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1. Introduction 

1.1. Quantum Chemistry 

Electronic structure theory[1-7] of materials and molecules aims to obtain accurate 

computational descriptions of such systems at an atomic length scale. Predictions of physical 

observables of such quantum mechanical systems can then be computed from this 

description. The fields of quantum chemistry and computational chemistry apply electronic 

structure theory to chemical problems.[8-10] The studied chemical entities range from 

individual atoms over common molecules to larger biomolecules, nanoparticles and extended 

systems, like solids and their surfaces. 

The electronic structure description of such systems is determined by the underlying 

Schrödinger equation[11] (SE) which can be solved analytically only for a few one-electron 

cases.[12,13] Thus, quantum chemistry needs to rely on approximate solution techniques for the 

many-electron SE. To obtain useful predictions it is desirable to compute for example 

reaction energies with a precision of ~2 kcal/mol (~8 kJ/mol, chemical precision). These 

results are usually obtained from total energies of much larger values which therefore need to 

be computed with a high relative accuracy. Except for high level quantum chemical 

approximations, most methods do not reliably deliver chemical precision and their accuracy 

usually varies depending on the type of systems at hand. While in the case of main group 

compounds an accuracy of a few kcal/mol is feasible, a precision of 10 kcal/mol or more may 

still be reasonable for reaction energies involving systems with transition metal elements. 

The Hartree‒Fock (HF) method[2,14-16] is one of the earliest electronic structure 

approximations and the simplest meaningful approach based on wave function theory (WFT). 

The HF ansatz for the many-electron wave function as Slater-determinant fulfills the 

requirements of electronic non-distinguishability and the antisymmetry principle, which 

provides an “ab-initio” electronic structure description of chemical systems. However, being 

an effective mean-field theory, HF neglects important aspects of the many-particle nature of 

the electron-electron interactions and therefore most of the resulting correlation effects. 

Within a finite basis set approximation introduced to represent the wave functions all 

correlation effects are recovered by the full configuration interaction (FCI) method,[4,17-20] 

which represents the exact solution in this case. FCI employs a many-electron basis set in the 

form of determinants which is usually constructed from the corresponding HF solutions. As 

this basis set grows exponentially with the system size, FCI is computationally intractable for 

all but the smallest systems.[4,17-20] These extreme computational requirements motivated a 

large variety of approximations to FCI.[21-26] All of these so-called post-HF methods aim to 
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reduce the computational complexity of the calculation of the correlation energy while still 

retaining all relevant physical effects.[26] 

Density functional theory[27-33] (DFT) of the electronic structure stands in some sense 

opposed to these methods as it is based on the idea to employ the electron density instead of 

the many-body wave function as fundamental quantum mechanical variable. The theorems of 

Hohenberg and Kohn (HK) show DFT to be an exact reformulation of many-body quantum 

mechanics.[27] Furthermore, the HK theorems justify the total energy density functional for 

any quantum chemical system, which is minimized by the electronic ground state density.[27] 

Kohn and Sham (KS) subsequently proposed another important contribution which removed 

many obstacles for the practical applicability of DFT.[28] Within the KS formalism only the 

non-classical parts of the electron-electron interaction remain unknown and require to be 

approximated. The earliest and simplest of such exchange-correlation (XC) approximations 

were based on the homogeneous electron gas model (HEG).[28] Already these local density 

approximations (LDA) often supersede the accuracy of lower-level post-HF methods, 

especially in the case of systems involving transition metal elements.[34] Compared to the HF 

method LDA approaches exhibit far lower computational requirements, when combined with 

density fitting techniques.[35-43] Thus, the efficiency of LDA gave access to a theoretical 

description of much larger systems and significantly extended the applicability of quantum 

chemistry. 

Further improved XC approximations beyond LDA, are based on adding a functional 

dependence on the gradient of the electron density.[44] This approach led to the so-called 

generalized gradient approximation (GGA).[45] A large variety of such semi-local XC 

functionals were proposed in the following.[46-50] For many physical properties GGA methods 

were found to provide a consistently improved accuracy over LDA.[51-57] 

Despite their success, LDA and GGA density functionals still rely on several 

approximations that eventually break down in some situations, which can lead to significant 

failures. The most prominent examples of such a failure are the so-called self-interaction 

error (SIE) and the closely connected delocalization error, for which a number of corrections 

have been suggested.[58] The approach of Perdew and Zunger[59] (PZ) and the DFT+U 

method[60-69] are probably the most widely applied self-interaction corrections (SIC).[58] In the 

context of the present thesis, a generalization of the DFT+U method to molecular fragment 

orbitals (DFT+Umol) has been implemented as part of the density functional program 

package PARAGAUSS.[70] Furthermore, several classes of XC functionals have been proposed 

that go beyond GGA and aim for being at least partially free of self-interaction artifacts. Most 

of these methods do not only depend on the electron density and its gradient but also include 

additional functional dependencies on the KS orbitals. In the case of the meta generalized 

gradient approximation[71-78] (MGGA) the kinetic energy density is used as additional, 

orbital-dependent variable.[79,80] As this quantity is computed from the local gradient of the 
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KS orbitals only, MGGA approximations are semi-local XC functionals as well and exhibit 

computational costs which are comparable to those of GGA methods. This is different in the 

case of hybrid DFT functionals where a part of the semi-local (GGA or MGGA) exchange 

term is replaced by the exact-exchange (EXX) energy.[71,81-83] Being computed in the same 

fashion as the HF exchange part, this latter term significantly increases the computational 

costs of hybrid DFT methods compared to local or semi-local XC approximations. Several 

hybrid DFT approximations have been implemented in the context of this thesis. 

Furthermore, these functionals were assessed with regard to their accuracy for the description 

of transition metal clusters. Also these performance studies are part of this thesis. Aside from 

the commonly employed hybrid functionals,[50,75,81,82,84-90] also variations like range-separated 

hybrid DFT[91-97] and screened exact-exchange DFT methods[98,99] exist. Even more elaborate 

concepts like local hybrid functionals employ a locally varying exact-exchange energy 

density and allow the design of hyper GGA functionals, which are exact for arbitrary one-

electron densities and thus, potentially more accurate for many-electron systems too.[100-103] 

Like local and semi-local XC functionals also hybrid DFT methods do not account for 

nonlocal correlation effects. Thus, all of these approximations are unable to describe van der 

Waals (vdW) type interactions, which, among other consequences, leads to the non-covalent 

interaction error (NCIE).[104] To improve the descriptions of such effects, empirical 

corrections like DFT-D have been suggested.[95,105-107] Such correction terms represent an 

efficient alternative to more advanced but significantly more expensive approaches like the 

random phase approximation (RPA) or double hybrid DFT which have nonlocal 

dependencies on the unoccupied KS orbitals as well.[108-114] Furthermore, the purely density-

dependent vdW-DFT approaches[115-119] were developed to describe the nonlocal correlation 

interactions that cause the vdW interactions as well and thus essentially remove the NCIE. 

Static correlation effects arise in situations where the ground state cannot be properly 

approximated by a mean-field description. These effects represent another source of error in 

DFT approximations. The lack of a proper, explicit description of static correlation and the 

resulting static correlation error (SCE) become apparent mostly for systems with significant 

multi-reference character like radical species or transition metal compounds. This type of 

correlation is, however, implicitly included in local exchange functionals which leads to the 

unfortunate situation that most modifications of these terms, e.g. by a SIE correction, 

deteriorate the description with regard to static correlation aspects. The interplay between SIE 

and SCE is examined and discussed for the employed hybrid DFT functionals and the 

DFT+Umol method in the context of several applications which are part of this thesis. The 

development of XC approximations that avoid self-interaction while simultaneously 

including nonlocal and static correlation effects, hence tackle all three issues – SIE, SCE, and 

NCIE, has begun only very recently.[97,102,120] 
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1.2. Thesis Outline 

The present thesis is dedicated to the development, implementation, and assessment of hybrid 

DFT functionals as well as the DFT+Umol method. The subsequent application of these 

methods primarily aims at cases related to computational catalysis for which semi-local DFT 

methods are unable to provide qualitatively correct results due to spurious self-interaction and 

delocalization errors. 

DFT and especially its more advanced XC approximations rely heavily on theoretical 

concepts originating from WFT. While a detailed coverage of WFT is beyond the scope of 

this thesis, some topics that are important for later discussions will be briefly highlighted in 

the Chapter 2 which deals with theoretical concepts. The rest of that chapter addresses DFT. 

Thereby, the most fundamental approaches and approximations to DFT are presented first. 

Subsequently, the self-interaction and delocalization effects as well as the closely connected 

implicit description of static correlation are introduced, which both arise in local and semi-

local DFT approximations. Chapter 2 concludes with a discussion of the theoretical aspects of 

hybrid DFT and DFT+U methods in the context of the self-interaction error. 

Chapter 3 is dedicated to algorithmic details and implementation aspects of the DFT 

methods added to the parallel density functional program package PARAGAUSS
[70] in the 

context of this thesis. The first section covers exact-exchange and includes discussions about 

the calculation of four-center electron-repulsion integrals, their contraction with the density 

matrix, as well as serial and parallel efficiency aspects. The second part of this chapter deals 

with the implementation of the DFT+Umol method which represents an extension of 

conventional DFT+U approaches to linear combinations of orbitals. 

Finally, Chapter 4 presents various applications of the methods implemented in the 

framework of this thesis. First, the effects and origins of self-interaction artifacts are 

examined by means of hybrid DFT and DFT+Umol calculations of metal-CO dissociation 

energies of nickel (sub-) carbonyls. The trend of these dissociation energies represents an 

example for a qualitative failure of GGA methods due to the self-interaction error. Second, in 

a transition metal cluster scaling approach the performance of several hybrid DFT 

approximations and the impact of the static correlation error is assessed. The same XC 

functionals are subsequently applied to study the adsorption of CO molecules on the facets of 

platinum clusters. The correct description of CO adsorption site preferences represents a 

situation where the prediction of physical quantities by GGA methods is known to suffer 

considerably from self-interaction artifacts. Simultaneously the description of the metallic 

moiety requires including, at least implicitly, static correlation effects. This problem is 

addressed with hybrid DFT methods as well as with the DFT+Umol correction, which allows 

for a more detailed analysis of the general adsorption site behavior on the employed model 

clusters. 
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2. Theory 

2.1. Aspects of Wave Function Theory 

2.1.1. Exact-Exchange and Hartree‒Fock Theory 

The Schrödinger Equation[11] (SE) provides the fundamental quantum mechanical description 

of molecular systems, solids and surfaces on an atomic scale. Within the Born‒Oppenheimer 

approximation[121] the electronic and nuclear degrees of freedom are separated so that the SE 

for the electronic components of the wave function reads as  

 ˆ | |el el el elH EΨ 〉 = Ψ 〉 . 2.1.1 

The electronic wave functions are denoted as elΨ  and the standard n-electron Hamiltonian 

for molecular systems 

 21
ext2

ˆ ˆ ˆ( ) ( , )el a a a b

a b a

H V W
>

 
= − ∇ + + 

 
∑ ∑r r r  2.1.2 

is expressed in terms of spatial electronic coordinates ( , , )a a a ax y z=r , the external 

potential1 extV  which arises from the atomic nuclei, as well as the pairwise electron-electron 

interaction ˆ ( , ) 1a b a bW = −r r r r . Of special interest is the ground state 0Ψ  and the 

corresponding ground state energy 0E . As Eq. 2.1.1 represents a generally unsolvable many-

body problem, the search for accurate approximations to elΨ  is central to WFT.[2,4,6]  

The approximate solution of the many-body SE remains a high-dimensional problem 

though, which demands for reliable and efficient numerical techniques. The Hartree‒Fock 

method[2,14-16] uses a Slater-determinant[122]  

 ( )

1 1 1 2 1

2 1 2 2 2
1 2

1 2

( ) ( ) ( )

( ) ( ) ( )1
, , ,

!

( ) ( ) ( )

n

n

n

n n n n

n

φ φ φ

φ φ φ

φ φ φ

Φ =

x x x

x x x
x x x

x x x

⋯

⋯
…

⋮ ⋮ ⋱ ⋮

⋯

 2.1.3 

as ansatz for elΨ , which fulfills the requirements of electronic non-distinguishability and 

the Pauli antisymmetry principle.[123] The single-electron orbitals { ( )}a bφ x  depend on 

combined electronic spatial ar  and spin aσ  coordinates, ( ),a a aσ=x r , and can be interpreted 

as wave functions of single electrons. Compared to the n-dimensional many-body wave 

function these orbitals are much simpler and allow one to approximate efficiently the SE in 

actual computations. After expressing ˆ
elHΦ Φ  in terms of the orbitals { ( )}a bφ x , most 

terms vanish as the latter are defined to be pairwise orthogonal. For the spin-restricted case, 

                                                
1 The external potential includes the interaction between nuclei and electrons as well as the nuclear-nuclear 

repulsion term. As the latter term is independent of the electronic degrees of freedom it enters the many-
body Hamiltonian only in form of a constant energetic shift. 
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( , ) ( , ) ( )a a aφ φ φ↑ ↓= =r r r , the resulting total energy expression of the single-determinant 

ansatz, SDE , reads as follows 

 ( )
2 2

SD 21
ext2

ext Coul X

ˆ ˆ ˆ2 | | 2 | | | |
n n

a a a b a b a b b a

a b

E V W W

T E E E

φ φ φ φ φ φ φ φ φ φ
 

= 〈 − ∇ + 〉 + 〈 〉 − 〈 〉 
 

= + + +

∑ ∑   2.1.4 

with T and V denoting the one-electron terms for the kinetic energy and the external potential, 

respectively. Note, that the electron-electron interaction ( ˆ 1 | |W ′= −r r ) is described by an 

electrostatic Coulomb part CoulE  (Hartree term) as well as by XE , the non-classical exchange 

term. This latter term is a direct consequence of the determinant ansatz for elΨ  and is 

central for hybrid DFT methods as well (see Section 2.3).[81,82] 

The HF energy HFE  is obtained as the energetically lowest stationary point of SDE  with 

respect to variations of the arguments { }aφ  while imposing pairwise orthonormality 

conditions on them. The canonical spin-restricted Hartree‒Fock equations  

 ( ) ( )21
ext HF2

ˆˆ ˆ ˆ| 2 | | | | | | | |a b b a b a b a a a

b

V W W fφ φ φ φ φ φ φ φ ε φ− ∇ + 〉 + 〈 〉 〉 − 〈 〉 〉 = 〉 = 〉∑  2.1.5 

result from this variation. Each of these equations in Eq. 2.1.5 describes an individual 

electron as a particle that moves within the electrostatic field created by the atomic nuclei as 

well as the Coulomb and exchange potentials arising from all other electrons of the system. 

This makes HF an effective mean-field theory. The orbitals { }
a

φ  and orbital energies { }
a

ε  

emerge as solutions of the HF equations and represent the eigenfunctions and eigenvalues of 

the corresponding single-particle Hamiltonian HFf̂  (Fock operator), respectively. In the 

context of an approximated ground state 0Ψ  the n solutions that lead to the energetically 

lowest total energy SDE  are occupied by electrons and included in the determinant 0Φ , Eq. 

2.1.3. The remaining unoccupied (virtual) orbitals do not affect the HF ground state and the 

corresponding HF ground state energy HFE . 

A finite set of N functions { }
i

ϕ  is commonly employed to represent the HF orbitals 

according to 

 ( ) ( ) a i ia

i

Cφ ϕ=∑r r , 2.1.6 

whereas N ≥ n to account for the presence of all electrons in the system. Left-multiplication 

of Eq. 2.1.5 by jϕ〈 |  (and integration) yields a single matrix equation[124,125] 

 =fC SCε  2.1.7 

in terms of the Fock matrix 

 ( )
 HF

2 *1
 ext   2

ˆ | 2

ˆ ˆ ˆ| | |

ij i j ij ij ij ij

i j ka la i k j l i k l j

a kl

f h T V J K

V C C W W

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

= 〈 | 〉 = + + +

= 〈 | − ∇ + 〉 + 2〈 | 〉 − 〈 | 〉∑∑
 2.1.8 

and the overlap matrix  ij i jS ϕ ϕ= 〈 | 〉 , whose non-diagonal elements arise in the case of non-

orthogonal basis functions. Thus, the integro-differential equations from HF theory are 
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reduced to the computation of the matrix elements in Eq. 2.1.8 and the solution of the 

generalized eigenvalue problem in Eq. 2.1.7. Well-established algorithms exist for both of 

these steps. However, Eq. 2.1.5 is non-linear in the HF orbitals { }
a

φ  due to the electron-

electron interactions. In consequence, also the Fock matrix f depends on its own eigenvectors. 

Because of these dependencies the correct solution of Eq. 2.1.7 can only be obtained 

iteratively, which is commonly achieved with the self-consistent-field (SCF)2 iteration.[2] The 

density matrix †( )=P C C  is obtained as the matrix representation of the density matrix 

operator 

   ˆ el elρ = Ψ Ψ   2.1.9 

in the case of a single-determinant ansatz. In this context P can be interpreted as a projector 

onto the subspace of occupied HF orbitals.[126] This quantity allows one to avoid the 

transformation of the electron-repulsion integrals (ERI) into the HF orbital basis in Eq. 2.1.8 

  
ˆ | ( | ) ,ij kl i k j l kl

kl kl

J P W P ij klϕ ϕ ϕ ϕ= 〈 | 〉 =∑ ∑  2.1.10a 

  
ˆ | ( | ) ,ij kl i k l j kl

kl kl

K P W P ik ljϕ ϕ ϕ ϕ= 〈 | 〉 =∑ ∑  2.1.10b 

and simplifies the computation of the HF energy from the corresponding Fock matrix 

 { }HF Tr   E = f P . 2.1.11 

The size of the four-center two-electron integral tensor ,  { } ( | )ijkl ij kl=g g  in Eqs. 2.1.10 

formally scales in forth order 4( )NO  with respect to the number of basis functions N. The 

calculation of g and its contraction with P to the matrices J and K generally represent the 

computationally most demanding steps in Hartree‒Fock calculations. 

 

 

2.1.2. Post-HF Methods and Correlation Effects 

Some concepts from WFT beyond HF theory are important in the context of this thesis as 

well. This holds especially for the correlation energy, which is commonly subdivided into its 

dynamic and static correlation components. The most important WFT approximations for the 

correlation energy as well as the origin of dynamic and static correlation terms shall be 

discussed in the following. 

Each Hartree‒Fock equation describes only an individual electron while treating all other 

particles in terms of their quantum mechanical distributions. Thus, the HF equations neglect 

the particle nature of the electron-electron interaction, which essentially prevents the 

electrons from correlating their motions beyond effects arising from spin interactions (Fermi 

correlation). However, the mean-field description arises naturally from the ansatz of single-

                                                
2 SCF is often used synonymously for the HF method. However, the term HF itself denotes the analytical 

theory in Eqs. 2.1.5 while SCF stands for the procedure used to converge the non-linear equations arising 
from single-determinant theories. As such the term SCF will also appear in the context of KS-DFT.  
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determinant approximation for elΨ  in Eq. 2.1.3. This implies that the single-particle basis is 

unable to describe correlation effects and that the missing correlation energy is recovered 

only within a true many-electron basis.[127] 

The Slater-determinant in Eq. 2.1.3 was chosen for its non-distinguishability and 

antisymmetry properties but any linear combination of Slater-determinants 

 
M

el i i

i

cΨ ≈ Φ∑  2.1.12 

meets these requirement as well.[4] Post-HF theories usually generate the elements of such a 

basis of Slater-determinants by substituting occupied and virtual orbitals from a previously 

obtained HF ground state solution.[4,17-26] The FCI method thereby employs a basis of all 

possible determinants that can be generated with this approach and thus yields, within the 

employed finite basis set, the exact solution of the n-electron SE, Eq. 2.1.1.[2] However, FCI 

accounts for a very large number of determinants which exponentially grows with respect to 

the basis set size N.[7] These unfavorable computational requirements essentially restrict FCI 

to very small systems.[7] All other post-HF methods reduce the degrees of freedom of the 

many-electron basis while aiming to retain most correlation effects covered by FCI.[4,17-20] 

Like FCI, these methods always introduce the unoccupied orbitals3 of the HF ground state 

solution into the expression of the correlation energy. The second-order many-body 

perturbation theory[21] (MBPT2 or MP2) and coupled cluster (CC) approaches,[22] mostly in 

form of its CCSD(T) variant,[23] are nowadays the most popular approaches of this type. The 

former directly provides an estimate for the correlation energy 

 
2

MP2 1
C 4

ˆ ˆ| | | | | |a b u v a b v u

a b u vab uv

W W
E

φ φ φ φ φ φ φ φ
ε ε ε ε

〈 〉 − 〈 〉
=

+ − −∑∑  , 2.1.13 

from many-body perturbation theory.[21] In contrast to that, CC approaches employ an 

exponential ansatz for the many-body wave function 

 
ˆ

0
T

el eΨ ≈ Φ  2.1.14 

in terms of a truncated substitution operator T̂ . Coupled cluster theory formally includes all 

of the up to n-fold substituted determinants in the total energy expressions, although the 

variation of the determinant coefficients ic  is subject to specific restrictions.[26] 

At this point some important considerations need to be made about the correlation 

interactions that are recovered by MP2 and CCSD(T) approaches. In most cases the 

electronic correlation is caused by the tendency of the electrons to avoid each other in their 

dynamic motion due to electrostatic repulsion. The resulting electronic rearrangement is 

rather limited and reflects itself in rather small correction terms to 0Φ  in Eq. 2.1.12. 

Dynamic correlation effects are mostly localized, except for long-range correlation effects 

                                                
3 Denoted by the indices u and v.  
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that lead to vdW interactions. Both, short- and long-range dynamic correlation effects are 

well handled by post-HF methods.[128] 

However, in some cases the tendency of the electrons to avoid each other can be large 

enough to cause dramatic rearrangements.[129-131] These relocations can locate the interaction 

partners to entirely different spatial regions or even to different atomic centers.[129-131] 

Compared to dynamic correlation effects such rearrangements are quite nonlocal and of a less 

instantaneous nature.[129-131] Thus these relocations are denoted as non-dynamic or static 

correlation effects.[129-131] At the level of wave functions, static correlation expresses itself in 

the presence of one or more substituted determinants that are (nearly) degenerate to 0Φ  in 

HF theory. These determinants contribute to the eigenfunction of the many-body 

Hamiltonian, Eq. 2.1.12, with similar prefactors4 ic  as 0Φ .[132] While FCI covers all types 

of correlation interactions, standard low-order post-HF methods like MP2 or CCSD(T) can 

exhibit dramatic failures in cases where static correlation prevails.[133] Multi-reference 

approaches like multi-configuration SCF[134,135] (MCSCF) or complete active space[136] 

(CAS) methods are more reliable approximations in such cases.[137] However, these methods 

are computationally far more demanding than MP2 or even CCSD(T). 

 

                                                
4 Although the transition between dynamic and static correlation is smooth and not well defined, ci values 

larger than 0.1 or 0.2 are usually considered as strong indicators for the presence of static correlation 
interactions (T1 diagnostics).[116]  
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2.2. Kohn‒Sham Density Functional Theory 

2.2.1. Fundamental Concepts 

The following section briefly presents the fundamentals of density functional theory, namely 

the Hohenberg‒Kohn theorems, the Kohn‒Sham formalism and the Kohn‒Sham equations 

which result from the latter. 

The many-body SE has 3n dimensional solutions and is thus quite difficult to handle. This 

leads to the high computational requirements (formal scaling of 5( )NO  at least)5 of WFT 

methods beyond HF. Density functional theory[27-33] follows a different approach. At its heart 

lies the electron density 

 1( ) ( ) ( )el a el el el

a

n
σ σ

ρ δ δ= Ψ − Ψ = Ψ − Ψ∑∑ ∑r x x x x  , 2.2.1 

and its usage as the fundamental quantity of electronic structure formalisms instead of 

complicated many-body wave functions.[27,138] While WFT employs a wave function 

functional for the total energy  

 ˆ[ ] |el el el el el elE E H= Ψ = Ψ Ψ 〉  , 2.2.2 

DFT formulates the ground state energy 0E  as a functional of the ground state electron 

density 0ρ  

 0 0[ ]elE E ρ=  . 2.2.3 

Given the fact that ( )ρ r  is a three-dimensional function only, such a density based electronic 

structure theory should be more efficient by orders of magnitude compared to WFT 

approaches. 

Density functional theory is justified by the theorems of Hohenberg and Kohn which 

prove the uniqueness of the total energy density functional in Eq. 2.2.3.[27] While referring to 

the original work[27] for the detailed mathematical proof, the essential argumentation of the 

HK theorems can be outlined as follows: For a given number of electrons n each external 

potential extV  uniquely defines (up to a constant) a many-body Hamiltonian.[27] The 

corresponding many-body wave function 0Ψ  emerges as a uniquely defined solution of the 

SE.[11] From the wave function 0Ψ  the corresponding ground state electron density 0ρ  is 

obtained by means of Eq. 2.2.1, which gives rise to the following mapping 

 ext 0 0    
b a

V ρ
′ ′

Ψ֏ ֏  . 2.2.4 

The first HK theorem (HK1) deals with the reverse mapping,[27]  namely that every ground 

state density 0ρ  uniquely defines a corresponding external potential extV ,[138] 

 0 0 ext    
a b

Vρ Ψ֏ ֏  . 2.2.5 

                                                
5 The effective cost scaling is reduced by various techniques (integral cutoffs, density fitting, orbital 

localization etc.). Nevertheless, the formal scaling remains a useful measure to compare the computational 
efficiency of methods. 
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Hohenberg and Kohn proved the uniqueness of the mapping a and assumed that b is unique6 

as well.[27] The so-called strong form of the HK theorem 

 ext( ) ( ) 0V dρ∆ ⋅∆ <∫ r r r  , 2.2.6 

represents a more modern alternative that does not rely on this assumption. Eq. 2.2.6 is more 

general than the HK theorems, which are restricted to non-degenerate ground states.[139,140] 

Eq. 2.2.6 is proven independently from the HK theorems by means of perturbation theory[141] 

and predicts for any change extV∆  in the external potential a corresponding, non-vanishing 

change ρ∆  of the electron density. Thus, two different external potentials cannot yield the 

same 0ρ , which proves the one-to-one mapping 0 extVρ ֏ . 

Because of the unique mapping 0 extVρ ֏  and the fact that 0ρ  integrates to the number of 

electrons n any quantum mechanical system is entirely defined by its ground state density. 

Consequently, the information about any property of the quantum mechanical system at hand 

is contained in 0ρ  as well. Thus, 0ρ  indeed qualifies as a substitute for the many-body wave 

function. This holds especially for the total electronic energy so that the existence of a density 

functional for the total electronic energy is guaranteed by the HK1 theorem and Eq. 2.2.6. 

The second theorem of HK (HK2) formulates a variational principle 

 0[ ] [ ]el elE Eρ ρ ′< , 2.2.7 

which states that the total energy [ ]elE ρ  is a convex functional of the electron density. This 

functional is minimized by the ground state density 0ρ . The HK2 theorem is proven using 

the relations established by HK1 as well as the standard variational principle of quantum 

mechanics. However, it assumes that any trial density ρ′  fulfills the requirements (i) to be 

representable in terms of a many-body wave function as in Eq. 2.2.1 (n-representability) and 

(ii) to be the ground state density of some system with external potential extV ′  (V-

representability). A violation of these conditions implies severe consequences as Eq. 2.2.7 

holds for the domain of V-representable densities only. The constrained search of Levy and 

Lieb represents an alternative to the variational principle in Eq. 2.2.7 as well as to the HK1 

theorem.[142-145] It relaxes the V-representability requirement to the conditions 

 ( ) 0ρ ′ ≥r , ( ) d nρ ′ =∫ r r , 
2

 ( ) dρ ′∇ < ∞∫ r r , 2.2.8 

which are known to suffice for a trial density ( )ρ ′ r  to be n-representable.[142-146] These 

requirements are considerably weaker than the not yet entirely understood V-representability 

conditions.[146,147]  

All of the approaches presented above can only be considered as theoretical proofs of 

concepts and none of them actually provides a viable way to compute any physical quantity. 

                                                
6 It can be proven as well that a many-body wave function cannot be simultaneously a ground state of two 

external (physically meaningful) potentials. However, such a proof involves a much more complicated 
argumentation in terms of the topology of regions where the wave function vanishes and thus, is omitted in 
most presentations. 
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This holds even in cases where the correct ground state density is known. Indeed, the density 

functionals for kinetic, exchange, and correlation energy terms are unknown and so is the 

total energy functional in Eq. 2.2.3. 

Especially the accurate representation of the kinetic energy density functional is utterly 

important as the dramatic failures of early DFT approaches[148-150] trace back to poor 

approximations of this term.[151] Some indications about how to include an accurate 

formulation of the kinetic energy were provided by the Hartree‒Fock‒Slater model (HFS), 

which was developed prior to the work of HK as an approximation to the HF method.[152] The 

HFS approach employed an averaged exchange potential (Slater potential) which only 

depends on the electron density while retaining the orbital-dependent kinetic energy term.[152] 

Surprisingly, the HFS model was often found more accurate than HF itself.[153,154] 

Kohn and Sham (KS) introduced an exact DFT formalism which shares many aspects with 

the HFS model.[28] Their underlying idea was to replace the original many-body problem by a 

fictitious auxiliary system of n non-interacting, independent particles.[28] As the HK 

formalism does not depend on the specific type of electron-electron interaction, setting 
ˆ ( , ) 0a bW =r r  in Eq. 2.1.2 is a valid choice from the formal viewpoint of HK theory. The 

Hamiltonian of the KS system  

 ( )KS 21
KS2

ˆ ( )a a

a

H V
σ

σ

= − ∇ +∑ r   2.2.9 

includes the usual kinetic energy operator as well as an effective potential KSV , which is 

multiplicative as the electrons do not interact.[155] However, the electrons within the KS 

reference system are still supposed to be non-distinguishable and their wave function needs to 

obey the Pauli antisymmetry principle. Thus, the exact ground state of the KS Hamiltonian in 

Eq. 2.2.9 is represented by a single Slater-determinant.[28] Just as in Eq. 2.1.3 the KS 

determinant KSΦ  is formed by single-particle wave functions. The single-particle wave 

functions of the KS system differ from the HF orbitals as they include many-body effects 

beyond HF theory.[28] To distinguish them from the HF orbitals, the KS molecular orbitals 

(MO) will be denoted as { }aψ  or { }a
σψ  in the following. 

The original and KS systems are connected by the requirement that they exhibit equal 

ground state densities KSρ  and 0ρ ,[28] hence 

 
2

0 KS( ) ( ) ( )a

a

σ

σ

ρ ρ ψ= =∑∑r r r  or  
2

0 KS( ) ( ) ( )a

a

σρ ρ ψ= =∑x x r  2.2.10 

in the case of an unrestricted, spin-resolved treatment.7  This identity is fulfilled by a suitable 

choice of KSV
σ , which implies 0ρ  to be V-representable in the KS system (non-interacting-V-

representable).[28] Figure 2.2.1 depicts the connections between density, potentials, and wave 

functions in both systems. 

                                                
7 A spin-resolved density is obtained likewise from a correspondingly adapted version of Eq. 2.2.1. 
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Figure 2.2.1: Relations between ground state density 0ρ , external potential extV , and ground 

state 0Ψ  of the original system as well as KSρ , effective KS potential KSV , and single-

determinant ground state KSΦ  of the KS reference system.  

The idea to express the numerically largest interactions in the original system (with 
ˆ 1 | |W ′= −r r ) by the corresponding terms of the reference system turns KS-DFT into a 

working theory.[28] This is not possible for all energy terms of the original system. However, 

the unknown terms are assumed to be small and are left to be approximated.[28] To this end, 

the KS formalism defines the following partition of the kinetic energy[28] 

 S CT T T= +  . 2.2.11 

Thereby, ST  denotes the kinetic energy of the reference interacting system and C ST T T= −  

the difference to the kinetic energy of the interacting system.8 While CT  remains unknown, 

ST  is given in terms of the MOs as[28] 

 21
S 2a a

a

T
σ σ

σ

ψ ψ= − ∇∑ . 2.2.12 

The term ST  should comprise by far the largest part of T  so that CT  is expected to be small 

in most cases.[28] The total electronic energy is partitioned by the KS formalism as 

 KS
S ext Coul XC[{ }] [ ] [ ] [ ]aE T E E E

σψ ρ ρ ρ= + + +  , 2.2.13 

with the kinetic energy term from Eq. 2.2.12 as well as extE  and CoulE  arising from the 

external and classical Coulomb potentials, respectively.[28] The exchange-correlation term 

XCE  is thereby defined as 

 XC X C C[ ]  [ ] + [ ] + [ ]E E E Tρ ρ ρ ρ=  2.2.14 

and includes all unknown terms which require to be approximated.[28] The non-classical 

electron-electron interaction is usually separated into exchange ( XE ) and correlation ( CE ) 

parts, mostly to retain the analogy to WFT. For actual DFT approximations this definition is 

not essential. However, it seems suggestive to construct X[ ]E ρ  in such a way that the HF 

energy (and density) is reproduced if the correlation term is neglected.[156] Alternatively, the 

exchange term XE  may be defined in terms of a dimensional analysis as that part of XCE  that 

exhibits the same uniform scaling behavior as the Coulomb repulsion.[157] 

For being formulated only in terms of ρ  and the single-electron wave functions { }a
σψ , 

KS-DFT mathematically appears as a mean-field approach, while still being an exact theory. 

If accurate approximations for XCE  are available, actual KS-DFT applications provide a full 

many-body description at the computational costs of a mean-field approach. 

                                                
8 The subscripts “S” and “C” in the kinetic energy terms are commonly used in the literature to denote 
“single-determinant“ and “correlation” contributions, respectively. 
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Just like in HF theory, the variational equations 

 
KS

KS
KS†

ˆ  a a a a

a

E
f

σ σ σ σ
σσ

δ
ψ ψ ε ψ

δψ
 

= = 
 

 2.2.15 

for the spin-unrestricted KS orbitals (see below) emerge as stationary points of a Lagrangian, 

which includes the boundary conditions of normalized and pairwise orthogonal MOs. The 

eigenvalues of the KS spin-orbitals are thereby denoted as KS{ }aσε . Despite of being a quantity 

within a fictive system, the highest KS eigenvalue corresponds to the first ionization energy 

of the system.[158,159] In contrast to the HF energy in Eq. 2.1.4, the last three terms on the right 

side of Eq. 2.2.13 are defined as density functionals.[28] Thus, the single-particle Kohn‒Sham 

Hamiltonian (KS operator) is derived with the chain rule for functional derivatives[29] 

 
21KS

2 ext Coul XC

† † †

[ ] [ ] [ , ]b b

a a ab

E E E E
σ σ

σ
σ σ σ

σ σ σσ

δ ψ ψδ δ ρ δ ρ δ ρ ρ δρ
δψ δψ δρ δρ δρ δψ

′ ′

↑ ↓

′

 − ∇  
 = + + + 
   
∑ . 2.2.16 

Thereby, XC XC[ , ]V E
σ

σδ ρ ρ δρ↑ ↓=  is defined as a local and multiplicative potential9 arising 

from the XC term.[28] From Eq. 2.2.16 the KS operator is identified as 

 21
KS ext Coul XC2f̂ V V Vσ σ= − ∇ + + +   2.2.17 

and a comparison with Eq. 2.2.9 reveals the effective KS potential as 

 KS ext Coul XCV V V V
σ σ= + +  . 2.2.18 

Just as in Eq. 2.1.7, the introduction of a finite basis set allows one to formulate the KS 

equations as a generalized eigenvalue problem, which needs to be solved iteratively e.g. by 

the SCF method. The most striking technical difference to the Fock matrix of HF theory 

consists in the term 

 XC
XC[ , ]ij i jV Eσ σϕ δ ρ ρ δρ ϕ↑ ↓= , 2.2.19 

which needs to be computed on numerical grids.[7,31,160-166] A correspondingly adapted variant 

of Eq. 2.1.11 allows one to compute the estimate of KSE  in a finite basis. 

Note, that the original DFT treatment was established in terms of the total electronic 

density, while the above discussion followed an alternative formulation in terms of the spin-

resolved density[167] KS( ) ( )σρ ρ=r x  (spin density) in Eq. 2.2.10. Even more general DFT 

formulations exist, dealing with time dependent[168] or current densities.[169] However, only 

the spin-resolved variant is relevant in the context of this thesis and thus, demands further 

explanation. Without external magnetic field, the exact total density and spin density 

functional theories10 always yield the same ground state energy, even for spin-polarized 

systems.[130] As the total density formulation restricts both spin components of the density to 

be identical (restricted KS, RKS), it does not provide the correct spin-resolved density for 

spin polarized systems.[130] Thus, actual spin-restricted KS-DFT approximations yield 

                                                
9 As opposed to the nonlocal and non-multiplicative HF exchange potential. 
10 Indeed, in the non-magnetic, non-relativistic, and time independent case the time dependent and current 

density  formulations of DFT yield the same ground state energy as well. 
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different total energies compared to corresponding spin-unrestricted (UKS) variants.[130] As 

UKS approximations are formulated in terms of the more flexible variable ( )ρ x , their ground 

state energies are likely to be closer to the exact result for spin-polarized systems.[170] Thus, 

most DFT correlation approximations are specifically constructed as spin resolved density 

functionals, while the spin scaling relation[171] 

 1 1
X X X2 2[ , ] = [ ] + [ ]E E Eρ ρ ρ ρ↑ ↓ ↑ ↓  2.2.20 

provides an UKS formulation of the exchange term. Whenever more convenient, the UKS 

formulation will be used for some expressions in the following sections. 

 

 

2.2.2. Exchange-Correlation Holes 

The exchange and correlation holes are important quantities in density functional theory. 

Exchange and correlation holes provide useful insights to the properties of the exact XC 

functional as well as to the behavior of XC approximation with regard to self-interaction and 

static correlation effects (see Sections 2.2.5 and 2.2.6). Thus, the origin and properties of 

these quantities will be addressed in the following section. 

Approximations to the XC term can be obtained from either an empirical parameter 

optimization of reasonable functional forms or by considering scaling relations, boundary 

conditions, and other known properties of the exact XCE  functional.[46,47,73,172-176] The XC 

hole  

 XC X C( , ) ( , ) ( , ) ( , ) ( )h h h θ ρ′ ′ ′ ′ ′= + = −x x x x x x x x x  2.2.21 

represents a common starting ground for both, empirical and non-empirical approaches. This 

quantity derives from the conditional pair density11 

 1 2
( 1)

( , ) ( ) ( )
( )

el el

n n
θ δ δ

ρ
−

′ ′= Ψ − − Ψx x x x x x
x

 . 2.2.22 

Thereby, ( , )θ ′x x  is interpreted as the electron density appearing from the perspective of a 

single electron, the so-called reference electron.[31] If an electron with spin σ  is found at the 

reference position r , ( , )θ ′x x  provides the probability for finding another electron of spin σ ′  

at another location ′r .[33] In this context the reference electron is described as a particle 

located at x so that the pair density is normalized to 1n −  electrons.[33] These 1n −  electrons 

comprise the electron density appearing from the perspective of the reference electron.[33] 

However, if exchange-correlation effects are neglected, the particle description of the 

reference electron at x does not hold any longer. In this case the conditional pair density 

would equal ( )ρ ′x  and consequently have an unphysical normalization factor of n . The 

exchange-correlation hole XC ( , )h ′x x  is introduced as the change of the conditional pair 

density which arises from non-classical electron-electron interactions.[33] Its further purpose 

                                                
11 Noting the analogy between the pair density and the electron density in Eqs. 2.2.1. 
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is to restore the particle nature12 of the reference electron at x by removing it from the 

density. Thus the XC hole XC ( , )h ′x x  is normalized to ‒1, in accordance with the 

normalization factors in Eqs. 2.2.1 and 2.2.22.[31,33] 

The XC hole is subdivided into exchange ( Xh ) and correlation terms ( Ch ); again to retain 

the analogy to WFT. While each HF equation treats the residual particles of the system as 

distributions, the actual electron described by it is considered a particle. Thus, the HF 

exchange hole 

 
2

HF *
X ( , ) ( ) ( )

( )
a a

a

h
σσ σ σ

σ

δ
φ φ

ρ
′ ′′ ′= − ∑x x r r
r

 2.2.23 

exhibits already the correct normalization and prevents two electrons with identical spin from 

being found at the same position (Fermi correlation).[29,31] Due to the nonlocal character of 

the HF orbitals, the HF exchange hole is delocalized and may extend over many atomic 

centers.[33,102] 

A detailed analysis of Eq. 2.2.23 reveals the following properties 

 X X X X( , ) 1  ,     ( , ) ( , ) 0  ,     ( , ) ( )h d h h hσσδ ρ′′ ′ ′ ′= − = ≤ = −∫ x x x x x r r x x x  , 2.2.24 

which are attributed to the KS exchange hole as well. However, compared to the HF 

exchange hole, Xh  assumes a less extended shape and is more localized.[33] The correlation 

hole integrates to zero 

 C ( , ) 0h d′ ′ =∫ x x x . 2.2.25 

This normalization of Ch  is to be expected as the presence of the electron at x arises already 

from the ansatz of a determinant wave function that leads to the exchange term. The 

singularity of ˆ 1 | |W ′= −r r  at ′=r r  causes Ch  to exhibit distinct cusps whenever two 

electrons of different spin assume identical positions.[18,31,102] Just as the correlation 

interaction itself, the correlation hole is localized, apart from exceptions that arise from 

nonlocal vdW or static correlation interactions. In the latter case, Ch  is found to be large but 

mostly independent of the reference point x over larger regions that may extend over entire 

atoms.[177,178] In contrast to that, the hole describing normal, dynamic correlation interactions 

varies stronger with respect to x.[177,178] Compared to the exchange hole which removes an 

electron from ρ  and can assume only negative values, Ch  rearranges electrons due to their 

Coulomb repulsion, hence depletes the electron density at x  and augments it at other 

locations ′x . Thus, both contributions cancel each other partially in the long-range and the 

extent of the total XC hole is smaller than that of Xh . The properties of the XC hole in Eqs. 

2.2.24 to 2.2.25, turn it into a useful quantity for the development of approximations to the 

XC term. Furthermore, the picture of XCh  as an incremental density that reduces or modifies 

( )ρ r  will be beneficial in subsequent discussions. 

                                                
12 As well as the correct normalization of ( , )θ ′x x . 
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2.2.3. Adiabatic Connection 

The adiabatic connection formalism provides a continuous link between the KS reference 

system and the interacting system. This concept is briefly reviewed in the following, mainly 

because of its importance for the theoretical justification of hybrid DFT methods. 

In contrast to HF
Xh , the exchange-correlation hole in KS theory is just as unknown as the 

XC functional itself. This is rationalized by considering the fact that it directly relates to the 

energy density XC ( )ε r  

 XC
XC XC

( , )
[ ( ) [ ( ) ( )]  

|
]  

|

h
E d d dρ ρ ε ρ ρ

′
′= ⋅ =

′−
⌠ ⌠


⌡⌡∫

x x
x x x x x x

x x
 ,  2.2.26 

thus to the exact XC energy functional. 

The KS reference system is defined to be free of electron-electron interactions so that the 

XC hole should vanish in this case. However, it is customary to define an XC hole according 

to the single-determinant description of the KS reference system to restore the normalization 

of ( , )θ ′x x  in Eq. 2.2.22, thus the particle picture of a non-interacting reference electron (see 

Section 2.2.2).[31,33,131,152,179-181] The resulting hole =0
XCh
λ  in the so-called KS exchange only 

limit has the same form as HF
Xh  in Eq. 2.2.23 and differs from it just by its definition in terms 

of the KS orbitals { }a
σψ  instead of the HF orbitals.[31,33] 

The adiabatic connection relates =0
XCh
λ  to the real XC hole of the interacting 

system.[31,33,131,152,179-181] Thereby, a coupling parameter λ  is defined on the interval between 

0 and 1, which controls the strength of the electron-electron interaction Ŵ . The resulting λ -

dependent many-body Hamiltonian writes as 

 ( )21
2

ˆ ˆ( ) ( , )el a a a b
a b a

H V W
λ λ λ

>
= − ∇ + + ⋅∑ ∑r r r  2.2.27 

with the limiting cases 0
KSV V=  and 1

extV V= . Furthermore, a λ-dependent XC hole XCh
λ  can 

be defined which retains the ground state density for every value of λ  in the interval between 

0 and 1. The exact XC hole of the interacting system emerges then as the following coupling-

strength average[31,33,131] 

 
1 1

XC XC
0 0

( , ) ( , ) ( , ) ( )h h d d
λ λλ θ λ ρ′ ′ ′ ′= = −∫ ∫x x x x x x x  2.2.28 

with a correspondingly defined λ -dependent conditional pair density ( , )λθ ′x x . Like the XC 

hole itself, the concept of adiabatic connection is utterly important for the theoretically driven 

development and analysis of KS-DFT approximations. This is especially true for hybrid DFT 

methods (Section 2.3). 
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2.2.4. Local and Semi-Local Density Functional Approximations 

While hybrid DFT methods are one of the central topics of the present thesis, these 

approximations are also compared to several semi-local XC functionals in the applications 

presented in Sections 4.3 and 4.4. Furthermore, the behavior of hybrid functionals with 

regard to self-interaction and static correlation effects (see Sections 2.2.5 and 2.2.6) is best 

understood when considered together with that of semi-local DFT methods. Thus, the 

following section provides a general discussion of local and semi-local DFT methods. 

