej(z
−1)4A(z−1)︸ ︷︷ ︸

Ã(z−1)

+z−jFj(z
−1) (2.61)

Here j is an index running from 1 to N , indicating future time steps and4 = 1−z−1

is an integrator. Both Ej(z
−1) and Fj(z

−1) are polynomials with orders of j−1 and
na respectively. Ej(z

−1) is obtained by dividing 1 by Ã until the remainder can
be factorized as z−1Fj(z

−1). For the simulation a first-order model is chosen where
A(z−1) is 1− 0.8z−1. Then Ã is:

4 A(z−1) = Ã(z−1) = 1− 1.8z−1 + 0.8z−2 (2.62)

Next 1/Ã is calculated in a polynomial long division:

− 1 : (1− 1.8z−1 + 0.8z−2)
1 −1.8z−1 +0.8z−2 = 1 + 1.8z−1 + 2.44z−2

− 1.8z−1 −0.8z−2

1.8z−1 −3.24z−2 +1.44z−3

− 2.44z−2 −1.44z−3

2.44z−2 +4.392z−3 −1.952z−4

2.952z−3 −1.952z−4

From this polynomial long division Ej(z
−1) is obtained by taking the quotient after

the j-th division and Fj(z
−1) is the remainder of the j-th division.

E1 = 1 F1 = 1.8− 0.8z−1

E2 = 1 + 1.8z−1 F2 = 2.44z−2 − 1.44z−3

E3 = 1 + 1.8z−1 + 2.44z−2 F3 = 2.952z−3 − 1.952z−4
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By multiplying the model equation 2.56 with 4Ej(z−1) it can be written as:

Ã(z−1)Ej(z
−1)y(t+ j) = Ej(z

−1)B(z−1)4u(t+ j− d− 1) +Ej(z
−1)e(t+ j) (2.63)

Using equation 2.61 to replace Ã(z−1)Ej(z
−1) in the equation above, this can be

written as:

(1−z−jFj(z−1))y(t+j) = Ej(z
−1)B(z−1)4u(t+j−d−1)+Ej(z

−1)e(t+j) (2.64)

which can be rewritten as:

y(t+ j) = Fj(z
−1)y(t) +Ej(z

−1)B(z−1)4 u(t+ j− d− 1) +Ej(z
−1)e(t+ j) (2.65)

The last term Ej(z
−1)e(t + j) in the equation above is referring to unknown noise

values in the future since the order of Ej is j − 1. The prediction ŷ(t+ j|t) will be
made assuming that the mean of the noise is zero and will therefore omit this term:

ŷ(t+j) = Fj(z
−1)y(t)+Ej(z

−1)B(z−1)︸ ︷︷ ︸
Gj(z−1)

(z−1)4u(t+j−d−1)+Ej(z
−1)e(t+ j)︸ ︷︷ ︸

=0

(2.66)

Using equation 2.66 the j-step prediction can be written as:

ŷ(t+ d+ 1) = Gd+14 u(t) + Fd+1y(t) (2.67)

ŷ(t+ d+ 2) = Gd+24 u(t+ 1) + Fd+2y(t) (2.68)

...

ŷ(t+ d+N) = Gd+N 4 u(t+N − 1) + Fd+Ny(t) (2.69)

In vector-matrix form this can be written as:

y = Gu + F(z−1) + G′(z−1)4 u(t− 1) (2.70)

where:

y =


ŷ(t+ d+ 1)
ŷ(t+ d+ 2)

...
ŷ(t+ d+N)

 , u =


4u(t)
4u(t+ 1)

...
4u(t+N − 1)

 (2.71)

G′(z−1) =


(Gd+1(z−1)− g0)z

(Gd+2(z−1)− g0 − g1z
−1)z2

...
(Gd+N(z−1)− g0 − g1z

−1 − ...− gN−1z
−(N−1))zN

 (2.72)

G =


g0 0 . . . 0
g1 g0 . . . 0
...

...
...

...
gN−1 gN−2 . . . g0

 , F(z−1) =


Fd+1(z−1)
Fd+2(z−1)

...
Fd+N(z−1)

 (2.73)
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With equation 2.70 the prediction y has been separated into a first part Gu that
only depends on future inputs increments u and thus can be identified as the forced
response. The last two terms that only depend on the past give the free response f .

y = Gu + f (2.74)

The free-forced response description is inserted into the cost-function 2.60, yielding
and an expression where J explicitly depends on the future control input increments
u.

J = (Gu + f −w)T(Gu + f −w) + λuTu (2.75)

Exactly in the same way as in the batch approach the cost function is derived with
respect to the vector of inputs u:

∂

∂u
J = 0 (2.76)

consequently we obtain the sequence of optimal input increments:

u = (GTG + λI)−1GT(w − f) (2.77)

Only the first input of this sequence is sent to the plant therefore the control law
can be written as:

4 u(t) = K(w − f) (2.78)

With K being the the first row vector of u = (GTG + λI)−1GT(w − f).

Simulation Results A simulation of the GPC algorithm was carried out with a
model using the following parameters:

A(z−1) = 1− 0.8z−1 (2.79)

B(z−1) = 0.4 + 0.6z−1 (2.80)

C(z−1) = 1 (2.81)

Figure 2.8 shows the system output y when performing tracking control with dif-
ferent horizon lengths N . Using short horizons a larger overshoot is observed than
for long horizons. Short horizons cause higher costs and are less optimal. It turned
out, that the cost integrated over the whole time 0...tend quickly converges with
increasing horizon lengths (see figure 2.9). It appears that with a horizon of 4 to
5 steps the cost does not decrease further, being already very close to the optimal.
Besides the number of prediction steps the time-interval between the predictions
also has great influence on the control’s behavior. A more detailed discussion about
the importance of the prediction intervals and the prediction horizon will be given
in the end of the next subsection.
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Figure 2.8: System Output y over time when using GPC with different horizons N
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Figure 2.9: Total cost of control with different horizons; The optimum is already
reached with short horizons

2.2.3 Constrained Model Predictive Control using Batch
Approach

In real world control applications both the state and an the control input are
bounded by physical limitations. It is possible to incorporate equality and inequality
constraints into the optimization process performed in MPC. However using con-
straints the optimal input cannot be derived analytically anymore and numerical
techniques have to be used. In case of a linear model and a quadratic cost the
optimal control problem takes the shape of a quadratic program thus a standard
QP-solver can be used. The constrained MPC introduced here is based on the batch
approach for the tracking problem from section 2.1.1.
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In the context of optimal control problem 2.1 constraints on the state, the final state
and the input are introduced as follows:

Axxi ≤ bx for all i = 1, ..., N − 1

AfxN ≤ bf (2.82)

Auui ≤ bu for all i = 1, ..., N

For example constraining each state-variable of x: −10 ≤ xi ≤ 10 can be written
as: 

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

Ax

 x1

x2

x3


︸ ︷︷ ︸

xi

≤


10
10
10
−10
−10
−10


︸ ︷︷ ︸

bx

All inequality constraints are arranged into a batch format using the following vec-
tors and matrices:

GU 0 −Ex0 ≤ w (2.83)

where U 0 is the sequence of control inputs, defined in 2.1.1 and x0 is the initial
state.

G =



Au 0 . . . 0
0 Au . . . 0
...

...
...

...
0 0 . . . Au
0 0 . . . 0

AxB 0 . . . 0
AxAB AxB . . . 0

...
...

...
...

