TECHNISCHE UNIVERSITAT MUNCHEN

Lehrstuhl fiir Numerische Mechanik

Computational Multiscale Methods for Turbulent
Single and Two-Phase Flows

Ursula Rasthofer

Vollstindiger Abdruck der von der Fakultét fiir Maschinenwesen der Technischen Universitit
Miinchen zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. habil. Hans-Jakob Kaltenbach
Priifer der Dissertation:
1. TUM Junior Fellow Dr.-Ing. Volker Gravemeier
2. Univ.-Prof. Dr. rer. nat. habil. Volker John
Freie Universitit Berlin

3. Univ.-Prof. Dr.-Ing. Wolfgang A. Wall

Die Dissertation wurde am 13. Januar 2015 bei der Technischen Universitit Miinchen eingereicht
und durch die Fakultit fiir Maschinenwesen am 22. Juni 2015 angenommen.






Abstract

Novel and comprehensive computational multiscale methods for turbulent single- and two-phase
flows are developed in this thesis. All numerical methods rely on the framework of the variational
multiscale method motivated by their application to large-eddy simulation.

For large-eddy simulation of turbulent incompressible single-phase flow, an algebraic variational
multiscale-multigrid-multifractal method (AVM?*) is proposed. In this approach, the subgrid-
scale velocity is explicitly evaluated based on the multifractal subgrid-scale modeling approach.
The multifractal subgrid-scale modeling approach requires the further separation of the resolved
scales into larger and smaller ones which is accomplished via level-transfer operators from plain
aggregation algebraic multigrid methods. The multifractal subgrid-scale modeling approach is
eventually incorporated into the variational multiscale formulation, which is completed by ac-
companying residual-based multiscale terms to provide a stable numerical method. For applica-
tion of the AVM* to wall-bounded turbulent flow, a near-wall limit of the multifractal subgrid-
scale modeling approach is additionally derived. Moreover, the AVM* is further developed for
large-eddy simulation of passive-scalar mixing in turbulent incompressible flow as well as of
turbulent variable-density flow at low Mach number. In a variety of examples, comprising ho-
mogeneous isotropic turbulence, turbulent channel flow, turbulent flow past a square-section
cylinder and over a backward-facing step, an excellent performance of the proposed method is
shown.

Concerning the simulation of incompressible two-phase flow in general, a face-oriented stabi-
lized Nitsche-type extended variational multiscale method is suggested. Based on a level-set
description for the interface, an extended finite element method is developed to enable a sharp
representation of the discontinuities in the flow field at the interface, which are related to surface-
tension effects and large ratios of the physical parameters. To capture the discontinuities, jump
enrichments are applied to both the velocity and the pressure field. Nitsche’s method is then used
to weakly impose the continuity of the velocity field at the interface. For a stable formulation
on the entire domain, residual-based multiscale terms are supported by appropriate face-oriented
ghost-penalty and fluid stabilization terms in the vicinity of the interface. Both face-oriented
stabilization terms as well as interface terms related to Nitsche’s method are extended in order
to appropriately account for viscous- and convection-dominated transient flows. The proposed
method is validated for various two- and three-dimensional numerical examples of increasing
complexity: Rayleigh-Taylor instabilities, a collapsing water column, rising bubbles as well as
a bubble coalescence. For all examples, excellent agreement with either analytical solutions or
numerical and experimental reference data is shown, while the method proves to be robust for
all flow regimes.

Eventually, the AVM* and the face-oriented stabilized Nitsche-type extended variational multi-
scale method are combined to a comprehensive approach to large-eddy simulation of turbulent
two-phase flow. The resulting extended algebraic variational multiscale-multigrid-multifractal
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method (XAVM?) is successfully applied to turbulent channel flow carrying a single large bub-
ble of the size of the channel half-width. The simulation of this flow problem rigorously demon-
strates the high potential of the novel approach.
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Zusammenfassung

In der vorliegenden Arbeit werden neuartige numerische Mehrskalenmethoden zur Berechnung
turbulenter Ein- und Zweiphasenstromungen entwickelt, welche auf der variationellen Mehrska-
lenmethode basieren und im Rahmen von Grobstruktursimulationen zum Einsatz kommen sollen.

Zur Grobstruktursimulation turbulenter Einphasenstromungen wird eine sogenannte “Algebraic
Variational Multiscale-Multigrid-Multifractal Method (AVM*)” vorgestellt. Dabei wird zur di-
rekten Approximation der nicht aufgelosten Subskalen ein multifraktaler Modellierungsansatz
gewihlt. Dieser Ansatz erfordert eine weitere explizite Aufspaltung der aufgeldsten Skalen,
welche mittels Transferoperatoren algebraischer Mehrgitterverfahren erfolgt. Residuenbasierte
Mehrskalenterme, die die Stabilitdt der numerischen Methode sicherstellen, vervollstindigen
schlieBlich die Formulierung. Im Rahmen der Anwendung der AVM* auf wandbegrenzte Stro-
mungen wird zusitzlich eine Wandkorrektur des multifraktalen Subskalenmodellierungsansatzes
abgeleitet. Dariiber hinaus erfolgt eine Weiterentwicklung der AVM* fiir passiven Skalartrans-
port in turbulenten inkompressiblen Stromungen und fiir turbulente Strémungen variabler Dichte
bei kleiner Machzahl. Die Validierung der Methode erfolgt anhand einer Vielzahl numerischer
Beispiele. Diese umfassen die homogene, isotrope Turbulenz, die turbulente Kanalstrémung, die
turbulente Umstromung eines Quaders sowie die turbulente Stufenstromung.

Zur Simulation von Zweiphasenstromungen wird zunéchst eine Nitsche-basierte angereicherte
variationelle Mehrskalenmethode mit flichenbasierter Stabilisierung vorgestellt. Ausgehend von
einer Level-Set-Beschreibung der Phasengrenze wird eine angereicherte Finite-Element-Methode
hergeleitet, welche es erlaubt, die aus der Oberflichenspannung und den sich sprunghaft dndern-
den Materialparametern resultierenden Diskontinuititen im Stromungsfeld explizit darzustel-
len. Dafiir werden sowohl fiir das Geschwindigkeits- als auch fiir das Druckfeld Sprunganrei-
cherungen verwendet. Die Nitsche-Methode sorgt dann an der Phasengrenze fiir eine schwache
Kopplung der Geschwindigkeitsfelder. Um die Stabilitit des Ansatzes im gesamten Gebiet zu
gewihrleisten, werden die residuenbasierten Mehrskalenterme durch geeignete flachenbasierte
Phantomstrafterme und Fluidstabilisierungsterme im Nahbereich der Phasengrenze unterstiitzt.
Die flichenbasierten Terme sowie die Grenzflichenterme der Nitsche-Methode werden in geeig-
neter Form fiir viskos- und konvektionsdominierte, instationire Stromungen erweitert. Die Me-
thode wird fiir zwei- und dreidimensionale Beispiele ansteigender Komplexitit getestet. Zu
diesen Beispielen zidhlen die Rayleigh-Taylor-Instablitidt, das Dammbruchproblem, aufsteigende
Gasblasen und die Vereinigung von Gasblasen. Fiir alle Beispiele kann eine sehr gute Uberein-
stimmung mit analytischen, numerischen oder experimentellen Referenzlosungen gezeigt werden.

Die Zusammenfiihrung der AVM* und der Nitsche-basierten angereicherten variationellen Mehr-
skalenmethode mit flichenbasierter Stabilisierung fiihrt schlieBlich zur “Extended Variational
Multiscale-Multigrid-Multifractal Method (XAVM*)” fiir die Grobstruktursimulation turbulen-
ter Zweiphasenstromungen. Diese Methode wird erfolgreich auf eine turbulente Kanalstrémung
mit einer Luftblase von der GroBe der halben Kanalhdhe angewendet. Diese Grobstruktursimu-
lation verdeutlicht anschaulich das grof3e Potential der hier vorgestellten Methode.

il
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Introduction

1.1 Motivation

Although the first attempts to describe the phenomenon of turbulence may be traced back to
drawings by Leonardo da Vinci about 500 years ago, turbulence has lost nothing of its fascina-
tion for scientists and still constitutes a field of extensive research. In a review article, Moin and
Kim [222] stated: “Practically all the fluid flows that interest scientists and engineers are turbu-
lent ones; turbulence is the rule, not the exception, in fluid dynamics.” In fact, turbulent flows
are ubiquitous in the natural environment and the technical field of engineering. Solar flares have
their origins in the turbulence emerging on the surface of the sun. The knowledge of turbulent at-
mospheric flows involved in cloud formation allows for accurate weather forecasting. The design
of efficient internal combustion engines strongly relies on the turbulent mixing of fuel and oxi-
dizer. The drag acting on aircraft, cars and nautical vessels is controlled by turbulent boundary
layers, to name but a few examples.

Owing to the continuous developments in computer technology and the related rapid increase of
computing power, Computational Fluid Dynamics (CFD) has become an established and impor-
tant tool for the investigation of fluid flows. Since the non-linear nature of turbulence, however,
gives rise to an enormous range of length and time scales, Direct Numerical Simulation (DNS),
which aims at resolving all features down to the smallest scales, remains still infeasible for
all but the simplest turbulent flows. In contrast to DNS, approaches based on the Reynolds-
Averaged Navier-Stokes (RANS) equations merely compute the statistical averages; that is, the
time-averaged non-turbulent mean flow, leaving all turbulent features to a model. By merely
computing the larger flow-dependent structures, Large-Eddy Simulation (LES) can be classified
in between DNS and RANS modeling. The larger scales of turbulent flows are of particular rele-
vance for science and engineering. For instance, they control turbulent mixing of momentum and
heat and provoke aerodynamic noise. In contrast, high-frequent fluctuations are usually only of
minor interest. The cost of LES is significantly reduced compared to DNS, while the necessary
degree of modeling is kept notably lower than for RANS approaches. Extensive research has
been conducted in the field of LES in the past decades; see, e.g., the review articles by Rogallo
and Moin [268] in the 1980s, by Piomelli [247] in the 1990s as well as by Moin [221] in the
2000s.

In LES, the large scales are explicitly computed. However, non-linear interactions between all
turbulent scales are involved in the evolution of turbulent flows. Therefore, the unresolved small-
scale information is crucial for a physically correct behavior of the resolved scales. To incorpo-
rate the effect of the non-linear interaction between resolved and unresolved (or subgrid) scales,
proper modeling is required. The development of efficient and accurate models constitutes a
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major research challenge in LES. In a review article, Piomelli [247] summarized four require-
ments which a successful subgrid-scale model should fulfill: (i) predict the overall dissipation
correctly, (i1) vanish in laminar flow, (iii) depend strongly on the smallest resolved scales rather
than on the entire turbulent spectrum and (iv) predict the local energy transfer between resolved
and subgrid scales. Moreover, the actual applicability of the overall approach to LES of practi-
cally relevant flows is also of particular relevance. In this respect, there are two further aspects
that deserve closer attention and were also raised to some extent by Piomelli [247]: A promising
approach to LES should not only include a subgrid-scale model satisfying the aforementioned
prerequisites but also (v) allow for convenient application to complex geometries and (vi) remain
computationally efficient.

This elaboration highlights the need for comprehensive approaches to LES, which thoroughly
take into account physical aspects, practical demands and computational issues. Aiming at de-
veloping such an approach, LES of turbulent single-phase incompressible flow is first considered
in this thesis. Further extensions of LES methods to turbulent mixing of scalar fields are also of
practical relevance. Passive-scalar fields, occurring, for instance, in electrochemical processes,
have no influence on the flow field. In contrast, active-scalar fields such as the temperature in
weakly compressible flows, for example, encountered in turbulent combustion, may give rise to
substantial density variations. For these applications, new length scales in the scalar field as well
as additional physics have to be incorporated into the approach to LES.

Furthermore, LES of turbulent two-phase flows is considered in this thesis. Industrial interest
in turbulent two-phase flows range from bubble columns in chemical processes to liquid jets in
combustion devices. Two-phase flows typically exhibit density ratios of the order of one thou-
sand. Since the interface separating the two fluids may be assumed infinitely thin, it appears as
a discontinuity in the flow field. Moreover, a localized surface-tension force acts at the inter-
face. The interface may also be subject to large and complex deformations. All these features
render two-phase flow particularly challenging from a computational point of view, independent
of whether it is laminar or turbulent. Therefore, a first step towards successful LES of turbu-
lent two-phase flows consists of the development of a reliable approach which copes with the
aforementioned aspects. Further progress towards LES constitute another field of active research,
among other things, due to modeling issues emanating from the presence of the interface.

1.2 Contribution of this Work

The present thesis is related to a subproject of the Emmy Noether research group “Computa-
tional multiscale methods for turbulent combustion in complex geometries”!, which was headed
by Dr.-Ing. Volker Gravemeier at the Institute for Computational Mechanics of the Technische
Universidt Miinchen.

The objective of the present subproject is the development of novel and comprehensive com-
putational multiscale methods for LES of turbulent single- and two-phase flows. Therefore, the

'Support via the Emmy Noether Program of the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknow-
ledged.



1.2 Contribution of this Work

Variational Multiscale Method (VMM; see Hughes et al. [153]), which provides a promising
conceptual framework, is exploited. As already implied by the name of the research group, all
developed methods are intended to be applied to flows in complex geometries and generally
suitable for practically relevant configurations. All algorithms are implemented on the basis of a
continuous Galerkin finite element method.

For the present thesis, three major achievements can by stated:

An Algebraic Variational Multiscale-Multigrid-Multifractal Method (AVM*): The AVM*
(see Rasthofer and Gravemeier [258]) is particularly tailored in order to meet the aforemen-
tioned six demands towards an accurate and efficient LES. It is therefore built up from the VMM,
multifractal subgrid-scale modeling and scale separation by level-transfer operators from plain
aggregation algebraic multigrid methods. To evaluate the subgrid-scale velocity, the multifractal
subgrid-scale modeling approach (see Burton and Dahm [53, 54]) is incorporated. Multifrac-
tal subgrid-scale modeling requires the further separation of the resolved scales into larger and
smaller ones, which is performed by level-transfer operators from plain aggregation algebraic
multigrid methods (see Gravemeier et al. [125]). The variational multiscale formulation is fi-
nalized by additional appropriate residual-based multiscale terms to control the stability of the
numerical method.

A Face-Oriented Stabilized Nitsche-Type Extended Variational Multiscale Method: This
approach (see Rasthofer and Schott et al. [262]) constitutes, to the best of the authors’ knowl-
edge, the first stable extended VMM based on Nitsche’s method derived for two-phase flow
governed by the incompressible Navier-Stokes equations. The method is based on a level-set de-
scription for the interface separating the two fluids. It incorporates the eXtended Finite Element
Method (XFEM) using jump enrichments for the velocity and pressure field to enable a sharp
representation of the discontinuities in the flow field. A further developed Nitsche’s method is
used to weakly impose continuity of the velocity field at the interface. Specifically devised face-
oriented ghost-penalty and fluid stabilization terms in the vicinity of the interface ensure stability
for viscous- and convection-dominated transient flows independent of the interface position.

An Extended Algebraic Variational Multiscale-Multigrid-Multifractal Method (XAVM?*):
The XAVM* combines the AVM* and the face-oriented stabilized Nitsche-type extended VMM
to a novel and comprehensive approach to LES of turbulent two-phase flows. The XAVM?* is
successfully applied to LES of turbulent channel flow carrying a single large bubble of the size
of the channel half-width. To the best of the author’s knowledge, this investigation constitutes
the most challenging XFEM application in the vast field of CFD to date.

Additionally, several further developments and scientific contributions can be identified:

e the first application of the multifractal subgrid-scale modeling approach to wall-bounded
turbulent flow including the derivation of a near-wall limit (see Rasthofer and Grave-
meier [258]),

e the extension of the AVM* to LES of passive-scalar mixing in turbulent incompressible
flow (see Rasthofer er al. [260]),

o the extension of the AVM* to LES of turbulent variable-density flow at low Mach number
(see Rasthofer et al. [261]),
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e a hybrid particle-level-set method realized as an add-on for further improving the level-set
method.

In summary, a variety of subtopics is addressed by the developments provided in this thesis. As
indicated, major parts have already been published in peer-reviewed journals.

1.3 Outline

The present thesis is organized in two parts according to the two flow types already mentioned
in its title: single- and two-phase flow. Both parts can be read independently from each other for
the most part.

Part I is devoted to LES of turbulent single-phase flow, for which the AVM* is introduced. The
first part is further subdivided into the following chapters. In Chapter 2, the fundamentals of tur-
bulent incompressible flow are briefly addressed, and the basic concept of LES is summarized.
Chapter 3 is devoted to the VMM. Chapter 4 reports on multifractal subgrid-scale modeling
within a VMM for LES of turbulent incompressible flow, eventually leading to the AVM*. An
appropriate near-wall limit for the multifractal subgrid-scale modeling is derived for applica-
tion of the AVM* to wall-bounded turbulent flows. Results from various numerical examples
of increasing complexity are included throughout this chapter to validate the approach and to
illustrate its performance. Chapter 5 further extends the AVM* to passive-scalar mixing in tur-
bulent incompressible flow. Within the multifractal subgrid-scale modeling approach, the entire
range from low to high Schmidt numbers is considered. The method is eventually validated for
passive-scalar mixing in turbulent channel flow for a broad range of Schmidt numbers in between
1 and 1000. The extension of the AVM* to turbulent variable-density flow at low Mach number
is shown in Chapter 6. Applications to turbulent channel flow with a heated and a cooled wall as
well as turbulent flow over a backward-facing step with heating are presented.

Part II reports on the combined level-set extended finite element approach for two-phase flow
and further extends the AVM* to LES of turbulent two-phase flows. The remainder of the second
part is given as follows. A brief introduction into two-phase flow and its numerical simulation
is given in Chapter 7. A computational framework for level-set approaches within a finite ele-
ment method is provided in Chapter 8. This chapter summarizes the level-set method used for
two-phase flow. Additionally, a hybrid particle-level-set method is adapted and thoroughly vali-
dated. In Chapter 9, the face-oriented stabilized Nitsche-type extended VMM for two-phase-flow
problems is developed step-by-step; that is, the applied XFEM is presented, Nitsche’s method is
incorporated and appropriate face-oriented ghost-penalty and fluid stabilization terms in the re-
gion of enriched elements are devised. Various two- and three-dimensional numerical examples
for validation of the proposed formulation are discussed. Chapter 10 brings together the AVM*
and the face-oriented stabilized Nitsche-type extended VMM for LES of turbulent two-phase
flow, resulting in the XAVM*. LES of turbulent two-phase bubbly channel flow is elaborately
investigated.

The present thesis is concluded in Chapter 11.
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From the Fundamentals of Turbulence to its
Numerical Simulation

The present chapter is devoted to the fundamentals of turbulent incompressible flow. First, the
mathematical description of incompressible fluid flow is provided, and the origins of turbulence
are identified. Except for Chapter 6, where turbulent variable-density flow at low Mach number is
investigated, incompressible flow is exclusively considered in the present thesis. Continuity and
momentum equation are thus merely presented in the respective form for incompressible flow.
Furthermore, a brief insight into the dynamics inherent in turbulent flow is given. Finally, in con-
sideration of the characteristics and challenges of turbulent flow, Large-Eddy Simulation (LES)
is identified as an adequate method for its numerical simulation and addressed in some more
detail.

2.1 The Incompressible Navier-Stokes Equations

Based on the continuum hypothesis, which allows for treating fluids as a continuous medium
instead of an ensemble of individual molecules, conservation of mass and momentum constitute
the fundamental principles of fluid motion; see, e.g., the textbook by Batchelor [20] as well as the
elucidations in the context of turbulent flows in the textbooks by Pope [252] and Tennekes and
Lumley [309]. Assuming Newtonian fluids, the Navier-Stokes momentum equation is obtained
from linear momentum conservation. For incompressible flow, mass conservation degenerates to
a divergence-free constraint on the velocity field. The resulting system of equations for incom-
pressible flow, comprising the Navier-Stokes momentum equation, expressed in conservative
form, and the continuity equation, is given by

0
a—ltl+V-(u®u)+Vpkin—2yV-s(u):f, (2.1)
V-u=0, (2.2)
presuming constant density. Here, u(x,t) = (u;(x,t),us(x,t),us(x,t))T denotes the veloc-

ity vector, pyin(X,t) the kinematic pressure, imposing the divergence-free constraint, and v the
kinematic viscosity, assumed constant. The independent variables x = (zy, 7, 73)" and ¢ rep-
resent spatial coordinates in a Cartesian coordinate system and time, respectively. The rate-of-
deformation tensor €(u) is defined as

e(u) = % <Vu + (Vu)T) . 2.3)
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For brevity, a potential (i.e., taken to be zero unless specified otherwise) volume force vector f
is omitted in the remainder of this chapter. For a detailed derivation of the governing equations
of fluid flow, the reader is referred to classical textbooks on fluid dynamics, e.g., Batchelor [20],
Kundu and Cohen [176] as well as Panton [243].

It is the non-linear convective term of the momentum equation that causes the origins of turbu-
lence. In case of predominating inertia forces compared to viscous ones, instabilities related to
the non-linear term provoke the transition to turbulence. If these inherent instabilities are sup-
pressed by predominating viscous forces, the flow remains laminar. This behavior may also be
quantified in terms of the Reynolds number, which is defined via the ratio of inertia to viscous

forces as e
Re = —, 2.4
v

where U denotes a characteristic velocity of the flow and ¢ a characteristic length, for instance,
related to the geometry of the considered problem. Turbulent flow is thus characterized by a high
Reynolds number.

2.2 The Nature of Turbulent Incompressible Flow

Turbulence is driven by vorticity and its self-induced velocity field. The dynamics of turbulence
are not self-sustaining and require a continuous supply of energy to compensate dissipation.
Hence, vorticity dynamics and energy transfer play an essential role in the evolution of turbulent
flows, and particular attention is payed to these issues in the present section. For an exhaustive
description of these aspects as well as for further elaboration of the physics of turbulence, the
reader is referred, e.g., to the textbooks on turbulent flows by Davidson [78], Pope [252] and
Tennekes and Lumley [309].

2.2.1 Vorticity Dynamics

Turbulent flows are rotational and exhibit a spatially complex three-dimensional distribution of
vortical structures. These vortical structures, which may be spherical, tubular, sheet-like or even
more complex in shape, and their associated velocity field are usually referred to as turbulent
eddies. Turbulent eddies are localized in space, occupying a region of a certain size which defines
their associated length scale. The evolution of an eddy is governed by the velocity field induced
by the eddy itself and by all the other vortical structures.

The vorticity w(x, t) is defined as
w(x,t) =V xu(x,t). (2.5)

The law of Biot-Savart enables the inversion of this relation, and the velocity field induced by
vorticity is given by
X —X

1 . “
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see, e.g., the textbook by Panton [243] for derivation. By taking the curl of the momentum
equation (2.1), the vorticity equation is obtained as

%—j—l—u-Vw:w-Vu%-qu. (2.7)
The first term on the right-hand side, which can be transformed into &(u)w, describes a modifi-
cation of the vorticity vector in magnitude and orientation by the strain rate and is thus referred
to as vortex-stretching term. A simplified process of vortex stretching is illustrated in Figure 2.1.
A spherical vortical structure is elongated by the strain rate field of convergent streamlines, re-
sulting in a shrinking cross-section area and, hence, in a decrease of the moment of inertia.
Owing to the conservation of angular momentum, the magnitude of w increases. Hence, vortex
stretching comes along with a change of the length scale. Since this process leads to a hierarchy
of vortical structures of varying size, it is responsible for the multiscale character of turbulence.
Vortex-stretching is exclusively linked to three dimensions, since the respective term vanishes for
two-dimensional flows. The only non-zero component of w then behaves as a conserved scalar.

VY€

€V

Figure 2.1: Vortex stretching by strain rate field of convergent streamlines (adapted from Davidson [78]).

The intensification of vorticity due to stretching may also be expressed via the enstrophy @),
which is defined as
Q=w- w. (2.8)

Taking the scalar product of the vorticity equation (2.7) with w yields the corresponding evolu-
tion equation:

% (%) +u-V(%) —w- (W -Vu) = v (Vxw)+uvV-(wx(Vxw)). (2.9)
The first term on the right-hand side of the enstrophy equation corresponds to the generation and
reduction of enstrophy by vortex stretching and compression, respectively. Since stretching out-
balances compression, most of the enstrophy resides in the smallest structures. The second term
on the right-hand side represents destruction of enstrophy by viscous effects. The derivations of
equations (2.7) and (2.9) may be found, e.g., in the textbooks by Davidson [78] and Tennekes
and Lumley [309].
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2.2.2 Energy Cascade

Vortex stretching constitutes the primary mechanism of turbulence. It is accompanied by a trans-
fer of energy to successively smaller scales, which manifests itself in Richardson’s [265] picture
of an energy cascade. The continuous distortion of the shape of the vortical structures, also
named eddy break-up, proceeds until the vortical structures are sufficiently small to enforce dis-
sipation. The entire energy-transfer process starts from the introduction of energy by turbulence
production mechanisms acting on the largest flow scales and continues via an inviscid cascade
passing energy to successively smaller scales until the energy is eventually dissipated at the
smallest scales. Within this process, the production of energy equals its dissipation which in turn
equals the rate at which energy is passed through the cascade.

A further specification of the various stages of the energy transfer and the involved scale ranges is
enabled by the three hypotheses proposed by Kolmogorov [174]. For sufficiently high Reynolds
numbers, Kolmogorov [174] hypothesized the existence of a universal equilibrium range con-
taining the scales down the cascade as well as the ones affected by dissipation. The correspond-
ing small-scale eddies are considered isotropic, independent of the flow and in equilibrium, as
postulated in the hypothesis of local isotropy. The remaining anisotropic, large-scale structures,
which possess the bulk of the energy, are comprised in the energy-containing range. According
to the first similarity hypothesis, the turbulent structures belonging to the universal equilibrium
range are exclusively determined by the dissipation rate ¢, the kinematic viscosity v and their
associated length scale. Based on ¢ and v, the Kolmogorov length scale

3\ 4
n = (%) (2.10)

is defined. Since the corresponding Reynolds number is unity and, hence, small enough for dissi-
pation to be effective, the Kolmogorov length scale estimates the smallest scale of significance in
turbulent flows. The universal equilibrium range is further divided into two subranges. Structures
belonging to the dissipation range experience extensive viscous forces such that dissipation can
be almost exclusively confined to this range. In contrast, the evolution of the eddies contained
in the inertial subrange, which is addressed by the second similarity hypothesis, is unaffected by
viscosity and mainly driven by inertial forces.

This feature of turbulent flow may be expressed in a more quantitative form via the three-
dimensional kinetic-energy spectrum F/(k), which represents the involved scales as well as their
associated kinetic energy in terms of the wave number k. Therefore, the velocity field u is trans-
ferred to Fourier space via

N 1
u(k,t) = W / u(X, t)eibk'xdx, (211)
where k = (ky, ka, k3)" is the wave-number vector with magnitude & = |k|| and /* = —1.

The conjugate complex of u is denoted by u*. Furthermore, the kinetic energy at a given wave-
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number vector k is obtained as
| N ~
Ek,t) = E(u(k, t)-u*(k,t)), (2.12)

where (-) denotes a mean value obtained from ensemble averaging. Assuming homogeneous
isotropic turbulence with zero mean velocity and removing the directional information via in-
tegration of F(k,t) over spherical shells with radius & leads to the three-dimensional kinetic-
energy spectrum:

E(k,t) = 7{ E(k, t)dk. (2.13)
i<k

Kolmogorov’s hypothesis of local isotropy implies a universal form of F(k) in the equilib-
rium range; that is, the energy spectra of high-Reynolds-number flows coincide when non-
dimensionalization by € and v, as stated in the first similarity hypothesis, is applied. In the inertial
subrange, the shape of the three-dimensional kinetic-energy spectrum is further determined by
the second similarity hypothesis. Based on dimensional grounds, it is obtained as

B(k) = Cxeik3, (2.14)

where Ck is the Kolmogorov constant. Figure 2.2 shows the three-dimensional kinetic-energy
spectrum F(k) for turbulent flows. Therein, the various scale ranges are marked, and the energy-
transfer process is indicated. High-Reynolds-number flows are characterized by their distinctive
inertial subrange, which is absent in the laminar case.

2.3 Large-Eddy Simulation of Turbulent Flows

Summarizing the previous section, turbulence is a multiscale problem, where the ratio of the
length scale £ associated with the largest and most energetic structures and the length scale n
related to the smallest ones is estimated by the Reynolds number as

£ Rel. (2.15)
n
This dependency currently renders DNS inappropriate for practically relevant high-Reynolds-
number flows. Hence, a certain level of modeling is unavoidable. Instead of modeling all turbu-
lent features of the flow, as it is done for RANS approaches, Kolmogorov’s hypothesis of local
isotropy suggests restricting the modeling effort to the smaller scales. Due to their universal
character, models accounting for these scales are supposed to be independent of the flow. The
flow-dependent larger turbulent motions are then explicitly computed in LES. The corresponding
scales usually comprise the entire energy-containing range as well as parts of the inertial sub-
range. An elaborate introduction into the framework of LES as well as a compilation of various
modeling procedures may be found in the textbook by Sagaut [270]. More advanced approaches
further extending the LES concept towards multiscale and multiresolution methods are provided

11
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Figure 2.2: Three-dimensional kinetic-energy spectrum for turbulent flows.

in a second textbook by Sagaut e al. [271]. The textbook by Pope [252] also offers an intro-
duction into LES. In addition to the monographs already mentioned in the introduction of this
thesis, the review articles, e.g., by Frohlich and Rodi [102], Georgiadis et al. [112], Guermond et
al. [133] as well as Lesieur and Métais [186] give further insights into historical aspects, recent
developments, practical issues as well as the related physical and mathematical theory of LES.

2.3.1 The Filtered Navier-Stokes Equations

To eliminate the small scales, Leonard [185] proposed the application of a spatial low-pass filter-
ing operation, which is expressed as a convolution of the velocity field with a filter kernel G

a(x,t) = /G(x — X)u(x,t)dx. (2.16)

The filter kernel G is assumed homogeneous with normalization [ G(x)dx = 1. Here, the re-
solved large-scale part is denoted by (-). The unresolved subfilter-scale part, marked by (-)”, is
obtained as

' =u-—1. (2.17)

Applying the filtering operation to the Navier-Stokes equations and assuming commutation with
derivative operators, the filtered Navier-Stokes equations, governing the evolution of the resolved
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scales, take the form

2—?+V~(ﬁ®ﬁ)+Vﬁkin—2yv-e(ﬁ) = -V 7, (2.18)
V-ua=0, (2.19)

where the subfilter-scale stress tensor 7 is defined as
T =u@u—0Q® 0 (2.20)

Following Leonard [185], the subfilter-scale stress tensor Ty can be decomposed into two parts.
The first part
TL=u®u—u®u (2.21)

comprises all terms that can be computed from the known filtered solution and is termed Leonard-
stress tensor. Moreover, it characterizes the fluctuations of the interactions among the resolved
scales. The second part, containing the subfilter scales, is given by

T=u®u +u"®@ua+u ®u” (2.22)

and further subdivided as
Tc=aou +u’ ®u, (2.23)
"=u Qu. (2.24)

The cross-stress tensor 7¢ reflects cross-correlations between the subfilter scales and the resolved
scales, whereas the subfilter-scale Reynolds-stress tensor 7 represents the effect of autocorre-
lations between the subfilter scales. Since 7, is not exclusively defined in terms of the resolved
velocity field, the filtered momentum equation is not closed. Closure is achieved by modeling
the impact of the subfilter scales on the basis of the information contained in the resolved scales
only. Incorporating the Leonard-stress tensor into the non-linear term yields an alternative form
of the filtered momentum equation:

aa—ltl +V-(@®u)+ Vi — 20V -e(d) = =V - 14, (2.25)
Using this strategy based on an analytical filter, frequently termed explicit filtering, filtering and
subfilter-scale modeling are assumed independent of the subsequent discretization of the filtered
governing equations. As a consequence, the numerical scheme has to account for an accurate
solution of the filtered governing equations. An alternative approach consists of considering the
cumulative effect of the numerical treatment of the governing equations, in particular, the intro-
duction of a computational grid and the application of discrete approximations of the derivative
operators inherent in every flow simulation as an implicit filtering giving rise to the large-scale
field. This approach, which is closely related to the volume-balance procedure suggested by
Schumann [277], also implies that scale separation, discretization and modeling of the unre-
solved scales are not separated. As discussed, e.g., by Sagaut et al. [271] (see also Sagaut [270]),
considering the alternative form (2.25) of the filtered momentum equation seems to be more

13
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appropriate in this case, since the form G ® 0 of the convective term causes unresolved scales
which are truncated by the implicit filter, inevitably resulting in @ ® 0. In the context of implicit
filtering, it also seems to be more appropriate to refer to the unresolved scales as the subgrid
scales rather than the subfilter scales and to the subfilter-scale stress tensor as the subgrid-scale
stress tensor T, (and Ty, respectively). With regard to the subsequent application of the VMM,

sgs
this notation is adopted for the remainder of this thesis.

To further identify the role of the subgrid scales, the transport equation governing the evolution
of the kinetic energy

a-a (2.26)

of the resolved scales is considered. Taking the scalar product of the filtered momentum equa-
tion (2.18) with 1 yields

0K  _ L - _ - -

wr +0-VK -V (2ue(Q)l — Tyl — Prinll) = —2ve() : (@) + Toos - €(0);  (2.27)
see, e.g., the textbooks by Pope [252] and Sagaut [270] for derivation. The last term on the
left-hand side represents the transport of kinetic energy among the resolved scales and merely
constitutes a redistribution of resolved kinetic energy. The two terms on the right-hand side
describe the dissipation of energy by viscous effects acting on the resolved scales as well as the
rate of energy transferred between the resolved and the unresolved scales, named subgrid-scale
dissipation. The subgrid-scale dissipation, defined as

Esgs = ~Tygs * €(0), (2.28)

may be positive or negative. Whereas e, > 0 represents a transfer of energy to the subgrid
scales, also referred to as forward scatter of energy, £, < O indicates reverse energy transfer
or backscatter of energy, respectively. In the mean, the second term is negative such that energy
is continuously passed to the unresolved scales in accordance with the picture of an energy
cascade. With regard to subgrid-scale modeling in LES, this elaboration implies that interscale
energy transfer constitutes an essential feature that has to be accounted for in an appropriate
way.

2.3.2 A Review of Relevant Subgrid-Scale Models

According to Sagaut [270], two modeling strategies are usually distinguished in LES. On the
one hand, functional models aim at modeling only the impact of the subgrid scales onto the
evolution of the resolved scales, but not necessarily their structure. As presented in the previous
section, their action is of dissipative nature in the mean. The subgrid-viscosity concept relies
on the assumption that the related mechanism behaves similar to the dissipation by molecular
motion. A general expression for the deviatoric part of the subgrid-scale stress tensor thus reads

as
1
Ties — §tr(TSgS)I = —2ugse(0), (2.29)
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where v, denotes the subgrid viscosity. The Smagorinsky model [288], proposed in the 1960s,
is among the most popular subgrid-viscosity models. In the meantime, various modifications and
enhancements have been developed, for instance, its dynamic form introduced by Germano et
al. [114] to adapt the involved model parameter to local flow structures. The underlying con-
cept, which is based on the so-called Germano identity [113], evolved into a comprehensive
procedure to determine otherwise tunable model parameters and was recently reviewed by Men-
eveau [212]. However, subgrid-viscosity models inherently assume that the subgrid-scale stress
tensor is aligned with the resolved strain rate tensor. Indeed, the actual subgrid-scale stress ten-
sor and the strain rate tensor are only weakly correlated; see, e.g., Liu et al. [197]. Furthermore,
subgrid-viscosity models do not intend, by definition, to capture the phenomenon of inverse en-
ergy transfer from the subgrid scales to the resolved scales. Although energy is passed to the
subgrid scales in the mean, backscatter can be quite significant and of the same magnitude as
forward scatter; see, e.g., Piomelli et al. [248].

Structural models, on the other hand, intend to reconstruct the subgrid-scale stress tensor directly
using information extracted from the resolved velocity field. Exploiting the similarity between
the scales of adjacent ranges, Bardina’s scale-similarity model [14, 15] calculates the subgrid-
scale stress tensor from its definition as

cn
_gn

Tsgs ™ u®u—-—u® (230)
In general, scale invariance, which also enters the dynamic model mentioned above, constitutes
a particularly important property for subgrid-scale modeling in LES, as pointed out in a review
article by Meneveau and Katz [213]. The scale-similarity model may be interpreted as a partic-
ular case of the general class of deconvolution-type models. Deconvolution-type models, such
as the approximate deconvolution model of Stolz and Adams [295], use an approximate inverse
of the filtering operator to obtain information on the unresolved scales. Models of this category
exhibit a notably high level of correlation with the actual subgrid-scale stress tensor. Moreover,
forward scatter as well as backscatter of energy are represented naturally. However, these mod-
els often do not provide sufficient subgrid-scale dissipation. This issue is particularly addressed
in a review article by Domaradzki and Adams [83]. To adequately capture the missing subgrid-
scale dissipation, both physically and mathematically motivated approaches have been proposed;
see, e.g., the textbook by Garnier et al. [108] for an overview. In the case of the scale-similarity
model, an additional subgrid-viscosity term is frequently included, resulting in a so-called mixed
model; see, e.g., Bardina et al. [14, 15], Zang et al. [338] and Singh and You [287]. Recently,
Anderson and Domaradzki [4] further evaluated the scale-similarity model with respect to its
subgrid-scale energy transfer and proposed a modification to circumvent those additional mea-
sures. For the approximate deconvolution method, a second step, the relaxation regularization,
is applied to provide the necessary dissipation; see, e.g., Stolz et al. [296]. Structural models ex-
plicitly approximating the subgrid-scale velocity are, for instance, the velocity-estimation model
(see Domaradzki and Loh [84] for a version appropriate for application in physical space) and the
model by Scotti and Meneveau [279]. The velocity-estimation model interpolates the defiltered
field on a finer grid to generate some smaller scales. Scotti and Meneveau [279] use fractal
interpolation for the construction of a synthetic subgrid-scale velocity field. Subgrid-scale mod-
els based upon vorticity or vortex-based concepts have also been proposed in literature. Misra
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and Pullin [218], for instance, presented a vortex-based subgrid-scale stress model where the
subgrid-scale structures of turbulence are assumed to consist of stretched vortices.
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The Variational Multiscale Method (VMM) was established by Hughes et al. [153] as a gen-
eral framework for computational mechanics, which particularly addresses problems exhibiting
multiscale characteristics. By separating the scales of the underlying problem into a predefined
number of scale groups, an individual numerical treatment of each scale group is enabled, which
allows for designing advanced computational methods. Originally, the VMM was introduced
by Hughes [150] to explain the origins of stabilized methods, as used in the Finite Element
Method (FEM), by relating them to subgrid-scale models in general. A categorization of the
VMM into the broad field of multiscale methods, taking into account applications both in fluid
as well as in solid mechanics, may be found, e.g., in the overview article by Gravemeier et
al. [124]. After identifying the VMM as a sound framework for LES, the derivation of an appro-
priate variational multiscale formulation is presented in this chapter. Eventually, residual-based
subgrid-scale approximations leading to stabilized FEMs are introduced.

3.1 A Paradigm for Scale Separation in Large-Eddy
Simulation

The variational multiscale concept offers a different perspective on the fundamental step of scale
separation in LES. In the VMM, scale separation based on a variational projection of the gov-
erning equations is assumed. The variational projection, identifying the resolved and subgrid
scales, emanates from the discretization of the governing equations (see, e.g., the review article
by Gravemeier [119]), for instance, by using the FEM, which is applied in this thesis. Concern-
ing the Galerkin FEM, the reader is referred, e.g., to the textbook by Gresho and Sani [129]
for an exhaustive discussion of its mathematical interpretation as a projection. VMMs for LES
are therefore inherently linked with approaches assuming implicit filtering. Although filtering
might not be performed explicitly, the filtered formulation shown in Section 2.3.1 frequently
serves as an analytical tool for devising and evaluating approaches to LES. Particularly for this
case, the VMM enables a profound mathematical framework for LES. Due to implicit filtering,
the VMM can be straightforwardly applied to arbitrary complex geometries. The VMM also
allows for a priori separating an arbitrary number of scale ranges and provides an equation for
each scale range, which governs the evolution of the respective scales; see, e.g., Collis [70] as
well as the review article by Gravemeier [119]. By augmenting the number of separated scale
groups beyond the established two-scale decomposition of LES, more advanced multilevel LES
approaches may be consistently derived; see Sagaut et al. [271] for a classification of multilevel
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3 The Concept of the Variational Multiscale Method

methods in general as well as a compilation of various concepts. This opportunity gives further
evidence of the multi-purpose framework provided by the VMM.

The VMM as a framework for LES was originally suggested by Hughes et al. [154]. In that
study, a three-scale version of the VMM, as later clarified by Collis [70], was proposed that al-
lows for incorporating a subgrid-viscosity term which acts only on the smaller resolved scales.
The first applications to LES of decaying homogeneous isotropic turbulence and turbulent chan-
nel flow using a spectral method were reported by Hughes et al. [155] and Hughes et al. [156],
respectively. Comprehensive overviews of the three-scale VMM may be found, e.g., in the re-
view articles by Gravemeier [119] and John [162]. A crucial aspect of the three-scale VMM
is the actual implementation of the further separation of the resolved scaled, as also empha-
sized by the authors of the aforementioned review articles. Jansen and Tejada-Martinez [157]
extended the three-scale VMM to physical space using an FEM with hierarchical shape func-
tions to perform scale separation based on the polynomial order. Also within an FEM, John and
Kaya [163] introduced an L,-projection-based scale separation, which formally allows for per-
forming scale separation either based on the polynomial order of the shape functions or based on
a coarser grid. For recent applications and developments of the L,-projection-based three-scale
VMM, the reader is referred, e.g., to Rohe and Lube [269], who introduced a grad-div stabi-
lization term as a subgrid-scale model for the pressure, as well as to John and Kindl [164], who
considered an adaptive large-scale space such that the direct influence of the subgrid-viscosity
term may be increased or attenuated depending on the local flow structures. Despite its flex-
ibility with respect to the way scale separation may be realized, the polynomial-order-based
option was chosen for all the aforementioned L,-projection-based three-scale VMMs. For grid-
based scale separation, Gravemeier et al. [126] proposed the Algebraic Variational Multigrid-
Multiscale Method (AVM?), which is the predecessor method of the approach developed in the
present thesis. In the AVM?, level-transfer operators from plain aggregation algebraic multigrid
methods are introduced to implement the separation between larger and smaller resolved scales,
thus eluding any explicit construction of a coarser grid. Level-transfer operators from plain ag-
gregation algebraic multigrid methods are also involved in the method derived in this thesis.

A residual-based two-scale version for LES of turbulent incompressible flow was presented, e.g.,
by Bazilevs et al. [22]. By using the residual together with an appropriate parameter to approx-
imate the unresolved-scale quantities, that approach is closely related to stabilized methods and
the original intention of the VMM. Time-dependent residual-based subgrid-scale approxima-
tions, as originally introduced by Codina et al. [68], were investigated for LES, e.g., by Gam-
nitzer et al. [107] and Principe et al. [255]. Furthermore, Masud and Calderer [210] used bubble
functions defined on the element interior to devise a more sophisticated stabilization operator
for residual-based two-scale VMMs. Recently, Oberai et al. [234] suggested a two-scale VMM
based on a subgrid-viscosity approach acting on the entire range of resolved scales. In that study,
the subgrid viscosity is determined using a residual-based approximation for the subgrid-scale
velocity.

All aforementioned VMMs were realized within FEMs or spectral methods. The VMM however

constitutes a theoretical framework for LES, which is not specifically related to these methods, in
contrast to what these examples may imply. In fact, the VMM can be used as a framework within
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other numerical methods as well. This issue was discussed by Gravemeier [119] in comprehen-
sive from with a focus on Finite Volume Methods (FVMs) as well as additional hints concerning
Finite Difference Methods (FDMs). Applications of the three-scale VMM using a small-scale
subgrid-viscosity term and the residual-based two-scale VMM in FVMs may be found, e.g., in
Gravemeier [118] and Calo [56], respectively.

In this thesis, the FEM is applied. Moreover, a two-scale variational multiscale formulation is
exclusively considered and presented in the next section.

3.2 Variational Multiscale Formulation of the Incompressible
Navier-Stokes Equations

Fluid motion in the domain € described by the incompressible Navier-Stokes equations is con-
sidered for a time period te,q:

)
a—‘;+u-Vu+vpkm WV -elu)=f in Q x 10, tea[, (3.1)
Vou=0 in Q x 0, tea], (3.2)
u=up onI'py X0, tena[, (3.3)

(—pkinl + 2ve(u)) -n =h, ifu-n=>0
—u(u-n)+ (—pl +2ve(u)) -n =h, ifu-n<0
u=u inQ x {0}, (3.5)

} onI'ny X0, tena[, (3.4)

where the momentum equation is given in convective form. Furthermore, I is the identity tensor
and n the outer unit normal vector on the boundary 0Q of the domain Q. Dirichlet boundary
conditions are imposed on the part I'p,, of Q2 and Neumann boundary conditions on I'y ,, as-
suming I'n , NI'ny = 0 and I'p y U T'yw = 0Q. Neumann boundary conditions are prescribed
differently on inflow and outflow parts of the Neumann boundary, as only the traction is pre-
scribed on the outflow part TR, (#) := {x € I'vu|u(x,t) - n(x) > 0}, but the total momentum
flux on a potential inflow part I} ,(t) := {x € I'vu|u(x,t) - n(x) < 0}, with IY, NI, =0
and TR, U F}{},u = I'nu; see, e.g., Hughes and Wells [151]. Due to potentially arising eddies
at the outflow boundary of the domain €, which may evoke (partial) inflow at the outlet, the
Neumann boundary condition is split up as shown in equation (3.4). The inclusion of the result-
ing convective boundary term at the outlet of the domain is mandatory for ensuring stability at
the outlet in such cases, meaning that potential eddies are indeed convected out of the domain,
as observed, e.g., by Bazilevs er al. [23] as well as by Gravemeier and Wall [122]. The initial
velocity field ug is assumed divergence-free.

For the variational formulation of the Navier-Stokes equations, solution function spaces

Sy = {u € [Hl(Qﬂ3 | u = up on FD,u} (3.6)
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for u and
Sp = {pkin S LZ(Q)} 3.7

for py, as well as weighting function spaces
Ve = {v e [H'(Q)]’| v=0o0n FD,U} (3.8)
for the velocity weighting function v and
V, = {q € L(Q)} (3.9)

for the pressure weighting function ¢ are assumed. As usual, L,(Q) is the Hilbert space of
square-integrable functions in the domain Q and H'(Q) C L,(Q) the Sobolev space of square-
integrable functions with square-integrable first derivatives. The three-dimensional vectorial ver-
sion of the space H'(Q), indicated by the respective exponent, is used for the velocity field. For
pure Dirichlet problems (i.e., 0Q = I'p,), the pressure is only defined up to a constant, and
the pressure solution and weighting function space have to be formally restricted to S,/R and
V,/R, grouping together functions which differ only by a constant. The system of equations (3.1)
and (3.2) is multiplied by v € V,, and ¢ € V, and integrated over the domain €. Viscous and
pressure term are integrated by parts, with boundary conditions (3.3) and (3.4) applied to the
resulting boundary integrals. The variational formulation of the incompressible Navier-Stokes
equations is given as follows: find (u, pxin) € Sy X S, such that

Brs(V, ¢; 1, piin) = Ins(V) (3.10)
for all (v, q) € Vy x V,. The form on the left-hand side is defined as
Bxs(V, @30, Pein) := Bm(Vi 0, piin) + Be(q; w), (3.11)

with the momentum part

ou
Bu(viu, piin) == (V,—> + (v,u-Vu), — (V- Vv, Piin
M( k ) + o ( )Q ( k )Q (3.12)

0
+ (e(v), 2ve(w)g — (v.u(u )y

and the continuity part
Be(giu) :=(q,V -u)g . (3.13)

The linear form /xs(v), including the Neumann boundary condition, is given as
Ins(v) == (v, f)q + (v, hu)p - (3.14)

The last term of the momentum part arises due to the aforementioned inflow part of the Neumann
boundary condition. Since this term is not subject to the following scale separation, it is omitted
in the subsequent derivations for brevity. Throughout this thesis, (-,-)y and (-, ). denote the
usual L,-inner product in a domain Q and on a boundary or interface I', which may be further
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specified by additional sub- or superscripts. The L,-inner product in €2 is defined as

(a,b)g := /abdQ (3.15)

Q

for scalar functions a,b € L,(Q) and extends to the respective vector- and tensor-valued func-
tions a and b as well as A and B as (a,b)q := [,a-bdQ and (A,B)q := [,A : BdQ,
respectively.

For the variational multiscale formulation of the Navier-Stokes equations, the velocity is decom-
posed into resolved and unresolved (or subgrid) components as

u=u"+1, (3.16)

where resolved velocity scales are identified by a spatial discretization of characteristic element
length h. The subgrid scales are denoted by (). Analogously, the pressure is decomposed as

DPkin = p]}(Lin + Piin- (3.17)

According to the decomposition of the solution functions, direct sum decompositions of the
underlying function spaces into a finite-dimensional subspace of resolved scales and an infinite-
dimensional subspace of unresolved scales in the form S, = S @ S, and S, = Sh & S, re-
spectively, are assumed. Inserting the decomposition of velocity and pressure, (3.16) and (3.17),
into the variational formulation (3.10) leads to

Bus(v, g:u", pliy) + Bis(v, g, 0, i) + BRs(vi 1) = s(v), (3.18)
where
Bis (v, g; 0", 0, prin) 1= (V 8_ﬁ> + (v,u"-Va+a-vu) — (V- v, pn)
NS s s s Wy Pkin 7at o ) Q y Mkin ) (319)

+(e(v), 2ve(@))g + (¢, V - 0)q

contains linear terms in the unresolved-scale quantities. The quadratic contribution from the
convective term is given by
Bis(v; ) := (v, &~ Vi), (3.20)

For separating resolved and unresolved scales via a variational projection, direct sum decompo-
sitions of the weighting function spaces V, = V! &V, and V, = V[f @ V,, respectively, are also
introduced. Accordingly, the weighting functions read as

VvV = Vh —+ \Af’ (321)
q=q"+4q, (3.22)

respectively. By this decomposition, the variational form of the Navier-Stokes equations is de-
coupled into a resolved- and an unresolved-scale equation, that is, variational form (3.18) is
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separately weighted by the resolved- and the unresolved-scale part of the decomposed weighting
functions. The equation projected onto the space of resolved scales reads as

Brs(v", q"u, pil,) + Bis (V" ¢ 0", 8, Puan) + BRs (v 61) = bas(v") (3.23)
for all (v",¢") € V% x V! and the equation projected onto the space of unresolved scales as
Bs (¥, 30", pign) + Bs (9, G 0", 0, Pran) + Bl (V110) = s (V) (3.24)

forall (¥,4) € Vy x V,. The resolved-scale equation is solved for (u”, pf,) € S" x S", while the

unresolved-scale equation, yielding (Q, pyin) € S X Sp, is usually omitted. Hence, the resolved-
scale equation is not closed, and the unresolved-scale contributions have to be appropriately
modeled. Eventually, the variational multiscale formulation (3.23) is split up as follows:

Bas(VE, ¢ul plt ) + C(vihul, ) + R(v ) 4+ BYe(vh, ¢t ) = Ias(V?),  (3.25)

where
C(vhu" a):= (vi,u"-Va+a.-va") = (vhu"-va), + (vha-vu'),  (3.26)
is the projection of the cross-stress tensor and
RV ) := Byg(v0) = (v, a- Vi), (3.27)

the projection of the subgrid-scale Reynolds-stress tensor onto the space of resolved scales. The
form

By (vl ¢ i, ) = (vh, 88_1;) — (V- vh7ﬁkin)9 + (e(vh), 2V€<ﬁ))g + (qh, V- ﬁ)Q

. (3.28)
contains the remaining linear terms in the unresolved-scale quantities. The variational multi-
scale formulation (3.25) represents an analogue to the filtered Navier-Stokes equations and con-
stitutes an alternative mathematical framework for LES. Converting the particularly relevant
convective term as well as the cross- and subgrid-scale Reynolds-stress terms of the variational
multiscale formulation into their respective filter-based form, they read as u-V,
a-Vu’ +u”- Vi and u” - Vu”, respectively. These filtered terms may be compared to their
counterparts in equation (2.25). The alternative form, specifically suggested for implicit filter-
ing, is thus obtained naturally, with the notable difference that the assumption of commutation
between partial derivatives and filter operation is not required (see also, e.g., Collis [70] and
Vreman [325]). Concerning the variational counterpart of the transport equation (2.27) for the
resolved kinetic energy, an equivalent expression is readily obtained from the variational multi-

scale formulation by replacing v"* by u” and ¢" by pf. .

