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Abstract

Physical cooperation between humans and robots has high potential impact in many critical
application areas. Utilization domains reach from manufacturing via mobility aids to ser-
vice/medical robotics comprising rehabilitation, education, training and elderly care. Among
all robot control approaches for physical cooperation, anticipatory robotic assistance has
demonstrated superior performance in terms of human effort minimization. However, the
deployment of these control schemes for arbitrary tasks entails great difficulty. The required
behavior models enabling human behavior predictions are rarely available a priori and must
be retrieved as the interaction occurs. In addition, robot decisions must cope with the inher-
ent uncertainty of predictions. Besides expected human actions, their level of uncertainty is
a decisive indicator for potential prediction errors yielding undesired disagreements. This
urges the need for novel methods providing intuitive assistance in such uncertain and chal-
lenging conditions.

The present thesis explores control and learning aspects of anticipatory physical assistants.
We focus on four relevant open issues. First, the design of fast and online-capable behavior
learning algorithms providing smooth predictions; the continuous physical coupling between
agents requires non-abrupt and immediate adaptation. Second, the problem of control based
on learned probabilistic/statistical predictive models where uncertainty itself is a crucial fac-
tor that should influence decisions. Third, a deeper understanding of interaction wrenches
that facilitate a proper estimation of human intentions through force/torque signals. Fourth,
the design of control schemes for physical assistance that seamlessly adapt to both human
behavior uncertainty and disagreements.

The main contributions of this thesis address the above-mentioned issues. Regarding learn-
ing methods we introduce (i) impedance-based Gaussian Processes, which incorporate a pri-
ori human arm impedance characteristics and (ii) time-based Hidden Markov Models, which
provide smooth predictions despite its discrete latent state space. To enable decision-making
with uncertain models we propose a novel systematic stochastic optimal control approach
where uncertainty itself is explicitly considered. In contrast to classical methods not only
the expected cost but also higher order cost statistics determine the optimization criterion,
increasing flexibility and robustness. We further introduce fundamental insights on the re-
lation between interaction wrenches, load distributions and disagreements with the human.
This analysis provides the means for the design of novel anticipatory control schemes adapt-
ing to both human behavior uncertainty and disagreements. Results demonstrate superior
performance in terms of both implicit and subjective measures in evaluations with human
users.
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(3.24) with kx = 1 and for ẋ1 = 0, ẋ2 = 0.1 [m/s]. Length scales and signal
variance are set to l1 = 0.01 and σ2

f
= 4 for ke(x , x ′) and l1 = 0.01, l2 = 0.1

and σ2
f
= 0.5 for kdh

(ξ,ξ′). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.18 Predictive variances after one trial for model (3.25). Length-scales and signal
variance are set to l1 = 0.01, l2 = 0.1 and σ2

f
= 0.5 respectively. . . . . . . . . . 59

4.1 Optimal positional gains w.r.t variance square root Σ1/2 for a linear quadratic
problem with dynamics (4.43), cost (4.44) with a single uncertainty source for
several risk-sensitive controllers with different risk-sensitivities in comparison
with the expected cost solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Optimal positional gains w.r.t variance square root Σ1/2 for a linear quadratic
problem with dynamics (4.43), cost (4.44) with a single uncertainty source
for several cost-cumulant controllers with different weighting factors in com-
parison with the expected cost solution. . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Optimal positional gains w.r.t variances square root Σ1/2
1 and Σ1/2

2 for a lin-
ear quadratic problem with dynamics (4.43), cost (4.44) and two uncertainty
sources for different risk-sensitive and cost-cumulant controllers, where γ=

p
0.1. 80

4.4 Optimal trajectories and feedback gains for a 2D point mass damper robot x r

tracking goal x g with noisy passive mass-damper system dynamics and where
γn = 2 and γp = 7 for a horizon of Tc = 0.5s. Initial states of robot and goal
are x r

0 = [0 0], ẋ r
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1

Introduction

Physical cooperation between humans and robots has high impact in many critical applica-
tion areas. Manufacturing is significantly facilitated by cooperative robots in object trans-
portation. Accounting for most of the necessary effort, human physical stress is significantly
reduced thereby expediting production. The impact of physical robotic partners in medical
settings can not be overstated. Applications such as rehabilitation or physical training are
greatly enhanced by robotic partners regulating the appropriate human effort. Service robots
for domestic use also require intuitive physical interaction with human users. In this context,
education and learning by means of kinesthetic teaching are promising utilization examples
enabling skill transfer between humans and robots. Similarly, elderly care benefits from ef-
ficient and comfortable mobility aids from robot companions. The high impact of physical
human-robot cooperation in such a broad spectrum of application domains highlights the
need for intuitive and effective physical robotic partners.

Among all aspects involved in the realization of physical helpers, robot control is a crucial
component; it determines robot behavior while physically coupled to a human partner. Al-
though challenging due to human actions, a proper robot control scheme has the potential
to enable seamless physical interaction between humans and robots. The first endeavors to
synthesize robot behavior for physical assistance focus on compensating human force/torque
signals [1]. These passive robots intuitively react to human inputs but do not efficiently re-
duce human effort. In contrast, a robot partner pursuing its own goal in a proactive manner
is a more general, desirable and sometimes even necessary alternative [2]. As a prototypical
example consider the the cooperative transport of a rigid object. A passive robot behaves ac-
commodating for sensed wrenches through the object, thereby rendering an additional mass
in the overall system. In contrast, a proactive partner do not only reacts to the human input
but also pursues its own goal, a priori accounting for all required effort. It also provides
increased cooperative manipulability, a requirement for fulfilling task involving navigation
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through narrow passages. In fact, proactive robots are the only partners capable of achieving
successful cooperation, which require working jointly towards a common known goal [3].

Within proactive approaches, robot assistance based on human behavior prediction has
demonstrated superior performance in terms of human effort minimization [4]. By antici-
pating human intentions, robot actions gather all necessary redundant effort. As a payoff,
its design becomes significantly more challenging: the necessary human behavior models en-
abling predictions are rarely available a priori for arbitrary tasks. Due to the complexity
of human decision-making, probabilistic/statistical data-driven approaches are a especially
compelling model acquisition alternative. These machine learning and statistical methods
enable the incremental retrieval of human behavior models as the interaction occurs. In
fact, although a physically coupled human partner is an arduous issue for robot control, it is
also an opportunity to exploit human cognitive capabilities and learn from them. However,
learning during interaction for later control entails further challenges. The physical coupling
between human and robot requires non-abrupt and constantly updated predictions; any dis-
continuities are later rendered as sudden uncomfortable wrenches. In addition, potentially
unsafe predictions possibly involving risks for the human must be avoided. The design of
learning algorithms providing smooth, fast and safe human behavior predictions is a chal-
lenging but necessary step towards intuitive assistance.

Based on human behavior predictions, the control task for robot assistance consists of
determining the robot applied wrenches. A convenient alternative for modulating robot be-
havior is optimal control, where robot actions respond to the minimization of a performance
criterion. Suitable optimization criteria in this context are the minimization of human effort
or, similarly, following/tracking the expected human desired trajectory. However, optimal
control strategies relying only on expected human actions are likely to perform poorly as
they neglect valuable information encoded in prediction variance. Besides expected values,
probabilistic/statistical models also provide confidence levels reflecting potential variability.
This level of uncertainty is a crucial indicator of potential prediction errors that should in-
fluence robot actions. This issue is also applicable to many other robotic settings which rely
on learned models. Consider as an example the problem of grasping based on uncertain
object models. Some grasp configurations may seem a priori non-optimal options if only the
expected cost is considered. However, if they deliver low variability they might be preferable
than optimal solutions in expectation but yielding high uncertainty. This urges the need for
systematic optimal decision-making methods which go beyond classical control approaches
by explicitly accounting for uncertainty.

Regardless of the control method used, the synthesis of goal-oriented actions for physical
assistance imply the possibility of disagreements with the human. When robot’s expectations
mismatch human intentions, undesired interaction forces appear incurring safety risks and
discomfort. These force components result from a divergence in terms of desired acceler-
ations, thereby representing a fundamental cue regarding human intentions. There is no
consensus in the literature about how to quantify such disagreements. However, their char-
acterization is instrumental for the design of robotic helpers that intuitively react in case of
disagreement.

The present thesis studies learning and control aspects of physical assistants acquiring
behavior models during interaction. We focus on four relevant open challenges related to
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their design:

• Learning during interaction. The design of fast and online-capable learning algo-
rithms providing smooth and safe/conservative human behavior predictions.

• Uncertainty-dependent optimal control. The problem of optimal control based on
probabilistic/statistical predictive models where uncertainty itself is a crucial factor
that should influence robot actions.

• Disagreement and load share characterization. The identification inter-
nal/disagreement wrenches and effective load shares among agents is an instrumental
step in order to interpret human intentions through force signals.

• Assistance considering human behavior uncertainty and disagreements. The de-
sign of control schemes for physical assistance that seamlessly adapt to both human
behavior uncertainty and disagreements with the human.

Addressing these issues are key steps for the deployment of intuitive and effective physical
assistants.

1.1 Outline and Contributions

This thesis aims for fundamental issues in the design of physical anticipatory robotic partners.
Chapter 2 reviews related background on physical Human-Robot Interaction (pHRI), learning
from demonstrations and stochastic optimal control theory. The following Chapters address
the aforementioned problems of (i) behavior model learning, (ii) uncertainty-dependent con-
trol, (iii) disagreement characterization and (iv) control design for efficient anticipatory assis-
tance. Regarding learning methods, Chapter 3 introduces novel time-series and dynamical
systems models supporting incremental updates and considering a priori human behavior
properties. To enable flexible decision-making with uncertain models, Chapter 4 presents
a novel systematic stochastic optimal control approach where uncertainty itself is explicitly
considered yielding uncertainty-dependent actions. Chapter 5 introduces fundamental in-
sights on the relation between interaction wrenches, load distributions and disagreements
with the human. In addition, novel anticipatory control schemes adapting to both model
uncertainty and disagreements are presented, demonstrating superior performance in terms
of both implicit and subjective measures in experiments with human users. In the following,
the major contributions within each chapter are outlined in more detail.

Chapter 3: Learning Behavior Models during Interaction

This chapter explores learning methods for acquiring behavior models during interaction.
Focusing on fast, safe and smooth predictions, we first present time-based Hidden Markov
Models (HMMs). Besides human motion and force data, time information is also learned ex-
plicitly providing smoother predictions. Efficient regression techniques together with the
application of an incremental learning framework enable learning during interaction. A
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user study validates the approach showing increasing prediction performance during inter-
action. We further extend time-based HMMs with additional hyperparameters. The resulting
parametric time-based HMMs represent environmental information and natural language as
latent variables that determine variations on the encoded motions. Experiments show in-
creased generalization and abstraction capabilities.

Although time-series models provide smooth and safe predictions, their explicit time-
dependency hinders the acquisition of state-dependent constraints. As an alternative, we
study the applicability of dynamical systems by means of Gaussian Processes (GPs) in order
to learn observed task dynamics in state space. We present a novel impedance-based GP
model which incorporates the a priori impedance characteristics of the human arm. This
model ensures desirable compliance properties in unvisited regions of the state space. Addi-
tionally, the human-desired trajectory is modeled as a latent variable, tracked by means of a
proportional-derivative (PD) controller. Experiments reveal superior prediction performance
w.r.t. naive GP models. The results of this chapter have been partly published previously
in [5–7].

Chapter 4: Uncertainty-dependent Optimal Control

In this chapter we introduce a novel systematic stochastic optimal control approach yield-
ing uncertainty-dependent actions. In order to account for uncertainty in optimal decision-
making problems we study optimization criteria considering high-order cost statistics. Clas-
sical stochastic optimal control approaches consider the expected cost and thereby neglect
the influence of uncertainty. In contrast, high-order cost moments or cumulants properly
capture its effect on performance. The proposed approach yields a flexible and general fam-
ily of decision-makers: depending on design parameters, cost variability is interpreted as an
additive or discounting measure for the overall performance. We present risk-sensitive and
cost-cumulant solutions for this problem for non-linear dynamics and non-quadratic costs.
Locally optimal solutions are found by iteratively performing a linear quadratic approxima-
tion around a nominal trajectory, solving the local problem and updating the trajectory until
convergence. To illustrate its application in different robotics settings, we study solutions
for prototypical problems. Examples considering multiple uncertainty sources affecting both
plant dynamics and cost parameters such as a desired goal or an obstacle are presented.
Simulation results validate the benefits and the systematic applicability of the proposed ap-
proach. The results of this chapter have been partly published previously in [8].

Chapter 5: Model-based Anticipatory Control for Human-Robot Cooperative

Manipulation

This chapter explores open challenges in the design of model-based anticipatory physical
assistants with special emphasis on learned models. We introduce fundamental results on the
characterization of internal and effective wrench components arising between goal-oriented
agents. This analysis follows from understanding possibly non-uniform wrench allocation
policies and load shares. Internal wrench are proven to indicate errors in terms of desired
acceleration directions thereby showing its relevance for efficient anticipatory control design.
Exploiting these insights and by means of the methods from Chapter 3 and Chapter 4, we
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introduce novel control approaches for model-based physical assistance in three different
scenarios: navigation tasks, tasks comprising environmental contacts and multi-task settings.

We first present control schemes for navigation adapting to both internal wrench compo-
nents and disagreements. Formulated as an optimal control problem targeting human force
minimization, prediction uncertainty and expected disagreements become decisive compo-
nents of robot assistance. The application of uncertainty-dependent optimal control and the
adaptation to disagreements are novel concepts not addressed in any previous works con-
cerning physical assistance. The proposed approach is objectively and subjectively evaluated
in an experiment with human users. Results indicate superior performance in terms of per-
ceived helpfulness and human effort minimization.

We further introduce a novel optimal control scheme for manipulation tasks. Depending
on expected environmental wrenches, the robot motion control not only adapts its refer-
ence but also takes uncertain environmental force deviations into account. A risk-sensitive
optimization yields time-varying compliance characteristics depending on uncertainty. Ex-
periments with a robotic manipulator show increased task success in variable environmental
conditions.

Envisaging robotic partners fulfilling multiple tasks in cooperation with a human, we
present a dynamic strategy selection method that decides either to retain a currently selected
model or switch to another one depending on recent prediction performance. In addition, a
predictive model relying on observed human wrench is also introduced, becoming a suitable
alternative when no available model coincides with human intentions. An experiment with
human users highlights superior performance of a dynamic selection strategy when multi-
ple models are available. The results of this Chapter have been partly published previously
in [5,9–13].
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Background

The design of physical assistants based on learned behavior models involves a wide variety
of fields. This chapter provides the necessary background with special emphasis on machine
learning and control aspects. An overview of pHRI covering basic control concepts and re-
lated works is first explained in Section 2.1. With regard to model acquisition methods,
data-driven approaches for learning human behavior are summarized in Section 2.2. The
main theoretical contribution of this thesis is the design of optimal decision-makers influ-
enced by the inherent uncertainty of learned models. We review basic concepts of stochastic
optimal control theory, detailed in Section 2.3, including discrete-time solutions of prototyp-
ical problems of interest for this thesis.

2.1 Physical Human-Robot Interaction

Physical human-robot interaction has wide and relevant application domains covering,
among other areas, interactive robotics and virtual/augmented realities, medicine, domes-
tic/service/industrial robotics and education/training. From mobility, rehabilitation or phys-
ical training assistants to occasional physical contacts with humans, intuitive, safe and depend-

able pHRI are essential requirements for artificial cognitive systems sharing their workspace
with humans. Among all design aspects involved in the realization of physical helpers [14],
this thesis focus on control and learning issues arising in cooperative manipulation tasks
where a human and a group of robots are physically coupled by tightly grasping a rigid ob-
ject. As an illustrative example and without lack of generality, in this thesis we consider the
cooperative transport of an object, as shown in Fig. 2.1(a). Other scenarios, such as kines-
thetic teaching Fig. 2.1(b) or teleoperation Fig. 2.1(c) are straightforwardly transformed into
this setting by considering their respective kinematic constraints. This section is structured as
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Figure 2.1: Physical multi-agent interaction in a cooperative transportation (a), kinesthetic
teaching (b) and teleoperation settings (c).

follows. In Section 2.1.1, we first define the problem of cooperative manipulation for a multi-
robot system. The additional challenges arising when one of the agents is a human are then
analyzed in Section 2.1.2 yielding the main challenges considered in this thesis. An overview
of previous works on physical robotic assistants only reacting to human forces (reactive as-
sistants) together with anticipatory goal-oriented implementations (proactive assistants) are
presented in Section 2.1.3 and Section 2.1.4 respectively. Finally, both implicit and explicit
performance measures assessing physical assistance quality with human users are explained
in Section 2.1.5.

2.1.1 Cooperative Manipulation

Consider N ∈ Z+ manipulators tightly grasping a rigid object. Each manipulator is equipped
with force/torque sensors mounted either on the wrist or at each joint. Let x ∈ SE(3) be
the state of the manipulated object composed by its Cartesian position and orientation in the
inertial frame I as depicted in Fig. 2.1(a). The object’s twist is given by

ẋ =

�
ṗ

ω

�
, (2.1)

where ṗ ∈ R3 is the translational velocity and ω ∈ R3 the rotational velocity. The dynamics
of the object are given by

Mo ẍ(t) + ho(x(t), ẋ(t)) = u(t) + uenv(t) , (2.2)
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where Mo ∈ R6×6 represent the object mass and inertia and ho is the sum of friction and
gravitation,

u =

�
f

τ

�
, (2.3)

is the applied wrench, where f ∈ R3 and τ ∈ R3 denote the force and torque components
in frame C respectively and uenv(t) ∈ R6 is the wrench resulting from contacts with the
environment, which is measurable separately with an additional force/torque sensor.

The wrench u results from the addition of each agent’s individual wrench contribution.
Let eu i be the wrench applied by agent i in frame C and let p i ∈ R3 the vector from the i-th
grasp position to the object frame. The resulting wrench is given by

u(t) =

N∑

i=1

Gieu i(t), (2.4)

where Gi is the Jacobian of the kinematics constraints of agent i, usually referred to as partial
grasp matrix in this context [15]. The matrix Gi takes the form

Gi =

�
I3 03

Pi I3

�
, (2.5)

where Pi = [p i]× is the cross-product matrix for p i that renders the torques generated by
applying forces on the grasping position.

For mathematical convenience we adopt the stacked form

G =
�
G1 G2 · · · GL

�

and
eu =
�
eu

T
1 eu

T
2 · · · eu

T
L

�T
,

such that
u(t) = Geu(t) .

Given this setting, the control problem of cooperative manipulation consists of the design
of the agents’ exerted wrenches eu fulfilling the following objective [16]:

Definition 2.1. The objective of a cooperative manipulation task is given by

lim
t→∞

x(t)→ x d(t) , (2.6)

where x d(t) ∈ R6 the desired object trajectory,

lim
t→∞
eu(t)→ eud(t) , (2.7)

where eud(t) ∈ R6N are the desired manipulator wrench trajectories and

lim
t→∞

uenv(t)→ uenvd(t) , (2.8)

where uenvd(t) ∈ R6 is the desired environmental wrench trajectory.
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Definition 2.1 is conform with a wide variety of tasks. Any tasks requiring object motion
rely on (2.6). Tasks which require exerting a certain wrench, such as in a window washing
or pushing a button require the regulation of environmental wrenches from (2.8). Other-
wise, when only free space motions are considered, environmental wrenches are avoided,
i.e. uenvd = 0. Objective (2.7) is necessary to avoid unnecessary wrench components be-
tween agents that only produce undesired squeeze or internal object stress.

Remark 2.1. The teleoperation and kinesthetic teaching scenarios are specific instances of a
cooperative manipulation scenario. In both cases the human is directly coupled to the robot
at the end-effector and the Jacobian of the kinematic constraints is given by the identity
matrix, i.e. Gi = I6. The dynamics of the coupled system are then given by the operational
space’s manipulator compliance, either passive or actively rendered.

Impedance and Admittance Control

Further than a position control scheme, in order to fulfill objectives (2.7) and (2.8), the
regulation of wrenches is instrumental. Among all force control methods, due to its con-
venient properties, the most recurrent approach in the literature is impedance/admittance
control [1]. It regulates the apparent inertia, damping and stiffness of the system by means
of force feedback enabling compliant behavior. The simplest example is given by a second-
order system rendering a mass-spring-damper system. In this case, the impedance control
law is given by

Mr ë(t) + Dr ė(t) + Kre(t) = uenv(t) , (2.9)

where e = x d − x and Mr , Dr , Kr ∈ R6×6 are the desired virtual mass and inertia, damping
and stiffness 1. Both impedance and admittance control follow (2.9), but their underly-
ing assumptions are inverse. Impedance control assumes the environment behaves as an
admittance and given the observed displacement e and its derivatives, the corresponding
force/torque u is computed. In contrast, admittance control, also called position-based
impedance control, assumes an environmental impedance and therefore the plant itself be-
haves as an admittance. Consequently, observed force/torques u yield a desired displace-
ment e as dictated by (2.9). In terms of performance, their characteristics are also com-
plementary: impedance control performs better in high stiffness environments while admit-
tance control is more accurate when the environment is soft and vice versa. The majority of
approaches in the literature implement admittance-type force controllers, as most of manip-
ulators offer only a position interface [18].

A more general expression of (2.9) is

Mr ẍ(t) + Dr ẋ(t) = u imp(t) + uenv(t) , (2.10)

where u imp(t) is a virtual force rendering a desired task-dependent behavior, for instance

1Note that for orientation degrees of freedom, this expression holds only if w×w Jd holds, where Jd represents
the desired inertia. For simplicity of illustration we stick to this particular case. A more rigorous analysis
can be found in [17]
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following a desired configuration trajectory x d or a desired environmental wrench trajec-
tory uenvd . A valid example tracks x d with a proportional derivative controller such that

u imp(t) = Kẋ ė(t) + Kx e(t) , (2.11)

where Kẋ , Kx ∈ R6×6 are stiffness and damping gains respectively. Following this idea,
in [17] two robotic manipulators are controlled such that the resulting object dynamics fol-
low impedance control law (2.10) and (2.11). This approach renders a virtual object that
accommodates for external environmental forces and enables the regulation of wrenches.
Synthesizing the desired system behavior (2.10) considering the real object dynamics (2.2)
requires exerting a desired resulting wrench on the object

ud(t) = udyn(t) + u imp(t)− uenv(t) , (2.12)

where

udyn(t) = MoM−1
r
(uenv(t)− Dr ẋ(t )) + ho(x(t), ẋ(t))

compensates for dynamics (2.2) and renders desired behavior (2.10) and

u imp(t) = MoM−1
r

u imp(t) .

The computation of the corresponding wrench trajectories for each manipulator eu(t) yield-
ing ud(t) is an ill-posed problem. The possible solutions depend on a decomposition ma-
trix A∈ R6N×6 which distributes the load among agents such that

eu(t) = Aud(t) and ud(t) = GAud(t) (2.13)

hold. A usual approach in the literature is given by the Moore-Penrose pseudoinverse of G,
denoted G+, which yields the solution minimizing ||ud − Aeu|| with minimum norm eu and
thereby assigning a uniform load allocation. The wrench of each manipulator is then given
by

eud(t) = G+ud(t) . (2.14)

Under ideal conditions, the controls resulting from (2.10), (2.11) and (2.14) fulfill objec-
tives (2.6) and (2.7) [19]. However, the deployment of real cooperative manipulation sys-
tems is significantly more challenging due to sensorimotor uncertainties, which give rise to
unexpected internal stress [20]. High interaction forces and torques do not just hinder track-
ing performance but also significantly compromise safety.

2.1.2 Control Challenges in Physical Human-Robot Interaction

Although the main challenge of control design for multi-robot cooperative manipulation tasks
are the effects of sensorimotor uncertainties, when one of the agents is a human the control
task acquires a different scope.
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Consider now the setting from Section 2.1.1 with an additional human agent. Let euh ∈ R6

be the applied wrench of the human in frame C and ph ∈ R3 the vector from the human
grasp position to the object frame. The corresponding human partial grasp matrix defined
as in (2.5) is denoted Gh. Object dynamics from (2.2) are now given by

Mo ẍ(t) + ho(x (t), ẋ(t)) = u(t) + uh(t) + uenv(t) , (2.15)

where uh = Gheuh(t). Although task definition 2.1 holds for the pHRI case, control design
based on (2.10) and (2.14) is in general not attainable any more. The presence of a physically
coupled human partner implies two additional challenging issues:

• The desired object configuration trajectory x d(t) and environmental wrench trajec-
tory uenvd(t) from (2.6) and (2.8) are unknown due to unpredictable human actions.
Even when a final goal configuration is known to both the human and the robot, any as-
sumption on the human-in-the-loop desired object trajectory or environmental wrench
trajectory at every time instant is, in most settings, unrealistic.

• The human-desired load share or, equivalently, the human-desired input eud,h concern-
ing (2.7) is unknown. This fact hinders the design of matrix A which distributes the
load among agents as given in (2.13).

In order to cope with these issues there are two options in the literature. On one side, reac-

tive assistants consider the human an exogenous environmental agent. The human applied
wrench is modeled as an external wrench component and is accommodated by means of a
force control scheme. On the other side, proactive assistants estimate or assume feed-forward
models λ of the human-in-the-loop desired object trajectory x d(t), desired individual wrench
inputs eud(t) (including eud,h) and desired environmental wrench uenvd(t). These approaches
yield model-based control schemes that anticipate human actions instead of just compensat-
ing for them. The following subsections review in detail related works following these two
different approaches.

2.1.3 Reactive assistants

Reactive assistants consider the human wrench input as an additional environmental distur-
bance and compensate for it by means of force control. Following the approach presented
in [17] and explicitly modeling the human operator as an exogenous input, comfortable
and intuitive interaction of humans with multiple robots is deployed in [21] by rendering a
mass-damper system

Mr ẍ(t) + Dr ẋ(t) = uext(t) = uh(t) + uenv(t) . (2.16)

The external human wrench or any environmental contacts are compensated in an intuitive
manner enabling the firsts reactive physical assistants. This approach is further extended in
a decentralized manner in [22]. It is remarkable that, assuming the human hand behaves as
a passive element plus an independent exogenous signal [23], the stability of this system is
guaranteed [24].
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In terms of definition (2.1), no robot-desired trajectory nor environmental contacts are
considered, i.e. uenvd(t) = uh(t) = 0 is the only control goal to be fulfilled. The agents’ load
distribution A from (2.13) is also given by the Moore-Penrose pseudoinverse but the human
operator is not considered an agent of the system and thereby is ignored in the decomposi-
tion.

Reactive assistants, although effective and intuitive, do not reduce significantly human
work but rather serve as an physical human-robot interface. In fact, reactive helpers increase
the necessary load as the robot acts as an additional impedance in the overall dynamics.

2.1.4 Proactive assistants

In contrast to reactive assistants, proactive approaches solve the cooperative manipulation
problem considering the human as a constitutive part of the multi-agent system and esti-
mating its preferences. From a psychological perspective, this approach is necessary for
successful cooperation. Psychologists emphasize that cooperation allows multiple agents to
jointly work towards a shared goal but implies awareness of other interacting agents in terms
of reasoning and knowing about their intentions and capabilities. It further imposes the re-
quirement of implicitly or explicitly communicating the goal [25]. In this context, in [26] a
reactive control scheme was successfully transferred to a humanoid robot and combined with
a predefined movement generation routine based on directions from human speech inputs.
However, wherever explicit communication between robot and human is infeasible, predict-
ing outcomes of the partner’s actions is a requirement for successful interaction during joint
action [3]. Following this idea, proactive assistants consider behavior models λ comprising
motion, force or both of them, estimating the human-desired trajectory x d , individual wrench
inputs eud(t) (including eud,h) and/or environmental wrench trajectory uenvd .

Definition 2.2. A behavior model λ is given by the function f : Rn→ R12+6N such that



x d(t)

eud(t)

uenvd(t)



= f (ξ(t)) ,

where ξ(t) =
�
x (t) ẋ (t) uenv(t) eu(t) ξenv(t)

�
is the input space and ξenv are environ-

ment or task-related features.

These models serve as a predictive reference for the robot in order to effectively coop-
erate with its partner and urge towards the human-desired goal. Proactive control schemes
achieve higher transparency than reactive ones, i.e. they are able to follow/anticipate human
movements with lower human-perceptible resistive forces [4]. Intuitively speaking, a correct
prediction of a human partner’s desired motion can yield better results than a technical im-
plementation of zero-force control. Furthermore, goal-oriented behavior is even necessary to
solve a manipulation task if parts of the task state space are not reachable for a single agent
or difficult to control by the human, for example when transporting a voluminous object
thorough a cluttered environment [2].

In general, proactive assistants render an overall system behavior given by

Mr ẍ(t) + Dr ẋ(t) = u r(t) + uh(t) + uenv(t) , (2.17)
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where u r ∈ R6 is the resulting proactive control input of the robots. Instead of only acting
as a human-robot interface as in (2.16), the presence of the additional input u r enables
anticipation by exploiting the feed-forward knowledge provided by λ.

The characterization of behavior models λ for pHRI is very diverse. Some behavior models
present a discrete latent state space. These models yield hybrid control schemes that switch
between different admittance parameters triggered by the recognition of predefined sets of
haptic and motion patterns in [27,28]. Predicting human intention from the force derivative
provides a way to adapt the rendered damping Dr [29] while ensuring stability [30]. While
these approaches synthesize indirectly a proactive input by modifying the rendered admit-
tance, the simplicity of the behavior model suggest that they should be classified as adaptive
reactive assistants rather than proactive ones.

A different line of work rely on analytical models of human behavior in order to esti-
mate x d . In this case predictions f (ξ(t)) from definition 2.2 are given by an a priori assumed
analytical function of the inputs. The well-known minimum jerk principle [31] is exploited ei-
ther on a position level in [32] or on a velocity level in [33]. However, this principle does not
hold for cooperative manipulation tasks, where a polynomial extrapolation becomes more
suitable [34]. When tasks of higher complexity involving sequences of multiple, previously
unknown primitive actions are considered these works can serve only as guidelines as they
just consider local predictive models. As an alternative, planning approaches provide suitable
task solving behavior models when both the common goal and the environment are known.
Especially compelling are feedback motion planning methods [35, 36], which continuously
adapt their predictions when human deviations occur [37]. However, besides requiring accu-
rate environment models, considering human dynamic preferences in motion planners imply
prohibitive computation times due to increased complexity.

A recent trend in haptic assistance follow the application of learning techniques and more
precisely the Programming by Demonstration (PbD) paradigm [38] to generate models of hu-
man motion behavior. In this context, the cooperation behavior synthesis presented by [39]
represents the first steps of strategies involving learning and recognizing human force pat-
terns in a large-scale setup to generate an appropriate object position trajectory. The recog-
nition performance of left-to-right HMMs on Fourier-transformed force data as well as the
generation of hand-crafted robot actions serve as a starting point for developments directed
towards more reliable intention recognition and and intuitive robotic actions in the recog-
nized task phases. Acquiring demonstrations through teleoperation, human-like interactive
behavior is reproduced considering learned motions and interaction forces [40–42]. Inter-
preting the interaction as a continuous teaching process, the robot may evolve from a passive
follower into an active contributor using iterative learning techniques [43]. Although these
approaches rely on probabilistic models, their decision-making schemes do not exploit the
probabilistic nature of predictions. In addition, no methods offering online learning capabil-
ities are explored in the literature. In fact, most of PbD-based approaches are implemented
considering separated learning and reproduction phases.

Regardless of the method used, the goal-oriented behavior that all above-mentioned
proactive approaches synthesize implies the possibility of conflicts with the interacting part-
ner. An insight on the consequences of this problem is acquired by observing haptic interac-
tion between physically coupled human-human dyads during point to point tasks. Humans
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behave in a goal-oriented fashion and, while they do cooperate towards a final common
goal, they have to continuously negotiate a trajectory to follow. Studies highlight the impor-
tance of haptic feedback for the continuous negotiation process between partners [44, 45]
and indicate the existence of different roles [46]. These results motivate the synthesis of
interaction roles, i.e. the load share that each partner is responsible for, defined by matrix A

in (2.13). Following this idea, a possible framework is presented in [47], where different
roles are achieved using a controller blending scheme. This concept is exploited by adjust-
ing the robot role depending on the level of prediction confidence in [48]. Other options
smoothly adapt the role of the robot depending on the human force magnitude [49] or a
measure of disagreement between partners [50], while following a predefined trajectory.
The large scale human user study presented in [49] shows the advantages of a dynamic role
allocation scheme. Similar results are outlined in [51], where the scope of roles is explored
using haptic shared control in a driver supporting scenario. These works rely on the robot
role adaptation based on some measure of disagreement. However, there is no consensus in
the literature about how to evaluate physical disagreement between N goal-oriented agents
or how should the robotic role be adapted.

This thesis explores the following open issues of proactive physical assistants:

• Learning during interaction . Online learning and assistive control based on a con-
stantly updated model of x d and uenvd impose additional challenges both in the model
learning algorithm and the decision-making process that synthesizes robotic assistance.
This process can be interpreted as a traditional PbD setting where learning and repro-
duction take place at the same time. We explore both task-space trajectory learning
and dynamics learning models.

• Disagreement and load share characterization . We explore possible measures of
disagreement between goal-oriented agents with six-dimensional force/torque inputs.
We put special emphasis on a physically consistent and orientation independent de-
composition A from (2.13) that yields effective and internal or disagreement wrench
components for arbitrary load distributions.

• Uncertainty- and disagreement-dependent assistance . We exploit the probabilistic
nature of predictions in order to avoid in advance potential disagreements with the
human partner. Modeling robotic assistance as a stochastic optimal control problem,
we explore possibilities that adapt the robotic contribution depending on prediction
uncertainty, model confidence and disagreements. In addition, we also study control
schemes for tasks comprising environmental contacts.

2.1.5 Performance Measures for pHRI

In order to assess the assistive performance of physical helpers, studies exploring human-
human dyads provide adequate guidelines. A good overview of possible implicit measures is
given in Chapter 3 of [52]. The evaluation of physical human-robot experiments is similar.
In the following we describe measures related to a specific task or to the physical interaction
itself concerning applied wrenches. Note that, additionally, explicit or subjective measures
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reveal human preferences considering non-physical aspects. Possible measures are human
comfort or perceived helpfulness and are evaluated by means of questionnaires after trials.

Task-related measures

Concerning tasks with a predefined known trajectory x d(t), the mean-squared tracking per-
formance is a measure of tracking accuracy given by

• Root-mean-square-error RMSE =

√√√ 1
T

T∫
t=0

||x d(t)− x(t)||d t ,

where T is the task execution time.
When the desired trajectory is not fixed, the execution time may vary and is a valid per-

formance measure. Considering E ∈ Z+ trials of the same task, the average execution time
is given by

• Mean execution time 1
E

E∑
e=1

Te ,

where Te is the execution time of the e-th trial.
If a cluttered environment is considered, the number of collisions or the average environ-

mental force per collision are also indicators of human safety and comfort.

Wrench-related measures

An evaluation in terms of human applied force or torque reveals additional aspects of the
interaction. Especially illustrative is the human power, an indicator for the capability of the
robotic assistant to take over the overall work. The respective measures are given by

• Mean absolute human force

√√√ 1
T

T∫
t=0

|| f h(t)||d t.

• Mean absolute human torque

√√√ 1
T

T∫
t=0

||τh(t)||d t.

• Mean human power

√√√ 1
T

T∫
t=0

uT
h
(t)ẋ(t)d t.

An important measure of efficiency of the interaction is also given by the disagreement

between agents. There is no consensus in the literature about its definition. This issue will
be considered in detail in Chapter 5.
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2.2 Behavior Learning from Demonstrations

A significant body of work has been dedicated to modeling human behavior in the field of
programming by demonstration [53]. In the PbD paradigm a human teacher performs a
task one or several times while the robot observes the execution by means of vision or any
other sensor modality. Observed data is the basis for building a task behavior model in a
statistical or probabilistic manner, thereby capturing potential task constraints. The resulting
model is later used by the robot in order to perform the task autonomously. Depending on
the abstraction level, the behavior model represents the task either on a symbolic level or
a trajectory level. In this thesis we put special emphasis on behavior models encoded in a
trajectory level. For further details on behavior encoding at a symbolic level, where data
is abstracted in a high-level into a set of predefined symbols, we refer the interested reader
to [38]. Among all trajectory-based methods, in this section we consider three methodologies
with different underlying assumptions:

• Assuming the task is described by a trajectory with a given duration, some approaches
exploit statistical analysis in order to build a generalized time-series model of the task.

• Due to its convenient properties for later application in control, other works aim for a
dynamical system task representation.

• Assuming the principle of rational action, learning cost functions that best explain ob-
served behavior enable the modulation of rich motions.

These are valid options for the acquisition of the necessary behavior models λ from defini-
tion 2.2 that proactive physical helpers require, as explained in the previous Section. In order
to learn the human desired configuration and wrench trajectories, observations from previ-
ous demonstrations are assumed to be close to the human intentions, i.e. observed x ≈ x d ,
observed eu ≈ eud and observed uenv ≈ uenvd. The rest of this section explores each of these
three possibilities in detail. Section 2.2.1 reviews time-series models, Section 2.2.2 dynami-
cal system models and Section 2.2.3 inverse optimal control methods.

2.2.1 Learning Time-series Models

The original works representing the initial PbD steps are found in [54], [55] and [56] con-
sidering time-series task representations. These initial efforts focus on the control problem
of reproducing recorded task or joint space trajectories. Further than just replaying previ-
ous trials, an emphasis in the exploitation of variability observed among several trials of the
same task is first found in [57]. Observed variance is related to the necessary precision of the
control task in [58]. This fact highlights the importance of statistical time-series analysis in
order to acquire richer models. Considering definition 2.2, time-series models restrict their
input space to




x d(t)

eud(t)

uenvd(t)



= f (ξt(t)) , (2.18)
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where ξt ∈ R is a temporal value, usually given by ξt = t. In this context, the robustness and
flexibility of Hidden Markov Models (HMMs) have been widely applied [59]. Their ability
to recognize and generate time-series is similar to the biological behavior of mirror neurons,
neural regions of the brain which activate both observing a certain motion and performing
it [60]. When continuous observation spaces are considered, the observation densities of
each HMM state are usually modeled by means of a Gaussian Mixture Model (GMM) [61].
Due to their relevance in time-series modeling, we now briefly define formally the GMM and
its applications in this context followed by a brief explanation of the HMM.

Gaussian Mixture Models

A GMM with C ∈ Z+ Gaussian components assumes that observations ξ ∈ Rn are distributed
as

P(ξ|w ,µ,Σ) =
C∑

c=1

wcN (ξ|µc,Σc) , (2.19)

where

• w =
�
w1 w2 · · · wC

	
with wc ∈ R are the weighting factors or prior probabilities,

• µ=
�
µ1 µ2 · · · µC

	
with µc ∈ Rn are the Gaussian means and

• Σ=
�
Σ1 Σ2 · · · ΣC

	
with Σc ∈ Rn×n are the Gaussian covariance matrices.

Given a set of E observations Ξ = {ξe}Ee=1, the expectation-maximization (EM) algo-
rithm [62] computes iteratively the GMM parameters

�
ew , eµ, eΣ
	

that maximize the likeli-

hood (2.19), i.e.
∏E

e=1 P(ξe
|w ,µ,Σ). As a result, the trained parameters capture the statis-

tical properties of the training dataset.
In order to represent time-series with GMMs, the observation space is modeled

as ξ=
�
ξT

s
ξt

�T
, where ξs ∈ Rn−1 is the spatial vector and ξt ∈ R is its corresponding tempo-

ral value [63]. A GMM with these characteristics trained for a given training set Ξ captures
the statistical dependencies between time and spatial data, which, for the c-th Gaussian are
given by

µc =
�
µs

T
c
µt c

�T
Σc =

�
Σssc

Σst c

Σts c
Σt t c

�
.