AfA
N−1B AfA

N−2B . . . AfB


,E =



0
0
...
0
−Ax

−AxA
−AxA

2

...
−AfA

N


,w =



bu
bu
...
bu
bx
bx
bx
...
bf


In section 2.1.1,page 9 the cost for the tracking-controlled system was transferred
into the following expression:

J0 = U ′0HU 0 + 2(x′(0)F − k)U 0 + L (2.84)

To compute the control law a standard QP-Solver, the Matlab
TM

’s internal ”quadprog”-
function is used. This function requires the quadratic program to be of the form:

min
x

{
1

2
xTΓx+ fTx

}
(2.85)

subject to:
Ax ≤ b (2.86)
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where x is a vector in Rn, Γ is a positive definite, symmetric matrix, fT is a vector
in Rn, A is matrix in Rm×n and b is a vector in Rm.
The following identifications can be made, where the left side is the notation of the
QP-Solver and the right side the notation used here for the optimal control problem:

x =̂ U ′0 (2.87)

Γ =̂
1

2
H (2.88)

f =̂ x′(0)F − k (2.89)

A =̂ G (2.90)

b =̂ w +Ex0 (2.91)

Simulation of Constrained MPC using the Batch Approach
A linear unstable continuous State Space Model is chosen with the following param-
eters: [

ẋ1

ẋ2

]
=

[
0 1

−k/m −c/m

] [
x1

x2

]
+

[
0

1/m

]
u (2.92)

where k = −2[N/m], c = 1[Ns/m], m = 1[kg]. The state-space model is describing
an unstable mass-spring-damper system with a negative spring-stiffness. Variable
x1 is the position and x2 the velocity of the mass. The Model is discretized with
time intervals of 0.05s. The matrices of the cost function are chosen as follows:

P =

[
100 0
0 100

]
Q =

[
100 0
0 10

]
, R = 1/2 (2.93)

The constraints are chosen to be:

− 2 ≤ x1 ≤ 2, − 40 ≤ u ≤ 40 (2.94)
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In a simulation MPC is tasked with controlling the mass to track a sinusoidal position
profile, i.e. the position x1 is required to follow the sinusoidal trajectory indicated
in figure 2.10 with black dashed lines. At the same time position x1 is chosen to
be constrained by the interval [-2,2] and the input by the interval of [-40,40]. A
time-step of 0.05s is used between the predictions and the same interval is used for
simulation. Figure 2.10 and Figure 2.11 show the position- and velocity-trajectories
generated by MPC’s with different horizon lengths.

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2

3

 t 

 x
(t

) 

x1 for different horizons

 

 
x1, horizon= 3
x1, horizon= 4
x1, horizon= 5
x1, horizon= 10
x1, horizon= 20
x1, horizon= 0

Figure 2.10: The position, state x1 is required to follow the reference (dashed black
line) while being constrained within [−2, 2]; Different horizons lengths are used,
0 indicates finite horizon control
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Figure 2.11: Evolution of state x2, while state x1 is constrained; different horizons
lengths

Figure 2.10 shows that the position x1 stops at the constraint although the refer-
ence trajectory line exceeds the constraint boundary. Therefore the controller must
decelerate the mass when approaching the constraint.
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2.2.4 Discussion of Results

2.5 3 3.5
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

 t 

 x
(t

) 

x1 for different horizons

 

 

2.5 3 3.5
−5

0

5

10

15

20

25

30

 t 

 u
(t

) 

u for different horizons

 

 
x1, horizon= 3
x1, horizon= 4
x1, horizon= 5
x1, horizon= 10
x1, horizon= 20
x1, horizon= 0

Figure 2.12: Left: Approaching the constraint at x1 = −2 with different horizons,
Right: Control input u with different horizons

By looking closely at the differences between horizons while approaching the con-
straint at x1 = −2 (see figure 2.12), the following observation can be made: With
shorter horizons (e.g. the dark blue line) x1 is decelerating later in front of the con-
straint demanding a higher control spike in order not to break the constraint than
with longer horizons. For example the finite horizon controller (the orange line) de-
celerates earlier thus requiring less control effort and enabling a smoother behavior.
It can be concluded that longer horizon generate more foresighted behavior, whereas
short horizons cause myopic behavior.
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Figure 2.13: Smoother control behavior with smaller prediction and simulation steps
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The influence of decreasing the prediction and simulation interval from 0.05s to
0.01s is shown in figure 2.13. When approaching the constraint the spikes in the
control input (2.13 bottom figure) get smoother and smaller than in the previous
simulation.
The key factors determining the behavior can be summarized as the number of
prediction samplesN , the prediction interval ∆tpred and the real-time horizon, treal =
N · ∆tpred (see figure 2.14). Longer real-time horizons enable more a foresightful
behavior almost eliminating the spike in the control input. However the same real-
time horizon can be achieved with different prediction intervals. For choosing a
proper prediction interval the relation between the time constant of the system
and the length of the interval is crucial. If the interval not small enough system
dynamics cannot be captured anymore, if the interval is too small the algorithm
becomes inefficient.
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Chapter 3

Robot Kinematic Control

In robotics tasks are commonly specified on position or velocity level in Cartesian
space, e.g. a manipulator’s endeffector is required to follow a given trajectory in
(x, y, z) of the robot’s base coordiante-system. Robot kinematic chains are controlled
by assigning angles, angular velocities or angular accelerations to the joints.

In the example of figure 3.1 the kinematic controller compares the reference, a
desired endeffector trajectory r1, ṙ1 with the real endeffector trajectory, rc1, ṙc1 and
computes a control input, the joint velocities θ̇ in way to minimize the error between
r1, ṙ1 and r1c, ṙ1c.

Kinematic Controller Kinematic Model
θ̇reference

θc, rc1, ṙc1

θc

r1, ṙ1 rc1, ṙc1

θ0,

Figure 3.1: Robot Kinematic Control Scheme

The joint speeds θ̇ are passed on to the kinematic model which integrates the ve-
locities to obtain the joint angles 3.1 and computes the current endeffector position
and velocity using forward kinematics 3.2:

θc =

t1∫
t0

θ̇(t)dt (3.1)

r1c = f(θc), ṙ1c = J1(θc)θ̇c (3.2)
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Some kinematic controllers like finite horizon kinematic control do not use a feedback
but rather compute a feedforward based on the inital configuration and the task
trajectory. The problem that the controller solves, i.e. finding the proper joint
velocities for a given endeffector velocity is called (velocity-level) inverse kinematics.

