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Abstract

This thesis is concerned with the simulation of blood flow and mass transport in vascularized
human tissue. Our mathematical model is based on a domain decomposition approach,
i.e., we separate the blood vessel network from the tissue and assign different flow and
transport models to them. To simulate the transfer between the blood vessels and the
tissue, appropriate coupling conditions are designed. The performance of our model is
illustrated by some applications from bio-mechanics.



Zusammenfassung

In dieser Arbeit beschéftigen wir uns mit der Simulation von Blutfluss und Transport-
prozessen in vaskularisiertem menschlichen Gewebe. Unser Modell basiert auf einem

Gebietszerlegungsansatz, d.h. wir trennen das Gefafnetzwerk von dem Gewebe und
beschreiben die Stréomungs- und Transportprozesse mit verschiedenen Modellen. Um
den Austausch zwischen den Geféfsen und dem Gewebe simulieren zu kénnen, werden
Kopplungsbedingungen aufgestellt. Das Modell wird auf Probleme aus der Biomechanik

angewandt.
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1 Introduction

Mathematical models have become more and more important in many applications from
medicine and biology [9, 21, 24, 31, 34, 38, 109]. From metabolism and other processes
taking place on the micro-level up to the modeling of the regulatory mechanisms of organs;
bio-mathematical models provide the opportunity of gaining non-invasive insight into
important physiological processes. This methodology can, thus make a huge contribution
to understanding diseases.

In this thesis, we are concerned with the simulation of blood flow and mass transport, e.g.,
oxygen transport, from the heart through the arterial vessel system to the peripheral vessels
and tissue. In particular, the impact of arterial stenoses on blood flow and oxygen supply
is investigated. A stenosis is an abnormal narrowing in a blood vessel. Such a narrowing
may arise from atherosclerosis, a specific form of arteriosclerosis, which is caused by the
accumulation of fatty plaques and cholesterol. Typically, it appears in large- or middle-sized
arteries. In carotid arteries, for example, stenoses are main causes of brain ischemia, when
they become occluded either by a growing stenosis or, more acutely, by the development
of a thrombus in the stenotic area [67, 75, 91]. In order to prevent diseases related to the
formation of a stenosis such as myocardial infarction and stroke, one has to determine
critical narrowing degrees and locations of stenoses. In this context, mathematical models
enable us to determine the parameters of interest with less effort and fewer inaccuracies
than invasive measurements.

When developing a mathematical model for blood flow and mass transport, we have to
consider the basic structure of the human blood vessel system. The human blood vessels
are divided into arteries and veins. These categories are further subdivided into various
classes. In the case of the arteries, we have large- and middle-sized arteries, arterioles and
capillaries. The vessels belonging to these classes exhibit very different features (see Table
1.1) and have specific roles within the circulatory system.

Table 1.1: Average sizes of the different vessel types [13].

Vessel type average number of average average
diameter [cm] vessels velocity [cm/s] | pressure [mmH g]
Large- and middle ~ 0.3—-3.0 ~ 55 ~15—20 systolic: 100 — 130
sized arteries diastolic: 60 — 80
Arterioles ~ 0.002—-0.3 | ~0.16-10° ~1-15 40 — 60
Capillaries ~ 9.0e —4 ~5.0-10° ~0—-1 5—40
Venules ~ 0.0025—0.7 [ ~0.5-10° ~5—10 0-5
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While the large- and middle-sized arteries are responsible for transporting, for example,
oxygen and nutrients to the organs, the arterioles have to decrease the blood velocity and
pressure to make biochemical processes on the capillary level possible [13]. The veins are
divided into capillaries, venules and large- and middle-sized veins. These vessels belong to
the low-pressure region and are responsible for transporting the blood that is low in oxygen
from the organs to the heart and the lungs. In this thesis, we restrict ourselves to arterial
blood flow and its coupling with human tissue, whereas the venous vessel system will be
accounted for by simplified or lumped parameter models.

Modeling blood flow and transport processes from large vessels down to the capillaries
is a very complex matter, since one has to simulate flow on different scales through a
huge number of vessels. To resolve every vessel within the arterial tree is unaffordable
in terms of numerical simulation. Therefore, we take only the most important arteries of
the vessel system into account, i.e., we truncate the network after some bifurcations. For
our simulations, we use two different blood vessel networks, depicted in Figure 1.1. Both
networks only contain some larger arteries of the whole arterial tree. When we consider
the flow velocities in Table 1.1, it becomes obvious that flow in the larger vessels is fast
compared with the flow in the arterioles and the rather diffusion-dominated flow in the
capillaries and tissue. Because of this heterogeneous flow behavior, we require for the
numerical modeling a scheme that uses small time steps for the fast flow region and large
time steps for the slow flow region.

In order to keep the computational cost low, it is necessary to establish for the network
flow a model which causes low computational effort in each time step. In this context, 1D
reduced models proved very effective [16, 24, 37, 38, 113]. These models have the form of
hyperbolic transport equation systems and can be derived from the Navier-Stokes equations
and a convection-diffusion equation. In order to model flow and transport through a whole
network, a domain decomposition approach has been applied, i.e., the network is split
into its single vessels and the reduced 1D models are assigned to each vessel. At each
bifurcation, the adjacent 1D models are coupled by characteristic information from the
involved hyperbolic systems, pressure continuity and mass conservation. The resistance and
compliance of the omitted vessels are accounted for by lumped parameter models |2, 4, 3|
which are given by a system of ordinary differential equations (ODEs, 0D models). At the
outlets of the terminal vessels of the network, these 0D models are coupled with the 1D
models governing flow and transport within the corresponding vessels.

The flow and transport processes from the blood vessels into the surrounding tissue are
modeled with the help of the coupling strategies presented in [24, 25, 26]. In these
publications, human tissue and the feeding capillaries are regarded as a three-dimensional
(3D) porous medium. Within the porous medium, flow and transport are governed by a
diffusion-reaction equation, Darcy’s law and a convection-diffusion equation. The challenge
now consists in coupling these partial differential equations (PDEs) with the 1D problems
modeling the flow and transport within the blood vessels. The 1D problems are defined on
curves within the 3D tissue volume, where the curves are given by the main axes of the
corresponding blood vessels.
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Figure 1.1: Arterial networks which are used for our simulations. The network on the
left consists of 55 vessels including the aorta, carotids, and the most important arteries in
legs and arms, while the network on the right exhibits only 33 vessels. Besides the aorta,
it is composed of the carotids and the cerebral vessels supplying the brain tissue [3, 118§].
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Figure 1.2: Structure of the thesis.
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Since this kind of coupling is not standard, the basic principles were first introduced by
means of elliptic model problems in 1D and 3D [26]. It is revealed that the PDEs in 1D
and 3D can be coupled by their source terms, where the source term of the 3D problem is
given by a weighted Dirac source term concentrated on the 1D curve. Due to the Dirac
source term, the solution in 3D becomes singular at the 1D curve. The associated regularity
reduction makes the analysis of such PDE systems more complicated and impairs the
convergence of numerical schemes like Finite Elements or Finite Differences [98]. In order to
facilitate the numerical analysis, weighted Sobolev spaces were introduced to study elliptic
PDEs with Dirac source terms. Furthermore, locally refined meshes (graded meshes [6])
around the singular points or lines were considered to improve the convergence behavior of
numerical schemes. In this context, optimal Finite element convergence rates have been
shown by using weighted Sobolev norms and graded meshes. The theoretical insights gained
by works like [6, 26] or [24, Chapters 3,4,5], have created the foundation for developing a
model for flow and transport through blood vessels in tissue [24, Chapter 6].

The thesis is structured as follows (see Figure 1.2): in Chapter 2, we outline how a domain
decomposition approach and spatially reduced models can be used to compute flow and
transport through a network composed of large- and middle-sized vessels. In particular, it
is shown how existing models can be extended to compute not only the flow but also the
transport of given species like oxygen. The influence of stenoses is simulated by lumped
parameter models presented in [108, 100, 120]. For the numerical treatment of the 1D
transport equation systems, stabilized discontinuous Galerkin methods (DG methods) are
used, where the schemes proposed in [58, 61, 62] had to be generalized to treat not only
scalar transport equations, but also the transport equation systems under consideration.
Furthermore, we perform some numerical tests to demonstrate the accuracy of these
discretization methods. In the final section of this chapter, the numerical model is used to
study the impact of a unilateral carotid stenosis on brain oxygenation.

The next chapter (Chapter 3) is concerned with the numerical analysis and solution of
elliptic PDEs with Dirac source terms. Before we investigate the numerical approximation
of coupled problems, a standard Poisson problem with Dirac point sources is considered
which can be derived under some simplifying assumptions from a 3D-1D diffusion-reaction
problem (see Section 3.1). It is shown that standard Finite Elements applied to such a type
of problem exhibit no pollution effect, i.e., the method converges optimally with respect to
a L?-semi-norm excluding the locations of the Delta source terms. For the proof of this
result, no graded meshes are required; it is sufficient to use a family of uniform meshes.
Numerical tests in two and three space dimensions confirm our theoretical results. In the
remainder of this chapter, iterative solution schemes for coupled problems are discussed.
The idea of these solution schemes relies on the principle of decoupling the subproblems
such that only standard elliptic problems have to be solved in each iteration.

Finally, in Chapter 4, we put all the models and techniques developed in Chapter 2 and
Chapter 3 together to simulate the influence of a peripheral arterial stenosis on local tissue
perfusion and flow within the network. For our simulations we used the arterial tree,
depicted on the left-hand side of Figure 1.1. The stenosis and the outflow boundaries are
modeled by 0D models, the network flow and transport are governed by 1D transport
equation systems and the transfer from the blood vessels to the tissue is modeled by a

10
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3D-1D coupling according to Chapter 3. All in all, this results in a 3D-1D-0D multi-scale
model to investigate the issue of interest. At the end of this chapter, some simulation
results are presented.

11



2 A multi-scale model for flow and
transport within an arterial
network

As a first step towards a complete model for flow and mass transport in tissue surrounding
an arterial network, we derive in this chapter a model for network flow and transport.
Flow and transport within the tissue and the coupling between the network and the tissue
are described in the following chapters. The model for the network is based on a domain
decomposition technique, i.e., we split the network into its single vessels and assign in a
first step to each vessel a decoupled model. In the second step, the independent subsystems
are interconnected by suitable coupling conditions (see Figure 2.1).

Flow and transport within a single vessel are computed by the help of existing models
for blood flow and mass transport. These models are given by one-dimensional non-linear
transport equation systems for larger vessels and linear transport equation systems for
middle sized vessels, which exhibit only small deformations of their section areas. For small
vessels we use a model, consisting of a system of ordinary differential equations (ODEs). In
the references [16, 24|, the transport equation systems are often called 1D reduced models,
whereas the ODE systems are known as 0D lumped parameter models [83]. Due to the fact
that models of different space dimensions are used, we have a multi-scale model for the
network (see Subsection 2.1).

To solve the transport equation systems numerically, we use limited DG methods developed
in [58, 60, 61, 62]. The accuracy of these methods is illustrated by convergence and mass
conservation tests (see Subsection 2.2 and 2.4).

If the considered network is composed of vessels having different length scales and other
different physical properties, it is beneficial to use these different numerical model types to
take the special features of the vessels into account. In Subsection 2.3, we outline how the
different model types can be interconnected at a bifurcation. Moreover, it is explained how
inflow and outflow boundary conditions can be incorporated into the numerical scheme.

Finally, in Subsection 2.4, an application from medical engineering is considered, i.e., the
simulation of brain oxygenation. In particular, we focus on the influence of a unilateral
carotid artery stenosis on the oxygen supply of brain tissue. The impact of a stenosis is
modeled by a system of ODEs, which is similar to the lumped parameter model for the
small vessels [100, 108, 120]. A further system of ODEs is used, to simulate the resistance
at the outlets of the arterial vessel system and the oxygen consumption within the brain
tissue [4],[24, Section 2.5].

12
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Figure 2.1: This figure illustrates the basic steps of our domain decomposition approach.
In the upper left corner of this figure, we can see a small network, which exhibits three
bifurcations. We split the network into its single vessels and assign a number to each
vessel. Next spatially reduced models are attached to every vessel, to compute flow and
transport processes in a single vessel. Finally the models adjacent to a bifurcation are
coupled by suitable coupling conditions.

2.1 Modeling a single vessel

In order to avoid expensive 3D computations in terms of flow and mass transport within
in a single vessel, 3D models like the Navier-Stokes equations are replaced by 1D reduced
models or 0D lumped parameter models. There are in principle two ways for the derivation
of a 1D model. The first one is based on mass conservation and the balance of momentum
[4, 103], while the second approach uses averaging techniques to deduce the 1D model
from an existing 3D model. In the following, we briefly describe the first approach. For a
discussion of the second approach, we refer to [16, 24].

2.1.1 One dimensional modeling based on balance equations

For simplicity, we assume that the considered vessel can be represented by an axisymmetric
domain 2 C R?, whose main axis is aligned with a coordinate axis, e.g., the z-axis (see
Figure 2.2). The domain (2 is parameterized at each time ¢ by cylindrical coordinates:

Qt)={(rp,2) eR*|0<2<,0<p<2m 0<7r < R(2,t)} (2.1)

13



2 A multi-scale model for flow and transport within an arterial network

By R(z,t), we denote the radius of the section S(z,t) located at z and for the time point t.
l is the length of the vessel. The area of S(z,t) is given by: A(z,t) = R*(2,t)7 [em?].

.20 S(z,t) z=I

Figure 2.2: Simplified geometry. The vessel is assumed to be a straight cylinder with
circular section.

As a first step towards our 1D model, we consider a small portion of the vessel §2, having
the length Az. Computing the mass balance for this small segment, we have:

0
5:PARIAZ = pQ(2) = pQ (2 + Az) + Dy
or in differential form for the limit Az — 0:
0A  0Q
o T =0 22)

where we assume that the fluid is incompressible. By p [kg / cm3], we denote the density of
the fluid. It is taken to be constant. ¢y, [kg/s] and ¢ps [cm?/s]| are source terms. The
variable @ [em?®/s] is the mass flux through the section S(z,t).

- S(z.
Qlz,t) 2 -

Figure 2.3: Mass conservation at a small segment.

The momentum balance equation for the control volume depicted in Figure 2.3, reads as
follows:

0
5iPQAz = p (Av%) (2) = p (Av%) (2 + A2) + ¢

or in differential form for Az — 0:

o0Q 0 (Q*\
ot + B <A> = @1, (2.3)

14



2 A multi-scale model for flow and transport within an arterial network

where we assume again that the fluid is incompressible. The 1D velocity field v is given
by:
Q

ol [’“g{”} and ¢y [%3} are momentum source terms. In our model the source term ¢
depends on a friction term f and the pressure p:
Adp
o= f o
<~ p 0z

friction term ==~ —"

pressure term
The friction force term per unit length is given by [4, 16, 107]:

et =2mR(ent) 5]

where p is the viscosity of the fluid and u (r, ¢, 2, t) is the 3D velocity field in cylindrical
coordinates. A possible function of the 3D velocity field satisfying the no-slip condition is

given by:
w(r, o, 2 1) = i(z,t)'yf;? {1 - <R(Zt)ﬂ , (2.5)

which yields the following friction term:

f(z,t) = —2um (v +2) %(z,t).

The parameter v determines the shape of the velocity profile. The choice v = 2, e.g.,
corresponds to a parabolic velocity profile (Figure 2.4), which yields a Poiseuille’s resistance
term: f = —8um@Q/A. In order to compute the propagation of a substance’s concentration

—:2

—»Y=4
—ng

r:—R r=0 r=R

Figure 2.4: The picture shows some velocity profiles for the z-component u, in depen-
dence of the radial coordinate r.

within the fluid, we use a scalar transport equation whose 1D velocity field is given by

(2.4):
oar 9 (Qr\ T
ot " o- ( A > = oy (26)

15



2 A multi-scale model for flow and transport within an arterial network

the variable T’ [m”%"l] is the averaged concentration of a certain substance. The factor

bp {C’?Q} is linked to the permeability of the vessel wall. Summarizing (2.2),(2.3) and (2.6),
we have the following transport equation system in one space dimension:

04, 0Q _
at 9% =opm, ZE€ (O,Z), t >0, (278‘)
9Q Q*\ . Adp Q
a o (A) T oo, 42 2e (00, >0, (27b)
or Qry . T
o "o ( A ) =%y 2€00), >0 (27¢)

The initial state with respect to the unknowns (A,p,@Q,T') is given by: (4,p,Q,I') =
(Ap,0,0,0). Within this PDE system, the number of unknowns exceeds the number of
equations. Therefore we have to provide an additional equation for the pressure, linking
the variable A to the pressure. In the context of blood flow simulations (see Subsection

2.4), the system is closed by the following relationship between pressure and cross-section
area [35, 36, 37, 40, 78|:

. A(Z,t) . ﬁhOE
p(Z,t) = Go ( Ao(z) - 1> 5 GO = m, (28)

where E is the Young’s modulus, hg is the vessel thickness, Ag is the vessel area for t =0
and v denotes the Poisson ration of the vessel wall.

Remark 2.1. The relation given by (2.8) is based on a model, describing the dynamics of
the vessel wall [37]. Neglecting the inertia effect and using the relation of static equilibrium
in radial direction for a cylindrical tube, (2.8) can be derived. For the sake of simplicity, we
consider the parameters Ag and Gy as constant with respect to space and time. The steps
required to incorporate the effect of a tapered vessel are reported in [37].

For the derivative of the pressure it follows from Remark 2.1:

02z 0Adz DAy 0z | 0Gy 0z 2\ AAy 9z

A0 Gy 0
Inserting this expression into (2.7b), we have due to 29 _ 0 A3

p Oz  3pyAy0z

Op OpdA = 9dp 9Ap n dp 0Gy Gy 1 0A

%;1 aQ =o¢n, 2€(0,0),t>0, (2.92)

o ' o ( > " 3p\ﬁaz‘42 ==2um(y+2) 4, z€(0,0),t>0, (2.9b)
or QI‘ B T

ot * oz 0z ( A ) - _%Z’ z € (0,1), t > 0. (2.9¢)

16



2 A multi-scale model for flow and transport within an arterial network

Having the values A and I', the volumetric concentration ¢ [mmol / cmg] can be computed
by:

o
=7
Thus the PDE system (2.9a)-(2.9¢) can be written in conservation form:
oU  0F(U)
- =S(U 2.1
ot 0z (U) (2.10)

The flux function F and the source term S of the transport equation (2.11) are given by:

@ oy
2 3
F(U)= | 4G +39042 |, S(U)=|-2ur(v+2) % |- (2.11)
b %

U = (A,Q,T') denotes the vector of unknowns. It is obvious that the transport equations
for A, Q are independent of the third variable I". Thus they can be regarded as a subsystem,
having its own flux function F 4¢ and source term S 4¢:

Faq(Uaq) ¢ Saa(Uag) ( ou ) (2.12)
AQ\YAQ) — 2 3 ] AQ(lAqQ) = . .
% + 3pG0/ToA2 —2um (v +2) %

where Uy = (4, Q). The flux function Fr and source term St for the third transport
equation are given by:

or r
Fr(U)=—",  Sr(U)=-¢p~. (2.13)
All in all we have: sU 5
A
T =k 5,Faa(Uaq) = Saq(Uaq), (2.14a)
or o (Qr\ . T
" 5 <A> = 0y (2.14b)

Obviously, this PDE-system consists of a non-linear part (2.14a) and a linear part (2.14b).
Between these two parts, we have an unilateral interconnection. The non-linear PDE
system provides the velocity field for the scalar transport equation. On the other hand, the
averaged concentration I does not occur in (2.14a).

In order to obtain more insight into the behavior of the solution U, we compute the
characteristics of (2.14a). As a first step, (2.14a) is written in quasi-linear form:

ou ou
8?Q +H(Uag)—-2 =Saq(Uaq)- (2.15)
The flux matrix H(Uaq) is given by:
H (Uag) = 242 (1,q) = (, ° ! 2.16
( AQ)_(?UAQ( AQ)— CZAinQ R (2.16)

17



2 A multi-scale model for flow and transport within an arterial network

where
G A Q
2 0
=—4/— and v = —. 2.17
CAQ 2/) AO na v A ( )
The value c4q is often referred to as the sound speed of the physical system. The next step
consists of a decoupling of the two equations in (2.14a). For this purpose, we decompose

the flux matrix H(Uaq) as follows:
H(UaqQ) = L™ (Uaq) A (UaqQ) L(Uaq),

where A (Uaq) is a diagonal matrix consisting of the two eigenvalues of H(Uaqg). L (Uaq)

denotes the matrix of left eigenvectors. By the help of this decomposition and (2.15) it

follows:

ou AQ
ot

ou AQ

L(Uaq) P

+A(Uaq) L (Uaq)

=L (UaqQ)S (Uaq)-

_ o AQ 11AQ\ T
Defining the characteristic variables Waq = (Wl , Wy ) by:

IWaq 0 0 0 T
Unq =L (Uaq), W’=Wuq(Upq), Uaq = (40,0)", (2.18)
we have the following decoupled system:
oW OW
an +A(Waq) 8;Q = L(Waq)S (Waq)-

In order to compute explicit formulas for WlA @ and WQA Q, one needs to integrate the
characteristic differential equation (2.18). To do so, the eigenvalues in A (Uaq) and the
left eigenvectors in L (Uaq) have to be computed.

Property 2.1. The matrizc H(Uaq) admits two real eigenvalues:
A =v—cag and X2 = v + caq,

associated with the corresponding left eigenvectors:

1 (—=cag—v 1 feag—v
ll——A< 1 >andl2—A< 1 .

Property 2.1 can be verified by some simple computations. The matrix L (Uaq) is given

T
then by: L (Uaq) = <§1T>
2

Remark 2.2. For our application areas, we can assume that cag > v holds. Consequently,
it holds Ay < 0 and Ay > 0. This means that the characteristic variable WlAQ can be
regarded as a backward travelling wave, whereas the characteristic variable W2AQ can be
regarded as a forward travelling wave (see Figure 2.5). In order to guarantee a well-posed
system, for the fluid equations, we have to impose at each end of the vessel one boundary
condition, while for the mass transport, the prescription of a boundary condition depends
on the sign of the velocity field v.

18



2 A multi-scale model for flow and transport within an arterial network

T
Theorem 2.1. The characteristics Waq = (WIAQ,WQAQ) of the system (2.14a) are

given by:
1
AQ Q [Go [ A\*
Wi v+ 4cag A+ 2 <A0> ,

1

AQ Q [Go [ A\*
= 4 =24+ 4/— -] .

W, v+ 4cag A+ 2 <A0)

oW
Proof. The formulas can be computed by integrating the equation: 90 AQ _ (Uaq):
AQ

which reads as:

8WAQ_ 1 caQ tv -1
3UAQ A

A cag—v 1

WAQ

z=20

Figure 2.5: Directions of motion of the characteristics WIA 9 and WQA Q

Based on Theorem 2.1, we can determine the primary variables by:

AQ | prAQ 4 A AQ _ 7A@ G
A= 2 T 1 0 Q=2—"1 a4, CAQ0 = =0 (2.19)
8 €40.0 2 2p
Due to the fact that equation (2.14b), which models the mass transport:
or o0 (Qr r
o "o <A> -0

is scalar and linear in I', the direction of motion of I' depends on the sign of the velocity
field v, provided by System (2.14a).
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2.1.2 Linearized model

The non-linear transport equation (2.14a) can be further simplified by linearizing the flux
function Faq (Uaq) and the source term Saq (Uaq) about the initial state

Ul q = (40,0).

The new variables a,p and g can be considered as pertubation variables for the section
area, pressure and volume flux:

(A,p,Q) = (Ao +a,p,q) .

If the deformation of the vessels are small or can be neglected, the linearized model yields
sufficiently precise results.

Theorem 2.2. The linearized flur Fpq (Upq) and source term Spq (Upq) of (2.14a) are
given by:

qu (qu) - C;JD ) Spq (qu) - <¢M/OID> ’ (2-20)
Tip _Rqu
where
p Ao 2(y +2)mp (p)
Lip=—, Cip=———, Rip=——-— and Upq = . 2.21
1D A, 1D pciQO 1D A(Q) pPa q ( )

Proof. Defining Uy = (Z) , we have for the Taylor expansion of first order applied to

FAQ (UAQ) and SAQ (UAQ) (2.12):

Faq(UaqQ) =Faq (Uiq + Ul) ® F (Ulq) + H(URq) (Uaq — Ulg) =
—_—

U,
~(100m0) * (20 o) ()
%C?AQ,OAO choo 0) \a/)’
08 (U%q)
Q oM
SaqQ (Uaq) =Saq (Ulq+U1) S (U%q) + —o-—2 (Uaq — UY =( >
4q (Usq) =8Saq (Uaq + V1) » S (Vaq) + 555, = (Uae ~Uia) = | _p
U,
Linearizing the pressure in (2.8) about Ag yields:
(4) ~ p (A0) + ~op (A0) (A~ A) =
p ~plao 8Ap 0 0 T Cip

0
Due to a—F (UOAQ) = 0, we can neglect the constant term F (UOAQ) and the linearized
z

system of (2.14a) in p and ¢ reads as follows:

0 (p\ ., 9 (cp <¢M/ ClD)

9(Py L9 (ap) = , 2.22

ot <q> 0z (L?D —Ripg (2:22)
Using (2.22) the formulas for the linearized flux and source term can be deduced. O
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The scalar transport equation does not have to be linearized, because it is already linear in
I'. Under the assumption A ~ Ay, it follows based on (2.9¢):

dc 0 [eq\ _@

]. Introducing the matrix:

0 1
Lip

and summarizing (2.20)-(2.23), we have the following linearized system for flow and mass

r

_ ' [mmol
where ¢ = A [

cm3

transport:
9 (p 9 (p ¢m/Cip
— — = 2.24
ot <q> +H 0z (q) ( —Ripg )’ (2:242)
dc 0 (cqg\ _  ¢p

A comparison of (2.24a),(2.24b) and (2.14a),(2.14b) yields that we have again a one-
directional coupling between the subsystem modeling the flow and the subsystem modeling
the mass transport. Here (2.24a) provides the velocity field v = A% for (2.24b).

To get a better understanding of the hydraulic parameters L1p, C1p, Rip, and the variables
p and ¢, it is helpful to establish an analogy to electricity. In this context, the pressure
p can be compared to the voltage within an electric circuit, whereas the flow rate ¢ can
be regarded as the counterpart to the electric current. The parameter L1p accounting for
the inertia of the fluid is the equivalent to the inductance of a choke. Cip depends on
the elasticity of the vessel wall and the initial section area Ag, thus it determines, how
much fluid volume can be absorbed within a certain vessel. In electricity the capacity of
a condensator reveals how much charge can be stored by a certain condensator. Rip is
linked to the viscosity p of the fluid. Therefore, it measures the resistance for the flow and
can be considered as the counterpart of the electric resistance. In Table 2.1, the different
parameters and variables are summarized.

Table 2.1: Analogy between hydraulic and electric networks [38].

Hydraulic ‘ Electric
pressure p voltage
flow rate ¢ current
compliance C1p capacity
inertia Lip inductance
viscosity Ri1p resistance

As in the previous section, we are interested in the characteristic variables of the system
in order to impose the boundary conditions in a correct way and to get more insight into
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the structure of the solution (see also Remark 2.2). To this end, one has to transform the
matrix H; into a diagonal matrix, containing the eigenvalues of H;.

Property 2.2. The matriz H; admits two real etgenvalues:

1 1 Go
== —CAQ,0 WNd N2 = ————— = CAQ,0, CAQ0 = )
VCip - Lip @ vCip - Lip @ Q 2p

associated with the corresponding left eigenvectors:

1({_./CD 1 Cip
I =2 Lip | andly = = Lip | .
2 1 2 1

At 0
0 Ao

Al =—

T
Defining L and A; by: L = (;%p) and A; = <
2

tion:

>, we have the following decomposi-

H=L-A\N- L'

Similar computations, as for the derivation of (2.18) yield that the characteristic variables
Woo = (WP1 WP of (2.24a) have to satisfy the following differential equation:

IW Pa 0 T
=L W' =(0,0)" . 2.25
oU a ’ ( ’ ) ( )

After solving (2.25), we have explicit formulas for the characteristic variables W7 and
wii.

Theorem 2.3. The characteristic variables Wpq = (W, W2pq)T of (2.24a) are given by:

1 Cip 1 Cip
pqu —_ _— d pqu _—
Wi 5 ( \/Lle—Fq) and W, 5 ( Lle+q> .

Based on Theorem 2.3 we can easily compute the primary variables p and ¢ by:

L
p=—y/ B2 (WP Wp) and g = W W (226)

Remark 2.3. As the flur matriz in the non-linear case (2.15), H; has also two eigenvalues
with different sign: A1 < 0 and A2 > 0. Consequently we have to impose at each end of the
vessel one boundary condition for the linear fluid equations (2.24a). For the mass transport,
the situation is also the same as in the non-linear case. Depending on the sign of the
velocity field in (2.24b), we have to prescribe a boundary value or not.
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2.1.3 Lumped parameter model

Let us suppose that our network consists of vessels whose lengths differ significantly. In
this setting, it is reasonable to model the flow and mass transport through the smaller
vessels by different models than those which were introduced in the previous subsections.
This is motivated as follows: If we have a sufficiently high velocity of the fluid, pressure
and velocity waves propagate almost instantaneously from one point of a small vessel to
another point of a small vessel.

As an example, one can consider the human arterial tree. Within this network, there are
vessels having a length of several centimeters, e.g., the aorta (length 4.0 cm) and some vessels
whose lengths are below 1.0 cm, e.g., the anterior communicating artery (abbreviation:
ACoA, length 0.3 cm) [3, 33, 85]. The typical arterial blood flow velocity ranges from 10 <
to 20 < [97]. Modeling the ACoA by a 1D model very small step sizes are required to
resolve the propagation of a certain variable like pressure. Thus, it is not meaningful to
consider the changes in space, it is sufficient to compute only changes in time. In order
to deduce an ordinary differential equation system (0D lumped parameter model) [34, 83|
from the linearized 1D model, we integrate (2.24a) and (2.24b) along z over [0, [].

This yields the following lumped ODE-system, where we assume that the parameters C;p,
Lip, Rip, oum, Ag and ¢. are constant along z:

op 1 oM

a. out — qin) — y t > 0, 2.27
ot t Cop (Gout — Gin) Con (2.27a)
g 1
ar out — Pin) = —R A, t 0, 2.27b
It + Top (Pout — Pin) 1Dg > ( )
o¢ 1 P
. out * Cout — {in * Cin) = — ) t y 2.2
It + Ao (Qout * Cout = Gin * Cin) AODC >0 (2.27¢)

where ¢in(t) = q(0,1), Gout(t) = q(l,t), pin(t) = p(0,1), pout(t) = p(l,t), cin(t) =
c(0,1), cout(t) = c(l,t) are the flow rates, pressures and concentrations at the inlet and
the outlet of the domain (see Figure 2.6). The other symbols are defined as follows:
COD :ClD‘l, L[)D :L1D-land AOD :A0~l.

1/ 1! 1
p(t) = / pdz, {(t) = / gdz and ¢(t) = / cdz (2.28)
L Jo L Jo L Jo

are the mean pressure, flow rate and concentration, respectively. Approximating the first
two integrals in (2.28) by

ﬁ(t) ~ pout(t)v (j(t) ~ %n(t) or ﬁ(t) =~ pzn(t)7 q<t> [ qOut(t>7 (229)

it can be shown that a finite number NV of ODE-systems (2.27a)-(2.27b), each with a length
of [/N discretize the 1-D linear transport equations system (2.24a)-(2.24b) at first order
accuracy in space [34, 83|. For the approximation of ¢, we check the sign of ¢:

Case (i): ¢(t) < 0. In this case, fluid enters the considered vessel from the left (z = 0),
and ¢;,,(t) is given by a boundary condition or possibly obtained from some other reduced
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model, whereas the average value ¢(t) is approximated by cout(t).

Case (ii): ¢(t) > 0. In this case, cou(t) is prescribed externally, and é(t) is approximated
by cin(t).

~ A~

P q ¢

W Toorrooon SRS
Pin Cin Cout Pout

|
qm Jout

Figure 2.6: Variables of the 0-D lumped parameter model.

Total mass conservation

Momentum balance equation

Linearization

Integration

Figure 2.7: Overview on the model reduction approach.



2 A multi-scale model for flow and transport within an arterial network
2.2 Numerical methods for transport equations

This section is concerned with the numerical solution of PDEs, having the following form:
ou OF
— +—(U)=S(U). 2.30
e+ (U) =8 () (230
Supplied with suitable initial and boundary conditions, this type of PDE is also called

transport equation. The simplest problem is the Cauchy Problem, in which (2.30) holds for
z € Rand t > 0. In this case one has to provide only an initial condition [70]:

U (z,0) = Up(z), z € R.

By U, we denote a vector of state variables, which depends only on a single space variable
and the time variable:

U1(27t)
U:Rx[0,00) > R", (2,t) — : , n>1.
Un(z,1)

The functions
F:R"—-R" U~FU) and S:R"—-R" U~ S(U)

are called flux function and source term, respectively. Considering our 1-D models (2.14a),
(2.14b) and (2.24a), (2.24b) from the last subsection, it becomes obvious that these PDEs
are transport equations. In (2.14a), the flux function and the source term are non-linear,
whereas in the remaining transport equations the flux function and the source term depend
linearly on the state variables.

If F € C' (R",R") holds, (2.30) can be written in quasi-linear form:

ou ou

S FH(U)S= (U) =S (U), (2.31)

where H(U) = 2 (U).

Definition 2.1. The PDE (2.31) is called hyperbolic, if for each value U the matriz H(U)
has only real eigenvalues and if H(U) is diagonalizable, i.e., there is a complete set of n
linearly independent eigenvectors [70].

2.2.1 Mathematical difficulties

For simplicity, we assume that the source term S is equal to zero S = 0. In this case, the
equation can be considered as a conservation law. Due to

d [
dt/z U(z,t) dz = —

0 20

*t JF

a(U(z,t)) dz =F (U (z0,t)) — F (U (21,1)), (2.32)

25



2 A multi-scale model for flow and transport within an arterial network

changes in time are only determined by the flux function at zg and z;. For a Cauchy
problem this means that the total quantity

[oe)
/ Ui(z,t) dz, i € {1,...,n}
—00
should be constant with respect to time t. To outline the most important mathematical
issues in terms of hyperbolic transport equations, it is sufficient to study the scalar case,
i.e., n = 1. For this purpose, we study the following Cauchy problem:

0 0

ai; + %(u) =0, u(z0)=ug(2), (2.33)
with the scalar flux function f. Choosing f(u) = au, a € R\ {0}, we have the following
model problem (linear advection equation):

% + a% =0, u(z,0)=1up(2). (2.34)
If ugp € C* (R, R) one can show that the solution of (2.34) is given by [89]:
u(z,t) = ug (z — at) ,
which means that the solution u is constant on the characteristic curves in R x [0, 00):
z(t) = at + zo,

on the curve z(t) the solution wu is equal to ug (z0). However, the regularity requirement
ug € C* (R, R) is often too strict. This problem becomes evident, if the initial condition
exhibits discontinuities. In this situation, the initial condition is not differentiable and thus
the solution can not be computed in a classical sense. This yields to difficulties in many
application areas, in particular if we want to simulate the propagation of a non-smooth
concentration profile u under a constant velocity a. Therefore, we have to define a solution

u(z,t)

L

uo(z)

- Z

Figure 2.8: Characteristics and solution for the advection equation, with a discontinuous
initial condition ug.
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term (weak solution), which allows discontinuous solutions. Multiplying (2.33) by a test
function ® € C2° (R x [0,00)) and integrating over R x [0, 00), it follows:

/00/ O(z,t)0u(z,t) + P(z,t)0, f (u(z,t)) dzdt = 0.
0 R

Partial integration yields:

/00/ 0P (2, t)u(z,t) + 0,P(z,t) f (u(z,t)) dzdt = —/ ®(2,0)f (uo(z)) dz. (2.35)
0 R

R

Having (2.35) at hand, we can define the term weak solution [32].

Definition 2.2. A function u € L> (R x [0,00)) is called weak solution of (2.33), if the
integral equation (2.35) holds for all test functions ® € C° (R x [0,00)).

Due to the fact that in (2.35) the derivatives were shifted from the solution u to the
test functions ®, a weak solution u does not have to be differentiable. However it has to
guarantee that the integral expressions in (2.35) exist. Thus functions u € L* (R x [0, 00))
with discontinuities may fulfill the integral equation.

The definition of the term "weak solution” poses a further difficulty. Often there is more than
one weak solution to problem (2.34), even if the initial condition is not changed. Usually
the transport equations are modeling a certain phaenomen from physics or engineering,
consequently we are interested to choose the solution that is physically meaningful. The
existence of other spurious solutions arises from the fact that it is only a model of the
reality and some effects have been ignored. Considering the 1D models in Subsection 2.1,
it becomes obvious that they result from simplifying 3D models like the Navier-Stokes
equation. To pick the correct weak solution we have to formulate additional constraints for
the solution of the integral equation (2.35). These are generally called entropy condition by
in analogy with thermodynamics [32, 70].