By means of Gaussian conditioning, the expected value of spatial data for the c-th Gaussian
is given by

P(ξ
s
|ξt ,µc,Σc) =N (ξs

|µ̂c, Σ̂c) , (2.20)

where µ̂c = µs c
+Σst c

Σt t
−1
c
(ξt −µt c

) and Σ̂c = Σss c
+Σst c

Σt t
−1
c
Σts c

. The expected value of
the spatial vector for a given temporal value ξt considering all components and its mixture
is then given by

P(ξs|ξt , w ,µ,Σ) =
C∑

c=1

γc(ξt)N (ξs|µ̂c, Σ̂c) , (2.21)
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where γc(ξt) is the responsibility of the c-th Gaussian for observation ξt and is given by

γc(ξt) =
wcN (ξt |µt c

,Σt t c
)

C∑
i=1

wiN (ξt |µt i
,Σt t i

)

.

Note that a regression task is usually written in the form y = f (ξ), where y is the output
and ξ the input. In this particular case, (2.21) corresponds to

ξ
s
= f (ξt) , (2.22)

i.e. this particular application performs regression in time domain considering time infor-
mation as an input and the spatial data as an output. This expression matches definition 2.2
and (2.18), which characterize time-series behavior models. In the context of GMMs, the re-
gression task exploiting the conditional distributions between dimensions of the observation
space is denoted Gaussian Mixture Regression (GMR) [64].

Hidden Markov Models

An HMM with continuous observation densities is a statistical model composed of S ∈ Z+
discrete states where each state is represented by a GMM with C ∈ Z+ components. The
dynamics of the latent discrete state space are assumed to be Markovian. In the following,
let ξ ∈ Rn be an observation at discrete time k and qk ∈ Swith S =

�
1, 2 · · ·S
	

its correspond-
ing latent state.

More formally, an HMM is given by the tuple λ =
�
π, A, W ,µ,Σ
	
, where

• π =
�
πi

	
with πi ∈ [0, 1] are the initial state probabilities, such

that ∀i ∈ S P(q0 = i) = πi.

• A=
�
ai j

	
with ai j ∈ [0, 1] is the transition probability matrix describing the latent space

dynamics such that ∀i, j ∈ S P(qk+1 = j|qk = i) = ai j.

• W =
�
wic

	
,µ =
�
µic

	
,Σ =
�
Σic

	
are the weight, mean and co-

variance matrix of the c-th mixture component of i-th state such

that ∀i ∈ S P(ξ|qk = i) =
C∑

c=1
wicN (ξ|µic,Σic).

Given a set of E observations sequences Ξ =
�
ξ1,ξ2, · · ·ξTe

	E
e=1

, the Baum-Welch algo-

rithm computes iteratively and efficiently the HMM parameters eλ that maximize the likeli-
hood P(Ξ|eλ) by means of dynamic programming [62]. Similarly, the Viterbi algorithm works
as a state estimator by computing the most probable latent space sequence given an obser-
vation sequence. Detailed explanations of both procedures are given in [61].

Note that due to the latent space dynamics, the HMM is a generative model: for a given
initial state q0 an arbitrary sequence of expected observations can be simulated by applying
Markovian dynamics A and their corresponding observation densities.
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Left-to-right HMMs have been proved efficient for encoding time-series data. In this case
the transition matrix is constrained to the form

A=





a11 a12 · · · a1S

0
.. .

...
...
0 · · · 0 aSS



 ,

where aSS = 1 neglects any dynamics at the final state. This constrained form suits well time-
series segments; intuitively speaking, the latent state acts as a discretized temporal value. In
this case, following a similar notation as in definition 2.2 and (2.18) predictions are given by

ξ= f (qk) = E[P(ξ|qk)] . (2.23)

In contrast to (2.22) the temporal value is now represented by the latent state and predictions
are limited to the expected value. In combination with hierarchical clustering, left-to-right
HMMs enable continuous incremental improvement over a large training data set, as success-
fully shown by [65]. Similar to [65], [66] and [67] proposed discrete incremental learning
frameworks for symbols and gestures respectively, using HMMs. A promising approach to-
wards an efficient incremental learning and representation of human motion is presented
by [68]. Growing HMMs allow the state space of an HMM to grow depending on the gran-
ularity of observations. This technique is used to overcome the typical limitation of HMMs
to adapt to the actual, often underestimated complexity of the modeled system. However,
the topological state space representation in their work inhibits a separation of overlapping
tasks in contrast to primitive-based representations.

The main impediment of HMMs for the reconstruction of time-series is the discrete nature
of its state space, as shown in (2.23). An interesting alternative is the reformulation of
the HMM as a trajectory model [69] at the cost of loosing the recognition and estimation
flexibility of its initially discrete state space. Similar to [63] with GMMs, in this thesis we
exploit the applicability of GMR to HMMs by explicitly learning time information. We will
explore this idea, first introduced in [70], in order to enable smooth time regression together
with flexible state estimation capabilities.

2.2.2 Learning Dynamical Systems

The application of dynamical systems theory to robot learning in the PbD framework has
gained remarkable attention in recent years. In general and considering definition 2.2, dy-
namical systems express human desired behavior as a differential equation

ξ(n) = f (ξ,ξ(1), · · · ,ξ(n−1), t) , (2.24)

where ξ is denoted the state of the system and ξ(n) = dnξ

d tn represents the n-th time deriva-
tive of ξ. The vector field f is assumed to be a non-linear continuous and continuously
differentiable mapping.
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The first efforts emphasizing the convenience and robustness of dynamical system-based
approaches are Dynamical Movement Primitives (DMPs) [71], where motions are assumed
to be goal-oriented with second-order characteristics and perturbed by a non-linear term.
Another alternative assumes a constant vector field f in (2.24), i.e. no time dependency is
considered, yielding

ξ(n) = f (ξ,ξ(1), · · · ,ξ(n−1)) , (2.25)

This idea is first exploited in the PbD setting in [72] for first-order dynamics and more in
depth in [73] and [74] for second-order systems. Similarly but not explicitly in this context,
the vector field describing the second order dynamics of complex manipulators is also learned
in an incremental manner in joint [75] or task space [76]. In this case, f takes the form

ξ̈ = f (ξ, ξ̇, u) , (2.26)

where u ∈ Rm is the manipulator’s control input. These approaches enable the autonomous
acquisition of dynamic or inverse kinematic models by exploration.

The above-mentioned approaches rely on regression techniques in order to characterize
the non-linear vector field f in (2.25) and (2.26) or the additive non-linear forcing term in
the case of DMPs, enabling the encoding of complex dynamics. In the following we review
the most recurrent regression methods in the literature and their respective applications in
robotics as well as DMPs.

GMMs and HMMs

The regression capabilities of both GMMs and HMMs for learning the vector field f as
in (2.25) are first applied in [73]. By means of GMR as explained in Section 2.2.1, the
second order dynamics of observed motions are encoded as a unique static function when
using a GMM. In the case of an HMM, the function f also reflects the latent space dynam-
ics of the HMM and ’navigates’ along the GMMs of the different states. Although effective,
both approximations lack stability guarantees. The issue is first addressed in [74] where lo-
cal asymptotic stability is guaranteed calculating safe numerically approximated boundaries.
Asymptotic stability is guaranteed in [77] assuming a final known attractor.

Gaussian Processes

A Gaussian process (GP) f (ξ), with ξ ∈ Rn and f (ξ) : Rn→ R, is a stochastic process where
any finite collection of samples f E = { f1 · · · fE}, where fe = f (ξe), forms a multivariate
Gaussian random variable. A GP is completely defined by its mean function

m(ξ) = E[ f (ξ)]

and covariance function

k(ξ,ξ′) = E[( f (ξ)−m(ξ))( f (ξ′)−m(ξ′))T)] .

The definition of f (ξ) as a GP is compactly formulated as f (ξ) ∼ GP (m(ξ), k(ξ,ξ′)). Choos-
ing the most appropriate covariance function k(ξ,ξ′), which defines the smoothness and
overall properties of the GP is key for acquiring a successful model.
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Assuming a GP prior over the vector field of (2.25) or (2.26) implies that, a priori,

f E ∼N ( f E|0, K) . (2.27)

When applying GPs for regression [78], observations are usually assumed to be noisy, such
that

ye = f (ξe) + ε , (2.28)

where ye ∈ R is the e-th one-dimensional output and ε ∼ N (ε|0,σ2
n
). Due to the homo-

geneity of noise, i.e. all observations ye have the same finite prior, this model is referred as
homoscedastic. N (ε|0,σ2

n
) represents the a priori likelihood of the model.

In the following, a set of training inputs is denoted by Ξ = {ξe}Ee=1 and its corresponding
outputs y = {ye}Ee=1. By convention, the covariance vector of a test input ξ∗ and the training
inputs is denoted k(Ξ,ξ∗) = k∗, the autocovariance of a test input k(ξ∗,ξ∗) = k∗∗ and the
covariance matrix of the training inputs is given by k(Ξ,Ξ) = K . Without lack of generality,
we further assume a 0-mean prior, i.e. m(ξ) = 0. Note that for multivariable targets y as ξ(n)

in (2.25) or ξ̈ in (2.26), for simplicity, independent GPs are considered for each output di-
mension. If necessary, multi-output GPs offer output correlation but at the cost of higher
computational complexity [79].

From (2.28) it follows that

P(ye| fe) =N (ye| fe,σ
2
n
) . (2.29)

Consequently, from (2.29) and (2.27) and given a test input ξ∗ and its assotiated function
value f∗ the joint density of all involved quantities is given by

P( f E , f∗, y |Ξ,ξ∗) =N








f E

y

f∗



 0,




K K k∗
K K +σ2

n
I k∗

kT
∗ kT

∗ k∗∗







 . (2.30)

With this joint distribution and using Gaussian conditioning as in (2.20), the posterior dis-
tribution for f∗ is given by

P( f∗| f E , y ,Ξ,ξ∗) =N ( f∗|µ f∗,σ
2
f∗
) =

N ( f∗|kT
∗(K +σ

2
n
I)−1y , k∗∗ − kT

∗(K +σ
2
n
I)−1k∗) . (2.31)

The posterior predictive distribution of y∗ follows immediately by recalling prior (2.29),
yielding

P(y∗| f∗, f E , y ,Ξ,ξ∗) =N (y∗|µ f∗,σ
2
f∗
+σ2

n
) . (2.32)

Note that the complexity of this computation is governed by the matrix inversion (K +σ2
n
I)−1

and thereby is O (E3). To apply GPs for regression in realistic scenarios, sparse or local ap-
proximations are usually necessary.
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GPs have been used for many applications in robotics. Some examples of its efficacy
are [75] or [76] where the joint or task space dynamics are learned. The controls to perform
a task are also learning in an online manner using sparse approximations in [80]. Other
applications include the error modeling of non-accurate analytic descriptors [81], [82]. GPs
have also been used to improve the efficiency of reinforcement learning algorithms by learn-
ing the initially unknown plant dynamics of an manipulator [83]. In order to learn complex
high-dimensional functionals, an additional latent space is also considered yielding Gaus-
sian Process Latent Variable Models (GPLVM) [84]. A especially compelling application of
this model are Gaussian Process Dynamical Models (GPDM) which model the latent space as
the system state and the observed data space as the observation space [85] at the cost of high
computational complexity. In this thesis we explore the application of GPs in order to learn
the dynamics of a human performing a task in the form (2.25). We explore solutions assum-
ing well-known impedance properties of the human arm as well as sparse approximations
yielding applicable models for the anticipatory control of physical helpers.

Locally Weighted Projection Regression

Locally Weighted Projection Regression (LWPR) is a regression method applied in many
robotics settings. It assumes that outputs are distributed following a weighted combination
of N local models

y∗ =

N∑
i=1

wi(ξ)y∗ i(ξ)

N∑
i=1

wi(ξ)

, (2.33)

where y∗(ξ) ∈ R is the one-dimensional output, y∗ i(ξ) is the one-dimensional local output
and ξ ∈ Rn is the input. The local weighting factors wi(ξ) are given by an unnormalized
Gaussian density, such that

wi(ξ) = exp
§
−1

2
(ξ−µi)

TDi(ξ−µi)

ª
.

Each of the local output predictions y∗ i(ξ) are given by a sum of weighted projection com-
puted with an online formulation of the partial least squares method (PLS) [86]. PLS projects
jointly input and output spaces in order to compute the projection of the input which explains
maximum output variance. The local outputs are given by

y∗ i(ξ) = β0 +

R∑

k=1

βksk ,

where β =
�
β0,β1 · · ·βR

	
are weighting factors and sk = ξ

Tzk are the projections of the input
on projection vector zk. Note that each projection vector is updated in an online fashion.

Parameters β and Di are learned from data maximizing the cross correlation and up-
dated online using stochastic gradient descent. For later interest, it is also remarkable that a
Bayesian approach to LWPR results from assuming a prior for each local model such that

ey∗i (ξ) = y∗ i(ξ) + ε1 + ε2,i ,
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where ε1 ∼ N (ε|0,σ2/wi) is global noise process and ε2,i ∼ N (ε|0,σ2
pred,i/wi) is a local

noise process and with y∗ i(ξ) = ey∗i (ξ) in (2.33). An expression for the predictive variance
can be found in [87]. Note that, as GPs, LWPR assume statistically independent outputs
modeling each output dimension independently.

LWPR has been the principal regression technique for modeling the external disturbance
present in DMPs [71], explained in the next subsection. However, its online regression capa-
bilities and low computational complexity have also found room for applications in general
robotics regression problems. For example, the dynamics of manipulators have been learned
with LWPR models in [88]. Additional applications for control are summarized in [89].

Dynamical Movement Primitives

Dynamical Movement Primitives, originally proposed in [71] for learning non-linear attractor
dynamics, assume a stable one-dimensional dynamical model given by damped spring model

τ ẍ(t) = k1(k2(g − x(t))− ẋ(t))+ f (α) , (2.34)

where x ∈ R is the state, g ∈ R is the goal, f ∈ R is a non-linear forcing term, k1, k2 ∈ R+
are positive constants and α is a phase variable with dynamics

τα̇(t) = −kαα(t) , (2.35)

where kα ∈ R+ is a positive constant and α(0) = 1. In order to represent arbitrary complex
motions, the non-linear forcing term f (α) is usually modeled by a LWPR model as in (2.33),
such that

f (α) =

N∑
i=1

wi(α)y∗ i(α)

N∑
i=1

wi(α)

α (g − x(0)) . (2.36)

This formulation ensures stability of the overall dynamics (2.34) as the decay of the phase
variable (2.35) monotonically converges to 0, thereby nullifying the only potentially unstable
term (2.36). This non-linearity can be also modeled by any other analytical model or regres-
sion technique. Note that, although expressed as a differential equation, the non-linear term
depends on a phase variable that acts as a temporal value. Once kα is set in (2.35), the
non-linear forcing term follows from a regression step in time domain.

DMPs have many desirable properties. The parameters of the LWPR term (2.36) are ad-
justable in a data-driven way so that the modulated dynamics are similar to a set of demon-
strations [90]. Additionally, the parametric formulation of the goal g and the execution
velocity given by τ enable goal-independent and velocity-independent encoding. This fact
enhances the recognition and generalization capabilities of DMPs, which find inspiration in
biological principles [91]. It is also remarkable that DMPs also modulate limit cycle attractors
by defining the phase variable as a phase oscillator.

DMPs is a widely spread method in robotics, covering motor skill learning [92]with online
adaptation [93] as well as periodic tasks learning [94] A recent exposition of DMPs and its
applications is presented in [95].
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2.2.3 Learning Cost Functions

Another alternative for characterizing human behavior assumes that human decisions follow
the principle of rational action [96]. This implies efficiency in their decisions or, similarly,
optimality w.r.t some performance measure or cost. If the features that determine the cost
are known and observable, human demonstrations enable the autonomous extraction of the
relevance of each of the features. This is the idea behind inverse optimal control also referred
to as inverse reinforcement learning in the literature and initially proposed in [97]. Concerning
definition 2.2, in this case the vector field f describes desired human behavior as the result
of an optimization problem, i.e.

min
x d (t),uenvd (t)

J(z) ,

constrained to the system dynamics and where J ∈ R represents the learned cost function.
Note that ξ contains the considered features, such as some dynamic properties or environ-
mental or task-related parameters present in ξenv.

Consider a discrete-time optimal control problem with known dynamics

ξk+1 = f (ξk, uk) , (2.37)

where ξ
k
∈ Rn is the system’s state and uk ∈ Rm is the control input. Let the vector of

observed features at time step k be z(ξk, uk) ∈ Rv, compactly written zk. For simplicity of
illustration, assume first a cost functional linear in the features in the form

J(θ ) =

∞∑

k=0

θ Tzk , (2.38)

where θ ∈ Rv are unknown weighting factors. Given a set of E optimal expert demonstrations
in term of feature trajectories, i.e. Ξ =

�
z1, z2, · · · zTe

	E
e=1

, the empirical estimate of feature
counts is

JE =
1
E

E∑

e=1

Te∑

k=1

zk . (2.39)

The inverse optimal control problem aims for the weights θ̂ for which the solution to the
optimal control constrained to dynamics (2.37) yield similar number of feature counts as the
expert demonstrations, i.e. J(θ̂ ) ≈ JE . This initial problem formulation from [97] is further
extended increasing efficiency in [98] and considering probabilistic policies in [99]. In terms
of definition 2.2, the predicted human desired behavior for a finite horizon of T steps consist
of the trajectories x d and uenvd resulting from optimization

min
u0···T−1

J(θ̂ )

s.t . ξk+1 = f (ξk, uk) .

Understanding the decision-making process as a causal process of states and controls,
the maximum causal entropy method [100] applied to inverse reinforcement learning [101]
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is a specially appealing alternative as it does not assume optimal human demonstrations.
This solution aims for the controls that explain the demonstrated decisions with maximum
entropy, i.e. the least committed or most fair solution that do not favor any possibility. This
approach is extended in [102] to locally optimal problems with continuous states and actions
spaces and in [103] adding a non-linear term to cost function (2.38) such that

J(g ,θ ) =
∞∑

k=0

g (ξ
k
) + θ Tξ

k
, (2.40)

where g (ξk) ∼ GP (m(ξ), k(ξ,ξ′)). It is remarkable that this cost is a random variable due
to the Gaussian Process representing the additional non-linear term. Although we do not
explicitly explore inverse optimal control approaches in this thesis, their future application in
physical assistance has great potential. In addition, the methods that we present on Chapter 4
consider uncertainty-dependent control solutions. This methods are also useful for learned
cost functions such as (2.40), where the learned weights are uncertain and uncertainty has
an important influence on decisions.

2.2.4 Discussion

The recent literature proposes several alternatives for encoding human behavior from demon-
strations. The assumptions, generalization capabilities and the required knowledge of the
methodologies reviewed in this section are presented in Table 2.1. Based on different as-
sumptions, these models aim for an accurate representation of observed behavior, thereby
acquiring spatial, temporal or environmental/task constraints.

Assumptions Generalization Req. Knowledge

Time-series models (Sec. 2.2.1) none − none
State-space dynamics as
in (2.25) (Sec. 2.2.2)

none + none

Goal-oriented dynamical sys-
tems (DMPs and [77])

goal-orientation + goal

Inverse Optimal Con-
trol (Sec. 2.2.3)

optimality ++ features

Tabular 2.1: Properties of human behavior modeling approaches in terms of the underlying
assumptions, their generalization capabilities and the a priori required knowl-
edge.

Dynamical systems in the form (2.25) and time-series models present no underlying as-
sumptions further than their inherent dynamic properties; these models only describe the
evolution of state variables w.r.t time. DMPs assume that behavior is goal-oriented, i.e. any
encoded behavior aims for a specific configuration. In contrast, Inverse Optimal Control as-
sumes the principle of rational action or the principle of maximum entropy, i.e. actions are
explained as the maximization of a performance measure comprising specific features. This
strategy has been proven efficient representing human behavior [104]. However, its appli-
cation in arbitrary settings must be studied in depth a priori: modeled behavior can always
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be represented as the minimization of some convex functional but its correspondence to the
real inherent properties of the system might be vague.

The generalization capabilities of time-series models are rather limited due to their rep-
resentation as a trajectory of statistical means and variances. Any prediction of a time-series
model is limited to a sample of a single trajectory. As a result, temporal constraints are
well represented but the acquisition of spatial constraints is unsatisfactory. This becomes
evident in navigation tasks comprising multiple homotopy classes, i.e. bifurcations. In con-
trast, as dynamical systems model the state-dependent vector field f , their predictions are
well-suited for encoding such spatial constraints. It is however uncertain how the system be-
haves in state-space regions with missing or few observations. This issue is critical for later
application in control. DMPs generalize motions in a goal- and velocity-independent way as
a function of time. As a result, spatial constraints further than the desired goal are again not
well represented. Learned cost functions generalize observed behavior to situations that can
be described well in terms of the considered features. If features are selected properly they
achieve superior performance. Note that goal-oriented behaviors are similarly encoded in
cost functions by considering the goal one of the features.

Concerning the a priori required knowledge, besides observed configuration trajectories,
goal-oriented dynamical systems require knowing the goal. Although given a demonstration
the goal can be assumed to be the last state sample, in some settings this might not hold.
The main impediment for learning cost functions is the selection of the required features
that determine the performance measure. This is in fact a critical issue, which requires se-
lecting potential relevant features that determine the optimization criterion of humans. This
challenging task requires expert knowledge.

In this thesis we restrict our study to naive models with no a priori premises concerning the
task. We will present time-series and dynamical systems models for learning human behavior
models during interaction. No assumptions requiring additional a priori knowledge, such as
a knowing a final goal or relevant environment-related features are made.

2.3 Stochastic Optimal Control Theory

Optimal control plays a key role in modern control design of cyber-physical systems. The
flexibility of decision-makers that respond to the minimization of a cost functional for mod-
ulating complex dynamics is especially appealing for robotic systems. For later convenience,
we expose this problem for fully observed discrete-time settings. Consider a system governed
by the following stochastic difference equation

ξk+1 = f (ξk, uk,εk) , (2.41)

where ξ ∈ Rn is the system’s state, u ∈ Rm the control input and k the sample time; ε ∈ Rq

is an independent identically distributed (i.i.d.) Gaussian random variable with zero mean
defined in the probability space given by the triple (Ω,F ,P) where Ω = Rq is the sample
space, F the σ-algebra and P the q-dimensional Gaussian measure. It follows that

E[εk] = 0 E[εkε
T
k
] = Σk ,
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where Σk ∈ Rq×q is the covariance matrix and EP[ f (ε)] is the expectation operation, given
by

E[ f (ε)] =

∫

Ω

f (ε)d P(ε) .

To evaluate a a candidate control input sequence or policy, u0···T−1 for a finite horizon of T

steps and initial state ξ0, the performance measure is given by the cost functional

J(ξ0, u0···T−1) = hT (ξT ) +

T−1∑

k=0

hk(ξk, uk) , (2.42)

where hT (ξT ) is the final cost and hk(ξk, uk) is the running cost.
Due to the Gaussian input εk present in system dynamics (2.41), ξ1···T is Gaussian and

therefore performance measure (2.42) is also a random variable. In order to evaluate J , a
deterministic measure is necessary. A straightforward solution is the expected value, i.e. E[J].
In this case the stochastic optimal control problem is defined as

min
u0···T−1

E[J(ξ0, u0···T−1)]

s.t. ξk+1 = f (ξk, uk,εk) . (2.43)

The following section exposes the method of dynamic programming in order to solve this
problem. Section 2.3.2 present alternatives to problem (2.43) that consider different statis-
tical measures instead of the expectation. The convenient and special case of linear plant
and quadratic cost is exposed in Section 2.3.3.

2.3.1 Dynamic Programming

Dynamic programming is an efficient method for solving discrete-time optimal control prob-
lems such as (2.43). It follows from the principle of optimality [105], which states

An optimal policy has the property that whatever the initial state and decision
are, the remaining decisions must constitute an optimal policy with regard to the
state resulting from the first decision.

The application of this principle in our setting (2.43), yields the Bellman equation, which
solves the problem recursively, backwards in time, for k = T − 1 · · ·0 as

J(ξk, uk) = E[hk(ξk, uk) + V (ξk+1)]

V (ξ
k
) =min

uk

J(ξ
k
, uk) , (2.44)

where V (ξk) is the value function representing the optimal cost of the remaining decisions.
Throughout this thesis we will rely on the Bellman equation in order to solve discrete-time

optimal control problems. However, in contrast to (2.44) which considers the expectation we
will analyze different measures of the random cost as exposed in the following Subsection.
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Note that optimal control problems in continuous-time systems are solved by means of
Pontryagin’s minimum principle, yielding a nonlinear two-point boundary value problem or
by means of the Hamilton-Jacobi-Bellman equations, which are the equivalent to (2.44) for
continuous-time systems. Another alternative is to compute a discrete-time approximation
of the continuous-time problem and apply (2.44) directly. This thesis relies on this approach,
approximating continuous non-linear systems with arbitrary costs to linear quadratic settings
as later exposed in Section 2.3.3.

2.3.2 Considering High-Order Cost Statistics

In some applications, problem (2.43) neglects valuable information present on the random
cost J but ignored in its expected value E[J]. As an example consider a navigation prob-
lem where, on expectation, following two different paths yields the same cost. However, the
cost variance is significantly different. A solution from problem (2.43) shows no preferences
for any path. However, choosing the path with lower variance ensures more robust perfor-
mance. Accounting for higher level statistical measures significantly increases robustness in
uncertain settings. Here, we review risk-sensitive control and cost-cumulant control, two
closely-related optimal control methods that account for high-order cost statistics. These
methods are instrumental in optimal robot control problems that rely on learned models;
the inherent uncertainty of probabilistic or statistical models exposed in Section 2.2 can be
a decisive performance factor for successful task execution. Following this idea, we present
novel control design approaches based on learned models in Chapter 4.

Risk-sensitive Optimal Control

Risk-sensitive control is an suitable alternative to (2.43), as it considers the problem

min
u0···T−1

θ−1
Ψ(θ )

s.t . ξ
k+1 = f (ξ

k
, uk,εk) , (2.45)

where Ψ(θ ) = logE[exp{θ J(ξ0, u0···T−1)}] and θ is the risk-sensitivity parameter. The Taylor
series expansion of the functional θ−1

Ψ(θ ) around θ = 0 is

∞∑

r=1

θ r

r!
∂ r
Ψ(θ )

∂ θ r

����
θ=0

= E[J]− 1
2
θ Var[J] + ... , (2.46)

which shows the influence of high-order statistical measures of the cost. For θ ≈ 0 any
higher order terms of the expansion can be neglected yielding a mean-variance optimizer.
The influence of the value of θ becomes apparent. A positive value, θ > 0 yield risk-averse

solutions, i.e. cost variability is interpreted as an additional penalty. In contrast,a negative
value θ < 0 corresponds to a risk-seeking solution, which considers cost variability as a
discounting value. The risk-neutral case, θ = 0 neglects higher order statistical cost terms
and recovers the expected value problem (2.43).

Risk-sensitive optimal control is first introduced by Jacobson [106] and later further stud-
ied by Whittle [107] in discrete-time settings with partial state information. Continuous-time
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solutions are studied first in [108]. It is remarkable that risk-sensitive control is closely re-
lated to many other control paradigms. An overview of its relationships with differential
game theory, H-infinity control, entropy minimization among others can be found in [109].
Very few applications of risk-sensitive control are found in robotics. Recent works applied
this concept to stochastic cost functions learned with Gaussian Processes [110] as well as in
the context of approximate inference control [111,112].

Cost-cumulant Control

Cost-cumulant control is closely related risk-sensitive control. Cumulants are computed by
means of the cumulant generating function

Ψ(θ ) = logE[exp{θ J(x 0, u0···T−1)}] .

The r-th cumulant is given by

κ(r)(J) =
∂ r
Ψ(θ )

∂ θ r

����
θ=0

.

It is interesting to observe the correspondence of cumulants with common statistical mea-
sures. The first and second cumulants represent the expected value and the variance respec-
tively, i.e. κ(1)(J) = E[J] and κ(2)(J) = Var[J]. The third and fourth cumulants are related to
the skewness and kurtosis of J respectively.

The cost-cumulant control problem minimizes an arbitrary weighted sum of K ∈ Z+ cu-
mulants, i.e.

min
u0···T−1

K∑

r=1

θrκ
(r)(J)

s.t . ξ
k+1 = f (ξ

k
, uk,εk) , (2.47)

The relation with risk-sensitive control is now evident observing (2.46) and (2.47): prob-
lem (2.45) considers an infinite sum of cost cumulants with specific weighting factors given
by the McLaurin coefficients divided by θ . Hence, cost-cumulant control is a generalization
of risk-sensitive control as it enables the consideration of arbitrary weighting factors.

Cost-cumulant control was first presented in [113], studying mean-variance decision-
makers. Further results are given in [114], referring to its relationship with risk-sensitive
control. State-feedback solutions are further presented in [115]. An overview of current re-
sults for continuous-time linear quadratic settings is found in [116] and for the discrete-time
case in [117].

2.3.3 Linear Quadratic Problems

Optimal control solutions do not usually have closed form and must be computed by means
of numerical solutions. However, a specially convenient exception is the linear quadratic
setting, which yield closed-form state-feedback solutions. In this case dynamics are given by
the stochastic difference equation

ξk+1 = Akξk + Bkuk + Γkεk ,
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where Ak ∈ Rn×n, Bk ∈ Rn×m and Γk ∈ Rn×q is a semi-orthogonal matrix.
Given an initial state ξ0 the cost follows quadratic form

J(ξ1···T , u1···T−1) =
1
2
ξT

T
QTξT +

T−1∑

k=0

1
2
ξT

k
Qkξk +

1
2

uT
k
Rkuk ,

where Qk ∈ Rn×n and Rk ∈ Rm×m are positive semi-definite and positive definite matrices
respectively.

This particular regulation problem has closed-form solutions yielding optimal state-
feedback policies in the form

uk = Lkx k ,

where Lk ∈ Rm×n is the optimal feedback matrix.
The solution to these problems for the risk-sensitive and cost-cumulant control cases are

found in [107] and [118] respectively. However, the application to non-linear systems with
arbitrary costs is still a widely unexplored issue, especially in robotic settings. In this thesis
we explore a more general family of LQ problems that enable the computation of locally op-
timal risk-sensitive and cost-cumulant solutions for non-linear systems with arbitrary costs.
Following the idea behind differential dynamic programming [119], in Chapter 4, we dis-
cretize and locally approximate an initial nominal trajectory as an LQ problem. Solutions of
the local problem serve to iteratively update the nominal solution until convergence. Unlike
many other approximation methods, the presented approach yields state-feedback control
laws increasing robustness under disturbances during runtime.
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Learning Behavior Models during Interac-

tion

The acquisition of human behavior models based on motion and force/torque signals is an
instrumental step in the design of physical robotic partners. Due to the complexity of human
decision-making, observed behavior often represent complex nonlinear dynamics. Regarding
its application to control in pHRI, it is desirable that a human behavior model exhibits the
following properties:

• Smooth predictions. Prediction discontinuities are undesirable for later control as they
may render abrupt robotic behavior and disturb the human partner. Traditional HMMs
for time series are limited in this concern as their latent state space is discrete. Dynam-
ical systems offer better performance due to the inherent smoothness of continuously
differentiable differential equations.

• Fast computation time. As humans may act unexpectedly any time, fast re-computation
of predictions is necessary for intuitive interaction. Models requiring high computa-
tional complexity are undesirable.

• Conservative or ’safe’ predictions. When unexpected actions occur, it is desirable that
predictions remain close to training data, even in previously unvisited regions of the
observation space. Learned state-space dynamical systems models are especially un-
suitable concerning this issue as predictions in unknown regions may yield unstable
behavior [74].

This chapter presents model acquisition algorithms for learning both time-series and dynam-
ical system models during interaction accounting for these properties. In Section 3.1 we
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present efficient and smooth prediction techniques for time-based HMMs. In order to en-
able incremental learning with time-series models, we explore the application of automated
segmentation and clustering techniques. Evaluations demonstrate increasing prediction per-
formance during interaction. Section 3.2 presents parametric time-based HMMs, where envi-
ronmental information and natural language are modeled as latent variables that determine
variations on learned behaviors. As shown by the results, speech commands or environmen-
tal configurations modify the shape and/or duration of encoded motions. As an alternative to
time-series models, the online update capabilities of GPs in order to incrementally learn state-
space models of observed tasks are studied in Section 3.3. We introduce impedance-based
covariance functions in order to exploit a priori knowledge of human behavior. Experiments
show increased prediction performance with respect to naive models.

3.1 Modeling Human Behavior with Time-based HMMs

As introduced in Section 2.2, HMMs provide low computational complexity and flexible
recognition capabilities due to their discrete latent space. Modeling time series, left-to-right
HMM are the most appropriate choice as they simulate the inherent flow of time constrain-
ing the transition matrix to an upper diagonal form. In such cases, each state intuitively
represents a number of consecutive samples of the time series for which the corresponding
probability distribution remains constant. Predictions are inherently conservative as they are
limited to the expected training data average corresponding to a latent state. However, re-
gression over time is limited due to the lack of dynamics during each particular latent state
yielding non-smooth predictions. To cope with this issue, the trajectory-HMM [69] refor-
mulates the HMM as a trajectory model, increasing its state space to each of the samples of
a trajectory of means and covariances. As a trade-off, this extended formulation lacks the
recognition flexibility of a standard HMM’s latent state space, especially effective for obser-
vations sequences with different execution speed. In this section, we study the extension of
the classical model explicitly learning the time correlation [70] in a similar manner to [63]
with GMMs. The proposed model provides smoother predictions while maintaining the low
computational complexity and high recognition flexibility of the standard HMM.

The rest of this Section is structured as follows. Section 3.1.1 introduces time-based HMMs
and efficient regression techniques. A valid incremental learning framework is presented in
Section 3.1.2. The proposed method is evaluated in an experiment with human users in
Section 3.1.3.

3.1.1 Time-based HMMs

As presented in Section 2.2.1, an HMM with S ∈ Z+ states is given by the tu-
ple λ=
�
π, A, W ,µ,Σ
	
, where

• π =
�
πi

	
with πi ∈ [0, 1] are the initial state probabilities, such

that ∀i ∈ S P(q0 = i) = πi, where S =
�
1, 2 · · ·S
	

is the set of possible states.

• A=
�
ai j

	
with ai j ∈ [0, 1] is the transition probability matrix describing the latent space

dynamics such that ∀i, j ∈ S P(qt+1 = j|qt = i) = ai j .
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• W =
�
wik

	
,µ =
�
µik

	
,Σ =
�
Σik

	
are the weight, mean and co-

variance matrix of the k-th mixture component of i-th state such

that ∀i ∈ S P(ξ|qt = i) =
K∑

k=1
wikN (ξ|µik,Σik).

A time-based HMM consists of a left-to-right HMM defined over the spatio-temporal obser-
vation space ξ=

�
ξT

s
ξt

�T
, where ξs ∈ Rm−1 is the spatial vector given in this case by motion

and wrench components and ξt ∈ R is its corresponding temporal value. The transition ma-
trix is constrained to the form

A=





a11 a12 · · · a1S

0
...

...
...
0 · · · 0 aSS



 , (3.1)

where aSS = 1 neglects any dynamics at the final state. For later convenience, the k-th com-
ponent of the i-th state is normally distributed N (ξ|µik,Σik) and the corresponding spatial
an temporal statistics are denoted

N
��
ξ

s

ξt

� �
µs ik

µt ik

�
,

�
Σss ik Σst ik

Σts ik Σt t ik

��
.

Training

Given a set of E ∈ Z+ observations sequences where the e-th observation is given
by Oe =
�
ξ(1),ξ(2), · · ·ξ(Te)

	
, the Baum-Welch algorithm [62] computes iteratively the

HMM parameters λ that maximize the sequences’ likelihood. However, this standard train-
ing procedure overestimates temporal statistics, which strictly depend on the length of each
observation sequence Te. To cope with this issue, we modify the maximization step of the
Baum-Welch algorithm regarding temporal statistics as

µt ik =

E∑
e=1

T e∑
t=1
γe

ik
(t)ξt(t)

E∑
e=1

T e∑
t=1
γe

ik
(t)

Σt t ik =

E∑
e=1

T e∑
t=1
γe

ik
(t)(ξt(t)−µt

e
ik
)2

E∑
e=1

T e∑
t=1
γe

ik
(t)

(3.2)

Σts ik = Σst
T
ik
=

E∑
e=1

T e∑
t=1
γe

ik
(t)(ξt(t)−µt

e
ik
)(ξe

s
(t)−µs ik)

E∑
e=1

T e∑
t=1
γe

ik
(t)

, (3.3)

35



3 Learning Behavior Models during Interaction

where γe
ik
(t) is the probability of being at state i at time t with the k-th mixture component

accounting only for the e-th spatial observation sequence and

µt
e
ik
=

T e∑
t=1
γe

ik
(t)ξt(t)

T e∑
t=1
γe

ik
(t)

.

It is remarkable that both (3.2) and (3.3) define covariances with respect to the auxiliary
time mean µt

e
ik

, which considers only the e-th observation sequence. Temporal statistics
are computed depending on each observation’s length thereby enabling learning in datasets
with demonstrations of variable length. As a result no preprocessing step in order to align
observations such as Dynamic Time Warping (DTW) is needed.

Prediction

Standard HMMs perform poorly as generative models for time-series in continuous obser-
vation spaces. The causes of their limited predictive capability become apparent observing
their state-space-like form given by

qt+1 = fA(qt)

ξ = P(ξ|qt) ,

where qt ∈ S is the latent state at time t and fA represents the discrete latent space Markovian
dynamics from (3.1). Predictions relying on this model are given by

E[P(ξ|qt = i)] =

K∑

k=1

wikµik ,

where qt = i is the estimated latent state. Hence, predicted values are limited to the expected
observation of one of the latent states and accuracy is determined by the number of states.

As an alternative, we exploit the additional time information considered in time-based
HMMs and aim for a generative model in the form

qt+1 = fA(qt)

ξs = P(ξs|E[ξt |qt , qt−1, · · · , qt−l]) , (3.4)

where l ∈ Z+. Predictions depend now on the temporal value ξt , which acts as an alter-
native latent space providing more accurate predictions than the standard model. For a
given ξt , expression (3.4) corresponds to a GMR algorithm introduced in Section 2.2.1 yield-
ing N (ξ

s
|µ̂s, Σ̂ss), where

µ̂s =

S∑

i=1

K∑

k=1

γik(ξt)

�
µs ik +

Σts ik

Σt t ik

(ξt −µt ik)

�
. (3.5)

and

Σ̂ss =

S∑

i=1

K∑

k=1

γik(ξt)

�
Σss ik −

Σst ikΣts ik

Σt t ik

�
, (3.6)
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where

γik(ξt) =
N (ξt |µt ik,Σt t ik)

S∑
n=1

K∑
j=1
N (ξt |µt n j,Σt t n j)

. (3.7)

If ξt is not available a priori, its expected value is estimated relying on the sequence of
the last l latent states as

E[ξt |qt = i, qt−1, · · · , qt−l] = E[ξt |qt = i] +∆nqt
=

K∑

k=1

wikµt ik +∆nqt
,

where∆ is the sampling time representing the inherent time dynamics and nqt
is the number

of time steps spent of state i, i.e. the number of consecutive repetitions of state i in the latent
state sequence. Note that this estimation procedure is straightforwardly extended to a given
spatial observation sequences as

E[ξt |ξs(t),ξs(t − 1), · · · ,ξs(t − l)] = E[ξt |q∗t , q∗
t−1, · · · , q∗

t−l
] , (3.8)

where q∗
t
, q∗

t−1, · · · , q∗
t−l

is the most likely latent state sequence, which can be efficiently com-
puted by means of the Viterbi algorithm [61].