3.1 Instantaneous Robot Kinematic Control

There are numerous ways to realize a kinematic controller. The main focus of
this thesis is model-predictive kinematic control. In order to rate the performance
of the MPC-based controllers another more commonly-used method, the ”inverse
kinematics considering the order of priority” is implemented and will be described in
the following section. They have been introduced by Nakamura et. al. in [8, p. 128].
Here this method shall also be referred to as instantaneous or local kinematic control
since it only uses information from the current time-step by contrast to finite horizon
and model-predictive control which predict the behavior to find the optimal control
input within a time-interval in the future.
Nakamura’s ”inverse kinematics considering the order of priority” ensure the exact
execution of the top priority task and use those degrees of freedom left to fullfill the
lower priority task. Although any number of tasks are possible, here only the simple
case of two tasks shall be addressed. The first and second priority task are specified
on position and velocity level as follows:

ri = f i(θ), (i = 1, 2) (3.3)

ṙi = J i(θ)θ̇, (i = 1, 2) (3.4)

Here θ ∈ Rn is the joint configuration, ri ∈ Rmi is called the manipulation variable
of the i-th task. For example r1 could be the desired position and ṙ1 the desired
velocity of the endeffector. J i(θ) = ∂f i/∂θ ∈ Rmi×n is the Jacobian matrix of the
i-th manipulation variable.
Computing the inverse kinematics on position level is much more difficult than on
velocity level since it would require solving the nonlinear equation f i in 3.3, whereas
on velocity level the problem is defined only by the linear equation 3.4. In order
to solve 3.4 for θ̇ the Jacobian J i(θ) needs to be inverted. In case of a redundant
manipulator i.e. m < n, the Jacobian becomes non-square thus the general least-
squares solution has to be used:

θ̇ = J ]1(θ)ṙ1 + [En − J ]1(θ)J1(θ)]y (3.5)

where: J ]1 = JT1 (J1J
T
1 )−1 (3.6)

Equation 3.5 yields all possible solutions θ̇ satisfying 3.4, where y is an arbitrary
vector in Rn. The Moore-Penrose Pseudo-Inverse is denoted by J ]1. The matrix
[En − J ]1(θ)J1(θ)] is called the nullspace projection of J ]1, i.e . it projects the
velocity y in a way that it does not have any influence on the first manipulation
variable ṙ1.
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The vector y has to be calculated in such a way that also the second task is fulfilled.
Therefore θ̇ of equation 3.5 is inserted into 3.4 for i = 2.

J2(En − J ]1J1)y = ṙ2 − J2J
]
1ṙ1 (3.7)

Equation 3.7 can be solved for y by applying the least square solution again:

y = Ĵ
]

2(ṙ2 − J2J
]
1ṙ1) + (En − Ĵ

]

2Ĵ2)z (3.8)

with: Ĵ2 := J2(En − J ]1J1) (3.9)

By inserting y into 3.5 θ̇ can be obtained as:

θ̇ = J ]1ṙ1 + Ĵ
]

2(ṙ2 − J2J
]
1ṙ1) + (En − J ]1J1)(En − Ĵ

]

2Ĵ2)z (3.10)

Here z is another arbitrary vector that represents the joint velocities that neither
affect the manipulation variable of the 2. nor 3. task. If no third task is specified
it can be assumed z = 0. By defining the nullspace projection N 1 = En − J ]1J1

equation 3.10 can be simplified to the following term:

θ̇ = J ]1ṙ1 + (J2N 1)](ṙ2 − J2J
]
1ṙ1) (3.11)

3.1.1 The method of repulsive velocity

The prioritized inverse kinematics as introduced by Nakamura and refined by Ma-
ciejewski in [9] shall be applied on a redundant manipulator. The task is defined
as tracking a path with its endeffector while at the same time avoiding an obstacle.
The manipulator of figure 3.2 that shall be simulated is of planar type and has 3
degress of freedom. The top priority task is position- and velocity-control of the
endeffector which are specified by the vectors r1, ṙ1. The second task accounts for
collision avoidance by assigning a repulsive velocity ṙ2 pointing away from the ob-
stacle. This repulsive velocity is always assigned to the point r2 on the manipulator
which is closest to the obstacle.
On velocity level the second task would be defined as:

ṙ2 = J2θ̇ (3.12)

The task specification 3.12 defines two separate conditions for the movement of point
r2 if J2 has a rank equal 2. However in this example only one degree of redundancy is
left for collision avoidance thus making it impossible to compute the pseudo-inverse
(J2N 1)] needed in 3.11. To resolve this problem of over-determinateness, the task
can be modified so that not the direction but only the speed of moving away from
the obstacle is specified thus creating only one constraint. This can be done by
projecting the velocity ṙ2 in the direction of the unit vector n0 pointing towards the
obstacle.

ṙ2 = nT0 ṙ2 (3.13)
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Figure 3.2: Obstacle avoidance using the method of repulsive velocity

The new Jacobian J̄2 is defined by multiplying equation 3.12 with n0:

ṙ2 = J̄2θ̇ (3.14)

with: J̄2 = nT0 J2 (3.15)

It is desirable that the robot moves away from obstacle faster if the distance to the
obstacle becomes smaller. This is realized by multiplying the scalar velocity ṙ2 by
αv, a scalar which becomes infinite if the distance gets zero. If the distance d is
greater than the radius dm (see figure 3.2) αv is chosen to be zero.
Another Factor αh is used to smoothly switch on collision avoidance if d is smaller
than di and switch off when d is greater than di. The functions used for both factors
are shown in figure 3.3. The factors have the following influences on the calculation
of θ̇:

θ̇ = J ]1ṙ1 + αh(J̄2N )](αvṙ2 − J̄2J
]
1ṙ1) (3.16)
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Figure 3.3: obstacle avoidance gain αv and homogenous term gain αh



3.1. INSTANTANEOUS ROBOT KINEMATIC CONTROL 33

3.1.2 Simulation of Instantaneous Kinematic Control
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Figure 3.4: The nullspace movement is used to avoid the obstacle

While performing simulations it turned out that the algorithm gets unstable in the
area of singularities, e.g. if the manipulator stretches far out. The reason is that
the Jacobian of the endeffector J1 is becoming close to singular thus the entries of
the pseudo-inverse J ]1 reach very high values. A remedy for this problem is using a
damped pseudo-inverse which computes as follows:

J ]1 = JT1 (J1J
T
1 + λ2En)−1 (3.17)

Here λ is a scalar damping factor. The higher this factor, the less sensitive the
pseudo-inverse is getting in the proximity of singularities. However using a higher
damping of the pseudo-inverse also causes greater errors in the task execution.
Errors in the endeffector path-tracking can be reduced by feeding back the position
error to the calculation of θ̇. This is referred to as closed-loop inverse kinematics
[10].

ṙ1 = ṙ1d +K(r1d − rc1) (3.18)

θ̇ = J ]1ṙ1 + αh(J̄2N )](αvṙ2 − J̄2J
]
1ṙ1) (3.19)

where ṙ1d is the desired velocity K is a gain matrix and rc1 and rd1 are the current
and desired endeffector positions respectively.
Recently, more intensive discussion about the use of the damped pseudo-inverse has
been provided by An in 2014, [13] where an idea was proposed that separates the
orthogonalization and inversion processes to eliminate errors in the task execution.
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3.2 Finite Horizon Robot Kinematic Control

The instantaneous kinematic control described in the previous section is a heuristic
that gives a desirable behavior at every time instant without caring about the fu-
ture or past moves. However such a controller can not deal with requirements like
minimizing the actuation energy on a whole trajectory.

Finite horizon kinematic control finds the optimal trajectory for the manipulator in a
fixed time interval with respect to a cost function. By defining proper cost functions
any desirable behavior, like minimizing actuation energy, avoiding obstacles and
joint limits etc. can be specified. It is expected that predictive controller can handle
more complex situations than instantaneous controllers.

This section will cover two methods of computing finite horizon kinematic control
based on the calculus of variations and Pontryagin’s Maximum (Minimum) Principle.
The algorithms derived in this section find application in the succeeding section on
MPC kinematic control.

3.2.1 Review of Variational Calculus

Both finite horizon and MPC kinematic control described in this thesis make use
of the Pontraygin maximum (minimum) principle which is defined in the context
of variational calculus. Apart from this other methods like dynamic programming
or sequential qudratic programming (SQP) exist that would be adequate to solve
nonlinear optimal control problems of this kind but will not be used in this work.