Definition 2.3. A function u € L>® (R x (0,00)) is an entropy solution of the Cauchy-
problem (2.33), provided that

(i) u is a weak solution in the sense of Definition 2.2 and

(i) u(z + z,t) — u(z,t) < C(1+ 1)z, for some constant C > 0 and almost every
r,z € R, t >0 with z > 0.

Theorem 2.4. If f in (2.33) is convex and if f € C' (R,R). Then there exists, up to a
set of measure zero, at most one entropy solution of (2.35).

Our task is now to provide numerical schemes converging towards an entropy solution of a
transport equation.
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2.2.2 Numerical difficulties

Numerical methods for 1D hyperbolic transport equations are based on a combination of
an ODE solver and a space discretization scheme [48]. Discretizing a transport equation
in space yields a system of ODEs, which is treated by the ODE solver. The convergence
analysis of numerical schemes relies on the concepts of consistency and stability. According
to Lax [70] there is the following equivalence.

Theorem 2.5. Let us assume that problem (2.33) is discretized in space by a mesh size h
and in time by a step size At. A linear numerical scheme yielding the approzimation wup A
converges towards the entropy solution u of (2.33) iff it is consistent and stable. We say
that the numerical scheme converges towards u with respect to a norm ||-||, if:

li — | =0.
At}}{gOIIUMt ul|

As a consequence of this equivalence, we have to check for convergence, if the numerical
scheme is consistent and stable.

Definition 2.4. A numerical scheme is consistent if the local discretization error Th st
tends to zero

That = [[Lnae(w) = Lw)]| =0,

for h, At — 0 in a suitable norm ||-||. By Ln A we denote the discretization of the continuous
differential operator L.
In the case of the Cauchy-problem (2.34), we have: £ = % + a%.

Definition 2.5. Let us denote the numerical approximation for t = n - At by uy. A
numerical scheme is stable, if for all time steps n there is constant C with

[ui ]l < Cluol

with respect to a suitable norm ||-||.

Even if the numerical scheme is stable and consistent, the numerical solution provided by
such a scheme can be of poor quality. To illustrate this, we consider two well known finite
difference methods and apply them to the linear transport equation (2.34):

(i) Lax-Friedrichs:

1 At
1
up ™t = 5 (ufy +ufyy) — on? (w1 —ufq),
(ii) Lax-Wendroft:
At At?
1 2
“?Jr = ui — on? (u’?-‘rl - U?—l) + onz? (“?ﬂ —2u + U?—l) )
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where u]' denotes an approximation at (z,t,), t, =n-At, n € Ny and z; =i - h,i € Z.
For suitable norms one can show that if the CFL-Condition:

— <1
ol 5 <

is fulfilled both methods are stable and consistent [89] and thus they are convergent.
Moreover we have the following consistency errors:

(i) Lax-Friedrichs:

h2
That = O <At+h+At) ;

(ii) Lax-Wendroff:
mhae = O (B* + At?).

We study the results for t = 1 and z € [0, 1] of both methods for a = 0.5 and

() 1, ifz<0,
Upgl\2) =
0 0, ifz>0.

As a second experiment, we change the initial condition to

0.5 - cos (4 (2 +0.2)) + 0.5, if 0.05 < 2 < 0.55,
up(z) =

0, else

and report the numerical results for ¢ = 0.5 and z € [0, 1] of both methods for a = 0.5. For
the discretization, we use h = 1/200 and At = 1/1000.

Lax-Friedrichs (t=1.0) Lax-Wendroff (t=1.0)
1 =—numerical || 1.2 - numerical
—exact —gxact
0.8
0.6
S
0.4
0.2
0 I L L L L I L L
0 0.2 04 06 0.8 1 0 0.2 0.4 06 0.8 1

z z

Figure 2.9: Numerical approximations of the Lax-Friedrichs and the Lax Wendroff

methods applied to the scalar advection equation for a = 0.5 and a discontinuous initial
condition.

In Figure 2.9, we observe that the low order method (Lax-Friedrichs) shows no unphysical
oscillations but a very diffusive solution around the jump of the exact solution. The
Lax-Wendroff method, which is of higher order exhibits spurious oscillations in the vicinity
of the discontinuity, but is not significantly smeared at the jump.
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Lax-Friedrichs (t=0.5) Lax-Wendroff (t=0.5)
' ‘ ‘ ‘ 1

1 .
—numerical 12 — numerical |
0.8 m—gxact 1 —gxact
0.6 0.8
> 506
0.4
0.4
0.2 0.2
0 : ‘ ‘ : 0 ‘ . | ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
z z

Figure 2.10: Numerical approximations of the Lax-Friedrichs and the Lax-Wendroff
methods applied to the scalar advection equation for ¢ = 0.5 and a smooth initial
condition.

In Figure 2.10, it can be seen that the low order method (Lax-Friedrichs) does not preserve
the initial condition. It tends to smear the initial profile. As the Lax-Wendroff method
is of second order in both space and time the solution for the smooth initial condition is
approximated very well.

It is demonstrated by these examples that consistency and stability do not imply that a
numerical approximation has a good quality. On the one hand, high-order methods yield a
good approximation if the solution is smooth. Yet, they tend to create oscillations in the
vicinity of discontinuities. Thus we need further mathematical criteria to keep the numerical
solution free of non-physical effects and close to the exact solution. Based on these criteria
further numerical methods have to be developed, which exhibit non-oscillatory behavior
around discontinuities and simultaneously approximate the solution well in its smooth parts.

(i) Monotonicity: Let us suppose that a Cauchy-problem like (2.33) has initial condi-
tions ug and wvg, where ug(z) > vo(z). Then, we have for the corresponding solutions:
u(z,t) > v(z,t) for all z € R, ¢t € [0,00). A numerical scheme that preserves this
inequality for each time step n:

ul' > o = uftt >ttt
is called monotone. If a numerical method satisfies this condition, minima and maxima
cannot increase. This implies that the formation of oscillations is prevented [110].

(ii) Total Variation Diminishing Schemes: The total variation of a function u is
defined as follows:

TV (u) = / 10.u] d.

It can be shown that for a solution of (2.33) it holds [68]:

TV (u ('7t2)) < TV (u ('>t1)) 7Vt2 > 1.
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i.e., the total variation of a function solving a conservation law does not increase. We
call such a function total variation diminishing (TVD). For a numerical solution at
the time step n the term TV is defined as follows:

TV (up) =Y |ufyy —uf].

A numerical discretization is called TVD, if the corresponding the numerical solution
satisfies:

TV (upth) < TV (u}t) (2.36)

for all time levels n. For TVD schemes, a uniform upper bound for the TV is given
by the TV of the initial condition ug, where we assume that the quantity TV (ug)
exists. In |71], it is proved that every TVD scheme is monotonicity preserving and
consequently non-oscillatory. However, the TVD-property can be checked easier using
Harten’s theorem [52]. In Harten’s theorem it is stated that an explicit discretization
is TVD, if the coefficients concerning the spatial discretization are positive and its
sum is less or equal than one. Taking further requirements into account, one can show
that a consistent numerical scheme, whose TV is uniformly bounded is convergent.

Positivity: In many application areas one is interested to simulate the transport
of physical units which are not negative, e.g., the transport of a certain substance’s
concentration. This is a further feature that is not guaranteed by the convergence
Theorem 2.5. However, it is very important in order to provide meaningful simulation
results.

Conservation: Considering (2.32), it becomes obvious that the total mass

z1
/ u(z,t) dz is changed only by the fluxes at zp and z;. Due to the absence of a
A

0
source term there is no loss or gain of mass. This physical feature should also be

incorporated into a numerical method for transport problems.

2.2.3 Stabilized Discontinuous Galerkin methods

Considering the numerical difficulties, which occur in the context of transport equations (see
previous subsection) we have to choose for the numerical treatment of transport equations
like (2.14a),(2.14b) and (2.24a), (2.24b) a numerical method

(i) of higher order in space and time to avoid numerical diffusion,

(ii) which allows for a stabilization to prevent spurious oscillations.

A numerical method providing a higher order approximation in space, while keeping the dis-
cretization stencils local, is the discontinuous Galerkin method (DG-method) [90]. Contrary
to the standard Galerkin method, this discretization scheme can exhibit discontinuities at
the boundaries of an element. Combined with suitable limiter techniques |70, 62, 58, 57|
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this property allows us to incorporate jumps in a solution and simultaneously prevent
spurious oscillations.

To derive this numerical scheme, we compute the weak formulation of the system (2.30)
on a finite interval [0,!] C R. Multiplying every component i of (2.30) by a test function
®, € C(]0,!1]) and integrating over [0, 1] yields:

L rou;  OF,
— D P, =Y, ':L"'v
/0 (8t + P (U) -5, (U)) dz=0, 1 n

In the following, we write U = (Uy, ..., Un)T, P = (Dy,..., <I>n)T and define the component-
wise product of two vectors A = (A4, ..., An)T, B=(By,..., Bn)T as follows:

A-B= (A By, ....A,-B,)"

The interval [0,] may be subdivided in m disjoint subintervals Q. = (zl zZ ) such that:

e

e=1

holds. Using these definitions, we have:

Z/ <8U aF(U)—S(U)>-<I>dz:0.

Partial integration yields for every summand:

U & F(U)M)dH[F(U)@]Z%—/ S(U)-®dz=0, VYee{l,. . m}.
Qe 8t 82 Ze Qe

This equation is attached to every element €. to keep the discretization stencils local. A
global solutTion is obtained by coupling the elements at the interfaces by the flux term
[F(U) - @]zf. Due to the fact that the solution at the element boundaries may have

discontinuities, the computation of the coupling term is not well defined. At z = 2., e.g.,
we have two values U (27_;) and U (2!) (Figure 2.11). The value to be chosen, depends
on the flux function F. An analysis of the characteristics of (2.30) (see Subsection 2.1)
reveals how information is propagated. Based on this analysis one knows which value has
to be incorporated into the coupling term or how the characteristic variables have to be
integrated.

On an element €2, the numerical solution Uy, is represented by a polynom of degree p.
Inserting Uy, into the previous equation, it follows by the help of the standard L2 (€.)

scalar product (u,v)q = / u-vdz:

e

< oUy

0P 2L _
= ,@)Qe ( (Un), )Qe+[F(Uh)-¢-]l—(S(Uh),cﬁ)Qe_o, Ve e {1,...,m}.

0z Ze
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2 A multi-scale model for flow and transport within an arterial network

The numerical solution Uy, can be represented by a linear combination of the basis functions
(goj) _, of the polynomial space PP (£2):

Zp: u; (2), Vz € Qe. (2.37)
7=0

The global numerical solution can be discontinuous at the element boundaries but is
continuous on a single element (see Figure 2.11).

Uy (Zg—1)

Up (Zg)

Qo1 2L Q2 Qe

Figure 2.11: Discontinuous numerical solution, given by a polynom on each element.

Based on this expansion, we can define for ¢ € {1,...,n} the value ug-i-) by the i-th

component of the vector uge)
component 7 the semi-discrete formulation:

. Choosing the test functions as ®; = i, we have for the

P au ¢) 0 w 2T
) t) (e 0)g, — (Fi(Un). 25 )+ [Fi” (Un) - @il — (S (Un), @r)g, =0
8 82 Qe e

J=0

(2.38)
Ve € {1,...,m} and Vk € {0,...,p}. By the help of (2.38) we can derive an ODE for the

coordinate vector: -
ol = (uff),... )} (2.39)

)

Defining the element mass matrix M) by:

M@ — (;p© _ (/ . dz) € RPHDx(@+1) 2.40
( ]k>0§j,k§p Qe ik 0<j,k<p ( )

it follows from (2.38) that:

(e)
(e) 4
dt

M =7 (Up,t), Yee {l,...,m}, Vie {1,...,n}, (2.41)
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where the k-th component of the right hand side is given by:

(r (Um0 = (B0 G2) =[P (U)ol + (8. U)oy, (242)

The integrals occurring in (2.42) and in M(®) are approximated by a quadrature rule, e.g.,
the Gauf-Legendre quadrature rule [27]. Its approximation order should be chosen such
that at least the entries of the mass matrix M () are computed without an error. As the
discretization stencils are defined locally for each element, it is possible to choose a different

polynomial degree and a different basis for every element. In the next subsection, we present
two appropriate choices for the basis (‘Pj)?;g

2.2.4 Polynomial bases

In the literature one can find several bases for polynomial spaces. In the context of DG-
methods the following two bases for the polynomial spaces are widely used [57, 58, 60, 61, 62],
because they allow the development of effective limiter techniques, as we will see in
Subsection 2.2.6.

(i) Legendre basis: To avoid the inversion of the mass matrix M(®) in (2.41), one has
to use a polynomial basis, which is orthogonal with respect to the standard L?-scalar
product. A basis, which has this special property consists of the Legendre-polynomials.
These polynomials are defined by the following three-term recursion on the reference
interval [—1, 1] [56]:

(n+1) Lpt1(x) = 2n+ 1) xLy(x) — nlp—1(xz), n > 1,

where
Lo(z) =1and Li(z) = .

The first four Legendre-polynomials (see Figure 2.12) are given by:
1 1
Lo(x) =1, Li(z) = x, Lao(x) = B (32° — 1) and Ls(z) = 3 (52° — 3x) .

We note that L,(—1) = (=1)" and L,(1) = 1 holds Vn € N. In order to represent
the Legendre polynomials on an arbitrary element 2, = (zl z"), we use the affine

er~e
mapping:
z 2
Ze i [FLA] = Qe @ ze(n) = F( 4 )+ F(1—2).

N |

By the help of this mapping, we can compute for ¢;(z) = L; (ze(z)) =: Lge)(z) the
element mass matrix M(©) [39]:

—1 X

1 yA
) = [ 0@ 1) de = [ L) Dutente) - G o

1 r l
zl —z h 2 h
= Li(z - Li(ze e _Tedr=—"S. = —bip,
| Diteela)) ntaela)) - 2 do = - b= b

l

where he := 2] — 2.
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2 A multi-scale model for flow and transport within an arterial network

(ii) Taylor basis: A second basis is obtained by expanding the exact solution around
the center 2¢ = 0.5 (27 + z.) of an element €2, into a Taylor series [76, 81, 119]:

ou 1 0PU
Uz, 1) = U (6 04 2 (260) (2 = 2004 41 50 (261) (= = 20740 (| = 2P ™).
If one neglects the error term O <\z 2P 1) the remaining Taylor polynomial
provides a numerical approximation:
ou 1 0PU
Un(z,t) = U (¢ )+87(z t) (z—zg)—i-...—i—;! 5o (25,t) (2 — 25
Denoting the average value Uy, = I 1e| fﬂe Un(z) dz of Uy on Q. the previous

equation can be rewritten as follows:

0zP

Un(eo1) = O (5 04 07 (26,1) (2 — 200+ +8PU<§,t><(Z‘pf9 —— )

Defining the basis functions by:

Figure 2.12: The first four Legendre polynomials Loy, Li, Ly and L3 (left). The first
four Taylor basis functions Ty, Ty, T and T5 on [—1,1] (right).

__ »C\P __ ~c\P
Te(z) =1, Te(z) _ (Z Ze) B (Z Ze)  p>1
0 p! p!

)

the numerical solution Uy on an element 2, can be written as:

a Uy (25,t)  for k=0,
Un(z,t) = a,(t)TE(z), where ai(t) = { k (2.43)
b kZ:O N g O°U (z¢t)  for k #0.

Oz
This representation of Uy, is motivated as follows: The coefficients ay(t) allow the
development of an effective limiter technique. For k > 1 the coefficients contain
the derivatives of the solution at the center z¢, hence the absolute values of these
coeflicients are large, if the solution exhibits oscillations. A possible way to make the
numerical solution smooth, is to multiply the coefficients a(t) by suitable correction
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factors 5 € [0, 1] to rule out higher derivatives, if it is necessary (see Subsection
2.2.6).

However, a disadvantage of the Taylor basis is the fact that the mass matrix M (€)
is not diagonal for p > 2. Thus the inverse of the matrix M(®) in (2.41) has to be
computed. To avoid the inversion of a dense mass matrix one can apply mass lumping
techniques, by setting all off-diagonal entries to zero. In this context, one should note
that the accuracy of the numerical approximation is deteriorated by mass lumping
[60, 61, 76].

2.2.5 Time-stepping scheme

The local ODEs in (2.41) can be used by means of (2.37) and (2.39) to establish a global
ODE-system, depending on the global vector u:

u= (agl), call ,agm), ce a(m)>T e RF1)mn

Introducing the global block diagonal mass matrix M, which consists of the local mass
matrices M(©) the global ODE-system can be written as:

%u(t) — M R (u(t),t) = Ras (u(t), 1), u(0) = u, (2.44)

where the global right hand side R incorporates the discretized convective term and the
fluxes across the element interfaces, which are listed in (2.42). To complete the discretization
of the semi-discrete form (2.38), in [83, 102] standard Runge-Kutta methods or Adams-
Bashford methods [50] were used. However, it turns out that an arbitrary Runge-Kutta
or multi-step scheme does not preserve the TVD-properties of the solution u. The total
variation of u(t) is given by:

m—1

ustl(r) - uj(t)H .

TV (u(t)) = Z

p
j=0 e=1
According to (2.36) u is TVD, if

TV (u(tnt1)) < TV (u(tn))

holds for two subsequent time points ¢, and ¢,4+1. Therefore, the authors of [45, 46|
introduced a family of explicit time stepping schemes, which ensure that the TVD-property
of the time stepping scheme is preserved within one time step. In general, an explicit
s—step method is given by:

u® =u(t,), (2.45a)
-1

u(l) = (alk . u(k) + At - /Blk . RM (u(k))) 5 l e {1, e ,8} N (2.45b)
k=0

U (tpp1) =u®, (2.45¢)
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where At = t,11 — t,,. If all coefficients are nonnegative, i.e., ax > 0, B > 0 and taking
to account the consistency condition ka:o ag; = 1, formula (2.45b) consists of a convex
combination of forward Euler steps, with At replaced by %At. Thus, a stability condition
can only be formulated in terms of a time step restriction for the forward Euler method.

Theorem 2.6. Let us suppose that the forward Euler method applied to (2.44) is TVD on
the condition of a time step restriction:

At < Atpg.

Then, a Runge-Kutta method given by (2.45a)-(2.45¢) is TVD, if the following time step
restriction

. Ok
At <c-Atpg, c=min— <1,
B i kil ik
and
ok 20, By =0
holds.
Proof. The proof of this theorem can be found in [104]. O

Remark 2.4. If the forward Euler method is stable with respect to an arbitrary norm ||-||
under a certain time step restriction, a Runge-Kutta method fulfilling the conditions of
Theorem 2.6 is called strong stability preserving with respect to the norm ||-|| (SSP-
method).

In the following, we use an explicit 3—step method of third order, which is TVD if
At < %At rp. For an autonomous right hand side Ry, it is given by [45]:

u® = u(t,) + AtRy (u(t,)) (2.46a)
3 1
2 _°2 (@ (1)
u —4u(tn)+4(u + AtRy (u )) (2.46b)
1 2
u(tusn) = su(t) + 3 (u + AtRy, (u )) (2.46c)

In order to derive a Butcher-Table for this time stepping scheme, we first consider the usual
notation for an explicit Runge-Kutta method:

s 1—1
u (thrl) =u (tn) + At (Z bzk)l> , ki=Rp|u (tn) + Atz aijk:j,tn + ¢; At
i=1 =1

(2.47)
A comparison of the coefficients in (2.47) and (2.46a)-(2.46¢) yields together with the

consistency condition
S
C; = E Qg Z:L...,S,
Jj=1
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for s = 3:
¢ | an a2 as 0
c2 | ag1 az a3 171
c3 | asi azy azz 5| % 1
b by b 5 5

All in all, we have a stable time stepping scheme of higher order. The drawback of this
method is clearly the time step restriction, which forces us for very stiff problems to exert
many time steps. However one time step of our 1D and 0D lumped parameter models is
computationally inexpensive compared to a 3D model. Our numerical simulations show
that for the problems which are considered in this thesis, step sizes of a reasonable size can
be used.

2.2.6 Stabilization techniques

Combining the numerical tools of the previous subsections we have a numerical method
to treat transport equations given by (2.30). The higher order approximations in space
by the DG-Galerkin method and in time by the explicit third order SSP method enable
us to approximate smooth solutions with a high accuracy. For solutions, which exhibit
discontinuities this approximation scheme tends to create spurious oscillations in the vicinity
of discontinuities. Let us consider, e.g., the linear advection equation (2.34) for a = % and

1 if2<0
—" =5 9.48
uo(2) {0, if 2 > 0. (2.48)

The solution is computed for z € [0,1] and ¢ = 1. The discretization parameters are chosen
as follows: For the mesh size h and the time step At, we use h = ﬁlo and At = 1073. The
solution on each element is approximated by polynomials of degree p = 2. The choice
of the basis is not of relevance in this context. Both the Taylor basis and the Legendre
basis yield approximately the same results. The upwinded flux F*? in (2.38) at an element

——numerical
—exact

05 02 04 06 08 1
Z

Figure 2.13: Exact solution and a quadratic DG-approximation (p = 2) of the linear
advection equation for a = 0.5, z € [0,1], t = 1 and a discontinuous initial condition.
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interface z = 2, = zé 41 for the scalar linear advection equation, having the flux function
F (un) = a - uy, is computed by:

F' (up) =
(n) a-uh(zéﬂ) if a <0.

{a-uh(zg) ifa>0

Compared to the solution, provided by the Lax-Wendroff method (see Figure 2.9), the
DG-method combined with the time integrator (2.46a)-(2.46¢) produces less oscillations
around the jump at z = 0.5. However, the oscillations are not completely removed, despite
the fact that the time integrator is TVD. Therefore, we need further numerical techniques
for the DG-method and the third order SSP-method to guarantee not only convergence but
also a numerical solution, which is physical meaningful. In the remainder of this section we
briefly describe two limiter techniques, which were designed for the two polynomial bases
in Subsection 2.2.4.

Limiter technique for the Legendre basis

This limiter technique is described in [57, 58] and is often referred to as moment limiter.
The basic idea is to estimate the slope of the numerical solution between two neighboring
elements. For simplicity, we first restrict ourselves to the scalar case, which is extended to
a system of transport equations in a second step.

(i) Scalar equation

For n =1 in (2.37) the vectors ug.e) become scalars ug-e). We show that the coeflicients uge)
of the discrete solution Uy}, approximate the derivatives of %Uh on Q. [58].

Lemma 2.1. For the coefficients of the discrete solution Uy, it holds on §:

Y ,
ul = Cnl - %U h+ O (R, (2.49)

where C' = j;)!. For the corresponding derivatives it holds:

(2
o 2\’ 2 (o 2\’ 95 & (e)
@Uh: <he> 2]]' uj + <he> 8.%‘][2: Uu, Ll(.%'), (250)
>7

where the Legendre polynomials L; are defined on the reference interval [—1,1].

Proof. The proof of this lemma can be found in [58, Section 2|. For convenience we repeat
it here. Choosing ¢; = L; in (2.37), we have for the derivatives of Uy:

& 0 (e I e
U2 =l L) + o 3 Wl L02),

I>j
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where Lge)(z) = L;(z(z)). z(z) is the affine mapping from . to the reference element
[—1,1]. Due to

oI () _3j A ox j_aj - 9 J'_(Qj)! 2\ 7
ay@f@“—aw%ﬁﬂﬂh>‘—&w%@ﬁﬂ%)-yﬂ‘ 7

it follows the second equation (2.50). The first equation (2.49) is proved by induction. For
Jj = p, we have by (2.50):

oP . 2 p (2]))' (e) (e) _ p' oP P oP
@Uh(Z) = <h6> 2pp| . up and Up = @ . he ﬂUh( ) Chea pUh( )

Let us now assume that (2.49) holds for [ > j. Based on this assumption, we can conclude
by (2.50):

o7 2\ (2)! (o u® = & 1
@Uh: <he> . 2]‘7' U’j +O(h6) or Chj mUh‘i‘O(h] )

O

Theorem 2.7. If the solution Uy, is smooth on Q. U Qey1, then it holds for the j-th
coefficient uj:
© u(eJrll) (e)1
&) u hitl 251
Y 2.2/ - 1) +0 (W), (2.51)

where he = hey1 = h is taken into account.

Proof. This theorem has already been proved in [58, Section 2|: A derivative %Uh can be
represented by the first order forward difference quotient:

o 1{ o1t
ayUh_h<8ﬁ1Uh
Using (2.50) it follows:
2\ (2)! o (2} ¥ & (o 2\ 1 (25=2) ( (er1) (o
(h) ot T\ n axa';“l Ll(w)(h 292515 —1)! <“ﬂ'—1 _“J'—1>

T

91
-
Qs 0z

Division by (%)J and comparing the coefficients on both sides of the equation, yields

(2.51). O

A similar approximation as in Theorem 2.7 can be derived by representing the derivatives
using the first order backward difference quotient:

(e) (e=1)
(@ _ M1 Y-

{ =t o 11) +O (Rt (2.52)
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For a smooth solution and a sufficiently small & it follows from (2.51) and (2.52):

(e+1) (e) (e) (e-1)
e Uj_qp " — Uy UL — U .
u§)~ 32 (2]_31) ~ j2 (2j—jl)’ je{l,....,p}, ee{2,....m—1}.

In the vicinity of a discontinuity, these approximations are not valid and numerical oscilla-
tions are produced (see Figure 2.9). To prevent the formation of numerical oscillations, one
possibility is to damp the coefficients, if the sign of the coefficient and the corresponding for-
ward and the backward differences are different. To enforce a smoothing of the solution, we
additionaly choose the smallest absolute value of the three approximations (j = 1,...,p):

¥ = minmod <u(e),’yj (ugejll) ¥ ) \ Y5 <u§e_)1 — u(.e_1)>> , 72( ! <7 <1,

J J J—1 j—1 25 — 1)
(2.53)
where the minmod function is defined by:
o (a.b.) — {signw) min ([al , B, |e]) ifl sign(a) = sign(®) = sign(e), o
) else.

Depending on the choice of the parameter «y; the solution is more or less smoothed. The
damping or limiting strategy for the coefficients is carried out as described in Algorithm 1.

Algorithm 1 Hierarchical limiting
for j=pto1ldo
Compute &ge) by (2.53);
if ﬁ}e) == u§e) then
Stop the limiting process;

(e)

u; = Uy

end for

This algorithm is known as hierarchical limiting [58]. The counterpart of this limiting
strategy is called uniform limiting, when all the coefficients are limited (see Algorithm 2).

Algorithm 2 Uniform limiting
for j =pto1ldo

Compute ﬂge) by (2.53);
uée) _ age);

end for

The hierarchical limiting damps first the higher coefficients corresponding to the higher
derivatives and leaves the lower coefficients unchanged. As a consequence of this method
the flattening of smooth extrema is avoided. By a slight modification of the SSP method
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from Subsection 2.2 the limiting process can be integrated into the solution process:

u® = & {u(t,) + AtRy (u(ty))} (2.55)
u® = {iu (tn) + i (u(l) + AtRy (u(1)>>} (2.56)
u(tys) = @ {;u (tn) + g (u<2> + AtRy (u<2>)>} , (2.57)

where ® denotes the limiting operator. The discrete right hand side R is determined by
the semi discrete formulation (2.38). The application of the limiting operator to every sub
step in (2.55) -(2.55) is necessary to avoid that oscillations are created within the sub steps
of the Runge-Kutta method. In order to test the performance of the limited DG-method, we
solve again the linear advection equation for a = % and the discontinuous initial condition
(2.48). We choose again: p =2, h = ﬁ and At = 1073. As a limiting parameter, we keep

the parameter 7; equal to 1 in order to enforce at least a moderate smoothing. In Figure

L Y « numerical| |
0.8- ' —exact i
_06" ]
N
S 04f 1
02 .
0» \
0 02 04 06 08 1
Z

Figure 2.14: Exact solution and DG-approximation of the linear advection equation for
a=0.5,2z€[0,1], t =1 and a discontinuous initial condition. The DG-approximation
was stabilized by a moment limiter to remove the oscillations around the jump.

2.14 it can be clearly seen that even a weak damping factor removes the oscillations around
the jump, which could not be prevented by the unlimited DG-method (see Figure 2.13).
The importance of the hierarchical limiting (Algorithm 1) is illustrated by the following
linear advection problem:

1
owu(z,t) + =d,u(z,t) =0, t>0,
ulz 1) 5 0u(z.1) (2.58)
up(z) = sin(107z).
The exact solution of this problem is given by:

u(z,t) = sin (=57t 4+ 107z) .

For the numerical treatment the following parameters are used: p = 3, h = 1072 and
At = 1073, The results depicted in Figure 2.15 for z € [0,1] and ¢t = 0.2 reveal that the
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hierarchical limiting preserves the smooth extrema of the sine wave, whereas the uniform
limiting causes a flattening of the smooth extrema. Obviously, the solution of (2.58) is
smooth and exhibits no discontinuities. Thus, the application of a limiting method would
not be necessary to compute a good numerical solution. Nevertheless a meaningful limiting
strategy applied to a smooth solution should produce a numerical approximation, which
leaves a smooth solution unchanged. This can be achieved by the hierarchical limiting
method (Algorithm 1), which starts the limiting process at the rough components or the
higher derivatives of the solution.

* numerical
—exact

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

N oo
=] "
* numerical
—exact
- I ]
10 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Figure 2.15: Exact solution and DG-approximation of the linear advection equation
(2.58) for z € [0,1] and ¢ = 0.2. The DG-approximation is based on cubic Legendre
polynomials (p = 3). To stabilize the numerical solution a hierarchical moment limiter
(top) and a uniform moment limiter (bottom) is used.

In order to obtain more insight into the behavior of the hierarchical limiting method, we
consider again the scalar advection problem (2.59). The initial condition wug for z € [0, 1]
contains several jumps and sharp corners (see Figure 2.16).

1
Ou(z,t) + gazu(z,t) =0, t>0,z€(0,1)

10z, if 0.0<2<0.1
~10(2 — 0.2), if 0.1<z<0.2
u(z,0) = ug(z) = -1, if 03<2<05 (2.59)
1, if 0.6<2<0.8
0, else

u(0,t) = sin(—nt), ¢>0.

As a boundary condition for z = 0, we choose the smooth function sin (—nt). At the
other boundary z = 1, we use an upwinding method to compute an appropriate boundary
condition. For a time point ¢, = n - At the boundary condition is interpolated from the
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data of the last time step:

1
Up (1,4,) = Uy <1 — 5At,tn_1) .

For t = 1, we expect that the solution is given by the initial condition shifted by 0.2 to the
right and a negative half sine wave at the left hand side of the computational domain.

0.5r b

-1t 4
I I | | | I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
z

Figure 2.16: Graph of the initial condition wug in (2.59).

In the following three figures (Figure 2.17-2.19), the behavior of the moment limiter for
different polynomial degrees. We observe that the extrema are better resolved for p € {2, 3}.
The jumps are also approximated very well.

The behavior of the moment limiter for each polynomial degree p is depicted in the graph
beneath the numerical solution. In these figures, a dot (one dot for each element) denotes
the number of coefficients, which are limited. For example a dot at the value 2 and the
polynomial degree p = 2 means that coefficient 2 and 1 are limited, while coefficient 0
remains unchanged. In the vicinity of the discontinuities, it can be seen that for every
polynomial degree almost every coefficient is damped. In the smooth parts of the solution
none of the coefficients are limited. All in all we note that the smoother the solution is,
less coefficients are damped and the nearer the element is located to a discontinuity, the
more coefficients have to be damped to rule out numerical oscillations.

Finally, we want to test, if the hierarchical limiting reduces the convergence order of the
numerical scheme. For this purpose we consider the transport problem:

(%u(z,t)—i-%azu(z,t) =0, t>0,z€(0,1)
)

u(z,0) = 10sin(27z), =z € (0,1) (2.60)
u(0,t) = 10sin(—nt), ¢ > 0.

At the right boundary z = 1 we use again a standard upwinding method to prescribe

suitable boundary data. The solution u of this problem is given by:

u(z,t) = 10sin(—nt + 27z2). (2.61)
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1F 7 -
%o — —
* numerical
L ) . s o —exact
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1
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0 0.2 0.4 0.6 0.8 1

z

Figure 2.17: Behavior of the moment limiter applied to (2.59), for p =1, Az = 107!
and At =1073. A dot in the figure at the bottom denotes for every element the number
of coefficients, which are limited, starting from the highest coefficient.

4 -
- * numerical
—exact
Ak . ]
0 0.2 0.4 0.6 0.8 1
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z

Figure 2.18: Behavior of the moment limiter applied to (2.59), for p = 2, Az = 107!
and At =1073. A dot in the figure at the bottom denotes for every element the number
of coefficients, which are limited, starting from the highest coefficient.

1F > ~
Zo — ]
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* numerical
Ak ‘ ) a o |—exact
0 0.2 0.4 0.6 0.8 1
3
2 X3 we o . . .
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0 000000000 oo CO000000- o
0 0.2 0.4 0.6 0.8 1

Figure 2.19: Behavior of the moment limiter applied to (2.59), for p = 3, Az = 107!
and At = 1073, A dot in the figure at the bottom denotes for every element the number
of coefficients, which are limited, starting from the highest coefficient.

Due to the fact that u € C* (2 x (0,0),R), an optimal DG-method using a polynomial
degree p should converge in space with respect to a suitable norm by order p + 1. Table 2.2
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p=1: p=2: p=3:
Az L'-error eco L'-error eco L'-error eco
1/8 9.66e —1 | — |522e—2| — |443e—3| —
1/16 | 2.80e—1 | 1.79 | 5.13¢e —3 | 3.35 | 2.23¢e —4 | 4.31
1/32 | 6.52e—2 | 2.10 | 5.0le—4 | 3.36 | 1.03e — 5 | 4.44
1/64 | 1.4le—2 | 2.21 | 5.15e —5 | 3.28 | 3.69¢ — 7 | 4.81
1/128 | 2.94e — 3 | 2.26 | 5.28¢ — 6 | 3.29 | 9.62¢ — 9 | 5.26

Table 2.2: Spatial convergence of the DG-method for problem (2.59). The DG-method
is based on Legendre polynomials and stabilized by the hierarchical moment limiter. For
the time integration the SSP method (2.46a)-(2.46¢) is used. eco abbreviates the term
estimated convergence order. The time step size At is set to 107%.

contains the numerical errors produced by the limited DG-method based on Legendre poly-
nomials, while Table 2.3 shows the approximation errors resulting from the corresponding
unlimited DG-method. The errors in each case are computed with respect to the L'-norm.
The tables reveal that the approximation errors related to the limited DG-method are
larger than those of the unlimited DG-method. An exception is the error for p = 3 and
h =1/128. In both cases this error is equal. This is due to the fact that the limiter is active
for all the other degrees and mesh sizes. In this single case we observe that the solution on
no element is limited, otherwise the limiter is always active and enlarges the error. The
convergence rates of the unlimited DG-method behave as it has been expected. The limited
DG-method exhibits convergence rates that are even better as predicted. Especially for
p =3 and h = 1/128 the convergence rate is remarkably high. While for h = 1/64 the
solution is still limited, the solution for A = 1/128 is not limited anymore. Thus the method
converges in this case better than it can be expected.

p=1: p=2: p=3:
Az Ll-error eco Li-error eco Ll-error eco
1/8 2.25e — 1 — 1.20e — 2 — 5.98¢ — 4 —

1/16 | 5.28e —2 | 2.10 | 1.52¢e — 3 | 3.04 | 3.67e — 5 | 4.03
1/32 | 1.27e —2 | 2.06 | 1.90e — 4 | 3.01 | 2.28¢ — 6 | 4.01
1/64 | 3.10e —3 | 2.03 | 2.35e — 5 | 3.01 | 1.4le — 7 | 4.01
1/128 | 7.66e —4 | 2.02 | 2.84¢ — 6 | 3.05 | 9.62¢ — 9 | 3.88

Table 2.3: Spatial convergence of the DG-method for problem (2.59). The DG-method
is based on Legendre polynomials. For the time integration the SSP method (2.46a)-

(2.46¢) is used. eco abbreviates the term estimated convergence order. The time step size
At is set to 1074,
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2 A multi-scale model for flow and transport within an arterial network

(ii) Transport equation system

By now the limiter technique can only be applied to scalar equations. Considering our
models for flow (see (2.14a) and (2.24a)), the limiter technique must be enhanced so that
it is useable for systems of transport equations. According to [22, 58] a limiter technique
for systems has to be applied to the characteristic variables, to prevent the formation of
spurious oscillations in the vicinity of discontinuities. Therefore, one has to transform the
primary variables U to its characteristic variables W. This is done by the following formula
(see e.g. (2.18)): W = L (U) U, where L (U) denotes the matrix of left eigenvectors of the

flux matrix H (U) = %

The limiting is performed in the following way:

(20 = minmod ((Luge>) (2 (0 = 2)) (2 (w3 ) ) L (262)
J J J J
j=1,...,n. n is the dimension of the transport system, uge) denotes the i-th coefficient of

the expansion (2.37) of the numerical solution Uy on an element €2.. Due to the fact that L

)

can depend on the solution U, one has to choose a suitable vector of primary variables ﬁ(e ,
to assign to each element (). a suitable flux matrix H (ﬁ(e)). The authors of [92, 114]

suggest to use the so called Roe-Average. In order to define the Roe-Average, we first have
to introduce the Roe-Matriz.