Eventually, basic ingredients of the FEM, which constitutes, as aforementioned, the numeri-
cal approach considered in this thesis, are summarized. For an elaborate survey of the FEM
in general, the reader is referred, e.g., to the textbook by Hughes [149] and the collection by
Zienkiewicz and Taylor [339], which also comprises aspects of the FEM in fluid dynamics. Intro-
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ductory textbooks exclusively focusing on the FEM for flow problems are Donea and Huerta [85]
and Gresho and Sani [129, 130]. For discretization, the domain Q is partitioned_ Nto 7 non-
overlapping elements e with domain Q° and characteristic element length A, i.e., Q := [JI, Q°,

where the closure of Q is defined as Q := QU JQ. The resulting triangulation is denoted by 7.
The discrete solution functions are given in a usual finite element expansion by

u'(x,t) = > Na(x)ua(t), (3.29)
Ae&

Phin(,1) = > Na(X)piin,alt), (3.30)
Ae&

where £ denotes the set of all nodes A of the discretization. Moreover, uy and pyin 4 are the
velocity and pressure degrees of freedom at node A. These nodal values are interpolated by shape
functions N4, each corresponding to a node A. Throughout this thesis, the shape functions are
chosen to be trilinear Lagrangian polynomials. The same approximation is used for the weighting
functions v and ¢". The associated finite element interpolation spaces, given by

St = {uh e [H'(Q)] | u"|q € [Q1(Q)] Ve € T" and u” = uyp on FD,H} . (33D

u

V= {vh e [H'(Q)]'| v"|ae € [Q1(Q)) Ve € T"and v = 0 on rD,u} . (332
S = {pn € La(Q)| plinlac € Q1(Q°) Ve e T"}, (3.33)
V= {q" € Lr(Q)] ¢"|qc € Q1(Q°) Ve e T"}, (3.34)

may now be identified as the finite-dimensional subspaces of Sy, S,, Vy, and V,, introduced in
the derivation of the variational multiscale formulation of the Navier-Stokes equations. Here,
Q,(Q°) denotes the set of trilinear functions defined in the domain of hexahedral elements,
which are used in this thesis.

3.3 Residual-Based Subgrid-Scale Modeling

Equation (3.24), governing the evolution of the unresolved scales, enables an approximation
for the subgrid-scale quantities. Various strategies to estimate the subgrid-scale quantities from
equation (3.24), ranging from the elementwise numerical solution of local subproblems to ap-
proximate analytical expressions for @t and py,, have been proposed in literature; see, e.g.,
Hughes et al. [153] for an overview and the relationship between them. Rearranging equa-
tion (3.24) yields

Bls(¥,d;u", @, pan) + Bis(V30) = — [Brs(¥, g 0", pit) — Ias(¥)] (3.35)

where the projection of the resolved-scale residual onto the space of unresolved scales constitutes
the right-hand side and drives the unresolved-scale equation (see Calo [56]).

Residual-based subgrid-scale modeling aims at providing an approximate analytical solution for
0 and py,; see, e.g., Bazilevs et al. [22], Calo [56] and Gamnitzer [106]. As a result, the subgrid-
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scale parts of velocity and pressure are approximated in an elementwise manner as

o= —myrl, (3.36)
Prin = —TCTEs (3.37)

where
rf = % +u" - vu' 4+ Vpl - 20V - g(u”) - f, (3.38)
rb=v-u (3.39)

denote the discrete residual of momentum and continuity equation, respectively. The definitions
for the stabilization parameters 7y and 7¢ as proposed by Taylor et al. [306] and Whiting and
Jansen [333] are used in this thesis. They are given by

™ = ! , (3.40)

=&+ u' - Gut 4+ C2G : G

1
= 41
e = (G’ (341
where X
O, Ok

42
Z Ox; ax] (342)

is the covariant metric tensor related to the mapping between global coordinates x and local
element coordinates &. The time-step length of the temporal discretization is denoted by A¢, and
(1 is a positive constant independent of the characteristic element length, which is chosen to be
36.0 for trilinearly-interpolated hexahedral elements as exclusively used in this thesis.

Introducing the subgrid-scale approximations (3.36) and (3.37) into the unclosed terms (3.26)
to (3.28) of the variational multiscale formulation (3.25), integrating by parts some terms and
omitting some other terms, the following residual-based multiscale or stabilization terms are
obtained:

h h

C(v;uh ) ~ (u”- VvthrM)Q* — (v, 7mrly - Vu )Q* : (3.43)
R(V"0) = — (tury - Vv, tury) o » (3.44)
Bug"(v", ¢ 0, p) ~ (V- v, 7erl) o + (V" murhy) o - (3.45)

To eliminate potential boundary terms arising from integration by parts, it is assumed that the
subgrid-scale quantities vanish on the element boundaries; see, e.g., Hughes [150] for elabo-
ration. Moreover, Q* represents the union of all element interiors, i.e., = Ui, Q°, and
(*s)as = > ceqn(:;-)ae. The first cross-stress term constitutes a Streamhne/Upwmd Petrov-
Galerkin (SUPG) term. Moreover, a grad-div term, the first term of the modeled form of
Bﬁfém(vh, g1, p), and a Pressure Stabilizing Petrov-Galerkin (PSPG) term, the second term,
arise. The transient and viscous term of Bﬁfém(vh, q"; 0, p) are neglected. With respect to the
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transient term, this assumption leads to a so-called quasi-static subgrid-scale approximation, in
contrast to a time-dependent subgrid-scale approximation as suggested by Codina et al. [68].
Owing to the use of trilinearly-interpolated hexahedral elements, the viscous term, including
second derivatives of v/ after integration by parts, is considered negligible. Omitting the second
cross-stress term as well as the subgrid-scale Reynolds-stress term yields a standard stabilized
formulation merely containing the SUPG, PSPG and grad-div term. Independent of the VMM,
these terms had already been proposed previously as means to account for instabilities inherent in
the standard (or Bubnov-)Galerkin formulation for the incompressible Navier-Stokes equations.
The SUPG term was originally proposed by Brooks and Hughes [41] to overcome numerical in-
stabilities related to dominant convection by introducing dissipation in streamline direction. The
PSPG term allows for circumventing the inf-sup condition (see, e.g., Brezzi and Fortin [39]),
a mixed finite element formulation is subject to, and enables the convenient choice of equal-
order interpolated elements for velocity and pressure. This term was first presented by Hughes et
al. [152] for the Stokes equations. The grad-div term is addressed in comprehensive form, e.g.,
in the review article by De Mulder [79]. Among other things, the grad-div term provides im-
proved discrete mass conservation, which comes along with an additional numerical dissipation;
see, e.g., Olshanskii ef al. [237]. The benefits and drawbacks related to the grad-div term are
still discussed in current research efforts, both from a mathematical and an engineering point of
view; see, e.g., Olshanskii et al. [237] and Masud and Calderer [210] for recent contributions to
this discussion. Since these stabilization terms vanish for the exact solution, consistency is en-
sured for the overall approach. Deriving these terms in the context of the variational multiscale
method gives rise to two further terms: the second cross-stress term as well as the subgrid-scale
Reynolds-stress term. As analyzed by Hughes and Wells [151], the second cross-stress term en-
ables global momentum conservation for the convective form of the momentum equation. The
subgrid-scale Reynolds-stress term may be interpreted as a convective stabilization of the sec-
ond cross-stress term, acting in a similar manner as the SUPG term for the standard Galerkin
convective term. The formulation incorporating terms (3.43) to (3.45) constitutes a complete
residual-based VMM: find (u", p{,) € S} x S! such that

BNS (Vh7 qh’ uh7 plf(Lin)
+ (uh Vvl TMr{f,[)g* — (Vh, TMrf,[ . Vuh)g* — (TMI'{\L,[ -V e )Q* (3.46)

+ (th, TMI'{\l/I)Q* + (V . Vh, Tcrg)g* = €N3(Vh)

for all (v*,¢") € Vi x V.
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Multifractal Subgrid-Scale Modeling within a
Variational Multiscale Method

Resuming Chapter 2 and Chapter 3, vorticity and local straining represent key features in the dy-
namics of turbulent flows. Structural subgrid-scale models promise high-fidelity LES, since they
are generally able to appropriately estimate the subgrid-scale stress tensor and usually allow for
forward as well as reverse transfer of energy. Moreover, the variational multiscale formulation
provides a sound theoretical framework for LES that suggests directly modeling the cross- and
subgrid-scale Reynolds-stress terms by a structural subgrid-scale velocity-estimation model. Re-
cently, Burton and Dahm [53, 54] proposed multifractal subgrid-scale modeling to approximate
the unresolved velocity in LES. This approach, which is built on the aforementioned physical
aspects of turbulent flow, demonstrated excellent performance both in a priori and a posteriori
evaluations. Based on this subgrid-scale modeling, a novel computational approach within the
VMM is developed for LES of turbulent incompressible flow in this chapter.

After reviewing the occurrence of multifractal structures in turbulent flows, the multifractal
subgrid-scale modeling approach is presented in comprehensive form. Then, level-transfer op-
erators from plain aggregation algebraic multigrid methods are introduced to further separate
the resolved scales, which is required within the multifractal subgrid-scale modeling approach.
The multifractal subgrid-scale modeling is eventually embedded into a residual-based VMM,
since the respective terms provide a stable numerical framework. After summarizing the com-
plete modeled variational multiscale formulation, some implementational aspects are briefly ad-
dressed. Moreover, multifractal subgrid-scale modeling is further adapted for wall-bounded tur-
bulent flows, which have not yet been addressed in any of the preceding studies on multifractal
subgrid-scale modeling. Throughout this chapter, the proposed approach is evaluated for various
numerical examples of increasing complexity. The present chapter is based on work published
in Rasthofer and Gravemeier [258].

4.1 Multifractals in Turbulent Flows

The interface separating turbulent and non-turbulent parts of jet flows or the flame front in tur-
bulent combustion processes, for instance, evolves into a complex and highly irregular shape.
Analogously, the spatial distribution of the kinetic-energy dissipation rate shows significant in-
termittent features. Mathematically, these structures, which exhibit some form of self similarity,
though, can be described by fractals and multifractals, respectively. An early concept for mul-
tifractals in turbulence was proposed by Mandelbrot [206]. The state-of-the-art mathematical
basis was later introduced by Hentschel and Procaccia [142], Frisch and Parisi [101] and Halsey
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4 Multifractal Subgrid-Scale Modeling within a Variational Multiscale Method

et al. [135]. A comprehensive review of fractal and multifractal structures in turbulent flows in-
cluding the related mathematical formalism was presented, e.g., by Sreenivasan [290]. Detailed
introductions into the mathematical theory of fractals and multifractals in general may be found,
e.g., in the textbooks by Falconer [93] and Peitgen et al. [245]. In this section, merely those as-
pects of multifractals that are essential for the subsequent derivation of the multifractal subgrid-
scale modeling approach are summarized. Furthermore, the dynamics by which turbulent flows
exhibit multifractal structures are outlined.

Multifractal structures originate from the repeated application of a scale-invariant multiplicative
process on an initial field. These processes can be described by deterministic or stochastic mul-
tiplicative cascades. In consecutive cascade steps, the considered field is mapped from one cell
to smaller subcells. The set of multipliers M, with 0 < M < 1, which determines the (unequal)
distribution of the field of interest contained in one cell among the corresponding subcells, can
be either prescribed a priori or obtained randomly from a scale-invariant distribution P(M), de-
pending on whether a deterministic or stochastic cascade is considered. After a sufficient number
of cascade steps, the resulting field becomes highly intermittent and displays multifractal scaling
properties. Moreover, all fields generated by one multiplier distribution P(M) are statistically
indistinguishable from each other. Assuming an (integral) measure ©, for instance, mass, the
multiplicative cascade is mathematically expressed as

N
O(x) = 0 [ [ Ma(x), 4.1)
n=1

where N denotes the number of cascade steps and ©, the total amount of the measure to be
distributed within the considered domain. In each step of the cascade, an ny-dimensional parent
cell of size g, (i.e., the edge length for a square or a cube) is split into ns subcells of equal
size 0,,, where n is also referred to as the base of the process. After N steps, the size o, of the

smallest subcells is related to the size g, of the initial cell via

LUp— 4.2)
oN

Expressed for a cell-averaged distributed measure 9 (i.e., ¥, = 0,,/(0,)™), for instance, den-
sity, the multiplicative cascade reads as

N
9(x) = o (n)™ T Mn(x). (4.3)

n=1

For illustration, a one-dimensional stochastic binomial cascade, depicted in Figure 4.1, is con-
sidered. At each stage of the process, the measure contained in one cell is divided between two
subcells, each half the size of the parent cell. The scale-invariant distribution of the multipliers
is given in terms of d-functions as

P(M) = 0.5 (5(M — 0.4) + 6(M — 0.6)) (4.4)
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Figure 4.1: One-dimensional stochastic binomial cascade with imposed conservation of the measure: ini-

tial field as well as resulting fields after A" = 1, 2, 3, 4, 6, 8 and 10 cascade steps normalized

by the respective maximum values.
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4 Multifractal Subgrid-Scale Modeling within a Variational Multiscale Method

such that only two values are possible for M. Additionally, conservation of the measure is im-
posed in every cascade step by randomly selecting the multiplier M,, for the first subcell and
assigning the multiplier 1 — M, to the second one. Figure 4.1 shows the initial field as well as
the resulting fields after 1, 2, 3, 4, 6, 8 and 10 cascade steps. All fields are scaled by their max-
imum value. Passing through the cascade, the intermittency is increased, and the field becomes
concentrated onto successively smaller parts of the domain.

In turbulent flows, it is the repeated stretching and folding mechanism of the vorticity and strain-
rate field that causes multiplicative processes. Gradient-magnitude fields in high-Reynolds-num-
ber flows, such as the kinetic-energy dissipation rate, the enstrophy and the scalar-variance dif-
fusion rate, are subject to these processes. As a result, they exhibit multifractal structures in
the inertial subrange, where the required scale-invariance is naturally satisfied. Based on ex-
perimental data, Meneveau and Sreenivasan [214, 215], for instance, confirmed the multifractal
scale-similarity scaling in the kinetic-energy dissipation-rate field. Further experimental inves-
tigations, e.g., by Prasad er al. [254], Sreenivasan and Prasad [292] as well as Frederiksen et
al. [97] demonstrated that the scalar-variance diffusion rate exhibits multifractal scale-similarity
properties as well. Concerning the enstrophy field, Burton [49] revealed multifractal structures
within the inertial subrange by investigating DNS data of homogeneous isotropic turbulence,
and Mullin and Dahm [227] evaluated experimental measurements to identify its multifractal
properties.

4.2 Multifractal Subgrid-Scale Modeling

A structural subgrid-scale model providing the subgrid-scale velocity allows for directly eval-
uating the cross- and subgrid-scale Reynolds-stress terms, (3.26) and (3.27), of the variational
multiscale formulation (3.25). The physical considerations on multifractal scale similarity inher-
ent in the enstrophy field enable a novel approach to subgrid-scale modeling for LES of turbulent
incompressible flow, as proposed by Burton and Dahm [53]. The multifractal subgrid-scale mod-
eling approach presented in that study constitutes a further developed version of the modeling
strategy originally introduced by Burton [49]. The application of the suggested method to homo-
geneous isotropic turbulence was shown in an accompanying work by Burton and Dahm [54].

4.2.1 General Idea of the Modeling Strategy

In the multifractal subgrid-scale modeling approach, the subgrid-scale velocity 1 is evaluated
using a multifractal reconstruction of the associated subgrid-scale vorticity @ over inertial-
subrange scales. The subgrid-scale velocity field is then recovered via the Biot-Savart opera-
tor (2.6):

X—X

R L[ g
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4.2 Multifractal Subgrid-Scale Modeling

Burton and Dahm [53] argued that the evaluation of the subgrid-scale velocity field via integra-
tion of the directly modeled subgrid-scale vorticity field renders the resulting velocity field less
sensitive to the details of the modeling of w.

The reconstruction of the subgrid-scale vorticity field, expressed by means of its magni-
tude ||@||(x,t) and orientation vector &, (x, t) of unit length as

@(x,1) = [|@](x, t)éu(x,1), (4.6)

consists of two steps. First, the magnitude ||&|| of the subgrid-scale vorticity field is derived by
a multiplicative cascade distributing the total subgrid-scale enstrophy within each element. In a
second step, the orientation &, of the subgrid-scale vorticity field is determined using an additive
decorrelation cascade. Both cascades start at a scale of the size of the element length / and
proceed down to the viscous (or inner) length scale \,. The viscous length scale ), defines the
scale at which the competing effects of local strain rates and viscous diffusion are in equilibrium;
see, e.g2., Buch and Dahm [42] and Mullin and Dahm [227]. In contrast to the Kolmogorov length
scale 1 (see equation (2.10)), which is determined by dimensional analysis, ), is obtained based
on physical grounds and about a factor of six larger than 7 (see, e.g., Mullin and Dahm [227]).
Assuming that each parent element decays into two child elements per spatial direction, i.e.,
ns. = 2, which is a reasonable value for turbulent flow (see, e.g., Frederiksen et al. [97] and
Sreenivasan and Stolovitzky [293]), the number of steps N, of both cascades is determined by
the ratio of the element length h to the viscous length scale \, via

Ny = log, ()\i) , 4.7

which follows immediately from equation (4.2). The local element Reynolds number Re;, pro-
vides a scaling for the ratio of the element length to the viscous length scale as
h 3

1~ Rej. (4.8)

4.2.2 Vorticity-Magnitude Cascade

The magnitude of the subgrid-scale vorticity ||@|| in each subelement of the size of the viscous
length scale is derived from the distribution of the total subgrid-scale enstrophy contained in
the considered element. Therefore, the average subgrid-scale enstrophy () over the element is
estimated using the inertial-subrange scaling of the enstrophy spectrum:

Zo(k) ~ &3k, 4.9)

which follows from analogous arguments as those assumed for the inertial-subrange scaling of
the energy spectrum (see Section 2.2.2). To eliminate the required proportionality constant in re-
lation (4.9), Q is determined as a function of the average enstrophy 6Q" at the smaller resolved
scales, i.e., a scale range between h and a larger length scale ah (i.e., « > 1), which is as-
sumed to be located in the inertial subrange. Accordingly, quantities corresponding to the larger
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4 Multifractal Subgrid-Scale Modeling within a Variational Multiscale Method

resolved scales are marked by (-)** and quantities associated with the smaller resolved scales
by 6(-)". Figure 4.2 displays the enstrophy spectrum, including the inertial-subrange scaling, as
well as its decomposition according to the introduced scale ranges. Integrating the enstrophy

log Zq(k)
A

O

Q"

~log k
kah kh kl/

Figure 4.2: Decomposition of enstrophy spectrum.

spectrum both from the wave number k;, associated with the basic discretization to the viscous
wave number £,

kv
0= /chikédk, (4.10)
kh

where cg > 0 is the associated proportionality constant, and from the smaller wave number £,

to kh
kp

sQ" = /cQaikédk, 4.11)
kah

enables a formulation for the subgrid-scale enstrophy depending on the enstrophy of the smaller

resolved scales: \
A _a\ ! k,\3 h
O = (1_a ) [(k_h) _1] 0Q". (4.12)

The enstrophy at the smaller resolved scales is determined from the resolved velocity field.
Therefore, the resolved velocity u” is further decomposed as

u=u""+éu" +a, (4.13)
—_——

uh
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4.2 Multifractal Subgrid-Scale Modeling

where the larger resolved velocity scales u®” are obtained by explicitly separating the velocity

field at a scale ach. By this decomposition, the enstrophy is formally split up as
Q:wo‘h-wo‘h+5wh-(5wh+®-cﬁ+2(w°‘h-(5wh+w°‘h-d)—{—(5wh-®). (4.14)

The enstrophies Q°", §Q" and Q, associated with the three scale ranges, are identified as

Q" = w . W, (4.15)
Q" = sw" - swh, (4.16)
O=w . (4.17)

Averages over the cross terms are neglected due to the decorrelation of widely separated scales
in the vorticity field.

A three-dimensional stochastic multiplicative cascade (4.3) distributes the average subgrid-scale
enstrophy, as given in equation (4.12) with expressions (4.16) and (4.17) being introduced, over
each element, leading to the following expression for the magnitude of the subgrid-scale vorticity
in each subelement of the size of the viscous length scale:

&) (x,t) = [(1 - a—é‘)_l ((%)4 - 1) (ZN“)3ﬁMn(x, t)] E 0™ (4.18)

n=1

For depiction of the corresponding scale-invariant distribution P(M) of the multipliers of the
enstrophy field, the reader is referred to Burton [49] (see Figure 2.9 therein) as well as Mullin
and Dahm [227] (see Figure 29 therein).

4.2.3 Vorticity-Orientation Cascade

Also the second cascade, which describes the reconstruction of the orientation &, of the subgrid-
scale vorticity, is based on physical reasoning. Various experimental and computational studies
indicate that the velocity fields of adjacent scale ranges are highly correlated; see, e.g, Bardina et
al. [14, 15] for an early investigation of scale similarities in the context of LES, Liu et al. [197]
for a comprehensive experimental study and Meneveau and Katz [213] for a review. Building
on these findings, the orientation &, in the subgrid-scale vorticity field is taken to decorrelate
at successively smaller scales from the local orientation de” of the smaller resolved scales. The
additive cascade is then given as

Nll
& (x,t) = 0, (x,1) + ) _ 8y, (4.19)
n=1

where d,, denotes stochastic-decorrelation increments between adjoining scale ranges. Consis-
tent with the isotropy observed at the smallest scales in high-Reynolds-number flows, the cas-
cade leads to an increasingly isotropic decorrelation of the subgrid-scale orientations from the
element length scale to the viscous length scale. At each stage n of the cascade, d,, is defined by
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4 Multifractal Subgrid-Scale Modeling within a Variational Multiscale Method

two stochastic spherical decorrelation angles 1) and 3. Figure 4.3 displays a single step of the ad-
ditive decorrelation cascade leading to &, ,, at the current stage n . Assuming &,,,,_; = (0,0, 1)"
for the orientation vector of the preceding stage n — 1, the components of é,, are given by

sin ) cos (3
0, = | sin¢sinf | . (4.20)
cosy — 1
An isotropic probability distribution is assumed for /3, as also implied in Figure 4.3, such that ¢/

quantifies the decorrelation of the vorticity orientation at two adjoining scales in the subgrid-
scale field. Evaluation of DNS data by Burton and Dahm [53] revealed correlations between the

Figure 4.3: Single step of additive decorrelation cascade.

probability distribution of ¢ and the value of the multiplier M,,. While there is only a weak cor-
relation between the orientation vectors at two successive scales for lower multiplier values, the
vectors &, ,—; and &, ,, are almost identical for higher ones. This behavior reflects the observa-
tion that the strongest vortical structures, which are identified by larger multiplier values, exhibit
a preferred alignment with the local strain rate tensor over a relatively large range of scales.

As a result of these considerations, an intermittency factor Z,, can be defined from a correlation
between & and dw” as
I [& - dwhdx
* 7 Tl owrax

where Z,, is expected to depend on the number of cascade steps NV, in the decorrelation cascade.
The orientation of the subgrid-scale vorticity after N, cascade steps can then be reformulated
using the intermittency factor Z,,:

4.21)

éu(x,t) = Toel(x,t) + (1 = T,) Y &, (4.22)
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4.2 Multifractal Subgrid-Scale Modeling

where 6 are modified decorrelation increments due to the introduction of the intermittency
factor Z,,, which will be further specified below.

4.2.4 Subgrid-Scale Velocity Approximation

Combining cascades (4.18) and (4.22) yields the subgrid-scale vorticity w, which is a stochastic
field due to the stochastic nature of both the multipliers and the modified decorrelation incre-
ments. Assuming that (i) the correlations between M,, and §; are sufficiently weak, (ii) the
decorrelation cascade is isotropic (i.e., the expectation value of §;; vanishes) and (iii) the multi-
pliers are statistically independent, the subgrid-scale vorticity @, which is taken to be approxi-
mately equal to its expectation value, may be simplified as

G(x,t) = [(1 = a—é)l ((%) - 1) (2Nu)3] % (M

with the expectation value <M% > for the square root of the multipliers. After introducing expres-

0=

Nu
> T.0w" (x,1), (4.23)

sion (4.23) into the Biot-Savart operator (4.5), the subgrid-scale velocity can be computed as

1
—2 _3Nu < 4Nu

f(x, 1) = (1 —a—%) 2 (2% 1); <M5>N" Tou"(x, 1), (4.24)

where it is assumed that the distribution P(M) is independent of x, and &, /ky, is replaced by
using equation (4.7). In the high-Reynolds-number limit, a proper behavior of the model has
to be ensured. Therefore, the subgrid-scale velocity @i should become independent of Re;, for
Re;, — oo and, consequently, N, — oo, implying the following scaling for the intermittency
factor subject to Ny:

T.(Ny) ~ 27 (GF3)An <Mé>_N" . (4.25)
Finally, the subgrid-scale velocity i reads as
a(x,t) = Bou"(x, 1), (4.26)
where ] 1
B:=CB, (1 — a—%>7 - (2M — 1)E . 4.27)

The parameter C’SBgS is the associated proportionality constant. Burton and Dahm [53] first in-

troduced Cf as a universal constant and provided C% ~ 0.37, resulting from a priori in-
vestigations of DNS data for forced homogeneous isotropic turbulence. Based on subsequent
applications, including those by Burton and Dahm [54], Burton [50] later argued that CS';S is
proportional to the subgrid-scale energy transfer and should exhibit a Reynolds number depen-
dence. In particular, C’SBgS should obey a universal function of an appropriate Reynolds number
Re; Burton [50] considered the Taylor micro-scale Reynolds number Re) (see, e.g., Pope [252]
for definition), but Re;, or an average of it seems also conceivable. This function should approach

a finite value in the high-Reynolds-number limit (i.e., Re — o0) and tend to zero as Re — 1.
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4 Multifractal Subgrid-Scale Modeling within a Variational Multiscale Method

Using approximation (4.26), the modeled forms of the cross- and subgrid-scale Reynolds-stress
terms, (3.26) and (3.27), read as

C(v';u" 0) ~ (v!,u" - V (Bsu") + Bou" - Vu") ., (4.28)
R(V";0) ~ (v", Béu" - V (Béu")) . . (4.29)

The remaining terms containing unresolved-scale quantities are not incorporated by multifractal
subgrid-scale modeling.

4.2.5 Number of Cascade Steps

According to equation (4.7), the number of cascade steps is given by the ratio of the element
length to the viscous length scale, which in turn can be approximated by the local element
Reynolds number Re;. The respective relation (4.8) requires a proper definition of Re;, as well
as the introduction of a proportionality constant c,, i.e.,

h 3
/\— = cl,Re,‘;. (4.30)

Two definitions for the element Reynolds number are considered in this thesis:

e based on the strain rate tensor, as suggested by Burton and Dahm [53],

(e(uh) : e(u))? 12

Re} = 4.31)

v

e and based on the resolved velocity
h
h

Rk — I (4.32)

v

The element length h is approximated by the cubic root of the element volume V' (Q°):

h=(V(Q))5. (4.33)

Among others, the experimental study by Mullin and Dahm [227] aimed at estimating 1/c,
from direct measurements of the enstrophy field in a turbulent flow. In that study, a mean value
of (1/¢,) = 12.3 was reported. In an earlier experimental work by Buch and Dahm [42],
(1/c,) = 11.2 was obtained indirectly from measurements in scalar fields.

Finally, Figure 4.4 illustrates the dependence of the coefficient B on the number of cascade
steps N, according to equation (4.27). Since B approaches its asymptotic value already for
N, > 4, significant variations in B can merely occur for small AV,. According to Burton', this

Iprivate communication
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4.3 Scale-Separation by Plain Aggregation Algebraic Multigrid

behavior reflects the decoupling of the subgrid scales from the resolved scales for increasing
values of V.
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Figure 4.4: Dependence of parameter B ~ 27 3 (2 3 — 1) on number of cascade steps Ny,.

4.3 Scale-Separation by Plain Aggregation Algebraic
Multigrid

The multifractal subgrid-scale approximation includes scales between h and a larger length
scale ach. To extract the required smaller resolved scales, level-transfer operators from Plain
Aggregation Algebraic MultiGrid (PA-AMG) methods are used, as suggested by Gravemeier et
al. [125] for separating scale groups within a three-scale VMM. Based on this concept, Grave-
meier et al. [126] later introduced the AVM? for LES. From a computational point of view,
level-transfer operators from PA-AMG are particularly attractive for scale separation in LES.
Since they are obtained in a purely algebraic way, i.e., without explicitly generating a coarser
grid, they can be computed for arbitrarily designed meshes without additional effort. Therefore,
they are well suited for approaches intended to be applied to practically relevant problems in-
volving complex geometries. Using the AVM?, Comerford et al. [72] recently demonstrated the
convenient applicability of the resulting scale-separating operator to such problem configura-
tions in the context of LES of pulmonary airway flow. Usually, algebraic multigrid principles
are applied in the context of solution methods for matrix systems arising from the discretization
of partial differential equations. For these systems, multigrid approaches in general are among
the most efficient algorithms. Multigrid methods combine simple iterative schemes, for instance,
Gauss-Seidel relaxation, with a hierarchy of coarser resolution levels. For details on multigrid-
based solution strategies, the reader is referred, e.g., to the textbooks by Briggs et al. [40], Hack-
busch [134] and Trottenberg et al. [314]. As aforementioned, level-transfer operators from PA-
AMBG are applied for explicit scale separation in this thesis. Originally, PA-AMG was introduced
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4 Multifractal Subgrid-Scale Modeling within a Variational Multiscale Method

as a preliminary stage towards smooth aggregation algebraic multigrid methods, developed by
Vaneék et al. [319].

To obtain a  scale-separating  operator, a  prolongation  operator  matrix
P! € R 1 S — S transferring the coarser solution field onto the actual (i.e., fine)
discretization, is generated first. In the context of multigrid methods, it is common to refer to
the larger resolved scales as the coarse scales. This notation is taken up in the remainder of this
section when referring to multigrid methods. In the notations introduced above, coarsening by a
factor of @ = 3, which is the usual value in aggregation-based algebraic multigrid methods (see,
e.g., Vanck et al. [319]) and also obtained from the strategy briefly described below, is already
assumed. Moreover, n!t . denotes the number of degrees of freedom of the discretization, n3" the
number of degrees of freedom on the coarser level, 83" the function space associated with the
coarser level and S" the function space associated with the discretization. The construction of
P’ consists of two steps. First, its sparsity pattern is determined. Therefore, the degrees of free-
dom corresponding to the system matrix are grouped into a set of so-called aggregates A" such
that Uﬁ% Al ={1,..,nf} and A7 N A} = @ forall 1 <i,5 < nl withi # j, where ny! is the
number of nodal blocks on the coarser level. Each aggregate A” is defined by its root node with

all its associated degrees of freedom df? € {1,...,nh .} and all adjacent degrees of freedom that

share a non-zero off-diagonal entry with d;\?. Second, the non-zero values of P, are calculated.
Based on the near-null space B of the system matrix K without Dirichlet boundary conditions
being applied (i.e., KB =~ 0), the prolongation operator matrix P%, as well as a coarse-level
representation of the near-null space are constructed simultaneously via a local aggregate-wise
QR-factorization of B such that an exact prolongation of the near-null space is achieved. The
restriction operator matrix R} € R™a*"or : S" — §3*, which maps the solution field onto the
coarser level, is chosen to be the transpose of the prolongation operator matrix, i.e.,

R} = (Ph,)". (4.34)
By construction via a local aggregate-wise QR-factorization, it holds
R;"PY, =1, (4.35)

where I denotes the identity matrix. A scale-separating operator matrix yielding the larger re-
solved scales u” is then defined as

S;h = PL R (4.36)

Owing to equation (4.35), PA-AMG level-transfer operators enable projective scale-separating
operators, i.e.,
(Si)" =808 o..oS)" =S}, (4.37)
n times

where n € NT. More details of the presented derivations as well as further considerations and
references concerning level-transfer operators from PA-AMG are provided in Gravemeier et
al. [125] in conjunction with its application within a three-level VMM.
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The scale-separating operator matrix is applied to the discrete (i.e., nodal) values of the resolved
velocity field. The usual finite element expansion (3.29) of the resolved velocity field can also
be written as
u" =) " Njuy =NU", (4.38)
Aeg

where U" denotes the vector of resolved velocity degrees of freedom u4 and N a matrix con-
taining the shape functions N 4. Using equation (4.36), the small-scale velocity field is obtained
as

u" =" Npduj = NoU" =N [I-S}"| U", (4.39)

Ae&

where §U" is the vector containing the nodal values Ju. of the small-scale velocity field.

Figure 4.5 illustrates scale separation by level-transfer operators from PA-AMG for a one-
dimensional problem with one degree of freedom per node. On the bottom, the discretization
based on linearly-interpolated one-dimensional elements is shown, and the aggregates A”, fur-
ther identified by their root node with associated degree of freedom dA?, are visualized by grey
boxes. The smaller resolved velocity du”, obtained from subtracting the larger resolved vel-
ocity u3" from the solution field u", is depicted above. Applying S3" to the vector of discrete
values of u” and interpolating with N, yields the larger resolved velocity u3" on the used dis-
cretization, which is here indicated by the additional subscript h.

Ah d‘A? 5Uh
] ) )
k' @ @ J L' L @ J

node element

Figure 4.5: Scale separation by level-transfer operators from PA-AMG.

4.4 Residual-Based Subgrid-Scale Modeling

The multifractal subgrid-scale modeling approach introduced so far is based on physical reason-
ing. In particular, the multifractal subgrid-scale modeling approach aims at capturing the physi-
cal interaction that leads to the actual energy transfer between the larger and the smaller scales in
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turbulent flows, i.e., the resolved and the subgrid scales in the respective LES. Therefore, it is not
purely dissipative and allows for physical backscatter of energy, among other things. An intro-
duction of additional artificial (or subgrid-scale) dissipation to also stabilize numerical schemes
is not intended by the multifractal subgrid-scale modeling approach, and incorporating the mul-
tifractal subgrid-scale approximation into the variational multiscale formulation does generally
not ensure the stability of the final numerical method. Therefore, potentially destabilizing effects
induced by the numerical scheme have to be accounted for otherwise, as elaborately discussed
by Burton and Dahm [54]. For the multifractal subgrid-scale modeling approach in its original
form, a backscatter limiter was proposed by Burton and Dahm [54] and in a more advanced adap-
tive form by Burton [50] to overcome this limitation. By a reduction of those components of the
inertial stress tensor 1 ® 0 + T that contribute to backscatter, the control of spurious energy
is accomplished. In the latter study, the resulting overall approach was referred to as non-linear
LES (nLES).

Here, the multifractal subgrid-scale modeling approach is embedded into a residual-based vari-
ational multiscale formulation. A mathematically solid foundation, as outlined in Section 3.3,
renders residual-based subgrid-scale approximations, which lead to stabilized methods, a re-
liable means for accounting for stability issues not addressed by the multifractal subgrid-scale
modeling. Hence, the following solely numerically motivated stabilization terms are included:

Bresan (V" ¢ u plt ) = (uh . VVh,TMI‘{\L,I)Q* + (th, MR )Q* + (V . Vh,Tcrg)Q* . (4.40)
As shown in equation (3.45), the PSPG and grad-div term emanate from Bye"(v", ¢"; @, Piin)»
which has not been considered by the multifractal subgrid-scale modeling. The SUPG term, for-
mally arsing from C(v"; u”, ), as explained in Section 3.3, provides convective stabilization
and, hence, the necessary dissipation on the subgrid-scale level. Since the terms given in equa-
tion (4.40) arise from a residual-based approximation of the subgrid scales, their inclusion may
also be interpreted as a second subgrid-scale modeling step.

4.5 AVM* in a Nutshell

As developed in the previous sections, four features constitute the novel approach for LES:

e its derivation within the framework of the Variational Multiscale Method,

e the evaluation of the subgrid-scale velocity based on the Multifractal subgrid-scale mod-
eling approach,

e the identification of the required smaller resolved scales by level-transfer operators from
plain aggregation Algebraic Multigrid methods and

e the inclusion of additional residual-based multiscale terms to primarily shield against po-
tentially destabilizing effects due to the numerical scheme.

It is thus referred to as Algebraic Variational Multiscale-Multigrid-Multifractal Method - abbre-
viated by AVM*. The respective modeled variational multiscale formulation is obtained by in-
serting expressions (4.28), (4.29) as well as (4.40) into equation (3.25): find (u", p;,) € S x S
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such that

BNS(Vha qh; uh>pl}(lin)
+ (Vh, u'-v (B(Suh) + Bou" - Vuh)g* + (Vh, Béu" - Vv (Béuh))g* (4.41)
+ (0" Vv ) o + (V" marly) o + (V- v 7erd) o = s (V)

for all (v, ¢") € V' x V;}, with the multifractal subgrid-scale modeling terms in the second line
(both terms) and the residual-based multiscale terms in the third line (first three terms).

4.6 The AVM* Flow Solver

All simulations presented in this thesis have been performed using the parallel multiphysics soft-
ware platform “Bavarian Advanced Computational Initiative” (BACI; see Wall and Gee [326]).
BACI is a flexible finite element software environment, which is continuously developed and
maintained by the Institute for Computational Mechanics at the Technische Universitit Miinchen.
The object-oriented code is written in C++ and utilizes powerful open-source libraries provided
by the Trilinos project (see, e.g., Heroux et al. [143]), including linear algebra, iterative solvers,
and state-of-the-art algebraic multigrid preconditioners. BACI is composed of three major mod-
ules: the structure, the fluid and the scalar-transport module. This section first provides a brief
overview of the solver for (single-phase) incompressible flow problems. Then, an efficient real-
ization of the multifractal subgrid-scale modeling terms is presented.

4.6.1 Overview of the Flow Solver

As aforementioned, a finite element flow solver is used for the numerical investigation of the
proposed method. Trilinearly-interpolated hexahedral elements are exclusively utilized in this
thesis. Recently, it was argued by Lohner [198] that, with respect to the typical accuracy of
engineering interest, trilinearly-interpolated elements are superior regarding error and work es-
timates when compared to higher-order elements for three-dimensional flow problems (with the
same holding true, e.g., in the context of FDMs and FVMs).

For temporal discretization, the generalized-« time-integration scheme is applied to all exam-
ples in the first part of the present thesis. The generalized-a scheme was originally introduced
by Chung and Hulbert [66] for problems of solid mechanics and later extended to flow prob-
lems described by the compressible Navier-Stokes equations by Jansen et al. [159]. In this the-
sis, generalized-a time integration is applied in the particular form presented by Gravemeier
et al. [127] for the incompressible Navier-Stokes equations. The generalized-« time-integration
scheme enables the crucial balance between damping of high temporal frequencies, which are
often only marginally resolved in simulations and may provoke numerical instabilities, and leav-
ing the dynamics of the well-resolved temporal scales unaffected by damping. This issue is
particularly beneficial when integrating a wide range of temporal scales for a long time period,
for instance, in turbulent flow problems. As introduced by Jansen et al. [159], the generalized-«
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4 Multifractal Subgrid-Scale Modeling within a Variational Multiscale Method

time-integration scheme is second-order accurate and unconditionally stable. The corresponding
parameter p, € [0, 1] allows for precisely controlling the damping of high frequencies. Zero
damping is obtained for p,, = 1. For evaluation, intermediate points in time between level n
and n + 1, defined by two parameters ay, ar € [0, 1], which are subject to p.., are considered.
Following Gravemeier et al. [127] for the incompressible Navier-Stokes equations, the matrix
system of the standard Galerkin formulation (i.e., the formulation without multifractal subgrid-
scale terms and residual-based multiscale terms) using the generalized-a scheme results in

M o (UL, . AUL )V+V G| UL | e Lo
+ T h - (4.42)

0 0 0 -G 0| |P:,.. 0

with

Ul =U! + AU + (1 — y)AtUL, (4.43)
Ut =anUl  + (1 —aw)UL, (4.44)
Ut . =afUl, + (1 —ap)U., (4.45)
P! .. =Pl + (1 —ap)P}, (4.46)

where M, A(U",_ ), V and G are the matrices containing the transient, convective, viscous
and pressure term of form By(v"; u”, p"*). The non-linearity of the convective term is explicitly
indicated. The negative transpose of G results from Bc(q"; u”), and the right-hand-side terms
of ¢(v), which may be time dependent, constitute the vector f, .. Moreover, the vectors u”
and P" contain the degrees of freedom for velocity and pressure, respectively; and vector U”

comprises the acceleration values at the nodes. The parameters ay, ar and v depend on p, as

1 (3 —p
- 4.47
1
(8% = 5 4.48
. (4.48)
1

As proposed by Jansen et al. [159], p 1s set to 0.5 in this thesis. For further details on the
inclusion of stabilization terms as well as the derivation of an incremental formulation to account
for the non-linearity of the Navier-Stokes equations, the reader is referred to Gravemeier et
al. [127].

4.6.2 Implementational Aspects of the AVM*

To illustrate the implementation of the multifractal subgrid-scale modeling terms, while keep-
ing the depiction as simple as possible, a generic matrix system, which is not assigned to any
specific time-integration scheme, is assumed. Hence, all submatrices and -vectors have to be un-
derstood as generalized ones in the following, potentially including further contributions from
time integration. The matrix system 1is iteratively solved for the increments
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AUMH = ghitl _ Uhi and AP+ = P+ — P based on a Picard (or fixed-point-like)
iteration scheme. The linearized system results in

K(UM) 4+ g {C(UM)[I - S}" + C([I — S;"|UM) + R([I — S;"UM) I - S} G| AU
—GT 0 APh,i—H
f — K(UM) UM — GPM
= QTuh (4.50)
|~ H{CUMI =83 + C([L = S3PU™) + R([L - S UM [T - Sl } U’“'] _
0

The matrix K(U"?) contains the transient, convective and viscous term. Multifractal subgrid-
scale modeling for the cross- and subgrid-scale Reynolds-stress terms results in the matrices C
and R, respectively. Potential contributions from the residual-based multiscale terms to the sub-
matrices and -vectors are again omitted for brevity. The parameter 3 is chosen to be either zero
or one. The parameter (5 allows for distinguishing a Picard iteration scheme (5 = 1) also for
the cross- and subgrid-scale Reynolds-stress terms and a computationally more efficient fixed-
point iteration (3 = 0) for these two contributions, which is used for the numerical examples
in this thesis. Choosing 5 = 0 avoids computationally expensive matrix-matrix products with
matrix [I — S?ﬂ and thereby circumvents more densely populated system matrices, as, e.g., dis-
cussed by Gravemeier et al. [126] in the context of the AVM?>. Matrix [I — Sih} is calculated
only once in the beginning and then stored for the remaining simulation. Consequently, scale sep-
aration for obtaining the vector of small-scale velocity nodal values reduces to a matrix-vector
product in each iterative solution step. To construct the prolongation operator matrix P%, . the
“ML” multigrid software package (see Gee et al. [111]) is used.

4.7 Validation for Homogeneous Isotropic Turbulence

As a first test, the AVM* is applied to forced homogeneous isotropic turbulence in a (27)*-pe-
riodic box. To maintain a predefined three-dimensional kinetic energy spectrum, the right-hand-
side term of the momentum equation has to be adjusted such that dissipation is compensated.
The applied forcing, which only affects larger scales by construction, is given in spectral space
through its Fourier coefficients f as

—~

f(k,t) = Cp(k, t)ut(k, 1), 4.51)

where @(k, t) are the Fourier coefficients of the velocity solution obtained by using Fast Fourier
Transformation (FFT). As suggested by Hickel et al. [146], the linear compensation factor Ck is
calculated as i
B 1 OE*(k,t) iFE < e
Cr(k,t) = 2E*(k,t) Ot (4.52)
0 otherwise,
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4 Multifractal Subgrid-Scale Modeling within a Variational Multiscale Method

where £ is a given threshold wave number and £* an intermediate kinetic-energy spectrum ob-
tained from first solving the Navier-Stokes equations without forcing at the current time level.

The initial velocity field, which is given in spectral space, is randomized to phase and exhibits an
5

energy spectrum of the shape E'(k) ~ k~3. The Fourier coefficients of the initial velocity field,

satisfying the continuity equation in spectral space, read as

a(k) if ki, =0
= alk)kks + fllkiks otherwise
\ kklZ ’
( (k) if kp = 0
el = Bllkaks — allkk: otherwise >3
\ kklZ ’
(0 if k1 = 0 and k3 = 0
k)k )
uz(k) = _5(12 2 ifkip#0and k3 =0
——klal + ki otherwise
\ k3 ’
where
\/ e ®) cos(2mp(k)), (4.54)
) L27r€2
27rk:2 ) sin (2rp(k)); (4.55)

see, e.g., Collis [71] and Rogallo [267]. Here, ¢ = v/—1 and 8, (k), 65(k), ¢(k) € [0, 1] denote
the three random phase angles. Moreover, ki, is defined as ko = \/k? + k3 and k = | k]|
Relations (4.53) are only evaluated for one half of the Fourier modes. The coefficients of the
remaining half are determined by the symmetry condition u(k) = u*(—k), ensuring that the
resulting field is real in physical space. The constructed velocity field is transferred to physical
space using inverse FFT. At each time level, the energy spectrum is obtained via

Ely=5 Y uh(k)-u" (k), (4.56)

k—1<|k|<k+}
where k£ € N.

For simulation, a Reynolds number Re = 1/v = 10° is assumed. The computational domain
is discretized using 323 and 64° uniformly-distributed elements. The time-step length is set to
At = 0.03 for the coarser mesh and to 0.015 for the finer one. After an initial transient, sam-
ples of the energy spectrum are collected until convergence is observed. The threshold wave
number is kg = 4. The parameters CSBgS and ¢, of the multifractal subgrid-scale modeling are
chosen to be 0.35 and 0.1. The element Reynolds number is defined based on the strain rate (see
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4.8 Adaption for Wall-Bounded Turbulence

equation (4.31)) for this problem. Figure 4.6 depicts the mean three-dimensional kinetic-energy
spectrum F/(k) as well as the theoretical inertial-subrange scaling. Additionally, instantaneous
velocity streamlines and vorticity magnitude iso-contours during the sampling period computed
on 643 elements are shown. The kinetic-energy spectra for both grids coincide and follow the
expected slope.

0.001 F

0.0001

Figure 4.6: Mean three-dimensional kinetic-energy spectrum E(k) for forced homogeneous isotropic tur-
bulence at Re = 10° using 323 and 643 elements as well as instantaneous vorticity magnitude
iso-contours colored by kinetic energy (red color indicates high kinetic energy and blue color
low kinetic energy) together with velocity streamlines using 64° elements.

4.8 Adaption for Wall-Bounded Turbulence

In this section, the multifractal subgrid-scale modeling approach, applied as a part of the AVM?*,
is extended and analyzed for wall-bounded turbulent flow. To particularly account for near-wall
effects, an enhancement of the multifractal subgrid-scale modeling, referred to as near-wall limit,
is derived for wall-resolved LES. Eventually, a comprehensive investigation of the AVM* for
turbulent channel flow at various friction Reynolds numbers is shown.

4.8.1 Derivation of a Near-Wall Limit

Important effects of wall-bounded turbulent flow are the decrease of the local element Reynolds
number as the wall is approached as well as the higher anisotropy of the vorticity field in the
near-wall region. The reduction in Rej, results in a decrease of the number of cascade steps.
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4 Multifractal Subgrid-Scale Modeling within a Variational Multiscale Method

The decrease of N, thus leads to a significant decrease of B towards the wall, if NV;, becomes
sufficiently small, as discussed in the Section 4.2.5. As the local element Reynolds number
should decrease towards the wall, definition (4.32) using the norm of the resolved velocity is
considered particularly appropriate for this flow type.

In the near-wall region, the vorticity field becomes highly anisotropic. This strong anisotropy
leads to strong correlations in the orientation of the subgrid-scale vorticity. The stronger corre-
lations in the orientation of the subgrid-scale vorticity result in an increase of the intermittency
factor Z,,, which is defined from the correlation between the subgrid-scale vorticity and the vor-
ticity of the smaller resolved scales. In equation (4.25), the intermittency factor Z,, has only
been determined up to the proportionality constant CSBgS. Precisely this factor allows for modi-
fying the derivation of the multifractal subgrid-scale modeling approach to provide a near-wall
limit. Higher intermittency factors Z,, due to stronger correlations are associated with an increase
of C3. Therefore, C%, becomes non-uniform and also depends on local flow features. Based on
these considerations, ngs is multiplied by an anisotropy factor f,; for wall-bounded turbulent
flow, yielding an enhanced proportionality coefficient C’SBgQW:

Cot = fuiCly 4.57)

sgs

As explained in Section 4.2.4, C’SBgS tends to a finite value as Re;, — oo, and to zero as Rey, — 1.

These limits have to be maintained by the enhanced parameter CE;;W. The intermittency factor Z,,
is bounded as 0 < 7, < 1. Furthermore, the norm of the strain rate tensor is taken to be an
appropriate measure for anisotropy. Combing all three requirements, the following form of the

anisotropy factor for wall-bounded turbulent flow is suggested:

fu = (1 - (Re;‘;)*%) , (4.58)

where the element Reynolds number according to equation (4.31) is used. The exponent —3/16
has turned out to work best for wall-bounded flow problems.

It is remarked that the anisotropy factor for wall-bounded turbulent flow introduces the ele-

ment Reynolds number into the final proportionality coefficient C’S';‘;W (see the discussion in

Section 4.2.4) and, therefore, also integrates a certain dependence on the resolution into the

definition of CS';QW. This aspect contributes to the potential of choosing a fixed value for C’SBgs for

a wide range of Reynolds numbers and resolutions. As a result of preliminary test investigations,
the parameter Cngs is set to 0.25 for all turbulent flow examples examined in the remainder of
this thesis and incorporating the near-wall limit. It is emphasized that even better results might
be obtained when tuning C’SBgS towards an optimal value for the respective problem. However, it
is refrained from exploiting this potential improvement within this thesis for the purposes of a
modeling approach as simple as possible. Based on the measurements of Buch and Dahm [42]

and Mullin and Dahm [227], ¢, = 0.1 is assumed.
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4.8.2 Validation for Turbulent Channel Flow

Overview. To verify the AVM* for wall-bounded flows, turbulent channel flow is studied at
various friction Reynolds numbers. The friction Reynolds number

70c
Re, = & (4.59)
14
is defined based on the friction velocity
Uy = \/Tw (4.60)

(for the present incompressible flow at unit density), where 7w denotes the wall-shear stress, and
the channel half-width d.. The results for the mean streamwise velocity and the root-mean-square
values of the velocity fluctuations obtained with the AVM* are compared to results from DNS
for Re, = 395 and 590 given by Moser ef al. [224] and for Re, = 950 by del Alamo et al. [80],
marked by “DNS MKM99” and “DNS AJZMO04”, respectively. To assess the dissipative proper-
ties of the proposed method, filtered DNS data for Re, = 211 taken from Hirtel e al. [138] and
marked by “DNS HKUF94” are also incorporated.