The goal of using variational calculus is to find the trajectory of inputs u ∈ Rm

for the nonlinear system1

ẋi = fi(x,u), (i = 1, ..., n) (3.20)

x = col(x1, x2, ..., xn) ∈ Rn

that yields a minimum value for the cost:

Q =

t2∫
t1

f0(x,u)dt (3.21)

By contrast to classical variational methods which can only deal with unconstrained
u, Pontryagin’s maximum principle can handle problems where u ∈ U ⊂ Rm.
The state vector x is augmented with the accumulated cost of 3.21 and called x0

ẋ0 := f0(x,u), x0(t1) = 0, x0(t2) = Q (3.22)

x0 = col(x0, x1, ..., xn) ∈ Rn+1

1the following introduction to variational calculus and the Pontraygin Minimum (Maximum)
Principle is based on Nakamura [8, p. 81-84]
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The augmented dynamics equations are now given by:

ẋ0 = f 0(x0,u) (3.23)

f 0 = col(f0, f1, .., fn) ∈ Rn+1 (3.24)

Next a variable called the adjoint vector or costate ψ0 ∈ Rn+1 with the same di-
mension as x is introduced. Using ψ0 the Hamiltonian is defined as:

H0(ψ0,x0,u) = ψT
0 f 0(x0,u) (3.25)

where the behaviors of x0(t) and ψ0(t) are given by:

ẋ0 = (
∂H0

∂ψ0

)T (3.26)

ψ̇0 = −(
∂H0

∂x0

)T (3.27)

Pontryagin’s Maximum Principle for Fixed-Time and Free End-States
Problems [11]

Let u be an admissible control in subset U ∈ Rn and t1, t2 and x1 are
given, x2 is free. A necessary condition for u(t) to be optimal in the
sense of 3.21 is that there exists a nonzero continuous ψ0(t), t1 ≤ t ≤ t2,
such that

H0(ψ0(t),x0(t),u(t)) = sup
u∈U

H0(ψ0(t),x0(t),u) (3.28)

ψ0(t2) = col(−1, 0, ..., 0) (3.29)

where ψ0 is constantly equal to −1

3.2.2 Global Kinematic Control

Similarly to the instantaneous inverse kinematics in section 3.1, Nakamura’s global
kinematic control algorithm [8, p. 153] requires the definition of the two manipulation
variables:

r1 = f 1(θ), ṙ1 = J1(θ)θ̇, r1 ∈ Rm1 (3.30)

r2 =

∫ t1

t0

p(θ, t)dt ∈ R (3.31)

In the particular case covered here the equations 3.30 specify the endeffector velocity
and/or orientation. The second task is the minimization of the cost integral 3.31.
As in the instantaneous inverse kinematics the first task is ensured if θ̇ is governed
by the following equation:

θ̇ = J ]1(θ)ṙ1 +N 1(θ)y (3.32)

∆
= g(θ, t,y) (3.33)



36 CHAPTER 3. ROBOT KINEMATIC CONTROL

Equation 3.32 can be interpreted as a nonlinear time-varying dynamic system with
θ being the state and y being the input. The system shall be denoted by g(θ, t,y).
The optimal control problem can now be defined as searching for the optimal input
y so that the objective function 3.31 is minimized. The previously introduced PMP
can be applied if the problem has a free end state. This is true because if θ(t0)
satisfies equations r0(t0) = f 1(θ(t0)) then r1(t1) = f 1(θ(t1)) will be automatically
fulfilled if θ is governed by 3.32. Hence θ(t1) is free i.e. the problem has a free
end-state. Using the definition 3.29 the Hamiltonian can be written as:

H(ψ,θ, t,y) = −p+ψTg (3.34)

Note that H is now formulated with the normal state θ and the costate ψ instead
of the augmented x0 and ψ0. The state and adjoint vector are determined by the
following set of ordinary differential equations:

θ̇ = (
∂H

∂ψ
)T = g (3.35)

ψ̇ = −(
∂H

∂θ
)T (3.36)

Since the goal is to keep actuation effort low and avoid obstacles the objective
function 3.37 is chosen to contain the joint velocities as well as a distance-cost
function p0. The distance-cost p0 gives high values for small obstacle-manipulator
distances and low values or zero for large distances.

r2 =

∫ t1

t0

kp0(θ) + θ̇
T
θ̇︸ ︷︷ ︸

p

dt (3.37)

Rewriting the Hamiltonian of equation 3.34 by replacing p with the integrand of
3.37 yields:

H = −kp0 − gTg +ψTg (3.38)

After inserting the system equation g into the above equation the input y occurs.
According to maximum principle the y that maximizes the Hamiltonian is a candi-
date for the optimal control input. It can be derived that such a y is given by ( for
details refer to Nakamura [8, p. 160]):

y =
1

2
(En − J ]1J1)ψ (3.39)

To obtain the ODE describing the behavoir of θ and ψ the Hamiltonian of 3.38
simply has to be inserted into the differential equations 3.35 and 3.36 yielding:

θ̇ = g (3.40)

ψ̇ = (
∂g

∂θ
)T (2g −ψ) + k(

∂p0

∂θ
)T (3.41)

g = J ]1ṙ1 +
1

2
(En − J ]1J1)ψ (3.42)
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The derivation of the gradient ∂g/∂θ is given in the appendix in A.6 to A.18 and
for ∂p0/∂θ in equation A.3.
Since the ODE for θ̇ and ψ̇ have n entires each it is necessary to find 2n boundary
conditions. Depending on the problem definition there are numerous way of defining
the boundary conditions having great influence on the computational complexity.

Type 1 Boundary Conditions The most straightforward way is to specify the
complete initial configuration θ(t0). Since the problem is of fixed-time free-end-state
type according to the PMP (equation 3.29) the adjoint vector at t1 has to be zero.
Thus the boundary conditions are separated into left and right hand conditions:

L.E.: θ(t0) (3.43)

R.E.: ψ(t1) = O (3.44)

Type 2 Boundary Conditions In [8, p. 158] Nakamura only defines position
and/or orientation of the endeffector at the left-hand side, at t0, leaving the redun-
dant degrees of freedom open to the optimization. Therefore there are m1 boundary
conditions that can be retrieved from r1(t0) = f 1(θ(t0)). Again from the PMP
follows the right hand boundary condition ψ(t1) = O, giving n conditions. The
remaining n −m1 boundary conditions have to be derived from the transversality
condition 3.45.2 The left and right end boundary conditions can be summarized as
follows:

L.E.: {En − J ]1(θ(t0))J1(θ(t0))ψ(t0)} = O (3.45)

r1(t0) = f 1(θ(t0)) (3.46)

R.E.: ψ(t1) = O (3.47)

Since the differential equations 3.40 and 3.41 are coupled they need to be solved
together. However they cannot be integrated as standard initial value problem since
for type 1 and type 2 boundary conditions the values for θ and ψ are defined on
opposite ends. Such a problem is called a two-point boundary value problem (2-
point BVP) and can be solved using the initial value adjusting method, also known
as the shooting method.

