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The present essay is a summary of ten research articles, written by the author and several
co-authors. Together with the original references it constitutes the author’s habilitation
thesis. The central theme of the thesis is the construction of multivariate probability
distributions in large dimensions. Special focus is put on the study of multivariate ex-
ponential laws. In particular, those exponential families with conditionally independent
and identically distributed components are characterized. Subsequently, hierarchical de-
pendence structures are constructed from one-factor building blocks. Besides a generic
recipe for such structures, specific examples that are discussed comprise hierarchical
Archimedean copulas, multivariate exponential distributions, as well as combinations
thereof. Finally, some closely related topics and an application to portfolio credit risk
modeling are sketched.

1 Survey of the thesis

The content of the present habilitation thesis comprises several published research ar-
ticles, written jointly with German Bernhart, Marcos Escobar-Anel, Christian Hering,
Marius Hofert, Pablo Olivares, Steffen Schenk, and Matthias Scherer, a detailed list
of references is given below. The remaining sections aim at surveying these articles,
and pointing out how they all relate to the central theme, which is the construction
of tractable, high-dimensional probability distributions — with a focus on multivariate
exponential laws. In order to make the present summary stringent and reader-friendly,
the author purposely decided to embellish it with an elaborate introduction and some
conjunctive passages. As a consequence some articles are discussed more in-depth than
others, but all of them are mentioned at least once in the main body of the present
summary. For technical proofs the interested reader is always referred to the original
articles, except for two new lemmata, which are included to create a convenient “reading
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flow”.

The precise content of the remaining sections is organized as follows: Section 2 provides
a motivating introduction, which prepares the reader for the upcoming sections. In
particular, Subsection 2.1 recalls some required mathematical background regarding
De Finetti’s Theorem and extendibility. Section 3 summarizes the major theoretical
findings on extendible exponential distributions. Section 4 shows how to design flexible
and low-parametric multi-factor models from De Finetti-type building blocks. Section
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5 illustrates applications of the introduced concepts to parameter estimation, numerical
density evaluation, and in the context of portfolio credit risk. Section 6 concludes. A
detailed list of the published articles surveyed in the present summary is given in the
sequel. In the remaining sections, these articles are labeled with “A” (standing for
“article”) and a number when cited, as opposed to all other citations, so that the reader
can quickly realize which citation corresponds to a part of the habilitation thesis, and
which does not.

e Articles surveyed in Section 3 (multivariate exponential laws):

[A1] “The Pickands representation of survival Marshall-Olkin copulas”, with M.
Scherer, Statistics and Probability Letters 80 (2010) pp. 357-360.

[A2] “Bivariate extreme-value copulas with discrete Pickands dependence mea-
sure”, with M. Scherer, Extremes 14 (2011) pp. 311-324.

[A3] “Sampling exchangeable and hierarchical Marshall-Olkin distributions”, with
M. Scherer, Communications in Statistics - Theory and Methods 42 (2013)
pp- 619-632.

[A4] “Characterization of extendible distributions with exponential minima via
processes that are infinitely divisible with respect to time”, with M. Scherer,
Extremes 17 (2014) pp. 77-95.

e Articles surveyed in Section 4 (construction of hierarchical dependence structures):

[A5] “Constructing hierarchical Archimedean copulas with Lévy subordinators”,
with C. Hering, M. Hofert and M. Scherer, Journal of Multivariate Analysis
101:6 (2010) pp. 1428-1433.

[A6] “H-extendible copulas”, with M. Scherer, Journal of Multivariate Analysis
110 (2012) pp. , 151-160.

[A7] “Default models based on scale mixtures of Marshall-Olkin copulas: proper-
ties and applications”, with G. Bernhart, M. Escobar-Anel and M. Scherer,
Metrika 76 (2012) pp. 179-203.

e Articles surveyed in Section 5 (applications of the introduced concepts):

[A8] “Moment-based estimation of extendible Marshall-Olkin distributions”, with
C. Hering, Metrika 75 (2012) pp. 601-620.