The exact XCh  and XCE  represent rather complicated quantities as they comprise a full 

description of many-body effects. However, significant progress can be made with 

comparatively simple approximations to them. Indeed, the most basic DFT approximation to 

XE , hence the Dirac exchange functional and the exchange term resulting from the HFS 

approximation to the exchange potential, existed already before KS-DFT.[150,152] Both 

exchange functionals are examples of local density approximations (LDA), hence are local in 

terms of the electron density. The corresponding exchange potential 

 X /LDA 1 3
X

3 3
( ) ( )

2
V

α α ρ
π
 = −  
 

r r  2.2.29 

has the same form for both, the Dirac exchange functional and the exchange term of the HFS 

model.[28,150,152,182] For the potential of the Dirac exchange functional a value of 2 3α =  

results, while 1α =  is obtained when approximating XV  directly by the corresponding 

expression of the HEG model as in the HFS method. These different prefactors gave rise to 

more empirical choices of α (Xα method, e.g. 0.75α ≈ ) in the early days of KS-

DFT.[37,38,183,184] Despite of being rather old, the idea of a modified α-parameter saw a recent 

revival in form of the OPTX-type GGA and hybrid GGA functionals.[128] Such methods 

include a scaled LDA exchange term to improve the implicit description of static correlation 

(see Section 2.2.6).[128] OPBE and O3LYP are the most common OPTX functionals.[185] 

LDA approximations to the correlation term existed before the formulation of KS-DFT 

too.[186-190] These correlation functionals were later refined by means of the random phase 

approximation as well as by quantum Monte Carlo simulations.[172-175] The nowadays most 

widely used LDA correlation approximations are known as VWN[191] and PWLDA.[192] LDA 

approximations to the XC term often exceed HF and sometimes also MP2 with regard to their 

accuracy, especially in the case of transition metals.[34] This performance is rationalized by 

the rather slowly varying density in solid state systems as well as by the behavior of the 

spherically symmetric and very localized LDA exchange hole 

 ( )LDA 1 3 4
X ( , ) 1 ( ) | |   for  |  h |ρ′ ′ ′∝ − − − → ∞r r r r r r r  2.2.30 

in molecular systems.[152,193] While LDA
Xh  and the exact Xh  differ considerably, the spherically 

averaged forms of both holes agree well.[193] As the radial behavior is most important for 

exchange holes, this agreement rationalizes the accuracy of LDA for molecular systems.[193] 
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Despite the good performance of LDA, its absolute value of the exchange energy deviates 

often by about 10% from the HF result, which may lead to errors in some cases as XE  is 

considerably larger than CE  in most cases.[2,5-7] These problems can be partially resolved by 

extending LDA to a spin-unrestricted formalism (LSDA).[28] Nevertheless, significant effort 

was put forward to improve the exchange density functional beyond the LDA level. Such 

improvements can consist in averaged, nonlocal functionals.[193,194] However, an expansion of 

XCE  in terms of spatial derivatives of the local density, hence of the dimensionless reduced 

density gradient 2 1 3 4 3
1 | ( ) | [(24 ) ( ) ]s ρ π ρ= ∇ r r  and its higher order analogues, represents a 

far more viable and popular alternative.[28,195-197] The functionals resulting from this approach 

are denoted as semi-local DFT approximations as they partially address the nonlocal 

character the XC term while still retaining a mathematically local XC functional.[45] While 

such an approach is certainly promising, the exact polynomial expansion of the exact 

exchange hole in terms of 1s  exhibits a divergent behavior for large values of this 

variable.[195] Therefore, so-called “generalized gradient approximations” (GGA) were 

introduced, which modify the exact gradient expansion, mostly for large gradients 1    3s > , 

and exhibit the following general form[45] 

 

GGA GGA
X X 1

LDA GGA
X X 1

[ ] ( ) ( ( ), ( ),  ) 

( ) ( ( )) ( ( ), ( ),  )  .

E s d

F s d

ρ ρ ε ρ

ρ ε ρ ρ

=

=

∫
∫

r r r r

r r r r r

…

…
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The choice of the gradient exchange enhancement factor GGA
XF  adds some degree of 

empiricism to KS-DFT. In consequence, many GGA variants have been proposed.[46-50] 

Nevertheless, the enhancement factors of all GGA methods are always larger than one, which 

yields more negative exchange energies compared to LDA.[31] The reduced density gradient 

1s  and thus also the absolute values of GGA
XF  and XE  are reduced upon formation of chemical 

bonds.[198] In consequence, GGA functionals tend to lower reaction energies, which often 

reduces the overbinding tendency of LDA.[31,198] The most common GGA variants are the 

B88[46] exchange term and the LYP[47] correlation functional as well as the XC formulations 

PW91[192] and PBE.[49] Novel, non-separable gradient approximations (NGA) have recently 

been proposed.[176] These functionals exhibit dependencies on ρ  and 1s  as well but, opposed 

to the canonical separation in Eq. 2.2.14, are formulated as a combined XC term.[176] 

When pursuing the argumentation, that led from LDA to GGA methods, one step further, 

one arrives at XC functionals that also include the Laplacian of the electron density. Indeed, 

the usage of Laplacian dependent exchange terms has been reported to improve over 

functional forms purely dependent on the electron density gradient.[199] However, functionals 

that include higher order density derivatives may tend to a more erratic behavior when 

integrated numerically.[200,201] The electronic kinetic energy density (KED)[72,80,202,203]  
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2( ) ( ) ( )a

aσ σ

τ τ ψ= = ∇∑ ∑∑r x x , 2.2.32 
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is more stable in this regard. As one of the second-order derivative terms of the electron 

density it includes similar information as the Laplacian of ρ.[72,80,202,203] Despite of being 

orbital-dependent, τ  is well justified by the HK formalism as a density functional variable as 

the value of each KS orbital at x represents a density functional too. The optimized effective 

potential (OEP, see Section 2.3.2) method allows one to compute XCE ρ∂ ∂  for orbital-

dependent XC functionals, thus to perform self-consistent calculations within the KS-

formalism.[204-206] However, this approach introduces very high computational costs, but 

changes energies only slightly; it is mostly popular for properties like NMR shielding 

constants.[206,207] The generalized Kohn‒Sham formalism (GKS, see Section 2.3.2) provides 

an alternative justification for orbital-dependent XC approximations.[208] Within the GKS 

formalism the XC potential can be computed in terms of functional derivatives with respect 

to the orbitals (FDO) only.[208] 

The KED exhibits several additional beneficial properties that go beyond what is provided 

by derivatives of the density.[202] First, the KS orbitals are solutions of the nonlocal KS 

equations and thus, represent nonlocal density functionals themselves. This nonlocal 

character is included in τ  as well, although only in an intrinsic fashion and not directly 

accessible for the construction of XC approximations. Nevertheless, the nonlocal information 

included in τ  has been shown to provide, to some extent, a description of nonlocal properties 

(see Section 2.2.7).[77] Second, the HEG limit of τ , 

 { } ( )
HEG

5 32 2 3
HEG

3
lim  ( ) ( ) (3 ) ( )

10ρ ρ
τ τ π ρ

→
= =r r r  , 2.2.33 

allows detecting spatial regions where the density approaches a HEG-like behavior.[209] By 

exploiting Eq. 2.2.33 the XC energy density XCε  can be constructed to reduce to the 

corresponding LDA form in these regions.[209,210] In this way, the violation of the HEG limit 

can be avoided, thus eliminating a source of error in XC approximations.[198,209,210] 

Furthermore, spatial regions which are dominated by a single KS spin orbital (thus individual 

electrons), so-called one-electron regions[79] (OER, see Section 2.2.5), can be identified by 

comparing the KED with the von Weizsäcker kinetic energy density Wτ , 

 { }
2

W
1 | ( ) |

lim  ( ) ( )
8 ( )aρ ψ

ρ
τ τ

ρ→

∇
= =

x
x x

x
 . 2.2.34 

As discussed in the next section, OERs are often responsible for the self-interaction error. It 

is therefore beneficial to identify locally OERs and to adapt XCε  to such situations.[72,74] 

Functionals which depend on τ  (besides depending on ρ  and 1s ) are referred to as meta-

generalized gradient approximations (MGGA).[71,211] As expected from the aforementioned 

properties of the KED, MGGA functionals provide improvements over GGA methods 

although the additional gain in accuracy is usually not as large as when going from LDA to 

GGA.[77,212,213] The functionals TPSS[75,76,212] and M06L[77] are the most common MGGA 

methods; they are based on the earlier MGGA variants PKZB[74] and VSXC,[73] respectively. 
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2.2.5. Self-Interaction Error 

The self-interaction error (SIE) is the most common artifact arising to some extent in all 

current approximations to KS-DFT. This error and its consequences will be first explained on 

the examples of single-electron systems and one-electron regions (OER). In the following the 

many-electron self-interaction or delocalization error will be discussed. Although this latter 

artifact has been recognized long time ago, the detailed study of its effects and implications 

has begun only recently. In consequence the available literature on this topic is somewhat 

sparse and ambiguous with regard to some details. While occasionally referring to the results 

and explanations of Mori-Sánchez‒Cohen‒Yang,[101,120,214-217] the subsequent presentation 

mainly follows the work of Perdew et al.
[130,158,218-220] and employs the concept of fractional 

electron numbers (FEN) for many explanations. 

Despite the remarkable success of LDA, GGA, and MGGA KS-DFT methods one has to 

consider that these methods are still far from being close to the exact XC functional. Indeed, 

the local form of these methods represents the most striking difference to the exact XC term. 

The implications of this difference become apparent when one considers the very simple 

example of a system that includes a single electron only.13 Within such a system all electron-

electron interactions terms are supposed to vanish due to the lack of interaction partners. 

Within HF theory this is always accomplished as the exchange and Coulomb terms cancel in 

the case of a single occupied spin-orbital. Retaining the analogy of the exchange interaction 

between HF and KS-DFT, the exact functional X[ ]E ρ  should behave likewise. This implies 

 X Coul
( ) ( )

[ ] [ ]   
| |

E E d d
ρ ρ

ρ ρ
⌠ ⌠
 

⌡⌡

′
′= − = −

′−

r r
r r

r r
 2.2.35 

for all densities that originate from a single occupied KS orbital, 2
1( ) =| ( ) |ρ ψr r . As visible 

for example from Eq. 2.1.13 the correlation term in post-HF theories vanishes by a similar 

cancellation mechanism. Therefore, 

 C[ ] 0E ρ =  2.2.36 

must hold for single electron densities as well. 

Thus, Eq. 2.2.35 clearly reflects the nonlocal character of the exact KS-DFT exchange. 

However, for arbitrary single-electron densities local (LDA) or semi-local (GGA, MGGA) 

exchange approximations can never completely cancel with the Coulomb 

term.[101,214,215,217,218,220] In single-electron systems the latter term is generally found to prevail 

over the exchange energy provided by local and semi-local exchange approximations.[101] 

This excessive Coulomb interaction leads to an unphysical, residual self-repulsion, which is 

known as the self-interaction error.[101] 

                                                
13 The hydrogen atom and the 2H+  ion are thereby the most prominent examples and the most frequently 
studied model systems in this context. 
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The occurrence of self-interaction artifacts as introduced by the local ansatz for the XC 

energy density represents a significant limitation already for one-electron systems alone. 

However, the SIE is not limited to one-electron densities. Indeed, this artifact becomes 

notable also in the aforementioned one-electron regions (OER) of many-electron systems. 

Within an OER, a single electron can be found for each spin value at most. This electron 

interacts with the electrons outside of the OER as well as with its eventual counterpart of 

opposite spin via the Coulomb and correlation terms. As depicted in Figure 2.2.2, the 

interactions between parallel spin components of the density are subject to analogous 

conditions as in Eqs. 2.2.35 and 2.2.36. 

 

 

 

Figure 2.2.2: Sketch of the electron-electron interactions within one-electron regions as well 

as between one-electron regions and other many-electron regions of the system. 

 

Knowledge about OERs within a chemical system is thus helpful to construct KS-DFT 

approximations with reduced self-interaction. As stated by the HK1 theorem, the information 

about single-electron regions is included in the electron density. While this information is 

contained in the ρ  in an implicit and hardly accessible way, the comparison of the density 

with quantities relating from the KS orbitals as in Eq. 2.2.34 provides a relatively straight-

forward approach to identify a local OER. Indeed, most MGGA functionals employ Eq. 

2.2.34 to remove locally the correlation energy density as in Eq. 2.2.36. The residual self-

repulsion due to the violation of the condition for the exchange term, Eq. 2.2.35, remains, 

however, as a nonlocal exchange term is needed to correct it. 

The PZ self-interaction correction represents a similar approach, which, in contrast to the 

local correlation corrections provided by MGGA functionals, aims to remove the SIE at the 

level of the XC and Coulomb energy terms.[59] This method introduces an additional term 

which individually subtracts the self-repulsion from the XC part for each occupied KS orbital 

 ( )PZ 2 2
XC XC Coul XC[ ,{ }] [ ] [| | ] + [| | ]a b b

b

E E E E
σ σ σ

σ

ρ ψ ρ ψ ψ= −∑  . 2.2.37 

While the PZ correction is not restricted to specific types of XC functionals, it introduces an 

explicit dependency on the KS orbitals, similar to that of MGGA methods. This approach is 
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less popular nowadays as it does not always lead to consistent improvements due to its 

missing invariance with respect to unitary transformations of the KS orbitals.[58,221] 

One-electron regions of many-electron systems are usually found distant from the atomic 

nuclei, where the exact XC potential behaves as 

 XC ( ) 1 | |   for  | |    V = − → ∞r r r  2.2.38 

for electrically neutral, finite systems. In contrast, approximated local and semi-local XC 

potentials decay exponentially at large distances.[33] This behavior originates from the 

exponential decay of the density in this limit.[33] The incorrect form of the XC potentials of 

LDA, GGA, and MGGA functionals has a significant effect on the KS{ }aε  values. The 

eigenvalues of KS orbitals partially located in OERs are thereby most affected and raised in 

energy due to the remaining self-repulsion.[29] Furthermore, the XC potential 

 XC
XC XC
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( ) [ ( ) (
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= +

x
x x x

x
 2.2.39 

and thus also the eigenvalues of the KS orbitals are subject to a discontinuous shift at integer 

values of n or at band gaps in the case of extended systems.[5] The second term on the right-

hand side of Eq. 2.2.39 represents the response potential and describes the changes in the XC 

hole due to variations of the density.[222] For non-metallic systems this term causes the 

aforementioned discontinuity of XCV  whenever a new KS orbital starts to become occupied. 

This sudden potential change leads then to the corresponding shift of all KS eigenvalues 
KS{ }aε .[223-225] Thereby, the derivative discontinuity adjusts the eigenvalue of the highest 

occupied orbital to the ionization energy of the system.[158,159] 

It might appear odd that an infinitesimally small addition of electronic charge to a single 

KS orbital changes the eigenvalues within the entire system, which may eventually be very 

extended. Nevertheless, this behavior can be rationalized when considering that the KS 

reference system and its orbitals do not have to represent physical quantities. Furthermore, as 

KS-DFT uses an orbital-dependent kinetic energy term, the derivative of the formal 

functional S[ ]T ρ  must exhibit discontinuities as well.[5] An analogous argumentation reveals 

such a behavior also for the effective KS potential.[5] As all terms of the KS potential, Eq. 

2.2.18, except for XCV  are explicitly known density functionals, only the XC potential can 

adjust the discontinuous behavior of KSV .[5] Despite of eventual dependencies on the KS 

orbitals, the behavior of local and semi-local approximations to KS-DFT is still largely 

governed by the electron density. Therefore, LDA, GGA, and MGGA functionals are 

generally unable to reproduce properly the discontinuity of the KS potential.[5] 
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In self-consistent applications of local KS-DFT approximations, the system at hand always 

tends to lower the destabilizing self-repulsion to some extent. This relaxation can lead to 

overly delocalized KS orbitals. This delocalization as well as the incorrect behavior of the 

aforementioned eigenvalue shifts due to the SIE can significantly affect the description of 

chemical bonds, ionic compounds, and of many electronic properties.14 Bonding energies are 

thereby often overestimated, while anionic species can become destabilized.[101,214,215,217,226] 

Aside from the well understood self-repulsion artifacts in one-electron situations, self-

interaction can affect many-electron regions as well.[214,218] The many-electron self-

interaction error[214] (MSIE) recently gained significant attention and was recognized on the 

examples of improperly charged dissociation fragments,[218,220] spurious maxima in the 

dissociation curves of small molecules,[220] and an incorrect behavior of the bond lengths in 

conjugated π-systems.[216,227] These failures were found to be related self-interaction effects 

as most other sources of errors could be excluded as cause.[214] However, methods like HF or 

the PZ correction which do not exhibit single-electron self-interaction are unable to provide 

the correct solutions in these cases as well.[214,220,228] Even functionals like B05[229] or 

MCY,[230] which remain unchanged by the PZ correction, are affected by the MSIE.[214] 

While MSIE-free XC approximations are not yet entirely explored,[120] the considerations 

made in this context provide a generalized perspective on the self-interaction phenomenon 

itself. As will be discussed in Section 2.2.6 the MSIE of local and semi-local XC 

approximations is closely connected to their implicit description of static correlation. After 

this relation was recognized, the term “delocalization error” was put forward by Mori-

Sánchez et al. to describe both, the MSIE and the implicit description of static 

correlation.[101,215-217] However, this term will be less frequently used in the following, as both 

aspects are mostly considered separately in the present discussion. 

As mentioned above, the exact XC potential exhibits a discontinuous behavior at integer 

occupation numbers of the KS orbitals.[158,219] This phenomenon is generalized by the concept 

of fluctuating electron numbers (FEN), where an open subsystem S is introduced which is 

well separated from a distant electron reservoir R that comprises the rest of the 

system.[130,158,219] While S and R are separated, the KS orbitals can still extend over both 

subsystems.[130,158,219] In consequence, electrons may fluctuate between R and S which in turn 

leads to fractional electron numbers in the latter.[130,158,219] Nevertheless, the contribution S
elE  

of the subsystem S to the total electronic energy, is well defined for fully separated 

subsystems S and R.[130,158,219] Although the complete system S+R is still covered by standard 

KS-DFT, an extension of the formalism to density ensembles[29,231] is necessary to describe 

                                                
14 Although not relevant for the present discussion, it is worth mentioning that quantities like electron 

excitation energies and Rydberg states are even more affected by the SIE. This essentially limits local DFT 
methods to calculations of ground state properties, even if a proper time-dependent formalism would be 
employed. 
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correctly the isolated subsystem S.[219,232] Such an ensemble is represented by a generalization 

of the density matrix operator in Eq. 2.1.9[126] 

 ˆ ni ni ni

n i

eρ = Ψ Ψ∑∑  , 2.2.40 

to include projectors onto different states niΨ  which can exhibit different numbers of 

electrons n. In finite-temperature grand-canonical-ensemble theory the probabilities { }nie  of 

the ensemble elements optimize the grand potential 
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with the Boltzmann constant Bk , the temperature θ , the chemical potential µ , and the 

electron number operator n̂ . Eq. 2.2.41 accounts for the contributions of different orthogonal 

eigenfunctions of KS
Ĥ  as well as for a varying electron number of electrons n. In contrast to 

this usual application of ensemble DFT, the FEN model employs density ensembles only for 

the purpose of representing the electronic structure of the subsystem S. In this context the 

probabilities { }nie  are defined by the ground state of the system S+R and do not lead to 

stationary points of the grand potential in Eq. 2.2.41. The FEN formalism provides a unified 

approach for non-integer total electron counts as well as for fractional occupation numbers of 

the KS orbitals.[233] The latter concept is also widely applied in form of the fractional 

occupation number technique (FON).[234-237] 

The exact total energy ( )S
elE n  of an open subsystem S must behave as a linear function in 

terms of the electron count between integer values of N.[158] This behavior is known as the 

linearity theorem[158] and is closely connected to the Janak theorem[233] 

 KS( )S
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E f

f

σ
σ

σ ε
∂

=
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 , 2.2.42 

which states a similar behavior for S
elE  in terms of individual orbital occupation numbers 

{ }af . Both, the linearity theorem and the Janak theorem extend and quantify the 

aforementioned discontinuous behavior of the KS potential. Furthermore, these theorems 

allow one to compare the behavior of the exact KS-DFT with that of DFT approximations, 

especially with regard to the self-interaction error. 

Fractional occupation numbers of KS orbitals and fractional electron counts of isolated 

subsystems occur only in specific cases like transition metals treated with the FON technique 

or ionic dissociation fragments (see above), respectively. However, the fact that the linearity 

theorem is formulated in terms of an open subsystem does not imply that its violation affects 

only such model systems. As will be discussed in the following, convex and concave 

deviations from the linearity theorem reflect tendencies for localization or delocalization of 

KS orbitals, respectively. Thus, any violations of the linearity theorem are likely to affect the 

general description of chemical bonds in systems with integer occupation numbers as well. In 
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this context the FEN model can be considered as a formal approach to examine the many-

electron self-interaction and delocalization errors isolated from other interactions. 

Figure 2.2.3 provides a graphical representation of the exact total electronic energy ( )S
elE n  

and of the eigenvalue of the highest occupied KS orbital GKS
HOMO ( )nε  between integer values of 

the number of electrons in S. This comparison can even be extended to the HF method, which 

qualifies as a density functional within the generalized Kohn‒Sham formalism (GKS, see 

Section 2.3.2).[208] Note that in this context both, local DFT and HF, are assumed to provide 

exact total energies at integer electron counts. 

 

  

Figure 2.2.3: Qualitative comparison between exact DFT, local DFT, and HF results for the 

total electronic energy ( )S
elE n  and the eigenvalue GKS

HOMO ( )nε  of the highest molecular orbital 

with varying electron count under the assumption that all methods yield the correct ( )S
elE n  

values at integer n. Figure adapted from Ref. [219]. 

Figure 2.2.3 shows that, compared to the exact ( )S
elE n  function, local and semi-local DFT 

methods yield more negative total electronic energies between integer values of 

n.[101,214,215,217-220,238] This deviation from the exact energy ( )S
elE n  agrees with the 

aforementioned tendency of LDA, GGA, and MGGA for an overly large electronic 

delocalization due to self-repulsion. Accordingly, these functionals also underestimate the 

discontinuous shift of the eigenvalue GKS
HOMO ( )nε  and thus the HOMO-LUMO gap (HLG) or 

band gap of the system. The convex behavior of local DFT methods can be rationalized with 
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the normalization of the XC hole in the fictitious KS exchange only limit.[219] The exchange 

hole has the same form as HF
Xh  in Eq. 2.2.23 (see Section 2.2.2), as the KS system is 

described by a single Slater-determinant.[181] For fractional occupation numbers af
σ  the KS 

exchange hole integrates[59,219] to 
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As the exchange hole partially resides in R, this integral differs from the expected value of ‒1 

unless all KS spin-orbitals exhibit integer occupations.[219] The normalization of the exact XC 

hole behaves likewise.[239] However, the actual LDA exchange hole, Eq. 2.2.30, is more 

localized than =0
XCh
λ  and Xh .[178,219] Thus, the exchange hole obtained with LDA remains 

entirely located in S and still normalized to ‒1.[178] In consequence, this hole yields a higher 

exchange energy density than the exact hole.[219] As a result also the corresponding exchange 

energy will be more negative than in the exact case.[219] As nearly all semi-local DFT 

approximations are based upon LDA exchange, such methods tend to favor fractional 

electron counts as well.[49,75,219] 

The behavior of ( )S
elE n  found in the case of the Hartree‒Fock method contrasts with that 

of local DFT approximations. Compared to the exact results, HF yields less negative total 

electronic energies for the subsystem S at non-integer electron counts. Furthermore, the 

discontinuous shift of the frontier orbital eigenvalue GKS
HOMO ( )nε  is overestimated at integer 

values of n, which causes the HF method to overestimate the HLG.[101,215,217,219] HF delivers a 

concave shaped function ( )S
elE n  which can be interpreted as a tendency for an overly large 

orbital localization (Figure 2.2.3). In the case of HF the higher ( )S
elE n  values at non-integer 

electron counts can be rationalized by considering that the open subsystem S is described by 

an ensemble of states.[219] Recall, that the probabilities { }nie  for the ensemble elements in Eq. 

2.2.40 are determined to represent the electronic structure of the subsystem S within the 

whole system S+R but not by a minimization of the grand potential of S.[219] In consequence, 

( )S
elE n  will be lower at integer electron counts where the corresponding electronic structures 

can be described by pure states.[219] 

Following the argumentation discussed above, DFT approximations are only considered 

free of the MSIE when they are able to provide the correct linear variation of the total 

electronic energy between integer electron counts for arbitrary systems.[101,215,217,230] 
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2.2.6. Static Correlation Error 

Static correlation effects were defined in Section 2.1.2 as large reorganizations in the 

electronic structure. These rearrangements arise from interactions between the HF ground 

state and one or more other single-determinant states nearly degenerate to it. In contrast to 

multi-reference approaches, KS-DFT relies on a purely single-determinant description of the 

non-interacting reference system.[28] This situation leads to the question whether static 

correlation can be reliably captured within the KS formalism.[130] Furthermore, the model of 

fractional spins[215,217] will be discussed in this section, which allows one to examine the 

description of static correlation by different methods isolated from self-interaction effects. 

While KS-DFT is based on a single-determinant description, physically meaningful 

densities exist which are not V-representable within the KS system in terms of a pure, single-

determinant state.[143,144,240-242] Such a missing V-representability indicates a strong influence 

of static correlation effects. It is nevertheless always possible to restore this representability 

in terms of the ensemble DFT approach (see Eqs. 2.2.40 and 2.2.41). In this context it is not 

surprising, that FON techniques can be used to describe static correlation effects.[243] 

HF and even low level post-HF methods (see Section 2.1.2) can exhibit an erratic behavior 

for systems dominated by static correlation interactions.[133] Opposed to that, local and semi-

local KS-DFT approximations are often found to provide a reasonable accuracy, despite the 

fact that they are based on a single-determinant approach.[129,177] This accuracy is especially 

pronounced for transition metal compounds whose exact ground state wave functions include 

many nearly degenerate single-determinant terms.[129,177] However, for systems like radicals 

or atoms severe failures are known semi-local DFT approximations.[31,240,244] In such cases 

broken symmetry treatments may yield more reliable results.[31,240,244] 

Nevertheless, the reasonable description of transition metals provided by local and semi-

local KS-DFT approximations strongly indicates that these methods are, to some extent, able 

to account implicitly for static correlation.[129,177] This description of static correlation was 

traced back to the LDA exchange functional.[129,177] As GGA and MGGA exchange 

functionals always include an LDA exchange energy density factor, these methods behave 

likewise.[129,177] Nevertheless, the description of static correlation is most pronounced in 

LDA.[129,177] 

The finding that LDA can account for static correlation effects is again rationalized by 

referring to its exchange hole.[129,177] Recall that static correlation locates electrons to 

different regions in space (see Section 2.1.2) and thus, suppresses electron fluctuations 

between these locations.[130] In theories like HF where this suppression is missing, the 

exchange hole HF
Xh , Eq. 2.2.23, tends to be overly delocalized.[129,130,177] As the KS XC hole 

in the exchange only limit 
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has the same form as HF
Xh , it is delocalized as well.[31,33] While the exact exchange hole Xh  is 

delocalized to a similar extent as HF
Xh , the total exact XC hole is more compact (see Section 

2.2.2).[31,33,129,130,177] This implies a partial cancellation between the long-range parts of Xh  

and Ch .[130] Such a cancellation can often only be provided from the static correlation part of 

Ch , as dynamic correlation is a mostly small and very localized effect.[129,130,177] 

While the static correlation hole and Xh  cancel, the LDA exchange hole is already far 

more compact than =0
XCh
λ  or HF

Xh .[178] With LDA correlation being an even more local 

functional, the total LDA hole LDA
XCh  appears more similar to the exact XCh  than =0

XCh
λ  or 

HF
Xh .[129,177] Thus, the overly compact LDA exchange hole can mimic the long-range 

cancellation between the exact Xh  and Ch  holes which occurs in the presence of static 

correlation effects.[129,177] In exchange approximations that admit the density gradient and/or 

the kinetic energy density as variables, the corresponding hole becomes somewhat more 

delocalized compared to the pure LDA case.[178] Compared to LDA the implicit static 

correlation description can therefore be slightly reduced in GGA and MGGA methods.[178] 

The above rationalization also depicts the intrinsic connection between the description of 

static correlation provided by local DFT methods and the many-electron self-interaction 

error.[58,129,177] Most corrections for the latter tend to bring the exchange hole of local and 

semi-local KS-DFT approximations closer to the exact Xh , thus to delocalize it in most 

situations.[58,129,177] This delocalization of the XC hole effectively reduces its capability to 

mimic static correlation effects.[58,129,177] Indeed, the OPTX-type functionals (see Section 

2.2.4) exhibit an increased prefactor of the LDA exchange term to address this problem in 

parts.[128,185] However, any modification of this numerically largest term of the XC functional 

is likely to affect the quality of the electronic structure in cases where static correlation is less 

important. Thus, without a correlation functional CE  that can properly account for static 

correlation, any attempt to reduce the SIE and the delocalization error in local and semi-local 

functionals will inevitably result in a deteriorated description of static correlation, thus in the 

so-called static correlation error (SCE).[130,215,217,245,246] 

Just as in the case of fractional electron numbers (see Section 2.2.5), special model 

systems can be defined which allow one to examine specifically the static correlation 

error.[177] An example for such a static correlation effect, which is not influenced by any self-

interaction artifacts, is provided by the fractional spin model.[101,215,217] This model considers 

a single electron which is distributed over two KS spin orbitals, ψ ↑  and ψ ↓ .[101,215,217] Both 

orbitals have opposite spin components but the same spatial form.[101,215,217] The spatial 

component of these orbitals is defined to remain constant and may be even infinitely 

extended to exclude any eventual self-interaction artifacts.[101,215,217] 
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Figure 2.2.4 provides a sketch of the behavior of the total energy ( , )F
E f f↑ ↓  of the 

fractional spin model system in terms of the occupation numbers of both orbitals, f↑  and 

f↓ .[101,215,217] As neither the spatial components of ψ ↑  and ψ ↓  nor the total number of 

electrons can change, the total electron density ( )ρ r  remains constant. Thus, by virtue of the 

HK1 theorem (Section 2.2.1), also the exact total energy is constant for any spin value 

between ‒1 and +1. This implies the states of the KS reference system to be degenerate for all 

spin values in this range.15 However, all commonly employed local KS-DFT approximations 

are unable to reproduce this degeneracy and yield a higher energy for states with fractional 

spins.[101,215,217] In the case of LDA this failure can be rationalized by pointing to the fact that 

 ( ) ( )3 4 3 4LDA
X [ , ] ( ) ( )E d dρ ρ ρ ρ↑ ↓ ↑ ↓∝ +∫ ∫r r r r  2.2.45 

is nonlinear in the individual spin components of the density and includes interactions 

between electrons of parallel spin only.[217] Thus, Eq. 2.2.45 reaches its maxima at integer 

occupations.[217]  For fractional spin values the (negative) exchange energy is reduced and the 

total electronic energy is increased relative to states with integer occupations. However, the 

overestimation of ( , )F
E f f↑ ↓  for fractional spin states is not as large as that of the HF 

method, which, by definition, does not account for electron correlation.[215,217] This agrees 

with the aforementioned implicit (partial) static correlation description of local and semi-

local XC functionals.[215,217] Note, that the representation of fractional spin states requires the 

same ensemble formalism as the representation of the subsystem S of the FEN model (see 

Section 2.2.5). Also in the case of fractional spin states the corresponding probabilities { }nie  

of the ensemble elements are determined by the fractional spin density and not by a 

minimization of the grand potential in Eq. 2.2.41. This rationalizes why the HF method 

largely overestimates ( , )F
E f f↑ ↓  for fractional spin states.[215,217] Thus, the degeneracy of all 

possible states with fractional spins is not correctly reproduced in both cases, semi-local DFT 

approximations and HF.[215,217] 

 

Figure 2.2.4: Sketch of the behavior of the total energy ( , )F
E f f↑ ↓  of the fractional spin 

model in terms of the orbital occupations n↑  and n↓ . Figure adapted from Ref. [215]. 

                                                
15 This degeneracy arises from the fact that the electrons of the KS reference system do not interact. 
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2.2.7. Non-Covalent Interaction Error 

The non-covalent interaction error (NCIE) represents the third important aspect that is not 

accounted for by standard local and semi-local KS-DFT approximations. The non-covalent 

interaction error recently gained much attention resulting in the development of various 

classes of approximations and corrections.[77,105-107,111-119,210,247] The NCIE is of a lesser 

relevance in the context of the present thesis compared to the SIE or the SCE. However, for 

the sake of completeness, the approaches most commonly used for the description of non-

covalent interactions shall be briefly reviewed in the following as well. 

The motion of electrons can create dynamic dipoles (or multipoles in general) even in 

molecules that lack a permanent dipole (or multipole) moment. Such instantaneous dipoles 

can affect the electronic structure of distant parts of the system and induce dipoles there as 

well.[248] The attractive interaction between such dynamic dipoles located near different 

atomic positions A and B is known as London dispersion energy dispE  and is one of several 

types of non-covalent (van der Waals, vdW) interactions.[248] The dispersion interaction 

between distant atomic centers of a molecular system exhibits an asymptotic behavior 

proportional to 6
6 | |C− AB , in terms of the interatomic distances | |  | |= −AB A B  and the 

dispersion coefficients 6C .[248]  

Although it originates from instantaneous effects, the dispersion energy still results from 

the interactions of electrons which can be described by a time independent many-body wave 

function. Indeed, these effects result from electron correlation as well and the only difference 

between dispersive interactions and normal dynamic correlation interactions (see Section 

2.1.2) consists in their locality. The nonlocal character of dispersive interactions implies that 

any KS-DFT approximation which can account for such effects has to feature a nonlocal 

correlation functional.[104] As LDA and GGA methods employ only local correlation terms, 

these approximations are unable to capture dispersive interactions between distant parts of the 

system.[104] On the other hand, the nonlocal correlation terms occurring in post-HF methods 

like MP2 account for dispersion effects.[7] This led to the idea to employ the KS orbitals in an 

MP2-type correlation term[109] which is then combined with a suitably adapted semi-local 

correlation functional,[111-114]  

 
2

DH DHGGA
C 1 C 2 KS KS KS KS

ˆ ˆ| | | | | |a b u v a b v u

a b u vab uv

W W
E E

ψ ψ ψ ψ ψ ψ ψ ψ
β β

ε ε ε ε
〈 〉 − 〈 〉

= +
+ − −∑∑ . 2.2.46 

The coefficients iβ  and the local DHGGA
CE  term of these so-called double hybrid functionals 

were thereby fitted to experimental reference data.[111-114] Double hybrid functionals have the 

same 5( )NO  scaling computational requirements as the MP2 method, as they exhibit a 

nonlocal dependency on both, occupied and unoccupied, KS orbitals.[109] Furthermore, these 

methods are limited to non-self-consistent applications only as their XC potentials diverges 

for many-electron systems.[109] A similar nonlocal dependency on the unoccupied KS orbitals 
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is found in random phase approximations (RPA), which, however, represent significantly less 

empirical approaches to a nonlocal correlation functional.[108,110]  

To circumvent these high computational requirements, a much simpler empirical 

expression for the dispersion energy  

 D 61
6,2 (| |) | |disp damp AB

AB

E f C= − ∑ AB AB  2.2.47 

was suggested by Wu and Yang which depends on the atomic positions only.[105] This so-

called DFT-D correction employs empirical pairwise dispersion coefficients 6,ABC  as well as 

a damping function dampf  to reduce the double-counting between dispersion and semi-local 

correlation terms.[105] The DFT-D method was subsequently refined by Grimme and 

others.[95,106,249] Approaches to compute the 6,ABC  coefficients in terms of the actual electron 

density of the system were proposed as well.[107,247] While being very efficient compared to 

double hybrid and RPA approaches, the DFT-D corrections in Eq. 2.2.47 are highly empirical 

and not applicable in all situations. The vdW-driven adsorption of molecular species on 

extended metal surfaces represents such an example in which DFT-D descriptions break 

down.[250-252] Thereby the collective polarizability of the metallic moiety causes an 

asymptotic 3R−  scaling of vdW interactions which is not accounted for by DFT-D corrections 

of the general form in Eq. 2.2.47.[250-252] 

A different attempt to include vdW interactions into an efficient semi-local DFT 

approximation has been proposed in form of the M06L MGGA functional.[77] As already 

mentioned in Section 2.2.4, the value of the kinetic energy density ( )τ r  at any point r  

represents a nonlocal density functional itself.[202] In this context the usage of τ  in MGGA 

functionals implicitly introduces a small amount of nonlocal information into the semi-local 

XC term.[202] This fact was exploited in the parametrization of the M06L functional on data 

sets which emphasize vdW-type interactions.[77,210] Compared to most DFT-D approaches, 

the M06L functionals describes dispersion interactions in a self-consistent fashion. However, 

its extensive parametrization can lead to large deviations in the case of systems that are not 

part of the data set used for the parametrization of M06L (see Sections 4.3 and 4.4).[253] 

The so-called vdW functionals represent another approach to the description of non-

covalent interactions.[115-119] These methods exhibit the following functional form 

 ( )VDW 1
C 2[ ] = ( ) ( ), ( ), ( ), ( ) ( ) E d dρ ρ ρ ρ ρ ρ ρ⌠⌠


⌡⌡

′ ′ ′ ′⋅Θ ∇ ∇ ⋅r r r r r r r r  2.2.48 

and employ a complicated integral kernel Θ  to describe nonlocal aspects of the correlation 

between electrons at two distant locations.[115-119] Such functionals are mostly based on non-

empirical considerations.[116] In contrast to the aforementioned RPA and double hybrid 

approaches, vdW DFT methods are formulated only in terms of ρ  and ρ∇ , and do not 

depend on the KS orbitals. Compared to the high computational requirements of RPA and 

double hybrid terms or the high empiricism of DFT-D corrections and the M06L functional 
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vdW DFT methods can be considered as a significant breakthrough.[131]. Despite the double 

integral required in Eq. 2.2.48, vdW functionals can be applied quite efficiently, at least when 

Fourier transformation techniques are employed.[254] In the case of systems including 

appreciable vdW interactions, these functionals provide a significant gain in accuracy.[255] 
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2.3. Hybrid Density Functional Theory 

2.3.1. Rationale for Exact-Exchange Mixing 

The following discussion deals with the early attempts to include a nonlocal exact-exchange 

(EXX) term in local KS-DFT approximations. In this context several theoretical justifications 

for such an approach are presented. 

The concept of incorporating an exact-exchange term into DFT is as old as the KS 

formalism itself. In their seminal paper Kohn and Sham already considered the idea to 

employ a nonlocal, HF-type exchange expression 

 
* *

1 1
EXX 2 2

( ) ( ) ( ) ( )ˆ| |
| |

a b b a
a b a b b a a b

ab ab

E f f W f f d d
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′= 〈 〉 =
′−

⌠⌠

⌡⌡

∑ ∑ r r r r
r r

r r
, 2.3.1 

in terms of the KS orbitals.[28] This would imply a reference system of non-correlated 

particles (instead of non-interacting ones). Furthermore, also the corresponding effective 

potential KSV
σ  would not be multiplicative; opposed to the requirements of the KS formalism 

(see Section 2.2.1). Nevertheless, a multiplicative EXX potential can be obtained by means of 

the optimized effective potential method (OEP), as discussed in Section 2.3.2.[204-206] 

However, with regard to energetic properties the resulting functional 

 XC EXX[ ,{ }] = [{ }]a aE Eρ ψ ψ  2.3.2 

will behave very similarly to the HF method. The addition of a local correlation term to Eq. 

2.3.2 improves over HF but still yields less accurate atomization energies than LDA or GGA, 

even in the case of main group compounds.[31,81,256-258] 

Nevertheless, good reasons for adding a scaled EXX term to semi-local XC terms exist. 

One example is the behavior of the electronic energy ( )S
elE n  of the FEN model obtained with 

HF and semi-local DFT approximations at non-integer electron counts, respectively (see 

Section 2.2.5). When combining the convex and concave functions of semi-local DFT 

approximations and HF, respectively, the resulting ( )S
elE n  function should be closer to the 

exact linear function, as illustrated by Figure 2.3.1.[101] It is emphasized that, although mostly 

being a fictitious system, the FEN model provides an important reference for the 

delocalization errors of different DFT approximations (see Section 2.2.5).[101,215,217] Thus, a 

linear combination between EXX and a local exchange term 

 XC 1 EXX 2 X 3 C[ ,{ }] = [{ }]+ [ ]+ [ ]a aE E E Eρ ψ α ψ α ρ α ρ  , 2.3.3 

in terms of suitable mixing coefficients iα  should provide a beneficial error cancellation with 

regard to the delocalization error.[101,215,217] 

Further justification for such hybrid DFT methods can be obtained when considering the 

XC holes. As discussed in Sections 2.2.5 and 2.2.6, the exact XC hole is less localized than 

those resulting from semi-local KS-DFT methods but more compact than the KS hole in the 

exchange only limit. Thus, from the perspective of XC holes a significant error compensation 

can be expected from the combination of semi-local and exact-exchange terms.[131] 
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Figure 2.3.1: Schematic representation of the rationale for a linear combination of local and 

exact-exchange terms to reduce self-interaction effects in the total electronic energy of an 

open subsystem with non-integer electron counts. 

 

Furthermore, the XC hole in the KS exchange-only limit is required to restore the correct 

normalization of the conditional pair density (Section 2.2.3).[31,33,131,152,179-181] Thus, a linear 

combination of exact and semi-local exchange terms is justified also by the adiabatic 

connection formula, Eq. 2.2.28.[259] The first hybrid functional was obtained from a simple 

trapezoidal approximation  
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2
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h h d
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= =′ ′+
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for the coupling-strength average (see Section 2.2.3).[81] While =0
XCh
λ  is the XC hole in the KS 

exchange-only limit, Eq. 2.2.44, the hole =1
XCh
λ  was approximated by the XC hole of the 

PWLDA functional.[81,192] Given its simplicity, the resulting “half-and-half” functional 

 PWLDA1 1
XC EXX XC2 2[ ,{ }] = [{ }] + [ ]a aE E Eρ ψ ψ ρ  , 2.3.5 

was found to yield surprisingly accurate thermochemical results of main group 

compounds.[81] However, the form in Eq. 2.3.5 is not ideal as the correlation term is scaled by 

a factor of 1 2  as well. Nevertheless, the half-and-half functional represented a significant 

step towards a reasonable linear combination of local KS-DFT approximations and the HF 

method. However, it has to be emphasized that, despite the theoretical justifications given 

above, the first hybrid DFT methods mostly became popular due to their improved accuracy 

for thermochemical results.[81] 
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2.3.2. Exact-Exchange Potential 

Before presenting the various functionals that followed the half-and-half formula, two 

approaches for the self-consistent application of orbital-dependent XC approximations shall 

be briefly discussed; the optimized effective potential (OEP) and the method of functional 

derivatives with respect to KS orbitals (FDO). 

The KS formalism requires the XC potential to be local, thus multiplicative. Opposed to 

that, the potential resulting from the EXX term is entirely nonlocal. The question how to 

obtain a local (multiplicative) potential from an orbital-dependent XC functional is rather 

involved. The HF equations are obtained from a variation of the orbitals { }aφ  leading to the 

non-multiplicative HF exchange potential whereas the KS formalism requires a local 

potential defined as XC XC[ ]V Eδ ρ δρ= . The optimized effective potential method can 

provide such a multiplicative EXX potential.[204-206] Thereby, the chain rule for functional 

derivatives16 

 EXX KSOEP
EXX

KS

( ) ( )
( )

( ) ( ) ( )
a

aa

E V
V d d

V

δ δψ δ
δψ δ δρ

′′ ′ 
′′ ′= ⋅ ′′ ′ 

⌠⌠

⌡⌡
∑ r r

r r r
r r r

 , 2.3.6 

is applied to obtain EXXV , whereas the individual partial derivatives can be expressed in terms 

of a perturbative ansatz and response functions.[204-206] The double integral in Eq. 2.3.6 

required to evaluate OEP
EXXV  at a single location r clearly illustrates the complexity of the OEP 

method and the effort required to obtain EXX[ ]Eδ ρ δρ . Even in the form of the more efficient 

Krieger‒Li‒Iafrate approximation, this approach remains far more expensive than the 

computation of the EXX term itself.[206] Furthermore, while providing energetic results 

similar to HF, the values HOMO-LUMO gaps obtained with the OEP treatment of the EXX 

term are often closer to those of local KS-DFT methods.[223,260,261] 

Self-consistent hybrid DFT calculations are mostly conducted in terms of the generalized 

Kohn‒Sham (GKS) FDO-type approach.[96,208,262] The GKS formalism extends the orbital 

dependent kinetic energy operator of the KS system (see Eq. 2.2.9) by all other orbital 

dependent terms of the KS potential.[208] The resulting operator ( 21
S 1 EXX2

ˆ ˆO V σα= − ∇ +  in the 

case of hybrid DFT) is then used in the Levy‒Lieb constrained search approach,[142-145] which 

provides another formal justification for orbital dependent XC approximations like hybrid 

DFT methods.[208] In a similar fashion the GKS single-particle equations 

 ( ) 2 GKS1
 GKS EXX ext Coul XC2

ˆ ˆ( ) ( ) ( )a a a af V V V V
σ σ σψ ψ ε ψ= − ∇ + + + + =x x x  2.3.7 

can be derived. Opposed to the EXX potential resulting from the OEP method, EXXV̂
σ  in Eq. 

2.3.7 is different for each individual KS orbital. Like the HF exchange potential in Eq. 2.1.5, 

EXXV̂
σ  is defined in terms of its effect on aψ  

                                                
16 In this notation, ( ) ( )a x b xδ δ ′  denotes the derivative of the functional ( )[ ]a x b  with respect to b evaluated at 

x′ , hence { [ ]( ) }( )a b x b xδ δ ′  in a more explicit notation. 
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 EXX 
ˆ ˆ( ) | |  ( )a b a b

b

V W
σ ψ ψ ψ ψ= − 〈 〉∑x x . 2.3.8 

The local potential terms in Eq. 2.3.7 are again expressed as functional derivatives with 

respect to the electron density (Eq. 2.2.16). It needs to be emphasized that the GKS 

formalism mostly represents a theoretical justification. Apart from the computation of the 

EXX term, the algorithms required for hybrid DFT methods are identical to those of standard 

local and semi-local KS-DFT approximations. 

 

 

2.3.3. Hybrid Density Functionals 

The concepts upon which the most important hybrid DFT methods are based shall be 

discussed in the following. In this context also the more advanced concepts of range-

separated hybrid and local hybrid DFT approximations are briefly presented. 