An Example for the Distance-Cost Function The following function was
chosen to calculate the distance-cost when using a circular obstacle:

p0(θ) =
scoll

3

(
dm − dm

d(θ)− db
dm − db

)3

(3.48)

Here the shortest distance between manipulator and obstacle d(θ) depends on the
current configuration θ and the location of the obstacle. db is the diameter of the

2 As described in [8, p. 153] the transversality condition states that ψ(t0) must orthogonally in-
tersect with the mainfold r1(t0) = f(θ(t0)). The normal vectors of this manifold are the columns of
(∂f1/∂θ)

T . Therefore there must exist a q so that J1(θ(t0))
Tq = ψ(t0). This can be equivalently

written as 3.45.
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circular obstacle and dm denotes the threshold distance above which the distance-
cost is set to zero. The higher the collision avoidance gain scoll is, the more priority
granted to collision avoidance. It is necessary that the cost is bounded to a maximum
value and does not diverge when the obstacle is penetrated, i.e. d(θ) < db. The
reason for this will be explained in section 3.3.

3.2.3 Using the Shooting Method to solve 2-point BVP
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Figure 3.5: solving the 2-point boundary value problem in forward manner [8,
p. 158], estimation and modification for n values

In this section the shooting method for solving the 2-point BVP is explained ap-
plying it to the boundary conditions of type 1. The scheme is depicted in figure
3.5 and works the following way: Since ψ(t0) is unknown an initial guess is made
and combining it with the known θ(t0) the ODE are integrated from the left to
the right. If the value obtained from integration ψint(t1) does not comply with the
right hand boundary condition 3.44, i.e. ψint(t1) 6= O, the initial guess of ψ(t0) is
adjusted and the process is repeated until it reaches O within a particular tolerance.
More abstractly the problem can be understood as searching for the vector ψ(t0)
for which the nonlinear function

ψ(t1) = h(ψ(t0),θ(t0)) (3.49)

being the forward integration of 3.40 and 3.41 yields ψ(t1) = O. For simplicity the
argument θ(t0) in function h will be omitted. The problem of finding zeros can be
solved using the Newton-Raphson method. A detailed description of applying this
method to solving 2-point BVPs can be found in [5, p. 343]. The initial guess is
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denoted by ψ(0)(t0) and the value after integration, i.e. the output of function h is
called ψ(0)(t1). Considering the current guess at step j, ψ(j)(t0), the next improved
guess ψ(j+1)(t0) is computed as follows:

ψ(j+1)(t0) = ψ(j)(t0)−
[
Jh(ψ(j)(t0))

]−1

ψ(j)(tf ) (3.50)

where Jh =
∂h(ψ(j)(t0))

∂ψ(t0)
(3.51)

In the equation above Jh is the Jacobian matrix obtained when deriving h at
ψ(j)(t0). Since there is no analytic expression for h its Jacobian has to be de-
termined numerically which can be done with the following procedure:

Algorithm 1 Compute Jacobian Numerically

ψ(t1)← h(ψ(t0)) //integrate

for i = 1...n do

ε← [0...0]

εi ← δ // assign small variation δ to i-th entry

ψper(t0)← ψ(t0) + ε //perturb i-th variable of ψ(t0) by δ

ψper(t1)← h(ψper(t0)) //integrate with perturbed value

∂ψ(t1)
∂ψi(t0)

← ψper(t1)−ψ(t1)
δ //compute derivative with respect to ψi(t0)

(Jh)1...n,i ← ∂ψ(t1)
∂ψi(t0)

//assign the result to the i-th column of Jh

end for

This algorithm computes the Jacobian by perturbing each of the entries of the
input-vector ψ(t0), computing the difference to the original value and dividing by
the amount it has been perturbed.

Guessing an Appropriate ψ(t0) Depending on the initial guess for ψ(t0) the
algorithm can either converge to a local minimum, a global minimum or not converge
at all. Since ψ(t1) = O is a necessary but not a sufficient condition for a minimum
it is possible to find starting values for ψ(t0) where the algorithm converges to a
solution which is not the optimal. The resulting trajectory yields significantly higher
costs than the optimum and often collides with obstacle. A remedy to this problem
could be to run the algorithm with multiple initial guesses in parallel and then
choose the trajectory with the least cost.
By experimenting with different starting values ψ(t0) in a collision avoidance sce-
nario it was found that for ψ(t0) = [0,−10, 10] the algorithm converges to the



40 CHAPTER 3. ROBOT KINEMATIC CONTROL

global optimum. With this guess the algorithm determined the correct boundary
condition to be approximately ψ(t0) = [−18.5810,−45.7086,−8.0492]. However
simulation showed that the algorithm is very sensitive to the selection of ψ(t0) and
slight changes in this value can already lead to a local minimum. It turned out that
the guess ψ(t0) = [0,−10, 10] was working for most horizons and various obstacle
avoidance situations.
Figure 3.6 shows the evolution of the norm of ψ(t1) as the Newton-Raphson algo-
rithm searches for the zero. It can be seen that after about 20 newton-steps the
algorithm found a proper ψ(t0) that complies with the boundary condition. For
shorter horizons the number of necessary newton steps reduces significantly. For
example when using a horizon of 0.5 seconds it converges after five newton steps.
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Figure 3.6: Newton Stepping in order to find the zero in ||ψ(t1)||

3.2.4 Nakamura’s Method of Solving the BVP

Using the method described in the previous section one has to guess the whole
vector ψ(t0) with n entries. Since this can be computationally expensive Nakamura
[8, p. 153] suggested to modify the boundary conditions of type 2, 3.45 to 3.47 so that
instead of n only as many variables as the degree of redundancy, n −m1 variables
have to be guessed. This modification is achieved by considering that the left hand
boundary condition r1(t0) = f 1(θ(t0)) will be automatically fulfilled on the right
hand side, if θ is governed by the equation 3.32. Conversely if the condition is
moved to the right hand-side, i.e. r1(t1) = f 1(θ(t1)) the original condition r1(t0) =
f 1(θ(t0)) will also be fulfilled. Therefore the following equations are equivalent to
the boundary conditions of type 2:

Type 3 Boundary Conditions

L.E.: {En − J ]1(θ(t0))J1(θ(t0))ψ(t0)} = O (3.52)

R.E.: r1(t1) = f(θ(t1)) (3.53)

ψ(t1) = O (3.54)
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Using this kind of boundary conditions the integration is carried out backwards in
time while only n−m1 boundary conditions have to be guessed (see figure 3.7).
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Figure 3.7: Integrating reversely with type 3 boundary conditions, the number esti-
mated and modified values are reduce to n−m1

Simulation using Type 3 Boundary Conditions A Simulation using type 3
boundary conditions is conducted for a 3-link planar manipulator where the en-
deffector’s task is to track a horizontal line. The endeffector path as well as the
endeffector locations at t0 and t1 are known. Considering boundary condition 3.53
all configurations where the endeffector is at position r1(t1) are valid initializations
for the backward-integration. Figure 3.8 shows the two possible ways of exploration
of the redundant space at time t1. Both endeffector (right end) and base (left end)
hold their locations while all configurations between the two extremes, marked in
red are visited.
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Figure 3.8: Two symmetric ways to explore the redundant space at the t1 configu-
ration
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Figure 3.9: Reverse integration with type 3 boundary conditions, no collision avoid-
ance

First the simulation is carried out without obstacle avoidance omitting the first term
in the cost integral in 3.37. Both ways of exploring, shown in 3.8 yield symmetric
results therefore only the results from the left one are shown in figure 3.9. The
top diagram shows all the t1-configurations that are found when exploring with
some particular step-size. The middle diagram shows the accumulated cost for the
trajectory of each configuration when integrating from t1 to t0. The bottom diagram
shows the norm of the transversality condition 3.52 at time t0. The transversality
condition is a necessary condition for optimality meaning that a trajectory can only
be optimal if it is satisfied, however not every zero of the transversality conditions
indicates an optimal trajectory. From the diagrams in figure 3.9 it can be seen that
the global optimum lies in configuration No. 34 since there is a minimum in the
cost and the norm of the transversality conditions yields zero.