[A9] “The density for distributions from the Bondesson class”, with G. Bernhart,

S. Schenk and M. Scherer, Journal of Computational Finance, forthcoming
(2013).

[A10] “A multivariate default model with spread and event risk”, with P. Olivares,
S. Schenk and M. Scherer, Applied Mathematical Finance 21 (2014) pp. 51—
83.
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2 Introduction and Motivation

The present thesis deals with the stochastic modeling of multivariate distributions. More
precisely, a random vector (Xi,..., X ) with real components is considered. The inves-
tigation is motivated by applications where the components are interpreted as time
points in the future, i.e. X}, is a future time point at which a certain event E; happens,
k =1,...,d. An example in a financial context is the modeling of a portfolio of d
credit-risky assets, and one is interested in the events E = {asset k defaults}. This
interpretation makes clear the particular interest for the case that the components of
the random vector are all non-negative, i.e. distributions on [0,00)% are studied. More-
over, the focus lies on situations when the components Xi,..., Xy are stochastically
dependent, and when the dimension d might be very large, e.g. d = 125 or even larger.
However, concrete examples are avoided in the sequel (except for Subsection 5.3, which
illustrates an application in the context of Mathematical Finance), because the mod-
eling recipe might as well apply to various other situations, and the findings are also
interesting for pure theorists.

One goal of the remaining sections is to provide the reader with a generic recipe of how
to build multivariate models for dependent time points, which satisfy the following two
practical demands:

(a) The model is intuitive. A factor-model way of thinking is condoned because this is
what people can grasp intuitively very well. As a consequence, it will be possible
to add or remove components of the model without destroying its structure. Le.
the model is independent of the dimension d to some degree.

(b) The number of model parameters can be controlled. In particular — and this dis-
tinguishes the present approach from many other multivariate distributions — the
number of parameters in the presented models does not explode with increasing
dimension. Again, this goes along with a certain invariance of the models with
respect to their dimension.

As mentioned in (a) above, a factor-model approach is pursued. To this end, it is first
specified in a mathematically precise way what kind of factor-models are meant, which is
done in Subsection 2.1 below. The idea is to build multi-factor models from simpler one-
factor models, so that — to a large extent — it suffices to understand the one-factor case.
Moreover, a latent factor will always be a non-decreasing, cadlag stochastic process
H = {H;}. Thus, multi-factor models are constructed from multiple, independent
stochastic processes. The approach is by definition constructive in the sense that the
probability space on which the random vector is defined can be written down explicitly,
i.e. the components X7, ..., Xy are specified as certain functionals of the factor processes
and an independent sequence of random variables which are independent and identically
distributed (iid). In particular, a simulation of the model along this construction is
straightforward in many cases. The models constructed in this way are then further
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investigated, e.g. several stochastic properties of the random vector are derived, and it
is explored how they stem from stochastic properties of the factor processes.

2.1 De Finetti’s Theorem and its implications

We are interested in the stochastic modeling of a random vector (X7, ..., Xy) with real
components on a probability space (€2, F,P), in such a way that the constructed model
is convenient to work with and easy to understand. In particular, we would like to model
the components stochastically dependent. An intuitive approach to tackle this modeling
task is to start from the bottom up, i.e. begin with the simplest kind of dependence and
then add more and more structure to it. This is the approach that is pursued in the
sequel. The simplest setup is definitely when all components have the same univariate
distribution and are independent, we say the random variables X, ..., Xy are iid. This
setup is so simple because the whole modeling task boils down to the modeling of
one univariate distribution, say of X1, which determines the overall distribution of the
vector. One obvious extension from the iid setup to dependent components is to consider
a setup which is conditionally iid. What does that mean? In words, conditionally iid
means that the probability space supports one stochastic factor, say H, which affects
all otherwise identical components alike. Mathematically speaking, conditioned on the
(0-algebra generated by the) latent factor H the components Xi,..., X are iid. An
example would be if the components X7, ..., Xy were {0, 1}-valued, Bernoulli variables
with success probability H € [0, 1], but H itself is a random variable which is drawn
before the (same) Bernoulli experiment is run d times. Speaking in terms of Bayesian
statistics, there is a prior distribution on the success probability H. Clearly, if H is not
constant, the components of (X7i,..., X,) are dependent because, e.g.,

P(X1=1,X,=1)=E[P(X;=1,Xo=1|H)| =E[P(X; =1|H)P(Xs = 1| H)]
=E[H? >E[H?=P(X; =1)P(Xy = 1).