Starting from the half-and-half functional in Eq. 2.3.5, the hybrid DFT approach was 

refined further. The mixing coefficients iα  were defined more flexibly and GGA correction 

terms were added.[82] Initially these latter corrections were not directly applied to the semi-

local XC terms but merely at the level of the whole hybrid functional.[82] This approach led to 

Becke’s B3 formula[82] 

 B3PW91 LDA B88 LDA PWLDA PW91 PWLDA
XC 1 EXX 1 X 2 X X C 2 C C(1 ) ( ) ( )E E E E E E E Eα α α α= + − + − + + −  2.3.9 

which is also known as 3-parameter adiabatic connection method (ACM3). The coefficients 

in Eq. 2.3.9 were determined from a least-squares fit to experimental data as 1 0.20α = , 

2 0.72α = , and 3 0.81α = .[82] In this way, the ACM3 method acquires an empirical character. 

Eq. 2.3.9 was modified by Stephens et al. who substituted the correlation terms in Eq. 2.3.9 

by a linear combination of the VWN17 LDA and the LYP GGA functional[47,84,191]  

 B3LYP LDA B88 LDA VWN LYP VWN
XC 1 EXX 1 X 2 X X C 3 C C(1 ) ( ) ( )E E E E E E E Eα α α α= + − + − + + − . 2.3.10 

With the mixing coefficients from Eq. 2.3.9, this represents the B3LYP[84] functional which is 

the most widely applied DFT method.[263] The popularity of B3LYP originated mostly from 

its success when modeling main group compounds.[8,31] On the other hand, significant failures 

with regard to transition metals are well known for B3LYP.[198,264] Also in the case of large 

organic molecules the performance of the original B3PW91 variant in Eq. 2.3.9 is found to 

perform consistently better.[212,265] These failures of B3LYP can be traced back to its LYP 

correlation part, which does not exhibit the proper HEG limit.[198,266-270] 

The local terms of hybrid DFT variants based on the ACM3 formula originate from linear 

combinations of already existing local KS-DFT approximations. Therefore, such terms likely 

are not optimal for being employed in nonlocal hybrid DFT expressions. In consequence, 

                                                
17 A specific parametrization to RPA data was used, which is denoted as VWN3 and different from the more 

common VWN5 variant. 
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subsequent developments focused on local XC terms that are specifically designed to be used 

in combination with the EXX term.[85] The hybrid GGA B97  

 B97 B97 B97
XC 1 EXX 1 X C(1 )E E E Eα α= + − +   2.3.11 

was one of the first hybrid DFT methods based on this concept.[85] Due to the specific 

adaption of its local terms, B97 allowed one to substitute the ACM3 formula by the simpler 

single-parameter mixing scheme, ACM1. Thereby, B97 is used with an EXX mixing factor of 

~0.19, while the semi-local terms B97
XE  and B97

CE  include nine empirical parameters in total, 

which were again adapted to experimental reference data. Other well-known examples of 

ACM1 hybrid DFT approximations are the methods M05 und M06 whose semi-local terms 

feature even more parameters.[77,89,90,210] M06 and its variants M06-2X and M06-HF include 

the parameters 1 0.27,α =  0.54, and 1, respectively; they are based on the same construction 

principles as the MGGA functional M06L (Sections 2.2.4 and 2.2.7). Indeed, in this context 

M06L appears as a local re-parametrization of M06 under the constraint 1α = 0.[77] 

Nevertheless, ACM1-type functionals were proposed from existing semi-local XC terms 

as well. While the adaption of the semi-local XC term to the EXX part is neglected, such 

approaches can significantly reduce the empiricism of hybrid DFT if based on non-empirical 

DFT approximations. Indeed, the hybrid DFT variants of PBE and TPSS, PBEh, 1α = 

0.32,[261] and TPSSh, 1α = 0.10,[212], include the EXX mixing factor as the only empirical 

parameter. 

It is not possible to construct a hybrid DFT functional without an empirically determined 

EXX parameter.[271] However, Perdew et al.
[83,259] rationalized a specific value for 1α  with 

the following ansatz for the coupling-strength dependence of the XC energy 

  
( )

( )

11
HYB HYB, GGA, GGA 1
XC XC XC EXX X

0 0

GGA GGA
XC EXX X

(1 )

1
 ,

E E d E E E d

E E E

λ λ µλ λ λ

µ

−⌠

⌡
 = = + − −∫  

= + −

 2.3.12 

where 

 ( )GGA, 2 GGA
XC XC[ ] [ ]E E

λ ρ λ ρ λ
λ
∂

=
∂

. 2.3.13 

This was compared with the polynomial λ-dependence of the XC energy from many-body 

perturbation theory (MBPT) of order µ 

 MP , 1
0 1 1XCE E E E

µ λ µ
µλ λ −

−≈ + + +…  . 2.3.14 

With increasing value of µ  the EXX term in Eq. 2.3.12 is reduced in favor of the GGA term. 

The order of MBPT which is used as reference for Eq. 2.3.12 has therefore to be as low as 

possible to still include a numerically significant EXX term,. On the other hand the MBPT 

method itself should still qualify as accurate reference. On the example of the atomization 

energies of small main group compounds, Perdew et al. concluded that MP4, hence 4µ = , 

represents the lowest MBPT order able to provide an acceptable description of the XC energy 
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as a function of λ . Thus, 4µ =  was considered a suitable order for the polynomial coupling 

strength dependency in Eq. 2.3.12. In this context 1
1 4α =  can be viewed as slightly less 

empirical value for the EXX mixing factor compared in the ACM1 form. In this way, Perdew 

et al. were led to suggest[83,259] the ACM0 hybrid DFT variant which was subsequently 

employed in form of the PBE0[87] functional 

 PBE0 PBE PBE31
XC EXX X C4 4E E E E= + + . 2.3.15 

Nevertheless, the optimum value for 1α  still depends on the specific type of the system. 

Thus, other strategies are required to obtain further improvements. Range-separated hybrid 

DFT (RSH) represents such a mixing strategy.[91-97] RSH approaches are based on the linear 

combination of EXX and local DFT at the level of XC holes instead of exchange energy 

terms.[91-97] The ratio of local and nonlocal exchange holes thereby depends on the electron-

electron distance | |′−r r . A second alternative consists in a linear combination of exchange 

energy densities.[100,102,103,244,272] This leads to a position dependent admixture of EXX to a 

semi-local MGGA exchange term, which potentially allows one to satisfy more properties of 

the exact XC energy density.[100,271] Both of these alternative hybrid DFT approaches are not 

entirely explored yet and combinations in form of a position dependent range separation have 

been considered as well.[96,273,274] 
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2.4. The DFT+U Method 

In the following the origins of the DFT+U method from the Hubbard model Hamiltonian are 

presented. The DFT+U self-interaction correction term is then reformulated to be invariant 

under unitary transformations of the KS orbitals. This reformulation is thereby based on 

occupation matrices of specific target orbitals onto which the DFT+U self-interaction 

correction is applied. The occupation matrices of localized target orbitals are then generalized 

to linear combinations of atomic orbitals. This generalization leads to the DFT+Umol method 

which was developed and applied in the context of this thesis. 

As discussed in Section 2.3.1, hybrid DFT methods are expected to be less affected by the 

SIE due to the error cancellation between convex and concave terms of the total energy at 

fractional electron numbers (see Figure 2.3.1). Indeed, the nonlocal exchange term of 

standard hybrid DFT methods can be considered as a global self-interaction and 

delocalization correction which is applied to the entire system. While the SIE often manifests 

itself only in specific parts of a system, e.g. an open atomic subshell, hybrid DFT methods 

may not provide an optimal description for the other moieties of the system. Thus, the EXX 

term may lead to an undesired deterioration of other aspects (see Section 2.2.6).[245]  

In contrast, the DFT+U method[60-64,66-69,275] represents a locally confined correction for 

the SIE.[65,67,276] The DFT+U framework has its roots in the field of theoretical solid state 

physics and was proposed to correct the electronic structure description (and especially the 

band gaps) of antiferromagnetic transition metal oxide insulators.[60,277] Prior to DFT+U, 

these systems were often described by the empirical Hubbard model Hamiltonian.[278-280] 

While the DFT results of such systems are heavily plagued by the delocalization of electrons 

within partially filled bands,[60,277] the much simpler Hubbard model was often found to 

provide a qualitatively correct description.[278-280] Apart from kinetic energy terms the 

Hubbard model only accounts for the Coulomb repulsion between the IN  different orbitals 

tχ  and uχ  which both belong to the same atomic subshell I,[278-280] 

 Hub
Coul[{ }]

2
I

tt tt uutt uu

I t t u

J
E n n n n nσ σ σ

σ
↑ ↓

≠

 
= + 

 
∑ ∑ ∑∑ . 2.4.1 

Thereby, the Coulomb integrals are simplified to only depend on the corresponding orbital 

occupation numbers  { }ttn σ  and a spherically averaged, subshell specific Coulomb interaction 

parameter[60,277,281] 

 * *
2

,

1
( ) ( ) ( , ) ( ) ( )I t t u u

I t u I

J W d d
N

χ χ χ χ
∈

′ ′ ′ ′= ∑ ∫∫ r r r r r r r r . 2.4.2 

The Hubbard model can be generalized to include also exchange interactions,[60,277] which are 

given analogously to the Coulomb interactions in terms of the occupation numbers and a 

spherically averaged exchange interaction parameter IK . The total Hubbard electron-electron 

interaction term reads then as 



The DFT+U Method 

41 

 Hub
ee [{ }]

2 2
I I I

tt tt uutt uu

I t t u

J J K
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σ
↑ ↓

≠

− 
= + 
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∑ ∑ ∑∑ . 2.4.3 

Note that the symbols IJ  and IK  were chosen here to keep the notation consistent with that 

of the discussions in the previous sections. Within the DFT+U community the Coulomb and 

exchange parameters are usually denoted as IU  and IJ , respectively.[60-69] 

The DFT+U method originated from the idea to describe the band structure by a KS-DFT 

approximation while using the Hubbard model to approximate the electron-electron 

interactions missing in this description.[60,61,275,280] In the context of a DFT+U self-interaction 

correction the additional Hubbard terms are only applied to specific orthonormal target 

orbitals { }tχ  which are most affected by the SIE.[60,61,275] Furthermore, the resulting DFT+U 

functional 

 DFT+U LDA Hub DC
ee[ ,{ }] = [ ] + [{ }] [{ }]tt tt ttE n E E n E nσ σ σρ ρ −  2.4.4 

includes an additional term DCE  to prevent an eventual double counting of the on-site 

interactions described by both, LDAE  and HubE . While several approximations have been 

proposed for DCE ,[68] its so-called fully localized limit (FLL) form represents its most widely 

applied variant.[63] The FLL approximation assumes that Hub
eeE  becomes identical to the 

electron-electron interactions of the KS-DFT approximation in the case of fully localized 

electrons, hence when all occupation numbers assume values of either 0 or 1.[63] With this 

assumption Eq. 2.4.3 is used to express DCE  after some manipulations as[281] 

 DC
FLL[{ }]

2 2
I I I

tt tt uu uutt uu

I t tu t

J J K
E n n n n n nσ σ σ σ

σ σ
↑ ↓

 −  
= + −  

  
∑ ∑ ∑∑ ∑∑ . 2.4.5 

When subtracting Eq. 2.4.5 from Eq. 2.4.3 the opposite-spin terms cancel and the factor 

I IJ K−  can be summarized to a single parameter IU . The residual term 

 ( )U Hub DC
ee[{ }] [{ }] [{ }]

2
Ip

tt tt tt tt tt tt

I t

U
E n E n E n n n nσ σ σ σ σ σ

σ

= − = −∑ ∑  2.4.6 

represents the DFT+U correction which is added to the total electronic energy from the 

employed KS-DFT approximation (LDA in most early applications)[60,61,275] 

 DFT+U LDA U[ ,{ }] = [ ] + [{ }]p
tt ttE n E E nσ σρ ρ . 2.4.7 

Thus, the DFT+U energy is a functional in terms of the electron density and the occupation 

numbers of the target orbitals 

 ˆ| | | |tt t t a t a a t
a

n fσ χ σ ρ χ σ χ σ ψ ψ χ σ= 〈 〉 = 〈 〉〈 〉∑  , 2.4.8 

which are obtained as expectation values of the density matrix operator[126] 

   ˆ a a a

a

fρ ψ ψ=∑  . 2.4.9 

The effective on-site parameter IU  can thereby be interpreted as the strength with which the 

DFT+U term is applied to the individual corrected subshells I.[60] 
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When individual KS orbitals { }aψ  are chosen as target orbitals, the terms in Eq. 2.4.6 are 

proportional to the corresponding summation terms of the integrated =0
XCh
λ  hole in Eq. 2.2.43. 

Indeed, U [{ }]p
ttE n σ  represents a penalty functional which is nonzero for fractional target 

orbital occupations and increases (penalizes) the total energy for fluctuating electron 

configurations. Thus, it can be considered as a self-interaction correction. The underlying 

concept of this correction is depicted in Figure 2.4.1; again based on the discussion in Section 

2.2.5.[282] However, in contrast to what is often asserted, the DFT+U term does not describe 

“strong correlation” phenomena which can cause electron localization as well.[219] 

 

Figure 2.4.1: Scheme of the self-interaction reduction provided by the U-correction term on 

the example of the total electronic energy of an open subsystem with non-integer occupation 

numbers. Figure adapted from Ref. [282]. 

 

The self-interaction correction provided by Eq. 2.4.6 acts at the level of orbital specific 

energy contributions, just like the PZ correction in Eq. 2.2.37. Thus, Eq. 2.4.6 is not invariant 

with respect to unitary transformations of the KS orbitals. In contrast to the PZ method this 

problem can, however, be resolved for the DFT+U approach. To this end, the orbital 

occupation numbers { }ttn σ  are considered as eigenvalues of a more general subshell 

occupation matrix I
σn . Opposed to the assumption of fully localized orbitals that lead to Eq. 

2.4.6 this generalization allows a mixing among the orbitals of the subshell I due to unitary 

transformations.[275] According to that, Eq. 2.4.6 can be reformulated to the following form 

 { } { }( )U 1
2 Tr TrI I I I

I

E U σ σ σ

σ

= −∑ n n n , 2.4.10 

in terms of traces over occupation matrices  

 ˆ{ } | | | |    with  ,I tu tu t u a t a a u
a

n f t u I
σ

σ χ σ ρ χ σ χ σ ψ ψ χ σ= = 〈 〉 = 〈 〉〈 〉 ∈∑n  , 2.4.11 
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for individual subshells of target orbitals. This formulation exhibits the desired invariance 

property while still retaining the purpose of the DFT+U term as an energy penalty functional 

for fractional occupations. Thus, it can be used as correction term to local KS-DFT 

functionals as well, 

 DFT+U KS-DFT UE E E= + . 2.4.12 

To apply the DFT+U method in actual calculations the elements of the occupation 

matrices in Eq. 2.4.11 need to be expressed in terms of basis functions { }iϕ . After the 

corresponding expansion of { }aψ  and { }tχ , 

 ( ) ( )      and     ( ) ( ) a i ia t i it

i i

C v
σψ ϕ χ ϕ= =∑ ∑x r r r  , 2.4.13 

Eq. 2.4.11 reads as  

 * *| |tu it i j a ja ka k l lu
ijkl a

n v f C C v
σ σ

σ ϕ ϕ ϕ ϕ= 〈 〉 〈 〉∑ ∑  . 2.4.14 

The overlap and density matrices can be identified in Eq. 2.4.14 as 

 *|     and    ij i j ij a ia ja
a

S P f C C
σ σ

σϕ ϕ= 〈 〉 = ∑  , 2.4.15 

so that the target orbital occupation matrices result to 

 †
I I I
σ σ=n v SP Sv  . 2.4.16 

Apart from this canonical definition of target orbital occupation matrices alternative variants 

like 

 1
2 ( )  ,I I I

σ σ σ= +n v SP P S v  2.4.17a 

 1 2 1 2  ,  andI I I
σ σ=n v S P S v  2.4.17b 

   I I I
σ σ=n v P v  2.4.17c 

have been rationalized, which resemble the common definitions of orbital occupation 

numbers.[66,281] 

It needs to be emphasized that in practical applications of the DFT+U method the orbitals 

{ }tχ  do not exactly correspond to KS orbitals of the system. In fact projectors are used to 

apply the self-interaction correction to the individual target orbitals.[60-64,66-69,275] While the 

details of these projectors will be discussed in Section 3.2.1, several comments are 

appropriate at this point. Selecting it itv δ= , hence projecting onto individual basis functions, 

reduces Eq. 2.4.16 to the conventional atomic formulation of DFT+U.[281,283-285] However, the 

formulation in Eq. 2.4.16 allows for projectors onto general linear combinations of basis 

functions. This formulation provides some further flexibility which is exploited by the 

DFT+Umol method to apply the DFT+U correction to fragment molecular orbitals 

(FMO).[286,287]  

Finally, different options for determining the effective on-site parameter IU  shall be 

discussed. While Eq. 2.4.2 and the analogous expression for IK  are rarely used to compute 

I I IU J K= − , this latter parameter is often determined empirically, by adjusting it to 
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spectroscopic quantities.[288] This strategy makes DFT+U a highly system specific 

approach.[288] Alternatively, IU  can be defined also in terms of the curvature of KS-DFTE  with 

respect to fractional occupation numbers, e.g.: 

 
2 KS-DFT

2
,

1 ( )I
I

I tu utt u I

E
U

N n n

σ

σ σσ ∈

∂
=

∂ ∂∑ ∑ n
 2.4.18 

The second derivative in Eq. 2.4.18 can be interpreted as the curvature that is required for the 

DFT+U correction to restore the linear behavior of the total electronic energy between integer 

values of n (Figure 2.4.1). Following this approach, IU  can be obtained either in terms of 

response properties or from numerical differentiation.[65,275] In any case, the DFT+U method 

represents a viable option for studying solid state systems that are heavily affected by the 

SIE.[275,277] In recent years, the DFT+U method has been applied to molecular systems as 

well.[67,281,283-287] 
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3. Algorithms and Implementation 

3.1. Exact-Exchange 

3.1.1. Electron-Repulsion Integrals 

The following section starts with a brief presentation of density fitting methods that allow one 

to avoid the calculation of the four-center electron-repulsion integrals (ERI). As these 

integrals cannot be avoided in most applications of hybrid DFT methods, the rest of this 

section is dedicated to a detailed discussion of the most important concepts and algorithms 

for the calculation of ERIs. This discussion of ERI algorithms is followed by a presentation 

of the implementations in PARAGAUSS
[70] which were carried out in the context of this thesis. 

Within local and semi-local DFT approximations (Section2.2.4), the evaluation of the XC 

term requires a computational effort of ( )gNO  on a numerical grid of size gN  and of 
2( )gN NO  to obtain the XC potential, Eq. 2.2.19. Thus, the evaluation of the Coulomb term 

(Eq. 2.1.10) would dominate such calculations as its computational requirements formally 

scale as 4( )NO . However, the Coulomb energy and potential (Eqs. 2.2.13 and 2.2.16) are 

explicitly known functionals of the density. The density in turn can be approximated with an 

auxiliary basis set { }
m
ζ  of the size18 aN  as  ( ) ( )

m m m
dρ ζ≈ ∑r r .[35-43] In terms of the 

approximated electron density the Coulomb potential from Eq. 2.1.10a reads then as[35-43] 

 
( ) ( ) ( )

 
| |

i j m
ij kl ijkl m m ijm

kl m m

J P g d d d d g
ϕ ϕ ζ ′

′= ≈ =
′−

⌠⌠

⌡⌡

∑ ∑ ∑
r r r

r r
r r

ɶ . 3.1.1 

Thus, the original formal 4( )NO  scaling of the computational effort required for the 

Coulomb term is reduced to 2( )aN NO .[35-43] This density fitting technique entails a 

considerable reduction of the computational costs of local and semi-local DFT 

calculations.[264,289] In consequence, this approximation significantly contributed to the 

success of local and semi-local KS-DFT approximations.[264] The coefficients { }md  in Eq. 

3.1.1 may be obtained by minimizing the difference between the original and the 

approximated density in either an overlap or a Coulomb metric.[35-43] The former approach is 

known as “resolution of the identity” technique (RI).[35,36,41] Compared to that, the usage of a 

Coulomb metric is more accurate for a given auxiliary basis as it directly minimizes the error 

of the Coulomb self-energy of the charge density.[37-39,42,43] In the following this latter 

technique will be denoted as fitting-function approach (FF or DF-FF). 

                                                
18 The size aN  of the auxiliary basis set usually needs to be larger than that of the orbitals basis N. This can be 

understood by considering that the auxiliary basis {ζk} is required to cover the two-center contributions that 
appear when expressing Eq. 2.2.10 in terms of orbital basis functions. 
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On the other hand, the EXX term as it appears in HF theory and hybrid DFT methods can 

not be expressed as a simple density functional. Nevertheless, RI approaches to the exact-

exchange term have been suggested as well.[290] In contrast to the DF-FF representation of the 

Coulomb potential, these approaches do not reduce the formal 4( )NO  scaling of the EXX 

term.[290] Furthermore, such methods mostly provide efficiency gains when systems of 

moderate sizes are to be treated with a large basis set.[290] 

Thus, the calculation of four-center electron-repulsion integrals19 

 
( ) ( ) ( ) ( )ˆ( | ) |

| |
i j k l

ijkl i k j lg ij kl W d d
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
′ ′

′= = 〈 | 〉 =
′−

⌠⌠

⌡⌡

r r r r
r r

r r
 , 3.1.2 

cannot be avoided in most applications of HF and hybrid DFT methods. As the computation 

and processing of ERIs represent the computationally most demanding steps in hybrid DFT 

and HF calculations, they were extensively studied and influenced also other algorithmic 

parts of quantum chemical calculations. The introduction of contracted Gaussian-type orbitals 

(CGTO)  

 ( ) ( )
i

i i ii ii m a

i

c G
κ

ϕ ′′
′

= −∑r r Aℓ  3.1.3 

as elements of a single-electron atomic orbital (AO) basis is an example for such an influence 

of the need for an efficient calculation of ERIs.[291-294] CGTOs are represented as linear 

combinations of primitive Gaussian orbitals 
i i im aG ′ℓ  (PGTO) with coefficients { }iic ′ .[291,295-298] 

PARAGAUSS
[70] employs real solid harmonic CGTO functions (SHCGTO) that consist of iκ  

different primitive Gaussian functions (PGTO) with various exponents { }ia ′  

 ( )2( ) ( ) ( ) exp
ima i m iG N a S a′ ′ ′= −A A Ar r rℓ ℓ ℓ . 3.1.4 

All functions of such a contraction are centered at the same nuclear position20 A  

( = −Ar r A ). Every SHCGTO function exhibits a solid harmonic prefactor mSℓ  and a 

normalization factor ( )iN a ′ℓ , whereas ℓ  denotes the angular momentum and m ( | |    m ≤ ℓ ) 

the magnetic quantum number.[299-302] 

The simplest approach to tackle Eq. 3.1.2 consists in first computing ERIs over PGTO 

functions.[291] The final integral results then by a subsequent contraction of the primitive 

indices.[291] Indices and factors related to the first spatial variable r are commonly designated 

as bra-side ( |ij , while quantities related to ′r  are denoted as ket-side | )kl . The ERI ( | )ij kl  

over four CGTOs with angular momenta iℓ , jℓ , kℓ , and lℓ , magnetic quantum numbers im , 

jm , km , and lm , and atomic centers A, B, C, and D, respectively, then reads as21 

                                                
19 A real basis set { }iϕ  is thereby assumed throughout the entire presentation. Furthermore, the notation 

( | )ijklg ij kl=  will be employed, which is most commonly used in the context of algorithms for ERI 
calculation. 

20 The center of the PGTO was actually allowed to vary slightly in early formulations to represent of Gaussian 
lobe functions, which nowadays are of purely historical importance only. 

21 Using ( | }ij k l′ ′  and { | )i j kl′ ′  to denote bra and ket half-contracted integrals and { | }i j k l′ ′ ′ ′  for ERIs over 
PGTOs. 
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 ( | ) c c { | ) c c c c { | }ii jj ii jj kk ll

i j i j k l

ij kl i j kl i j k l′ ′ ′ ′ ′ ′
′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′= =∑ ∑∑ . 3.1.5 

Eq. 3.1.5 is thereby formulated in terms of the intermediate integrals 
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i i j j k k l lm a m b m c m dG G G G
i j k l d d
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ℓ ℓ ℓ ℓ , 3.1.6 

over PGTO functions. Subsequently, the following abbreviations for the exponents ia a ′= , 

jb a ′= , kc a ′= , and ld a ′=  will be used in most expressions. 

As indicated by the matrix notation for the contraction coefficients { }iic ′ , multiple CGTOs 

are often formed from a common set of PGTO functions. Thus, Eq. 3.1.5 illustrates that 

significant efficiency gains are possible when calculating four-center integrals in batches 

( | )IJ KL  of quadruples of AO shells I, J, K, and L. A shell I comprises all AO functions of 

angular momentum iℓ  which are centered at the same nuclear position A . Individual shell 

orbitals i I∈  differ from each other by their angular and/or their radial components; hence by 

the magnetic quantum numbers im  and/or their linear combinations of PGTOs. In the context 

of a batch-wise calculation of ERIs one exploits the fact that many integrals of a batch are 

formed from the same quantities like { | }i j k l′ ′ ′ ′  or { | )i j kl′ ′ , which can be stored as 

intermediates. The contraction of a fully computed set of { | }i j k l′ ′ ′ ′ -type integrals over 

PGTOs in Eq. 3.1.5 is far from being the most efficient approach to ERIs. However, many 

other algorithmic steps offer similar possibilities to exploit the presence of common 

intermediates. Thus, literally all modern approaches to the computation of ERIs rely on a 

batch-wise calculation of ERIs.[303-305]  

 

 

Figure 3.1.1: General outline of ERI algorithms in terms of κ4, κ2, and κ0 steps. 

 

Furthermore, many algorithms share the contraction scheme outlined in Eq. 3.1.5 and 

depicted in Figure 3.1.1. The ( | )ij kl  ERIs are obtained from a batch of (bra or ket) half-

contracted intermediates, ( | }ij k l′ ′  or { | )i j kl′ ′ , which result from the first half-contraction 

step. As the number of PGTOs is generally larger than that of CGTOs, calculations prior to 
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the first half-contraction step on primitive intermediates are most expensive. These 

algorithmic parts are denoted as κ4 steps and are followed by the less expensive κ2 

operations on half-contracted quantities. Finally, the mostly inexpensive κ0 steps are entirely 

formulated in terms of fully contracted quantities and only followed by the subsequent 

processing of four-center integrals. Figure 3.1.1 depicts the general loop structure of these κ4, 

κ2, and κ0 steps. 

ERIs over four s-type PGTO functions represent the most simple case of Eq. 3.1.5 and are 

denoted as { | }ss ss . The Gaussian product rule states that the multiplication of two Gaussian 

functions results in another Gaussian function.[2,4] This product distribution exhibits the 

exponent p a b= + , is centered at the exponent-weighted average position ( )a b p= +P A B  

on the line segment connecting the centers of the two initial Gaussians and scaled by the 

overlap between them,  

 ( ) ( ) ( ) ( )22 2 2exp  exp  exp ( ) exp  a b ab p p− − = − −A B Pr r AB r . 3.1.7 

The uncontracted { | }ss ss -type integral results from using Eq. 3.1.4 in Eq. 3.1.6 with 

( )3 4
0 00( ) ( ) 2N a S a π=Ar  and the analogously defined other three PGTO prefactors. Applying 

the Gaussian product rule of Eq. 3.1.7 as well as the following Laplace-like transformation of 

the Coulomb operator 

  ( )2 2

0

1 2
exp | |

| |
u du

π

∞

′= − −
′− ∫ r r

r r
 3.1.8 

in Eq. 3.1.6 yields after several manipulations[4,291,305] 

 ( ) ( ) ( )
12 2 2 2

00 00 00 00
0

{ | } exp ( ) exp ( )  exp  a b c dG G G G Z ab p cd q u duγ= ⋅ − − −⌠
⌡

AB CD PQ .  3.1.9 

The variables q and Q are defined analogously to p and P, respectively. Furthermore, the 

intermediates 

 
3 416 ( )

   and    
pq abcd

Z
p q pq p q

γ
π

= =
+ +

 3.1.10 

are introduced. The integral in Eq. 3.1.9 is an example of the Boys function, which, for 

reasons discussed below, is generalized to an arbitrary order M (with 0M ≥ )[4,291] 

 ( )
1

2 2

0

( ) expM
MF x u xu du= −∫ .  3.1.11 

The Mth-order Boys functions ( )MF x  are related to the error function, the incomplete gamma 

function, and other special functions.[4,291,306] 

Subsequently, the final batch of ( | )ss ss  integrals can be formed according to Eq. 3.1.5 

from the { | }i j k l′ ′ ′ ′  ERIs for all quadruples of primitive exponents. The ERI in Eq. 3.1.6 has 

thus been reduced to a much simpler one-dimensional integral over the finite interval [0,1] . 

Having established a method to obtain ERIs over four s-type centers, this algorithm can be 

generalized to the calculation of integral-classes over AOs of higher angular momenta like 
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( | )ps ps , ( | )fd dp , … . In contrast to ( | )ss ss -type integrals, such ERIs include integrands 

with angular degrees of freedom, hence     0>ℓ . Using the identity = +A Pr r PA  and 

expanding polynomial products of the form ( ) ( )r ri j
r rr rr P PA r P PB− + − +  allows one to 

obtain the corresponding ERI formulae for general PGTOs from a derivation analogous to 

that of Eq. 3.1.9.[307] Nevertheless, with growing angular momentum  ℓ  the resulting 

expressions quickly become much more involved than Eq. 3.1.9. 

PGTOs have the very useful property that their angular prefactors can be obtained from a 

parameter differentiation with respect to their nuclear centers.[2,4] For a pz-type primitive AO 

this concept is illustrated as follows: 
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 3.1.12 

When applied to Eq. 3.1.9 for general ERI classes of higher angular momenta, a repetitive 

differentiation of both overlap and integral factors is required. Furthermore, cross-terms arise 

for     1>ℓ  or non-zero angular momenta on different centers so an explicit parameter 

differentiation quickly becomes rather cumbersome that in such cases. General real solid 

spherical harmonic angular GTO prefactors can be obtained from parameter differentiation as 

well.[301,302,308-311] Such approaches are based on the application of the spherical harmonic 

tensor gradient theory, which is formulated in terms polynomial differential operators of the 

form ( )
i imS ∇Aℓ .[301,302,308-311] Different rules are known for the coupling of angular momenta 

and the application of spherical harmonic tensors which can be employed to compute ERIs 

over SHCGTOs.[301,302,308-314]  

However, most ERI algorithms do not directly compute integrals over SHCGTOs, but first 

evaluate integrals over contracted Gaussian orbitals with Cartesian angular prefactors 

(CCGTO) 

 ( )2( ) ( ) ( )( ) ( ) ( ) exp
i i

yx z

i

ii i
i ii a ii i x y z i

i i

c G c N a x A y A z A a
κ κ

ϕ ′′ ′ ′ ′
′ ′

= = − − − −∑ ∑i A i Ar r rɶ  3.1.13 

with ( , , )x y zi i i=i  and 0 ,  x y z x y z ii i i i i i≤ ≤ ≤ + + = ℓ . The resulting integrals are subsequently 

transformed from the CCGTO to the SHCGTO basis.[315] Integrals over Cartesian GTOs will 

be denoted as [ | ]ij kl  in the following. For a given angular momentum ℓ , the magnetic 

quantum number m varies from −ℓ  to ℓ  which results in 2 1+ℓ  different functions mSℓ . In 

contrast, the corresponding set of Cartesian prefactors includes ( 2)( 1) 2+ +ℓ ℓ  elements and 

thus, is larger than the number of spherical harmonic functions for     1>ℓ . The additional 

Cartesian prefactors with     1>ℓ  result in form of lower angular momentum functions; for 

example 2
Ar  in the case of d-orbitals, 2( )rr A− Ar  for f-type shells, and so on. Furthermore, the 

repetitive differentiation of the PGTOs with respect to the nuclear coordinates 
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does not directly generate the Cartesian prefactors but rather yields angular components in 

terms of Hermite polynomials  h i
ɶ . Integrals over Hermite polynomials may either be 

converted to the [ | ]ij kl  batch or  directly transformed to the SHCGTO basis.[316] 

Despite their larger number for     1>ℓ  and the need to convert the Hermite polynomials, 

Cartesian prefactors allow for more transparent expressions which resulted in the 

development of powerful and versatile recursion relations.[303] Corresponding recursion 

techniques for ERIs over spherical harmonic PGTOs have been suggested as well, but are 

either far more involved or less well applicable.[317] The recursion relations for ERIs over 

Cartesian GTOs will be discussed after presenting the techniques for the computation of the 

Boys functions. 

Differentiating the integral factor in Eq. 3.1.9, hence the zero-order Boys function, with 

respect to 
2

x γ= PQ  directly leads to the aforementioned Boys functions of order M, 

 ( )
1

0 2 2

0

( )
( 1) exp ( 1) ( )

M
M M M

MM

F x
u xu du F x

x

∂
= − − = −

∂ ∫  . 3.1.15 

It can be shown that any ERI over PGTOs can be expressed as a linear combination of Boys 

functions up to order tot i j k l= + + +ℓ ℓ ℓ ℓ ℓ , 

 
tot 2

0

{ | } ( )M M

M

i j k l Z F γ
=

′ ′ ′ ′ = Ω∑ PQ
ℓ

, 3.1.16 

whereas the coefficients MΩ  denote complicated functions of ℓ , m , ia ′ , and A of all four 

PGTOs, respectively.[307,318] Thus, ERIs over GTOs with nonzero angular momenta require 

the calculation of the entire series of Boys functions from 0F  to 
tot

Fℓ . 

At 0x =  the exponential factor of the integrand in Eq. 3.1.15 equals one. In consequence, 

the remaining monomial integrates to 

 ( )
1

2

0

(0) 1 2 1M
MF u du M= = +∫  . 3.1.17 

In combination with 1( ) ( )M MF x x F x+∂ ∂ = −  this allows for a Taylor-series expansion  

 
( )

( )
!  (2 2 1)

i

M

i

x
F x

i M i

∞ −
=

+ +∑  3.1.18 

around 0x = . While this series is always convergent,[4] several hundred terms may be 

required to compute ( )MF x  from Eq. 3.1.18 with a sufficiently high accuracy.22 However, the 

convergence of the series can be significantly improved if pre-tabulated ( )MF x  values on a 

regular grid tx x=  are used,[4,318-320] 

                                                
22 For the FORTRAN double precision floating point data type of 64 bit length this implies a relative precision 

of 10‒16. 
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If x lies in between (sufficiently close) grid points, the Taylor expansion from the nearest grid 

point converges after a few terms only.[4] Having obtained the value of 
tot

( )F xℓ , the Boys 

functions of lower orders are computed in terms of the following “downward” recursion 

 12 ( ) exp( )
( )

2 1
M

M

x F x x
F x

M

+⋅ + −
=

+
. 3.1.20 

If the Boys functions are tabulated over a sufficiently large interval of x, the expression 

 
1 2 1

(2 1)!!
( )  ,      1

2
M M M

M
F x x

x

π
+ +

−
≈ ≫  3.1.21 

can be used to compute ( )MF x  for x values beyond the extent of the grid. In this case it may 

be sufficient to use Eq. 3.1.21 to compute 0 ( )F x  only. All other ( )MF x  values can then be 

obtained from the “upward” recursion formula 

 1
(2 1) ( ) exp( )

( )
2

M
M

M F x x
F x

x
+

+ ⋅ − −
= , 3.1.22 

which becomes stable at sufficiently large values of x. The Boys functions MF  of orders 

0, , i j k lM = + + +… ℓ ℓ ℓ ℓ  can then be converted into the derivatives of 0F  with respect to the 

distance between the product centers P and Q 

 
2 2 22
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0 PQ PQ PQ
PQ

 . 3.1.23 

The use of recursion relations became popular with the approach of McMurchie and 

Davidson (MD) to four-center integrals.[319] Indeed, the MD method was the first ERI 

algorithm which was equally efficient for various ERI classes, over CGTOs with large 

contraction length iκ  as well as over CGTOs with higher angular momenta.[319] The MD 

algorithm is based on the idea to generate higher angular momentum functions via derivatives 

with respect to the centers P and Q, 
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 3.1.24 

In this context it is common to define ( , , )x y zp p p=p , ( , , )x y zq q q=q , x x xp i j= + , 

x x xq j l= + , and so on. The first-order derivative with respect to a single Cartesian 

component , ,r x y z=  of P yields  

 
2

2 20 2
0 2( ) ( 2 ) ( )M

r r

F
F F

P P
γ γ γ

  ∂ ∂ ∂
 = = −   ∂ ∂ ∂  

PQ
PQ PQ PQ

PQ
, 3.1.25 

whereas the partial derivative on the right hand side of Eq. 3.1.25 is provided by Eq. 3.1.23. 

From the commutative behavior of the derivative operator 
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1r r rp p p
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= +     ∂ ∂ ∂     
,  3.1.26 

the intermediates Γ  in Eq. 3.1.24 are found to behave according to 

 
2 2 21 1( ) ( ) ( )

r z

M M M
rr

PQ pγ γ γ+ +
+ + + + −Γ = ⋅Γ + ⋅Γp q 1 p q p q 1PQ PQ PQ  . 3.1.27 

With 
2

( )M γΓ0 PQ  given by Eq. 3.1.23 this defines a recursion relation for Eq. 3.1.24 which 

relates the order M of the Boys function to Hermite polynomials of varying degree. Thus, 

Eqs. 3.1.24 to 3.1.27 lead to integrals over Gaussian product distributions with Hermite 

polynomial prefactors, centered at P and Q, respectively. 

These intermediates may be coupled with the Hermite functions that originate from the 

differentiation of the overlap factors,23 
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 3.1.28 

The resulting integrals over GTOs with Hermite prefactors ( )hi Arɶ  can then be converted into 

integrals over ( )
iaG ′i Ar . Originally, MD proposed an alternative approach to convert the 0

+Γp q  

intermediates to the final ERIs.[319] Their approach consists in a direct transfer of angular 

momentum from the Hermite product distributions to the Cartesian AO functions.[319] This 

approach is understood best in terms of product distributions with combined Cartesian atom-

centered and product-centered Hermite angular components, 

 ( ) ( )2 2 1 2

, ,

exp ( ) ( ) ( ) ( )r r r

r

i j p
r r p r

r x y z

P r A r B p h p r P
=

= − − − ⋅ − ⋅ −∏p
ij x P ɶɶ  . 3.1.29 

The results of the recursion in Eq. 3.1.27, hence the uncontracted ERIs over product 

distributions with Hermite polynomial prefactors can then be rewritten as follows 

 
20[ | ] ( 1) ( )x y zq q q

P Q γ+ +
+= − Γp q

p q00 00 PQɶɶ . 3.1.30 

After adding and subtracting rP  in one of the ( )rr A−  factors in Eq. 3.1.29 according to 

 1 1( ) ( )( ) ( )( )i r ru i i
r r r r r rr A r P r A P A r A

− −− = − − + − −  3.1.31 

and using the Hermite recursion formula  

 1 2 2 1 2 1 2 1 21
1 12( ) ( ) ( ) ( )r

r r r

p
p r p pp r p h p r p h p r h p r− +⋅ = ⋅ +ɶ ɶ ɶ  , 3.1.32 

one obtains the recursive MD transfer relation[319] 

 , , ,

1
( )

2
r r

r r rr r rP p P P A P P
p

− +
− − −= ⋅ + − +p p 1 p p 1

ij i 1 j i 1 j i 1 j
ɶ ɶ ɶ ɶ . 3.1.33 

Eq. 3.1.33 and its analogues for the other Cartesian components and product centers include 

only quantities over which ERIs were established above. Thus, one can equally well write  

                                                
23 Note, that upon successive application of xB∂ ∂  to Eq. 3.1.28 various cross-terms have to be considered and 

that the factor ( 1)u v w′ ′ ′+ +−  needs to be included in the derivatives with respect to xC  and xD . 
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+ ⋅ ⋅ +p q p q 1 p q p q 1
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ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ , 3.1.34b 

and obtain the final uncontracted integrals over Cartesian PGTOs as  

 [ | ] [ | ]P Q= 0 0
ij klij kl ɶɶ  . 3.1.35 

Equivalent MD algorithms result when Eqs. 3.1.34 are reformulated as matrix multiplications 

or by expanding Eq. 3.1.28 and subsequently transforming the resulting integrals.[4,316] 

Recursion relations are not restricted to Hermite functions only. From combining the 

parameter differentiation with the translational invariance property,  

 ( )+ + + [ | ] =∇ ∇ ∇ ∇A B C D ij kl 0 , 3.1.36 

Obara‒Saika[321,322] (OS) and others[323,324] discovered a recursion relation which provides a 

direct transformation of the 
2

[ | ] ( )M M α= Γ000 00 PQ  intermediates into 0[ | ] [ | ]=ij kl ij kl  

integrals,[303] 

    

1

1

1

1 1

1
[ , | ] [ | ] [ | ]       

2

1
[ , | ] [ , | ]  

2 2

1
[ , | ] [ , | ]  

2 2

1
 .[ | , ] [ | ]

4

M M M
rr r

r M M
r r

r M M
r r

M M
r x r x

PA PQ
p

i

p p

j

p p

k l
pq

+

+

+

+ +

+ = +

 
+ − − − 

 

 
+ − − − 

 

 + − + − 
 

i 1 j kl ij kl ij kl

i 1 j kl i 1 j kl

i j 1 kl i j 1 kl

ij k 1 l ij kl 1

 3.1.37 

Based on the MD and OS approaches a large number of variations were developed in the 

following.[303,325-333] From using identities like ( ) ( ) ( )x x x xx B x A A B− = − + −  inside the 

electron repulsion integrals, another important connection can be established  

 [ , | ] [ , | ] +[ , | ]rr rAB+ = +i j 1 kl i j kl i 1 j kl ,  3.1.38 

which is known as horizontal recursion relation (HRR).[325] The horizontal recursion relation 

effectively transfers angular momentum between the two bra-side centers (likewise for the 

ket side).[325,334,335] Thus, Eq. 3.1.38 allows one to reduce the generation of angular momenta 

to intermediate [ | ]e0 f0 -type classes. These intermediate classes include all integrals over 

Cartesian GTOs with angular momenta ranging from e i=ℓ ℓ  to i j+ℓ ℓ  and, likewise, 

, ,f k k l= +ℓ ℓ … ℓ ℓ . The number efN  of such intermediates is at most equal than the size ijklN  

of the final [ | ]ij kl  class, as shown here for the bra side 

 
( )( 1)( 2)( 3) ( 1)( 2) 6                 

( 1)( 2)( 1)( 2) 4  .

i j i j i j i i i

i i k k

+ + + + + + − + +

≤ + + + +

ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ
 3.1.39 

The HRR in Eq. 3.1.38 itself does not provide any significant benefit because a similar 

number of elements needs to be processed to obtain the final [ | ]ij kl  class of integrals as 

during a direct generation of ERIs. The great advantage of the horizontal recursion relation 
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derives from the fact that Eq. 3.1.38 does not comprise any primitive-related quantities (like 

exponents or product center coordinates) and thus applies to fully contracted integral classes 

as well. A significant amount of computational labor can thereby be shifted from the κ4 stage 

to the κ2 and κ0 stages. Following this “earlier contraction” strategy, Head-Gordon‒Pople 

(HGP) used the five-term variant of the OS recursion, Eq. 3.1.37, termed vertical recursion 

relation (VRR) that results for ERI classes with = =j l 0 .[325] The VRR can be used to obtain 

the intermediates [ | ]e0 f0 , which are subsequently contracted and then transformed into 

integrals over CCGTOs by means of the HRR.[325] The MD algorithm benefits from the HRR 

as well. Only uncontracted [ | ]e0 f0  classes have to be computed from Eq. 3.1.34, which 

significantly simplifies the MD transfer step in Eq. 3.1.33. 

The concept of early contraction can be extended even further.[303,326,327] In this context 

one employs identities like 

 
2

2

b

p
=PA BA  3.1.40 

and “pre-scaled” variants of the combined Hermite-Cartesian distributions from Eq. 3.1.29,  

 
(2 )

(2 )

u
uv

u v

b
P P

p
+

=p p
ij ij
ɶ ɶ  . 3.1.41 

The intermediates u v
Q

′ ′q
kl
ɶ  are analogously defined for the ket-side. When using Eqs. 3.1.40 and 

3.1.41, the MD transfer relation can be reformulated as follows[303,326,327] 

 , 1, , 1
,[ | ] [ | ] [ | ] [ | ]r r

r

uv u v uv u v u v u v u v u v
rrP Q = p P Q + BA P Q P Q

′ ′ ′ ′ ′ ′ ′ ′− + + +
+ ⋅ ⋅ +p q p 1 q p q p 1 q

kl kl kl klij ij iji 1 j
ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ . 3.1.42 

Apart from the integrals over the pre-scaled distributions from Eq. 3.1.41, this reformulation 

is free from any quantities that depend on the primitive indices.[303,326,327] Thus, Eq. 3.1.42 

applies to contracted [ | ]uv u vP Q
′ ′p q

klij
ɶɶ  integrals as well, just as the HRR. Indeed, the contracted 

variant of Eq. 3.1.42 provides efficiency gains for batches with large contraction ratios, hence 

the ratio between the number of CGTOs and PGTOs.[303,326,327] The identity 

 
2 2

2 2

b d

p q
= + −PQ AC BA DC  3.1.43 

allows one to apply the early contraction concept to the HGP or OS equations, Eq. 3.1.37, 

and even to the generation of Hermite Coulomb integrals in Eq. 3.1.27. Furthermore, the 

electron transfer relation[328] 

   
(

)
[ | , ] [ , | ] [ | , ] 2 [ , | ]         

2 [ | ] 2 [ | ] 2

r r r r r r

r r

e f p

b AB d CD q

+ = − + − − +

− ⋅ ⋅ + ⋅ ⋅

e0 f 1 0 e 1 0 f0 e0 f 1 0 e 1 0 f0

e0 f0 e0 f0
 3.1.44 

represents an additional recursion relation which, in its contracted variant, can occasionally 

provide further computational savings.[303] Eq. 3.1.44 allows one to shift angular momentum 

between bra and ket sides and emerges from Eq. 3.1.36 as well.[303,328] The algorithms 

resulting from Eq. 3.1.43 permit one to carry out the contraction steps already at the stage of 

derivatives of pre-scaled Boys functions 
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M M
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p q
γ
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= Γ00 PQ , 3.1.45 

which are obtained directly from Eq. 3.1.23 and defined analogously to the pre-scaled 

Hermite-Cartesian product distributions in Eq. 3.1.41.[327,330] However, as such early 

contraction strategies can significantly increase the operation count at the κ0 step for larger ℓ  

values, they may not always represent the optimal choice for a specific ERI class.[303] For a 

given ERI batch selecting the optimal sequence of transformation and contraction steps out of 

several different algorithmic pathways represents the key idea of the PRISM 

algorithm.[303,326,327,329,331,333] Alternative MD based pre-scaling methods exist.[332] 

In a similar fashion, computational workload can be shifted from the κ4 to the κ0 stage by 

applying a rotation to the coordinates of the atomic centers, which is the key concept of the 

Pople‒Hehre algorithm (PH).[336] The rotations are defined in such a way that many Cartesian 

components of the distance vectors between the centers ( AB , PA , etc.) vanish, which 

simplifies the recursions over uncontracted intermediates.[336] The number of κ0 operations is 

increased though, as the corresponding inverse rotations need to be applied to the contracted 

integrals.[336] Therefore, the original PH approach was limited to s and p-type CGTOs.[336] 

Recently, more flexible combinations of PH-type rotations with the MD and PRISM 

algorithms were proposed as well.[333,337] 
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Scheme 3.1.1: Block reformulation of the loops in the κ4 steps. The ranges beg end:i i′ ′ , 

beg end:j j′ ′ , beg end:k k′ ′ , and beg end:l l′ ′  denote the four fastest running array axes. 