Definition 2.6. Let F' be the flux function of a system of transport equations and let H be
the corresponding fluxr matriz. A matriz H, for Q. = (zé,z’e") 1s called Roe-Matrix, if it
holds:

(i) #. (U2, u)?) (U - u?) =F (u) - F (Uf)
(i) H. (USF), Ul(@)) is diagonalizable with real eigenvalues
(iii) H. (U@,Ul(e)) — 9F (ﬁ) . U9 Ul 50,

where U = U (27) and U = U (+7).

Definition 2.7. Let H. be a Roe-Matriz, then U(©) (Uﬁe)7 Ul(e)> is defined as Roe-Average
for Q., if it holds:

. (v, u) = 1 (U0).
By L¢ we denote the left eigenvector matriz of H (U(e)>.

Having these definitions at hand, we can replace a non-linear flux F (U) on £, locally by

H ( (€)> -U. This yields a linearized transport system, which is much easier to analyse

than a non-linear system. The items (i)-(iii) in Definition 2.6 are motivated as follows:

e Property (i) incorporates mass conservation into the local system on €,

47



2 A multi-scale model for flow and transport within an arterial network

e Property (ii) preserves the signs of the eigenvalues
e Property (iii) guarantees that the local system is consistent with the linearized problem

For a linear flux function F (U) = H-U the Roe-Matrix H, is equal to H. As the flux matrix
H is independent of U, we can choose the Roe-Average, e.g., as: U(¢) =0.5- (Uge) + Ul(e)).

If the flux function F (U) is non-linear, the computation of the Roe-Matrix and the
Roe-Average is more complex, as it can be seen based on (2.14a).

Theorem 2.8. The Roe-Matrix I/{\e and the Roe-Average U(©) for the transport system
(2.14a) are given by:

A (008 2 (7). - (3

OUAQ Q(e)
where
2 (e) (e)
(e) Qr (&)@
— (2 A 44 /Al Al(e) + Al(e) B Ar a@ T A A§e>
Ale) = 3 . Q) = Ale).
/AS‘E) + /Al(e) /Age) + /Age)

and

(e) (e)
© _ [Ar © _ (4
Ure — ( 7(ﬂe)> , Ul = ( l(e)> .

Proof. Property (i) in Definition 2.6 can be verified by some straightforward computations
that are omitted here. In order to proof property (ii) we compute the eigenvalues of the
flux matrix:

_ OFaq 0 1 s Go [A _Q
H(UAQ)_aUAQ_(CiQ_UZ 2@>,WherecAQ—2p IO’U_Z

and Uaq = (4, Q)T For H, we obtain the following eigenvalues: A\; = v — cqg and
A2 = v+ ca@. The matrix of left eigenvectors L(Uaq) and its inverse L(U Aq)_1 is given
by:

1 feag+v -1 A 1 1
L(Uaq) = A <CAQ—1) 1) and L(Uaq) ™ = 2cag \V —cag v+cag

Defining A (Uaq) by A (Uaq) = diag (A1, A2) the following identity holds:
H(UaqQ) =L(Uaq) 'A(Uaq) L(Uaq)-

Thus, ﬁe has real eigenvalues and fulfills property (ii) in Definition 2.6. For the proof of
property (iii), we assume:

A9 A 5 A4 and QE,Q = Q.

r
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Considering these limits, we have:

Ale) 5 A and Q) = Q,

N . . AT
from this it follows that H, (U,(ﬂe), Ul(e)> — gg‘:g (U), where U = (A, Q> . This means

that property (iii) is also fulfilled. O

Algorithm 3 Hierarchical limiting for systems of transport equations

for e=1to m do
for j =0topdo
Compute ug.e) (see (2.37));
end for -
Determine the Roe-Average U(¢) and the matrix L. (see Definition 2.6 and 2.7);
forj:Otopdo()

Compute L, - u;
end for

for j =1tondo
Compute (Leuge)> (see (2.62));
J
fori=pto1ldo

if <<L7)>> = ((ze- uge>))j then

J
Stop the limiting process;

else - -
Compute the limited coefficients by: <u§6)> = <L61 . (Le . uge))) ;
J J
end if
end for
end for
end for

—_

By the help of the left eigenvectors L. and its inverse L ! the limited coefficients uge)
can be computed by transforming the limited characteristic variables back to the primary

variables:

—

ul® =171 (L7)>

In Algorithm 3, we present a short description of the hierarchical limiting technique for
systems.

Limiter technique for the Taylor basis

In the following we present a limiter technique for the Taylor basis developed in [60, 61].
In these publications a limiting strategy of Barth and Jepsen [11] for a piecewise linear
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approximation (see Subsection (ii) Taylor basis):

e —— 0U
(Z—Ze)—Uh"i‘E

ou

5 (z —2%) (2.63)

Unlg, = U(z) +

— ~C
z=2¢

has been used. As it was already pointed out, the approximation in (2.63) is a Taylor
expansion around the element center z{ = # The idea of Barth and Jepsen [11] is to
replace the slope %—Ij in z = 2¢ by a damped slope a - %—g, such that the limited solution is
given by:

ou

U ~ U (z¢ 6 —
o, % U D) + e O

(z —27). (2.64)

—C
2=z

The damping parameter o, should fulfill the following inequalities:
Usmt < Uy, (zg) <US™T and US™n < Uy (1) < UM, (2.65)

where Q. = (2, 27) and

Ule’mm = min (U (zg_l) .U (z;f)) , U™ = max (U (Zg_l) , U (Zg)) ;
US™in = min (U (2,,), U (29)), U™ = max (U (2£,,) , U (9)) .
Please note that the min and max functions are applied component wise in the previous

formula.

Theorem 2.9. A possible choice for a., which fulfills (2.65) is given by [60, 61]:

(v, I
min <1, [}lh’r—'UC> s 'Lf Uh - Uc > O,
. l,
, if U -, =0,

Ue,min_Uc L
min | 1, —&—-° if Uy —U.<0
< s Ulh, —U, ) ) f h c s

l

: T Lr
ae = min(a,,al), o =4 1

where Uif =U, (Zé’r) , Ue = U (29).

Proof. Considering the definitions of Ule’;n " and Ule’;mn, it follows that:
Ut U, <0 < UL - UL,
By (2.64) and (2.65), we have for U!:

; ou
Ue,mm _ Uc < l .
lr S Qe Oz

l c e,max
<ze - ze) <U,"" - U

z=z5

— ol (U}-0.)
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Using the cases in Theorem 2.9 it follows the first inequality in (2.65). Analogously one
can show that of fulfills the second inequality in (2.65). It remains to show that a fulfills
both inequalities in (2.65). First we show that a,. matches the first inequality:

Ue,min U Ue,max U
%SOS%S@ZES%, if Ulh—UC>O

U; — U, U; — U,
U;a,min . Uc l Ule,maac o Uc . .
WzaezanOZW, if U*UC<O

h e h e
Ut - U. <0< UP - U, if U,-U.=0
The second inequality is proved in an analogous way. O

Having a closer look at the correction factors provided in Theorem 2.9, we note that
0 < @ <1 holds. Thus, these factors can be interpreted as damping factors, which can rule
out unphysical numerical oscillations. The computation of these factors can be implemented
in an efficient way, as U is equal to the coefficient associated with the constant polynomial
Tp. Thus this value is already computed and can be directly used for the limiting process.
The values for UZ’Tmm and UZ’TmM can be interpolated.

In order to determine the correction factors for the higher derivatives, we derive a linear
approximation for the higher derivatives. Due to

Pz e = B (2.66)
we have: . ) "
0"Uy, o"U ke §f )
925 |, = 9.k R (z — 25) +r(2). (2.67)
=linear part

r(z) denotes a polynomial of degree higher than 1, except for k = p. The linear part is
arul”

treated as the linear approximation in (2.63), replacing U by ag;,{.h and Ul}f by — . All
in all, we have for the k-th derivative of Uy, a correction factor ozgk), ke{l,...,p}.

Analogously to the limiter technique for the Legendre basis, it is crucial to apply a
hierarchical limiting. The coefficient associated to the k-th Taylor basis polynomial is

equal to the k-th derivative of the solution at the element center. Therefore we start the
limiting by computing the damping factor agp ) (see Theorem 2.9). In order to limit the
k-th derivative we compute a(ek) by Theorem 2.9. The correction factor agk) should be

equal or larger than the correction factors ag), [ > k, to prevent the flattening of smooth

extrema:
(k) — { <l>}
Q. krgla%) ag’ ¢t
If aék) = 1 for a certain damping factor, we have ag) = 1Vi < k. Thus, the limiting process

can be stopped, if one damping factor is equal to 1 (see Algorithm 4). To illustrate the
robustness and stability of this limiter technique, we consider again the linear advection
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2 A multi-scale model for flow and transport within an arterial network

Algorithm 4 Hierarchical limiting for the Taylor basis

for e=1to m do
Compute ay according to (2.43) and determine the numerical solution Uy, on Q;
end for
for e=1to m do
fori=pto1ldo
Compute al? according to Theorem 2.9 and (2.66),(2.67);
Compute aéi) = max;<i<p {ag)};
if o) == 1 then
BREAK;
end if
end for
end for

equation for a =1 on Q = (0,1) and ¢ = 0.5. At the left boundary (z = 0), we prescribe
two different inflow profiles:

sin (5t)  if 0<t<0.2,

Usmooth (t) = { 0.% it 02<t<l. and Ujump(t) =1, for 0 <¢ < 1.

At the outflow boundary (z = 1), we impose again a free outflow condition, i.e., the
boundary data in each time step are computed by standard upwinding. For the DG-method,
we use the following parameters: p = 2, Az = 1/200 and At = 10~%. The results for the
different inflow profiles can be seen in Figure 2.20. Besides, the numerical solution the

correction factors aél) and ag) are reported for each element.

Algorithm 5 Uniform limiting for the Taylor basis

for e=1to m do

Compute ay according to (2.43) and determine the numerical solution Uy on §);
end for
for e=1to m do

fori=pto1ldo

Compute ag) according to Theorem 2.9 and (2.66),(2.67);

end for

end for

Our results show that in both cases the hierarchical limiter combined with the SSP as
a time integrator yield satisfying results. By limiting, the correction factors ozg) around
the sharp corners at the zeros of the half sine wave (see Figure 2.20 (top left)) and in the
vicinity of the jump (see Figure 2.20 (top right)) the formation of spurious oscillations
can be prevented. The necessity to use a hierarchical limiter instead of an uniform limiter
technique (see Algorithm 5) can be seen in Figure 2.21.

While the hierarchical limiter preserves the smooth extremum of the half sine wave, the

(2)

uniform limiter causes a flattening of the smooth extremum. The correction factors ae ’ in
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Figure 2.20: Correction factors al? of the hierarchical slope limiting method, ugmooth

(top left), wjump (top right), Numerical approximations computed by quadratic Taylor
polynomials (p = 2) and stabilized by the hierarchical slope limiting method for usmooth
(bottom left) and ujump (bottom right)

(1) .

the uniform case are within the interval [0.9,1.0] and in the vicinity of the extremum o’ is

equal to zero. This behavior can be prevented using the formula agk) = maxp<i<p {agl) }
By now, we used only orthogonal polynomial bases, since the Legendre basis is orthogonal
for all degrees with respect to the standard L?-product. Some straightforward computations
reveal that the Taylor basis is only orthogonal with respect to the L2-scalar product for
p < 2. Thus, for p > 3, we have a non-diagonal mass matrix. According to [60, 61, 82|
the off-diagonal entries of the mass matrix introduce an implicit coupling between the
unlimited derivatives of all orders. As a consequence, the application of the limiter technique
(Algorithm 4) yields an approximation, which is on the one hand side non-oscillatory but
on the other hand very inaccurate (see Figure 2.22 (top)).

A possible way to circumvent this problem is to use a lumped mass matrix My, consisting
only of the diagonal entries of the full mass matrix M. Although, this approach is
conservative, it results in a loss of accuracy [60|. Therefore the potential of higher order
approximation is lost. As a consequence in [61] the full mass matrix was used and additional
limiting for the involved time derivatives was introduced. The mass lumping error is
compensated, by adding the off-diagonal part to the right-hand side of the lumped mass
matrix discretization.

This results in a modified time integrator compared to the standard SSP method, presented
in Subsection 2.2.5. For convenience of the reader we rewrite the standard SSP method
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Figure 2.21: Correction factors ag) of the uniform slope limiting method, usmooth
(top left), ujump (top right), Numerical approximations computed by quadratic Taylor
polynomials (p =2). The approximations are limited by the uniform slope limiting
method, Usmooth (Pottom left), wjump (bottom right).

here:
ey = u(t,) + At - MC*1R (u(tn)) (2.68a)
a® =)+t (0 + At Mz 'R (u)) (2.68b)
4 "My ¢
1 2
1 2 (4@ MR (u®
W(tas) = gult) + 3 (u® + At MG R (u®)). (2.68¢)

In the slope-limited version of the SSP Runge-Kutta scheme, we update the solution in the
k-th sub step as follows (u(®) = u (t,), u(t,11) = u®):

1. Given u® =1 calculate the vector of discretized time derivatives given by:

) = Mg R (ul). (2.69)

2. Apply the hierarchical limiter ® to the predictor u® and calculate:
0 = w4 A At [(ML ~ Mg)® (ﬁ<k>) +R (u(k_l)ﬂ , (2.70)

where My, := diag {m;} denotes the diagonal part of the mass matrix Mc.
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3. Apply the hierarchical limiter ® to the convex average of u (t,) and a®:
u® = ¢ (wku (tn) + (1 — wp) ﬁ<k>) , (2.71)

where wy, € [0, 1] is the weight for step &k of the SSP Runge-Kutta scheme.

Note that if we set M} = M, omit the calculations in (2.69) and do not perform any
limiting in (2.70) and in (2.71), we obtain the original third order SSP Runge-Kutta scheme.
The results of the additional limiting are shown in Figure 2.22 (bottom). It can be seen
that despite the usage of an non-orthogonal Taylor basis (p = 3) very accurate results are
computed.

1r 1
0.8 ~ { 0.8
06 ' 06
35 35
0.4 0.4
0.2 0.2
0 oL
0. 0.3
1r 1
0.8 0.8
06 0.6
o} 3
0.4 0.4
0.2 0.2
0 ‘ ; 0 ‘
02 03 04 05 06 03 04 05 06 07
zZ zZ

Figure 2.22: The numerical approximations shown in the figures are based on cubic
Taylor polynomials (p = 3). For the solutions in the figures at the top we use a standard
SSP (2.68a)-(2.68¢) to complete the discretization. The solutions shown at the bottom
use the slope limited SSP (2.69)-(2.71). All four solutions are reported at the time point
t = 0.5. At the left usmootn is prescribed at the inflow boundary, at the right jump is
used at the inflow boundary.

To test the convergence behavior of the hierarchical vertex limiter for p € {1,2,3}, we
consider again the following transport problem:

1
8tu(z,t)+§8zu(z,t) =0, t>0,2z€(0,1)
u(z,0) = 10sin(272), z € (0,1) (2.72)
u(0,t) = 10sin(—nt), ¢ > 0.
At the right boundary z = 1, we use a standard upwinding method to prescribe suitable
boundary data. Due to the fact that u € C*° (Q x (0,00),R), an optimal DG-method using
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p=1: p=2: p=3:
Az L'-error eco L'-error eco L'-error eco
1/8 9.66e —1 | — |6.67e—2 | — |224e—2| —
1/16 | 2.80e—1 | 1.79 | 1.09¢e —2 | 2.62 | 1.45¢ — 3 | 3.95
1/32 | 6.52e —2 | 2.10 | 1.26e — 3 | 3.11 | 8.52¢e — 5 | 4.09
1/64 | 1.4le—2 | 2.21 | 1.4le—4 | 3.16 | 4.64e — 6 | 4.20
1/128 | 2.94e —3 | 2.26 | 1.49¢ — 5 | 3.24 | 2.56e — 7 | 4.18

Table 2.4: Spatial convergence of the DG-method for problem (2.59). The DG-method
is based on Taylor polynomials and stabilized by the hierarchical vertex limiter. For the
time integration we use the slope-limited SSP-method (2.69)-(2.71). eco abbreviates the
term estimated convergence order. The time step size At is set to 1074

a polynomial degree p should converge in space with respect to a suitable norm by order
p+ 1. The results in Table 2.4 reveal that the L'-error decays for the above problem by
order p + 1. Thus we can conclude that also the hierarchical vertex limiter does not reduce
the convergence order of an optimal DG-method. However, all the errors are larger than
those produced by the unlimited DG-method (see Table 2.3). Apparently, the solution
computed by the DG-method combined with the hierarchical vertex limiter, is limited for
each polynomial degree p and mesh size h. All in all, we can observe that this limiter
technique is stricter than the moment limiter developed for the Legendre basis.

Limiter technique for boundary elements

AN B

.‘. H\.
® BC
|_|_| .......... |_|_| ’ ..... .'_'_' .......... |_|_| ...... .|
Q Q, Q. ., Q Q, Q Q, Q Q Q

Insert boundary elements

Figure 2.23: DG-approximation on the elements Q., e € {1,...,m}, the boundary
conditions (BC) at the boundaries are marked by red dots (left). Insertion of additional
elements (2, at the boundaries of the computational domain. The red lines indicate the
linear auxiliary solutions based on the boundary conditions and the solution value at the
corresponding boundary (right).

According to Equation (2.53) and Theorem 2.9 the moment and vertex limiter technique

require for the limiting process on the element (). information from the neighboring elements
Qey1 and Q1. As it can be easily seen, there is one neighboring element missing at each
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boundary. As a consequence the limiter techniques cannot be applied to the boundary
elements in the same way as for the inner elements.

In order to replace the information from the missing neighboring elements, we attach to
each boundary element an additional element €2 (see Figure 2.23). On these additional
elements, we compute by the help of the boundary conditions and the solution values at the
boundaries a linear auxiliary solution (red lines on €2, Figure 2.23), by interpolating the
two values. This means that the solutions on €0 are combined by a constant and a linear
basis function, if the solution on the other elements 1,..., £, is given by polynomials
of higher order, the corresponding coefficients of the auxiliary solutions on €2, are set to
zero. These auxiliary solutions provide the missing information for the limiting process on
the boundary elements and guarantee the fulfillment of the maximum principle and the
TVD-property.

Comparison of both limiter techniques

In the previous subsections, we discussed the numerical difficulties associated with transport
equations or systems of transport equations. It was stated that the conservation of mass,
positivity, monotonicity and the TVD property are the major problems in this context. Our
numerical investigations and references from literature reveal that higher order DG-methods,
stabilized by a moment or a vertex limiter technique can tackle these problems. In this
subsection, we summarize some features of both stabilization techniques:

Moment limiter: Vertex limiter:

e Positivity, monotonicity and the TVD e Positivity, monotonicity and the TVD

property of the solution are maintained property of the solution are maintained

e higher order convergence in smooth re- e higher order convergence in smooth re-
gions is maintained by hierarchical lim- gions is maintained by hierarchical lim-
iting iting

e higher order approximations yield no e higher order approximations yield no
significant loss or gain of mass significant loss or gain of mass

e mass matrix is diagonal for all polyno- e mass matrix is not diagonal for p > 2,
mial degrees, thus an additional lim- thus an additional limiting of the time
iting of the time derivatives is not re- derivatives is required
quired

Taking the different features of the limiter techniques into account, it becomes obvious that
only the Taylor basis exhibits a certain drawback. For Taylor polynomials having a higher
degree than 2, a non diagonal mass matrix enforces additional limiting steps for the time
derivatives.

Based on this comparison, we determine which limiter technique is the most appropriate
for the models from Section 2.1. First we note that for the numerical treatment of the
1D systems (2.14a), (2.14b) and (2.24a), (2.24Db), it is sufficient to use a limiter technique
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only for (2.14b) and (2.24b), respectively. Each system consists of three coupled transport
equations, where the first two equations do not depend on the solution of the last equation.
The first two equations model the propagation of pressure and velocity, which exhibit in
our applications no discontinuities. The third equation models the transport of a certain
substance, whose concentration can jump instantaneously from one value to another value.
Thus, only the solution of the last equation has to be limited. The moment limiter does
not require a limiting of time variables. Furthermore, no transformation to characteristic
variables is needed for a scalar equation. Therefore, it is more efficient to use the moment
limiter technique in this context.

2.3 Computing boundary data

In the previous sections of this thesis, we presented three models for the simulation of
flow and mass transport within a single vessel. These models take the form of non-linear
or linear 1D transport equation systems or ODE systems (0D lumped parameter models)
(see Section 2.1). In order to solve these systems numerically, stabilized discontinuous
Galerkin methods for the space discretization and SSP Runge Kutta methods for the time
discretization were considered (see Section 2.2). Up to this point, we applied the numerical
methods to scalar linear transport equations (2.34) for test purposes. In this context the
incorporation of inflow and outflow boundary conditions as well as the interconnection of
two neighboring elements is carried out by standard upwinding methods. However, for
transport equation systems the computation of the coupling values at the element interfaces
is not trivial. Furthermore, we have to establish coupling conditions for the subsystems
adjacent to a bifurcation, in order to simulate flow and mass transport through a whole
network.

ofB

leB V2

BiB

V]_. @

IfB leB

leB V3

ofB

Figure 2.24: Types of boundaries occurring in a network

The different cases, occurring at a boundary of an element are summarized in Figure 2.24.
We denote an inflow boundary by IfB, an outflow boundary by OfB and an interface
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between two inner elements by IeB. If one element boundary is adjacent to a bifurcation
we assign to these boundaries the abbreviation BiB. The main axis of a vessel V; is
parameterized by an interval [0, ;], where [; is the length of the vessel V;. Before we discuss
the different cases, it is pointed out that in this thesis we consider only networks whose
terminal vessels are modeled by 1D transport equations. The 0D models are used to
simulate flow and mass transport through small vessels in the inner part of the network.
Furthermore they model the impact of small vessels beyond an outflow boundary.

2.3.1 Computing data at an inflow boundary (IfB)

Within the discontinuous Galerkin framework, an inflow boundary condition is incorporated
into the numerical scheme by computing an appropriate upwinded flux F*P(z) at the inflow
boundary z = 0 (see (2.38) and (2.42)). The upwinded flux is given by inserting a vector
of upwinded values UpP(z) at z = 0 into the flux function F of the considered transport
equation system. The crucial issue is how to determine these upwinded values UEP(O)
with respect to inflow boundary conditions. In the non-linear case (2.14a),(2.14b) we have
to calculate the values (A", Q7 T“?)T and in the linear case (2.24a), (2.24b) the values
(p"P, q"P, c“p)T. This means that in both cases, three equations are required to determine
the upwinded values. These equations are established by the help of the characteristic
analysis from Section 2.1. Following Remark 2.2 and 2.3, we have at each boundary an
outgoing and an ingoing characteristic for the AQ or pq subsystem. At the inflow boundary
the outgoing characteristic is given by:

1
AQ . Qin Go (A \*
WD = - g, [0 <AO>

in the non-linear case and by

1 Cip
ngn = B} (— Tlein + Qin>

in the linear case, where we denote by f;, a function, which is evaluated at z = 0 on
the first element Q;: fi, = f|q,(0). For the ingoing characteristics WIAQ and WP we
have to provide a suitable boundary condition gag or g,,. However, in practice there is
usually no boundary condition for the characteristics, but only for the pressure or the flow
rate. Therefore, we have to transform the given pressure or flow rate profile in a condition
for the ingoing characteristic. For convenience of the reader, we restrict ourselves to the
transformation of the flow rate. The considerations for the pressure p can be found e.g., in
[36]. Based on Theorem 2.1 and 2.3 we have:

A
Q=5 (W?-w?)  and  g=wPTwg

If WlAQ and WP are equal to its initial values WfOQ and Wﬁ%, we have by Q(t) = gaq(?),
q(t) = gpe(t) and A = Ay for the ingoing characteristics W;ﬁ and W3 at z = 0:

A 9aq(t) A
WQ,@% =2 AO + VVL(?2 and W;Zn = gpq(t) - Wﬁ%
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Despite the fact that these relations impose the flow rate profiles only implicitly and not
directly, it has been proven that they are very effective and exhibit non-reflecting properties
[36]. Now we have for each case two equations to compute the upwinded values for the
flow:

1 1
U, GO Au 1 A Qu CTYO Au 4
wAQ _ _Qu  , |Go (Auwp 4 wAe_ &uw oy (S0 (A 9.73
1,in Aup + 2P AO an 2,in Aup + 2,0 AO ) ( )
1 C 1 C
Wit =5 |- ﬂpw + Qup and Wit =5 \/ ﬂpw +aqup |- (2.74)
) 2 Lip ’ 2 Lip

It remains to compute the values I'y;, and ¢,p. Since the behavior of I' and ¢ is determined
by scalar transport equations (2.9¢) (2.24b), whose velocity fields are given by vag = %
or Upg = Aiov the upwinded values I'y, and ¢, can be computed by standard upwinding,
depending on the sign of the velocity fields vag or vpg:

T (t) _ r |Ql (O’t) ) if vAQ < 0, (275)
h Cinflow(t) : Aup(t), if VAQ = 0,

and

c 0,t if vpy <0

cuplt) = 4 <120 (00 iy <0, (2.76)

Cinflow(t)> if Upq >0,
where the function c¢;, 0,y denotes a concentration profile, which is prescribed externally at
the inflow boundaries. In most applications, it is set to a fixed concentration value ¢y of a
certain substance: ¢, fiow = co. Finally (2.73),(2.75) and (2.74),(2.76) form two systems of
equations which can be used to compute the upwinded values at an inflow boundary.

2.3.2 Computing data at an outflow boundary (OfB)

As for the inflow boundary, we have to compute at the outflow boundary three upwinded
values (Aup, Qups Lup) O (Pups qup, Cup) to integrate boundary conditions at outflow bound-
aries into the numerical scheme. This requires again the establishment of two systems of
equations. At an outflow boundary (z = [;), there are analogously to an inflow bound-
ary one outgoing and one ingoing characteristic for the AQ— and pg—subsystem (2.14a)
(2.24a). Contrary to the inflow boundary the characteristics WlA @ and WP are entering
the computational domain, while WQA Q and WP are leaving the computational domain.

Thus, WQA Q and WP can be computed by the values Aput, Qout and pout, Gour- A function
fout, f €{A,Q,p,q} is defined as:

fout(t) =f |Qm (l’t) )

where €2, is the last element discretizing the computational domain [0,[]. For the outgoing
characteristics W{} O%t and W27 . it holds according to Theorem 2.1 and 2.3:

,out?’
1
A Qout Go ((Aout \ * 1{ /Cip
WQ,(%t = AZZt + 4\/; ( JZ; ) and ngut = 5 ( Epout + Qout | -
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Having the values W;} (gt and Wi 7 . at hand, one can establish a first equation for each
model:

1
AQ Qup Go Aup 4
W = 4’ [— | — 2.
2,out Aup + 2P (AO ) ’ ( 77)
1 Cip
W;?Jut D) (\/ Tleup + q“P) : (2.78)

It remains to derive a formula for the ingoing characteristic variables WlA O%t and W7

with respect to a prescribed outflow boundary condition. In this thesis, we consider two
different types of outflow boundary conditions:

Free outflow boundary

In order to simulate a free outflow boundary, the authors of |36, 103] suggest to fix the
incoming characteristic variables to their initial value, i.e.:

e
Wi, (t) = Wi9(1,0) = 4 27? and WP ,(t) = WP(1,0) = 0.

These conditions yield besides (2.77) and (2.78) the second equation for the computation
of (Aup7 Qup) and (pupa Qup):

1
AQ Qup Go Aup 4
W. = _ 4 — (== 2.
1,out Aup + 2p < AO ) ( 79)
1 Cip
Wﬁ%ut = 5 <—U ‘Lleup + Q'up> . (280)

and

Peripheral vessels

Since we are often interested in a small part of the human arterial tree, we have to
truncate the blood vessel network after some bifurcations. To account for both resistive and
compliant effects of the omitted vessels, the 1D models associated with a terminal vessel
of the considered subnetwork are coupled to a 0D lumped parameter model (see Figure
2.25). In [2, 3, 4, 86] four-element parameter models, consisting of two resistances R; and
Ry, a compliance C' and an inductance L, are used to simulate the effect of the omitted
vessel system on the flow in the subsystem. These 0D models yield for each time step
and each outflow boundary two intermediate values (A*, Q*) or (p*, ¢*) at t = t,,41 which
originate from the states (Aout, Qout), (Pouts Gout) and the coupling values (Acoup, Qcoup),
(Peoups Geoup) at t = t,. The coupling values (Acoup, Qcoup), (Peoups Geoup) determine the
ingoing characteristics:

1
Q Go (A 4 1 Cip
coup
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while (Aput, Qout) and (Pout, qout) govern the outgoing characteristics W{} th and Wi 7 .

\

1 = @ <« ODE system
1
: model reduction Rl : R2 C
I 1
I 1
1D model 0D model 1D model 0D model

Figure 2.25: Modeling the effect of peripheral vessels by a three-element parameter
model

Finally, we have for each model the missing second equation for the compution of the

upwinded values:
1
Gy (A 1
wAe __Qu 4/ == 2.81
1,out Aup + 2p (AO ( )

1 Cip
W{?}ut =5\~ Dup + Qup | - (2.82)

and

The crucial issue is now to determine the coupling values (Acoup, Qcoup) OF (Deoups deoup)-
According to |2, 3, 4] the boundary condition is imposed by assuming that

WlAQ (A*a Q*) = WlAQ (Acoupa Qcoup) 9 WQAQ (A*) Q*) = WQAQ (Aout; Qout)

and
Wfq (p*7 q*) = Wfq (pcoupa QCoup) 5 qu (p*, q*) = qu (pouh QOut)

holds. By the help of Theorem 2.1 and 2.3 and the assumption Acoup = Aout OF Deoup = Pout
it follows:
* . Qout

Qcoup = Aout <214* A t> and Geoup = 2(]* — Gout- (283)
ou

For the incorporation of the resistive and compliant effects of the omitted vessels, we consider
the (R;CLRy) parameter model. Doing so, we recall the analogy between hydraulic and
electric networks, presented in Table 2.1. The resistance of the terminal vessel is measured
by Rjp, while the resistance of the vessels lying beyond the outflow boundary is measured by
Ro. The compliance C of the omitted vessels can be regarded as the capacity of a capacitor,
while the parameter L is the inductance of the omitted vessels. Within the four parameter
model, Ry and Ry, L are linked by the capacitor C' (see Figure 2.26). Rewriting Ohm’s law
using hydraulic variables instead of electric variables, it follows for the first resistance Ry:

Q*:p(A*)—pc or q*:p*—pc

2.84
= e, (2.8
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1D model 0D model
A* A p*
Q" | q°
(htn + At
A AQ /P4
wa whi Wi wWi
> 7
Aout Pout Acoup Pcoup
Qout out n Qcoup dcoup
» *= I /\/\/\l |
Q" q Ry L Ra
p* A* Pe ::C

Figure 2.26: Notation for the variables at the interface between a 1D model and a 0D

.

outflow model (top), outline of a four element outflow model (bottom).

* *
out qout

ES
Pout

p (A*) is given by (2.8). ¢}, and p},, denote the average pressure and average flow rate at
the outflow boundaries of the omitted vessels. The pressure p, within the C LRy system is

governed by (2.27a). Replacing p by pe, qout by Q% or ¢, Cop by C and g, by Q* or
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q*, we have for ¢ = O:

ditc =Q"-Q,,; or C- d—; =q — Q- (2.85)
For the flow rate within the C' LRy system it holds using (2.27b), L = Lop and Ry =
Lop - Rip:

. dQ Zut
dt

C.

dq*
L - out
dt

L

=De— Pout — R2 - Qpur OF = DPe — Pout — B2+ Q- (2.86)

A first order discretization of (2.85) and (2.86) for the time interval [ty,, tn11], At = typ1—tn
is written as:

n+1 n
pC - pC * * n
R (2.8)
n+l n

C - (pc) N (pc) — q* _ (q;m)n-‘rl (288)

and 1 .
I - (Qout) A; (Qout) _ (pc)n—H N (szt)n-‘rl “ Ry - ( :ut>n+1 ’ (289)

x \n+1 * \M

Qou — oy n * \N * \M

g et o)y ) Ry () (200)
where (p.)" =0, (Q%,)" = (¢,,)" = 0 for the initial time step n = 0. The value (p},;)"

is kept constant to an average value p%,, for all time steps n: (pf,;)" = pk,;. Combining
(2.87) and (2.89) as well as (2.88) and (2.90) yields:

RyC R
n+1 2 n * 2 * * \T
()™ = 222 (p, L NS ,
¢ (pe) Ap Pe)" Q7 + o [Atpo — L(Qou)"]
RyC R
. nt+l _ 2 n * 2 x * \N
(rb (pc) At (pc) + RQ(] + L n AtRQ [Atpout L (QOut) ])

where ¢ = RAQtC + L-}EQAAt;%Q' By these equations and (2.84) it follows:

L 04 R Cp)  Ro(Atphy — L (@)
Ry + ¢Ry Ry + oRy (R2 + ¢R1) (L + AtRy)

(2.91)

and " .
q* _ ¢ : p* . R2 -C (pC) o R2 (Atpj;ut — L (QZut) )
Ry + ¢oRy Ro+ oRy (R2+ ¢R1) (L + AtRy)’

(2.92)

Using (2.91), B ,
W2 @ (A*a Q*) = W2 “ (Aouta Qout) ,

the area-pressure law (2.8) and Theorem 2.1, we can derive a non-linear equation for the
determination of A*. This equation can be solved by means of Newton’s method with the
initial guess A* = A,y Once A* has been obtained, @ is computed by (2.91). Then, the
values A* and Q* can be used to determine the upwinded flux.
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For the linear model, we have by (2.92) and

WE(p*, ¢*) = W (pout; dout)

an equation for the determination of p*. p* occurs only linearly in this equation. The value
for p* can be determined by some straightforward computations. Having p* at hand, ¢* is
obtained by (2.92). The coupling values Deoup, Geoup for the missing ingoing characteristic
Wﬁ 7 . are determined by (2.83). Finally, we have the ingoing and outgoing characteristics
for each model which enables us to compute the upwinded values at the corresponding
outflow boundaries.

The upwinded values for the mass transport Iy, and ¢y, are again determined by standard
upwinding methods analogously to (2.75) and (2.76), depending on the sign of the velocity
fields v4g or vpg at the outlets of the considered vessels:

L) = 4 L 1on (b oag >0, (2.93)
w Cout flow (t) : Aup(t)v if VAQ <0, '

and

Cup(£) = cla,. (1,t), if v,y >0, (2.04)
w coutflow(t)’ if Upg = 0, .

where the function cyysf10 denotes a concentration profile which is prescribed externally at
the outflow boundaries.

2.3.3 Computing data at an inner boundary (IeB)

Let us consider an inner element Q. = (2!, ), having the neighbors Q.1 = (2/_;, 2% ;)
and Qey1 = (2l.4, z¥ ;). To improve readability, we restrict ourselves to the interface

z =20 = 2| between element . and 41, the other interface z = zL = 2% | can be

treated in the same manner. Given a piecewise continuous function f, we denote by f; and
fr its left and right limiting values at z = 27 = z! Ik

!
Qet1 (Ze—i-l)

As already discussed in Theorem 2.1 and 2.3, we have at z = 27 = 2!, the following
characteristic information:

1 1
AQ _ @ 4 /@ A\ ® AQ Q@ 4 Go (Ar)\* 2
Wl,ln AT + 2[) <A0 ) W2,out Al + 2P AO ’ ( 95)

for the non-linear model and

1 Cip 1 [Cip
wre — — | -, /=2 wra o = 9
17“1 2 ( LlD pr + q'f’) ) 2,out 2 ( Llel + ql . ( '96)

fi="Flac(ze), =1
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for the linear model. By (2.95) and (2.96), we have for the computation of the upwinded
values (Ayp, Qup) O (Pup, qup) two systems of equations:

1 1
AQ Qup GO Aup 4 AQ Qup GO Aup 4
= 4‘ [— | —= = T 4+ 4,/ — 2.
Wl,m Aup + 2[) < AO > ) W2,out Aup + 2,0 AO ) ( 97)
1 ClD 1 ClD
g _1(_ ] pe 2 [Z1D . 2.
Wl,m 9 ( Llew + qup) v Woou 9 ( Lip Pup t Qup (2.98)

The choice of Iy, or ¢,;, depends again on the sign of the flow rate @ or gy, respectively:

| A— Fr7 if Qup < Oa or P Cr, if QUP < 07
P Ty, if Qup >0, P ¢, if Qup > 0.