In this first example H is a random variable. More generally, we have a conditionally
iid model if the probability space supports an arbitrary iid sequence Uy, ..., Uy of ran-
dom variables and an arbitrary independent stochastic “object” H, and the random
vector (X7q,...,Xy) is defined via Xy := f(Ug,H), k = 1,...,d, for some measurable
“functional” f. Clearly, this general model is inconvenient because neither the law of
Ui, nor the nature of the stochastic object H or the functional f are given explicitly.
However, there is a canonical choice for all three entities, which we are going to consider
in the sequel. By definition, conditionally iid means that conditioned on the object H
the random variables X1,..., Xy are iid, distributed according to a univariate distri-
bution function F', which may depend on H. A univariate distribution function F' is
nothing but a non-decreasing, cadlag function F' : R — [0, 1] with lim;,_o F(t) = 0
and lim;_, o F'(t) = 1, see [Billingsley (1995), Theorem 12.4, p. 176]. Therefore, without
loss of generality we may assume that H = {H;}4cpr already is this distribution function
itself, i.e. is a random variable in the space of distribution functions — or, in other words,
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a non-decreasing cadlag stochastic process with limy—,_, H; = 0 and lim;_,, H; = 1.
In this case, a canonical choice for the law of Uj is the uniform distribution on [0, 1] and
the functional f may be chosen as

Xp=f(Up, H) :=inf{t eR : H; > U}, k=1,....d. (1)

Indeed, one verifies that Xi,..., X, are iid conditioned on H := a({Ht}teR), with
common univariate distribution function H, since

]P)(Xl Stl,,XdStd|H):P(U1 SHt17"‘7Ud§th|H):HtlHtQ "'th,

for all ¢1,...,t5 € R. Every random vector which is conditionally iid can be constructed
like this, i.e. there is a one-to-one relation between such models and random variables
in the space of (one-dimensional) distribution functions. Stochastic models of the form
(1) are interesting for several reasons:

(a) Few parameters. The only model input is the stochastic nature of the process
H. In particular, if H is a stochastic process whose law is parameterized by
0, then the resulting multivariate distribution of (X7i,...,Xy) is parameterized
by 0, irrespectively of the dimension d. Hence, the number of parameters can be
controlled. This can be a striking advantage of such models, for instance compared
with models that are parameterized by a correlation matrix, whose number of
parameters d (d — 1)/2 grows rapidly with the dimension d.

(b) Easy simulation. The model is intuitive to understand and straightforward to
simulate, provided one has a convenient simulation engine for the process H at
hand. In particular, the efficiency of the simulation algorithm grows only linearly
in the dimension, since one only has to draw more iid trigger variables Uy.

(¢) Basis for generalizations. Independent conditionally iid models of the form (1)
can be used as building blocks for more general multi-factor models that overcome
the underlying homogeneity assumptions, which are sometimes too restrictive in
applications. A generic recipe is straightforward to implement for many families
of processes H. In particular, several structurally different processes H can be
combined to create quite flexible dependence structures. For this generic procedure
required is only (i) a repertoire of well-investigated models of the form (1), and
(ii) a careful consideration of what is lost and maintained when two models are
combined. Section 3 provides theoretical background related to issue (i) for a large
family of processes H and associated multivariate distributions. Details regarding
issue (ii) are provided in Section 4.

Now we have a precise probabilistic understanding of the notion “conditionally iid”, and
a canonical stochastic model. A natural question is whether multivariate distributions of
such type can be characterized analytically. For a fixed dimension d, finding convenient,
necessary and sufficient, analytical conditions that help to decide whether or not a given
multivariate distribution can be constructed by a stochastic model like in (1) is a difficult
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question, unsolved in general'. Nevertheless, for infinite sequences of random variables
(i.e. if d — 00), a seminal theorem of De Finetti provides a satisfactory solution.

Theorem 2.1 (De Finetti (1937))

Consider an infinite sequence of random variables {Xj}reny on a probability space
(Q, F,P). The sequence is exchangeable, i.e. for each d € N the distribution of (X7, ..., Xy)
is the same as the distribution of (Xw(l), . ,Xﬂ(d)) with an arbitrary permutation 7 on
{1,...,d}, if and only if it is conditionally iid, i.e. there is a sub-o-algebra H C F such
that for each d € N one has

d
P(Xlgtlau-’XdStd’H):HP(Xlgtk’H)v t1,...,ta € R.
k=1

This theorem has first been established by [De Finetti (1931)] for {0, 1}-valued random
variables, and in full generality by [De Finetti (1937)]. Generalizations to more abstract
situations and different formulations can be found many times in the literature. Two
of the most popular references are [Hewitt, Savage (1955)] and [Ressel (1985)] who deal
with random variables taking values in more general spaces than R. One of the essential
contributions of De Finetti’s Theorem is that exchangeability is a notion which allows
for an analytical access to multivariate laws, whereas the notion “conditionally iid” is a
priori purely probabilistic.