 

Apart from algorithmic reductions of the floating point operation (FLOP) counts, another 

essential factor has to be considered for an efficient ERI computation.[338] Modern CPU 

architectures are able to carry out an enormous number of FLOPs per second but exhibit only 

a comparatively limited bandwidth to the main memory.[338] This mismatch is partially 

resolved by a hierarchical structure of intermediate cache storages of successively higher 
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bandwidth but decreasing size.[338] To use such architectures efficiently, as many operations 

as possible have to be carried out on small data arrays whose sizes fit into the available cache 

storages.[338] In the case of the most expensive κ4 steps of ERI algorithms, this implies 

processing the primitive axes in blocks as shown in Scheme 3.1.1. For high angular momenta 

the uncontracted intermediates have rather large pre-scaling index axes, which only admit for 

short loops24 over the primitive quadruples or may not even fit at all into the low-level cache 

storages. 

This problem is less severe for Gauss-quadrature based algorithms, which represent 

another important approach to ERIs.[339,340] The key concept of such methods is to carry out 

the parameter differentiation before the one-dimensional integration in Eq. 3.1.9. To this end, 

Eq. 3.1.16 is reformulated as 

 ( )tot tot
1

2 2 2 2

0 00

{ | } ( ) exp M
M M M

M M

i j k l Z F Z u u duγ γ
= =

 
′ ′ ′ ′ = Ω = − Ω 

 

⌠

⌡

∑ ∑PQ PQ
ℓ ℓ

 . 3.1.46 

Most important is the presence of the polynomial factor in terms the variable u on the right-

hand side of Eq. 3.1.46. According to the Gauss-quadrature formula, such polynomials 

2 ( )M uℑ  up to a degree m can be exactly integrated to 

 2 2( ) ( ) ( ) 
u m

M M t t

tu

u u du u wω
′

′−

ℑ = ℑ∑∫ , 3.1.47 

for a specific weighting function ( )uω  and over a given interval [ , ]u u′ ′− . Here, tu  and tw  

are the roots and weights of the t-th member of the class of polynomials which are, for the 

given weighting function ( )uω , orthogonal over the interval [ , ]u u′ ′− . In the case of  

 ( )2 2( ) = expu uω γ− PQ  3.1.48 

and = 1u′  this leads to the class of Rys polynomials whose roots and weights are determined 

by the value of 
2

γ PQ .[340,341]  

While different Rys polynomials have to be computed for every quadruple of PGTOs, 

most algorithmic parts of Gauss-quadrature based ERI algorithms exhibit a very favorable 

scaling of operations with respect to the angular momenta.[340,341] This efficiency partially 

results from 2 1m M=   + , as the polynomials 2 ( )M uℑ  are of even order, thus need to be 

integrated over the interval [0,1]  only.[340] The techniques for the calculation of the values for 

tu  and tw  are significantly more involved but still resemble those used for the computation 

of the Boys functions.[341-345] Yet, the main advantage of Gauss-quadrature based algorithms 

consists in the fact that the polynomial 2 ( )M uℑ  in Eq. 3.1.46 factorizes into its Cartesian 

components 

                                                
24 Note that long loops over fast running indices are still important for modern CPU architectures because their 

large computing power partially results from an efficient hardware vectorization (pipelining). 
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The two-dimensional integrals ( , )r r r r r ti j k l uℑ  can be obtained from suitably adapted variants 

of the MD or OS recursion relations, Eqs. 3.1.27, 3.1.34, and 3.1.37.[346] When combined 

with the HRR, only quantities of the size25 3
tot( )ℓO  need to be computed before the assembly 

of the six-dimensional [ | ]e0 f0  integrals, hence from a correspondingly adapted variant of Eq. 

3.1.49. This is to be compared with the quantities which appear in the HGP or HRR+MD 

approaches and whose numbers scale with 6
tot( )ℓO  at least. Even the very early contraction 

algorithms have to deal with the pre-scaled Boys functions [ ]M
uv u v′ ′0 , which scale as 5

tot( )ℓO . 

Due to the small number of the intermediates rℑ , implementations of Gauss-quadrature 

based ERI algorithms[339,340,346-348] can efficiently exploit cache memory[349] and are even 

suitable for applications on general purpose graphic processing units.[350-352] However, it is a 

general drawback of such algorithms that the ERI contraction step can not be carried out prior 

to the assembly of the six-dimensional integrals in Eq. 3.1.49. Partial ameliorations of this 

disadvantage have been proposed by combining Gauss-quadrature approaches to ERIs with 

ideas from early contraction algorithms.[353] Nevertheless, compared to MD or OS, Gaussian-

quadrature methods perform best for basis sets with high angular momenta and low 

contraction ratios as well as for ERI-derivatives (see Section 3.1.4).[349,354] 

As their performance varies for batches with different contraction ratios, early contraction 

and Gaussian-quadrature based algorithms are often implemented together in DFT 

packages.[355] A specific algorithm is then selected according to the characteristics of the ERI 

batch at hand (angular momenta, contraction ratios) to achieve an optimal performance. In 

this context both types of algorithms complement each other with regard their performance 

for different classes of ERI batches. However, methods that are able to efficiently compute 

ERIs also in the case of highly contracted GTOs of high angular moments are still desirable. 

Various algorithms with such capabilities have been derived by means of computer algebra 

systems or implemented with metaprogramming approaches.[318,333,356-359] The most wide-

spread example for an ERI algorithm formulation is the accompanying coordinate expansion 

(ACE), which, despite of being based on the Boys function, was originally derived from an 

explicit expansion of the two-dimensional rℑ  integrals.[314,318,360-366] Similar to the PRISM 

algorithm, the ACE method exhibits different expansion paths, which exhibit very low 

operation counts in the limit of high angular momenta or large contraction ratios, 

respectively.[318] In the context of this thesis the ACE method has been extensively studied. 

                                                
25 When comparing the amount of data and operations involved in different ERI algorithms, one commonly 

assumes integral classes of the type ( | )ss ss , ( | )pp pp , ( | )dd dd , etc., thus i j k l= = =ℓ ℓ ℓ ℓ . Identical 
considerations in terms of more general classes can be made but are more cumbersome and unlikely to 
provide any further insights.  
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However, as the definition of many relations between intermediate quantities remains unclear 

in the literature, this method was found to be exceptionally cumbersome to implement 

efficiently without the original computer algebra derivation at hand.  

The rest of this section discusses the ERI implementations carried out as part of this thesis. 

In this context it has been found useful to implement the calculation of ERI batches 

separately from their subsequent treatment (see Sections 3.1.2 and 3.1.3). Thus, the modules 

that perform the calculation of ERIs are only supposed to deliver the final ( | )IJ KL  batch of 

contracted ERIs. This separation allows one to employ a simpler parallelization concept (see 

Section 3.1.5) and enables one to switch easily between different ERI implementations. 

An early reference implementation was available as an extension of existing PARAGAUSS 

modules. This implementation is based on the spherical harmonic tensor gradient approach, 

which is also used to compute the three-center integrals required for calculating the Coulomb 

repulsion matrix term within the DF-FF approximation, Eq. 3.1.1. However, without 

significant algorithmic changes, this early implementation performs most of the 

computational work within the κ4 steps. In consequence, this implementation imposed large 

memory demands and was found to be not efficient enough for routine calculations. 

Thus, a complete re-implementation of the ERI calculation was carried out in the form of 

the newly developed integral package “ERI4C”. As part of this work, also the Boys function 

was re-implemented with the aim to adapt it specifically to four-center integrals and modern 

computer architectures. This implementation is based on pre-tabulated values of the Boys 

function within the interval [0, 46]x ∈  and a bidirectional seven-term Taylor expansion 

( 6tM = ) of ( )MF x  (Eq. 3.1.19) 
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A grid spacing of 0.05, hence { }max | | 0.025tx x− = , was employed for this table which 

includes the values of the Boys functions for up to 32M = . These tabulated values allow one 

to compute ERIs over up to i-type ( 6i =ℓ ) GTOs and, eventually, also the corresponding 

first- and second-order ERI derivatives. Thus, the tabulated Boys function values suffice for 

all ERI classes which are relevant for hybrid DFT calculations. While Eq. 3.1.50 is used to 

compute the value of the Boys function of the highest order required, the lower orders result 

from the “downward” recursion in Eq. 3.1.20, 1( ) (2 ( ) exp( )) (2 1)M MF x x F x x M+= ⋅ + − + . 

The evaluation of exp( )x−  is comparatively expensive on modern CPU architectures as it 

needs to be computed iteratively which leads to so-called “pipeline bubbles”.[338] Therefore, 

this function was also tabulated on the aforementioned grid and expanded as an eight-term 

Taylor series, which exp( )x−  with a precision of 16 digits on the interval [0, 46]x ∈ .[303,320] 

For 46x > , 0 ( )F x  is computed from its asymptotic form for large values of x, 1
2  xπ  (see 

Eq. 3.1.21). All other ( )MF x  values result from the “upward” recursion formula, Eq. 3.1.22, 

which was found stable at these x values for up to 28M = . In this latter case the exponential 
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function is obtained from a standard function call. The calculation of the square roots in Eqs. 

3.1.9 and 3.1.21 are expensive as well.[338] Although not addressed in the context of the 

present thesis, this issue could be resolved by either low-level instruction calls or the fast 

inverse square root technique.[338,367] 

 

 

Figure 3.1.2: Individual steps of the MD+HRR algorithm as implemented in the integral 

package ERI4C. The loop structures comprise iterations over κ2 (orange), κ4 (red), and κ0 

(blue) quantities as well as over fully contracted ERIs (light blue). 

 

The newly developed integral package ERI4C combines the MD approach with horizontal 

recursion relations to expand the Boys function values 
2

( )MF γ PQ  to the final ERIs. This 

implementation employs a matrix formulation of the MD transfer relations in Eqs. 3.1.34 to 

obtain the intermediate [ | ]e0 f0  integrals. Figure 3.1.2 illustrates the various algorithmic steps 

of this implementation. After entering the module various auxiliary quantities are initially 

computed. The most crucial part of this stage is the calculation of the MD transfer matrix 

representations of Eqs. 3.1.34 (step 1 in Figure 3.1.2), whose Cartesian components are 

obtained recursively as 

 1 1
1

1
 ,  ( 1)

2
yx z r r r r

x y z r r r r

pp p p p p p
r re e e e e e eE E E E E E PA E p E

p

− +
+= = + ⋅ + + ⋅p

e0 , 3.1.51 

whereas 0r

r

p

eE =  for 0rp <  or r rp e> .[4] Subsequently the κ4 section is entered, which 

comprises the aforementioned calculation of the Boys function and its derivatives MΓ0  

according to Eqs. 3.1.19 to 3.1.23 (step 2). From the MΓ0  values, integrals over Hermite 

product distributions are obtained as in Eq. 3.1.27 (step 3). Like most recursion relations in 

the context of ERI algorithms, Eq. 3.1.27 exhibits a certain degree of freedom with regard to 

the order in which the intermediates are generated.[368] One may, for example, aim to generate 

first the 0
+Γp q  quantities with the largest +p q  values and then successively complete the 

Hermite integrals for smaller angular momenta. An alternative approach consists in a 
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recursion that focusses on evenly lowering the value of M. Both approaches were found to 

comprise the same number of operations. 

The effort required for the Hermite-to-Cartesian transformation step is reduced if only one 

of the bra or ket side is transformed first (step 4). Furthermore, a three-step transformation  
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e0 q 0 q 0 q 0 q

0 q
 3.1.52 

allows for further computational savings.[4] As none of the subsequent steps involves 

primitive quantities of the bra-side,26 the first half-contraction step can be carried out on the 

[ | ]e0 q  integrals. The half-contracted intermediates are converted into the ( | ]ij q  integrals 

over bra-side SGCTOs by means of the HRR and a subsequent transformation to spherical 

harmonics (steps 5 and 6). Both steps are carried out as matrix multiplications to reduce the 

memory access.[334,349] Likewise, the ket-side is transformed by the sequence of Hermite 

transformation, second half-contraction, HRR, and spherical harmonics transformation (steps 

7‒9), yielding the final ( | )IJ KL  SHCGTO-ERI batch. 

Compared to the aforementioned early reference implementation the ERI4C modules were 

found be about 5‒12 times more efficient in the case of small to moderately large test 

systems. However, a careful cache-optimization could not be carried out in the context of this 

thesis. Therefore, the ERI4C implementation was still found to be slower by a factor of 6‒15 

than the highly cache-efficient Gaussian-quadrature based ERD library of Flocke and 

Lotrich.[349,369] Because of this, the ERD library was employed to compute the ( | )IJ KL  

batches in most production calculations of this thesis. 

 

 

3.1.2. Integral Processing and Symmetry Treatment 

After being computed by means of one of the algorithms presented in Section 3.1.1, the ERI 

batches are ready for their subsequent processing. For the present thesis only the contraction 

with the density matrix to Coulomb and EXX matrices (Eqs. 2.1.10) is of interest. This 

algorithmic step will be discussed in the following along with the symmetry treatment of 

ERIs due to permutation and point group symmetries of the g tensor of electron-repulsion 

integrals, { } ( | )ijkl ij kl=g . 

Original SCF implementations of the HF method27 computed and stored the required 

elements of the g tensor before the actual SCF iteration. These integrals were then retrieved 

during every SCF iteration cycle from either computer memory or hard disk storage. 

However, the number of ERIs and thus the required amount of data to be stored can become 

                                                
26 The same holds for the ket-side if [ | ]p f0  is generated first.  
27 Most of the techniques discussed in the following were developed long before the first hybrid functionals.  
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tremendously large.28 In response, the direct SCF concept emerged as soon as HF 

calculations with more than a dozen atoms became feasible.[370] Thereby, the ERI batches are 

recalculated during every assembly step and immediately contracted with the corresponding 

blocks of the density matrix.[370] The direct SCF approach avoids the exorbitant usage of 

memory but in a straightforward implementation increases the computational effort 

proportional to the number of SCF iteration cycles as the calculation of ERIs represents by 

far the most expensive computational step. Thus, several measures need to be taken to reduce 

the computational labor of self-consistent HF and hybrid DFT calculations, which are 

discussed in this and the next Section. 

First, the contraction of ERIs to EXX and Coulomb matrix elements can be exploited to 

improve the efficiency of the ERI calculation itself. Examples are the J-engine method which 

performs Coulomb-type density matrix contractions of ERI calculation intermediates,[371] 

Pople‒Hehre-type rotations on Coulomb and exchange matrix elements,[328] and the storage 

of coordinate independent ERI intermediates.[372,373] 

An almost trivial way to reduce the computational effort of the calculation of ERIs is to 

exploit the intrinsic permutation symmetry of the g-tensor, 

 ( | ) ( | ) ( | ) ( | ) ( | ) ( | ) ( | ) ( | )ij kl ij lk ji kl ji lk kl ij kl ji lk ij lk ji= = = = = = =  . 3.1.53 

This reduces the number of required ERIs to pairs of pairs, 4 3 28 4 3 8 4N N N N+ + + . 

Thus, the computational effort to compute the EXX and Coulomb matrix elements is reduced 

approximatively by a factor of eight.  

A similar reduction is achieved for ERI batches, hence for quadruples of atomic orbital 

(AO) shell indices, whereas a permutation symmetry-unique batch ( | )IJ KL  may be 

determined by the conditions ,  ,I J K L≥ ≥  and ( 1) 2 ( 1) 2I N J K N L− + ≥ − + . In view to 

restrictions due to the parallelization scheme employed in PARAGAUSS
[70,374] for the ERI 

calculation (Section 3.1.5), the intrinsic ERI symmetries were first considered by means of a 

single quadruple index batchi  which was mapped onto the four shell indices. While this 

approach looks conceptually simple, the function MAP4 which maps the batch index batchi  

back to the individual shell indices was found rather complicated. A later code restructuring 

allowed an explicit fourfold loop over shell indices (or ranges thereof in the case of a parallel 

run, see Section 3.1.5). This implementation avoids several disadvantages of the former 

approach, like possible data overflows of batchi  and the comparatively expensive mapping 

function. Scheme 3.1.2 shows both variants on the example of a serial run; see Section 3.1.5 

for a discussion of the corresponding parallelized implementation. 

 

 

                                                
28 Taking as example the largest calculations that were performed as part of this thesis, systems of about 9500 

CGTOs were computed which would, unless any measures like symmetry or screening treatment are taken, 
require about 60000 TB of memory or disk space for storing the entire g-tensor, { } ( | )ijkl ij kl=g .  
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Scheme 3.1.2: Loop structures for a serial run over quadruples of AO shells in terms of a) a 

batch variable and b) an explicit fourfold loop over shell indices. 

 

If the permutation symmetries of the g tensor in Eq. 3.1.53 are ignored, only a single 

contribution JL
IKK  to the exchange matrix block IKK  emerges from the contraction of the 

batch ( | )IJ KL  with the density matrix block JLP . Likewise, a single contribution KL
IJJ  to IJJ  

is obtained in this case. However, as soon as permutation symmetry is exploited, the omitted 

ERI batches need be compensated by a correspondingly adapted contraction scheme. In the 

general case, four exchange and two Coulomb contributions result from a permutation 

symmetry-unique batch: 

 ( | ),  ,  ,  ,  2 ,  2 ,  2 ,  2JL IL JK IK
JL IL JK IK IK JK IL JLIJ KL →P P P P K K K K  3.1.54 

 ( | ),  ,  4 ,  4KL IJ
KL IJ IJ KLIJ KL →P P J J  3.1.55 

Furthermore, several special cases need to be considered for the K and J matrix contributions 

if two or more shell indices are equal: 

 ( | ),  ,  2 ,  2IK IL
IK IL IL IKII KL →P P K K  3.1.56a 

 ( | ),  ,  2 ,  2IK JK
IK JK JK IKIJ KK →P P K K  3.1.56b 

 ( | ),  ,  2 ,  2IK JK
IK JK JK IKIJ KK →P P K K  3.1.56c 

 ( | ),  ,  ,  ,  2 ,  II IJ JJ
II IJ JJ JJ JI IIIJ IJ →P P P K K K  3.1.56d 

 ( | ),  2 IK
IK IKII KK →P K  3.1.56e 

 ( | ),  II
II IIII II →P K  3.1.56f 

 ( | ),  ,  2 ,  2KL II
KL II II KLII KL →P P J J  3.1.57a 

 ( | ),  ,  2 ,  2KK IJ
KK IJ IJ KKIJ KK →P P J J  3.1.57b 

 ( | ),  ,  ,  II KK
II KK KK IIII KK →P P J J  3.1.57c 

 ( | ),  4 IJ
IJ IJIJ IJ →P J  3.1.57d 

 ( | ),  II
II IIII II →P J  3.1.57e 
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Note, that the prefactors in Eqs. 3.1.54 ‒ 3.1.57 account for the (formal) coupling with 

transposed density matrix blocks and/or the coupling to transposed matrix blocks. In the case 

of the contributions to K, matrix blocks JKP  and IL
JKK  appear with J K< . In the 

PARAGAUSS
[70] implementation of the exact-exchange and Coulomb matrix formation, the 

atomic orbital basis representations of the matrices P, K, and J are stored only as lower 

triangular matrices. In consequence, some of the matrix blocks of P and K need to be 

transposed before the contraction or the addition to the full matrix K, respectively. 

Aside from the permutation symmetries of the g-tensor, the system under study may also 

exhibit spatial point group symmetries. If G denotes the order of a given point group, G  

operations R̂  can be identified which map various symmetry-equivalent nuclear centers onto 

each other.[375,376] Likewise, the shell elements 1( , , )nϕ ϕ…  centered on a nuclear center are 

generally mapped onto linear combinations 1( , , )nϕ ϕɶ ɶ…  of shell members located at other, 

symmetry-equivalent centers.[375,376] This allows for the definition of an N N×  matrix 

representation R of the point group operations  
ˆ

i iRϕ ϕ= ɶ  in terms of the vector representations 

ib  of the shell elements; i i=b b Rɶ .[375,376] The density matrix29 P and the Fock matrix f are 

both representations of totally symmetric quantities and, therefore, are invariant under the 

following transformations[375,376] 

 †=P RPR , 3.1.58 
 †  =f R f R . 3.1.59 

Like the shell elements themselves the pairs of shell elements, hence matrix blocks IJM , are 

also mapped onto linear combinations of shell pair elements. The resulting linear 

combinations are centered at the corresponding symmetry-equivalent pairs of nuclear 

positions.[377] Similar relations hold for quadruples of shell elements, thus for ERI batches 

( | )IJ KL .[377] One can now define IJG  as the number of different matrix shell pair matrix 

blocks 	IJ
M  onto which IJM  can be mapped by the collectivity of point group elements.[377] 

Likewise, IJKLG  is defined for quadruples of shell indices, hence batches.[377] Note, that 

IJG G≤  and IJKLG G≤  always hold. Furthermore, a so-called skeleton matrix[377] M  is 

defined from the original matrix M by setting 

 IJ IJ IJG=M M  3.1.60 

for a single block (e.g. with the lowest pair index IJ) out of the IJG  symmetry-equivalent 

matrix blocks and 	IJ
=M 0  elsewhere.[377] A matrix can be symmetrized according to 

 † †
sym

1
( )

2G
= +∑

R

M R M M R , 3.1.61 

which corresponds to a transformation from an atom centered GTO basis into a basis of 

symmetry adapted linear combinations of atomic orbitals.[375,376] For a given shell pair, Eq. 

3.1.61 represents an average over all image pairs 
IJ  onto which IJ is mapped.[375,376] As the 

                                                
29 Note that the Hermitian adjoint in Eq. 3.1.58 appears on the right hand side of P because the density matrix 

is a projector. 
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Fock matrix is Hermitian and totally symmetric, applying Eq. 3.1.61 to the skeleton Fock 

matrix f  yields the original matrix f back, whereas the nonzero blocks IJf  are mapped 

exactly IJG G  times onto each of their corresponding image shell pair blocks 	IJf .[377] This 

implies that the symmetry-unique blocks in f  suffice to obtain the full Fock matrix by 

symmetrization.[377-384] Likewise, the unique contributions JL
IKK , KL

IJJ , etc. can be shown to 

yield the totally symmetric contributions after application of Eq. 3.1.61.[384] The above 

argumentation justifies the “petit list” approach,[377] which allows one to compute and process 

only one out of the IJKLG  symmetry-equivalent ERI batches.[378-384] 

This approach was implemented as symmetry treatment for the EXX matrix formation in 

ParaGauss.[70] Thereby, a list is generated in preparation for the direct SCF part. This list 

contains the shell indices that are obtained upon application of the individual point group 

operations to each shell. Within the loop over ERI batches, the IJKLG  different indices of 

symmetry-equivalent batches are computed from the aforementioned list that contains the 

mappings of the shell indices for every point group element. Whenever such an index of a 

symmetry-equivalent batch is found to be lower than the original batch index, the 

computation of the corresponding ERIs can be omitted.[377] Otherwise, the number of 

occurrences IJKLN  of the original batch index within the list of symmetry-equivalent indices 

is determined. From IJKLN  the symmetry weight IJKLG  is easily determined as 

IJKL IJKLG G N= .[375,376] After all symmetry-unique batches are processed, the resulting 

skeleton matrices are symmetrized by existing PARAGAUSS procedures.[70] 

The implemented symmetry treatment of the EXX term was found to provide significant 

efficiency gains already in the case of small systems. The speed-up values were always 

determined to be very close to the order G of the point group employed for the symmetry 

constraints; e.g., ~47.9 in the case of an hO  symmetric M13 cluster (see Section 4.3) where 

48G = . 
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3.1.3. Integral Screening 

The treatment of spatial and index symmetries can significantly reduce the number of 

operations involved in the calculation of EXX and Coulomb matrix elements.30 However, 

these techniques do not affect the 4( )NO  scaling of the computational requirements with 

respect to the size N of the basis set. Thus, several measures shall be presented in the 

following, which allow computing the numerically significant ERI batches only. 

Furthermore, corresponding implementations completed as part of this thesis are explained in 

detail. 

The Gaussian products as in Eq. 3.1.7 include overlap factors which are exponentially 

decreasing in terms of the squared distance 2| |−B A . In consequence, such overlap factors 

will essentially vanish if the individual centers A and B are distant enough. The actual 

distance | |−B A  at which a product pair becomes numerically insignificant depends on the 

angular momentum of the basis functions and especially on their radial extent, hence the 

values of the exponents of the PGTOs involved. In any case, a specific orbital of a localized 

atomic orbitals (AO) basis set can form a numerically significant overlap only with a limited 

number of other orbitals located within a finite region around it. Therefore, in the limit of 

very large systems, the number of significant product pairs only scales as ( )NO .[385] 

Consequently, the tensor { } ( | )ijkl ij kl=g  is sparse and the number of ERIs of non-negligible 

numerical values approaches 2( )NO  in that limit.[385] 

While the computation of individual ERI batches remains demanding, significant 

efficiency gains are possible if nearly vanishing batches can be identified as such and omitted 

when their values are found below some specific threshold. Of course the identification of the 

nearly vanishing batches has to be carried out by different means than the calculation of the 

ERI themselves. Thus, integral estimates are employed for this task, which should provide a 

sharp upper bound for the magnitude of the actual ERI.[385] In the case of ERIs over s-type 

GTOs, the Boys function 
2

0 ( ) 1F γ ≤PQ  can be estimated as unity so that 

     ( ) ( )2 2
exp ( ) exp ( )   ,abcdES Z ab p cd q= ⋅ − −AB CD   3.1.62 

represents such an upper bound for the absolute value of the integral.[370] This qualifies 

abcdES  as a valid integral estimate for the integral screening approach discussed above.[370] 

On the other hand, Eq. 3.1.62 has several disadvantages as it is non-separable and thus needs 

to be computed inside a 4( )NO  loop.[4,382] Furthermore, abcdES  is formulated in terms of 

PGTO and is not well suited for CGTOs.[4,382] An additional disadvantage consists in the fact 

that Eq. 3.1.62 is not easily generalized to ERIs over GTOs with higher angular 

momenta.[4,382] 

                                                
30 The reduction can amount up to a factor of 120 8 960× =  for large systems with icosahedral symmetry. 
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A better integral estimate can be obtained when considering that each ERI ( | )ij kl  also 

qualifies as an inner product for the pair distributions ij and kl with the metric 

1 | |′−r r .[35,382,386,387] Thus, the Schwarz inequality 

 ( | ) ( | ) ( | ) ij klij kl ij ij kl kl ES ES≤ ⋅ = ⋅  3.1.63 

provides an upper integral bound.[35,382,386,387] The Schwarz estimate is not only free of the 

aforementioned disadvantages of Eq. 3.1.62 but also was shown to provide a considerably 

tighter upper bound for ERIs.[382] 

The integral estimates provided by the Schwarz inequality are generally useful in integral 

screening approaches. However, the contributions of the ERIs to the EXX and Coulomb 

matrices, Eqs. 3.1.54 ‒ 3.1.57, are far more relevant in the context of HF and hybrid DFT 

calculations. Thus, the computation of a batch can be omitted if all of its contributions to K 

and J are negligible. Also the upper bound of such contributions is estimated with the help of 

the Schwarz inequality as 

 { } { }max , , , 2 max , , ,jl il jk ik
jk jl ij kl jl il jk ikik ilK K K K ES ES P P P P≤ ⋅ ⋅ , 3.1.64 

 { } { }max , 4 max ,kl ij
ij ij kl lk ijklJ J ES ES P P≤ ⋅ ⋅  3.1.65 

in the case of exchange and Coulomb matrices, respectively.[382]  

Apart from providing potentially lower estimates and a better error control for the 

calculation of the matrices K and J, this latter screening approach is also essential for 

reducing the computational requirements of the exchange term below 2( )NO .[382] Indeed, in 

systems with a non-vanishing band gap, the density matrix can be shown to become 

sparse.[371,388-392] In such systems the sparse density matrix leads to rather localized exchange 

interactions.[371,388-392] The density matrix P couples the ( )NO  scaling bra and ket sides of the 

ERIs to yield exchange contributions.[385,393,394] Thus, the number of numerically significant 

exchange contributions also scales with ( )NO .[385,393,394]  
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Scheme 3.1.3: Loop structure over ERI batches ( | )IJ KL  showing the relations that lead to a 

number of exchange contributions that scales linearly with the number of basis functions N. 

Schematics adapted from Ref. [385]. 
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Scheme 3.1.3 illustrates the relations between the individual, non-negligible shell pairs 

and between non-negligible exchange contribution from individual pairs of bra and ket-

pairs.[385] Provided that the non-vanishing shell pairs are identified before entering the loop 

over ERI batches, the EXX matrix and energy can be obtained with a computational effort 

that scales linearly with the number of basis functions.[385,393,394] In practice, the density 

matrix often turns out to be only moderately localized due to the basis set superposition error 

(BSSE).[393,395] Thus, a true linear scaling is often obtained only for very large models of very 

sparse materials.[393] 

The 2( )NO  scaling of the number of Coulomb contributions persists though, even when 

one employs the estimate in Eq. 3.1.65. On the other hand, the number of contributions that 

correspond to non-classical Coulomb interactions was shown to scale only as ( )NO ;[385] only 

these contributions require four-center integrals. The remaining classical Coulomb 

interactions between well separated charge distributions can be approximated by other 

strategies and thereby be computed with a linear scaling computational effort.[4,40,385,390,396] 

The density-matrix-weighted Schwarz screening can be made more efficient by the so-

called ∆SCF approach.[382] Instead of reconstructing the full EXX and Coulomb matrices 

during every SCF iteration step, the ∆SCF method works in terms of incremental 

matrices.[382] To this end, a difference density matrix 

 ( ) ( ) ( 1)t t t−∆ = −P P P  3.1.66 

is formed in each iteration step t. The matrix ( )t∆P  is subsequently employed for the 

screening, Eqs. 3.1.64 and/or 3.1.65, as well as for the contraction with the ERI batch. This 

treatment yields the incremental matrices ( )t∆K  and ( )t∆J . From these incremental matrices 

the corresponding full matrices are then obtained according to 

 ( ) ( 1) ( ) ( ) ( 1) ( )    and    .t t t t t t− −= + ∆ = + ∆K K K J J J  3.1.67 

The general idea behind the ∆SCF method is that ( )t∆P  is very small if the SCF iteration 

approaches convergence, so that most incremental contributions are small enough to be 

neglected.  

The density weighted Schwarz screening turns out to provide a relatively sharp upper 

estimate for ERIs, which in some cases even allows to store a part of the ERIs, i.e. of the 

computationally most demanding integrals (semi-direct SCF).[382] However, its effectiveness 

decreases somewhat when very sharp and diffuse GTOs are involved in the same ERI as well 

as in cases where the distance between the product centers becomes decisive for 

screening.[382,397] More elaborate alternatives exist that show a behavior regarding these issues 

that improves over the Schwarz screening method.[385,393,397-399] Such variants can provide an 

even sharper upper integral estimate than the Schwarz screening approach.[385,393,397-399] 

Within the PARAGAUSS implementation of the exact-exchange term completed as part of 

this thesis, screening strategies are applied in a three-fold manner for both ERI libraries, 

ERI4C and ERD. During the first SCF iteration the diagonal batches, ( | )IJ IJ , are computed 
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and processed separately. From these batches the subshell- and batch-wise estimates, ijEC  

and IJES  are computed as 

 { }
,

max ( | )
i j

ij
m m

EC ij ij=   and 3.1.68 

 { } { }max ( | ) maxIJ ij
ij

ES IJ IJ EC= = , 3.1.69 

where the maximum in Eq. 3.1.68 is to be understood over CGTOs of the same radial 

components, but with different magnetic quantum numbers. Both, the IJES  values and the 

matrix ijEC  are stored for later use along with the corresponding shell- and subshell-wise 

maxima of the density matrix which are obtained at this stage in a similar fashion. All 

estimates are then employed for the density-matrix-weighted Schwarz screening of the 

Coulomb or the exchange contributions from correspondingly adapted variants of Eqs. 3.1.64 

and/or 3.1.65, depending on whether K and/or J are needed. 

A batch-wise screening is carried out first, as it involves just a single estimate, but would 

allow one to omit most batches in the limit of large systems. Whenever a quadruple of shells 

passes the batch-wise screening, it undergoes the petit-list symmetry treatment described in 

Section 3.1.2. In the case of symmetric systems most non-negligible batches can also be 

excluded in this way from the ERI calculation, as long as they are symmetry-equivalent to 

another batch that was computed earlier (Section 3.1.2). Only the first of each group of non-

negligible, symmetry-equivalent batches is then analyzed for its non-vanishing contractions. 

Whenever an ERI batch fulfills these conditions, Eqs. 3.1.64 and/or 3.1.65 are applied again 

in terms of the aforementioned subshell maxima. Only the primitive exponents and 

contraction coefficients { }iic ′  associated with subshells that lead to non-vanishing 

contributions are handed over to the subroutines that calculate the ERIs. Finally, a screening 

of the primitive pairs is carried out.[349] In contrast to the other screening stages, this selection 

has to be carried out inside the ERI calculation subroutines. This approach was initially 

present in the ERD library[349] but was implemented in the ERI4C library later as well. 

During the screening of primitives the most extended bra- and ket-pairs are first identified by 

the smallest exponent pairs min min minp a b= +  and min min minq c d= + .[349] Subsequently, the 

minimum distance minPQ  between the two line segments AB  and CD  is determined. These 

quantities provide an upper bound for any pair of primitives according to 

    ( ) ( ) ( )
min min

2 2 2
min min min 0 min min min

{ | } { | }

    exp ( ) exp ( ) ( )  ,

ab cd ab c d

Z ab p c d q F pq p q PQ

≤

≤ ⋅ − − +AB CD
 3.1.70 

for the pair ab (and analogously for cd). Eq. 3.1.70 also represents an upper bound for ERIs 

over PGTOs with higher angular momenta.[349] The indices of the non-negligible pairs are 

stored in a list and the κ4 steps are carried out for pairs of significant pairs of primitives only. 

The hybrid DFT calculations carried out as part of this thesis were mostly performed on 

larger transition metal clusters (see Sections 4.3 and 4.4). Compared to typical hybrid DFT 
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applications on systems that mostly consist of main group atoms, screening techniques are 

less beneficial for transition metal clusters due to their compact structures and non-sparse 

density matrices (see above). Taking the hO  symmetric Pt55 cluster (see Section 4.3) as 

example, the density-matrix-weighted Schwarz screening approach allows one to omit about 

46% of the symmetry-unique integral batches when a rather conservative screening threshold 

of 1010−  au. is employed. This ratio increases to about 59% for the analogous calculation of 

the Pt79 cluster. The second screening stage at the level of contractions can significantly 

reduce the number of quartets of primitives and/or CGTOs that need to be computed by the 

ERI module. In the case of the aforementioned examples this approach was observed to 

provide further efficiency gains by factors of about 1.5‒2.5. This speedup is considerably 

higher when all-electron basis sets are employed. As most of the significant pairs of PGTOs 

are already identified at this stage, the screening of pairs of primitives provides only minor 

efficiency gains by factors of ~1.2‒1.4 with a screening threshold of 1010−  au. 

In the context of this thesis also the aforementioned ∆SCF method, Eqs. 3.1.66 and 3.1.67, 

was implemented in PARAGAUSS.[70] However, this approach was found to provide only 

surprisingly small efficiency gains in the calculations which were carried out as part of this 

thesis. This finding led to the conclusion that specialized SCF convergence acceleration 

approaches are essential for the ∆SCF method to take effect. Indeed, such methods have been 

proposed.[382] These convergence acceleration methods specifically aim to minimize the 

contributions ( )t∆K  and/or ( )t∆J  in late SCF iteration cycles.[382] 

 

 

3.1.4. Gradients of the Exact-Exchange Term 

The ERI derivatives with respect to the nuclear coordinates are required for computing 

molecular forces and vibrational frequencies. The calculation and treatment of ERI 

derivatives as implemented in PARAGAUSS
[70]

 is discussed in the following. 

The expressions of ERI derivatives are closely connected to the relations emerging from 

the parameter differentiation technique used for the calculation of the actual ERIs. Although a 

direct differentiation is possible,[323,324] the nuclear derivative of a single PGTO 

   ( ) ( ) ( )2 1 1 2( ) exp ( ) 2 ( ) ( ) exp ( )r r ri i i
r r r r r r

r

r A a r A a r A i r A a r A
A

+ −∂
− − − = − − − − −

∂
 3.1.71 

provides an often advantageous alternative in terms of uncontracted Cartesian GTOs[327] 

 [ | ] = [ , | ] [ , | ]r r r

r

2a i
A

∂
+ − −

∂
ij kl i 1 j kl i 1 j kl . 3.1.72 

Depending on the ERI class at hand, Eq. 3.1.72 can be reformulated in terms of pre-

contracted intermediates, and/or combined with the MD transformation, the HRR and the OS 

or HGP equations (see Section 3.1.1).[327] The HRR+MD implementation in the ERI4C 
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library described in Section 3.1.1 was extended by routines for ERI derivatives in terms of a 

pre-contracted variant of Eq. 3.1.72. Similar variants of Eq. 3.1.72 exist for the two-

dimensional intermediates ( , )r r r r r ti j k l uℑ  as they appear in Gauss-quadrature based ERI 

algorithms (see Section 3.1.1, Eq. 3.1.49), which are employed in the ERD library.[349,369] As 

in the case of ERI batches, both of these alternative implementations were designed to deliver 

also the ERI derivatives in a batch-wise fashion. In the implementation carried out as part of 

this thesis the batch-wise calculation of ERI derivatives allowed one to process the results 

from both libraries in a unified way. 

Both implementations provide only a single batch of integral derivatives at a time; for 

example, the entire batch of ( | ) rij kl A∂ ∂  derivatives. This approach does not only reduce the 

amount of intermediate data, but also enables one to omit the calculation of several of the 

generally twelve distinct derivatives of each ERI. Indeed, the translational invariance of 

ERIs, Eq. 3.1.36, makes it possible to compute only nine of the twelve derivatives of each 

ERI and to express the remaining ones as 

 
( | ) ( | ) ( | ) ( | )

r r r r

ij kl ij kl ij kl ij kl

D C B A

∂ ∂ ∂ ∂
= − − −

∂ ∂ ∂ ∂
. 3.1.73 

To reduce the amount of data involved, Eq. 3.1.73 can be applied also at the level of EXX 

and Coulomb matrix contributions.[400] This approach was implemented in PARAGAUSS in 

connection with both ERI libraries.[70] Although not employed in the present implementation, 

even more reductions would be possible when one also exploits the rotational invariance 

properties of ERIs.[400-402] 

ERI gradients are directly contracted to the corresponding EXX and Coulomb gradient 

contributions 

 , ,
EXX EXX( | ) ,  ,   4( ) ,  4( )IK JL IL JK

r IK JL IL JK r rIJ KL A E A E A∂ ∂ → ∂ ∂ ∂ ∂P P P P  3.1.74 

 ,
Coul( | ) ,   8( )IJ KL

r IJ KL rIJ KL A E A∂ ∂ → ∂ ∂P P  3.1.75 

with correspondingly adapted special cases of Eqs. 3.1.56 ‒ 3.1.57 for two or more equal 

shell indices (see Section 3.1.2). The estimates of gradient contributions were implemented 

by a correspondingly adapted variant of density-matrix-weighted Schwarz screening (see 

Section 3.1.3). In the case of first-order ERI derivatives the Schwarz screening method 

requires the calculation of additional estimate 

 ( )max max ( | ) ,  max ( | )ij r r
r r

EG ij ij A ij ij B= ∂ ∂ ∂ ∂  3.1.76 

which is then used in the following upper bounds for EXX and Coulomb contributions 

 { } { } { },
EXXmax ( ) , 4 max , max , , ,ij kl

r ij kl ij kl jl il jk ikE A ES EG EG ES P P P P∂ ∂ ≤ ⋅ ⋅ ⋅… , 3.1.77 

 { } { } { },
Coulmax ( ) , 8 max , max ,ij kl

r ij kl ij kl ij klE A ES EG EG ES P P∂ ∂ ≤ ⋅ ⋅ ⋅… , 3.1.78 

respectively. Thereby, an analogous three-fold screening strategy as described in Section 

3.1.3 for the ERIs was employed for ERI gradients from both libraries. Also the treatment of 
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point group symmetries was implemented analogously to that of ERI batches (see Section 

3.1.2). Furthermore, the fact that the molecular forces are totally symmetric allows one to 

further reduce the number of ERI derivatives that need to be computed. This was exploited 

within the PARAGAUSS implementation in terms of a list of the nuclear gradients that can 

contribute to the totally symmetric gradients. Within the loop over shell quadruples the calls 

to the ERD or ERI4C subroutines were thereby restricted to only those derivatives contained 

in the list. The symmetrization of the final gradients was achieved by using existing 

PARAGAUSS subroutines.[70] 

 

 

3.1.5. Parallelization and Run Time Aspects 

As the computationally most demanding step, the computation of ERIs requires a careful 

parallelization to ensure efficient hybrid DFT calculations on modern, highly parallel 

computer platforms.[403] In the following the parallelization approach implemented in 

PARAGAUSS
[70] for the calculation of the exact-exchange matrix will be presented. The 

parallel efficiency of this implementation is then discussed on the example of a test case. 

Finally the serial and parallel efficiency of the PARAGAUSS implementation is compared with 

that of another well established quantum chemistry program, namely the NWChem code.[404] 

Within the exact-exchange implementation (EXX) of ParaGauss,[70] a dynamic load 

balancing library[374,405] (DLB) is employed for an efficient parallelization. This library is 

based on the message passing interface (MPI) communication library (version 2.2).[406] Like 

most parallelization approaches, DLB subdivides the workload of a specific algorithmic step, 

i.e. the computation of the EXX matrix, into individual larger independent tasks.[374,405] These 

tasks are initially assigned to the CPUW  cores (workers) on which the program is 

executed.[374,405] The central aspect of DLB consist in eliminating the idle time (i.e. the 

parallel overhead) that results if one of the workers approaches the end of the list of tasks 

initially assigned to it.[374,405] In such a case, a worker can adopt some of the unprocessed 

tasks at the end of the task list of another worker (work stealing) and thereby further 

contribute to the completion of the algorithmic step at hand.[405] After the completion of all 

tasks has been detected by a special mechanism, the DLB run is concluded and the 

algorithmic step is finished up by  collecting the results of the individual workers.[405]  

When calculating the EXX matrix, the number of FLOPs and thus the runtime required to 

calculate individual ERI batches can vary over several orders of magnitude. As such, the 

parallelization scheme employed for calculation of the EXX matrix has to deal with highly 

inhomogeneous tasks. To achieve an efficient parallelization with the DLB approach three 

important prerequisites have to be met. (i) The initial distribution of the workload must be as 

evenly as possible to reduce the need for load balancing. (ii) A number of comparably small 
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tasks should be available for work stealing at the end of each workers task list. (iii) The 

overall number of DLB tasks should not be excessively large to reduce the overhead of 

assignment and distribution by the DLB library. During the development of the exact-

exchange implementation in PARAGAUSS
[70] the definition of DLB tasks and their assignment 

has been continuously refined several times to fulfill the above requirements. Only the latest 

approach shall be presented in the following. 

 

 

Figure 3.1.3: Staged initial assignment of ERI batches grouped in elemental chunks ECi  

which in turn comprise task chunks of varying size. The task chunks form the individual DLB 

tasks assigned to the workers. 

 

During an initial preparation step the individual atomic shells are sorted according to their 

angular momenta. This sorting starts from the AOs with the highest ℓ -values. The ERIs over 

these AOs can safely be expected to be the most time consuming (see Section 3.1.2). The 

resulting shell indices define the sequence of shell quadruples ( | )IJ KL  as I J≥ , K L≥ , 

and ( 1) 2 ( 1) 2I N J K N L− + ≥ − +  as described in Section 3.1.2. In the following, the 

(formal) list of ERI batches is subdivided equally into “elemental chunks”, ECi  (see Figure 

3.1.3). Each elemental chunk contains a contiguous set of batches (within the loop structure 

depicted in Scheme 3.1.2b). The elemental chunks are distributed one-by-one, i.e. in a round 

robin fashion to the individual DLB workers to ensure an even initial distribution of the 

computational workload. Furthermore, the elementary chunks assigned to each worker are 

then combined into larger groups which correspond to the actual DLB tasks (Figure 3.1.3). 