2.3.4 Computing data at a bifurcation boundary (BiB)

The domain decomposition approach which has been described at the beginning of this
chapter (see Figure 2.1) allows us to cast the global problem into a set of three decoupled
subsystems at a branching point. To interconnect the different subsystems, we require
suitable interface conditions guaranteeing a physically meaningful solution. Here, the
interface conditions are given by a system of algebraic equations yielding boundary conditions
for a 0D lumped parameter model or upwinded values for the reduced 1D models. Due to
the fact that different types of models (non-linear 1D model (NL), linear 1D model (L), 0D
lumped parameter model (0D)) can be adjacent to a bifurcation several kinds of equation
systems have to be established. To be able to distinguish between the different cases, every
type of equation system receives a triple containing the types of the models.

Let us assume that we have at each bifurcation two vessel inlets and one vessel outlet.The
vessel corresponding to the outlet is denoted as the main vessel (€, ), while the remaining
vessels are denoted as branch right (€2p,) and branch left () (see Figure 2.27, left). The
three subsystems are coupled at the bifurcation point z* = zpy () = 26 (0) = 2 (0).
Based on these definitions, we assign to each bifurcation the following triple:

( type of Q. type of Qp,, type of Qy),e.9., (NL,NL,L).

In the following, we discuss the different types of bifurcations, where we assume that at
least one vessel adjacent to a bifurcation is governed by a 1D model, i.e., NL or L. The
coupling equations for the flow variables of the uniform 1D cases, i.e., (NL, NL, NL) and
(L, L, L) have already been discussed in [103, 24]. In this thesis we extended them by some
coupling equations for the concentration variables. Furthermore we show how different
different types of models can be coupled at a bifurcation. For further reading we refer to
[65, 63].
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Z mv——=-=-=- - ~o 1y

Oe
:\\ Wl.br
W2.111V Qbr 2~

Zhy

Figure 2.27: Bifurcation with outgoing characteristic variables.

Coupling of 1D models (NL/L) at a bifurcation
(i) Non-linear case: (NL,NL,NL)

At first the coupling of three non-linear systems is considered (see also [65, Section 5.2|).
To realize the coupling, we have to determine nine unknowns for the upwinded fluxes:
Um — (Amv va Fmv)T Ubr — (Abr br Fbr>T Ubl — <Abl bl Fbl )T
up up s Cup o up ) o Pup up) Cupstup ) > Yup up? ups - up

at the outlet or inlet of Q;, i € {mwv, br,bl}. This requires to establish an equation system
consisting of nine equations. The first three equations can be obtained by computing the
corresponding outgoing characteristic variables. Depending on the given parameterization,
we have three outgoing characteristics W%, W, and W2, at each bifurcation which can
be computed by the corresponding numerical approximations and Theorem 2.1. According
to Figure 2.27, we have:

1
muv Gm'U A’ITLU 1
_ Xup 0 up
out = A +4 2% ( A’o"“) , (2.99a)
1
br br br \ 4
G A
Whr, = g 20 ) (2.99b)

ST

”rbl _ up ) up
out - —T% + 4 % Agl . (299C)

A} is the section area for the respective vessel. G is the elasticity coefficient for vessel
Q;, i € {mv,br,bl}.

Remark 2.5. Within a larger network, the orientation of the coordinate axes may differ
from those depicted in Figure 2.27, i.e., the bifurcation point z* might also be given by z* =
Zmw(0) = 2 (Iyr) = 2o (lp1)- In this case the equations for the outgoing characteristics Wiy,
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W, and WP, differ from those in (2.99a)-(2.99c) and must be reestablished, depending on
the direction of motion of the corresponding characteristics.

To close the system for the A and @ variables, we need three additional equations. One of
them is obtained from the continuity of the mass flux:

b bl
ump” = Qu; + Qup- (2.100)

The two missing equations can be derived from the continuity of the total pressure, where
the total pressure is defined as follows:

N :
P Lp i AZp .

Dti =3 ; + Gy = — 1|, i€ {mv,brbl},
2 (Ge) van (5

Ptrmv =  Ptbrs (2101)
Ptmv = Ptbl- (2102)

The equations given by (2.99a) - (2.102) define a non-linear system of algebraic equations
which allows us to determine the values Azp and wa, i € {muv,br,bl}. It remains, to
establish the equations for the averaged concentration I'. Here we have to face the problem

. . e ;
that the evolution of I' depends on the velocity field vy, = yy 5 ups
we have to decide whether we are able to compute the corresponding concentration value by
evaluating the solution at the boundary or not. /7" can only be computed by upwinding, if
Quyp = 0 holds. FZZ and Fglp can only be computed by upwinding, if QZ’;, < 0 and fop <0
hold, respectively.

. Based on the sign of v

Taking these relations into account and observing (2.117), we note that only in the trivial

case Qy, = Z’;) = le =0, all three values I'}}7, FE’ZD and Fle can be directly computed.
In all other cases, at most two values but at least one value of I';7, FZ’;, and Fi’fp can be

obtained, and at least one additional condition is required to close the system. In the
following, we consider the two cases separately.

muv

One value of I'77,

FZ’Z", and I‘le can be computed by upwinding

Let Ffpt be the value that can be computed by upwinding, in order to determine the
remaining values 'L and T2 b1, b2 € {mv, br,bl} \ {mt}, we have to establish two further
equations. Let us denote by N,,; the number of particles that are transported through
the main vessel into the bifurcation. By Np; and Ny, we denote the number of particles
entering the branches. In order to close the system, we consider the conservation of the
number of particles:

Nyt = Npp + Nio. (2.103)

We assume that during a small time period dt a fluid volume Vol,,; = dt ‘Qumlf‘ enters the
bifurcation and that Voly; = 6t ‘Q%} and Vol = 6t ‘Qﬂﬁ,’ are leaving the bifurcation. The
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number of particles N;, i € {mt, b1,b2} can be expressed by the product of the concentration

F’L
Ci = > and the volume Vol;:
up

N; = Ci-V; = Ci - |Ql,] 6t.

By (2.103) we have:
Cot |Qi | = Ca ’Q%

+ Ch2 ’Qlﬁ, :

Figure 2.28: Mass transport through the main vessel into two branches (left), mass
transport through the branches into the main vessel.

Enforcing the continuity of the concentration, i.e.,

Cot = Ch, (2.104)
Gt = Cia, (2.105)
we recover the mass conservation |Quf| = |QUL] + |Q%2|. By I';mf, (2.104) and (2.105), we

have a closed system in order to compute all the unknowns at a bifurcation. Figure 2.28
shows the mass transport at the interface for the different situations.

Two values of I'}77, FZZ and Fffp can be computed by upwinding

Let FZ; and FZ% be the values that can be computed by upwinding, (b1,52 € {muv, br,bl}),
consequently we need only one additional equation in order to determine the missing value

o mt € {mw,br,bl} \ {b1,b62}. Let us consider again the conservation of particles:

Nt = Np1 + Niga.

As in the previous case, we can replace N;, ¢ € {mt,bl,b2} by C; ‘sz’ ot:

Cont | Q| = Cun |QU| + Cua |12
Using C; = Zi“’ we have:
up
t t bl bl b2 b2
At A% A’ﬁ, ' )

Thus, F%, Ffﬁ, and (2.106) close the system and we are able to compute all unknowns at a

bifurcation.

69



2 A multi-scale model for flow and transport within an arterial network

(ii) Linear case: (L,L,L)

The pure linear case exhibits a similar structure as the pure non-linear case. The first three
equations for the computation of the upwinded values

T
b b bl bl
Ugw = (p%vaq%vv anv) ) U = (pup7qup7 ug;) ’ U = <pup)Qup7 up)

are provided by the outgoing characteristics WY, W' and W, (see Figure 2.27):

1 1D
out = 5 oo P+ dmo | (2.107a)
2 LlD
1 ch
Wout = 2\ b pb?" + Gor (2.107Db)
1D
1 Cbl
Wout = 5 < L Pbl + le) (21070)
1D

Ct p and L"1 s & € {mwv,br, bl} denote the compliance and the inductance of the correspond-
ing vessel. The values for W™ W and W2, can be determined by Theorem 2.3 and
the numerical data at the inlets or the outlets of the vessels. Two further equations can be
derived from the continuity of the pressure:

Pmv =  Dbr, (2108)
Prmw = Dol (2.109)

The missing equation for the p and ¢ values is given by the mass conservation:
g = qbn + by (2.110)
For the determination of the concentration values, we consider a similar case study as in
the non-linear case. Due to (2.110) at most two values but at least one value of ¢y, CZ;

and cﬁlp can be obtained by evaluating the numerical solution at the boundaries adjacent to
the bifurcation. Again at least one additional condition is required to close the system.

One value of ¢/, c% and czlp can be computed by upwinding
Let cﬂ”;,t be the value that is computed by upwinding. In order to guarantee the conservation
of the number of particles (see Equation (2.103)) transported through the bifurcation, we

postulate the continuity of the concentration:

ot = (2.111)
czg = cfﬁ,, (2.112)

where b1,62 € {muv,br,bl} \ {mt}. All in all the upwinded value ¢’
close the system in this case.

Mt (2.111) and (2.112)

brand c can be computed by upwinding

Two values of ¢, ¢, up

70



2 A multi-scale model for flow and transport within an arterial network

Let us assume that 0% and cﬁ’; are the values which are provided by the numerical

scheme at the boundaries of two vessels. Here, the conservation of particles (see Equation
(2.103)) is enforced by the following balance equation:

s ) = b | + 3 |2 (2:113)

)

which closes the system in this case.
(iii) Mixed cases, e.g., (NL,NL,L)

First of all, we note that the numbering of € and €2, is arbitrary. Thus, triples like,
(NL,NL,L) and (NL,L,NL) stand for the same physical situation. To enable a better
readability, we discuss here only the case (NL,NL,L). The remaining cases can be derived
by some small modifications. Here, we have to determine at the artery interfaces the
following nine upwinded coupling values:

T T
mv __ mu mv pmo\ L br __ br br br bl bl bl bl
Uy = (Aup s Qup > Dup ) Uip = \Aupr Qups Tup |+ Uup = (Pups Qups Cup ) -

The first three equations are given by the following outgoing characteristic variables arising
from non-linear and linear models:

1
muv G AMUN 1
out = Zmy T4/ 2°p <A§i) : (2.114a)
up
1
br br br 1
lger (A
Why =——2+44/22 (=2, (2.114b)
out Ag;) 2p Ag,r.
1 CY
Wout :2<_\/Lbllebl+le>. (2.114c)
1D
muv

The values for W% W, and W%, can again be determined by Theorem 2.1, Theorem
2.3 and the numerical data at the inlets or the outlets of the vessels. The continuity of the
pressure yields in this case:

Amwv Abr
Gg" < T 1) = GY (, /A—ij — 1) : (2.115)
0 0
Amv
muv up _ bl
0 < Ame 1) = Dup- (2.116)

The mass conservation is given by:

muv

b bl
up — u; +q'up' (2'117)

For the computation of the concentration values, we have to consider two cases as in the
previous subsections.
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2 A multi-scale model for flow and transport within an arterial network

One concentration value can be computed by upwinding

If fluid volume enters the bifurcation through one vessel and leaves the bifurcation through
two vessels, we require the continuity of the volumetric concentration:

l

U
where ¢ P

mv __ br bl _
up Al
Aup

C =C,p = C

up up — “up> ,le {’I?’L’U,b?"} . (2118)

The missing unknowns I}, I‘Z’}; or cﬁ’fp at the inlet or the outlet of the vessel through which
fluid volume enters the bifurcation is computed by evaluating the numerical approxima-

tions.

Two concentration values can be computed by upwinding

If fluid volume enters the bifurcation through two vessels and leaves the bifurcation
through one vessel, two of the unknowns I}, Ff]];, cglp are determined by the numerical
approximations at the inlets or the outlets of the vessels, through which fluid volume enters

the bifurcation. In this case the system is closed by the following balance equation:

bl b2 | £b2
fup + Cup fup

o = |fmt], f €{q.Q}, (2.119)
where b1, b2 € {mwv,br,bl} indicate the inflow branches and mt € {mwv,br,bl} \ {b1,b2}
indicates the outflow vessel.

The systems for the other cases, e.g., (NL,L,L) exhibit the same structure and can be easily
adapted, by modifying the formulas for the outgoing characteristics and exchanging some
variables.

Coupling of linear 1D models (L) and 0D models (0D) at a bifurcation

As it was already discussed in Subsection 2.1.3, it can be meaningful to model flow and
mass transport through small vessels by lumped 0D models. However by now, we have only
considered bifurcations linking non-linear or linear 1D models, therefore we still require
coupling equations for 1D models and 0D models at bifurcations. In this context, it is
assumed that at least one model at a bifurcation is given by a 1D model and that a 0D
model is only connected to a linear 1D model. For a better readability, we examine here
only the case (L,0D,0D). Establishing the equation system for this case, one notices that
the structure of this equation system is slightly different from those arising from the pure
1D cases. Since no characteristic variables can be determined for the 0D models, we can not
provide outgoing characteristic variables at the inlets or the outlets of the corresponding
vessels. According to (2.29) there are two possibilities to approximate the average values p

and ¢ in (2.27a) and (2.27b):
(2) () = pout(t) and §(t) ~ gin(t),

(”) ﬁ(t) ~ pin(t) and Q(t) ~ QOut(t)-
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2 A multi-scale model for flow and transport within an arterial network

In the following, we use the first possibility (7). As a consequence of this choice and
(2.27a),(2.27b), it remains to determine the values pj;, or gy to couple the models which
are linked at the bifurcation. Let us assume that the outlet of the main vessel and the inlets
of the branches (see Figure 2.27) are adjacent to the bifurcation. Based on this assumption,
we have to compute the following pressure and flow values as boundary values for the 0D
models or upwinded values for the 1D model:

muv br bl muv
DPup s Pins Pin and Qup -
mu.
-

One equation for these unknowns is given by the outgoing characteristic W

1 [cm
out = 5 | \| TrwPup T dup | - (2.120)
1D

whose value can be again be determined by the numerical data at hand. Two further
equations are obtained by the pressure continuity:

Puy = P (2.121)

P = pl. (2.122)
The system for pressure and flow rate is closed by mass conservation:

g’ = aom + s (2.123)

where the values qg’; and qﬁ-’fl are provided by the 0D models associated to the branches 2,
and 2.

PR o

Qbr Abr =~ 93,
@ 0D

VV:ZJU\‘ .~ __ _br
_— I)l)l' ~ I)()”t‘

R ——o

1D linear b~ qf
® 0D
Q

~ bl
Pbl = p(;ut

Figure 2.29: Left: Bifurcation consisting of two small branches Q. and ;. Right:
Modeling the bifurcation by a linear 1D model and two 0D models. The average values §;
and p; are approximated by ¢!, and p¢ ,, i € {br,bl}. At the inlets of the branches, the
outgoing characteristics are replaced by ¢, i € {br,bl}, while at the outlet of the main
vessel the outgoing characteristic is still given by Ws .

The computation of the concentration values is carried out as in the previous subsection. If
only one concentration value can be determined either by evaluation of the 1D solution
or directly by the lumped parameter model, we close the system by the continuity of
the concentration (see (2.118)). If two concentration values can be determined either by
interpolation or directly, the system is closed by a balance equation such as (2.119).

The remaining cases, which might be of interest for a network, i.e., (I,L,0D), (0D,L,L) and
(L,0D,L) can be treated similarly, by adapting the formulas for the outgoing characteristic
variables and the coupling values.
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2 A multi-scale model for flow and transport within an arterial network
2.4 Simulation of arterial networks

In the final section of this chapter, we want to test the performance of the numerical model
for network flow and mass transport developed in the previous sections. For this purpose
blood flow and oxygen transport through two different arterial vessel trees are considered.
The first network consists of 13 large and middle sized arteries including the aorta and
the vessels branching out of it. The second network is an extension of the first network
(see Figure 2.30). Besides the aorta and its branches, it incorporates also the cerebral
arteries (Circle of Willis, CoW). In the following, these networks are used to investigate
two different issues. The smaller network serves as a test network for the conservation
properties of the numerical model, by the help of the second one we simulate the influence
of a unilateral stenosis. Considering the structure of both vessel systems, we observe that
there is only one inflow boundary which is adjacent to the heart. Therefore at this boundary,
we require conditions simulating the influence of the heart beats as accurate as possible.

Modeling the heart beats

According to medical literature, e.g., [97] the heart pumps 5 [ to 6 [ per minute into
the arterial vessel system. In order to simulate pulsatile blood flow within an arterial
vessel system, we prescribe the following flow rate profile at the inlet of the aorta (inflow
boundary):

485 -sin (Z¢) <2 for 0.0s <t < T,
Q(t) :{ o (#1) = == (2.124)

. for T <t <1.0s.

For t > 1 it holds: Q(¢) = Q(t+ 1). In medical research, the time period [0.0, T is referred
to as systole, while the time period (7', 1.0] is known as diastole. For our simulations, we
choose T' = 0.3s. Integrating the function in (2.124) over one minute yields:

60s

Q(t) dt = 5.5577 - 10° em® = 5.5577 1,
Os

which means that the profile in (2.124) fulfills the requirements in literature. As a boundary
condition for the volumetric concentration, we prescribe the mean value of the volumetric
oxygen concentration in blood [24|[Chapter 2]:

l
Co, = 8.75 12

em3
Parameter values

Table 2.5 summarizes the values for blood density p, blood viscosity 7 and some parameters,
we use within the following two simulations. Since biological tissue is nearly incompressible,
we choose the Poisson’s ratio: v = 0.5 for the elasticity parameters Go (2.8) and C1p
(2.21). The parameters ¢y and ¢, (see e.g. in (2.9a) and (2.9¢c)) are taken to be zero,
i.e., we assume that the vessel walls are impermeable. Finally, we initially assume that
Ai(2,0) = Ag i, Qi(2,0) =0, I'i(2,0) = 0 and p;(2,0) =0, ¢;(2,0) =0, ¢;i(2,0) =0 holds
in the corresponding vessels.
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2 A multi-scale model for flow and transport within an arterial network

Table 2.5: List of the fluid parameters and Poisson ratio.

Physical Parameter | symbol | value | unit
blood density P 1.028 | g/em?
blood viscosity n 4.500 | mPa s
Poisson ratio v 0.500 | — ——

permeability (blood) | éa/ 0.0 mj

permeability (oxygen) op 0.0 o

Circle of Willis
co’} g co

Figure 2.30: Outlines of the networks used within this section. The test network (left)
consists of the 13 main arteries. The second network (right) incorporates besides these
vessels also the cerebral arteries. By (I) we denote an inflow boundary, (FO) abbreviates
the term free outflow boundary, (RO) denotes an outflow boundary linked to a RCR
model with fixed resistances (see Subsection 2.3.2) and (CO) marks cerebral outflow
boundaries.

2.4.1 Conservation properties of the numerical model

For this first scenario, we assign to each vessel of the first network (Figure 2.30, left) the non-
linear transport model given by (2.9a)-(2.9c). At the bifurcations the adjacent models are
coupled by the algebraic equation system established in Subsection 2.3.4 (non-linear case).
Considering again Figure 2.30, one notes that the network exhibits 7 outflow boundaries,
which are treated as free outflow boundaries (see Subsection 2.3.2). The values of the
different vessel lengths, radii, wall thicknesses and elasticity parameters are provided in
Table 2.8.

In order to be able to examine the conservation properties of the numerical model, we report
at the inflow boundary (I) and at the outflow boundaries (FO) the flow rate Q [em®/s],
the section area A [cmZ] and the averaged concentration I' [mmol/cm]. In this context,
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2 A multi-scale model for flow and transport within an arterial network

the index set of the vessels adjacent to an outflow boundary indOut is given by:
indOut = {7, 8, 9, 10, 11, 12, 13}.

Having the data of A, @ and I' at hand, we compute at the outflow boundaries and the
inflow boundary the amount of fluid mass within the time interval [0s, 20s]
20s

20s
out — Z /0 Qz lut V;n = Ql (O,t) dt

1€indOut 0s
and the number of oxygen molecules which are leaving and entering the network within the
time interval [t*, 20s]:

205 Ty (1, 1) Qs (1;, ) 205 14 (0,1) Q1 (0,1)
= ) N. — ) )
aut Z / ll,t) dt; m /;K Al (O,t) dt?

where we denote by t* a time point at which the whole network is uniformly covered by the
volumetric concentration of oxygen in blood. According to Figure 2.32 the whole network is
covered by the same concentration value from no earlier than t* = 10s. The corresponding
conservation errors are given by:

|V;)ut - ‘/m| and en — |Nout - Nzn|

Vi T Nl
Starting from a mesh size and time step (Azg, Atg) = (1.0 cm, 1074 s), we report the
relative errors ey and ey for each refinement step (2_iAzo, 2_iAt0), i €{0,1,2,3}. For
the space discretization Legendre elements of polynomial order p = 3 were used. The
concentration component I was stabilized by means of a hierarchical limiter technique (see
Algorithm 1). The errors ey and ey for p = 3 are provided in Table 2.6:

ey =

Table 2.6: Relative conservation errors for different mesh sizes and p = 3.
it | 0 1 2 3
5.45-10~% 1.43-107*% 6.05-107° 9.06-10~°
537-107% 1.28-107* 4.63-1075 5.19-107°

Based on these results, we can assume that our numerical model is consistent and prevents
an excessive loss of fluid mass and oxygen. However, one should note that this first setting
produces no realistic data and can only be used for test purposes, e.g., conservation tests.
Due to the fact that we treat each outflow boundary as a free outflow boundary, we neglect
the influence of the omitted vessel system. Comparing the pressure curve in the middle of
the aorta with measured data, huge differences with respect to the shape of the curve and
the numerical values can be observed.

According to the literature |97, 105], the systolic pressure ranges from 100 mmHg to
130 mmH g, while the diastolic pressure ranges from 60 mmH g to 85 mmH g. The pressure
curve produced by this setting falls back to 0 mmH ¢ during the diastole and has its peak
at 46 mmH g. The slow decay of the pressure curve during the diastole (see, e.g. [105|[Kap.
8]) is caused by the resistive and conductive properties of the smaller vessels beyond the
outflow boundaries. The issue of incorporating these effects into the numerical model is
discussed in the next subsection.
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60

Pressure [mmHg]

t [s]

Figure 2.31: Pressure reported at the middle of the aorta (Vessel 1) for t € [0s,4s].

Table 2.7: Physiological data used within the first scenario [3, 33, 84, 85].

Arterial segment Length [ | Radius r | Thick. h | E. mod. F
[em] [em)] [em)] [10° Pal
1. Ascending aorta 4.0 1.200 0.163 0.4
2. Aortic arch I 2.0 1.120 0.126 0.4
3. Brachiocephalic 3.4 0.620 0.080 0.4
4. Aortic arch II 3.9 1.070 0.115 0.4
5. L. com. carotid 20.8 0.250 0.063 0.4
6. R. com. carotid 17.7 0.250 0.063 0.4
7. R. subclavian 3.4 0.423 0.067 0.4
8. Thoracic aorta 15.6 0.999 0.110 0.4
9. L. subclavian 3.4 0.423 0.067 0.4
10. L. ext. carotid 17.7 0.150 0.038 0.8
11. L. int. carotid I 17.7 0.200 0.050 0.8
12. R. int. carotid I 17.7 0.200 0.050 0.8
13. R. ext. carotid 17.7 0.150 0.038 0.8

2.4.2 Influence of a unilateral stenosis on brain oxygenation

In this subsection we present some results which were already published in the following
paper by the author [63]:

T. Képpl and M. Schneider and U. Pohl and B. Wohlmuth:
The influence of an unilateral carotid artery stenosis on brain oxygenation
Medical Engineering and Physics, 36(7), 905-914, 2014
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C(mmol/cmA3) C(mmol/cm
0.00875 0.00875
Fo.008 F0.008
-0.006 0,006
0,004 0,004
[50.002 t—'o.ooz
0 0

A3) i ] ;

C(mmol/cmA3) C(mmol/cmA3)
0.00875 0.00875
k0.008 Fo.008
-0.006 -0.006
£0.004 £0.004
io.ooz E’o.ooz
0 0

C(mmol/cmA3)

0.00875 0.00875
Fo.008 ko.008
-0.006 -0.006
£0.004 £0.004
t—'o.ooz t—'o.ooz
0 0

C(mmol/cmA3)

C(mmol/cmA3)
0.00875
Fo.008
-0.006
£0.004
[—'0.002
0

C(mmol/cmA3)
0.00875
k0.008

-0.006

£0.004

t—'o.ooz

0

C(mmol/cmA3)

0.00875
Fo.008
-0.006
10.004
E—'o.ooz
0

Figure 2.32: Volumetric oxygen concentration C' = I'/A in an arterial network after 2s,

3s, 4s, bs, 6s, 7s, 8s, 9s and 10s.
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Figure 2.33: Flow rate @ in an arterial network after 0.026s, 0.052s, 0.078, 0.104s,
0.130s, 0.156s, 0.182s, 0.208s and 0.260s.
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Despite improvements in primary prevention, the incidence of atherosclerotic vascular
lesions and their consequences for organ function and integrity will remain a major medical
problem in an aging society [67]. Stenoses in the carotid arteries are relevant causes of brain
ischemia [91] when they become occluded either by an increasing stenosis or, more acutely,
by the development of a thrombus in the stenotic area. The reduction of blood flow due
to a stenosis in one carotid artery can potentially be compensated by blood flow through
collateral vessels known as the circle of Willis (CoW) |77] being fed by the contralateral
carotid artery (see Figure 2.30, right).

This compensatory collateral blood flow is also important when during a surgical intervention
a stenotic segment has to be removed, the vessels have to be transiently occluded [75, 88].
Therefore, it is of considerable medical interest to predict which degree of stenosis can be
tolerated before the patient’s brain suffers from reduced blood flow and ischemia. Such
a prediction may preferably be based on a model using the patient’s individual data
[51, 115] on the degree of stenosis and assuming an intact CoW. The latter, however, can
be incomplete in a significant number of patients due to anatomic variations |77, 115].

Not surprisingly, there exist many approaches to model this situation mathematically in
order to predict the amount of blood flow, that, under a given degree of stenosis, can be
supplied by the contralateral carotid artery via the CoW. In order to avoid time consuming
3D computations, we use the reduced 1D and 0D lumped parameter models, described in
Section 2.1. Based on these reduced and lumped parameter models, different multi-scale
models for pulsatile blood flow within arterial networks were developed. To incorporate the
impact of a stenosis, in some publications [73, 100, 108, 120] a 0D lumped parameter model
replaces the stenosis and couples the reduced models adjacent to a stenosis. Such types of
models are also used to account for the resistive and compliant effects of the vessels beyond
the outflow boundaries [2, 29, 102, 103, 121|. These models use, except for the outflow
boundaries and the stenoses, a monolithic approach, i.e., only one type of model (either 1D
non-linear or 1D linear or 0D lumped parameter model) for all vessels belonging to each
considered network.

For our multi-scale model [63], we interconnect different types of reduced 1D or 0D lumped
parameter models at the bifurcations of the arterial network (see Section 2.3). By this,
the different features of large and middle sized vessels and also small vessels can be better
accounted for (Table 2.9). In addition to that, the numerical effort can be reduced compared
to the model using only non-linear models, because the coupling of the linearized 1D models
and the 0D lumped parameter models can be described by linear systems of equations
instead of non-linear ones (see Subsection 2.3.4). A similar approach was investigated
in [23|, where a 3D model is used for the abdominal aorta and a 1D model is used for
the remaining vessel system. Furthermore, none of the mentioned models considers the
consequences of collateral blood flow for the oxygen supply of brain tissue. Since the brain
is an organ with high oxygen consumption and without relevant oxygen storage, a blood
supply which maintains a certain tissue oxygen level is essential for a healthy brain function.
Therefore, we modify and generalize existing models including metabolic cerebral auto
regulation [2], to understand the consequences for mean oxygen tension in brain areas at
risk under conditions of varying unilateral stenoses and collateral blood flows.
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Network data

For the simulation of blood flow and oxygen transport from the heart to the brain, we
consider the arterial vessel system, presented in |2, 3|.

It consists of 34 arteries, containing the circle of Willis and the most important arteries,
branching out of the heart (see Figure 2.30). Considering the given vessel system, it becomes
obvious that this network is composed of arteries having different length scales (see Table
2.8). Therefore, it is beneficial to use different models taking the special features of the
vessels into account. The arteries within or near the CoW exhibit elastic properties which
differ considerably from those of the aorta (Vessel 1 in Figure 2.30). We apply non-linear
transport equation systems [2, 16| [24, Chapter 2] to the larger vessels 2;, numbered by
ie€{l,...,9,15,16,34} and linear transport equation systems, incorporating the small dis-
placement property, to the vessels €2;, numbered by i € {10,...,14,17,...,26,29, 30, 32,33}
(see Figure 2.30). Due to their small length (below 1 cm) and section area, the blood flow
and oxygen transport through the remaining vessels €; numbered by i € {27,28,31} are
computed by 0D lumped parameter models [3, 4].

Modeling the outflow boundaries and the metabolic cerebral auto regulation

Since we consider only a small part of the full arterial tree, we truncate our 1D net-
work after some bifurcations. To account for the haemodynamic effects of the omitted
vessels, we couple the terminal vessels of our 1D network with 0D models, given by a three
element (R1 7, Cr, Re, 1) windkessel model for a terminal vessel Q7. Setting the inductance
L to zero, the equations governing the three element (Ry 7, Cr, Re 1) windkessel model
are given in Subsection 2.3.2 (Peripheral vessels). Here, we do not use the four element
(Ri,7,Cr, L7, Ry 1) windkessel model, because the data for the inductances Ly have not
been available. Furthermore a comparison in [4, Section 3.1| reveals that the three element
and the four element windkessel model yield approximatly the same results.

Ry 1 and Cr denote the resistance and the compliance of the peripheral vessels, following a
terminal vessel (7, respectively (2, 3, 4]. The values for the total resistance Ry = Ry 7+ Ra,r
and Cr are listed in Table 2.8. For R; r the authors of |2, 3, 4| suggest to choose the
characteristic impedance

ZT =pP-C (AO,T) /AO,T (2125)

of the terminal vessel Qp in order to avoid non physical reflections. The characteristic wave
speed ¢o (Ao,r) is given by (2.17).

At the cerebral outlets (marked by CO in Figure 2.30) we apply an auto regulation
mechanism which can adjust each resistance at the outlet of a terminal vessel €,, to provide
enough blood flow for the supply of the brain n € {23, 24,29, 30, 32,33}. For the remaining
outlets (marked by RO in Figure 2.30), we keep the resistances Ry 7 fixed. A suitable
modification of the cerebral resistances caused by the distal vessels can be achieved by
changing the corresponding resistances Rj,, of the (Rj ,, Cy, Ra,,) —model.

The authors of [2] suggest a cerebral auto regulation model based on the concentration
of COs in the brain tissue C;C'O2. The cerebral resistance Ra,, is increased, if C;C O3 is
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Table 2.8: Physiological data used within the second scenario [3, 33, 84, 85]. The units
of the elasticity parameters, peripheral resistances and the peripheral compliances are

given by [106 Pa], [109 Pa s m_?’] and [10_10m3Pa_1} respectively.

Arterial segment Length | Radius | Thickness Elastic Periph. | Periph.
llem] | r [em] h [em] | modulus E | res. R | comp. C

1. Ascending aorta 4.0 1.200 0.163 0.4 —

2. Aortic arch I 2.0 1.120 0.126 0.4 —

3. Brachiocephalic 3.4 0.620 0.080 0.4 —

4. Aortic arch II 3.9 1.070 0.115 0.4 —

5. L. com. carotid 20.8 0.250 0.063 0.4 —

6. R. carotid (prox.) 13.7 0.250 0.063 0.4 — —
7. R. subclavian 3.4 0.423 0.067 0.4 — —
8. Thoracic aorta 15.6 0.999 0.110 0.4 0.18 38.70
9. L. subclavian 3.4 0.423 0.067 0.4 —

10. L. ext. carotid 17.7 0.150 0.038 0.8 5.43 1.27
11. L. int. carotid I 17.7 0.200 0.050 0.8 —

12. R. int. carotid I 17.7 0.200 0.050 0.8 — —
13. R. ext. carotid 17.7 0.150 0.038 0.8 5.43 1.27
14. R. vertebral 14.8 0.136 0.034 0.8 —

15. R. brachial 42.2 0.403 0.067 0.4 2.68 2.58
16. L. brachial 42.2 0.403 0.067 0.4 2.68 2.58
17. L. vertebral 14.8 0.136 0.034 0.8 —

18. L. int. carotid II 0.50 0.200 0.050 1.6 —

19. L. PCoA 1.5 0.073 0.018 1.6 —

20. R. PCoA 1.5 0.073 0.018 1.6 —

21. R. int. carotid II 0.50 0.200 0.050 1.6 —

22. Basilar 2.9 0.162 0.040 1.6 —

23. L. MCA 11.9 0.143 0.036 1.6 5.97 1.16
24. R. MCA 11.9 0.143 0.036 1.6 5.97 1.16
25. L. ACA, Al 1.2 0.117 0.029 1.6 —

26. R. ACA, Al 1.2 0.117 0.029 1.6 —

27. L. PCA, P1 0.5 0.107 0.027 1.6 —

28. R. PCA, P1 0.5 0.107 0.027 1.6 —

29. L. ACA, A2 10.3 0.120 0.030 1.6 8.48 0.82
30. R. ACA, A2 10.3 0.120 0.030 1.6 8.48 0.82
31. ACoA 0.3 0.074 0.019 1.6 — —
32. L. PCA, P2 8.6 0.105 0.026 1.6 11.08 0.62
32. R. PCA, P2 8.6 0.105 0.026 1.6 11.08 0.62
34. R. carotid (dist.) 3.0 0.250 0.063 0.4 —

beyond a critical value of C;COs, otherwise it is decreased.
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Table 2.9: Overview of the reduced models used for the different vessels. By NL we
indicate a vessel modeled by a non-linear transport equation system, by L we indicate
a vessel modeled by a linear transport equation system. The term OD denotes a vessel
associated with a lumped parameter model.

1 2 3 4 5 6 7 8 9 10| 11| 12 | 13
NL | NL | NL |NL | NL | NL |NL |NL|NL | L | L | L | L
14 15 16 | 17 18 19 | 20 | 21 | 22 | 23|24 | 25| 26
L NL | NL | L L L L L L L|L|L]|L
27 28 | 29 | 30 | 31 32 133 | 34| — | —| —| — | —
OD|OD | L L |OD| L L INL| —|—|—|—|—

Here, the driving force for changes in Ry, is the concentration of Oy in the brain tissue
(CtO3),, which is computed from the blood oxygen concentration (¢, (t)) in m”;ll)looi - at the
cerebral outflow boundaries. The governing equation for the tissue concentration (Cy;O2)

ml O : .
o 1s given by:

n
m

Vi (C102), (1) = anlt) (en(t) — 0 - (C100), (1) v (CiO9),,,1). (2.126)
V. is the tissue volume which is perfused by the artery €2,. o denotes the partition
coefficient, and v is the metabolic rate of consumption of oxygen. This ODE can be found
e.g. in |24, Chapter 2, Section 2.5], its right hand side consists of three terms. The first
term quantifies the amount of oxygen supplying the corresponding brain tissue, the second
term accounts for the amount of oxygen extraction from the blood under normal conditions.
Finally the third term simulates the metabolic demand of the corresponding brain tissue.