In the next simulation the distance cost is added to the cost integral. The results
which are depicted in figure 3.10 and show that both the cost and the transver-
sality condition become very noisy. A possible reason is that adding the distance
cost changes the optimization problem in a way that a great number of local min-
imums are created. Therefore many point satisfy the transversality condition and
show small values thus making it difficult to select a trajectory that shows obstacle
avoidance.
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Figure 3.10: Adding Collision Avoidance, reverse integration with type 3 boundary
conditions

Modification of Type 3 Boundary Conditions to enable Specification of
θ(t0) The advantage of type 1 boundary conditions over type 2 and 3 is that the
initial configuration can be specified and is not part of the solution as in type 2
and 3. Being able to specify the initial configuration is necessary for computing
MPC, which will be dealt with in later sections. However the disadvantage of type
1 boundary conditions is the increased computational cost since it requires guessing
and adjusting n boundary conditions instead of n−m1.

The following suggestion is made in order to enable the specification of the initial
configuration θ(t0) while reducing the number necessary guesses to n−m1: Identi-
cally to type 3 boundary condition the redundant space is searched at time t1 and the
integration is carried out for every t1 configuration. For every t1-configuration inte-
gration yields a t2-configuration called θint. The optimal trajectory is the one where
θint matches the original boundary condition θ(t0). Instead of integrating for each
redundant configuration at t1 the newton raphson-method or the gradient-descend
method can be used to find configuration where the error norm ||θint − θ(t0)|| = 0
becomes zero. In the simulation example the bottom graph of figure 3.11 shows that
this condition is fulfilled for configuration No. 34.



44 CHAPTER 3. ROBOT KINEMATIC CONTROL

Type 4 Boundary Conditions

L.E.: θ(t0) (3.55)

R.E.: r1(t1) = f(θ(t1)) (3.56)

ψ(t1) = O (3.57)
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Figure 3.11: Reverse integration with type 4 boundary conditions, no collision avoid-
ance

Regarding this section it can be summarized that using the boundary conditions of
type 2 to 4 has been successfully implemented with a cost term only containing the
joint velocities, i.e. only the second term of the integrand in 3.37. However when
adding a distance-cost term they return very noisy results and do not provide an
optimal trajectory. By contrast the approach using type 1 boundary conditions in
combination with the Newton-Raphson method yields proper solutions (see figure
3.6), even when adding the obstacle avoidance term.
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3.2.5 Schuetz’ Method of Solving 2-point BVP

In [1] Schuetz suggested a different method to solve the 2-point boundary problem
using the boundary conditions of type 1 namely:

L.E.: θ(t0) (3.58)

R.E.: ψ(t1) = O (3.59)

Starting from the formulation of the Hamiltonian in minimum principle form (p now
carries a positive sign),

H(ψ,θ, t,y) = p+ψTg (3.60)

Schuetz does not use the set of coupled ODE 3.40 and 3.41. Instead he uses the
boundary conditions 3.58 and 3.59 to integrate the two following ODE indepen-
dently, i.e. integrate θ form left to right and ψ from right to left.(

∂H

∂ψ

)T
= θ̇ = g(θ,y, t) (3.61)

−
(
∂H

∂θ

)T
= ψ̇ = −

(
∂p

∂θ

)T
−
(
∂g

∂θ

)T
ψ (3.62)

The gradient ∂H/∂θ is given in in the appendix A.5. According to the Pontryagin
minimum principle a necessary condition for the input to be optimal is that for every
instant of the trajectory the Hamiltonian is minimal.

y∗ = argmin
y

H(θ∗,ψ∗,y) (3.63)

Here ∗ denotes the optimal trajectory. By contrast to the algorithms presented in
the preceding sections, Schuetz’ algorithm guesses an initial y trajectory thus being
able to integrate 3.61 and 3.62 directly by using the boundary conditions 3.59 and
3.58. Therefore the problem can be reformulated as an unconstrained optimization
problem, i.e. searching for the y-trajectory that yields a minimum Hamiltonian at
each time instant:

y∗ = argmin
y

H(θ(y),ψ(y),y) (3.64)

This n-dimensional minimum-search problem can be solved in a standard way using
the gradient descent method. The initial guess of y0 is iteratively improved by the
following rule:

yk+1 = yk − α
(
∂H

∂y

)T
(3.65)

The gradient ∂H/∂y is a also provided in the appendix A.4. To improve the speed
of convergence Schuetz suggested to employ the conjugate gradient method which
was introduced for optimal control by Mitter in [12].
The whole procedure of calculating the optimal input y using a conjugate gradient
method is summarized in algorithm 2.
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Algorithm 2 Schuetz’ Method for Finite Horizon Kinematic Control

j ← 0

θ0(τ)←
∫
τ
θ̇(y0, t)dt //integrate with guessed y0-trajectory

repeat

ψj(τ)←
∫
τ
ψ̇(θj, θ̇

j
,y, t)dt

gj ← ∂H
∂y

//calculate the gradients for each time-step

if j 6= 0 then

βj ← (gj ,gj)
(gj−1,gj−1)

where (gj, gj) =
∫
τ
(gj(t))Tgj(t)dt

sj ← −gj + βjsj−1 //adjust stepping direction

else

sj = −gj //initialize stepping direction

end if

yj+1 ← yj + αsj //perform gradient descent

j ← j + 1

θj(τ)←
∫
τ
θ̇(yj, t)dt

exit ← (j < jmax) ∨
(
Lj−Lj−1

Lj−1 < ε
)
∨ (Lj > Lj−1) //termination conditions

until exit = true

return uj

The conjugate gradient method improves the gradient descent by modifying the
stepping direction sj with a correction term βjsj−1.
Schuetz suggested to use three termination conditions: Terminating after a maxi-
mum number of iterations jmax, if the relative cost decrease falls below a threshold
ε and if the cost increases.
During simulations it turned out that the stepping length gain αj has great influence
on the results of the algorithm. If it chosen too small the algorithm will converge
slowly being inefficient and might reach its maximum number of steps jmax without
converging at all. If it is too large the algorithm escapes from the minimum, the cost
increases and the algorithms terminates with a non-optimal result. The convergence
of the cost in Schuetz algorithm, depicted in figure 3.12 is smooth by contrast to
the convergence the norm of ψ(t1) in the shooting method shown in figure 3.6.
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Figure 3.12: Convergence of the cost, Finite Horizon Length: 1.5 seconds

However an undesirable behavior has been observed when the termination condition
is disabled and the gradient decent algorithm is continued despite increasing cost.
As gradient descent always seeks the minimum, one would expect the algorithm to
stay at the minimum or oscillate around the minimum. Instead as shown in figure
3.13 the cost increases with ongoing iterations, even showing an accelerated ascent.
The ascent could already start before reaching to the optimal trajectory thus the
algorithm would only provide an approximation of the optimal trajectory.
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Figure 3.13: The cost goes up again, despite gradient descent thus revealing an
instability in the algorithm

Another evidence that the algorithm gives an approximation of the optimal is related
to the choice of the initial y trajectory. Simulation showed that using the normal
termination conditions different initial y trajectories lead to different values for the
accumulated cost. Possible reasons why this algorithm leads to an approximate
result will be discussed in section 3.2.6.
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3.2.6 Comparison of Finite Horizon Control Methods