This assignment primarily aims at reducing the overall number of tasks, thus the overhead of 

the DLB library. On the other hand, the smallest DLB tasks have to be available at the end of 

each workers task list for the eventual work stealing to be sufficiently fine-grained. Both of 
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these requirements can be fulfilled by a suitable definition of the DLB tasks, hence by 

varying the number of elemental chunks in each task. The largest DLB tasks which comprise 

the most elemental chunks are defined at the beginning of the task list of each worker. This 

initial stage of the largest DLB tasks is then followed by additional stages of DLB tasks, 

which are successively smaller, hence comprise fewer elemental chunks. The last stage 

includes only DLB tasks with a single elemental chunk. The number of elemental chunks per 

DLB task is decreased from stage to stage by the fixed factor stagr . All these assignments are 

depicted by Figure 3.1.3. For the computing platforms employed in the context of this thesis 

(see below), three stages, each with 160 DLB tasks per worker, and stag 15r = , were found to 

provide a good trade-off between the parallel overhead and the overhead of the DLB library 

itself.31 

The run time Wt  on a specific number CPUW  of workers relative to the execution time REFt  

on a reference number REFW  of workers (whereas REF CPUW W≤ ) allows for the definition of 

performance metrics like the parallel speedup CPU( )s W  and the parallel efficiency CPU( )eff W . 

These two performance metrics are defined as CPU REF( ) Ws W t t=  and  

 REF REF CPU
CPU

CPU CPU REF

( )
( )

W

W t s W
eff W

W t W W

⋅
= =

⋅
, 3.1.79 

respectively. While REF 1W =  allows to evaluate the total parallelization overhead, serial runs 

can often not be carried out for large test systems with a reasonable effort. Thus, parallel runs 

have to be taken as reference. 

This is the case for TPSSh hybrid DFT calculations of the cluster Pt140(CO)8 (see Section 

4.4), which were carried out on the computing platform SuperMUC of the Leibniz 

Rechenzentrum, München.32 With 6096 CGTO basis functions this system represents a large 

enough computational problem for REF 128W =  to be a reasonable reference. The individual 

timings Wt  for the total SCF cycle and the computation of the EXX term where obtained as 

averages over the first 10 SCF cycles at the beginning of the SCF process. For REF 128W =  the 

average run time of a single SCF cycle amounts to about 665 seconds on the SuperMUC 

platform. 

Figure 3.1.4 depicts the parallel speedup and efficiency for up to 2048 workers.33 For CPU 

counts higher than 512 the timings for the total SCF cycle and the EXX assembly step start to 

exhibit small, but notable deviations from the ideal speedup. Overall, the total SCF cycle 

exhibits a slightly less ideal scaling than the EXX assembly step, as it comprises other, 

computationally less demanding steps which cannot be parallelized as efficiently. The 

                                                
31 With 1, 15, and 215  elemental chunks in the DLB tasks of the third, second, and first stage, respectively, and 

160 DLB tasks in each stage, this implies that the entire list of ERI batches is (formally) subdivided into 
2_EC 160 (1 15 15 ) 38560n = ⋅ + + =  elemental chunks per worker. Whenever the elemental chunks exceed 

the number of ERI batches, the number of the DLB tasks in the initial stages is reduced. 
32 SuperMUC (LRZ), Intel Xeon (Sandy Bridge) CPU, Infiniband interconnect. 
33 See Sections 4.1 and 4.4 for the detailed computational parameters. 
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decrease of the parallel speedups is clearly noticeable at 2048 CPUs, although (2048)s  is still 

close to the ideal value for the EXX assembly. The parallel efficiency of the EXX assembly 

decreases by about 3% at 2048 workers while the corresponding value of the total SCF cycle 

differs by about 7% from the ideal scaling behavior. This behavior is most likely related to 

the connectivity of the individual workers. 

 

 

Figure 3.1.4: Parallel efficiency eff  and speedup s  for  CPU 256,W =  512, 1024, and 2048 

workers and REF 128W =  on the example of a TPSSh hybrid DFT calculation of the Pt140(CO)8 

5t cluster (see Section 4.4). 

 

To characterize the efficiency further, the PARAGAUSS exact-exchange implementation is 

compared to that of the NWChem program suite[404] on the example of a PBE0 single point 

calculation on a small Mo-V mixed metal oxide cluster model (Mo4VO19H8) using 6-31G** 

and Stuttgart-Dresden basis sets with the corresponding effective core potentials.[407-409] For 

this example the PARAGAUSS implementation exhibits lower run times than NWChem, which 

partially result from the different numbers of SCF cycles needed to converge the density 

matrix: 39 with PARAGAUSS and 47 with NWChem. To allow for a better comparison, the 

timings obtained with the NWChem have been multiplied by 39/47 to account for this 

difference. Table 3.1.1 provides the total (scaled) run times and the parallel efficiencies 

measured with both programs on 1 to 16 workers of the local Linux cluster.34  

                                                
34 Intel Xeon (Nehalem) CPU, Gigabit connection. 



Exact-Exchange 

75 

 

Table 3.1.1: Comparison of total run time and parallel efficiencies for PARAGAUSS and 

NWChem on the example of a single point electronic structure calculation of a Mo4VO19H8 

mixed metal oxide cluster model with the PBE0 hybrid DFT method. The run times obtained 

with NWChem were corrected by a factor of 39/47 to account for the different convergence 

rates of the SCF processes of both programs. 

CPUW   1 2 4 8 16 

run time (minutes) PARAGAUSS 189 107 54 27 30 

 NWChem 205 107 55 31 27 

parallel efficiency (%) PARAGAUSS 100 88.3 88.0 87.4 39.4 

 NWChem 100 95.7 93.6 81.2 46.8 

 

 

The parallel efficiency obtained with PARAGAUSS is found around 88% for CPU 2 8W = − . 

The reason for this lies probably in the fact that the basis sets are rather small compared to the 

Pt140(CO)8-model discussed above. Because of the small basis set, the EXX assembly 

requires only about 60% of the total execution time (as opposed to 95%>  for the Pt140(CO)8 

example). In consequence the other algorithmic steps of the hybrid DFT calculation can 

significantly reduce the parallel efficiency, which agrees with the comparison of the parallel 

efficiency of the EXX assembly and of a whole single SCF cycle (see above). For runs on 

more than eight workers a sudden drop of the parallel efficiency is observed as the execution 

time is even slightly increased. Compared to that, the NWChem reference exhibits parallel 

efficiencies above 90% for CPU 2 4W = − , which drop below the corresponding value 

measured with PARAGAUSS on eight workers. At CPU 16W =  a similarly dramatic efficiency 

drop is observed with NWChem as with PARAGAUSS. As these drops in the parallel 

efficiency occur with both programs at CPU 8W > , they are most likely not related to the 

implementation itself. Indeed, because of the computer setup used to determine these timings, 

network communication becomes involved in the parallelization at CPU 8W > . This 

significantly slower communication likely causes the sudden performance drops measured 

with both program at this CPU count. 
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3.2. Generalized DFT+U Method 

3.2.1. Projector Generation 

In Section 2.4 the DFT+U term was formulated in terms of occupation numbers of target 

orbitals { }tχ  which correspond to individual KS orbitals, to which the self-interaction 

correction is applied. The DFT+Umol method implemented in PARAGAUSS as part of this 

thesis allows one to apply the self-interaction correction in terms of projectors that consist of 

general linear combinations of atomic orbitals (AO). The generation of such projectors 

represents a crucial part of the DFT+Umol method. Thus, their treatment is discussed in the 

following, while the implementation of the DFT+Umol energy and gradient expressions in 

PARAGAUSS are presented in the two subsequent sections, respectively. 

The projector orbitals are labelled by the index I and either correspond to elements of 

atomic subshells or to molecular orbitals of isolated fragments of the system. In any case the 

DFT+Umol implementation retrieves the projector coefficients { }itv  as converged KS orbital 

coefficients from auxiliary SCF calculations on the isolated fragments or atomic systems. 

While allowing the self-interaction correction to become independent of the employed AO 

basis set, this detail represents a minor difference to the conventional DFT+U correction 

implemented in PARAGAUSS if the DFT+Umol projectors target atomic subshells.[70,281,283-285] 

However, if the MOs targeted by the DFT+U correction are very similar to single atomic 

basis functions, both implementations essentially provide the same results. Furthermore, the 

DFT+Umol implementation exactly reduces to that of the conventional DFT+U term if the 

contraction coefficients of the applied CGTO basis are identical to the converged KS 

eigenvectors of an atomic calculation. 

The occupation matrix elements { }tun σ  represent the main variable of any DFT+U 

correction term. Thus, the reliability of the DFT+U approach depends on the quality of the 

occupation numbers and the DFT+U projectors. The most important aspect of the definition 

and computation of DFT+U projectors is that they remain as close as possible to the MOs 

they target. In consequence the target orbitals { }tχ  must overlap as much as possible with 

these MOs but exhibit essentially no overlap with any other KS orbitals. In consequence, the 

FLL formulations of DFT+U or DFT+Umol provide reasonable self-interaction corrections to 

atomic subshells only if the corrected subshell elements essentially do not interact with any 

other orbitals outside of the same subshell (see Section 2.4). The same holds if the correction 

targets molecular fragment orbitals. 

However, projectors obtained from molecular fragment orbitals are linear combinations of 

AOs, thus exhibit additional degrees of freedom in terms of the coefficient vectors { }itv  

compared to atomic subshell projectors. To ensure the best possible overlap between the 

projector orbitals and the molecular fragment orbitals targeted by them, the former are 

obtained from auxiliary calculations of the molecular fragment at the geometry that the 
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fragment exhibits within the complete system. In the case of a geometry relaxation the 

auxiliary SCF calculation used to generate the DFT+Umol projectors therefore has to be 

repeated at every geometry optimization step. In the context of the present thesis this was 

enabled by conducting the DFT+Umol calculations within the suite PARATOOLS.[405,410] A 

special interface of PARAGAUSS to this suite allowed one to extract the required molecular 

fragment geometries during every step of the geometry optimization and subsequently to 

carry out the required auxiliary calculations on them. 

The molecular fragments on which the target orbitals are located may not be symmetric 

while the total system is. Furthermore, the auxiliary SCF calculation of the isolated molecular 

fragment may also be carried out with symmetry constraints to allow for an easier 

identification of the projector coefficients { }itv . To ensure that the coefficients { }itv  are 

correctly imported before the main SCF iteration, the eigenvectors v are first unsymmetrized 

according to 1−=v vRɶ  (see Section 3.1.2). The resulting vectors vɶ  are then stored in a 

separate file for every group I of target orbitals. 

 

 

3.2.2. DFT+Umol Energy and Potential 

The following section discusses the implementation of the DFT+Umol energy correction 

 { } { }( )U 1
2 Tr TrI I I I

I

E U σ σ σ

σ

= −∑ n n n  3.2.1 

which was established in Section 2.4 (Eq. 2.4.10) in terms of the target orbital occupation 

matrices (Eq. 2.4.16) 

 †
I I I
σ σ=n v SP Sv  . 3.2.2 

Furthermore, the implementation of the corresponding DFT+Umol potential is presented, 

which is required for the self-consistent application of this method.  

The DFT+Umol method requires several preparation steps before commencing the SCF 

iteration. First, the unsymmetrized projector coefficients vɶ  from the auxiliary calculations 

(see Section 3.2.1) are imported from individual files for every group I of target orbitals. 

Subsequently, the vectors vɶ  are mapped onto the unsymmetrized AO basis set of the system. 

In the next step these unsymmetric projectors would have to be transformed into the 

symmetry adapted basis of the system.  However, while Eq. 3.1.61 provides a comparatively 

simple way to transform matrices from the AO basis to the symmetry adapted basis, the 

corresponding transformation of vectors is not as easily achieved with the existing 

PARAGAUSS subroutines. Indeed, this approach would require significant extensions in the 

PARAGAUSS  modules responsible for the computation of Clebsch‒Gordan coefficients. 
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Thus, the DFT+Umol energy term was implemented in a different but equivalent 

formulation. After inserting Eq. 3.2.2 into Eq. 3.2.1 and expanding the traces over matrix 

products, the DFT+Umol energy term writes as 

 U † † †1
2 { } { } { }I I I ji ij I I li ij I I jk kl

I ij ijkl

E U P P Pσ σ σ
σ

 
= − 

 
∑ ∑ ∑Sv v S Sv v S Sv v S . 3.2.3 

The first term in the brackets of Eq. 3.2.3 appears as sum over the diagonal elements of the 

product of the symmetric matrix †
I I I=X Sv v S  and the density matrix, hence as Tr{ }I

σX P . 

Likewise, the second term is identified as Tr{( ) }I I
σ σX P X P . Thus, the DFT+Umol energy 

correction term writes as 

 ( )U 1
2 Tr{( ) }  ,I I I I

I

E U
σ σ

σ

= −∑ X X P X P  3.2.4 

which allows one to carry out the transformation into the symmetry adapted basis on the 

matrices IX  instead of the vectors Iv . 

As traces of matrix products with the density matrix represent expectation values, the 

above reformulation in Eq. 3.2.4 also provides a definition of the DFT+Umol operator  

 ( )1
2

ˆ ˆ ˆˆˆ I I I I

I

u U X X Xρ= −∑  3.2.5 

in terms of the projectors 

 ˆ
I t t

t I

X χ χ
∈

=∑  3.2.6 

and the density matrix operator ρ̂  from Eq. 2.4.9. The first term in brackets of Eq. 3.2.5 

projects the self-interaction correction on all KS orbitals. The density matrix represents a 

projector onto the occupied KS orbitals. In consequence, the second term in brackets can be 

interpreted as a projector onto the occupied KS orbitals only. This latter term becomes 

dominant for fully occupied target orbitals, while both terms cancel each other in the limit of 

integer occupations. Thus, the operator in Eq. 3.2.5 provides a slightly different interpretation 

of the linear and quadratic terms of the DFT+Umol penalty functional in Eq. 3.2.1. 

A self-consistent DFT+Umol calculation requires the contribution of the correction term 

in Eq. 3.2.4 to the matrix of the KS operator, hence the derivatives of UE  with respect to the 

elements of the density matrix. By exploiting the fact that the matrix IX  is symmetric the 

derivatives of the first term are obtained as 

 Tr{ } = { }  { }I I kl jk il I ij

ij klP

σ
σσ

σ

δ δ δ′
′

∂
=∑X P X X . 3.2.7 

The derivatives of the second term, Tr{( ) }I I
σ σX P X P , result analogously. After reordering 

one obtains 

 Tr{( ) } = {2 }I I I I ij

ijP

σ σ σ

σ

′ ′∂
X P X P X P X  . 3.2.8 
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By combining Eqs. 3.2.7 and 3.2.8 the total contribution of the DFT+Umol term to the KS 

matrix reads as 

 ( )1
2 2I I I I

I

U
σ σ= −∑U X X P X  . 3.2.9 

During the SCF iteration the matrix σU  is computed from Eq. 3.2.9 along with the 

DFT+Umol energy (Eq. 3.2.4) in every iteration step. 

 

 

3.2.3. DFT+Umol Gradients 

This section describes the implementation of the contributions of the DFT+Umol term to the 

gradients with respect to the nuclear positions. 

These derivatives of the DFT+Umol term can be expressed in terms of the partial 

derivatives of the matrices involved in the DFT+Umol energy expression 

 
U U U U

ij ij it

r ij r ij r it rij ij it

P SE E E E v

A P A S A v A

σ

σσ

∂ ∂∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑ . 3.2.10 

The first sum in Eq. 3.2.10 is the so-called Pulay term. This term comprises the partial 

derivatives U
ijE P σ∂ ∂  which are nothing else than the elements of the contribution σU  to the 

matrix of the KS operator (see Section 3.2.2). Thus, the calculation of the Pulay term is 

actually not required within the DFT+Umol module as this contribution is computed from the 

total KS operator matrix by existing modules of PARAGAUSS.[281]  

The second term in Eq. 3.2.10 corresponds to the Hellmann‒Feynman term and is 

computed analogously to the earlier DFT+U implementation in PARAGAUSS.[281] The partial 

derivatives with respect to the overlap matrix elements result in 

 † †Tr{ ( ) } = { 2 2 }I I I I I I I I I ij

ijS

σ σ σ σ σ σ σ σ σ∂
− − + −X P X P X P Y P Y P X P P Y P X P Y  . 3.2.11 

Thereby the quantity †
I I I=Y v v S  is readily available as it occurs as intermediate during the 

calculation of IX . The calculation of the matrices ij rS A∂  and their multiplication with the 

results of Eq. 3.2.11 is then carried out by existing parts of the earlier DFT+U 

implementation in PARAGAUSS.[281] 

The third sum in Eq. 3.2.10 arises from eventual changes in the target orbitals due to 

altered nuclear coordinates. In cases where the target orbitals correspond to molecular 

fragment orbitals this term implies a calculation of derivatives of the KS eigenvectors with 

respect to the nuclear coordinates. In the context of this thesis this term was neglected as the 

implementation of the response property it rv A∂  would require significant reorganizations in 

many modules of PARAGAUSS. A comparison between analytical and numerical derivatives 

with respect to nuclear coordinates on the example of a PBE+Umol correction acting on the 

CO 2π* fragment MOs of NiCO yields a maximum difference of less than 510− au. Thus, the 
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negligence of the third term on the right-hand side of Eq. 3.2.10 does not lead to severe 

consequences in the calculations carried out in the context of this thesis. 
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4. Applications 

4.1. General Computational Details 

All application calculations of this thesis were carried out with the linear combination of 

Gaussian-type orbital fitting-function density functional (LCGTO-FF-DF) method as 

implemented in the package PARAGAUSS.[39,43,70,289] More specifically, version 4.0 of the 

PARAGAUSS package was employed. This version includes the hybrid DFT and DFT+Umol 

capabilities that were implemented as part of this thesis (see Chapter 3). Further recent 

extensions implemented by others[405,411] address parallelization and convergence acceleration 

strategies. 

 Most of the calculations employ def2-type orbital basis sets,[412] which were chosen of 

triple-zeta quality (triple-zeta valence polarized, TZVP) in the case of the studies presented in 

Sections 4.3 and 4.4. For the elements C, O, and Ni this AO basis describes all electrons and 

features the contractions (11 ,6 , 2 ,1 ) [5 ,3 ,2 ,1 ]s p d f s p d f→  for C and O, respectively, as well 

as (17 ,11 ,7 ,1 ) [6 , 4 , 4 ,1 ]s p d f s p d f→  in the case of Ni.[412] In the case of the heavier 

elements Pd and Pt effective core potentials (ECP) of the Stuttgart-Dresden-type 

parametrization[413] were employed to represent the lowest 28 and 60 “small-core” spin-

orbitals, respectively. The corresponding AO basis set contractions account to 

(7 ,7 ,6 ,1 ) [6 ,4 ,3 ,1 ]s p d f s p d f→  for Pd and (8 ,7 ,6 ,1 ) [6 ,4 ,3 ,1 ]s p d f s p d f→  for Pt.[412] 

For the calculations on the nickel carbonyl complexes presented in Section 4.2 a quadruple-

zeta AO basis with additional polarization and diffuse functions (QZVPPD) was employed 

which exhibits the contractions (16 ,8 ,4 ,2 ,1 )s p d f g  →  [8 ,4 ,4 ,2 ,1 ]s p d f g  for C and 

(16 ,9 ,4 ,2 ,1 )s p d f g  →  [8 ,4 ,4 ,2 ,1 ]s p d f g  for O atoms.[412] Furthermore, the  

def2-QZVPPD basis features a (24 ,18 ,10 ,4 ,2 )s p d f g  →  [11 ,6 ,5 ,4 , 2 ]s p d f g  contraction 

in the case of Ni.[412] 

For the representation of the density during the evaluation of the Coulomb term within the 

density fitting (DF-FF) approximation[35-43] Ahlrich’s Coulomb fitting basis set[414,415] was 

employed in all cases. The density fitting approximation was also employed in the case of 

hybrid DFT calculations to keep its effect constant when comparing semi-local with hybrid 

functionals. 

The local XC terms of the employed DFT methods were integrated numerically. The 

corresponding numerical grids were constructed according to Becke’s prescription as a 

superposition of atom-centered grids.[162] These atom centered grids exhibit Lebedev-type 

angular components,[160,161] which were chosen to be locally exact for angular momenta up to 

29=ℓ  in the calculations in Sections 4.2 and 4.3 and up to 17=ℓ  for the studies in Section 
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4.4. The radial grid components comprised 168, 146, 305, 315, and 305 shells for C, O, Ni, 

Pd, and Pt in the former two cases as well as 134, 117, and 245 shells for the elements C, O, 

and Pt for the calculations in Section 4.4. 

The direct inversion of the iterative subspace (DIIS) method[405,416] was used to accelerate 

the convergence of the density matrix during the SCF iteration. After reaching a maximum 

change of 10‒6 in the density matrix elements, the SCF iteration was regarded as converged. 

The cluster models studied in Sections 4.3 and 4.4 were calculated by using a fractional 

occupation number (FON) technique with a Fermi-type broadening function.[39] The 

corresponding broadening parameter was successively lowered during the geometry 

optimization to final values of 0.05 and 0.01 eV for the calculations of Sections 4.3 and 4.4, 

respectively. 

The structures of all models were relaxed under the constraints of their respective point 

group symmetry by using the molecular-dynamics based “fast inertial relaxation engine” 

(FIRE) optimization method[417] as implemented in the utility suite PARATOOLS.[405,410] The 

geometry optimization was pursued until the Cartesian components of all molecular forces 

acting on the atomic centers dropped below 10‒6 au. 

The CO adsorption energies discussed in Section 4.4 were corrected for the basis set 

superposition error (BSSE)[395] using an estimate that was obtained with the counterpoise 

approach.[418] The nickel-CO dissociation energies presented in Section 4.2 would require the 

same treatment as well. However, due to the significantly larger basis set employed in this 

latter case study, the BSSE was estimated to be less than 0.4 kJ/mol; its correction was 

therefore neglected. 

The occupation numbers and the projected density of states spectra discussed in Sections 

4.2 and 4.4, respectively, were obtained on the basis of Mulliken population numbers.[419] 
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4.2. DFT+Umol Analysis of the Self-Interaction Error in 

Ni(CO)
m

, m = 1 ‒ 4 

4.2.1. Introduction 

This section presents the application of the DFT+Umol method to the nickel carbonyl 

complexes Ni(CO)m ( 1 4m = − ). This discussion follows Ref. [287]. 

Because of its important applications in chemical industry the nickel tetracarbonyl 

complex Ni(CO)4 is among the experimentally best studied transition metal carbonyl 

compounds.[420-427] Furthermore, as they represent very simple transition metal complexes, 

Ni(CO)4 and its subcarbonyls Ni(CO)m ( 1 3m = − ) have been characterized by means of 

highly accurate post-HF and multi-reference calculations as well as in various DFT 

studies.[57,425,428-434] The subcarbonyls Ni(CO)m ( 1 3m = − ) are very difficult to isolate 

experimentally. Thus, corresponding experimental reference values are significantly more 

sparse than in the case of Ni(CO)4.
[423,425,426,435] For the same reason the first metal-CO 

dissociation energies  

 ( ) ( ) ( )dis tot tot 1 tot( ) Ni(CO) Ni(CO) COm mE m E E E−= − −  4.2.1 

vary with the experimental method applied. Nevertheless, a clear trend among the dis ( )E m  

values can always be observed. The first CO dissociation energies are found to increase when 

going from Ni(CO)4 over Ni(CO)3 to Ni(CO)2, which is rationalized by the decreasing metal-

carbonyl bond competition among the CO ligands.[423-425,427,435] However, the dissociation 

energy of NiCO, dis (1)E , is found to be lower than dis (2)E .[423,435] This latter behavior is 

rationalized in terms of a formal electronic relaxation of the Ni-atom from the d10 closed-shell 

configuration in the corresponding carbonyl complexes to its atomic ground state.[57,432,433] 

This peculiar trend in the CO dissociation energies is reproduced by WFT methods as well 

as by hybrid DFT calculations.[425,430,431] In contrast, local and semi-local DFT methods 

predict dis (1)E  larger than dis (2)E , hence provide a qualitatively incorrect ordering of the CO 

dissociation energies. Cases, where hybrid DFT yields qualitatively correct results while 

semi-local DFT methods fail, likely indicate an influence of the self-interaction error (see 

Section 2.2.5). While the nickel carbonyls represent systems certainly small enough to allow 

for an accurate WFT description, these entities can appear also as intermediates of much 

larger models.[436] In such situations an efficient and reliable DFT description of the nickel 

carbonyl complexes is highly desirable. 

This observation is the starting ground for the following study.[287] The influence of the 

SIE on the Ni(CO)4 compound, on the Ni(CO)m subcarbonyls, and on the nickel atom was 

examined by means of a DFT+Umol correction (see Sections 2.4 and 3.2) to the GGA 

functional PBE.[49] The DFT+Umol correction was applied to the Ni 3d valence subshell as 

well as to the 2π* orbitals, which are the lowest unoccupied MOs (LUMO) of the CO ligand. 
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In the following, these two types of DFT+Umol corrections will be denoted as Umol(Ni 3d) 

and Umol(CO 2π*), respectively. To assess the effect of the DFT+Umol term on either type 

of orbitals, the corresponding IU  parameters were varied between 3 3.0dU = eV and 6.0 eV 

(in steps of 0.5 eV) for the former and between 2π* 1.0U = , 2.0, and 4.0 eV for the latter case. 

The DFT+Umol results were compared with the values obtained with the uncorrected PBE 

functional[49] as well as with the hybrid GGA PBE0.[87] 

 

 

4.2.2. Molecular Geometries 

The molecular systems were treated as symmetric structures and relaxed under the 

corresponding symmetry constraints. 8vC  symmetric models were employed for CO and 

NiCO, while Ni(CO)2, Ni(CO)3, and Ni(CO)4 were treated with point group symmetry 

constraints of 2v ,C  3h ,D  and dT , respectively. All models were checked for possible 

Jahn‒Teller distortions by computing the harmonic frequencies (see Section 4.2.4) of the 

vibrational normal modes without symmetry constraints. The corresponding normal mode 

analysis was carried out with the help of the ParaTools suite,[437] which allows one to 

compute second-order numerical derivatives with respect to nuclear displacements. 

Table 4.2.1 provides dC-O and dNi-C, the C-O distances of the gas phase CO molecule and 

all nickel carbonyls and the corresponding Ni-C distances as obtained with PBE0, PBE, and 

PBE+Umol with the DFT+Umol term applied to Ni 3d ( 3 6.0dU =  eV), or CO 2π* 

( 2π* 4.0U =  eV), or a combination of both ( 3 3.0dU =  eV, 2π* 1.0U =  eV). Note, that for the 

former two variants only the results at the maxima of the examined IU  parameter values are 

listed to assess the impact of the two DFT+Umol corrections on the geometries. 

A dC-O value of 112 pm is obtained with PBE0 for the CO molecule in the gas phase. 

Within the carbonyl complexes this distance is increased to about 115 pm to 113 pm, whereas 

the largest bond elongation is determined in NiCO and the smallest in the nickel tetracarbonyl 

complex. This behavior is predicted by the Blyholder model in terms of a partial electron 

transfer into the antibonding CO 2π* orbitals.[438] This so-called back-bonding mechanism 

enhances the bond strength between the CO ligand and the metal atom, but weakens the CO 

bond.[438] Following this model, the back-bonding interaction is strongest in NiCO and 

weakest in Ni(CO)4. The PBE functional yields longer dC-O bonds between 116 and 115 pm 

for the nickel carbonyls. This is rationalized by the intrinsically longer C-O bonds that are 

obtained with PBE compared to PBE0. Similar differences are also notable for the dC-O values 

of CO in the gas phase (113 pm for PBE). The individual DFT+Umol corrections always lead 

to longer C-O bonds than PBE0 but shorter ones than PBE. This is rationalized with the 

reduced back-bonding interaction within the carbonyl complexes due to the increased orbital 

localization caused by the DFT+Umol term (see Section 4.2.4).[287] 
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Table 4.2.1: Bond lengths C-O, dC-O, and Ni-C, dNi-C, of the nickel tetracarbonyl complex 

and the subcarbonyls Ni(CO)m ( 1 3m = − ) obtained from PBE0, PBE, and PBE+Umol 

calculations. Experimental and CCSD(T) references are listed as well. All values in pm. 

  3dU
a 2π*U

b CO NiCO Ni(CO)2 Ni(CO)3  Ni(CO)4 

dC-O PBE0   112.2 114.6 113.6 113.4  113.2 

 PBE   113.5 116.4 115.4 115.0  114.8 

 PBE+Umol 6.0  ― 115.8 114.9 114.7  114.6 

   4.0 ― 114.8 114.3 114.4  114.3 

  3.0 1.0 ― 115.7 114.8 114.7  114.6 

 Exp.c   ― ― ― ―  114.1 ± 0.2 

dNi-C PBE0   ― 166.2 176.0 179.7  182.0 

 PBE   ― 166.4 176.0 180.1  182.2 

 PBE+Umol 6.0  ― 167.5 176.6 180.1  182.1 

   4.0 ― 170.2 180.0 184.5  187.6 

  3.0 1.0 ― 167.6 177.6 181.1  183.2 

 Exp.c   ― ― ― ―  183.8 ± 0.2 

 CCSD(T)d   ― 167.8 177.8 ―  182.6 
a 3dU  parameter for the Umol(Ni 3d) correction in eV. 
b 2π*U  parameter for the Umol(CO 2π*) correction in eV. 
c Ref. [422] 
d Ref. [431] 

 

Compared to the C-O bond lengths, the dNi-C values exhibit a larger spread upon 

application of the DFT+Umol term. PBE and PBE0 yield quite similar Ni-C distances for the 

compounds Ni(CO)m ( 1 4m = − ), between 166 pm for NiCO and 182 pm for Ni(CO)4. The 

dNi-C results obtained with the Umol(Ni 3d) correction are also quite close to these values; 

minor bond elongations are only obtained in the case of NiCO and Ni(CO)2. At variance, the 

DFT+Umol correction of the CO 2π* orbitals yields significantly longer bonds which 

increasingly differ from those of all other methods when going from NiCO to Ni(CO)4. The 

combined projection on both types of target orbitals yields the best agreement with the 

corresponding CCSD(T) reference results, deviating only by fractions of a picometer. Also 

the dNi-C values obtained with PBE, PBE0, and PBE+Umol(Ni 3d) agree well with the 

CCSD(T) results, the corresponding differences being below 2 pm. 

The Ni(CO)2 molecule was initially considered as linear due to artifacts of the matrix 

isolation technique employed in early experimental studies.[439] More recent experiments 
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showed this molecule to be bent.[440] For Ni(CO)2 a C-Ni-C angle of 140° is obtained with the 

PBE method, while PBE0 and the PBE+Umol(Ni 3d) combination predict slightly larger 

values of 146° and 148°, respectively. In contrast, application of the Umol(CO 2π*) term 

yields a nearly linear Ni(CO)2 structure. The bond angles within all other complexes are 

determined by their respective point group symmetries.  

 

 

4.2.3. Dissociation Energies 

In the following the first metal-CO dissociation energies dis ( )E m , 1 4m = − , as obtained from 

PBE, PBE0, and both PBE+Umol variants according to Eq. 4.2.1 are discussed. 

The dis (1)E  result depends on the total electronic energy of the nickel atom. The atomic 

system was treated with 2vC  point group symmetry constraints to allow for a localized orbital 

occupation within the 3d valence subshell.[244] Note that this broken symmetry treatment 

leads to an 3d
94s

1 configuration for the nickel atom as opposed to the experimentally found 

3d
84s

2 atomic ground state, which arises from spin-orbit interaction that was not considered 

here.[441] Within a finite basis set the computed dissociation energies are subject to the basis 

set superposition error (BSSE), thus would need to be corrected by the counterpoise 

method.[395,418] However, due to the very flexible def2-QZVPPD basis set employed, the 

BSSE in the dis ( )E m  values was found to be less than 0.4 kJ/mol, thus can be safely 

neglected in the present discussion. 

Table 4.2.2 provides the values dis ( )E m  obtained with the variants PBE+Umol(Ni 3d) and 

PBE+Umol(CO 2π*), the uncorrected PBE functional, and the hybrid GGA PBE0. For 

comparison the CCSD(T) reference values are shown as well. Note, that the CCSD(T) results 

for dis (2)E  and dis (3)E  were determined for a linear Ni(CO)2 molecule.[431] In the case of 

PBE the linear and 2vC  symmetric structures of Ni(CO)2 differ by ~5 kJ/mol. Thus, 

compared to the variations among the disagreeing experimental results listed in Table 4.2.2, 

the CCSD(T) energies of the linear structure can be regarded as sufficiently accurate for the 

present discussion of the trends of the dis ( )E m  values. 

In agreement with earlier studies,[57] the uncorrected semi-local DFT approximation PBE 

does not provide the correct trend dis dis(1) (2)E E<  of the first metal-CO dissociation energies. 

With dis (1) 247E =  kJ/mol the strength of the Ni-C bond in NiCO is considerably 

overestimated and significantly larger than the corresponding dissociation energy of 208 

kJ/mol obtained for Ni(CO)2. In contrast, the other two dis ( )E m  values agree more with the 

expected trend and are successively smaller; 148 kJ/mol for m = 3 and 121 kJ/mol for m = 4. 

The CCSD(T) reference values amount to 144, 178, 145, and 125 kJ/mol for 1 4m = − , 

respectively. The PBE0 results agree considerably better with these reference values than the 

PBE values. PBE0 yields a dis (2)E  value of 178 kJ/mol, which is close to the CCSD(T) 
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reference and significantly larger than the dissociation energies of the other three complexes. 

Also dis (3) 132E =  kJ/mol is still higher than the dissociation energy of the NiCO molecule, 

126 kJ/mol. The corresponding dis (4)E  value amounts to 101 kJ/mol. Thus, despite somewhat 

underestimating the Ni-CO dissociation energies, PBE0 is able to recover the trend 

dis dis dis dis(2) (3) (1) (4)E E E E> ≈ >  provided by CCSD(T). 

 

Table 4.2.2: First metal-CO dissociation energies dis ( )E m  of the Ni(CO)m complexes 

( 1 4m = − ) obtained with PBE0, PBE, and the two projections of the DFT+Umol correction 

as well as the corresponding CCSD(T) and experimental reference values. All energies in 

kJ/mol. 

 3dU
a 2π*U

b    NiCO   Ni(CO)2   Ni(CO)3   Ni(CO)4 

PBE0    126  178  132  101 

PBE    247  208  148  121 

PBE+Umol 3.0   171  198  139  110 

 4.5   135  192  135  105 

 5.0   123  190  133  103 

 5.5   111  188  131  101 

 6.0   100  186  130  99 

  1.0  218  191  126  91 

  2.0  190  181  97  61 

  4.0  139  164  37  1 

 3.0 1.0  144  183  115  79 

Exp. 1c    121 ± 63  226 ± 63  54 ± 8  105 ± 8 

Exp. 2d    146 ± 13  213 ± 17  121 ± 8    ― 

Exp. 3e    169 ± 24  197 ± 24  118 ± 10    ― 

CCSD(T)f    144  178  145  125 
a 3dU  parameter for the Umol(Ni 3d) correction in eV. 
b 2π*U  parameter for the Umol(CO 2π*) correction in eV. 
c Ref. [435] 
d Ref. [38] in Ref. [431] 
e Ref. [423] 
f Ref. [431] 
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The Umol(Ni 3d) correction also provides the correct trend. With 198 kJ/mol, the metal-

CO dissociation energy of Ni(CO)2 is obtained higher than dis (1)E , 171 kJ/mol, already for 

3 3.0 eVdU = . At 3 4.5 eVdU =  the dissociation energies dis (3)E  and dis (1)E  are nearly equal 

with 135 kJ/mol, respectively, while dis (2)E  and dis (4)E  amount to 192 kJ/mol and 105 

kJ/mol, respectively. When comparing these results, the dis (1)E  value is found to be much 

more sensitive to the value of the 3dU  parameter than the other dissociation energies. dis (1)E  

is lowered by about 12 kJ/mol when one increases 3dU  in steps of 0.5 eV, while the 

corresponding reduction of all other dis ( )E m  values is only about 2 kJ/mol. Thus, the 

Umol(Ni 3d) correction with 3 4.5 eVdU =  describes the metal-CO dissociation reasonably 

accurate. In this case the dis ( )E m  energies show a comparable agreement with the CCSD(T) 

reference values as the corresponding PBE0 results. At higher values of 3dU , the dis (1)E  

energies are, however, underestimated, while dis (2)E  remains higher than the corresponding 

coupled-cluster reference value. 

 

 

Figure 4.2.1: First metal-CO dissociation energies dis ( )E m  of the Ni(CO)m complexes 

( 1 4m = − ) obtained with PBE0, PBE, and the two projections of the DFT+Umol correction. 

For the latter the dis ( )E m  ranges obtained for the applied IU  parameter values are shown. 

The CCSD(T) reference results are plotted for comparison. 
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From a qualitative point of view, the DFT+Umol correction of the CO 2π* orbitals 

behaves analogously to the Umol(Ni 3d) term as it is able restore the trend dis dis(2) (1)E E>  as 

well. However, it requires 2π* 4.0U =  eV to yield an dis (1)E  value of 139 kJ/mol which is 

close to the CCSD(T) reference and reasonably smaller than the corresponding dissociation 

energy of Ni(CO)2, 164 kJ/mol. While also this latter value agrees reasonably well with the 

CCSD(T) reference, the corresponding dissociation energies of the tri- and tetracarbonyl 

complexes are strongly underestimated. For 2π* 4.0U =  eV the dis (3)E  and dis (4)E  values are 

calculated at 37 and 1 kJ/mol, respectively. This latter result, predicting the Ni(CO)4 complex 

to be unstable, is a strong indication that the PBE+Umol(CO 2π*) combination provides an 

unphysical description of the Ni(CO)m compounds. Furthermore, while the dis (2)E  value 

exhibits a similar sensitivity with respect to 2π*U  as in the case of 3dU , the Umol(CO 2π*) 

approach yields lower dissociation energies for Ni(CO)2 than the Umol(Ni 3d) term. Thus, a 

stronger dependency of this energy on 2π*U  is to be expected for parameter values below 1 

eV. The plot of the dis ( )E m  values obtained with the various computational methods (Figure 

4.2.1) clearly depicts the deviations of the results obtained from the Umol(CO 2π*) 

correction. 

The combined DFT+Umol projection on both groups of target orbitals, with 3 3.0dU = eV 

and 2π* 1.0U = eV, provides accurate molecular geometries, but was found to yield reasonable 

dissociation energies only in the case of NiCO and Ni(CO)2. With dis (3) 115 kJ/molE =  and 

dis (4) 79 kJ/molE = , the dissociation energies of the other two carbonyls are considerably 

underestimated. Inspecting both DFT+Umol contributions individually, reveals again the 

Umol(CO 2π*) term to be mainly responsible for these deviations. 

 

 

4.2.4. Electronic Structure Aspects and Vibrational Frequencies 

The analysis of the electronic structure allows one to rationalize the behavior of both 

DFT+Umol variants with regard to the dissociation energies.[287] More specifically, the 

following questions are addressed; (i) Why is dis (1)E  strongly overestimated by PBE and why 

is it corrected by the Umol(Ni 3d) term? (ii) Why do all other dissociation energies remain 

mostly unaffected by the Umol(Ni 3d) term? (iii) How can both DFT+Umol variants have a 

similar qualitative effect on dis (1)E ? (iv) Why does the Umol(CO 2π*) correction deteriorate 

the description of the Ni(CO)3 and Ni(CO)4 complexes to such an extent that the results 

cannot be regarded as physically meaningful?  

As already mentioned in Section 4.2.3, all computational methods applied here yield a d9
s

1 

triplet state for the nickel atom. In contrast, a formally closed shell d10 configurations was 

identified from the individual Mulliken orbital populations[419] of the nickel atom in all 

Ni(CO)m compounds, in agreement earlier studies.[433,434] The accumulated Mulliken 
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populations of the Ni 3d subshell provide useful insight into the electronic structure of the 

nickel carbonyls. These values, denoted as 3dO , are collected in Table 4.2.3 together with the 

resulting net charges Niq  of the nickel atom. 

The Ni 3d orbitals in the Ni(CO)m complexes delocalize by mixing with the ligand 

orbitals. Thus, the corresponding accumulated populations 3dO  are always lower than 10 e. In 

the case of PBE0 the 3dO  values amount to 9.16, 8.99, 8.79, and 8.34 e for NiCO, Ni(CO)2, 

Ni(CO)3, and Ni(CO)4, respectively. In comparison, the corresponding accumulated 

populations obtained with the uncorrected PBE method are consistently lower, 9.08, 8.87, 

8.70, and 8.34 e, respectively. The lower 3dO  values obtained from PBE are a direct 

consequence of the larger SIE in this method. Recall that any system tends to lower its 

residual self-repulsion by an overly large delocalization of the affected charge distributions 

(see Section 2.2.5). In the present case this holds especially for the Ni 3d orbitals. However, 

without the formation of chemical bonds, the possibilities to delocalize are rather restricted 

for the 3d orbitals in the (bare) nickel atom. In this case a delocalization can only occur via a 

spatial expansion of the 3d orbitals which, however, is limited by the other, much larger 

terms of the KS potential. On the other hand, an overly large mixing with ligand orbitals 

easily admits the delocalization of the Ni 3d derived orbitals in the carbonyl complexes. In 

consequence, the destabilizing self-repulsion is not lowered as much for the d9
s

1 triplet state 

of the nickel atom as for the d10 configuration of the Ni(CO)m complexes. This explains why 

the uncorrected PBE functional strongly overestimates the dis (1)E  value. 

 

Table 4.2.3: Accumulated Mulliken populations of the Ni 3d subshell 3dO  and net charges 

Niq  of the Ni atom in the Ni(CO)m systems ( 1 4m = − ) obtained with PBE0, PBE, and the 

two projections of the DFT+Umol correction for the applied values of IU . All values in e. 

 3dU
a 2π*U

b NiCO  Ni(CO)2  Ni(CO)3  Ni(CO)4 

   3dO  Niq   3dO  Niq   3dO  Niq   3dO  Niq  

PBE0   9.16 0.51  8.99 0.79  8.79 1.11  8.34 2.33 

PBE   9.08 0.54  8.87 0.80  8.70 1.04  8.20 2.41 

PBE+Umol 3.0  9.18 0.49  8.97 0.76  8.79 1.01  8.30 2.34 

 4.5  9.23 0.47  9.02 0.74  8.83 0.99  8.35 2.30 

 6.0  9.28 0.46  9.06 0.72  8.88 0.98  8.39 2.26 

  1.0 9.10 0.50  8.93 0.75  8.74 1.01  8.29 2.32 

  4.0 9.18 0.36  9.15 0.63  8.85 0.92  8.49 1.98 

 3.0 1.0 9.21 0.46  9.04 0.71  8.82 0.98  8.36 2.25 
a 3dU  parameter for the Umol(Ni 3d) correction in eV. 
b 2π*U  parameter for the Umol(CO 2π*) correction in eV. 
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Next, the changes of the dis (1)E  value introduced by the Umol(Ni 3d) term will be 

discussed. Recall that the effect of the DFT+Umol correction is equivalent to that of the 

parabolic DFT+U penalty functional (see Eq. 2.4.10 in Section 2.4) 

 { } { }( )U 1
2 Tr TrI I I I

I

E U σ σ σ

σ

= −∑ n n n . 4.2.2 

The individual populations of the elements of the Ni 3d subshell in NiCO suggest that all of 

these orbitals are more than half occupied (at least by a fraction of 0.68). In consequence, the 

derivative of Eq. 4.2.2 is negative, which implies that in this case the Ni 3d orbitals are 

subject to an attractive potential contribution from the Umol(Ni 3d) term.[61] This attractive 

contribution increases the 3dO  value of NiCO compared to the corresponding population 

resulting from the uncorrected PBE functional. Two conclusions can be drawn from the fact 

that the Umol(Ni 3d) term increases the 3dO  values. First, the increased localization of the Ni 

3d orbitals in NiCO by the Umol(Ni 3d) correction implies a reduced mixing with the orbitals 

of the CO ligand. According to the Blyholder model the mixing of these orbitals leads to the 

back-bonding interaction.[438] Thus, the application of Umol(Ni 3d) reduces back-bonding in 

NiCO. Equivalently, the Blyholder model predicts that the formation of the primary σ-

interaction between the Ni 4s and the CO 5σ orbitals increases the net charge Niq  on the 

nickel center.[438] In consequence, the Ni 3d orbitals are subject to a more repulsive 

potential.[438] This repulsive potential is somewhat counteracted by the aforementioned 

attractive potential contribution of the Umol(Ni 3d) term. The increased localization of the Ni 

3d subshell by the Umol(Ni 3d) term also implies a higher self-repulsion in these orbitals. 

Note, that both of these effects, the reduced amount of back-bonding and the increased self-

repulsion, have the same net influence on the NiCO system, namely the destabilization of its 

delocalized d10 configuration with respect to the localized d9
s

1 state of the nickel atom. This 

destabilization lowers the Ni-CO dissociation energy of NiCO, which explains why the 

Umol(Ni 3d) term is able to correct the dis (1)E  value. 

Also in the case of the other Ni(CO)m complexes, a d10 configuration can be deduced from 

the more than half occupied Ni 3d orbitals. The individual orbital occupations obtained from 

PBE amount to at least 0.71, 0.59, and 0.57 e in the case of Ni(CO)2, Ni(CO)3, and Ni(CO)4, 

respectively. Thus, the Umol(Ni 3d) term has a similar effect on these systems as rationalized 

above for NiCO. While accurate CASSCF calculations reveal the σ-interaction to prevail in 

the NiCO system,[433] the amount of back-bonding is likely to increase with the number of 

CO ligands. Indeed, this is the case, in agreement with the Blyholder model[438] (see above), 

as can be deduced from the Niq  values which are found to increase when going from NiCO to 

Ni(CO)4 (Table 4.2.3). The Umol(Ni 3d) term localizes the Ni 3d orbitals and reduces back-

bonding which is well in line with the traditional explanation of the bonding situation in 

NiCO and the other carbonyl complexes.[429-433] In consequence, the amount of back-bonding 

interaction in the nickel carbonyls is corrected which is overestimated by PBE due to the SIE. 
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Thus, also the first nickel-CO dissociation energies of Ni(CO)2, Ni(CO)3, and Ni(CO)4 are 

somewhat reduced when the Umol(Ni 3d) correction is applied. However, in these cases the 

effect of the Umol(Ni 3d) term is not nearly as large as for the dis (1)E  value as visible from 

the energetic contributions UE  of the Umol(Ni 3d) term which are provided in Table 4.2.4. 