Similar to [63], the presented method enables also the computation of a gener-
alized normal distribution trajectory representing the encoded time-series. This gen-

eralized output Oλ results from applying (3.5) and (3.6) for temporal values in the
range [ξt(0) = 0,ξt(T ) =∆T ], where T is the a priori unknown expected length in sam-
ples of the model. In order to approximate it, classical HMMs estimate the duration di of
the i-th state relying on the implicit time information of transition probabilities by means of
predictive distribution

di =
1

1− aii

. (3.9)

However, constraint (3.1) prevents from applying (3.9) at the final state due to the lack of
dynamics, i.e. aSS = 1. As an alternative, regarding the additional time information, the
expected length of the model fulfills

T∆= µt S +∆dS/2 , (3.10)

where µt S = E[ξt |qt = S] =
K∑

k=1
wSkµt Sk and dS is the unknown expected length of the final

state. From (3.2) and assuming a discrete assignment of γik(t), i.e. 0 or 1, the temporal
variance of state i is determined by the state duration di, fulfilling

∆
−2
Var[ξt |qt = i] =

2
di/2∑
n=1

n2

di

=
((di/2+ 1)(di + 1))

6
, (3.11)

where Var[ξt |qt = i] =
K∑

k=1
wikΣt t ik. Isolating di yields

di =
−3+
p

1+ 48∆−2Var[ξt |qt = i]

4
. (3.12)

Applying this result to (3.10) yields T .
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Figure 3.1: Primitive-based learning framework. The robot autonomously extracts primi-
tives, hierarchically organized on the primitive tree and sequentially ordered in
the primitive graph.

3.1.2 Incremental Learning

Learning during interaction requires a method that structures the continuous time-series
observations coming from the robot sensors in a compact way. A primitive-based approach
for time series provides a suitable way of organizing observations as it considers segments
of time series as the minimal level of abstraction. Combining this concept with the inherent
generalization capabilities of HMMs, an autonomous incremental learning process for our
scenario can be developed. We base our approach on the methods explained in [65], briefly
summarized in this subsection and shown in Fig. 3.1.

The autonomous extraction of behavior primitives requires first an unsupervised method
that segments continuous time series into potential primitives. The segmentation algorithm
tracks the probability density function assuming that data belonging to the same primitive
will have the same underlying distribution. This criterion makes this method suitable for any
kind of time series and not only haptic observations. For a detailed description we kindly refer
the reader to [120,121].

Each resulting segment is first encoded into a left-to right HMM λ as explained in Sec-
tion 3.1.1. The encoded segments are organized forming a primitive tree, i.e. a hierarchical
tree structure where each node of the tree represents a primitive. Having initially just a root
node, each new segment is added as a member of the closest node of the tree. Once added, a
clustering procedure is executed in the node. If a group of at least m members close enough
is found, a new child of the node is created, being represented by an HMM trained with the
observations of the selected members. Therefore, except for the root node, each node of the
tree symbolizes a primitive and is represented by an HMM. The distance between two nodes,
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λ1 and λ2 is calculated using a symmetric version of the Kullback-Leibler divergence given
by

D(λ1,λ2) =
1
T
[log P(Oλ2

|λ1)− log P(Oλ2
|λ2)],

where Oλ2
is the generalized output of λ2, T its length in number of samples and P(O|λ) is

the likelihood of observation O for model λ.
In addition to the primitive tree, the temporal relation between behavior primitives is

also modeled as a directed graph, the primitive graph, where an edge between two nodes
represents the probability to transit from the first node to the second one. This representation
on a primitive level of abstraction provides a way to make long-term predictions, further away
than a single primitive and a more reliable state estimation during primitive transitions.

The primitive tree and the primitive graph represent the acquired experience, constantly
updated in order to provide an improving behavior model during interaction.

Prediction with sequential primitives

Let Oc =
�
ξs(t − l),ξs(t − l + 1), · · ·ξs(t)

	
be the last l observations of spatial data. The

knowledge acquired by the robot is a structured set of time-based HMMs representing nodes
of the primitive tree. In order to select the the model that better matches Oc a common
approach is to select the most likely model λ∗ given by

λ∗ =max
λi

P(Oc|λi) ,

∀λi ∈ Primitive tree. However, when Oc lies between two sequentially executed primitives,
the most likely model might be the first one when the task execution has already reached
the second primitive, leading to undesired model selections. To avoid such situations, we
propose to use a window HMM: an auxiliary left-to-right HMM defined as a window over
the states of sequentially executed models. This augmented model avoids the disadvantages
of the segmented nature of primitives by ensuring that Oc is well represented by one of the
sequentially connected models.

To define the window HMM, the Viterbi algorithm is first applied for λ∗ in order to esti-
mate the current state, yielding the center state of the window HMM. The rest of its states
are symmetrically distributed along both sides of the current state. The expected predecessor
and successor models are selected from the primitive graph and concatenated as shown in
Fig. 3.2. The concatenation of left-to-right time-based HMM models is enabled by the avail-
ability of explicit temporal information. Let λ1 and λ2 be two left-to-right HMMs with N1

and N2 states respectively where λ1 precedes λ2. The concatenation of both models, λC , has
N1 + N2 states and is given by the parameter set of λ1 and λ2 adding a transition between
the last state of λ1 to the first state of λ2 given by

aN1,N1+1 = 1− aN1,N1

aN1,N1
=

dN1
− 1

dN1

, (3.13)

where dN1
is the duration of the last state of λ1 computed as in (3.12).
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Figure 3.2: Window HMM. A window over the states of the involved models defines the win-
dow HMM for a more robust model selection.

Once the window model is defined, a prediction with an horizon of h seconds is straight-
forwardly computed applying (3.8), (3.5) and (3.6). Note that the definition of the window
HMM implies no further computational complexity and is limited to (3.13).

3.1.3 Evaluation

In order to evaluate the applicability of the proposed framework, we designed an experi-
ment where human users interacted physically with a simulated object in a two-dimensional
scenario performing a repetitive task. Results validate the proposed approach, showing im-
proved prediction performance as task repetitions increase.

Experimental setup

Using the two-dimensional setup from appendix A.1 implementing the simple admittance
control scheme from (2.16) with mass 40 [kg] and damping 90 [Ns/m], we let 6 different
subjects (all male, average age 28) perform a simple task consisting on following a path
describing a flower, as shown in Fig. 3.3. The task was repeated cyclically 15 times with
no pauses. The subjects had the opportunity to familiarize with the haptic device for a few
minutes before the experiment and were told to follow the pre-defined trajectory for the
given repetitions.

The spatial components of the time-based HMM’s observation space are defined
as ξs =
�
pT ṗT f T
�T

where p, ṗ, f ∈ R2 are the position, velocity and applied force respec-
tively. The incremental learning and prediction framework described in Section 3.1.2 is im-
plemented in C++ and executed on a personal computer at 20 Hz. Each segment and each
node is encoded in an HMM with 10 states and 1 Gaussian per state. In order to form a node
in the primitive tree, a group of at least m = 3 members is needed and only the upper nodes
of each branch are considered for the prediction. We use a window of l = 30 samples over
the incoming observations for the primitive recognition and a window HMM with 20 latent
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Figure 3.3: Experimental task. Starting on the black dot, each path segment is followed in
the direction indicated by the arrows and in the order given by the numbers.

states. Predictions are computed for a horizon of h= 0.3 s. All parameters were chosen from
experience.

Experimental Results

Fig. 3.4 shows the generalized output of the resulting HMM of the primitive representing the
bottom petal for one of the subjects. The explicit time information used for the regression
provides a smooth trajectory without applying any post processing. Once the robot learned
all task primitives, the predicted future position for the given time horizon was very close
to the real data after that time horizon, as shown by the dashed green line in Fig. 3.5 for
one execution of the task by one of the subjects. In contrast, the red solid line shows the
prediction performance without the window HMM. The five big jumps are caused by the
primitive transitions, marked by the vertical dashed lines, where the most likely node is still
the last one while the execution is already in the next primitive leading to wrong primitive
selections. The online prediction performance is significantly improved by means of the
window HMM, providing a smoother predicted trajectory over time.

Prediction errors were calculated as the difference between the predicted position for the
given time horizon and the observed position after the time horizon, i.e.

||x pred(t)− x(t + h)||.

The overall prediction performance is shown in Fig. 3.6. The mean prediction error per rep-
etition starts decreasing after the fourth repetition of the task, reaching a minimum after
12 repetitions. As we set the minimum number of members for a node to 3, no nodes are
created before the fourth execution, and therefore, no improvements are expected before.
As shown by the big variance between repetitions 5 to 11, the prediction error evolved dif-
ferently among the subjects. This difference relies on the performance of the unsupervised
segmentation, which provides unexpected segmentation points if the user behaves abruptly
and determines the learning and prediction results. The resulting tree of primitives was usu-
ally composed by as many branches as primitives the task had, in this case 5, given by the
4 petals and the center of the flower. For some users, some additional branches were the
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Figure 3.4: Exemplary generalized output Oλ of the time-based HMM representing the node
of the bottom petal primitive for one of the subjects. The red solid line repre-
sents the expected mean trajectories. The ellipses represent the encoded spatio-
temporal statistics: the eigenvalues of Σst ik determine the ellipse’s axis while its
center is given by (µt ik,µss ik).

consequence of consecutive unexpected segmentation points. However, all task primitives
were learned for every subject.

3.2 Learning Multi-modal Behavior with Parametric

Time-based HMMs

In order for robots to interact with humans intuitively they must understand their partners on
different levels of communication - verbally and non-verbally. This is particularly important
for the cooperation of robots with humans under uncertainty where interactive planning,
decision making, and control play a crucial role. Desirably a robot understands a verbal
“command” by the human interaction partner and executes the corresponding motor action.
In our problem setting, due to the physical coupling, both partners must agree on the path
to follow as they navigate through the environment. In case of disagreement, humans can
easily communicate with each other using natural language in order to find a consensus and
proceed with the task execution. Synthesizing similar interactive behavior for robotic part-
ners is however a very challenging problem as the information exchange between partners
usually refers to environmental properties.

Humans easily interact with each other using motions and gestures [122, 123]. Natural
language is a unique symbolic communication system to humans that provides much richer
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Figure 3.6: Users-average MSE of predicted positions per repetition.

descriptions even when referring to motions. More recently also the interaction through hap-
tic signals as in physical human-robot cooperation is of increasing interest [124]. One of the
major challenges is the combination of natural language with motor action in terms of haptic
primitives with consideration for environmental and task constraints. Understanding the link
between signifiers and their corresponding significants is a very challenging topic [125,126],
especially considering motions [127]. This problem usually implies, on one side, modeling
sentence structures and word relations in a natural language model and, on the other side,
considering the association between sentences and motion symbols [128, 129]. Still, this
representation does not express the quality of behaviors in an explicit way. Many adverbs
and adverbials specify how to parametrize and/or change motions or haptic primitives. As
an example take the sentence “Turn slowly” where “turn” stands for a motion symbol and
“slowly” expresses the quality of the motion primitive. Extracting such word models can
deepen robots’ comprehensive capabilities when using natural language and improve their
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inference performance. Furthermore, motions, as well as their natural language descrip-
tions, are usually influenced by environmental characteristics and constraints. Considering
these extrinsic dependencies in conjunction with qualitative natural language descriptions
will significantly expand robots’ understanding capabilities and will potentially shrink the
gap towards seamless HRI.

When behaviors are characterized by external variables, a natural extension of standard
HMMs are Parametric HMMs (PHMMs), which include dependencies of the standard model
parameters w.r.t external parameters [130]. PHMMs have been used to enrich motions repre-
sentation by parameterizing its output densities [130] or by linearly interpolating exemplar
parameters of the different states [131]. However, a full parameterization of all HMM pa-
rameters in a non-linear fashion is still an open issue.

In this section we address the problem of learning and executing motion primitives in-
cluding quality descriptors and environmental constraints. To this end we propose a novel
approach for learning relations and dependencies between motion symbols, natural language
and environmental properties using parameterized left-to-right time-based HMMs. A natural
language model together with a motion language model infers the link between sentences
and motion symbols while the time-based HMMs parameterization represents the explicit
influence on motions of both words and environmental properties. The proposed PHMM ap-
proach directly adapts both the output and the transition probabilities of time-based HMMs
providing a full non-linear dependency estimation. The method is validated by learning and
generating navigation primitives in a 2 DoF virtual scenario.

The remainder of this section is structured as follows. The proposed PHMM model is
explained in Section 3.2.1 and the natural language model used is described in Section 3.2.2.
Experimental results and discussion are presented in Section 3.2.3.

3.2.1 Parametric Time-based HMMs

A parameterized observation Oθ = {O,θ} is given by the observed spatial data sequence O

and its corresponding parameters θ . Note that the parameters are constant during the whole
observation, i.e., a static environment or command is assumed.

The parametric time-based HMM modifies the standard output densities and the transition
probabilities from the standard model presented in Section 3.1 as a function of θ , i.e.

ai j(θ ) = ai j + fai j
(θ )

µik(θ ) = µik + fµik
(θ )

Σik(θ ) = Σik + f
Σik
(θ ),

(3.14)

where ai j , µik and Σik are the standard transition probabilities, means and covariances, cal-
culated using the EM algorithm [62] using only the spatial data O. Here we assume that
the initial state probabilities are equal for all states and therefore no parameterization is
needed, but a similar dependency could be easily added. The model’s parametric depen-
dency f (θ ) = { fai j

(θ ), fµik
(θ ), f

Σik
(θ )} is estimated observing the variations of the standard

tHMM parameters with respect to θ .
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Parametric Dependency Learning

In order to extract a non-linear approximation of the parametric dependency, we model the
joint probability density of f (θ ) and the external parameters, i.e. P( f (θ ),θ ), using a GMM.
This probabilistic model expresses the probability distribution of the parameters θ in conjunc-
tion with the expected values of f (θ ). Given a set of D parametric observations (d = 1...D),
the joint distribution is estimated maximizing the likelihood of the GMM w.r.t the samples
{ f (θd),θd}, where f (θd) is given by

fai j
(θd) = ai j(θd)− ai j

fµik
(θd) = µik(θd)−µik

fΣik
(θd) = Σik(θd)−Σik,

(3.15)

and ai j(θd), µik(θd) and Σik(θd) are the transition probabilities, means and variances maxi-
mizing the likelihood only for the d-th observation.

A direct comparison of the standard model parameters with the observation specific ones
requires an alignment of the states, i.e., a similar distribution of the responsibility of the states
through all observations. In order to achieve this, we follow [131] initializing the values
ai j(θd), µik(θd) and Σik(θd) with the overall ones ai j , µik and Σik and then fixing the means
after one iteration of the EM algorithm. This way, a similar distribution of the responsibility is
extracted from the overall model validating the state comparisons from (3.15). The proposed
approach is indeed similar to [131]. However, the inclusion of the GMM in order to model
the parametric dependency provides better generalization properties due to its non-linearity
and its regression capabilities in the whole parameter space.

Given the set of samples { f (θd),θd}, the GMM is trained using the EM algorithm.

Generalized Parameter Model

While the influence of external parameters on a specific model is captured training a PHMM,
a generalization of how those parameters affect motions can not be inferred with the pa-
rameterization of different primitives. In order to acquire a generalized parameter model the
function f (θ ) must be learned maximizing the expected parameterization of all different
motion primitives, as depicted in Fig. 3.7.

Given a set of M PHMMs (m = 1...M) with D parametric observations (d = 1...D) each,
the generalized parameter model f (θ ) considers all { f m(θd),θd} for 1 ≤ m ≤ M and
1 ≤ d ≤ D, where f m(θd) is the expected value of the parametric function for the m-th
PHMM and the d-th observation.

Inference and Motion Generation

Given a query with its corresponding parameters θq , generating the expected motion from a
PHMM requires first the calculation of the expected values of f (θ ). Using Gaussian Mixture
Regression (GMR) as presented in Section 2.2.1, we calculate the expected parameterization
as the posterior mean estimate given by θq , i.e. P( f (θ )|θq). Applying then (3.14), the
expected motion is generated calculating the generalized output of the resulting time-based
HMM as explained in Section 3.1.
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Motion symbols

θf (θ )

Figure 3.7: Generalized Parameter model. The non-linear dependency f (θ ) is designed con-
sidering the parameterization of all possible motion symbols.

3.2.2 Motion and Natural Language Model

The connection between motions with natural language is achieved integrating two com-
ponents: The motion language model and the natural language model. On one side, the
natural language model represents stochastically all possible words sequences. On the other
side, the motion language model is a stochastic model that captures the link between motion
symbols and words. The combination of both methods provides a model that considers both
the sentence structure constraints and the expected words and motion symbols links.

The natural language model stochastically represents sequences of words. A bigram model
is used to represent links between words, modeling the expected sequences. Words are rep-
resented by nodes and transitions between two words, i.e. a word is followed by another
one, as edges. This way, the observed sentence structures are expressed as transitions among
words.

The motion language model represents the relations between motion symbols and words
in a stochastic way. The model is structured in three different layers: motion symbols, latent
states and words. Two different probabilities connect the motion symbols layer with the
words layer. On one side the the connection between motion symbols and latent states and
on the other side the link between latent states and words. The first connection represents the
probability that a motion symbol generates the corresponding latent state while the second
connection expresses the probability that a latent state generates a word. With this structure,
the latent states layer symbolizes the association between motion symbols and words.

The motion language model and the natural language model are integrated by performing
a computational search of sentences given a motion or for motions given a sentence. In this
paper we focus only on the second direction. Furthermore, the usage of a bigram structure
for the natural language model ensures a simple and efficient search appropriate for queries
in both cases.

A more detailed explanation about both the motion language and the natural language
model can be found in [132].
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Figure 3.8: Generated dataset for the primitives "go behind the box right" for box sizes 1,
2 and 3 on top. On the bottom, generated motions for "turn left" performed in
three different speeds: slow, normal and fast.

3.2.3 Evaluation

In order to test the potential applications of the proposed approach we acquired simple mo-
tion primitives labeled with adequate descriptions in a 2 DoF virtual scenario for a cooper-
ative joint transportation task. We trained all different primitives using a single parametric
dependency model, except for one primitive, used to test the applicability of the approach
to unrelated motions. Using the descriptions and the learned PHMMs, we built both the cor-
responding natural language model and the motion language model. The presented results
show the generalization properties of the system and its validity.

Experimental Setup

In a human-robot joint transportation task, due to the physical coupling, both partners must
agree on the path to follow as they navigate through the environment. In case of disagree-
ment, humans can easily communicate with each other using natural language in order to
find a consensus and proceed with the task execution. However, finding an agreement implies
the understanding of the description of motions through natural language. Such descriptions
may also refer to environmental constraints. In this scenario, we designed a dataset in a sim-
ple environment in order to teach a robotic partner motion primitives with their respective
description and environmental constraints that typically arise during this kind of interaction.

Using the two-dimensional setup from appendix A.1 implementing the simple admittance
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Figure 3.9: Resulting motions for the queries "go behind the box left", "go behind the box left
slow" and "go behind the box fast".
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Figure 3.10: Generated motions for the queries "go behind the box left" with box sizes 0.8,
1, 2, 3, 4 and 5.

control scheme from (2.16), we generated samples for 7 different primitives: "go straight",
"turn right", "turn left", "go to the right of the box", "go to the left of the box", "go behind
the box left" and "go behind the box right". For each primitive we produced 25 motions,
combining the standard description with the adverbs "fast" and "slow" as well as changing
the size of the box displayed in the scene with three different sizes, i.e. big= 3, middle= 2
and small= 1. Several exemplary motions from the dataset for "go behind the box right" and
"turn left" are shown in Fig. 3.8. The motion data captured in task space was encoded in
an invariant way, which, in the case of pure translation without orientation in 2 dimensions
reduces to both the curvature and the velocity profile [133].

Given the description of the motions, the dictionary used for this scenario contains 13
different words. The parameters for the observations are therefore determined by the word
parameters θl , a vector of size 13, and the environmental ones θe, given by the size of the
box displayed in the scene. Considering the 7 different motion symbols and the sentences

48



3.2 Learning Multi-modal Behavior with Parametric Time-based HMMs

normal(3.86s)fast(3.48s)

slow(4.26s)

0

0

0.25

0.25

−0.25

0.5
x [m]

y
[m

]

Figure 3.11: Generated motions for the generated parameterization of the marginal probabil-
ities of "slow" and "fast" given by P( f (θ )|"fast"= 1, "slow"= 0), P( f (θ )|"fast"=
0, "slow" = 0) and P( f (θ )|"fast" = 0, "slow" = 1) applied to the primitive "go
behind the box left".

used for the descriptions, the natural language and the motion language model were built
as explained in Section 3.2.2.

With these conditions, we trained all PHMMs sharing the same dependency function f (θ )

as explained in Section 3.2.1, except for the one representing "go behind the box left", which
was trained apart. Each PHMM was trained with N = 8 states with K = 1 mixture compo-
nents each. The GMM of generalized parameter function was trained with 8 mixture compo-
nents. The following results show the expected motion for a query given to the system and
using the generalized parameter model learnt for all primitives. The resulting motion is then
reconstructed from the invariant representation back to the task coordinates.

Experimental Results

In order to show the general parametric model’s generalization capabilities, the following
queries given to the system are always referring to the primitive learned apart, "go behind
the box left", which was not considered in f (θ ).

The resulting motions for the queries "go behind the box left", "go behind the box left slow"
and "go behind the box fast" all considering a middle box size are shown in Fig. 3.9. The
motion language model selected the motion symbol representing the primitive "go behind the
box left" for all three cases. As shown by the execution times, the three resulting motions,
while having very similar curvature profiles differ mainly on the execution time, even when
the parameterization of "fast" or "slow" for this primitive was not included in the generalized
parameter model.

For the queries "go behind the box left" with box sizes 0.8, 1, 2, 3 and 4, the resulting
motions are shown in Fig. 3.10. As with the previous queries, the motion language model
selected always the primitive "go behind the box left". In this case, the queries consider
parameter values which were even not in range of the training set and a motion that was
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not included in the generalized parameter model. However, the resulting motions show the
intuitive response of the system which can even model the influence of the box in an ab-
stract manner for a primitive not considered previously. While this result might be initially
surprising, it is mainly due to the inclusion of the primitive "go to the left of the box" in the
generalized parameter model which was trained for different box sizes. As both motion de-
scriptions share many words ("go", "the", "box", "left"), the parameterization tends to extract
most of the non-linear dependency from that model, whose motion profile is indeed similar
to "go behind the box left", except for the end of the motion.

While the previous experiments show a proper response of the system to fully speci-
fied queries, the marginal influence of some parameters can also be extracted generating
the expected mean posterior of their marginal distribution. In order to test the influence
of the words like "fast" and "slow", we can calculate the parameterization of the model as
the marginal distributions P( f (θ )|"fast"= 1, "slow"= 0), P( f (θ )|"fast"= 0, "slow"= 0) and
P( f (θ )|"fast"= 0, "slow" = 1). The results for these 3 queries applied to the primitive "go
behind the box left" are shown in Fig. 3.11. As shown in the execution times, the essence
of the adverbs is present as the fast motion is the fastest and the slow motion the slowest.
However, it is also remarkable that in this case the motion profiles slightly differ showing
an undesired response. This effect might be produced by the small amount of primitives
considered in this scenario.

In summary, the proposed approach captures the influence of external parameters on mo-
tions using PHMMs. The motion language model extracts the most likely motion symbol
given a natural language query and, as shown by the motion generation results, the parame-
terization of primitives not considered in the training using the generalized parameter model
produces motions in agreement with their real meaning. Furthermore, the influence of iso-
lated parameters is abstracted calculating their expected marginal distribution also producing
similar results.

3.3 Impedance-based GPs for Modeling Human Behavior

The previous sections explore the possibilities of time-based models in order to learn observed
behavior. Although effective expressing time constraints, generalizations in time-domain
are especially limited when representing tasks comprising multiple homotopy classes. In
contrast, dynamical systems in the form of state-space models have complementary prop-
erties: time-specific constraints are not efficiently captured, but the generalization of task-
dependent constraints is significantly more effective. In this section we explore the acquisi-
tion of state-space dynamical models by assuming an impedance model of the human arm.
By means of GP priors and efficient online updates, task models conform with the arm
impedance characteristics are aquired during interaction. The considered problem is for-
mally defined in Section 3.3.1. The proposed impedance-based GP model is presented in
Section 3.3.2. Due to GP’s computational complexity, local and sparse approximations are
needed in order to enable efficient and incremental updates during interaction as explained
in Section 3.3.3. The proposed model is evaluated in Section 3.3.4, with special emphasis
on settings with sparse approximations.
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3.3.1 Problem Definition

The problem considered in this section consists of the definition of a human arm dynamic
model for point-to-point and navigation tasks. We assume that the task dynamics of the
human arm are given by

uh = f (x , ẋ , ẍ ,ξenv) , (3.16)

where uh ∈ R6 is the human wrench at the hand, f is a continuously differentiable func-
tion, x ∈ R6 is the human hand configuration in task space and ξenv ∈ Rm comprises task-
and environment-related variables. Note that f represents both the physical arm passive
properties and the task-driven human intention while performing a task.

Several regression techniques are capable of modeling f from data. Among all regression
methods, GPs are especially compelling due to their performance and their ability to provide
confidence bounds in unvisited state space regions. As commented in Section 2.2.2, GP priors
are determined by a mean function, usually set to 0 and a covariance function specifying the
correlation of input space points. Some covariance functions, such as the squared exponen-
tial or Matern kernel ensure convergence to any continuous function. Exploiting this fact a
straightforward approach considers a naive 0-mean GP prior on f . However, if this prior does
not represent the real function well, the rate of convergence may be exponential offering no
prediction guarantees in previously unobserved regions [134]. A more effective alternative
incorporates available knowledge in order to give GP priors a structure in accordance with
the real function to approximate. Following this idea, here we assume an impedance model
based on sensorimotor principles of human arm motor control as detailed in the following
Section.

3.3.2 Impedance-based GP priors

We assume the human arm follows dynamics

uh = Mh(ξ)ẍ + Dh(ξ)ẋ − Kẋ (ẋ − ẋ d(ξ))− Kx (x − x d(ξ)) , (3.17)

where Mh, Dh ∈ R6×6 are the human arm’s inertia and damping, Kx , Kẋ ∈ R6×6 are diagonal
matrices representing tracking stiffness and damping respectively and x d ∈ R6 is the hu-
man desired trajectory, ξ=

�
xT ẋT
�T

and ξ=
�
xT ẋTξT

env

�T
. The inertia and damping terms

are only configuration-dependent; they render the inherent passive physical properties of
the human arm. In contrast, the tracking terms term encode the human intention, i.e. the
human-desired task dynamics tracking a virtual desired trajectory x d(ξ) as a proportional-
derivative controller. The desired trajectory is task-dependent and therefore comprises also
environmental/task variables ξenv. Note that this model is conform with many neuroscience
studies which explore the human arm impedance characteristics [135]. In fact, expres-
sion (3.17) is similar to the task-space arm dynamics under the equilibrium point control (EP)
hypothesys [136].

In the following we exploit the flexibility of GPs in order to efficiently approximate (3.17)
from data. GPs are limited to one-dimensional outputs unless significantly higher compu-
tational cost is considered [137]. For simplicity and computational efficiency we treat each
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dimension independently and analyze the one-dimensional case

uh = mh(ξ) ẍ + dh(ξ) ẋ − k ẋ( ẋ − ẋd(ξ))− kx(x − xd(ξ)) . (3.18)

In order to estimate unknown latent variables mh(ξ), dh(ξ) and xd(ξ), we assume GP priors

mh(ξ) ∼ GP (µmh
, kmh
(ξ,ξ′))

dh(ξ) ∼ GP (µdh
, kdh
(ξ,ξ′))

e(ξ) ∼ GP (0, ke(ξ,ξ
′
)) , (3.19)

where e(ξ) = x− xd(ξ), µmh
and µdh

are the positive expected inertia and damping. To char-
acterize process covariances between two input points ξ and ξ′ for all assumed priors (3.19),
we assume Squared Exponential(SE) kernels such that

kSE(ξ,ξ′) = σ2
f
exp{−(ξ−ξ′)TΛ−1(ξ− ξ′) } . (3.20)

where σ2
f

is the signal variance and Λ = diag(l1 · · · l6) comprises the length scales for each
input dimension. This stationary kernel is illustrated for a one-dimensional case in Fig. 3.12.
The SE kernel is the most widespread and applied kernel due to its smoothness and conver-
gence properties. See [134] for an in-depth analysis.

From (3.19), the time derivative of the tracking error ẋ − ẋ d(ξ) is given by

ė(ξ) =
∂ e(ξ)

∂ t
=
∂ e(ξ)

∂ ξ

∂ ξ

∂ t
.

As differentiation is a linear operator and considering assumptions (3.19), ė(ξ) remains a
GP given by

ė(ξ) ∼ GP (0, kė(ξ,ξ
′
)) ,
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ẋ
′
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with

kė(ξ,ξ
′
) = ξ̇

T∂ 2ke(ξ,ξ
′
)

∂ ξ∂ ξ
′ ξ̇

′
. (3.21)

For a SE kernel, the gradient is

∂ 2ke(ξ,ξ
′
)

∂ ξ∂ ξ
′ = ke(ξ,ξ

′
)Λ−1(I −Λ−1(ξ−ξ′)(ξ− ξ′)T) ,

Finally, as GPs are closed under addition, assumptions (3.19) imply that the human wrench
is also a GP

uh ∼ GP (µmh
ẍ +µdh

ẋ , kuh
(eξ, eξ′)) , (3.22)

where eξ=
�
ξ ξ̇
�T

and

kuh
(eξ, eξ′) = ẍ kmh

(ξ,ξ′) ẍ ′ + ẋ kdh
(ξ,ξ′) ẋ ′ + k2

ẋ
kė(ξ,ξ

′
) + k2

x
ke(ξ,ξ

′
)) . (3.23)

Further than the respective signal variances and length scales of each covariance function,
this kernel presents the two additional parameters: the proportional kx and derivative k ẋ

gains of the tracking controller.
The resulting prior (3.22) has several interesting properties. First of all, a priori, the

expected human behavior corresponds to a mass-damper system

E[uh] = µmh
ẍ +µdh

ẋ ,

i.e., a purely passive element. This fact ensures a priori stability of the expected human
dynamics. Additionally, it is remarkable that covariances terms kmh

(ξ,ξ′) and kdh
(ξ,ξ′)
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linearly depend on velocity and acceleration respectively. This fact responds to the phys-
ical constraints of (3.18). In terms of dynamics, for 0 velocity or acceleration, mass or
damping uncertainty is indeed neglectable. To illustrate this, covariances of the damping
term ẋkDh

(ξ,ξ′)ẋ ′ for different velocities are shown in Fig. 3.13. Even when velocities match,
around ẋ = 0 no covariance is considered due to the ẋ and ẋ ′ factors. The same applies for
the mass term w.r.t. accelerations. Note that in (3.19) we do not strictly ensure positiv-
ity of mh(ξ) and dh(ξ) in order to keep (3.22) Gaussian 1. Instead, we assume that both
mass and damping present low signal variance and remain close to their positive expected
values µmh

and µdh
.

The covariance of the tracking terms kė(ξ,ξ
′
) + ke(ξ,ξ

′
) for one-dimensional simplified

case with ξ = x is depicted in Fig. 3.14. From(3.21), when ẋ = 0 or ẋ ′ = 0, the deriva-
tive term is neglected and the covariance reduces to the SE kernel of the proportional
term ke(ξ,ξ′). In contrast, when both ẋ and ẋ ′ are non-zero, velocities in the direction
of the gradient are proportionally more correlated due to the kė(ξ,ξ′) term. Velocities in
the negative gradient direction yield opposite results. Proportional and derivative gains kx

and k ẋ tune the influence of both terms.
Note that the relevance of the different terms of covariance function (3.23) depend on the

assumed signal variances σ2
f

of each term. If a parameter, e.g. the mass, is expected to vary
significantly and thereby has high signal variance its influence on (3.23) will be relevant. In
contrast, if we assume that its mean estimate is almost deterministic having very low signal
variance then its influence on (3.23) is neglectable.

3.3.3 Online Local Sparse GPs

As explained in Section 2.2.2, the computational costs of GP predictions is O (E3), where E

is the number of observations. This fact makes GPs prohibitive for large datasets, or, in our
problem setting, for long interactions sessions. Even sparse GPs using inducing inputs [139]
may not suffice when accurate and fast predictions are necessary. In this case local GPs [140],
which partition the input space into local models are a useful tool. Here, we follow [141],

1Positivity is ensured by means of warped GPs [138]. In this case the GP priors are set
as log(mh(ξ)) ∼ GP (logµmh

, kmh
(ξ,ξ′)) and log dh(ξ) ∼ GP (logµdh

, kdh
(ξ,ξ′)).
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where predictions are computed as an average weighted sum of L local GPs similar to LWPR
given by

y(ξ) =

L∑
l=1

kuh
(ξ,ξl)yl(ξ)

L∑
l=1

kuh
(ξ,ξ

l
)

,

where ξl and yl are the center an the prediction of the l-th local GP. In order to ensure a
constant computation time, we consider that the input-space is bounded by the operational
space constraints of the human arm and a partitioning is possible a priori 2. This enables
the definition of each cluster as a sparse GP, ensuring fast predictions. For each incoming
input each local model is updated efficiently by means of the methods described in [142].
Assuming that each local sparse GP has B inducing inputs, the complexity of online updates
and predictions is O (LB2).

3.3.4 Evaluation

In order to validate the proposed model, we evaluate model performance with the dataset
captured in the experimental setup from Section 3.1.

Experimental setup

Using the two-dimensional setup from appendix A.1 implementing the simple admittance
control scheme from (2.16) with mass 40 [kg] and damping 90 [Ns/m], we let 6 different
subjects (all male, average age 28) perform the simple task presented in Section 3.1 depicted
in Fig. 3.3. The task was repeated cyclically 15 times with no pauses. The subjects had the
opportunity to familiarize with the haptic device for a few minutes before the experiment
and were told to follow the pre-defined trajectory for the given repetitions. The workspace
of the experimental device is (−0.15, 0.15)[m] for each dimension.

For simplicity we neglect terms comprising accelerations and we assume no environmental
variables. We limit our evaluation model to the form

uh ∼ GP (µdh
ẋ , kuh

(ξ,ξ′)) , (3.24)

with

kuh
(ξ,ξ′) = ẋ kdh

(ξ,ξ′) ẋ ′ + k2
ẋ
kė(x , x ′) + k2

x
ke(x , x ′)) .

Although simplified, this model captures the influence of the assumed damping and the
proportional-derivative structure of the tracking terms. Note that the desired virtual tra-
jectory is only position-dependent,i.e. xd(x). From human arm impedance studies [135], we
fix the expected human damping to µdh

= 2 [Ns/m] with low signal variance σ2
f
= 0.5. In

contrast, the tracking covariance ke(x , x ′) is set up to σ2
f
= 4 as it is expected to account for

all human task-oriented activity. PD gains are set to kx = k ẋ = 1.

2If this is not the case, several methods address this issue by incrementally building data clusters, e.g. [141].
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For evaluation purposes, we compare performance w.r.t. a naive GP prior model with SE
kernel

uh ∼ GP (0 , kSE(ξ,ξ′)) (3.25)

and fixed signal variance σ2
f
= 4. The likelihood for both model (3.24) and (3.25) is set

to σ2
n
= 1.

In our local sparse implementation, we set a total of 10× 10 local models distributed as
a grid covering the whole workspace. Each local model is composed of (4 × 4) × (4 × 4)
basis vectors distributed as a grid in position and velocity space respectively. Velocities are
assumed to be in the range (−0.12, 0.12)[m] due to task constraints. The length-scales for
both models are set to the distance between neighbour basis vectors.

Experimental Results

We first analyze predictions ûh ∼ N (µûh
|σ2

ûh
) for a simple one-dimensional example.

Fig. 3.15 shows the predictive distribution for the proposed model (3.24) after observing a
single input-output pair in comparison with model (3.25). Predictive means for model (3.24)
shown in Fig. 3.15(a) present a velocity-dependent slope due to the expected damping dh, in
contrast to the 0-mean of model (3.25) depicted in Fig. 3.15(c). Additionally, as model (3.24)
assumes a position-dependent trajectory, expected means for all positions in the vicinity of
the observed sample vary significantly in contrast to the SE model, whose expected values
remain local in position-velocity space. The same applies to predictive variances depicted in
Fig. 3.15(b) and (d) respectively. The SE kernel assumes only local confidence, while the
proposed model provides high confidence for velocities matching the observed sample and
low confidence towards the opposite direction. Note that the damping term variability hast
almost no influence due to low signal variance and low velocities.

We then evaluate the model in the two-dimensional experiment from Section 3.1. The
predictive variance distribution considering different input velocities is depicted for both
models in Fig. 3.16 and Fig. 3.18 respectively after a single trial for one of the users. Note
the difference between confidence levels. Again, the SE kernel enables only local interactions
in position-velocity space while model (3.24) assumes a position-dependent tracking that
enables non-local interaction in position space. The PD gains determine how strong this
interaction is. This particular dependency is illustrated in Fig. 3.17 for a fixed proportional
gain. As damping gains decrease the model converges to a position-only SE kernel.

(A) (B)

Impedance-based model (3.24) 1.87 3.11
SE kernel (3.25) 1.94 3.20

Tabular 3.1: RMSE of GP models for both experimental conditions.

To assess prediction performance, we evaluate the captured dataset for two conditions
using the online local sparse approximation described in the experimental setup. For the
first condition (A), we update the model online for every observation during interaction. For
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ẋ [m]

(d)σ2
ûh
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Figure 3.15: Predictive distribution after observing the input-output pair ([0,−0.05]T, 1) for
the proposed impedance-based model (3.24) and a 0-mean with SE covariance
GP (3.25). Length scales and signal variance are set to l1 = 0.01 and σ2

f
= 4

for ke(x , x ′) and l1 = 0.01, l2 = 0.01 and σ2
f
= 0.5 for kdh

(ξ,ξ′). For the SE
covariance GP, length-scales and signal variance are set to l1 = 0.01, l2 = 0.01
and σ2

f
= 0.5 respectively.
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Figure 3.16: Predictive variances after one trial for model (3.24). Length scales and signal
variance are set to l1 = 0.01 andσ2
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Figure 3.17: Predictive variances after one trial for different derivative gains k ẋ for model
(3.24) with kx = 1 and for ẋ1 = 0, ẋ2 = 0.1 [m/s]. Length scales and signal
variance are set to l1 = 0.01 and σ2
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and σ2
f
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(ξ,ξ′).
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Figure 3.18: Predictive variances after one trial for model (3.25). Length-scales and signal
variance are set to l1 = 0.01, l2 = 0.1 and σ2
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= 0.5 respectively.
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the second condition (B), we update the model only during the first of the 15 task repeti-
tions. Performance is evaluated in terms of the root mean squared error (RMSE). Results are
shown in Table 3.1. The proposed model performs marginally better in both experimental
conditions.

In summary, the proposed impedance-based model presents several desirable character-
istics for modeling human task-solving behavior which also provide better performance. Of
special interest is the underlying assumption of a PD tracking control scheme where the de-
sired trajectory is modeled as a latent variable. This modeling scheme has room for further
studies and extensions with potential applicability in other settings further than human be-
havior modeling. As shown in our user study, local and sparse GP implementations enable
their applicability in online settings supporting even long-interaction sessions.