A possible choice for the consumption rate is the Michaelis-Menten law that reads [49,
Chapter 10]:
(CtOQ)n (t)

CiOs),, 1) =2 Ko - Vyy - =— ’
v ((CtO7),, ;1) 0 CiO2 + (C109),, (t)

(2.127)

where C;O, is the average oxygen concentration in brain tissue, and Kj is the average
consumption rate. The partition coefficient o is determined such that the following balance
holds:

do.n - (Co, — 0 - CiO3) — K-V, = 0, (2.128)

where g ,, is the mean flow rate within €, and Cp, is the mean oxygen concentration in

blood. In [2], the dynamic for Rs,, was based on CyCOs, here we determine Ry, depending

on the partial pressure of oxygen P,,Os and the mean partial pressure of oxygen P,Os:
dAR

— =Gr: (P02 — P,0s) . (2.129)

Ap represents an activation of metabolic auto regulation for Ry ,, to change, G is a suitable
proportional gain. The ODEs (2.126) and (2.129) are linked by Henry’s law:

(C{;OQ)n = Qaqg - PnOQ. (2.130)
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2 A multi-scale model for flow and transport within an arterial network

Having Ag at hand, the resistance Ry, is determined as follows:

R R Arp—C R
Ry, — SL e ™ ,C:—ln[
’ 1+ eAr—C

Rn:“)’pRL} ) (2.131)

RU - Rn,sp

R, sp denotes the setpoint of the cerebral resistance Ry ,,. It is computed from Ry, given
by the characteristic impedance of €, |2, 3] and the total resistance

Ry = Ripn+ Rusp (2.132)

listed in [3, Table 2.1]. Ry and Ry, are the upper and lower bounds of Ry, which are
chosen as: Ry = 1.30- R, sp and Ry, = 0.74 - R, 5. We remark that C is determined in
such a way that Ag = 0 holds for Ry, = Ry, sp-

In each time step, we solve the ODEs (2.126) and (2.129), where g, and ¢, are computed
from the outlet of the terminal vessel €2,,. Note that the single volumes V,, have to sum up
to the total volume of the brain Vi, = 1.071 dm? and are distributed among the cerebral
arteries €),, in the same relation as the flow distribution for Ry, = Ry, -

Modeling the stenosis

Our model of a carotid artery stenosis is based on a domain decomposition, i.e., we
split the right carotid artery into three parts: vessel 6, the stenosis and vessel 34. The
minimal section area of the stenosis is denoted by Ay and its length by lg. According to
Figure 2.30 and Table 2.9, blood flow and oxygen transport is governed by the non-linear
1D model. Therefore we have to determine at the inlet of vessel 34 and at the outlet
of vessel 6 the unknowns (Ai‘é, Qiﬁé, Fi;l)) and (Agp, Qgp, I‘gp) for the flux unwinding (see
Figure 2.34).

Due to its small length, we model the stenosis just as the small vessels 27,28 and 31 by
a 0D lumped parameter model. The lumped parameter model for the stenosis is slightly
different as the one, given by (2.27a),(2.27b). While the equation for the average pressure
Pst 1s identical to (2.27a), the equation for the averaged flow rate §s; is modified to account
for a pressure drop Aps = p3s — pe and a reduced flow rate in vessel 34:

aﬁst

Cy—— = — 2.133

St o Q6 — Q34, ( )
Kupls 04y Ko . | Kip (A S

B ~ Ap, . — 1) Gy |Gl - 2.134

The second equation is developed in [100, 108, 120]. For simplicity, we assume that the
vessels 6 and 34 have the same section area at rest: Ag = Apg3s = Ape. Table 2.10 and
Table 2.11 give a summary of all parameters of the ODE-system. The averaged values
pst and §g are approximated by the trapezoidal rule, which is at least of order 1. This
approximation yields:
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|L| Qs (:?st Q34
st Py, P, Py
Ao : ' Ao _— @
NG
QG Qst Q34 Q6 Qst Q34

Figure 2.34: Domain decomposition of the right carotid artery (left), model reduction
applied to the stenosis (right)

. D6 + P34 . Q6 + Q34
e e (2.135)

Table 2.10: Stenosis parameters, presented in [100, 108, 120]

Parameter description
n blood viscosity
P blood density
Ag section area of Qg
Dy diameter of Qg
Ag smallest cross-section area of the stenosis
Dy smallest diameter of the stenosis
lst length of the stenosis
Cy compliance of the stenosis: (Ag; - ls) / (p - Cp (Ast)z)

Table 2.11: Empirical parameters [73].

Parameter value
K, 1.20
K, 32.0-(0.83 - Iy + 1.64 - Dy) - (Ao/Ast)* /Do
K; 1.52

By means of (2.135), the pressure-area law (2.8) and the outgoing characteristics (see
Theorem 2.1), we are able to compute the four upwinded values: (Agp, Qgp) and (Af’é, Q?f;).
Now we require two additional equations in order to determine the two missing values Iy,
and Fi‘é. One equation is based on the observation that the volumetric concentration of
oxygen in arterial blood is almost constant, i.e.,

rgp rf;j;
R 2.136
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2 A multi-scale model for flow and transport within an arterial network

For the derivation of the second equation, we distinguish between the following two cases:

Case (i): ¢st > 0. In this case, oxygen is transported from g to Q34. Thus we can
determine the volumetric concentration ¢g by the values I'g and Ag, evaluated from the
finite element approximation on the last element of Qg:

. e Tg’

Cst — ZG = TZP (2137)

Case (ii): gst < 0. In this case, we close the system replacing 6 by 34 in (2.137).

Numerical results and discussion

We run each simulation for several periods until the numerical solution becomes peri-
odic. For our network this takes about 8-10 periods. After the numerical solution becomes
periodic, we compute the average flow rates go . in the cerebral vessels, which are needed to
determine the partition coefficients at the cerebral outlets (2.128) and run the simulation
again. Then after 10 heart cycles, the cerebral auto regulation given by (2.126) and (2.129)
is started. To model the influence of the stenosis, we shrink within the time interval
[14s,15s] the section area Ag of the stenosis linearly from Agg to 8- Agg. After 45s the
simulation is stopped.

The simulation described in the previous subsection is run for each 5 € {0.05,0.10,0.15}
and an intact and anatomically complete CoW. The acute narrowing in the right carotid
artery causes a pressure drop and a remarkable reduction of the flow rate within vessel 34
(distal part of the right common carotid).

Pressure and flow rate in the middle of vessel 34 for the time interval [14s,165s] are shown
in Figure 2.35. For [14s, 15s] we recognize the typical behavior of an arterial pressure curve.
The values for the systolic pressure (about 130 mmHg) and the diastolic pressure (about 60
mmHg) are within a reasonable range (see, e.g., [97]).

The influence of the stenosis can be seen within the next heart cycle [15s, 16s]. We observe
that for a narrowing of 95 percent (8 = 0.05) the maximum of the pressure curve drops
about 36.41 mmHg and that of the flow rate about 7.17 em?3/s. For a narrowing of 90
percent (8 = 0.10) and 85 percent (5 = 0.15) there is a pressure drop of 25.56 mmHg and
17.68 mmHg, respectively. The flow rate peak decreases about 5.08 cm?/s and 3.54 cm3/s,
respectively.

Figure 2.38 shows the influence on the flow rate within the CoW, while the modifications
of the cerebral resistances are reported in Figure 2.39. Please note that the resistance
values were normalized by their corresponding setpoint values listed in [3, Table 2.1]. We
see that the communicating vessels 20 and 31 play an important role in compensating the
reduced flow rate through vessel 12 (R. int. carotid I). This observation is in agreement
with the results of [121, Section 3]. The cerebral resistances corresponding to Ro4 and Rsg
are decreased up to 22%, whereas the resistances at the opposite side of the CoW (Ra3
and Rgg) are reduced about 10-12% and there is no significant change in R3y and Rgs.

86



2 A multi-scale model for flow and transport within an arterial network
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Figure 2.35: Pressure (left) and flow rate (right) charted at the middle of vessel 34 for
the time interval [14s, 165]

A comparison between our auto-regulation model and the model described in [2]|, which
is based on the concentration of COy within the brain tissue, reveals that the cerebral
resistance Rgy4 exhibits a similar behavior as the cerebral resistance Rg4 in [2]. The difference
between the results is that the values of Ry4 at the end of the simulation are about 5-8
percent smaller than our resistance values.

Analyzing the P,,Os concentration over time at the cerebral outflow boundaries, it can
be observed that the P, Oz reaches its minimum in the time interval [17s,18s]. In order
to estimate the drop of the P,y caused by the stenosis, we compute for each cerebral
outflow boundary the averaged P,,O2 within the time interval [17s, 18s] and compare it to
the setpoint of P,O2, which can be assumed to be an average value of 25 mmHg. In Figure
2.36 for each 8 and each cerebral outflow boundary, the ratio of the averaged P,O2 and the
setpoint P, Oz is computed. It can be seen, that for P,Oq, n € {24,25} the averaged P, O
drops significantly, due to their neighborhood to the stenosis located in the right carotid.
The variations at the other cerebral boundaries are within 0.84% and 8.50%.

To evaluate whether a sufficient oxygen delivery can be restored at the cerebral outflow
boundaries, we compute within the time interval [44s,45s] the average value of P,02 and
compare it to the set point P,0O9 = 25 mmHg.

In Figure 2.36, it can be seen that the averaged P,Os are reduced about less than 1%,
except for n = 24 and 8 = 0.05, here we have a reduction rate of: 1.29%. Thus it can be
concluded that the complete CoW combined with the metabolic cerebral auto regulation
can restore the P,,0O9 within the brain tissue.

The significance of a complete CoW and the metabolic cerebral auto-regulation concerning
the restorement of the P,,0s, is studied by two further simulations, where we redo the
previous simulation with two changes: Firstly, we remove vessel 31 (anterior communicating
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13.1% 8.43% 8.45% 3.58% 5.56% 3.79%

15.7% 5.83% 10.3% 4.16% 6.90% 3.10%

4.09% 3.35% 2.28% 1.82% 1.14% 0.84 %

(=0.05 p=0.10 p=0.15

0.57% 0.58% 0.12% 0.38%

0.58% 0.55% 0.55% 0.36% 0.46%

0.59% 0.59% 0.57% 0.57 % 0.52% 0.53%

p=0.05 $=0.10 f=0.15

Figure 2.36: Reduction of the average P,Oz within the time interval [17s, 18s] (top)
and the time interval [44s, 45s] (bottom), for the narrowing factors 5 € {0.05,0.1,0.15}.
The numbers at the cerebral outflow boundaries express the percentage of reduction of
the averaged P,,Os.

artery). In Figure 2.38, it can be seen that this vessel plays a crucial role in balancing
the reduced flow rate. The peak of the flow rate in 31 is about 3.17 cm?/s for 8 = 0.05.
The narrowing factors 3 = 0.1 and 8 = 0.15 cause flow rate peaks of: 2.10 cm?/s and
1.35 cm3 /s, respectively. Secondly, we consider again the complete CoW, but switch off
the metabolic cerebral auto regulation.

For each scenario, we report the average value of P,O2 within the time interval [44s, 45s] and
compute again the reduction rate in percent with respect to the setpoint P,,Os = 25 mmHg.
In Figure 2.37 the variation rates for both scenarios are reported. Both diagrams, reveal
that P,,O3 for n € {24,30} can not be restored for a stenosis degree of 95% (8 = 0.05). In
the other cases, the reduction rates are smaller than 3%. Please note that the mean partial
pressure of oxygen reflects a wide range of local partial pressure of oxygen values in the
brain tissue, ranging from values as low as 5 mmHg up to values near the arterial partial
pressure of oxygen [47]. Thus, it must be emphasized that the re-establishment of a mean
partial pressure of oxygen in the brain tissue of 25 mmHg as observed in this model may
not exclude any local ischemia in the area at risk.

Conclusion

Our numerical results reveal that the drops of the partial pressure of oxygen caused
by an acute unilateral stenosis can only be compensated, if the CoW is complete and if
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18.4% 0.57% 2.30% 0.53% 0.22% 0.57%
msv. 2.52% 0.52%0.16 %, 0.52%
0.54% 0.54% 0.48% 0.48% 0.47 % 0.47 %
p=0.05 $=0.10 p=0.15
18.4% 0.60% 1.75% 0.59% 0.42% 0.58%

17.6%, 0.59% 1.78% 0.59% 0.38% 0.58%
0.58% 0.59% 0.55% 0.58 % 0.53% 0.53%
$=0.05 $=0.10 p=0.15

Figure 2.37: Reduction of the average P, O within the final time interval [44s, 45s], for
the narrowing factors 8 € {0.05,0.1,0.15}, without vessel 31 (top) and without cerebral
auto regulation (bottom). The numbers at the cerebral outflow boundaries express the
percentage of reduction of the averaged P,O,.

the cerebral resistances can be reduced sufficiently. The model can provide information to
predict the impact of severe unilateral carotid artery stenoses on cerebral oxygen supply.
Provided that malformations of the CoW and diameters of all collateral vessels forming it
can be obtained with sufficient accuracy and the actual blood carrying capacity of the blood
is known, the model principally allows to predict the mean oxygenation of the brain area
supplied by the collateral flow. Having these data at hand, the model allows a much better
evaluation of the risk of hypoxia than determinations of vessel diameters and collateral
blood flow alone. However, our cerebral auto regulation mechanism is only based on the
metabolic regulation. This is only one component of the total cerebral auto regulation,
there are also the myogenic and the neurogenic auto regulation, which could be incorporated
into the numerical model.
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Figure 2.38: Flow rates within the complete CoW for the time interval [14s,16s],
charted at the middle of some vessels. The flow rates under normal conditions can be
seen for the time interval [14s,15s], while the impact of the stenosis can be observed for
the time interval [15s, 16s].
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Figure 2.39: Normalized cerebral resistances for the time interval [0s, 45s].
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3 Stationary coupled 3D-1D
diffusion-reaction models

In the last chapter, we presented a multi-scale model for flow and mass transport in an
arterial network. Instead of expensive 3D models, reduced 1D models have been used to
compute pressures, flow rates and concentration values within the network. To establish a
3D model describing flow and mass transport within a vascularized 3D tissue volume, it is
necessary to derive a coupling between the 1D model for the network and the 3D models
governing the flow and mass transport within the 3D tissue. In this thesis, we consider the
tissue as a porous medium. The standard equations for flow and mass transport within a
porous medium are usually provided by homogenized 3D models representing the considered
phenomena related to the micro scale structures without resolving the fine component parts
of the porous matrix. Here, we use a parabolic PDE and Darcy’s equation to compute
pressure and velocity and a convection-diffusion equation to simulate the mass transport
in the porous matrix [53]|[Chapter 3|. Besides the fact that the computational costs are
remarkably reduced by the usage of 1D models for the network, this approach has a further
advantage, i.e, it makes the need of refined computational meshes near the network obsolete.
This allows for a large saving in memory and CPU [24].

However, the coupling conditions between the 3D porous medium and the reduced 1D
models are not standard. Therefore the basic coupling concepts between 1D and 3D models
are introduced by taking the example of stationary diffusion-reaction models, before we
derive in the next chapter a model for the dynamics of network flow and transport processes
within a porous medium. The diffusion-reaction models are given by elliptic second order
PDE systems, where the single equations depend on each other by some exchange terms.
Such types of systems are much simpler to analyze than the time dependent systems
coupling 1D transport equations and dynamic 3D models. By this mean, one can obtain
a better insight into the mathematical and numerical difficulties associated with coupled
3D-1D systems.

The current chapter is organized as follows: At first we introduce some notation and
definitions following the lines of [24]|[Chapter 3.2|. Based on these definitions, a coupled
3D-1D system consisting of two elliptic equations is derived. Both equations are coupled
by its source terms, where the source term of the 3D equation contains a Dirac measure
concentrated on curves which determine the location of the network. The presence of a
Dirac measure in the source term of the 3D problem results in low regularity of a weak
solution. It can be shown that the analytic solution exhibits singularities at the position
of the Dirac measures [32]. Therefore the derivation of finite element approximations for
such PDE systems and the numerical analysis are not straightforward. In this context,
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the impact of Dirac measures on the local convergence behavior of standard finite element
methods is investigated by means of an elliptic model problem with a Dirac right hand
side. Finally, we present an iterative solution scheme for the numerical solution of coupled
problems.

3.1 Model equations

Let us denote the porous matrix containing a 1D network by 35 C R3. As a first step
towards the coupled 3D-1D problem, we introduce the space occupied by the vessel and the
interface between the vessel and the porous medium. According to Figure 3.1 these objects
can be defined as follows:

(i) The 1D curve representing the vessel is denoted by A C Q34. For the sake of simplicity,
we assume that A is a single straight line:

A={x€Q3q|x=%c(s), s€][0,L]}, (3.1)

where s is the curve parameter, L is the length of the line and x : [0, L] — R3 is the
parameterization of the curve A. Furthermore it should hold for the parameterization
X!

|xc'(s)|| =1, Vs € (0,L).
This construction can be extended to consider also networks (see Chapter 4).

(ii) The radius of the considered vessel is given by a positive constant R > 0. By this,
the actual volume covered by the vessel is defined as the set of points closer than

R >0to A:
Vg = {x € Qaq]dist (x,A) < R}. (3.2)

We will use this domain to study the coupling between the porous matrix and the
one-dimensional vessel, where we assume that Vg C Q34. The domain Vg is composed
of the following three sets:

vE ={xeR*[x=ar(r,0),(r,0) € [0,R) x [0,27) }, (3.3a)
Vi ={xeRx=ua;(s,10),(s,7,0) € (0,L) x [0,R) x [0,2m) }, (3.3b)
Vg = {X eER3|x=uzp(r0),(r,0) €0,R) x [0,27) } , (3.3c)
where
xp (r,0) = Xc(L)+n(L)rcosf+ b(L)rsinb, (3.4a)
xr (s,m,0) = xc(s)+n(s)rcos@ + b(s)rsiné, (3.4b)
xp(r,0) = xc(0)+n(0)rcosf + b(0)rsinb. (3.4¢)

n(s) and b(s) are the normal and Bi normal vectors on the curve A. The Bi normal

vector b(s) is given by the cross product of the corresponding tangent vector t(s)
and the normal vector n(s):

b(s) = t(s) x n(s) .

[t(s) x n(s)]|
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(iii) We will denote by o
Q) = Q34 \ Vi (3.5)

the domain of the porous medium which is not covered by the vessel. The interface
I'® between the vessel and the porous medium is given by:

't = ovg. (3.6)

The lateral surface of the set T'' that belongs to the boundary of Vé will be denoted
by
It={xeR¥x=a;(s,R,0), (560) € (0,L) x [0,27) }. (3.7)

(iv) T'3q is the boundary of the porous matrix: I'sg = 9€234. This implies: 89% =TRUT;,.

(v) Finally, the basic assumption on the vessel geometry is that the projection from Vg
to A is unique:
Vx € Vi :3dlxp € A : dist (x,A) = [|x — o] . (3.8)

The projection x¢ exists because A is a compact set. It can be shown that (3.8) is
fulfilled if the curve A is smooth enough and the radius R small. As a consequence,

we have:
dist (z (s,7,0),A) =r, ¥V (s,r,0) € (0,L) x [0, R) x [0, 27). (3.9)
T
1 ,2_R| VR
= <
1 3
R
: : Q3d VI |t
. VR|! TR R |s
: : AT
! 1 n
! I
1’----'--------, R
o’ é dQSd CE
¢
A B
4 VR

Q34 = Qgid UVg

Figure 3.1: Sub domains in Q34: The 1D curve A, the actual 3D vessel domain Vi and
the porous matrix Q?d. At the right hand side one can see the subsets of the vessel Vg:
Vg , Vé and Vlf and the vectors t, n and b for the curve parameter s € [0, L].
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Now let {¢;} be a partition of unity such that ¢; : Vg — R is a non-negative smooth

function with supp (¢;) C V} and Y, (r,g,;y ¥i = 1 on Vg. For a suitable function
g: Vr — R, it follows:

21 R rL
/ gdx = / / / g1(s,r,0)r dsdrdd,
Vr 0 0 0

gi::(gwi)oxi_la ZG{TaBal}

For the surface integral, we have:

27 L 21 R
/ gdsS = / / g1(s,R,0)Rdsd) + > / / gi(r,0) - v drdf.
Ik 0 0 0 0

1€{T,B}

where

If g is continuous on Vg, it follows:

1 21 oL L
lim — g dS = lim / g1(s,€R,0)R dsdf = / 2w g(s)R ds = 27rR/ g(s) ds,
e—0 € F(é)R e—0 0 0 0 A

(3.10)

where g(s) = g(x7(s,0,0)). The averaging operator with respect to the surface T'¥ is
defined as follows:

1
9(s) —/0 g (z1(s, R,270)) db.

Because T'f scales as R, we have by g.(s,7,0) = g(s,7/e,0):

1 L
lim — ge dS =27 R/ g(s) ds. (3.11)
0

e—0 € FBR

Now we study the behavior of the solution when a suitable rescaling is applied and R
tends to zero so that Q?d expands to the whole matrix (23;. Assuming that the model for
the vessel flow is already one-dimensional, we have for the unknown wusg in the 3D porous
medium and the unknown w14 in the vessel the following model:

—V - (K34Vusq) + maquzq + 134 =0 in  QF, (3.12)
U3q = 0 on ng, (313)
K3qOnuzg =q on TF, (3.14)

d duld .

—— | Kia—— = A 1
ds( 1d ds>+f 0 in A, (3.15)
d

u14(0) = u14,0, K1d£u1d(L) =0, (3.16)

where K34, mgq and 734 are a diffusion, reaction and source term for the 3D porous medium
respectively, while K14 is the diffusion coefficient for the 1D vessel domain. The ¢ term
which is defined on T'® between the vessel and the porous medium denotes the mass transfer
term (per unit surface) from the porous matrix to the vessel. To enforce a conservation of

95



3 Stationary coupled 3D-1D diffusion-reaction models

the global flux ® across the interface I''* the source term f of the one-dimensional vessel
has to fulfill the following balance equation:

@:/OL f(s)ds:/FquS.

The boundary conditions for the 3D problem are of mixed Dirichlet and Neumann type.
For the 1D model we have a Dirichlet condition at s = 0 and a homogeneous Neumann
condition at s = L. We point out that other combinations could be considered as well.
Now we study the limit R — 0, by means of the following 3D problem for the scaled vessel
radius eR, € € (0,1]:

—V - (K3qVu$y) + maquly +73¢ =0 in  QgF, (3.17)
usy =0 on T, (3.18)
K3g0quSy = qc on TR, (3.19)

To keep the total flux across I'“?* unchanged, the flux g on FBR for the scaled problem must
be equal to

1
qe (s,€R,0) = —q (s, R,0).
€

By changing the integration variables we have:

L
<IJ:/ qedS:/ qu:/ f(s)ds  Vee (0,1].
gk rg 0

Multiplying the equations of the scaled problem by an arbitrary test function in C§° ()
and integrating over Qgg, we obtain:

Ks34Vu§,-V dQ—i—/ M3qUsqP dQ—i—/ r3q¢ dS) = qep dS, Yo e C° ().

agh a5 Qg Tt
(3.20)

Since

27 L
/l“gR qe® dS:/O /0 q(z7(s,R,0)) ¢ (s,eR,0) R dsdf

we have similar to (3.10) and (3.11):

1
lim g dS = 27TR/ qo ds, where q(s) :/ q (s, R,270) db.
A 0

e—0 I‘(e)R
Thus the 1D source term can be given by the following expression:
f(s) = 2w Rq(s).

Let us suppose that u§; — u3q with respect to a suitable norm so that for € — 0 we have:

K34Vusqg-Vo dQ+/ M3qU34P dQ+/ r3q¢ df) = / f(s)p ds, Vo€ Cg° Q).
Q34 Q A

(3.21)

Q34 3d

96



3 Stationary coupled 3D-1D diffusion-reaction models

Thus the following problem is a candidate for our 3D asymptotic problem:

—V - (K3qVusq) + msqusqg +r3q = f(s)0a in Qsg,
uzg =0 on 934, (3.22)

where d, is a Dirac measure concentrated on A. For the 1D problem the function f(s) acts
as a sink term in the 1D problem:

d duld .
—— [ Kig—= = A
ds < 1d ds ) + f(8> 0 in )
d
’U,ld(O) = uld’o, Kld%uld(L) =0. (3.23)

We observe that the mass exchange term f appears as a function in the 1D equation and as
a weighting factor for the measure in the 3D equation. It is well known that dy ¢ H 1 ().
Thus if a solution usq exists, it will not be in H* (Q) due to the fact that an elliptic problem
with line source has a singularity near the line, whose derivates are not in L? (Q). Up
to now the 3D problem and the 1D problem are decoupled, to model diffusion-reaction
problems for a network in a porous medium, we have to establish a coupling between the
two sub problems. Here, this is done by using the following linear constitutive law for the
flux ¢ [24, Chapter 3|:

q(s,0) =D (uiq(s) — usq (xr (s, R,0))) .

By this, both systems are no longer decoupled. Finally the reduced problem has the
following form:

Model problem 1:

=V - (K3qVusq) + msqusq + r3q = f (usq, w14, s)0a in Qsq, (3.24)
U3q = 0 on and,

d du _
s <K1ddsld> + f (usg,u1g,8) =0 in A,
d
u14(0) = u14,0, Kld%uld(l) =0, (3.25)

where f is a suitable functional, modeling the linear flux. We compute:

1
[ (u3d, u1q,s) = 2nRD <U1d(5) —/0 usq (z1 (s, R, 270)) d9>

= 27RD <u1d(s) - m) . (3.26)

From this first model problem, we derive some further model problems, which are investi-
gated in the following sections. If the solution for the one-dimensional problem is constant
and equal to ug, i.e., u1qg = ug > 0, we have by K33 = I and mgq = r3q = 0 on the unit
cube Q34 = (0, 1)3:
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Model problem 2:

—Au=27RD (up — u)dp in Qsq, (3.27)
u=0 on 0N3q.

where @ is given by: fol u (x1 (s, R,2m0)) df. If we assume that A is a straight line, i.e.,
A =x0 % (0,1), X0 € Q3 = (0,1)%, xo = (z0,1,202)" ,

the exact solution of the differential equation in (3.27) is given by:

RD

te (X) = —U0T —pH R

Inr, x = (1, 22,23)" , 7 = \/(961 —201)? + (22 — mo2)%.

Obviously, the solution u, does not depend on the third coordinate x3, consequently the
3D problem (Model problem 2) can be reduced to a 2D problem:

Model problem 3:

—Au =27RD (up — u) 0x, in oag, (3.28)
u=1u on 0y,
RD
Ue (X) = —Ugm In r, (329)

where x = (1, :UQ)T, r= \/(xl — x0,1)2 + (29 — 550,2)2, dx, denotes a Dirac measure con-
centrated on xg € Q9 C R%. Related to Model problem 3, we define a further model
problem having the shape of a simple Poisson problem. If RD (up — @) = 1 holds, we obtain:

Model problem 4:

—Au = 2wy, in By(0), (3.30)
u=0 on 0B;(0).

The fundamental solution of this problem is given by: v = —Inr. Elliptic PDE systems like
Model problem 1-4 can be found in many applications besides porous media flow, e.g.,
in the mathematical modeling of electromagnetic fields [55] and in the adjoint equation of
optimal control problems [17, 18]. Furthermore the use of measures plays an important role
in controllability for elliptic and parabolic equations, see the recent contributions [19, 20, 69|
and the references therein. Thus it is not surprising that there is a variety of literature on
the mathematical and numerical difficulties associated with such a type of problem.

Existence and uniqueness of the solution corresponding to Model problem 1-4, has been
shown in [25][24][Chapter 4| by the help of weighted Sobolev spaces [59] and the inf-sup
condition of Necas-Theorem. The convergence behavior of standard Finite elements in the
context with elliptic problems having a Dirac source term has been investigated in a series of
papers. In an early publication of Scott [98], it has been proved that the global L2-error for
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Model problem 4 exhibits the suboptimal asymptotic O <h275>, if Q c R de {23},
where h denotes the mesh size of the grid. Even more general right hand sides are considered
in [17]. Similar results for parabolic problems with a homogeneous boundary condition
on a smooth domain Q Cc R4, d € {2, 3}, where the source term is given by a measure
p € [C(Q)]" are provided in [101]. Interior point wise error estimates for a standard Finite
element approximation of the Green’s function are derived in [96, Theorem 6.1]. One
of these estimates reveals that the L*-error exhibits an optimal convergence behavior
on sub domains, having a fixed distance to the singularity and to the boundary of the
computational domain.

The authors of |6] have shown that on a graded mesh linear Finite elements converge by

(@) (h2 In h]%> Graded meshes consist of triangles 1" whose diameter hr are scaled by their

distance rg to the location of the Dirac measure xo (see Figure 3.2):

h? if rp =0,
hT ~ .
hyrr if rp > 0.

Note that the number of elements of such a triangulation is in O (h*2), see, e.g., [7]. Such
meshes can be constructed via a coordinate transformation, [6] or by dyadic refinement [41]
or a combination of both [72].

1 1
0.5¢ 0.5}
or of
05 05
T4 05 0 05 1 i

Figure 3.2: Quasi-Uniform mesh on an unit disk centered at xo = (0,0) (right), graded
mesh with respect to the point xg = (0,0) on an unit disk (left)

Optimal a priori estimates for Model problem 2-3 have been derived in [25]. Using graded
meshes it is possible to prove that standard Finite element methods converge optimal with
respect to weighted Sobolev norms.

On closer examination, one observes that the above publications are focused on global error
estimates and adapted meshes. However in terms of Model problem 1-2 the solution
of the 3D problem within the network is of low interest since there the physical behavior
is governed by the flow within the single fractures. In fact we are interested to provide
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an accurate solution in Q \ Vg and on T'f (see (3.7)) to keep the errors for the average
values @ low. In order to meet these requirements, we have to ensure that the singularities
associated to the Dirac measures do not pollute the numerical solution in Q \ V.

As a first test case, we consider Model problem 4 on Q = B (xq), X0 = (0,0)" (unit disk
around xg) and report the L2-error on Q\ Bg (xg), R € [0,1). For the numerical solution
of the problem, we use linear finite elements. First of all one notes that the numerical error
is concentrated in the vicinity of the singularity (see Figure 3.3). Thus it can be expected
that the local L?-error in 2\ Bpr (xo) exhibits a better convergence rate than the global
L?-error in Q. In Tables 3.1 and 3.2 we report the errors on uniform and graded meshes,
where non abbreviates the term number of nodes and eco abbreviates the term numerical
convergence order. It can be seen that the local L2-errors for R € {0.05,0.1,0.2,0.3} exhibit
on both uniform and graded meshes optimal convergence orders. For R = 0 we have on
uniform meshes an suboptimal convergence order, which is in agreement with the results
proved by Scott [98]. On graded meshes we obtain for R = 0 an convergence order close
to the optimal convergence order for linear finite elements. This observation confirms the

results of [6].

Table 3.1: Local errors for uniform meshes.

non R=0 R=005] R=0.1 R=02 R=0.3
102 1.04e —1 | 1.0de — 1 | 4.79¢e — 2 | 3.03e — 2 | 2.04e — 2
380 3.286 -2 | 2.69e—2 | 1.21le—2 | 5.36e — 3 | 3.60e — 3
1425 | 1.90e —2 | 6.41e —3 | 2.72e —3 | 1.43e — 3 | 9.25¢ — 4
5505 | 14le—2 | 1.91e—3 | 9.57e —4 | 4.60e —4 | 2.90e — 4
22373 | 5.53e—3 | 3.48¢e—4 | 1.7T2e —4 | 8.60e —5 | 5.59e — 5
90158 | 1.57e —3 | 6.27e —5 | 3.23e—5 | 1.8le—5 | 1.30e — 5
351649 | 9.04de —4 | 2.07e —5 | 1.03e — 5 | 5.06e — 6 | 3.30e — 6
eco 1.14 2.05 2.03 2.09 2.10
Table 3.2: Local errors for graded meshes.
non R=0 R=005] R=0.1 R=02 R=03
102 5.08e —2 | 4.07e —2 | 3.43e—2 | 3.07Te —2 | 2.94e — 2
380 1.23e —2 | 891e—3 | 8.09e —3 | 7.38e —3 | 6.92e — 3
1425 | 3.53e—3 | 2.20e —3 | 1.97e —3 | 1.74de — 3 | 1.62e — 3
5505 | 1.09e —3 | 6.03e —4 | 5.39e —4 | 4.74de — 4 | 4.41e — 4
22373 | 2.84e—4 | 1.6de—4 | 1.3le—4 | 1.17Te—4 | 1.08¢e — 4
90158 | 6.14e —5 | 3.6le—5 | 3.27Te—5 | 2.92e —5 | 2.7le— 5
351649 | 1.92e —5 | 9.09¢ — 6 | 8.22¢ —6 | 7.35e — 6 | 6.83e — 6
eco 1.90 2.02 2.00 2.01 2.01

Motivated by these numerical results, we investigate in the following section standard Finite
element techniques without a modification of the right hand side and without the usage of
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graded or adapted meshes. We show that no pollution effect for Delta point source terms
occurs. For the lowest order case quasi-optimality and for higher order finite elements
optimal order a priori estimates on a family of quasi-uniform meshes in a L2-semi-norm
can be recovered. The semi-norm is defined as a L?-norm on a fixed sub domain which
excludes the locations of the Delta source terms. In addition to that, we discuss alternative
numerical solution techniques for Model problem 1-3, based on iterative approximation
schemes. Contrary to the discretization technique discussed in [24]||Chapter 5| this approach
enables us to use meshes of different size for the 1D problem and the 3D problem.

Numerical error Numerical solution
0.06 '
0.04
0.02

N W B

-0.02
-0.04

=

-0.06
-0.08

Figure 3.3: Point wise error of the finite element approximation for model problem 4
(left), numerical solution of model problem 4 (right)

Early work on the numerical solution of the Poisson equation with Delta terms on the right
(Model problem 4) with Finite difference methods on uniformly structured meshes can
be found in [95]. Here second order convergence can be recovered if a mesh-dependent
smoothing kernel is applied to the source term. This results in a local modification of
the right hand side and influences only a small and fixed number of entries. The analysis
is then based on perturbation arguments and stability. Efficient multi-grid solvers for
problems with singularities in the solution resulting from re-entrant corners, Delta source
terms and heterogeneous coefficients are designed in [94]. The construction of suitable
smoothing operators in terms of B-splines is investigated in [66] where also quite general
distributions as right hand sides, such as, e.g., dipoles and quadrupoles, and alternative
strategies, such as, e.g., boundary or domain modifications, are discussed. A combination of
B-splines and numerical differentiation, T-extrapolation and multi-grid strategies, see, e.g.,
[93], guarantees convergence up to order four and the efficiency of the numerical scheme.

101



3 Stationary coupled 3D-1D diffusion-reaction models

3.2 Finite Element approximations for elliptic problems with
Dirac source terms

3.2.1 Pollution effect

In order to prove that the singularities arising from Dirac point measures do not deteriorate
the convergence behavior at a distance from the singularities, we consider an even more
general Poisson problem than Model problem 4 [64]:

N
—-Au = f—i—27rz ¢idy, in €
i=0
u = 0 on 01, (3.31)

where Q C R?, d € {2,3}, is a bounded, open, convex and polyhedral domain, and g,
denotes the Dirac measure concentrated at z; € Q, i =0, ..., N. Moreover let ¢; € R\ {0},
i =0,....,N, z; #xj, 0 <7 < j <N, and f be sufficiently smooth. Please note that
the considerations presented in this subsection are taken from a former publication by the
author [64]:

T. Koppl and B. Wohlmuth
Opt. a priori error estimates for an ell. problem with Dirac right-hand side
SINUM, 52(4), 1753-1769, 2014

Both (3.31) and Model problem 4 form linear problems, such that the superposition
principle for its solutions apply. Thus we focus on the discretization error resulting from
the Dirac measure source terms. To do so, we study a simple model problem. We start by
introducing Green’s function 9y concentrated at zg [32]:

. —In(r(z)) ford=2,

Oo(x) = L (r() _ (3.32)
et for d = 3.
2-r(x)

The distance function 7 is given by: r(z) = ||z — x¢||. Moreover we define a fixed cut-off

function n € C* (§2), having the properties:
n=1lonB,n=00nQ\Band0<n<1onQ.

The two subdomains B and B are fixed open subdomains with xg € B € B e . Defining
fo € L2 () by: .
fo:=—(2Vn-Viog+ Antg) in B\ B,

the solution of the Dirac problem
—Av = fo+ 2mndy, in Q, v=0 on 09, (3.33)

is given by: v = 1 - 0y. A straightforward computation shows that ¢y and v are no H'-
functions but that 99, v € I/VO1 P(Q), p € [1,3 — d/2) holds. Therefore the term solution
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of (3.33) has to be defined in a careful way. Doing so, we follow an approach presented
in [8, 96] and consider the solution v of (3.33) as an element of Wol’p (Q),pe (1,3-9).

Defining our test space Wol’q (Q) by:

1 1
WOW(Q):{@€W1,q(Q)|¢200n39}7 EJF&:L

the weak formulation of (3.33) is given by: Find v € VVO1 P (Q) such that
(Vo, V) = (fo,0) + 2mp (w0) Vi € W™ (Q), (3.34)

where (-, -) stands for the duality pairing of LP (©2) and L? (€2). The right-hand side in (3.34)
is well defined, because we have for d € {2,3} and p € (1,3 — %l) the continuous embedding;:
Wha(Q) — C(Q) [1, Chapter 4, Theorem 4.12]. Moreover the weak formulation (3.34)
has a unique solution (see [10, Theorem 2.1]) for p € (1,3 — d/2). Here we fix from now
onp= %, the choice is somehow arbitrary, but guarantees that H? () c W4 (Q), ¢ = %
For the numerical solution, we introduce a family of quasi-uniform simplicial triangulations
Trn of 2, where h is the mesh size. The Finite element space is then defined by standard

conforming elements:
Vi ={on€ Hy ()| onlx € P (K), VK €T, }.