This behavior of the UE  energy can be rationalized as follows. Within the NiCO complex 

three of the 3d derived orbitals interact with the orbitals of the CO ligand, namely z2, xz, and 

yz for NiCO oriented along the z-axis. When going from NiCO to the di-, tri-, and 

tetracarbonyl complexes, the possibilities for delocalization increase due to the larger number 

of ligand orbitals with which the 3d derived orbitals can interact. However, the number of 

interacting orbitals of the 3d subshell is the same in all Ni(CO)m systems. Thus, the Ni 3d 

derived orbitals remain similarly delocalized after the removal of a single CO ligand from 

Ni(CO)2, Ni(CO)3, and Ni(CO)4. This argument rationalizes the small reductions in the 3dO  

values when going from NiCO to Ni(CO)4 (see Table 4.2.3). Furthermore, the above 

rationalization allows to understand the comparatively small growth of the energetic 

contributions UE  of the Umol(Ni 3d) term when going from NiCO to the tetracarbonyl 

complex (see Table 4.2.4). The energies UE  increase only slightly with the number of 

ligands compared to the drastic change that occurs upon addition of the first CO fragment 

(see Table 4.2.4). Thus, the Umol(Ni 3d) correction destabilizes all carbonyl complexes by 

roughly the same amount. This rationalizes why the dissociation energies dis (2)E , dis (3)E , 

and dis (4)E  are significantly less affected by Umol(Ni 3d) than the dissociation energy of 

NiCO. 

 

Table 4.2.4: DFT+Umol energy term UE  exemplarily shown for both SIE corrections. All 

energies in kJ/mol. 

3dU
a 2π*U

b Ni NiCO Ni(CO)2 Ni(CO)3 Ni(CO)4 

4.5   11  118 135 140 166 

 4.0  0c  95 130 245 361 
a 3dU  parameter for the Umol(Ni 3d) correction in eV. 
b 2π*U  parameter for the Umol(CO 2π*) correction in eV. 
c Zero by definition 

 

Lowering the energies of the 3d derived orbitals is not the only way to reduce the back-

bonding in the Ni(CO)m complexes. A similar reduction of the mixing between Ni 3d and CO 

2π* orbitals is also achieved by raising the energies of the latter. This essentially describes 

the effect of the Umol(CO 2π*) correction. As the energy gap between the interaction 

partners is increased, the delocalization of the 3d orbitals is reduced. This in turn explains the 
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increased 3dO  values that result from the Umol(CO 2π*) correction (Table 4.2.3). Thus, also 

the Umol(CO 2π*) term is able to reduce the delocalization within the Ni 3d subshell of the 

carbonyl complexes. This indirect localization of the Ni 3d subshell by the Umol(CO 2π*) 

correction rationalizes why both DFT+Umol variants have similar effects on the dissociation 

energy dis (1)E , at least from a qualitative point of view. 

However, the indirect effect of the Umol(CO 2π*) correction on the 3dO  values is rather 

small. In the case of NiCO, a relatively large value of 2π* 4.0U =  eV is required to bring the 

accumulated 3d population close to those obtained with PBE0 or PBE+Umol(Ni 3d), hence, 

to achieve dis dis(2) (1)E E>  (see Table 4.2.2 in Section 4.2.3). While the 3dO  values of the 

other nickel carbonyls are increased by the Umol(CO 2π*) correction, back-donation is 

reduced in these cases too. The energy contributions UE  of the Umol(CO 2π*)  term are 

provided in Table 4.2.4 for the nickel complexes and the nickel atom. Accordingly, the 

reduced amount of back-bonding is accompanied by the steadily increasing UE  values that 

result from the Umol(CO 2π*) correction when going from NiCO to Ni(CO)4. However, 

while back-donation is notable in the case of NiCO (see Section 4.2.2), this interaction also 

represents an important factor for the stabilization of the Ni(CO)3 and Ni(CO)4 complexes 

due to the larger number of Ni-CO bonds in these systems. Thus, the systems Ni(CO)3 and 

Ni(CO)4 are notably destabilized at 2π* 4.0U =  eV. A closely related consequence of the 

reduced back-bonding by the Umol(CO 2π*) term are the reduced positive net charges Niq  on 

the nickel centers (see Table 4.2.3). As the delocalization of the 3d derived orbitals is rather 

limited if the CO 2π* orbitals are too high in energy, more negative charge resides on the Ni 

atom. This becomes also apparent from the accumulated 3d population of 8.49 e obtained at 

2π* 4.0U =  eV for Ni(CO)4. This value is considerably higher than those resulting from the 

PBE0 and PBE+Umol(Ni 3d) calculations. The net charge of 1.98 e obtained with the 

PBE+Umol(CO 2π*) combination is notably below the Niq  values obtained with the former 

two methods. Note, that σ-bonding and back-bonding represent two synergetic effects. As the 

primary σ-bonding represents a dative interaction, it is further enhanced by the back-bonding 

interaction, which transfers electronic charge away from the nickel center to the CO ligands. 

Thus, the low charges Niq  that result for Ni(CO)3 and Ni(CO)4 with 2π* 4.0U =  eV most 

likely indicate that the σ-bonding is hampered by the Umol(CO 2π*) term as well. Both, the 

removal of back-bonding and the reduced strength of the σ-bonds, rationalize the strong 

destabilization of the nickel carbonyls Ni(CO)3 and Ni(CO)4 that results when the 

DFT+Umol correction is applied to the CO 2π* orbitals. 
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Table 4.2.5: Totally symmetric C-O and Ni-C stretching frequencies of the nickel carbonyl 

complexes and the CO molecule in the gas phase. All values in cm‒1. 

 3dU
a 2π*U

b CO  NiCO  Ni(CO)2  Ni(CO)3  Ni(CO)4 

   C-Oυ   Ni-Cυ  C-Oυ   Ni-Cυ  C-Oυ   Ni-Cυ  C-Oυ   Ni-Cυ  C-Oυ  

PBE0    2238  601  2112  471  2190  416 2205   391  2218 

PBE    2128  603  2008  526  2068  415 2087   392  2100 

PBE+Umol 4.5   2128  593  2033  467  2087  410 2094   387  2103 

  4.0  2128  548  2068  416  2129  375 2108   360  2113 

 3.0 1.0  2128  583  2034  447  2100  402 2097   381  2105 

Exp.c    2170  ―  2034d  ―  2117e  ― ―   380f  2155f 
a 3dU  parameter for the Umol(Ni 3d) correction in eV. 
b 2π*U  parameter for the Umol(CO 2π*) correction in eV. 
c The measured anharmonic frequency of the free CO molecule is 2143 cm‒1, the 

experimentally derived harmonic value is larger by 27 cm‒1. All experimental C-O 

stretching frequencies are corrected by this amount to account approximately for this 

missing anharmonicity effect in the computational results.[442] 
d Ref. [439] 
e Ref. [440] 
f Ref. [421] 

 

Finally, the totally symmetric vibrational C-O stretching frequencies C-Oυ  of the carbonyl 

complexes are discussed. These results provide a confirmation for the above rationalizations 

of the effects of both DFT+Umol terms on the electronic structure of the nickel carbonyls. 

Table 4.2.5 provides the C-Oυ  values of these systems along with the corresponding totally 

symmetric frequencies Ni-Cυ  of the Ni-C stretching modes and the frequencies of the CO 

molecule in the gas phase. 

The Blyholder model predicts, that the charge transfer into the 2π* orbitals due to back-

bonding reduces the strengths of the C-O bonds and in consequence also the C-Oυ  frequencies 

of the Ni(CO)m systems.[438] Indeed, in nearly all cases the C-Oυ  frequencies of the carbonyl 

complexes are lower compared to those of the CO molecule in the gas phase. The C-Oυ  value 

obtained for the Ni(CO)2 complex with Umol(CO 2π*) and 2π* 4.0U =  eV represents the only 

exception. This outlier may be rationalized by the reduction of the orbital overlap in the 

nearly linear Ni(CO)2 structure obtained in this case (see Section 4.2.2). Due to the parabolic 

shape of the penalty functional, the DFT+Umol term lowers the energy of more than half 

occupied orbitals, while less than half filled levels are raised on the energy scale.[63] Thus, the 



DFT+Umol Analysis of the Self-Interaction Error in Ni(CO)m, m = 1 ‒ 4 

95 

energy gap between the Ni 3d and the CO 2π* orbitals of the nickel carbonyl complexes is 

increased by both DFT+Umol variants; either by lowering the former or by increasing the 

energies of the latter. In both cases, the amount of back-bonding is reduced while the C-Oυ  

frequencies are increased relative to those obtained with the uncorrected PBE method. The 

deviation of the C-Oυ  values due to the DFT+Umol corrections is larger for Umol(CO 2π*) at 

2π* 4.0U =  eV than for Umol(Ni 3d) at 3 4.5dU =  eV but decreases when going from NiCO to 

the nickel tetracarbonyl. The PBE+Umol(Ni 3d) combination nearly matches the 

experimental reference in the case of NiCO but deviates by ‒30 cm‒1 for Ni(CO)2 and by ‒52 

cm‒1 for the tetracarbonyl complex. These deviations are in line with the slightly 

underestimated dis ( )E m  values for 2 4m = −  and may indicate that the back-bonding 

interaction in the di-, tri-, and tetracarbonyls is still somewhat overestimated by 

PBE+Umol(Ni 3d). Also the description of the CO fragment by the underlying PBE 

functional seems to contribute to these deviations. Indeed, the Umol(CO 2π*) term 

essentially removes back-bonding which is reflected by the somewhat higher C-Oυ  

frequencies. However, in this case the deviations from the experimental reference are still 

comparable to those of the uncorrected PBE method. Nevertheless, the C-Oυ  values obtained 

with the PBE method as well as with both PBE+Umol combinations agree still better with the 

experimental references than the frequencies that result from the PBE0 calculations. 

The Ni-Cυ  frequencies obtained with the functionals PBE and PBE0 as well as with the 

PBE+Umol(Ni 3d) combination mostly agree with each other, within ~10 cm‒1. Only the 

PBE result for the Ni-Cυ  frequency of Ni(CO)2 differs more from the corresponding results of 

the other methods. These deviations may be related to differences in the C-Ni-C angle. The 

lower Ni-Cυ  frequencies that result from the Umol(CO 2π*) projection are in line with the 

corresponding underestimated metal-CO dissociation energies, obtained in this case.  

 

 

4.2.5. Summary and Conclusions 

The case study presented in this section employed the DFT+Umol correction to analyze the 

impact of self-interaction artifacts on various properties of nickel carbonyl complexes. To 

this end, the DFT+Umol correction was applied to the orbitals of the Ni 3d subshell as well as 

to the manifold of the 2π* MOs of the CO ligands. 

From specific IU  values onward both types of DFT+Umol corrections are able to restore 

the correct trend in the first metal-ligand dissociation energies dis ( )E m  of the Ni(CO)m 

complexes with 1 4m = − , specifically dis dis(1) (2)E E< . The application of the DFT+Umol 

correction to the orbitals of the Ni 3d subshells provides a reasonable quantitative accuracy 

for the dissociation energies, bond lengths and vibrational frequencies. Opposed to that, the 

corresponding correction based on the CO 2π* orbitals leads to severely underestimated 
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dis ( )E m  values for Ni(CO)3 and Ni(CO)4. In agreement with that, the Umol(CO 2π*) term 

results in overly elongated Ni-C bonds and higher C-Oυ  frequencies for these systems. 

The aforementioned accurate results from the Umol(Ni 3d) correction are obtained at 

values of the 3dU  parameter which are close ~5.3 eV, a commonly employed value for this 

subshell.[288] This leads to the conclusion that self-interaction artifacts within the Ni 3d shell 

are the main reason for the erroneous dis ( )E m  trend of GGA functionals, exemplified in the 

present study for the PBE functional. 

 The interplay between the self-repulsion energy and the delocalization of the orbitals is 

studied by examining some aspects of the electronic structures of the carbonyl complexes. 

This analysis allows one to rationalize why the Umol(CO 2π*) correction yields, from a 

quantitative perspective, only a poor description of the Ni(CO)m systems, while 

PBE+Umol(Ni 3d) provides a reasonable accuracy in these cases. 

As the Umol(Ni 3d) term reduces the delocalization of the Ni 3d orbitals, it increases the 

corresponding Mulliken populations to similar values as those obtained in PBE0 calculations. 

In consequence, the Umol(Ni 3d) destabilizes all carbonyl complexes by a similar amount. 

Thereby the energy of the NiCO compound is adjusted relative to that of the free nickel atom 

while the energy differences between the various Ni(CO)m systems are much less affected. 

This rectifies the metal-CO dissociation energy of the NiCO system and restores the trend of 

the dis ( )E m  values. The Umol(CO 2π*) projection can achieve a similar localization of the Ni 

3d shell, by increasing the energy of the CO 2π* orbitals which indirectly reduces the 

possibility for the 3d orbitals to delocalize. However, due to the indirect nature of this 

localization, large values of the 2π*U  parameter are required to achieve effects of similar size 

as with the Umol(Ni 3d) term. This in turn has a severe negative impact on the electronic 

structure of the carbonyl complexes, especially on the back-bonding interaction within them. 

Thus, the Umol(CO 2π*) term overly destabilizes especially the complexes Ni(CO)3, and 

Ni(CO)4. 

The case study presented clarified many SIE related aspects in the bonding of the Ni(CO)m 

complexes as described by a semi-local exchange-correlation functional such as PBE. 

Furthermore, this study also demonstrated that the flexibility of the DFT+Umol method can 

be exploited for a detailed analysis of self-interaction artifacts in the electronic structure of 

chemical systems as obtained with semi-local DFT approximations. 
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4.3. Transition Metal Cluster Scaling Study with Hybrid DFT  

4.3.1. Introduction 

In the following, semi-local and hybrid DFT approximations are compared regarding their 

description of transition metals using a cluster scaling study as a vehicle. The discussion 

thereby follows Ref. [443]. 

The description of transition metals by hybrid density functional theory is a difficult 

problem. On the one hand, the reduced self-interaction error in hybrid DFT approximations 

(see Sections 2.2.5 and 2.3) should lead to a generally improved description of such 

materials. On the other hand, the self-interaction correction provided by the exact-exchange 

term also leads to a deteriorated description of static correlation effects, hence to an increased 

static correlation error (see Section 2.2.6). Static correlation effects can have an important 

influence on the electronic structure of transition metals due to the high number of nearly 

degenerate levels in the valence band. 

The B3LYP hybrid GGA functional[47,82,84,191] is the most widely applied of all DFT 

approximations.[263] As such it is also well known for its failures for systems containing 

transition metal atoms.[245,246,444,445] These problems were often rationalized by reference to 

the aforementioned negative influence of the EXX term on the description of static 

correlation.[129] However, a recent analysis revealed the LYP correlation term to contribute 

notably more.[198] Indeed, this term does not reduce to an LDA correlation form in the case of 

the homogeneous electron gas model, which is important for slowly varying electron 

densities as they occur in transition metals.[198] The parametrization of the B3 part as well as 

the EXX term introduce errors too.[198] The contribution of these terms to the failures of the 

B3LYP functionals for metals were, however, found to be less dramatic than that of the LYP 

correlation part.[198] 

As described in Section 2.3.3, various alternative hybrid DFT approximations followed the 

B3LYP functional, which mostly avoid the problems associated with the LYP 

term.[77,85,87,89,90,210,212,261] The subsequently presented study addresses the question whether 

some of these functionals can provide a reasonable accuracy for transition metals.[443] While 

comparable studies were previously conducted in terms of plane-wave studies,[198,446] the 

present investigation was done on series of group 10 cluster models Nim, Pdm, and Ptm of 

increasing size (see Section 4.3.2). [443] Following earlier assessments of density functional 

methods,[447,448] cluster scaling techniques were used to extrapolate the results obtained for 

these models to the corresponding bulk limits.[448-457] These extrapolations allow for a 

comparison with the respective experimental reference values as well as with results from 

plane-wave calculations. Thereby the performance of the hybrid DFT approximations 

PBE0,[87] TPSSh,[212] and M06[77,90] is examined for the extrapolated description of structural, 

energetic, and electronic properties of nickel, palladium, and platinum. It is worth noting that 
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the functionals PBE0 and M06 come with EXX mixing parameters 1α  of 0.25 and 0.27, 

respectively, whereas 1α = 0.1 for TPSSh (see Section 2.3.3). While hybrid functionals with 

even higher EXX mixing factors exist, the former two methods are referred to as high-EXX 

functionals in the following to distinguish them from TPSSh. To estimate the influence of the 

exact-exchange term, these three hybrid functionals are also compared with their respective 

semi-local counterparts PBE,[49] TPSS,[77,89,90,210] and M06L.[77] Finally, the analysis of 

various aspects of the electronic structure provides insight why some of the examined 

methods perform well while others do not.[443] 

 

 

4.3.2. Cluster Scaling Procedure and Computational Models 

Large transition metal clusters mM  usually represent densely packed and highly symmetric 

structures that consist of multiple layers of atoms (shells).[458,459] However, the environments 

that surround the individual atoms of such a cluster can vary significantly. In the case of the 

fcc metals Ni, Pd, and Pt the atoms that comprise the core moiety of a cluster are twelve-fold 

coordinated by neighboring atoms. In consequence, such atoms experience an environment 

which is close to that of the corresponding bulk material. On the other hand, the atoms 

forming the surface layer are coordinated by a lower number of neighboring atoms and thus, 

are located in an entirely different environment. This is even more the case for atoms which 

comprise the edges and corners of the facets that form the cluster surfaces. The properties of 

such clusters are influenced by all of their atoms and especially by the ratio between surface 

and core atoms. Indeed, cluster scaling techniques are based upon the observation that the 

surface to volume ratio largely governs many physical properties ( )X m  of sufficiently large 

metal clusters mM . 

For very large atom counts the number of surface and core atoms scale with 2 3
m  and m , 

respectively. Thus, the surface to volume ratio can be expressed as 1 3
m

− . When neglecting 

the influence of facet edges and corners,[453] most properties are found to scale in a linear 

fashion in terms of this variable 

 1 3( ) ( ) XX m X k m
−= ∞ + ⋅ , 4.3.1 

with ( )X ∞  being the corresponding bulk limit for m → ∞  and Xk  the slope.[448,450-457] For a 

property obeying Eq. 4.3.1 and a given series of corresponding results for increasingly large 

clusters, the bulk limit ( )X ∞  and the Xk  can be identified from a least square fit in terms of 
1 3

m
− .[448,450-457] Eq. 4.3.1 holds from a sufficiently large atom count scalm  onwards, which 

marks the boundary between the non-scaling regime of smaller clusters dominated by 

quantum effects and the scaling regime of larger particles.[459] The specific value of scalm  

depends thereby on the property and the element M at hand.  
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Larger transition metals clusters are hard to isolate for measurements and thus, 

experimental results for them are rare. However, the bulk limit from cluster scaling 

extrapolation is easily compared to the corresponding result of the bulk material. 

Furthermore, the extrapolation as in Eq. 4.3.1 can be considered as a physically motivated 

average over a series of systems. Apart from the bulk limit itself, the coefficient of 

determination 2R  represents a measure for the scalability of the results, while the slope Xk  

describes the scaling behavior. Thus, the data obtained from cluster scaling extrapolations 

provide more information than results from plane-wave calculations of the bulk material. 

The comparably high computational costs of hybrid DFT methods impose a tradeoff 

between an efficient calculation of the model clusters and a good quality of the extrapolation, 

which is of course higher when mostly results for particles of sizes beyond scalm  are included. 

To nevertheless achieve the best possible scaling behavior, the actual cluster models were 

constructed as close as possible to the corresponding bulk materials. Thus, the cluster 

geometries were chosen as cut-outs of the corresponding fcc bulk structures. As similarity to 

the bulk is most important, this choice is valid even when isomers of lower energies 

exist.[453,460,461] To enforce an electronic structure close to that in the corresponding bulk 

materials, hO  symmetry constraints were imposed on all cluster models. Furthermore, strictly 

octahedral systems as well as other structures with low coordinated corner atoms were 

excluded to avoid electronic situations with no relevance to the bulk. 

These principles lead to truncated octahedral structures which are bounded by (111) and 

(100) type facets but do not exhibit four- and threefold coordinated corner- or add-atoms. The 

cuboctahedral cluster models considered comprise up to three layers of atoms and have the 

nuclearities 13,  38,  55,  79,m =  and 116. The center of the clusters 13M , 55M , and 79M  

consists thereby of a single atom, while the systems 38M  and 116M  exhibit an octahedral 6M  

center. The cluster models employed in the present study are depicted in Figure 4.3.1. 

 

 

Figure 4.3.1: Series of mM  cluster models employed in the present study. 
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Analogously to the geometric aspects that determine the cluster models used in the 

extrapolation series, their electronic structure may also be unified towards that of the 

corresponding bulk materials. For this reason, also the effect of constraining the magnetic 

moments per atom aµ  of the model clusters to the corresponding value of the bulk materials, 

hence zero for Pd and Pt as well as 0.616 Bohr magnetons in the case of Ni, was examined. 

However, as the employed cluster models still tend to a notable molecular behavior (Section 

4.3.3) these values are mostly discussed in comparison with the results from the spin-

unrestricted treatment to examine the influence of the spin states on the cluster properties. 

Note, that this comparison provides only a rough indication for this influence and hybrid DFT 

calculations on the 116M  clusters are quite expensive, so that the spin-restricted calculations 

were limited to cluster models up to 79M . 

In the case of the cluster models Pdm and Ptm the high computational costs of hybrid DFT 

calculations also dictate the use of basis sets with effective core potentials (ECP). Although 

also the Stuttgart-Dresden ECP description[413] employed here affects the cluster scaling 

extrapolations to some extend,[456] it still allows for a meaningful comparison of the 

performance of the assessed functionals. 

 

 

4.3.3. Structural, Energetic, and Ionization Properties 

Out of the results calculated for the Nim, Pdm, and Ptm clusters, the average nearest-neighbor 

distances avd  and the corresponding extrapolations av ( )d ∞  to the bulk limit shall be 

discussed first. These results provide some initial hints about the quality of the structure and 

thus, about the quality of the electronic structure description itself. Within small to medium 

sized clusters the lower coordinated atoms at the cluster surface comprise a large fraction of 

the total atom count. Due to reduced bond competition, the interaction between these atoms 

and its remaining neighbors is increased, which is reflected in shorter average bond lengths 

for these systems.[448,451,452,454] With increasing cluster size the fraction of surface atoms is 

reduced so that the average coordination number grows. In consequence, increased distances 

avd  and negative fitting slopes are to be expected in this case.[448,451,452,454] 

The avd  values as obtained from the spin-unrestricted calculations (u) of the cluster 

models mM  with   13,m =  38, 55, 79, and 116 are provided in Table 4.3.1 along with the 

results from the spin-restricted treatment (r) of the series   13,m =  38, 55, and 79. Both of 

these data series indeed show the increasing avd  values with growing cluster size. Some 

exceptions exist though, like the results from the unrestricted PBE calculation of Ni38 and 

Ni55 or from the unrestricted TPSSh treatment of Pd38 and Pd55. However, these outliers are 

rare and most likely related to either the remaining molecular character of the 38M  clusters or 

to the different cluster centers in 38M  and 55M  (single atom vs. octahedron). 
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Table 4.3.1: Average nearest-neighbor distances avd  of the model clusters mM  (M = Ni, Pd, 

Pt) for the series   13,m =  38, 55, 79, and 116 from the spin-unrestricted treatment (u) of the 

six examined functionals along with the corresponding results from the spin-restricted 

treatment (r) of the series with nuclearities up to 79m = . All values in pm. 

  PBE  PBE0  TPSS  TPSSh  M06L  M06 

 m u r  u r  u r  u r  u r  u r 

Ni 13 246.9 246.9  248.5 248.5  245.9 245.9  246.7 246.7  247.9 247.9  248.8 248.8 

 38 249.2 247.4  251.9 251.3  247.9 247.8  248.7 249.3  249.9 249.9  252.7 252.9 

 55 249.0 249.0  253.1 252.3  247.7 247.7  248.5 248.5  250.0 250.0  253.1 253.1 

 79 249.7 249.7  253.4 252.5  248.4 248.4  249.3 249.3  250.5 250.5  253.2 253.4 

 116 249.9 ―  253.2 ―  248.5 ―  249.4 ―  250.5 ―  253.9 ― 

Pd 13 269.6 270.2  268.2 270.3  267.4 268.1  267.1 268.7  270.6 271.6  274.1 276.5 

 38 272.6 272.5  271.5 272.0  270.2 270.0  270.3 269.5  273.6 272.9  279.9 279.6 

 55 273.1 273.0  272.8 272.3  270.6 270.4  270.3 270.5  273.5 273.3  279.5 279.6 

 79 274.5 274.2  273.8 272.9  271.9 271.6  271.6 271.1  274.7 274.4  280.6 280.8 

 116 274.8 ―  274.8 ―  272.2 ―  272.4 ―  275.1 ―  281.1 ― 

Pt 13 269.3 269.0  267.2 266.6  268.0 267.5  267.4 266.7  271.1 270.8  274.9 278.0 

 38 274.3 274.2  272.0 271.8  272.7 272.7  272.0 271.9  275.6 275.4  280.0 279.9 

 55 274.9 274.8  273.2 272.2  273.2 273.1  272.4 272.2  276.2 275.8  281.1 280.8 

 79 276.2 276.1  274.1 273.9  274.6 274.5  274.0 273.8  277.6 276.9  282.3 282.7 

 116 276.6 ―  274.3 ―  275.0 ―  274.1 ―  277.8 ―  283.0 ― 

 

Figure 4.3.2 depicts the plots of the avd  results for the individual model clusters along 

with the corresponding linear fit functions. Table 4.3.2 provides the avd  results from the 

corresponding extrapolations, av ( )d ∞  and r
av ( )d ∞ , of spin-unrestricted and spin-restricted 

results, respectively, along with the coefficients of determination 2R  and the slopes from the 

unrestricted data series. As can be seen from the comparison between of av ( )d ∞  and r
av ( )d ∞  

values, the avd  bulk limits of both series are mostly close to each other. Compared to av ( )d ∞ , 

the r
av ( )d ∞  limits usually differ by about 1 to 2 pm. The extrapolations that lead to the largest 

differences (~3‒5 pm) are uniformly lower for the spin-restricted results. These larger 

deviations only result for hybrid functionals and are related to the different scaling behavior 

as the avd  values obtained for the different cluster models do not differ that much. This 

different scaling behavior likely originates from the molecular character of the smaller cluster 

models, which is further amplified by the EXX term due to the increased HOMO-LUMO gap 

(HLG, see Section 4.3.4). Therefore, and because the unrestricted treatment provides a better 

description of the ionized clusters (see below), the discussion of structural results mainly 

focusses on the data from the latter. 
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Figure 4.3.2: Average nearest-neighbor distances avd  in pm for the a) Nim, b) Pdm, and c) Ptm 

cluster models obtained from the six examined functionals (spin-unrestricted treatment) 

along with the corresponding trend lines linear in 1 3
m

− . Figure adapted from Ref. [443]. 

 

The coefficients of determination 2R  are found typically to amount to ~0.95 for Ni, 

around 0.98 for Pd and generally larger than that in the case of Pt. Only the value of 
2 0.993R =  resulting from the extrapolations of the Pd data obtained with PBE0 represents an 

exception to these trends. In any case these values are quite large so that the extrapolation of 

the avd  values to the bulk limit is well justified and physically meaningful. 

The av ( )d ∞  values obtained with the examined functionals generally result in the order 

av av av av av av(TPSS) (TPSSh) (PBE) (M06L) (PBE0) (M06)d d d d d d≈ < ≈ < ≈ . Only in the case 

of the Pt results for PBE0, a comparatively low bulk limit is obtained due to minor outliers in 

the corresponding data series. 
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Table 4.3.2: Extrapolated bulk limits av ( )d ∞  of the average nearest-neighbor distances avd  

of the model clusters mM  (M = Ni, Pd, Pt) along with the corresponding 2R  values and 

fitting slopes dk  for the series   13,m =  38, 55, 79, and 116 as obtained from the spin-

unrestricted treatment (u) of the six examined functionals. For comparison the bulk limits 
r
av ( )d ∞  resulting from the spin-restricted treatment (r) of the series with nuclearities up to 

79m =  is shown as well as experimental reference values. 2R  dimensionless, all other 

values in pm. 

  PBE PBE0 TPSS TPSSh M06L M06 Exp. 

Ni 2R  0.946 0.946 0.944 0.950 0.959 0.948 ― 

 
dk  ‒13.8 ‒23.4 ‒11.8 ‒12.1 ‒12.4 ‒23.1 ― 

 av ( )d ∞  252.8 258.7 251.1 252.0 253.3 258.9 249a 

 r
av ( )d ∞  252.4 257.7 251.2 252.4 253.7 259.7 ― 

Pd 2R  0.984 0.993 0.984 0.971 0.969 0.935 ― 

 
dk  ‒23.9 ‒30.0 ‒22.0 ‒23.0 ‒20.4 ‒31.9 ― 

 av ( )d ∞  279.8 280.8 276.7 276.9 279.3 288.1 275b 

 r
av ( )d ∞  278.4 275.9 275.2 273.5 277.1 285.7 ― 

Pt 2R  0.987 0.984 0.988 0.984 0.989 0.996 ― 

 
dk  ‒33.9 ‒33.4 ‒32.5 ‒31.8 ‒31.4 ‒37.4 ― 

 av ( )d ∞  283.9 281.6 281.9 281.0 284.6 290.9 277c 

 r
av ( )d ∞  284.7 282.3 282.8 282.1 284.4 286.9 ― 

a Ref. [462] 
b Ref. [463] 
c Ref. [464] 

 

When comparing semi-local DFT approximations and hybrid functionals, one finds that 

PBE0 and M06, hence the methods with a comparatively high contribution of exact-

exchange, mostly overestimate the metal-metal bond lengths. The av ( )d ∞  limits of the M06 

functional are by about 5‒6 pm larger than those resulting from M06L. In the case of the 

PBE/PBE0 pair the bulk limits differ by 5.9 and 1.0 pm for Ni and Pd, respectively. Only the 

aforementioned low av ( )d ∞  value of Pt from PBE0 is an exception to this as it lies below the 

bulk estimate of PBE. A significant impact of the EXX term on the structural results is 

nevertheless apparent in this latter case as well. This influence is rationalized by the fact that 

the admixture of exact-exchange leads to a different preference for the electronic ground state 

(see Section 4.3.4). These altered ground states in turn can lead to different cluster structures. 

The slopes dk  as obtained from PBE0 and M06 for Ni and Pd are notably more negative than 

those resulting from the other methods. While PBE0 yields even more compact Pdm 

structures than the semi-local DFT approximations PBE and M06L, the steeper slope dk  of 

the corresponding linear trend function leads to a larger av ( )d ∞  value for PBE0 than for the 

other two functionals. The situation is different for the pair TPSS/TPSSh where the EXX 
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mixing factor amounts to only 0.10. In this case the avd  bulk limits are quite similar with 

differences of less than 1 pm and very alike dk  values. 

All six examined functionals overestimate the experimental metal-metal distances of the 

transition metal bulk materials. In the case of Ni, the TPSS result of 251.1 pm is closest to the 

reference value of 249 pm.[462] The second-most accurate estimate of 252.0 pm is only 

slightly larger than that and is obtained with TPSSh. The corresponding avd  bulk limits of Pd 

are even closer with 276.7 and 276.9 pm for TPSS and TPSSh, respectively. These two 

functionals yield also the most accurate extrapolations for Pd, where the experimental value 

is 275 pm.[463] For Pt, the TPSSh functional yields a bulk limit of 281.0 pm, which is even 

closer to the experimental reference[464] of 277 pm than its semi-local counterpart. 

Interestingly, also the avd  bulk limit of 281.6 pm resulting from the PBE0 structures is 

slightly closer to this experimental result than the extrapolation of the TPSS data, 281.9 pm. 

In the case of Pt the bulk limits of PBE and M06L, 283.9 and 284.6 pm, exhibit somewhat 

larger deviations than TPSSh, PBE0, and TPSS. A avd  limit of 290.9 pm is obtained from the 

M06 results which overestimates the experimental reference by far. With differences of about 

0.5 pm the extrapolations from PBE and M06L are close to each other for the other metals as 

well. In contrast to its accurate estimate for Pt, the PBE0 functional deviates significantly 

more from the experiment in the case of the other two metals, by 5.8 pm and about 10 pm for 

Pd and Ni, respectively. With regard to these extrapolations, PBE0 behaves close to the M06 

hybrid MGGA, which always overestimates the avd  values most. 

When comparing the PBE estimate for Pd with the corresponding extrapolation of a recent 

all-electron cluster scaling study one finds that the results differ by only 0.1 pm.[448] From 

these extremely well agreeing bulk limits one can conclude that the usage of the Stuttgart-

Dresden ECPs does not impose any reduction of the accuracy on structural results. 

Furthermore, the avd  extrapolations can be compared with the metal-metal distances in the 

bulk materials resulting from plane-wave calculations.[198,446] Despite the reasonable overall 

agreement between the bulk limits in Table 4.3.2 and the values obtained in this plane-wave 

study, the good performance of PBE0 for structural results is not confirmed by the present 

results. 

Next, the cohesive energies, cohE , of the cluster models are discussed along with the 

corresponding bulk limits coh ( )E ∞ . In the present context, the cohesive energy is to be 

understood as the atomization energy of the clusters per atom, 

 tot tot tot
coh tot

( ) ( ) ( )
( ) ( )m mm E M E M E M

E m E M
m m

⋅ −
= = −  . 4.3.2 

Thus, the calculation of cohE  requires also the total energies of the atomic systems. Similar to 

the study presented in Section 4.2, the atomic systems were treated under 2vC  constraints. 

These calculations again lead to 3d
94s

1 configurations in the case of nickel as spin-orbit 

effects were not accounted for in the present calculations.[441] For Pd and Pt 4d
10 and 5d

96s
1 
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configurations are obtained, respectively, which match the respective experimental ground 

states. Note, that the results from these configurations were also used for the calculation of 

the cohE  values of the spin-restricted data. 

Table 4.3.3 provides the cohesive energies emerging from the spin-unrestricted (u) and 

restricted (r) computations of the mM  cluster models. As the fraction of lower coordinated 

surface atoms decreases with increasing m, more bonds per atom are formed on average in 

larger clusters. Thus, the cohE  values can be expected to grow with the cluster nuclearity m. 

Inspection of Table 4.3.3 shows that this is indeed the case. Furthermore, the total energies 

resulting from the spin-unrestricted treatment can not be higher than those from the 

unrestricted calculations. In consequence, the cohE  values are always lower for the restricted 

data series as shown by the results in Table 4.3.3. 

 

Table 4.3.3: Cohesive energies cohE  of the model clusters mM  (M = Ni, Pd, Pt) for the series 

  13,m =  38, 55, 79, and 116 from the spin-unrestricted treatment (u) of the six examined 

functionals along with the corresponding results from the spin-restricted treatment (r) of the 

series with nuclearities up to 79m = . All values in kJ/mol. 

  PBE  PBE0  TPSS  TPSSh  M06L  M06 

 m u r  u r  u r  u R  u r  u r 

Ni 13 270.8 270.8  172.9 172.9  265.6 264.9  218.4 215.2  252.2 246.5  179.7 197.3 

 38 328.0 327.3  216.3 206.9  329.0 327.8  274.2 270.7  319.3 316.2  239.5 234.5 

 55 335.5 335.1  222.7 222.7  337.6 336.8  284.0 281.8  331.4 327.8  246.7 249.3 

 79 352.1 351.4  233.4 224.5  355.8 354.8  300.3 294.5  348.2 347.8  257.6 252.1 

 116 359.1 ―  239.2 ―  364.5 ―  307.4 ―  360.4 ―  263.5 ― 

Pd 13 232.5 228.5  153.1 162.0  242.1 236.7  213.0 207.5  235.9 233.6  157.6 163.0 

 38 285.7 285.0  209.6 206.6  301.0 300.1  267.7 265.1  300.9 299.1  206.1 203.2 

 55 294.6 294.3  223.6 218.4  311.2 310.7  278.1 276.0  312.6 311.9  217.0 214.2 

 79 307.5 306.1  235.8 226.3  325.9 324.2  292.6 288.0  329.4 326.9  229.2 224.1 

 116 316.0 ―  242.4 ―  336.0 ―  301.7 ―  341.2 ―  235.7 ― 

Pt 13 336.3 334.6  266.0 260.5  337.5 333.8  312.3 302.7  330.6 324.7  285.2 279.8 

 38 408.6 406.1  342.9 340.9  417.1 416.1  388.6 386.6  410.1 408.2  352.0 350.6 

 55 416.4 415.7  355.7 349.7  429.3 427.8  400.9 397.3  424.2 421.7  364.1 421.7 

 79 437.9 437.7  372.3 369.1  449.5 448.4  421.0 418.2  445.4 442.7  377.3 376.8 

 116 448.1 ―  380.4 ―  461.3 ―  431.8 ―  458.5 ―  387.1 ― 

 

Figure 4.3.3 depicts the plots of the cohesive energies cohE  for the individual model 

clusters and the corresponding linear trend lines from Eq. 4.3.1 from the spin-unrestricted 

calculations. Table 4.3.4 provides the cohE  bulk limits of the spin-unrestricted and spin-

restricted treatments, coh ( )E ∞  and r
coh ( )E ∞ , respectively. Also the coefficients of 

determination 2R  and the slopes Ek  of the spin-unrestricted results are listed. When 

comparing bulk limits of the restricted and unrestricted data series, one notices the results to 
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be quite consistent. In most cases the differences are found below ~10 kJ/mol. The largest 

deviations of about 30 kJ/mol result from the functionals PBE0 and M06 and may again be 

rationalized with the preference of the EXX term for high-spin states.[198] This preference 

most likely renders the results of the high-EXX functionals more sensitive to the spin state 

compared to those from the semi-local DFT methods or TPSSh. 

 

 

Figure 4.3.3: Cohesive energies cohE  in kJ/mol for the a) Nim, b) Pdm, and c) Ptm cluster 

models obtained from the six examined functionals (spin-unrestricted treatment) along with 

the corresponding trend lines linear in 1 3
m

− . The individual groups of functionals (see text) 

are marked accordingly. Figure adapted from Ref. [443]. 

 

Compared to the avd  values, the cohesive energies vary much more when going from the 

smallest to the largest cluster models. In consequence, the coefficients of determination 2R  

of the cohE  trend lines are higher than those of the avd  series. Indeed, the 2R  values of the 

cohesive energies are always found above 0.99, with the M06 results for the Nim  cluster 

model series as the only exception ( 2 0.98R ≈ ). In any case, the cohesive energy can be 

considered as a quantity which is accurately described by the proposed scaling law, Eq. 4.3.1. 
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Table 4.3.4: Extrapolated bulk limits coh ( )E ∞  of the cohesive energies cohE  of the model 

clusters mM  (M = Ni, Pd, Pt) along with the corresponding 2R  values and fitting slopes Ek  

for the series   13,m =  38, 55, 79, and 116 as obtained from the spin-unrestricted treatment 

(u) of the six examined functionals. For comparison the bulk limits r
coh ( )E ∞  resulting from 

the spin-restricted treatment (r) of the series with nuclearities up to 79m =  is shown as well 

as experimental reference values. 2R  dimensionless, all other values in kJ/mol. 

  PBE PBE0 TPSS TPSSh M06L M06 Exp.a 

Ni  2R  0.993 0.994 0.994 0.996 0.998 0.981 ― 

  Ek  ‒405.5 ‒304.3 ‒452.6 ‒409.6 ‒491.4 ‒387.8 ― 

  coh ( )E ∞  444.6 303.6 459.4 393.5 462.2 347.8 428b 

  r
coh ( )E ∞  447.0 292.3 461.3 391.4 467.8 323.7 ― 

Pd  2R  0.996 1.000 0.997 0.998 0.998 0.999 ― 

  Ek  ‒381.3 ‒431.7 ‒427.5 ‒410.2 ‒478.7 ‒370.7 ― 

  coh ( )E ∞  395.9 337.1 425.0 387.8 440.3 315.4 376c 

  r
coh ( )E ∞  402.1 306.8 432.3 387.5 440.9 297.6 ― 

Pt  2R  0.995 0.991 0.995 0.996 0.997 0.995 ― 

  Ek  ‒512.1 ‒530.3 ‒566.0 ‒547.5 ‒583.6 ‒470.0 ― 

  coh ( )E ∞  555.9 494.5 580.1 546.8 579.9 487.1 563c 

  r
coh ( )E ∞  565.4 501.5 587.2 558.4 585.2 503.6 ― 

a Zero point energy and temperature corrections (Refs. [446,465]) omitted. 
b Ref. [466] 
c Refs. [467,468] 

 

Before addressing the performance of the assessed functionals for the prediction of the 

coh ( )E ∞  values, the present extrapolations are compared with the cohesive energies of the 

bulk materials as obtained in other computational studies. First, the PBE result of 

coh ( ) 395.9E ∞ =  kJ/mol is compared with the corresponding bulk limit of 375.6 kJ/mol 

obtained in an earlier cluster scaling study.[448] The deviation of about 20 kJ/mol results 

almost completely from the use of effective core potentials, as shown in another recent study, 

which assessed the impact of various approximate representations of the atomic core 

electrons on cluster scaling results.[456] Compared to the result that was obtained at the 

PBE/def2-TZVP level in this latter study, the corresponding coh ( )E ∞  bulk limit in Table 4.3.4 

agrees within a few kJ/mol, despite of the different series of cluster models employed.[456] As 

the def2-TZVP basis provides an all-electron description of Ni, a similar agreement is also 

found between the present PBE result and that of an earlier scaling study of Ni clusters.[469] 

Compared to recently published plane-wave results for PBE, PBE0, TPSS, and M06L, the 

coh ( )E ∞  values of the present cluster scaling extrapolations are found to be somewhat lower 

in the case of Ni, but always larger in the case of the two other metals.[446] These differences 

between plane-wave and cluster scaling results are consistent with results reported earlier.[456] 
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The deviations between cluster scaling and plane-wave results are most likely related to 

methodological differences like the representation of the atomic core orbitals or the treatment 

of atomic systems. 

When comparing the semi-local DFT approximations with their corresponding hybrid 

DFT counterparts one finds that the inclusion of the EXX term considerably reduces the 

cohesive energies. This holds especially for the coh ( )E m  values of the individual cluster 

models. When comparing PBE0 with PBE, the slopes 
Ek  of the former are found to be more 

negative in the case of Pd and Pt. Even in these cases the bulk limits of PBE are always 

higher than those of the hybrid functional. In the case of the other two pairs of functionals the 

trend lines of the semi-local DFT approximations are always steeper. For the pairs PBE/PBE0 

and TPSS/TPSSh the reduction of the coh ( )E ∞  bulk limit caused by the EXX term is largest 

for Ni as the semi-local functionals always yield much steeper trend lines. This is most likely 

related to the non-vanishing magnetic moment per atom aµ  found for the corresponding bulk 

material. In the case of the nonmagnetic bulk materials Pd and Pt the effect of the exact-

exchange term on the coh ( )E ∞  values is more comparable. In any case, the reduction of the 

coh ( )E ∞  bulk limits seems to correlate roughly with the value of the EXX mixing factor as 

the changes are found to be more than twice as large in the case of the PBE/PBE0 pair ( 1α = 

0.25) than when going from TPSS to TPSSh ( 1α = 0.10). Thus, the EXX term seems affect 

the bond strengths much more than the bond lengths in these two pairs of functionals, apart 

from the PBE0 description of Ni, where also the quality of structural results breaks down. 

The fact that a hybrid functional can yield similar metal-metal distances but much lower 

cohesive energies compared to its semi-local counterpart has also been reported from plane-

wave calculations.[198] The situation appears to be different when the semi-local terms of a 

hybrid functional are parametrized in the presence of exact-exchange as in M06. In this case 

the slopes Ek  are reduced by a similar amount for all three metals compared to those of 

M06L. In consequence also the reduction of the coh ( )E ∞  values is always comparable when 

going from the M06L to M06. For this pair of functionals the bond elongations due to the 

EXX term are found to correlate with the resulting reductions of the bond strengths. While 

still being comparable for all three metals, the changes of both bulk limits, av ( )d ∞  and 

coh ( )E ∞ , appear to be slightly more pronounced for Pd. 

To assess the performance of the six employed DFT approximations, the results of Figure 

4.3.3 and Table 4.3.4 are compared to the experimental references for the cohesive energy 

values. These reference values would have to be corrected for finite temperature and zero 

point energy effects.[446,465] However, in the present case these corrections were omitted as 

they are below 4 kJ/mol and thus not relevant in the present context. 

The coh ( )E ∞  values from Table 4.3.4 allow for a classification of the assessed functionals 

into four groups (see Figure 4.3.3). Group (i) includes thereby the semi-local MGGA 

functionals TPSS and M06L, which always yield the highest cohesive energy extrapolations 
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for all three metals. In the case of Pt, the coh ( )E ∞  bulk limits yield result to nearly identical 

values, 580.1 kJ/mol for TPSS and 579.9 kJ/mol for M06L. Thus, these two functionals 

overestimate the experimental reference[467,468] of 563 kJ/mol by about 17 kJ/mol. The 

overestimations of these functionals are somewhat more pronounced in the case of the other 

two metals. The coh ( )E ∞  bulk limits of nickel amount to 459.4 kJ/mol (TPSS) and 462.2 

kJ/mol (M06L) and exceed the experimental reference[466] of 428 kJ/mol by about 30 kJ/mol. 

In the case of Pd the results of both functionals differ somewhat more from each other, 425.0 

and 440.3 kJ/mol for TPSS and M06L, respectively, as well as from the experimental 

result[467,468] of 376 kJ/mol. Thus, with deviations of 17, 30, and 49 kJ/mol for the cohE  bulk 

limit of Pt, Ni, and Pd, respectively, the exceptional performance of TPSS previously 

reported[264,470] for smaller transition metal compounds cannot be confirmed by the present 

results for larger cluster models. In contrast, the rather larger deviation of M06L is more in 

line with specific deficiencies of this method that were previously noted in a study of smaller 

Pd clusters.[447] 

The pure GGA functional PBE yields the next highest cohE  extrapolations for the three 

examined transition metals and is assigned to group (ii). Its coh ( )E ∞  bulk limits of 444.6 and 

395.9 kJ/mol obtained in the case of Ni and Pd, respectively, overestimate the experimental 

results, while the cohE  extrapolation for Pt (555.9 kJ/mol) underestimates the corresponding 

experimental reference slightly. With deviations of about 17 and 7 kJ/mol PBE yields the best 

estimates for the cohesive energy of bulk Ni and Pt, respectively. 