3.4 Summary

This chapter explored suitable methods for acquiring behavior models during interaction.
In Section 3.1 we presented time-based HMMs where time information is learned explic-
itly. Efficient regression techniques together with the application of an incremental learn-
ing framework enables smoother predictions and learning during interaction, as validated
in the presented user study. Section 3.2 extended this model with latent parameters, such
as environmental information or natural language thereby expanding possible interaction
modalities. Time-series models for learning task dynamics provide safe predictions when
observations lie in the same homotopy class. However, the explicit time-dependency hinders
the acquisition of motions comprising different homotopy classes and state-dependent con-
straints. As an alternative, in Section 3.3 we studied the applicability of dynamical systems
by means of GPs in order to learn task dynamics during interaction. By incorporating an a
priori impedance model, predicted human behavior has desirable compliance properties in
unvisited regions of the state space. Improved overall performance was achieved assuming
an underlying PD tracking structure tracking a latent virtual trajectory.
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4

Uncertainty-dependent Optimal Control

One of the core capabilities of intelligent systems is the appropriate reaction to uncertainties
in its environment as recognized in AI since the late 80’s. While modern reasoning methods
embrace stochastic uncertainties in a sophisticated way, low level robot control still largely
lacks suitable approaches. State-of-the art stochastic control methods consider the expected
value and ignore higher order statistics. The objective of this article is to fill the gap between
probabilistic modeling approaches and robot control by providing a systematic approach to
robot control in the presence of stochastic uncertainties beyond first-order statistics. As an
example, consider the task of grasping an object with uncertain pose. Its expected value is
only a rough estimation of its probabilistic representation. Its variance, though, may reveal
more certainty in some degrees of freedom; control design targeting those more aggressively
while allowing more variability in others may be key for task success. Similarly, if we con-
sider a navigation task in a cluttered environment where obstacles have different levels of
uncertainty, the possibility of collision may vary significantly depending on the obstacles’
variances. These simple prototypical examples illustrate the necessity of a systematic and
flexible control approach that considers uncertainty in robotic settings.

Due to the ability of humans succeeding on a wide variety of tasks, a reliable source of in-
spiration for robot control design is human behavior. Their capability to overcome and even
benefit from the effects of noise and uncertainty bring neuroscientists to study human sensori-
motor control [143]. In particular, results in this area show that human motor control follows
from the minimization of a cost function with consideration of noise in the dynamics [144].
These findings motivate many stochastic optimal control approaches for robot control which
minimize the expected value of a stochastic cost [145,146]. However, recent results accurately
modulate human actions by means of risk-sensitive optimal control [147]. Intuitively, a risk-
sensitive decision-maker deviates from the expected optimum in the face of uncertainty by
considering not only the expected value of the stochastic cost but also its variance and further
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higher-order statistics (moments or cumulants). Interestingly, human uncertainty-dependent
behavior is not limited to the effects of sensorimotor noise. Recent studies demonstrate that
human actions are similarly affected by the uncertainty of task-related variables, such as a
goal to reach [148] or the internal model of a cooperating partner [149]. These insights
motivate us to explore risk-sensitive decision-makers for prototypical robot control problems
where not only the plant but also task- and environment-dependent variables are uncertain.
This problem setting naturally arises when robots are deployed in unstructured environments
and must adapt to unknown surroundings, thereby estimating uncertain dynamics, goal and
obstacle configurations. To the best of our knowledge, optimal control design considering
high-order statistics under multiple uncertainty sources is still an open issue with potential
application in many robotic scenarios.

In this chapter we study the stochastic locally optimal control problem considering high-
order cost statistics for application in robotic settings. We present risk-sensitive and cost-
cumulant solutions for problems with non-linear dynamics, multiple additive uncertainty
sources, uncertain parameters and non-quadratic costs. Locally optimal solutions are found
by iteratively performing a linear quadratic (LQ) approximation around a nominal trajectory,
solving the local problem and updating the trajectory until convergence. Simulation results
of a point mass robot, a two-link manipulator and a car-like robot validate the applicability
of the proposed approach and illustrate its peculiarities.

The rest of this chapter is organized as follows: Section 4.1 formally defines the problem
and exposes the proposed iterative locally optimal approach. Section 4.2 and Section 4.3
present the risk-sensitive and cost-cumulant solutions for the linear quadratic approximation
of the problem respectively. The main iteration of the algorithm is described in Section 4.4.
High-order cost statistics evaluations for exemplary static uncertain parameters are addition-
ally presented in Section 4.5. Experimental simulations on a point mass, a two-link robotic
arm and a car-like model are illustrated in Section 4.6.

Related Work

Several works explore the synthesis of uncertainty-dependent decisions in robotic settings
from an optimality perspective. In order to do so, the performance measure of deterministic
settings is modified in order to account for the uncertainty’s variance. For instance, enhanced
collision avoidance is achieved including an additive cost term in representing the probability
of collision in [150]. Similarly, variance-dependent stiffness is synthesized adding prediction
variance to the performance measure as in [88]. The inverse of the variance is also used as a
weighting term for measuring distance to desired states in [63] or [9]. The heterogeneity of
these solutions reveals the lack of a systematic approach to synthesize uncertainty-dependent
actions. This work considers a linear combination of the statistics of the random cost yielding
a broad family of uncertainty-dependent decision-makers.

Local linear-quadratic approximations to non-linear systems are an effective solution
to robot control problems. The iterative linear quadratic Gaussian (iLQG) method pre-
sented in [151] which is a simplified version of Stochastic Differential Dynamic Program-
ming (SDDP) [152] is a recurrent example. The resulting locally optimal feedback policies
have been applied in many robot navigation problems combined with belief roadmaps [153]
or adding the state variance as a part of an augmented state [145,154]. All these approaches
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consider the expected value of the random cost as a performance measure, neglecting cost
variance. Here, we study a similar problem setting but considering higher order cumulants
of the cost. We further extends the results from [117] to a more general family of linear
quadratic systems that enable the application of the iterative algorithm in both risk-sensitive
and cost-cumulant solutions.

The statistics of random costs have been primarily studied in the context of mathemat-
ical finance, initially exploring mean and variance solutions [113]. Further than the first
two cumulants, the risk-sensitive performance criterion initially proposed in [106] and usu-
ally applied in modern portfolio theory, considers the sum of all infinite cumulants of the
cost [115]. The discrete-time solution was widely studied in [155] for the linear quadratic
setting and the consideration of higher order cost cumulants has recently gained interest in
robotics. Recent works applied this concept to stochastic cost functions learned with Gaus-
sian Processes [110] as well as in the context of approximate inference control [111, 112].
However, risk-sensitive control assumes a specific weighting in the infinite summation of the
cumulants. When more flexibility in the weightings is needed, cost cumulant control is a
suitable generalization of the risk-sensitive criterion. Main results for continuous-time linear
quadratic settings are found in [116] or for the discrete-time case in [117]. In this work
we extend these results to a more general family of linear quadratic systems that enable the
application of the iterative algorithm.

4.1 Stochastic Optimal Control with High-Order Costs

Statistics

Consider a robot with dynamics given by the completely observed controlled diffusion process

dx r(t) = f r(x r(t), u∗(t))d t +G rdBr(t) , (4.1)

where x r ∈ Rn, u∗ ∈ Rm represent the robot’s state and control input respectively, Br

is a n-dimensional standard Brownian motion noise defined in the complete probability
space (Ωr ,Fr ,Pr), G r ∈ Rn×n is its infinitesimal variance and x r

0 is the initial state. Ad-
ditionally, let x g ∈ Rn and x o ∈ Rn be a desired trajectory to follow and the state of an
obstacle respectively 1 with completely observed dynamics

dx g(t) = f g(x g(t))d t +G g dBg(t)

dx o(t) = f o(x o(t))d t +G odBo(t) , (4.2)

where Bg and Bo are n-dimensional standard Brownian motion noises defined in complete
probability spaces (Ωg ,Fg ,Pg) and (Ωo,Fo,Po) respectively, Gg ∈ Rn×n and Go ∈ Rn×n their
infinitesimal variances and x

g

0 and x o
0 their respective initial states.

The fact that all elements involved in the problem (robot, goal and obstacle) are governed
by diffusion processes might appear as an extreme or rare case. However, the emergence of
probabilistic models as an effective machine learning tool for acquiring motion models of

1Although for simplicity we consider here a single obstacle, a generalization to an arbitrary number is straight-
forward
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humans or any other dynamic elements in the environment gives cause for the considered
problem setting. Any decision-making process relying on such models is consequently af-
fected by their intrinsic probabilistic nature. For instance, Bayesian regression models are
usually in the form

y = f (x) + ε

where y is the output, x the input and ε is normally distributed observation noise,
i.e. N (ε|0,Σε). Let now x i be the state of either a desired goal, obstacle or
robot. Given a set of input-output samples (x i, dx i), the corresponding vector
field f i(x i) ∼N ( f i(x i)| f i

µ
(x i), f i

Σ
(x i)) is approximated in a data-driven manner. Interpret-

ing the result as a diffusion process yields

dx i(t) = f i
µ
(x i(t))d t + ( f i

Σ
(x i(t))+Σε)

1/2dB i(t) .

Note that the Brownian motion considered here might not be present in the observed
data: predicted uncertainty might be just caused by an insufficient training set, i.e. lack
of knowledge. However, it reflects the potential unexpected behavior that the probabilis-
tic model f i(x i) implies 2. Examples of this modeling approach are found in the literature
for approximating plant dynamics [156], dynamic obstacle motions [157] or desired goal
dynamics [73].

The measure evaluating the performance of a candidate control law u∗(·) is given by cost
function

J(u∗(·)) = hTc
(x r(Tc), x g(Tc), x o(Tc)) +

Tc∫

t=0

h(t , x r(t), x g(t), x o(t), u∗(t))d t , (4.3)

where Tc is the time horizon, h is the cost rate and hTc
the final cost. This performance index

is usually designed penalizing both the distance to the desired goal x g and the necessary
control efforts u∗ while favoring configurations distant to obstacles x o.

As (4.3) is usually defined in terms of errors between robot and obstacle and robot and
goal and in order to keep a compact formulation, let ξ∗ be the joint state such that

ξ∗ = [(x g − x r) (x o − x r)]T. (4.4)

The robot-obstacle-goal dynamics are then compactly formulated as

dξ∗(t) = f (ξ∗(t), u∗(t))d t +

S∑

s=1

G sdBs(t) , (4.5)

where S is the number of independent Brownian motions (three in our particular case),
Bs is the corresponding n-dimensional standard Brownian motion noise defined in the s-th
probability space (Ωs,Fs,Ps) for s = 1 · · ·S, and G s and f are defined such that (4.1), (4.2)
and (4.4) hold.

2Although for completeness we considered here state-dependent variances we limit our study to the additive
case.
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4.1 Stochastic Optimal Control with High-Order Costs Statistics

The optimal control solution is given by the control law u∗(·) that minimizes (4.3) con-
strained to dynamics (4.5) and (4.4). Due to the stochastic nature of (4.5), the cost to be
optimized is a random variable. Hence, prior to finding an optimal solution, an interpreta-
tion of the random cost in terms of a deterministic performance measure is necessary. A valid
approach consists of evaluating a statistical measure of (4.3) usually limited to the expected
value, i.e. EP[J] and where the expectation is defined in the product probability space of all
uncertainty sources, i.e. the probability space (Ω,F ,P) given by

Ω= Ω1 ×Ω2 × · · · ×ΩS F =F1 ×F2 × · · · ×FS, (4.6)

where × denotes the Cartesian product and P is the joint measure defined on the mea-
surable space (Ω,F ). However, this formulation has two drawbacks. First, all statistics
further than the expected value are neglected even when higher-order measures enable
richer uncertainty-dependent decisions. Second, the evaluation of the statistics in proba-
bility space (4.6) considers all random variables jointly. This limits the way cost variability
influence decisions: it might be beneficial that cost fluctuations induced marginally by the
obstacle’s randomness influence the robot’s decisions in a different manner as motor noise
or the goal’s stochasticity.

Concerning the first issue, an arbitrary linear combination of K high-order moments

EP[J] +

K∑

r=2

γr EP[J
r] , (4.7)

is a possibility. However, optimal control design targeting cost moments yields non-linear
controllers when high-order moments are considered even in linear quadratic settings [158].
As an alternative, we focus our study on cost cumulants, yielding a similar problem formu-
lation

κ
(1)
P
(J) +

K∑

r=2

γrκ
(r)

P
(J) , (4.8)

where κ(r)
P

denotes the r-th cumulant calculated in probability space (Ω,F ,P). 3 While the
first moment and cumulant are equal and defined by the expected cost, in the following we
will informally refer to higher order terms present in the summation of (4.8) as cost variability

indistinctly. Note that high order statistical terms are also denoted risk measures in modern
portfolio theory [116]. As introduced in Section 2.3, cumulants are derived by means of the
cumulant generating function

ΨP(θ ) = logEP[exp{θ J}] . (4.9)

Its power series expansion is given by

ΨP(θ ) =

∞∑

r=1

θ r

r!
κ
(r)

P
(J) , (4.10)

3For convenience, in (4.7) and (4.8) we fixed the weight of the first moment and cumulant to 1. When this is
not the case, this formulation is easily recovered by normalizing all weights with the desired factor.
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where

κ
(r)

P
(J) =

∂ r
ΨP(θ )

∂ θ r

����
θ=0

, (4.11)

providing a compact way to calculate the desired cumulants.

Regarding the second issue, in order to evaluate the cost variability produced marginally
by the s-th stochastic process, we define its corresponding marginal dynamics as

dξ∗(t) = f (ξ∗(t), u∗(t))d t +G sdBs(t) . (4.12)

We then aim for the analysis of (4.8) constrained to each of the marginal dynamics. The
optimization criterion considered through this work is given by

min
u(·)

Ξ = min
u(·)

1
S

� S∑

s=1

κ
(1)
Ps
(J) +

K∑

r=2

γr,sκ
(r)

Ps
(J)
�

(4.13)

where the cumulants defined in the s-th probability space are constrained to the s-th marginal
dynamics (4.12). Although we do not solve the original problem with dynamics (4.5) this
formulation provides more flexible decision-makers, enabled only by means of a marginal
treatment of uncertainty sources.

The intuition behind problem (4.13) is simple: we aim for the controls that minimize not
just the expected cost but also a weighted average of marginal cost variabilities. In contrast
to (4.8), a solution to this problem may adopt drastically different or even opposite decisions
depending on which uncertainty source is responsible for cost variability. Instrumental in
this problem is also the choice of the weighting factors: cost variability terms with a positive
weighting factor γr,s will increase the overall cost while negative weighting factors produce
the opposite effect. When all γr,s = 0 the expected value is recovered, which neglects any
risk measure. In line with portfolio theory nomenclature, we will denote these three cases
where γr,s > 0, γr,s = 0 and γr,s < 0 as risk-averse, risk-seeking and risk-neutral respectively,
as a description of the optimizer’s attitude towards a certain risk measure. If γr,s < 0 the
corresponding risk measure acts as a discounting quantity of the overall cost: variability
is interpreted in a risk-seeking attitude as it takes part of the expected cost. In contrast,
if γr,s > 0 the corresponding risk measure implies additional costs and more control efforts,
i.e a risk-averse attitude.

In addition, it is remarkable that risk-sensitive control [106] is a particular case of cost
cumulant minimization [109], where weighting factors are given by the McLaurin coefficients
of the power series (4.10). In fact, the risk sensitive functional defined in the s-th probability
space is given by θ−1

s
ΨPs
(θs)

4 and we could similarly formulate problem (4.13) when K =∞

4This expression is also found in the literature with a negated exponent [107], i.e. −θ−1 logEPs
[exp{−θ J}].
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as

min
u∗(·)
Ψ =min

u∗(·)

1
S

S∑

s=1

θ−1
s
ΨPs
(θs)

=min
u∗(·)

1
S

S∑

s=1

θ−1
s

logEPs
[exp{θsJ}]

=min
u∗(·)

1
S

� S∑

s=1

κ
(1)
Ps
(J) +

∞∑

r=2

θ r−1
s

r!
κ
(r)

Ps
(J)
�

, (4.14)

by fixing the the high order statistics weighting factors to the above-mentioned McLaurin
coefficients divided by θs. The cost functional to minimize reduces therefore to an average
of standard risk-sensitive functionals. Due to its relevance we will explore both the risk-
sensitive (4.14) and the K-cost-cumulant control (4.13) problems.

4.1.1 Approach

The solution of (4.14) or (4.13) with non-linear dynamics and arbitrary costs is in general not
attainable. As an alternative, we aim for a local optimum by means of a numerical solution.
By linearizing the dynamics and quadratically approximating the cost around a discretized
nominal trajectory

�
ξ∗0···T , u∗0···T−1

�
, a discrete-time linear quadratic (LQ) approximation of

state and control deviations, i.e. ξ= (δξ∗ − ξ∗) and u = (δu∗ − u∗) is obtained. Its solution
is a gradient towards the local optimum, found by iteratively updating the nominal trajectory
and repeating the whole process until convergence.

The local deviations problem is defined as follows. Time is discretized in T steps with
sample time ∆= Tc/(T ). The linearized marginal dynamics at time step k are given by

ξk+1 = Akξk + Bkuk + ε
s
k

, (4.15)

where Ak ∈ Rn×n, Bk ∈ Rn×m, εs
k
∈ Rqs is an independent identically distributed Gaussian ran-

dom variable such that N (εs
k
|0,Σs

k
) and x 0 = 0. The involved quantities are calculated as

Ak = In +∆
∂ fk

∂ ξ∗
k

Bk =∆
∂ fk

∂ u∗
k

Σ
s
k
=∆G s

k

2 .

The control input is constrained to the form

uk = lk + Lkx k , (4.16)

where lk is an affine input and Lk ∈ Rm×n is the feedback matrix. The cost functional (4.3)
results in the quadratic approximation

J(ξ0, u0···T−1) =
1
2
ξT

T
QTξT +ξ

T
T
q T+

T−1∑

k=0

1
2
ξT

k
Qkξk + ξ

T
k
q k + qk +

1
2

uT
k
Rkuk + uT

k
r k, (4.17)
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where Qk ∈ Rn×n, Rk ∈ Rm×m, q k ∈ Rn and r k ∈ Rm and qk ∈ R are computed as

qk =∆hk q k =∆
∂ hk

∂ ξ∗
k

Qk =∆
∂ 2hk

∂ (ξ∗
k
)2

qT = hTc
q T =

∂ hTc

∂ ξ∗
k

QT =
∂ 2hTc

∂ (ξ∗
k
)2

r k =∆
∂ hk

∂ u∗
k

Rk =∆
∂ 2hk

∂ (u∗
k
)2

,

where Qk ≥ 0 and Rk > 0.
Note that, from (4.15), ξk is normally distributed and hence (4.17) is a generalized non-

central chi-squared distribution due to terms 1
2ξ

T
k
Qkξk

and ξT
k
q k. It remains therefore an

expressive approximation to the original performance measure where cumulants higher than
the expected cost are relevant.

The local deviations problem consists of minimizing (4.13) or (4.14) with J as in (4.17)
and constrained to (4.15) and (4.16). The following sections study this LQ problem for two
different risk-aware solutions in the complete observation case. In Section 4.2, we first ex-
plore the risk-sensitive solution by solving problem (4.14). Results on cost cumulant control
will follow in Section 4.3 by solving the more general problem (4.13). The main iteration
which drives the nominal trajectory towards the local optimum is explained in Section 4.4.

4.2 Risk-sensitive Solution

In this section we study the solution to the average of marginal risk-sensitive LQ problems Ψ.
A discrete-time LQ optimal control problem such as the one from Section 4.1.1 is solved
by means of dynamic programming applying Bellman’s optimality principle. From a rein-
forcement learning perspective, this procedure is also an offline instance of a value iteration
problem with closed form solution [159].

For simplicity, consider first the risk-sensitive problem in a single probability space. The
cost function to minimize is then θ−1

ΨP(θ ) constrained to dynamics

ξk+1 = Akξk + Bkuk + εk , (4.18)

where εk ∈ Rq is an independent Gaussian random variable such that N (εk|0,Σk). Assume
now the system is at sample time k. Given a control law uk···T−1 in the form (4.16) and having
observed ξk, the remaining cost is calculated by means of the backwards recursion that the
Bellman equation provides

θ−1
ΨP(θ ,ξk, uk···T−1) = θ

−1 logEP[exp{θ J(ξk, uk)}]
+ θ−1

ΨP(θ ,ξk+1, uk+1···T−1) .

The quantity θ−1
ΨP(θ ,ξk, uk···T−1) is the cost-to-go. At time-step k, as ξk is completely ob-

served and therefore deterministic, it follows that

θ−1
ΨP(θ ,ξ

k
,uk···T−1) = J(ξ

k
, uk)

+ θ−1
ΨP(θ ,ξk+1, uk+1···T−1) . (4.19)
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Similarly, the optimal policy at time step k is computed applying the Bellman optimal equa-
tion

V (ξk) =min
uk

�
J(ξk, uk) + θ

−1 logEP[V (ξk+1)]
	

, (4.20)

where V (ξk) is the value function at time step k.
The following lemma applies (4.19) in order to compute the risk-sensitive cost-to-go in

closed form yielding a quadratic form on ξk. For the sake of clarity we omit dependencies
on future values of u.

Lemma 4.1. If (Σk
−1 − θWk+1) > 0 for k = 0 · · · T − 1, the analytic solution to (4.19) is given

recursively by the quadratic form

θ−1
ΨP(θ ,ξ

k
, uk···T−1) =

1
2
ξT

k
Wkξk

+ ξT
k
w k +wk , (4.21)

where

Wk = Qk +AT
k
fWk+1Ak + LT

k
Hk Lk + GT

k
Lk + LT

k
Gk (4.22)

w k = q k + AT
k
ew k+1+ LT

k
Hklk + LT

k
g k + GT

k
lk (4.23)

wk = qk + ewk+1 +
1
2

lT
k
H l k + lT

k
g k (4.24)

Hk = Rk + BT
k
fWk+1Bk

Gk = Bk
fWk+1Ak

g k = r k + BT
k
ew k+1

with final conditions

WN = QN w N = qN wN = qN

and

fWk+1 =Wk+1+ θWk+1(Σk
−1 − θWk+1)

−1Wk+1 (4.25)

ew k+1 = w k+1+ θWk+1(Σk
−1 − θWk+1)

−1w k+1 (4.26)

ewk+1 = wk+1 + θw k+1
T(Σk

−1 − θWk+1)
−1w k+1−

1
2
θ−1 log Fk (4.27)

Fk =
��Iq − θWk+1Σk

��

with FT = 1.

Proof. The solution to the Bellman equation (4.19) entails only some complication in the
term

θ−1
ΨP(θ ,ξk+1, uk+1···T−1)

Assuming quadratic form (4.21) holds yields

θ−1
ΨP(θ ,ξk+1, uk+1···T−1) = θ

−1 logEP[exp{θ (ξT
k+1Wk+1ξk+1+ ξ

Tw k+1+wk+1)}] .
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Let now Mk = Akξk + Bkuk. Considering the system dynamics (4.18), the expression for
the expectation is given by the Gaussian integral
∫

1p
(2π)qs |Σk|

exp
§
−1

2
εT

k
Σ
−1
k
εk

ª

· exp
¦
θ
�1

2
(Mk + εk)

TWk+1(Mk + εk) + (Mk + εk)
Tw k+1+wk+1

�©
dεk

=
1p

(2π)qs |Σk|
exp
¦
θ
�1

2
MT

k
Wk+1Mk +MT

k
w k+1+wk+1

�©

·
∫

exp
¦
− 1

2
εT

k
(Σ−1

k
− θWk+1)εk + ε

T
k

�
2θWk+1Mk + θw k+1

�©
dεk . (4.28)

Recall that if N > 0 then
∫

exp
§
−1

2
εTNε+ εTn

ª
dε =
Æ
(2π)q|N |−1 exp
�
nTN−1n
	

.

Therefore, if (Σ−1
k
− θWk+1) > 0, (4.28) has analytical solution, yielding
√√√
���Σ−1

k
− θsWk+1

�−1 ��
|Σk|

· exp

�
θs

1
2

MT
k
fWk+1Mk + θsM

T
k
ew k+1+ θs ewk+1

�

where fWk+1, ew k+1, and ewk+1 are defined as in (4.25), (4.26) and (4.27). Note that

|(Σ−1
k
− θWk+1)

−1(I − θWk+1Σk)|= |Σk| ,

which explains the expression for Fk. Going back to the Bellman equation (4.19) and applying
these results yields

θ−1
ΨP(θ ,ξ

k
, uk+1···T−1) = ξ

T
k
Wkξk

+ ξTw k +wk

=
1
2
ξT

k
Qkξk

+ξT
k
q k +

1
2

uT
k
Rkuk + uT

k
r k

+
1
2

MT
k
fWk+1Mk +MT

k
ew k+1+ ewk+1 .

Constraining uk to (4.16) yields expressions (4.22), (4.23) and (4.24).

Note that condition (Σk
−1 − θWk+1) > 0 is satisfied if θ < (λmax(Σk)λmax(Wk+1))

−1,
where λmax denotes the largest eigenvalue. This upper bounds the degree of risk-
aversion, θ > 0, accepted by a risk-sensitive cost evaluation. It is also interesting to observe
the alternative formulations of (4.25) and (4.26) derived in the proof of lemma 4.2, yielding

fWk+1 = (I − θWk+1Σk)
−1Wk+1

ew k+1 = (I − θWk+1Σk)
−1w k+1 .

The influence of θ on the cost becomes now apparent. A positive θ implies higher quadratic
cost coefficients as it diminishes the eigenvalues of the inverted term. In contrast, a nega-
tive θ increases the inverted term and therefore decreases the overall cost. In fact, extreme
risk-seekingness, i.e. θ << 0, yields fWk+1→ 0 and ew k+1→ 0. This degenerate case is de-
scribed as euphoria in [155], as cost variability completely nullifies the overall cost.
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4.3 Cost-cumulant Solution

The cost-to-go for problem (4.14), i.e. the remaining average cost of all marginal problems
at time step k, follows now straightforwardly as

Ψ(ξk, uk···T−1) =
1
2
ξT

k
W kξk + ξ

T
k
w k +wk , (4.29)

where

W k =
1
S

S∑

s=1

W s
k

w k =
1
S

S∑

s=1

= w s
k

wk =
1
S

S∑

s=1

ws
k

,

and where W s
k
, w s

k
and ws

k
are the quadratic coefficients resulting from applying lemma 4.1

in the s-th probability space constrained to the s-th marginal dynamics, i.e. with Σk = Σ
s
k

and θ = θs. Note that the overall cost given control policy u0···T−1 corresponds to the cost-
to-go at k = 0, i.e. Ψ(ξ0, u0···T−1).

The risk-sensitive solution is computed applying Bellman’s optimal equation (4.20). This
is equivalent to minimizing (4.29) w.r.t Lk and lk at each step of the backwards recursion
yielding

Lk =− (Rk + BT
k
fW k+1Bk)

−1(BT
k
fW k+1Ak)

lk =− (Rk + BT
k
fW k+1Bk)

−1(BT
k
ew k+1+ r k) , (4.30)

where

fW k =
1
S

S∑

s=1

fW s
k
ew k =

1
S

S∑

s=1

= ew s

k
ewk =

1
S

S∑

s=1

ews
k

,

and where fW s
k
, ew s

k
and ews

k
follow from the computation of (4.29).

4.3 Cost-cumulant Solution

In this section we approach the cost-cumulant control problem (4.13) studied in [116] for
the continuous-time case and in [117] for the discrete-time case. We extend it here to our
problem setting with a more general family of linear quadratic systems and explore the av-
erage of marginal cost-cumulant problems. Although the risk-sensitive solution from the
previous section is an approximation to an infinite summation of cumulants around θ = 0,
their respective weighting factors are fixed to the McLaurin coefficients of its power series.
The cost-cumulant control problem allows more flexible decision-makers as the number of
cumulants and their respective weighting factors are design parameters.

Following a similar treatment to the previous Section, we first consider a single probability
space and dynamics (4.18). From lemma 4.1, the cumulant generating function of the cost-
to-go at time step k is given by

ΨP(θ ,ξk, uk···T−1) = θ
�1

2
ξT

k
Wkξk + ξ

T
k
w k +wk

�
. (4.31)
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In addition, the r-th cumulant is calculated by means of expression (4.11). In the following,
in line with previous work, the notation f (θ )[r] denotes the r-th derivative of f (θ ) w.r.t θ

at point θ = 0, i.e. f (θ )[r] =
∂ r f (θ )

∂ θ r

���
θ=0

. An r = 0 index corresponds to the function itself

at θ = 0. Additionally, C j
r

denotes the binomial coefficient
�

j

r

�
.

As an illustrative example we derive the first two cumulants. The first cumulant is given
by

∂ΨP(θ ,ξk, uk···T−1)

∂ θ

���
θ=0
=

1
2
ξT

k
Wk
[0]ξ

k
+ ξT

k
w
[0]
k
+w

[0]
k

+ θ
�1

2
ξT

k
W
[1]
k
ξk + ξ

T
k
w
[1]
k
+w

[1]
k

�����
θ=0

,

that, after evaluating θ = 0 yields EPs
[J], the cost-to-go of a standard LQG problem. The

definitions of W
[0]
k

, w
[0]
k

and w
[0]
k

are given by lemma 4.1, but withfWk+1 =W
[0]
k+1, ew k+1 = w

[0]
k+1

and ewk+1 = w
[0]
k+1.

Similarly, the second cumulant (the cost variance) is given by

∂ 2
ΨP(θ ,ξk, uk···T−1)

∂ θ 2

���
θ=0
= 2
�1

2
ξT

k
W
[1]
k
ξk +ξ

T
k
w
[1]
k
+w

[1]
k

�

+ θ
�1

2
ξT

k
W
[2]
k
ξk + ξ

T
k
w
[2]
k
+w

[2]
k

�����
θ=0

.

which after evaluating θ = 0 yields also a quadratic form. The expressions for W
[1]
k

, w
[1]
k

and w
[1]
k

as well as the ones corresponding to the d-th cumulant are calculated recursively
in a similar manner to [117], as a function of cumulants of lower order than d, yielding the
following lemma.

Lemma 4.2. The d-th cost cumulant of the random cost (4.17) at sample time k is given by

κ
(d)

P
(J(ξk,uk···T−1)) = d

�1
2
ξT

k
W
[d−1]
k

ξk +ξ
T
k
w
[d−1]
k

+w
[d−1]
k

�

where for d = 1

W
[0]
k
=Qk + AT

k
fW [0]

k+1Ak + LT
k
H
[0]
k

Lk + G
[0]T
k

Lk + LT
k
G[0]k

w
[0]
k
=q k + AT

k
ew [0]

k+1+ LT
k
H
[0]
k

lk + LT
k
g
[0]
k
+ G

[0]T
k

lk

w
[0]
k
=qk + ew[0]k+1 +

1
2

lT
k
H
[0]
k

lk + lT
k
g
[0]
k

H
[0]
k
=Rk + BT

k
fW [0]

k+1Bk

G
[0]
k
=BT

k
fW [0]

k+1Ak

g
[0]
k
=r k + BT

k
ew [0]

k+1

with final conditions

W
[0]
N = QT w

[0]
N = q T w

[0]
N = qT
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and for d > 1

W
[r]

k
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k
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k
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with final conditions

W
[r]

N = 0n×n w
[r]

N = 0 w
[r]

N = 0

and

fW [r]

k+1 =W
[r]

k+1+ r

r−1∑

j=0

C j

r−1W
[ j]

k+1Σk
fW [r−1− j]

k+1 (4.32)

ew [r]

k+1 = w
[r]

k+1+ r

r−1∑

j=0

C j

r−1W
[ j]

k+1Σk ew [r−1− j]

k+1 (4.33)

ew[r]
k+1 = w

[r]

k+1 + r

r−1∑

j=0

C j

r−1w
[ j]

k+1Σk ew [r−1− j]

k+1 +

T−1∑

t=k

tr(H[r−1]
t
) (4.34)

with

H[r]
t
= (r + 1)W [r]

t+1Σt + r

r−1∑

j=1

C j

r−1W
[ j]

t+1ΣtH
[r−1− j]
t

.

Proof. The results for W
[r]

k
, w

[r]

k
and w

[r]

k
are straightforward from their definitions

in (4.22), (4.23) and (4.24). For the proof of expression fW [r]

k+1 see [117]. The solution

to ew [r]

k+1 and ew[r]
k+1 is derived with the same procedure. The definition of ew k+1 from (4.26) is

reformulated as follows

ew k+1 = w k+1+ θWk+1(Σ
−1
k
− θWk+1)

−1w k+1

= w k+1− (Σ−1
k
− θWk+1 −Σ−1

k
)(Σ−1

k
− θWk+1)

−1w k+1

= (Iq − θWk+1Σk)
−1w k+1 ,

from which we can write

ew k+1 = w k+1+ θWk+1Σk ew k+1 . (4.35)

Applying Leibniz’s Theorem twice we get

ew [r]

k+1 = w
[r]

k+1+ θ (Wk+1Σk ew k+1)
[r] + r(Wk+1Σk ew k+1)
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= w
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k+1+ θ (Wk+1Σk ew k+1)
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C j

r−1W
[ j]

k+1Σk ew [r−1− j]

k+1 ,
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which after evaluating θ = 0 yields (4.33).
The procedure for ew[r]

k+1 is similar. We formulate (4.27) as

ewk+1 = wk+1 + θw T
k+1W−1

k+1Wk+1(Σ
−1
k
− θWk+1)

−1w k+1

= wk+1 − w T
k+1W−1

k+1w k+1+ w T
k+1W−1

k+1(Iq − θWk+1Σk)
−1w k+1 ,

where we ignored the term −1
2 log Fk that gives rise to expression H

[r]
t as already proven

in [117]. From (4.35), writing w k+1 as a function of ew k+1 yields

ewk+1 = wk+1 − w T
k+1W−1

k+1(Iq − θWk+1Σk) ew k+1

+ w T
k+1W−1

k+1(Iq − θWk+1Σk)
−1(Iq − θWk+1Σk) ew k+1

= wk+1 + θw T
k+1Σk ew k+1 .

Applying Leibniz’s Theorem twice and evaluating θ = 0 yields (4.34).

The evaluation of the average of marginal cost-cumulants from (4.13) at time step k fol-
lows immediately as

Ξ(ξk) =
1

2
ξT

k
cWkξk + ξ

T
k
Òw k + bwk , (4.36)

where

cWk =
1
S
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S
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rγr,sw
s[r−1]
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bwk =
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S
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K∑

r=1

rγr,sw
s
k

[r−1]

where W s
k
[r] and w s

k
[r] and ws

k
[r] are the quadratic coefficients of the r-th cumulant result-

ing from applying lemma 4.2 in the s-th probability space constrained to the s-th marginal
dynamics and γ1,s = 1.

The solution to the cost cumulant control problem (4.13) is equivalent to the risk-sensitive
solution: minimizing (4.36) w.r.t Lk and lk at each step of the backwards recursion yields

Lk =− (Rk + BT
k

cfWk+1Bk)
−1(BT

k

cfWk+1Ak)

lk =− (Rk + BT
k

cfWk+1Bk)
−1(BT

k
bew k+1+ r k) , (4.37)

where

cfWk =
1
S

S∑

s=1

K∑

r=1

γr,s
fW s[r−1]

k
bew k =

1
S

S∑

s=1

K∑

r=1

γr,s ew s[r−1]
k

where fW s[r−1]
k+1 and ew s[r−1]

k+1 result from the computation of the r-th cumulant in the s-th prob-
ability space in (4.36).
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4.4 Main Iteration

The effect of weightings γr,s on the resulting cost (4.36) is evident: risk-aversion is
achieved by selecting γr,s > 0 and thereby increasing the resulting quadratic coefficients.
Selecting γr,s < 0 has the opposite effect yielding a risk-seeking evaluation, i.e. ’less’ cost
than the expected value. Note that the existence of solutions (4.37) is only warranted

if (Rk + BT
k

cfWk+1Bk)> 0. Although this condition imposes no constraints in terms of risk aver-

sion, negative γr,ss must be selected such that the positive definiteness of (Rk + BT
k

cfWk+1Bk)

holds.

4.4 Main Iteration

A numerical approximation that computes locally optimal solutions in nonlinear and non-
quadratic problems requires a procedure that iteratively approximates and updates a nom-
inal trajectory. The main iteration of our approach follows the iLQG algorithm presented
in [?,151]. In this section, we summarize it pointing out the subtle changes that arise due to
the different problem setting. The resulting algorithm is either an iterative Linear Exponen-
tial Quadratic Regulator (iLEQR) for the risk-sensitive case or an iterative K-Cost Cumulant
Regulator (iKCCR) for the cost cumulant optimization.

In order to find a local optimum and given an initial state ξ∗0, the algorithm iterates
around the nominal control trajectory u

∗
0···T−1 by calculating the optimal control deviations

that improve the expected performance. At the i-th iteration, the optimal solution is de-
noted u

∗(i)
0···T−1 = u

∗(i)
0···T−1 + L

(i)

0···T−1ξ0···T−1 and is updated to obtain the next u
∗(i+1)
0···T−1 following

the next steps:

1) The corresponding state trajectory ξ∗0···T is computed simulating the discretized dy-

namics, for instance by Euler integration .i.e. ξ∗
k+1 = ξ

∗
k
+∆ f (ξ∗

k
, u
∗(i)
k
) or any other

approach such as the Runge-Kutta method.

2) The dynamics are linearized and the costs quadratically approximated
around (ξ∗0···T , u

∗
0···T−1), obtaining an LQ approximation of state and control devi-

ations, i.e. ξk = δξ
∗
k
− ξ∗

k
and uk = δu∗

k
− u∗

k
as explained in Section 4.1.1.

3) Depending on the desired optimization criteria, the optimal deviations
law uk = lk + Lkξk is computed by means of either the risk-sensitive (4.30) or
cost-cumulant solution (4.37).

4) As the solution uk is only locally optimal, if the feedforward term of optimal law com-
puted in 3) only holds in the close vicinity of the current nominal trajectory, devia-
tions lk might yield solutions with higher cost than the current one. To cope with
this issue, a line search algorithm aims for an adapted step in the feedforward com-
ponent of uk that yields a policy improvement. Starting with a line search parame-
ter α = 1, a potential policy update is given by u

∗(i+1)
k

(α) = u
∗(i)
k
+αlk + L

(i+1)
k
ξ

k
and

its expected performance is evaluated. If it improves, the new policy is accepted. If not,
the line search parameter is halved, i.e. α = 1

2α and the corresponding expected per-
formance for u

∗(i+1)
0·T−1(α) is evaluated again until improvement. If all l0···T−1 are close

to 0, the algorithm ends. Otherwise, the next iteration starts going back to step 1)

75



4 Uncertainty-dependent Optimal Control

with u
∗(i+1)
0···T−1 = u

∗(i+1)
0···T−1(α). This algorithm ensures convergence to a locally optimal

control policy [160].

Note that the evaluation of the expected performance in step 4) is not straightforward.
In fact, an analytical expression of (4.13) or (4.14) for an arbitrary J is rarely available. As
an alternative, an LQ approximation of the cost around the new trajectory is obtained as in
step 2) and its expected performance is computed by means of lemma 4.1 or 4.2 respectively.
For this computation the nominal trajectory is u

∗(i+1)
k

(α) = u
∗(i+1)
k

+ Lkξk and the control law
to be considered has no feedforward term, i.e. lk = 0, as the deviations have been already
applied. This approximation of the cost works well when the nominal trajectory is close to
the local optimum and feedforward steps lk are close to zero. However, if this is not the
case and high deviations are still involved, the feedback matrix Lk used in the approximation
may lead to inaccurate results as second order information may vary significantly. In order
to avoid this issue, a two-step optimization is applied. First, a solution close to the local
optimum is found evaluating only the feedforward trajectory and hence Lk = 0. Once the
feedforward trajectory converges, the quadratic feedback problem is solved. This second
solution converges in few iterations, as the local optimum is close to the starting nominal
trajectory.