When evaluating the AVM?, results obtained with the underlying approach without subgrid-scale
model are also considered. Additionally, the results provided by the AVM* are compared to re-
sults obtained from implementations of other subgrid-scale models. Merely using the SUPG,
PSPG and grad-div term as derived in Section 3.3 is considered here the approach with no (ex-
plicit) model, which may be viewed, for instance, as a form of an Implicit Large-Eddy Sim-
ulation (ILES) without explicit subgrid-scale model as summarized, e.g., in Sagaut [270]. Re-
sults obtained with the basic approach (i.e., the SUPG/PSPG/Grad-div Stabilized Method) are
marked by “SPGSM” in the remainder of this thesis. By including also the second cross-stress
term as well as the subgrid-scale Reynolds-stress term via the residual-based subgrid-scale mod-
eling, as shown in Section 3.3, the (complete) Residual-Based Variational Multiscale Method,
as suggested by Bazilevs et al. [22] and abbreviated by “RBVMM?” in all numerical exam-
ples sections, is obtained. Furthermore, a form of the widely-used dynamic Smagorinsky model
(see Germano et al. [114]) is taken into account for comparison. A subgrid-viscosity model of
Smagorinsky type is obtained by modeling cross- and subgrid-scale Reynolds-stress terms by
(e(V"), 21 (u)), where vg, = (CsA)*(2e(u™) : e(u™))z denotes the subgrid viscosity. The
parameter (CsA)?, that is, the product of Smagorinsky constant Cs and grid filter width A, is
determined dynamically using a box filter and a contraction according to Lilly [193]. Analo-
gously to the other methods, SUPG, PSPG and grad-div term are included in the formulation
since they constitute the basic approach. A similar method was used, e.g., by Tejada-Martinez
and Jansen [308], who studied the interaction between the dynamic Smagorinsky model and
a stabilized finite element approach in detail. Results provided by the Dynamic Smagorinsky
Model are marked by “DSM”.

Moreover, the AVM* is juxtaposed for the sake of comparison with the Adaptive Local Decon-
volution Method (ALDM), a form of an ILES, for example, applied to wall-bounded turbulent
flow by Hickel and Adams [145]. Results presented by Hickel and Adams [145] and obtained
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with the ALDM-ILES are denoted by “ILES HAQ7”. This comparison allows for classifying the
AVM?* for LES not only in terms of the present approaches, which are all realized within the
basic finite element flow solver described in Section 4.6, but also, in some degree, with respect
to other reliable methods for LES considered elsewhere.

Problem Setup. The channel dimensions are L in streamwise, L, in wall-normal and L3 in
spanwise direction. The wall-normal extension of the channel is related to the channel half-width
as L, = 20.. As usual, d. is set to 1.0. No-slip boundary conditions are imposed at the top and
the bottom wall. In the homogeneous streamwise and spanwise directions, periodic boundary
conditions are applied. A constant pressure gradient in streamwise direction drives the flow.
A parabolic velocity profile in streamwise direction with superimposed random perturbations
constitutes the initial velocity field. In wall-normal direction, the distribution of the elements is
refined towards the walls to obtain a better resolution in the vicinity of the walls. The hyperbolic
mesh stretching function f is given as f : [0,20.] — [0, 0] :

tanh (CG ((SC — l’z))
tanh(Cgd.) ’

Ty H— f(.?ﬁ'z) = —O¢ (461)

where the constant parameter Cg defines the degree of refinement. Depending on the value of
Re,, channel dimensions, number of elements, mesh stretching parameter and element lengths,
given in non-dimensional form as

h
hj = 5 (4.62)

where y
5, = — (4.63)

Ur

denotes the viscous length scale and ¢« = 1,2, 3 for the spatial directions, are summarized in
Table 4.1. The time-step length, expressed in non-dimensional form as

At
v

AtT

(4.64)

(see, e.g., Choi and Moin [65]), is set to AtT = 0.7. After the flow has reached a fully turbulent
state, statistics are collected in homogeneous directions and in time during 5000 time steps.
Statistical averages are denoted by (-) and fluctuations by (-)’. The root mean square, labeled by
rms (+), is defined as rms (-) == (((-)")?)2 = (((-)3)— ((-))?)2. All velocity results are normalized
by the friction velocity u,, as usual, and plotted in wall units x;, 1.e., as a function of the distance

from the wall normalized by 9.

A Posteriori Evaluation of the Near-Wall Limit. To illustrate the beneficial influence of the
near-wall limit, turbulent channel flow at Re, = 395 is examined using the coarser discretiza-
tion, and simulations with and without enhancement, labeled modified and basic MultiFractal
Subgrid-scale (MFS) modeling, respectively, are considered. For the basic MFS, CSBgS 1s adapted
to the mean value of the enhanced coefficient <C’SBg2W> as displayed in Figure 4.7. Additionally,
Figure 4.7 illustrates mean values of the number of cascade steps (N, ) and the resulting param-
eter (B). As expected, (N,,) decreases as the wall is approached. Due to the higher anisotropy

in the near-wall region, stronger correlations in the vorticity orientation are expected, yielding
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Table 4.1: Mesh parameters for turbulent channel flow at Re, = 211,395,590 and 950: channel dimen-
sions L;, number of elements, mesh stretching parameter Cg and non-dimensional element
lengths A"

Re, L; L, Lz no.elements Cg Ry hyin Pomax PR3

211 27w 26. %W(SC 323 220 4143 163 2955 27.62
395 2md. 20 %mSC 323 270 77.56 143 66.63 25.85
395 2md. 20 %mSC 643 225 38.78 1.32 2835 12.93
395 2mde 26, Zmée 1285 195 1939 100 1253 646
590 27, 26, wo 643 250 5792 134 46.62 28.96
950 2w, 20. O 1283 225 46.63 154 34.13 23.32

an increase of the intermittency factor. The resulting increase of (C’SBgQW> is well reproduced by

the proposed enhancement for the near-wall region. Due to the increase of (C’S}gw% the resulting

parameter (B) also increases towards the wall and shows its maximum value very close to the
wall. Without near-wall limit, (B) immediately falls off at the wall. Figure 4.8 depicts the mean

N0 ESSQND B0

5 T T T T 0.2 T T T T 0.2

Figure 4.7: Mean values of the number of cascade steps (Ny), coefficient <CSBg‘;W> and parameter (B) with

and without near-wall limit for turbulent channel flow at Re, = 395 using 323 elements.

streamwise velocity u] as well as all root-mean-square velocities rms u;”. Owing to the rather
coarse discretization, the curves somewhat deviate from the DNS data. Comparing the results for
the basic and modified MFS, marginal improvements are stated for the enhanced version. Using
the basic MFS, the computed friction Reynolds number is 382.2, deviating from the target value
by about 3%. In contrast, it is 393.2 for the modified version.

In LES, the mean total shear stress (71,) of turbulent channel flow obeys the following decom-
position:

v O(ur)  (Wuh)  (Tesi2) X2
SEen Tt T (469

/

_{m2)
™
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where (74 12) is the mean subgrid-scale shear stress. For the AVM*, (Tsgs,12) contains not only
the cross- and subgrid-scale Reynolds-stress terms incorporated by the multifractal subgrid-scale
modeling but also contributions from the residual-based multiscale terms. Figure 4.9 shows the
decomposition of the mean total shear stress for the AVM* with basic and modified MFS. Using
the basic MFS, the viscous stress ¥0(u,)/0x, does not reach the total stress at the wall, causing
the underprediction of the friction Reynolds number. Instead, (7 12) is larger than zero at the
wall. As can be observed, this behavior is corrected by the proposed near-wall limit, as (7 12)
tends to zero and v/u2d{u,)/dz, to one as the wall is approached. Even though the overall
behavior of the modified MFS does not show any substantial differences compared to the basic
MES, the near-wall limit is essential for correctly capturing the wall-shear stress. In particular,
the increase of (B) towards the walls is supposed to be responsible for the improved near-wall
accuracy.

Statistical Results. Next, turbulent channel flow at Re, = 395 is further investigated. Three
discretizations of increasing resolution are considered for a convergence study. The respective
results for the mean streamwise velocity u; and the root-mean-square values rms v, are depicted
in Figure 4.10, including the predictions provided by the SPGSM, RBVMM and DSM. For all
methods, convergence to DNS is observed for u; as well as for all rms u;". The AVM* provides
by far the best results for both mean and root-mean-square velocity in streamwise direction.
Indeed, the results obtained with the AVM* are already for the medium discretization quite close
to the DNS results, and the improvement due to the finer discretization is only of small amount.
In contrast, the SPGSM and RBVMM provide results which substantially deviate from the DNS
data using the coarser and the medium discretization. Even with the finer discretization, there
are notable deviations from the DNS results, while the AVM?* results match them almost exactly.
For all discretizations, the worst results are obtained with the DSM. For the root-mean-square
velocities in wall-normal and spanwise direction, both the AVM* as well as the SPGSM and
RBVMM, respectively, yield good approximations. While the AVM* as well as the SPGSM and
RBVMM underpredict rms u; for the coarser and medium discretization, they overpredict the

25 T T 4

DNS MKM29 - - ' ' ' "DNS MKM99
35| % basic MFS =~
: modified MFS —e—

basic MFS =~
modified MFS —e—

20 |

+
i

rms u;

1 10 100

Figure 4.8: Mean streamwise velocity uf and root-mean-square velocities rms uj for turbulent channel
flow at Re,; = 395 using 323 elements and the AVM* with and without near-wall limit.
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Figure 4.9: Decomposition of the mean total shear stress (71,) obtained with the basic MFS and the mod-
ified form for turbulent channel flow at Re, = 395 using 32° elements.

maximum value of rms u; . Both root-mean-square velocities are underestimated by the DSM
for all discretizations. For all results, differences between the SPGSM and RBVMM are only
marginal, indicating that the inclusion of the remaining cross- and subgrid-scale Reynolds-stress
term into the residual-based formulation does not necessarily improve the results. The results
for Re; = 590 and Re, = 950 are shown in Figures 4.11 and 4.12, respectively. They are
in accordance with the previous findings for Re, = 395. Again, the AVM* provides the best
approximations, especially for the mean and root-mean-square velocity in streamwise direction.
The values rms u5 and rms u; appear to be quite similar for the AVM*, SPGSM and RBVMM,
while the DSM notably underpredicts rms 3 .

Since the setup of the channel flow at Re, = 950 is fully comparable with respect to channel
domain and resolution to the respective simulation by Hickel and Adams [145] using the ALDM-
ILES, results taken from that study are also considered here for comparison. Being aware of the
fact that the same resolution in streamwise direction, a slightly finer one in wall-normal and a
coarser one in spanwise direction were used by Hickel and Adams [145] for Re, = 395, those
results are included, too. Figure 4.13 illustrates the juxtaposition of the AVM* and ALDM-ILES.
The AVM* and ALDM-ILES results are close to each other for Re, = 395: similar results are
obtained for uj, slightly better results for rmsu; are shown by the ALDM-ILES, while the
AVM* reveals better approximations for the other two root-mean-square values. Concerning the
mean streamwise velocity, the AVM* and ALDM-ILES yield a similar approximation quality
for Re, = 950. While the peak value of rmsu; is better captured by the ALDM-ILES, an
improved estimate for rms uJ is produced by the AVM*. For rms u], the ALDM-ILES notably
underestimates the peak value, and the AVM* only slightly overestimates it. Overall, it can be
stated that the AVM* provides results of similar quality for turbulent flow in a channel when
being compared to the ALDM-ILES.

In summary, all findings indicate that the identified model parameters are sufficiently indepen-
dent of the friction Reynolds number and also the spatial resolution. All statistical values are ac-
curately predicted for a wide range of Re... For a detailed depiction of the corresponding model
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Figure 4.10: Convergence study of mean streamwise velocity uf and root-mean-square velocities rms wu;

for turbulent channel flow at Re,; = 395 using 323, 643 and 1283 elements.
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Figure 4.11: Mean streamwise velocity u|” and root-mean-square velocities rms u; for turbulent channel
flow at Re, = 590 using 64> elements.

parameters, which exhibit the expected behavior with respect to Re, and the resolution, the
reader is referred to Rasthofer and Gravemeier [258]. Concerning the computational efficiency
of the proposed method, the following computing times are observed. Setting the computing
time of the SPGSM to 1.00, the relative computing times for the AVM*, RBVMM and DSM
are given by 1.02, 1.05 and 1.52. The slightly enhanced computing time of the AVM* compared
to the SPGSM for this example is mainly caused by the computations on the element level,
where the multifractal cross- and subgrid-scale Reynolds-stress terms are evaluated. Compared
to the DSM, however, the computing time is substantially reduced. A major part of the additional
computing time required by the DSM can be related to the involved filtering procedure.

Subgrid-scale dissipation. The subgrid-scale dissipation of the different methods is now an-
alyzed in more detail and compared to each other. Similar evaluations of the dissipation intro-
duced by stabilized FEMs were presented, e.g., by Gamnitzer [106], Gravemeier and Wall [122],
Principe et al. [255] and Tejada-Martinez and Jansen [308]. Summarizing the contributions of
the SUPG, PSPG and grad-div term constitutes the subgrid-scale dissipation &, of the basic ap-
proach, i.e., the SPGSM. Therein, the individual dissipation due to the SUPG and grad-div term
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Figure 4.12: Mean streamwise velocity u; and root-mean-square velocities rms u; for turbulent channel
flow at Re, = 950 using 1283 elements.

read

ew = (Tury @ u") : Vu', (4.66)
e = Terel s VU = 70l (V - uh). (4.67)
As mentioned in Section 3.3, additional dissipation is introduced by the grad-div term, which
should therefore be taken into account in the subgrid-scale dissipation of the methods, in contrast

to the study by Tejada-Martinez and Jansen [308], where this contribution was neglected. An
analogous measure for the dissipation introduced by the PSPG term is defined as

Eps = VDI - TMT Iy, (4.68)

which provides, in general, a contribution of negligible amount. For the subgrid-scale dissipa-
tion ,, of the AVM?, the dissipation owing to the cross- and subgrid-scale Reynolds-stress terms,
€me and e, respectively, modeled by the multifractal subgrid-scale modeling approach, which
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Figure 4.13: Comparison of the AVM* and the ALDM-ILES according to Hickel and Adams [145] for tur-
bulent channel flow at Re, = 395 using 643 elements and at Re, = 950 using 128> elements.

Results for the mean streamwise velocity u; and the root-mean-square velocities rms v, are
shown.
are given as
eme = — (Béu" @ u" + u" ® Bou") : e(u"), (4.69)
em = — (Bou" ® Béu") : e(u"), (4.70)

have to be included. The additional contribution of the subgrid-viscosity term of the DSM is

obtained as
o = 24ge(u”) s g(uh). 4.71)

The subgrid-scale dissipation of the DSM is then denoted by 4. The dissipation due to the
remaining cross- and subgrid-scale Reynolds-stress term of the RBVMM are defined as

ca = (0" ® Tury) : V', (4.72)

Ere = — (TMTY @ TMTY) @ VU, (4.73)
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resulting in the subgrid-scale dissipation £y, of the RBVMM.

Figure 4.14 depicts the mean subgrid-scale dissipation in non-dimensionalized form, given by

o= b (4.74)
uT

in wall-normal direction for all methods and turbulent channel flow at Re, = 395. The results
demonstrate a predominant subgrid-scale dissipation in the vicinity of the channel walls for the
AVM*. In the core region, the subgrid-scale dissipation is approximately zero. As shown in
the closeup views, this increased subgrid-scale dissipation particularly occurs within the buffer
layer of the channel flow with the peak value at approximately z; = 12. Considering that the
buffer layer constitutes the region of vigorous turbulence dynamics with the turbulent energy
production rate reaching its maximum value at approximately x5 = 12 (see, e.g., Tennekes and
Lumely [309]), a very intense dissipation has to be expected in that region, in accordance with,
e.g., the analysis of DNS data by Hirtel ez al. [138]. The beneficial effect of subgrid-scale models
introducing a substantial amount of subgrid-scale dissipation in the buffer-layer region of the
channel for obtaining high-quality results was already observed, e.g., by Gravemeier [118] and
for the AVM?, i.e., the predecessor of the present AVM?, in the context of variable-density flow at
low Mach number by Gravemeier and Wall [122]. As observable, the proposed method provides
this beneficial effect almost exactly at the theoretically expected location. In accordance with the
increased range of resolved scales, the subgrid-scale dissipation of all methods decreases from
the coarser via the medium to the finer discretization.

To further assess the dissipative properties of the proposed method, a direct comparison of the
subgrid-scale dissipation introduced by the various methods and the subgrid-scale dissipation
estimated from filtered DNS data in Hirtel et al. [138] is given. In Hirtel er al. [138], DNS of
turbulent channel flow at Re, = 211 was examined to evaluate the energy transfer between
resolved and unresolved scales in LES. To identify the subgrid-scale quantities, filtering cor-
responding to a resolution of 32 x 32 grid points in the homogeneous directions, resulting in
hi = 75 and hi = 39, was applied. Figure 4.15 displays the distribution of the subgrid-scale
dissipation in wall-normal direction introduced by the different methods for channel flow at
Re, = 211 as well as the respective result from filtered DNS. Excellent agreement is observed
between the AVM* and filtered DNS. The other methods provide considerably different curves
in the buffer layer. Although the respective distributions exhibit their maximum values, which
decrease from the DSM via the RBVMM to the SPGSM, in the near-wall region, these maxi-
mum values are clearly smaller and less pronounced than the peak value of the AVM* and filtered
DNS. Moreover, compared to the filtered DNS, they are also somewhat shifted towards the upper
bound of the buffer layer. Additionally, a higher subgrid-scale dissipation in the middle of the
channel occurs, which is approximately equal for the SPGSM, RBVMM and DSM. Altogether,
the distributions of the subgrid-scale dissipation in wall-normal direction due to the SPGSM,
RBVMM and DSM show a quite similar behavior.

Further insight into the dissipative characteristics of the proposed method and the interaction
of its constituents, i.e., the multifractal subgrid-scale modeling terms and the residual-based
multiscale terms, is gained by analyzing the individual components. Figure 4.16 illustrates the
dissipation introduced by the various modeling terms of the AVM*. To demonstrate the interplay
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Figure 4.14: Mean subgrid-scale dissipation e for turbulent channel flow at Re,; = 395 using (from top
to bottom) 323, 643 and 1283 elements including a closeup view of the near-wall region.
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Figure 4.15: Mean subgrid-scale dissipation e* for turbulent channel flow at Re, = 211 using 323 ele-
ments compared to the subgrid-scale dissipation from filtered DNS.

of the multifractal subgrid-scale modeling terms and the residual-based multiscale terms, the
respective terms of the SPGSM are likewise included. First of all, the contributions by the multi-
fractal subgrid-scale modeling terms are considered. The dissipation ¢ due to the subgrid-scale
Reynolds-stress term is small compared to the other contributions, but positive throughout the
channel. Moreover, ¢, exhibits a peak near the wall. The contribution &, of the cross-stress
terms displays positive and negative values and, therefore, incorporates backscatter of energy
in parts of the channel. In particular, . provides a pronounced positive (i.e., forward energy
transfer) peak in the vicinity of the wall, which is responsible for the excellent agreement be-
tween the subgrid-scale dissipation £, of the proposed method and the filtered DNS data in the
buffer layer. The negative part in the core of the channel is also remarkable. This anti-dissipative
contribution counterbalances the dissipation introduced by the residual-based multiscale terms,
resulting in approximately zero subgrid-scale dissipation in the core of the channel. Compar-
ing the individual parts of the residual-based multiscale terms of the AVM* and the SPGSM,
the interaction of both modeling parts in the proposed method is obvious. While the grad-div
term introduces only a somewhat higher dissipation than the SUPG term in the context of the
SPGSM, it yields a notably higher one in the context of the AVM*. Furthermore, the contribution
of the SUPG term shows a sharper peak in the near-wall region for the AVM®*. Moreover, it is
remarked that the contributions of the SUPG and grad-div term are considerably reduced for the
purely dissipative DSM, which nevertheless results in the most dissipative method, as already
indicated by the substantial overestimation of the mean streamwise velocity. For the RBVMM,
additional dissipation is introduced by the second cross-stress term, while the contribution of the
subgrid-scale Reynolds-stress term is negligible.

58



4.9 Square-Section Cylinder

1 T T T
05
: Eme tp ——
o~ | 7' Enp o~ gy~
x 0 : x 0 +
S S
s e gy —---
-05 -05
-1 I -1 1 1 1 1
-0.02 0 0.02 0.04 0.06 0.08 0.1 -0.02 0 0.02 0.04 0.06 0.08 0.1
e e
1 1
it
i
14
05 05 | H
&) —— i "
+ . :+ Eds
Esu E? S;V
gy ——
¢ of = s oof G
re o :I‘ s
N ! €ps
pPs l; gy —me--
gy —me-- i 9d
05 o 05 | i
’ ’ it
it
B
4 ! A A A 4 A A A
-0.02 0 0.02 0.04 0.06 0.08 0.1 -0.02 0 0.02 0.04 0.06 0.08 0.1

e e

Figure 4.16: Contributions of the individual constituents of the (from left to right and from top to bottom)
AVM*, SPGSM, RBVMM and DSM to the mean subgrid-scale dissipation £* for turbulent
channel flow at Re, = 211 using 323 elements.

4.9 Square-Section Cylinder

Having validated the AVM* for two of the most important test cases for subgrid-scale modeling
in LES, the proposed method is applied to substantially more complex examples to illustrate
its behavior for realistic flow configurations. In this thesis, the investigations are restricted to
turbulent flow past a square-section cylinder. The application of the AVM* to turbulent flow
over a backward facing-step is not included here, since this flow problem is also examined in
Chapter 6 in the context of turbulent-variable density flow at low Mach number. Results for
the incompressible case using the AVM* can be found in comprehensive form in Rasthofer and
Gravemeier [258] or in more compact form in Gravemeier and Rasthofer [120, 121].

Flow Description and Overview. Flows past bluff bodies are of particular engineering signifi-
cance. For instance, drag prediction and control are among the major objectives in aerodynamics.
Concerning civil engineering, tall buildings may be subject to large fluctuating forces transverse
to the flow direction causing structural vibrations or even resonance. The square-section cylinder
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constitutes a generic configuration to investigate the flow situations involved in the aforemen-
tioned examples. For sufficiently high Reynolds numbers, laminar, transitional and turbulent
flow patterns are encountered in the flow past a square-section cylinder. In particular, Kelvin-
Helmholtz instabilities within the separated shear layers, developing at the upstream edges of the
square-section cylinder, trigger transition to turbulence and are coupled to the Von Kdrman in-
stability in the near-wake region. The wake itself is spatially complex and includes both intense
vortices as well as enclosed irrotational flow. Altogether, turbulent flow past a square-section
cylinder exhibits several challenging phenomena for LES methods: the separation of the flow on
the body surface, the formation of a near-wake region and the alternating vortex street. Therefore,
this flow configuration was numerically examined in exhaustive form in two workshops. The re-
sults of those workshops were published in Rodi ef al. [266] and Voke [324]. Moreover, Fureby
et al. [104] as well as Sohankar et al. [289] used this example for evaluating the performance of
various subgrid-scale models for LES. DNS of turbulent flow past a square-section cylinder was
briefly addressed by Verstappen and Veldman [320]. Experimental data for this flow example
were provided, e.g., by Lyn and Rodi [203] and Lyn et al. [204]. Particularly, these data fre-
quently serve as a reference. Recently, this flow configuration was exhaustively examined both
experimentally and numerically via LES by Minguez et al. [217].

Problem Setup. Based on the free-stream velocity U, and the edge length D of the cylinder,

the Reynolds number is defined as

D
Re = Ve . (4.75)
v

In accordance with the aforementioned studies, the Reynolds number considered here is
Re = 22000. The flow domain, which is the same as in Rodi et al. [266] and Voke [324],
is depicted in Figure 4.17. At the inflow boundary x1 = —5D, a constant free-stream veloc-
ity U, = 1.0m/s in z;-direction is prescribed. A zero-traction Neumann boundary condition is
assumed at the outflow boundary x; = 15.0D. No-slip boundary conditions are prescribed on
all surfaces of the square-section cylinder. In the homogeneous z3-direction, periodic boundary
conditions are imposed. At the top and the bottom boundary, slip boundary conditions are as-
sumed. The cylinder edge length is set to ) = 1.0 m such that the kinematic viscosity amounts
to v = 4.545 - 107> m?/s. A time-step length At = 0.0375s is applied. After the flow has de-
veloped, statistics are collected during 2400 time steps, representing approximately 12 periods
of vortex shedding. Samples are collected in homogeneous direction and in time. The spatial
discretization is refined towards the cylinder surfaces. The refinement is realized inside a box
with dimensions 5D x 5D in the xx,-plane. The z3-axis of the box is aligned with the x3-axis
of the coordinate system (see Figure 4.17). For the refinement from the surface of the box to
the cylinder surface, 30 elements are used. The smallest element length orthogonal to the cylin-
der surface is (h/D),,, = 0.008 at each cylinder surface, as applied by Sohankar et al. [289].
Along each cylinder surface, 20 elements are uniformly distributed. Outside the box, the element
lengths in ;- and z,-direction are chosen identical to the one in x3-direction. In x3-direction, 16
elements with a uniform element length /D = 0.25 are used. Overall, the discretization con-
sists of 103 680 elements, resulting in approximately 450000 degrees of freedom. Apart from
experimental and numerical data provide elsewhere, the results obtained with the AVM* are also
compared to predictions by the RBVMM and DSM. Concerning the multifractal subgrid-scale
modeling, the strain-rate-based definition (4.31) of the element Reynolds number together with
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Figure 4.17: Geometry of square-section cylinder.

a proportionality constant ¢, = 0.01 is chosen for the present configuration with free-stream
regions. As identified for wall-bounded flows, the parameter C’SBgS is set to 0.25, and the near-wall
limit is included. The evaluation of the computational cost for this problem reveals the following
numbers. Setting the computing time for the RBVMM to 1.00, the relative computing time re-
quired by the AVM* and DSM are 1.15 and 1.72, respectively. The increased computational cost
of the DSM compared to the other methods is attributed to the filtering procedure, on the one
hand, and to the fact that the DSM requires more linear iterations to convergence, on the other

hand.

Discussion of the Results. A visualization of the complex flow is provided in Figure 4.18 via
instantaneous pressure iso-contours. Moreover, a closeup view of the near-cylinder region shows
streamlines in the xz,-centerplane. Figure 4.19 depicts the mean streamwise velocity (u;)/Us
downstream and above the cylinder as well as closeup views of the near-cylinder region, and
Figure 4.20 displays the streamwise and vertical root-mean-square velocities, rms u,; /U, and
rms u, /U, respectively, downstream of the cylinder. All velocity results are normalized by the
free-stream velocity. Experimental data taken from Lyn and Rodi [203] and Lyn et al. [204],
denoted by “Exp LLR94/95”, are included for comparison. As may also be seen in most of the
aforementioned reports of numerical results, all methods overestimate the velocity in the wake
of the cylinder compared to the experimental results. In particular, the AVM* substantially over-
predicts the velocity. Concerning the negative peak in the near-cylinder area, which is often un-
derestimated, the AVM* provides a more accurate approximation than the DSM and RBVMM.
In addition, experimental results reported by Durao et al. [88], who examined flow past a square-
section cylinder at Re = 14 000, are included, as they indicate potentially higher velocities in
the wake. The respective data are named “Exp DHP88”. Concerning the streamwise velocity on
top of the upper surface of the cylinder, all methods yield almost the same curve, which is close
to the experimental data, and differences between them are merely identifiable from the closeup
view of the near-cylinder region, where the AVM* again appropriately captures the experimental
data. The root-mean-square values in z-direction are overpredicted by all methods, except for
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Figure 4.18: Instantaneous pressure iso-contours (red color indicates high pressure and blue color low
pressure) including the grid in the background (left) and streamlines in the near-cylinder re-
gion in the z|z,-centerplane (right) for flow past a square-section cylinder. Results obtained
with the AVM* are shown during the sampling period.

the AVM*, which provides a very good prediction in the near-cylinder region. Further down-
stream, it underpredicts the root-mean-square values. With respect to rms u,, all methods shift
the maximum value closer to the cylinder. While the RBVMM and DSM quite accurately ap-
proximate the peak value, the AVM? significantly underpredicts it. However, immediately behind
the cylinder, the AVM* yields a better approximation than the other methods.

Figure 4.21 illustrates the pressure coefficient C,, along the upper, back and lower cylinder sur-
face. The coordinate z., runs in clockwise direction along the cylinder surface, starting and
ending at the lower left corner. The pressure coefficient is defined as

270

(4.76)
where pyin « 1 the mean kinematic pressure at z; = 0 on the inflow boundary. The results are
compared to experimental data measured by Lee [180] and Bearman and Obasaju et al. [24]
and marked by “Exp L75” and “Exp BO82”, respectively. Those data are included here in the
form presented in Rodi et al. [266]. The only results located at least partly between the two

experimental curves are the ones provided by the AVM*. Both the RBVMM and the DSM are
entirely below the lower experimental curve.
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Figure 4.19: Mean streamwise velocity (u;)/Us downstream (top) and above (bottom) the square-section
cylinder at z, = 0 and x| = 0 including closeup views of the near-cylinder region.

Table 4.2 summarizes the values obtained for the Strouhal number, defined as

_ Dfs
= 0.

St 4.77)

where f,s denotes the frequency of vortex shedding, the mean drag coefficient, defined as

(F1)

Cp =1
D %UgoAD7

(4.78)

where F) is the x;-component of the force acting on the cylinder and Ap the area of the front
surface of the cylinder, the root-mean-square values of drag and lift coefficient, Cp s and Cy s,
respectively, the mean base suction —Cl,,, which is the pressure coefficient at the centerline of
the back surface, and the mean recirculation length X,/ D. The lift coefficient C_ is defined anal-
ogously to C'p with F} being replaced by the resulting force in z,-direction, i.e., F3. The location
of zero mean streamwise velocity downstream of the cylinder marks the recirculation length. For
comparison, results from various numerical and experimental studies are included. In addition to
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Figure 4.20: Root-mean-square velocities rms u; /U, and rms uy /U, downstream of the square-section
cylinder at z, = 0.

the aforementioned studies, experimental data taken from Luo et al. [202] are also considered.
For all methods, the Strouhal number is in good agreement with the numerical and experimen-
tal results. More pronounced differences between the methods are observed for the remaining
values. The values reported by the participants of the two workshops exhibit a broad range. It
is therefore focused on a comparison of the present results to the experimental data. Numerical
results from other works are additionally taken into account to some extent. Only the AVM* pro-
vides a drag coefficient within the range of the experimental results, matching the one reported
by Bearman and Obasaju [24]. The values obtained with the RBVMM and DSM notably over-
predict Cp, with the RBVMM performing somewhat better than the DSM. The same behavior
is observed for —C,; that is, higher values are observed for the RBVMM and DSM, while the
value predicted by the AVM* fits into the range of experimental results. The root-mean-square

Exp L75
ExpBO82 -
RBVMM ------
DSM —-——- i
AVM*

Figure 4.21: Pressure coefficient C}, along the upper, back and lower cylinder surface. The coordinate .y
runs in clockwise direction along the cylinder surface, starting and ending at the lower left
corner.
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4.9 Square-Section Cylinder

values for the drag coefficient are close to the experimental and numerical results ranging from
0.16 to 0.23. The results from the workshops are not considered here for the aforementioned
reason. Compared to the experimental data, the AVM* only slightly underpredicts Cys. In con-
trast, the RBVMM and DSM yield substantially higher values fitting into the range of numerical
results reported by Sohankar ef al. [289] and almost matching the value given by Verstappen
and Veldman [320]. The recirculation length produced by the AVM* is the closest to the only
experimental value available, while the RBVMM and DSM yield smaller values.

Table 4.2: Strouhal number St, mean drag coefficient C'p, root-mean-square values of drag and lift coeffi-
cient, Cp yms and CL ims, mean base suction —Cpy, and mean recirculation length X /D of flow
past a square-section cylinder from present simulations and other numerical and experimental
studies. The values labeled by Exp LR94/95 are extracted from [266], Exp L75 from [324] (Cp,
Cp,mms) and [289] (—Cpyp) and Exp BOS82 as well as Exp LYCL94 from [175].

St Ch CD,rms CL,rms —Cpb %
present results
AVM* 0.15 2.28 0.15 1.17 1.50 1.32
RBVMM 0.14 241 0.22 1.49 1.63 1.21
DSM 0.14 2.50 0.27 1.43 1.71 1.29
numerical results
workshop RFBP97 [266] 0.07-0.15 1.66-2.77 0.10-0.27 0.38-1.79 - 0.89-2.96
workshop V97 [324] 0.13-0.16 2.03-2.79 0.12-0.36 1.01-1.68 - 1.02-1.61
LES FTWGO00 [104] 0.13 2.00-2.20 0.17-0.20 1.29-1.34 - 1.23-1.37
LES SDNOO [289] 0.13 2.03-2.32  0.16-0.20 1.23-1.54 1.30-1.63 -
LES MBPS11 [217] 0.14 2.20 - - 1.30 -
DNS VV97 [320] 0.13 2.09 0.18 1.45 - -
experimental results
Exp LR94/95 [203, 204] 0.13 2.10 - - - 1.38
Exp L75 [180] - 2.05 0.23 - 1.33 -
Exp BOS82 [24] 0.13 2.28 - 1.20 1.60 -
Exp LYCL94 [202] 0.13 2.21 0.18 1.21 1.52 -
Exp MBPS11 [217] 0.13 2.10 - - 1.30 -
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Extension I: Passive-Scalar Mixing

Turbulent mixing of passive-scalar fields is important for a wide range of environmental and
engineering applications, such as ocean chemistry (see, e.g., Scalo et al. [274]) and electro-
chemical processes (see, e.g., Bauer et al. [21]). These examples already indicate that turbulent
mixing constitutes a complex process, which is also reflected in LESs of the respective situ-
ations. Passive-scalar mixing brings in additional challenges due to the substantially different
length scales that may occur in the flow and the scalar field depending on the Schmidt num-
ber. An introduction into LES of passive-scalar mixing in turbulent flow, including a survey
of selected subgrid-scale models further developed for that purpose, may be found, e.g., in the
textbook by Sagaut [270].

Applications of the VMM to turbulent flow including passive-scalar mixing are so far barely
considered in literature. Bauer et al. [21] used a residual-based two-scale version of the VMM
for a specific passive high-Schmidt-number problem. Also within a residual-based two-scale
form, Codina et al. [69] focused on thermally coupled flows using the Bousinessq approxi-
mation. Among others, they also showed one example of turbulent incompressible flow with
passive-scalar mixing.

In this chapter, the AVM* is extended to LES of passive-scalar mixing in turbulent incompress-
ible flow. The first extension of multifractal subgrid-scale modeling to passive-scalar mixing
problems was derived by Burton [50]. The complete approach, termed nLLES method (see Sec-
tion 4.4), was further applied to high-Schmidt-number mixing in a turbulent jet flow by Bur-
ton [51]. In this thesis, the multifractal subgrid-scale modeling approach for passive-scalar fields
is further developed. By explicitly taking into account the relation between velocity and scalar
field with respect to their individual resolutions, the multifractal reconstruction process within
the scalar field is refined. Moreover, it is focused on wall-bounded turbulent flow in the con-
text of passive-scalar mixing, which has not yet been addressed in any of the preceding studies
on multifractal subgrid-scale modeling for scalar fields and which is particularly relevant for
industrial and environmental applications. First, a short introduction into passive-scalar mixing
in turbulent flow is provided in this chapter, and the variational multiscale formulation of the
convection-diffusion equation is outlined. Then, multifractal subgrid-scale modeling for scalar
quantities is derived. After briefly addressing the residual-based subgrid-scale modeling step to
obtain a stable numerical scheme, the resulting AVM* for passive-scalar mixing is summarized.
Finally, passive-scalar mixing in turbulent channel flow for Schmidt numbers up to 1000 is thor-
oughly investigated, demonstrating an excellent performance of the AVM*. All derivations and
numerical results presented in this chapter were previously published in Rasthofer ef al. [260].
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5 Extension I: Passive-Scalar Mixing

5.1 A Brief Insight into Scalar Mixing

This section is devoted to the fundamentals of scalar mixing in turbulent flow. First, the math-
ematical description is presented. Then, important characteristics of a scalar field evolving in a
turbulent flow are addressed. For an elaborate description of the dynamics of passive-scalar mix-
ing in turbulent flow, the reader is referred, e.g., to the textbooks by Davidson [78] and Tennekes
and Lumely [309].

5.1.1 The Convection-Diffusion Equation

Scalar transport is mathematically governed by the convection-diffusion equation as

0

a—f+v- (up) — kAP =0, (5.1
where ¢(x,t) denotes a scalar quantity, for instance, concentration, and x, which is assumed
constant, the diffusivity. Via the velocity u(x, ), this equation is coupled to the incompressible
Navier-Stokes equations. If the scalar field has no influence on the fluid field, it is referred to as

passive.

Similar to the Reynolds number, the Péclet number is defined as

Pe = @, (5.2)

K
based on a characteristic velocity U and length ¢, and quantifies the ratio between convective and
diffusive transport. A relation between the smallest length scales in the velocity and scalar field
may be obtained from the Schmidt number, which is defined as the ratio of kinematic viscosity v
and diffusivity «: ,

Sc = (5.3)
K

5.1.2 Transport Regimes

The passive-scalar field is subject to different transport regimes, which originate from the dif-
ference between the length scale characterizing the dissipation range of the velocity field and
the length scale identifying the diffusive range of the scalar field. In the following, homoge-
neous isotropic turbulence is assumed with a Reynolds number sufficiently high such that the
three-dimensional kinetic-energy spectrum of the underlying velocity field develops an inertial
subrange. Depending on the Schmidt number, different ranges are distinguished for the three-
dimensional scalar-variance spectrum, which is defined in a similar way as the kinetic-energy
spectrum (see, e.g., Tennekes and Lumley [309]).

First, small Schmidt numbers, i.e., Sc < 1, are considered. For high Péclet numbers, the scalar-
variance spectrum exhibits an inertial-convective range, where scalar fluctuations are convected
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5.1 A Brief Insight into Scalar Mixing

and unaffected by diffusivity. The shape of the scalar-variance spectrum corresponding to the
inertial-convective range was independently determined by Obukhov [235] and Corrsin [74].
From dimensional arguments, it follows as

Ey(k) = Cocxe k3, (5.4)

where Coc is the Obukhov-Corrsin constant and y the diffusion rate. Analogously to the Kol-
mogorov scale 7 (see equation (2.10)) for the velocity field, the Obukhov-Corrsin scale

N
Toc = (%) (5.5)

estimates the scale associated with the smallest structures in the scalar field. The ratio of these

scales depends on Sc as
foe _ g¢i. (5.6)
n
For Sc < 1, a further range emerges within the inertial subrange of the kinetic-energy spectrum.
Since scalar fluctuations already become sufficiently small to suffer from diffusion within the

inertial subrange in this case, this range is thus referred to as inertial-diffusive range.

Schmidt numbers much larger than unity, i.e., Sc > 1, exhibit a more complex situation, as two
distinct inertial ranges exist for the scalar-variance spectrum. For scales within the inertial sub-
range of the kinetic-energy spectrum, that is, scales much larger than the Kolmogorov scale, an
inertial-convective range, similar to Sc < 1, develops. At smaller scales, velocity fluctuations are
already affected by dissipation, while diffusivity is not yet effective. Therefore, a second inertial
range, the viscous-convective range, emerges in the scalar-variance spectrum. In this range, the
strain rate progressively reduces the scales of scalar fluctuations. As derived by Batchelor [19],
the scalar-variance spectrum is determined as

Ey(k) = Cgxvie k™! (5.7)

within this range. Here, C's denotes the Batchelor constant. The viscous-diffusive range, where
diffusion eventually acts on the scalar fluctuations, is identified by the Batchelor scale which is
given by

Vfiz %
B = (—> . (5.8)
€
The ratio of the Batchelor scale to the Kolmogorov scale is obtained as

B
U

=

= Sc2. (5.9)

Figure 5.1 depicts the three-dimensional scalar-variance spectrum E, (k) for passive-scalar mix-
ing in turbulent flow. Both Sc < 1 and Sc >> 1 are considered, and the various scale ranges are
marked. Additionally, the three-dimensional kinetic-energy spectrum FE/(k) is included.
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log Ey(k) o . | viscous- Hviscous-

log B ( k) -—-—- inertial-convective range : convective range :diffusive range
.- .- i

] | inertial subrange i dissipation range

~log k

inertial-convective range ‘inertial-
+diffusive range

Figure 5.1: Three-dimensional scalar-variance spectrum for Sc < 1 and Sc > 1.

5.2 Variational Multiscale Formulation of the
Convection-Diffusion Equation

Passive-scalar mixing in the domain Q described by the convection-diffusion equation, given in
convective form, is considered for a time period fepq:

9¢

E+uv¢_’%A¢:f¢ inQX]Oatend[v (510)
¢ = ¢p on I'p 4 % |0, tenal (5.11)

KV -n=h, on Iy % ]0, tenal (5.12)

¢ = o in Q x {0}. (5.13)

Dirichlet boundary conditions are provided on the part I'p ;, of the boundary 0Q, while Neumann
boundary conditions are imposed on I'y 4, assuming I'p s NI'ny =0 and I'p, U 'y g = OQ.
Additionally, a potential source term f, is included, which is taken to be zero unless otherwise
specified. Initially, the scalar field ¢y is prescribed. The velocity field u is obtained from the
incompressible Navier-Stokes equations.

Assuming an appropriate solution function space Sy for ¢ as well as a weighting function
space V; for the scalar weighting function w (i.e., the scalar counterparts of the vector spaces
defined in Section 3.2 for the velocity) the convection-diffusion equation (5.10) is multiplied
by w € V, and integrated over the domain . The diffusive term is integrated by parts, with
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5.2 Variational Multiscale Formulation of the Convection-Diffusion Equation

boundary conditions (5.11) and (5.12) applied to the resulting boundary integral. The variational
formulation of the convection-diffusion equation is thus given as follows: find ¢ € &, such
that

Bep(w; ¢) = Lep(w) (5.14)
for all w € V,, where the form on the left-hand side is given as
¢
Bep(w; ¢) := | w, e + (w,u- Vo), + (Vw,kVe), . (5.15)
Q

The linear form on the right-hand side, including the Neumann boundary condition, is given
as

€CD(w) = (U), f¢)9 + (’U), h¢)rN,¢ . (516)

For the variational multiscale formulation of the convection-diffusion equation, the scalar quan-
tity is decomposed into a resolved and subgrid-scale component as

¢=9¢"+9, (5.17)

implying a direct sum decomposition of the underlying function space in the form Sy = S d’f @ <§¢.
Based on the variational multiscale concept, a variational projection for separating resolved
and unresolved scales is assumed. Therefore, a direct sum decomposition of weighting function
space Vy = V(Z &) l>¢ is introduced. Accordingly, the weighting function is decomposed as

w = w" + 0. (5.18)

Inserting decomposition (5.17) into the variational form (5.14), weighting separately by the re-
solved and the subgrid-scale part of the decomposed weighting function (5.18) and omitting the
equation projected onto the space of unresolved scales, the variational multiscale formulation of
the convection-diffusion equation is obtained as follows:

Bep(w"; ¢") + Cep(w™; u”, 1, ¢", &) + Rep(w”; 1, (;AS) + B(ljgn(wh; @) = lep(w™)  (5.19)
for all w" € Véf, where
Cep(w";u", G, 6", §) = (w",u" - Vé+1a-Ve"), (5.20)
and
Rep(w"; 1, 9) = (w", 0~ V), (5.21)

are the projections of the subgrid-scale flux vectors onto the space of resolved scales. Since these
terms are analogous to the cross- and subgrid-scale Reynolds-stress terms of the momentum
equation, they are likewise referred to as cross-stress terms and subgrid-scale Reynolds-stress
term, respectively. The form

B (wh; @) = (wh, %) + (V" kV9),, (5.22)
Q
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5 Extension I: Passive-Scalar Mixing

contains the remaining linear terms in the unresolved-scale quantity. To solve the variational
multiscale formulation for ¢* € S, the cross- and subgrid-scale Reynolds-stress terms as well

as B(]:’Il)i" (wh; quS) have to be modeled. Since passive-scalar mixing in turbulent incompressible flow
constitutes a one-way-coupled problem, subgrid-scale modeling in the incompressible Navier-
Stokes equations remains unaffected.

5.3 Multifractal Subgrid-Scale Modeling for Passive Scalars

The reconstruction of the subgrid-scale scalar quantity, presented in this section, basically fol-
lows, with further enhancements concerning the relation between velocity and scalar field, the
idea for a multifractal development of b suggested by Burton [50]. In particular, the model pa-
rameters are evaluated with respect to low- and high-Schmidt-number mixing, and the near-wall
behavior of the multifractal subgrid-scale modeling for passive-scalar mixing in wall-resolved
LES is considered.

5.3.1 Outline of the Modeling Procedure

For passive-scalar mixing, the subgrid-scale scalar field is explicitly calculated from its gradient
field Vo(x,t) via integration based on Green’s function for the Laplacian:

d(x, 1) = ! / de, (5.23)

4m [Ix = ]|

representing the scalar analogue to the law of Biot-Savart (2.6). The subgrid-scale scalar gradient
field is decomposed into its magnitude ||V ¢||(x, t) and orientation vector &y, (x, t) of unit length
as

Vo(x,t) = ||V (x,t)eve(x,1). (5.24)

Analogously to the subgrid-scale vorticity field, the subgrid-scale scalar gradient field is re-
constructed within each element by a two-step cascade process, separately recovering HVéH
and éy4. In the scalar field, the diffusive (or inner) length scale A,, which is established by the
equilibrium between the competing effects of local strain rate and molecular diffusion (see, e.g.,
Buch and Dahm [42]), represents the smallest scales considered in the cascades. Accordingly, the
required number of cascade steps N, in the subgrid-scale scalar gradient cascade is determined
by the ratio of the element length A to the diffusive length scale A, via

h

N, =log, (A_> . (5.25)

As already implied by the elaborations given in Section 5.1.2, the different transport regimes
have also to be taken into account in the subgrid-scale modeling procedure. Figure 5.2 illus-
trates the various modeling situations encountered in LES of passive-scalar mixing by means
of the scalar-variance spectrum Ey4(k) and the kinetic-energy spectrum E'(k). The particular
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case Sc ~ 1 is additionally included. In the depicted diagrams, the diffusive wave number is de-
noted by £, and the viscous one by k,.. The wave number associated with the discretization is ky,.
While in LES of passive-scalar mixing at low Schmidt numbers both velocity and scalar field
are usually underresolved, two different situations need to be distinguished in the high-Schmidt-
number case. If k;, lies within the inertial-convective range (marked by the additional index “ic”
in the right diagram of Figure 5.2), the same modeling situation as for Sc < 1 occurs. A differ-
ent situation is encountered if £y, is located within the viscous-convective range (marked by the
additional index “vc”). This case constitutes a simulation in which the velocity is resolved, and
subgrid-scale modeling is merely needed in the scalar field. Consequently, different approaches
are required depending on the Schmidt-number regime, the resolution of velocity and scalar field
as well as the corresponding physical mechanisms driving the subgrid-scale scalar field.

log E(k) ==~ log Ey(k) — log E(k); log Eg(k) log E(k); log E,(k)

kp, ke Ky kn  ky = kg

Figure 5.2: Modeling situations in LES of passive-scalar mixing.

5.3.2 Scalar-Gradient-Magnitude Cascade

As outlined in Section 4.1, several studies confirmed that the diffusion-rate field of a passive-
scalar quantity exhibits multifractal scale similarity. The multiplicative cascade therefore dis-
tributes the total subgrid-scale diffusion within each element to obtain a multifractal expression
for the magnitude || VQASH of the gradient of the subgrid-scale scalar quantity. The scalar-variance
diffusion is defined as

x =kVo- Vo, (5.26)
and the diffusion spectrum D, (k) associated with the aforementioned transport regimes scales
as

Dy (k) ~ k7, (5.27)
where 7 = 1/3 at inertial-convective scales and v = 1 at viscous-convective scales, which

follows directly from the scaling of the scalar-variance spectrum (see Section 5.1.2). The aver-
age subgrid-scale diffusion ¥ is determined depending on the average diffusion 6" at smaller
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resolved scales. Further decomposing the resolved scalar field ¢" as

b= ¢ + 59" +9, (5.28)
¢h

the diffusion rates associated with the smaller resolved scales and the subgrid scales are given
by

" = kViph - Vo', (5.29)
{ =kVd- V. (5.30)

Depending on the Schmidt number, the length scale ah is assumed to be located in the inertial-
convective or the viscous-convective range. The diffusion spectrum is integrated both from the
wave number k;, to the diffusive wave number k,.,

ke

¢ = /cxk:”dk, (5.31)
kn,

where ¢, > 0 is the associated proportionality constant, and from &y, to ky,

kp,
" = / e, k7dk, (5.32)

kah

yielding an expression for the subgrid-scale diffusion depending on the diffusion at the smaller

resolved scales:
. 2 (y+1)
= (1-a M) (k—) — 1| oy (5.33)
h

A constant exponent « is implicitly assumed for integration, such that it can be performed
without further distinguishing whether Sc < 1 or Sc > 1 and k, = k.. For Sc > 1 and
kn = kp,, exponent vy is discontinuous, resulting in a potential separate integration for both
ranges. This issue is not further considered here, but will be addressed in Section 5.3.5. Apply-
ing the multiplicative cascade to the resulting average subgrid-scale diffusion and introducing
equations (5.29) and (5.30) leads to the following expression for the magnitude of the subgrid-
scale scalar gradient:

1

. » o\ 0D 3N¢
V3l t) = | (1 —a=041) ((z) _1> @) [IMutx,8)| 966" (5.34)
n=1

For illustration of the corresponding scale-invariant distribution of multipliers P(M), the reader
is referred, e.g., to Frederiksen et al. [97] (see Figure 18 therein).

74



5.3 Multifractal Subgrid-Scale Modeling for Passive Scalars

5.3.3 Scalar-Gradient-Orientation Cascade

To determine the orientation €y, of the gradient of the subgrid-scale scalar field, an additive
decorrelation cascade is set up analogously to the one for the subgrid-scale vorticity field:

N
év¢(X, f}) = Iw)ée%)(x, t) + (1 — Iv¢) Z (5;, (535)
n=1

based on the orientation 5e’% o of the gradient of the smaller resolved scales and the (modified)
stochastic-decorrelation increments 4. The scalar-gradient intermittency factor Zy, is defined
from the relative orientation of V¢ and V¢" as

[V - Vighdx
Io, = = . (5.36)
YT T IVl [Vogh|dx

5.3.4 Subgrid-Scale Scalar Approximation

After combining cascades (5.34) and (5.35) and introducing the resulting subgrid-scale scalar
gradient V ¢, which is assumed approximately equal to its expectation value, into equation (5.23),
the subgrid-scale scalar field is calculated as

~ _1 3 1 i\ N
d(x,t) = (1 —a ) PES (20+DNe _1)2 <M§> ¢Iw)§gbh(x,t), (5.37)

where assumptions analogous to the ones discussed in Section 4.2.4 for the subgrid-scale vortic-
ity are incorporated. Moreover, k, /ky, is replaced by relation (5.25). The necessary independence
of ¢ from N, as Ny — o0, i.e., the high-Reynolds-number limit, constrains Zg, as

3 7./\/’
Ty~ 27 (FHDM (M3 7 (5.38)
Hence, the subgrid-scale scalar ngS reads

o(x,t) = D3¢"(x,1), (5.39)

where
(DN
2

Di=CP (1-a00) 22 (200N 1)? (5.40)

sgs
The required proportionality constant is denoted by C;?gs. Parameter Cngs should exhibit a uni-
versal dependence on the Reynolds number and satisfy the same characteristics as discussed for

C’f‘gS in Section 4.2.4. Based on the evaluations of Burton [50], C’SDgS is expected to be approxi-
mately equal to or somewhat higher than C2 depending on the Reynolds number. A potentially

sgs

higher value of C’Sgs correlates with the higher intermittency of the scalar field, which is consis-
tent with studies on turbulent mixing of passive-scalar quantities (see, e.g., the review articles by

Sreenivasan and Antonia [291] and Warhaft [332]).
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Eventually, the cross- and subgrid-scale Reynolds-stress terms, (5.20) and (5.21), are modeled
as follows:

Cop(w;u" 0, 6", §) ~ (0", u" -V (Ds¢") + Bou" - V)., (5.41)
Rep(w'; @, ¢) ~ (w", Bsu" - V (Dsg")) . . (5.42)

5.3.5 Relation of Cascades in Scalar and Velocity Field

With respect to low- and high-Schmidt-number passive-scalar mixing and the resulting transport
regimes, it is crucial to explicitly distinguish between the number of cascade steps N, in the
vorticity cascade and the number of cascade steps NV, in the scalar gradient cascade. Recalling
Figure 5.2, different levels of resolution need to be considered in the velocity and scalar field for
Sc # 1. Therefore, a potentially different number of cascade steps in both cascades is expected.
The number of cascade steps N, in the vorticity cascade is estimated via the ratio of the element
length h to the viscous length scale )\, according to relation (4.7). As given in equation (4.30),
the ratio of h to A\, is approximated using the local element Reynolds number Re;,. The ratio of
A« to A, may be estimated based on the Schmidt number:

A

M N 543
AV Y ) ( )
where ¢ = 3/4 for Sc < 1 and ¢ = 1/2 for Sc > 1, as outlined in Section 5.1.2. Combining
this relation with equation (4.30) yields an approximation for the ratio of A to \.:

% — ¢,Re}Sc¥, (5.44)
resulting in a higher number of steps NV in the scalar gradient cascade than in the vorticity cas-
cade for Sc > 1 and vice versa for Sc < 1. The case Sc > 1 requires particular attention,
as already indicated in Section 5.3.2. First, it is assumed that kj, is located within the inertial-
convective range. Since scales of adjacent ranges are particularly coupled, it is reasonable to
consider the unresolved scales of the inertial-convective range to influence the evolution of the
resolved scales, while scales belonging to the viscous-convective range have only minor influ-
ence on them. Therefore, the same subgrid-scale modeling as for the case Sc < 1 is used, if
ky, is located within the inertial-convective range. Hence, the exponent v in the definition (5.40)
of the parameter D is set to 1/3. The exponent ¢ of the inner-scale scaling (5.43) remains un-
changed and thus equal to 1/2. This approximation might be interpreted as an extrapolation of
the inertial-convective scaling down to the Batchelor scale. More sophisticated estimations may
be obtained by separately considering the inertial- and viscous-convective range within the inte-
gration procedure of the diffusion spectrum. Due to the aforementioned relation between scale
ranges, it is however expected that further improvements may be difficult to achieve. Therefore,
it is refrained from examining further refinements to this strategy. If k;, is located within the
viscous-convective range, the velocity field is fully resolved such that Re;, — 1 and NV, ~ 0.
Due to the multiplication of Re;, by Sc, N, does not vanish, resulting solely in a subgrid-scale
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scalar field. These considerations may easily be verified using equations (4.7), (4.30), (5.25)
and (5.44).