Also group (iii) includes a single functional only, namely TPSSh with its low EXX mixing 

factor. TPSSh yields coh ( )E ∞  extrapolations of 393.5, 387.8, and 546.8 kJ/mol for Ni, Pd, 

and Pt, respectively. With a deviation of 12 kJ/mol, the TPSSh estimate for Pd exhibits the 

best agreement with the experimental reference of all examined functionals. Also the 

accuracy of the other two estimates remains still comparable to that of the PBE results. 

Finally, the high exact-exchange functionals PBE0 and M06 comprise group (iv) and 

always yield the lowest coh ( )E ∞  extrapolations. In most cases, however, this implies also the 

worst accuracy as the cohesive energies of the bulk materials are often strongly 

underestimated. In the case of Pt quite similar bulk limits are obtained with both functionals 

which differ by about 70 kJ/mol from the experimental reference. Compared to that, the 

coh ( )E ∞  values of 337.1 and 315.4 kJ/mol obtained for Pd with PBE0 and M06, respectively, 

deviate somewhat less from the experimental result and are thus more accurate than the 

corresponding M06L result. Most underestimated are the cohesive energies of bulk nickel. 

The corresponding error of M06 (~80 kJ/mol) is smaller than that of PBE0, ~125 kJ/mol. 

Thus, for the description of the bond strengths of metallic systems, the functionals with a 

high fraction of exact-exchange exhibit show a somewhat erratic behavior. This holds 

especially for the magnetic material Ni. The errors of PBE0 and M06 are likely related to the 

static correlation error (see Section 2.2.6), which is most pronounced in these methods.[130,217] 
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Table 4.3.5: Vertical ionization potentials IPΦ  and electron affinities EAΦ  of the model 

clusters mM  (M = Ni, Pd, Pt) for the series   13,m =  38, 55, 79, and 116 from the spin-

unrestricted treatment of the six examined functionals. All values in eV. 

  PBE  PBE0  TPSS  TPSSh  M06L  M06 

 m IP EA  IP EA  IP EA  IP EA  IP EA  IP EA 

Ni  13 5.76 2.02  5.20 0.90  5.52 1.69  5.18 1.72  5.12 2.47  5.37 2.83 

  38 5.59 2.93  5.59 2.54  5.54 2.80  5.40 2.35  5.24 2.65  5.47 2.29 

  55 5.48 3.08  4.75 2.70  5.21 2.83  4.97 2.64  5.05 2.73  5.65 2.95 

  79 5.37 3.22  4.80 2.42  5.23 3.05  4.82 2.89  3.58 2.92  4.93 3.41 

  116 5.45 3.52  4.42 2.81  5.27 3.33  4.69 2.88  4.96 3.06  5.10 3.46 

Pd  13 6.39 2.89  6.48 3.43  6.24 2.69  6.23 2.39  6.26 2.58  7.10 2.97 

  38 6.22 3.59  6.53 3.35  6.11 3.42  6.11 3.29  5.88 3.31  6.48 3.51 

  55 5.85 3.57  5.76 3.17  5.69 3.40  5.61 3.29  5.58 3.37  6.29 3.66 

  79 5.76 3.72  5.76 3.21  5.63 3.58  5.58 3.42  5.57 3.51  6.38 4.10 

  116 5.78 3.97  5.81 3.91  5.65 3.83  5.53 3.78  5.53 3.74  6.43 4.11 

Pt  13 7.04 3.47  5.38 3.12  6.91 3.37  6.94 3.24  6.81 3.26  7.37 3.44 

  38 6.69 4.15  6.79 4.24  6.62 4.06  6.78 3.98  6.34 3.75  7.21 4.57 

  55 6.42 4.13  6.31 3.75  6.34 4.02  6.53 3.90  6.07 3.97  6.90 4.24 

  79 6.46 4.42  6.34 4.32  6.37 4.32  6.23 4.27  6.06 4.04  6.82 4.88 

  116 6.30 4.49  6.33 4.31  6.21 4.39  6.27 4.54  6.00 4.20  6.74 4.92 

 

Next, the vertical ionization potentials IPΦ  and electron affinities EAΦ  of the mM  cluster 

models shall be discussed as examples for electronic properties. These values are provided in 

Table 4.3.5 and were computed with the ∆SCF approximation35  

 IP tot tot( ) ( ) ( )mm E M E m
+Φ = − , 4.3.3a 

 EA tot tot( ) ( ) ( )mm E m E M
−Φ = − . 4.3.3b 

Thus, the IPΦ  and EAΦ  values result from the energies of cationic and anionic model cluster 

species mM
+  and mM

− , respectively, which are taken to have the same structures as the 

corresponding neutral clusters. In contrast to the average nearest-neighbor distances and 

cohesive energies, the IPΦ  and EAΦ  values were obtained by means of a spin-unrestricted 

treatment only. In the case of larger particles, both electronic quantities are well described by 

a classical droplet model which previously has been discussed in great detail.[449,450,471] 

According to this model the excessive negative charge distribution within the anionic species 

minimizes its Coulomb repulsion by assuming an increasingly extended form with growing 

cluster size. In consequence the attractive terms of the Hamiltonian become more important 

so that EAΦ  grows with increasing cluster size.[449,471] Similarly, IPΦ , the energy required to 

create a positive charge distribution upon removal of a single electron is reduced when going 

from smaller to larger clusters.[449,471] Inspection of Table 4.3.5 reveals that both quantities, 

                                                
35 Not to be confused with the ∆SCF method described in Section 3.1.3. 
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IPΦ  and EAΦ , generally follow this behavior. However, various outliers can be identified 

which have a significant impact on the scaling behavior and thus are subsequently discussed 

in more detail. One further expects[13] IP EA( ) ( )m mΦ > Φ  which is fulfilled in all cases.  

 

Table 4.3.6: Extrapolated bulk limits IP ( )Φ ∞  and EA ( )Φ ∞  of the vertical ionization 

potentials, electron affinities, and their differences IP EA∆Φ = Φ − Φ  of the clusters mM  (M = 

Ni, Pd, Pt) along with the corresponding 2R  values and slopes, IPk  and EAk , for the series 

  38,m =  55, 79, and 116 as obtained from the spin-unrestricted calculations with the six 

examined functionals as well as the experimental values of the work function. 2R  

dimensionless, all other values in eV. 

  PBE PBE0 TPSS TPSSh M06L M06 Exp. 

Ni  2R   0.996  0.838  0.489  0.934  0.172  0.510 ― 

  IPk   3.23  11.49  2.71  7.46  7.98  5.96 ― 

  IP ( )Φ ∞   4.63  2.02  4.46  3.10  2.72  3.80 5.04–5.35a 

  2R   0.944  0.141  0.876  0.899  0.961  0.919 ― 

  EAk   –6.14  –1.66  –5.81  –6.03  –4.60  –13.16 ― 

  EA ( )Φ ∞   4.72  3.03  4.45  4.20  3.99  6.31 5.04–5.35a 

  ( )∆Φ ∞   –0.90  –1.01  0.18  –1.09  –1.28  –2.51 0.00b 

Pd  2R   0.756  0.589  0.722  0.759  0.752  0.017 ― 

  IPk   4.72  7.26  4.84  5.90  3.55  0.26 ― 

  IP ( )Φ ∞   4.72  4.15  4.56  4.23  4.75  6.32 5.22–5.60a 

  2R   0.788  0.378  0.804  0.771  0.910  0.900 ― 

  EAk   –4.12  –5.30  –4.46  –5.11  –4.52  –7.29 ― 

  EA ( )Φ ∞   4.74  4.73  4.67  4.72  4.61  5.67 5.22–5.60a 

  ( )∆Φ ∞   –0.02  –0.58  –0.11  –0.49  0.14  0.66 0.00b 

Pt  2R   0.820  0.619  0.849  0.868  0.807  0.900 ― 

  IPk   3.71  4.56  3.94  6.03  3.45  4.88 ― 

  IP ( )Φ ∞   5.54  5.30  5.40  4.95  5.25  5.70 5.12–5.93a 

  2R   0.830  0.090  0.779  0.783  0.970  0.439 ― 

  EAk   –4.64  –3.23  –4.13  –6.51  –4.70  –5.29 ― 

  EA ( )Φ ∞   5.35  4.88  5.23  5.80  5.16  5.97 5.12–5.93a 

  ( )∆Φ ∞   0.19  0.42  0.17  –0.58  0.09  –0.28 0.00b 
a Refs. [472-474] 
b IPΦ  and EAΦ  assume identical values of the work function in the bulk limit. 

 

 

Like most electronic properties, the IPΦ  and EAΦ  values are mostly dominated by a few 

individual KS orbitals. Especially orbitals around the HLG can be expected to evolve quite 

slowly with increasing cluster size towards the corresponding levels of the bulk limit. In 

consequence, such properties usually exhibit a quite late onset scalm  of their linear scaling 

behavior.[475,476] Nevertheless, the extrapolation of the IPΦ  and EAΦ  results has been carried 
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out as well, with the corresponding bulk limits provided in Table 4.3.6. The results for the 

13M  species were not included in this extrapolation as these clusters were found to exhibit 

strongly molecular characteristics with regard to their electronic properties. Nevertheless, the 

coefficients of determination 2R  obtained from the extrapolation of the remaining IPΦ  and 

EAΦ  data are found to be significantly lower compared to those from the extrapolations of 

avd  and cohE  discussed above. In some cases, which mostly occur for the high EXX hybrid 

functionals PBE0 and M06, the coefficients of determination are so low, 2 0.75R ≪ , that the 

series of results obtained for the employed set of cluster models seem to scale hardly at all. 

Before addressing the origin of this occasional behavior the results of the smoothly 

extrapolating series shall be discussed first. 

In the bulk limit an excessive charge distribution becomes infinitely extended and 

therefore its Coulomb repulsion vanishes.[449,471] Thus, for metallic materials with vanishing 

band gap both quantities, IPΦ  and EAΦ , have the same bulk limit as the energy to create 

positive or negative charge distribution is dominated by the work function Φ  in both 

cases.[449,471] However, this quantity is not only specific to the bulk material, but varies also 

with the type of the crystalline surface.[468] Therefore the ranges of experimental values[472-474] 

measured for different crystalline orientations are used as references. 

In the case of Pt the bulk limits of the vertical ionization potentials that could be obtained 

with 2 0.75R >  result from the functionals PBE, TPSS, TPSSh, M06L, and M06 and amount 

to 5.54, 5.40, 4.95, 5.25, and 5.70 eV, respectively. These values are all within the 

corresponding range of experimental reference values for Φ , 5.12–5.93 eV,[472-474] except for 

TPSSh, which slightly underestimates it. The EAΦ  values of PBE0 and M06 do not scale 

properly, while the EA ( )Φ ∞  bulk limits of all other functionals are within the experimental 

range of Φ . For Pd, the functionals PBE, TPSSh, and M06L exhibit 2 0.75R >  for both 

series, IPΦ  and EAΦ , but always underestimate the work function by about 0.5–1.0 eV. Also 

the EAΦ  values resulting from M06 scale well, while their bulk limit is found slightly above 

the range of experimental Φ  values. The IPΦ  results for Ni can be extrapolated reasonably 

well only in the case of PBE, PBE0, and TPSSh, whereas all functionals underestimate the 

work function by about 0.4, 3.0, and 1.9 eV, respectively. The corresponding EAΦ  values 

exhibit a reasonable scaling behavior for all functionals, except for PBE0. The deviations of 

the corresponding bulk limits from the experimental references are reduced to ~1 eV at most. 

Table 4.3.6 also provides the bulk limits ( )∆Φ ∞  of the series of differences 

IP EA( ) ( ) ( )m m m∆Φ = Φ − Φ . These extrapolations should yield a zero band gap and serve as 

indicator for the consistency of the results for IPΦ  and EAΦ . The strongest deviations of 

( )∆Φ ∞  from the expected value of zero are obtained in the case of Ni, where only the TPSS 

functionals yields a reasonably low estimate, ( ) 0.18∆Φ ∞ =  eV. All other examined 

functionals extrapolate the ∆Φ  series to negative values which range from about ‒0.9 eV in 

the case of PBE to the bulk limit of ( ) 2.5∆Φ ∞ ≈ − eV obtained with M06. The ( )∆Φ ∞  
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extrapolations are closer to the theoretical limit of zero for the other two elements, whereas 

the semi-local DFT approximations always deviate by less than 0.2 eV. The hybrid 

functionals always yield larger deviations than that. Indeed, hybrid DFT methods are known 

to predict not necessarily a vanishing band gap for metallic systems. Therefore, one may 

expect ( ) 0∆Φ ∞ >  from hybrid functionals as opposed to some of the bulk limits for ∆Φ  

listed in Table 4.3.6. These negative ( )∆Φ ∞  bulk limits are, however, mostly related to 

outliers in the IPΦ  and EAΦ  series and not to the electronic structure description itself. 

Compared to earlier all-electron PBE results for Pd,[448] the extrapolations of the 

corresponding IPΦ  and EAΦ  values of the present study are lower by 0.33 and 0.15 eV, 

respectively. These differences most likely arise from a stronger amount of level broadening 

employed in the all-electron calculations as well as from a different choice of the model 

clusters used for the extrapolation (Pd147 instead of Pd116). In any case, the bulk limit of 

( )∆Φ ∞  obtained in the present extrapolation is significantly closer to zero. 

As mentioned before, electronic properties like the vertical ionization potentials and 

electron affinities are often dominated by individual orbitals. The effect of the applied FON 

broadening technique is in some sense counteracting this aspect as it involves a potentially 

larger number of orbitals in the ionization process if the HOMO-LUMO gap is small. Thus, 

the FON broadening leads to an earlier onset of the aforementioned classical behavior of the 

ionic clusters according to the droplet model. However, smaller clusters still exhibit HLGs 

large enough to neglect these effects of the FON technique. In addition, the hybrid 

functionals generally tend to increase the HOMO-LUMO gap further. In these cases the IPΦ  

and EAΦ  values remain mostly affected by the evolution of individual orbitals up to larger 

cluster sizes. This generally reduces the scalability of vertical ionization potentials and 

electron affinities. Furthermore, the striking outliers found in some of the series of IPΦ  and 

EAΦ  results seem to be related to cases where one of these orbitals involved in the ionization 

happens to be symmetry-degenerate (e- or t-type). In consequence, electron configurations 

result where individual electrons (or holes) are distributed among two or three symmetry-

degenerate orbitals. This in turn leads to significant shifts in the IPΦ  and EAΦ  energies. The 

occurrence of symmetry-degenerate orbitals is a direct consequence of the hO symmetry 

constraints that were imposed on the cluster models. Thus, the highly symmetric treatment 

represents a clear drawback for the calculation of electronic properties like IPΦ  and EAΦ , at 

least when point group symmetries with degenerate irreducible representations are employed. 

Nevertheless, it has to be emphasized at this point again that high symmetries like hO  do not 

only reflect the electronic structure of the corresponding fcc bulk materials but are also 

essential for obtaining suitably converged KS orbitals of larger transition metal clusters. 
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4.3.4. Electronic Structure Aspects 

The application of FON techniques can have a significant influence on electronic properties 

like ionization energies, as discussed in Section 4.3.3. This effect clearly warrants further 

discussion. Apart from the LDA exchange term, level broadening favors electron 

delocalization. Indeed, FON techniques are also known to provide an implicit description of 

static correlation effects (see Section 2.2.6) as well.[235,236,243] This implicit description is of 

course related to the employed XC approximation as well as to the system at hand. In this 

context one can formulate several requirements, which are necessary to achieve an implicit 

description of static correlation effects for transition metal clusters. These are (i) a sufficient 

amount of LDA exchange present in the XC term to prevent the corresponding XC hole (see 

Section 2.2.2) from becoming overly delocalized, (ii) a vanishing band gap in the case of 

larger metallic systems, (iii) a nonzero density of states (DOS) around the HOMO-LUMO 

gap, and (iv) the application of a FON technique with a sufficiently large broadening 

parameter to include as many relevant orbitals near the HLG as possible.36 

KS-DFT represents a single-determinant formulation only, hence, does not provide any 

direct measure for static correlation effects. Thus, the aforementioned requirements represent 

a rough guideline only. In the present context they are, however, sufficient to provide a 

rationalization of the behavior observed for the assessed XC approximations. To this end, the 

number of KS orbitals located within a certain energy interval near the HOMO-LUMO gap 

was examined. Thereby the two intervals F F[ 0.5 eV, ]ε ε−  and F F[ 0.5 eV, 0.5 eV]ε ε− +  

where studied, with Fε  being the center of the HLG, which in turn was defined as the energy 

difference between the lowest KS orbital with a population below 1 2  and the highest orbital 

with a population of more than that. The designators occ
DOSI  and tot

DOSI  are used to denote the 

orbital counts obtained for the first and second interval, respectively. Note, that in the limit of 

bulk materials, occ
DOSI  and tot

DOSI  are to be understood as integrals of the density of states over 

the respective intervals. Figure 4.3.4 provides a plot of the values of both quantities on the 

example of the Ptm cluster series and the functionals PBE, PBE0, and TPSSh. 

Apart from minor deviations in the case of smaller systems, the number of KS orbitals 

around the HLG grows as expected with the cluster nuclearity. Both, occ
DOSI  and tot

DOSI  are found 

to be highest in the case of PBE as this functional yields comparatively small HOMO-LUMO 

gaps. A similar behavior results also from both MGGA functionals. In contrast, both DOSI  

values obtained from PBE0 (and M06 as well) remain small even for larger cluster sizes. 

Especially the numbers of more than half populated KS orbitals remain very small, even for 

larger clusters like Pt116. Thus, the behavior of high EXX hybrid functionals can be clearly 

distinguished from that of semi-local DFT methods. However, the DOSI  values resulting from 

                                                
36 The actual value of the broadening parameter is restricted, of course, because a too extensive level 

broadening does not lead to a realistic electronic structure description. 
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the low EXX hybrid functional TPSSh remain fairly large, despite of being lower than the 

corresponding occ
DOSI  and tot

DOSI  counts from the semi-local functionals. A similar behavior is 

also obtained for the other two examined transition metal elements. 

 

 

 

Figure 4.3.4: Orbital counts occ
DOSI  and tot

DOSI  within the intervals F F[ 0.5 eV, ]ε ε−  and 

F F[ 0.5 eV, 0.5 eV]ε ε− +  (see text) obtained for the Ptm cluster models (   13,m =  38, 55, 79, 

and 116) with PBE, PBE0, and TPSSh. Figure adapted from Ref. [443]. 

 

Thus, the amount of exact-exchange in TPSSh can be considered as small enough to yield 

a reasonable narrow HOMO-LUMO gap in the case of larger clusters. In consequence, also 

the number of orbitals near the HLG remains significantly large. As stated at the beginning of 

this section, this is required for an adequate electronic structure description of metallic 

systems influenced by static correlation effects. On the other hand, hybrid functionals with a 

high EXX mixing factor such as PBE0 and M06 can be expected to behave similarly to the 

HF method, which severely fails for metals due to its depleted density of states around the 

Fermi level and its discontinuous behavior of the band dispersion.[477,478] 
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Table 4.3.7: Magnetic moments per atom aµ  of the series of clusters mM  (M = Ni, Pd, Pt) as 

obtained from the six examined functionals. All values in Bohr magnetons. 

  m PBE PBE0 TPSS TPSSh M06L M06  
Ni  13 0.615 0.615 0.615 0.615 0.655 0.615  
  38 0.795 0.842 0.891 0.895 0.895 0.895  
  55 0.722 0.618 0.733 0.837 0.870 0.836  
  79 0.682 0.785 0.730 0.760 0.778 0.658  
  116 0.787 0.810 0.792 0.793 0.793 0.793  
Pd  13 0.461 0.462 0.461 0.462 0.461 0.462  
  38 0.214 0.211 0.216 0.474 0.473 0.316  
  55 0.184 0.400 0.211 0.219 0.282 0.182  
  79 0.413 0.430 0.429 0.455 0.421 0.405  
  116 0.398 0.379 0.398 0.397 0.499 0.483  
Pt  13 0.461 0.462 0.462 0.462 0.462 0.462  
  38 0.116 0.158 0.140 0.158 0.192 0.158  
  55 0.177 0.473 0.181 0.182 0.242 0.436  
  79 0.192 0.278 0.208 0.405 0.602 0.228  
  116 0.000 0.034 0.000 0.018 0.334 0.241  
 

The magnetic moments per atom aµ  shall be briefly discussed as another aspect of the 

electronic structure computed for the examined model clusters with the assessed functionals. 

These values are provided in Table 4.3.7. Transition metal clusters are often magnetic even 

for elements which exhibit 0aµ =  in the bulk limit.[447,475,476] Furthermore, such systems 

feature an oscillating behavior in their aµ  values up to very large nuclearities.[447,475,476] This 

essentially prevents any extrapolations of aµ  results to the bulk limit from cluster sizes used 

in the present study. A scaling approach was therefore not attempted for this quantity. 

Instead, the general trends in the aµ  values of the mM  clusters were found to reflect some 

construction principles of the assessed functionals. The employed functionals yield mostly 

identical values for the 13M  clusters due to the mostly molecular characteristics of these 

systems. The aµ  values from the various functionals start to differ at 38m = . For clusters of 

this size and above, the plainly added EXX term as in PBE0 and TPSSh generally causes 

larger magnetic moments compared to the corresponding local functionals. This propensity 

for larger aµ  values agrees with the previously reported preference of hybrid DFT methods 

for high-spin states in the case of bulk materials.[479] In contrast, the M06L functional yields 

mostly higher magnetic moments than its hybrid DFT counterpart M06. This agrees with the 

recently observed behavior[447] for the magnetic moments of Pd clusters obtained with M06L 

and may most likely arise from the different parametrization of the corresponding semi-local 

XC terms in both functionals.  
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4.3.5. Conclusions 

The addition of exact-exchange to local DFT approximations as in hybrid density functionals 

leads to significant changes in the description of transition metal systems as shown in 

Sections 4.3.3 and 4.3.4 for the group 10 model clusters Nim, Pdm, and Ptm. In summary, 

hybrid DFT methods tend to underestimate the strengths of metal-metal bonds and to favor 

high-spin states, which both leads to significantly altered structures in some cases. 

As mentioned in Section 2.3.3, the EXX mixing factor 1α  can only be chosen on empirical 

grounds and a specific value for 1α  may work well for systems of certain type but lead to 

severe failures for other species. In the present case 1 0.25α ≥  as in PBE0 and M06 was 

found to often cause an erratic behavior in the prediction of most quantities. While PBE0 is 

still able to provide accurate structural results in some cases, M06 always fails for this task. 

Furthermore, the M06 hybrid functional and its semi-local counterpart M06L, seem to suffer 

from the empirical aspects of its construction. 

In contrast, the hybrid functional TPSSh with 1 0.1α =  provides an overall accurate 

description of the examined transition metal clusters, which is at least on a par with that of 

the PBE GGA functional for energetic quantities and better than that for structural results. 

The good accuracy of this hybrid functional is somewhat surprising as its value for the EXX 

mixing factor was obtained from a parametrization on properties of main group compounds 

only.[212] The ability of the TPSSh approximation to describe transition metals was 

rationalized with the density of states around the HOMO-LUMO gap which seems still 

sufficiently large to allow for an implicit description of static correlation effects by means of 

the local exchange term and level broadening. However, its actually good accuracy may be 

rationalized with the partial self-interaction correction provided by its EXX term. While the 

SIE does not cause as dramatic failures in the description of the mM  species, as in the case of 

nickel subcarbonyls (Section 4.2), the transition metal clusters can certainly not be considered 

unaffected by this artifact. Indeed in this context the TPSSh functional seems to provide a 

good tradeoff between the self-interaction error and the static correlation error, which may be 

significant in cluster scaling approaches as residual self-repulsion can scale with the system 

size.[215] Therefore, the TPSSh functional seems attractive for problems that simultaneously 

involve metallic and molecular moieties as the latter may be more prone to suffer from self-

interaction artifacts. 
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4.4. CO Adsorption on Platinum Model Clusters 

4.4.1. The CO Puzzle 

The following sections discuss the results obtained with the semi-local functionals PBE, 

TPSS, and M06L, with the hybrid DFT approximations PBE0, TPSSh, and M06 as well as 

with the PBE+Umol method for the CO adsorption on the (111) facets of Pt model clusters. 

The presentation of the results obtained with the latter method thereby follows Ref. [286]. 

The correct description of the adsorption of the CO molecule on extended transition metal 

surfaces is a well-known challenge for semi-local DFT approximations.[480-484] Indeed, in the 

case of the Pt(111) surface semi-local functionals often overestimate the corresponding CO 

adsorption energy by more than 40 kJ/mol[482,483] compared to experimental reference values, 

115±15 kJ/mol.[485-487]  

 

 

Figure 4.4.1: Schematics of the back-bonding mechanism for the adsorption of the CO 

molecule on extended transition metal surfaces. Due to the self-interaction error in semi-local 

DFT methods the energy of the 2π* orbitals of the CO molecule is too low which artificially 

enhances its back-bonding interaction with the metal d-band across the Fermi level Fε . 

Figure adapted from Ref. [286]. 

 

This quantitative inaccuracy can be rationalized by referring to the back-bonding 

interaction within the Blyholder model (see Section 4.2).[438,488-491] In the case of the 

adsorption of CO on transition metal surfaces, the Blyholder model predicts a primary 

interaction between the CO 5σ orbital and the surface (σ-bonding) as well a partial electron 

transfer from the d-band of the extended surface back into the CO 2π* orbitals (back-

bonding).[438,488-491] Back-bonding between these two interaction partners is increased when 

the CO 2π* orbitals are lowered in energy.[438,488-491] As a direct consequence of the missing 

discontinuity of the XC potential at integer occupation numbers due to the self-interaction 
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error (see Section 2.2.5), partially populated levels exhibit a too low energy.[480] This holds 

especially for the KSε  energies of the CO 2π* orbitals, which is depicted in Figure 4.4.1. 

Thus, upon adsorption of the CO molecule on a transition metal surface, the SIE causes the 

band gap to be too small which in turn leads to overestimated adsorption energies.[480] 

Another important issue concerns the preferred site at which the CO molecule adsorbs on 

the (111) surface. Figure 4.4.2 depicts the location of the four distinct, highly symmetric sites 

for the CO adsorption on extended (111) surfaces: the 1µ -coordinated top site (denoted by 

“t”), the twofold coordinated 2µ -type bridge site (“b”), and the hollow sites with a 3µ -

coordination. In the case of the latter one can further distinguish between fcc-type (“f”) and 

hcp-type (“h”) hollow sites, depending on the position of the second atomic layer of the (111) 

surface.[481,492] 

 

  

Figure 4.4.2: Positions of the top (t), bridge (b), and hcp- (h) and fcc-hollow (f) adsorption 

sites on the top (white) and sub-surface (dark grey) layers of an extended (111) surface. 

 

The preference for the adsorption on a specific site depends on various properties of the 

surface at hand like the work function, the filling of the individual bands (especially the d-

band), and the energetic position of the bands with respect to the Fermi level.[482,486,488-491,493] 

In the case of the Pt(111) surface a preference for a CO adsorption at the top site is reported 

by several experimental studies.[494-498] In contrast, semi-local DFT approximations yield a 

preference for the fcc-hollow site.[480,481,499,500] After this qualitative failure of semi-local DFT 

methods has been recognized, it was termed as the “CO puzzle”.[480,481] Subsequently a large 

number of studies was dedicated to rationalize the origin of this problem. In this context, the 

influences of the adsorption site model,[286,492,500,501] of relativistic effects,[500,502-504] of the 
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representation of the core-electrons,[479,480,483,505] of empirical site-dependent 

corrections,[481,506] as well as of self-interaction artifacts[479,483,484,499,500,504,507] were examined. 

Indeed, most of these studies identified the self-interaction error not only to cause the 

aforementioned overestimated CO adsorption energies of semi-local functionals but also the 

incorrect preference for the fcc-hollow site.[484] Like the overestimation of adsorption 

energies also this qualitative failure can be understood in the context of the Blyholder 

model.[438,489,490] Apart from the small energetic difference between the interacting Pt d-levels 

and the CO 2π* orbitals, a significant overlap between both interaction partners represents a 

further condition for back-bonding.[489,490] As depicted in Figure 4.3.3, the overlap between 

the 2π* orbitals and the levels of the Pt(111) surface is higher at a hollow site than at a top 

site.[489,490] Thus, back-bonding is primarily dominant at h- and f-type sites, while at top sites 

the primary σ-bonding between the CO 5σ orbital and the levels of the Pt surface 

prevails.[438,489,490,508] In combination with the aforementioned artificial enhancement of the 

back-bonding interaction due to the SIE, this explains why semi-local DFT approximations 

erroneously predict a fcc-hollow site preference for the adsorption of the CO molecule on 

Pt(111).[438,489,490] 

 

 

Figure 4.4.3: Position of the CO molecule at a) hollow-type and b) top sites. The overlap 

between the CO 2π* orbitals and the levels of the Pt surface is higher at hollow sites. Figure 

adapted from Ref. [286]. 

 

One is therefore confronted with the following dilemma when selecting a suitable DFT 

approximation for the description of the adsorption of the CO molecule on Pt(111). On the 

one hand, a correction of the SIE should increase the energy of the CO 2π* orbitals and thus 

reduce the tendency to overestimate the energetic contribution of the back-bonding at hollow 

sites. However, the preference for a specific adsorption site is determined by fine details of 

the electronic structure of the metal moiety such as the energies and the width of the bands 

near the Fermi level.[479,483] Thus, the correct prediction of the site preference for the CO 

adsorption on Pt(111) requires methods which are (nearly) free of self-interaction but are also 

able to provide an accurate description of the metal moiety. However, the electronic structure 

of the Pt(111) surface exhibits a considerable multi-reference character. As discussed in 
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Sections 2.2.5 and 2.2.6, any self-interaction correction automatically deteriorates the implicit 

description of static correlation by local exchange functionals, unless the correlation term can 

account for this latter effect. Thus, the rather unphysical description of the density of states 

from hybrid DFT methods like PBE0 (see Section 4.3) also affects the results for the CO 

adsorption site preference.[479,483] 

The B3LYP functional was occasionally reported to predict the correct top site preference 

for the CO adsorption on Pt(111) or to render both, top and fcc-hollow sites, nearly 

degenerate.[479,500,501,507] However, given its notoriously bad description of transition 

metals,[198,264,266-270] B3LYP is unlikely to deliver the top site preference for the correct 

reason. The same is true for the vdW-DFT methods (see Section 2.2.7), which were reported 

to predict a CO adsorption at the top site as well, but actually do not provide any self-

interaction correction at all.[509] Thus, the correct site preference obtained with vdW-DFT 

functionals can only result from an altered description of the electronic structure of the metal 

moiety compared to semi-local functionals, but not from the energy of the CO 2π* orbitals. 

According to the results of the case study presented in Section 4.3 the hybrid functional 

TPSSh provides an accurate description of late transition metals.[443] One may thus hope that 

its comparatively small exact-exchange term ( 1 0.1α = ) reduces the self-interaction 

sufficiently enough to correct the energy of the CO 2π* orbitals. This motivated the 

subsequently presented study where the performance of six DFT approximations, namely 

PBE,[49] PBE0,[87] TPSS,[75] TPSSh,[212] M06L,[77] and M06[77,90] was assessed on the example 

of the CO adsorption at various sites on the (111) facets of different cluster models (see 

Section 4.4.2). Furthermore, the influence of scalar relativistic effects was briefly examined. 

Furthermore, these models were also studied with the PBE+Umol method, whose SIE 

correction was projected onto the CO 2π* orbitals.[286] To assess the influence of this 

correction the value of the parameter 2π*U  (see Sections 2.4 and 4.2) was varied between 1.0, 

1.5, and 2.0 eV.[286] At this point it is worth emphasizing that, while the Umol(CO 2π*) term 

led to unphysical results for the nickel carbonyl complexes (see Section 4.2), the situation is 

quite different in the case of larger Pt clusters. First, the Pt 5d subshell is rather delocalized in 

larger transition metal particles so that the prerequisites for an application of the DFT+Umol 

correction to the Pt 5d orbitals are not really met. While the correct localization of the Ni 3d 

subshell in the nickel carbonyl complexes is important, its orbitals are significantly more 

compact than those of the Pt 5d subshell. Thus, in the 5d orbitals, self-repulsion is much 

lower and so is the tendency to minimize it through delocalization. Furthermore, the HOMO-

LUMO gap is smaller in larger transition metal clusters compared to the carbonyl complexes. 

In consequence, the correct energy of the CO 2π* orbitals is, according to the above well-

established rationalization, most important for the correct prediction of the CO adsorption site 

preference. Therefore, the application of the Umol(CO 2π*) correction term is well justified 

in the case of the CO adsorption on Pt model clusters. 
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4.4.2. Adsorption Site Models 

In the following the adsorption site models on the (111) facets of the Pt model clusters 

employed in the present case study are presented. These sites are subject to two main effects 

resulting from the finite size of the cluster models;[454,455,510-513] the influence of under-

coordinated atoms of the facet border and of elongated metal-metal distances between surface 

atoms that are induced by the clusters core atoms. Especially the former effect can lead to 

significantly higher adsorption energies, which demands a careful analysis. The effect of the 

average metal-metal distances on the CO adsorption energies is briefly addressed at the end 

of this section.  

 

 

Figure 4.4.4: Position of the CO adsorption sites on the (111) facets of the model clusters 

Pt79, Pt140, and Pt225 employed in the present case study. 
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Figure 4.4.4 depicts the (111) facets of the model clusters Pt79, Pt140, and Pt225 as well as 

the positions of the examined CO adsorption sites on them. The Pt79 cluster corresponds to 

the same atom-centered model used in the cluster scaling study of Section 4.3. The Pt140 

model derives from the Pt116 cluster (see Figure 4.3.1, Section 4.3) upon addition of 4 atoms 

per (100) facet and thus exhibits an octahedral center. The Pt225 model originates from the 

larger cuboctahedral cluster Pt147 and is atom-centered. Despite the different origins of these 

cluster models, the “upper” corners of their (111) facets feature the same local topologies (see 

Figure 4.4.4). In consequence one notices a repeating pattern in the types of adsorption sites, 

i.e. 1t, 2f, 3b, etc., when going from the upper corner to the lower border. Due to the 

employed 4hD  symmetry constraints one CO molecule is adsorbed on each of the eight (111) 

facets, which leads to the adsorption complexes Pt79(CO)8, Pt140(CO)8, and Pt225(CO)8. 

In the present application of the six examined XC functionals and the DFT+Umol method 

CO adsorption is studied on adsorption sites of these model clusters. The adsE  values are to 

be understood as adsorption energies per CO molecule  

 
( ) ( ) ( )tot 8 tot tot
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Pt (CO) Pt 8 CO

8
m mE E E
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− − ⋅
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All subsequently discussed adsorption energies were obtained by using the def2-TZVP basis 

set,[412] which implies a Stuttgart-Dresden effective core potential (ECP) representation of the 

atomic core orbitals of Pt (see Section 4.1 for the detailed computational parameters). As 

shown by comparison with a scalar-relativistic[514,515] using a SARC-type all-electron basis 

set[516] (see Section 4.4.4), the influence of the ECP approximation on the adsE  values is 

generally smaller than the corresponding effect on the cohesive energies (see Section 4.3.3). 

All adsE  values were corrected for the basis set superposition error (BSSE)[395] which was 

estimated in terms of the counterpoise approach.[418] The resulting BSSE estimates amount 

mostly to ~10 kJ/mol per CO molecule (~16 kJ/mol at most) and are lowest at the top sites.37  

Also the model character of the studied sites on the cluster models for the CO adsorption 

on the extended Pt(111) surface has to be addressed to admit a methodological assessment by 

comparing the results to available experimental references.[486,487] From earlier adsorption 

studies two main effects of the employed cluster model on the CO adsorption energies are 

known.[454,455,510-513] The first one arises from the under-coordinated atoms at the borders and 

edges of the cluster facets.[511,513] The influence of these facet borders significantly affects the 

adsorption behavior on small clusters[511,513] and, to a certain extent, remains present near the 

edges of larger facets as well.[517,518] The borders of such (111) facets are known to have an 

attractive effect in the case of CO adsorbates.[512,513] Thus, the CO adsorption energies on 

(111) facets generally decrease when going from smaller to larger cluster models as well as 

when going from sites close to facet borders to those near the center of a facet.[512,513]   

                                                
37 The larger BSSE estimates at hollow and bridge sites are again rationalized by the higher overlap between 

the interacting orbitals there.  
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To put the influence of the under-coordinated atoms on the (111) facets of the employed 

cluster models in a more general context, the average coordination numbers of the surface 

atoms associated with the individual adsorption sites are examined.[286] On (111) surfaces the 

1, 2, and 3 atoms that form top, bridge, and hollow-type adsorption sites are surrounded by 6, 

8, and 9 nearest-neighbor surface atoms, respectively. In this context a total of site 7,n =  10, 

and 12 surface atoms are associated with the individual top, bridge, and hollow sites, 

respectively. For each adsorption site the average nearest-neighbor coordination numbers 

 
site

av
site

1 n

i

i

CN CN
n

= ∑  4.4.2 

are computed as average of the nearest-neighbor coordination numbers iCN  (including 

surface and sub-surface atoms) of those siten  atoms associated with the site.[286] The resulting 

average nearest-neighbor coordination numbers of the groups of 7, 10, and 12 surface atoms 

always amount to av 9CN =  in the case of the extended (111) surface. For the sites on the 

(111) facets of the three employed cluster models the avCN  values are mostly lower and 

range between ~7 and 9.[286] 

Figure 4.4.5 provides a plot of the individual CO adsorption energies adsE  (see Section 

4.4.4) obtained with the PBE functional for all studied adsorption sites as a function of avCN . 

The overall linear regression function, based on the results of all sites and cluster models, 

 ads av av( ) (282 16.3  ) kJ/molE CN CN= − ⋅  4.4.3 

reflects a rough trend only ( 2 0.64R = ) due to the different behavior of the various types of 

adsorption sites. Much better correlations ( 2 0.9R ≈ ) are obtained when one eliminates the 

effect of the different types of sites by calculating the linear regression functions t
ads av( )E CN , 

b
ads av( )E CN , and f

ads av( )E CN  for the individual series of adsorption energies at t, b, and f sites, 

respectively (see Figure 4.4.5).[286] The linear trends of the CO adsorption energies have a 

certain empirical flavor and are not as well physically justified as the cluster scaling relations 

(see Section 4.3.2). Nevertheless, they allow for several observations about the general 

behavior of the employed CO adsorption site models. 

When comparing these three linear functions one notices the much steeper slope of the 
b
ads av( )E CN  values obtained at bride sites. At the 3b site of the Pt79 cluster the overall highest 

CO adsorption energy is obtained (see Section 4.4.4). This large adsorption energy most 

likely results from the influence of the adjacent facet edge (see Figure 4.4.4).[286] However, 

on the (111) facets of the two larger cluster models this effect vanishes and the corresponding 

adsorption energies are significantly smaller. Furthermore, one notices the slightly steeper 

slope of t
ads av( )E CN  compared to that of f

ads av( )E CN , which probably indicates that the 1t 

sites of all cluster models are subject to a somewhat stronger influence of facet border than 

the corresponding adjacent 2f sites. 
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Figure 4.4.5: PBE adsorption energies in kJ/mol at top (circles), hollow (triangles), and 

bridge sites (squares) of the (111) facets of the cluster models Pt79 (red), Pt140 (orange), Pt225 

(blue) in terms of the average coordination number avCN  (see text) as well as the linear 

regression functions for the series of adsE  values at t, f, and b sites as dotted, solid, and 

dashed lines, respectively. Figure adapted from Ref. [286]. 

 

The sites 5t and 6f of the Pt225 cluster feature the largest avCN  values, 9.00 and 8.67, 

respectively, as they are located at the center of the largest facet studied. These sites can be 

expected to be closest to the corresponding top and fcc-hollow sites on Pt(111) and thus 

qualify best as models for the CO adsorption on this extended surface. 

The influence of the facet borders certainly represents the most significant finite cluster 

size effect on the adsorption energies.[510,517,518] However, it is not the only effect resulting 

from limited cluster sizes. Another important influence arises from the slightly increased 

metal-metal nearest-neighbor distances within the clusters due to the reduced fraction of 

under-coordinated atoms when approaching the bulk limit (see Section 4.3.3).[454,455,512,513] 

While this structural pattern originates from the core part of a cluster, it translates also to the 

surface layer.[454,455,512,513] In consequence, the elongated metal-metal distances between 

under-coordinated surface atoms give rise to a bonding competition.[454,455,512,513] Thus, as the 

metal-metal interaction decreases, the CO adsorption energies increase again for large 

clusters at sites which are mostly unaffected by facet borders.[454,455,512,513]  
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In a previous CO adsorption study on Pd clusters the aforementioned effect of elongated 

metal-metal distances was discussed in detail.[454] This study also showed that the effect of 

elongated metal-metal distances can be mimicked by cluster models in which only the surface 

layer was allowed to relax while the nearest-neighbor distances between all subsurface atoms 

were fixed to the corresponding bulk limit.[454] The resulting CO adsorption behavior on such 

cluster models is similar to that on much larger particles close to the bulk limit.[454] 

This type of a cluster model was also employed during the assessment of the DFT+Umol 

method.[286] Thereby the octahedral Pt44 core of the Pt140(CO)8 cluster model was fixed at the 

bulk limit (281.3 pm) of the avd  distances, which were obtained from a cluster scaling 

extrapolation (see Section 4.3) of the series Pt79, Pt116, Pt140, Pt201, and Pt225.
[286] However, 

compared to the fully relaxed cluster model, only changes of about 4 kJ/mol or less were 

observed in the corresponding CO adsorption energies.[286] Thus, this comparison leads to the 

conclusion that influence of elongated metal-metal distances is only of a lesser importance 

for the present methodological assessment. 

 

 

4.4.3. Structural Aspects 

Out of the different structural parameters of the various adsorption complexes and cluster 

models, only the C-O distances C-Od  are essential for the discussion of the description of the 

CO adsorption in terms of the Blyholder model.[438,489,490] Furthermore, the present discussion 

is restricted to some selected sites on the cluster models Pt79 and Pt225, namely 1t, 2f, and 3b 

on Pt79 as well as 5t and 6f on Pt225. Table 4.4.1 provides the corresponding C-O bond lengths 

for the methods PBE, PBE0, TPSS, TPSSh, M06L, and M06 as well as for the 

PBE+Umol(CO 2π*) combination with the parameter value 2π* 2.0U = eV. 

Upon adsorption of a CO molecule on the Pt cluster models, the C-O bond is weakened as 

the anti-bonding CO 2π* orbitals are partially populated due to back-bonding.[438,488-491] The 

elongation of the C-O bond roughly correlates with the amount of back-bonding at the 

individual adsorption sites (see also Section 4.2.2).[438,488-491] The C-Od  values found at the 

three sites of the Pt79 model are ordered according to 1t < 3b < 2f, which reflects the expected 

relative amount of back-bonding. The variants PBE0 and M06 always yield the shortest C-Od  

values which partially results from the description of the CO molecule itself as these methods 

yield the shortest C-O bonds already for CO in the gas-phase. 

Relative to the respective gas-phase C-Od  values, the examined hybrid DFT methods yield 

less elongated C-O bonds than their semi-local counterparts. Thus, back-bonding is indeed 

reduced by the EXX term. Compared to the sites on the Pt79 model, the C-Od  values found in 

the Pt225(CO)8 adsorption complexes are reduced further by a small amount (< 0.3 pm) as 

finite cluster size effects are reduced in this case. 
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Table 4.4.1: C-O bond lengths, C-Od , obtained with the six examined functionals and the 

PBE+Umol(CO 2π*) combination ( 2π* 2.0U =  eV) for some of adsorption complexes of 

Pt79(CO)8 and Pt225(CO)8 as well as for a CO molecule in the gas-phase. All values in pm. 

  PBE PBE0 TPSS TPSSh M06L M06 PBE+Umol 

Pt79 1t 115.2 113.5 114.9 114.2 114.2 113.4  113.4 

 2f 119.3 117.4 118.6 117.9 117.9 116.9  118.9 

 3b 117.7  ―a 117.4  ―a  ―a  ―a  117.2 

Pt225 5t 115.0 ― 114.8 ― ― ―  114.2 

 6f 119.0 ― 118.6 ― ― ―  118.5 

COgas
 b  113.7 112.4 113.5 113.0 112.8 112.3  113.7 

a Relaxation converges to CO adsorption complex at an adjacent hollow-site. 
b Experimental reference for CO in the gas phase C-O 112.8d =  pm, Ref. [519]. 

 

 

4.4.4. CO Adsorption Energies 

This section discusses the CO adsorption energies adsE  obtained from the DFT 

approximations PBE,[49] PBE0,[87] TPSS,[75] TPSSh,[212] M06L,[77] and M06[77,90] and from the 

PBE+Umol(CO 2π*) method using 2π* 1.0U = , 1.5, and 2.0 eV (see Section 4.2).  

Table 4.4.2 provides the CO adsorption energies calculated with the hybrid DFT methods 

PBE0,[87] TPSSh,[212] and M06[77,90] as well as their semi-local counterparts PBE,[49] TPSS,[75] 

and M06L.[77] The discussion begins with the adsE  values obtained with the PBE GGA 

functional to extend the general observations of the behavior at the different adsorption sites, 

stated in Section 4.4.2. On the (111) facet of Pt79 PBE yields the lowest adsE  value of 156 

kJ/mol at the 1t top site. While the adsorption energy of ads 168E =  kJ/mol at the 2f site is 

higher than that, the 3b site ( ads 176E =  kJ/mol) is clearly most preferred on this cluster 

model (see Table 4.4.2). As expected from the effect of under-coordinated atoms on cluster 

surfaces (see Section 4.4.2) and the SIE (see Section 4.4.1), all these results are significantly 

higher than the experimental reference value of 115±15 kJ/mol.[485-487] However, neither 

these experiments nor plane-wave calculations of the extended Pt(111) surface yield a bridge-

site preference for the CO adsorption as it results from the present calculations of the model 

cluster Pt79.
[484] 
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Table 4.4.2: CO adsorption energiesa adsE  obtained at several sites on the (111) facets of the 

model clusters Pt79, Pt140, and Pt225 with the six examined functionals including the correction 

for the BSSE. All values in kJ/mol. 