4.5 Uncertain Static Parameters

In our problem setting from Section 4.1 we study the case where the goal to be tracked or the
obstacle to be avoided are governed by uncertain dynamics. However, many robotic settings,
especially when sensing is involved, comprise static uncertain obstacles or goal. A problem
with such prerequisites has a slightly different treatment, as the goal and obstacle diffusions
are not present in the solution any more. Preceding the optimization, time independence
allows cost terms depending on the corresponding uncertain elements to be replaced by
expressions capturing the desired cumulants. To illustrate this, in this section we analyze
two examples where the cost function considers a static goal and a static obstacle. Note that
the solutions presented here are also valid for piecewise constant variables, i.e. a discretized
uncertain trajectory of desired set points and/or obstacles. These problems arise in many
PbD settings when task models are obtained as generalized trajectories, for example in [63]
or [70].

Consider a cost functional in the form

J(u(·)) = hg(x
r(Tc), x g(Tc)) +

Tc∫

t=0

hg(x
r(t), x g(t))+ ho(x

r(t), x o(t))

+ hso(x
r(t), x so(t)) + hu(u(t))d t , (4.38)

where hg(x
r(t), x g(t)) penalizes the distance to desired configurations, hu(u

r(t)) penal-
izes control efforts and ho(x

r(t), x o(t)) favors configurations distant to dynamic obstacles
and hso(x

r(t), x so(t)) to static obstacles. Note that ho and hso represent the same perfor-
mance measure but we explicitly defined different terms here for later clarity.

76



4.5 Uncertain Static Parameters

4.5.1 Static goal

Let x g be normally distributed and constant such that x g(t) ∼ N (x g |µg ,Σg). A typical
convex functional for goal-oriented behavior synthesis is the quadratic functional

hg(x
r(t), x g) =

1

2
(x r(t)− x g)TQ(x r(t)− x g) ,

where Q > 0. In this case, a marginal analysis of the cumulant generating function of (4.38)
in probability space (Ωg ,Fg ,Pg) is only relevant concerning hg(x

r(t), x g) (any other terms
are only present in the expected value as they are constant). Hence, considering an alterna-
tive bhg in (4.38) in terms of the desired cumulants yields a deterministic problem w.r.t to the
goal’s uncertainty. Its cumulant generating function is given by

logEPg
[exp{θhg(x

r(t), x g)}] = |Iqg
− θQΣg|

+
1
2
θ (x r(t)−µg)T(I − θQΣg)−1Q(x r(t)−µg) . (4.39)

By applying (4.11) and ignoring the constant term which does not depend on x r(t), the
calculation of any cumulant is straightforward. For example, the mean and variance of hg

are given by

EPg
[hg] =

1
2
(x r(t)−µg)TQ(x r(t)−µg) + const

VarPg
[hg] =

1
2
(x r(t)−µg)TQΣgQ(x r(t)−µg) + const

Any desired linear combination of cumulants is a valid substitute bhg(x
r(t), x g). Another

alternative is to directly use the risk-sensitive functional of hg

bhg(x
r(t), x g) = (x r −µg)T(I − θQΣg)−1Q(x r −µg) + const . (4.40)

It is remarkable that previous work rely on the Mahalanobis distance in order to approach
this problem [9,161], i.e.

1
2
(x r(t)−µg)T(Σg)−1Q(x r(t)−µg) .

This expression lacks a definition when the goal tends to the deterministic case, i.e.Σg → 0qg
.

Adding a regularization quantity given by the identity matrix to avoid this issue yields

1
2
(x r(t)−µg)T(I +Σg)−1Q(x r(t)−µg) . (4.41)

Observing (4.40), it becomes apparent that (4.41) is a specific instance of a risk-seeking
evaluation of hg , where θ = −1 and the goal variance is Q−1

Σ
g .
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4.5.2 Static obstacle

Let x so be normally distributed and constant such that x so(t)∼N (x so(t)|µso,Σso). An ef-
fective convex and continuously differentiable cost functional when dealing with obstacles
is given by

hso(x
r(t), x so) = αexp{−0.5(x r(t)− x so)TQ(x r(t)− x so)} ,

where α ∈ R is a weighting factor. In this case, its cumulant generating function has no
closed form. However, its expected value is given by

EPso
[hso] = const ·α · exp{(x r(t)−µso)T(I −QΣso)−1Q(x r(t)−µso)} . (4.42)

It is also straightforward to show that any higher order moments of hso do not depend
on x r(t); the expected value is the only cumulant of interest for the control problem.
Hence bhso = EPso

[hso] is the only uncertainty-dependent treatment of this problem based on
cumulants or moments. This result is equivalent to the generalized binary saturating cost
considered in [83] as an attractor instead of a repelling obstacle.

4.6 Evaluation

In order to illustrate the peculiarities of the proposed approach we study first the family of
solutions of a scalar discrete-time LQ regulator problem. Simulations on a point-mass robot
follow, where we consider first stochastic goal dynamics, later complemented with both static
and stochastic dynamic obstacles. Similar implementations of a car-like robot and a two-link
manipulator validate the proposed approach considering also non-linear plants.

4.6.1 Linear Quadratic Feedback Regulator

For simplicity, we consider first a 1-dimensional discrete-time mass-damper system with
quadratic costs in a infinite horizon feedback regulator scenario. The one-dimensional plant
dynamics of a point-mass with s additive uncertainty sources is given by

�
xk+1

ẋk+1

�
=

�
1 ∆

0 1−m−1d∆

��
xk

ẋk

�
+

�
0 0
0 m−1

∆

�
uk +

S∑

s=1

εs
k

, (4.43)

where x ∈ R is the point mass position, m and d its mass and viscous friction respectively
and the control input u is the applied force. The discrete-time cost function is

J =

k=∞∑

k=1

ξT
k
Qξk + uT

k
Ruk , (4.44)

where ξ =
�
x ẋ
�T

Q and R are the weighting matrix defining the trade-off between regu-
lation precision and control effort respectively. The control law is constrained to the feed-
back term, i.e. uk = −[Lx k L ẋ k]ξ and therefore lk = 0. The infinite horizon solution is ap-
proximated iteratively until convergence to a stationary cost-to-go, yielding a single station-
ary feedback gain. In the following results we fixed m = 1 kg, d = 1 Ns/m, R= I2, Q = I2

and ∆ = 10−3.
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Figure 4.1: Optimal positional gains w.r.t variance square root Σ1/2 for a linear quadratic
problem with dynamics (4.43), cost (4.44) with a single uncertainty source for
several risk-sensitive controllers with different risk-sensitivities in comparison
with the expected cost solution.

We first consider a single uncertainty source and therefore s = 1 in (4.43). The positional
feedback gains Lx w.r.t the variance square root are depicted in Fig. 4.1 for a range of risk-
sensitive controllers and a single uncertainty source. The expected cost solution depicted by
the gray solid line ignores any cost variability and remains constant neglecting the level of
uncertainty. However, risk-aversion, i.e. θ > 0, increases the resulting gains together with the
variance; variability is expected to diminish performance and feedback gains are increased
accordingly. In contrast, risk-seekingness, i.e. θ < 0 interprets cost variability as a cost dis-
counting agent consequently reducing both cost and gain. Equivalent results are illustrated
in Fig. 4.2 for several cost-cumulant controllers. Aiming for a fair comparison, cumulant
factors γi,s were set according to the power of the respective cumulant’s statistical order. The
influence of risk-aversion and risk-seekingness are similar to the risk-sensitive case: positive
factors γi,s > 0 increase cost with the respective cumulant yielding higher gains while nega-
tive factors γi,s > 0 have opposite effect. The role of the cumulant’s order in the solution is
also relevant. As uncertainty increases, the corresponding optimal feedback differs from the
expected cost according to the power of the respective cumulant’s statistical order.

In order to explore the average problems, we extend the previous evaluation to two iden-
tical uncertainty sources Σ1 and Σ2 respectively. The positional feedback gains Lx w.r.t to
both factors are depicted in Fig. 4.3 for 4 different combinations of risk-sensitive and cost-
cumulant controllers. In all cases, uncertainty source 1 and 2 are evaluated with equivalent
weighting factors but in a risk-averse and risk-sensitive manner respectively. Note that the
resulting gain for the classical E[J] solution is, as before, depicted in gray and corresponds
to Lx = 0.998N/m. Fig. 4.3(a) shows the risk-sensitive solution. The 2 marginal problems
are complementary: as Σ1 increases, so does the resulting feedback gain while as Σ2 de-
creases the gain diminishes. As a result, when both variance factors are at the same level,
the effects of both marginal computations balance out yielding the expected cost solution.
When a factor is higher than the other the corresponding marginal effect prevails. Fig. 4.3(b),
Fig. 4.3(c) and Fig. 4.3(d) show similar results considering only the second, third and fourth
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Figure 4.2: Optimal positional gains w.r.t variance square root Σ1/2 for a linear quadratic
problem with dynamics (4.43), cost (4.44) with a single uncertainty source for
several cost-cumulant controllers with different weighting factors in comparison
with the expected cost solution.
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Figure 4.3: Optimal positional gains w.r.t variances square root Σ1/2
1 and Σ1/2

2 for a linear
quadratic problem with dynamics (4.43), cost (4.44) and two uncertainty sources
for different risk-sensitive and cost-cumulant controllers, where γ=
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cumulant respectively. As before, when higher order cumulants are considered, gains are
adapted to the power of the respective cumulant’s statistical order. This explains the remark-
ably high or low gains as Σ1 and Σ2 approach their highest value in Fig. 4.3(d) for the fourth
cumulant. Note also that the mean-variance solution from Fig. 4.3(b) is almost identical to
the risk-sensitive solution from Fig. 4.3(a). In fact, as appointed in [155], when θ ≈ 0, the
risk-sensitive cost tends to a mean variance optimization as higher order terms cancel out. To
observe this equivalence, we set the factor of the mean variance optimizer such that it coin-
cides with the variance factor assotiated with the risk-sensitive solution as given in the series
expansion (4.14), i.e. γ2 = θ/2. However, this only holds for low risk-sensitivities θs: when
higher values are considered, higher order terms play a relevant role and the equivalence
does not hold anymore.
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Figure 4.4: Optimal trajectories and feedback gains for a 2D point mass damper robot x r

tracking goal x g with noisy passive mass-damper system dynamics and where
γn = 2 and γp = 7 for a horizon of Tc = 0.5s. Initial states of robot and goal
are x r

0 = [0 0], ẋ r
0 = [0 0], x

g

0 = [0.1 0.1] and ẋ
g

0 = [1 −0.5]. Results are shown
every 0.02s.

4.6.2 2D Point-Mass robot

To illustrate the influence of high-order cost statistics in simple robotic scenarios in the fol-
lowing we apply the algorithm described in Section 4.4 to simple robotic scenarios. The
consequences of risk-seeking and risk-averse cost evaluations are depicted considering first
stochastic goal dynamics, then stochastic obstacle dynamics and finally both cases at the
same time. An additional scenario complements these solutions by adding static uncertain
obstacles evaluated as explained in Section 4.5.

Consider a two-dimensional point robot with position x r ∈ R2, no orientation and second-
order dynamics given by the mass-damper system

M ẍ r + Dẋ r = u∗ .

The control task consists of following a goal x g ∈ R2 whose stochastic dynamics are con-
strained to a passive mass-damper system with noise. This is an equivalent scenario to the
problem of tracking a learned DMP, explained in Section 2.2.2, where an additional uncertain
forcing term drives the goal. The error state of the system is given by

ξ∗ = [(x g − x r)T (ẋ g − ẋ r)T]T .

The cost function takes the form (4.38), where

hg =
1

2
ξ∗TQ gξ

∗ hu =
1

2
u∗TRu∗ ho = 0 hso = 0 .

The optimal policy takes the form u∗ = u
∗
+[Lx g L ẋ g]ξ. In the following results, parameters

were fixed to M = I2 kg, D = I2 Ns/m, R= 10−2 I2, Q g = diag{ 1 1 0.1 0.1 } , ∆ = 10−2

and Tc = 0.5s. Goal dynamics are assumed to have infinitesimal variance G g = I4 and iden-
tical mass and damping to the robot’s.
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Optimal trajectories and positional gains Lx g for several cost cumulant and risk-sensitive
controllers are depicted in Fig. 4.4. Ellipses represent the corresponding feedback gain ma-
trices in terms of their eigenvectors. The solution corresponding to the expected cost de-
picted in Fig. 4.4(a) serves as the risk-neutral reference. Fig. 4.4(e) and Fig. 4.4(i) show
risk-sensitive solutions in their seeking and averse variants respectively. The risk-seeking
policy not only adopts significantly lower feedback gains but also adapts its feedforward
trajectory to a less accurate positional tracking. This policy is desirable when goal un-
certainty suggests more flexibility, for instance in PbD settings [73]. The risk-averse so-
lution has the opposite effect, tracking goal dynamics more aggressively as well as in-
creasing feedback gains. This behavior is more in accordance with navigation scenarios
where uncertainty may hinder performance [150]. Cost cumulant solutions are shown
in Fig. 4.4(f), Fig. 4.4(g), Fig. 4.4(h) for the second, third and fourth cumulant in their
risk-averse variants. All three cases are similar: the feedforward trajectory is significantly
adapted aiming for more accurate tracking together with higher feedback gains. Their risk-
seeking counterparts depicted in Fig. 4.4(b), Fig. 4.4(c), Fig. 4.4(d) show little difference
w.r.t the risk-neutral policy Fig. 4.4(a). Although one could decrease the respective nega-
tive weightings to boost their effect, the presented solutions are close to the limit yielding a
positive-definite inverted term in lemma (4.37).

To evaluate the influence of high-order statistics when uncertain dynamic obstacles are
present, the considered dynamics are extended to include a dynamic obstacle with position x o

with passive mass-damper dynamics with noise. This is a similar setting to the one considered
in [157]. The error state of the system is given by

ξ∗ = [(x g − x r)T (ẋ g − ẋ r)T (x o − x r)T (ẋ o − ẋ r)T]T . (4.45)

The cost remains identical to the previous setting except for the dynamic obstacle-related
term, which is set to ho = wexp{−0.5(x r − x o)TQo(x

r − x o)}, with Qo = 200I2 and w = 0.1.
The optimal policy is now

u∗ = u
∗
+

�
Lx g L ẋ g

Lx o L ẋ o

�
ξ.

Obstacle dynamics are assumed to have infinitesimal variance G o = I4 and identical mass
and damping to the robot’s.

The optimal trajectory, positional goal gain Lx g and obstacle gain Lx o for several cost cu-
mulant and risk-sensitive controllers are illustrated in Fig. 4.5 considering only the marginal
variability produced by the obstacle’s diffusion process. The standard risk-neutral policy is
shown in Fig. 4.5(a). Risk-sensitive solutions are depicted in Fig. 4.5(e) and Fig. 4.5(i) for
the risk-seeking and the risk-averse variants. The risk-seeking solution decreases obstacle
gains Lx o dramatically and as a consequence positional gains increase. In contrast, the risk-
averse solution adapts feedforward terms, choosing a trajectory further away to the obstacle.
Cost-cumulant solutions are illustrated in Fig. 4.5(f), Fig. 4.5(g), Fig. 4.5(h) for risk-averse
variants of the second, third and fourth cumulant respectively. Especially for the fourth cu-
mulant, solutions show adapted trajectories aiming for configurations distant to the obstacle.
The risk-seeking cost-cumulant solutions are shown in Fig. 4.5(b), Fig. 4.5(c), Fig. 4.5(d) for
the second, third and fourth cumulant respectively. In contrast to the risk-sensitive solution
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Figure 4.5: Optimal trajectories and feedback gains for a 2D point mass damper robot x r

tracking goal x g with passive mass-damper system dynamics and avoiding ob-
stacle x o with noisy passive mass-damper system dynamics and where γn = 1.9
and γp = 3 for a horizon of Tc = 0.5s. Initial states of robot, goal and obsta-
cle are x r

0 = [0 0], ẋ r
0 = [0 0], x

g

0 = [0.1 0.1], ẋ
g

0 = [1 − 0.5], x o
0 = [0.15 0.15]

and ẋ o
0 = [1 − 0.5]. Results are shown every 0.02s.

from Fig. 4.5(e), feedforward terms are significantly adapted obtaining a trajectory closer to
the obstacle, especially for the fourth cumulant. Note that, with obstacle avoidance in mind,
risk-aversion is a desirable property as it diminishes the risk of collisions.

We now explore solutions considering both the goal’s and the obstacle’s marginal variabil-
ity. In the following, as goal variability expresses uncertainty about the desired trajectory to
follow, we consider it in a risk-seeking way. In contrast, variability produced by the obstacle’s
uncertainty may result in potential collision and is evaluated in a risk-averse manner. The re-
sults for this setting for a risk-sensitive controller and a mean-variance controller are depicted
in Fig. 4.6. The mean-variance solution is depicted in Fig. 4.6(b), which clearly shows a dif-
ferent trajectory to the risk-neutral one from Fig. 4.6(a). It is also interesting to compare this
solution with Fig. 4.5(f), as both policies consider the same risk-averse marginal obstacle vari-
ability γ2

p
VarPo

[J]. The inclusion of the risk-seeking marginal goal variability −γ2
n
VarPo

[J]

demands less accurate goal tracking enabling a more pronounced adaptation to the obstacle’s
stochasticity. Similar although less remarkable are the results for the risk-sensitive optimiza-
tion shown in Fig. 4.6(c) in comparison with Fig. 4.5(i) as the resulting trajectory avoids the
obstacle trajectory more notably.

To envisage a more realistic setting we let the goal and obstacle mass-damper systems
be driven by external forces u g =

�
cos(2x

g

1 ) sin(2x
g

2 )
�T

and u o =
�
cos(10x o

1) sin(10x o
2)
�T

.
We further consider static normally distributed obstacles in the scene by setting the static ob-
stacle term hso from (4.38) to the expected value of the weighted exponential decay (4.42)
as explained in Section 4.5, with Q = I2 and w = 0.1. The resulting trajectories are shown
in Fig. 4.7(b) for the mean-variance case in comparison with the risk-neutral policy from
Fig. 4.7(a). On one side, risk-aversion towards obstacle variability yields a pronounced de-
viation at the beginning of the simulation due to the proximity of the obstacle. As a result,
obstacle feedback gains are almost nullified. On the other side risk-seekingness w.r.t the
goal variability favors less accurate tracking enabling better obstacle avoidance. The influ-
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Figure 4.6: Optimal trajectories and feedback gains of the same problem from Fig.4.5 con-
sidering both the goal’s and the obstacle’s marginal variability, where γn = 3.5
and γp = 3. Results are shown every 0.02s.

ence of the static obstacles’ uncertainty is also evident; the one with low variance centered
at (−0.3, 0.8) produces almost no deviations from the expected goal trajectory in compari-
son with the obstacle with high variance centered at (−0.6, 0.8). In order to illustrate the
influence of the uncertainty level in the resulting plocy, Fig. 4.8 shows solutions for the same
setting but with different infinitesimal variance. From Fig. 4.8(a) to Fig. 4.8(d), decreasing
uncertainty for both obstacle and goal dynamics are considered, showing results with devia-
tions between Fig. 4.7(b) and Fig. 4.7(a). In fact, as noise levels tend to zero, results approach
the risk-neutral solution as shown by the almost deterministic setting from Fig. 4.8(d). This
suggests that the application of the proposed approach is a natural and systematic method
of considering uncertainty.

4.6.3 Non-linear plants

In order to evaluate the validity of the algorithm when non-linear plants are considered,
similar settings to the one presented in Fig. 4.7 are applied to a two-link manipulator and a
car-like robot.

Two-link manipulator

Consider a torque-controlled arm with two joints moving in the horizontal plane with inverse
dynamics

M (θ )θ̈ +C (θ , θ̇) +B θ̇ = τ ,

where θ ∈ R2 are the joint angles, M (θ ) is the inertia matrix, C (θ , θ̇) is the vector of
centripetal and Coriolis forces,B is the joint friction matrix and τ ∈ R2 are the joint torques.
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Figure 4.7: Optimal trajectories and feedback gains for a 2D point mass damper robot x r

tracking goal x g with mass-damper system dynamics and avoiding obstacle x o

with noisy mass-damper system dynamics including static obstacles and where
γn = 2 and γp = 4 for a horizon of Tc = 2s. The two static obstacles considered
are normally distributed, centered in (−0.3, 0.8) and (−0.6, 0.8) with covariance
matrices 0.1I2 and 0.5I2 respectively. Initial states of robot, goal and obsta-
cle are x r

0 = [0 0], ẋ r
0 = [0 0], x

g

0 = [0.1 0.1], ẋ
g

0 = [1 − 0.5], x o
0 = [0.15 0.15]

and ẋ o
0 = [1 − 0.5]. Results are shown every 0.02s.

Following [?] we set the mass of each link to m1 = 1.4kg and m2 = 1.1kg, the length of
each link to l1 = 0.3m and l1 = 0.33, the moments of inertia to I1 = 0.025 kg ·m2 and I2 =

0.045 kg ·m2 and we assume the center of mass of each link is placed at the link’s center.
The joint friction matrix is set to

B =
�

0.05 0.025
0.025 0.05

�
.

In line with the previous subsection, the control task consists of tracking a goal x g ∈ R2

with uncertain passive mass-damper dynamics while avoiding a dynamic obstacle x o ∈ R2

with similar dynamics. The state of the system is given by (4.45), where x r are now the
workspace coordinates of the manipulator and the control input u∗ are the joint torques in
workspace coordinates. The cost function is identical to the previous subsection with the
same parameters.
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Figure 4.8: Optimal trajectories and feedback gains for the same setting from Fig. 4.7 but con-
sidering different infinitesimal variances for the obstacle and goal diffusions. (a)
shows results for G g = G o = 0.8I4, (b) for G g = G o = 0.5I4, (c) for G g = 0.2I4

and G o = 0.1I4 and (d) for G g = G o = 0.01I4.

Optimal trajectories and feedback gains are shown in Fig. 4.9 for the expected cost policy
in comparison with the mean variance solution. In accordance with the behavior observed in
the point mass example, the risk-averse evaluation of obstacle variability drives the optimal
trajectory away from the goal at the beginning of the simulation. This effect is also boosted
by the risk-seeking evaluation of goal variability, which also enables a more pronounced
avoidance of the static obstacle.

Car-like Robot

Consider a simplified car-like robot model with state space x r =
�
x1 x2 θ v c

�T
and

dynamics

ẋ1 = v cosθ ẋ2 = v sinθ θ̇ = vc v̇ = u1 ċ = u2 (4.46)

where x1 and x2 denote the 2D position, θ the orientation, v the velocity, c the curvature
and the control input is given by u =

�
u1 u2

�T
.

The control task consists of tracking goal x g with passive uncertain dynamics (4.46)
while avoiding an obstacle x o with uncertain passive mass-damper dynamics with five- and
four-dimensional Brownian motions respectively. Their infinitesimal variances are given
by G g = diag{ 1 1 1 0 0 } and G o = I4. The state of the system is given by

ξ∗ =
�
(x g − x r)T (x o − [x1 x2]

T)T (ẋ o − [ ẋ1 ẋ2]
T
�T

.

The cost function considered is identical to the previous setting, except for the goal’s
quadratic weighting matrix and the control input’s weighting matrix, which are set
to Q g = diag{ 1 1 0 0 0 } and R= 10−5 respectively.

The resulting optimal trajectories are depicted in Fig. 4.10 for the risk neutral and
the mean variance solution with aversion towards obstacle-related variability and risk-
seekingness towards goal-related cost variance. The goal tracking flexibility provided by the
risk-preferring evaluation of goal variability enables deviations from the desired trajectory,
providing improved obstacle avoidance.
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Figure 4.9: Optimal trajectories and feedback gains for a two-link manipulator x r tracking
goal x g with passive mass-damper system dynamics and avoiding obstacle x o

with noisy passive mass-damper system dynamics including static obstacles and
where γn = 6 and γp = 3. The static obstacle considered is normally distributed,
centered at (−0.1, 0.45) with covariance matrix 0.3I2. Initial states of robot,
goal and obstacle are x r

0 = [0.3 0.4], ẋ r
0 = [0 0], x

g

0 = [0.3 0.4], ẋ
g

0 = [0 −0.7],
x o

0 = [0.42 0.4] and ẋ o
0 = [0.3 − 0.6]. Results are shown every 0.02s.

4.7 Summary

In this chapter we studied the design of uncertainty-dependent optimal control schemes. The
emergence of probabilistic methods in robotic settings motivates the design of such decision-
makers, which consider uncertainty as a decisive parameter that influence decisions. We
presented a systematic approach to this problem by analyzing stochastic optimal control
problems for dynamics with multiple additive uncertainty sources. In constrast to classi-
cal stochastic optimal control solutions, the optimization criterion presented in Section 4.1
considers not only the expected cost but also an arbitrary weighted sum of cost cumulants.
Cumulants represent high-order cost statistics and properly capture the influence of uncer-
tainty on the cost. The weighting factors determine the assessment of cumulants on the cost,
acting either as a discounting measure or an additive penalty. In addition, the cost variability
produced by each uncertainty source is treated marginally. This fact enables the design of
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Figure 4.10: Optimal trajectories for a car-like robot x r tracking a goal x g with similar
but stochastic and passive dynamics while avoiding an obstacle x owith noisy
passive mass-damper dynamics for a horizon of Tc = 2s, where γn = 0.35
and γp = 0.35. The static obstacle considered is normally distributed, centered
at (0.4, 0.3) with covariance matrix 0.1I2. Initial states of robot, goal, and ob-
stacle are x r = [ 0 0 0 0.01 0.01 ], x g = [ 0.01 0.01 0.1 0.4 0.8],x o

0 =

[0.05 0.15] and ẋ o
0 = [0.2 0.3]. Results are shown every 0.2s.

decision-makers that react differently depending on which uncertainty source is responsible
for cost variability. The risk-sensitive solution, which considers a specific infinite sum of cost
cumulants, and the arbitrary cost-cumulant solution are developed in Section 4.2 and Sec-
tion 4.3 respectively for linear quadratic systems. The application of the proposed approach
in non-linear and non-quadratic settings is then studied in Section 4.4. Locally optimal feed-
back solutions are found by iteratively performing linear quadratic approximations around a
nominal trajectory, solving the local problem and updating the trajectory until convergence.
To facilitate the application of the proposed approach in more general problems, Section 4.5
introduced solutions for settings where uncertainty is not present in the equations of mo-
tion themselves but in static parameters of the cost such as a desired goal and an obstacle’s
position. The experimental evaluations from Section 4.6 present simulations in both linear
and non-linear and non-quadratic problems, which validate our method and depict its pecu-
liarities. The proposed approach is proven a valid and systematic option for the increasingly
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frequent problem of robot control under uncertainty.
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5

Model-based Anticipatory Control for

Human-Robot Cooperative Manipulation

Among all goal-oriented control schemes for physical assistance, anticipation based on hu-
man behavior prediction is a specially compelling option. It provides superior performance
in terms of human behavior minimization by exploiting human behavior models. However,
its implementation entails additional challenging issues concerning robot control. Due to the
continuous physical coupling between agents, when robot’s expectations mismatch human
intentions undesired interaction forces appear incurring safety risks and discomfort. This
fact illustrates the impasse that robot decisions must cope with: on one side, predictions
enables effective anticipation but on the other side, they potentially produce unpleasant or
even dangerous disagreements when prediction errors occur. A deeper understanding of
causes and consequences of disagreements and an a priori estimation of potential errors are
instrumental steps towards designing intuitive and helpful physical assistants.

This chapter explores anticipatory model-based control schemes with special emphasis on
learned probabilistic/statistical behavior models. To identify advantages and limitations of
anticipatory robotic helpers, in Section 5.1 we first evaluate the feasibility of proactive as-
sistants acquiring behavior models during interaction with simple tracking control schemes.
Results reveal the importance of successful human behavior prediction, which effectively
reduces human effort. In contrast, wrong predictions significantly hinder the interaction
producing undesired interaction forces. These insights motivate the study of three relevant
open issues:

• The identification of internal wrench components which express disagreement between
agents and the effective load shares that each agent accounts for. Their characterization
enables the acquisition of richer interaction models and intuitive control schemes that
react to disagreements.
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• The explicit consideration of prediction uncertainty in robot control. Prediction uncer-
tainty serves as an a priori estimation of potential prediction errors and should influ-
ence robot actions.

• The selection of the most appropriate model when several behavior models are avail-
able. Realistic applications comprise multiple tasks and therefore multiple models. A
strategy to select the most promising one is necessary.

The rest of this chapter addresses these three open challenges. Section 5.2 presents a
physically-consistent characterization of internal and effective wrench components and their
relation with disagreement between agents and load distributions. Supported by this anal-
ysis, Section 5.3 presents a novel uncertainty-dependent anticipatory control scheme that
adapts to disagreements and prediction variance for navigation tasks. Section 5.4 extends
this approach to tasks including environmental contacts. Finally, when multiple behavior
models are available, the benefits of an efficient dynamic strategy selection scheme are pre-
sented in Section 5.5.

5.1 Emerging Assistance: a Feasibility Study

The presence of a human physically interacting with a robot imposes remarkable challenges
for robot control design. At the same time, it is also an opportunity to exploit the human
partner’s cognitive capabilities and acquire valuable experience. Here, we study the con-
cept of emerging assistance where a robotic partner, initially purely reactive, increases its
proactive task contribution as it gathers more experience, as depicted in Fig. 5.1. When first
executing a task jointly with the human, the robot only reacts to the haptic input received
from its partner through the object. At this point, being unaware of the task goal, the robot
is limited to a passive follower and the human consequently leads the task. As the execu-
tion advances, the robot incrementally builds a task model based on observed data coming
from its sensors. This acquired task knowledge allows the robot to anticipate human action
increasing its proactive contribution. The goal of the generated behavior is to reduce human
workload during task execution. This concept is similar to the PbD scenario but where both
demonstration and reproduction phases take place at the same time.

In the following, the robot behavior is realized implementing an admittance control law

Mr ẍ + Dr ẋ = uh + u r (5.1)

with a rendered virtual mass Mr and rendered virtual viscous friction Dr . The human-desired
trajectory is estimated based on previous experience by means of the incremental learning
algorithm described in Section 3.1, which models the task in terms of observed configuration
and twist, i.e. ξ=

�
x T ẋT
�T

. The assistive robot behavior is then rendered by a proportional-

derivative controller given normally distributed predictions ξ̂d =
�
x̂T

d
ˆ̇x

T

d

�T
as

u r = Kẋ (E[ ˆ̇x d]− ẋ ) + Kx (E[x̂ d]− x ) (5.2)

where Kẋ and Kx denote the proportional and derivative control gains respectively.
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5.1 Emerging Assistance: a Feasibility Study

With this simple control scheme, in this section we evaluate the feasibility and properties
of emerging assistance in two scenarios. In Section 5.1.1 we present a user study in a two-
dimensional virtual scenario. A proof-of-concept implementation with a human-sized robot
is exposed in Section 5.1.2. Results indicate reduced human effort but also reveal interesting
open challenges described in Section 5.1.3.
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Figure 5.1: Proposed approach for emerging assistance: from a passive follower to a proac-
tive task contributor ny means of learning from demonstrations and interaction
control.

5.1.1 Experiments in a 2 DoF Virtual Scenario

To confirm the validity of the proposed approach we chose a simple virtual scenario for a
task consisting of tracking a predefined path using the two-dimensional virtual scenario. A
user study confirms that, after several repetitions of the task, the robot succesfully builds a
model of the human behavior and its assistance emerges reducing the applied human force.

Experimental Setup

The two dimensional haptic interface used in this experiment is described in appendix A.1.
The learning and prediction framework is implemented in an online fashion in C++ and
executed on a personal computer with an update rate of 20 Hz. Each segment and each node
is encoded in an HMM with N = 10 states and K = 1 Gaussians per state as explained in
Section 3.1. In order to form a node in the primitive tree, a group of at least M = 3 members,
see Section 3.1.2, is needed and only the upper nodes of each branch are considered for the
prediction. For the primitive recognition, the incoming observations consider a window of
30 samples and a window HMM with 20 states is used. The predicted data is generated for
a 0.3 s time horizon in the future. When only part of the task has been learned, predictions
are, at some points, far away than the expected future trajectory. To avoid disturbing the
human in such cases, we ignore the predicted points that are further away than 0.02 m from
the current position.
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The parameters from equations (5.1) and (5.2) are set to the following values

Mr = diag (40kg 40kg)

Dr = diag (90Ns/m 90Ns/m)

Kx = diag (200N/m 200N/m)

Kẋ = diag (90Ns/m 90Ns/m)

The high mass and damping values of the robot admittance emulate a heavy virtual object
making tracking the pre-defined trajectory difficult for the human. As the assistance of the
robot provides a force in the human desired direction, once the assistance is effectively work-
ing, a lower human force is expected or, equally valid, the task execution time decreases due
to the robot’s help.

We performed an experiment with 6 subjects1 (all male, average age 28) for the task pre-
sented in Section 3.1 consisting on following a path describing a flower, as shown in Fig. 3.3.
The task was repeated cyclically 20 times, and the robot was learning and assisting during
the whole experiment. To decouple the influence of the robot assistive input from any possi-
ble learning effect of the human user interacting with the haptic device, after 15 repetitions,
the robot assistive input was nullified, i.e. ur = 0, and activated again 3 repetitions later.
The subjects had the opportunity to familiarize with the haptic device for a few minutes
before the experiment and they were told to follow the pre-defined trajectory for the given
repetitions.

Results

As shown in Fig. 5.2(b) the human force decreases together with the prediction error, de-
picted in Fig. 5.2(a), but starts rising on the ninth repetition, caused by a progressively faster
speed execution, as shown in Fig. 5.2(c). As the assistance is turned off between repetitions
16 to 18, the human force clearly rises and the executions even become slower. Turning the
assistance on again produced the expected previous results, which discards any improved
efficiency due to a learning effect from the human side.

In order to decouple results from task execution speed, we performed the same experi-
ments fixing a constant task completion time of 32 s by adding an exemplary execution to be
followed. Subjects were told to follow a black dot showing the exemplary run. As shown in
Fig. 5.3 the assistance’s effect becomes more significant and the consequences of nullifying it
more evident: human force clearly decreases together with prediction errors and when the
robot stops assisting the initial values of human force are recovered. It is also remarkable,
that, due to the anticipatory nature of the proposed approach and as the learning algorithm
does not discard previously learned information, even when the robot was left on its own
(the human releases the handle), it still accomplishes the task. This serves as an example
of a continuous kinesthetic teaching where the robot learns as it reproduces the task while
being corrected by the human teacher.

1Although results from 6 different subjects do not allow for statistical significance, trends can be observed.
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Figure 5.2: Assistance results. All three plots show the evolution per repetition of the task.
The mean values of the prediction error, the human force and the time execution
per repetition of the task are presented in a), b) and c) respectively. The gray
region marks the 3 executions where the assistive input is nullified, i.e. u r = 0
in (5.1).

5.1.2 Experiments in a Full-Scale Scenario

To evaluate the considered approach in more realistic settings we conducted a full-scale
experiment in our laboratory. As an exemplary domain, we chose a classic-car restoration
setting.

Experimental Setup

The robot used in this experiment is described in appendix A.2. The manipulated object,
a 1.2m long Mini’s steel bumper (b) weighing 1.9kg is depicted in Fig. A.2. The distance
between the pre-defined grasp points of human and robot is 1.1m. The task consists of the
joint transportation of the bumper together with a human partner from an initial position,
at the top left of the top-view of our lab, see Fig. 5.6, to the mounting position at the front
of the car. A wall and a trolley represent the environmental obstacles present in the scene.
In this proof-of-concept implementation, a human user performed nine trials following three
different paths.

The underlying control concept of the manipulator-base coordination adopted in this ex-
periment is depicted in Fig. 5.4. Similar to [162], the admittance control law is calculated in
inertial coordinates so that repositioning of the mobile base does not affect the end-effector
position. The actual end-effector pose Rx m is used to derive a velocity command R ẋ b to the
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Figure 5.3: Assistance results with constant execution time. The mean values of the predic-
tion error and the human force per repetition of the task are shown in a) and b)
respectively. The gray region marks the 3 executions where the assistive input is
nullified, i.e. u r = 0 in (5.1).
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Figure 5.4: Inertial admittance-type control scheme

mobile base, following the base control law:

R ẋ b =




φ̇

ẋ

ẏ



 = diag
�
Khd g Kdst Ktng

�



ehd g

edst

etng





Three independent proportional control laws move the mobile base minimizing heading er-
ror ehd g , distance error edst and tangential error etng of the base pose w.r.t. the end-effector
pose Rx m, as illustrated in Fig. 5.5.

A reference pose of the end-effector Rx d is chosen to meet certain requirements regarding
task-related manipulability. The resulting motion command R ẋ b is then executed by an omni-
directional velocity control law as proposed in [163].

For simplicity, the implementation of the impedance control law is reduced to the x/y-
plane. The parameters from equations (5.1) and (5.2) to

Mr = diag
�
15kg 15kg 0.3kgm2

�

Dr = diag (80Ns/m 80Ns/m 7Nms/rad)

Kx = diag (0 0 0)

Kẋ = diag (30Ns/m 30Ns/m 0.1Nms/rad)

Note, that the zero-value for Kx leads to a drift-free behavior of the assistance controller
to compensate for drift induced by the robot’s odometry. The 12-dimensional observation
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Figure 5.5: Base pose control w.r.t. to a reference pose Rx d of the manipulator’s end-effector.
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Figure 5.6: 2-dimensional position component of 12-dimensional training data from three
trials per each of three semantically different paths

space ξ of the time-based HMM training method is composed of the following dimensions in
inertial coordinates:

• the 3-dimensional position of the end-effector 0p

• the 3-dimensional angular velocity 0ω

• the 6-dimensional wrench 0u in inertial coordinates

As unified Gaussian computations on 6-D poses remain a computationally extensive prob-
lem [164], we use angular velocities as unambiguous training input.

The online learning algorithm implementation is the same as in the previous experiment
but in this case is parameterized as follows. Each segment and each node is encoded in an
HMM with N = 15 states and 1 Gaussian per state. In order to form a node in the primitive
tree, a group of at least M = 2 members is needed. We use a window of 90 samples over the
incoming observations for the primitive recognition and a window HMM with 30 states with
a prediction horizon of 0.3 s.

Results

Fig. 5.6 depicts the 2-dimensional position component of the nine trials performed with our
system in this scenario. Note that the odometry drift leads to diverging paths. In Fig. 5.7 the

97



5 Model-based Anticipatory Control for Human-Robot Cooperative Manipulation

x [m]

y
[m
]

00

2

2

4

4

6

6

8

8

10

10

before
the trolley

left of
the trolley

right of
the trolley

behind
the car

right of
the car

between car
and trolley

left of
the car

Figure 5.7: 2-dimensional position component of 12-dimensional generalized output for the
graph nodes. The red box represents the furcation area examined in Fig. 5.8.
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Figure 5.8: Wrench component uh,y plotted for three different conditions of assistance. The
window for position x is centered around the node transition ’before the trolley’
- ’left/right of the trolley’.

2-dimensional position component of the 12-dimensional generalized output of the learning
algorithm after observing all trials from Fig. 5.6 is shown. It is remarkable that training data
did not yield the necessary characteristics for successful segmentation in the region close to
the car, as the human partner had difficulties to avoid collisions between the robot and the
car in narrow space.

The effect of successful prediction is visible in Fig. 5.8. Due to its relevance, we present
data of the first bifurcation as marked in Fig. 5.7. The green line shows the baseline imple-
mentation: a passively following robot. Significant force is required to pull the robot into
the y-direction, perpendicular to the primary direction of motion. The red line shows how
completely successful prediction due to user feedback leads to significantly reduced forces.
The case of false prediction was provoked to generate the force trajectory shown in black.
However, after the positive slope along a distance of approx. 0.5m, the prediction is corrected
and the force returns to a comparable absolute value as in the correctly predicted case.