Figure 5.3 displays the influence of Ny, v and o on D, defined in equation (5.40). The left
diagram demonstrates that D reaches its asymptotic value for v = 1 already at N, > 3, whereas
it is reached at AV, > 4 for v = 1/3. This behavior reflects an earlier decoupling of the scalar
subgrid scales from the resolved scales for scales in the viscous-convective range. If the factor
containing the scale-separation parameter « is also included (see the right diagram of Figure 5.3),
v = 1/3 and v = 1 provide almost the same dependence of D on N for Ny < 2. For Ny > 2,
~ = 1/3 leads to a somewhat higher asymptotic value.

1.2

2 N2 o1+ 1N ) 12

(VDN 1
Figure 5.3: Dependence of parameter D ~ 27~ 2 . (20+DNs — 1)2 on number of cascade steps N

for kj, in the inertial-convective (v = 1/3) and viscous-convective (y = 1) range. The right

diagram shows the inclusion of the scale-separation-dependent coefficient (1 — a—(w+1)>_§
with parameter o = 3 as chosen for scale separation by PA-AMG.

5.3.6 A Remark on the Near-Wall Behavior

Wall-bounded turbulent flow with passive-scalar mixing requires an adequate near-wall behavior
of the multifractal subgrid-scale modeling approach. Therefore, the near-wall limit, derived in
Section 4.8.1, is applied to the velocity field. The velocity field acts on the scalar field by con-
vecting it. If the anisotropy of the velocity field is appropriately captured, as it is done by the
near-wall limit, the scalar field is able to directly respond to the anisotropy via the convective
term. As a result, directly coupling the parameter C’SDgS of the subgrid-scale scalar field to the
parameter C’SBgf;W obtained from the near-wall limit for the subgrid-scale velocity field is taken to
be sufficient to adequately incorporate the near-wall dynamics in the scalar field. Therefore, Cngs
is set to the mean value of Cs';f;w, yielding a modified parameter ngg:

Cope = (fui) Ol (5.45)
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In doing so, a Reynolds-number dependence is also introduced into ngg. In addition, except for
the vicinity of the wall, where ng,gw increases due to the higher anisotropy, CSDg§ is approximately

equal to or somewhat higher than CSBg‘;W, consistent with the preceding considerations.

5.4 Residual-Based Subgrid-Scale Modeling

As discussed in Section 4.4 in the context of the Navier-Stokes equations, the multifractal
subgrid-scale modeling terms are embedded into a residual-based variational multiscale formula-
tion of the convection-diffusion equation to ensure proper stabilization of the numerical method.
To obtain an appropriate accompanying residual-based multiscale term, the subgrid-scale part )
of the scalar quantity is approximated in an elementwise manner based on the resolved-scale
part:

¢ = —Tcoren- (5.46)
The discrete residual of the convection-diffusion equation reads as
h 9" h h h
b = 5 +u" - Vo' — kA" — f. (5.47)

Analogously to 7y for the momentum equation (see equation (3.40)), the stabilization parameter

Tcp 18 defined as
1

4 +uh-Gu + Cik2G: G

A2

(5.48)

Tcp =

As outlined for the subgrid-scale velocity in Section 3.3, approximation (5.46) may be derived
from the equation projected onto the space of unresolved scales, which governs the evolution
of ¢.

Introducing approximation (5.46) into the first cross-stress term, omitting the second cross-stress
term, integrating by parts and assuming that subgrid scales vanish on element boundaries leads
to the SUPG term for the convection-diffusion equation, which provides convective stability:

Cop(w";u" 0, 6", §) ~ (0" - V", 7eprip) (5.49)

Q'

The second cross-stress term as well as the subgrid-scale Reynolds-stress term are only incor-
porated by the residual-based subgrid-scale modeling in a complete residual-based VMM. The
terms summarized in the compact form Bé’ll)m(wh; (5) are neglected for the same reasons as given
for the respective terms of the variational multiscale formulation of the momentum equation.

5.5 AVM* for Passive Scalars

The final modeled variational multiscale formulation of the convection-diffusion equation is
obtained by inserting expressions (5.41) and (5.42) into equation (5.19) and adding term (5.49):
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find ¢ € S;} such that

Bep(w"; ¢") + (w" 0" - V (Dég") + Bou" - V) . + (w", Béu" - V (Dig")),.

(5.50)

+ (uh . th, TCDTgD)Q* = gc])(’wh)
for all w" € VQ. The multifractal subgrid-scale modeling terms can be found in the first line
(second and third term). The residual-based multiscale term is given in the second line on the
left-hand side. Using level-transfer operators from PA-AMG for scale separation as described in
Section 4.3 for the velocity field, the small-scale scalar field is obtained as

0¢" = " Nadgly = N6@" = N [I- S} @, (5.51)
Ae€

where ®" is the vector of resolved scalar degrees of freedom ¢4 and 6®" the vector of nodal
values 0¢" of the small-scale scalar field.

5.6 Passive-Scalar Mixing in Turbulent Channel Flow

The proposed method is validated for passive-scalar mixing in turbulent channel flow for a broad
range of Schmidt numbers in between 1 and 1000, including some supportive results for forced
homogeneous isotropic turbulence at higher Schmidt number. In particular, the subgrid-scale
scalar-variance transfer is analyzed to evaluate the influence of the multifractal subgrid-scale
modeling. Furthermore, the near-wall behavior of the AVM* is investigated via the transfer coef-
ficient. Trilinearly-interpolated hexahedral elements are utilized for the subsequent simulations,
and a generalized-a time-integration scheme with p,, = 0.5 is applied. For wall-bounded tur-
bulent flow, the parameters of the multifractal subgrid-scale modeling are chosen as listed in
Section 4.8.1.

5.6.1 Low-to-Moderate Schmidt-Number Mixing at Sc =~ 1

Problem Setup. Turbulent channel flow at friction Reynolds number Re, = 180 with passive-
scalar mixing is examined for two Schmidt numbers, Sc = 1 and 25. A DNS study for Sc = 1,
3, 10, 25 and 49 and Re, = 180 was reported by Schwertfirm and Manhart [278]. LES studies
for passive-scalar mixing in turbulent channel flow at Re, = 180 and Sc = 1 a well as 25 may
be found, e.g., in Hickel ef al. [147] and You and Moin [336]. In the latter study, DNS was also
performed for these Schmidt numbers. The channel dimensions are 27, X 20, X md. in stream-
wise, wall-normal and spanwise direction, respectively. The channel half-width ¢ is 1.0 as usual.
The channel dimensions are chosen according to the respective dimensions used by Schwertfirm
and Manhart [278], Hickel et al. [147] and You and Moin [336]. No-slip boundary conditions
for the velocity field are applied at the top and bottom wall. For the scalar field, a constant value
¢p = 1.0 is prescribed at the top wall and ¢p = —1.0 at the bottom wall. In the homogeneous
streamwise and spanwise directions, periodic boundary conditions are assumed for the flow and
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5 Extension I: Passive-Scalar Mixing

the scalar field. A randomly perturbed parabolic velocity profile in streamwise direction consti-
tutes the initial velocity field. The scalar field is initialized with a linear distribution from -1.0
to 1.0 in wall-normal direction. A constant pressure gradient in streamwise direction drives the
flow, and a constant time-step length A" = 0.72 in non-dimensional form (4.64) is applied.
After flow and scalar field have developed, statistics are collected in homogeneous directions
and in time during 5000 time steps.

In wall-normal direction, the distribution of the elements is refined towards the wall using the
hyperbolic mesh stretching function (4.61) with Cz = 2.5 to obtain a better resolution of the
near-wall region. The resolution requirements for the diffusive sublayer relative to the require-
ments for the viscous sublayer increase with the square root of the Schmidt number. Three differ-
ent spatial discretizations with 32, 48 and 64 elements in each spatial direction are used for both
Schmidt numbers. The refinement of the elements is performed such that the same discretiza-
tions can be used for Sc = 1 and 25. The resulting non-dimensional element lengths A in
non-dimensional form (4.62) are summarized in Table 5.1. For LES of turbulent incompressible

flow only, wall resolutions with 23 ;. < 1 are not necessary.

Table 5.1: Mesh parameters for passive-scalar mixing at Sc = 1 and 25 in turbulent channel flow: number
of elements and non-dimensional element lengths h;r.

no.elements k{7  hy .. hy... = hy
323 3534 089 2828 17.67
483 2356 056 1894 11.78
643 17.67 041 1422 884

The results obtained with the proposed method are compared to the SPGSM, RBVMM and
DSM as well as to various DNS and LES data provided in literature. The SPGSM is extended to
passive-scalar mixing by merely using the SUPG term for the convection-diffusion equation. In
the RBVMM, all cross- and subgrid-scale Reynolds-stress terms arising in the variational mul-
tiscale formulation of the convection-diffusion equation are incorporated via a residual-based
subgrid-scale modeling of the velocity and scalar quantity. For the DSM, which was further
developed for compressible flow including scalar mixing by Moin et al. [223], the aforemen-
tioned cross- and subgrid-scale Reynolds-stress terms are modeled by (Vuw", ks V"), where
Ksgs = Vsgs/Sc; denotes the subgrid diffusivity and Sc, the turbulent Schmidt number, which is
determined dynamically (see also Section 4.8.2). As explained in Section 4.8.2 in the context
of the Navier-Stokes equations, the subgrid-diffusivity term is applied together with the SUPG
term. DNS data extracted from Schwertfirm and Manhart [278] are denoted by “DNS SM07”
and from You and Moin [336] by “DNS YMO09”. You and Moin [336] used two different dis-
cretizations for their LES. Here, the results obtained with the finer one of the two discretizations,
which consisted of 48 x 64 x 48 grid points, are included, since the corresponding wall resolu-
tion h; min = 0.60 is comparable to the one of the present medium discretization. LES data taken
from that study are denoted by “LES YMO09”. Hickel et al. [147], who extended the ALDM-
ILES (see Section 4.8.2) to passive-scalar mixing, used a discretization equivalent to the present
medium discretization. Results taken from that study are marked by “ILES HAMO7”.
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5.6 Passive-Scalar Mixing in Turbulent Channel Flow

Analysis of Model Parameters. Before the statistical results are discussed, the parameters of
the multifractal subgrid-scale modeling are evaluated with respect to their expected behavior.
Figure 5.4 illustrates the mean values of the number of cascade steps (N, ) and (N), the coef-
ficients (C2™) and (C2) as well as the resulting parameters (B) and (D). For Sc = 1, (N)
is equal to (). In accordance with the higher resolution of the velocity field compared to the
scalar field for Sc = 25, more cascade steps are required in the scalar gradient cascade. More-
over, (N,) and (V) decrease with increasing resolution as expected. It is remarked that, except
for the first layers of elements from the walls of the medium and finer discretization, (V) is
non-zero for all discretizations. Related to the increasing resolution requirements with increas-
ing Schmidt number, (N¢) does not vanish within these layers for Sc = 25. Therefore, kj, is
almost exclusively located within the inertial-convective range also for Sc = 25, and both scalar
field as well as velocity field are underresolved. Hence, it is proceeded as described in Sec-
tion 5.3.5. Since passive-scalar mixing has no influence on the velocity field, (C2S), which is the
mean value of the respective parameter of the velocity field adapted by the near-wall limit, i.e.,
C’SBg’;W, is constant and equal for both Schmidt numbers. Due to the near-wall limit, (C’S';‘SIW> shows
a peak near the wall, reflecting the higher anisotropy in this region. The near-wall limit does
not only bring in a modification of (C’fgfslw> near the wall, but also comes along with a Reynolds
number dependence of <C§£W> that allows for setting C’sli,s and, hence, also CSDgS irrespective of
the resolution. The near-wall behavior of <CS';’;W) is incorporated in the final parameter (B). In
contrast, (D) is almost constant in the middle of the channel and falls off at the walls. A steeper
gradient at the wall and a higher value in the middle of the channel is observed for Sc = 25 than
for Sc = 1. The higher value immediately follows from the increased number of cascade steps.
The steeper gradient correlates with the smaller diffusion zone for the higher Schmidt number,

where scalar transport is governed by diffusion rather than by convection.
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Figure 5.4: Mean values of the number of cascade steps (V) and (Ny), coefficients (CEAY) and (C2%)
as well as parameters (B) and (D) for passive-scalar mixing at Sc = 1 and 25 in turbulent

channel flow using 323, 483 and 64> elements.

Statistical Results. Since the fluid field remains unaffected by the inclusion of the scalar field,
merely the mean streamwise velocity u;” and the root-mean-square values rms u; of the velocity
fluctuations obtained with the medium discretization are displayed in Figure 5.5. All statistical
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5 Extension I: Passive-Scalar Mixing

results are normalized by the friction velocity u., (see equation (4.60)) and the friction scalar

P (5.52)
Ur
respectively, where ¢y = k(0(¢)/0x,)|w is the diffusive flux in wall-normal direction at the
wall. As usual, statistical results are depicted in wall units =3 . For the AVM*, good agreement
with the DNS data of turbulent incompressible flow taken from Moser et al. [224], marked by
“DNS MKM99”, is observed. The SPGSM, RBVMM and DSM still deviate from DNS for this
discretization, particularly for u and rms u; .

25 . . 4 . . . . . : . .
DNS MKM99 DNS MKM99
SPGSM =3¢ 35| SPGSM = |]
. .

s || RBYMM - . a g s ut RBVMM --&---
DSM —-a- i sl F5w 1 DSM —-8- |
AVM* —e— e L/ AVM® —o

| - N

+
i

rms u;

Figure 5.5: Mean streamwise velocity uf and root-mean-square velocities rms uj for turbulent channel
flow at Re, = 180 using 48> elements.

Figures 5.6 and 5.7 depict the scalar statistics obtained with the proposed method, comparing
them to the respective data presented in the aforementioned studies. For both Schmidt numbers,
the mean scalar ¢, the root-mean-square scalar rms ¢ as well as the correlations of streamwise
and wall-normal velocity and scalar fluctuations, (u}¢’)" and (u5¢')*, respectively, are shown.
Here, merely the results obtained with the medium discretization are displayed. The DNS data
by Schwertfirm and Manhart [278] and You and Moin [336] are in overall good agreement.
Differences are observed for the wall-normal velocity-scalar fluctuations (u5¢’)" in the core of
the channel. Here, the DNS presented by You and Moin [336] predicts lower values than the
one by Schwertfirm and Manhart [278]. The curve obtained with the AVM* tends towards the
data reported by You and Moin [336]. Further differences are observable for rms ¢ and Sc = 1,
where the two DNS data again deviate in the core of channel. For this value, the results predicted
by the AVM* are located between the two DNS data curves. Except for a slight underestimation
of the peak value of (u|¢')* for both Schmidt numbers, all statistical results provided by the
AVM* agree well with the DNS data. Concerning the other LES data, it is stated that all LES
curves almost match, and the AVM* captures the DNS data as accurately as the ALDM-ILES
method by Hickel et al. [147] and the dynamic global-coefficient subgrid-scale model by You
and Moin [336].
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Figure 5.6: Mean scalar ¢*, root-mean-square scalar rms¢™, streamwise velocity-scalar fluctua-
tions (u}¢')" and wall-normal velocity-scalar fluctuations (u}¢’)" obtained with the AVM*
for passive-scalar mixing at Sc = 1 in turbulent channel flow using 48> elements. Various
LES data taken from literature are included for comparison.

Figures 5.8 and 5.9 show a convergence study for Sc = 1 and 25, including results obtained
with the SPGSM, RBVMM and DSM. As reference data, merely the DNS data presented by
You and Moin [336] are included. Results for the mean scalar quantity, the root-mean-square
value as well as the velocity-scalar fluctuations are provided. All methods converge towards
the DNS data with increasing resolution. However, notable differences in the accuracy are ob-
servable between the various methods. For all discretizations, the AVM* yields by far the best
approximations for both Schmidt numbers. As previously stated, the results obtained with the
AVM?* are already for the medium discretization notably close to DNS, and the improvement
due to the finer discretization is only of small amount. In contrast, the SPGSM and RBVMM
provide results which substantially deviate from the DNS data using the coarser and the medium
discretization. Even with the finer discretization, there are notable deviations from the DNS re-
sults for most of the displayed quantities, while the results of the AVM* match all of them almost
exactly. The differences in the results provided by the SPGSM and RBVMM are small, with the
RBVMM showing overall slightly improved results. The largest deviations from DNS are ob-
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Figure 5.7: Mean scalar ¢", root-mean-square scalar rms¢™, streamwise velocity-scalar fluctua-
tions (u}¢')" and wall-normal velocity-scalar fluctuations (u)¢’)™ obtained with the AVM*
for passive-scalar mixing at Sc = 25 in turbulent channel flow using 48> elements. Various
LES data taken from literature are included for comparison.

served for the DSM. Also when using the finer discretization, the DSM substantially deviates
from DNS for both Schmidt numbers as well as all quantities. Concerning ¢*, the results ob-
tained with the AVM* for both Schmidt numbers perfectly match the DNS data already for the
medium discretization. When using the finer discretization, the SPGSM and RBVMM still de-
viate from DNS for Sc = 25, while the DSM significantly overpredicts ¢t for both Schmidt
numbers. The differences between the methods are particularly pronounced for (u)¢')*. For
both Schmidt numbers, the approximations provided by the SPGSM and RBVMM using the
finer discretization are comparable with the one obtained by the AVM* using the coarser dis-
cretization. The DSM notably overestimates the peak value for all discretizations. Similarly, the
maximum value of rms ¢* is captured more accurately by the AVM* than by the other three
methods, since the SPGSM and RBVMM as well as in particular the DSM overpredict the peak
near the wall for all discretizations. For Sc = 1, all methods differ from the DNS values by You
and Moin [336] towards the channel center, where also the DNS data deviate from each other.
Taking the deviating DNS data also for the correlation (u5¢’)" into consideration, the AVM* as
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Figure 5.8: Convergence study of mean scalar ¢, root-mean-square scalar rms ¢, streamwise velocity-
scalar fluctuations (u}¢’)™ and wall-normal velocity-scalar fluctuations (u5¢’)™ for passive-
scalar mixing at Sc = 1 in turbulent channel flow using 323, 483 and 64> elements.
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Figure 5.9: Convergence study of mean scalar ¢, root-mean-square scalar rms ¢, streamwise velocity-
scalar fluctuations (u}¢’)™ and wall-normal velocity-scalar fluctuations (u5¢’)™ for passive-

scalar mixing at Sc = 25 in turbulent channel flow using 323, 483 and 64> elements.
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well as the SPGSM and RBVMM provide good approximations for both Schmidt numbers when
using the medium and finer discretization. The DSM yields somewhat shifted curves. To further
quantify the computational efficiency of the proposed method, computing times are evaluated.
The convection-diffusion equation is iteratively solved within each time step. A computationally
efficient implementation of the proposed method is realized by using a fixed-point iteration for
the cross- and subgrid-scale Reynolds-stress terms, (5.41) and (5.42); that is, merely the right-
hand-side contributions of these terms are evaluated, as explained in Section 4.6.2 in the context
of the Navier-Stokes equations. Setting the computing time of the SPGSM to 1.00, the relative
computing times required by the AVM*, RBVMM and DSM amount to 1.22, 1.23 and 1.65,
respectively. Taking also the only slightly increased computational cost for the AVM* compared
to the SPGSM into account, an overall excellent computational performance is stated for the
AVM*.

Subgrid-Scale Scalar-Variance Diffusion. Next, the subgrid-scale diffusion introduced by the
different methods is analyzed in more detail, analogously to the investigations of the subgrid-
scale dissipation in Section 4.8.2. The contribution of the SUPG term alone constitutes the
subgrid-scale diffusion g, of the basic approach SPGSM:

Xsu = Teprepu™ - Vo', (5.53)

For the subgrid-scale diffusion y,, of the AVM?*, the diffusion due to the cross- and subgrid-
scale Reynolds-stress terms, Ymc and X, respectively, modeled by the multifractal subgrid-scale
modeling approach have to be considered in addition to the contribution of the SUPG term. They
are given by

Xme = —(Dép"u" + ¢"Bou") - Vo', (5.54)
Xmr = —(D@"Bsu") - Vo' (5.55)
The subgrid-scale diffusion of the DSM is denoted by xg4s. The contribution of the subgrid-

diffusivity term
Xsa = Fisgs V" - V' (5.56)

has to be included for y4s. The diffusion introduced by the second cross-stress term and the
subgrid-scale Reynolds-stress term of the RBVMM is defined as
Xer = ¢ty - Vo', (5.57)
Xee = —TeplepTmIn - Vo, (5.58)
resulting together with x,, in the subgrid-scale diffusion y,, of the RBVMM. The investigation
of the subgrid-scale diffusion was conducted for all methods, discretizations and both Schmidt

numbers. Here, merely the results obtained with the medium discretization are depicted, since the
conclusions drawn from these results can be extended to both coarser and finer discretization.
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Figure 5.10 illustrates the mean subgrid-scale diffusion of the various methods. The mean subgrid-
scale diffusion is given in non-dimensional form as

29,2
Uz

and displayed in wall-normal direction. You and Moin [336] filtered their DNS data for Sc = 1
in streamwise and spanwise direction to estimate the required subgrid-scale diffusion for their
coarser discretization with 32 elements in the respective directions. Due to deviating procedures,
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Figure 5.10: Mean subgrid-scale diffusion y* for passive-scalar mixing at Sc = 1 (top) and Sc = 25 (bot-
tom) in turbulent channel flow using 48> elements including a closeup view of the near-wall
region with marked buffer layer of the underlying velocity field.

a quantitative comparison to those data is not possible. Therefore, the present results are merely
qualitatively compared to the subgrid-scale diffusion determined from filtered DNS data and
displayed in Figure 2 of the study by You and Moin [336]. The distribution of the subgrid-scale
diffusion given in the work by You and Moin [336] shows a peak near the wall and then falls off
to an almost constant value in the middle of the channel. With respect to the present methods,
the scalar-variance transfer can be captured more accurately by the inclusion of the multifractal
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subgrid-scale modeling terms. While the distributions of subgrid-scale diffusion corresponding
to the SPGSM and RBVMM are almost uniform after increasing from the walls, the distri-
butions of the DSM and in particular the AVM*, which both include an explicit subgrid-scale
model, exhibit a peak in the vicinity of the wall. The tendency of the SPGSM to unphysically
flatten the distribution of the subgrid-scale diffusion has also been observed in Section 4.8.2
for the mean subgrid-scale dissipation of turbulent incompressible channel flow in the form of
a notably smaller peak in the buffer layer compared to, for instance, the AVM*. Although the
filtered DNS data suggest a positive averaged subgrid-scale diffusion throughout the channel
height, the subgrid-scale diffusion of the AVM* shows a thin negative peak close to the wall. A
closeup of the near-wall region reveals the occurrence of the negative and positive peak value
of x;, within the buffer layer of the underlying velocity field, which is known to be the region
of intensified turbulence activity (see, e.g., Pope [252] and Tennekes and Lumely [309]). The
gain of scalar variance is related to the ability of the AVM* to account for local backscatter of
energy, which is another already mentioned advantage of the AVM* compared to, for instance,
subgrid-diffusivity models such as the DSM, which are usually purely diffusive. The SPGSM
and RBVMM also introduce a very small negative contribution at the same location. Comparing
both Schmidt number cases, it is stated that subgrid-scale diffusion is introduced throughout the
channel for Sc = 1, while the distribution of the subgrid-scale diffusion for all methods is al-
most zero in the core of the channel and has a significant peak near the wall for Sc = 25. From
the closeup view, it is observed that the peak is still located within the buffer layer of the un-
derlying velocity field, but moves towards the wall. Since the gradient of the scalar field, which
determines the diffusion from the fluxes, increases at the wall and approaches zero in the core
of the channel with increasing Schmidt number, both the more pronounced peak as well as its
shift towards the wall have to be expected. Again, the distributions of subgrid-scale diffusion
corresponding to the SPGSM and RBVMM are almost the same, while the ones of the AVM*
and DSM provide higher peak values due to the explicit subgrid-scale modeling. Transferring
the observation from Sc = 1 to Sc = 25, this behavior reflects the improvements due to the
multifractal subgrid-scale modeling terms. Again, the AVM* shows a very small negative peak
close to the buffer layer.

Further insight into the diffusive properties of the proposed method is gained by analyzing its
constituents. Figure 5.11 displays the diffusion introduced by the various modeling terms of
the AVM* for Sc = 1 as well as 25. The contribution Y. of the subgrid-scale Reynolds-stress
term is positive throughout the channel and of negligible amount for both Schmidt numbers. The
contribution ;. of the cross-stress terms shows positive and negative values. Hence, these terms
allow for backscatter of energy as already observed for incompressible flow in Section 4.8.2. Due
to the presence of the cross-stress terms, the contribution of the SUPG term for Sc = 1 is reduced
in the core of the channel compared to the SPGSM in Figure 5.10, which only contains this term.
For Sc = 25, diffusion is mainly introduced by the SUPG term. While the SUPG term is active
throughout the channel, the cross-stress terms mainly act in the near-wall region by increasing
the subgrid-scale diffusion .
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Figure 5.11: Contributions of the individual constituents of the AVM* to the mean subgrid-scale diffu-
sion ;. for passive-scalar mixing at Sc = 1 (left) and Sc = 25 (right) in turbulent channel
flow using 48° elements.

5.6.2 High-Schmidt-Number Mixing at Sc > 1

Preliminary Investigations. For high-Schmidt-number mixing, there is a lack of numerical
and experimental examples providing reference data in literature, particularly for wall-bounded
flows due to enormous resolution requirements to appropriately capture the diffusive sublayer.
Therefore, aside from turbulent channel flow with passive-scalar mixing, results from prelimi-
nary investigations of the proposed method for forced homogeneous isotropic turbulence with
passive-scalar mixing at Sc = 400 and Re = 20, where the Reynolds number is defined as
Re = 1/v, are also shown here for the high-Schmidt-number mixing. An elaborate investiga-
tion of the performance of the multifractal subgrid-scale modeling approach for passive-scalar
mixing in homogeneous isotropic turbulence was conducted by Burton [50] in the context of the
nLES method.

Forced homogeneous isotropic turbulence is computed in a periodic box of size 27 x 27 X 2,
which is discretized using 32 uniformly distributed elements in each spatial direction. A source
term on the right-hand side of the momentum equation (3.1) and the convection-diffusion equa-
tion (5.10) accounts for dissipation and diffusion, such that the shape of the spectra is preserved.
Forcing is constructed such that only large scales (i.e., k < 2) are affected. The initial velocity
and scalar field are randomized to phase and consistent with an E(k) ~ k=3 and E4(k) ~ k™!
scaling, respectively; see also Section 4.7 for further details on the initialization and forcing of
the velocity field, which may be readily transferred to the scalar field. The time-step length At
is set to 0.1. After an initial transient, samples of the three-dimensional kinetic-energy spectrum
and the scalar-variance spectrum are collected until they are converged. Concerning the AVM?,
the near-wall limit is not required for the present configuration, and C’S';S and C’SDgS are set to 0.1.
The element Reynolds number is estimated based on the resolved velocity, and ¢, = 0.1 is as-
sumed, as usual. As illustrated in Figure 5.12, the kinetic-energy spectrum is fully resolved. The
scalar-variance spectrum shows the expected viscous-convective range scaling, which is also
indicated in the diagram.
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Figure 5.12: Mean three-dimensional kinetic-energy spectrum E'(k) and scalar-variance spectrum Ey (k)
for passive-scalar mixing at Sc = 400 in forced homogeneous isotropic turbulence at
Re = 20.

Problem Setup. Turbulent channel flow at Re, = 180 and Sc = 1000 is considered an ap-
propriate wall-bounded test for mixing at high Schmidt number. With respect to domain size,
initial and boundary conditions, time-step length as well as sampling, the problem setup is cho-
sen analogously to the one of the low-to-moderate Schmidt-number examples. However, due to
the higher resolution requirements near the walls, different spatial discretizations are used com-
pared to the previous configurations. Here, two discretizations with 64 and 128 elements in each
spatial direction are considered. Parameter Cg of the hyperbolic mesh stretching function (4.61)
is set to 2.9. A summary of the details of the discretizations is provided in Table 5.2. For the finer
discretization, it is expected that the velocity field is almost resolved.

Table 5.2: Mesh parameters for passive-scalar mixing at Sc = 1000 in turbulent channel flow: number of
elements and non-dimensional element lengths h;".

no.elements h{  hy . hy... hi
643 17.67 022 1637 8.84
1283 8.84 0.10 820 442

Analysis of Model Parameters. The model parameters of the multifractal subgrid-scale mod-
eling are also investigated first for this high-Schmidt-number case. Therefore, the mean values
of the number of cascade steps (Ny) and (N;), the coefficients (C2™) and (C2:) as well as the
resulting parameters (B) and (D) are displayed in Figure 5.13. Again, (V) and (N;) decrease
with increasing resolution. Near the wall, (V) approaches zero, then increasing towards the
middle of the channel. The region of vanishing () increases when refining the resolution. Due
to the higher near-wall resolution of the discretization with 64 elements in each spatial direction
for this configuration compared to the one used for the low-to-medium-Schmidt-number con-
figurations, () is able to vanish throughout the near-wall region. In contrast, (N;) increases,
starting right from the wall. This means that, in the near-wall region, the velocity is fully re-
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solved, and ky, is located in the viscous-convective range. Towards the channel center, k; enters
the inertial-convective range, meaning that both resolutions are explicitly covered by this config-
uration. For (C2™) and (CL), the same statements as for the low-to-medium-Schmidt-number
configurations hold. Analogously to (N, ), (B) vanishes in the near-wall region. In contrast to
the low-to-medium-Schmidt-number cases, (D) does not fall off at the walls, but shows a con-
stant level, where (B) goes to zero. This behavior is related to the relatively high values for (\V;)
at the wall owing to Sc = 1000. The two levels in the curve for (D) reflect the occurrence of
the viscous-convective range near the wall and the inertial-convective range towards the channel
center in the subgrid-scale modeling procedure, since v = 1/3 leads to a higher asymptotic value

for (D) than v = 1, as displayed in Figure 5.3.
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Figure 5.13: Mean values of the number of cascade steps (Ny,) and (NV), coefficients <C’S';‘;W> and (CSDg§>
as well as parameters (B) and (D) for passive-scalar mixing at Sc = 1000 in turbulent

channel flow using 64° and 1283 elements.

Statistical Results. With respect to the subsequent discussion of the statistical results for the
scalar field, the mean streamwise velocity and the root-mean-square velocities are displayed in
Figure 5.14 for the finer discretization. Although the DSM still slightly deviates from DNS, all
methods are overall quite close to the reference data, as expected. Figure 5.15 shows ¢™, rms ¢,
(uj¢’)* and (ub¢’)* for both discretizations and all methods. For the coarser discretization,
notable differences between the methods, as already observed for the low-to-moderate Schmidt-
number cases, occur. As before, the AVM* provides more accurate results for ¢+, rms ¢ and
(uj¢’)* than the SPGSM and RBVMM, which in turn yield better values than the DSM. Again,
the DSM also shows a less steep gradient for (u5¢’)* than the other methods, which provide
very similar results for this value. Except for (u5¢’)", which is still somewhat underpredicted
by the DSM, the results obtained with the different methods are relatively close to each other
for the finer discretization, indicating that all methods are almost converged. Hence, these re-
sults are considered as reference values for the subsequent investigation. The advantage of the
AVM* becomes apparent by directly comparing the results for the AVM* obtained with the two
discretizations as given in Figure 5.16. This juxtaposition of the results reveals that the AVM* is
able to reliably capture all statistical quantities already for the coarser discretization, in contrast
to the methods included for comparison.
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Figure 5.14: Mean streamwise velocity u|” and root-mean-square velocities rms u; for turbulent channel
flow at Re; = 180 using 128> elements.

5.6.3 Transfer Coefficient

The evaluation of the non-dimensional transfer coefficient, which describes the transfer of a
scalar quantity from the wall to the fluid, constitutes an essential test to validate the performance
of a subgrid-scale modeling approach for passive-scalar mixing in the near-wall region of the
flow. The non-dimensional transfer coefficient is defined as

()
- ‘W Or

T u (Jowl—d0)  Jowl’

where ¢c¢ is the mean centerline scalar quantity and ¢w its value at the wall. To assess the
near-wall behavior of the AVM?*, investigations analogous to the ones presented by Hickel et
al. [147] are conducted. Apart from the evaluation of the turbulent transfer of a scalar quantity
from the walls to the fluid, the transfer coefficient also allows for examining the asymptotic
behavior of a subgrid-scale modeling approach towards the high-Schmidt-number regime and,
thereby, constitutes another possible means to validate the modeling approach for high Schmidt
numbers. The results obtained with the AVM* are compared to correlations for high Schmidt
numbers deduced from experimental results and theoretical considerations. From a theoretical
point of view, a correlation of the form

K* (5.60)

2 3
K" ~Sc™3 or ~Sc s

can be derived; see, e.g., Shaw and Hanratty [286] and references therein. A comprehensive
experimental study was presented by Shaw and Hanratty [286]. In that study, turbulent pipe flow
with scalar mixing at 693 < Sc < 37200 was considered for Reynolds numbers ranging from
Re = 16400 to 34 000. Shaw and Hanratty [286] provided the correlations

K+ =0.0649Sc™3 and K* =0.132Sc:
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Figure 5.15: Convergence study of mean scalar ¢*, root-mean-square scalar rms ¢, streamwise velocity-
scalar fluctuations (u}¢’) ™ and wall-normal velocity-scalar fluctuations (u5¢’) " for passive-
scalar mixing at Sc = 1000 in turbulent channel flow using 64° and 1283 elements.

for the two theoretical exponents. However, it was found in that study that the dependence
K+ =0.0889 Sc™*",

where the exponent lies between —2/3 and —3/4, gave a better approximation of the measure-
ments. Here, the results obtained with the AVM* are compared to both the correlation suggested
by Shaw and Hanratty [286] as well as the alternative fit to the theoretical exponent -2/3, which
is also strongly supported in literature (see, e.g., Kader and Yaglom [166]). The given correla-
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Figure 5.16: Separate convergence study for the AVM* of mean scalar ¢*, root-mean-square scalar
rms ¢, streamwise velocity-scalar fluctuations (uj¢’)* and wall-normal velocity-scalar
fluctuations (u5¢’) ™ for passive-scalar mixing at Sc = 1000 in turbulent channel flow using
643 and 128> elements.

tions are only valid for moderate and high Schmidt numbers, since, for low Schmidt numbers,
K™ is also affected by the Reynolds number (see, e.g., Schwertfirm and Manhart [278] as well
as Kader and Yaglom [166]). Again, Schmidt numbers up to 1000 are considered. All simula-
tions are conducted with the medium discretization of Section 5.6.1, which is similar to the one
used by Hickel et al. [147] and allows for a direct comparison. The transfer coefficient depend-
ing on the Schmidt number is depicted in Figure 5.17. Besides DNS data given in Schwertfirm
and Manhart [278], reference data, which were additionally used in Hickel et al. [147] and indi-
cated therein to originate from semi-DNS for Sc = 100 and 1000 provided by Schwertfirm and
Manhart, are also shown. They are marked by “sDNS SMO05”. Furthermore, results from several
other numerical studies are also included for comparison in Figure 5.17. In a study by Calmet
and Magnaudet [55], LES of passive-scalar mixing in a turbulent channel flow at a higher fric-
tion Reynolds number Re, = 640 was performed. Therein, a somewhat higher resolution was
used, and Schmidt numbers Sc = 1, 100 and 200 were investigated. Results extracted from
that study are marked by “LES CM97”. A Lagrangian technique was used by Papavassiliou
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Figure 5.17: Transfer coefficient K of passive-scalar mixing at various Schmidt numbers in turbulent
channel flow obtained with the AVM* using 48> elements including a closeup view of the
high-Schmidt-number values.

and Hanratty [244] to simulate passive-scalar mixing at various Schmidt numbers in turbulent
channel flow at Re, = 150, which is relatively close to the present one. Papavassiliou and
Hanratty [244] discretized the channel domain of size 47, x 2. X 27, by 128 x 65 x 128
grid cells and applied therefore a higher resolution than the present one. The respective results
are denoted by “LDNS PH97”. For Schmidt numbers Sc < 10, K deviates from the corre-
lations as expected, since the transfer coefficient also depends on the Reynolds number in this
Schmidt number range. While more advanced correlations taking also low Schmidt numbers
into account (see, e.g., Schwertfirm and Manhart [278] and Kader and Yaglom [166]) predict
decreasing transfer coefficients with increasing Reynolds numbers, the value extracted from the
study of Calmet and Magnaudet [55] for Re, = 640 suggests the opposite trend with respect to
the AVM* and the value taken from Papavassiliou and Hanratty [244]. All results obtained with
the AVM* agree well with the DNS and semi-DNS data and perfectly reproduce the experimental
correlation based on the theoretical exponent for the higher Schmidt numbers up to Sc = 1000.
In contrast, Hickel et al. [147] stated that the ALDM-ILES followed the correlation only up to
Sc = 500, as may also be seen from Figure 5.17. The observed agreement for the AVM* with
the semi-DNS value as well as the correlation at Sc = 1000 is particularly remarkable, since, for
this high Schmidt number, the medium discretization, which nearly resolves the velocity field
in the viscous sublayer, is rather coarse with respect to the scalar field and hardly allows for
resolving the mean scalar gradient at the wall. This high-Schmidt-number behavior further con-
firms the excellent performance of the AVM* for Sc >> 1 already observed in Section 5.6.2. In
summary, the presented results demonstrate that the proposed method yields accurate results for
wall-bounded turbulent flow with passive-scalar mixing within the considered Schmidt number
range. As explained in Section 5.3.6, an additional modification for wall-bounded flow is not re-
quired in the scalar field to obtain reasonable results, since the anisotropy is already sufficiently
captured by the velocity field.
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Extension II: Turbulent Variable-Density Flow at
Low Mach Number

The low-Mach-number limit of the compressible Navier-Stokes equations may be used to de-
scribe a variety of turbulent variable-density flows, which cover a wide range of challenging
applications such as turbulent combustion phenomena (see, e.g., the textbooks by Cant and Mas-
torakos [57] and Peters [246]). A comprehensive derivation of the equation system may be found,
e.g., in Fedorchenko [95], Miiller [226] and Rehm and Baum [263] and with emphasis on com-
bustion, e.g., in Majda and Sethian [205]. Applications of LES using the low-Mach-number
limit of the compressible Navier-Stokes equations or an alternative description, for instance, the
mixture-fraction formulation, to simulate non-reactive and/or reactive variable-density flows are
rather rarely considered in literature; see, e.g., Desjardins et al. [81], Lessani and Papalexan-
dris [187] and Wang et al. [327]. Applications of the VMM to LES of turbulent variable-density
flow at low Mach number can be found based on a three-scale separation, e.g., in Gravemeier
and Wall [122] and based on a residual-based two-scale formulation, e.g., in Gravemeier and
Wall [123]. Recently, another residual-based VMM with time-dependent subgrid scales and in-
corporation of those subgrid scales into all non-linear terms arising in the VMM, including the
evaluation of the physical parameters, was proposed by Avila et al. [10].

The present chapter develops the AVM* for LES of turbulent variable-density flow at low Mach
number. For this purpose, the generalization and application of the multifractal subgrid-scale
modeling approach to turbulent variable-density flow is discussed. In contrast to the study by
Burton [52], where the multifractal subgrid-scale modeling approach was applied within a mix-
ture-fraction formulation to examine turbulent Rayleigh-Taylor instabilities, the present chapter
reports on the first application of the multifractal subgrid-scale modeling approach to the low-
Mach-number limit of the compressible Navier-Stokes equations based on a temperature for-
mulation of the energy equation. The remainder of this chapter is organized as follows. First,
the low-Mach-number equation system and its variational multiscale formulation are presented.
Then, subgrid-scale modeling for LES of weakly compressible turbulent flow is addressed, and
impacts on the multifractal subgrid-scale modeling approach are discussed. Based on these con-
siderations, the AVM* for LES of turbulent variable-density flow at low Mach number is derived.
Finally, the proposed method is validated for two numerical examples. The results obtained for
turbulent flow in a channel with a heated and a cooled wall indicate the excellent prediction qual-
ity achievable by the proposed method also for turbulent variable-density flow at low Mach num-
ber. The investigation of turbulent flow over a backward-facing step with heating demonstrates
its applicability to a substantially more demanding configuration. This chapter summarizes work
published in Rasthofer et al. [261].
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6.1 The Low-Mach-Number Equation System

The Mach number is defined as

Ma = —, (6.1)
c

where U is a characteristic velocity of the flow and c the speed of sound in the fluid, and provides
a relation between inertia and compressibility forces. The low-Mach-number limit of the com-
pressible Navier-Stokes equations is obtained by an asymptotic expansion of the problem vari-
ables as power series of the parameter yYMa® < 1, which depends on the specific heat ratio v and
the Mach number and is assumed small. This procedure leads to a decomposition of the pressure
such that a thermodynamic pressure py(¢) and a hydrodynamic pressure ppyq(x, t) are explicitly
distinguished. The thermodynamic pressure is constant in space, but may vary in time. Analo-
gously to the pressure in incompressible flow, the hydrodynamic pressure imposes a constraint
on the divergence of the velocity and is thus determined by the continuity equation. Moreover,
this process includes the removal of acoustic effects. As a result, the low-Mach-number limit of
the compressible Navier-Stokes equations allows for substantial density variations in the pres-
ence of large temperature differences, while exhibiting the same mathematical structure as the
incompressible Navier-Stokes equations, such that the respective equations can be solved by the
same numerical methods. Variable-density flow at low Mach number in the domain  is thus
governed by the following form of the conservation equations of mass, momentum and energy,
the latter expressed in terms of temperature:

a .
p altl + U Vut Vpne — V- (2ue(u)) = pf in Q x ]0, fenal, ©.3)
T A 1 dpie :
il VT -V.-[Zvr) == Q end| - 4
poy tou VT =V (va ) T in Q x 10, tena (6.4)

Momentum and energy equation are given here in convective form. The end of the considered
time period is specified by fe,q. Furthermore, p(x,t) denotes the density, u(x,t) the velocity,
p(x, t) the dynamic viscosity, f a potential volume force vector, T'(x, t) the temperature, A(x, t)
the thermal conductivity and ¢, the specific heat capacity at constant pressure, which is assumed
constant. The deviatoric part of the rate-of-deformation tensor £(u) (see equation (2.3)) is de-

fined as
1

3 (V-u)l, (6.5)

e'(u) = e(u)

where I is the identity tensor.

At time ¢ = 0, velocity field u and temperature field 7" are prescribed as

u=1u in Q x {0}, (6.6)
T="T, in Q x {0}. 6.7)
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On the boundary 0Q, Dirichlet and Neumann boundary conditions for the momentum equa-
tion (6.3) are given as

=
I
=

v

on 1—‘D,u X ]07 tend[ ’ (68)

fu-n>0
a fu-n<0

Il
= =
c

(—Phyal +2p€*(u)) - n
n

F u O7ten ) 69
—pu (u-n) + (=pryal + 2pe*(0)) - } on I'vu % 10, fenal,  (6.9)

and for the energy equation (6.4) as

T = TD on FD,T X ]0, tend[a (610)

A .
oV =hr ff“"“?()} onTnr x 0, teal,  (6.11)
—pT (u-n)+ 2VT-n=hy ifu-n<0 7
where n is the outer unit normal vector on the boundary 0. Moreover, for each equation, it
is assumed that I'n N T'y = () and I'p U I'y = 9Q. To account for locally recirculating flow
that may occur at the outflow boundary of the domain Q for turbulent flows, inflow and outflow
parts of the Neumann boundary have to be distinguished as described in Section 3.2 for the
momentum equation. Analogously for the energy equation, the diffusive flux is prescribed on the
outflow part [Y":(t) := {x € I'vr|u(x,t) - n(x) > 0} and the total flux on a potential inflow
part I} (1) := {x € Inrlu(x,t) - n(x) < 0}, with [ NIY » = @ and TR UTY 7 = D r.

Continuity and momentum equation are coupled to the energy equation via the equation of state
for an ideal gas,

Dthe
= — 6.12
P=Pr (6.12)

determining the density p. The gas constant is denoted by R. Using the equation of state (6.12),
the continuity equation (6.2) may be reformulated as

1 8T 1 dpthe .
u-— [ = VT )| = — Q end] - A
V-u T (825 +u-V ) T in Q x |0, tena| (6.13)

Moreover, the dynamic viscosity u is assumed to depend on 7" according to Sutherland’s law:

T\? [T+ 8
_ LG I 6.14
H (ﬂef) <T+S>Mf ( )

where T is a reference temperature, S the Sutherland constant and pu.¢ a reference dynamic
viscosity. The thermal conductivity A, likewise depending on 7’, can be expressed as

Cpfh
A= 25 6.15
L (6.15)
where Pr denotes the Prandtl number, which is assumed constant. The Prandtl number estimates
the ratio of kinematic viscosity ¥ = y1/p and thermal diffusivity « = A/(pc,) and is the analog

to the Schmidt number in the context of heat transfer.

99



6 Extension II: Turbulent Variable-Density Flow at Low Mach Number

Concerning the determination of the thermodynamic pressure, several situations need to be dis-
tinguished in general. If the considered system is open to the ambient, py,. is also constant in
time and equal to the external pressure. For closed systems that do not experience the external
pressure, the thermodynamic pressure depends on ¢ and may be determined from global conser-
vation principles over the domain €, exploiting that py, is constant in space. Whether a system is
considered as open or closed depends on the boundary conditions for the momentum equation.
Open systems exhibit a Neumann boundary (i.e., I'ny # 0), whereas closed systems possess
a pure Dirichlet boundary (i.e., I'v, = (). With respect to the numerical examples considered
in this thesis, the evaluation of py, is restricted to two particular configurations: an open system
with Neumann outflow boundary and a closed system without in- or outflow. Since the total mass
has to remain constant in the latter case, pg may be obtained at each time via an integral form
of the equation of state (6.12):
Q

Dthe = (6.16)

[T-1d4Q’
Q

where py = p(10, pimeo) denotes the initial density. For both cases, the thermodynamic pressure
is initially set to ppe(t = 0) = pine 0. For further discussion on the evaluation of py. depending
on the encountered situation, the reader is referred, e.g., to Beccantini et al. [25], Gravemeier
and Wall [123] and Lessani and Papalexandris [187] as well as references therein.

6.2 Variational Multiscale Formulation of the
Low-Mach-Number Equation System

The derivation of the variational multiscale formulation of the low-Mach-number equation sys-
tem, considered here in the form using equations (6.13), (6.3) and (6.4), parallels the ones for
the incompressible Navier-Stokes equations and the convection-diffusion equation, thoroughly
presented in Sections 3.2 and 5.2, respectively. Therefore, merely the basic steps are outlined in
the following. For a step-by-step derivation, the reader is referred to Rasthofer er al. [261].

Hydrodynamic pressure, velocity and temperature are decomposed via a variational projection
into resolved and unresolved parts as

Phyd = Dhya + Dhyd; (6.17)
u=u"+1, (6.18)
T=T"+T. (6.19)

Proceeding as described in Sections 3.2 and 5.2 and assuming appropriate finite element solution
function spaces S for pil,4, Sk for u” and Sf. for T" as well as finite element weighting function
spaces V) for the discrete pressure weighting function ¢", V! for the discrete velocity weighting
function v and V) for the discrete temperature weighting function w", the variational multiscale
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formulation of the low-Mach-number equation system is obtained as follows:

Be(g";a", T + BE™(¢" 0, T) + Ba(¢"; ", 6, T", T) = te(q), (6.20)
Bu(v"; uh,pffyd) +C(vhut a) + RV a) + By (v 1, Prya) = m(v"), (6.21)
Be(w";u", T") + Cg(w";ut, 0, T", T) + Re(w™; 0, T) + BY™(w"; T) = tg(w)  (6.22)

forall (¢", v", w") € V! x V) x V}.. The second, third and potential fourth term on the left-hand
side of each equation are not closed and have to be modeled to solve formulations (6.20) to (6.22)
for (pfq, u", T") € S} x Sk x St. The compact forms Be(q"; u”, T"), Bu(v";u”, pf; ;) and
Bg(w";u", T") comprise the left-hand-side standard Galerkin terms of continuity, momentum
as well as energy equation and are defined as

C B ) . ) Q ) Th 8t o ) Th Qv .
Bu(v";u", pl ) == v" /)ha—uh + (v ppu” - V") — (Vv i)
. ot )g M o e (6.24)
+ (€<Vh)a zluhE*(uh))Q - (Vh7phuh (uh ’ n))n\rfu )
h h h h aTh h h h h )‘h h
Be(w";u", T") == (w", pp—— ] + (0", ppu" - VT"), + ( Vo', =VT
o Jq Cp o (6.25)

h h (. h
(T (o m))
The last term of the momentum and energy part arises due to the aforementioned inflow part of
the respective Neumann boundary condition. The linear forms £c(q"), fp(v") and £g(w™) on the
right-hand side, including the usual contributions from the Neumann boundary conditions, are
given as

1 dpthe
le(g" ::—( h —) , (6.26)
C(q ) q Pre dt 5
a(v") = (V" puf) g + (V" ha) (6.27)
1 dphe
hy . e h
le(w") := (w s e )Q + (w ’hT)FN,T' (6.28)
Moreover,
CV'sul' ) = (v, (u" - V4690 (6:29)
Ce(w"; 0", 4, 7" T) := (w", p (0" - VT + 4 VT")),, (6.30)

are the cross-stress terms and

R(V" ) == (v' pptr- V), (6.31)
Re(w";4,T) == (w", ppta- VT, (6.32)
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6 Extension II: Turbulent Variable-Density Flow at Low Mach Number

the subgrid-scale Reynolds-stress terms of the momentum and energy equation. The forms

, . 1 0T
Llin, h. A e (R A h
BE (50, T) 1= (¢, V- 0),, - (q T—E) 0
o o . "¢
B;/il (Vh;ll,Phyd) = <thph§) B (V : Vh7phyd)g + (E(Vh)7 2une (u))g’ (6.34)
Q
B (w" T) = <wh,pha—T) + (th, &VTA) (6.35)
ot Q Cp Q

contain the remaining linear terms in the unresolved-scale quantities. The non-linear contribu-
tions (i.e., terms resembling the cross- and subgrid-scale Reynolds-stress terms) in the continuity
equation are separately given by

o 1 A o
Bi(¢" a0, 17", T) == — <qh, T (a-VI"+u"- VI +a- VT)) : (6.36)
Q
Density, viscosity and thermal conductivity are evaluated using the resolved temperature 7" in
the equation of state (6.12) and the material laws (6.14) and (6.15). The usage of a subscript

instead of a superscript illustrates that the respective quantity does not belong to any solution
space S", but is evaluated from the resolved temperature field 7" belonging to Sk.