   1t 2f 3b 4h 5t 6f 7f  

PBE  Pt79 156 168 176      

  Pt140 152 157 146 151 136    

  Pt225 150 161 140 149 134 154 144  

PBE0  Pt79 180 196  ―b      

TPSS  Pt79 151 160 174      

  Pt225 ― ― ― ― 127 146 ―  

TPSSh  Pt79 156 164  ―b      

  Pt225 ― ― ― ―  128c  153c ―  

M06L  Pt79 145 153  ―b      

M06  Pt79 159 176  ―b      
a Experimental result for top site on Pt(111): 115±15 kJ/mol; Refs. [485-487]. 
b Relaxation converges to CO adsorption complex at adjacent hollow-site. 
c Single-point result at corresponding TPSS geometry. 

 

Indeed, the preference for the 3b site on the (111) facet of the Pt79 cluster seems to be 

related to the adjacent “lower” facet border (see Figure 4.4.4). On the Pt140 model this facet 

edge is more distant from the corresponding 3b site. An adsE  value of 146 kJ/mol is obtained 

at the 3b site of this cluster, which is lower than most other CO adsorption energies 

calculated on this cluster. With ads 157E =  kJ/mol the neighboring 2f site is most preferred on 

the Pt140 cluster. A slightly lower adsorption energy of 151 kJ/mol is obtained at the 4h site, 

which results from its hcp-hollow topology as well as from its reduced interaction with the 

facet border.[492] When comparing the adsE  results of 152 and 136 kJ/mol obtained at the two 

top sites 1t and 5t, respectively, one notices even more clearly the considerable effect of the 

nearby facet borders at the former. 

Furthermore, the difference in the adsorption energies at the sites 1t and 5t also implies 

that the effects of facet corners and edges are of a similar magnitude as the differences arising 

for different types of adsorption sites. Thus, only adjacent top and fcc-hollow sites, hence the 

pairs 1t/2f and 5t/6f, are to be compared with each other when discussing site preferences on 

the employed model clusters. However, a slightly different influence of facet borders remains 

notable even at such pairs of neighboring sites. When comparing the adsE  values obtained at 

the 1t and 2f sites on the different cluster models one notices that their difference decreases 

from 12 to 5 kJ/mol when going from Pt79 to Pt140 but increases again to 11 kJ/mol on the 
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Pt225 model. This trend may be caused by the effect of elongated Pt-Pt distances in larger 

clusters (see Section 4.4.2) which seems to affect the 2f site more than the 1t site. 

On the other hand, the adsorption energies at the sites 4h and 5t appear quite converged 

with respect to the size of the cluster model as both adsE  values only change by ~2 kJ/mol, 

respectively, when going from Pt140 to Pt225. The site 6f was not examined on the Pt140 cluster 

due to its location near the facet border. However, a similar convergence with respect to the 

cluster size can be expected also for this site on Pt225 ( ads 154E = ). This becomes even more 

apparent when considering that the site 6f on Pt225 features a avCN  value (see Section 4.4.2) 

which is even higher than that of the corresponding 4h site. 

In the case of the 7b site on Pt225 a similar behavior may be expected as for the 3b site on 

the Pt79 cluster. However, 7b exhibits a significantly larger avCN  value than the latter so that 

no dramatic effect of under-coordinated edge atoms on the adsorption energy is observed 

there. In contrast to the strongly increased adsorption energy found at the 3b site on Pt79, the 

potential energy surface at 7b seems to exhibit only a rather shallow minimum as the CO 

adsorbate tends to converge easily to the adjacent 6f site upon relaxation. 

While in the case of PBE and PBE+Umol (see below) all adsorption sites presented in 

Section 4.4.2 were thoroughly examined,[286] the assessment of PBE0,[87] TPSS,[75] 

TPSSh,[212] M06L,[77] and M06[77,90] mainly focusses on the pair 1t/2f of adsorption sites on 

Pt79. According to the PBE results discussed above one can safely assume that the influence 

of the facet edges on both of these sites is sufficiently similar for the present discussion. 

The adsE  values of 180 kJ/mol and 196 kJ/mol obtained with the PBE0 functional on the 1t 

and 2f sites of Pt79, respectively, are significantly larger than the corresponding PBE results. 

On the other hand, PBE0 reduces the C-O distances in the adsorbate fragments by ~1 pm 

more than PBE, which, according to the Blyholder model, suggests a reduced amount of 

back-bonding (see Section 4.4.3).[438,488-491] Given the fact that the back-bonding interaction is 

reduced by the EXX term, it seems counterintuitive that this term leads to higher adsorption 

energy at the same time. However, similarly increased CO adsorption energies are reported in 

plane-wave calculations of slab models of the extended Pt(111) surface.[479,483] This behavior 

was rationalized with an increased broadening of the Pt 5d band (see Section 4.4.5), caused 

by the EXX term as well.[479,483] The broadening of the Pt 5d band was found to essentially 

counteract the effect of the higher energies of the 2π* orbitals.[479,483] The adsE  values 

obtained with PBE0 at the 1t and 2f sites of Pt79 are in line with the corresponding plane-

wave results of 187 and 193 kJ/mol for top and fcc-hollow sites, respectively.[483] However, 

in the case of the cluster model the hollow-site preference is higher by 10 kJ/mol, which is 

similar to the corresponding differences obtained with PBE results.[286] Furthermore, these 

agreements have to be considered with some caution as the adsE  values on the cluster models 

are known to be subject to attractive finite cluster size effects (see Section 4.4.2), while the 

plane-wave results are not. With PBE0 (and most other examined functionals) no stable 
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adsorption geometry could be obtained at the site 3b on the cluster Pt79. The CO adsorbate 

rather relaxes to the neighboring hcp-hollow site at the facet border, similarly to the behavior 

observed with PBE and PBE+Umol (see below) at the 7b site on the Pt225 model. 

The M06 functional yields CO adsorption energies of 159 kJ/mol and 176 kJ/mol for 1t 

and 2f, respectively, which are considerably lower than the corresponding PBE0 results. 

Indeed, the adsE  values from M06 are closer to those from the PBE functional. When 

considering that M06 features an even slightly larger EXX mixing factor of 1 0.27α =  than 

PBE0 ( 1 0.25α = ) this result is somewhat surprising. However, the low adsorption energies 

from M06 may be related to its questionable description of the metal moiety (see Section 4.3) 

as well as to the parametrization of its semi-local terms.[443] The adsE  values resulting from 

the M06L functional are even lower than those from M06 and with ads 145E =  kJ/mol and 

153 kJ/mol for the sites 1t and 2f the overall lowest adsorption energies calculated on the Pt79 

cluster with the six examined functionals. 

Also the TPSS functional yields lower CO adsorption energies than PBE: 151 kJ/mol and 

160 kJ/mol for 1t and 2f, respectively. When comparing the adsorption energies of these two 

sites, the slightly reduced preference of about 9 kJ/mol for the fcc-hollow site is noteworthy. 

Furthermore, TPSS also yields a stable adsorption structure at the 3b site. The adsorption 

energy of 174 kJ/mol computed at this site is very similar to the corresponding PBE result. 

Due to its small EXX mixing factor ( 1 0.10α = ) the TPSSh functional yields only slightly 

increased adsorption energies compared to TPSS. With 156 and 164 kJ/mol for 1t and 2f, 

respectively, TPSSh yields even a slightly lower preference for the fcc-hollow site than its 

semi-local counterpart. 

Motivated by these comparatively low preferences for the 2f site as well as by the 

surprisingly good description of metal-metal bonds provided by TPSSh (see Section 4.3), the 

5t/6f pair of adsorption sites on the Pt225 cluster was studied with TPSS and TPSSh as well. 

Compared to the adsE  values obtained with PBE, the TPSS functional yields consistently 

lower adsorption energies, whereas the differences of 7–8 kJ/mol are comparable to those of 

the Pt79 cluster. The TPSS adsorption energies decrease when going from the sites 1t and 2f 

on Pt79 to the sites 5t and 6f on Pt225. However, due to the aforementioned stronger influence 

of the facet borders at 1t this decrease is not the same for both types of sites. In the case of the 

top-sites the difference in the adsorption energies when going from Pt79 to Pt225 amounts to 

24 kJ/mol but only to 14 kJ/mol for the fcc-hollow sites. Thus, the site preference between 

the 5t/6f pair is increased to 19 kJ/mol in favor of the 6f site, similarly to the increased 

preference of 20 kJ/mol found with PBE.  

Given the substantial computational effort required to carry out hybrid DFT calculations 

for the Pt225(CO)8 models, the application of TPSSh was restricted in that case to single-point 

calculations at the corresponding TPSS geometries. To evaluate the effect of this strategy the 

TPSSh functional was first applied to the TPSS geometries of the Pt79 cluster. The adsorption 
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energies from the single-point calculations differ by only 1 kJ/mol from the adsE  values 

obtained at the relaxed TPSSh structures. At the two examined sites of the Pt225 cluster, the 

single-point TPSSh adsorption energies were computed as 128 kJ/mol (5t) and 153 kJ/mol 

(6f). Thus, the site preference of TPSSh in favor of the 6f site is estimated to 25 kJ/mol. 

Aside from DFT methods with reduced self-interaction, scalar-relativistic electronic 

structure descriptions have been reported to restore the top-site preference on Pt(111) as 

well.[503,504] This has been rationalized with a different energy of the Pt 6s levels which 

increases their interaction with the 5σ orbital of the CO molecule, hence the σ-bonding which 

dominates at top-sites.[489,490,503,504] In the context of the present cluster study this aspect was 

briefly examined as well. To this end, scalar-relativistic all-electron calculations were carried 

out with the second-order Douglas-Kroll-Hess approach.[514,515] Thereby a SARC-type all-

electron basis set[516] was employed for Pt in combination with a well-established prescription 

for the generation of the auxiliary density fitting basis set.[39] The corresponding adsorption 

energies were again calculated in a single-point fashion at the geometries obtained at the 

TPSS/def2-TZVP level. The resulting adsE  values of 150 kJ/mol (1t) and 160 kJ/mol (2f) 

confirm the adsorption energies obtained with the def2-TZVP basis. These results are 

consistent with the adsE  values of an earlier cluster model study.[500] However, they do not 

support the claims that a scalar-relativistic electronic structure treatment solves the CO puzzle 

as the 1t/2f pair exhibits a smaller preference for the fcc-hollow site than the 5t/6f pair. 

The sites 5t and 6f on the cluster Pt225 can be considered as reliable models for the 

corresponding top and fcc-hollow sites on Pt(111), respectively. Furthermore, the adsorption 

energies of the pair 1t/2f on Pt79 suggest that the 2f site is slightly less preferred over 1t than 

the 6f site on Pt225 over the corresponding site 5t. In consequence, any method that does not 

predict a top-site preference on the cluster Pt79 is unlikely to yield this preference on the Pt225 

model or the extended Pt(111) surface. Thus, the results discussed above allow the 

conclusion that neither one of the six examined DFT approximation nor a scalar-relativistic 

treatment represent a viable solution of the CO puzzle. Indeed, the failure of hybrid DFT 

methods to reproduce the CO adsorption site preference on the Pt(111) surface represents a 

perfect example where improvements on one aspects of a system (i.e. the reduced SIE) 

deteriorates some other aspects (i.e. the description of the metal moiety). 

In this context the very localized self-interaction correction provided by the 

PBE+Umol(CO 2π*) combination becomes interesting. The adsE  values obtained at the 

individual sites of the Pt79, Pt140, and Pt225 clusters for values of 1.0, 1.5, and 2.0 eV for the 

parameter 2π*U  are provided by Table 4.4.3 and shall be discussed in the following. 
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Table 4.4.3: CO adsorption energiesa adsE  obtained at several sites on the (111) facets of the 

model clusters Pt79, Pt140, and Pt225 with PBE+Umol(CO 2π*) method at several values of the 

parameter 2π*U  including the correction for the BSSE. All values in kJ/mol. 

 2π*U
b  1t 2f 3b 4h 5t 6f 7f  

PBE  Pt79 156 168 176      

  Pt140 152 157 146 151 136    

  Pt225 150 161 140 149 134 154 144  

PBE+Umol 1.0 Pt79 119 120 132      

  Pt140 110 110 102 104 99    

  Pt225 113 114 95 102 97 107  ―c  

 1.5 Pt79 101 97 110      

  Pt140 92 86 80 80 81    

  Pt225 95 90 72 79 79 83  ―c  

 2.0 Pt79 83 73 88      

  Pt140 75 63 58 57 63    

  Pt225 77 67 51 55 62 60 ―c  
a Experimental result for top site on Pt(111): 115±15 kJ/mol; Refs. [485-487]. 
b 2π*U  parameter for the Umol(CO 2π*) correction in eV. 
c Relaxation converges to CO adsorption complex at adjacent hollow-site. 

 

When comparing the PBE+Umol results with those from the uncorrected PBE functional 

the Umol(CO 2π*) correction is found to generally reduce the adsE  values. This is to be 

expected as the DFT+U energy correction in the fully localized limit, Eqs. 2.4.6 and 2.4.10, is 

a strictly positive function of the occupation matrix elements tun σ . The same holds for the 

DFT+Umol reformulation in terms of projectors, Eq. 3.2.4. Thus, the Umol(CO 2π*) 

correction either directly destabilizes the Ptm(CO)8 adsorption complexes or leads to 

destabilizing changes in their electronic structure (see Section 4.2). 

However, this destabilization is different for the individual types of adsorption sites. When 

going from PBE to PBE+Umol with 2π* 1.0U =  eV the adsE  value at the 1t site of the Pt79 

cluster is reduced by 37 kJ/mol while the corresponding adsorption energy at 2f is decreased 

by 48 kJ/mol down to 120 kJ/mol. With ads 119E =  kJ/mol the 1t site is almost degenerate to 

2f in this case and becomes preferred at higher values of the parameter 2π*U . For 2π* 1.5U =  

and 2.0 eV the adsorption energy at the 1t site of Pt79 is reduced to 101 and 83 kJ/mol, 

respectively, while the corresponding adsE  values at the 2f site amount to 97 and 73 kJ/mol. 

The effect of the Umol(CO 2π*) correction on the adsorption energies of the 3b site on Pt79 is 
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only slightly weaker than for the 2f site as adsE  is reduced by 44 kJ/mol when going from 

PBE to PBE+Umol with 2π* 1.0U =  eV. However, the effect of the Umol(CO 2π*) term is not 

strong enough to overcome the influence of the adjacent facet border, so that the 3b site 

remains favored on Pt79 even at 2π* 2.0U =  eV. 

On the larger cluster models the changes in the adsE  values induced by the Umol(CO 2π*) 

correction are remarkably similar to those observed for the corresponding top, hollow, and 

bridge adsorption sites on Pt79, respectively. Compared to the results from the uncorrected 

PBE method, the Umol(CO 2π*) term (with 2π* 1.0U =  eV) again reduces the CO adsorption 

energies; by ~37 kJ/mol at top sites, ~48 kJ/mol at hollow-type sites, and ~48 kJ/mol at 

bridge sites. Only in the case of the 1t site on Pt140 the adsE  value decreases by 42 kJ/mol, 

down to 110 kJ/mol, when going from PBE to PBE+Umol(CO 2π*) with 2π* 1.0U =  eV. 

However, as the uncorrected PBE functional yields a comparatively small site preference of 

only 5 kJ/mol for 2f over 1t on Pt140, both sites are also degenerate at 2π* 1.0U =  eV. At 

2π* 2.0U =  eV the 1t site on Pt140 is preferred by 12 kJ/mol over the adjacent 2f site. For 

2π* 1.0U =  eV, the adsorption energies at the three remaining sites on the (111) facet of Pt140 

are 102 kJ/mol at 3b, 104 kJ/mol at 4h, and 99 kJ/mol at 5t. At 2π* 1.5U =  eV all three sites 

are nearly degenerate with ads 80E ≈  kJ/mol, while at 2π* 2.0U =  eV the expected ordering 5t 

> 4h > 3b is reached (see Table 4.4.3). 

Like on the Pt79 and Pt140 models, the 1t and 2f sites on the Pt225 cluster are found almost 

isoenergetic ( ads 113E ≈  kJ/mol) at 2π* 1.0U =  eV. The DFT+Umol method renders 3b the 

least preferred site on the Pt225 cluster. While the shallow energetic minimum of the 7b site 

has already been noticed with PBE, no minimum was found at this site with the PBE+Umol 

combination. When comparing the pair 5t/6f at the center of the (111) facet of Pt225, the 

Umol(CO 2π*) correction is found to reduce the initial preference for the fcc-hollow site of 

20 kJ/mol to 10 kJ/mol at 2π* 1.0U =  eV. The corresponding adsorption energies amount to 

97 kJ/mol and 107 kJ/mol for 5t and 6f, respectively. When increasing the value of the 2π*U  

parameter to 1.5 eV the site preference is further reduced to 4 kJ/mol. Finally, at 2π* 2.0U =  

eV the 5t site becomes preferred over 6f. 

Thus, the PBE+Umol method is able to correct the site preference on the employed cluster 

model of the Pt(111) surface. However, while these results certainly represent an 

improvement from a qualitative point of view, the corresponding CO adsorption energy of 62 

kJ/mol computed at the 5t site with 2π* 2.0U =  eV considerably underestimates the 

experimental reference for the adsE  value of 115±15 kJ/mol.[485-487] 

The adsorption energy obtained at the 5t site of Pt255 is also lower than the adsE  value 

reported in an earlier application of the DFT+U method[499] to the CO 2π* fragment 

molecular orbitals in a plane-wave study of CO/Pt(111). However, the fcc-hollow site 

preference obtained with the uncorrected PBE functional in these plane-wave calculations is 

already lower than in the present case (only ~12 kJ/mol compared to 20 kJ/mol here).[499] The 
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lower preference for the fcc-hollow site obtained in such plane-wave calculations likely 

results from the details of the employed representation of the core electrons, hence the atomic 

parameters employed in the projector-augmented wave (PAW) approach.[499] Indeed, the 

difference in the CO adsorption energies obtained at fcc-hollow and top sites was found to be 

quite sensitive to certain PAW parameters like the PAW cutoff-radius.[499] Furthermore, the 

aforementioned better agreement of the plane-wave results with the experimental reference 

was based on PAW parameter values that strongly reduce the preference of the PBE 

functional for the fcc-hollow site.[499] Thus, the better quantitative agreement of the plane-

wave adsE  results is likely an indirect consequence of the parametrization of the approximate 

treatment of the core electrons of Pt. Second, the CO adsorption energies obtained with PBE 

plane-wave calculations are already notably higher than the present PBE estimates for adsE . 

Thus, the better quantitative agreement of the aforementioned top-site adsorption energy from 

the DFT+U plane-wave calculation at least partially seems to result from a favorable error 

compensation. 

 

 

4.4.5. Electronic Structure Aspects 

The subsequent section analyzes the electronic structure descriptions provided by PBE, 

TPSS, TPSSh, and PBE0 on the example of the CO molecule in the gas phase, the bare Pt79 

cluster, and its adsorption complexes formed with CO at the sites 1t and 2f. Furthermore, the 

effect of the Umol(CO 2π*) term on the electronic structure of the aforementioned adsorption 

complexes is examined as well. 

On the case of the bare CO molecule one always obtains the expected energetic ordering 

of the orbitals 4σ* < 1π < 5σ < 2π*.[520] The energies of the occupied orbitals 4σ*, 1π, and 

5σ are successively lowered when going from TPSS to TPSSh and to PBE0, while the 2π* 

LUMO is shifted up in energy. As expected, the increasing EXX mixing factor in these three 

functionals yields a widened HOMO-LUMO gap (HLG) HLGε∆ , which amounts to 7.4, 8.6, 

and 10.1 eV for TPSS, TPSSh, and PBE0, respectively. 

Figure 4.4.6 provides the projected densities of states (PDOS) which were obtained on the 

basis of Mulliken population numbers[419] with TPSS, TPSSh, PBE0, PBE, and 

PBE+Umol(CO 2π*) with 2π* 2.0U =  eV for the Pt79 cluster and the 1t and 2f Pt79(CO)8 

adsorption complexes, respectively. To this end, the density of states was projected onto the 

6s and 5d of the three Pt atoms at the center of the (111) facet of Pt79 (see Figure 4.4.4) as 

well as onto the 2s and 2p orbitals of the C and O atoms. 
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Figure 4.4.6: Projected density of states (arbitrary units, Mulliken population numbers, 0.3 eV 

orbital energy broadening) from TPSS, TPSSh, PBE0, PBE, and PBE+Umol(CO 2π*) of a) Pt79 

(and free CO), and Pt79(CO)8 at b) 1t and c) 2f: s (blue lines) and d orbitals (orange lines) of Pt 

surface atoms in the center of the (111) facet; s (grey areas) and p orbitals (black lines) of C and 

O atoms. For comparison the orbital energies of free CO are marked in a). Vertical axis in eV. 
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The TPSS functional describes the Pt79 cluster and both adsorption complexes as 

essentially metallic, hence yields HLG 0.0ε∆ ≈ . In contrast, the hybrid DFT methods TPSSh 

and PBE0 yield HLG 0.2ε∆ =  and 0.5 eV for Pt79, respectively, which is also notable in Figure 

4.4.6 by the increasingly large dent at the upper edge of the Pt d-PDOS (with increasing 

amount of EXX). Likewise, the Pt s-PDOS splits into two parts by the increased HLG as 

well. TPSSh and PBE0 yield slightly increased HLGε∆  values for the 2f adsorption complex 

compared to the bare Pt79 cluster (0.3 and 0.6 eV, respectively) as adsorbates may reduce the 

metallic properties of finite clusters further.[521] Furthermore, the corresponding HOMO-

levels are found somewhat lower in energy. In contrast, slightly decreased HLGε∆  values and 

upshifted HOMO levels result for the 1t adsorption complex with PBE and TPSSh. These 

latter findings are rationalized by the net increase of negative charge at the adsorption site 

due to the σ-bonding which prevails at top sites. The increased electronic charge raises the 

electrostatic potential which in turn reduces the HOMO-LUMO gap. This is supported by the 

Mulliken populations[419] obtained for the three Pt surface-atoms in the center of the (111) 

facet of Pt79. Upon adsorption of the CO molecule at the 1t site the population is increased by 

1.2 e, while the corresponding increase at 2f amounts to ~0.3 e only. In agreement with recent 

plane-wave studies on slab-models,[479,522] one notices the increased width of the Pt 5d 

manifold when going from TPSS over TPSSh to PBE0. 

The DOS projections on the p orbitals of the C and O atoms exhibit two distinct peaks 

near the lower edge of the Pt d-band. Out of these, the lower lying corresponds to the CO 5σ-

derived orbitals as it always coincides with a peak in the PDOS of the s-orbitals of the C and 

O atoms. Thus, the higher of these two peaks corresponds to the CO 1π orbitals. Note, that 

upon adsorption of the CO molecule the 5σ orbital is shifted below the 1π levels, which 

agrees with spectroscopic results and other theoretical studies.[483,500,523,524] 

The 5σ orbital of the CO molecule in the gas-phase always coincides with a local 

maximum of the d-band of the bare Pt79 cluster (see Figure 4.4.6, panel a). The same holds 

for the 5σ peak in the PDOS of both Pt79(CO)8 systems. However, in the 1t adsorption 

complex the corresponding peak in the Pt d-PDOS is well-separated from the rest of the d-

manifold, while it is still part of the main d-band extension when CO adsorbs on the 2f site. 

Furthermore, a significantly stronger Pt s-PDOS maximum can be found at the 5σ peak in the 

case of the 2f adsorption complex. This indicates a mixing at this site between sd-hybridized 

Pt levels and the CO 5σ orbital. With increasing amount of EXX the resulting σ-sd levels are 

moved towards more negative energies. The downshift of these σ-sd levels with increasing 

EXX mixing factor is stronger than the corresponding downshift of the HOMO-levels, which 

indicates that the EXX term increases the σ-bonding interaction at the 2f site. 

The energetically lowest peak in each of the PDOS spectra obtained with the various 

methods corresponds to the CO 4σ∗ orbital. The presence of peaks in the Pt s- and d-PDOS 

of the 2f adsorption complex indicates that the CO 4σ∗ orbital also contributes to the σ-sd 
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interaction. Indeed, such a participation of the 4σ∗ orbital has previously been noticed in 

theoretical and experimental studies of the CO adsorption on Ni and Cu surfaces.[489,490] 

While both, the Pt s- and d-manifolds, seem to interact with the 4σ∗ orbital at the 2f site, the 

PDOS spectra of the 1t adsorption complex only show an interaction with the Pt d-levels. 

In the 1t adsorption complex the CO 1π orbitals always form a rather distinct peak in the 

PDOS spectra obtained from the various methods. This is different when the CO molecule 

adsorbs at the 2f site of Pt79. In this latter case all examined methods yield a broader 1π peak 

in the PDOS which always coincides with a local maximum of the Pt s-PDOS at ‒5.8, ‒6.0, 

and ‒6.3 eV for TPSS, TPSSh, and PBE0, respectively. Both of these observations indicate a 

mixing of the 1π orbitals at the 2f site. Indeed, due to the presence of the Pt-moiety linear 

combinations between the 1π and 2π* orbitals become feasible. As in the case of the 4σ∗ 

orbital, such a contribution of the 1π levels to the back-bonding interaction has already been 

reported in earlier theoretical and experimental studies.[483,489,490] The EXX term appears to 

broaden the 1π peak slightly more and to increase the corresponding local Pt s-PDOS 

maximum. Thus, the EXX term seems to affect also the contribution of the 1π orbitals to the 

back-bonding. 

From the C and O p-DOS projections the CO 2π* derived orbitals are identified as 

broadened peak which extends from 2 eV to 5 eV in the case of PBE and is, as expected, 

shifted upward in energy when going over TPSSh to PBE0. The Umol(CO 2π*) correction 

has a similar effect. Indeed the 2π* peak in the p-PDOS of the C and O atoms appears 

upshifted by a comparable amount as the energies of the 2π* orbitals in the gas-phase CO 

molecule. Apart from that, the PDOS spectra obtained from the PBE+Umol(CO 2π*) 

combination are remarkably similar to those from the uncorrected PBE functional. This 

indicates that the Umol(CO 2π*) term acts on the 2π* level of the Pt79(CO)8 adsorption 

complex only and has no notable effect on the remaining electronic structure of the system. 

This effect clearly differs from the influence of the Umol(CO 2π*) correction on the Ni 3d 

orbitals of the nickel carbonyls studied in Section 4.2. 

In the following the effect of the Umol(CO 2π*) term shall be examined further. To this 

end, the elements of the occupation matrices I
σ

n  are studied (see Section 2.4). As described 

in Section 3.2.2, the DFT+Umol implementation in PARAGAUSS completely bypasses 

calculation of occupation matrices I
σ

n .[286] Yet, under the assumption that the CO adsorbates 

are sufficiently separated, the 2 2×  occupation matrix block corresponding to the 2π* orbitals 

of a single CO fragment can still be computed as †σ σ=n vSP Sv  from the fragment MO 

coefficients v . In the present case these matrix blocks are always found diagonal due to the 

orientation of the CO fragment in the Pt79(CO)8 adsorption complexes. In any case only the 

diagonal elements ttn σ  need to be discussed as the occupation matrices can always be 

diagonalized. Figure 4.4.7 shows a plot of the individual contributions to the DFT+U penalty 

function in the fully localized limit for the employed values of 2π*U  as a function of the 
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individual diagonal elements of the occupation matrix block. The two ttn σ  values obtained 

for the CO molecule adsorbed on each of the sites 1t, 2f, and 3b and for the employed 2π*U  

parameter values, respectively, are marked on the corresponding parabolic DFT+Umol 

penalty functions (which result for each value of 2π*U , see Section 2.4), 
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I tt tt tt
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Figure 4.4.7: FLL penalty function UE  in eV in terms of the diagonal elements of the 

occupation matrices I
σ

n  evaluated for the 2π* orbitals of the CO molecule at the 1t (circles), 

2f (triangles), and 3b (squares) sites for the values 1.0, 1.5, and 2.0 eV of the parameter 2π*U . 

Figure adapted from Ref. [286]. 

 

As back-bonding is less dominant at top sites, the 1t adsorption complex always features 

the lowest occupation numbers. The corresponding ttn σ  values range from 0.255 for 

2π* 1.0U =  eV and 0.242 for 2π* 2.0U =  eV and are nearly identical due to the 

approximatively 3vC -symmetric local environment of the 1t site. The same holds for the 

occupation matrix elements obtained at the 2f site, which are, however, found between 0.397 

and 0.410, thus significantly larger than the ttn σ  values at 1t. These larger ttn σ  values can be 

expected due to the larger amount of back-bonding interaction at hollow-type sites.[489,490] 

The local environment of the 3b site exhibits only an approximate 2vC  symmetry which leads 

to two very distinct ttn σ  values. The lower one ranges from 0.276 to 0.287 and thus is only 

slightly higher than the ttn σ  values obtained for the 1t adsorption complex. In contrast, the 

larger ttn σ  value amounts to 0.425 and is close to the corresponding values at the 2f site. In 

this context the situation at the bridge site can be considered as intermediate between top and 

hollow sites as back-bonding is dominant for one of the two CO 2π* orbitals while the other 

one behaves more like the 2π* orbitals of a CO fragment adsorbed at a top site. 
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The most important observation that can be made from Figure 4.4.7 is the fact that the 

specific ttn σ  values hardly change with increasing value of the parameter 2π*U . Only the 

smaller occupation matrix elements, obtained at the 1t site and for one of the 2π* orbitals at 

the 3b adsorption complex, seem to be slightly more affected. This is most likely a 

consequence of the larger derivative of the parabolic penalty function at smaller ttn σ  values 

which is proportional to the DFT+Umol potential. As the ttn σ  values remain essentially 

unaffected by the value of the 2π*U  parameter, the Umol(CO 2π*) correction appears to have 

only a very limited effect on the electronic structure. This also agrees with its very localized 

influence on the PDOS in Figure 4.4.6. Thus, in the case of the examined Ptn(CO)8 models, 

the Umol(CO 2π*) term purely acts as a energetic correction. The top-site adsorption 

preference obtained with the PBE+Umol(CO 2π*) combination is therefore a direct 

consequence of the larger ttn σ  values which result in the corresponding adsorption 

complexes. The finding, that the electronic structure of the Ptn(CO)8 models does not relax 

upon application of the Umol(CO 2π*) correction, also rationalizes the significant 

destabilization of the adsorption complexes caused by this term and the resulting low CO 

adsorption energies.  

 

 

4.4.6. Conclusions 

The adsorption of the CO molecule was studied on various top, bridge, fcc- and hcp-hollow 

sites of the (111) facets of the model clusters Pt79, Pt140, and Pt225. First, the behavior of the 

adsorption energy at these sites was examined on the basis of the corresponding results 

obtained with the PBE method. Thereby the average coordination number avCN  of the cluster 

surface-atoms associated with the individual adsorption sites was employed to examine the 

influence of the facet borders on the individual adsorption energies. This analysis revealed 

that the sites 1t and 2f sites on the Pt79 cluster are significantly, but comparably affected by 

the facet borders. Thus, these two sites qualify for the qualitative assessment of the 

functionals PBE, PBE0, TPSS, TPSSh, M06L, and M06 regarding the relative top- vs. 

hollow-site preference. Finally, the sites 5t and 6f on the much larger Pt225 model can be 

considered as reliable qualitative and quantitative models for the CO adsorption on the 

extended Pt(111) surface. 

However, neither one of the semi-local approximations PBE, TPSS, and M06L nor any of 

the assessed hybrid DFT methods PBE0, TPSSh, and M06 are able to provide the 

experimentally characterized top-site preference. This finding is well in line with the results 

from corresponding plane-wave studies on slab-models for the extended Pt(111) 

surface.[479,483,484] 
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The rationalization that self-interaction effects prevent semi-local functionals from 

predicting the correct site preference is widely accepted.[479,483,484,499,500] On the other hand, 

the origin of the failure of hybrid DFT methods for the CO puzzle has been less well explored 

in the past.[479,483] Indeed, the failure of hybrid functionals to describe properly the site 

preference for CO on Pt(111) was rationalized in a rather unspecific way by the increased 

broadening of the Pt 5d-manifold. While this latter effect is confirmed in the plots of the 

projected density of states in Figure 4.4.6, the conclusions that can be made from the results 

of the present study may provide a more detailed picture of the artifacts introduced by the 

EXX term in the description of adsorption complexes. 

As expected, hybrid DFT methods yield less elongated C-O bonds in the Pt79(CO)8 

adsorption complexes, which suggests that back-bonding is reduced by the EXX term. 

Furthermore, the reduction is slightly more pronounced at fcc-hollow sites as back-bonding is 

more dominant there. From this reduction of the back-bonding interaction one might expect 

lower adsorption energies. However, in agreement with the results from plane-wave studies 

of slab-models for the Pt(111) surface,[479,483] the hybrid DFT methods were always found to 

increase the adsE  values compared to the results of the corresponding semi-local functionals. 

These findings represent a strong indication for the EXX term to increase the σ-bonding 

while reducing the back-bonding interaction at the same time. Furthermore, the increase of 

the σ-bonding should be higher at fcc-hollow sites as the preference for these sites is even 

slightly enhanced by the EXX term. 

The analysis of the projected DOS plots confirms this assumption. In agreement with 

earlier plane-wave studies,[479,483] the Pt-d band is found to be overly broadened by the EXX 

term. Furthermore, the levels at the fcc-hollow sites are always somewhat downshifted 

compared to those at top sites. This downshift is rationalized by the reduced electrostatic 

potential due to the charge redistribution via the back-bonding. In combination with the 

broadened Pt-d band, this brings the PDOS peak of the CO 5σ-derived levels inside the Pt-d 

band at fcc-hollow sites. In consequence, an increased mixing of these levels with the Pt-d 

band, hence σ-bonding, becomes feasible at fcc-hollow sites. Thus, the EXX term reduces 

back-bonding at hollow-sites while simultaneously increasing the amount of σ-bonding there. 

This conclusion provides a more precise picture about how the improved hybrid DFT 

description of CO 2π* orbitals is abrogated by the deteriorated description of the metallic 

moiety delivered by such methods. 

The application of a DFT+Umol correction to the CO 2π* orbitals is found to restore the 

experimentally determined top-site preference for the adsorption of the CO molecule on the 

employed cluster models of the extended Pt(111) surface. At the sites on the Pt225 cluster 

which were previously determined as the best models for the CO adsorption at the top and 

fcc-hollow sites on the extended surface, this top-site preference is reached at DFT+U 

parameter values of 2π* 2.0U ≈  eV. However, at these 2π*U  values the experimental reference 
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for adsE  is considerably underestimated. The PDOS plots and the DFT+Umol occupation 

numbers show that this qualitative inaccuracy derives from the fact that the DFT+Umol terms 

essentially acts as a destabilizing energy term which does not induce any relaxation in the 

electronic structure of the Ptm(CO)8 adsorption complexes. 
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5. Summary 

The present thesis addresses self-interaction and delocalization artifacts in semi-local 

approximations to Kohn‒Sham density functional theory (DFT) as well as the closely related 

static correlation error in hybrid DFT methods. In this context also the methodological and 

implementation aspects of hybrid density functionals and the DFT+Umol method are 

discussed, which represent different approaches for correcting self-interaction and 

delocalization errors. Both method variants have been implemented in the DFT program 

PARAGAUSS as part of this thesis. Furthermore, these methods are applied in several case 

studies to examine their performance for systems which are known to be strongly affected by 

the aforementioned errors. 

Hybrid DFT methods add a nonlocal exact-exchange (EXX) term to semi-local DFT 

approximations. The EXX term in turn is computed from four-center electron-repulsion 

integrals (ERI). As the number of ERIs scales with the fourth-order with respect to the 

number of basis functions, the computation of the EXX term is very demanding. Thus, the 

evaluation of ERIs has to be implemented by using an efficient algorithm as well as by taking 

into account the structure of modern computer architectures. Most ERI algorithms are based 

on the Boys function which represents a starting point for the ERI implementation made in 

the context of this thesis. The Boys function and its derivatives are expanded to the final 

integrals. Most ERI algorithms employ recursion relations for this expansion. A variant of the 

McMurchie‒Davidson expansion has been implemented for this task, which employs so-

called horizontal recursion relations to reduce the amount of intermediate quantities. In the 

case of strongly contracted Gaussian-type orbitals, early contraction strategies may allow for 

a more efficient expansion of the Boys function. While all of these aforementioned 

approaches become inefficient for basis functions of high angular momentum, Gauss-

quadrature based ERI algorithms, which are formulated in terms of roots and weights of Rys 

polynomials instead of the Boys function, perform better in such cases. This holds especially 

on modern computer architectures which allow for very rapid computations, provided that the 

employed implementation features only a comparatively limited number of intermediates. 

Thus, an existing, highly optimized implementation of a Gauss-quadrature based algorithm 

was interfaced to the EXX calculation modules of PARAGAUSS as well and used in most 

hybrid DFT production calculations. 

The final ERIs are contracted with the density matrix to the EXX matrix and the EXX 

energy term. Several measures need to be taken also at this stage to make hybrid DFT 

calculations on larger systems feasible. Such measures rely on accounting for the internal 

index symmetries of the tensor formed by all ERIs, as well as for spatial point group 
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symmetries. The EXX implementation carried out in this thesis takes into account both of 

these symmetries. Thereby the so-called petit-list approach is employed to omit all but one of 

the ERIs that are equivalent by point group symmetry. Integral screening approaches allow to 

reduce further the effort when calculating the EXX term. Thereby one skips the computation 

of ERIs that do not provide a numerically significant contribution to the EXX term. Integral 

screening approaches can lower the formal forth-order scaling of the computational 

requirements of the EXX term to a linear scaling in the limit of very large systems with a 

notable HOMO-LUMO gap. The most important ERI-screening approach, namely the 

density-weighted Schwarz screening ∆SCF method was implemented as part of this thesis for 

the EXX term. Similar symmetry and screening treatments are used also in the 

implementation of the gradients of the EXX term with respect to nuclear coordinates. 

Finally, the application of hybrid DFT methods to larger systems requires an efficiently 

parallelized implementation. The parallel implementation done in this thesis is based on an 

existing dynamic load balancing (DLB) library which employs a work-stealing strategy to 

achieve an efficient parallelization. In this implementation, a special algorithm assigns groups 

of ERIs to the actual DLB tasks which are then dynamically allocated by the DLB library to 

the individual CPU cores. On the example of a large transition metal cluster with ligands, a 

parallel efficiency of ~93 % of the hybrid DFT SCF iteration was achieved for up to 2048 

cores. Opposed to that, the parallelization of smaller unsymmetric systems still seems to 

suffer from the comparatively slow exchange of data between computing nodes. 

The DFT+Umol method as developed and implemented as part of this thesis represents an 

extension of the conventional DFT+U method. Compared to hybrid DFT method, this 

approach provides a more efficient, very localized correction for self-interaction and 

delocalization errors. The DFT+Umol method is based on molecular fragment orbital 

occupation numbers of those orbitals which are targeted by the self-interaction correction. To 

avoid a complicated symmetrization of these fragment orbitals, the DFT+Umol energy and 

potential terms have been implemented in terms of projectors. The DFT+Umol gradients are 

computed largely with parts of an earlier implementation of the traditional DFT+U method. 

Three case studies have been carried out as part of this thesis in which hybrid DFT 

functionals and/or the DFT+Umol method are applied. The first application examined the 

trend of the first metal-CO dissociation energies dis ( )E m  of the nickel carbonyl complexes 

Ni(CO)m with 1 4m = − . From experimental and accurate post-HF results these dissociation 

energies are known to increase when going from Ni(CO)4 to Ni(CO)2 due to a reduced 

bonding competition. This trend is broken by dis dis(2) (1)E E>  as the electronic configuration 

of the nickel atom formally relaxes from the d10 configuration which appears in the nickel 

carbonyl complexes. The overall trend of the dis ( )E m  values is predicted correctly by hybrid 

DFT methods, but not by semi-local functionals. This situation in turn suggests that the 

dissociation energies obtained with semi-local DFT approximations are affected by the self-
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interaction error. To further examine these self-interaction artifacts, the DFT+Umol 

correction was projected onto the Ni 3d subshell as well as onto the CO 2π* orbitals. Several 

values of the DFT+Umol parameters 3dU  and 2π*U  were applied, which control the strength 

of both self-interaction corrections. In the case of the DFT+Umol correction applied to the Ni 

3d orbitals one finds that the correct trend in the dissociation energies is restored already at 

3dU  values below 3.0 eV. Around the parameter value of 5.3 eV, which is commonly 

employed in the literature for this subshell, the DFT+Umol results agree well with CCSD(T) 

reference values. Surprisingly, the correction of the 2π* orbitals yields the correct trend in the 

dis ( )E m  values as well, but only at a comparatively large value of 2π* 4.0U =  eV. However, at 

this parameter value the Ni(CO)3 and Ni(CO)4 complexes become unphysically destabilized. 

A detailed analysis of the electronic structure reveals that the proper localization of the Ni 3d 

subshell is essential to achieve dis dis(2) (1)E E> . Semi-local DFT methods overly delocalize 

these orbitals within the carbonyl complexes, which lowers the energy of these systems with 

respect to the nickel atom and yields the incorrect trend. The DFT+Umol correction of the Ni 

3d subshell directly localizes these orbitals. Also the DFT+Umol correction of the CO 2π* 

orbitals can achieve the same effect by essentially removing the back-bonding interaction, 

which leads to the aforementioned destabilization of Ni(CO)3 and Ni(CO)4. 

The second study addressed the description of transition metals provided by hybrid DFT 

methods. To this end, the newly implemented hybrid functionals PBE0, TPSSh, and M06 

were compared with their semi-local counterparts PBE, TPSS, and M06L for their 

performance in a cluster scaling study of the cluster models Nim, Pdm, and Ptm (m = 13, 38, 

55, 79, 116). The extrapolations of average nearest-neighbor distances, cohesive energies, as 

well as vertical ionization energies and electron affinities to their respective bulk limits allow 

a comparison with experimental references for the bulk systems. While PBE0 and M06 often 

exhibit a quite erratic behavior, the hybrid DFT method TPSSh provided surprisingly 

accurate results for most of these quantities. Inspection of the number of orbitals around the 

HOMO-LUMO gap showed that TPSSh yields significantly large values for the examined 

clusters. A large number of orbitals around the HOMO-LUMO gap is a prerequisite for 

mimicking static correlation effects by a level broadening technique. 

Finally, CO adsorption on the (111) facets of the cluster models Pt79, Pt140, and Pt225 was 

studied with the aforementioned hybrid and semi-local functionals as well as with the 

DFT+Umol correction of the CO 2π* orbitals. In the case of the extended Pt(111) surface 

semi-local functionals are known to predict the fcc-hollow site to be preferred for the 

adsorption of the CO molecule as opposed to the experimentally determined top-site 

preference. Furthermore, the corresponding CO adsorption energies are significantly 

overestimated. This failure of semi-local DFT methods, known as the “CO puzzle”, 

originates from the self-interaction error which cases a too low energy of the CO 2π* orbitals. 

Thus, the correct description of the CO adsorption on Pt(111) requires an electronic structure 
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description which is nearly free of self-interaction while simultaneously accounting for static 

correlation effects in the metal moiety. As expected, the examined semi-local functionals 

predict CO adsorption on the fcc-hollow site as preferred for the employed cluster models. 

Furthermore, the three applied hybrid DFT methods yield a top-site preference while 

overestimating the CO adsorption energy even slightly more. However, the smaller 

elongation of the C-O bond in the adsorbed CO fragments indicates, as expected, that back-

bonding is reduced by the EXX term in hybrid functionals. As hybrid functionals yield higher 

adsorption energies, the reduced amount of back-bonding has to be compensated by an 

enhanced σ-bonding interaction. The analysis of the projected densities of states supports this 

conclusion. The EXX term increases σ-bonding more at fcc-hollow sites due to a 

combination of the overly broadened Pt d-band and the energetic lowering of all levels at this 

site caused by the electrostatic effect of the remaining back-bonding charge transfer. On the 

other hand, the DFT+Umol projection onto the CO 2π* orbitals restores the correct top-site 

preference on the examined model clusters at a moderately large value of 2π* 2.0U ≈  eV. 

However, the corresponding CO adsorption energies obtained in this case are found to 

underestimate the experimental reference value. Inspection of the projected density of states 

as well as of the DFT+Umol orbital occupation matrix elements reveals that the DFT+Umol 

correction affects only the energy of the 2π* orbitals, while the residual electronic structure 

of the Ptm(CO)8 systems remains essentially unchanged. Thus, the DFT+Umol term purely 

acts as energetic penalty function as opposed to its behavior found in the nickel carbonyls. 

The case studies made in this thesis provided new insight and rationalizations about the 

behavior of self-interaction, delocalization, and static correlation errors in several types of 

systems. However, the results of these studies also illustrated the limitations of the employed 

methods. While the TPSSh hybrid functional can certainly be suggested for the study of 

transition metal compounds, it fails to describe the adsorption of the CO molecule on Pt 

surfaces. For this problem, local hybrid functionals which can adapt the amount of exact-

exchange to the local electronic situation or novel DFT approximations that feature explicit 

static correlation terms may provide a better accuracy. The DFT+Umol method represents an 

efficient method which provided qualitatively correct answers in the applications studied in 

this thesis. This approach may be refined further, especially with regard to a non-empirical 

determination of its parameters and by introducing variants that allow for a better 

reorganization of the electronic structure. 

The implementation work made in the context of this thesis can be refined as well. The 

parallelization of the EXX term (and other parts of PARAGAUSS) may be improved by a 

distributed memory strategy. Its serial efficiency should be increased by more advanced 

screening strategies, a semi-direct SCF approach in which the computationally most 

expensive ERI batches are stored in memory instead of being recalculated as well as by a 

cache-efficient implementation of modern ERI algorithms. 
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