The Shooting method, Schuetz’ method and the instantaneous inverse kinematics
have all shown the ability to perform collision avoidance with the planar 3-link
manipulator (see figure 3.14).
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Figure 3.14: Simultaneous Simulation of Finite Horizon Kinematics Control with
Schuetz’ Method, the Shooting Method and Nakamura’s Instantaneous Kinematic
Control

Since the finite horizon control methods lay the basis for MPC, it is important to
verify if the resulting trajectories are indeed optimal. Comparing the integrated
costs between the three algorithms indicates which algorithm yields a trajectory
that is closer the optimum. In order to guarantee an objective comparison the same
initial configuration, obstacle, cost function and identical endeffector velocities are
applied. The precision of the shooting method and Schuetz’ method is set very
high by reducing the step lengths and increasing the number of iterations. The
following relations among the accumulated costs L are obtained from a simulation
of horizontal tracking with obstacle avoidance on a finite horizon of 1.5 seconds:

Linstantaneous − Lshooting
Lshooting

= 14.079%

LSchuetz − Lshooting
Lshooting

= 6.5784%

As expected, instantaneous control is far less optimal than both finite horizon con-
trol methods. An important result is that the accumulated cost for the trajectory
calculated by Schuetz’ algorithm is significantly higher than the cost obtained from
the Shooting method. Figure 3.15 shows that this difference in the accumulated
costs becomes larger with increasing horizon lengths.
The disparity in the cost values does not change for different endeffector trajectories
and different obstacle locations. Therefore it is evident that Schuetz’ Method only
approximates the optimal trajectory.



3.2. FINITE HORIZON ROBOT KINEMATIC CONTROL 49

0 0.5 1 1.5
0

2000

4000

Horizon Length [s]

 

 

0 0.5 1 1.5
0

0.05

0.1

Horizon Length [s]

LSchuetz−Lshooting

Lshooting

 

 

LSchuetz

Linstantaneous

Lshooting

Figure 3.15: Comparison of accumulated costs for the Schuetz’ Method and Shooting
Method; Finite Horizon Control, with increasing horizon lengths

One possible reason why Schuetz’ method only approximates the optimal solution
could be the following: When Schuetz formulates the derivative of the Hamiltonian
with respect to u in equation 3.62, he neglects the third term:

∂H

∂u
=
∂p

∂u
+ψT ∂g

∂u
+ gT

∂ψ

∂u︸ ︷︷ ︸
=0

(3.66)

Neglecting this term causes an error in the gradient which is used as the direction
for gradient descent. Furthermore Schuetz assumed the first term in the derivate of
g to be zero:

∂g

∂u
=

∂

∂u

(
J ]1(q(u))ṙ1 +N 1(q(u))u

)
(3.67)

= ṙT1
∂J ]1
∂q

∂q

∂u︸︷︷︸
=0

+uT
∂N 1

∂q

∂q

∂u︸︷︷︸
=0

+N 1 (3.68)

Neglecting these terms causes an error in the gradient which is used as the direction
for gradient descent. This could explain why the cost increases again after reaching
the bottom value (see figure 3.13)
Another possible reason is that Schuetz’ algorithm converged to local minimum
different from the minimum the shooting method converged to. Since the problem
solved here is a non-convex optimization problem both algorithms can, depending
on the guesses for the initial y0 or ψ(t0) converge to either local or global optimums.
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3.3 The Cost Function Dilemma

For both the shooting method and Schuetz’ method a finitely bounded distance-cost
3.48 is used for collision avoidance (see also bottom right figure in 3.16). A finitely
bounded cost does not guarantee that the obstacle is avoided. The reason is that in
extreme cases, when obstacle avoidance requires very large velocities θ̇ (the velocity
adds quadratically to the cost) or the maximum value in the distance-cost is too
low, penetrating the obstacle causes less cost than avoiding it, thus the trajectory
does not evade the obstacle anymore.

An obvious approach to guarantee obstacle avoidance is to define a distance cost
that diverges when the distance becomes zero ( bottom left figure in 3.16).

However neither the shooting method nor Schuetz’ method can run with an un-
bounded distance-cost function. Considering the shooting method the problem is
that when integrating with the first initial guess for ψ(t0) the trajectory can pos-
sibly cross the obstacle (top left figure in 3.16). When touching the obstacle, the
distance-cost returns infinity thus causing the algorithm to fail. In case of the
Schuetz’ method, the initial guess y(t) can also lead to a trajectory passing through
obstacles.

One method to counteract this problem would be to use a finite distance cost and
iteratively increase the maximum value of the distance-cost if a collision is detected.
There exist several methods trying to solve this problem like the penalty method
and the augmented lagrangian method. However resolving this issue is not in the
focus of this thesis.
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Figure 3.16: Different behavior for diverging and finite cost functions
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3.4 MPC Robot Kinematic Control

The main drawback of finite horizon kinematic control is that the computational bur-
den increases significantly with longer horizons and higher degrees of redundancy.
A remedy is to compute the optimal trajectory not for the whole duration of a par-
ticular task but only for a shorter, predefined horizon. The optimal joint-trajectory
is recomputed in every cycle and the first sample of this trajectory is applied on the
robot. The optimization performed at every step is identical to the finite horizon
kinematic control introduced in the previous section.

Algorithm 3 Model Predictive Kinematic Control

Tstart = t0 = 0

n = Tend/∆tsim

nplan = ∆Thorizon/∆tsim

for k = 0 to n do

θplan,0 ← θreal(tk) //assign current configuration to θplan(t0)

θ̇plan ←FiniHorControl(θplan,0, nplan,∆tsim)//Shoot.- or Schuetz Method

θ̇real(tk)← θ̇plan(tk) //apply first sample of θ̇plan to the robot

tk+1 ← tk + ∆tsim

end for

Algorithm 3 shows an MPC simulation for the time interval tk ∈ [Tstart;Tend]. The
variable ∆tsim is the simulation time-step, n defines the number of simulations steps,
∆thorizon denotes the prediction horizon and nplan are the number of steps for the fi-
nite horizon calculation. In every cycle the current configuration is used as the initial
configuration for the finite horizon control calculation. Function FiniHorControl()
uses either Schuetz’ method or the shooting method to compute the optimal tra-
jectory of joint velocities θ̇plan for nplan steps with the interval of ∆tsim. The first
sample θ̇plan(tk) is then applied to the robot.
Figure 3.17 shows the two MPC-algortihms and instantaneous kineamtic control
running at the same time. The difference between the two MPC algorithms using
a horizon of∆t = 0.35 is only marginal. The horizon of Schuetz’ MPC algorithm is
indicated by a series of yellow previews of the planned trajectory.
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Figure 3.17: Collision avoidance, Comparison of MPC and Instantaneous Inverse
Kinematics

3.5 Comparison of Kinematic Control Methods

In this section the MPC kinematic controllers based on Schuetz- and the shooting
method shall be compared in terms of optimality and computational complexity.
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Figure 3.18: Collision avoidance, Comparison of MPC and Instantaneous Inverse
Kinematics

Comparison of Optimality Figure 3.18 shows the instantaneous costs for dif-
ferent algorithms when using the same setup, i.e. the same cost function, the same
endeffector trajectory etc. The instantaneous costs of finite horizon control (contin-
uous red line) is the lowest of all algorithms for most of the time since finite horizon
control produces the behavior closest to the optimum. The simulation shows that
with increasing MPC-horizons the instantaneous costs get lower, approaching the