6.3 Impacts of the Weak Compressibility on the Multifractal
Subgrid-Scale Modeling

In the multifractal subgrid-scale modeling approach for turbulent incompressible flow, derived
in Chapter 4, the subgrid-scale vorticity field is recovered by a two-step cascade process and
inserted into the Biot-Savart operator to obtain an expression for Gi. In incompressible flow,
the law of Biot-Savart constitutes a sufficient relation to calculate the total velocity field from
its derivatives. In variable-density or compressible flow in general, according to Helmholtz’s
decomposition, only the rotational but divergence-free part of a velocity field can be recovered
by the law of Biot-Savart. Following Helmholtz’s decomposition, the subgrid-scale velocity field
may be divided into two parts:

a=1a"%+av, (6.37)

where 01(?) is the irrotational (or potential) component and G(“) the rotational component, ac-
counting for the complete subgrid-scale vorticity w:

Vxa=Vxa¥ =g, (6.38)
VvV x a9 = 0. (6.39)

102



6.3 Impacts of the Weak Compressibility on the Multifractal Subgrid-Scale Modeling

Moreover, the requirement of being a solenoidal field is imposed on the rotational part 0(“),
assigning the expansion of the flow to the irrotational component:

al® =, (6.40)
—0, (6.41)

o>
I
<

V -
V-

(w

o=

where b denotes the subgrid-scale rate of expansion (or source distribution). The rotational com-
ponent (“) is obtained from the subgrid-scale vorticity & via the Biot-Savart operator (2.6),
representing the solution of equation (6.38):

v

1
1) (x 1) — &) x ——* ax. 6.42
' (x,t) 471/ (X,t) x T E X (6.42)

Analogously, the irrotational component 1(?) is calculated from the subgrid-scale rate of expan-
sion b via the solution of equation (6.40):

X —X

1 /.
a9 (x,t) = — / b(%,t) ————dx; (6.43)
47

[ — %[

see, e.g., the textbook by Panton [243]. For turbulent incompressible flow, where b = 0 as well as
1l?) = 0, 0 represents the total subgrid-scale velocity field. Helmholtz’s decomposition (6.37)
suggests that the multifractal reconstruction of the subgrid-scale velocity in turbulent compress-
ible flow in general should consist of two parts, recovering separately both components, G(“) as
well as 0(?).

Subgrid-scale modeling for LES of turbulent compressible flow is discussed in exhaustive form,
e.g., in the textbook by Garnier et al. [108]. While additional physical phenomena, such as acous-
tic effects and entropy fluctuations, might come into play for turbulent compressible flows, the
physics of turbulence in the low-Mach-number limit of the compressible Navier-Stokes equa-
tions are rather comparable to the ones of turbulent incompressible flow, where turbulence is
exclusively driven by vorticity and local straining. In particular, turbulent variable-density flows
at low Mach number are only weakly compressible and do not account for acoustic effects, since
they are explicitly removed from the governing equations. The hydrodynamic pressure complies
with a constraint on the divergence of the velocity similar to incompressible flow, and the equa-
tion of state degenerates to a “material law” for the density. Density variations are therefore
directly linked to temperature variations. In this context, the reader is also referred to the re-
view article by Lele [184] on turbulent compressible flow, where it was explicitly distinguished
between compressibility effects associated with volume changes due to pressure changes and
variable inertia effects related to heat transfer. Based on these considerations and in accordance
with the literature, where variable-density extensions and modifications of models developed
for turbulent incompressible flow are usually applied to low-speed flows (see, e.g., the textbook
by Garnier ef al. [108] and, in the context of RANS, the review article by Chassaing [59]), a
variable-density enhancement of the AVM* should constitute an appropriate approach to LES of
turbulent variable-density flow at low Mach number.
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6 Extension II: Turbulent Variable-Density Flow at Low Mach Number

Therefore, recovering merely the rotational component of the subgrid-scale velocity might be
considered as the essential part of the multifractal subgrid-scale velocity reconstruction proce-
dure and is proposed for turbulent variable-density flow at low Mach number:

i~ a“ = Bsu”, (6.44)

as derived in Section 4.2. Moreover, the multifractal subgrid-scale approximation for a scalar
quantity qb developed in Section 5.3, is directly transferred to T

T = D&T™ (6.45)

see equations (4.27) and (5.40) for the definitions of coefficients B and D. For the sake of
completeness, the following rather self-evident remarks are added:

e The element Reynolds numbers Re} and Re} involved in the multifractal subgrid-scale
modeling approach extend to variable-density flow as

M|k
Re? = Ph”ﬂ%” (6.46)
and 1
h . h\) 2 hz
Re]SL _ Ph (E(u ) E(u )) : (647)

see Section 4.2.5

e The Prandtl number replaces the Schmidt number in the estimation of the number of cas-
cade steps; see Section 5.3.5.

6.4 AVM* for Active Scalars

Inserting the multifractal subgrid-scale approximations for 1 and T, (6.44) and (6.45), respec-
tively, into the cross- and subgrid-scale Reynolds-stress terms, (6.29) to (6.32), of the variational
multiscale formulations (6.21) and (6.22) for the momentum and energy equation and incorpo-
rating appropriate accompanying residual-based multiscale terms, the modeled formulation is
obtained as: find (pf: 4, u",T") € S} x S x S} such that

B (qh. uh Th)

(Vq TMI'{\z/I) —Ec( ), (648)
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Bu(v";u", phyq)

+ (Vh, Ph (uh -V (Béuh) + Béu" - Vuh)) + ( hoppBou" -V (Béuh))g* (6.49)
+ (phuh . Vvh,TMr{\‘,[)Q* (V vh Tcrc) = (v,

Be(w";u, T")

+ (w", pp (" -V (DST") + Bou" - VT")) . + (w", ppBou" - V (DT"))
+ (phu -Vl TETE) = lg(wh),

o (6.50)

for all (¢", vh, w") € V]? x V' x VI, The multifractal subgrid-scale modeling terms are given in
the second line of equations (6.49) and (6.50). As a particular feature of the AVM?*, the smaller
resolved scales du” and 57" are obtained from the resolved scales u” and 7" via scale separation
based on level-transfer operators from PA-AMG as derived in Section 4.3. The residual-based
multiscale terms are summarized on the left-hand side in the last line of each equation. The
residual-based multiscale procedure giving rise to the PSPG term in equation (6.48), the SUPG
term in equations (6.49) and (6.50) (first term in the last line of each equation) and the grad-
div term in equation (6.49) (second term in the last line) is not presented in detail here, since it
proceeds analogously to the derivations provided for the continuity and momentum equation in
Section 3.3 and the convection-diffusion equation in Section 5.4. For elaboration in the context
of the low-Mach-number equation system, the reader is referred to Rasthofer et al. [261]. In
the residual-based multiscale terms, the discrete residuals of continuity, momentum and energy
equation read

! _8Th 1 dpw
c=Vou oo vevrt = 6.51
ou” .
= Ph—7m, BN + Pn u - vu' + Vphyd V- (2uh€*(u )) — pif, (6.52)
" A 1 dp
£ = P SRRV AR hgTh) - e 6.53
AR Fomy v va cp dt (6.53)

The definitions for the stabilization parameters 7y and 7cp (see equations (3.40) and (5.48),
respectively), which corresponds to 73, are adapted for variable-density flow:

1

™ = 7
VY + () - Glot) + GG G

TE = ! . (6.55)

\/(AL:)Z + (pnu) - G(ppu”) + Cy (i—g)z G:G

(6.54)

o

Parameter 7¢ depends on my as given in equation (3.41). Concerning subgrid-scale modeling
in the formulation for the continuity equation, it is remarked that BZ(¢";u", 0, T",T) ~ 0 is
assumed in equation (6.48).
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6 Extension II: Turbulent Variable-Density Flow at Low Mach Number

6.5 Numerical Examples

The AVM* is examined for turbulent channel flow with a heated and a cooled wall as well as for
turbulent flow over a backward-facing step with heating.! Furthermore, the following statements
apply to both numerical examples:

e Trilinearly-interpolated hexahedral elements are used for the numerical investigations.

e A generalized-o time-integration scheme with p,, = 0.5 is applied (see also Section 4.6.1
and Gravemeier and Wall [122] in the context of variable-density flow at low Mach num-
ber).

e In each time step, it is first solved for the energy equation, then for the continuity and
momentum equation and another time for the energy equation. Depending on prescribed
tolerances, further iterations between the two fields may be performed (see Gravemeier
and Wall [122] for further details).

e For both examples, the near-wall limit developed in Section 4.8.1 is applied to the mul-
tifractal subgrid-scale modeling approach. As given in Section 4.8.1, the parameters C’:;S

and ¢, are set to 0.25 and 0.1, respectively. According to Section 5.3.6, CS'?O,S is adapted
to CB

sgs*

The results obtained with the proposed method are compared to results obtained with the
RBVMM extended to turbulent variable-density flow at low Mach number by Gravemeier and
Wall [123] and the DSM. A subgrid-scale model of Smagorinsky type for variable-density flow at
low Mach number is obtained by modeling cross- and subgrid-scale Reynolds-stress terms in the
momentum and energy equation, (6.49) and (6.50), respectively, by (e(v"), 2usse*(0")), where
fisgs = pr(CsA)2(2e(u) : e(u™))z denotes the subgrid viscosity, and by (Vuw", (A/¢,)ss V™),
where (A/cp)ses = fses/Pre denotes the subgrid diffusivity and Pr, the turbulent Prandtl number.
Parameter (CsA)?, that is, the product of Smagorinsky constant Cs and grid-filter width A, as well
as Pr, are determined dynamically using a box filter and a contraction according to Lilly [193].
SUPG (both for the momentum and the energy equation), PSPG and grad-div term are addition-
ally included in the formulation. With respect to the dynamic Smagorinsky model proposed for
LES of turbulent compressible flow by Moin et al. [223], it is remarked that, owing to the present
weakly compressible flows, a model for the isotropic part of the subgrid-scale stress tensor in
the form (e(v"), —1/3¢%,I), where ¢, = 2p4(CyA)*(2e(u”) : €(u”)) is the subgrid-scale en-
ergy and (CyA)? the product of coefficient Cy and grid-filter width A, as originally proposed
by Yoshizawa [335], is not included, meaning that the isotropic part of the subgrid-scale stress
tensor is assumed to be added to the hydrodynamic pressure.

6.5.1 Turbulent Channel Flow with a Heated and a Cooled Wall

Overview. Turbulent variable-density flow in a channel at friction Reynolds number Re o = 180,
which is the Reynolds number at the initial temperature 7;, with a heated wall at tempera-

!Computational resources provided by the Leibniz Supercomputing Center under the project pr83te are gratefully
acknowledged.
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ture 7y and a cooled wall at temperature 7¢ is studied first. A DNS study for this Reynolds
number, Pr = 0.76 and various temperature ratios Ty/7c (i.e., Ty/Tc = 1.01, 2.00 and 4.00)
was reported by Nicoud [229, 230]. Here, the temperature ratios 7Ty/7c = 1.01 and 2.00 are
investigated, since, particularly for these two temperature ratios, various DNS results are pro-
vided in Nicoud [229]. Hence, the results obtained with the AVM* are compared to results from
Nicoud [229], marked by “DNS N98”. While the temperature field remains almost uniform for
the lower temperature ratio and the friction Reynolds numbers are almost identical at the hot and
the cold wall as a result, the Reynolds number at the hot wall is expected to be notably smaller
than the Reynolds number at the cold wall for the higher temperature ratio. In Nicoud [229], the
Reynolds numbers for this case were given as Re,y = 82 at the hot wall and Re,c = 200 at
the cold wall. Since the aforementioned DNS study did not provide any results for correlations
of velocity and temperature fluctuations, LES results from turbulent variable-density flow at low
Mach number provided in Lessani and Papalexandris [187] are also included for comparison. In
that article, temperature ratios 7y /Tc = 1.01, 2.00 and 8.00 were examined at Re, o = 180, and
Pr was set to 0.7 for T /Tc = 1.01 and to 0.8 otherwise. For Ty; /T = 2.00, the Reynolds num-
bers at the walls were given as Re, g = 91 and Re, = 224. Results taken from that study are
denoted by “LES LP06”. Further LES results were reported, e.g., by Wang and Pletcher [328],
where Ty /T = 1.02 and 3.00 were investigated at Re, o = 160 and Pr = 0.71. The Reynolds
numbers for Ty /7 = 3.00 were Re.y = 103 as well as Re.c = 187 and thus relatively
close to the present ones. The respective results are marked by “LES WP96”. The discretiza-
tions used in both LES studies are comparable to the finer one of the present thesis, which will
be described below. Compared to the present setup, the same number of grid points was used
for a larger streamwise length by Lessani and Papalexandris [187] and smaller spanwise width
by Wang and Pletcher [328]. Furthermore, the lower temperature ratio also enables a compari-
son to the velocity results of incompressible DNS given by Moser et al. [224] and denoted by
“DNS MKM99”.

Problem Setup. As given by Nicoud [229, 230], a gas constant R = 1.0 is assumed, and a
scaled Sutherland law, where T,y = 1.0 and S = 0.368, is applied. The specific heat capac-
ity at constant pressure is chosen to be ¢, = 1004.5. The Prandtl number, which is assumed
constant, is Pr = 0.71. Initially, a scaled thermodynamic pressure ppneo = 1.0 is prescribed.
As driving mechanism for the flow, a pressure gradient Vpgsive 1s imposed in form of a non-
density-weighted volume force in streamwise direction (i.e., pf = Vpgive in the momentum
equation (6.3)). While yy and py, i.e., tir and 7j in the present variable-density context, may be
chosen for Ty /Tc = 1.01 such as for turbulent incompressible flow at a given friction Reynolds
number, Ty and 7¢ as well as p.r and 7 have to be set based on the targeted friction Reynolds
numbers Re, g = 82 and Re, ¢ = 200 as well as the initial one for 7} /7 = 2.00. A randomly-
perturbed parabolic velocity profile in streamwise direction constitutes the initial velocity field.
Within several initial time steps, the lower wall is cooled down and the upper wall heated up such
that the desired temperature ratio is achieved. The channel dimensions are 274, X 20, X (4/3)7d.
in streamwise, wall-normal and spanwise direction, respectively. Hence, the channel dimensions
are chosen according to the respective dimensions of Nicoud [229], except for the streamwise
length, which is reduced by a factor of two. The channel half-width d, is chosen to be 1.0. No-
slip boundary conditions are applied at the top and the bottom wall. In homogeneous streamwise
and spanwise direction, periodic boundary conditions for velocity and temperature are assumed.
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6 Extension II: Turbulent Variable-Density Flow at Low Mach Number

Three different spatial discretizations with 32, 48 and 64 elements in each spatial direction are
used. To obtain a better resolution of the near-wall region, the distribution of the elements is
refined in wall-normal direction towards the wall using the hyperbolic mesh stretching function
given in equation (4.61). The mesh stretching function yields a symmetric node distribution with
respect to the xyx;-centerplane. Since hz min (see below) is sufficiently small for LES, the sym-
metric distribution is maintained for both cases, and not specifically unsymmetrically adapted
for the case with higher temperature ratio as, e.g., for the DNS by Nicoud [229]. Depending on
the temperature ratio Ty /7¢ and the resulting friction Reynolds numbers, the element lengths in
non-dimensional form L

hiw = - (6.56)

61/,W

are summarized in Table 6.1. They are evaluated with respect to the lower and upper wall (i.e.,
W € {C, H}) using the corresponding viscous length scale

Sy = —V (6.57)

)
PwlUrw

where pw and pw denote the density and viscosity at the wall. The friction velocity is defined

as

— (6.58)

Pw
where Ty denotes the wall-shear stress. A constant time-step length At = 0.004 is applied for
both cases. Statistics are collected in homogeneous directions and in time during 5000 time steps,
after the flow has reached a fully turbulent state and the thermodynamic pressure has converged,
that is, the heat fluxes at both walls are equal.

Table 6.1: Mesh parameters for turbulent channel flow with a heated and a cooled wall at Ty /Tc = 1.01
and 2.00: number of elements, mesh stretching parameter Cg and non-dimensional element
lengths 1}y, .

no. elements Cg hT’C hzmi“’c hzma"’c h;ic
htl—l h;min H h;_,max,H h;_,H
lower temperature ratio: Ty /Tc = 1.01, Re; c = Re, g = 180
323 2.15 35.34 1.50 24.70 23.56
483 1.95 23.56 1.28 15.20 15.71
643 1.85 17.67 1.09 10.92 11.78
higher temperature ratio: Ty /Tc = 2.00, Re, ¢ = 200, Re, g = 82
2 1. 27.4 26.1
30 5 15 39.27 67 7.45 6.18
16.10 0.68 11.25 10.73
26.1 1.42 16.88 17.4
483 1.95 8 08 :
10.73 0.58 6.92 7.16
19.63 1.21 12.14 13.09
64° 1.85
8.05 0.50 4.98 5.37
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Flow Description. The mean streamwise velocity and temperature profile, (u;)/U. and
((T) —Tc)/(Ty — Tc), where U, denotes the mean centerline velocity, are depicted in wall-
normal direction in Figure 6.1 for both temperature ratios. In accordance with the increasing
dynamic viscosity and the decreasing Reynolds number, which indicates a less turbulent flow,
the velocity profile exhibits a smaller gradient at the hot wall for T /T = 2.00 than for 1.01. At
Re, n = 82, relaminarization might even occur. Analogously, the thermal conductivity increases
at the hot channel wall for Ty /T = 2.00, resulting in a smaller gradient of the temperature
profile at the wall such that the heat fluxes at both walls are equal.

5 <—cold wall hot wall—
. T T

N,
velocity

temperature

4 U (TOET)/(Th-Te)

X2

Figure 6.1: Mean streamwise velocity and temperature profiles, (u;)/U. and ({(T') — T¢c)/(Tu — Tc), for
turbulent channel flow with a heated and a cooled wall at Ty /Tc = 1.01 and 2.00. Results
obtained with the AVM* using 64° elements are shown.

Figure 6.2 gives further insights into the influence of heating and cooling on the flow field.
Therefore, instantaneous velocity fields as well as instantaneous temperature iso-contours at
two streamwise and spanwise locations are displayed. For T /Tc = 1.01, the temperature iso-
contours are strongly wrinkled at both channel walls, and isolated pockets of hot and cold fluid,
respectively, are ejected outward from the wall. For Ty /T = 2.00, in contrast, the temperature
iso-contours are hardly wrinkled in the vicinity of the hot channel wall. Almost no pockets of hot
fluid are ejected, and large structures of hot fluid rather move towards the center of the channel.
The first iso-contours away from the wall are almost parallel to it, giving further evidence that
the flow locally relaminarizes. In accordance with Figure 6.1, the layer of hot fluid gets broader.
The temperature iso-contours in the vicinity of the cold wall resemble the ones for the lower
temperature ratio. Likewise, a comparison of the instantaneous velocity fields near the hot chan-
nel wall reveals larger flow structures and an almost uniform flow in streamwise direction for the
higher temperature ratio.

Statistical Results for Ty/Tc=1.01. All statistical results are normalized by the friction veloc-
ity u,w and the friction temperature

Tog=— (6.59)
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velocity field =101 =200

temperature 1so-contours
Ty _ Ty _
=101 70 =101

Figure 6.2: Instantaneous velocity magnitude distribution (top) as well as temperature iso-contours on
colored temperature distribution at various locations (bottom) for turbulent channel flow with
a heated and a cooled wall at Tyy/Tc = 1.01 and 2.00 (red color indicates high veloc-
ity/temperature and blue color low velocity/temperature). Results obtained with the AVM*
using 64° elements are shown at the end of the simulation.

where gw = Aw(9(T")/Ox)|w is the heat flux in wall-normal direction at the wall and Ay the
thermal conductivity at wall. As usual, statistical results are depicted in wall units 27, i.e., as
a function of the distance from the wall normalized by the respective viscous length scale 4, w.
For the lower temperature ratio, the temperature difference has almost no effect on the flow field.
Therefore, only the most relevant velocity results are displayed, comparing them to the respective
DNS data of incompressible flow. Since the lower temperature ratio does not induce a significant
asymmetry in the mean quantities and turbulent fluctuations, the results of the upper channel
half are merely depicted. The mean streamwise velocity u; and the mean temperature 7" are
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shown in Figure 6.3. For u; and T, the AVM* exhibits a notably better approximation than
the RBVMM and DSM. Indeed, the results obtained with the AVM* are already for the medium
discretization quite close to the DNS results, and the improvement due to further refinement is
only of small amount. In contrast, the RBVMM provides results which substantially deviate from
the DNS data using the coarser and the medium discretization. Even with the finer discretization,
there are notable deviations from the DNS results, while the AVM?* results match them almost
exactly. For all discretizations, the largest deviations from DNS are observed for the DSM.

25 . r 25 : :
DNS MKM99  » o DNSN98 -« P
DSM —-&- Sy DSM --a- B=g7
RBVMM --4--- AT aat RBVMM --4--- =?
ar AVM* —o— = 20 AvMt —o— %
rA 2

Figure 6.3: Convergence study of mean streamwise velocity uf and temperature T for turbulent channel
flow with a heated and a cooled wall at temperature ratio 7y /7¢c = 1.01 in the hot channel
half using 323, 483 and 643 elements.

The root-mean-square velocity and temperature, rms uT and rms 7", as well as correlations of
streamwise and wall-normal velocity and temperature fluctuations, (u}7")" and (u,T")*, respec-
tively, are depicted in Figure 6.4. For the root-mean-square velocity rms u;, the AVM* provides
significantly better predictions than the RBVMM and DSM. While the AVM* approximates
rms uf’ exactly for the medium and finer discretization, the methods included for comparison
overestimate rms uf for all discretizations. In particular, the result obtained with the coarser dis-
cretization using the AVM* is not attained by the RBVMM using the finer discretization. The
DSM even overestimates the results of the RBVMM. Concerning rms 7", the best approxima-
tion overall is again obtained with the AVM*. In particular, the maximum value in the vicinity
of the wall is captured more accurately by the AVM* than by the other two methods, since the
RBVMM and most notable the DSM overpredict the small peak near the wall. Towards the
channel center, the AVM* somewhat overestimates the DNS values, and results by the RBVMM
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Figure 6.4: Convergence study of root-mean-square velocity rms uf and temperature rms 7" as well as
streamwise velocity-temperature fluctuations (u}7”)™" and wall-normal velocity-temperature
fluctuations (u57")* for turbulent channel flow with a heated and a cooled wall at temperature
ratio Ty/Tc = 1.01 in the hot channel half using 323, 48 and 64° elements.
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and DSM are slightly closer to DNS. As no reference DNS data for correlations of velocity and
temperature fluctuations for variable-density flow at low Mach number appear to be available in
literature, results taken from the LES studies by Lessani and Papalexandris [187] and by Wang
and Pletcher [328] are included for comparison here. Due to the minor influence of the temper-
ature ratio, the LES data for (u|T”)", provided by Lessani and Papalexandris [187] only for the
lower (cold) channel half, are mirrored to the upper channel half. Differences in the approxi-
mation quality between the AVM*, RBVMM and DSM are again particularly pronounced for
(uiT")*". As already observed for u|, T and rms u;, differences between the results obtained
with the medium and finer discretization are marginal for the AVM?*, indicating with respect to
the results observed for the aforementioned quantities for these discretizations, which match the
DNS data almost exactly, that the solution is almost converged. Moreover, the LES data taken
from Lessani and Papalexandris [187] are also quite close to these curves. Concerning the other
methods included for comparison, the results provided by the AVM* using the finer discretization
are thus taken as reference values. Using the finer discretization, the results obtained with the
RBVMM provide an approximation comparable with the results obtained with the AVM* using
the coarser discretization. The DSM shows by far the worst approximation for all discretiza-
tions. For (u,T")", differences between the AVM* and RBVMM are hardly observable. The
DSM somewhat underestimates the steep increase of (u57”)" for the coarser and medium dis-
cretization. With respect to the results included from the LES study by Wang and Pletcher [328],
the AVM*, RBVMM and DSM yield a similar behavior, and the curves are located very close to
each other.

Statistical Results for Ty/T -=2.00. Next, the higher temperature ratio is investigated. This case
constitutes a rather challenging example for turbulent variable-density flow at low Mach num-
ber. On the one hand, a temperature ratio Ty /7Tc = 2.00 already includes notable density and
viscosity variations. On the other hand, as aforementioned, relaminarization may occur near the
hot channel wall due to the rather low friction Reynolds number. For this setup, the RBVMM
became unstable after a certain number of time steps; and oscillations in the temperature solution
were observed, even yielding unphysical negative temperature values. These instabilities were
caused by the residual-based subgrid-scale modeling of the second cross-stress term and the
subgrid-scale Reynolds-stress term in the energy equation. Closer investigations revealed that
the second cross-stress term was responsible for the observed instabilities. According to Hughes
and Wells [151], this cross-stress term has the form of a convective term and needs to be stabi-
lized, as a result. Analogously to the stabilization of the convective (Galerkin) term by the SUPG
term, which is the first cross-stress term, the subgrid-scale Reynolds-stress term might be inter-
preted as the corresponding stabilization of the second cross-stress term, as done by Hughes and
Wells [151]. A comprehensive investigation of the residual-based multiscale form of the cross-
and subgrid-scale Reynolds-stress terms with respect to the subgrid-scale energy transfer in tur-
bulent incompressible flow may also be found in Wang and Oberai [329]. Therein, the authors
showed based on an a priori analysis that the contribution of the subgrid-scale Reynolds-stress
term was substantially underpredicted. Hence, it seems that the subgrid-scale Reynolds-stress
term does not sufficiently stabilize the second cross-stress term in a complete residual-based vari-
ational multiscale formulation for the present case. Therefore, a reduced version of the RBVMM
without modeling of the second cross-stress term and the subgrid-scale Reynolds-stress term of
the energy equation is used here for comparison. Hence, merely the SUPG term is included
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in the modeled formulation of the energy equation. The residual-based variational multiscale
formulation of the continuity and momentum equation is not modified.

Figure 6.5 depicts the mean streamwise velocity u] and the mean temperature 7" for
Tu/Tc = 2.00 for both channel halves. Convergence to DNS is observed for all methods. Owing
to the low Reynolds number at the hot channel wall, all methods provide approximations close to
the DNS data for u]” and 7" as well as for all discretizations. Differences between the methods,
if ascertainable, are only of small amount. In the lower channel half, the situation is different.
Concerning u], the AVM* provides results which are already for the medium discretization
quite close to the DNS data and match them almost exactly for the finer one. The results pro-
vided by the AVM* for the coarser discretization are comparable to the ones by the RBVMM
and DSM using the medium discretization. For the coarse discretization, the RBVMM and DSM
yield comparable approximations. For T, the results obtained with the AVM* using the finer
discretization again approximate the DNS data very accurately, while the results provided by
the other two methods still significantly deviate from the DNS data. Also for the other two dis-
cretizations, the AVM* provides the best approximation compared to the RBVMM and DSM.
As already observed for u;, the RBVMM and DSM perform similar when using the coarser and
medium discretization.

The root-mean-square values of the velocity components and the temperature as well as correla-
tions of velocity and temperature fluctuations are summarized in Figures 6.6 to 6.8. Differences
in the approximation quality are particularly pronounced for rmsu; . Despite the low friction
Reynolds number in the hot channel half and the observed good approximations for u;” and 7"
by all methods, differences are observable on both sides. Again, the AVM* provides results for
the medium discretization that are already close to the DNS data and capture them quite accu-
rately for the finer one. The other two methods provide results which deviate even for the finer
discretization considerably from the reference data. In the cold channel half, the AVM* using the
coarser discretization provides results that are closer to the DNS data than the results shown by
the RBVMM and DSM using the finer discretization. Moreover, the RBVMM yields somewhat
better results than the DSM. All methods underestimate rms u; in the lower channel half, with
the AVM* showing again the best approximations for all discretizations. In the upper channel
half, the DSM also underpredicts rms u; for all discretizations. The AVM* again provides the
overall best results, although the RBVMM likewise captures the DNS data quite accurately. For
rms u3 , the AVM* shows results which are quite close to the DNS data in the cold channel half
for all discretizations, while the DSM and RBVMM underestimate the maximum value and also
significantly deviate from the DNS data towards the middle of the channel. All methods provide
reliable approximations in the hot channel half. Concerning rms 7", the AVM* shows again the
overall best approximation in both channel halves. In particular in the cold channel half, the
AVM* captures rms T'* significantly better than the other two methods. All methods somewhat
deviate from the DNS data in the middle of the channel. Since there are no DNS or LES ref-
erence data for (u)7”)" and (uyT")* for this temperature ratio and friction Reynolds numbers,
results shown by Wang and Pletcher [328] for the temperature ratio Ty/7c = 3.00, which is
relatively close to the present one, are included for a qualitative comparison. Again, differences
in the results provided by the different methods are particularly pronounced for (u}7”)*. Due
to the overall good performance of the AVM* and the marginal differences between the results
obtained with the medium and finer discretization when using this method, results provided by
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Figure 6.5: Convergence study of mean streamwise velocity uf and temperature T for turbulent channel
flow with a heated and a cooled wall at temperature ratio 73 /7T¢c = 2.00 in the cold (top) and
hot (bottom) channel half using 323, 483 and 647 elements.
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the AVM* using the finer discretization are again taken as reference values. The results obtained
with the coarser discretization in the cold channel half are not achievable for the RBVMM and
DSM when using the finer discretization. Moreover, the RBVMM provides better approxima-
tions than the DSM. Also in the hot channel half, significant differences between the AVM* and
the other two methods occur in particular for the medium and finer discretization. For (u57")7,
the qualitative behavior of all methods is in good agreement with the included data from LES
of Ty /T = 3.00.

6.5.2 Backward-Facing Step with Heating

Flow Description. Separation and reattachment of turbulent flow are of great importance for
many engineering devices such as combustion chambers and airfoils. Among the various config-
urations to investigate these phenomena, the backward-facing step belongs to the simplest possi-
ble types of geometry and provides a well-defined separation point. However, turbulent flow over
a backward-facing step is complex, since it incorporates several canonical flows. Turbulent flow
over a backward-facing step combines the dynamics of near-wall regions and free shear layers.
At the edge of the step, a boundary layer separates. The resulting shear layer gives rise to span-
wise Kelvin-Helmholtz vortices, which undergo complex processes. Owing to the reattachment
of the shear layer at the wall behind the step, fluid is entrained, and a recirculation zone evolves.
Behind the reattachment region, the boundary layer redevelops. If heat transfer is additionally in-
volved, separation and reattachment provoke large variations in the heat-transfer coefficient and
significantly increase the heat-transfer rates. Moreover, turbulent flow over a backward-facing
step in general is comprehensively documented, both experimentally and numerically.

Overview and Problem Setup. Based on the step height I and the mean centerline velocity U,
at the inlet, the Reynolds number

. pOUcH

Ho

is defined. The expansion ratio ER, which is the ratio of the channel height downstream and
upstream of the step, characterizes the geometry of the backward-facing step. A problem config-
uration similar to the one in Avancha and Pletcher [9] is chosen. Therein, ER = 1.5 was in accor-
dance with the geometry of the isothermal experiment reported by Kasagi and Matsunaga [168].
The step height H = 0.041m and the Reynolds number Re = 5540 used here are also simi-
lar to that study. The geometry of the problem domain as well as the channel used to generate
turbulent flow fields to extract velocity profiles, which are then prescribed as Dirichlet bound-
ary conditions at the inlet of the backward-facing step, are depicted in Figure 6.9. According to
Avancha and Pletcher [9], a wall heat flux gy is prescribed at the bottom wall behind the step, as
indicated in Figure 6.9. Three different heat fluxes were examined by Avancha and Pletcher [9].
Using the AVM?*, wall heat fluxes of gw = 1000 W/m? and 3000 W /m?, which are the lowest
and highest value discussed by Avancha and Pletcher [9], are examined. To keep the number of
results within reasonable bounds, the subsequent presentations are restricted to the investigations
of a wall heat flux of gw = 3000 W/m?. The data obtained for the lower wall heat flux are sum-
marized in Appendix A in form of supplementary material. With respect to the subgrid-scale
modeling approaches, all findings from gw = 3000 W/m? are valid for qw = 1000 W/m? as

Re

(6.60)
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6 Extension II: Turbulent Variable-Density Flow at Low Mach Number

Figure 6.9: Geometry of backward-facing step and inflow channel.

well. Results for the medium wall heat flux gw = 2000 W/m?, obtained with the predecessor
method AVM?, may be found in Gravemeier and Wall [122]. LES data taken from Avancha and
Pletcher [9] for comparison are denoted by “LES AP02” in the following.

A comprehensive experimental study of a backward-facing step with heating at a higher Reynolds
number of 28 000 and with an expansion ratio of 1.25 was conducted by Vogel and Eaton [323].
LES of that configuration, considering it as an incompressible flow problem with the temperature
coupled as a passive scalar, may be found, e.g., in Keating et al. [170] and You and Moin [336].
Consequently, effects due to density and viscosity variations were not taken into account in those
studies. Therefore, they were restricted to substantially lower wall heat fluxes. While a maximum
overheating of approximately 15 K was considered in those studies, an overheating of several
hundred Kelvin is expected for the present configuration. Considerably more investigations of
flow over a backward-facing step without heating have been published to date. For example, a
DNS study was presented by Le et al. [179], where a Reynolds number of 5100, which is rel-
atively close to the present one, and ER = 1.2 were used. The corresponding experiment was
conducted by Jovic and Driver [165]. Various LESs of turbulent flow over a backward-facing
step without heating may also be found in literature, an early one, e.g., in Friedrich and Ar-
nal [98] and more recent ones, e.g., in Aider et al. [2], where the DNS setup of Le et al. [179]
was considered, and in Toschi ef al. [310], which was based on the geometry of Kasagi and
Matsunaga [168].

The initial temperature field is set to 7 = 293.0 K, which also represents the reference temper-
ature 7. The thermodynamic pressure, which remains constant during the simulation due to
the open outflow boundary, is ppe = 100405 N/m?. With the gas constant R = 287.0J/(kgK)
and Ty, the initial density amounts to py = 1.194kg/m?. The viscosity at the reference temper-
ature is fief = pto = 1.823 - 107 kg/(ms), and the Sutherland constant is S = 110.4 K. The
Prandtl number is assumed to be Pr = 0.71 and the specific heat capacity at constant pressure
¢, = 1006.0J/(kgK). No-slip boundary conditions are prescribed on all upper and lower walls,
including the vertical step wall. At all walls except for the bottom wall behind the step, adiabatic
boundary conditions are prescribed for the temperature. At the bottom wall behind the step,
the aforementioned wall heat flux qw is applied. Periodic boundary conditions are assumed for
both velocity and temperature in spanwise x3-direction. At the outlet, a zero-traction Neumann
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boundary condition h,, = 0 and a zero-flux Neumann boundary condition A = 0, respectively,
are applied. At the inflow boundary, 7§, is prescribed as Dirichlet boundary condition.

Inflow Generation. An important aspect of spatially developing turbulent flow problems is the
choice of an appropriate inflow velocity profile. Overviews of the generation of such inflow data
are provided, e.g., by Keating et al. [169] and in form of a review article by Tabor and Baba-
Ahmadi [305]. Usually, two different approaches are distinguished in literature: precursor sim-
ulation and synthetic inflow generation. In precursor simulation, turbulent flow is pre-computed
and then introduced in the main simulation at the inflow boundary, as done, e.g., by Li et al. [192]
and Lund et al. [201]. Prescribed mean velocity profiles superimposed by some sort of fluctua-
tions form the class of synthetic methods as used, e.g., by Lee et al. [183] and Pamies et al. [242].
Precursor simulation and random fluctuations were compared, e.g., by Aider et al. [2] for flow
over a backward-facing step, and it was shown that turbulent structures upstream of the step
strongly influence the flow downstream. Here, a precursor approach is used, and precursor as
well as main simulation are run simultaneously, after the flow in the inflow section has reached
a fully turbulent state. As a consequence, both the storage of a large amount of data and the
periodicity introduced due to a potentially repeated application of the same results are avoided.
Therefore, the problem domain consists of two spatially separated parts, a domain to generate the
inflow velocity profile, which results from a canonical flow such as a turbulent channel flow, and
the main problem domain, for instance, the backward-facing step. The resulting velocity profile
at the outlet of the channel is transferred to the inlet of the main problem domain and prescribed
as Dirichlet boundary condition. The same initial and boundary conditions for the velocity field
as described in Section 6.5.1 are used for the inflow channel. Since the temperature in the inflow
channel is constant and equal to 7, variable-density flow reduces to incompressible flow therein.
In Kasagi and Matsunaga [168], a friction Reynolds number Re. = 290 was evaluated upstream
of the step. Based on the step height, which equals the channel half-width, the streamwise com-
ponent of the prescribed pressure gradient Vpgy,. in the inflow section is 0.3396 N/m>.

Space and Time Discretization. The discretization consists of 2714 112 elements (resulting in
ca. 13.9 million degrees of freedom overall). The mesh is hence finer than the rather coarse one
used by Avancha and Pletcher [9]. In wall-normal direction, 64 elements, refined towards the up-
per wall and a horizontal line defined by the upper corner of the step, are arranged above the step.
This discretization is maintained in the channel. Below the step, 64 elements, which are refined
towards the lower wall and the horizontal line such that (h,/d, )min = 1.05 based on the viscous
length scale of the inflow section, are used. In streamwise direction, 64 uniformly-distributed el-
ements are arranged in the channel. Another 45 elements, refined towards the step, are included
in the backward-facing step domain in front of the step. Between z;/H = 0 and x;/H = 10,
180 elements are used, again refined towards the step such that (hy/H)n, = 0.029 based
on the step height. Another 60 uniformly distributed elements are used between z;/H = 10
and x;/H = 20. In spanwise direction, 72 uniformly distributed elements are used. The hyper-
bolic function f applied to stretch the mesh is given as f : [0, L;] — [0, L;] :

tanh (CG (iL’G — l’z)))
tanh (C(;ilfg) ’
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where z¢ is the location of the inflection point and Cg the degree of refinement. The scaling
factor Cc = C¢(zg, Cg) is necessary to satisfy f(L;) = L;. A summary of the discretization
details is given in Table 6.2.

Table 6.2: Mesh parameters for turbulent flow over a backward-facing step with heating: number of
elements, mesh stretching parameters xg, Cg and Cc as well as non-dimensional element
lengths hy/H and h; /6.

(hl/H)min (h2/6V)min

Z; no. elements e Cg Cc
(hl/H)max (hz/(sV)max

backward-facing step

0.028
—2H <z <0 45 —3H 83 1.160 -
0.061
0.029
0<z <10H 180 15H 2.0 1.237 -
0.085
10H < x; <20H 60 uniform
1.05
—H<x <0 64 —05H 840 1.0 -
8.31
1.05
0<x <2H 64 H 536 1.0 -
20.38
—2H <x3<2H 72 uniform
inflow channel
—(2r+4)H <z < —4H 64 uniform
1.05
0< 2, <2H 64 H 53.6 1.0 -
20.38
—2H < zx3<2H 72 uniform

A constant time-step length At = 0.0008 s is applied. After a sufficient number of time steps for
the heated flow to develop, statistics are collected during another 5000 time steps, representing
approximately nine flow-through times based on the mean centerline velocity at the inlet of
the backward-facing step and the length of the backward-facing-step geometry. Statistics are
collected in homogeneous direction and in time.

A Remark on the RBVMM. As already observed for turbulent channel flow with higher tem-
perature ratio, the RBVMM turned out to be unstable. Hence, the reduced version merely using
the SUPG term in the modeled formulation of the energy equation is also used for this exam-
ple. Similar observations concerning the stability of (complete) residual-based variational mul-

tiscale methods for the energy equation for the present problem were made by Gravemeier and
Wall [122].

Discussion of the Results. A visualization of the instantaneous velocity and temperature field
at the end of the simulation is provided in Figure 6.10. Additionally, Figure 6.11 displays the
mean temperature 7y at the bottom wall. Hot areas at the heated bottom wall near the step and
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an overall higher temperature in the recirculation zone are clearly observable from Figure 6.10.
While heat is piled up in the recirculation zone, hot fluid is transported downstream behind
the recirculation zone, resulting in a significantly lower temperature of the fluid. Moreover, the
development of a thin temperature boundary layer is observable in this region. As seen from
Figure 6.11, a maximum overheating of about 800K arises for qw = 3000 W /m?. Compared
to Avancha and Pletcher [9], all methods used in this study predict higher temperatures in the
recirculation zone and lower ones further downstream.

Figure 6.10: Instantaneous temperature (left) and velocity magnitude (right) distribution in inflow chan-
nel and over backward-facing step (red color indicates high velocity/temperature and blue
color low velocity/temperature). Results obtained with the AVM* are shown at the end of the
simulation.
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Figure 6.11: Mean temperature Ty at the bottom wall of the backward-facing step.

All velocity results are normalized by the mean centerline velocity UL at the inlet of the backward-
facing step. Velocity profiles as well as root-mean-square velocities are plotted against the isother-
mal experimental results from Kasagi and Matsunaga [168], denoted by “Exp KM95”, which
were also used by Avancha and Pletcher [9] as reference results and allow for a qualitative
comparison over the complete domain. As already indicated by the instantaneous temperature
distribution, and as will be seen below in the discussion of the mean temperature profiles, mainly
the domain from the bottom wall up to the horizontal line defined by the upper corner of the step
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is affected by heating. Downstream of the recirculation zone, the influence of heating is even
more restricted to the near-wall region. Therefore, the isothermal experimental values may be
considered as reliable reference results for the upper domain above the step as well as large
parts behind the recirculation zone. Figure 6.12 illustrates the mean streamwise velocity (u,;) at
various locations behind the step. Despite the relatively high heating, the overall results do not
notably deviate from the isothermal data. All models provide results that are in good agreement
with the experimental data, and differences between the various models are hardly observable.
Overall, the AVM* performs slightly better than the RBVMM and DSM. Figure 6.13 displays all
root-mean-square velocities rms ;. Here, differences between the methods are clearly observ-
able. Near the upper wall, where the flow is unaffected by heating, the AVM* provides results
well matching the ones from the experiment, whereas the results obtained with the RBVMM and
DSM notably deviate from them. As already observed for turbulent channel flow, the AVM* cap-
tures rms u; very accurately, while the RBVMM and in particular the DSM overestimate rms ;.
The AVM* and RBVMM vyield good results for rms u, and rms u3, which are both underesti-
mated by the DSM. Bearing in mind the aforementioned restrictions, the results obtained with
the AVM* are also in the lower domain significantly closer to the experimental data than the ones
provided by the other two methods. Except for the first three locations, the RBVMM and DSM
show similar behavior.

@, U,
0 1

Exp KM95  « DSM —-—— RBVMM ------ AVM*

Xo/H

05 |

-05

x4/H

Figure 6.12: Mean streamwise velocity (u;)/U, at various locations x;/H for turbulent flow over a
backward-facing step with heating.

Figure 6.14 shows mean temperature profiles at various locations behind the step. A closeup
view of the near-wall region is also included. All temperature results are normalized by the
initial temperature 7; and only shown for the lower part of the problem domain, i.e., up to
xy/H = 1. As aforementioned, the temperature undergoes substantial variations near the step.
Above the step and further downstream, the temperature almost equals the initial temperature.
Behind the recirculation zone, significant temperature variations are restricted to a thin boundary
layer. Except for the first two sampling locations, differences between the methods are only of
small amount. At z;/H = 1 and 3, the present simulations reveal higher temperatures than the
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Figure 6.13: Root-mean-square velocities rms u; /U, at various locations x; /H for turbulent flow over a
backward-facing step with heating.
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LES presented by Avancha and Pletcher [9], while somewhat lower values compared to Avan-
cha and Pletcher [9] are obtained at the locations z;/H = 5,7 and 9. With respect to the present
methods, the AVM* predicts higher values than the RBVMM, which, in turn, yields higher ones
than the DSM. The differences between the methods decrease with increasing distance from
the step. Figure 6.15 shows the root-mean-square temperature rms /" as well as correlations of

(OBT)/Ty
0 1

[LES APO2 - DSM ——— RBVMM ------ AVWM* ——

Xo/H

0

[ LES APO2

-0.75

08} AN

-09 }

x4/H

Figure 6.14: Mean temperature ((7') — Tp)/Tp at various locations x;/H for turbulent flow over a
backward-facing step with heating including a closeup view of the near-wall region.

streamwise and wall-normal velocity and temperature fluctuations, (u}7") and (u57"), respec-
tively. Compared to the results shown for rms 7" by Avancha and Pletcher [9], higher values are
obtained at x; /H = 1 with the present methods, while lower values are observed at the remain-
ing locations. No data for a direct comparison are available from Avancha and Pletcher [9] for
correlations of velocity and temperature fluctuations. A qualitative comparison with the corre-
sponding data shown in Keating et al. [170] (see Figure 16 therein for (u}7") and Figure 17
for (u57")) for a somewhat different configuration, as described above, reveals that the behav-
ior of the present data is in agreement with the one given by Keating et al. [170]. Pronounced
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Figure 6.15: Root-mean-square temperature rms7'/Tp, streamwise velocity-temperature fluctua-
tions (u}T")/(U.Tp) and wall-normal velocity-temperature fluctuations (u5T")/(U.Tp) at
various locations z/H for turbulent flow over a backward-facing step with heating.
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6 Extension II: Turbulent Variable-Density Flow at Low Mach Number

differences between the present methods are restricted to the locations x;/H = 1 and 2 and are
particularly observable for the rather demanding rms 7" and (u}7"). Again, differences between
them decrease with increasing distance from the step. While the results obtained with the AVM*
and RBVMM are quite close to each other, the DSM tends to somewhat deviating values.

The skin-friction coefficient is defined as

Tw
Cp=—" 6.61
f %pOUCZ ( )

%) W
denotes the wall-shear stress. Figure 6.16 shows the skin-friction coefficient at the bottom wall.
Again, LES data taken from Avancha and Pletcher [9] are included. With respect to those data,
it is remarked that (i) the wall-shear stress 7w does not go to zero at the corner, which is how-
ever mandatory due the vertical step wall and the resulting zero velocity gradient in bottom-
wall-normal direction, and (ii) Cf is defined as Cf = (2/Re)(uw/pw) (Ou1/0z;) |w in Avan-
cha and Pletcher [9], which is a dimensional quantity. Therefore, the values from Avancha and
Pletcher [9] should be taken with caution. Due to the lack of other variable-density data for this
problem configuration, those values are nevertheless added to the diagrams. Additionally, results
for incompressible flow over a backward-facing step obtained with the AVM* and provided in
Rasthofer and Gravemeier [258] are included. Therein, a coarser discretization with about 1.9
million elements was used. The respective results are marked by “AVM* RG13”. Apart from
those LES data, isothermal DNS data reported by Le et al. [179] are also incorporated for a
qualitative comparison. They are denoted by “LMK 97”. In contrast to the questionable results
given in Avancha and Pletcher [9], the present results are in good agreement with the isothermal
data. The negative peak value is obtained at almost the same location as in the isothermal case.
Except for a somewhat more negative peak value predicted by the RBVMM and DSM, differ-
ences between the methods are only of small amount. Due to the increase of uw in the heated

where T
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Figure 6.16: Skin-friction coefficient Ct at the bottom wall of the backward-facing step.
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configuration, the flow at the bottom wall behind the step becomes less turbulent resulting in
a lower gradient of u in wall-normal direction, which counterbalances higher viscosity values
such that the wall-shear stress remains nearly unaffected. The mean reattachment length X,/ H
is defined by the location of zero wall-shear stress, which is equivalent to C; = 0. Table 6.3
summarizes the predicted mean reattachment length for all methods as well as results from sev-
eral isothermal studies. All present values of the heated configuration are within the range of the
isothermal reference data, but tend to the higher end of the spectrum.

Table 6.3: Mean reattachment length X;/H of turbulent flow over a backward-facing step with heating
from present simulations as well as isothermal numerical and experimental results from other
studies.

gw = 3000 % isothermal

present results

AVM* 6.59 -
RBVMM 6.23 -
DSM 6.31 -
numerical results

DNS LMKO95 [179] - 6.28
LES ADLO7 [2] - 5.29-5.80
AVM* RG13 [258] - 6.18
experimental results

Exp KM95 [168] - 6.51
Exp JD94 [165] - 6+£0.15
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Fluid Dynamics with Interfaces

This chapter aims at providing the framework for the subsequent two-phase-flow simulations,
both from a physical as well as a computational point of view. Based on three general physical
principles, which are (i) the continuum hypothesis, (iii) the assumption of infinitely thin inter-
faces and (iii) the consideration of intermolecular forces by modeling them as surface tension, a
mathematical description of the incompressible flow of two immiscible fluids is presented. Com-
putational strategies for two-phase flows are reviewed, and fixed-grid methods are identified as
an adequate approach for their numerical simulation.

7.1 Physics of Two-Phase Flows

Taking the continuum hypothesis (see also Section 2.1) as a basis for treating the involved fluids,
the smooth transition from one fluid to another occurs at very small scales, i.e., within a layer
which is only a few molecules in size, such that the interface thickness may be considered as
infinitely thin; see, e.g., the textbook by Levich [189]. At the macroscopic level of two contigu-
ous bulk fluids separated by an infinitely thin interface, the effect of cohesive forces between the
individual molecules amounts to a stress concentrated at the interface and referred to as surface
tension.

For each fluid, the velocity field u(x,t) = (u1(x,t),us(x,t),us3(x,t))" is governed by the in-
compressible Navier-Stokes equations as

Ju

pa+pV~ (u®@u) + Vp —2uV - g(u) = pg, (7.1)

V-u=0, (7.2)

where p(x,t) denotes the pressure. Density p and dynamic viscosity p are assumed constant.
Moreover, €(u) is the rate-of-deformation tensor, defined in equation (2.3), and g the gravity
force vector. To derive the interface conditions coupling the motions of the fluids, the conserva-
tion principles of mass and momentum are applied to a control volume including a portion of
the interface. The control volume follows the movement of the interface, which is described by
its normal velocity u;,.. The thickness of the control volume is assumed to go to zero. Balance
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7 Fluid Dynamics with Interfaces

of mass and momentum across the interface leads to

P— (11— * Ny — Uim) =P+ (u+ s Ny — Uim) =m, (7.3)
p-u_ (11— *Njpe — Uim) - 0'(11—717—) s Njpe =P+ 04 (u+ s Njpe — Uim) - a'(u+,p+) * Njpe
(7.4)
+ YNy + V7,

where o (u, p) denotes the Cauchy-stress tensor, defined as
o(u,p) = —pl+2ue (u). (7.5)

Variables corresponding to the first and second fluid are labeled by (-), and (-)_, respectively.
By definition, the unit normal vector n;,, on the interface points from the domain occupied by
the fluid marked by (-). to the domain filled with the fluid denoted by (-)_. The first equation
is the Rankine-Hugoniot condition. Since phase change is not considered, implying 7in = 0 for
the mass flux across the interface, the interface velocity as well as the normal velocities on both
sides have to be equal, i.e., Ui, = Uy - Ny = U_ - Nyy. This result may be transferred into a jump
condition for the velocity:

[u] - ny, =0, (7.6)

using the jump operator [-] := (-)_ — (+);. Mass conservation does not introduce any restriction
on the tangential velocities. For viscous fluids, the tangential velocities are continuous, that is, a
no-slip condition is assumed:

[u] -t =0, (7.7)
where tl(flz with ¢ = 1,2 are the unit tangential vectors on the interface. Concerning momentum
conservation (7.4), the first term on the left and right-hand side vanishes owing to the results
from mass conservation. The surface force given by the third and fourth term on the right-hand
side represent surface tension. The surface-tension coefficient, which depends in general on the
involved fluids and the temperature, is denoted by v, and V(-) := (I — nj, ® ny,)V(+) is the
tangential derivative operator at the interface. The curvature x of the interface is defined as

Kk = —V - Djy. (7.8)
Expressed in terms of jump conditions, momentum conservation across the interface yields

Nipe - [[O'(U,p)]] * it = —YK, (79)
' [o(w,p)] - i = —t) - Yy (7.10)

int int
in normal and tangential directions, respectively. For constant surface-tension coefficients, the
normal stress exhibits a jump, while the tangential stresses are continuous. Variable surface-
tension coefficients emanate, for instance, from temperature variations or surface-active sub-
stances with varying concentrations. Such cases are not considered here, and v is assumed
constant in the remainder of this thesis. Combining conditions (7.6) and (7.7) as well as (7.9)
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and (7.10), the following set of interface conditions is obtained:

[u] =0, (7.11)
[o(w,p)] - M = —yKDyng; (7.12)

see, e.g., the textbook by Tryggvason et al. [316] for further details on the derivation.