Pi (K) denotes the space of polynomials on K of degree at most k. The Finite element
solution vy, € V}¥ of (3.33) satisfies:

(Von, Veon) = (fo. on) + 2mn (z0)  Vn € Vi (3.35)

This Finite element formulation is well defined because V¥ C WO1 7 (Q2) holds. The rest of
this section is mostly concerned with the proof of the following theorem.

Theorem 3.1. Letv € Wol’p(Q) be the weak solution of (3.34) and let v, € VI¥ be the finite
element approximation given by (3.35). Then we have for the L?-error ||v — Onll L2\ ) the
following upper bound:

W2 (nh|, ifk=1,
v = vall 2By S {hkﬂ ik 1. (3.36)

Here we use the inequality sign <, if we want to omit a generic constant on the right hand
side independent of h, but possibly depending on dist (zg, 0B), dist (B, 0f2), the solution
and the order k of the finite element approximation. The relative position of xy with
respect to the vertices of the mesh does not play a role, and Theorem 3.1 holds for any
xo € B, dist (zg,0B) > 0.

A similar result can be proved using the bounds presented in [96, Theorem 6.1|. Based on
interior maximum norm estimates, point wise error estimates for the numerical approxi-
mation of Green’s function are derived. As a consequence of these results, one can prove
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for the finite element error e; of a Dirac problem with homogeneous Neumann boundary
conditions the following estimates:

enl < h?|lnh|, ifk=1,
e
ML it i k> 1.

for all x € Q1 \ Br (x0), where Q; is a open domain such that Bg (z9) € 21 € Q. Since this
estimate only holds in the interior, we cannot directly apply this result to obtain (3.36).

Corollary 3.1. Let u € Wol’p(Q) be the weak solution of (3.31) and uy, € V¥ its finite
element approzimation. Under the assumption, that f € H* 1 (Q) and u € H*! (Q \E),
we have for x; € B,i=0,...,N:

h?|Inh if k=1
lJu— uh”LQ(Q\B) S &, z.f ’
Aany if k> 1.

The proof is a simple consequence of the superposition principle, interior regularity results
[116] and the regularity assumption on u on €\ B. We note that our convexity assumption
on ) guarantees that u € H? (Q \E) but higher regularity is not guaranteed from the
smoothness of the right hand side f. In the case of a reduced regularity of u, it steems from
the corners of the domain and can be compensated, e.g., by energy corrected finite element
methods [30]. Higher order estimates on smooth domains require the use of non-affine
element mappings and will be not considered here.

Outline of the proof

Now we present an outline of the proof for Theorem 3.1. The a priori result (3.36)
is proved by induction with respect to the approximation order k. From now on B stands
for a ball centered at xg having s > 0 as radius. We introduce a sequence of nested
concentric balls B,,, [ =0, ..., k, with:

0<ri_1 <y, Tl—Tl_1:O(1), l=1,...,k

and B,, C B. Setting r; = (r;+1,-1)/2,1=0,...,k, with r_; = 0, we obtain the following
sequence of non-empty properly nested sub domains

BT()CBTOCB%CBmC...CBT;CB,«kCB.

On each ball B,, suitable bounds for the L%-errors: ||v — vhHLQ(Q\B ) are derived. To do
Ty

so, we define for [ =0, ...,k a dual problem for the Poisson equation (3.33) and its Finite
element approximation vy, € th as follows:

—Aw; = eXo\p, in Q,
w = 0 on 01, (3.37)
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where XQ\B” is the characteristic function of Q \ B,, and e = v — v;,. It is obvious

that eXo\p, € Lt (2) € L?(9) holds. Then the assumed convexity of  yields w; €
H?(Q) N H} (Q) see, e.g., [43, Chapter 8]. By a Sobolev embedding [1, Theorem 4.12]
it follows that w, € Wz (). The weak formulation of (3.37) now reads as: Find

1.7
wy € W,% (Q)
171
(Vo, Vur) = (6,eXays, ) Vo € Wy (@) (3.38)
and is well defined. Due to an interior regularity result [32, Chapter 2.2, Theorem 7|, we

have w; € WH> <BT2>. For ¢ = e in (3.38), we can write the square of the L%-error as
follows:

v — vh||ia(Q\Bn> = (V(v—won),Vw) = (V (v =),V (w — Spw))
= (V(v—o4),V (w — Shwl))Q\BT{ +(V(v—=wp),V (w — Shwl))BT{ ; (3.39)

where S}, is a suitable interpolation operator onto th which will be specified later. We
apply to both terms on the right the Holder inequality yielding the following bounds:

(V (v =wn),V (w = Syw))oy g,
1

<[V (v —wp) ) IV (wi — Spw) || (3.40)

I (28, 2(\B,)’

(V(v—=un),V (w — Shwl))Br; <V =w)ll,, (5,) IV (wi — Shwl)HLoo(BT,) - (3.41)

From (3.40) and (3.41) it follows that we have to derive suitable upper bounds of the four
error terms occurring on the right. The upper bounds for the four terms will be provided
in Lemmas 3.3, 3.5, 3.6 and 3.10, respectively.

Auxiliary results

Next several technical results are provided which are important ingredients for the proof of
Theorem 3.1.

Properties of the fundamental solution
The upper bounds for the four terms on the right of (3.40) and (3.41) depend crucially
on the properties of the weighted fundamental solution v = 7oy, solving (3.34). These

properties play also an important role in the L®-analysis of finite elements, see, e.g., [96].

We recall that v € C%°(Q2\ Bgy) for all ¢ € N and that Vo € L1(2) but not in L?(1).

Lemma 3.1. Let v be the solution of (3.34), then we have for c € N and 0 < e < 1 fized,
the following L' and L?-estimates. B denotes an index vector.
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Upper bounds for the gradient restricted to Bep:

IVl s, S h, (3.42a)
HTI_EV””H(B DS h'=e, d=2, (3.42Db)
[PVl g, = Vh, d=3. (3.42¢)

Upper bounds for second derivatives restricted to Q\ Bep:

HU”WQJ(Q\BM) S nhf, (3.43a)
d—1 1
rst Do S — 18l = 3.43h
‘ s ~ Vi P (3.43D)
d
DB ‘ < /Imh|, 18] =2. 4
[r£0%0| g, S VIR 18 (3.430)

Upper bounds for third derivatives restricted to 2\ Bep:

S 7 (3.44a)

S| =

lollws.@\5.0)

r%+EDﬁv’ S

>

<=1 18] =3. (3.44D)

Proof. We consider only (3.42a), the remaining estimates are left to the reader. Without
loss of generality, we assume that ch is sufficiently small such that n = 1 holds on B,
which yields together with (3.32):

L2(\Bch)

chl i1
Vol < [ s

The estimates involving derivates can be easily verified, by taking the following upper
bound into account:
‘Dﬂv‘ §r2_d_‘ﬁ|, for || > 1.

O

Lemma 3.1 shows that the space dimension d does not enter into the L'-bounds whereas
the L2-bounds do depend on d. In addition to the bounds on v, we need an upper bound
for the discretization error in the L?-norm. We refer to [98, Theorem 1] for a proof of the
following result.

Lemma 3.2. Let v € Wol’p(Q) be the solution of (3.34) and vy, € V¥ its finite element
approzimation given by (3.35), then we have for the global L*-discretization error:

_d
v — UhHL2(Q) Shie
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Lemma 3.2 shows that globally, we can only expect an error decay of O(\/E) for d = 3 and
of O(h) for d = 2 independently of t the used polynomial order k. The proof given in [98]
relies on suitably weighted Sobolov spaces, see also, e.g., [59, 74].

Interpolation errors

Considering the outline of the proof, we have to specify the interpolation operator:
Sy WP (Q) = ViE,

Due to its local stability and approximation properties, we choose an operator of Scott—
Zhang type [99, Theorem 4.1, Corollary 4.1|. In the following, we recall some of its properties.
Note that this operator is well defined, if the parameters n and p satisfy the following
conditions:

n>1andp € [1,00].

Lemma 3.3. For z € W™P (Q) and p > 0 fized, we have the following local upper bound
for the approximation error:

Iz — Shz”wm,P(Bp) < prm ‘Z|W”’P(Bp+2h) ,0<m<n, 1<n<k+1, (3.45a)
and the stability estimate:
1Shzllwnes,) S zllwnr(s,, 0 0 <0 <k+1. (3.45b)

If z € WP (Q\ B,_a), we have the approzimation bound:

HZ - ShZHWWP(Q\Bp) 5 pr—m |Z|Wn’p(Q\Bp72h) ,0<m<n,1<n<k+1. (3.450)

Lemma 3.3 provides interpolation results for Sy, in W”"P-norms. In addition to that, we
need interpolation bounds for weighted L?-norms.

Lemma 3.4. Let ¢,c* € N and ¢ — ¢* > 2. Then we have for z € WFTL2(Q\ Bey,) , the
following estimate for a € [0.5,2.0] fized:

, le{l,... k}.

raD'Bz‘

79 (2 = S$u2)l 2oy S B Y | b
|B|=1+1
Proof. Replacing Sy, by the nodal Lagrange interpolation operator, the proof of the approx-
imation error in the weighted L?-norm can be found in [24, Theorem 3.2]. It also applies to
locally defined operators, such as Sy, having local stability and approximation properties
in standard norms. Of crucial importance is the observation that for each K € 7, with
KN (Q\ Bex) # 0 and ¢ > 3 the ratio sup,¢,,,. 7(z)/infzeu, r(2) is uniformly bounded.
Here w is the smallest union of elements in 7y, such that Syz|x depends only on z|,,. O
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In (3.40), it is sufficient that the interpolation error ||V(w; — Spwi)||z2(\p ) yields an
"l

order h bound. This follows directly from Lemma 3.3. In (3.41), the interpolation error
IV (w; — Spwi) || e (B ,) has to bring in an order hE. This can be achieved in terms of interior
"

regularity arguments.

Lemma 3.5. Let w; be the solution of (3.38) for By, and assume that 4h < r; —r). Then
we have the following estimate:

IV (wy — Shwl)”Loo(B ) Sh o —vnllp2(ays,,)

"

Proof. Using the approximation property of S; and the Sobolev embedding
Wht3.2 <Brl’+2h) s Whtloo (Br;+2h> [1, Theorem 4.12], we have:

IV (= S0) e, < 1

< Bk
)< |w|

Whit,e0 (Br2+2h) Whet3,2 (Brg+2h) .

An interior regularity result [43, Theorem 8.10], the H2-regularity of w; and the fact that
w; is harmonic within the ball B,, yields:

sz||Wk+3,2(BT;+2h) S lwillwrz(s,) S 10 = vall 2oz,

which completes the proof. O

Upper bounds for the Finite element solution

In the previous section, we provided estimates for the interpolation errors in (3.40) and
(3.41). It still remains to estimate the terms in V (v — v;,). The L%norm on €\ B, can be
easily bounded by Wahlbin type arguments, see, e.g., [87, 116, 117].

Lemma 3.6. Let v € W12 (Q \ BTé) be defined by (3.34) and let vy, € V,f defined by
(3.35), then it holds for 1 =1,... k:

IV (v— vh)HLz(Q\B ) SH v = vl 2 (ais,, ) (3.46)
T’Z -

where k denotes the polynomial order of the Finite element approximation vy,.

Proof. The proof is based on a local a priori estimate of Wahlbin type [116, Chapter III,
Theorem 9.1]:

1

IV (v— Uh)HLQ@\BTg) S o= Swollgas, )+ P lv =vnll 2 s, ) -

Originally it is stated for solutions in H' (€2) and its Galerkin approximations. However, it
can be easily extended to our settings, i.e., H' (Q \ BTE))' The approximation result (3.45¢)
and r; —r;_1 = O(1) yield (3.46). O
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We note that the regularity requirement v € H*+1 (Q \ Bmfl) in the proof of Lemma 3.6 is
fulfilled by the solution v of the auxiliary problem (3.33).

In the rest of this section, we focus on the L!-error term. The main result will be provided
in Lemma 3.10. We start with a global bound. The triangle inequality trivially yields:

IV (= o)l S IV @ = Sy + IV (Sho = on)llny - (347)

The first summand can be directly bounded by the approximation properties of S, which
is done in the next lemma.

Lemma 3.7. Let v € Wol’p(Q) be defined by (3.34), then we have the following estimate:

hinh|, ifk=1,

Vw-S S
IV @ hvwwmw{h, r

where k denotes the polynomial order of the finite element approrimation.

Proof. We decompose €2 into B, and 2\ By, ¢ > 3, and have:

IV (v = Spo)ll 1) = IV (v = Spo)ll 1p,) + IV (v =Swv)ll 1\ B, -

The local stability (3.45b) of S}, in combination with the local bound (3.42a) yields that
the first summand is bounded by O(h) independently of k. The bound for the second term
on the right depends on k. Setting in (3.45a) p =1, m = 1 and n = 2 and n = 3 for
k =1 and k > 1, respectively, we find the required bound by using (3.43a) and (3.44a),
respectively. O

Before we can bound the second term on the right of (3.47), we have to provide two technical
results on weighted L2-norms. Firstly, we consider a negative exponent in the weighting
factor and restrict ourselves to d = 2.

Lemma 3.8. Letv € Wol’p(Q) be defined by (3.34) and let vy, € Vi¥ defined by (5.35). Then
we have for d =2 and for 0 < e < 1 fized:

[r= (v — “h)HB(Q) ShTe
Proof. The main ingredient for the proof is the local bound
- 1- - - 1- 2
| 6wHLQ(Bch) S| EVme(Bch) +h Nwlle s,y rw,r T Vwe L7(Q), (3.48)
which follows from [79, Lemma A.1.7| and a scaling argument. We decompose 2 in 2\ B,
and B.p, where c is sufficiently large, and note that r € restricted to 2\ By, is bounded by

h~¢. Applying (3.48) to w = v — vy, we get

HT_E (U - 'Uh)HLz(Q) S Hrl—ev (U - vh)HLQ(BCh) +h™e ||1) - UhHLQ(Q) :
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3 Stationary coupled 3D-1D diffusion-reaction models

For the first term, we apply the triangle inequality twice and use the local stability of S}
with respect to different norms. We recall that we have local L!-stability of V.Syv, then
(3.42a) guarantees for d = 2
1- l—ep —1 — 1—
HT GVShUHLQ(BCh) S h/ 6h HVShUHLl(BCh) S./ h ¢ va||L1(B(C+2)h) S h 6.
Using this observation in combination with (3.42b) and the local L2-stability of S, we find
in terms of Lemma 3.2

77 (v = vn) | 2 g R+ BRI Sh (v = vn) L2 (B + Ml = vnll 2y

S
S WA v — ol g2y S BT

O

Secondly we consider a positive exponent in the weighting factor depending on the space
dimension. A crucial role for the proof of the next two lemmas play weighted Wahlbin
type estimates. We refer to [116, Chapter III, Theorem 9.1] for more details and point
out that although v ¢ H' (€2), we can conclude that for suitable cy < ¢1 large enough and
a€[(d—-1)/2,(d+1)/2) fixed:

H?“OéV (v — Uh)||L2(Q\Bclh) 5 HTO‘V (v — Shv)”Lz(Q\BCQh) + Hra—l (v N Uh)HLQ(Q) ] (3_49)

This estimate can be established from standard Wahlbin estimates by using a sequence of
dyadic balls. Each ring between two dyadic balls is again covered by some suitable chosen
balls. The weighted error estimate on each of this second type of balls can be carried out
like the estimate in Lemma 3.4, making use of the standard estimate in [116, Chapter III,
Theorem 9.1]. Due to the dyadic scaling of the balls, the sum of all weighted errors is
bounded by the right hand side of (3.49). Weighted Wahlbin estimates like (3.49) can also
be found in [80].

Lemma 3.9. Let v € Wol’p(Q) be defined by (5.34) and let v, € V¥ its finite element
approzximation. Then we have for 0 < e < % fized:

,r,g+e—1 ( < h1+€.

L2(Q)

U_Uh)‘

Proof. We define a sequence of dyadic concentric balls B,,, p; = 2!(ch), 1 € Ny, covering
the domain 2 and fix ¢ € N sufficiently large. Then we have:

‘ ;(Q) - Z ‘

>1

2

patel (v— vh)‘

rotel (v — Uh)‘

L2 (QﬁSl)

4 2
+ ‘ ritel (y gy ‘ , 3.50
0= 350
where S; = By, \ By, ,. In terms of pg € O(h) and Lemma 3.2, we have:
die—1 2 2(1+4¢)
r2t e (v = Uh)‘ Sh : (3.51
| L2(5) )
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3 Stationary coupled 3D-1D diffusion-reaction models

Associated with each [, we define a dual problem:

1on S,

—Az; = X (v —vp), where Aj =
: 1 2 : {O otherwise.

By the Hoélder inequality, we have:

16 (v = vn) 172 () < (X (v —va) v —vn) S (—Az,v — vp)

S TG _Shzl)HLQ(Q) |75V @ =) (3.52)

d—1 ‘

L2(Q)

As we will see the second factor on the right can be bounded by O(vh). We use the
weighted Wahlbin estimate (3.49) for a = (d — 1)/2. Applying Lemma 3.4 and (3.43b) for
the first term on the right in (3.49), Lemma 3.3 if d = 3 and Lemma 3.8 if d = 2 for the
second term, we get

el 5 A,
+ Hrd%lVShv’ L2(Bc1h) + HT%V (Shv - Uh)‘ L2(361h) '

Using (3.42¢), the same arguments as in the proof of Lemma 3.8 for the term in V.Spv and
an inverse estimate in combination with Lemma 3.2, we get that all terms on the right are
bounded by O(v/h), and thus (3.52) simplifies to:

1% (0 = o)l2() S VR =59 (21 = Su2)

. (3.53)

The L? (Q)-norm of TV (21 — Shz;) will be decomposed into two terms. The first one
is associated with B, ,, p—1 = po/2, and we exploit that z; is harmonic on B, ,. Using
the Holder inequality and the approximation property (3.45a) we have:

1
2
LY(Bp,_,)

S hy/pi—2 HZIHWMO(BMA) :

G P

IV Gt = Sha)ll e, ,)

An interior regularity result for harmonic functions (see, e.g., [32, Chapter 2.2, Theorem 7|)
in combination with a scaling argument and the H2-regularity of z;, we get:

d—1 1—d
HT_TV(ZI _Shzl)‘ S ho 2y ([ (v = vn) [l 2 -

L2(Bp,_,)

The bound for the second term relies on the H?-regularity and a trivial bound for r3% on
Q \ B Pr—2

d—1 5
HT*TV (z1 — Shzl)’ S o2y 1 (0 = vn)ll p2(q) -

L2 (Q\Bpl72)
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Now (3.53) results in the upper estimate

s 1=d
1 (v = vl o) S h2p 2 -

Observing > ;- o 2s)l < 1, we have using (3.50) and (3.51):

) ~ Z

l>1 >0

die1 (1} o ‘

)< R+ 3 (21}2)1 < p20+9),

O

By means of Lemma 3.9, we are now able to prove an upper bound of the gradient error
IV (v =v)ll g

Lemma 3.10. Let v € Wol’p(ﬂ) be the solution of (5.34) and let vy, € VI be its finite
element approximation. Then we have the following estimate:

hinh|, ifk=1,

V(v — <
IV (v vh)”Ll(Q)N{h’ k> 1.

Proof. Lemma 3.7 and the triangle inequality (3.47) show that it is sufficient to study
the term ||V (Spv — vn)||f1(q)- As before we decompose 2. Applying the Cauchy—Schwarz
inequality, an inverse estimate and the local L?-stability of S, Lemma 3.2 guarantees that
the local L' (B.;,) norm is bounded by h. Thus it remains to consider the term restricted
to Q\ Bep. The Holder inequality and the stability of S, give for 0 < e < %:

_d_, dy.
IV (Sh0 = o) sy S 874V (0 = )|

S&n)|

LY (\Bch)

rétey (v— vh)’

L2(Q\Ben)

where:

g(h)<{,/\1nhy, if € =0,

h=e, if0<e<i.

In order to derive an upper bound for the weighted error ritey (v— Uh)‘ L2(Q\Buy)’ we
ch

recall the weighted bound (3.49) and set &« = d/2+ ¢ < (d+1)/2. For k=1, we set € =0
and apply Lemma 3.4 for [ = 1 in combination with (3.43c) and Lemma 3.9. For k > 1 we
fix 0 < € < 1 and use Lemma 3.4 for [ = 2 in combination with (3.44b) and Lemma 3.9. [

Proof of the main result

Considering the outline of the proof, we are now able to prove our main result formulated in
Theorem 3.1 by the help of the auxiliary results which are given in the previous subsection.
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3 Stationary coupled 3D-1D diffusion-reaction models

The idea of the proof is to show Theorem 3.1 by induction. Due to (3.39), it remains to
estimate the four terms on the right of (3.40) and (3.41). By Lemmas 3.5, 3.6, 3.10 and
(3.45¢) for m = 1,n = 2,p = 2, we find for the L2-error restricted to Q \ B, a recursive
structure:

< h?|Inhn|, ifk=1,
||v B vhHLQ(Q\Brl) ~ h HU B UhHLQ(Q\BTL—l) + Rk+1 if k> 1. (3'54)

By Lemma 3.2 we have for [ = 0:

(NI

{h2 nh|, ifk=1,
_|_

Il = vnllr2(op,,) S h pE+1 if k> 1.

If k=1, we get ||[v— UhHLQ(Q\BTI) S h?|Inh|. If k > 1, we have v — UhHLQ(Q\BTl) < h?,
and thus by induction it follows for 2 <[ < k:

_ < pltl
H'U UhHLQ(Q\Brl) ~ h .

Numerical results

Finally, we illustrate our theoretical results by numerical examples and consider the boundary
value problem (3.31) with:
Q=(0,1)% de{2,3}.

For the computation of the finite element approximation, we use the PDE-framework DUNE
[12]. The expression eco in the tables abbreviates the numerical convergence order.

Single Dirac distribution (d = 2)

We choose f = 0 and gg = 0.5 and set the Dirichlet boundary values such that the exact
solution is given by:

u(z) =—0.5-1n \/(9:1 —201) 4 (22 — 202)?,

where x = (azl,xg)T € Q and zp = (zo1, xog)T = (0.5, 0.5)T. In the following, we consider
the L2-error ep = ||u — Un|| 120\ B (zo)) for different radii R € {0,0.05,0.1,0.2} and different
approximation orders k € {1,2}. In order to compute this error norm, we use an adaptive
quadrature formula, defined on a finer sub mesh to guarantee an accurate error evaluation.
Note that in the case R = 0 no second order convergence can be expected.

Tables 3.3 and 3.4 show the numerical results for £ = 1 and k = 2, respectively. In
both cases, the theoretically obtained upper bounds hold for our numerical results. The
theoretically predicted log-factor in the case k = 1 is difficult to identify in numerics. We
point out that in the pre-asymptotic range, i.e., R < h, a reduced convergence rate is
obtained. The smaller R, the later the asymptotic starts, see the bold marked rates in
Tables 3.3 and 3.4. For a mesh size h that is smaller than R the computed convergence rates
are optimal. As expected from the well-known L2-analysis, the global error is qualitatively
independent of k and only of order h.
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Table 3.3: L2-error eg on Q\ Bg(xg) for z¢9 = (0.5,0.5)T, k = 1.

Il | R=00)| eco | R=0.05| eco | R=0.1| eco | R=0.2| eco
1| 3.21e-1 2.11e-1 1.60e-1 1.37e-1

2| 1.6le-1 | 1.00 | 5.68e-2 1.80 | 4.24e-2 | 1.92 | 3.61e-2 | 1.92
3| 8.03e-2 | 1.00 | 1.77e-2 1.68 | 1.27e-2 | 1.73 | 9.03e-3 | 2.00
4| 4.15e-2 | 1.00 | 3.21e-3 | 2.46 | 2.66e-3 | 2.26 | 2.11e-3 | 2.10
51| 2.08e-2 | 1.00 | 85le-4 | 1.92 | 6.86e-4 | 1.96 | 5.31e-4 | 1.99
6| 1.04e-2 | 1.00 | 2.12e-4 | 2.00 | 1.75e-4 | 1.97 | 1.35e-4 | 1.98

Table 3.4: L2-error eg on Q\ Br(xg) for zo = (0.5,0.5)T, k = 2.

Il | R=00| eco | R=0.05| eco | R=0.1| eco | R=0.2| eco
1| 5.05e-2 3.52e-2 2.84e-2 2.55e-2

2| 2.53e-2 | 1.00 | 1.20e-2 1.55 | 8.62e-3 | 1.72 | 3.04e-3 | 3.07
3| 1.26e-2 | 1.01 | 1.95e-3 | 2.62 | 9.38e-4 | 3.20 | 3.11e-4 | 3.29
4] 6.32e-3 | 1.00 | 6.34e-4 1.62 | 1.21e-4 | 2.95 | 3.78e-5 | 3.04
51| 3.16e-3 | 1.00 | 4.82e-5 | 3.72 | 1.51e-5 | 3.00 | 4.75e-6 | 3.00
6| 1.58e-3 | 1.00 | 6.32e-6 | 2.94 | 2.00e-6 | 2.92 | 5.94e-7 | 3.00

Single Dirac distribution (d = 3)

We choose again f = 0 and g9 = 1 and set the Dirichlet boundary values such that
the exact solution is given by:

u(z) = @) where r(z) = \/(acl — 201)® + (z2 — T02)* + (23 — m03)?,

x = (1‘1,:B2,J)3)T € Q and zg = (xo1, o2, xog)T = (0.5,0.5, 0.5)T. In three dimensions the
expected global L?-error decay is even of lower order compared to the two dimensional case,
see, e.g., [98, Theorem 1|. However, our theoretical results for the error er are independent
of the space dimension. Table 3.5 shows the case kK = 1 whereas Table 3.6 gives the results
for k = 2. For R > 0, we observe the predicted quasi-optimal and optimal convergence
order.

Multiple Dirac distributions
Now, we consider more than one Dirac measure, and choose:
f (z,y) = 2r%sin (7z) sin (7y) .

Three Dirac measures are placed at zp ~ (0.55,0.55), 1 ~ (0.6,0.4), x2 ~ (0.47,0.52)
weighted with ¢o = 0.25, g1 = 0.1, g = —0.2, and a uniform mesh is used. None of these
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Table 3.5: L2-error eg on Q\ Bg(xg) for z¢9 = (0.5,0.5,0.5)T, k = 1.

R=0.0

R =0.05

R=0.1

l eco eco eco | R=0.2]| eco
1| 7.48¢-2 5.81e-2 4.55e-2 3.34e-2

2| 4.92e-2 | 0.60 | 3.12¢-2 | 0.90 | 2.42e-2 | 0.87 | 1.82¢-2 | 0.88
3| 3.46e-2 | 0.51 | 1.72e-2 | 0.86 | 1.31e-2 | 0.88 | 6.12e-3 | 1.57
4| 2.45e-2 | 0.50 | 9.13e-3 | 0.81 | 4.46e-3 | 1.55 | 1.54e-3 | 1.99
51| 1.73e-2 | 0.50 | 3.17e-3 1.53 | 1.10e-3 | 2.01 | 3.91e-4 | 1.98
6| 1.22¢-2 | 0.50 | 8.00e-4 | 1.99 | 2.84e-4 | 1.97 | 9.88¢e-5 | 1.98

Table 3.6: L2-error eg on Q\ Br(zg) for o = (0.5,0.5,0.5)T, k = 2.

[l | R=00| eco | R=0.05| eco | R=0.1| eco | R=0.2| eco
1| 4.87e-2 3.62e-2 3.33e-2 2.84e-2

2| 3.09¢-2 | 0.66 | 2.41e-2 | 0.59 | 2.01e-2 | 0.72 | 1.14e-2 | 1.32
3| 2.18e-2 | 0.50 | 1.44e-2 | 0.74 | 7.94e-3 | 1.33 | 1.74e-3 | 2.71
4| 1.54e-2 | 0.50 | 5.61e-3 1.36 | 1.23e-3 | 2.69 | 1.28e-4 | 3.76
51 1.09e-2 | 0.50 | 8.72e-4 | 2.67 | 9.53e-5 | 3.69 | 1.13e-5 | 3.50
6| 7.73e-3 | 0.50 | 6.7le-4 | 3.70 | 1.06e-5 | 3.17 | 1.33e-6 | 3.32

Table 3.7: L2-error on \ By.25(0.5,0.5), k=1, k=2 and k = 3.

k=1

eco

k=2

€Cco

k=3

€Cco

1.21e-1

1.43e-2

5.48e-3

2.79e-2

2.11

3.01e-3

2.25

8.73e-4

3.74

7.06e-3

1.98

2.67e-4

3.49

3.47e-5

4.65

1.74e-3

2.02

3.05e-5

3.13

1.44e-6

4.59

QU | W N |~

4.53e-4

1.94

3.63e-6

3.07

9.25e-8

3.96

points coincides with an edge or a node of an element. As before, the Dirichlet boundary
values are chosen such that the exact solution can be computed by the superposition

principle.

Considering the numerical results in Table 3.7 for linear, quadratic and cubic elements,
we observe that the L2-error ||u — uy|| L2(0\ B 25(0.5,0.5)) has approximately the same conver-
gence behavior as in the previous subsections, dealing with only one Dirac measure. The

computation of the convergence order reveals a good agreement with Corollary 3.1.

3.2.2 2D coupled problem

The numerical treatment of coupled problems like Model problem 1-3 (3.24)-(3.28) is not
straightforward, since their source terms involve average terms of the solution. The presence
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of averages within the source terms makes the assembly of the discretization matrices
more complex than those which arise from standard differential operators. Incorporating
the averages into the discretization matrices the structures of the standard matrices are
destroyed, due to the fact that the elements containing the line A or the point x( are
linked to elements intersected by the balls or cylinders around the measures. In order to
circumvent the additional effort assembling the matrix and to be able to use optimal solvers
for elliptic problems, we consider the average values u as an additional unknown and insert
it into the solution vector.

sesnscas
a8z aus 98
qp.....o
QAN8808\)
R T
aNeeees’)
osqggp'.
sasSs

Figure 3.4: The picture shows a blue ball around g in two space dimensions (Bg (x¢)).
The green grid nodes are the nodes which are adjacent to the Dirac measure xy and define
the index set Ip. The yellow marked grid nodes belong to elements which are intersected
by the ball Bg (2(). The corresponding index set is denoted by I.

This approach is illustrated by the simplest of our coupled model problems, i.e., Model
problem 3 (3.28). For the sake of simplicity our considerations are outlined by means
of linear Lagrange elements [15||Chapter 5|. Doing so, we define the index set Ip as the
indices whose corresponding grid nodes p; are adjacent to the location of the Dirac source
term xg (green nodes in Figure 3.4). The index set of grid nodes belonging to elements
intersected by the ball Bg (z¢) is denoted by Ip. Discretizing (3.28) by means of standard
finite elements, we obtain for the corresponding solution vector u = (uy, ﬂh)T the following
linear system of equations:

AL Cph, Up bd
(-6 e
N y;

::Ah =u ::bh
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It holds that up, € RY and u € RV*!, where N denotes the number of degrees of freedom
associated to the chosen finite element space. Ay € RV*¥ is the matrix discretizing the
Laplacian operator. The sub matrix I, € R approximates the average value @, it can
be computed as follows: Let the finite element solution uy be represented as follows:

N
= Z up (7)
i=1
where {cpi},fil is the nodal finite element basis. By this we have for @ the approximation:

Ng

1
UZ/ u(xo,QWG,R)dH%ijuh (X(),QTF@j,R)
0 -
7=1
Ng N
ZZ w]uh 2 5] Z Z Ww;P; 5] . uh(’i) =: Up.
=1 =1 i=1 \j=1

w; and 6; denote the weights and nodes of a suitable quadrature rule. The nodes &; are

given by:
(7o cos (2m;)
¥ <~”U0,2> o (Sin (2705) ) -
Due to the fact that the basis functions have a compact support concentrated on the adjacent
elements, only the grid nodes contained in the index set /g have to be considered:

Ng
un =y | D wiwi (&) ] - un(i).

iclg \j=1
All in all, it follows for the i-th entry of the sub matrix [j,:

1) = L Ssesmnon @i (&), 1 € I,
0, i ¢ Ip.

The sub matrix ¢, € RN*! is the discrete counterpart of the term 2rRDé,,, its entries are
given by:

0, ié¢Ip.

The right hand side by has a similar structure. It contains the boundary values u. and
discretizes the term 2w RDuodx,. Defining by Ip, the set of boundary indices, we have for
the entries of by, provided that Ip NIg, = 0:

2nRDy; , 1€ Ip,
ch(i):{ﬂ vi(x0), 1€Ip

2rRDuyp; (x0), i€ Ip,
bd(z) = § Ue (pz) ) i € IBo, (3'56)
0, 7 ¢ IpUlpg,.
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To enforce the boundary conditions into the system of equations the discretization matrix
Aj, one has to modify the discretization matrix as follows:

Ah(i,j):5ij, jE{l,...,N+1}, 1 € Ip,,

where §;; denotes the Kronecker symbol and Ay (i, j) the entry in the 4-th line and j-th
column. For the numerical solution of (3.55), we construct an iterative scheme. Each
iteration step of this scheme consists of two sub steps. In the (k4 1)-th iteration, we firstly
solve the following system of equations:

ALuh(kH) = bd — Ch@, uh(o) = 0, W = O, (3.57)

where uilk) denotes the solution vector and ugf) the average value from the k-th iteration.

In the second step, a new value for the average uy is computed as follows:

ugﬁl) = Ihuglk). (3.58)

The iteration is stopped, if it holds:

LD u%k)

h <TOL or k>ITmazx.

TOL is a given tolerance and IT'max defines the maximum of the permissible iteration
steps (see Algorithm 6). We solve the system of equations (3.57) in the first substep by the

Algorithm 6 Iterative solution scheme for the system of equations (3.55)

u, (@ =0, W: 0

while k < ITmaz AND |[u{"*" — 4| > TOL do
Solve ALuglkJrl) =by — chugk)
Compute uékﬂ) = Ihuﬁk)

end while

help of a direct solver or a multi-grid method. A suitable quadrature rule combined with an
efficient interpolation technique is used for the second sub step (3.58). Due to the fact that
there is no pollution effect (see Subsection 3.2.1) the average value can be computed with a
small numerical error, if the grid is sufficiently fine. Now the crucial issue is to examine
under which conditions the iterative scheme is converging. A closer examination shows that
the first substep in each iteration is the discrete version of the following Dirac problem:

~AuttD) = 27 RD (uo - W) Oxo.- (3.59)
From literature we know that the solution of (3.59) in the sense of distributions is given by

[32]:
W) — _pp (uo _ (k)) Inr. (3.60)
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For the first three iterations, we obtain:

WY = _RD (Uo _W> Inr
= —RDuglnr
W@ — _RD (uo _ﬁ) Inr
= —RDuy(l1+ RDInR)Inr
«® — _RD (UO _W> Inr
— —RDug (1 +(RDInR) + (RDIn R)2> Inr

By induction with respect to k£ one can prove:

k
utt) = —RDug Y " (RDInR)' Inr. (3.61)
=0

From this it follows, if |RDIn R| < 1 holds:

lim u**t) = _RD DInR)'1
Jim u R UOIZ%(R nR) Inr
RD
I RDIR

Inr = ue.
Finally we observe that the iteration given by Algorithm 6 is convergent for Model

problem 3 if
|[RDInR| < 1 (3.62)

holds. Clearly, the system of equations (3.55) can be written in a more compact form:
(AL + cndp) un = by

and solved directly. Considering the average value w as an additional unknown is a prepara-
tion for the numerical treatment of time dependent 3D-1D coupled problems. A separation
of the average values from the standard coordinate vector uy enables us to apply semi-
implicit methods, where we treat the average values explicitly. Furthermore the submatrix
I, does not have to be assembled anymore.

Single Dirac measure

Next we want to test, if the observation (3.62) can be seen in numerical experiments.
For these tests, we choose D = ug =1, 2 = (0,1) and x¢ = (0.5,0.5)”. Concerning the
iteration scheme, we choose: ITmax = 20 and TOL = 1.0e — 8. At first we report the
L2-errors e := L% (Q\ Bg (%)) for R € {0.05,0.1,0.2,0.3} on a sequence of uniform grids
having the mesh size h = 21t . 1—16, 1 €{1,2,3,4,5}. This is motivated by the fact that in
applications one is interested in an optimal convergence behavior in Q\ Bg (x¢), because in
Bpg (x0) the physics is governed by the fracture flow and not by the solution for the porous
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3 Stationary coupled 3D-1D diffusion-reaction models

Table 3.8: L2-error eg on Q\ Br(zg) for g = (0.5,0.5)7.