As an indicator of effective assistance, we consider the required human wrench input as a
suitable measure for the performance evaluation of the assistance. Fig. 5.9 shows the average
human applied wrench components per bifurcation in the passive case (green) in comparison

98



5.1 Emerging Assistance: a Feasibility Study

x y φ
00

5

10

15

20

uh [N]

0.5

1.0

1.5

2.0

uh [Nm]

b
et

te
r

Figure 5.9: Average human force and torque input per bifurcation situation for the no assis-

tance, false and successful prediction from left to right.

with anticipatory assistance for both false (black) and successful (red) prediction. In case
of a successful motion prediction (red), results show that human force can be significantly
reduced w.r.t. a passive follower (green). In contrast, it is remarkable that in the case of
wrong predictions (black), the human wrench contribution considering torque components
exceeds the passive follower. This fact reveals that human behavior anticipation is a double-
edged sword: in the case of successful prediction it diminishes the necessary human workload
but mispredictions produce higher interaction forces than pure passive followers.

5.1.3 Challenges of Model-based Anticipatory Physical Assistants

The experiments presented in the previous two subsections reveal that anticipation based
on learned models is an effective strategy for reducing human wrench contribution. Results
from Section 5.1.1 show a significant decrement of the required human force as the robot
accumulates task experience. In contrast, in case of misprediction, anticipatory motion gen-
eration yield clear disadvantages even in comparison with passive control schemes, as results
from Section 5.1.2 illustrate. In such cases, the human partner must exert additional coun-
teracting wrench components that compensate for the robot’s wrong assistive input. These
results motivate the study of the following open issues for anticipatory physical assistants:

• The identification of counteracting wrench components that arise during interaction.
These components indicate the existence of discrepancies with the human partner in
terms of some the control problem assumptions. Observing such components enables
the acquisition of behavior models that predict not just a potential desired trajectory ξd

but also the predicted interaction wrenches that following ξd imply. This issue is stud-
ied in Section 5.2, where effective and internal wrenches are identified together with
the effective loads that each agent accounts for.

• The consideration of the expected prediction precision in the anticipatory control
scheme. In the case of probabilistic or statistical behavior models, prediction variance
is a suitable indicator of accuracy. This provides an a priori estimation of potential
disagreements with the human. Control schemes studying this problem are presented
in Section 5.3 and Section 5.4 for navigation tasks and task requiring contacts with the
environment respectively.

• The selection of the most appropriate model when several models are available. This
issue is addressed in Section 5.5, where we present a dynamic strategy selection scheme
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depending on a short-term retrospective evaluation of prediction performance. In ad-
dition, a simple model relying on human sensed wrenches is also introduced, becoming
a suitable alternative when no available behavior model matches human intentions.

5.2 Wrench Decomposition and Effective Load

The identification of internal wrench components is a key step in the design of efficient goal-
oriented physical assistants. It enables control design regulating counteracting components
as well as the acquisition of richer behavior models. Internal wrench components depend on
the effective load that each agent accounts for. In this section we study both quantities and
present relevant measures for evaluating physical interaction between proactive agents.

5.2.1 Problem Formulation

Consider the N -agents system from Section 2.1. For simplicity of illustration, no environ-
mental contacts are considered and the object-centered dynamics of the system are given
by

Mo ẍ (t) + ho(x(t), ẋ(t)) = u(t) = Geu(t) = GAud(t) . (5.3)

This section explores two complementary problems:

• Given a desired resulting wrench ud , what are the possible physically consistent de-
composition matrices A that produce no counteracting wrenches? (Section 5.2.2)

• Given the observed agents’ wrenches eu, what is the corresponding load share that
each agent accounts for and which are the effective and counteracting components?
(Section 5.2.3)

Physically consistent definitions of disagreement and load share are further proposed in Sec-
tion 5.2.4. With this analysis, behavior models for cooperative manipulation tasks can be
characterized not just by the observed trajectory x(t) but also the observed load distribution
and internal wrench components. These models are better suited for later control design than
models considering x (t) and applied wrenches eu, as in [41]. Although applied wrenches im-
plicitly represent both internal and effective components, they are not isolated. This prevents
from any control design targeting internal or effective components separately.

5.2.2 Non-Uniform Wrench Decomposition Matrices

Introduced in Section 2.1, the design of the matrix A in (5.3) determines the agent
wrenches eu that yield a desired ud . A desirable characteristic is the absence of counteracting
components in the resulting eu, which produce unnecessary work but have no influence on
dynamics (5.3). A recurrent approach in the literature is the Moore-Penrose pseudoinverse
of G, denoted G+, which yields the solution minimizing ||ud −Aeu|| with minimum norm eu
and thereby assuming a uniform allocation policy. This approach lacks physical consistency
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as the norm of a wrench, consisting of both forces [N] and torques [Nm], is physically unde-
fined. A valid option are generalized inverses [165], which define some predefined weighting
in order to define the otherwise physically inconsistent norm [166], similarly yielding uni-
form allocations. However, humans clearly exhibit non-uniform distributions and even favor
asymmetric load distributions interacting in dyads [46]. In this subsection we aim for a
physically consistent decomposition that supports non-uniform allocations policies.

To ensure physical consistency, we first abstract the analysis from object geometry and
grasping constraints by setting it in the object frame as in [167]. In this basis set force and
torque components are decoupled and treated independently. Let u i be the applied wrench
of agent i on the object frame, such that u i = Gieu i. Its force and torque components and the
resulting wrench are denoted

u i =

�
f i

τi

�
ud =

�
f d

τd

�

In the object frame the decomposition problem is the design of A such that

u = Aud ud = GAud , (5.4)

where we defined the stacked forms

G =
�
I1 I2 · · · IN

�
u =
�
u1 u2 · · · uN

�
,

with similar definitions for force and torque components.
The decomposition matrices A representing allocation policies inducing no internal stress

are defined in the following proposition.

Proposition 5.1. The family of solutions satisfying (5.4) yielding no counteracting wrenches is

given by

A=
�
A1 A2 . . . AN

�T
,

where

Ai = diag
�
α f ,i α f ,i α f ,i ατ,i ατ,i ατ,i

�
, (5.5)

and

α f ,i,ατ,i ≥ 0 ∀i = 1 · · ·N
L∑

i=1

α f ,i = 1
L∑

i=1

ατ,i = 1 . (5.6)

Proof. Consider first only the force components. Gauss’s principle of least constraint or least
forcing states that the true motion of a mechanical system of N masses minimizes

J =

N∑

i=1

mi||p̈ −
f i

mi

|| , (5.7)
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where mi is the i-th effective mass and p is the object’s position. The multi-agent formulation
of (5.3) represents a multibody system where each of the bodies are constrained to the same
position p and share the overall mass of the object m0, i.e.

N∑

i=1

mi = m0 mi ≥ 0 . (5.8)

From (5.4) and (5.5), the assigned force component of the i-th agent is given by

f i = α f ,i f d (5.9)

Applying (5.5) produces a resulting wrench
N∑

i=1
α f ,i fd = fd and an acceleration p̈ =

f d

m0

.

The effective mass that agent i is accounts for must fulfill Gauss’s principle and therefore
minimizes J . The stationary point fulfills

∂ J

∂mi

=

∂

�
mi

���
���

f d

m0

−
α f ,i f d

mi

���
���
�

∂mi

= 0 .

Solving for mi yields

mi = α f ,im0 ,

and therefore α f ,i =
mi

m0

represents the normalized effective mass for agent i. Conditions (5.6)

ensure the fulfillment of constraints (5.8).
From (5.8), the resulting acceleration considering the sum of effective masses must be

consistent with the overall acceleration, i.e.

f d

N∑
i=1

mi

=
f d

m0

.

As a result the components accounting for the effective masses fulfill

N∑
i=1

mi

m0
f d =

N∑

i=1

α f ,i f d = f d ,

yielding definition (5.9) and ensuring that f i comprise only effective wrenches.
The proof for torque components yielding the normalized effective moment of inertia ατ,i

are derived in an identical manner.

The duple {α f ,i,ατ,i} represents the load share in terms of the fractions of the overall mass
and inertia of the system (5.3) that agent i accounts for. Consider now a dyadic setting where
a human interacts with a robot with load shares {α f ,h,ατ,h} and {α f ,r ,ατ,r} respectively. It
is interesting to comment extreme cases of load distributions
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• {α f ,h = 1,ατ,h = 1} and {α f ,r = 0,ατ,r = 0}, which corresponds to a passive robotic
partner or, similarly, a kinesthetic teaching scenario for a learning assistant.

• {α f ,h = 0,ατ,h = 0} and {α f ,r = 1,ατ,r = 1}, which corresponds to a proactive robotic
partner that accounts for all necessary effort or, similarly, the reproduction phase in a
PbD setting.

All load distributions lying in between correspond to cooperative settings where the
load is effectively shared. Note that the generalized Moore-Penrose inverse solution
yields {α f ,h = 0.5,ατ,h = 0.5} and {α f ,r = 0.5,ατ,r = 0.5}, uniformly distributing load among
agents.

5.2.3 Effective and Internal Wrenches

Proposition 5.1 defines the decomposition matrices A yielding no counteracting wrenches in
the object frame. It enables control design with arbitrary load distributions. Another rele-
vant issue in pHRI settings is the inverse problem, where, given an observed u, the respective
effective and internal components are identified. The separation of these two additive com-
ponents is defined as

u = ueff + u int (5.10)

s.t G ueff = G u = ud

G u int = 0 ,

where:

• the effective wrenches ueff are components that constitute the resulting wrench ud and
can be written in terms of an instance of A from proposition 5.1 as

ueff = Aud . (5.11)

• the internal wrenches eu int produce unnecessary internal stress in the object and lie in

u int ∈ Null(G) , (5.12)

where Null(G) denotes the nullspace of G.

For a given u, the possible effective wrench components are defined in the following
proposition.

Proposition 5.2. The effective wrench components are given by

ueff,i =

�
α f ,i f d

ατ,iτd

�
(5.13)
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where α f ,i =
mi

m0
,ατ,i =

ji
j0
∈ R satisfy

min
mi

N∑

i=1

mi||p̈ −
f i

mi

|| min
ji

N∑

i=1

ji||ω̈−
τi

ji
||

s.t . mi ≥ 0 s.t . ji ≥ 0
N∑

i=1

mi = m0

N∑

i=1

ji = j0

and m0 ∈ R and j0 ∈ R are the mass and moment of inertia of the object respectively.

Proposition 5.2 follows from ensuring Gauss’s principle of least constraint. In this thesis
we only consider dyadic settings. This particular case constraining N = 2 admits simple
solutions exposed in the following proposition.

Proposition 5.3. The effective wrench components of a 2-agent system are given by

ueff,i =

�
α f ,i f d

ατ,iτd

�
(5.14)

where α f ,i,ατ,i ∈ R are given by

α f ,i =min
�

max
�

f
T

i
f d

|| f d||2
, 0
�

, 1
�

ατ,i =min
�

max
�
τ

T
i
τd

||τd ||2
, 0
�

, 1
�

. (5.15)

Proof. Consider first only the force components. The stationary point of the unconstrained
expression of (5.7) is

∂ J

∂mi

=

∂

�
mi

���
��� f d

m0
− f i

mi

���
���
�

∂mi

= 0 .

Let α f ,i =
mi

m0
. Solving for mi yields

α f ,i =
f

T

i
f d

|| f d ||2
.

The minimum and maximum from expression (5.15) ensure constraints (5.8) and hold only
for N = 2.

The normalized effective moment of inertia components ατ,i are derived in an identical
manner.

The definition of the internal wrench components follows immediately from (5.10) as

u int = u − ueff . (5.16)
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Figure 5.10: Exemplary force decomposition for 2 agents using the Moore-Penrose pseudoin-
verse (a) and decomposition from proposition 5.3 and (5.16).

The proposed decomposition is depicted in Fig. 5.10 in comparison with the generalized
pseudoinverse for a simple example two-dimensional example with two agents. In con-
trast to the generalized pseudoinverse G

+
from Fig. 5.10(a) which assumes effective load

shares α f ,1 = α f ,2 = 0.5, the decomposition from proposition 5.3 depicted in Fig. 5.10(b)
follows from the computation of the effective mass that each agent accounts for, yield-
ing α f ,1 = 0.756 and α f ,2 = 0.244.

The decomposition of observed wrenches in effective and disagreement components en-
ables the definition of interesting performance measures for physical multi-agent interaction
tasks.

Definition 5.1. The effective work done by agent i of the multi-agent system between time
instants t1 and t2 is given by

t2∫

t1

u
T

eff,i ẋ d t .

Definition 5.2. The counteracting work done by agent i of the multi-agent system between
time instants t1 and t2 is given by

t2∫

t1

u
T

int,i ẋd t .

Similar measures for the work of the overall system are straightforwardly computed.
An analysis of possible causes yielding internal wrench components is also relevant in or-

der to understand their role in the interaction. In the following we study the decomposition
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of wrenches arising from the interaction of decentralized systems, a condition more in ac-
cordance with human-robot settings. Consider now the decentralized case where each agent
follows its own desired resulting wrench and decomposition matrix. From (5.4), the i-th
agent assumes

u = Aiud i , (5.17)

where ud i is the i-th agent desired resulting wrench and Ai an assumed load distribu-
tion from Proposition 5.1. If all desired wrenches and load distribution matrices are
equal, i.e. Ai = A j ∧ ud i = ud j ∀1≤ i, j ≤ N , then the standard problem considered in
Proposition 5.1 is recovered and no internal wrench components arise. Consider the
case when desired resulting wrenches match but load distributions are different, i.e.
Ai 6= A j ∧ ud i = ud j∀1≤ i, j ≤ N . It is straightforward to show that, although only a scaled
desired resulting wrench is effectively exerted, no internal wrenches are produced. In con-
trast, when desired resulting wrenches differ, if the angle between desired resulting forces
or torques is not zero, internal wrenches appear as illustrated in the following proposition.

Proposition 5.4. For a decentralized system where each agents follows (5.17), u int 6= 0

iff ∃i, j |
fd

T
i
fd j

|| fd i|||| fd j||
< 1 or ∃i, j |

τd
T
i
τd j

||τd i||||τd j||
< 1 . (5.18)

Proof. By contradiction. Consider only force components. The contradictory case as-
sumes f int 6= 0 and

∀i, j |
fd

T
i
fd j

|| fd i|||| fd j||
= 1 (5.19)

From (5.17), the applied wrench of the i-th agent is

f i = eα f ,i fd i ,

where eα f ,i is the mass share assumed by agent i in Ai. The overall resulting force is

fd =

N∑

i=1

eα f ,i fd i .

From (5.16), the internal forces are

f int = eα f ,i fd i −α f ,i fd . (5.20)

From Proposition 5.3, the unconstrained expression for the effective load share α f ,i is given
by

α f ,i =
eα f ,i fd i fd

|| fd ||2
=
eα f ,i|| fd i||
|| fd ||

. (5.21)
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Note that conditions (5.19) ensure constraints (5.8). Substituting (5.21) in (5.20) yields

f int = eα f ,i fd i −
eα f ,i|| fd i||
|| fd ||

fd . (5.22)

From (5.19), all fd i are in the same direction and therefore fd too. fd/|| fd || is the unit vector
of fd i and therefore f int = 0, concluding the proof.

The proof for the inverse condition is also done by contradiction starting from (5.18) and
assuming no internal force components and sketched as follows: condition (5.18) implies
that in (5.21) a cosinus appears due to the different directions of desired resulting wrenches.
Therefore, the difference between applied wrench and effective wrench from (5.22) is non
zero yielding the contradiction.

The proof for torque components is derived in an identical manner.

Proposition 5.4 together with the previous analysis yield interesting conclusions:

• If all desired resulting wrenches ud i are equal, a discrepancy in load shares do not
produce any internal wrenches; it yields a resulting wrench scaled by a factor.

• If desired resulting wrenches ud i are not equal but have same direction, no internal
wrenches are exerted.

• The presence of internal wrenches implies ud i ’s with different directions.

As a result, internal wrenches play a key role during haptic interaction; in terms of haptic
feedback, internal wrench components are the sole communication channel available in order
to express the desire to change the direction of the object’s acceleration. In other words,
internal wrench components can be interpreted as the haptic negotiation channel concerning
the desired acceleration’s direction.

In human-robot settings, assuming that the human partner behaves as in (5.17), i.e. the
human does not plan any internal wrenches a priori in its assumed decomposition matrix A,
observed internal components imply errors in the estimation of human desired resulting
wrench. This fact is very relevant for the design of physical anticipatory control schemes and
will be exploited in Section 5.3.

5.2.4 Load Share and Disagreement

There is no consensus in the literature about how to measure disagreement between physi-
cally interacting agents. In [46], disagreement between human dyads is interpreted as the
difference between applied wrenches. However, this measure only provides no disagreement
when agents apply the same wrench, classifying any deviations from this uniform distribu-
tion as disagreement. In [52], disagreement is related to internal forces in one-dimension,
i.e counteracting force components that do not contribute to the resulting force. Here, we
follow this idea and relate disagreement to u int. We extend this concept to 6D by means of
proposition 5.3 and (5.16), motivated by classical mechanics principles. Note that the ob-
served load share is implicitly identified in the computation of the internal wrenches. The
definitions of disagreement, effective load, load share and load distribution follow.
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Definition 5.3. The translational and rotational disagreement of the i-th agent are given

by || f int,i|| and ||τint,i|| and measured in [N] and [N/m] respectively.

Definition 5.4. The effective load of agent i is given by
�
α f ,im0,ατ,i j0
	

and it represents the
effective mass and moment of inertia that agent i accounts for.

Definition 5.5. The load share of agent i is given by
�
α f ,i,ατ,i

	
and it represents the effective

share of mass and moment of inertia that agent i accounts for.

Definition 5.6. The load distribution of the multi-agent system is given by the
set
�
α f ,1,α f ,2 · · ·α f ,N ατ,1,ατ,2 · · ·ατ,N

	
comprising all load shares.

These concepts enable the application of new performance measures and the exploration
of new control schemes for pHRI, exploited in the following Sections.

5.3 Uncertainty-dependent Assistance for Navigation Tasks

As presented in Section 2.1.4 proactive assistants rely on feed-forward behavior of motion,
force or both of them in order to anticipate human actions. Due to the complexity of human
decision-making, acquiring analytical feedforward behavior models is usually not feasible.
An effective alternative is given by PbD paradigm. By means of statistical or probabilistic
techniques, generalized human task-solving behavior is learned in a data-driven manner.
However, learned models (as well as analytical models) are usually far from perfect: predic-
tion errors frequently occur, inducing counteracting forces during haptic interaction thereby
significantly diminishing assistive performance. Therefore, an a priori estimation of potential
errors or, equivalently, the expected prediction accuracy enriches the prospective capabilities
of the robot’s assistance and potentially enhances interaction. Such measure is given by the
prediction uncertainty in probabilistic models or similarly, by the expected prediction vari-
ance or any higher order moment considering statistical models. Although usually neglected
in control design for pHRI, model uncertainty plays a key role in a decision-making process
in cooperative tasks when an interacting partner is involved [149].

This section presents a novel anticipatory model-based haptic assistance scheme that con-
siders model uncertainty in the robot interaction control. Formulated as an optimal control
problem, the robotic assistant adapts its control depending on two sources of uncertainty
encoded in a previously learned human behavior model. First, predicted motion uncertainty
is included in the optimization criterion by considering the Mahalanobis distance to the ex-
pected human-desired trajectory. Second, an estimation of the expected and observed human
force variability caused by disagreements with the robot affects the robot dynamics as an ad-
ditive stochastic input. In order to explicitly take this variability into account, we propose a
risk-sensitive control approach. The solutions for this optimal control problem depend on a
risk-sensitivity parameter, which defines the attitude towards the partner in case of disagree-
ment. The assistive performance of the proposed interaction control scheme is evaluated in
a psychological experiment with naive human users. Not only objective measures such as
human effort, power or disagreement are evaluated but also a subjective evaluation of the
perceived helpfulness. Results indicate better performance in terms of human effort mini-
mization and perceived helpfulness when uncertainty is considered.
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5.3 Uncertainty-dependent Assistance for Navigation Tasks

The remainder of this section is structured as follows. Section 5.3.1 describes the inter-
action control. The anticipatory assistive control is explained in Section 5.3.2. An imple-
mentation of the 2-dimensional translational case is detailed in Section 5.3.3. Results of
simulations and of the experimental user study are presented in Section 5.3.4.

5.3.1 Problem Formulation

In this section we consider the class of physical human-robot interaction tasks where the
robot is physically coupled to a human partner. The goal is to reach a goal configuration
starting from an initial configuration. This prototypical setting is representative for many
different tasks such as mobility assistance to humans or joint object transport/manipulation.
Depending on the application, the interaction can be through an external object, as in coop-
erative manipulation tasks, or at the end-effector as in movement assistance for elderly or
disabled or in exoskeletons. In case of the interaction through an object, its geometry to-
gether with the grasping points lead to a decomposition into redundant and non-redundant
forces [49]. Redundant components can be exerted by either the robot or the human and are
instrumental for the haptic negotiation process. Here, we focus our attention into interaction
forces which only appear in redundant degrees of freedom, as explained in Section 5.2. As
a representative case for this setting, we consider a common interaction contact point be-
tween the robot and its human partner at the end-effector. For simplicity of exposition we
assume that the nonlinear robot dynamics is feedback-linearized and an impedance control
law renders the robot reactive behavior [168] to

Mr ẍ (t) + Dr ẋ(t) = u(t) = uh(t) + ur (t) (5.23)

where x ∈ R6 is the pose of the end-effector, uh ∈ R6 is the applied wrench by the human,
ur ∈ R6 is the assistive control input of the robot, and Mr , Dr ∈ R6×6 are positive definite
matrices representing the rendered inertia and viscous friction respectively. For later con-
venience, we discretize the system from (5.23) with a sampling time interval ∆, yielding
impedance controlled dynamics

ξk+1 = f (ξk, uh,k + u r ,k) , (5.24)

where k is the time index such that t = k∆ and ξk = [ x k ẋ k ]
T the state of the system 2.

Dynamics (5.23) compensates for small deviations between the human and robot in-
tended motions. In addition to this reactive behavior represented by the compliance con-
trol, the robot implements an anticipatory proactive behavior given by ur . To this end, the
robot relies on a behavior model λ, which provides predictions of the next human desired
state and human internal wrench in terms of normal distributions ξ̂d,k ∼ N (µ̂ξ,k, Σ̂ξ,k) and

û int,k ∼ N (u int,k|µ̂uint,k
, Σ̂uint,k). The behavior model represents expected trajectories based

on multiple previously performed trials. The resulting normally distributed state space pre-
dictions represent the trial to trial statistical mean and variance of human desired motion.
In contrast, internal human wrench components, studied in depth in Section 5.2, represent
counteracting wrenches not influencing dynamics (5.23) that imply disagreement between

2The time-discretized system dynamics will be specified in Section 5.3.3 for a two-dimensional example.
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human and robot or, similarly, discrepancies between desired accelerations. This additional
unnecessary effort is not observable in state space trajectories. Consider as an example a bi-
nary decision problem while approaching an obstacle, where both agents disagree on which
way to go, either left or right. We further assume that both partners have a common goal and
deviations from the predicted trajectory induced by the human are small and do not express
a divergence or a tendency towards a different goal. Given this problem setting, the focus of
this work lies on the design of a possibly time-varying assistive control law synthesizing ur

taking uncertainties into account.

5.3.2 Anticipatory Assistance Based on Learned Models

In this work, the objective governing haptic assistance is human force minimization. From
an optimality point of view, this concept is expressed by the minimization of a cost function
in the form

J =

T−1∑

k=0

‖uh,k‖2 (5.25)

where T is the time horizon for the optimization 3. The human has an urge towards a goal
as predicted by the task model λ but relying on a human force estimation of T steps poten-
tially accumulates high tracking errors in task space. A more suitable alternative considers
the minimization problem in task space based on the tracking error between task model
predictions ξ̂d = {ξ̂d,0 · · · ξ̂d,T} and the current state ξ, i.e.

J =

T∑

k=0

‖(ξ̂d,k −ξk)‖2 . (5.26)

The solution to this optimization problem leads to controller which does not consider any
energy expenditure of the robot nor any torque constraints of the robot actuators. In addi-
tion, disturbances to the tracking may result in rather abrupt behavior of the robot, which
might not be desirable when targeting intuitive assistance. In order to keep the computa-
tional complexity low to achieve real-time computation, we add a soft penalty on the energy
expenditure in terms of a quadratic term. As a result the cost function takes the form as in
the classical linear quadratic optimal control problem

J = ‖(ξ̂d,T − ξT )‖2QT
+

T−1∑

k=0

‖(ξ̂d,k −ξk)‖2Qk
+ ‖uh,k‖2Rk

(5.27)

where ‖x‖2
Q

stands for the quadratic form xTQx, QT the final cost weight and Qk and Rk

are weighting factors that define the trade-off between tracking performance and robot con-
tribution. Observe that two factors challenge the equivalence between (5.25) and human
intentions: i) the prediction error of ξ̂d; ii) the weighting factors Qk and Rk may differ from
human preferences. As perfect predictions and weighting factors design is usually not fea-
sible when dealing with humans, corrections/disagreements from the human partner are

3Note that we will later employ a receding horizon control scheme, i.e. without fixed final time T. For simplicity
of presentation we consider for now the finite horizon control problem (5.25)
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expected. This source of variability, together with the normally distributed nature of predic-
tions define the uncertainty that the robotic assistance needs to cope with. In the following
we analyze the consequences of uncertainty in the robot behavior and synthesize their effect
as variations in the cost function to optimize (5.27) and in the predicted dyad dynamics.

Remark 5.1. Note that in (5.26) and (5.27) we neglect human internal wrench predictions.
A valid alternative considers a cost function in the form

J = ‖(ξ̂d,T − ξT )‖2QT
+ ‖u int,T‖2Q′T +

T−1∑

k=0

‖(ξ̂d,k − ξk)‖2Qk
+ ‖u int,k‖2Q′

k

+ ‖uh,k‖2Rk
,

where Q′
k

is an additional weighting factor. This cost explicitly accounts for the predicted
human internal wrench in order to compensate for expected counteracting wrench compo-
nents. Our problem setting assumes that the robot assistance does not hinder the human
and predictions ξ̂d are close to human intentions. In this case, internal wrenches are close
to zero in expectation , i.e. E[u int]≈ 0, yielding (5.27).

Remark 5.2. Following the analysis from Section 5.2, the minimization of cost func-
tion (5.27) yielding the robot assistive input ur implicitly assumes an a priori load share
distribution {α f ,h = 0,ατ,h = 0} and {α f ,r = 1,ατ,r = 1}, i.e. a priori the robot accounts for
all load. Other load sharing policies are straightforwardly computed by multiplying the re-
sulting input by the desired decomposition matrix A from Proposition 5.1.

Considering motion prediction uncertainty

Cost function (5.27) depends on the sequence of multivariate normal distributions ξ̂d . A
classical realization of the cost function for optimal tracking control measures the Euclidean
distance to the reference’s mean, i.e.

J = ‖(µ̂ξ,T − ξT )‖2QT
+

T−1∑

k=0

‖(µ̂ξ,k −ξk)‖2Qk
+ ‖uh,k‖2Rk

. (5.28)

However, in order to accordingly measure the distance to a multivariate Gaussian, the
weighted Mahalanobis distance is a suitable option as it includes the covariance of the pre-
diction into the distance metric. In this case, the cost function becomes

J = ‖(µ̂ξ,T − ξT )‖2Q̂T
+

T−1∑

k=0

‖(µ̂ξ,k −ξk)‖2Q̂k
+ ‖uh,k‖2Rk

, (5.29)

where Q̂k = Σ̂
− 1

2

ξ,kQkΣ̂
− 1

2

ξ,k and Q̂T = Σ̂
− 1

2

ξ,TQT Σ̂
− 1

2

ξ,T and Σ̂ξ,i is per definition a symmetric positive-
definite matrix ∀i 0 ≤ i ≤ T . This formulation diminishes the cost of tracking errors in di-
rections with high prediction variance while it increases the penalty of deviations in regions
with low variance. This is a desirable behavior in most applications where a a low variance
of the learned desired trajectory over repeated trials indicates some importance to keep track
of it. As an example consider the situation depicted in Fig. 5.11. Low variance directions
might be caused for example by environmental constraints while high variance regions imply
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Constrained

region

Obstacle

Unconstrained

region Obstacle

Figure 5.11: Exemplary representation of the predicted state mean and variance
ξ̂ = {µ̂ξ, Σ̂ξ}. Low variance directions suggest the possibility of con-
strained passages, while high variances areas imply unconstrained areas.

unconstrained areas. This suggests flexibility in unconstrained directions and strict tracking
through narrow passages, a behavior in accordance with the minimization of the Mahalanobis
distance as in (5.29). Note that the opposite effect is achieved using the inverse of the co-

variance matrix, i.e. Q̂k = Σ̂
1
2

ξ,kQkΣ̂

1
2

ξ,k and Q̂T = Σ̂
1
2

ξ,TQT Σ̂

1
2

ξ,T . In this case the cost increases
inversely with the variance: directions with low predicted variance diminish their cost with
respect to high variance regions, which increase their penalty. The idea of employing the
measure of variance as a way to inform the system on how systematically it should follow a
reference trajectory was also applied in [169] for an impedance control scheme and in [63]
for kinematic control.

Considering disagreement

In addition to motion prediction, the interaction behavior model λ also provides human in-
ternal wrench predictions û int. We assume that there exists a human desired nominal motion
trajectory. In consequence, if the task model λ contains sufficiently many trials, the mean of
the predicted trajectory ξ̂d approaches the human desired nominal motion trajectory, tracked
by the robot. From proposition 5.4, if desired resulting wrenches match in direction no in-
ternal wrenches are expected and therefore E[u int,k] = µ̂uint,k

≈ 0. However, human internal
wrench covariance encodes valuable information: regions with high variance are caused by
significant or recurrent inter-trial corrections, meaning a conflictive area, see Fig. 5.12 for an
illustration. To model this unbiased variability, we denote εe ∼ N (εe|0, Σ̂uint

) the expected

disagreement with the human partner. Applying the same idea to current observations of u int,
an estimation of the current disagreement, εc ∼ N (εc|0,Σuint

) is computed empirically at
time k as the sample covariance over a window of W samples

Σuint
=

1
W

k∑

i=k−W+1

u int,iu
T
int,i . (5.30)
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High expected

disagreement
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Low expected
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DISAGREEMENT

Figure 5.12: Schematic representation of the expected disagreement εe and the current dis-
agreement εc.

To consider both estimations, see Fig. 5.12 for visualization, the maximum of both disagree-
ments

ε=max (εe,εc) , (5.31)

is considered a reasonable solution. Note that keeping the zero mean assumption for the
current disagreement is a conservative approach. In fact, the intra-trial mean along a win-
dow W that the current disagreement considers may differ from zero. Interpreting human
wrench corrections as unbiased entails higher uncertainty for the robot instead of (signed)
errors. The consequences of this design will be more apparent in the analysis of the optimal
control solution.

Disagreements result in variability of the dyad’s motion due to conflicts with the human
partner. Expressing this idea in mathematical terms, dynamics (5.24) contains an additional
additive disagreement vector ε, yielding the stochastic dyad dynamics

ξk+1 = f (ξk, u r ,k + εk) . (5.32)

Given initial state ξ0, the optimal robotic assistance results from minimizing cost func-
tion (5.29), i.e.

min
u r,0···u r,T−1

J(ξ0, u r,0 · · ·u r,T−1) , (5.33)

constrained to the dyad dynamics (5.32). As the dynamics are constantly updated with
the current disagreement from (5.30), a recalculation of the solution is necessary. To this
end, we adopt a Model Predictive Control (MPC) scheme [170], where the dynamics (5.32)
are considered stationary for the optimization horizon T and the optimal control problem
is solved at every time step. Cost function (5.29) at time step k formulated in a receding
horizon fashion becomes

Jk = ‖(µ̂ξ,k+T − ξk+T)‖2Q̂T
+

k+T−1∑

i=k

‖(µ̂ξ,i − ξi)‖2Q̂i
+ ‖u r ,i‖2Rk

. (5.34)

Although the optimization is solved for a horizon of T steps, only the solution for the first
step is applied as assistive robot control.
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Remark 5.3. If the behavior model is constantly updated in an online fashion, e.g. the model
presented in Section 3.3, the estimation of current disagreements (5.30) is not necessary.

Risk-sensitive optimization

Problem (5.33) is a stochastic optimization problem due to the stochastic nature of the dy-
namics (5.32). Traditionally it is solved by minimizing the expected cost, E[J]. However,
the uncertainty induced by the human behavior represented in ε is not characterized by its
expected value but its higher order moments. In order to capture the uncertain human in-
fluence in the dynamics here we propose to employ a risk-sensitive optimization [106,107].
The risk-sensitive solution considers all infinite cumulants of the cost distribution [109]. The
risk-sensitive optimization criterion considers a cost function in the form

γk(θ ) = −2θ−1 lnE[exp−
1
2θ Jk] , (5.35)

where θ ∈ R is the risk-sensitivity parameter and Jk is given in (5.34). The Taylor series
expansion of γ(θ ) around θ = 0,

γ(θ ) = E[J]− 1
4
θ Var[J] + ... ,

shows the influence of higher order moments in the solution, parameterized by θ . If θ = 0 the
controller is risk-neutral and corresponds to the classical optimization of the expected cost.
For θ < 0 and θ > 0 the controller becomes risk-averse and risk-seeking, respectively. In our
robot assistance scenario, the variance of the cost is determined by previously experienced
and current disagreements with the human partner (5.31), and θ determines its assessment.
In the risk-seeking case, disagreement is considered beneficial and decreases the resulting
cost. In contrast, a risk-averse controller considers disagreements as a detrimental influence
and the cost increases.

5.3.3 The 2-dimensional Translational Case

The risk-sensitive optimization problem can be solved efficiently through the Riccatti equa-
tion for linear dynamics. Real-time computations are fundamental for intuitive haptic assis-
tance; the physical coupling between human and robot requires immediate adaptation. To
satisfy this prerequisite, we limit our study to a linear implementation. We consider now dy-
namics (5.23) in the plane, i.e. x ∈ R2. In this case, the discrete-time dynamics from (5.32),
written in the form ξk+1 = Aξk + Buk are given by

�
x k+1

ẋ k+1

�
=

�
1 ∆

0 1−M−1
r

Dr∆

��
x k

ẋ k

�
+

�
0 0
0 M−1

r
∆

�
(ur k + εk) . (5.36)

where Mr , Dr ∈ R2×2.
The disagreement εk from (5.31), given by the maximum of the expected and current

disagreement is approximated by N (ε|0, eΣuint
), where eΣu int

is the Löwner-John hyperellip-
soid [171]. This Gaussian approximation calculates the minimum volume hyperellipsoid
around the set defined by N (εe|0, Σ̂uint

) and N (εc|0,Σuint
).
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For this particular problem setting and for comparison purposes we present two differ-
ent solutions: a classical linear quadratic regulator (LQR), which considers the reference
prediction uncertainty (5.34) but discards the variability of the disagreement in its optimal
solution and, in contrast, a linear exponential quadratic regulator (LEQR) which considers
both uncertainty sources in its risk-sensitive optimization (5.35).

Linear Quadratic Regulator Solution

The minimization of the expected cost E[Jk] with Jk as in (5.34) and dynamics (5.36) is an
instance of an LQ problem described in Chapter 4. Considering only the regulation term, the
solution to this problem at sample time k for a receding horizon of T steps yields a feedback
control law given by

ur i = −Ki(µ̂ξ,i −ξi) , (5.37)

where Ki is the feedback matrix of the Ricatti recursion

Ki = −R−1BT(BR−1BT +Π−1
i+1)
−1A (5.38)

and the cost-to-go is given by

Πi = Q̂ i + AT(BR−1BT +Π−1
i+1)
−1A , (5.39)

being ΠT = Q̂T .
Only the feedback matrix for time step i = k, Kk, is applied in the system. It is in the form

Kk =

�
0 0

Kx ,k K ẋ ,k

�
, (5.40)

where Kx ,k and K ẋ ,k are the position and velocity gains respectively.
The resulting assistive tracking control synthesizes a variable impedance control law with

its gains depending on prediction uncertainty. This becomes more obvious when applying
the control law for the limit ∆→ 0 in the system dynamics (5.23)

Mr ẍ + Dr ẋ = uh − (Kx(t)(xd − x ) + K ẋ(t)(ẋd − ẋ)) , (5.41)

where xd , ẋd , Kx(t) and Kv(t) are the position and velocity components of µ̂ξ and the feed-
back gains Kx ,k and Kv,k in the limit ∆→ 0 respectively.

This control strategy tracks the predicted trajectory considering its variance by means of
the Mahalanobis distance present in Q̂ i and Q̂T . As a result, the robot gets stiffer in the
directions where the motion prediction has low variance and becomes more compliant for
high variance. However, the variability induced by disagreements with the human partner is
neglected.

Linear-Exponential Quadratic Regulator

The optimization problem considers now cost function (5.35) with Jk as in (5.34). In this
case, as detailed in Chapter 4, the regulation term of this optimization problem follows from
a modified form of the standard Ricatti recursion [172]

Ki = −R−1
i

BT(BR−1
i

BT + θBeΣuint,i
BT +Π−1

i+1)
−1A , (5.42)
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and
Πi = Q̂ i + AT(BR−1

i
BT + θBeΣu int,iB

T +Π−1
i+1)
−1A , (5.43)

with ΠT = Q̂T .
As in the LQR case, motion prediction uncertainty is equivalently taken into account by

means of the Mahalanobis considered in Q̂ i and Q̂T . However, the additive term θBeΣuint,iB
′

present in the risk-sensitive solution leads to different results. The risk-neutral case θ = 0
yields the same solution as for the LQR canceling the additional term. For a risk-seeking
optimization θ > 0 the expected variability eΣuint,i is assumed to be collaborating as if it was
doing part of the work towards fulfilling the task. Accordingly, the resulting gain from (5.42)
decreases adopting a more compliant behavior. Understanding the risk-sensitivity parameter
as the robot’s attitude, a recessive attitude is achieved implementing a risk-seeking controller:
the robot becomes compliant under disagreement with its partner. In contrast, the risk-averse
solution θ < 0 increases the overall cost as if variability were directing the system towards
an undesired state. As a result, gains are increased and the robot becomes stiffer. This case
corresponds to a dominant attitude by generating an aggressive response to disagreements.
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Figure 5.13: Infinite horizon position gains w.r.t position prediction variance for several pre-
cision parameters Q with R= I .

5.3.4 Evaluation

In order to illustrate the peculiarities and advantages of the proposed controller, we first
observe the influence of both prediction uncertainty and negotiation variability on a one-
dimensional simulation. For evaluation purposes, we further study human preferences per-
forming a user study where 19 participants interact with 7 different assistive controllers in a
virtual scenario using a haptic interface.

One-dimensional simulation

As an exemplary scenario, we study a one-dimensional mass-damper system with dynamics
equivalent to (5.36), M = 1 kg and D = 1 Ns/m. We first analyze the influence of motion
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Figure 5.14: Infinite horizon position gains w.r.t process noise variance for several risk-
sensitivities in an optimization with Q = R = I .

prediction uncertainty using the Mahalanobis distance on the robot assistive behavior fol-
lowing the control scheme proposed in Section 5.3.3. We assume constant weighting matri-
ces Q =Qk and R= Rk. The optimal position tracking gains for an LQR control optimizing
the cost (5.29) for the infinite horizon T →∞ w.r.t. prediction variance σ2

x
are depicted

in Fig. 5.13. The infinite horizon solution provides a stationary feedback gain [173]. The
optimal gains decrease with increasing prediction variances, i.e. low prediction variance
produces a stiffer robot assistive behavior while high uncertainty leads to a more compliant
assistive behavior. Note that, as commented in Section 4.5, when variances tend to zero,
gains tend to infinity. This degenerate case is easily avoided adding a regularization quan-
tity, ensuring positive definiteness. For the case of the identity matrix, the weighting matrices
of (5.29) become Q̂k = (I + Σ̂ξ,k)

− 1
2 Q(I + Σ̂ξ,k)

− 1
2 and Q̂T = (I + Σ̂ξ,T )

− 1
2 QT(I + Σ̂ξ,T )

− 1
2 . As a

result, when variances tend to 0, the cost generalizes to (5.28).
The influence of disagreement σ2

uint
on the optimal gains of a risk-sensitive controller

from Section 5.3.3 is shown in Fig. 5.14 for several values of θ . While the risk-neutral
solution θ = 0 ignores disagreement, risk-seeking solutions θ > 0 decrease gains as the dis-
agreement increases. In contrast, risk-averse solutions θ < 0 increase tracking gains with
increasing disagreement. An intuitive explanation in our scenario follows. A risk-seeking
assistant assumes disagreement accounts for part of the tracking task and reduces its gains
adopting a recessive attitude. In contrast, a risk-averse assistant understands disagreement
as counter-productive and increases its gains in order to perform the tracking task while
correcting expected deviations.