Since two-phase flows exhibit a wide variety of phenomena, a more detailed presentation of
some further physical aspects, for instance, instabilities occurring in stratified fluids, bubble
dynamics as well as issues related to turbulence, are postponed to the respective applications in
the subsequent chapters.

7.2 Simulating Flows with Moving Interfaces

The interface separating the two fluids usually undergoes large and complex deformations in-
cluding break-up processes and reconnections. Moreover, the interface manifests itself as a dis-
continuity in the flow field. On the one hand, the physical parameters change discontinuously
across the interface. On the other hand, the traction interface condition describes discontinuities
in the velocity gradient and pressure field. Most of the methods and issues addressed in the fol-
lowing are presented in a more thorough form, e.g., in the introductory textbook by Tryggvason
et al. [316] and the review article by Scardovelli and Zaleski [275].

Moving-grid methods, where the interface is represented by element or cell boundaries, facili-
tate the treatment of discontinuities and allow for a direct imposition of interface conditions.
However, as soon as the interface is subject to a complex evolution, remeshing of the domain,
which is a computationally expensive task and also comes along with the transfer of the solu-
tion fields from the old grid to the new one, is usually unavoidable. The Arbitrary Lagrangian-
Eulerian (ALE) approach, frequently applied in the context of fluid dynamics and reviewed,
e.g., by Donea et al. [86], aims at combining the advantages of the Lagrangian and Eulerian
description.

In contrast, the interface somehow cuts across the grid in fixed-grid methods; that is, the inter-
face is not aligned with element or cell boundaries. Numerical methods for governing the evolv-
ing interface can be grouped into Lagrangian and Eulerian approaches. Front-tracking methods,
which describe the interface explicitly, are among the first category. The method by Unverdi
and Tryggvason [317], for instance, advects connected marker points, which represent a moving
interface grid. For large interface deformations as well as topological changes, the marker parti-
cles and their connectivity need to be rearranged. Approaches based on an Eulerian description
such as the Volume-Of-Fluid (VOF) method and the level-set method provide the interface in
an implicit way and are commonly classified as interface-capturing methods. The VOF was first
introduced by Hirt and Nichols [148], but dates back to early works, e.g., by Noh and Wood-
ward [232]. A scalar function describes the volume fraction corresponding to one of the two
fluids for each grid cell and is advected in a conservative way. The VOF naturally accounts
for topological changes, but the interface has to be reconstructed based on the discrete volume
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7 Fluid Dynamics with Interfaces

fractions. The VOF was recently reviewed with a focus on applications to two-phase flows by
Fuster ef al. [105]. A comprehensive description of the VOF, including many significant contri-
butions as well as implementation aspects, may be found, e.g., in the textbook by Tryggvason et
al. [316]. The level-set method was introduced by Osher and Sethian [241] and first applied to
incompressible two-phase flows by Sussman et al. [301]. Introductory textbooks are Osher and
Fedkiw [240] as well as Sethian [283]. A review article was written, e.g., by Losasso et al. [199].
In the level-set method, the interface is represented by the zero iso-contour of a smooth function,
which is positive in one fluid domain and negative in the other one. Usually, the smooth function
is defined as a signed distance function to interface. The transport equation for the level-set func-
tion can in principle be solved with any standard method for hyperbolic equations. The level-set
method is known for not properly preserving volume or mass, respectively, and usually requires
recovering the signed distance property during simulation, referred to as reinitialization. Similar
to the VOF, the level-set method handles topological changes without additional provisions. The
main advantage commonly attributed to the level-set method is the straightforward evaluation of
geometrical interface quantities, for instance, curvature and normal vectors.

When using interfaces embedded into an unfitted grid, additional numerical effort is required to
cope with discontinuities at the interface and to apply interface conditions. The regularization of
the discontinuities in the solution fields constitutes a straightforward way. Physical parameters
may also be smoothly blended from one fluid to the other. The continuum surface force model
of Brackbill et al. [36], which incorporates surface tension via a local volume force, or similar
approaches are frequently used. In doing so, the interface is numerically thickened over several
elements or grid cells. Other strategies consider sharp interfaces. The ghost fluid method, origi-
nally introduced by Fedkiw et al. [94] and further developed for multiphase incompressible flow
by Kang et al. [167], is among the most popular techniques of this category. Alternative methods
for application to incompressible two-phase flow were devised, e.g., by Sussman et al. [304] and
Wang and Tong [330]. In FEMs, sharp interfaces may be dealt with using the XFEM, which is
adopted in this thesis in conjunction with the level-set method.
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Method

Level-set methods enable a convenient description of complex interface evolutions. However,
level-set methods demand specifically devised numerical frameworks to prevent excessive mass/
volume loss, to recover the signed distance property and to remain computationally efficient,
among other things. In this respect, this chapter does not only provide the (basic) level-set
method used for capturing the interface in the two-phase-flow simulations carried out in the
next chapters, but also addresses further progress towards a more advanced and comprehen-
sive framework for the level-set field in the context of FEMs. A novel elliptic reinitialization
equation, recently proposed by Basting and Kuzmin [18] and specifically devised for FEMs, is
introduced to some extent. In particular, the idea of a hybrid particle-level-set method, originally
developed by Enright et al. [91], is transferred to a finite element approach for the level-set field
and thoroughly studied.! At the beginning of this chapter, the level-set equation is introduced,
and a stabilized finite element formulation is presented. Thereafter, reinitialization of the level-
set function is addressed. Next, it is focused on the hybrid particle-level-set method, including
a survey of mass/volume-conservation issues in level-set approaches. Eventually, the proposed
hybrid particle-level-set method is validated for classical level-set test cases and applied to the
impact of a drop on a quiescent water surface. Supportive results obtained with the basic level-set
method are additionally considered.

8.1 The Level-Set Equation

The level-set method uses a smooth scalar function ¢(x,t) whose zero iso-contour implicitly
represents the interface in a considered domain Q:

Tin(t) := {x € Q] ¢(x,t) = 0}. 8.1)

"This method has been realized during the final stage of the author’s PhD studies to overcome deficiencies in
terms of accuracy and mass/volume conservation observed for the originally available level-set approach. At
the time of computing the examples shown in Chapters 9 and 10, this improvement had not yet been devised to
its full extent and had thus not be applied. Likewise, the elliptic reinitialization equation has only recently been
implemented in BACI (see Section 4.6) by the author of this thesis.
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8 A Computational Framework for the Level-Set Method

Moreover, two subdomains, Q (t) and Q_(t), with Q, N Q_ = and Q, UQ_ = Q, can be
identified by the sign of the level-set function, i.e.,

>0 ifxinQ,(t)
d(x,8){ =0 if x on Cin(¢) (8.2)
<0 ifxinQ_(t).

The unit normal vector n(¢) to the iso-contours of ¢ and their curvature x(¢) can be directly
calculated from the level-set function as

Vo
= 8.3
and Ve
=V 8.4

respectively. In level-set methods, it is common to define ¢(x) equal to the signed distance to
the interface I,

— min (||x —xr,||) if sign((x —xr,,) - D) >0
xr;  €lne
P(x) = " e (8.5)
min (||x —xr,||) if sign((x —xr,,) - 0in) <0

int
Xrinl erml

for all x € Q, implying
Vol = 1. (8.6)

The unit normal vector n;, on the interface is assumed to point into Q_; i.e., n;,, = —n(¢ = 0).
The level-set function is advected by a velocity field a(x, t), which may, for instance, be exter-
nally prescribed, dependent on the geometry of the interface itself or be the solution u(x,t) of
the Navier-Stokes equations as for two-phase flows. The evolution of ¢(x, ) in the domain Q is
mathematically governed by the advection equation as

90 a V=0 inQx]0, fun] (8.7)

ot
¢=¢o inQx{0}, (8.8)

where t.,q marks the end of the considered time period. Equation (8.7) is also referred to as the
level-set equation. The level-set field is initialized as a signed distance function.

The stabilized finite element formulation of the level-set equation (8.7) reads: find ¢" € S (Z such
that

dgh
(wh, W)Q + (" a-Ve"), + (a- Vu', msrls) . =0 (8.9)

for all w" € V(’;. Here, S f; and V(;‘ denote appropriate finite dimensional solution and weighting

functions spaces for the discrete solution function ¢ and the discrete scalar weighting function
w", respectively; see also Section 5.2. As introduced in Section 3.2, (-, -),, denotes the usual L,-
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8.2 Reinitialization

inner product in Q. For further general notations, it is referred to Chapter 3. The last term on the
left-hand side constitutes the SUPG term, which provides convective stabilization. The discrete
residual 775 of the level-set equation is given by

h 99" h
=——+a-Vo" 8.10
TLs at + ¢ ( )
The stabilization parameter introduced by Taylor et al. [306] is adapted to pure convection, i.e.,
vanishing diffusivity. Hence, stabilization parameter 7 g is defined as

1

s = 2 )
\/A—tz%—a-Ga

using tensor G as given in equation (3.42). According to the derivations provided in Sections 5.2
and 5.4, formulation (8.9) may also be interpreted as a form of a residual-based variational
multiscale formulation. For time integration, the one-step-6 scheme with = 0.5 (i.e., the Crank-
Nicolson scheme) is applied.

(8.11)

For incorporation of surface tension in two-phase flow simulations, the computation of the cur-
vature  of the interface is required. According to equation (8.4), this computation involves
second derivatives of the discrete solution function ¢". Since trilinearly-interpolated hexahedral
elements are used in this thesis, the required second derivatives partially vanish in the element
interior. Therefore, continuous gradients are reconstructed based on an L,-projection, as applied,
e.g., by Jansen et al. [158]. For each spatial direction ¢ = 1,2 and 3, it is solved for

(", (b"):) = (w", (V6")i)q 8.12)

where the continuous gradient field is given in a usual finite element expansion (see also Sec-
tion 3.2) as

b" =Y Nuby. (8.13)
Ae€

The second derivatives are then evaluated by differentiating b" at points in the element interior,
where x has to be evaluated. A similar procedure was used, e.g., by Nagrath ef al. [228].

8.2 Reinitialization

As the interface evolves in time, the level-set function may drift away from a signed distance
function. The development of disturbing features such as too flat or too steep gradients, which
may result in numerical artifacts or instabilities, has to be prevented, though. Moreover, some ap-
proaches incorporating the level-set method strongly rely on ¢ being a signed distance function,
for instance, those defining a constant interface thickness to smooth discontinuities and impose
surface tension. Therefore, periodic reinitialization of the level-set function to restore the signed
distance property is commonly applied. After providing an overview of major approaches to
reinitialization, a geometric reinitialization procedure, which is used in this thesis, as well as an
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8 A Computational Framework for the Level-Set Method

elliptic reinitialization equation, which is particularly tailored to application within FEMs, are
presented in detail.

8.2.1 Common Techniques for Reinitization

The most straightforward way to rebuild a signed distance function is the explicit computation of
the distance of each node or grid point to the interface or an approximation thereof, respectively.
From a computational point of view, however, geometric reinitialization is a quite expensive
task. Fast marching methods, originally introduced by Sethian [282], solve the Eikonal equa-
tion ||V¢| = 1 to reinitialize the level-set field. Therefore, fast marching methods step though
the grid points in a specific order starting from the interface outward. Elias et al. [90], for in-
stance, proposed an extension of the fast marching method for computing distance fields in a
finite element context with unstructured grids. A finite-element-based level-set method for two-
phase flows including a variant of the fast marching method was introduced by GroB et al. [132].
Sussman et al. [301] derived a partial differential equation which is solved to steady state in
pseudo time 7 to redistance ¢. The so-called reinitialization equation is given by

0 ) )
a—f + sign(go) ([[Vo[ —1) =0 in Q. (8.14)
and can be reformulated to
0¢ ) )
o+ w(0) - Vo =sign(dn) inQ, 8.15)

where the velocity w depends on ¢ as

Vo
IVl

The initial (disturbed) level-set field is denoted by ¢,. For numerical reasons, Sussman ez al. [301]
replaced the discontinuous sign-function sign(¢y) by a smoothed form S(¢), which is defined

as
o

based on the grid size h. Equation (8.15) is a non-linear hyperbolic equation. The velocity vec-
tor w is a unit vector normal to the iso-contours of the level-set function and points away from
the interface. This reinitialization procedure avoids explicitly determining the interface. Since
the information propagates from the interface to the far field, only a few pseudo time steps have
to be performed to restore the signed distance property in a band around the interface. Solving
the reinitialization equation numerically may lead to a movement of the interface and, hence, to
a change of volume. Therefore, Sussman and Fatemi [299] suggested a constraint which is eval-
uated locally and aims at preserving the subdomain volumes in each grid cell during reinitial-
ization. Nagrath et al. [228] used an SUPG-stabilized finite element formulation for the level-set
equation, similar to the present approach, as well as for the reinitialization equation. Addition-
ally, the volume constraint according to Sussman and Fatemi [299] was realized within an FEM.

w(¢) = sign(¢o) (8.16)

S(¢o) = (8.17)
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8.2 Reinitialization

Characteristic Galerkin FEMs to solve for the level-set equation and the reinitialization equa-
tion were applied, e.g., by Lin et al. [194], who validated their method for established level-set
test cases as well as two-phase-flow problems, and Quecedo and Pastor [257], who also inves-
tigated two-phase flows. To enhance stability, Akkerman et al. [3] considered the SUPG term
together with a discontinuity-capturing term for the level-set and the reinitialization equation.
Additionally, a term penalizing movements of the interface during reinitialization was included
in the latter. A so-called convected level-set method which embeds the reinitialization equation
into the transport equation for the level-set field, was presented by Ville et al. [321]. An SUPG-
stabilized FEM was applied to the resulting equation.

8.2.2 Geometric Reinitialization

In this thesis, a discrete representation of the interface by surface patches is used for a geometric
reinitialization. For each node of the discretization, the distance from the interface is determined
based on the minimal distance to the surface patches, their edges or vertices. When applying
this approach in the context of two-phase-flow simulations based on the XFEM, the surface
patches are obtained without additional effort as they have to be constructed for the purpose
of evaluating interface terms. This reinitialization strategy is exclusively applied in this thesis.
For further details as well as evaluations, the reader is referred to the accompanying thesis by
Henke [140].

As observed for most reinitialization procedures, the interface position is not preserved. In order
to improve mass/volume conservation, an issue which is also particularly addressed in the next
section, a relatively simple correction to the level-set field, which can be optionally applied
after reinitialization, is additionally considered in this thesis. Global mass conservation may be
enforced by shifting the zero iso-contour of the level-set function by a small increment estimated
via

Cbn—i—l — ¢n+l + OM (V(Q— (tn+1)) - V('Q— (t0>)) ) (8-18)

using the volume V (Q_(t,.)) of subdomain Q_ at the current time level ¢,,; as well as its
initial one. Owing to the signed distance property after reinitialization, the interface is homoge-
neously moved by a distance of the increment. Here, coefficient Cy; is estimated based on the
area A(T(t,+1)) of the current interface as

1
Cy=— . 8.19
M AT (b)) (8-19)

Although several iterations are conceivable for correcting ¢,,.; based on equation (8.18), one
step turned out to be sufficiently accurate. Analogous techniques were applied, e.g., by Croce
et al. [75] and Lee et al. [181]. As further explained below, global mass conservation has to be
used with caution. This procedure is thus only applied if appropriate and necessary. Therefore,
its inclusion is explicitly indicated in the remainder of this thesis.

In summary, the finite element formulation for the level-set equation presented in Section 8.1 to-
gether with the present geometric reinitialization procedure constitutes the basic level-set method
applied to all two-phase-flow examples in this thesis. For its application within an XFEM, which
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8 A Computational Framework for the Level-Set Method

treats the interface separating the two fluids in a sharp fashion, reinitialization may just be per-
formed as frequently as necessary to maintain a well-behaved level-set field.

8.2.3 Elliptic Reinitialization

As aforementioned, this chapter does not only provide the level-set method used for the two-
phase-flow simulations performed in the subsequent chapters, but also aims at outlining further
progress towards a more advanced framework for the level-set field. In this respect, another
recently proposed reinitialization technique is briefly introduced here. Based on ideas intro-
duced by Li et al. [191] in the context of level-set methods for image segmentation, Basting and
Kuzmin [18] recently devised a minimization-based partial differential equation for reinitializa-
tion, which allows for application of standard FEMs for elliptic partial differential equation. This
reinitialization procedure, which is referred to as elliptic reinitialization, preserves the signed dis-
tance property in a variationally consistent manner. As discussed by Basting and Kuzmin [18],
the applied approach also allows for recovering modified signed distance functions, for instance,
truncated fields which represent a signed distance function in the vicinity of the interface and
exhibit constant values in the far field. Such modifications are not considered in the following,
and the reader is referred to Basting and Kuzmin [18] for elaboration.

To restore the signed distance property of the level-set function, it is generally solved for the
Eikonal equation
IVo|l=1 inQ (8.20)

subject to the interface condition
¢ =0 onlIjy (8.21)

in some way. The least-squares solution to the Eikonal equation (8.20) is given by

e(6) = 5 [ (19] - 17 a0 (8.22)

Q

To enforce the interface condition (8.21), the energy functional Il is extended by an additional
penalty term:

[p(¢) = % / ¢*dr, (8.23)
T

where «p denotes the penalty parameter. Minimization of the total energy functio-
nal I1(¢) = Ig(¢) + Ip(¢) leads to the variational formulation: find ¢ € S such that

1
(Vw, (1 - W) V(b)g + (Oépw, ¢>Fim =0. (824)

for all w € V,, where Sy and V4 denote appropriate solution and weighting function spaces. The
first term represents a diffusive term with diffusivity (1 — 1/||V¢||). The diffusivity is positive
for ||[V¢|| > 1 such that these gradients in the level-set field get reduced and the signed distance
function is recovered. For ||V¢|| < 1, the diffusivity is negative, and the level-set field becomes
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steeper in the respective regions to likewise rebuild the signed distance function. The second term
is the penalty term, which aims at preserving the zero iso-contour I'j,; of the original level-set
field during the redistancing procedure. Therefore, ap has to be chosen sufficiently large.

To solve the non-linear formulation (8.24), Basting and Kuzmin [18] suggested the application
of a simple fixed-point iteration:

h,i
(Vwh, V"), + (apwh, ¢ *1) = (v@u,&h.) , (8.25)
Vo™il ) o

where w and ¢ are replaced by their discrete counterparts w" € V(;‘ and ¢" € S(Z. For ini-
tialization, ¢ is set to the original level-set field. This procedure leads to the repeated solu-
tion of a diffusion equation with source term and a weakly enforced Dirichlet-type condition at
the interface. The source term on the right-hand side contains V¢". With respect to trilinearly-
interpolated hexahedral elements, as considered in this thesis, a continuous approximation of
the gradient, calculated via an L,-projection (see equation (8.12)), may be considered, as also
suggested by Basting and Kuzmin [18] for their linearly-interpolated triangular elements. For
stability reasons, Basting and Kuzmin [18] further recommended to replace the consistent mass
matrix resulting from the left-hand-side term of equation (8.12) by a lumped one. A lumped
mass matrix is obtained, for instance, via a row-sum technique (see, e.g., Hughes [149]). The
evaluation of the penalty term requires a discrete representation of the interface. To construct
surface patches for integration on the interface, the same algorithm as used in the geometric
reinitialization is applied.

For a first illustration of the performance of this reinitialization technique, the reinitialization
of a one-dimensional level-set function ¢(x) = 0.2x; is considered. The penalty parameter is
set to ap = 10°. A projection of V¢" is not applied for this simple configuration. The do-
main Q = [—7.5,7.5] is discretized using five elements. The elliptic reinitialization requires one
iteration to exactly restore the signed distance function without shifting the interface. The result
of this simple test is also displayed in Figure 8.1. Black values correspond to the initial field and
colored ones to the restored signed distance field.

Figure 8.1: Elliptic reinitialization of one-dimensional function.
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The elliptic reinitialization equation constitutes an interesting alternative to the established pro-
cedures, as also preliminary examinations based on classical benchmark examples for level-set
methods indicate, and thus is worth further consideration. A more detailed discussion of this
novel reinitialization technique, taking into account its application to the aforementioned test
cases, which, to the best of the author’s knowledge, has not yet been reported in literature, is
however beyond the scope of the present thesis.

8.3 A Hybrid Particle-Level-Set Method

The level-set framework, presented so far and applied in this form to two-phase flows in Chap-
ters 9 and 10, is further developed in this section in order to improve accuracy and mass/volume
conservation. Potential sources of mass loss or gain, i.e., volume changes of the reference subdo-
main, and respective remedies are reviewed, and the hybrid particle-level-set method is identified
as an adequate extension to the present framework to tackle this issue. The hybrid particle-level-
set method and its realization within an FEM solver for the level-set field is then outlined step
by step.

8.3.1 Mass Loss: Sources and Remedies

Generally, level-set methods conserve mass or volume, respectively, only insufficiently. Vari-
ous aspects of level-set methods may contribute to this issue. The interface may locally exhibit,
for instance, thin filaments or sharp corners, which can not be adequately represented on the
grid. These underresolved regions manifest themselves in a loss of mass. Diffusion incorporated
by the underlying numerical scheme may also influence mass/volume conservation. Moreover,
as aforementioned, reinitialization does not preserve the position of the zero-isocontour of the
level-set function in most cases. Various remedies, addressing the different sources of mass loss
or gain, have been proposed in literature. Some approaches aiming at improving mass/volume
conservation during reinitialization have been mentioned in Section 8.2.1 in the context of the
reinitialization equation. However, these methods obviously do not account for other sources of
mass loss or gain. Higher order (Weighted) Essentially Non-Oscillatory (ENO/WENO) schemes
(see, e.g., Osher and Fedkiw [240] and references therein) are frequently used for discretiz-
ing the spatial derivatives of the advection and reinitialization equation; see, e.g., Sussman et
al. [302] and Gaudlitz and Adams [110]. Global mass conservation techniques such as the one
presented in Section 8.2.2 preserve mass independent of the origin of mass loss or gain, but
implicitly assume that mass is homogeneously lost or gained over the entire interface region.
Consequently, mass is not necessarily restored in the regions where it has been lost or gained. In
the conservative level-set method, originally introduced by Olsson and Kreiss [238] and further
developed by Olsson et al. [239] within an FEM, the signed distance function is replaced by a
smeared Heaviside function and the conservative form of the level-set equation is used. Building
on the level-set method to provide more accurate geometric interface quantities and the VOF to
better conserve mass or volume, respectively, Sussman and Puckett [300] coupled the level-set
method and the VOF. Another hybrid method was suggested by Enright et al. [91]. Their hybrid
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particle-level-set method aims at combining the advantages of an Eulerian level-set method and
a Lagrangian marker-particle approach. Lagrangian schemes inherently preserve information in
regions underresolved by the grid and are therefore particularly appropriate to tackle the resulting
mass losses in the level-set description. In the hybrid particle-level-set method, marker particles
are placed near the interface. The particles are identified by the sign of the level-set function
at the location of their initial position and then advected by the same velocity as the level-set
field. Hence, particles are expected to only cross the interface when the level-set method fails to
accurately represent the interface position. Inaccuracies of the level-set description are indicated
by particles inserted on one side of the interface but later recovered on the opposite side. The
information provided by these particles allows for locally correcting the level-set field. Enright
et al. [91] further demonstrated that the inclusion of particles also permits to correct movements
of the interface during reinitialization. As the particles are at rest during the reinitialization pro-
cedure, movements of the interface, which should likewise remain at its position, may be han-
dled in a similar manner. In a further study, Enright et al. [92] argued that low-order numerical
schemes for the level-set transport are sufficient for accurately capturing the interface in hybrid
particle-level-set methods, since this approach can also cope with excessive numerical diffusion.
A comprehensive parameter study on the hybrid particle-level-set method was conducted, e.g.,
by Gaudlitz and Adams [110] in the context of two-phase-flow simulations. All listed aspects
of the hybrid particle-level-set method render it particularly appropriate for application within
a low-order FEM as considered in this thesis. The following elaborations basically follow the
suggestions by Enright et al. [91], which are here adapted to the present FEM using trilinearly-
interpolated hexahedral elements. The extension to other element types is straightforward.

8.3.2 Initialization Procedure

Initially, particles are placed on both sides of the interface within a band of a predefined thick-
ness. Particles introduced into the subdomain €, form the set of positive particles, whereas par-
ticles inserted into the subdomain Q_ belong to the set of negative particles. Hence, particles P
are identified by their sign, which is denoted by sign(P). Moreover, they possess a radius 7p. The
radius of the particles is bounded by a minimum value r,;, and a maximum value 7,,x, which
depend on the element length h (i.e., hy, h, and h; for a three-dimensional Cartesian grid) as

Tmin = Cmin min(hh ha, h3), (8.26)
Tmax = Cmax mil’l(h17 hz, ]’L3) (827)

Enright et al. [91] suggested cy,in = 0.1 and cx = 0.5. The location of the center of the particle
is denoted by xp. Furthermore, the particles are allowed to overlap. The level-set value ¢(xp) at
the position of the particle is calculated from the level-set field via interpolation using the nodal
values and shape functions of the element containing the particle.

In the first step of the initialization procedure, particles of both signs are placed in all elements
that have at least one corner, i.e., node A, within a band of size

bmax = Cpand max(hh h27 h3> (828)
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on both sides of the interface; that is, the value ¢4 associated with any node A of the element
has to satisfy

@] < Dmax, (8.29)

assuming that ¢ is a signed distance function. Enright et al. [91] choose cpag = 3. In each el-
ement sufficiently close to the interface, a predefined number np of particles are then randomly
positioned. In this process, the same number of positive and negative particles is seeded per ele-
ment. Enright ef al. [91] used 4" particles per cell, where ngyq is the number of space dimensions.
This step, which is referred to as initial seeding, is depicted in the first subfigure of Figure 8.2.
Negative particles are colored in blue and positive particles in red.

Next, the particles are attracted to the correct side of the interface. Positive particles are moved
to Q. and negative ones to €_ in this step. All particles are placed in a band between a distance
Of bmin = 7Tmin and b, Of the interface. Therefore, all particles are shifted from their current
level-set iso-contour ¢(xp), which is equal to the signed distance from the interface, along the
direction of the normal vector to a target iSo-contour Qe (i.€., a target signed distance from
the interface), which is again chosen at random from the interval [sign(P)bpin, Sign(P)bmax]. As
a result, the final particle distribution is generated randomly both with respect to the tangential
directions of the interface and its normal direction. The new particle position x5 is calculated
via

XI]BeW =Xp+A (gbtarget - ¢(XP)) n(¢(XP))’ (8.30)

where the normal vector n(¢) is defined as given in equation (8.3) and A = 1. Parameter \
allows for handling situations in which a particle can not be placed into the desired band ow-
ing to a degenerated level-set function, for instance, in underresolved regions. If equation (8.30)
predicts a particle position outside of the desired band, A is halved, and an intermediate particle
position X} 1s determined from equation (8.30). In doing so, the affected particle is moved closer
to the interface, where the normal vector should be more appropriate. Starting from this inter-
mediate position, the process is repeated with A reset to 1 and xp = xJ}. Particles that are not
within the desired band after a given number of iterations are deleted. The particle distribution
after the attraction step is illustrated in the second subfigure of Figure 8.2.

Finally, the particle radius is adjusted as

T'max if sign(P)p(Xp) > Timax
rp = { sign(P)p(xp) if rpin < sign(P)o(xp) < Tmax (8.31)
Tmin if mgn(P)ng(xP) < Thin-

For particles sufficiently close to the interface, the interface is thus tangential to the sphere de-
fined by the particle position and its radius. As the particles are allowed to overlap, the interface
is exactly reproduced in the limit of an infinite number of particles. This final step of the setup
of the particle field is displayed in the last subfigure of Figure 8.2, where the circles representing
the particles, are colored according to their radius. Red color corresponds to 7,,x and blue color
to 7min- Additionally, a closeup view of the region near the interface is included below.
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Figure 8.2: Setup of particles: initial seeding, attraction and radii adjustment.

8.3.3 Particle Transport

Particles are advected by the local velocity as

pr

T = a(XP,t). (832)

In the present FEM, the velocity at the particle position is interpolated from the nodal velocity
values of the underlying element using the shape functions. Owing to the present trilinear in-
terpolation, second-order accuracy is obtained for the particle transport, as also considered by
Enright et al. [91]. For time integration, a second-order Runge-Kutta scheme is applied, similar
to Enright et al. [92]:

At
XPJH-% = Xpn t _a(XP,na tn)>

2 (8.33)

XP,n-H = XP,n + Ata(XP’n+%,tn+%).

8.3.4 Correction by Particles

In case of discrepancies between the interface location predicted by the level-set function and its
description by the particles, the information contained in the particle field serves for a correction
of the level-set function. Following Enright ez al. [91], a reconstruction of the level-set function
based on the information from the particles is only performed in regions where the level-set
function shows an error of the order of the element length, i.e., a clear deviation. As long as
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the particles do not drift an appreciable distance across the interface, the level-set function is
assumed to be sufficiently accurate. This approach is thus consistent with the second-order accu-
racy of the particle evolution. Particles that contribute to the correction of the level-set function
are classified as escaped. As a criterion, Enright ez al. [91] considered particles which are on
the wrong side of the interface by more than their radius to have escaped. As the radius of the
particles is of the order of the element length, any (non-zero) multiple of rp is also conceivable
as an escape condition according to Enright et al. [91]. Particles satisfying

sign(P)¢ (xp) <0, (8.34)

are marked as escaped in this thesis.

For each escaped particle, a local level-set function is defined as

¢p (x) = sign(P) (rp — ||x — xp|]), (8.35)

which is zero at the boundary of the sphere associated with the particle, of the sign of the particle
inside of the sphere and of opposite sign outside. The particle-based level-set value is then evalu-
ated at all nodes of the element containing the escaped particle. If ¢p(x4), where x 4 denotes the
coordinates of node A, differs from the nodal value ¢ 4 of the level-set field, the level-set function
may have to be corrected. The escaped positive particles are used to rebuild the subdomain Q.
and the escaped negative ones to rebuild Q_. Using the set of escaped positive particles P, as
well as the set of escaped negative ones P_ corresponding to an element, a corrected level-set
value ¢ is determined for each node A of the element. A potentially corrected level-set value
¢4+ 1s estimated from the escaped positive particles via

Gaqr = max (dp(xa), Pas), (8.36)

where ¢4 4 is initialized by ¢ 4. Analogously, the level-set value ¢4 _, determined based on the
escaped negative particles, is calculated as

¢A,— = V}l;nei"g, (¢P(XA)7 ¢A,—)7 (837)

where ¢4 _ is likewise initially set to ¢ 4. Eventually, the corrected level-set value is determined
by

if < _
COIT — {¢A,+ 1 |¢A,+| — |¢A7 | (838)

A .
pa— if|pas] > |da—|

In summary, escaped positive particles, which are located in Q_, are used to correct negative
level-set values. Analogously, escaped negative particles are able to shift the interface towards
Q. by modifying positive level-set values. For correcting values, the described procedure gives
priority to the escaped particle whose sphere is closest to the node. Recently, Wang et al. [331]
suggested a modified correction procedure by which level-set values on both sides of the inter-
face can be corrected by the same escaped particle. The modified strategy is not further consid-
ered in this thesis.
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8.3.5 Reseeding

While evolving the interface and the particles by the velocity field, the particle concentration may
change. Regions which do not possess a sufficient number of particles may form, for instance,
due to a stretching of the interface. Likewise, particles may be agglomerated in other regions. To
ensure an approximately homogeneous particle distribution along the interface throughout the
simulation, repeated reseeding of particles has to be performed. Simply deleting all particles and
then seeding new ones would discard the information on the interface position provided by par-
ticles that are resided very close to the interface or are escaped. Similar to the initial placement
of the particles, new particles are placed at least at a distance of b, to the interface. Therefore,
the reseeding procedure should maintain all particles whose distance to the interface, given by
|¢(xp)l, is smaller than 7. These particles may contribute to the correction in the time steps
following immediately after the reseeding, whereas particles placed at least in a distance of by,
of the interface may not be able to account for errors of the order of the element length in the
interface description, leading to a deterioration of mass/volume conservation. Furthermore, es-
caped particles should not be removed, since they exhibit information that cannot be represented
on the grid in the current instant of time. However, this information may be recovered in a future
instant of time. All these particles, which are referred to as critical ones in the following, are
kept during reseeding. In order to ensure an appropriate particle distribution, the following three
tasks are performed by the reseeding procedure:

1. All particles which drifted too far away from the interface to contribute to the correction
are deleted, i.e., all particles satisfying sign(P)p(xp) > bpax-

2. Particles are added to elements which are at least partially located within a distance of
bmax Of the interface and possess less than np particles. New particles of the appropriate
type (i.e., positive particles in Q. and negative ones in Q_) are randomly positioned in
the respective element until the number of particles again equals np. Afterwards, they are
attracted to the interface as described in Section 8.3.2. As a result of the attraction step,
all newly seeded particles are placed within a band between by, and by,,x of the interface.
Their radius is set by equation (8.31).

3. Particles are deleted from elements which are at least partially located within a distance of
bmax Of the interface and possess more than np particles. Therefore, all non-critical parti-
cles in an affected element are sorted according to the criterion sign(P)¢(xp) — rp. The
particle with the largest value is deleted until the number of particles equals np, keeping
the particles closest to the interface.

Elements intersected by the interface usually contain positive and negative particles and, there-
fore, require a particular treatment. Based on an estimation of the volume fraction v¢ corre-
sponding to Q_, the number of positive and negative particles for these elements is determined
asnp4 = (1 —v°)np and np _ = v° np, respectively; see Gaudlitz [109]. Using these numbers,
positive and negative particles are either added or removed as explained in item 2 and 3.

The reseeding frequency is generally problem-dependent. Apart from a periodic reseeding after
a certain number of time steps, reseeding according to a criterion taking into account the change
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of the interface area is also conceivable (see, e.g., Enright et al. [91] for considerations) but not
further pursued in the present thesis.

8.3.6 Overview of the Algorithm

Algorithm 8.1 summarizes the sequence of the steps of the hybrid particle-level-set method.
The particle method relies on the level-set field being a signed distance function. Therefore,
reinitialization is performed in every time step. In contrast to what was suggested by Enright et
al. [91], the level-set values are corrected only once in each time step. Enright ez al. [91] evolved
the level-set function and the particles forward in time, corrected the level-set field based on
the particles, applied reinitialization, corrected the level-set field once again and adjusted the
particle radii. Here, the particle-correction step is performed after reinitialization only, as also
applied, e.g., by Gaudlitz and Adams [110]. Preliminary investigations showed that correcting
the level-set field also before reinitialization does not further improve the results. Moreover,
less computational work is required. After the correction step, the particle radii are adjusted
according to the current interface position using equation (8.31). All particles which remain
escaped exhibit a radius set to 7. A potential reseeding is arranged at the end of the time step.

Algorithm 8.1: hybrid particle-level-set algorithm

1 initialize level-set field and particles
2
3 while time loop not finished: ¢ < teng

5 solve level-set equation for qbz L1
6
« e e . h
7 reinitialize ¢,
8
9 advect particles to Xp, 11

1 correct qﬁz 1 using particles
13 adjust rp

15 if reseeding
16 remove useless particles and seed new ones
17 end if

v update time step: ¢ = ¢ |, Xp, = Xppi1
20
21 end while
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8.4 Numerical Test Cases and Applications

The hybrid particle-level-set method is validated in this section. For comparison, results obtained
with the basic approach are additionally included. The hybrid particle-level-set method is applied
to established benchmark examples as well as to one two-phase-flow problem, since it is not
further used in the next chapters for reasons given at the beginning of the present one. Results
obtained with the Hybrid Particle-Level-Set method are abbreviated by “HPLS” in the remainder
of this section. Results provided by a pure advection of the level-set function, i.e., by merely
solving the Level-Set equation (8.7), are marked by “LS” and the ones by a level-set approach
including REINITialization via a geometric distance computation in every time step, as also
applied in the HPLS, by “REINIT”. Two-dimensional problems are computed using one layer of
hexahedral elements. In this case, the location of the particles is restricted to the centerplane of
the element layer. Consequently, coordinates of element nodes are projected into the centerplane,
when estimating corrected level-set values (see equations (8.36) and (8.37)). Parameters based on
the element length A, such as r;,, are determined without the contribution of the third dimension.
Unless otherwise specified, the parameters of the HPLS are set to 7, = 0.1A, ry.x = 0.5h,
bmax = 3h and np = 4™, Reseeding of the particles is performed periodically for all examples.
For all level-set test cases, the Courant-Friedrichs-Lewy number is set to CFL ~ 0.5.

8.4.1 Zalesak’s Disk

First, Zalesak’s disk [337], which denotes the rigid body rotation of a slotted disk in a constant
velocity field, is considered. At the beginning, the slotted disk is centered at (0.5, 0.75) in a
square domain of size Q = [0, 1] x [0, 1]. The radius of the circle is given by R = 0.15. The slot
has a size of dy, = 0.05 in width and of d; = 0.25 in length. The velocity field is given as

[ 555(0.5 —x,)
a(x) = (ﬁ(% B 05)) . (8.39)

(98]

Figure 8.3 displays the shape of the disk, which should be preserved during rotation, after one
revolution of the disk. Using 100 x 100 elements, the shape obtained with the HPLS is compared
to the zero iso-contours recovered by the LS and the REINIT. As a reference, the initial shape
of the disk on 200 x 200 elements is included. The HPLS retains the interface accurately. The
rounding of the corners is mainly related to the limited resolution of the grid, since sharp corners
of the interface cannot be represented inside elements and hence remain subgrid. In contrast,
the LS leads to a slight distortion of the upper part of the disk and a stronger smoothing of
the corners. The REINIT fails to preserve the shape of the disk and yields a significant loss
of area. Moreover, Figure 8.3 illustrates a grid refinement study for the HPLS using 50 x 50,
100 x 100 and 200 x 200 elements. Even for the coarser discretization, the HPLS provides a good
approximation of the disk. An almost exact preservation of the interface is achieved with the
HPLS on the finer discretization. A more detailed insight into area conservation is obtained from
Figure 8.4, which provides the area of the disk, given in terms of the initial area A(Q_ (¢ = 0)) as
A(Q_(t))/A(Q_(t = 0)), as a function of time. The aforementioned three grids are considered
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Figure 8.3: Comparison of the shape of Zalesak’s disk after one rotation for various methods using
100? elements (left) and for the HPLS using 502, 100 and 200> elements (right). The ini-
tial shape of the disk on 200% elements is taken as a reference.

for all methods. Even with the coarser grid, the loss of area in the HPLS remains below 5%. The
loss of area decreases with grid refinement. A comparable change of area is stated for the LS.
The REINIT exhibits an excessive loss of area for all discretizations. With respect to the overall
behavior of the REINIT, the excellent area and shape conservation properties of the HPLS, which
also includes reinitialization in every time step, is remarkable. In addition, Figure 8.4 illustrates
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Figure 8.4: Area A(Q_(t))/A(Q_(t = 0)) of Zalesak’s disk over time ¢ for various methods as well as
502, 1002 and 2002 elements and influence of the minimal particle radius 7, on the HPLS
using 1007 elements. The diagram for 7y, incorporates every 2nd time step.

the influence of the minimal particle radius r,;, on area conservation using 100 x 100 elements.
Therefore, 1y, = 0.05h,0.1h and 0.2/ are investigated. For this example, increasing r,;, leads
to an increased loss of area with respect to the disk.
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8.4.2 Single Vortex Stretching

The second example aims at investigating the ability of an interface capturing method to ac-
curately handle thin structures of the size of the elements. Therefore, a circle stretched by the
velocity field such that it is wrapped towards the center of the domain Q = [0, 1] x [0, 1] is
considered. A circle with radius R = 0.15 is placed at (0.5, 0.75). The velocity field is given
via the stream function

1
¥ = — sin’(7x) sin®(7z,) (8.40)
™

(see Bell et al. [29]) such that

a(x) = ( g_%w) _ ( sin?(7x,) sin(27,) ) ' (8.41)

— sin(27z; ) sin®(72,)

By multiplying a by cos((7t)/tena), the velocity field is inverted after half of the simulation
time, which is set to t.,g = 8, and the problem becomes reversible; see also LeVeque [188]. The
domain is discretized using 128 x 128 elements. Figure 8.5 illustrates the behavior of the HPLS.
The interface as well as the particle distribution are shown at time ¢ = 4, and iso-contours
of the level-set function, which remains a signed distance function due to reinitialization, are
indicated. Furthermore, a comparison of the shape of the zero iso-contour, which should return

HPLS-
LS
REINIT-

REFERENCE]

Figure 8.5: Level-set iso-contours (red color indicates high level-set values and blue color low level-set
values), interface (colored in white) and particles (red color identifies positive particles and
blue color negative particles) for single vortex stretching at time ¢ = 4 using 128> elements
for the HPLS (left) and comparison of the final shape of the interface for various methods
using 128> elements (right). The initial shape of the circle on 256> elements is taken as a
reference.

to a circle at the end of the simulation, is displayed for the considered methods. Again, the
REINIT fails to recover the expected interface, while the LS yields a somewhat deformed circle.
Merely the HPLS is able to well capture the interface at the end of the simulation, although some
disturbances are observable at the upper arc of the circle, where particles that have been escaped
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during stretching of the underresolved outer filament are located. Concerning the HPLS, the
influence of the number of particles np and the minimal particle radius r,;, on area conservation
is further examined. Therefore, Figure 8.6 displays the area of the (stretched) circle normalized
by its initial area, A(Q_(t))/A(Q_(t = 0)), as a function of time for np = 16,32 and 64 as well
as rmin = 0.05h,0.1h and 0.2h. For each series, only the parameter of interest, i.e., np OF 7y,
is varied, while the default values are kept for the remaining ones. Increasing np improves area

0))
)

A(Q.(1)/AQ.(t:
A(Q_(1)/A(Q.(t

0.975 | np=16 — |

0.97

Figure 8.6: Influence of the number of particles np and the minimal particle radius 7y, on the HPLS
for single vortex stretching based on the area A(Q_(t))/A(Q_(t = 0)) over time ¢ using
1282 elements. The diagrams incorporate every 15th time step.

conservation, although the gain in accuracy decreases with an augmenting number of particles.
In contrast to what is observed for Zalesak’s disk, lowering 7, degrades area conservation for
this example, which exhibits an underresolved elongated filament, i.e., the outer end of the spiral-
like interface. In this regard, Zalesak’s disk mainly suffers from numerical diffusion and shifting
of the interface during reinitialization.

8.4.3 Deformation of a Sphere

The deformation of a sphere with radius R = 0.15, centered at (0.35,0.35,0.35) of the do-
main Q = [0, 1] x [0, 1] x [0, 1], is considered next for evaluating the HPLS. LeVeque [188]
extended the velocity field of the previous example to three dimensions such that the deforma-
tion of the sphere in the xx,-plane is superimposed by another deformation in the xx3-plane:

2 sin (7)) sin(27x,) sin(2723) cos((mt) /tena)
a(x,t) = | —sin(27x;) sin®(7x,) sin(2723) cos((7t) /tend) | - (8.42)
— sin(2mw;) sin(272,) sin? (m23) cos((7t) /tend)

Again, the velocity field is reversed at time f.,q/2. The simulation time is set to te,a = 3. A
uniform discretization with 100 x 100 x 100 elements is used, and the HPLS is applied. Figure 8.7
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shows the zero i1so-contour of the level-set field at times ¢ = 0, 0.25, 1, 1.5, 2.5 and 3. After
returning to the initial state, only 2.3% of the initial volume of the sphere is lost for this three-
dimensional problem when using the HPLS.

Figure 8.7: Three-dimensional deformation of a sphere at times ¢t = 0, 0.25, 1, 1.5, 2.5 and 3.

8.4.4 Impact of a Drop

In order to demonstrate the applicability of the present HPLS to two-phase-flow simulations, the
impact of a water drop on the surface of a pool filled with water is investigated. A
similar flow problem was examined by Wang et al. [331]. Here, a domain of size
Q = [0,L] x [0,L] x [0,L], where L. = 2.0m, is considered and discretized using
80 x 80 x 80 elements. A drop at rest is initially positioned at (0.5L,0.61L,0.5L)". The ra-
dius of the drop is chosen to be R = L/12. The water pool is d = 0.5L in depth. Density
and viscosity of the water are taken to be p, = 1000kg/m?® and p, = 0.001137kg/(ms),
respectively. For the air, p_ = 1.226kg/m® and 1~ = 0.0000178 kg/(ms) are assumed. The
surface-tension coefficient is set to v = 0.0728 kg/s. Gravitation acts in vertical x,-direction as
g = (0.0,—9.81,0.0)" m/s%. Slip conditions are prescribed at all boundaries of the domain. The
time-step length is At = 0.001 s. Concerning the HPLS, r,;, is set to 0.05h, since this value en-
sures a smooth interface also for rather coarse discretizations and thus works best for two-phase-
flow problems. For two-phase flow, the method derived in the next chapter is used. Figure 8.8
illustrates the drop impinging on the water surface. Therefore, the interface is depicted at times
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8 A Computational Framework for the Level-Set Method

t =0,02,04,0.6,0.7 and 1s. The drop plunges into the pool, pushing water away. As the
water returns, an upward pointing jet forms.

=
Sk

Figure 8.8: Impact of drop at times ¢t = 0, 0.2, 0.4, 0.6, 0.7 and 1 s.
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A Nitsche-Type Extended Variational Multiscale
Method for Two-Phase Flow

The interface separating the two fluids appears as a discontinuity in the flow field. The eXtended
Finite Element Method (XFEM) is able to treat a discontinuity in the solution field for arbitrary
interface locations in a sharp fashion. In this chapter, a novel approach based on the XFEM is
derived for incompressible two-phase flows. First, the underlying problem statement is briefly
described. Then, the applied XFEM-based representation of discontinuities in elements inter-
sected by the interface is reviewed. Next, the weak imposition of the Dirichlet-type interface
condition for two-phase flow using Nitsche’s method [231] is shown. Moreover, appropriate
accompanying face-oriented ghost-penalty as well as fluid stabilization terms, ensuring the sta-
bility of the numerical method in the enriched interface region, are introduced. In particular,
Nitsche’s method as well as the face-oriented stabilization terms are further extended to account
for viscous- and convection-dominated transient flows. After summarizing the complete formu-
lation for two-phase flow, the coupled fluid-level-set algorithm is also briefly addressed. Finally,
the novel approach is validated for various two- and three-dimensional numerical examples of
increasing complexity, rigorously demonstrating the excellent accuracy and robustness of the
proposed method. The present chapter is based on work published in Rasthofer and Schott et
al. [262].

9.1 Problem Statement

Two-phase flow in the domain Q is considered. The time-dependent moving interface I'jy (%),
captured by the level-set method as introduced in Section 8.1, divides the domain Q into two
subdomains Q, (t) and Q_ (t), representing the two fluids; see also Figure 9.1. The unit normal
vector ny, on [y is defined to point into the domain Q_. Moreover, n; denotes the outward

Figure 9.1: Domain Q of two-phase-flow problem.
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9 A Nitsche-Type Extended Variational Multiscale Method for Two-Phase Flow

pointing unit normal vector on the boundary 0Q; of each subdomain Q, where k € {+,—};

that is, n;;,; = n, = —n_ at the interface. The strong form of the two-phase-flow problem reads

as
ouy, .

Pk + prug - Vug + Vpr — 21,V - e(ug) = prg in Qp % 10, tena|, 9.1)

V-u =0 in Qp % 10, tena|, 9.2)

[u] =0 on Iy X 10, tenal (9.3)

lo(u,p)] - D = =KDy on [ipe X 10, tenal 9.4)

uj = Upy on I'p y X ]0, tenal , 9.5)

o(ug, pr) - g = hyy on I'vux X |0, tend| s (9.6)

up = Uy in Q x {0} 9.7)

for k € {+,—}. The momentum equation is given in convective form; and t.,q denotes the
considered time period. Appropriate initial conditions in €, as well as boundary conditions on
the outer part of 0, belonging to the boundary 0 of the entire domain €2, are defined as usual.
Initially, a divergence-free velocity field ugj is prescribed. Dirichlet and Neumann boundary
conditions are imposed on I'p ,,  and I'y y k. respectively. For the boundary 0Q;, of subdomain
Qy, itis assumed that I'p y 1 N TNk N i = 0 and T'p e U N g U Dine = 09

Assuming appropriate solution function spaces S, ;. for u; and S, , for p;, as well as weighting
function spaces V,,  for the velocity weighting function v and V), . for the pressure weighting
function ¢, momentum equation (9.1) and continuity equation (9.2) are multiplied by v, € Vy
and g, € V,, and integrated over the subdomains ;. Moreover, viscous and pressure term are
integrated by parts, with boundary conditions (9.5) and (9.6) applied to the resulting boundary
integrals on the outer boundary parts I'p ,, » and I'y %, respectively. For each subdomain €y, the
variational formulation of the incompressible Navier-Stokes equations is thus obtained as: find
(ug, pr) € Suk X Sp such that

auk

(V/w Pkﬁ) + (Vi pruy - Vuk:)gk - (V- Vkapk)gk, + (E(Vk)ﬂﬂke(uk))gk
Qp

+ (qr, V - ur) g, — (Vi, 0 (e, pi) - 1)y, = (Vis P18, + (Vie, Buk)

(9.8)

1—‘N,u,k

for all (vk, qx) € Vur X Vy and k € {4, —}. Here, (-,")o, and (-, *)r , r,, denote the usual
Ly-inner product in Q;, and on 'y x/Tin, respectively; see also Section 3.2. In the following,

the short notations (-, -)q, = (-,")g, + (") aswellas (), = ()., + 0 Inea
will also be used. The assumed solution and weighting function spaces for each subdomain can
be adopted from equations (3.6) to (3.9).

To sum up the variational formulations for the two fluids, weighted average operators are defined
as

{ e =wi )y +w_(-)-, 9.9
(Dw = w_( )y +we () (9.10)
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based on the weights w, and w_, with w,,w_ € [0,1] and w, + w_ = 1. Furthermore, the
identity
[ab] = [a]{b}w + (a)w[b] (9.11)

is introduced, where a and b denote arbitrary functions which are sufficiently smooth in the
subdomains and potentially discontinuous at the interface. Hence, the sum of the interface terms
can be expressed as

— (V4,0 (uy, py) 'n+)1—im —(v_,o(u_,p_) -n_ ) =

(V] 2@ o - indp. — (IV] - D, P}y 9.12)

- (<V>w7 ’yﬁnim)rim )
where u = (us,u-) € Syt X Su—yp = (P,0-) €ESps X Sp s v= (v, vo) € Vi X Voo
as well as ¢ = (¢;,q-) € V, 1 x V,_. The traction interface condition (9.4) is incorporated
naturally, resulting in the surface-tension term (last term on the right-hand side). In addition, two
further terms, a viscous and a pressure consistency term, arise (first and second term).

int int

Furthermore, the following compact forms are introduced for the sum of the variational formu-
lations (9.8) for the two fluids. The bulk terms on the left-hand side are summarized as

ou
Bns(v, q;u, p Z=<V,p—) + (v,pu-Vu), —(V-v,p
NS( ) at o, ( )Qi ( )Qi (913)

+ (€(V>7 2u€(u)>9i + (Q7 V- u)Qi )

where all terms are evaluated with respect to ., and Q_ using p, and p, or p_ and p_, respec-
tively, i.e., p = pr and p = py, for all x € Q. The surface-tension term of equation (9.12) is
included in the linear form

: (9.14)

int

gNS(V) = (Vv pg)Qi + (V, hu)FN,u,i + (<V>wa ’anint)r

which comprises all terms on the right-hand side. The remaining interface terms of equation (9.12)
are treated separately in the following.