R =0.05| nco R=0.1 nco R=0.2 nco R=03 nco
4.14e — 4 6.39¢ — 4 4.55¢ — 4 3.14e — 4
1.72e —4 | 1.27 | 1.32¢—4 | 2.28 | 1.04de —4 | 2.13 | 868 —5 | 1.85
3.59e —5 | 2.26 | 3.06e —5 | 2.11 | 2.56e —5 | 2.02 | 2.15e — 5 | 2.01
8.34e — 6 | 2.11 | 7.54e — 6 | 2.02 | 6.57e — 6 | 1.97 | 5.26e — 6 | 2.03
2.05e —6 | 2.02 | 1.90e —6 | 1.99 | 1.64e — 6 | 2.00 | 1.31e — 6 | 2.01

Y | W N |~

matrix. Some simple calculations reveal that the stability condition (3.62) is fulfilled for all
R € {0.05,0.1,0.2,0.3}. Thus we expect our iteration scheme to converge in all cases.

The results in Table 3.8 show that we have for every R € {0.05,0.1,0.2,0.3} optimal
convergence on Q\ Br (o).

Varying D

For a further numerical test, we vary the parameter D such that D € {3,4,6,7}. The other

1 1
327 64
scheme, we have: ITmaxr = 40 and TOL = 1.0e — 8. Apparently the stability condition
(3.62) is fulfilled for D € {3,4} and not fulfilled for D € {6,7}. In the following figure we

report for each iteration the logarithm of the local discretization error eg.

parameters are chosen as follows: ug = 1, R = 0.1 and h € . For our iteration

Iog(eR)

~N O W

YY7P W
~N O s w
[ I ] I

i
bt

0 10 26 30 40 0 10 20 30 40
lterations Iterations

Figure 3.5: Convergence behavior of the iteration scheme for h = 1/32 (left), conver-
gence behavior of the iteration scheme for h = 1/64 (right).

Obviously, the iteration scheme is not convergent for D € {6, 7}, but for D € {3,4}. This
is in agreement with 3.62 and shows the significance of the stability condition.
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3 Stationary coupled 3D-1D diffusion-reaction models

Two Dirac measures

For our last example, we consider a coupled Poisson equation having two Dirac mea-
sures at xo = (0.25,0.5)" and x3 = (0.75,0.5)" at its right hand side:

—Au = 21 R (ug — Tp) Oxg + 27 R (ug — 1) 0, in Q= (0,1)%, (3.63)

u=1ue on O,
where .
u; = / u(xi, R,270) df, i€ {0,1}.
0
The exact solution wu. 1 is given by:

S —Ruy
“' " 1T -RInR— Rlnro

(Inrg+1Inr), ri(x) =[x —xil|, 1 € {0,1}, ro1 = ||x0 — x1]| -

v v A
0.06-| ‘ : :
005 > % G d

) v v b

0.04 | 0.035 D',’D— : : : : :
003 2 4N i e h=1/32
: : ——h=1/64

0.02 - h=1/128

-4.5 : :

0.01- : :

0L _d ‘ ;
0 1 2 3 4 5 6

Iterations

Figure 3.6: Solution plot of (3.63) (left), convergence behavior of the iteration scheme
for R = 0.1 (right)

For our numerical test, we choose: ug = 1, I Tmax = 10, TOL = 1.0e — 8 and R €
{0.025,0.05,0.1,0.2} and report the L?-errors eg := L (Q \ (Br (xo) U Bg (x1))) for R €
{0.025,0.05,0.1,0.2} on a sequence of uniform grids having the mesh size h = 2'~. 16
1 €{1,2,3,4,5}. The discretization yields a similar equation system like (3.55). Besides the
standard matrix for the Laplacian there are two more rows and lines discretizing the coupling
terms, if we consider the average values g and @y as further unknowns. Furthermore the

vector by contains the discretization of two Dirac source terms instead of only one Dirac
source term. The results are reported in Table 3.9.

It can be observed that we have besides a few exceptions an optimal convergence rate of
order 2 for linear elements. In Figure 3.6 one can see on the left hand side the numerical
solution of (3.63). The other picture shows the logarithm of the approximation error eg
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3 Stationary coupled 3D-1D diffusion-reaction models

Table 3.9: L2-error e on 2\ (Bg (x0) U Bg (x1)) for xo = (0.25,0.5)T and x; =

(0.75,0.5)71‘
[ | R=0.025| nco | R=0.05| nco R=0.1 nco | R=0.2 | nco
1| 2.80e—3 2.40e — 3 3.40e — 3 1.40e — 3
2| 69le—4 | 2.02 | 1.00e—3 | 1.26 | 7.03e —4 | 2.27 | 3.27e—4 | 2.10
3] 2.8e—4 | 1.27 | 2.25e—4 | 2.15 | 1.62¢ —4 | 2.12 | 8.04de — 5 | 2.02
41 6.23¢—5 | 2.20 | 5.46e —5 | 2.15 | 4.0le—5 | 2.01 | 2.10e — 5 | 1.94
5| 1.52e—5 | 2.04 | 1.35¢—5 | 2.02 | 1.02¢ —5 | 1.98 | 5.27¢ — 6 | 1.99

for R = 0.1 depending on the iteration number of our numerical scheme. The error ey is
defined as follows:

1
uo—/ Up, (Xo,R,Qﬂ'@) do| .
0

€y —

We note that the error becomes constant after 4 iterations.

3.2.3 3D-1D coupled problem

In the last subsection, we developed an iterative scheme for the numerical solution of a 2D
coupled problem (Model problem 3). This solution technique is now extended to treat a
3D-1D coupled problem (Model problem 1) (3.24)-(3.26). For convenience of the reader,
we rewrite Model problem 1:

—Auzg + B (Tzg — u1q) oy =0 in  Q=(0,1) C R, (3.64a)
d d .
% (Klddsuld> + B (urg —uzq) =0 inACQ, (3.64b)
2m
. 1
with Kig(z) = 1+2+32%, B = iR and A = {(z,y,2) [t =y =05, 2€ (0,1) }. The

set A defining the main axis of the fracture can be parameterized as follows:
A:[0,1] = Q, s~ (0.5,0.5,5)".

Comparing (3.64a) and (3.64b) with (3.24)-(3.26) one observes that Ksq = I, msq = 0,
r3q = 0 and § = 2w RD holds. For these parameters a solution of (3.64a) and (3.64b) is
given by:

1

W, ,2) =~ T == 05 4 (- 05)%, ui(s) = 145,

2

Providing the boundary conditions:

8g3d:—2ilnr on I N{(z,y,z) € ]z=1},

(’9qu1 1 4 uld((]):l’
a;d:glnT On@Qﬁ{(.T,y,Z)GQ’Z:O}7 and ) (1)_2
usg = u on 02\ {(z,y,2) € 2]z =0V 2 = 1}, T
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3 Stationary coupled 3D-1D diffusion-reaction models

u§y and u$% are the unique solutions of (3.64a) and (3.64b). To solve the above PDE
system numerically, we decouple the PDEs (3.64a) and (3.64b) by establishing the following
iterative scheme:

—Ault = _p <ug’;“) ult >> 8a, (3.65a)

d d ulktD) (k+1) k:+1
—— | K3 .
o (Ruagls?) 4ty = 0 (3.650)

where ug?i)(s) =0, s € (0,1), u:(,)(()i)( ) =0, x € Q. The boundary conditions are for
each iteration the same as for problem (3.64a), (3.64b). One observes that for a fixed
curve parameter s € (0,1) problem (3.65a) can be considered as a 2D coupled problem
ModelProblem 3, if one restricts the PDE to a plain perpendicular to the tangent in s
and containing the point A(s) € ). Based on this observation, we establish similar to the
iteration scheme presented in the previous subsection a further iteration scheme for the
solution of (3.65a):

Mt (x) = WM x e Q,

3d 3d
—Aué’flﬂ’lﬂ) —_B <uz())]:l+1,l) _ u@) SA. (3.66)
(k:—i—l 0 .

On the assumption that ug is known from the last iteration, the PDE (3.66) corresponds
to a Poisson problem Wlth line source term. As a first step towards a numerical solution of
the 3D problem (3.66), we introduce a finite element space V},, based on an uniform grid
Thy, of mesh size hzq partitioning the domain Q) into disjoint cubes. A possible basis for

Vhay 18 given by a nodal Lagrange basis {% 1, where N34 denotes the dimension of V},,.

By means of this basis a function ugy—l ) ¢ Vi, can be represented as follows:
N3g
E+1,0141) (k+1, l+1
ugd Z Cpi X ( ) » X € Q7
where ug;rl’“rl)(i) denotes the i-th component of the coordinate vector ug;rl D) ¢ RNsa,
Applying a standard finite element approximation to (3.66), we obtain a linear system of
. (k+1,141),
equations to compute u;,
k41,041 k+1,l
Agquip D — L) (3.67)

Azy € RN3a*Naa g the standard stiffness matrix related to the Laplacian operator [28].
Besides the incorporation of the boundary conditions, the assembly of the right hand side
involves the discretization of a line integral, see, e.g., [24|[Chapter 4,5] [44]. For every ¢;
with supp (;) N A # 0 and supp (¢;) N 9Q = (), we have to compute the following integral
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3 Stationary coupled 3D-1D diffusion-reaction models

for the i-th entry of the right hand side vector:

k+ll ,6’/ < (10 g;;)) o dA

_ g™ ( (k10) ug‘;)) () - oi (A(s))HA(s)H2 ds. (3.68)

t1,i

The curve parameters 1 ; and t2; corresponding to a basis function ¢; exhibit the following
features:

(i) t1,; = inf {s € [0,1] ] A(s) € supp (i) },
(ii) t2; = sup{s € [0,1]| A(s) € supp (¥:) },
(iii) {A(s)|s € (t1,,t2,4)} C supp (vi).

Approximating the integral in (3.68) by a Gauss quadrature, we have:

_ 1
05700 - 0 (T ) (56 (G €0)

o nGP S
= ALY (ué‘;“ ! u§?) (50 () s (A(si (§)) (3.69)

j=1

where we assume that the curve is parameterized such that HA(S) H2 = 1 holds. The variable

transformation s; is defined as follows:

sic [=1,1] = [tis,t2]

to; 1,
2 (146)+ B (1 - ).

By ¢ and wj, j = 1,...,nGP we denote the weights and nodes of the quadrature rule.
(k)

The values for u;; at the quadrature nodes are determined by standard interpolation

techniques (see Figure 3.7, left). For the approximation of the average values ugfiﬂ’l) (see

also (3.26)) we first construct a circle of radius R around A (s; (§;)). The plane defining
the location of the circle contains the curve point A (s; (§;)) and is perpendicular to the
tangent ¢t; on A at s; (§;) (see Figure 3.7, right). As a next step we distribute nC' nodes
on this circle in an uniform or in an adaptive manner. The circle nodes are denoted by
Cm,j € §1. Finally the solution ué@“’“ is interpolated at the nodes ¢, ; and the average is
computed by an arithmetic mean of these values:

nC
k+1,0) 1 (k+1,0)
u{HD —CE ulE (3.70)

For the numerical solution of (3.65b), we choose standard linear finite elements [15, 28].
The corresponding finite element space is denoted by V},,, and is based on an uniform grid
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(k)
% \ U4
(k) .\./,/.
u X (k)
1d] (k) v Mid 2
UY1d1+1 o
+ + - +
S] Sl+1 } Sl+2

si (&)

Figure 3.7: Left: Computation of ugz) at s; (§;) by linear interpolation. The values
uglfl?l, uglfi)’lﬂ, ugz)’lw indicate the values of ugz) at the grid nodes sy, s;+1 and s;42. Right:

Circle nodes ¢, 4, m € {1,...,nC}, nC = 6 around the midpoint A (s; (§;)).

Th,, of mesh size hiq partitioning the unit interval [0,1]. For u&? € Vh,,, we have the

following representation:

Nig
k K)o »
uf(s) =Y ul) () ¢ils), s € 0.1).
i=1
Niq is the dimension of Vi and ¢; its Lagrange basis. By wuig;, ¢ = 1,..., Nig, we

denote the coordinates related to uiq . Following the standard finite element approach,
one obtains for the computation of the coordinate vector

T
k k k
ugd) = (ugd)(l), ce ugd) (Nld)) e RN
in the (k + 1)-th iteration a linear system of equations:

Ayt = p®), (3.71)

where A4 € RMaXNia arises from the discretization of the elliptic operator

d d
f% (Klddso) +ﬁ0 .

The right hand side vector has the following shape:

1 fori=1,

b(lljl) (i) = { 2 for i = Nyq, (3.72)

stupp(cﬁi) U§Z+1) (S) : @Z(S) ds for 4 7é 17 Nld‘
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3 Stationary coupled 3D-1D diffusion-reaction models

Note that the entries of the first and last row of A4 have to be zero except of the diagonal
entries, if one wants to integrate the boundary conditions into the right hand side. Let us
assume that supp (¢;) = (s1,4,s2,i) C [0, 1], then we can write:

- o ———
/ ule ™ (s) - @ils) ds = / uly ™ (s) - @ils) ds.
supp($i) 51,

Algorithm 7 Iterative solution scheme for the PDE system (3.64a), (3.64b).

§3<s>z €(0,1)
ull)(s) = <0>< )+2-TOLy, s € (0,1)
u%0 (x) =0, x € Q
uSdO)( =0, xe

while k < ITmaz; AND |[ufi"™ —uf|| > T0L, do

=0
é’;“ 1) §12+1 ,0) +2.TOL,

while | < ITmaz; AND ||ufg ™) —u{g™|| > T0L, do

Assemble b( D using (3.69)
Solve system (3.67)
l=1+1

end while

Assemble b(lljl) using (3.72)

Solve system (3.71)
L BHLO) _ (D)

end while

Using a Gauss quadrature rule for the numerical approximation of the integral, we obtain:

82 ———— L ) 1 —
[ ) e s = A [T (0 4 (i) e

S0 — s nGP
~ % 3 B (5:(69)) - @i (8i(&5)) w

j=1

& and wj, j € {1,...,nGP} are as for the 3D problem the nodes and weights of the
quadrature rule. The transformation §; is given by:

5 [—1,1] = [s1,4, 524 ,

524 S1,4
S+ 5 (19,

To compute the average values at §; ({;) one can use the same techniques which were
applied to derive (3.70). Providing two tolerances TOLy and TOL; together with two
upper bounds for the iteration numbers IT'max; and ITmax;, we have the following
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3 Stationary coupled 3D-1D diffusion-reaction models

algorithm for the numerical solution of the PDE system (3.64a), (3.64b). Comparing this
solution algorithm to the discretization technique presented in [24][Chapter 5] this approach
has two advantages:

1. In every iteration standard elliptic PDEs have to be solved.

2. Different mesh sizes for the 1D problem and the 3D problem can be used.

Numerical tests

The following figures show some numerical results for R = 0.05. In Figure 3.8 the numerical
solutions ug];), k=1,...,4, of the 1D-problem for the first four iterations are depicted. It
can be observed that the 1D-solution converges very fast towards the exact solution. After
the forth iteration the numerical solution is very close to the exact solution u{3(s) =1+ s
and can not be distinguished from it. Figure 3.9 shows a cross section of the 3D-solution
and the 3D-solution in two slices at z = 0.75 and z = 0.25. u14 is plotted on a straight tube
of radius R = 0.05 around the middle axis A. As expected usq is rotationally symmetric

around the curve A.

2 2
= numerical L = numerical
1.8} == =exact R, 1 1.8+{===exact
1.6 RS 1.6
© ". o
=3 PS4 =
1.4 R 1.4t
T.2p et 1.2
‘I L 1 1 1 ‘I L L L L
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
s
2 T ; 2
= numerical =——numerical
181 o e - oxact 1:8/| = = =exact
1.6f 1.6
© o
5 1.4¢ S 14
1.2 1.2
1 1
08 02 04 o6 o8 0802 04 06 08

Figure 3.8: Convergence of the solution uj4. After Iteration 1 (top left), Tteration 2
(top right), Iteration 3 (bottom left) and Iteration 4 (bottom right).
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ulD

175

[1.5

[1.25

i‘?,é’
f12

Eo.a
Eo.a

0.06

Figure 3.9: Numerical approximations for the 1D-3D problem. The picture at the
bottom shows the surface plot of the 3D unit cube €2, the solution usq at y = 0 and the
solution u14 on a tube of radius R around the axis A. At the top the solution usp can be
seen in two slices at z = 0.75 and z = 0.25.
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Table 3.10: Local L2-error L? (Q\ Zg) for R = 0.05

l c=1 nco | ¢=1/2 | nco | ¢=1/4 | nco
11| 3.50e —3 5.60e — 3 6.00e — 3

2| 548¢e—4 | 2.68 | 3.50e —3 | 0.68 | 5.60e —3 | 0.10
311.03e—-4]|241 | 548¢e—4 | 2.68 | 3.50e —3 | 0.68
41272¢e—-5]1.92 | 1.03e—4 | 2.41 | 5.48¢e —4 | 2.68

Table 3.11: LZ%-error L? (0,1) for R = 0.05

l c=1 nco | ¢=1/2 | nco | ¢=1/4 | nco
1] 1.70e -3 3.10e — 3 1.60e — 3

21449 —5 | 5.24 | 1.70e —3 | 0.87 | 3.20e — 3 | -1.00
31238 —6|4.23 | 453e—5|5.23 | 1.7T0e —3 | 0.87
4 15.80e—7|2.04 | 2.46e—6 | 4.20 | 4.55e —5 | 5.22

Table 3.12: Local L?-error L? (2\ Zg) for R = 0.1

l c=1 nco | ¢=1/2 | nco | ¢=1/4 | nco
1| 1.00e -3 4.00e — 3 5.20e — 3

21199 —4 1] 2.33 | 1.00e —3 | 2.00 | 4.00e — 3 | 0.38
31532e—-5|1.90 | 1.99¢ —4 | 2.33 | 1.00e — 3 | 2.00
4113le—5|2.02 | 510e—5 | 1.96 | 1.99¢e —4 | 2.33

Table 3.13: L%-error L? (0,1) for R =0.1

! c=1 nco | ¢=1/2 | nco | ¢=1/4 | nco
1| 4.77e—-5 1.60e — 3 2.80e — 3

21322e—-61|3.89|484e—-5|5.05|1.70e—-3 | 0.72
3|81le—71]1.99 | 3.34e—6 | 3.86 | 4.87e —5 | 5.12
416.69¢e —8 | 3.60 | 8.35e —7 | 2.00 | 3.35¢ —6 | 3.86

Finally we investigate at the end of this section, how a different meshing for the 1D-problem
and the 3D-problem affects the convergence behavior of the numerical scheme. In order to
reduce the computational effort, one is interested in keeping the mesh for the expensive 3D
problem as coarse as possible while keeping the mesh for the cheap 1D problem sufficiently
fine. Therefore the above PDE system is discretized by two different mesh sizes hq14 and hzq
with hig =c- hgg, c € {1, %, %} For the numerical solution, we have chosen the following
parameters:

h1d 1€ {1,2,3,4}

B 1
16 20-D)7
and R € {0.05,0.1}. For the iteration scheme, we choose: TOL; = TOLj = 1.0e — 10 and
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3 Stationary coupled 3D-1D diffusion-reaction models

ITmazx), = ITmax; = 7. The following tables (Table 3.10-3.13) show the L? (0, 1)-error
with respect to the 1D-solution uyg and the local L? (Q\ Zg)-error with respect to the
3D-solution ugg, where Zr denotes a cylinder around A with radius R.

As the factor ¢ decreases, the preasymptotic range for both the 3D-problem and the 1D-
problem is enlarged by one level. As in the previous subsections, the full convergence can
only be seen in numerics, if h3p < R holds. Furthermore it can be observed that for every ¢
and the first refinement levels matching the condition hgp < R, the 1D-solution converges
faster than it can be expected, in general. This is due to the fact that the analytical solution
u{y is linear and can thus be represented exactly by linear Finite elements.
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4 Blood flow and oxygen transport
in vascularized human tissue

Based on the numerical models for network flow and stationary diffusion-reaction problems,
developed in the previous chapters of this thesis, we derive in this final chapter a multi-scale
(3D-1D-0D coupled) model to simulate biological transfer mechanisms between blood vessels
and tissue. In particular, the impact of an arterial stenosis on oxygen delivery to the tissue
is investigated.

Arterial stenosis, a serious form of arterial disease is frequently found to reduce blood
flow and transport of oxygen through large and middle sized arteries. Due to pressure
drops and reduced oxygen supply, ischemia in the distal tissue results. In severe cases, this
may lead to an amputation of legs or arms. To make such serious and painful procedures
obsolete, a better understanding of the hemodynamic effects caused by a stenosis is essential
[14, 73, 106, 120]. As a first step towards a better insight into this problem, we study in
this thesis the influence of a stenosis located in a distal artery (artery 54, see Figure 4.5,
left).

Artery 54 is part of an arterial tree consisting of the 55 main arteries like the aorta (artery
1), the carotids (artery 12,13,15 and 16) and the largest arteries in legs and arms, e.g. artery
10 and 25. Within this network, we compute pressure and velocity waves together with
oxygen transport from the heart to the arterioles. In order to decrease the computational
effort, we use as in Chapter 2 reduced 1D transport equation systems to determine pressure,
velocity and concentration within the arteries. At the outlets of the terminal vessels, we
couple the 1D models as in Subsection 2.3.2 with lumped parameter models (0D), e.g.,
a R1CRo-model, to incorporate the resistance and compliance of the omitted arteries,
arterioles and capillaries. The corresponding values for the total resistances R = Ry + Rs
and compliances C are provided in Table 4.3. For R; we choose as in Subsection 2.4 the
characteristic impedance (2.125).

Since we are only interested in the local impact of the stenosis on tissue perfusion not the
entire network is embedded into tissue, but only artery 54, 55 and the lower third of artery
53 are coupled with surrounding tissue (red rectangle in Figure 4.1). The leg consists on
a macroscale, besides the bones, of large arteries, small arteries branching out of them
and tissue that is supplied by the small arteries and the capillaries connected to them.
According to medical understanding [105], the velocity of the flow within the large arteries
ranges from 10 em/s to 20 ¢m/s, while in the smaller arteries the flow velocity is about
1 em/s. Within the capillary bed and tissue, we have a slow and rather diffusion dominated
flow.
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Figure 4.1: Simplified geometry of the right leg’s lower part (red rectangle, left). The
small arteries and the tissue are considered as a porous medium and summarized together
with the larger arteries in a cuboid (right)

All in all there are different types of flow in the considered domain. To create a numerical
model which accounts for this heterogeneous flow behavior, we apply a two domain approach,
i.e., we treat the small arteries and the tissue as a 3D porous medium and put them together
with the larger arteries in a cuboid (see Figure 4.1, right).

As a next step, the fast flow region consisting of the larger arteries is separated from the
rest of the domain. Since fast blood flow and oxygen transport in these vessels are governed
by 1D transport equations, other models are required for the slow 3D porous medium
flow and transport processes. The challenges are now to assign an appropriate model to
the 3D porous medium and to establish a coupling between the 3D and the 1D problems
(see Figure 4.2). In the following subsections, we give a detailed description of a coupling
strategy by line source terms. Furthermore we discuss the discretization of the resulting
PDE systems and provide some simulation results.

4.1 Coupling of 0D, 1D and 3D problems

At first we discuss the coupling between the 1D problems for the network flow and the
surrounding 3D tissue. The unknowns associated with the 3D problems are indicated by
ksaq, k € {p,c}, whereas the unknowns for the i-th vessel of the network are denoted by
kiai, k € {p,q,c}. The unknowns related to the whole embedded network are denoted
by k14, k € {p,q,c}. p stands for the pressure variable, ¢ for the flow rate and ¢ for
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Coupling 22?
- >

Network

Porous medium

Figure 4.2: Separation of the larger arteries representing the fast flow region from the
slow flow region modeled as a porous medium. The 3D porous medium consists of the
arterioles and the tissue of the considered domain.

the volumetric concentration. Our model concerning the 3D-1D coupling is based on the
following assumptions:

(A1) The pressure p3q within the tissue is governed by the following parabolic PDE [24,
Chapter 6.3|:

0
ngapzz,d — V- K33Vp3q + apsq — ¢3q = fp- (4.1)

The parameter Csq [kPa_l] denotes the hydraulic compliance of the tissue.
Ksy [ch kPa! 3*1] is the tissue permeability for blood, « [chfl 3*1] is the
hydraulic conductance and the source term f, is given by:

fp = apuen + q"“;@), t>0, (4.2)

where pyep is the average venous blood pressure, V' denotes the volume of the tissue
domain and g (t) is the flow rate at the outlets of the embedded vessel system.
The exchange term ¢34 will be specified in the remainder of this section. Note that
this model does not account for different flow behavior within the tissue. Since a
system of blood vessels in tissue exhibits a hierarchical structure, each vessel has
a certain branching order, having its specific properties, which depend mainly on
the radius. Consequently, one should not assign single values to the hydraulic tissue
permeability and other averaged porous medium quantities. To incorporate the
hierarchical structure into the model one can consider hierarchical flow models that
have been investigated by Huyghe and Vancampen [54, 112].
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mmol
cm3

(A2) The transport problem for the oxygen concentration in tissue csq [ ] is given by

[24, Chapter 6.3]:

0
pric V - (=D3qVesq + vesq) + waqcsqg — 034 = fe. (4.3)

D3y {CTT denotes the diffusion coefficient for oxygen in tissue. The velocity field v

is provided by Darcy’s law:

V= —7Vp3d> (44)
3d
where n3g denotes the porosity of the 3D tissue volume. The value w3y accounts for
the tissue perfusion, i.e., it quantifies the blood flow rate from the tissue into the
venous vessel system:

Gout (t)
v .

W3d = aP3d — fp =« (p3d - pven) - (45>
The source term f. can be used to describe metabolic or biochemical processes. 034 is
a coupling term which is again discussed in the remainder of this section.

(A3) For the vessels embedded into the tissue, we restrict ourselves to the linearized
problem (2.24a),(2.24b). The exchange terms ¢y and ¢, are defined later. For the
computation of flow and transport through the remaining network, one can use the
non-linear models (2.14a),(2.14b).

(A4) The small vessels that are branching out of the arteries to supply the surrounding
tissue are not resolved by the 1D models. This kind of flow can be accounted for by a
proportionality coefficient L, weighting the difference between blood pressure in the
vessel and in the tissue. In literature this coefficient is often referred to as effective
hydraulic conductivity [24, Chapter 6.5].

(A5) Due to the fact that blood flows from the vessels into the tissue matrix, the oxygen
concentration on the vessel wall is equal to the oxygen concentration within the
vessel, i.e., the interface between vessel and tissue is the inlet of the tissue domain
[24, Chapter 6.5].

In Section 3.1 we have already shown, how a diffusion-reaction problem in a 3D domain
containing a vessel Vg of radius R can be simplified in the limit R — 0 to a 3D-1D coupled
problem. Applying suitable boundary conditions on the surface of Vg, it turns out that the
1D problem and the 3D problem are coupled by their source terms, where the source term
of the 3D problem is concentrated on a Dirac measure given by the main axis A of the
vessel. Both source terms consist of the difference between the solution of the 1D problem
u1g and an averaged value ugzg for each curve parameter s of A (see Chapter 3, Model
problem 1, (3.24)).

The subnetwork included in the considered tissue block  C R3, is now decomposed into
four single vessels, where we split the artery containing the stenosis into a proximal and a
distal part. The vessels embedded into the porous medium are denoted by V7, Vo, V3 and
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'l' V2
Vi e
4
’ out out
'I' ds P2
V2 ,'
’ st
. L
P Pst
\ Stenosis in .
n
V4 S s ~ o - q3 p3
V3 S~ ~
. “~..| Vs

Figure 4.3: Decomposition of the subnetwork embedded in the tissue block. The vessel
containing the stenosis is split into two parts. By V;, ¢ € {1,2, 3,4}, we denote the vessels
of the subnetwork embedded in the porous matrix (left). In order to account for the
impact of the stenosis, one has to solve the ODE system (4.6)-(4.7) for ps: and §s:. By
these values and p§“t, pi*, ¢g“t, ¢i", the upwinded fluxes at the outlet of V5 and the inlet
of V3 can be determined (right).

Two tube coupling
(1D-1D)

Ay

Bifurcation coupling

(1D-1D-1D)
Ao
] Stenosis coupling
A4 Stenosis (1D-0D)
As
Outflow coupling Outflow coupling
(1D-0D) ; (1D-0D)

Figure 4.4: Decomposition of the subnetwork embedded in the tissue block. The vessel
containing the stenosis is split into two parts. By A;, i € {1,2,3,4}, we denote the main
axes of the corresponding vessels on which the 1D models are defined (left). The single
vessels are interconnected by different coupling problems (right).
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Vi (see Figure 4.3). By A;, i € {1,2,3,4}, we denote the main axes of the corresponding
vessels V1-Vy (see Figure 4.4), where the different lines A; are parameterized as follows:

A 2 ]0,0] = Q, s+ Xei(s).

l; is the length of vessel A;, i € {1,2,3,4}. Combining the lines A; yields a 1D representation
A of the embedded network: A
A= A
i=1

The outlet of V5 and the inlet of V3 adjacent to the stenosis are coupled by a 0D model,
similar to the ODE-system (2.133)-(2.134) presented in Subsection 2.4. To adapt this model
out

to the problem which is investigated in this chapter, one has to replace Q)¢ and ()34 by ¢5
and qé”, denoting the flow rates at the outlet of V5 and the inlet of Vj:

0P .
Cst gf =" — ¢}, (4.6)
Kuplsi Odst Ko . Kip (Ao S
— =A — —1 . 4.7
AO ot Pst + AODO qst + 2A02 Ast qst ’qst| ( )

Pressure and flow rate within the stenosis (pst, ¢s¢) are approximated analogous to (2.135):

up up up up
A Dy +Dp N g5 +q
Dst = 2 2 3 ) qst = 2 2 3 3 (48)
where py”, p3” 5" and ¢3” are the upwinded values at the outlet of V5 and the inlet of V3.

in out

Apg is given by: Apg = p§* — p3“t, the values p4* and pg* are interpolated at the inlet of
V3 and the outlet of V5. Ap in (4.7) is the section area at rest of vessel 54 (see Figure 4.5
and Table 4.3 for the radius of Ag). The remaining parameters can be adopted from Table
2.10 and 2.11. For the computation of the upwinded values adjacent to the stenosis one has
to close the system by the outgoing characteristics of the linearized 1D system (Theorem
2.3). The upwinded concentration values are determined by standard upwinding.

The 3D-1D coupled problem for blood flow is obtained by similar techniques as in Subsection
3.1, [24, Chapter 6.5]. Using (4.1) and (2.24a) the coupled 3D-1D model for tissue perfusion
is directly obtained by the coupling strategy discussed in Section 3.1 [24].

Tissue perfusion problem

o)
Csd% —V - (K34Vpsq) + apsq — ¢ (psa;p1a) 04 = fp, t>0, x€Q, (4.92)

9 . 0 L\ g , (P3d,p1d)
) (pld,l) (0 @)@ (pld,z> I vy —0, t>0,5€(0,1;)(4.9b)
ot \q1d,i s 0 ) 05 \Qd Rigiq14,q
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i€{1,2,3,4}. The term ¢d, has to be understood as a Dirac measure concentrated on A.
The line density ¢ is defined as follows:

1
& (p3d, p1a) (s) = 2mR; Ly ; (pm,i(s) _de,i(3)> . D3di(s) = / p3d (s, Ri, 2m0) db.
0
if s €10,14]. (4.10)

It can be interpreted as the blood flow leakage from the vessels to the tissue (per unit
length). For the computation of psq; (s, R;,2m6) in (4.10) one has to integrate the pressure
in 3D (p3q) on a circle of radius R; with center x¢;(s) and perpendicular to the tangent in
Xci(s). If it holds: p1q; > P34, then blood is leaving vessel V; into the porous medium. In
the other case, blood is entering the vessel from the porous matrix, however this case is of no
concern in the considered application. The leakage term is weighted by the proportionality
factor L, ; modeling the effective hydraulic conductivity (see (A4)). Finally, the value gous
in f, is the sum of the flow rates ¢* and ¢3“* at the outlets of vessel V3 and Vj:

Qout (1) = @5 (£)0n415) + 43" (1)0p, (1) -
A, (1) 1s the Dirac measure concentrated on the point A; (l;) € Q.
Coupling 3D-1D

& Network
1D-NL,L-models

Outflow models
0D-RCR models

Stenosis (0D)

?T

Figure 4.5: Multi-scale model for network flow in tissue. Flow and transport within
the tissue are modeled by 3D models, while the network flow is governed by 1D models.
The influence of the omitted vessels and the stenosis is simulated by the help of lumped
or 0D models. This yields us a 3D-1D-0D coupled model.

Analogously to the tissue perfusion problem, we establish a coupled mass transfer problem
which can be obtained by combining the 3D problem (4.3) and the 1D problem (2.24b).
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Mass transport problem

dc
2 + V- (=D34Vesg + vesq) + wsgcsqg — 0 (¢3d, c1a) 0 = fe, t >0, x € Q,  (4.11a)

ot
dcid,i n 0 (¢4 qd n ¢ (p3d; P1d)
ot Js AO,i AO,i

Cld;i = 0,t>0, se (O,ZZ) (4.11b)

where w3y and v are given by (4.5) and (4.4), i € {1,2,3,4}. The coupling term 03, is
defined as follows:

1
034 (c3d, c1q) (s) = 2mR;iLe i (C1ai — C3dq) s  C3d,i(s) = / csd (s, R;, 2m0) db,
0
if s €[0,1;]. (4.12)

The coupling term can be considered as a penalization term to weakly enforce the condition
Cl1d,; = C3q; obtained from assumption (A5). The equation c¢14; = ¢34; means that the
cross-sectional concentration at the actual vessel surface equals the vessel concentration cyg;.
L.; accounts for the permeability of the vessel wall and Ag; = R?ﬂ' denotes the section
area of the vessel associated with A;, where we neglect the variations in the cross-sectional
area, i.e., we assume that the vessel walls are rigid walls. By conservation of the blood flow

rate we have:
8‘]1d,i

0s

so that in this case an alternative version of the 1D transport equation (4.11b) is given
by:

+ ¢ =0,

Ocia n Ociay
ot qid,i Os
The source term f. is given by the amount of oxygen leaving the network through the
outlets of V3 and V, and a Michaelis-Menten law for the metabolic rate:

=0, t>0,s€e(0,l).

out C3d
= —Cpp» —————— 4.13
fc fc co C34.0 T C3d, ( )

where C¢, denotes the consumption rate of oxygen in tissue and c3q is the average oxygen
concentration in tissue. Furthermore fo% is given by:

out . .out out | .out
out _ 93 " C3 S + 44 "¢ S
c - V Ag(lg) V A4(l4)'

V' is the volume perfused by the outlets of vessel V3 and Vj.

Initial and boundary conditions

The boundary and initial conditions for the Tissue perfusion and Mass transport
problem are provided in (4.14a)-(4.14d).
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Kgd% =0, t>0, xedQ, (4.14a)
on
934 _ 450, x 00, (4.14b)
Oon
p3q (0,x) =0, ¢34 (0,x) =0, x € §, (4.14c)
DP1d (O> 5) = 07 q1d (07 5) = O> Cid (07 5) = 07 s € (07 l’L) ) (414d)

where n is the outer normal in x € 9€). The boundary values for the 1D problems associated
to A; are provided by coupling the 1D models with the reduced or lumped models adjacent
to the corresponding inflow (s = 0) or outflow (s = [;) boundaries. The different coupling
problems are summarized in Table 4.1 and Figure 4.4.

Considering the PDE systems (4.9a),(4.9b); (4.11a),(4.11b) and Table 4.1, it becomes
evident that we have a multi-scale (3D-1D-0D) coupled problem (see Figure 4.5).

Table 4.1: Coupling problems at the inflow and outflow boundaries of the different vessels.
For each coupling problem, we indicate the corresponding formulas and subsections.

Inflow boundaries (s = 0) Outflow boundaries (s = ;)
i =1 | 1D-1D coupling between the proximal and the Coupling at a bifurcation
distal part of vessel 52 (see Subsection 2.3.3) (see Subsection 2.3.4)
1=2 Coupling at a bifurcation 1D-0D coupling at
(see Subsection 2.3.4) the stenosis (see (4.6)-(4.7))
1=3 1D-0D coupling at 1D-0D coupling at an outflow
the stenosis (see (4.6)-(4.7)) boundary (see Subsection (2.3.2))
1=4 Coupling at a bifurcation 1D-0D coupling at an outflow
(see Subsection 2.3.4) boundary (see Subsection (2.3.2))

4.2 Algorithmic and numerical details

The numerical approximations of the 3D-1D problems (4.9a),(4.9b) and (4.11a),(4.11b) are
achieved by applying multiple time-stepping schemes |5, 42]. Multi rate or multiple time-
stepping methods have been introduced for time dependent systems in which a partitioning
in slow and fast flow variables is meaningful. As we already pointed out at the beginning
of this chapter, flow and transport within the blood vessels are fast compared to flow and
transport within the porous matrix. To capture the fast wave propagation within the 1D
network, small time steps are required to resolve it. On the other hand it is desirable to
exert large time steps for the computational expensive 3D problems.