In order to illustrate how disagreement affects the dyad behavior during negotiation, we
simulate a coupled dyad consisting of agents a and b, with control inputs ua and ub respec-
tively. Consider agent b behaves as a PD-controller with constant gain, i.e.

u b,k = Kb(ξb − ξk) . (5.44)

In contrast, agent a implements a risk-sensitive control strategy and tracks a constantly con-
flicting reference ξa = −ξb. We focus now on the effects that the current disagreement,
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Figure 5.15: Simulation results for the one-dimensional linear mass-damper system example
with initial state ξ0 = [0 0]T, references ξb = −ξa = [−1 0]T, mass m = 1 kg,
damping d = 1 Ns/m with two agents, agent b following the control law (5.44)
with gain Ka = 1 N/m and agent a applying the proposed control scheme in
three variants. All three controllers are calculated with parameters Q = I

and R= 5 · 10−4 · I and sample time of 1 kHz . Fig. 5.15(b) shows the simulation
result for the risk-neutral controller, Fig. 5.15(a) for a risk-seeking controller
with θ = 106 and Fig. 5.15(c) a risk-averse controller with θ = −4.5 · 102. Grey
regions represents the variance of disagreement considered by agent a.

.

computed according to (5.30) with W = 1, produces on agent a. For simplicity of illus-
tration we neglect the expected disagreement. Note that the expected disagreement or the
maximum of both disagreements produce equivalent effects on the control gains. The simu-
lation results for a risk-neutral, risk-seeking and risk-averse implementation are depicted in
Fig. 5.15. As shown in Fig. 5.15(a), the risk-seeking control remains almost inactive in com-
parison with the risk-neutral controller depicted in Fig. 5.15(b). In contrast, the risk-averse
controller reacts more aggressively, as shown in Fig. 5.15(c). These three different attitudes
yield different disagreement levels, depicted as gray regions. As the risk-seeking controller
ceases tracking its conflicting reference, the disagreement is significantly reduced, while the
risk-averse implementation provokes even higher disagreement levels than the risk-neutral
solution. This behavior is clearly explained by the resulting gains and positions for all three
controllers, as depicted in Fig. 5.16. While the risk-neutral solution ignores disagreement
producing constant gains, the risk-seeking controller’s almost cancels its feedback gain due
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Figure 5.16: Resulting trajectory and tracking gains for agent a in the simulated example
from Fig. 5.15.

to the initial conflicts, adopting a recessive attitude. In contrast, the risk-averse controller
increases its gain substantially reacting in a dominant fashion.

User Study

To evaluate the proposed controllers and the preferences of humans interacting with it, we
designed an experiment in which a human actor has to transport a virtual object from an
initial position towards a defined goal position.

Human Behavior Model Acquisition: an interaction behavior model must reflect both
the human task execution preferences and the interaction with the robotic partner. Due to
complexity, we rely on learning by demonstration techniques. A preliminary model of the
task was acquired by initially letting the human lead, i.e., ur = 0. With this first rough repre-
sentation, the robot actively assists and additionally observes internal wrench patterns during
further task trials. Modeling state and human internal wrench input trajectories, {ξ, u int},
the robot acquires a task model that represents both the human desired state trajectory and
the expected disagreement levels. Observations are encoded into a time-based HMM, later
used for prediction as presented in Section 3.1. For simplicity, in our implementation we
rely on the complete human wrench uh instead of internal wrench components u int, yielding
higher uncertainty.

Experimental Setup: the human actor applies forces to a haptic interface in order to
move the virtual object using the virtual reality interface described in appendix A.1. The
shared object from dynamics (5.36) is physically rendered with a mass of Mr = diag{m, m}
with m = 90 kg and damped by a viscous friction of Dr = diag{d, d} with d = 200 Ns/m,
emulating a heavy object. All virtual obstacles and walls are haptically rendered in order
to provide a haptic feedback of the environment to the user. The HMM used to encode
observations has 40 states and predictions are updated with a rate of 50Hz.

On top of the interface, a virtual maze is presented on a screen, see Fig. 5.17. On the right
side the maze includes two obstacles moving horizontally in order to potentially provoke
disagreements between the human and the robot. Note that the human behavior model
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Goal

0.04m

Left Right

Start

Moving
Obstacle

Figure 5.17: Virtual environment (maze). With the handle of the two-dimensional haptic
interface participants were able to move the virtual object (red dot) to the goal
position (green dot).

does not consider the obstacle’s state, which results in an increased predicted variance in the
region perturbed by the obstacle’s motion. This condition aims for evaluating the assistive
performance when the model is not accurate enough and variability becomes more relevant.
On the left side, a navigation task requires high movement precision caused by a narrow and
curved path.

Task and Procedure: in total 19 persons (5 female) participated in the experiment. They
were between 23 and 31 years old (M = 26.84 years). The experimental task was to move
the virtual object represented by a red dot from the upper right corner (start position) to
the upper left corner of the maze (green dot at target position) without hitting any object or
wall, see Fig. 5.17. Participants were instructed to move at their comfortable speed and to
finish the task even if they might hit the wall or an object.

Overall the experiment was divided into 7 parts corresponding to 7 different control laws
of 3 trials each. In the first trial, the human lead together with a passive robot, i.e. ur = 0,
and the resulting observations were encoded into the task model. This model was used dur-
ing the second trial, where the robot actively assisted its human partner. This second task
execution already captures negotiation forces between the human and the robot. Obser-
vations of the first and second trials were used to train the task model for the third trial,
providing already an estimation of the expected trajectory, both in state and internal wrench
components,
�
ξ̂d , û int

	
. The third trial was the only one considered for further evaluations.

We tested 7 different control laws for each participant:

(a) No active assistance: ur = 0.

(b) LQR using cost function (5.28).

(c) Risk-neutral with Mahalanobis distance: θ = 0 using cost function (5.35).

(d) Risk-averse with Mahalanobis distance and expected process noise: θ = −α, using cost
function (5.35) and ε= εe.

(e) Risk-averse with Mahalanobis distance considering both expected and current process
noise : θ = −α, using cost function (5.35) and ε=max(εe,εc).
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Cont. Mh MPh
[W] M‖uD‖[N] M‖uh‖[N] M‖uc‖[s]

(a) 3.90 0.61 - 12.92 1.32
(b) 3.42 0.58 3.15 12.73 2.42
(c) 3.58 0.52 2.91 12.30 2.02
(d) 3.47 0.55 2.28 11.85 2.29
(e) 3.92 0.39 2.72 10.46 1.38
(f) 3.76 0.47 2.17 11.19 1.03

(g) 4.11 0.54 1.29 11.50 1.12

Tabular 5.1: Average values for perceived helpfulness Mh, human power MPh
, disagreement

M‖uD‖, human force M‖uh‖ and collision forcesM‖uc‖

(f) Risk-seeking with Mahalanobis distance and expected process noise: θ = β , using cost
function (5.35) and ε= εe.

(g) Risk-seeking with Mahalanobis distance considering both expected and current process
noise: θ = β , using cost function (5.35) and ε=max(εe,εc).

All implementations rely on the solutions presented in Section 5.3.3. In our experi-
ments β = 8.1 · 104 and α = 8.1 · 102, R = I and Qk =QT = diag{ωp , ωv}, being ωp

and ωv the position and velocity weightings. For (b), we chose ωp = 1010 and ωv = 107.
For (c)-(g) we set ωp = 105 and ωv = 10, due to the low variance values, in the order
of 10−5. The receding horizon for the optimization was T = 0.2s and to estimate the current
noise we used a window W corresponding to 0.05s.

The experimental procedure was as follows: participants were asked to face the haptic
device and grasp the handle. Next, the experimenter initialized the control algorithm and
told the participant to start moving. After reaching the green target, participants were asked
to free the handle which was moved back to the initial position automatically. Before every
third trial participants were verbally informed that this was going to be the trial they had to
rate. Subsequently they had to rate the perceived helpfulness when

• passing a moving obstacle (subtask MO).

• navigating through a narrow channel (subtask NC).

Ratings were done on a 6-point scale from 1 (counter productive) to 6 (helpful) and resulted
in the explicit measure perceived helpfulness. Every participant performed 3 x 7 = 21 trials
of which 7 trials were rated.

Regarding implicit measures we evaluated:

• the mean power exerted by the human MPh
, defined as 1

t

∫ t
0

uh
T ẋ dτ.

• the mean disagreement M‖uD‖ between both agents, defined as 1
t

∫ t
0
‖uD‖dτ where

uD =






−uh

‖uh‖
· ur , if − uh · ur > 0

∧ uh 6= 0

0, otherwise.
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Figure 5.18: Experimental results. Each of the figures shows the mean and the standard
error of the different evaluated measures for the seven control laws (a)-(g).
Fig. 5.18(i) shows the mean perceived helpfulness Mh, Fig. 5.18(ii) depicts
the human exerted force M‖uh‖, Fig. 5.18(iii) reflects the disagreement M‖uD‖,
Fig. 5.18(iv) shows the execution times Mt , Fig. 5.18(v) depicts the human
power MPh

and Fig. 5.18(vi) shows the collision forces M‖uc‖.
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Perceived Helpfulness Mh Power MPh
[W] Disagreement M‖uD‖[N]

Comparison F(1,18) p Comparison F(1,18) p Comparison F(1,18) p

(a)>(b) 7.15 < .05 (a)>(e) 11.35 < .01 - - -
(e)>(b) 5.90 < .05 (b)>(e) 4.54 < .05 (b)>(g) 32.47 < .001
(g)>(b) 7.08 < .05 (c)>(e) 2.58 n.s. (c)>(g) 16.86 < .01
(a)>(d) 5.00 < .05 (d)>(e) 2.91 n.s. (d)>(g) 11.37 < .01
(e)>(d) 5.50 < .05 (f)>(e) 2.23 n.s. (e)>(g) 10.26 < .01
(g)>(d) 7.21 < .05 (g)>(e) 4.46 < .05 (f)>(g) 6.08 < .05

Tabular 5.2: Overview of results on planned comparisons for perceived helpfulness, human
power and disagreement

• the mean human applied force M‖uh‖, defined as 1
t

∫ t
0
‖uh‖dτ.

• the mean contact forces during collisions with the virtual environment M‖uc‖, defined

as 1
t

∫ t
0
‖uc‖dτ, where uc is the force applied on virtual obstacles.

• the mean execution time Mt .

Means were taken over all participants for the respective controller. To gain knowledge on
the human perception and response during different kind of tasks the presented maze was
divided into two subtasks. For measures passing the moving obstacle, data was calculated
until the participant was passing the turning point indicated by the dashed line shown in
Fig. 5.17, placed at 0.04 m to the left of the origin. The rest of the task execution corre-
sponded to subtask narrow channel. Data analysis was done Matlab and statistical analysis
was carried out with SPSS (Statistical Package for the Social Sciences).

Results and Discussion: to access the rating of perceived helpfulness, see Fig. 5.18(i),
a 2 x 7 repeated measures ANOVA was performed with the between-subject factors sub-
task (MO vs. NC) and control method (a)-(g). Marginal differences were observed between
subtasks, F(1, 18) = 3.95 , p = .062, which shows equally perceived helpfulness of the sys-
tems response on both sides. Numerically higher ratings for NC(M = 3.96) compared to
MO(M = 3.51) reflect the fact that the task model is not aware of the moving obstacle and
is not as accurate as for NC. Regarding control schemes there was a significant main effect,
F(6, 108) = 2.46, p < .05. Comparisons show that control laws (a), (e) and (g) resulted in
significantly higher ratings compared to controllers (b) and (d), see Table 5.1 and Table 5.2.
This shows that control laws (e) and (g), both risk-sensitive and considering the current dis-
agreement, were perceived as more helpful than method (b), the classical LQR control. It is
also remarkable, that numerically all control methods considering the Mahalanobis distance
(c)-(g) were rated higher than the classical LQR control (b). Furthermore, only control laws
considering the current disagreement in the dynamics, (e) and (g), were numerically rated
higher than the pure passive follower (a).

For all implicit measures 2x7 repeated measures ANOVAs were carried out with the
between-subject factors subtask(NC vs. MO) and control method (a-g). If the sphericity
criterion was not met, Greenhouse-Geisser correction was applied.

Regarding subtasks there was a higher human power applied on NC(M = 0.58W) com-
pared to MO(M = 0.46W), F(1, 18) = 15.59, p < .01, see Fig. 5.18(v). After correction, the
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differences between applied power for the control methods only marginally reached sig-
nificance, F(3.0, 54.8) = 2.44, p = .074. Concerning control schemes, a tendency towards
higher human power applied in control laws (a), (b) and (g) is identified compared to con-
trol law (e), see Table 5.2. The risk-averse control law (e) becomes stiffer under the presence
of disagreement and, as it also considers the current disagreements with its partner, it is the
most agressive partner. The observed differences suggest that this control method reduces
the power applied by the human as the robot constantly takes a leading role.

Disagreement, see Fig. 5.18(iii), was marginally higher on MO(M = 2.77 N) than on
NC(M = 1.86 N), F(1, 18) = 4.22, p = .055, in accordance with the results from perceived
helpfulness. The behavior models lacks obstacle awareness and provides low prediction per-
formance for MO thereby yielding disagreements. Looking at the results for control law (g), a
highly significant main effect was observed, F(5, 90) = 5.97, p < .001. Planned comparisons
show that all control methods cause a higher disagreement than (g), see Table 5.2. As (g)
is risk-seeking, it consequently tends to avoid disagreements adopting a more passive role.
The fact that it also considers the current disagreement boosts this effect.

Applied forces, Fig. 5.18(ii), were higher on NC(M = 12.97N) than
on MO(M = 10.74N), F(1, 18) = 15.76, p < .01. Although differences between con-
trol methods were not significant after correction, p > .1, the risk-averse with current
disagreement, control law (e), numerically required the lowest applied force.

On NC, the contact force from collisions, see Fig. 5.18(vi), was smaller (M = 0.65 N)
compared to MO(M = 2.67 N), F(1, 18) = 28.73, p < .001.

No significant differences were found between movement times of the different control
methods, see Fig. 5.18(iv), F(6, 108) = 0.46, p > .8.

In summary, the consideration of uncertainty in the optimization is shown beneficial for
haptic assistance, as exhibited by the superior performance of all proposed control schemes
w.r.t a naive LQR control ignoring any variability. The inclusion of the Mahalanobis distance
in the optimization criterion leads to higher perceived helpfulness as it considers the learned
trajectory’s uncertainty. The benefits of a risk-sensitive optimization are only significant when
an estimation of current disagreement is additionally considered. The risk-seeking control
law achieves minimal disagreement as it adopts a recessive attitude during negotiation with
its partner. This is especially noticeable passing through the obstacle: as the behavior model
lacks any obstacle awareness, counteracting forces arise frequently due to poor prediction
performance. In terms of human power, the risk-averse policy is more effective. However,
the risk-seeking variant is preferred by human users, favoring disagreement avoidance to
effort minimization. If the behavior model is accurate risk-aversion effectively minimizes
human effort but the complexity of human behavior makes fulfilling this prerequisite highly
improbable. Nevertheless, other pHRI application domains may take advantage of risk-averse
policies. For instance, consider a kinesthetic teaching scenario where the robot has the role
of the teacher. In this case the robot aims for minimizing variations in human performance,
a condition in accordance with a risk-averse control scheme.
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5.4 Uncertainty-dependent Assistance for Tasks with

Environmental Contacts

The previous section considers navigation tasks neglecting any contacts with the environ-
ment. This possibility is studied here for tasks where the regulation of environmental
wrenches is necessary. For simplicity of illustration, we consider a PbD scenario where the
human role is limited to teaching. The robot control goal reduces to the reproduction of the
demonstrated manipulation task.

Robotic manipulation covers a wide field of applications, such as grasping or door open-
ing tasks [174]. The PbD paradigm [38] provides efficient methods for rapid skill transfer
to robots, applicable to manipulation tasks through teleoperation [175] or physical coach-
ing [70]. Manipulators are easily programmed following this principle extracting motion-
based generalized plans [74]. Motion-based approaches successfully execute manipulation
tasks if reproduced in the same environment [176], but fail in uncertain environments. The
inclusion of contact forces into the control scheme facilitates a desired compliant interaction
of the manipulator and thereby improves its behavior in contact [1]. Task plans based on
demonstrations including contact forces provide better generalization capabilities than pure
position models [177]. However, such an approach implies the challenge of controlling two
different references at the same time, i.e. position and force. Due to environmental vari-
ations, additional adaptation is required during the reproduction phase. One option is the
adaptation of the position reference depending on the observed force error using force feed-
back [178], while other methods follow hybrid control [179] or parallel force and position
control [180]. A valid alternative relies on varying the stiffness of the robot depending on
the observed position error during kinesthetic teaching [169]. Here we aim for a systematic
approach to adapt both, the compliance and the reference of the robotic manipulator based
on observed force variability.

In this section we will explicitly address the problem of environment uncertainty during
the reproduction of a manipulation task, i.e. we assume a mismatch between the planned
position and force trajectories and the current environment condition. As shown in the pre-
vious section, uncertainty-dependent optimal control is an effective strategy when the robot
control needs to adapt to uncertain human behavior. Here, we show that this concept is also
applicable to adapt the trade-off between motion and force goals. We interpret the manip-
ulation tasks as an interaction problem between two agents given by a motion and a force
controller. Modeling environmental force variability as an uncertain input for the motion
control and following a Model Predictive Control Scheme (MPC), an online variable stiffness
as well as a reference adaptation is achieved by means of a risk-sensitive optimization. The
proposed control scheme provides increased adaptation in different environmental situations
as validated in experiments for an implementation on a KUKA lightweight robot performing
two different tasks.

The remainder of this section is structured as follows. Section 5.4.1 describes formally
the considered problem. The proposed controller is presented in Section 5.4.2. Experiment
are presented in Section 5.4.3.
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5.4.1 Problem Formulation

The task considered in this section consist of the control of a robotic manipulator moving from
an initial configuration to a final goal following a trajectory of desired position/velocity and
desired force. This desired trajectory describes a manipulation task including contacts with
the environment. We assume that the manipulator measures contact forces at its end-effector.
Its movement can be represented directly in joint or task space. For simplicity we consider
that the robot’s motion is represented in task space and is governed by an admittance-type
control law given by

Mr ẍ + Dr ẋ = up + u f , (5.45)

where x is the position of the end-effector and the admittance parameters are given by the
rendered mass Mr and friction Dr ; up represents the motion control input which corrects the
error in position and velocity space and u f the force control input that accounts for errors

in force space. We denote the robot’s motion state by ξ =
�
xT ẋ T
�T

. The right side of (5.45)
reflects the coupling between two controllers, which can be interpreted as cooperation only
if a common final goal is assumed, i.e. both, the desired force and the desired motion tra-
jectory are followed without the motion and force control counteracting each other. This
is achievable only if the task is executed in the same environment as during demonstra-
tions. Otherwise, and this is the more general case that includes environment variability
from demonstration to reproduction, it is interpreted as a competition.

We assume that the desired motion/force trajectories are encoded in a task model λ,
which is extracted from previous human demonstrations and is represented as a trajectory of
normal distributions of position/velocity {µ̂ξ, Σ̂ξ} and force {µ̂ f , Σ̂ f }. We also consider the
possibility of environmental variability during the reproduction of the task, which might not
be reflected in the task plan.

A control scheme that reproduces a learned task given by λ would minimize the tracking
error with respect to the expected trajectories of both position/velocity ξd =

�
xd

T ẋd
T
�T

, and
force, f envd. From (5.45) we can write

Mr ẍ + Dr ẋ = (D(ẋd − ẋ ) + K(xd − x )) + K f ( f envd − f env) , (5.46)

where f env is the measured force at the end-effector and xd and ẋd are the desired position
and velocity respectively; K , D are the stiffness and damping constituting the motion control
and K f is the proportional gain for the force control.

In order to reproduce the expected forces at the end-effector, the force control scheme
tracks the expected force trajectory, i.e., E[ f envd] = µ̂ f . Note that when K f differs from the
identity matrix, its effect is equivalent to modifying the rest of the admittance parameters as

M ′
r
= MrK

−1
f

D′
r
= Dr K

−1
f

D′ = DK−1
f

K ′ = KK−1
f

.

For simplicity, we assume K f as the identity matrix.
Given this problem setting, the focus of this paper lies on the design of the motion control

scheme that generates up , i.e. on the design of the possibly time-varying matrices K and D

and the position/velocity reference ξd .
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5.4.2 Risk-Sensitive Motion Control

Manipulation tasks usually comprise different phases depending on the existence of con-
tact with the environment. During pure unconstrained motion phases no contact forces are
present and tracking the desired motion trajectory is the only control goal. However, when
forces must be exerted in contact with the environment, their role is typically critical for the
task success and need to be prioritized over following the motion trajectory. Let us consider
the grasping of an object as an exemplary task: during the grasping phase forces are crucial
and tracking the desired motion becomes a secondary goal. If the object to be grasped is
placed in a slightly different position than the expected one (assuming no visual feedback is
available), the only way to successfully perform the grasping task is to rely on force feedback,
making sure that the motion tracking does not disturb.

From a control point of view, a model-based motion control scheme can interpret the
activity of the force control as an error in its task model. If the motion-based model was
ideal, i.e. the contact location and the environment impedance exactly the same as during
the recording of the task, there would be no need for a force controller (except for contact
with rigid environments). However, force tracking is necessary when such an exact model is
not available. Corrections coming from the desired force tracking are potentially produced
by environmental variability/uncertainty in contact location and/or changed environment
impedance during the reproduction of the task. As the expected force control goal is given
by an uncertain normally distributed trajectory, from (5.45), we model the corresponding
force input as an uncertain input u f ≈ ε in the plant dynamics for the motion control

Mr ẍ + Dr ẋ = up + ε . (5.47)

We assume that ε is normally distributed, i.e. ε∼N (ε|u0,Σu). It represents potential errors
of the motion task model due to environmental variability reflected in deviations from the
expected force trajectory. A priori, these are given by previously observed statistical variabil-
ity, encoded in the expected force trajectory variance yielding εe ∼N (ε|0, Σ̂ f ). Additionally,
online deviations are also considered by observing the current force control input u f . These
are characterized by εc ∼N (ε|u0,Σu f

), where u0 and Σu f
are calculated online as the av-

erage first and second order moments of u f of a time window of W s. The overall variability
is given by ε=max (εe,εc), computed as in Section 5.3.3.

Due to the discrete time nature of the implementation, we discretize the system
from (5.47) with a sampling time interval ∆t yielding a discretized plant dynamics in the
form ξk+1 = Aξk + Bu p,k given by

�
x k+1

ẋ k+1

�
=

�
1 ∆t

0 1−M−1
r

D r∆t

��
x k

ẋ k

�
+

�
0 0
0 M−1

r
∆t

�
(up,k + εk) (5.48)

where x k, ẋ k and up,k ∈ R3 are the discrete time position, velocity and motion control input
at time k in Cartesian space.

Given plant dynamics (5.48) and a desired trajectory to follow {µ̂ξ, Σ̂ξ}, the aim of the
controller is to generate the corresponding control input that tracks the given trajectory con-
sidering potential errors.
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Remark 5.4. If the behavior model is constantly updated in an online fashion, e.g. the
model presented in Section 3.3, the expected variability Σu does not requires the empirical
estimation given by the first and second order moment of u f .

Reference Adaptation

The motion control tracks the trajectory given by {µ̂ξ, Σ̂ξ}. The desired reference ξd is then
given by the mean of the demonstrated trajectories

E[ξd,k] = µ̂ξ,k. (5.49)

However, in case of diverging forces, the desired motion reference must be adapted to ac-
commodate for potential mismatches in the expected motion trajectory.

Considering the bias of uncertain input εk, dynamics (5.48) are expressed as

ξk+1 = Aξk + B(up,k + u0,k + εk) . (5.50)

with unbiased input εk = N (ε|0,Σu,k). The reference adaptation ξa is calculated as the
motion difference produced by the bias u0 applying the system dynamics

ξa,k+1 = Aξa,k + Bu0,k .

If we add it to the desired tracking reference from (5.49), the resulting desired trajectory is
adapted to the observed force controller divergence as

ξd,k = µ̂ξ,k + ξa,k . (5.51)

With this model, dynamics (5.50) take again the same form as in (5.48) with unbiased in-
put εk, as the bias’s effect is taken into account in the considered reference.

Risk-Sensitive Optimization

From (5.48) and the desired reference (5.51) the computation of the motion control input up

can be formulated from an optimality point of view as the minimization of the distance to the
desired trajectory. Due to the continuous reestimation of ε, an MPC scheme must be adopted
and the optimization must be constantly recalculated as the problem parameters change. A
quadratic cost function at sample time k for this problem takes the form

Jk =

k+T∑

i=k

‖(ξd,i − ξi)‖2Q + ‖up,i‖2R , (5.52)

where T is the time horizon and Q and R are weighting factors that allow a trade-off between
control cost and tracking error minimization. Similar to Section 5.3.2, weighting factors Q

can be also chosen proportional to the inverse of the expected motion covariance Σ̂ξ in order
to account for potential task constraints encoded into the variability between the learned
trials.
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The minimization of the expected cost E [Jk] for dynamics (5.48) leads to a solution pro-
viding optimal tracking. However, the influence of ε is ignored, i.e. uncertainty due to
environmental variability does not influence the motion control. In contrast, a risk-sensitive
optimization directly considers the uncertainty in the dynamics, adapting the manipulator
compliance depending on a risk-sensitivity parameter θ . In this case the cost function takes
the form

γ(θ ) = −2θ−1 lnE[exp−
1
2θ Jk] .

The exponential form of this cost function makes the optimization sensitive not only to the
expected cost E[Jk] but also to higher order moments of it, which are directly related to
uncertain input ε. If θ = 0 the controller is risk-neutral and ε has no influence on the
resulting gain. For θ < 0 and θ > 0 the controller becomes risk-averse and risk-seeking,
respectively.

The solution to this problem is detailed in Chapter 4. The resulting feedback term can be
written in the form

up,k = −Vi(ξd,i − ξi) , (5.53)

where Vi is the feedback matrix given by a modified form of the Ricatti recursion [172]

Vi = −R−1B′(BR−1B′ + θΣu,k +Π
−1
i+1)
−1A ,

and
Πi = Q i +A′(BR−1B′ + θΣu,k +Π

−1
i+1)
−1A ,

with ΠT = QT . The resulting feedback gain Vi represents both the damping D and stiffness K

parameters from (5.46) as

Vi =

�
0 0

Ki Di

�
.

Note that, due to the MPC scheme, while the recursion for the optimization is calculated
for a time horizon T , the only feedback matrix applied in the motion control from (5.53) is
the one for the simulated step i = k.

As a result, in the risk-averse case, θ < 0, the feedback gain becomes higher interpreting
the noise in a pessimist manner as it if was directing the state in the wrong direction. For the
risk-seeking case, θ > 0, the feedback gain becomes lower adopting an optimist attitude as
it assumes that the noise is already doing part of the job and therefore directing the state in
the right direction. Applied to our scenario, a risk-seeking policy arises as the most intuitive
solution. In this case, the stiffness decreases when the force control needs to correct the
desired force trajectory in order to avoid disturbances. The risk-averse case is a suitable
option for pure motion tasks as the stiffness rises under force control corrections, increasing
the tracking precision. Note that while the presented solution only considers linear dynamics,
the approach is also applicable to nonlinear dynamics by means of the methods explained in
Chapter 4.

5.4.3 Evaluation

In order to evaluate the performance and demonstrate the applicability of the proposed con-
trol scheme, a full-scale experiment is conducted in our laboratory. Using a robotic manip-
ulator two different tasks involving contact with the environment are performed for four
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Figure 5.19: Task consisting of push-
ing a button followed by
pointing out text writ-
ten on a whiteboard.

Figure 5.20: Task consisting of clean-
ing a whiteboard with
an eraser grasped with a
two-finger gripper.

different motion control strategies. The presented results show the advantages of the pro-
posed approach testing the adaptation capabilities to different environmental variations.

Experimental Setup

The robotic platform employed for this experiment described in Appendix A.3 is shown in
Fig. 5.19. In our implementation rotational motions are ignored so that the system dynamics
remain decoupled and linear for each Cartesian DoF. To acquire a generalized model of a task
given a set of exemplary demonstrations, a probabilistic task model λ given by a time-based
HMM is acquired by the methods described in Section 3.1. For evaluating combinations of
risk-sensitivity and motion reference, we tested four different motion controllers:

(a) Risk-neutral optimization, i.e. θ = 0 and motion reference (5.49).

(b) Risk-seeking optimization, i.e. θ = 10−5 and motion reference (5.49).

(c) Risk-neutral optimization, i.e. θ = 0 and motion reference (5.51).

(d) Risk-seeking optimization, i.e. θ = 10−5 and motion reference (5.51).

Note that controllers a) and c) are not influenced by the variability of the force control Σu

in contrast to b) and d), that adopt a risk-seeking optimization. Similarly, controllers b) and
d) adapt their motion reference depending on the bias u0 while a) and c) do not modify the
learned references.
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Task Pushing Button and
Pointing

Erasing White-
board

Controller Initial Button Pointing Initial Whiteboard
Distance Distance Distance

0 cm ◦ 0 cm -
5 cm

◦

(a) 5 cm × 0 cm 0 cm •
10 cm × 0 cm +5 cm •
0 cm ◦ 0 cm -

5 cm
•

(b) 5 cm ◦ 0 cm 0 cm •
10 cm ◦ 0 cm +5 cm •
0 cm • 8.5 cm -

5 cm
◦

(c) 5 cm • 9.5 cm 0 cm ◦
10 cm • 7.8 cm +5 cm ◦
0 cm • 8.5 cm -

5 cm
◦

(d) 5 cm • 9.5 cm 0 cm ◦
10 cm • 7.8 cm +5 cm ◦

Tabular 5.3: Experimental results for pushing button and pointing task and for whiteboard
erasing task. • success, ◦ partial success, × failure

For our experiments, the parameters of Eq. (5.45) are

Mr = diag (10 kg, 10 kg, 10 kg )

Dr = diag (80 Ns/m, 80 Ns/m, 80 Ns/m )

and the window size W from (5.48) is set to 0.3s. For simplicity of presentation, the tracking
error precision Q in (5.26) is chosen such as errors with respect to the expected velocity
trajectory are ignored and therefore only position errors are considered resulting in a stiffness
adaptation, i.e. D = 0 in (5.46).

Experimental Design

Two tasks are considered for the reproduction performance evaluation. A model of each
task is acquired after teaching 12 different demonstrations of each task keeping the same
environmental conditions.

The first task, shown in Fig. 5.19, consists of pushing a button followed by pointing out text
written on a whiteboard. Three different environmental conditions are tested. The button
height is decreased with respect to the teaching environmental conditions for 0, 5 and 10 cm
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respectively. A task execution is considered successful when the button is correctly pushed
and the predefined place at the board is exactly pointed out. The button pressing procedure
is considered a success when the button is correctly pushed and clicked, a half success when
contact is partially pushed but did not clicked and other cases are considered as failure.

The second task, shown in Fig. 5.20, consist of cleaning a whiteboard with an eraser which
is assumed to be already grasped. Three different environmental conditions are tested, in-
cluding an initial end-effector position differing in −5, 0 and 5 cm to the teaching environ-
mental conditions. The task is considered successfully executed when the text written on the
whiteboard is erased. A half success is considered when the text is only partially erased.

Results: Pushing and pointing out

As shown in Fig. 5.21 for the task reproduction placed 10 cm lower with respect to the initial
conditions, the resulting stiffness depicted by the solid blue line is adapted depending on
the force control input represented by the black dashed line for the risk-seeking controllers,
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i.e. (b). The variable stiffness profile from (a) is only a result from the optimization and are
not affected by the force controller activity. As no reference adaptation is considered in con-
troller (b), the stiffness decreases more with respect to (a) as it needs a stronger correction
from the force control. As a result of the adaptive stiffness with respect to force errors pro-
duced by the risk-seeking optimization, the force controller receives less disturbances from
the motion controller and can achieve a better force tracking performance which translates
in a better task performance: as shown in Table 5.3, the risk-seeking controller (b) performs
better than the risk-neutral one (a) when pushing the button.

The reference adaptation for controller (c) and (d) for the 5 cm case is shown in Fig. 5.22.
The adapted reference depicted by the dashed-dotted red line deviates from the task model’s
desired trajectory represented by the solid green line accommodating for the force controller
input represented by the black dashed line. As a consequence, a better task performance for
the button pressing phase is achieved as shown in Table 5.3 for controllers (c) and (d). How-
ever, a drift from the original reference is present at the end of the task execution producing
an undesired tracking error effect for the pointing out motion. This effect is not present in
the other two controllers that do not adapt their references.

Results: Erasing

The results for the erasing task are shown in Table 5.3. For the two controllers not adapting
their motion reference, the risk-seeking controller (b) arises again as a better alternative as it
correctly erases the whiteboard in all conditions, in contrast to the risk-neutral case (a) that
ignores the force control input. While this task suggests that an adaptation of the reference
of the motion controller is beneficial if an environmental offset is present, the results show
worse performance for the controllers adapting their reference, i.e. (c) and (d). As shown
by Fig. 5.22, the adapted reference for controller (c) depicted by the dashed-dotted red line
overcompensates the force controller contribution. This undesired effect may be caused by a
too fast accommodation of the observed bias, suggesting that an increased window size for
process noise estimation could improve the controller performance by capturing only very
clear bias trends.

In summary, the risk-seeking optimization is as a suitable option as it provides variable
stiffness depending on environmental force deviations. As a result, increased generaliza-
tion capabilities in varying environmental conditions is achieved. Similarly, the reference
adaptation also improves task success accommodating to diverging forces by adapting the
motion reference. Depending on the task, the resulting drift of the reference trajectory w.r.t
the desired one increases or decreases the generalization capabilities of the control scheme.
This issue requires further investigation. The addition of a forgetting factor to the reference
adaptation term is a possible alternative to be addressed in future works.

5.5 Assistance with Multiple Models

As exposed in Section 2.1, the characterization of behavior models for anticipatory physical
assistance is very diverse, comprising analytical, learning and planning approaches. Depend-
ing on the a priori available environmental and task information, the predictive performance
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of the different models may vary significantly. When several models are available, the selec-
tion of the most promising one arises as an additional control issue. As an example, consider
a scenario where various models are available but they only represent partially the task to be
fulfilled. The necessity of a dynamic selection of the most appropriate strategy between all
available models becomes evident. Additionally, when human behavior diverges from any of
the possible task specific plans known to the robot, a suitable anticipation strategy remains
an open issue. This section studies solutions for these two problems. First, a wrench-based
assistance scheme relying entirely on sensed forces is presented, becoming a suitable alter-
native when no specific task model coincides with human intentions. Second, a method to
select the most promising strategy following a short-term retrospective evaluation method-
ology is proposed. By estimating the applicability of both a model-based and the presented
wrench-based control schemes based on recent prediction performance, a strategy selection
scheme decides to either retain the current assistance model or switch to a recently more suc-
cessful strategy. A user study in a 2D virtual scene shows the applicability and the benefits
the proposed approach in terms of human effort minimization.

The remainder of this section is organized as follows: after we confine the problem in
Section 5.5.1, Section 4.1.1 describes the overall approach. Detailed explanations of our
proposed dynamic strategy selection scheme is found in Section 5.5.3. The experimental
evaluation with human users is described in Section 5.5.4.

5.5.1 Problem Formulation

The task considered in this section consists of the physically coupled movement of a human
and a robot from an initial to a final configuration. However, instead of assuming coopera-
tion towards a common goal known to both partners [25, 181], we consider the possibility
that the human diverges from the robot’s assumed final configuration or path to the goal.
No information on the desired trajectory of the human or the robot is provided to the part-
ner other than through haptic interaction. As in Section 5.3, we assume the robot renders
dynamics

Mr ẍ + Dr ẋ = uh + ur , (5.54)

with inertia Mr and viscous friction Dr , uh the applied force by the human, ur the assistive
control input of the robot, and ξ =

�
x T ẋT
�T

the state of the system, where x denotes the
shared object’s configuration.

The anticipatory robot input ur is computed based on a behavior model λ in terms of the
human desired path. In contrast to Section 5.3, we now assume that λ can be close to the
human intentions, incomplete, partially or completely wrong, i.e. we consider the possibility
of divergence from the human side. The goal of this section is the synthesis of the anticipatory
robot’s proactive contribution ur taking into account that the human may aim for a different
goal or path than the one represented in the behavior model λ.

5.5.2 Approach

From the problem setting, two different cases can be intuitively identified depending on the
task model λ’s similarity to the human intentions: a) when λ coincides with the human
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Figure 5.23: General control scheme. The strategy selection switches between a model-based
control scheme and a wrench-based control scheme depending on their perfor-
mance in terms of human effort minimization.

plan, or, in contrast b) the human intended goal or path differs from λ. This binary case
separation suggests the situation-dependent application of two different control schemes.
On one side, an model-based control scheme relying on the task model’s predictions performs
satisfactorily when both partners have a similar plan (case a)). On the other, interpreting
the human force as an indicator for the desired movement direction, a wrench-based control
scheme based on the currently observed human control input is preferred when the human
goal is unknown (case b)). Note that an intermediate strategy between both cases is not
considered as a useful solution since merging different goals can lead to undesired or even
potentially unsafe configurations.

We consequently propose a strategy selection approach that switches between the model-
based and the wrench-based control based on their performance in terms of human effort
minimization, as shown in Fig. 5.23. The resulting scheme supports the human partner in
case of correct anticipation of the human higher-level intention and also in unexpected situ-
ations. Each control scheme relies on a different human desired state trajectory ξ

d
. On one

side a model-based assistance relies on the task model’s λ predictions and assumes that the
deviations coming from the human side are not diverging from λ’s predictions, i.e. the hu-
man goal coincides with the model’s description. On the other side, a wrench-based control
assumes that the human diverges from any known task models discarding their predictions.
The human desired state trajectory is then estimated based only on the human control input.

Model-based control scheme

The model-based scheme assumes that the the behavior represented by the task model λ
coincides with the human motion intention and therefore follows predictions given by λ,
i.e. ξd = ξ̂λ. To compute the robot anticipatory input ur λ we rely on the optimal control
method described in Section 5.3.
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Wrench-based control scheme

The wrench-based control scheme assumes different intended goals between the human and
task model λ. During physical interaction, this can be detected based on the measured inter-
action force, where a continuous level of human force input indicates a disagreement to the
current motion. In order to represent this divergence, predictions rely on the observed hu-
man wrench uh. Applying discretized system dynamics (5.36) the wrench-based prediction
of the desired state trajectory ξd = ξ̂c is given by

ξ̂w ,k+1 = Aξk + Buh,k. (5.55)

The wrench-based control considers the observed divergence as the human desired trajectory,
i.e. ξd = ξ̂w , tracked by means of an optimal regulator as described in Section 5.3.3 and
yielding ur w.