9.2 The Extended Finite Element Method

This section first provides a brief overview of the XFEM in general as well as its application to
two-phase flows. Afterwards, an enrichment strategy based on jump functions is presented.

9.2.1 The Extent of the XFEM

Owing to the implicit capturing of the interface by means of the level-set method, elements may
be intersected by the interface, and the related discontinuities may thus occur inside them. Using
a standard finite element method with polynomial shape functions, as, e.g., done by Nagrath

159



9 A Nitsche-Type Extended Variational Multiscale Method for Two-Phase Flow

et al. [228] and Quecedo and Pastor [257] for incompressible two-phase flows, the discontinu-
ities in the solution fields cannot be represented explicitly. The XFEM, originally proposed by
Belytschko and Black [31] and by Moés et al. [219] for crack-propagation problems in solid
mechanics, however, allows for reproducing arbitrary discontinuities in the solution fields inside
elements by providing an enhanced shape function basis. Up to now, the XFEM has been ap-
plied to various other problem configurations, among them fluid-structure interaction (see, e.g.,
Gerstenberger and Wall [117] and Zilian and Legay [340]), premixed combustion (see, e.g., van
der Bos and Gravemeier [318] and Henke [140]), solidification processes (see, e.g., Chessa et
al. [63] and Ji et al. [161]) and convection-dominated problems involving high gradients (see,
e.g., Abbas et al. [1]). A comprehensive overview of the XFEM may be found, e.g., in the review
articles by Belytschko et al. [33] and by Fries and Belytschko [99]. The XFEM is based on the
partition-of-unity concept (see, e.g., Melenk and Babuska [211]). A partition of unity is a set
of functions V;(x) satisfying ) . IV;(x) = 1. For instance, the shape functions used in FEMs,
as already implied by the previous notation, build a partition of unity. The essential property
exploited by the XFEM is that any (enrichment) function W¥(x) can be recovered by multiplying
it with the partition-of-unity functions.

In general, strong and weak discontinuities are distinguished. Problems with strong discontinu-
ities exhibit a jump in the solution field, whereas, for weak discontinuities, the jump occurs in
the derivative of the solution field. In the latter, the solution field is continuous, but shows a kink.
With respect to two-phase flows, both types are present. Due the no-slip condition together with
the different viscosities of the involved fluids, the velocity field exhibits a discontinuous gradient
across the interface. Surface tension leads to a strongly discontinuous pressure field, which may
additionally show a discontinuous gradient in gravitation fields owing to the different densities.
Also for negligible surface-tension effects, a jump in the pressure field may occur owing to dif-
ferent viscosities. To incorporate these discontinuities into the numerical solution fields, various
XFEMs have been proposed in literature. Chessa and Belytschko [61, 64] merely took into ac-
count gradient discontinuities of the velocity field by using a kink enrichment. In contrast, only
the pressure field was enhanced, e.g., by Grof3 and Reusken [131] and Sauerland and Fries [272].
The application of kink enrichments for the velocity field and jump enrichments for the pressure
field was suggested, e.g., by Rasthofer et al. [259]. In that study, the kink enrichment function
according to Mogs et al. [220] was applied, which differs from the one used by Chessa and Be-
lytschko [61] and is exclusively non-zero in intersected elements. Zlotnik and Diez [341] further
extended the XFEM in conjunction with the level-set method for n-phase flows involving more
than two fluids. Therefore, an enrichment function accounting for several interfaces within one
element was derived. Furthermore, various methods similar to the XFEM, following an analo-
gous strategy to account for the discontinuities inherent in two-phase flows, were developed,
e.g., by Ausas et al. [8], Coppola-Owen and Codina [73] and Minev et al. [216].

9.2.2 Enrichment Strategy

In the XFEM, the standard finite element expansion is extended by using a properly chosen
enrichment function W(x, t), which allows for reproducing the desired discontinuity inside the
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element. An enriched approximation for the velocity and the pressure field is defined as

t) =Y Naxua(t) + > Na(x)¥s(x,t)iis(t), (9.15)

A€k AGgem
t)=> Na(x)pat)+ > Na(x)¥a(x,t)pa(t). (9.16)
Acg A€Een
where
Yi(x,t) = ¥(x,t) — ¥P(x4,1) (9.17)

represents a shifted enrichment function as suggested by Belytschko ef al. [32]. The weighting
functions v and ¢" are given analogously. Here, £ denotes the set of all nodes and &, a subset
of enriched nodes, which contains all nodes corresponding to the elements intersected by the in-
terface. The enrichment distribution is also displayed in Figure 9.2, where all nodes are marked
by dots and enriched nodes are identified by an additional square. The first part of the finite
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Figure 9.2: Enrichment distribution.

element expansions (9.15) and (9.16) represents the standard continuous finite element approx-
imation, where N4 is the shape function and u4 and p,4 are the standard velocity and pressure
degrees of freedom at node A. To accurately represent discontinuities across the interface, the
second term expands the standard continuous solution space. In accordance with the partition-
of-unity concept, an appropriate enrichment function W ; that represents the problem-dependent
discontinuity is multiplied by the standard polynomial shape function /N ;. The resulting enriched
shape functions N ;¥ ; are multiplied by additional velocity and pressure degrees of freedom 1 4
and p 3, respectively. The shifting of ¥, given in equation (9.17), where x ; denotes the coordi-
nates of an enriched node A, may be applied optionally to retain the nodal interpolation property
for standard degrees of freedom, i.e., u”(x4,%) = u4(t). Since the extended finite element ex-
pansion for fully-enriched (i.e., intersected) elements is still able to reproduce the enrichment
function W exactly, shifting does not deteriorate this fundamental property.

161



9 A Nitsche-Type Extended Variational Multiscale Method for Two-Phase Flow

A so-called jump enrichment allows for recovering a discontinuity in the solution field as well
as in its gradient. A symmetric Heaviside function, which depends on the underlying level-set
field for the present application, defines the associated jump enrichment function as

+1  ifh(x,t) >0

FOO=9 e <o

(9.18)

As usual, the jump enrichment function is applied together with the shifting given in equa-
tion (9.17). Due to the shifting, the enriched shape functions are non-zero only in elements
intersected by the interface, thus avoiding any problems in elements adjacent to fully-enriched
intersected elements, so-called partially-enriched elements, where the partition-of-unity concept
is formally violated (see, e.g., Fries and Belytschko [99] for further discussion). For illustra-
tion, Figure 9.3 displays the enriched shape functions N ;¥ ; for a two-dimensional bilinearly-
interpolated quadrilateral element with the interface being located at £ = 0 (i.e., (&) = &)).

node 3 node 3

Figure 9.3: Enriched shape functions.

In this thesis, the jump enrichment is not only applied to the pressure field, where strong and
weak discontinuities may occur, but also to the velocity field, which is continuous at the interface
and merely exhibits a kink. Hence, additional means, such as Nitsche’s method, to incorporate
the velocity interface condition, i.e., to enforce a continuous velocity field at the interface, are
required. Nevertheless, several advantages may be identified for the present choice. In contrast
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to the kink enrichment function according to Moés et al. [220], the present jump enrichment
function retains the polynomial order of the shape function /N4 also for the enriched shape func-
tion NV ;¥ ; instead of increasing it. Moreover, the applied equal-order interpolation for velocity
and pressure is also upheld in the enriched elements by this choice. As a result of these aspects,
the extended discrete function spaces are inherently consistent. In addition, this enrichment strat-
egy leads to a method that is equivalent to the approach suggested by Hansbo and Hansbo [136],
where the nodes of intersected elements as well as their associated degrees of freedom are dou-
bled, formally leading to two overlapping meshes; see also Areias and Belytschko [7]. Within
that framework, the theoretical foundation towards a robust formulation, among other things,
with respect to stability issues arising from the application of the XFEM, has already been es-
tablished in literature. This aspect will be further addressed in the next section.

9.3 A Face-Oriented Stabilized Nitsche-Type Formulation

Since the discontinuous enrichment function is not only used for the pressure field but also for
the velocity field, an appropriate numerical technique, such as Nitsche’s method, is additionally
required to enforce a continuous velocity field at the interface. An overview of Nitsche’s method
including a brief classification of this method within other frequently used techniques to impose
interface constraints is given first. Then, Nitsche’s method is further developed for instationary
two-phase flow problems governed by the incompressible Navier-Stokes equations. Furthermore,
appropriate face-oriented ghost-penalty and fluid stabilization terms are introduced to guarantee
the stability of the overall method independent of the flow regime.

9.3.1 “Nitsche’s method is the most straightforward method to use”

(Stenberg [294])

To enforce coupling constraints at interfaces embedded in a non-matching grid, techniques orig-
inally developed to weakly apply Dirichlet conditions at boundaries represented by the grid have
been extended to such configurations. Two fundamental approaches to weakly impose Dirichlet
boundary conditions are Lagrange multiplier methods, as originally suggested by Babuska [11],
and Nitsche’s method [231], which may be classified as a variationally consistent penalty method
among other interpretations. In Lagrange multiplier methods, an additional multiplier field, rep-
resenting the fluxes at the boundary, is introduced. Owing to the related unknowns, the compu-
tational cost increases. Moreover, the function space for the primary field and the function space
for the multiplier field are subject to an inf-sup condition (see, e.g., Brezzi and Fortin [39])
and, therefore, cannot be chosen independently from each other. Based on the formulation of
Babuska [11], Barbosa and Hughes [13] proposed a stabilized Lagrange multiplier method to
circumvent the inf-sup condition. The Lagrange multiplier method by Babuska [11] was re-
viewed by Stenberg [294], who emphasized the close relation between Nitsche’s method and the
stabilized Lagrange multiplier method by Barbosa and Hughes [13]. In spite of their potential
drawbacks, several Lagrange multiplier methods for embedded interfaces have been developed.
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9 A Nitsche-Type Extended Variational Multiscale Method for Two-Phase Flow

For instance, Béchet e al. [26] suggested a stable Lagrange multiplier method satisfying the
aforementioned inf-sup condition and Mourad et al. [225] a stabilized formulation.

In the aforementioned review article, Stenberg [294] classified Nitsche’s method as the most
straightforward method to impose Dirichlet-type conditions in general. The application of Nit-
sche’s method to elliptic problems with embedded interfaces was first recognized by Hansbo and
Hansbo [136]. A juxtaposition of Nitsche’s method and a stable Lagrange multiplier method was
later given by Hautefeuille et al. [139] for three-dimensional elliptic problems. Recently, Bur-
man and Zunino [47] reviewed Nitsche’s method for the enforcement of Dirichlet-type interface
conditions in diffusion problems. In particular, stability issues related to elements intersected by
the interface, the treatment of large differences between the involved diffusivites as well as the
extension of Nitsche’s method to convection-diffusion problems were addressed in comprehen-
sive form.

Nitsche’s method for problems with embedded interfaces is prone to instabilities related to patho-
logical intersections of the elements; that is, the interface cuts off tiny corners and edges or small
slices. To ensure stability and robustness, which is mathematically expressed in terms of coer-
civity (see, e.g., the textbook by Braess [37]), an inverse inequality has to be satisfied, leading to
a constraint on the involved penalty parameter (see, e.g., Dolbow and Harari [82] for derivation).
In simple terms, the penalty parameter has to depend on how the interface intersects the element
to ensure coercivity. For the aforementioned pathological intersections, this can in turn result in
an unbounded penalty parameter and, hence, in an unbounded condition number for the result-
ing matrix system. While it was shown, e.g., by Annavarapu et al. [6] and Barrau et al. [16],
that Nitsche’s method incorporating the volume fractions of intersected elements is adequate
for linearly-interpolated tetrahedral elements to overcome this lack of robustness, alternative
measures are needed for higher-order elements. To stabilize Nitsche’s method for embedded in-
terfaces independent of the order of the elements, Burman [44] and Burman and Hansbo [45]
suggested the incorporation of a so-called ghost-penalty stabilization term, which is active in the
interface region and penalizes degrees of freedom outside of the physical subdomain but con-
tributing to the solution inside. While Burman [44] considered a local projection-based ghost-
penalty stabilization, Burman and Hansbo [45] investigated a face-oriented ghost-penalty sta-
bilization evaluated on selected faces of intersected elements. The face-oriented ghost-penalty
stabilization was first presented for elliptic problems and then further developed for problems
governed by the Stokes equations by Burman and Hansbo [45, 46]. The face-oriented ghost-
penalty stabilization is closely related to the respective fluid stabilization. Similar to the SUPG,
PSPG and grad-div term of the residual-based fluid stabilization (see Section 3.3), face-oriented
fluid stabilization terms, as, e.g., proposed by Burman ef al. [48] for the Oseen equations, were
derived as a means to stabilize FEMs for flow problems. These terms penalize jumps in the gradi-
ent of the solution fields across element boundaries to stabilize numerical schemes and have their
origin in an early work by Douglas and Dupont [87]. For further details on stabilization tech-
niques in FEMs for flow problems, the reader is referred, e.g., to the review article by Braack et
al. [35]. Applications of the face-oriented fluid stabilization to two-dimensional flow problems
may be found, e.g., in Burman [43].

Discontinuous diffusivites or viscosities constitute a further issue that demands proper consid-
eration. For two-phase flow problems, for instance, dynamic-viscosity ratios of the order of one
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hundred have to be expected. For linearly-interpolated tetrahedral elements, both the intersec-
tion of the element as well as different diffusivities can be directly introduced into Nitsche’s
method in an appropriate manner as shown, e.g., in the aforementioned works by Annavarapu et
al. [6] and Barrau et al. [16]. As a general framework, Burman and Zunino [47] proposed using a
ghost-penalty stabilization to ensure the robustness of the method irrespective of the intersection
of the elements and merely incorporating the different diffusivities into Nitsche’s method. Orig-
inally, Nitsche’s method was developed for elliptic problems. When applying Nitsche’s method
to problems with convection, the convective flux across the interface has also to be consid-
ered. In the hyperbolic limit, Dirichlet-type conditions can only be prescribed at the inflow

part of an interface, i.e., F%EL L= {x € Ip(uy - My — uine) < 0} with respect to &, and
O = {x € T (u_ - nyy — i) > 0} with respect to Q_, where u;,, denotes the interface

velocity as introduced in Section 7.1. Therefore, a term accounting for the convective flux has
also to be restricted to FﬁﬁL . and F%Etﬁ, respectively. Concerning the present two-phase flows, the
interface moves with the convective velocity of the fluids. Hence, a respective convective flux
term is not considered in the formulation derived in the following. A thorough discussion of this

issue may be found in the review article by Burman and Zunino [47].

Becker et al. [28] showed the first extension of the approach by Hansbo and Hansbo [136] to in-
compressible elasticity problems described by the Stokes equations. D’ Angelo and Zunino [77],
for instance, applied Nitsche’s method to couple Stokes and Darcy flow. Henke [140] combined
the XFEM with Nitsche’s method and the G-function approach to premixed combustion. In
particular, Henke elaborately analyzed convective flux terms at the interface. Face-oriented sta-
bilization terms were not considered in that work. Schott and Wall [276] further extended the
formulation of Burman and Hansbo [46] for embedded boundaries arbitrarily intersecting the
grid to flow problems governed by the incompressible Navier-Stokes equations by incorporating
the convective face-oriented fluid stabilization term. A convective flux term was also discussed
in that study. Shahmiri [284] embedded an ALE discretization aligned with the boundary of a
moving structure into a fixed background grid, thus coupling two fluid domains. The combina-
tion of face-oriented ghost-penalty stabilization terms in the vicinity of an embedded boundary
and a residual-based stabilization term in the interior of the domain was particularly investi-
gated by Massing et al. [209] for problems described by the Stokes equations. Recently, Hansbo
et al. [137] applied Nitsche’s method to two-phase flow problems governed by the stationary
Stokes equations.

The aforementioned intersections splitting an element into extremely unevenly sized parts also
affect the XFEM. The support of the enriched shape functions introduced in Section 9.2.2 is con-
fined to elements parts only and hence goes to zero for such intersections. The resulting matrix
system gets ill-conditioned. Although this aspect is not directly related to Nitsche’s method, it is
discussed in this section for reasons which will become obvious below. This issue is frequently
tackled by ad hoc measures such as the manipulations of the enrichments. As, e.g., suggested
by Reusken [264] as well as Sauerland and Fries [273], enrichments are removed based on a
certain criterion taking into account the size of the support of their associated enriched shape
function. Recently, Babuska and Banerjee [12] introduced a concept referred to as stable XFEM.
By expanding the support of the enrichment function to the entire element, condition numbers
of the XFEM matrix system which are in the order of the ones of standard FEM systems are
enabled, as shown by Babuska and Banerjee [12]. Since these enrichment functions incorporate
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the standard shape functions, the resulting enriched shape functions involve polynomials of a
higher order than the applied standard ones. For instance, the kink enrichment function, origi-
nally introduced by Moés et al. [220] and applied to two-phase-flow problems, e.g., by Rasthofer
et al. [259], belongs to this particular group of enrichment functions. However, several deficien-
cies were observed, e.g., by Henke [140] and Sauerland and Fries [273] for the respective jump
enrichment function. By inclusion of the aforementioned face-oriented stabilization terms in the
interface region, this issue is accounted for in a mathematically rigorous way, allowing for the
conventional jump enrichment without further provisions. All the reviewed strategies have in
common that they somehow aim at providing a sufficiently large support of the enriched shape
function for evaluation. For the sake of completeness, it is therefore also referred to a recent work
by Gerstenberger and Tuminaro [116] who focused on the application of established algebraic
multigrid methods (see also Section 4.3) to matrix systems arising from XFEMs. Gerstenberger
and Tuminaro [116] reported that the tolerance for removing enrichments could be reduced by
about two orders of magnitude compared to the respective values provided elsewhere in litera-
ture. This observation may be traced back to the restriction of the matrix system onto a coarser
level, which likewise comes along with an increase of the support.

9.3.2 Enforcement of the Dirichlet-Type Interface Condition

The application of Nitsche’s method to flow problems governed by the incompressible Navier-
Stokes equations introduces three further terms to weakly impose the velocity interface condi-
tion (9.3). Together with the viscous and pressure consistency term (see equation (9.12)), they
are given by

Buv" sl p) 1= (V'] {2pe (0 b 1) — (9] - e (0.,
+ ({(2ee(v") }o - i, [0']) .+ ({0}, [0 2
(9.19)

+ <QNP ({“h}w sl {fz}e@ . Huhﬂ>r* ,

nt

where (-,-)r= := > .gn(-,-)re, based on the interface I, within the element and the set G"
of intersected elements. The third and fourth term are the viscous and the pressure adjoint con-
sistency term. As introduced by Becker et al. [28], a symmetric (i.e., the same sign as the first
term) viscous adjoint consistency term is used, reflecting the symmetry of the viscous term. To
balance instabilities related to the pressure consistency term, a skew-symmetric pressure adjoint
consistency term is added. While the viscous adjoint consistency term weakly enforces continu-
ity of the velocity field across the interface (i.e., condition (9.3)) for viscous fluids, the pressure
adjoint consistency term imposes mass conservation (i.e., [u"] - n;, = 0; see also equation (7.6))

at the interface also in the inviscid limit. To account for large viscosity ratios of the two fluids, a
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viscosity-based harmonic average weighting is applied in definitions (9.9) and (9.10), that is,

j.
wy = ——— (9.20)
T gt e
w_ =+ (9.21)
Py + pe

as suggested, e.g., by Burman and Zunino [47]. The last term of By (v", ¢; u”, p") constitutes a
penalty term. Further following, e.g., Burman and Zunino [47], the definition of the weights also
enters the scaling of the penalty term. Therein, / denotes the characteristic element length, which
is defined as the longest element diameter. The viscous part {1 },,/h only represents the classical
Nitsche penalty term which is added to stabilize the viscous consistency and adjoint consistency
term. In contrast to Becker er al. [28] and Hansbo et al. [137], who restricted their derivations
to stationary problems described by the Stokes equations, two further contributions are addition-
ally included here for application of Nitsche’s method to two-phase-flow problems governed by
the incompressible Navier-Stokes equations. The convective and transient part, {p||u”| o }./6
and ({p}wh)/(120At), respectively, extend the penalty-term scaling for non-viscous-dominated
flows based on considerations from the enforcement of mass conservation as further explained
below. A temporal discretization based on a one-step-6 scheme is assumed for the third part,
where At denotes the time-step length. Similar forms merely taking into account two of the three
contributions may be found, e.g., in D’ Angelo and Zunino [77] and Schott and Wall [276]. For-
mally, the second and third part have to be restricted to the direction normal to the interface, i.e.,
(anp({pl| 0|l }o0/6 + ({p}wh)/(120A))[V"] - 1jn, [U"] - njn)r,,» SinCe, in the inviscid limit,
the no-slip condition at the interface has to be replaced by a slip condition, that is, merely the
imposition of zero mass transfer across the interface (i.e., [[uh]] -, = 0) is allowed in this
case; see also, e.g., Becker [27] for similar considerations in the context of Dirichlet boundary
conditions. However, for viscous fluids and an interface thickness that goes to zero, as consid-
ered in this thesis, anything but a no-slip condition at the interface would physically result in
infinitely high stresses; see, e.g., the textbook by Tryggvason et al. [316]. For better satisfying
the no-slip condition for non-viscous-dominated flows, the weak application of condition (9.3)
is strengthened by not restricting the convective and transient part of the penalty-term scaling to
the direction normal to the interface. The coefficient anp is set to 50 in this thesis.

9.3.3 Face-Oriented Ghost-Penalty Stabilization

Without additional provisions, the Nitsche-type formulation introduced so far as well as the
XFEM are not stable for interface positions that cut off tiny corners and edges or thin slices from
elements. On the one hand, the weak imposition of the velocity interface condition with respect to
these intersection configurations would demand a penalty parameter that tends to infinity, which
in turn would result in an ill-conditioning of the resulting matrix system. On the other hand, the
support of the enriched shape function goes to zero, and the matrix system likewise becomes ill-
conditioned. Therefore, face-oriented ghost-penalty stabilization terms, which allow for tackling
both issues at once, are additionally included in the interface region. Moreover, classical fluid
instabilities related to convection-dominated flows and a violation of the inf-sup condition (see,
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e.g., Brezzi and Fortin [39]) due to equal-order interpolation for velocity and pressure have to be
balanced not only in the physical subdomains £, and €_ but also in the natural extrapolation of
the flow field onto the entire intersected element. This issue is addressed by further incorporating
face-oriented fluid stabilization terms in the interface region as well.

For interface problems, face-oriented ghost-penalty and fluid stabilization terms have to be ap-
plied for both subdomains separately. Here, a face f denotes the surface shared by two adjacent
elements. The characteristic length associated with the face is denoted by /14 and defined as the
maximal distance to the opposite surface of the adjacent elements. As illustrated in Figure 9.4,
face-oriented stabilization terms are evaluated only on faces that belong to intersected elements
and lie at least partially within the considered subdomain. These faces are marked by thick lines
in Figure 9.4. The set F;, with k& € {+, —} contains the considered faces corresponding to the

\ \

(e

Qextr

N A
) )
/ /

Fint Fint

Figure 9.4: Extended subdomains Q™" and Q%" as well as corresponding faces considered for face-
oriented stabilization.

subdomain €. Faces intersected by the interface are taken into account twice, once with respect
to Q. and once with respect to _. Since face-oriented stabilization terms are always evaluated
on the entire surface I'y of the face and not only on the part belonging to the physical domain,
extrapolated velocity and pressure fields are required for faces intersected by the interface. Here,
u"™" and p"**" denote extrapolations of the physical solution fields u}* and p* of the respec-
tive subdomain Q;, onto an extended subdomain Q}*". The extended subdomains Q5 and Q™"
are defined by incorporating all intersected elements completely and depicted in Figure 9.4 via

shaded regions. The respective extrapolations are defined as

uZ,extr<X’ t) — Z NA (X)UA (t) + Z NA~ (X)lpiit;; (X7 t)ﬁA (t), (922)
A€Ey Aegem‘,k

pZ,extr(X’ t) — Z NA(X)pA(t> + Z NA(X>T?};€ (X, t)ﬁg(t% (923)
A€y, Aegenr,k
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using the extrapolated enrichment function

extr +2 for k = +
Yo 1) = {_2 for k — — (9.24)

Here, & denotes set of all nodes contained in Q" and &, the set of enriched nodes whose
associated (enriched) shape functions and degrees of freedom contribute to the solution in €
(i.e., all enriched nodes outside of ;). The extrapolated weighting functions v}"**" and ¢/"**" are
defined analogously. Figure 9.5 exemplifies the extrapolation of the solution field onto the entire
element domain Q€. Therefore, a one-dimensional discontinuous solution field «” is considered
on a two-dimensional bilinearly-interpolated quadrilateral element with jump enrichment. The

element is intersected by the interface at £, = 0. Below the depiction of ", both the extrapola-

Figure 9.5: Extrapolation of solution field.
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t10n u™ of u" from the element subdomain Q¢ onto Q¢ as well as the extrapolation u’

u from Q¢ onto Q¢ are provided.

h,ext
X e

To guarantee the robustness of the overall method and to sufficiently stabilize the two-phase flow
formulation, the following face-oriented ghost-penalty and fluid stabilization terms are addition-
ally incorporated in the interface region:

BFOStab(Vh> qh' uh7 ph) =

Z Z Z (’ngﬂ h (i— 1+1HD2 hextr]] [[Dz hextr]]>

ke{+,—} feFy i=l1

F Y ey (e

+3

[[Dz h, extr]] [[Dz h, extr]]>

ke{+,-} feF;, i=1 r
: VoohF ' . (9.25)
+ £ Z ,EXtr Dz extr
N Z Z Z e n Pk”uZ exeroo N thf II H [[ ]]
ethmd e =l Ay 6 120A1 rf
+ Z Z <'7 Ok |uh Jextr -1y |]’L IIV h, extr]] Hv h, extr]]>r |
ke{+,—} f€Fk f

4+ Z Z (,ydlvp H hextrHooh [[V hextr]] [[V . usz,extr]]>rf .

ke{+,—} fe€Fr

The first and the third term are the viscous and pressure face-oriented ghost-penalty stabiliza-
tion terms as suggested by Burman and Hansbo [46] for stationary problems governed by the
Stokes equations. For viscous-dominated problems and independent of the order of the elements,
the viscous face-oriented ghost-penalty stabilization term controls the instability of Nitsche’s
method arising from pathological intersections of the elements and thus enables the convenient
choice of an intersection-independent penalty parameter. Consequently, the penalty parameter
remains bounded and an ill-conditioning of the system is prevented. For viscous-dominated
problems, this term leads to robust and stable enrichment values for the velocity. According to,
e.g., Burman and Hansbo [46] as well as Burman and Zunino [47], face-oriented ghost-penalty
stabilization terms have to address all polynomial orders contained in the finite element inter-
polation space. Here, [ denotes the highest polynomial order and D?(-) the normal derivative of
order ¢ on the face. For the used trilinearly-interpolated hexahedral elements, [ is set to 2, includ-
ing contributions of mixed derivatives. In contrast to the pressure face-oriented ghost-penalty
stabilization term presented by Burman and Hansbo [46], which merely scales as hff“ / g, the
present term accounts for problems governed by the incompressible Navier-Stokes equations by
enhancing its scaling with a convective and a transient contribution. Definitions for the pressure
stabilization term scaling merely taking into account two of the aforementioned three contri-
butions may be found, e.g., in D’Angelo and Zunino [77] as well as in Burman et al. [48].
The present set of coefficients for the three constituents is inspired by stabilization parame-
ters used in the corresponding PSPG term of the residual-based fluid stabilization (see Franca
and Valentin [96] and Barrenechea and Valentin [17]). The same switching between the differ-
ent regimes is applied for the extended penalty term based on mass conservation (see last term
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of equation (9.19)), which is related to the pressure. Furthermore, penalizing not only jumps in
the gradient (i.e., © = 1), as required to balance the inf-sup instability due to the equal-order
interpolation for velocity and pressure, but also controlling all higher-order derivatives D'py,
with ¢ > 1 yields well-behaved pressure enrichment values. Furthermore, the inclusion of a
reactive face-oriented ghost-penalty stabilization term (second term) for transient problems is
proposed here. Potential benefits owing to an inclusion of this term were already recognized
by Schott and Wall [276], but not further considered. Again, a one-step-f scheme for tempo-
ral discretization is assumed. Similar to the viscous face-oriented ghost-penalty stabilization
term, this term controls the velocity enrichment values for transient problems when discretized
with a small time-step length A¢. To provide convective stability on the extended domain, a
convective face-oriented fluid stabilization term, as also applied by Schott and Wall [276] for
embedded boundaries arbitrarily intersecting the grid, is presented in the fourth term. Here, ny
denotes the unit normal vector on the face f. For high-Reynolds-number flows, additional sta-
bility can be obtained on the extended domain by adding a face-oriented fluid stabilization term

penalizing jumps of V - uZ’em across element faces (fifth term). Alternatively, the scaling in

the fourth term can be extended to (" |up ™" - ny| + ¥ o ||uy || ) h3. The fourth and fifth
term come along with an additional ghost-penalty effect for convection-dominated problems and
contribute to the ghost-penalty stabilization terms by ensuring stable velocity enrichment values
for arbitrarily intersected elements. Independent of the position of the interface, all these terms
improve the conditioning of the matrix system. As a consequence, a manipulation of the enrich-
ment based on a user-defined tolerance is neither required nor applied. In accordance with the
values provided in literature for face-oriented ghost-penalty and fluid stabilization terms (see,
e.g., Burman [43] and Schott and Wall [276]), the corresponding coefficients are chosen to be

Y =k =7 =207 = 102 = 0.05.

9.4 The Final Coupled Formulation

Equipping the standard Galerkin terms for both subdomains as well as the interface, given in
equations (9.13) and (9.14), with the interface terms (9.19) related to Nitsche’s method as well as
the face-oriented ghost-penalty and fluid stabilization terms (9.25) and additionally incorporating
appropriate residual-based multiscale terms in the interior domain of the fluids, the final coupled
variational multiscale formulation for incompressible two-phase flow in the entire domain €2
reads: find (u”, p") € S x S such that

BNS (Vh, qh; uh, ph) + BRBStab(Vh7 qh; uh> ph)

(9.26)
+ BNit(th q"; uh,ph) + BFOStab(Vha q" uh,ph) = €NS(Vh)
for all (v", ¢") € Yhemr x Vz’}’em. The enriched finite dimensional subspaces are given by
Sl .— S & span {[NA(X)‘P ) VA e 5} , 9.27)
Spem = 8" @ span { Nz(x)¥ 5(x,t) VA € Eenr } (9.28)
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Vi = V@ span { [Nz () W(x, )] VA € Eu (9.29)
V=V @ span { N(x)¥ 4(x,t) VA € Eenr} (9.30)

where S, S", V! and V) are given according to equations (3.31) to (3.34). The compact
from Bgpsun (V" ¢; u”, p") is defined as

Brpsun(V", ¢"; u, p") = (Puh : VVhJMI‘{\L/I)Q*i + (V v 7'c7“g)th
N (th TMI‘h) (9.31)
) M Ql’
where (-, -)ar = > crn((+;-)as + (,-)as ), and comprises, in this order, an SUPG, grad-div
and PSPG term. These stabilization terms account for instabilities of the standard Galerkin
method when applied to the incompressible Navier-Stokes equations and lead to a stabilized
method within both subdomains; see Section 3.3 for elaboration. Residual-based stabilization
terms may be derived within the framework of the variational multiscale method as shown in
Chapter 3 for one fluid. For a step-by-step derivation of formulation (9.26) as a residual-based
variational multiscale formulation for two-phase flow, the reader is referred to Rasthofer and
Schott et al. [262].

In Brasus (V" ¢";u, p™), the discrete residuals of continuity and momentum equation for each
subdomain Q;, read

réy=V-uy, (9.32)
oul
r{\‘d,k = pk—atk + pkuZ . VuZ + VpZ — 2,V - e(uZ) — PLE. (9.33)

The stabilization parameters 7y, and 7¢ ;, as presented for incompressible single-phase flow in
Section 3.3 are adopted for two-phase flow. Hence, 7y ;, reads as

1
™k = > )
\/<2Ltk) + (Pku@ : G(PkuZ) + Ci(u)*G : G

(9.34)

The calculation of 7¢, from 7y as given in equation (3.41) remains unaffected. The splitting
of these quantities according to € implies their evaluation with respect to the subdomains, i.e.,

Y = i T¢ = T¢ e ™ = Tk and 7c = e, forall x € Q; with k € {+, —}.

9.5 The Fluid-Level-Set Coupling Algorithm

In this section, the fluid-level-set coupling algorithm is summarized. Additionally, two further
specific issues, i.e., numerical integration and time discretization, are briefly addressed. These
issues, which are also relevant for the successful application of the present approach, were thor-
oughly discussed in the accompanying thesis by Henke [140] and therefore do not constitute a
particular subject of the present one.
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Owing to the discontinuities of the physical properties and the enriched shape functions in inter-
sected elements, the quadrature of the variational formulation deserves further considerations.
Since quadrature rules for numerical integration commonly rely on the assumption of suffi-
ciently smooth functions, they can not be applied straightforwardly to the present situation. For
trilinearly-interpolated hexahedral elements as used in this thesis, the interface usually subdi-
vides an element into two parts assigned to the subdomains €2, and Q_, although some special
configurations with multiple parts may also be encountered. Consequently, domain integrals are
evaluated separately for each part of an intersected element. As suggested in early works on the
XFEM (see, e.g., Moés et al. [219]), a procedure, usually referred to as tessellation, is used in
this thesis. In doing so, all parts of an intersected element are further subdivided into integration
cells of simple geometric shape, such as hexahedra or tetrahedra, for which standard quadrature
rules can be applied. More sophisticated integration techniques bypassing any further volume
decomposition of arbitrarily shaped element parts have been proposed in the meantime, for in-
stance, by Sudhakar ef al. [298], who recently developed an efficient strategy by utilizing the
divergence theorem. Concerning further details on the construction of the domain integration
cells as well as the simultaneous construction of boundary integration cells, which provide a
discrete representation of the interface and are used for evaluating interface integrals, the reader
is referred to the thesis by Henke [140]. Moreover, a thorough presentation of the numerical
integration in domain integration cells and on boundary integration cells is likewise contained
therein.

When using a pure Eulerian description together with moving interfaces or boundaries, ad-
ditional difficulties are encountered, which manifest themselves as soon as discretization in
time is considered. This issue has been elaborately addressed in the accompanying thesis by
Henke [140] and is therefore only briefly summarized here. Since the subdomains € with
k € {+, —} evolve with time, they incorporate new parts of the domain Q, while releasing other
parts. As claimed by Chessa and Belytschko [62] for the XFEM, merely a space-time ansatz
enables a consistent formulation for moving interfaces, since it allows for fully resolving the in-
terface with respect to space and time. Discretizing such problems in time using finite difference
schemes gives rise to solution fields defined on subdomains assigned to the different involved
time levels, and special care is thus required. Since the solution at the current time level n + 1
is computed with respect to Iy (%,,+1), values for the previous time levels have to be initialized
in an appropriate way in the newly captured parts of (¢, ). Concerning the present XFEM,
this issue is not only reflected by nodes which change sides with respect to the interface but
also by time-dependent enriched shape functions as well as a continuously changing map of en-
riched nodes, that is, there are nodes which have been enriched at the previous time level but are
not enriched at the current one and vice versa. For temporal discretization, a one-step-6 time-
integration scheme is applied to the incompressible Navier-Stokes equations. Hence, solution
fields at time level n and n + 1 are involved in the time-discrete formulation. The finite element
approximation of the velocity field for time level n + 1 is given by

wy () =D Na®)uamer+ > Ng(x) i (X) 4,0, (9.35)
Ae& Aegenr(thrl)

VZH (x) = Z Na (X) Vanir + Z Nj (%) Wit (X) ¥ 4001 (9.36)
Ae€& Aegenr(tn-H)
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and for the time level n as

hrml (tnt1) Z NA 1m n+l + Z NA (X) an-‘,—l (X) ﬁl;{?;l(tnﬂ)' (9.37)

A€ Aegenr(twwrl)

The solution and weighting functions for the pressure are defined analogously. Since the strong
form is discretized in space with respect to Iy (£,,+1), the weighting function is chosen accord-
ingly as given in equation (9.36); see also, e.g., Chessa and Belytschko [62] as well as Gersten-
berger [115]. Since u!’ , with k € {+, —} has been computed with respect to Qy(t,,), it does not
fit to Q4 (t,+1), as aforementioned. For proper time integration, the complete solution u” has to
be adapted to the current interface position Iy (¢,.1) in an appropriate way, indicated by the
additional superscript [y (¢,+1) in equation (9.37).

Two strategies to estimate ul ") are used in the present thesis. In Rasthofer er al. [259], a

quasi-static enrichment strategy was proposed for weak discontinuities, assuming that the dif-
ferences in the solution field between each side of the interface are sufficiently small. Merely
retaining the standard finite element part and omitting the enrichment of the previous time level
leads to a smeared discontinuity when evaluating contributions of the previous time level:

uz mt n+1 ZNA uAm;Ltn i (938)
Aef

Application of this approach assumes that the pressure, which exhibits a strong discontinuity,
is exclusively evaluated at the current time level n + 1. The approach suggested by Henke et
al. [141] consists of two parts and may be applied to both strong and weak discontinuities.
The standard degrees of freedom of all nodes that change sides with respect to the interface
are adapted by a semi-Lagrangian approach. To transfer the standard degrees of freedom to
the current interface position, a virtual Lagrangian particle is assumed at the location x4 of an
affected node. This particle is then tracked back in time to its location XL & at the previous time
level:

X = x, — Atul (x5, (9.39)

After having found the origin, the solution at the previous time level is advanced to the current
position of the virtual particle, i.e., the position of node A:

ylmtn) ul (x5 4 At (x5 - vl (x5, (9.40)

Amn

Enrichment degrees of freedom uz‘“;f 1) are treated differently. All newly created enrichment
degrees of freedom are recovered in a node-wise manner by exploiting the jump in the primary
variable and its gradient. Other approaches to time integration in the context of the XFEM may
be found, e.g., in Fries and Zilian [100] and Gerstenberger [115]. For further discussion and

references, the reader is once more referred to the thesis by Henke [140].

The two-way coupling between the fluid and the level-set field is accounted for by a partitioned
approach as illustrated in Algorithm 9.1. At the beginning of each time step, it is first solved for
the level-set equation (8.9) and then for the continuity and momentum equation (9.26). Depend-
ing on a prescribed number of iterations n; or on whether a given tolerance criterion has not
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Algorithm 9.1: fluid-level-set coupling algorithm

1 initialize fluid and level-set solver
2
3 while time loop not finished: ¢t < tepg

5 while fluid-level-set iteration not finished: not converged / i + 1 < nj
6

7 fluid solver — level-set solver: transfer uZ+Z 1

8

9 level-set solver:

10 solve for d)fol

n compute V1!

12

13 level-set solver — fluid solver: transfer qbelrl, ng)ﬁﬁl
14

15 fluid solver:

16 construct domain and boundary integration cells

17 update distribution of enrichment degrees of freedom
18 adapt u” to T (#,11)

19 solve for uﬁ’f{] and pZ’f:]

20

21 end while

22

23 fluid solver — level-set solver: transfer uZ 41

24
25 level-set solver:

26 solve for gbz 41

27 if reinitialization

28 reinitialize gbfl 41

29 end if

30 if particles

31 solve for xp 5,11

E3) perform particle correction
33 end if

34

35 update time step: u/! = uZH, ph = pZH, o =¢
36

37 end while

h
n+1
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yet been achieved, further iterations between the fields may be performed. At the end of each
time step, it is finally solved for the level-set equation another time. This procedure turned out
instrumental in coupled fluid-scalar-transport problems in general by improving the accuracy
of the approach, while providing an efficient computational method (see, e.g., Gravemeier and
Wall [122]).

In addition to the overall cycle, quantities transferred between the fluid and the level-set solver
are explicitly indicated in Algorithm 9.1. Since the same spatial discretization (i.e., grid and
trilinearly-interpolated hexahedral elements) is used for both the fluid and the level-set field,
node-based velocity and level-set values can easily be transferred between the two fields, and
projections from the velocity space to the level-set space and vice versa are not necessary. More-
over, the aforementioned specific issues of the present approach are included. Before it is solved
for uZ’fjl and pi{l, domain and boundary integration cells are constructed. This step is fol-
lowed by an update of the distribution of the enrichment degrees of freedom and the applied
algorithm that transfers the velocity solution of the previous time step to the current interface
position. As already explained in Section 8.1, a continuous gradient of ¢" is computed and
transferred to the fluid solver for the purpose of evaluating the curvature in the surface-tension
term (see right-hand-side form (9.14)). Corrections of the level-set field via reinitalization and
particles are arranged at the end of the time step. In practice, ny; = 1 is usually chosen. Again,
all implementations have been realized in BACI (see Section 4.6).

9.6 Numerical Examples for Laminar Two-Phase Flows

The proposed method is validated for various two- and three-dimensional numerical examples
of increasing complexity: two-dimensional Rayleigh-Taylor instabilities at a lower and a higher
Atwood number, a two-dimensional collapsing water column, three-dimensional rising bubbles
at various shape regimes as well as a three-dimensional bubble coalescence. Since hexahedral
elements are used for the fluid and the level-set field, two-dimensional configurations are com-
puted with one element layer in the third dimension. Slip and no penetration boundary conditions
are applied for the velocity at the surfaces orthogonal to the respective two-dimensional com-
putational domain, i.e., to the third dimension. For the fluid field, the parameter # of the time
integration scheme is set to 1.0, that is, a backward Euler scheme is applied. The movement of
the interface as well as the related enrichments are taken into account by the semi-Lagrangian
approach, as described in Section 9.5. For the subsequent investigations of laminar flows, the
face-oriented fluid-stabilization term related to the incompressibility constraint (i.e., the last term
of lS’FOStab(vh7 q";ut, ph)) is omitted. Reinitialization of the level-set field is applied periodically
throughout the simulation and performed by explicitly calculating the distance of each node from
the interface.

9.6.1 Two-Dimensional Rayleigh-Taylor Instability

An important example of a hydrodynamic instability is the mixing of two fluids of different den-
sities owing to opposite directions of density and pressure gradient, which is usually referred to
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as Rayleigh-Taylor instability. If a heavier fluid is placed on top of a lighter one in a gravitational
field, an initial perturbation of the interface separating the two fluids starts to grow. Stratified flu-
ids at rest under the influence of gravitation were first investigated by Rayleigh [297] at the end
of the 19th century. In the 1950s, Taylor [307] renewed this problem by considering accelerated
fluids. Both scientists theoretically predicted a linear growth stage of the perturbation of the in-
terface, which was then experimentally confirmed by Lewis [190]. While Rayleigh and Taylor
assumed inviscid fluids, their stability analysis has been extended to take into consideration other
physical effects such as viscosity and surface tension in the meantime (see, e.g., Bellman and
Pennington [30] as well as the textbook by Chandrasekhar [58]).

A perturbation of the interface leads to a misalignment of the pressure and density gradient,
which in turn causes baroclinic torques that set the system into motion. According to the review
article by Sharp [285], the subsequent growth of the instability can be roughly divided into four
stages. If the initial perturbations are sufficiently small, their amplitudes grow exponentially
with time. In the first stage, the evolution of the Rayleigh-Taylor instability can therefore be
mathematically described using linear stability theory. After the amplitude has grown to 10% to
40% of its wave length, the second stage is reached. During the second stage, the amplitudes of
the perturbations grow non-linearly. Heavy fluid falls as spikes into the lighter fluid, while the
lighter fluid rises as bubbles into the heavier fluid. Moreover, the development strongly depends
on the Atwood number, which is defined as

At = u’ (9.41)
P+t P

where p, denotes the density of the heavier fluid and p_ the density of the lighter one. Three-
dimensional effects may also come into play. The development of secondary structures on the
spikes as well as interactions among the bubbles characterize the third stage. The Kelvin-Helm-
holtz instability at the side of the spike may cause the fluids to roll up, leading to the typi-
cal “mushroom”-like shape of the interface. According to Sharp [285], this effect is more pro-
nounced at lower density ratios. Eventually, chaotic or turbulent mixing is encountered, which
constitutes the last stage of the evolution of the Rayleigh-Taylor instability.

For further analysis, a semi-infinite configuration of two stratified fluids in a gravitational field g,
acting perpendicular to the interface, is assumed. The heavier fluid with density p, is placed on
top of the lighter fluid with p_ (i.e., p_ < p, ). Considering a single-mode perturbation of the
planar interface with wave number k, the asymptotic exponential growth of its amplitude A(t)
in the linear regime, i.e., Ak < 1, is given by

A(t) ~ Age, (9.42)

where ¢ denotes the growth rate and Ay the initial amplitude. For inviscid fluids, the growth rate ¢
depends on the Atwood number At, the gravitational acceleration g = ||g||, the surface-tension
coefficient v and the wave number £ as

k3
¢ = \/Atgk Tt 7_|_ P ; (9.43)
+ —
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see, e.g., Piriz et al. [249] and Sharp [285] for derivation. Surface tension stabilizes perturbations
with wave numbers k& > k., where

(9.44)

denotes the critical wave number. For vanishing surface-tension effects, the growth rate increases
unbounded with k. An analytical relation for the growth rate of the amplitude of the perturbation
also taking into account viscous fluids may be found, e.g., in the textbook by Chandrasekhar [58].
Assuming v = v, = v_ for the kinematic viscosity, defined as v = pu/p, and considering wave
number k, growth rate ¢ and surface-tension coefficient v in non-dimensional form, marked by
(*) in this section, as

213\ 3
F= (” i ) , (9.45)
g
3\ 3
¢= (%) , (9.46)
g
5= 7 , (9.47)

(ps + p) (g)

the non-dimensional growth rate ¢ is obtained via
<= |wm) 1], (9.48)
where 7(k) is the solution of the fourth-order polynomial
yt+dp y? + (2 — 1207 yF — (4= 12p )y + (1 — 4p") — kAt + k7 '9 =0 (9.49)

with non-dimensional coefficient p* = (pyp_)/(p— + p;)*. Apart from equation (9.49), which
may be numerically solved for y(l;:) to finally obtain ¢ from equations (9.48) and (9.46), an ap-
proximate analytical form for ¢ may also be found in literature (see, e.g., Piriz et al. [249]). How-
ever, that expression is only accurate to within 11% and thus inappropriate for the subsequent
investigations. Concerning the stabilization of perturbations by surface tension, equation (9.44)
also holds true in the considered viscid case; that is, the wave numbers stabilized by surface

tension are independent of viscosity

The Rayleigh-Taylor instability has also become a widely-used test case to validate numeri-
cal methods developed for two-phase-flow problems; see, e.g., Nourgaliev et al. [233], Pochet
et al. [250], Popinet and Zaleski [253] as well as Puckett et al. [256]. Furthermore, Tryggva-
son [315] presented a comprehensive numerical study of the Rayleigh-Taylor instability exam-
ining Atwood numbers ranging from At = 0.0 to 1.0 as well as two-dimensional single and
multi-mode simulations. Investigations of the XFEM using kink enrichments may be found,
e.g., in Rasthofer et al. [259]. To demonstrate the ability of the proposed method to accurately
simulate two-phase flows, numerical predictions for the growth rate are examined comparing
them to the respective analytical values. Therefore, Rayleigh-Taylor instabilities at two Atwood
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numbers are investigated including the effect of surface tension to some extent. A rectangular
domain of size Q = [-0.5L,0.5L] x [-0.5H,0.5H], where L = 1.0m and H = 4.0 m, is con-
sidered and discretized using 64 x 256 elements. The initial interface is described by a cosine
function as "

Ty = Ao COS(]C.T]) - E, (950)
where k& = (27)/L is the wave number of this single-mode perturbation. As usual, i denotes the
element length. Shifting the interface by —h /2 ensures that interface and element boundaries are
separated in an appropriate manner such that the interface is protected against further potentially
disturbing influences. In vertical direction, gravitation is applied as g = (0.0, —10.0)T m/s2. Pe-
riodic boundary conditions at the vertical walls and no-slip boundary conditions at the top and
bottom wall are assumed. Initially, a zero-velocity field is prescribed, and the time-step length is
chosen to be At = 0.005 s for all simulations. Density ratios p, /p_ = 1.5 and p, /p_ = 1000
are examined. The densities are setto p, = 1.5kg/m? and p_ = 1.0kg/m? for the lower density
ratio and to p; = 1.0kg/m? and p_ = 0.001 kg/m? for the higher one, resulting in At = 0.2 and
0.998, respectively. The initial amplitude is chosen to be Ay = 0.005 m for the lower density ra-
tio and Ay = 0.0001 m for the higher density ratio. In accordance with the analytical expression
presented above, the kinematic viscosities v, and v_ are assumed to be equal for both cases, that
IS,V =v_=v.

First, the non-dimensional growth rate ¢ is estimated for various % in the absence of surface
tension (i.e., ¥ = 0). To change £, the kinematic viscosity v is varied. In Figure 9.6, the evolution
of the hydrodynamic instability is exemplarily shown for the lower density ratio and k& = 0.1.
Defining the Reynolds number as

Re = : (9.51)

it amounts to 1000 for this configuration. For ¢ = 1.5's, the development of the Rayleigh-Taylor
instability is about to leave the linear regime. After entering the non-linear regime, secondary
Kelvin-Helmholtz instabilities are created at the flanks of the perturbation, and the fluids start
to roll up as observed for ¢ = 2.0s. Eventually, the interface forms a “mushroom”-like shape.
Figure 9.7 displays the evolution of the amplitude of the perturbation as a function of time as
well as the analytical relation between & and ¢ together with the computed growth rates in non-
dimensional form for the lower density ratio p, /p_ = 1.5. The growth rate ¢ is determined
by a linear least-squares approximation of the transformed amplitude In(A(t)/Ap) in the time
interval of exponential growth. The respective results for the higher density ratio p, /p_ = 1000
are shown in Figure 9.8. For both density ratios, an excellent agreement between analytical
solution and numerical results is observed for a wide range of wave numbers.

Second, the accuracy of the proposed method for two-phase flows including surface tension is
investigated. Therefore, the effect of surface tension on the evolution of the hydrodynamic in-
stability is considered for a fixed non-dimensional wave number & = 1.0 and the lower density
ratio. Rearranging equation (9.44), it follows that the critical surface-tension coefficient, stabiliz-
ing the present case, amounts to 7, = 0.1267 kg/s*. The non-dimensional growth rates obtained
for various surface-tension coefficients v, with v < ~, are displayed in Figure 9.9 and compared
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Figure 9.6: Velocity magnitude distribution (red color indicates high velocity and blue color low velocity)
visualized on the left half of each subfigure as well as subdomains Q. (colored in red) and
Q_ (colored in blue) visualized on the right half of each subfigure at (from left to right) times
t =1.5,2.0,2.5 and 3.0 s for the Rayleigh-Taylor instability at At = 0.2 and Re = 1000.

to the analytical solution. Again, the predicted results perfectly match the analytical values. As
expected, surface tension damps the evolution of the hydrodynamic instability.