3.5. COMPARISON OF KINEMATIC CONTROL METHODS 53

cost of finite horizon. However in general with increasing horizons the trajectories
do not necessarily converge to the trajectories generated by finite horizon control.
For example an MPC using a horizon of 0.9 seconds gives different results than a
finite horizon control for the duration of 0.9 seconds. Since MPC uses a moving
time window, the last control input would be optimized for the time frame of 0.9 to
1.8 seconds, whereas finite horizon solely considers the span from 0 to 0.9s.
Figure 3.19 shows the integrated costs for different horizons lengths with a simulation
duration of 0.8 seconds. It is important to mention that the instantaneous inverse
kinematics produce lower integrated costs than both of the MPC-methods when
the MPC horizons is less than ≈ 0.4 seconds (see figure 3.19). If optimality is
considered as the only performance criteria MPC in this scenario becomes superior
to instantaneous control when using a horizon of more than ≈ 0.4 seconds.
In section 3.2.6 it was pointed out that finite horizon control using the shooting
method causes a significantly lower cost than using Schuetz’ method. However this
observation apparently does not apply on the MPC-case in general. According to
figure 3.19 depending on the horizon length the integrated costs for MPC using the
Shooting Method are higher for horizons of less than ≈ 0.55 seconds and lower for
horizons longer than ≈ 0.55 seconds.
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Figure 3.19: Total Costs for different MPC-horizons in a Simulation of 0.8 seconds

For this comparison the termination conditions for Schuetz’- and the shooting method
are decisive. In most control steps Schuetz’ algorithm terminated when the cost de-
crease fell below a predefined threshold (see figure 3.21). For increased precision this
value was chosen to be 10−4. The shooting method was terminated when the remain-
ing ψ(tf ) was smaller than 10−4. Figure 3.20 shows that for a specific simulation
this was fulfilled at all times.
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Figure 3.21: Occurence of termination conditions in Schuetz’ algorithm

Comparison of Computational Complexity Besides optimality another im-
portant criterion for the performance of an algorithm is the computational cost. It
depends on the time for one iteration and the number of iterations. Concerning the
time for one iteration the shooting method needs to integrate over the trajectory
n+ 1 times per iteration where n is the number of joints. The reason is that for one
Newton-step a Jacobian matrix has to be calculated by perturbing each element of
an n-vector and integrating after each perturbation (see section 3.2.3). However as
Nakamura has shown this can reduced to degree of redundancy, i.e. n−m1 if type
4 boundary conditions are used.
Schuetz’ method performs an n-dimensional minimum value search using conjugate
gradient descent. This is also computationally expensive.
The second factor for computational cost is the number of iterations needed to
arrive at a satisfactory result. To compare it is necessary to define equal termination
conditions for both algorithms. However Schuetz’ algorithm in most cases terminates
when the speed of cost decrease is less than some value , whereas the Shooting
method terminates when the residuum ψ(t1) falls below some threshold.
At the current stage Schuetz’ algorithm has slightly shorter running times. However
the shooting method’s potential for reducing the computational load has not been
fully exploited yet.
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Chapter 4

Conclusion

In the first part of this thesis the concept of model-predictive control has been
applied to linear systems. Subsequently MPC has been evaluated in the context
of nonlinear kinematic control. Schuetz’ method for computing MPC and finite
horizon kinematic control and Nakamura’s instantaneous inverse kinematics have
been implemented. A finite horizon kinematic controller has been developed based
on Nakamura’s formulation of the optimal control problem by using the shooting
method in conjunction with the Newton-Raphson method. For particular scenar-
ios it has been shown that this method yields up to 6.5% less cost than Schuetz’
algorithm. Based on these two finite horizon methods MPC kinematic control has
been implemented and tested in a collision avoidance scenario. Both algorithms
were compared with regard to the optimality of the output trajectories and compu-
tational complexity. Simulation showed that relatively long horizons are necessary
for MPC to generate a more optimal behavior than well-tuned instantaneous inverse
kinematics.

Future Work Future research can improve computation time and robustness of
the presented methods. It would be interesting to test the MPC algorithms in more
difficult situations and apply it to systems with higher degrees of freedom. Dealing
with more complex obstacle shapes and taking rigid body dynamics or contacts into
account is a working area with great potential.
Besides Pontryagin’s Maximum (Minimum) Principle there also exist other methods
to solve nonlinear control problems, like Dynamic Programming and Sequential
Qudratic Programming (SQP).
Another important topic for future investigations is finding a solution to the cost
function dilemma discussed in section 3.3. Possible approaches could use the penalty
method or the augmented lagrangian method.
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Appendix A

Derivation of Gradients

Derivation of ∂p0/∂θ

p0(θ) =
scoll

3

(
dm − dm

d(θ)− db
dm − db

)3

(A.1)

d(θ) = ||rc(θ)− rob|| (A.2)

where rc is the vector from the origin to the closest point between obstacle and
robot and rob is the location of the obstacle.

∂p0

∂θ
= − scollda

da − db

(
da − da

(
dk − db
da − db

))2
2(rTc − rTob)
2||rc − rob||

∂rc
∂θ

(A.3)

Derivation of ∂H/∂y

∂H

∂y
= 2(En − J ]J)T θ̇ + (En − J ]J)Tψ (A.4)

Derivation of ∂H/∂θ

ψ̇ = −∂H
∂θ

= −2(
∂g

∂θ
)T θ̇ − (

∂g

∂θ
)Tψ − ∂p0

∂θ
(A.5)

Formulation of ∂g/∂θ:

J θ :=
∂J

∂θ
(A.6)(

∂g

∂θ

)T
ψ =

[
J ]θṙ1 − J ]θJy − J

]J θy
]T
ψ (A.7)

=
(
ṙT1 − yTJT

)︸ ︷︷ ︸
sT

J ]Tθ ψ︸ ︷︷ ︸
P [m×n]

−yTJTθ J ]T︸ ︷︷ ︸
Q[n×n]

ψ (A.8)

P =
[
(JJT )−1J θ − (JJT )−1JJTθ (JJT )−1J − (JJT )−1J θJ

T (JJT )−1J
]
ψ (A.9)
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sTP = sT (JJT )−1

n∑
i=1

(
∂

∂θi
Jψi

)
(A.10)

− sT (JJT )−1J

n∑
i=1

(
∂

∂θi
JTψi

)
(JJT )−1J (A.11)

− sT (JJT )−1

n∑
i=1

(
∂

∂θi
Jψi

)
JT (JJT )−1J (A.12)

sTP =


sT (JJT )−1

(
∂
∂θ1
J
)

...

sT (JJT )−1
(

∂
∂θn
Jψi

)

T

︸ ︷︷ ︸
A

ψ (A.13)

−


sT (JJT )−1

(
∂
∂θ1
JT
)

(JJT )−1J
...

sT (JJT )−1
(

∂
∂θn
J
)

(JJT )−1J


T

︸ ︷︷ ︸
B

ψ (A.14)

−


sT (JJT )−1

(
∂
∂θ1
J
)
JT (JJT )−1J

...

sT (JJT )−1
(

∂
∂θn
J
)
JT (JJT )−1J


T

︸ ︷︷ ︸
C

ψ (A.15)

Qψ = yT
n∑
i=1

(
∂

∂θi
JTψi

)
J ]T (A.16)

=

 y
T ∂
∂θ1
JTJ ]T

...
yT ∂

∂θn
JTJ ]T


T

︸ ︷︷ ︸
D

ψ (A.17)

∂g

∂θ
= A−B − C −D (A.18)
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