5.5.3 Dynamic Strategy Selection

The principle that governs the control design in this work is the minimization of the hu-
man force contribution during interaction, which is related to motion prediction accuracy. A
higher prediction accuracy results in a diminished required and applied human force contri-
bution, uh, because it allows the robot to contribute a larger load share ur of the required
total force input u to achieve the desired state trajectory ξd . This motivates us to develop
a strategy selector that aims at optimizing prediction accuracy. By evaluating the models in
their short-term retrospective behavior over the window length H, we obtain an estimate for
the instantaneous future prediction error. The measure αi used here to evaluate the predic-
tion accuracy for the control scheme i ∈ {λ, w} is defined in the mean squared error sense,
i.e.

αi,k =
1
H

k∑

j=k−H+1

‖ξ j − ξ̂i, j‖2, (5.56)

where both the model-based and the wrench-based control strategy simultaneously provide
predictions ξ̂λ/w of the human desired trajectory. Assuming the prediction error to be sta-
tionary within the interval H, αi k defined in (5.56) serves as a good estimate for the mean
squared error of the future prediction based on past observations until time step k, i.e.

E

�
‖ξ

k+1− ξ̂i,k+1‖2|k
�
≈ αi,k, i ∈ {λ, w}, (5.57)

where E [x |k] is the conditional expectation of x conditioned on known data until k. Due
to the fact that higher prediction accuracy reduces the human force E[uh] and having the
estimates for the current prediction accuracy given by (5.57), we select the applied control
scheme u r ,i used in the next time step k+ 1 according to the measure αi,k by

i = argmin
j∈{λ,w}

α j,k.

When choosing a value for the window length H, it can be seen that a trade-off needs to
be found between the sensitivity to noise and the ability for fast adaptation to changes of
the human behavior. A small value for the window length leads to a greater sensitivity with
respect to noise, whereas a large value of H may violate the stationarity assumption needed
to assert (5.57).
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Start

Goal

Figure 5.24: Example task: Moving a point mass object from start to goal position through a
maze

Partial feedback plan

Unknown path

Figure 5.25: Feedback motion plan computed with SNG method. The hue indicates the di-
rection towards the goal.

Finally, it should be noted that the proposed selection strategy can also be applied to the
more general case for N control schemes with 1≤ i ≤ N , when several model-based schemes
are available.

5.5.4 Evaluation

The proposed control and strategy selection schemes are evaluated in a human-robot coop-
erative setup in virtual reality. A user study evaluates different assistive control strategies
for a simple task consisting of jointly carrying a virtual object from an initial position until a
final goal through different possible paths in a 2D maze.

Experimental Setup

The virtual reality interface used for this experiment is described in Appendix A.1. The
displayed task to transport a virtual object is visually represented by a filled red circle and
the target position in the upper left corner of the maze (blue dot) depicted in Fig. 5.24.
Collisions with the virtual walls should be avoided. Table 5.4 exhibits the constants used to
parameterize the experiment.
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Constant Equation Value

Simulated object
mass m

(5.54) 100kg · I2

Simulated viscous fric-
tion ν

(5.54) 400 Ns
m ·

I2

Optimization’s time
horizon T

(5.26) 0.1 s

Tracking error weight-
ing Q

(5.26) 108 I4

Control cost weight-
ing R

(5.26) I4

Filter window
length H

(5.56) 25 ms

Tabular 5.4: Control parameters used in 2-DoF experiment

Quantitative Measures

We evaluate the following criteria in order to rate the performance of the proposed ap-
proaches:

• Mean completion time Tmean is a task-related performance measure and serves as an
indicator of the increase of efficiency to accomplish a task through interaction.

• Mean absolute human force input 1
t

∫ t
0
‖uh‖dτ.

• Mean energy contributed by the human as measure of effort E =
∫ t

0
uh

T ẋ dτ is an
indicator for the capability of the robotic assistant to take over the overall work load
to complete the task.

• Number of collisions with the virtual environment serves as a measure for safety and
controllability during task execution.

Experimental Design

We conducted a small pilot study in the presented VR scenario to evaluate the performance
of our proposed approach. Twelve non-paid participants (age mean: 27.5, std: 2.7) were
instructed to move a virtual object through the simple maze used above from a starting
configuration to a final configuration through the scene without colliding with the virtual
obstacles visually and haptically displayed.

A total of 6 different conditions were evaluated depending on the controllers used and
the paths chosen to solve the maze

(i) No active assistance, i.e. ur = 0 following always the same path.

(ii) Wrench-based control scheme following always the same path.
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Figure 5.26: Spatial distribution of the strategy selection scheme for all participants for the
partially known model condition (v): red dots indicate where the model-based
strategy was selected.

(iii) Model-based control scheme with risk-seeking optimization, i.e. θ = 10−5, following
always the same path.

(iv) Dynamic strategy selection scheme between controllers (ii) and (iii), following always
the same path.

(v) Dynamic strategy selection scheme between controllers (ii) and (iii), following the
opposite path with incomplete task model λ.

Each participant repeated each condition 5 times. The underlying task model λ is given
by a feedback motion plan towards the goal.

A feedback motion planning algorithm generates a feedback function K (x) for all ac-
cessible positions x . The sampling-based neighborhood graph (SNG) [182] is a very com-
prehensible method, efficiently covering the accessible region with the feedback function
that indicates the direction towards the goal. Therefore, the entire configuration space is
randomly clustered into overlapping circles (or hyperballs in higher dimensions), and Di-
jkstra’s algorithm is applied to plan on the connected graph from the circle containing the
initial configuration to the circle containing the final configuration. Finding the shortest path
within circles is straightforward. The feedback motion plan for our experiment is depicted
in Fig. 5.25. The hue of the colors encodes the direction to the goal. Note, that the lower
path is excluded in the feedback plan to render an incomplete task model λ.

Experimental Results

The quantitative results of the experiment are depicted in Fig. 5.28 for all considered condi-
tions. The condition of no assistance (i) has longer completion times and significantly higher
mean force and mean absolute power while the mean number of collisions remains on aver-
age. While the model-based condition (iii) and the complete strategy selection condition (iv)
have similar mean completion times, the mean force and the mean absolute power are higher
for condition (iv) as the trial numbers increase, but the mean number of collisions is lower.
The model-based condition (iii) has a fixed model and can not adapt its behavior between
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Figure 5.27: Spatial distribution of the strategy selection scheme for all participants for the
partially known model condition (v): blue dots indicate where the wrench-
based strategy was selected.

trials while the complete strategy selection condition (iv) switches from the model-based
to the wrench-based scheme in order to accommodate for higher velocities. Although the
path to follow is only partially known, it is remarkable that the incomplete strategy selection
condition (v) performs always close to the complete strategy selection condition (iv) for all
quantitative measures. At the same time and w.r.t. the wrench-based scheme (iii), the mean
completion time is shorter and the the effort needed lower.

The spatial distribution of the dynamic strategy selection results for the incomplete model
case (v) is presented in Fig. 5.27 and Fig. 5.26. Figure 5.27 shows that the wrench-based
control scheme is primarily selected in the unknown area of the map, where the model-based
approach has no prior knowledge, and during motion along straight lines, where the model-
based approach does not adapt its velocity profile to different execution speeds. The model-
based strategy is primarily selected during corner turns, where predictions purely based on
the human control input are not successful, see Fig. 5.26. It is also remarkable that any
potentially undesired switching effect (jerk) in the system dynamics was not noticeable for
the participants due to the rendered compliance in the linear-actuated device.

The results indicate that our proposed strategy selection scheme combines the advan-
tages of model-based control in case of a suitable task model and the advantages of our
proposed wrench-based control scheme when the task model is far from human motion in-
tention. Model-based control leads to higher execution speed as the trajectory prediction
and assistance is accurate not only along straight lines but also during turns. While achiev-
ing a similar level of velocity, the proposed dynamic strategy selection scheme requires a
significantly lower effort induced by the human partner, an indicator for the efficiency of the
strategy.

5.6 Summary

This chapter addressed relevant challenges in the design of model-based anticipatory physical
assistants with special emphasis on learned models.

The benefits and disadvantages of anticipation based on models learned during interaction
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Figure 5.28: Mean and standard deviation evolution of quantitative parameters over trials.

were presented in Section 5.1. Although effective human behavior prediction significantly re-
duces human effort, mispredictions imply disturbing counteracting wrenches. These insights
showed the necessity of a deeper understanding of causes and consequences of counteracting
wrenches.

Section 5.2 studied internal and effective wrench components arising between goal-
oriented agents. This analysis follows from understanding possibly non-uniform wrench
allocation policies and load shares. Internal wrench indicate errors in terms of differing de-
sired acceleration directions thereby showing its relevance for efficient anticipatory control
designs.

Besides compensating for undesired wrench components, the assistance control scheme
introduced in Section 5.3 for navigation tasks also adapt its anticipatory input depending
on prediction uncertainty. Formulated as an optimal control problem targeting human force
minimization, prediction uncertainty from both the expected trajectory and expected dis-
agreements become decisive components of robot assistance. The Mahalanobis distance
modifies the robotic contribution under high prediction uncertainty. In addition, a risk-
sensitive optimization governing the robot’s behavior synthesizes a spectrum of attitudes in
case of disagreements, from recessive to dominant. The proposed approach was objectively
and subjectively evaluated in a psychological study, indicating superior performance in terms
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of perceived helpfulness and human effort minimization.
When tasks are not limited to navigation but also comprise contacts with the environ-

ment, the regulation of environmental wrenches is also necessary. Section 5.4 presented an
optimal control scheme for manipulation where robot motion takes uncertain environmental
force deviations into account. A risk-sensitive optimization provides variable compliance im-
proving generalization capabilities. Additionally, the motion reference adapts to unexpected
environmental force divergence yielding higher adaptability in uncertain and variable envi-
ronments, as validated in experiments with a robotic manipulator.

Envisaging robotic partners fulfilling multiple tasks in cooperation with a human, Sec-
tion 5.5 introduced a dynamic strategy selection method that decides either to retain a cur-
rently selected model or switch to another one depending on recent prediction performance.
In addition, a predictive model relying on observed human wrench was also presented, be-
coming a suitable alternative when no available model coincides with human intentions. An
experiment with human users highlighted the superior performance of a dynamic selection
strategy when multiple models are available.
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Conclusions and Outlook

The capability to physically interact and cooperate with humans is an essential requirement
for robots sharing their workspace with humans. This scenario encompasses relevant applica-
tions such as rehabilitation, mobility aids, elderly care, manufacturing, education or training.
A helpful cooperative physical robotic helper is realized by means of suitable control design,
requiring: (i) human behavior prediction, (ii) intelligent decision-making and (iii) intuitive
reactions to disagreements. This thesis addressed relevant steps towards control algorithms
fulfilling such prerequisites.

In order to be able to anticipate human actions, Chapter 3 presented suitable online model
learning methods. Due to physical coupling, human models for physical assistance require
smooth, fast and conservative predictions. We first studied time-series models of motion and
force signals by means of time-based HMMs. Exploiting the explicitly learned time informa-
tion, time-based HMMs provide smoother predictions in contrast to traditional HMMs. To
enable the acquisition of behavior models during interaction, we presented a primitive-based
incremental learning framework, successfully validated in an experiment with human users.
To represent the correlation of speech commands and environmental variables on motions,
we presented parametric time-based HMMs. External parameters modify output densities
and transition probabilities of the standard HMM, yielding parametric motion models. By
means of the presented parametric HMMs in combination with a natural language model,
the influence of environmental properties and natural language descriptions on motion prim-
itives is successfully captured. As a result, the proposed framework delivers motion primi-
tives that adapt to quality descriptors and specific environmental configurations. Although
the presented time-series models effectively capture time constraints, their representation of
spatial constraints is limited. As an alternative, we studied the applicability of dynamical
systems by means of GPs in order to learn observed task dynamics during interaction. We
introduced novel impedance-based GP models, where the human is assumed to behave as a
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mechanical impedance. The unobservable human-desired trajectory is modeled as a latent
variable tracked by means of a PD control scheme. The resulting model has desirable prop-
erties: in previously unobserved configurations it behaves as a passive mass-damper system.
In addition, increased prediction performance is achieved w.r.t naive GP models as validated
in the presented experiments.

When robot decisions depend on uncertain human models, the consideration of uncer-
tainty in robot actions becomes instrumental. Chapter 4 presented a novel a systematic ap-
proach for the design of uncertainty-dependent decision-makers. We studied the stochastic
optimal feedback control problem considering high order cost statistics. In contrast to clas-
sical approaches which only evaluate the expected performance, the proposed optimization
criterion is given by an arbitrary weighted sum of cost cumulants. In a similar way to statisti-
cal moments, high-order cost cumulants capture the influence of uncertainty on the cost. We
presented locally optimal solutions to this problem for nonlinear systems with non-quadratic
costs. Numerical solutions are computed by approximating the problem around a nominal
trajectory, solving the local problem, updating the trajectory and repeating the process until
convergence. We showed the potential and the applicability of the proposed approach in
various prototypical problems. The effect of multiple sources of uncertainty, present in the
robot dynamics and cost parameters, such as a goal or an obstacle position is illustrated in
simulations of nonlinear non-quadratic problems.

Besides human behavior models and flexible uncertainty-dependent decision-making
methods, the design of intuitive physical assistants requires an adequate understanding of
human intentions by means of force signals. In Chapter 5, we first identified internal and
effective wrenches arising during interaction by previously analyzing possibly non-uniform
load decomposition policies. Based on these findings, we proposed a novel anticipatory con-
trol scheme for navigation tasks adapting to prediction uncertainty and disagreements. For-
mulated as an optimal control problem minimizing human force, prediction uncertainty from
both the expected trajectory and disagreement become decisive components of robot assis-
tance. The presented scheme demonstrated superior performance in terms of human effort
minimization and perceived helpfulness in an experiment with human users. For tasks re-
quiring contacts with the environment, the regulation of environmental forces becomes a
necessary component of the robot control scheme. We presented an optimal motion control
scheme that adapts robot motions to model uncertainty and environmental force deviations.
Increased robustness and generalization capabilities were achieved in the presented exper-
iments. Envisaging more complex settings with multiple behavior models and tasks, we in-
troduced a dynamic strategy selection method that either retains a currently selected model
or switches to another one depending on prediction performance. In addition, a predictive
model relying on observed human wrench was also presented, becoming a suitable alterna-
tive when no available model coincides with human intentions. The presented user study
indicated superior performance of the dynamic selection scheme when multiple models are
available in terms of human effort.
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6.1 Outlook

This thesis is an endeavor towards intuitive and intelligent physical cooperative partners.
Although relevant issues regarding their design were addressed here, the deployment of
such systems in daily life scenarios requires further investigation. In the following, we expose
interesting open issues related to this problem to be studied in future works.

Interaction Behavior Models

Chapter 3 presented models representing human behavior in terms of motion and wrench sig-
nals. However, a more specific and potentially more accurate option considers explicitly the
overall interaction behavior dynamics of all agents. Applying the presented GP impedance
model to multi-agent systems appears as a compelling alternative. This setting gives rise to
models comprising not only motion and resulting wrenches but also internal wrenches and
effective load shares.

In addition, learning dynamical systems with GPs entails encoding potentially unstable
dynamics, especially when sparse approximations are considered. Studying local and global
properties of GP models is a relevant issue that requires further investigation.

Although this thesis limits its scope to time-series and dynamical systems models, other
options presented in Chapter 2 should be also studied. We believe that a comprehensive
model acquisition architecture must consider behavior modeling options comprising several
levels of abstraction. Not only naive descriptors of motion, but also goal-oriented and op-
timal strategies w.r.t relevant features are needed. Crucial in this context is also a seamless
interplay between models. These are necessary steps in order to deliver robots in realistic
settings, where multiple complex tasks during long interaction sessions must be fulfilled.

Haptic Negotiation Models

The acquisition of haptic negotiation models is an interesting subproblem of interaction be-
havior models. The wrench decomposition results from Chapter 5 enable the observation of
the joint dynamics of motion, internal and resulting wrenches and effective loads. An insight
of the role of each of these signals can be acquired for instance studying human dyads by
means of inverse optimal control techniques. We believe that the way each agent reacts to
internal wrenches is an important aspect of the negotiation process to be addressed in future
works.

Uncertainty-dependent Optimal Control with Multiplicative Noise

The uncertainty-dependent optimal control solutions presented in Chapter 4 comprise prob-
lems with uncertainty either in cost parameters or as additive noise in the plant dynamics.
However, the problem where uncertainty appears as a factor of states or controls is also a
relevant problem. As an example, consider a control problem with learned dynamics, rep-
resented for instance by a GP or an HMM. In these cases, predicted dynamics present vari-
ance/process noise dependent on inputs, i.e. state and controls. A linear approximation
yileds multiplicative noise settings, which appear as a challenging but promising problem
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with application not only in robotics but also in many other domains such as neuroscience or
mathematical finance. Recent results on risk-sensitive control present closed-from solutions
for plants with multiplicative noise in continuous time [183] but a solution for discrete-time
settings remains an open issue. Additionally, model predictive control schemes enable con-
stant adaptation in dynamic settings and close to real-time computation times [184]. The
implementation of these family of controllers based on our uncertainty-dependent approach,
as well as belief-space variants [145] are also matter of future research.

Load Share Control

Chapter 5 presented optimal control schemes correcting observed internal wrench compo-
nents and adapting to model uncertainty. In all presented solutions the robot was always
assumed to be accounting for all necessary load. The regulation of load shares was not
addressed in this work but appears as an interesting extension. A suitable alternative for
approaching this problem is the study of the aforementioned negotiation process in human
dyads for later application in human-robot settings. Such models enable first the acquisition
of desired load shares and their posterior regulation during interaction.
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Apparatus

A.1 2 DoF Linear Actuator

The haptic interaface consists of a two degrees-of-freedom (anteroposterior and mediolat-
eral plane of the user standing in front) linear-actuated device (ThrustTube) with a free-
spinning handle (superoinferior direction of the user) at the grasp point. Each actuator is
equipped with a position encoder with precision of 1 µm. Attached to the handle is a 6 DoF
force/torque sensor (JR3), which measures the human wrench input.

If necessary, a virtual scene is visually represented on a display placed on top of the inter-
face, see Fig. A.1. Virtual obstacles are easily visually and haptically displayed by means of
a visuo-haptic rendering framework. For more details, see [185]. Arbitrary two-dimensional
scenes are imported from anystandard monochrome pixel or vector graphics file and are
automatically rendered as stiff environment. All control algorithms are implemented in Mat-

lab’s Simulink Coder and executed on Linux Preempt/RT at a sampling rate of 1kHz running
on an external PC.
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2 Dof
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Figure A.1: 2 DoF linear actuator setup with an attached force/torque sensor at the handle
and a virtual scene displayed on the monitor.

A.2 Robotic Platform 1

The human-sized robot(see Fig. A.2) stands on a four-wheeled omni-directional mobile plat-
form (f) which offers roughly human-like maneuverability and smooth motion [186]. Two
identical anthropomorphic 7-degrees-of-freedom (DoF) arms (c) are front-mounted on the
top of the main chassis to provide a human-like working space [187]. Mounted onto a JR3
wrench sensor, the manipulator is equipped with a Schunk PG70 two-finger parallel grip-
per (a) which allows a tight grasp of the object and force/torque sensing enabling force
feedback control. Lithium-ion polymer batteries (e) power the system for long periods with-
out recharging and expands the reachable space. More information on the robot used can
be found in [188].

For computational power, the robot carries three PCs (d). The first is a an Intel Core i7 920

running at 2.66GHz executing high-level reasoning tasks exploiting the multi-thread OpenMP

library. The entire manipulator control scheme is implemented in MATLAB/Simulink and
executed on the RTAI using Matlab’s Real-Time Workshop on a second PC. Low-level control
algorithms run at a frequency of 1 kHz. The third PC is identical to the first and ensures
real-time control of the mobile platform and a synchronized data management utilizing the
KogmoRTDB real-time database [189] available at [190] and the PREEMPT_RT Linux real-
time kernel patch [191].
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(a)

(b)

(c)

(d)

(e)

(f)

Figure A.2: The human-sized mobile robot with anthropomorphic arms equipped with two-
finger grippers and an omni-directional mobile platform.

A.3 Robotic Platform 2

The second human-sized robotic platform shown in Fig. 5.19 consists of a four-wheeled
omni-directional mobile platform only used for repositioning the robot and two identical
commercially available KUKA LWR (light-weight robot) 4+ manipulators. Desired angular
movements for desired movements in task space are computed by an instantaneous inverse
kinematics. For measuring resultant forces independent of the configuration and of the hu-
man guiding force during kinesthetic teaching of the manipulation task, a 6 DoF force/torque
sensor (JR3) is attached to the wrist. As end-effector, a Schunk PG70 two-finger parallel
gripper is used for simple grasping and object pushing with the fingers. Lithium-ion polymer
batteries mounted at the omni-directional platform power the system increasing its auton-
omy.

The robot carries two KUKA control boxes, one for each manipulator and a single PC for
computational power. The PC consists of an Intel Core i7 920 running at 2.66GHz executing
control schemes, implemented in MATLAB/Simulink and executed on the RTAI using Mat-

lab’s Real-Time Workshop. It also ensures real-time control of the mobile platform and a
synchronized data management utilizing the KogmoRTDB real-time database [189]. In order
to operate the KUKA LWRs we use Fast Research Interface (FRI), which allows user control
and status monitoring of the manipulators based on UDP protocol. This software package is
integrated in the real-time robot control framework [192]. All low-level control algorithms
runs at a frequency of 1 kHz.
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Figure A.3: The robotic platform consisting on two KUKA LWR 4+ manipulators equipped
with two-finger grippers and an omni-directional mobile platform.
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periodic movements with nonlinear dynamical systems,” Autonomous robots, vol. 27,
no. 1, pp. 3–23, 2009.

[95] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical move-
ment primitives: learning attractor models for motor behaviors,” Neural computation,
vol. 25, no. 2, pp. 328–373, 2013.

[96] G. Gergely, Z. Nádasdy, G. Csibra, and S. Biro, “Taking the intentional stance at 12
months of age,” Cognition, vol. 56, no. 2, pp. 165–193, 1995.

[97] A. Y. Ng, S. J. Russell, et al., “Algorithms for inverse reinforcement learning.,” in Icml,
pp. 663–670, 2000.

[98] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learning,”
in Proc. ICML, p. 1, 2004.

[99] D. Ramachandran and E. Amir, “Bayesian inverse reinforcement learning,” Urbana,
vol. 51, p. 61801, 2007.

[100] B. D. Ziebart, J. A. Bagnell, and A. K. Dey, “The principle of maximum causal entropy
for estimating interacting processes,” IEEE Trans. Inf. Theory, vol. 59, no. 4, pp. 1966–
1980, 2013.

157



Bibliography

[101] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy inverse
reinforcement learning.,” in AAAI, pp. 1433–1438, 2008.

[102] S. Levine and V. Koltun, “Continuous inverse optimal control with locally optimal ex-
amples,” in Proc. ICML, 2012.

[103] S. Levine, Z. Popovic, and V. Koltun, “Nonlinear inverse reinforcement learning with
gaussian processes,” in Advances in Neural Information Processing Systems, pp. 19–27,
2011.

[104] E. Todorov, “Optimal control theory,” 2006.

[105] R. E. Bellman and S. E. Dreyfus, “Applied dynamic programming,” 1962.

[106] D. Jacobson, “Optimal stochastic linear systems with exponential performance criteria
and their relation to deterministic differential games,” IEEE Trans. Autom. Control,
vol. 18, pp. 124 – 131, apr 1973.

[107] P. Whittle, “Risk-sensitive linear/quadratic/gaussian control,” Advances in Applied

Probability, vol. 13, no. 4, pp. pp. 764–777, 1981.

[108] A. Bensoussan and J. Van Schuppen, “Optimal control of partially observable stochas-
tic systems with an exponential-of-integral performance index,” SIAM Journal on Con-

trol and Optimization, vol. 23, no. 4, pp. 599–613, 1985.

[109] C. Won, “Cost distribution shaping: the relation between bode integral, entropy, risk-
sensitivity, and cost cumulant control,” in Proc. ACC, vol. 3, pp. 2160–2165 vol.3,
2004.

[110] S. Kuindersma, R. Grupen, and A. Barto, “Variational bayesian optimization for run-
time risk-sensitive control,” Robotics, p. 201, 2013.

[111] K. Rawlik, M. Toussaint, and S. Vijayakumar, “On stochastic optimal control and rein-
forcement learning by approximate inference,” in Proc. IJCAI, pp. 3052–3056, AAAI
Press, 2013.

[112] K. Rawlik, “On probabilistic inference approaches to stochastic optimal control,” 2013.

[113] L. Cosenza, On the minimum variance control of discrete-time systems. PhD thesis,
University of Notre Dame, 1969.

[114] M. K. Sain, C.-H. Won, and B. Spencer, “Cumulant minimization and robust control,”
in Stochastic Theory and Adaptive Control, pp. 411–425, Springer, 1992.

[115] M. Sain, C. Won, J. Spencer, and S. Liberty, “Cumulants and risk-sensitive control: a
cost mean and variance theory with application to seismic protection of structures,”
in Advances in Dynamic Games and Applications, pp. 427–459, Springer, 2000.

[116] K. Pham, Linear-Quadratic Controls in Risk-Averse Decision Making: Performance-

Measure Statistics and Control Decision Optimization. Springer, 2012.

158



Bibliography

[117] F. Qian, J. Gao, and D. Li, “Complete statistical characterization of discrete-time lqg
and cumulant control,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2110–2115,
2012.

[118] K. Pham, M. Sain, and S. Liberty, “Cost cumulant control: state-feedback, finite-
horizon paradigm with application to seismic protection,” Journal of optimization the-

ory and applications, vol. 115, no. 3, pp. 685–710, 2002.

[119] D. H. Jacobson, “New second-order and first-order algorithms for determining opti-
mal control: A differential dynamic programming approach,” Journal of Optimization

Theory and Applications, vol. 2, no. 6, pp. 411–440, 1968.

[120] B. Janus and Y. Nakamura, “Unsupervised Probabilistic Segmentation of Motion Data
for Mimesis Modeling,” in Proc. ICAR, pp. 411 –417, 2005.

[121] J. Kohlmorgen and S. Lemm, “A Dynamic HMM for On-line Segmentation of Sequen-
tial Data,” in Advances in Neural Information Processing Systems 14, pp. 793–800, MIT
Press, 2002.

[122] W. Takano, K. Yamane, T. Sugihara, K. Yamamoto, and Y. Nakamura, “Primitive com-
munication based on motion recognition and generation with hierarchical mimesis
model,” in ICRA, pp. 3602–3609, 2006.

[123] T. Ogata, S. Matsumoto, J. Tani, K. Komatani, and H. G. Okuno, “Human-robot co-
operation using quasi-symbols generated by rnnpb model,” in ICRA, pp. 2156–2161,
2007.

[124] T. Miyashita, T. Tajika, H. Ishiguro, K. Kogure, and N. Hagita, “Haptic communication
between humans and robots,” in ISRR, pp. 525–536, 2005.

[125] Y. Sugita and J. Tani, “Learning semantic combinatoriality from the interaction be-
tween linguistic and behavioral processes,” ADAPTIVE BEHAVIOR, vol. 13, pp. 33–52,
2005.

[126] K. Sugiura, N. Iwahashi, H. Kashioka, and S. Nakamura, “Active learning of confidence
measure function in robot language acquisition framework,” in IROS, pp. 1774–1779,
2010.

[127] W. Takano, K. Yamane, and Y. Nakamura, “Capture database through symbolization,
recognition and generation of motion patterns,” in ICRA, pp. 3092–3097, 2007.

[128] W. Takano and Y. Nakamura, “Statistically integrated semiotics that enables mutual
inference between linguistic and behavioral symbols for humanoid robots,” in Proc.

IEEE ICRA, pp. 646–652, 2009.

[129] W. Takano and Y. Nakamura, “Associative processes between behavioral symbols and
a large scale language model,” in Proc. IEEE ICRA, pp. 2404–2409, 2010.

[130] A. Wilson and A. Bobick, “Parametric hidden markov models for gesture recognition,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, no. 9, pp. 884–900, 1999.

159



Bibliography

[131] D. Herzog and V. Krüger, “Statistical and geometrical approaches to visual motion
analysis,” ch. Recognition and Synthesis of Human Movements by Parametric HMMs,
pp. 148–168, Springer-Verlag, 2009.

[132] W. Takano and Y. Nakamura, “Bigram-based natural language model and statistical
motion symbol model for scalable language of humanoid robots,” in Proc. IEEE ICRA,
2012.

[133] J. D. Schutter, “Invariant Description of Rigid Body Motion Trajectories,” ASME Jour-

nal of Mechanisms and Robotics, vol. 2, pp. 011004–1–011004–9, 2010.

[134] A. Van Der Vaart and H. Van Zanten, “Information rates of nonparametric gaussian
process methods,” The Journal of Machine Learning Research, vol. 12, pp. 2095–2119,
2011.

[135] T. Tsuji, P. G. Morasso, K. Goto, and K. Ito, “Human hand impedance characteristics
during maintained posture,” Biological cybernetics, vol. 72, no. 6, pp. 475–485, 1995.

[136] H. Gomi and M. Kawato, “Equilibrium-point control hypothesis examined by mea-
sured arm stiffness during multijoint movement,” Science, vol. 272, no. 5258, pp. 117–
120, 1996.

[137] M. Alvarez and N. D. Lawrence, “Sparse convolved gaussian processes for multi-output
regression,” in Advances in neural information processing systems, pp. 57–64, 2009.

[138] E. Snelson, C. E. Rasmussen, and Z. Ghahramani, “Warped gaussian processes,” Ad-

vances in neural information processing systems, vol. 16, pp. 337–344, 2004.

[139] E. Snelson and Z. Ghahramani, “Sparse gaussian processes using pseudo-inputs,”
2006.

[140] E. Snelson and Z. Ghahramani, “Local and global sparse gaussian process approxima-
tions,” in Proc. AISTATS, pp. 524–531, 2007.

[141] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Real-time local gp model learning,” in
From Motor Learning to Interaction Learning in Robots, pp. 193–207, Springer, 2010.

[142] S. V. Vaerenbergh, M. Lázaro-Gredilla, and I. Santamaría, “Kernel recursive least-
squares tracker for time-varying regression,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 23, no. 8, pp. 1313–1326, 2012.

[143] A. Faisal, L. Selen, and D. Wolpert, “Noise in the nervous system,” Nature Reviews

Neuroscience, vol. 9, no. 4, pp. 292–303, 2008.

[144] E. Todorov, “Optimality principles in sensorimotor control.,” Nature Neuroscience,
vol. 7, pp. 907–15, 2004.

[145] J. Berg, S. Patil, and R. Alterovitz, “Motion planning under uncertainty using itera-
tive local optimization in belief space,” The International Journal of Robotics Research,
vol. 31, no. 11, pp. 1263–1278, 2012.

160



Bibliography

[146] D. Mitrovic, S. Klanke, and S. Vijayakumar, “Adaptive optimal feedback control with
learned internal dynamics models,” in From Motor Learning to Interaction Learning in

Robots (O. Sigaud and J. Peters, eds.), vol. 264 of Studies in Computational Intelligence,
pp. 65–84, Springer Berlin Heidelberg, 2010.

[147] D. A. Braun, A. J. Nagengast, and D. M. Wolpert, “Risk-sensitivity in sensorimotor
control,” Frontiers in Human Neuroscience, vol. 5, no. 1, 2011.

[148] J. Grau-Moya, P. Ortega, and D. A. Braun, “Risk-sensitivity in bayesian sensorimotor
integration,” PLoS Comput Biol, vol. 8, p. e1002698, 09 2012.

[149] J. Grau-Moya, E. Hez, G. Pezzulo, and D. Braun, “The Effect of Model Uncertainty on
Cooperation in Sensorimotor Interactions,”

[150] J. Müller and G. Sukhatme, “Risk-aware trajectory generation with application to safe
quadrotor landing,” in Proc. IEEE/RSJ IROS, 2014.

[151] E. Todorov and W. Li, “A generalized iterative lqg method for locally-optimal feedback
control of constrained nonlinear stochastic systems,” in Proc. ACC, pp. 300–306, 2005.

[152] D. Jacobsen and M. D, Differential Dynamic Programming. Elsevier.

[153] V. Huynh and R. N, “iclqg: Combining local and global optimization for control in
information space,” in Proc. IEEE ICRA, pp. 2851–2858, 2009.

[154] T. Erez and W. Smart, “A scalable method for solving high-dimensional continuous
pomdps using local approximation,” arXiv preprint arXiv:1203.3477, 2012.

[155] P. Whittle, Risk-Sensitive Optimal Control. Wiley, 1990.

[156] D. Mitrovic, S. Klanke, R. Osu, M. Kawato, and S. Vijayakumar, “A computational
model of limb impedance control based on principles of internal model uncertainty,”
PLoS ONE, vol. 5, p. e13601, 10 2010.

[157] G. Aoude, B. Luders, J. Joseph, N. Roy, and J. How, “Probabilistically safe motion
planning to avoid dynamic obstacles with uncertain motion patterns,” Autonomous

Robots, vol. 35, no. 1, pp. 51–76, 2013.

[158] C. Won, “Cost moment control and verification theorem for nonlinear stochastic sys-
tems,” in Proc. IEEE CDC, pp. 2583–2588, IEEE, 2006.

[159] F. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic programming
for feedback control,” Circuits and Systems Magazine, IEEE, vol. 9, no. 3, pp. 32–50,
2009.

[160] S. Yakowitz, “Algorithms and computational techniques in differential dynamic pro-
gramming,” Control and Dynamic Systems, vol. 31, pp. 75–91, 1989.

[161] S. Calinon and A. Billard, “Statistical learning by imitation of competing constraints
in joint space and task space,” Advanced Robotics, vol. 23, pp. 2059–2076, 2009.

161



Bibliography

[162] U. Unterhinninghofen, T. Schauß, and M. Buss, “Control of a Mobile Haptic Interface,”
in Proc. IEEE ICRA, pp. 2085–2090, 2008.

[163] N. Nitzsche, U. Hanebeck, and G. Schmidt, “Design Issues of Mobile Haptic Interfaces,”
J. Robotic Syst., vol. 20, no. 9, pp. 549–556, 2003.

[164] W. Feiten, P. Atwal, R. Eidenberger, and T. Grundmann, “6D Pose Uncertainty in Robotic
Perception,” in Proc. GWR, pp. 1–10, 2009.

[165] K. L. Doty, C. Melchiorri, and C. Bonivento, “A theory of generalized inverses applied
to robotics,” The International Journal of Robotics Research, vol. 12, no. 1, pp. 1–19,
1993.

[166] I. D. Walker, R. A. Freeman, and S. I. Marcus, “Analysis of motion and internal loading
of objects grasped by multiple cooperating manipulators,” The International journal of

robotics research, vol. 10, no. 4, pp. 396–409, 1991.

[167] M. Uchiyama and P. Dauchez, “A symmetric hybrid position/force control scheme for
the coordination of two robots,” in Proc. IEEE ICRA, pp. 350–356, 1988.

[168] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control, vol. 3. Wiley
New York, 2006.

[169] K. Kronander and A. Billard, “Online learning of varying stiffness through physical
human-robot interaction,” in Proc. IEEE ICRA, 2012.

[170] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: theory and
practice–a survey,” Automatica, vol. 25, no. 3, pp. 335–348, 1989.

[171] S. Boyd, L. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System

and Control Theory. Society for Industrial and Applied Mathematics, 1994.

[172] A. Shaiju and I. Petersen, “Formulas for discrete time LQR, LQG LEQG and minimax
LQG optimal control,” in Proc. IFAC, 2008.

[173] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, vol. 1. Wiley-
interscience New York, 1972.

[174] A. Jain and C. Kemp, “Pulling open doors and drawers: Coordinating an omni-
directional base and a compliant arm with equilibrium point control,” in Proc. IEEE

ICRA, pp. 1807 –1814, 2010.

[175] M. Rambow, S. Hirche, and M. Buss, “Autonomous manipulation of deformable objects
based on teleoperated demonstrations,” in Proc. IEEE/RSJ IROS, 2012.

[176] A. Saxena, J. Driemeyer, and A. Ng, “Robotic grasping of novel objects using vision,”
Int. J. Robot. Res., vol. 27, no. 2, pp. 157–173, 2008.

[177] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal, “Online movement adaptation
based on previous sensor experiences,” in Proc. IEEE/RSJ IROS, pp. 365 –371, 2011.

162



Bibliography

[178] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal, “Skill learning and
task outcome prediction for manipulation,” in Proc. IEEE ICRA, pp. 3828 –3834, 2011.

[179] M. H. Raibert and J. J. Craig, “Hybrid position/force control of manipulators,” Journal

of Dynamic Systems, Measurement, and Control, vol. 103, no. 2, pp. 126–133, 1981.

[180] S. Chiaverini and L. Sciavicco, “The parallel approach to force/position control of
robotic manipulators,” IEEE Trans. Robot. Autom., vol. 9, pp. 361 –373, aug 1993.

[181] R. Olfati-Saber, A. Fax, and R. Murray, “Consensus and Cooperation in Networked
Multi-Agent Systems,” Proc. IEEE, vol. 95, pp. 215–233, 2007.

[182] L. Yang and S. LaValle, “The Sampling-Based Neighborhood Graph: An Approach to
Computing and Executing Feedback Motion Strategies,” IEEE Trans. Robot. Automat.,
vol. 20, no. 3, pp. 419–432, 2004.

[183] P. Date and B. Gashi, “Risk-sensitive control for a class of nonlinear systems with mul-
tiplicative noise,” Systems & Control Letters, vol. 62, no. 10, pp. 988 – 999, 2013.

[184] T. Erez, Y. Tassa, and E. Todorov, “Infinite-horizon model predictive control for periodic
tasks with contacts,” Robotics: Science and Systems VII, p. 73, 2012.

[185] M. Lawitzky, J. Medina, and S. Hirche, “Rapid prototyping of planning, learning and
control in physical human-robot interaction,” in Proc. International Symposium on

Experimental Robotics, pp. 819–824, 2012.

[186] U. Hanebeck, N. Saldic, and G. Schmidt, “A Modular Wheel System for Mobile Robot
Applications,” in Proc. IEEE/RSJ IROS, pp. 17–22, 1999.

[187] B. Stanczyk and M. Buss, “Development of a Telerobotic System for Exploration of
Hazardous Environments,” in Proc. IEEE/RSJ IROS, pp. 2532–2537, 2004.

[188] D. Brscic, M. Eggers, F. Rohrmüller, O. Kourakos, S. Sosnowski, D. Althoff, M. Law-
itzky, A. Mörtl, M. Rambow, V. Koropouli, J. Medina, X. Zang, W. Wang, D. Wollherr,
K. Kühnlenz, C. Mayer, T. Kruse, A. Kirsch, J. Blume, A. Bannat, T. Rehrl, F. Wallhoff,
T. Lorenz, P. Basili, C. Lenz, T. Röder, G. Panin, W. Maier, S. Hirche, M. Buss, M. Beetz,
B. Radig, A. Schubö, S. Glasauer, A. Knoll, and E. Steinbach, “Multi Joint Action in
CoTeSys - Setup and Challenges,” tech. rep., Technische Universität München and
Ludwig-Maximilians-Universität München, 2010.

[189] M. Goebl and G. Färber, “A Real-Time-capable Hard- and Software Architecture for
Joint Image and Knowledge Processing in Cognitive Automobiles,” in Proc. IEEE IV,
pp. 734–740, 2007.

[190] M. Goebl, “KogMo-RTDB - Real-time Database for Cognitive Automobiles,” 2011.

[191] The Preempt RT community, “Real-Time Linux Wiki,” 2011.

163



Bibliography

[192] D. Althoff, O. Kourakos, M. Lawitzky, A. Mörtl, M. Rambow, F. Rohrmüller, D. Brščić,
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