9.6.2 Two-Dimensional Collapsing Water Column

A two-dimensional column of water collapsing under the influence of gravity is considered as
the second numerical example. This flow problem has not only frequently served as a numerical
test case for two-phase flows (see, e.g., Elias and Coutinho [89], Greaves [128], Kees et al. [171]
and Sauerland and Fries [272]), but was also studied experimentally many times (see, e.g., Mar-
tin and Moyce [208] for an early work). Analogously to Kees et al. [171], the dimensions of the
domain, representing a tank in which the water column breaks down, are Q = [0,4L] x [0,2.4L],
where L = 0.146 m. The dimensions of the water column, located at the left-hand side of the
tank, are Q, = [0, L] x [0,2L]. Slip boundary conditions are prescribed at the side walls and
the bottom of the tank. A zero-traction Neumann boundary condition is prescribed at the top
of the tank. As a result, reverse flow may locally occur. Since the total momentum flux has to
be prescribed at inflow parts F}If,u of the Neumann boundary (i.e., where u” - n < 0), a term
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Figure 9.7: Transformed amplitudes In(A(t)/Ap) over time ¢t for non-dimensional wave numbers
k = 0.10, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00 and comparison of non-dimensional
growth rates ¢ obtained from simulations to the analytical solution for the Rayleigh-Taylor
instability at At = 0.2. The solid lines in the left diagram mark the interval of the linear
least-squares approximation.
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Figure 9.8: Transformed amplitudes In(A(t)/Ap) over time ¢t for non-dimensional wave numbers
kE =0.10,0.25,0.50,0.75, 1.00, 1.25, 1.50, 1.75 and 2.00 and comparison of non-dimensional
growth rates ¢ obtained from simulations to the analytical solution for the Rayleigh-Taylor in-
stability at At = 0.998. The solid lines in the left diagram mark the interval of the linear
least-squares approximation.
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Figure 9.9: Transformed amplitudes In(A(t)/Ay) over time ¢ for surface-tension coefficients v = 0.000,
0.020, 0.040, 0.060, 0.080, 0.100, 0.120 and 0.125 kg/ s and comparison of non-dimensional
growth rates ¢ obtained from simulations to the analytical solution for the Rayleigh-Taylor
instability at At = 0.2. The solid lines in the left diagram mark the interval of the linear
least-squares approximation.

as —(v", pu"(u" - n))ry has to be added to the left-hand side of formulation (9.26); see Sec-
tion 3.2 for further details. To replicate a combination of water and air, as usually considered in
the experimental setups, the liquid density is set to p, = 1000.0kg/m? and the gas density to
p— = 1.0kg/m>. The corresponding dynamic viscosities are chosen to be 1, = 0.001kg/(ms)
and = 0.00001 kg/(ms), respectively. Surface tension is not included in this example. The
gravitation vector, acting in vertical direction, is g = (0.0, —9.81)T m/s?. Three different dis-
cretizations, defined such that the elements are not aligned with the interface at the beginning of
the simulation, are considered for this example. For the coarser discretization, 62 x 38 elements
are used. The medium and finer discretizations consist of 122 x 74 and 246 x 147 elements,
respectively. Hence with each refinement step, the number of elements in each spatial direction
is approximately doubled. The time-step length, which is set to At = 0.0006s for the coarser
discretization, is successively halved.

Figure 9.10 illustrates the break-down process. Results obtained with the medium discretization
are shown. The various interface positions may be compared to the respective results presented
by Kees et al. [171] (see Figure 14 therein), which agree exactly with the present ones. The
corresponding pressure and velocity fields at time ¢ = 0.2 s are shown in Figure 9.11. While the
pressure field mainly exhibits a hydrostatic distribution, the velocity field experiences large gra-
dients in the interface region. Moreover, the tip of the water front moves at the maximal speed,
and a vortex emerges on top of the water column. The propagation of the water front, i.e., the
position z} of its tip, measured are the bottom wall, as well as the height x}' of the column, mea-
sured at the left wall, as a function of time are depicted in non-dimensional form in Figure 9.12.
Numerical results extracted from other studies are included in addition. Data taken from Kees
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Figure 9.10: Collapsing water column at (from left to right and from top to bottom) times ¢ = 0.1,0.2,0.3
and 0.4 s using 122 x 74 elements.

et al. [171] are marked by “KAFB11” and from Greaves [128] by “G06”. In Kees et al. [171],
several discretizations were used. Here, two of the respective data sets are taken into account. To
distinguish between them, their notation is extended by the respective resolution. Experimental

—

Figure 9.11: Pressure (left) and velocity magnitude (right) distribution for the collapsing water column at
time ¢ = 0.2 s using 122 x 74 elements (red color indicates high velocity/pressure and blue
color low velocity/pressure).
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Figure 9.12: Non-dimensional width 2} /L and height 3 /(2L) of the collapsing water column as a func-
tion of time in non-dimensional form using 62 x 38, 122 x 74 and 246 x 147 elements.

data presented in Martin and Moyce [208] and denoted by “Exp MMS52” are likewise considered
for comparison. Since two experimental data sets are available in Martin and Moyce [208], the
respective column width is additionally indicated. Similar to the included numerical reference
data, the results obtained with the proposed method capture the experimentally predicted evolu-
tion of the height of the column on all discretizations. In contrast, the development of its width
is overestimated by all simulations. However, also the experimental data somewhat deviate from
each other. The observed discrepancy between experiment and simulation may be attributed to
the slip boundary condition prescribed at the bottom of the numerical test setup. Analogously,
small differences between the results obtained on the different discretizations considered in this
work are merely observable for the width of the water column. While the water front propagates
slightly slower for the coarser discretization, the curves obtained with the medium and finer
discretization are hardly distinguishable, and convergence can be stated.

9.6.3 Three-Dimensional Rising Bubbles

Three-dimensional gas bubbles rising in a container filled with liquid are studied next. Due to
buoyancy, the bubble starts to move upwards, and a flow field evolves. Under the influence of
this flow field, the bubble deforms until the stresses at the interface are in equilibrium. Following
Clift et al. [67], rising bubbles may be characterized by three non-dimensional numbers, E6tvos
number Eo, Morton number Mo and Reynolds number Re, which are defined as

_ 2

Eo = M’ (9.52)
4 _

Mo — g(m()pip;%} p-) 9.53)
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Re = »+UD (9.54)
Mt

where D is the diameter of the bubble and g = ||g||. For rising bubbles, the characteristic veloc-
ity U of Re may be identified as the terminal rise velocity. Depending on these non-dimensional
numbers, three regimes are usually distinguished for the bubble shapes; see, e.g., Clift et al. [67].
Almost spherical bubbles define the first regime. Ellipsoidal bubbles, which are summarized in
the second regime, are somewhat oblate, while keeping a convex interface. Bubbles belonging
to the third regime are characterized by a cap-like shape. If the rear of the cap-like bubble ex-
hibits an indentation, the shape may also be denoted as dimpled. Cap-like bubbles that tail thin
filaments at the border of a flat base are also named skirted. The correlation between the bubble
shape and the non-dimensional numbers Eo, Mo and Re is illustrated in the diagram displayed
in Figure 9.13 (see Clift et al. [67]), which is commonly referred to as Grace’ diagram. This
diagram, which is based on experimental data, may be used to predict terminal rise velocities
and shape regimes.
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Figure 9.13: Grace’ diagram (extracted from Clift et al. [67]).

Three-dimensional rising bubbles are frequently examined in literature as a numerical test case
for two-phase flows; see, e.g., Ausas et al. [8], Marchandise et al. [207], Nagrath et al. [228]
and Sussman et al. [303]. Here, the setup presented by Ausas et al. [8] is considered. Accord-
ingly, the dimensions of the container are Q = [0, L] x [0, H] x [0, L], where L = 2.25m and
H = 4.0m. Initially, the bubble is at rest and has a spherical shape with diameter D = 1.0m.
The bubble center is positioned at (0.5L,0.25H,0.5L)". Gravitation acts in vertical z,-direction
as g = (0.0, —10.0,0.0)" m/s%. The density of the liquid is assumed to be p, = 1.0kg/m? and
of the gas to be p_ = 0.001 kg/m?, resulting in a density ratio of p, /p_ = 1000. The dynamic
viscosity j of the liquid is chosen such that the various regimes, defined in terms of E6tvos and
Morton number, are reached. The dynamic viscosity p_ of the gas is determined by keeping the
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viscosity ratio g, /pu— = 1000 fixed. Table 9.1 summarizes the physical parameters and result-
ing non-dimensional numbers of all investigated bubbles. The parameters of the spherical and
skirted bubble are identical to the ones given by Ausas et al. [8], except for the lower viscosity
i in case of the skirted bubble. In contrast to Ausas et al. [8], where ;. was chosen to be
0.001 kg/(ms), it is set to u_ = 0.0001 kg/(ms) here to retain a constant viscosity ratio for all
examples. Following Clift et al. [67], ;1— does only marginally influence the reached rise velocity
as well as the shape. Hence, notable differences compared to Ausas et al. [8] are not expected.
The setup of the remaining two regimes is defined such that the non-dimensional numbers given
by Marchandise et al. [207] are matched. The time-step length is set to At = 0.003 s, except for
the skirted bubble. Due to the higher Reynolds number, At is reduced to 0.001 s for this case. The
domain is discretized using 45 x 80 x 45 equally spaced elements. Slip boundary conditions are
prescribed at the side walls and the bottom of the container. At the top, a zero-traction Neumann
boundary condition is assumed. As explained for the preceding example, a convective inflow
term on the Neumann boundary has to be added to the formulation to account for potentially
recirculating flow at the top of the container.

Table 9.1: Physical parameters for three-dimensional rising bubbles depending on the regime: liquid den-
sity p4, gas density p_, liquid dynamic viscosity £, gas dynamic viscosity p—, surface-tension
coefficient v, E6tvés number Eo and Morton number Mo.

regime  po [28] p 5] gy GE] o [3E] v [¥] Eo Mo
spherical 1.0 0.001 03 00003 10 10 8.1-107
skirted 1.0 0001 01 00001 01 100 1.0

ellipsoidal 1.0 0.001 0.3 0.0003 1.0 10 8.1-1072
dimpled 1.0 0.001 0.56  0.00056 0.1 100 982

In Figures 9.14 and 9.15, the developed shapes of the four bubbles are shown together with ve-
locity streamlines in the x;z,-centerplane. While the shape at time ¢t = 2.2 s is displayed for
the slowly-rising dimpled bubble, the shape at time t = 1.1 s is depicted for the remaining ones.
All aforementioned characteristics of the different shape regimes are clearly identifiable from
Figures 9.14 and 9.15. Figure 9.16 illustrates the vertical position x of the center of mass for the
different bubbles as a function of time. In addition, results extracted from Ausas et al. [8] and
marked by “ABI12” are included. Compared to those data, the present method predicts slightly
higher values. As displayed in Figure 9.16, a terminal rise velocity, i.e., a constant gradient,
is reached after an initial transient. Starting from ¢ = 0.4s to 1.2 s, the rise velocity is deter-
mined via a linear least-squares approximation comprising about 60% of the overall simulation
time. Based on this velocity, the Reynolds number can be calculated. Table 9.2 juxtaposes the
Reynolds numbers obtained with the proposed method and various reference data taken from
literature. Apart from the aforementioned data taken from Ausas et al. [8], Reynolds numbers
reported by Marchandise et al. [207] are also included to some extent. These values are denoted
by “MGCRO7”. For all shape regimes, the Reynolds numbers obtained with the present method
are within the range of values reported in other numerical studies and close to the expected
values extracted from Grace’ diagram (see Figure 9.13). In summary, good agreement with the
expected physical behavior of rising bubbles is obtained.
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Figure 9.14: Developed bubble shapes for the spherical regime (top) and the skirted regime (bottom) at
time ¢ = 1.1 s including velocity streamlines in the x;x,-centerplane colored by the velocity
magnitude (red color indicates high velocity and blue color low velocity).

9.6.4 Three-Dimensional Bubble Coalescence

Finally, the coalescence of two three-dimensional rising bubbles is considered. Numerical inves-
tigations of merging bubbles may be found, e.g., in Marchandise et al. [207], Nagrath et al. [228]
and Sussman et al. [303]. Due to the interface connection, this example exhibits a particular
challenge on the robustness of the presented method. A setup analogue to the one presented by
Nagrath er al. [228] is used, except for a slight modification of the initial positions of the bubbles,
which is necessary since the values given in that study result in touching bubbles at the begin-
ning. Two bubbles of the same density and viscosity are considered in a cubic domain of size
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Figure 9.15: Developed bubble shapes for the ellipsoidal regime (top) at time ¢ = 1.1 s and for the dim-
pled regime (bottom) at time ¢ = 2.2 s including velocity streamlines in the x| x,-centerplane
colored by the velocity magnitude (red color indicates high velocity and blue color low ve-
locity).

Q =10, L] x[0, L] x [0, L], where L = 1.0 m. A larger bubble is centered at (0.5L, 0.58,0.5L)"
on top of a smaller one, which is located at (0.5L,0.3L,0.5L)"; see also Figure 9.17. The radius
of the upper bubble is set to R, = 0.15L and the one of the lower bubble to R, = 0.10L. The
density of the bubbles is p_ = 1.0kg/m?>. The density of the surrounding fluid is assumed to be
p+ = 10.0kg/m>. The dynamic viscosities of the bubbles and the surrounding fluid are chosen
to be . = 0.00025kg/(ms) and p. = 0.0005kg/(ms), respectively. Surface-tension effects
are not considered for this example. A gravitational force g = (0.0, —9.81,0.0)" m/s? is applied
in vertical x,-direction. Initially, the two bubbles as well as the surrounding fluid are at rest. Pe-
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Figure 9.16: Vertical position x§ of the center of mass as a function of time ¢ for three-dimensional rising
bubbles at various shape regimes.

Table 9.2: Reynolds numbers Re of three-dimensional rising bubbles at various shape regimes from
present simulations, other numerical studies as well as values extracted from Grace’ diagram.

regime present results  ABI12 [§] MGCRO07 [207] Grace’ diagram [67]

spherical 4.76 3.93 - 5
skirted 16.37 16.22 22.25 20

ellipsoidal 4.15 - 4.25 4

dimpled 1.38 - 1.9 1.5

riodic boundary conditions are prescribed in all three spatial directions. Therefore, an additional
volume force term representing the pressure gradient, which would adjust itself in the presence

Figure 9.17: Initial position of bubbles for coalescence.
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of a bottom wall, has to be enforced. This volume force term prevents the vertical acceleration
of the whole system and is defined as f = —p,,g, where

pm = ap—+ (1 —a)p; (9.55)
is the density of the mixture. For bubbly flow, the void fraction « is given as

ng 47rR13-

— 3
a=) v ©) (9.56)

i=1

where ng is the number of bubbles, which is equal to 2 here, and R; their radius. The vol-
ume of the domain is denoted by V() and amounts to V(Q) = L? for the present configu-
ration. The domain is discretized using 80 x 80 x 80 elements, and the time-step length is set
to At = 0.00025s.

Figures 9.18 to 9.21 display the shapes of the bubbles during the merging process. The initial
stage, where the upper bubble captures the lower one, is shown in Figure 9.18 for time ¢ = 0.05 s
and in Figure 9.19 for a somewhat later time ¢ = 0.1 s. In addition to the shapes of the bubbles,

Figure 9.18: Position of bubbles (left) and velocity magnitude iso-contours in the x| x,-centerplane (right)
at time ¢ = 0.05 s of the coalescence (red color indicates high velocity and blue color low
velocity).
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Figure 9.19: Position of bubbles (left) and pressure iso-contours in the z;x,-centerplane (right) at
time ¢t = 0.1 s of the coalescence (red color indicates high pressure and blue color low pres-
sure).

velocity magnitude iso-contours in the zx;,-centerplane are presented in Figure 9.18, and pres-
sure iso-contours in the same plane are depicted in Figure 9.19. Due to the emerging upward-
pointing jet in the wake of the bubbles, their bases start to move. While the upper bubble behaves
similar to an isolated bubble at the beginning of the process, the lower bubble, which is located
in the wake of the upper one, also exhibits a moving front; see Figure 9.18. As shown in Fig-
ure 9.19, the jets on the bases of the bubbles are caused by the lower pressure values immediately
behind them. In particular, the strong jet of the larger bubble also affects the smaller bubble by
attracting it. Together with the wake at its base, the lower bubble is thus substantially deformed.
Due to the increasing narrowing of the lower bubble, it finally enters the cap formed by the up-
per bubble. At time ¢ = 0.15 s, the front of the lower bubble almost catches the upper bubble,
as shown in Figure 9.20, and the coalescence of the bubbles is initiated. The merged bubbles at
time ¢ = 0.2 s are then shown in Figure 9.21. For illustration of the coalescence, Figures 9.20
and 9.21 also provide the interface in the x;z,-centerplane. The complete process notably con-
forms with the respective simulation presented by Nagrath et al. [228] (see Figures 12 to 20
therein).
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Figure 9.20: Position of about to merge bubbles (left and middle) and interface in the x;x,-centerplane
(right) at time ¢ = 0.15 s of the coalescence.
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Figure 9.21: Position of merged bubbles (left and middle) and interface in the x| x,-centerplane (right) at
time ¢ = 0.2 s of the coalescence.



Turbulent Two-Phase Flows

Starting from the fundamental concept of the VMM established in Chapter 3, the AVM* is devel-
oped as a novel and promising approach to LES of turbulent incompressible single-phase flow in
Chapter 4. Resuming the mathematical description for two-phase flow introduced in Chapter 7,
the interface separating the two fluids is assumed infinitely thin, and surface-tension effects as
well as different physical parameters for both fluids give rise to strong and weak discontinuities
in the solution fields at the interface. To accurately represent an arbitrary evolution of the inter-
face, the level-set method, which allows for capturing the interface on a fixed grid, is addressed
in Chapter 8. The face-oriented stabilized Nitsche-type extended VMM, devised in Chapter 9,
enables the appropriate incorporation of the involved discontinuities at the interface into the fi-
nite element approximation and constitutes a novel and robust approach applicable to transient
convection-dominated problems. All listed ingredients are finally combined into an eXtended
Algebraic Variational Multiscale-Multigrid-Multifractal Method, referred to as the XAVM?, for
LES of turbulent two-phase flow in this chapter. Before the XAVM* is discussed, an overview
of previous attempts towards LES of turbulent two-phase flow is provided, followed by the in-
vestigation of an idealized bubble-vortex interaction. Finally, the XAVM* is applied to turbulent
channel flow carrying a bubble of the size of the channel half-width, demonstrating its high
potential.

10.1 Towards New Challenges for Modeling Subgrid-Scale
Features

In the case of two contiguous bulk fluids separated by a deformable interface, the flow in both
subdomains may be turbulent, and turbulent structures may interact with the interface. The ratio
of inertia to surface-tension forces is given by the Weber number, defined as
U
We =2~ (10.1)
v

where U and / are a characteristic velocity and length.

In LES of these situations, both fluid domains are covered by the computational grid, and the
interface is resolved as far as possible, but not necessarily perfectly. Hence, the same modeling
situation as described for turbulent single-phase flow in Section 2.3 is encountered for the flow in
each subdomain. In addition to the small-scale turbulent structures, which are unresolved in LES
by definition, further subgrid-scale structures related to the interface may occur in two-phase

193



10 Turbulent Two-Phase Flows

flow. For interfaces of highly complex or wrinkled shape, fine structures such as thin fingers
and small bubbles or droplets may remain unresolved. Subgrid-scale modeling issues emanating
from underresolved interfaces, which bring in additional physics, demand specifically devised
closures. Respective developments constitute a field of active research, as the references provided
below illustrate. Such developments are beyond the scope of the present thesis, since the interface
is assumed fully resolved.

Labourasse et al. [177] discussed filtering of the governing equations for two-phase flows and
conduced an a priori analysis to evaluate the order of magnitude of the various subgrid-scale
contributions arising from their procedure. For investigation, two-dimensional problems were
taken into account by Labourasse et al. [177]. Similar a priori investigations were carried out,
e.g., by Toutant et al. [311], who evaluated DNS data of a deformable bubble in decaying tur-
bulence, Larocque et al. [178], who considered phase inversion in a closed cubic box as well as
Chesnel et al. [60], who investigated DNS data of jet atomization. Modeling issues stemming
from underresolved interfaces, for instance, related to surface-tension effects, were addressed,
e.g., by Herrmann [144] as well as Liovic and Lakehal [196]. Another concept to deal with
underresolved interfaces was proposed, e.g., by Toutant et al. [312, 313].

Up to now, only a few studies dealing with LES of two-phase flows may be found in literature.
Liovic and Lakehal [195], for instance, performed LES of a turbulent bubbling flow driven by
the downward injection of air into a pool filled with water. Aniszewski et al. [S] suggested a
subgrid-scale model accounting for surface-tension effects, which was then applied to LES of
phase inversion in a closed cubic box. DNS of this flow problem was presented, e.g., by Vincent
et al. [322]. Recently, Xiao et al. [334] conducted LES of a liquid jet in a coaxial air flow. All the
aforementioned LESs included a form of the Smagorinsky model (see also Section 2.3.2). Even-
tually, some further DNS studies, which may serve as a reference for future LES of turbulent
two-phase flow with two bulk fluids, are provided. Fulgosi et al. [103] investigated counter-
current air-water flow in a rectangular domain. Also in the context of stratified fluids, Lee et
al. [182] examined turbulent open-channel flow with an air-water interface. Kim et al. [173] re-
cently introduced turbulent two-phase Couette flow as a canonical problem. Aiming at evaluating
the skin-friction drag reduction by air injection, Kim and Moin [172] investigated a two-phase
backward-facing step configuration, which represents a simplified geometry for examining Air
Layer Drag Reduction (ALDR) and may also be considered as a canonical flow. Based on the
backward-facing step geometry used, e.g., by Le et al. [179] for turbulent single-phase flow, a
modified configuration was set up, exhibiting a slot in the step, where air was injected. Both the
turbulent flow with and without air injection were considered and compared to each other.

10.2 Bubble-Vortex Interaction

With respect to the intended investigation of turbulent two-phase bubbly channel flow via LES
in this chapter, the interaction between turbulent structures and interfaces separating two fluids
is of particular relevance. In bubbly flows, a significant portion of turbulence is generated by the
wake of the bubbles and, hence, the associated scales are of a size only slightly smaller than the
bubbles themselves. To illustrate the involved dynamics, a simplified two-dimensional setup, as
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10.2 Bubble-Vortex Interaction

introduced by Labourasse et al. [177], is examined. Labourasse et al. [177] idealized the turbu-
lent structures by two vortices, which interact with an initially circular bubble. This example is
thus closely related to the flame-vortex-interaction problem originally considered by Poinsot et
al. [251]. That configuration, which evolved into a widely-used example for validating proposed
approaches for (turbulent) premixed combustion (see, e.g., Lessani and Papalexandris [187] as
well as Henke [140]), consists of an isolated pair of vortices interacting with a flame front in a
laminar flow.

Following Labourasse et al. [177], a bubble at rest is approached by two counter-rotating vor-
tices, which are advected by their self-induced velocity fields. The velocity induced by each of
the vortices is given by

é(l— (Ilzv,l)2+2(121v,2)2>
R2 Tyy — T
u, = Cye ( 2 2) , (10.2)

Ty — Ty

where X, is the position of the center of the vortex, R, = 8.0-10~* m its associated radius and C,
a coefficient, which characterizes its strength and is positive for the right vortex and negative for
the left one, i.e., CT#t = —(Clft = 9625571, The distance between the centers of the vortices is
setto d, = 1.855 - 1073 m such that the velocity induced at the center of the other vortex amounts
to U, = 0.2m/s. The size of the considered domain is Q = [-0.5L,0.5L] x [-0.5L,0.5L],
where L = 8.1 - 1073 m. The domain is uniformly discretized using 405 x 405 elements. This
relatively high resolution is required here to shield the interface from spurious velocities, which
may disturb the vorticity field. The bubble with radius R, = 1.5-107° m is centered at (0, —0.2L)T
and the vortices at x = (—0.5d,,0.2L)T and x"#" = (0.5d,,0.2L)7T, respectively. Analo-
gously to Labourasse et al. [177], the two fluids considered here are water and air, such that
pr = 1000kg/m* and puy =1.0-103kg/(ms) for the liquid, p_ = 1.3kg/m> and
p— =2.0-10"°kg/(ms) for the gas as well as v = 0.07kg/s? for the surface-tension coeffi-
cient. No-slip conditions are assumed at all boundaries of the domain. The time-step length is
chosen to be At = 1.0 - 1073 s, and the general statements provided at the beginning of Sec-
tion 9.6 also hold true for this example. Figure 10.1 provides a sketch of the setup together
with a visualization of the velocity vectors and the pressure distribution at the beginning of the
simulation.

Figure 10.2 illustrates the generation of vorticity inside the bubble. Therefore, the vorticity dis-
tribution, i.e., its component ws, which is the only non-zero entry of the vorticity vector for
two-dimensional problems, is shown for two instants of time. As soon as the interface starts to
interact with the vortices, vorticity is generated inside the bubble. For the present configuration,
two pairs of counter-rotating vortices emerge. An amplification of the strength and an increase of
the size of the vortices inside the bubble is observed with time. As displayed in Figure 10.2, the
two vortices are also able to strongly deform the bubble. The present result for the bubble-vortex-
interaction problem conforms well with the respective simulation of Labourasse et al. [177] (see
Figure 4 for case N1 therein). Labourasse et al. [177] additionally investigated another configu-
ration (case NO in that article), where the impact of stronger but smaller vortices on the bubble
was examined. In that case, the vortices only slightly distorted the shape of the interface.
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Figure 10.1: Setup of bubble-vortex interaction (left) and velocity vectors on the pressure distribution
(red color indicates high pressure and blue color low pressure) visualized after two time

steps (right).

Figure 10.2: Bubble-vortex interaction at times ¢ = 1.0- 1073 s (left) and 1.8 - 1073 s (right) visualized via
its vorticity distribution (white color indicates high negative vorticity and black color high

positive vorticity).
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10.3 Extending the AVM*

The present section brings together the face-oriented stabilized Nitsche-type extended VMM
developed in Chapter 9 and the AVM* derived in Chapter 4. To close the cross- and subgrid-scale
Reynolds-stress terms arising in the variational multiscale formulation of the incompressible
Navier-Stokes equations for the flow in each subdomain Q, with £ € {+, —} (see Section 3.2
for one fluid), the multifractal subgrid-scale modeling approach is applied, yielding the following
approximation of the subgrid-scale velocity {y:

, = Bouy, (10.3)

where the coefficient B is defined as given in equation (4.27). The smaller resolved velocity du}
is obtained by explicitly decomposing the resolved velocity u} using level-transfer operators
from PA-AMG:; see Section 4.3. The enrichment of the velocity is entirely assigned to the larger
resolved scales. For application to turbulent bubbly channel flow, the near-wall limit introduced
in Section 4.8.1 is applied. All parameters of the multifractal subgrid-scale modeling approach
are chosen as discussed in the aforementioned section. Depending on whether Rej,  is based on
the resolved velocity or the strain rate tensor, it reads as

Rej ; = orl (10.4)
HE
or 1
pi (e(u”) : e(u))? B2
He
for the present two-phase flows, which is annotated for the sake of completeness.

Re}p , = (10.5)

Taking the effect of the subgrid scales into account in the extended variational multiscale
formulation (9.26) gives rise to the following modeled formulation for LES: find
(u",p") € Sh™ x 8/ such that

Bys(v", ¢";u", p")

h h . h h X h h h . h
+ (v", p (u" - V (Béu") + Bou" - Vu ))QZL + (v", pBéu" - V (Béu ))Qft (10.6)
+ BRBStab(Vha qh; uh>Ph) + BNit<Vh7 qh§ uh,ph) + BFOStab(Vh7 qh; uh,ph) = Ins (Vh)

forall (v ¢") € Yhenrx V;)“e“r. The multifractal forms of the cross- and subgrid-scale Reynolds-
stress terms are depicted in the second line. Formulation (10.6) constitutes a Variational Multi-
scale Method including Multifractal subgrid-scale modeling, scale separation by level-transfer
operators from plain aggregation Algebraic Multigrid methods and an eXtended finite element
approach based on Nitsche’s method to accurately represent the involved discontinuities and is
introduced here as the XAVM*.

For the subsequent LES, the interface, which is treated in a sharp fashion in this thesis, is as-
sumed to be fully resolved; that is, it is captured in a DNS-like manner. Moreover, the subgrid-
scale velocity is taken to be hardly able to notably deform the interface in the considered case.
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As a consequence, the stabilized formulation (8.9) of the level-set equation remains unchanged,
and the subgrid-scale velocity is not considered therein.

10.4 Turbulent Two-Phase Bubbly Channel Flow

Overview. Bubble columns in chemical processes or rising bubbles in the ocean emanating from
enclosed air within breaking waves represent only two situations among a multitude of examples
for turbulent bubbly flows. Owing to their essential role in industrial systems, turbulent bubbly
flows in channels and pipes are extensively studied both experimentally and numerically. In
an early experimental study, for instance, Serizawa et al. [280, 281] investigated bubbly flow
in a vertical pipe. Recently, Oishi and Murai [236] examined a single large bubble of a size
comparable to the thickness of the boundary layer in a horizontal turbulent channel flow at
Re, = 260. Only a few numerical works on turbulent two-phase bubbly channel flow, where both
fluids are resolved and the interface is allowed to deform, have been published to date. Recently,
Dabiri et al. [76] studied bubbles with varying deformability in initially turbulent channel flow
using DNS. Friction Reynolds numbers of Re, = 127 and 90 were considered. In a parallel work,
Lu and Tryggvason [200] investigated a higher friction Reynolds number of Re, = 250. In that
study, small and almost spherical bubbles of equal size were considered as a first setup. Then,
several small bubbles were replaced by one large bubble for a second configuration. While the
small bubbles drifted towards the walls, the large bubble remained in the middle of the channel.
In Dabiri et al. [76] and Lu and Tryggvason [200], the density of the bubbles was assumed to be
one tenth of the liquid density, and the dynamic viscosities of the fluids were taken to be equal.
Moreover, flow direction and gravitation pointed into opposite directions. Bolotnov et al. [34]
performed detached DNS, as further explained below, of turbulent bubbly channel flows using
an FEM. The interface was captured by a level-set approach. Their simulations took into account
a realistic water-to-air density ratio of 858.3 and were based on a friction Reynolds number of
Re, = 180 for a turbulent single-phase channel flow using the liquid only. Bolotnov et al. [34]
investigated three different configurations: a single small bubble, multiple small bubbles and a
single large bubble. For the present LES,! merely the large bubble case is considered, since it
allows for resolving the flow in the sense of an LES. In contrast, the resolution requirements are
determined by the bubble size rather than by the turbulent structures in the small bubble cases.
Bolotnov et al. [34] used a uniform mesh such that the initial diameter of the small bubbles
was resolved by 18 elements throughout the domain. A similar number of elements has to be
expected when using the present approach. Hence, there would not be any necessity for further
subgrid-scale modeling owing to the resulting overall high resolution.

Problem Setup. Following Bolotnov et al. [34], the channel dimensions are chosen to be
210, X 20, X (2/3)mé, in streamwise, wall-normal and spanwise direction, respectively, where
J. denotes the channel half-width. A spherical bubble, whose diameter is set equal to the channel
half-width, i.e., D = ., is initially placed at the center of the channel. The void fraction (see

!Computational resources provided by the Leibniz Supercomputing Center under the project pr83te are gratefully
acknowledged.
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10.4 Turbulent Two-Phase Bubbly Channel Flow

equation (9.56)) thus amounts to o = 2.0%. Gravitation g acts against the flow direction. No-
slip boundary conditions are applied at the side walls. In homogeneous streamwise and spanwise
direction, periodic boundary conditions are assumed for the flow and level-set field. A schematic
drawing of the setup is depicted in Figure 10.3. As also illustrated in Figure 10.3, a precomputed
fully-developed turbulent single-phase channel flow using the liquid constitutes the initial flow
field, into which the bubble is inserted. All physical parameters are compiled in Table 10.1 to-
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Figure 10.3: Setup of turbulent two-phase bubbly channel flow (left) and insertion of spherical bubble into
precomputed turbulent single-phase channel flow (right) visualized via its velocity magnitude
distribution in the x;x;-plane at x3 = (2/3)md. (red color indicates high velocity and blue
color low velocity).
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gether with the most important geometrical characteristics and the driving forces. Variables and
parameters associated with the liquid and the gas are labeled by (-), and (-)_, respectively. The
flow is pushed upward by a pressure gradient working against the gravity. Based on the provided
values, E6tvos and Morton number (see equations (9.52) and (9.53)) are obtained as Eo = 6.689
and Mo = 1.06 - 1079, respectively. Bolotnov et al. [34] defined the Weber number based on
the superficial velocity Uy . of the liquid (see, e.g., the textbook by Brennen [38] for definition)
and the diameter of the bubble D as
P+ U21°,+D

We = - sht7 (10.7)
v

and reported We = 41.181 for their investigations.

Non-dimensional values, which are also given in Table 10.1, are used for the simulation. Fol-
lowing Bolotnov et al. [34], the reference values for density, viscosity and length are given by
Pret = 996.5kg/m?, pier = 2.3279kg/(ms) and L,y = 0.005 m. Since non-dimensional values
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Table 10.1: Overview of all quantities for turbulent two-phase bubbly channel flow.

dimensional value  non-dimensional value

geometry

channel half-width §. 0.005m 1.0
bubble diameter D 0.005 m 1.0
physical parameters of fluids

liquid density p, 996.5 kg/m* 1.0
liquid dynamic viscosity i 0.0008514 kg/(ms) 0.00036574
gas density p_ 1.1610kg/m? 0.0011651
gas dynamic viscosity p_ 0.00001827 kg/(ms) 0.0000078483
surface-tension coefficient ~y 0.0365 kg/s? 0.03356
driving forces

x1-component of gravity vector g -9.8 m/s? -0.22448
x1-component of pressure gradient Vp -9954 Pa/m -0.22881

are exclusively considered in the following, dimensional and non-dimensional values are not
specifically distinguished via an additional sub- or superscript. For single-phase flow using the
liquid only, the resulting parameters match the ones for turbulent channel flow at Re, = 180
with bulk velocity U, = 1.0 and 6. = 1.0.

For LES, a discretization with 151 x 56 x 50 trilinearly-interpolated hexahedral elements is used.
This discretization is particularly tailored to present needs and consists of three blocks: a center
block in the core of the channel and two outer blocks each attached to a wall. While a homoge-
neous distribution of elements is used for the center block, the distribution of elements is refined
in wall-normal direction towards the wall for the outer blocks. The distribution of the elements
is realized by first taking a basic discretization with 48 uniformly distributed elements in wall-
normal direction. The first four layers of elements from the walls representing the outer blocks
are then replaced by eight layers of elements obeying the refinement towards the walls. This
discretization thus unifies an increased resolution in the vicinity of the walls and a homogeneous
resolution of the domain occupied by the bubble. The characteristics of the present discretiza-
tion, 1.e., the element lengths hj in non-dimensional form (4.62) based on the parameters of the
turbulent single-phase channel flow at Re, = 180 as well as the initial resolution of the bubble
in terms of the number of elements corresponding to its diameter, are itemized in Table 10.2
and juxtaposed with the respective values of the discretization applied by Bolotnov et al. [34],
which likewise consisted of hexahedral elements. The time-step length is set to At = 0.015 in
non-dimensional form. A Crank-Nicholson scheme (i.e., # = 0.5) is applied together with a
quasi-static enrichment strategy as described in Section 9.5. The level-set field is reinitialized
periodically throughout the simulation. To ensure mass conservation for several tens of thousand
time steps, global mass conservation in the form presented in Section 8.2.2 is applied. In the
following, statistical averages are denoted by (-) and fluctuations by (-)’.
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Table 10.2: Mesh parameters for turbulent two-phase bubbly channel flow: number of elements, non-
dimensional element lengths hj and bubble resolution.

no. elements hf hZ min hz max h;r bubble resolution
(no. elements)
present LES 151 x 56 x50 749 150 7.50 7.54 24
DDNS Bolotnov et al. [34] 452 x 144 x 151 2.5 2.5 2.5 2.5 72

At this point, several differences compared to the simulations performed by Bolotnov et al. [34]
have to be mentioned:

e A (residual-based) stabilized (standard) FEM together with a level-set approach to capture
the interface was applied in that study. Bolotnov et al. [34] did not explicitly resolve the
discontinuities at the interface but used the continuum surface force model of Brackbill et
al. [36] in conjunction with a smooth transition of the physical properties from one fluid
to the other within a predefined interface thickness.

e The uniform mesh used by Bolotnov et al. [34] (see Table 10.2) was chosen to adequately
resolve the bubbles everywhere in the channel for all the investigated cases and, hence, al-
ready contained quite a large number of elements. Owing to the still insufficient resolution
of the viscous sublayer (i.e., h™ = 2.5), Bolotnov et al. [34] applied a boundary condition
to which they referred to as a “friction-type” one instead of a no-slip condition.

e Bolotnov et al. [34] observed bubbles attaching to the walls. According to them, such an
effect was not expected for the investigated two-phase flows. Therefore, they introduced
a repellent lubrication-like force only acting on the interface in the near-wall region and
preventing the bubbles from touching the walls. Bolotnov ef al. [34] interpreted this force
as a subgrid force.

By analogy to Detached Eddy Simulation (DES) for turbulent single-phase flows (see, e.g.,
the textbook by Sagaut er al. [271] for an introduction and further references), they referred
to their approach as Detached Direct Numerical Simulation (DDNS). The aforementioned repel-
lent lubrication-like force is not required for the present simulation. Since the near-wall region
is appropriately resolved and the no-slip condition strongly imposed, the physical interaction
between the bubble and the wall is naturally captured such that the bubble is able to directly
respond to the presence of the wall.

From Single-Phase to Two-Phase Flow. As aforementioned, the velocity solution obtained
from turbulent single-phase channel flow at Re, = 180 using the liquid serves as initial field
for the two-phase-flow simulation. Figure 10.4 summarizes the mean streamwise velocity ]
and the root-mean-square velocities rms u;” of the precursor single-phase-flow simulation. The
velocity results are normalized by the friction velocity uw, = \/7w/p,, where 7y denotes the
wall-shear stress, and plotted in wall units x2+ , 1.e., the distance from the wall normalized by the
viscous length scale 6, = . /(piu,), as usual. All values are in agreement with the DNS data
provided by Moser et al. [224] for turbulent single-phase channel flow at Re, = 180 and marked
by “DNS MKM99”.
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Figure 10.4: Mean streamwise velocity u; and root-mean-square velocities rms v, for turbulent single-
phase channel flow at Re; = 180 using 151 x 56 x 50 elements.

The initial level-set field is defined by the analytical expression for a spherical interface centered
at a prescribed position. While surface tension is immediately enforced to provide a certain
resistance against disproportional deformation of the interface in a turbulent flow, the physical
parameters of the liquid are initially assumed also for the fluid in the subdomain _. During
the subsequent transition period [tgjf, tt]pf], density and viscosity of the fluid in _ are smoothly

blended from the values of the liquid to the values of the gas via

p—(t) = Hywi(t)ps + (1 = Huwi(1)) p—, (10.8)
p—(t) = Hywr(t)pis + (1 — Hywi (1)) p1—, (10.9)
where
1 if t <t
1 m(t—te") .o tpf tpf
Hypi(t) = < 5 | 1+ cos P ifty <t <t (10.10)
0 if t > ™

denotes a smoothed Heaviside function in time. A transition period comprising 500 time steps is
used, which corresponds to roughly two flow-through cycles of the periodic domain.

The friction velocity u, for turbulent two-phase bubbly channel flow is defined based on the
wall-shear stress 7w and the density p. of the liquid as

w = |2 (10.11)
P+

see, e.g., Bolotnov et al. [34] and Lu and Tryggvason [200]. Analogously, the friction Reynolds
number is given as
5
Re, = Pl (10.12)
M+
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using the physical parameters of the liquid. The balance of mean forces in streamwise direction
for steady state leads to the relation between wall-shear stress, pressure gradient and gravity (see,
e.g., Lu and Tryggvason [200]):

™ _ _8(p>
56 - axl +pmgl7 (10'13)

where p,, denotes the density of the mixture (see equation (9.55)). Using the values given in
Table 10.1, the friction Reynolds number amounts to Re, = 257. This increase of Re, also
affects the resolution in the vicinity of the walls, which somewhat decreases as a result (i.e.,
hi . =2).

2,min

Flow Description. Figure 10.5 displays the shape of the bubble together with the vortical struc-
tures. Snapshots are taken from about two flow-through cycles of the periodic domain during
the sampling period. In each snapshot, the left and right boundaries are the walls. Additionally,
closeup views of the bubble shapes corresponding to the snapshots from the first of the two flow-
through cycles are provided in Figure 10.6. In these closeup views, the bubble moves towards
the observer, and, as before, the left and right boundaries are the walls. The bubble undergoes a
continuous deformation. In some more detail, the bubble gets stretched in the plane perpendic-
ular to the streamwise direction and possesses a highly irregular shape. The bubble mainly rises
in the core of the channel. Vortical structures are identified by the Q-criterion (see Jeong and
Hussain [160]). As for turbulent single-phase channel flow, vortical structures, characterized by
their typical hairpin-like shape, evolve at the channel walls. The bubble exhibits a toroidal vorti-
cal structure in its equatorial plane, which was also described, e.g., by Lu and Tryggvason [200].
Moreover, elongated vortical structures occur in the wake of the bubble. This flow configuration
essentially represents a chain of large bubbles rising in a turbulent channel flow.

Statistical Results. For obtaining statistical data, 10000 steps are considered after the flow has
reached a fully-developed state. Overall, the two-phase-flow simulation comprises 40 000 time
steps. Averaging in z;- and x3-direction as well as in time is performed. Therefore, a phase-
indicator function xj with & € {+, —} is introduced:

1 ifxin Q¢
X(x, 1) = if x in Qx(?) (10.14)
0 else.

The local mean void fraction (), i.e., the void fraction as a function of z,, is calculated via
integration of the phase-indicator function y_ corresponding to the gas as

fX dz,dzs
10.1
Z fd$1d$3 7 ( 0 5)

where N denotes the number of considered time steps. For the present XFEM-based approach,
this evaluation is realized by summing up the volumes of the domain integration cells (see Sec-
tion 9.5) belonging to ©_ in each wall-parallel layer of elements and dividing by the volume
of the layer itself. All remaining statistical data are evaluated based on nodal values. For each
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Figure 10.5: Instantaneous bubble shapes and vortical structures visualized via the Q-criterion and colored
by the velocity magnitude (red color indicates high velocity and blue color low velocity) for
turbulent two-phase bubbly channel flow.

Figure 10.6: Top view of instantaneous bubble shapes for turbulent two-phase bubbly channel flow.
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phase, the averaged value (X)) of an arbitrary (velocity) value X is determined as

Ns Na

(Xk) = 22 X (10.16)

N5 Ny ’

D20 Xk

where NV, is the number of nodes in each layer of nodes parallel to the walls. To determine the
wall-shear stress from simulation for the present turbulent two-phase bubbly channel flow, the
nodal forces in streamwise direction at the walls are summed up, divided by the total wall area
and averaged in time. A value of Re, = 260, almost matching the theoretical one, is obtained
from the simulation.

Figure 10.7 shows the mean streamwise velocity for both fluids, (u; ) and (u;_), together
with the local mean void fraction («). Additionally, the mean streamwise velocity (u) of the
single-phase flow simulation is displayed. Values extracted from Bolotnov et al. [34] are marked
by “DDNS BJDOLPI11”. As expected, the bubble moves faster than the liquid. Moreover, the
bubble remains in the core of the channel, as already observed. Compared to the present single-
phase-flow case, the mean streamwise velocity of the liquid increases. The DDNS of Bolotnov
et al. [34] suggests notably lower mean values for (u; ) and (u; _). From Bolotnov et al. [34],
it seems that the DDNS data are based on an earlier statistical period and a considerably smaller
number of flow-through cycles. The LES curves are close to the DDNS curves for the equivalent
statistical period, but further ascend until a converged statistical state is reached. After the flow
has fully developed, one flow-through cycle of the bubble takes about 210 time steps in the LES.
The peak of the void fraction occurs at the centerline of the channel. Compared to the data taken
from Bolotnov et al. [34], the peak is higher in accordance to the fact that the bubble never enters
the immediate vicinity of the wall, as also seen from (u; _). In contrast, the DDNS result for («)
exhibits non-zero values almost up to z; = 1 and -1. This difference may be traced back to the
present no-slip boundary conditions and the related resolution of the near-wall region, allowing
for directly incorporating the physical interaction between the bubble and the wall.
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Figure 10.7: Mean streamwise velocity profiles (u;) and mean local void fraction («/) for turbulent two-
phase bubbly channel flow.
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Figure 10.8 displays the distribution of the turbulent kinetic energy kye + corresponding to the
liquid. The turbulent kinetic energy k. is defined as
1 !/ /

ke = E(u -u'). (10.17)
The presence of the bubble notably alters the distribution of the turbulent kinetic energy com-
pared to k"' of the turbulent single-phase channel flow. This behavior is related to the wake of
the bubble which occupies a significant portion of the channel domain, as also observable from
Figure 10.5. The resulting intensification of velocity fluctuations, in particular in the core of the
channel, contributes to the notable increase of K .
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Figure 10.8: Comparison of turbulent kinetic energy k. for turbulent two-phase bubbly channel flow and
turbulent single-phase channel flow.
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Summary and Outlook

In this thesis, computational multiscale methods for large-eddy simulation of turbulent single-
and two-phase flows have been developed. The variational multiscale method constitutes the
framework for all these approaches.

For large-eddy simulation of turbulent incompressible single-phase flow, an algebraic varia-
tional multiscale-multigrid-multifractal method (AVM*) has been proposed. In the multifractal
subgrid-scale modeling approach, the subgrid-scale velocity is evaluated via integration based
on the law of Biot-Savart using a multifractal reconstruction procedure for the subgrid-scale
vorticity. Level-transfer operators from plain aggregation algebraic multigrid methods have been
used for further separating the resolved scales. The multifractal subgrid-scale modeling approach
has been embedded into a variational multiscale formulation, including appropriate residual-
based multiscale terms to control the stability of the numerical method. A near-wall limit of
the multifractal subgrid-scale modeling has been derived, which allows for particularly taking
into account the near-wall effects of turbulent flow. Furthermore, passive-scalar mixing in tur-
bulent incompressible flow has been considered. Both low- and high-Schmidt-number mixing
has been naturally incorporated into the multifractal modeling procedure for the subgrid-scale
scalar quantity. Moreover, the AVM* has been further developed for large-eddy simulation of
turbulent variable-density flow at low Mach number. Various important benchmark examples
have been examined to evaluate the AVM* for turbulent incompressible flow as well as its ex-
tensions to passive-scalar mixing and variable-density flow at low Mach number. For turbulent
incompressible channel flow, the AVM* has produced results significantly closer to reference re-
sults from direct numerical simulation than the results obtained with the dynamic Smagorinsky
model and the complete residual-based variational multiscale method or the basic stabilized finite
element method, particularly regarding substantially improved results for both mean and root-
mean-square velocity in streamwise direction. The dissipative properties of the AVM* have also
been thoroughly investigated for this example, revealing a pronounced subgrid-scale dissipation
in the buffer layer and approximately no dissipation in the core of the channel. The observation
concerning the statistical values also holds true for the mean scalar quantity, its root-mean-square
value as well as correlations of velocity and scalar fluctuations in the context of the respective
channel flow configurations examined for passive-scalar mixing and variable-density flow. Con-
sidering turbulent flow past a square-section cylinder and over a backward-facing step with heat-
ing, the convenient applicability of the AVM* to substantially more complex flow configurations
has been shown. Evaluations of computing times have revealed notably reduced computational
cost compared to the dynamic Smagorinsky model, while the cost has only been marginally
enhanced compared to the basic stabilized finite element method. Eventually, linking this out-
come to the demands outlined in the introduction, the building blocks of the AVM?, that is, the
variational multiscale method, multifractal subgrid-scale modeling and scale separation based
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11 Summary and Outlook

on level transfer operators from plain aggregation algebraic multigrid methods, enable a method
that promises to match these demands.

For incompressible two-phase flow, a face-oriented stabilized Nitsche-type extended variational
multiscale method has been devised. An extended finite element method based on jump enrich-
ments for both the velocity and pressure field has allowed for adequately capturing strong and
weak discontinuities at the interface, which has been described by the level-set method. Us-
ing Nitsche’s method, the variational multiscale formulations for each fluid have been coupled.
While appropriate residual-based multiscale terms have ensured the stability of the numerical
method inside each fluid domain, additional face-oriented ghost-penalty as well as fluid stabiliza-
tion terms have been introduced to also provide a stable formulation in the vicinity of the inter-
face. In particular, both the Nitsche-penalty term as well as the face-oriented stabilization terms
have been enhanced to account for viscous- and convection-dominated transient flows. Various
two- and three-dimensional numerical examples have been investigated to demonstrate the ex-
cellent performance of the proposed method in terms of accuracy and stability. Two-dimensional
Rayleigh-Taylor instabilities have been examined. A comparison of the predicted growth rate
for various physical parameter configurations with and without surface tension has revealed ex-
cellent agreement with analytical solutions. Three-dimensional rising bubbles have been studied
using density and viscosity ratios of 1000. For all four investigated bubble shapes, the resulting
Reynolds numbers based on the final rise velocity have well matched the available experimental
values. The robustness of the proposed method for substantially more complex two-phase flow
situations has been particularly demonstrated for the coalescence of two bubbles. As an add-
on, level-set methods have been reviewed in the context of finite element methods, and a hybrid
particle level-set method has been realized as a further improvement for the level-set field. Its ap-
plicability to two-phase flow simulations has been shown for the impact of a drop on a quiescent
water surface.

Eventually, the AVM* and the face-oriented stabilized Nitsche-type extended variational multi-
scale method have been unified leading to the extended variational multiscale-multigrid-multi-
fractal method (XAVM?*). To demonstrate the high potential of the XAVM?* for large-eddy simu-
lation, turbulent channel flow carrying a single large bubble of the size of the channel half-width
has been investigated. The XAVM* has shown very good performance both with respect to ro-
bustness as well as the ability to capture the expected flow features and the statistical results.

The developed computational multiscale methods for single- and two-phase flows enable various
promising future research directions. Concerning two-phase-flow simulations using the present
framework, the development of a reliable numerical description of the contact line between the
interface and a solid wall or the incorporation of a variable surface-tension coefficient result-
ing from a locally varying surfactant concentration or temperature distribution opens the field
to a variety of demanding industrial applications. Owing to the practical importance of wall-
bounded turbulent flow at very high Reynolds number, the development of a consistent wall-
layer modeling approach to be integrated into the AVM* constitutes a further possible research
direction. Large-eddy simulation of turbulent two-phase flow composed of two bulk fluids is
likewise still at the beginning and gives rise to new challenges concerning subgrid-scale model-
ing in the vicinity of interfaces. Furthermore, the XAVM* also allows for further development
towards large-eddy simulation of turbulent premixed combustion.

208



Supplementary Data for Backward-Facing Step
Flow with Heating

In this appendix, supplementary data for LES of turbulent flow over a backward-facing step with
heating are summarized. The provided data correspond to a wall heat flux of gw = 1000 W /m?
and are not explicitly discussed. Figure A.1 displays the skin-friction coefficient Cf, Figure A.2
the mean temperature 7Ty at the bottom wall of the backward-facing step, Figure A.3 the nor-
malized mean temperature ((1') — 1y)/7y and Figure A.4 the normalized root-mean-square
temperature rms 7'/7), streamwise velocity-temperature fluctuations (u}7")/(U.T) as well as
wall-normal velocity-temperature fluctuations (u5,7")/(U.Tp). The mean reattachment lengths
are X;/H = 6.21 for the AVM?*, 6.30 for the RBVMM and 6.15 for the DSM.
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Figure A.1: Skin-friction coefficient Cf at the bottom wall of the backward-facing step for
gw = 1000 W /m?,
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A Supplementary Data for Backward-Facing Step Flow with Heating
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Figure A.2: Mean temperature Ty at the bottom wall of the backward-facing step for gy = 1000 W /m?.
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Figure A.3: Mean temperature ((I') — Tp)/Tp at various locations x;/H for turbulent flow over a
backward-facing step with heating at gw = 1000 W/m? including a closeup view of the
near-wall region.
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at various locations x1/H for turbulent flow over a backward-facing step with heating at
qw = 1000 W/m?.
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