For our numerical simulations we consider a finite time interval [0, t¢,q] which is discretized
by a uniform time step size Atgq for the 3D problems and a uniform time step size Aty
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for the 1D problems. The number of time steps for the 3D problems is denoted by Nsq.
Analogous to that we define the same quantity for the 1D problem by Ny4. It holds that

tend

tend
Atd— o an dAtd—
M Ny M Nag’
where we postulate that Atgg = m - Atyg, m € N, m > 1 holds, i.e., for each (slow) step of
the 3D problems, m (fast) sub steps of the 1D problems are exerted. The discrete time
steps for the 1D problems and the 3D problems are given by:

tggzlAtlda ie{oa"'aNld} andtéjé):j'At,gd, ]E{O,,Ngd}

Since the backward Euler scheme is unconditionally stable concerning the choice of the time
step size Atzq, we use this scheme for the time integration in 3D. For the time stepping of
the 1D transport equation systems, the third order SSP-Runge Kutta scheme is used (see
Subsection 2.2.5). This scheme is TVD and requires a time step restriction which is at least
as strict as the one of the forward Euler scheme. However, this property is no drawback
in this context, since we need small time steps for the fast flow and transport within the
network. Moreover one time step for the 1D problem requires no great computational effort
compared to the 3D problems.

For the spacial discretization, the cuboid 2 C R? is decomposed into uniform and disjoint
cells w;. The number of cells is given by Msg:

M3q
0= U wi, w;Nw; =10 fori# j.

i=1
Each cell w; has an edge length h3g. The nodes of the corresponding cartesian grid are
denoted by x; € Q, i = 1,..., M}, and the triangulation of 2 is denoted by Tp,,. As
a discretization method in space standard Finite elements or Finite Volumes proved to
be very effective for the parabolic problem (4.9a). For the convection-diffusion equation
(4.11a) cell centered Finite Volumes are well suited, due to their robustness with respect
to the convective term. In this thesis we use Q'-elements for the numerical treatment of
the parabolic problem (4.9a) and cell centered Finite Volumes to solve (4.11a) numerically.
The family {V},,} of Q! finite element spaces is defined as follows:

thd = {f eC (Q) }f|w7, € Ql (wi)7 Vw; € 7713d } :

As a basis for this space, we choose the Lagrangian Finite element basis {¢;},7=1,..., M},
satisfying: ¢; (x;) = d0;;. A fully implicit discretization of (4.9a) is given by:

Ai (CSd PWFD, @)Q + <K3d ' Vpé’é“), V‘P>Q + (Oépz(),Tl)? 90) (511 p37;+1 790>A =

1 (ng péd)w) </3p -p%("ﬂ)),w)A + (f("“),sO) Vo € Vigas
(4.15)

where
ﬂp(s) = QWRinyi, if s € [0,[1] ,i=1,...,4.
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The symbols (-, ), and (-, ), abbreviate the L?-scalar product on the 3D domain  and
on the 1D network A, respectively. pég and pgg denote the numerical approximations at

the [-th time step:
9 =1 Atgg=1-m-Atyy and 1) = 1. Atyg.

For the numerical discretization of the 1D transport equation system (4.9b), we a use higher
order discontinuous Galerkin method in space and a SSP Runge Kutta method in time.
Since these discretization methods have been discussed in Section 2.2, we abbreviate the
resulting 1D discretization by an operator @;ﬁ f,)Atm and skip a detailed discussion of the
numerical methods for (4.9b) at this point. By h14 and At;4 we indicate the spacial mesh

size in 1D and the time step size, respectively. Considering a time interval:
l+1 /+1 /
(B35 ) s Ang =1y =)

the discretization operator @;ﬁ ?At , maps the numerical approximations pgzl), qul) and

pébn// m]) to the new approximations pg d/H) qiglj 1):

(n'+1)  ('+1)\ _ 59 () () (ln'/m])
(pldz 114, >—©hplf,mld (pm 414 ,pgb J) (4.16)

Finally, we have the following discretization scheme for the coupled Tissue perfusion
problem (4.9a),(4.9b):

i (Coa ™)+ (Kaa- 907, 9) o+ (™), (6p Ww)A:

L O L (m(n+1)) (n+1)
Aty (CSd Dag ,w)Q + </8p Pig m)A + (fp ,sO)Q, Vo € Vigys
(4.17)
n'41 n'4+1 , n’ n'/m .
(Pl D) = oy, () el ply ™) =14 @)

This numerical scheme is decoupled into two implicit phases (see Figure 4.6):

1. We exert m mirco-steps of step size At14 of the 1D network problem, where we use

for every sub step the last computed 3D solution: p(L n'/m))

2. We advance by one macro-step of the 3D problem (step size Atsg), using the last

computed 1D solution: p(m(”H))

In every macro time step ( :(3?1)’ t(nﬂ)) an elliptic problem has to be solved to determine

(n+1)

the coordinate vector py; " related to the Finite element solution pgzﬂ) e V.
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Phase 1
t3d t1q
'\
(n+1) | (n+1) (m-(n+1)) _T_ (m-(n+1))
taq P3q P1d.i . t4
A 1
/
2. exert m micro I t<1r21+1>
time steps
Atgd I Atld
(n)
! t1d
() ] (n) . (mn) o (mn)
34 T P3d Piai T tid
1. transfer old
3D problem pressure values 1D problem
from the 3D problem
Phase 2
t3d t14d
'\
(n+1) | (n+1) (m:(n+1)) | _ (m-(n+1))
Y30 T Pad P1di t1d
A 4.exerta
single macro
time step
Atsgq
3. transfer new
pressure values
from the 1D problem
(n) £ (n) (mm) |, (mn)
t3q T P3dq Prai T 14
3D problem 1D problem

Figure 4.6: Multiple time stepping scheme for the Tissue perfusion problem (4.9a),
(4.9b).
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To discretize the convection-diffusion equation for mass transport by the cell centered
Finite Volume scheme we integrate the PDE (4.11a) over a cell w; and a time interval

(52 25a™):

t3q o) 3d
/ / gesd dtdx +/ / V - (=D3qVesg + vesq) dtde +
e Sy ot e Sy
J 3d J 3d
o o
/ /n) w3qc3q dtdx — / /W Be (€14 — C3q) dtdA =
wj t3d wjﬂA t3d
thy
/ / fedtde. ¥ j=1,..., Msy, (4.19)
w; JH5y)

where:
Be(s) =2nRiLc;, it se[0,l],i=1,...,4

Using integration by parts we arrive at:

(n+1)

tSd
/ C3d (tézﬂ), ac) dr — / C3d (tgz), x) dr — / D3,Vesg - nodsdt
wj wj téz) Bwj
(n+1) (n+1) (n+1)
134 t3a 34
+/ C3qV - n dsdt — / Be - c1g dtdA + / / Be - C3q dtdA
t;z> 8(0]' UJ]'OA t’(iz) wj NA t3z>
(1) ()
3d 3d .
—|—/ / W34C3d dtdx:/ / fedtdz ¥V j=1,...,Msq
w; Jt ") Wi t(n)
J 3d J 3d

(4.20)

Next we approximate c3q by a cell-wise constant function C'; where Cég)] denotes the value

in cell w; at time t:(;Z)' Moreover we subdivide the boundary dw; into facets ~;; which are

either intersections with other cells Ow; N dw; or intersections with the boundary dw; N 0.
Based on this notation (see Figure 4.7) and the proposed approximation, we approximate
the first two integrals occurring in (4.20) by:

/ C3d (tgzﬂ),a}) dx ~ Cég;l) |w;j] / €3d (té?,x) dr ~ Cég?j |w; ] (4.21)
wj Wi

For the third integral, we have:

i
/( ) D3dVC3d -n dsdt ~ Atnggd ch;+l) -1 ds
+1
= AtggD3a ) / vl n ds
i Ui
+1
~ AtzaD3q Z h/jl’ Vci(?:l ). n|$M,jLa
Vil
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where w7 ;1 denotes the center of the face v;;. The term Vc(n+ ) 1y i 18 approximated
by central differences:

0 if v; C o)
n]mM’ﬂ RS o) _ptnt)

Tl sk iy ¢ O,

h3q

Vc(nJrl)

(n) Yil l ~(1)

CSd.j XM.;I C3dkl
I e
I o
| CL)J 1 CUI
i :
I I

hsq

Figure 4.7: Notation used for the Finite Volume discretization.

The discretization of the diffusive part is abbreviated by the numerical flux ¢g;ys:

0 if i1 C o
1 J
Ddif (C:(;;Jr )> = DSdZ Iyl - e VL (4.22)
Vit T if ’}/]l ¢ 89
t(n+1)
3d (nt1)
D33Vesg - ndsdt = Aty - ¢diff (C3d >
5 Ow;

The integral accounting for the convective part of the PDE is discretized by:

n+1)

/< / C3qV - n dsdt = AtSd/ Cz(),ZH)V(nH) ‘n ds
8wj 8UJ'

J

_ At?)dz (n+1) (n+1) 1y ds

LT
0 if 5 C 00
~ Atsy Z |yl - Cégjl) §7+1) n; if v(nH) n; >0
it Cégjl)vﬁﬂ) -ny if v("H) ny; <0
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where v(l ntl) 4 is the vector field v at the time ts

case the numerical flux ¢.ony is given by:

("H‘ ) _ ( + 1) . AtSd and at TM,jl- In this

0 if Yt C o5
¢conv (V(n+1 ) 3Z+1)> Z "7]l| C?EZ—;D ](;H_l) nj; if V(l et ) nj > 0 (423)
Vit C?()Zjl)vj(?-i_l) i ¢8| fV( ntl) -y < 0,

(1)
Sik = Sk

Wi

Figure 4.8: Notation used for the line integrals.

Now we have to discretize two terms involving line integrals:

D)

/ /u Be - cra dtdA = Atsa / Be- iy lan = Atgdz / Be - VN,
wiNA Jtg w;NA

k=1 w]ﬂAk

For every single line integral, we have:

(2)
n Sik n .
/ e ey dA, = /<1J> Bels) e (s) HAk(S)HQ s,
w]ﬂAk sjk

where it holds for the integral bounds 55? and sﬁ):

(1) gk inf {s € [0,1]| Ax(s) € wj },

(ii) sg.k) =sup{s € [0,1]]| Ax(s) € w; },
(iii) {Ak(s) ‘S € (sﬁ), Sﬁ)) } C wj.
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Replacing ¢14 by €34 in the previous formulas, the numerical flux ¢;y;,,. for both line integrals
is given by:

wj NAy

4
Bline (Bc,cf;“, E,,Z*”) =y / Be - VN, — / B VAN, (4.24)
k=1 wjﬂAk

The remaining volume integrals are approximated as follows:

t(n+1) (n+1

/ /(n) W3dC3d dtdx =~ At3d |wj| Cég—;l / / fc dtdr =~ Atgd ]wjl (n+1 .
wj wj

+1
fo
tgzlﬂ) = (n+1) - Atzg. As in the previous cases, we introduce also for these integrals a

numerical flux ¢,e;:

is the evaluation of the source term f. at the center of cell w; and at the time of

n+1 n+1 n+1
Dol <03d+ )7fc> = ‘wj‘ C:gd—; ) | j‘ fc * )' (4'25)
Summarizing the fluxes defined by (4.2)-(4.25), we have:
¢cd <Cf(33+1)’ Céz+1)a ng+1)7 v(n—l—l)’ Bm fc> = _d)diff (Ci(’)Z+1)) + ¢conv (V(n—H)v C;())Z+1))

- ¢line (607 ngﬂ), :(),Z+l ) + ¢vo (ngJrl)? fc)
(4.26)

From (4.20), (4.21) and (4.26) it follows for the Finite Volume discretization concerning

the time interval (téz),tézﬂ)):

n n At n n n n .
Cédj;l) Céd) + 73d¢0 ( +1)7 ng+1)7 C§d+1)7 +1)7/607 fc) = O,VJ = 17 s 7M3d-

7wl
(4.27)
For the numerical solution of the 1D problem (4.11b) governing the oxygen transport within
the vessel system, we choose for the spacial discretization, as for (4.9b), a higher order DG
method and a SSP Runge Kutta scheme for the time integration. In order to stabilize the
solution in the vicinity of steep gradients or shocks, we apply a limiter technique described
in Subsection 2.2. As for the Tissue Perfusion Problem, we summarize the resulting

1D discretization for a mesh size h14 and a time step size Aty4 by an operator @;Ll)d Atyy- It

maps the old variable cgd/) of a micro time step ( Tty +1> to the new variables cgd ;rl),
where we use for the source term ¢ the pressure values ;10(L 7'/m]) and p(m /™) from the last

macro time step:

n'+1) (c n') n'/m n'/m .
:(ld’L Q)hl)d,Atld (c:(ld ’p(El J)7 gl(-i,l/ J)> y U= 1’ tee 74' (428)
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Analogously to the multiple time stepping scheme (4.17),(4.18), we couple the discrete
systems (4.27) and (4.30) as follows:

n n At n n m(n n .
Cédtl) B Cg()dj 3 ¢C ( ) Ci(’)d+1)7 cld( Jrl)uv( +1)7BC7 fc> - O,Vj = 1) ) M3d‘

i (4.29)

Cg'rcll,jl) = gtcl)d,Atld (Cgﬁl )’pgkln /mJ)apglanz/mJ)) 1= 17 s 74' (430)

Similarly to (4.17) and (4.18), the system is also decoupled into two phases:

1. We exert m mirco-steps of step size Aty4 of the 1D network problem where we use

(Ln'/m]) (Ln'/m])

for every sub step the last computed 3D and 1D pressure: ps; and p,,

2. We advance by one macro-step of the 3D problem (step size Atsg), using the last

computed 1D solution: cg?(nﬂ)).

4.3 Results and discussion

Having the model established in the previous sections at hand, we present in this final
section some simulation results on the influence of an arterial stenosis in a leg artery (artery
54, right posterior tibial artery). The degree of the stenosis is varied between 0%, 90%
and 100% and the results are compared with each other. Before we discuss the numerical
results, the simulation parameters for the arterial network, the embedded subnetwork and
the porous matrix are listed.

4.3.1 Simulation parameters

Parameters arterial network

The different lengths, radii and the remaining vessel parameters are provided in Table 4.3.
An outline of the arterial tree is depicted, e.g., in Figure 4.1. For the simulation time we
consider a period of twenty seconds: [0s,20s]. The initial conditions for pressure, flow rate
and oxygen concentration are set to be zero in every vessel. At the inlet of the aorta (Vessel
1), we prescribe just as in Section 2.4, the following flow rate profile:

3 s - = (4.31)
0 g for T <t <1.0s.

s

485 -sin (Z¢) <2 for 0.0s <t < T,
Q) = { )

For ¢ > 1 it holds: Q(t) = Q(t+ 1). The parameter 7" is given by: 7' = 0.3s.

As a boundary value Cj, for the oxygen concentration, we choose the mean value of the
volumetric oxygen concentration in blood [24][Chapter 2]:

pmol

Cin =8.75 —-.
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Table 4.2: List of the fluid parameters and Poisson ratio. Please note that the perme-
ability parameters ¢ps and ¢, are zero for the vessels which are not embedded in the
porous medium, i.e., Vessel 1-51 and the proximal part of Vessel 52.

At the outflow boundaries, the 1D solutions are determined by 0D-R;C Ry models (see
Subsection 2.3.2). The total resistances R = Ry + Ry and compliances C' are listed in Table
4.3. An exception is Vessel 52. It is split into two parts. The lower third is embedded into
the porous matrix, whereas the remaining part, i.e., the proximal part is not included in
the 3D porous medium. To couple both parts of Vessel 52, we use the 1D-1D coupling

Physical Parameter | sign | value | unit
blood density p | 1.028 | g/cm?
blood viscosity n | 4.500 | mPa s
Poisson ratio v | 0500 | ———

permeability (blood) | ¢ar | 0.0 CZLQ

permeability (oxygen) | ¢, 0.0 #

strategy described in Subsection 2.3.3.

The remaining fluid parameters are summarized in Table 4.2. Please note that the perme-
ability parameters ¢ps and ¢, are zero for the vessels which are not embedded in the porous
medium. For the other vessels the permeabilities are chosen according to (4.9a),(4.9b) and

(4.11a),(4.11b).

Table 4.3: Physiological data used within the second scenario [108, 118]. The units of
the elasticity parameters, peripheral resistances and the peripheral compliances are given
by [106 Pa], [102 Pa s cm_ﬂ and [10_4cm3Pa_1] respectively.

Arterial segment Length | Radius | Thickness Elastic Periph. | Periph.
llem] | r [em] h [em] modulus E | res. R | comp. C
1. Ascending aorta 4.0 1.470 0.163 0.4 — —
2. Aortic arch I 2.0 1.263 0.126 0.4 — —
3. Brachiocephalic 3.4 0.699 0.080 0.4 — —
4. R. subclavian I 3.4 0.541 0.067 0.4 — —
5. R. carotid 17.7 0.473 0.063 0.4 — —
6. R. vertebral 14.8 0.240 0.045 0.8 60.10 0.30955
7. R. subclavian II 42.2 0.515 0.067 0.4 — —
8. R. radius 23.5 0.367 0.043 0.8 52.80 0.35235
9. R. ulnar I 6.70 0.454 0.046 0.8 — —
10. R. interosseous 7.90 0.194 0.028 1.6 843.0 0.02207
11. R. ulnar II 17.1 0.433 0.046 0.8 52.80 0.35235
12. R. int. carotid 17.6 0.382 0.045 0.8 139.00 | 0.13384
13. R. ext. carotid 17.7 0.382 0.042 0.8 139.00 | 0.13384
14. Aortic arch II 3.9 1.195 0.115 0.4 — —
15. L. carotid 20.8 0.413 0.063 0.4 — —
16. L. int. carotid 17.6 0.334 0.045 0.8 139.00 | 0.13384
17. L. ext. carotid 17.7 0.334 0.042 0.8 139.00 | 0.13384
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18. Thoracic aorta I 5.2 1.120 0.110 0.4 — —
19. L. subclavian I 3.4 0.474 0.066 0.4 — —
20. L. vertebral 14.8 0.203 0.045 0.8 60.10 0.30955
21. L. subclavian II 42.2 0.455 0.067 0.4 — —
22. L. radius I 23.5 0.324 0.043 0.8 52.80 0.35235
23. L. ulnar I 6.7 0.401 0.046 0.8 — —
24. L. interosseous 7.9 0.172 0.028 1.6 843.00 0.02207
25. L. ulnar II 17.1 0.383 0.046 0.8 52.80 0.35235
26. Intercoastals 8.0 0.317 0.049 0.4 13.90 1.33840
27. Thoracic aorta II 104 1.017 0.100 0.4 — —
28. Abdominal aorta I 5.3 0.920 0.090 0.4 — —
29. Celiac I 2.0 0.588 0.064 0.4 — —
30. Celiac II 1.0 0.200 0.064 0.4 — —
31. Hepatic 6.6 0.458 0.049 0.4 36.30 0.51251
32. Gastric 7.1 0.375 0.045 0.4 54.10 0.34389
33. Splenic 6.3 0.386 0.054 0.4 23.20 0.80191
34. Sup. mensenteric 5.9 0.499 0.069 0.4 9.30 2.00050
35. Abdominal aorta II 1.0 0.834 0.080 0.4 — —
36. L. renal 3.2 0.350 0.053 0.4 11.30 1.64640
37. Abdominal aorta III 1.0 0.794 0.080 0.4 — —
38. R. renal 3.2 0.350 0.053 0.4 — —
39. Abdominal aorta IV 10.6 0.665 0.075 0.4 — —
40. Inf. mesenteric 5.0 0.194 0.043 0.4 68.80 0.27041
41. Abdominal aorta V 1.0 0.631 0.065 0.4 — —
42. R. com. iliac 5.9 0.470 0.060 0.4 — —
43. L. com. iliac 5.8 0.470 0.060 0.4 — —
44. L. ext. iliac 14.4 0.482 0.053 0.8 — —
45. L. int. iliac 5.0 0.301 0.040 1.6 79.36 0.23443
46. L. femoral 44.3 0.361 0.050 0.8 — —
47. L. deep femoral 12.6 0.356 0.047 0.8 47.70 0.39003
48. L. post. tibial 32.1 0.376 0.045 1.6 47.70 0.39003
49. L. ant. tibial 34.3 0.198 0.039 1.6 55.90 0.33281
50. R. ext. iliac 14.5 0.482 0.053 0.8 — —
51. R. int. iliac 5.0 0.301 0.040 1.6 79.36 0.23443
52. R. femoral 44.4 0.361 0.050 0.8 — —
53. R. deep femoral 12.7 0.356 0.047 0.8 47.70 0.39003
54. R. post. tibial 32.2 0.375 0.045 1.6 47.70 0.39003
55. R. ant. tibial 34.4 0.197 0.039 1.6 55.90 0.33281

Parameters subnetwork

The following table contains some additional information concerning the vessels Vi-Vy,
which are embedded into the porous matrix (see Section 4.1 for the definition of V;-Vy).
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Table 4.4: Parameters for the subnetwork in the porous medium. The values for L, ;
are adapted from [24, Subsection 6.6.4].

Vessel i Vs V3 Vi

Length [; [cm] 144 [ 146 | 146 | 344
Radius R; [cm] 0.361 | 0.375 [ 0.375 | 0.197
Permeability L [em s™] 10.0 | 10.0 | 10.0 | 10.0
Permeability Ly [cm kPa™'s™'] | 0.114 | 0.114 | 0.114 | 0.114

Table 4.5: Coordinates and tangents for the lines/mid axes A,;.

Ay | Coordinates:

(7.5,7.5,50.0)" ; (4.5,7.5,42.0)" ; (3.5,7.5,36.8)"

Tangents:

(0.0,0.0,—1.0)"; (0.0,0.0,—1.0)"

A5 | Coordinates:

(3.5,7.5,36.8)"; (5.5,5.0,29.0)" ; (6.0,4.5,21.0)" ; (6.5,4.0,19.0)"
Tangents:

(-1.0,0.0,—3.0)"; (0.0,0.0,—1.0)"

A3 | Coordinates:

(6.5,4.0,19.0)" ; (7.0,3.0,11.0)"; (7.5,2.0,3.0)"

Tangents:

(0.0,0.0,—1.0)"; (0.0,0.0,—1.0)"

A4 | Coordinates:

(3.5,7.5,36.8)" ; (2.5,7.5,28.5)" ; (2.0,7.5,20.0)"; (2.5,7.5,11.5)" ; (2.8,7.5,3.0)"
Tangents:

(1.0,0.0,—2.0)"; (0.0,0.0,—1.0)"

The mid axes A; are given by cubic splines through the coordinates, where the tangents of
the splines at the beginning and the end of the spline are equal to the provided tangents.
The coordinates and tangents are listed in Table 4.5.

The parameters for the stenosis model are provided in Table 2.10 and 2.11. For the length
of the stenosis l5; we have chosen: 3.0 em. The maximal section area Ag at the inlet and
outlet of the stenosis is equal to the section area of vessel 54 (see Table 4.3), the minimal
section area Ag is given by: Ay = 3+ Ag. To model a stenosis degree of 0%, 90%, the
factor 8 is given by: 5 € {1, 0.1}. A complete occlusion (stenosis degree of 100%) can be
modeled by setting the in going characteristic at the outlet of V5 to the negative value of
the outgoing characteristic.

Parameters porous medium

The computational domain is given by:

Q=15em x 15 em x 50 em.

150



4 Blood flow and oxygen transport in vascularized human tissue

For the tissue volume perfused by the outlets of vessel V3 and V; we assume the following
value: V = 1.10 dm?®. The parameters for the 3D problems (4.9a) and (4.11a) are chosen
as follows [24, Subsection 6.6.4]:

Csq0=0.01 kPa™!, K33=01cem?kPa's™', a=94-10"% kPa™! s71,

D3y =1.7-10"2 em? s, ny = 0.02, pyen = 0 kPa, C,, = 0.08 pmol em™3 571,

c3d,0 = 0.72 pmol em™3, p3q (0,%) = 0 kPa, ¢34 (0,x) = 0 mmol em™3, ¥x € Q.

Parameters discretization

For the spacial discretization of the 1D problems, we use a mesh size hyq of 0.5 cm or
1.0 em, depending on the length of the vessel. As a time step size Ati4, we choose:
At1q = 2.5-107° 5. The number of micro time steps m is given by: m = 200. Consequently
the time step size Atsq for the 3D problem is equal to 5.0 - 1073 5. € is discretized by
hsq =~ 0.375 cm in every space dimension.

4.3.2 Simulation results

The following pages contain some simulation results concerning the scenario described in
the previous sections. The concentration values, flow rates and pressure values are reported
in the middle of all vessels, for all the narrowing degrees: 0%, 95%, 100%. To illustrate
the impact of the stenosis within the peripheral artery 54, we compute the ratio between
the normal condition (0%) and the other narrowing degrees.

For an physiologist these values can be used to estimate the risk of an aneurysm caused
by an increased pressure in a certain vessel. An aneurysm is a localized, blood filled
balloon-like bulge in the wall of a blood vessel [13]. As an aneurysm grows, the risk of
rupture becomes higher and higher. When it is torn apart, it can lead to bleeding and a
subsequent hypovolemic shock leading to death.

The relative values of the quantities for the embedded subnetwork can be seen in Figure 4.9.
Not surprisingly, the pressure and the flow rate break down in Vessel 3 beyond the stenosis.
Considering the same physical values within the other embedded vessels, one can observe
that the pressure is remarkably increased (up to 37.0% for an occlusion). If the walls of
these vessels are weakened at a certain location, there is a high risk that an aneurysm is
formed. The flow rates in the feeding vessels V7 and V5, are decreased. This blood flow
reduction leads to an insufficient blood and oxygen supply of the tissue (see Figure 4.14
and 4.15). Apparently this reduction can not be compensated by the increased flow rate
(up to 27.0% for an occlusion) within vessel Vj.

In Figure 4.10 and 4.11, we report the ratios of pressure and flow rate in some vessels which
are not embedded in the tissue, to study the global effect of the stenosis on blood flow.
It can be seen that there is not only a local impact on blood pressure and flow rate, but
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the whole vessel system is affected. If we have an narrowing factor of 95%, the pressure
is increased about 5% to 6%. For an occlusion the pressure is rising about 9% to 11%.
Comparing the flow rate ratios for Vessel 52, 41 and 27 in Figure 4.11 it appears that the
flow rate is reduced up to 12% for a narrowing factor of 95% and 15% for a narrowing
factor of 100%.

Figures 4.12 and 4.13 show the pressure and the concentration values within the cross
section at y = 7.0 ¢m at certain time points. Due to the stabilization techniques for the
1D discretization and the robust Finite Volume discretization for the 3D problem there
are neither for the 3D problem nor for the 1D problem unphysical oscillations around the
concentration fronts. Behind the concentration front in 3D, the concentration values range
from 0.0070 mmol/em? to 0.0074 mmol/cm?. This is in agreement with other literature
[24, Section 6.6], in which the value 0.0072 mmol/cm? was taken as a reference value for
blood oxygen concentration in tissue.

However the propagation speed of the concentration front is too slow, and the pressure
values within the porous matrix are too low compared to other literature |24, Section 6.6].
To compute a more realistic propagation of the oxygen concentration, a better estimation of
the involved parameters combined with a hierarchical model for flow and transport within
the porous medium is required.
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Figure 4.9: Pressure and flow rate ratios within the embedded vessels. The ratios are
computed by comparing the abnormal states (95%, 100% narrowing) to the healthy state

(0% narrowing).
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Figure 4.10: Pressure ratios within some arterial vessels which are not included in the
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Figure 4.11: Flow rate ratios within some arterial vessels which are not included in the
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Figure 4.14: Pressure distribution psq (at t = 20 s) within three different slices at
2 =45, 2 =25 and z = 10 and for different narrowing factors: 0%, 95% and 100%.
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Figure 4.15: Oxygen concentration distribution ¢4 (at ¢ = 20 s) within three different
slices at z = 45, z = 25 and z = 10 and for different narrowing factors: 0%, 95% and
100%. The concentration front corresponds to the value 0.005 mmol/cm3.
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5 Summary and outlook

In this thesis, we have presented a mathematical model for blood flow and mass transport
in vascularized human tissue. The basis of this model is formed by a domain decomposition
approach [24, 35, 38| separating the fast flow region (main arteries) from the slow flow
region (tissue, capillary bed) and assigning different models to them. By this mean the
heterogeneous flow behavior can be better accounted for.

Since the human blood vessel system is composed of a huge number of blood vessels, the
corresponding flow and mass transport processes are governed by reduced 1D and 0D
models to decrease the computational cost. Thereby, the 1D models having the shape of
non-linear or linear transport equation systems have been used to model the large and
middle sized arteries branching out of the heart. For arteries of small length 0D lumped
parameter models have been used (see Section 2.1). In order to reduce numerical diffusion,
dispersion and oscillations higher order DG-methods in combination with hierarchical
limiter developed in [58, 61, 62] have been generalized to the considered transport equation
systems (see Section 2.2). The reduced models have been applied to single vessels of a
given network. A global solution is obtained by coupling the single PDE or ODE systems
at the bifurcations by an algebraic system of equations. Up to now only a single type of
model (e.g. non-linear 1D model) was assigned to each vessel. Here, we have shown how
different types of models (non-linear, linear 1D models and 0D models) can be connected
at a bifurcation. Furthermore the existing models [3, 40| have been extended to enable the
simulation of mass transport through a bifurcation [65].

By this mathematical model, we resolve only a small part of the circulatory system. The
influence of the omitted vessels is incorporated by coupling the models in the terminal
vessels with homogenized 0D models. These models have a similar structure as the 0D
lumped parameter models which are used for the small vessels within the network [4]. As
in the case of the bifurcations these models had to be extended by an equation governing
the mass transport (see Section 2.3).

In the final section of the Chapter 2 (Section 2.4), we have investigated an issue from
medical engineering, i.e., the influence of a unilateral carotid stenosis on brain oxygenation.
The stenosis was modeled by a 0D lumped parameter model [100, 108, 120]. To model
mass transport through a stenosis the existing model has been extended by an additional
coupling equation. According to medical knowledge there are essentially two ways to
balance the reduced blood flow and oxygen transport due to a carotid stenosis. The brain
tissue is supplied by a ring like vessel system (Circle of Willis) containing collateral backup
vessels which are not required in the healthy case. If the blood flow through a carotid is
reduced, the missing blood flow can be compensated by the other carotid and the backup
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vessels within the Circle of Willis (see Figure 2.30). The other way is the reduction of
cerebral resistances at the outlets of the cerebral arteries. In our model this compensation
mechanism is based on the metabolic demand of the brain tissue [2, 63]. For a medical
scientist it is of great interest to judge the significance of these auxiliary mechanisms. By
the help of our model, it has been revealed that a unilateral stenosis becomes critical
starting from a narrowing degree of 85%. In the case of a severe stenosis (narrowing degree
of 95%) the oxygen supply can only be balanced, if both compensation mechanisms work.

The simulation of blood flow and transport from the blood vessels into the surrounding
3D tissue requires the derivation of coupling conditions. Due to the fact that flow and
transport are governed by 1D and 0D models it is necessary to derive 3D-1D or 3D-0D
coupled problems. Doing so, we adapted an approach presented in [24, 26|. In these
publications the pressure within the tissue has been computed by a parabolic or elliptic
equation and the velocity field by Darcy’s law. A convection diffusion equation has been used
to determine the transport of a substance like oxygen within the tissue. Since the coupling
of dimensionally reduced models with 3D models is not standard, the basic principles of
this coupling strategy were introduced and analyzed by elliptic 3D-1D diffusion reaction
equations. The 3D and 1D equations are linked by their source terms, where the source
term of the 3D equation contains Dirac point or line source terms concentrated on the
outlets and the main axes of the vessels. The associated reduction of regularity deteriorates
the convergence of Finite element methods and makes the numerical analysis more difficult.
In order to overcome these difficulties weighted Sobolev spaces and graded meshes were
used to prove optimal convergence results [25]. Our approach concerning the numerical
analysis is not based on graded or adapted meshes but on uniform meshes. Furthermore
the approximation errors are not measured by weighted norms, but by a L?-seminorm
excluding the locations of the Delta source terms. It has been shown that standard Finite
element methods converge optimal with respect to this seminorm. This means that Finite
elements cause no pollution effect in the computational domain. Numerical investigations
in 2D and 3D confirm this theoretical result. By the help of this insight, iterative solution
schemes for coupled problems have been designed and a convergence criterium has been
derived. Numerical results show that the convergence criterium is sharp and that the
method converges optimal at a fixed distance to the singularities.

After studying the coupling strategy for stationary 3D-1D coupled problems, time dependent
models for blood flow and transport from the blood vessels into the tissue have been
established. Flow and transport within the blood vessels are governed by the PDE or
ODE systems considered in Chapter 2. The dynamics in the 3D tissue matrix is governed
by a parabolic equation for the pressure field, by Darcy’s law for the velocity field and
a convection diffusion equation for the transport. To couple the 3D and 1D models, we
use the strategy discussed in Chapter 3. The numerical approximations of the coupled
problems are achieved by applying multiple time-stepping schemes |5, 42|.

This mathematical model has been used to determine the impact of a peripheral stenosis
on tissue perfusion and the local impact on blood flow within the vessels. The blood vessel
network consists of the 55 main arteries of the human body. A stenosis is placed in an artery
of the lower right foot. For convenience not the whole arterial vessel system is embedded
into the tissue, but only the arteries adjacent to the stenosis are surrounded by tissue. We
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5 Summary and outlook

varied the degree of the stenosis and reported the pressure drops together with the reduced
oxygen transport in the tissue. In addition to that it has been shown how the pressures
and flow rates are changed within the arteries due to the stenosis. For an occlusion we have
seen that the pressures in the proximal arteries near the stenosis are remarkably increased
compared to the healthy state. This insight is very important for physiologists to identify
high risk areas for aneurysms.

The achieved results raise new interesting issues concerning the modeling of blood flow and
transport, numerical analysis and discretization methods. In this thesis, we have assumed
that the initial section areas and elasticity parameters are constant for each vessel. If one
is interested to examine the effect of a tapered vessel, the models considered in Chapter 2
have to be enhanced. In particular, a different area-pressure relation has to be used (see
Remark 2.1) [37].

The numerical analysis which has been done for elliptic problems with Dirac point source
terms can be extended to elliptic and parabolic problems with line source terms [44].
Furthermore 3D-1D coupled problems can be analyzed.

The last chapter of this thesis provides some possiblities for future work. Concerning the
time dependent coupled PDE systems presented in Chapter 4, it would be interesting
to test the performance of space time methods. Contrary to the standard discretization
approaches, these methods consider the time variable as an additional space variable and
treat both space and time simultaneously. Thus it is possible to use within a computational
domain different time step sizes [111]. Obviously in the vicinity of the blood vessels smaller
time step sizes are required than in other parts of the tissue domain, since there the flow
velocities are much higher.

The numerical results presented in Section 4.3 show no oscillations and a qualitatively
meaningful behavior. However, the pressure values in the porous tissue are too small and
the resulting speed of the concentration front is too low. This should be improved by
introducing a hierarchical flow model for the tissue [54, 112| and a better estimation of the
involved simulation parameters. Moreover it would be interesting from a modeling point of
view to examine compensation mechanisms for peripheral stenoses, as we have done it in
the context of carotid stenoses.

161



Publications by the author

T.Weinzierl and T. Koppl:
A Geometric Space-time Multigrid Algorithm for the Heat Equation
Numerical Mathematics: Theory, Methods and Applications, 5(1), 110-130, 2012

T. Koppl, B. Wohlmuth and R. Helmig:

Reduced one-dimensional modelling and numerical simulation for mass
transport in fluids

Int. J. Numer. Meth. Fluids, 72(2), 135-156, 2013

T. Koppl and B. Wohlmuth:

Optimal a priori error estimates for an elliptic problem with Dirac right-
hand side

SIAM J. Numer. Anal., 52(4), 1753-1769, 2014

T. Képpl, M. Schneider, U. Pohl and B. Wohlmuth:
The influence of an unilateral carotid artery stenosis on brain oxygenation
Medical Engineering and Physics, 36(7), 905-914, 2014

162



Notations and abbreviations

e Mathematical symbols:
R : field of real numbers
v(7) : i-th component of a vector v e R"”, 1 <i<mn

A(i,j) : entry of a matrix A € R™" 1 < i <m, 1 < j < n in the i-th row
and the j-th column

lifi=j

;5 : Kronecker symbol: d;; = {0 if i £ j
iti#j

O : Landau symbol

C° () : space of test functions with compact support in
3D: abbreviation for three dimensional

1D: abbreviation for one dimensional

0D: abbreviation for zero dimensional

e Medical terms:

systole: Period of time during the heart cycle in which blood is pushed out of
the heart

diastole: Period of time during the heart cycle in which no blood is pushed out of
the heart

proximal and distal: Terms from anatomy that are used to describe parts of
a feature that are respectively close (proximal) to or distant (distal) from the heart
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