Now what is the use of De Finetti’s Theorem for the scope of the present habilitation
thesis? Suppose we start with a given parametric family of multivariate distribution
functions in fixed dimension d, and we are interested in determining and describing the
subclass of those distributions that one can construct like in (1). If this is possible,
we call such a distribution extendible, i.e. “extendible” is really just another word for
“conditionally iid”. De Finetti’s Theorem states that extendibility is equivalent to the
existence of an infinite, exchangeable sequence {Xj}ren on some probability space,
such that the first d members of this sequence, arranged as a vector, follow the given
multivariate distribution. This explains the nomenclature extendibility, because the
given d-dimensional random vector can be extended to an infinite exchangeable sequence
of random variables — at least in distribution. In particular, De Finetti’s Theorem allows
us to decide whether the given distribution is extendible in two subsequent steps:

(i) Exzchangeability. It is necessary that the given d-dimensional distribution is ex-
changeable. Sometimes it is not too difficult to derive necessary and sufficient, an-
alytical conditions on the parameters for exchangeability. This already simplifies
the problem massively, because one only has to consider the exchangeable subclass
of the given family of distributions, and the exchangeable subclass can often be
analyzed much easier analytically. Providing a simple example, a d-dimensional
normal distribution with mean vector g and covariance matrix ¥ is exchangeable

"However, such conditions can be found for specific classes of distributions. An example is provided
by [Mai, Scherer (2013)] in the case of Marshall-Olkin distributions.
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if and only if all components of w, all diagonal elements of X, and all off-diagonal
elements of 3 are identical. Hence, analyzing the exchangeable subclass of the
normal law means studying a three-parametric family, whereas studying the full
normal family requires coping with d + d (d + 1)/2 parameters.

(ii) Extendibility. Given a parametric family of d-dimensional exchangeable distri-
butions, one must find convenient analytical conditions on the parameters which
guarantee that “the limiting process d — oo is possible”. In other words, based
on the nature of the parameters one must now decide whether it is possible to
extend the dimension arbitrarily. This task is typically more difficult than the
first task (i), however, in some cases can be accomplished. If one is lucky, then the
analytical solution on the parameter space can be converted back into probability
theory and provides insight into the stochastic nature of the latent factor process
H.

Section 3 characterizes the extendible subclasses for several families of multivariate expo-
nential distributions. Moreover, other parametric families of multivariate distributions,
for which the extendible subclass and the stochastic nature of H are known, comprise el-
liptical distributions and Archimedean copulas, for references and details the interested
reader is referred to the respective chapters in [Mai, Scherer (2012)].

3 Multivariate exponential distributions

The present section deals with multivariate exponential distributions. It is explored
which stochastic properties the process H must have in order for the random vector
(X1,...,Xq) from construction (1) to be exponential — a precise definition of this notion
is given below. Firstly, a general introduction into multivariate exponential distributions
is presented in Subsection 3.1. Secondly, the major theoretical findings are summarized
in Subsection 3.2.

Before we start, let us slightly reformulate the stochastic model (1) so that it more
conveniently suits the setup of exponential distributions. Clearly, since exponential
distributions always have non-negative components, H; = 0 for all ¢ < 0. Therefore,
without loss of generality we may assume that H = {H;}+>0 is indexed by ¢ € [0, 00).
Moreover, applying the substitution h = —log(1 — F) it trivially holds true that

{distribution functions F : [0, 00) — [0, 1] with F(0) =0}
= {t — 1 —exp(—h(t)) ‘ h :[0,00) — [0, 00] non-decreasing, cadlag
with ~(0) =0 and tlim h(t) = oo}.
—00

One can therefore drop the boundedness assumption on the process H and rewrite the
canonical construction (1) as

Xi:=inf{t>0: H >e}, k=1,...,d, (2)
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where the ¢, = —log(1l — Ug), k = 1,...,d, are now iid exponential random variables
with unit mean, and H = {H;}+>0 is a non-decreasing, cadlag process with Hy = 0 and
lim;_ H; = co. This canonical probability space is visualized in Figure 1.

Fig. 1 Illustration of one simulation of
H — jche ‘canon.ical construction (2)
in dimension d = 4. One ob-
serves that the process H =
{H:}+>0 in this particular illus-
€ tration has jumps, and there-
£ fore there is a positive proba-
bility that two components take
the identical value. This does
not happen if H is a continu-
ous process.
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&
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3.1 A primer on multivariate exponential distributions

First of all, we must agree on a suitable definition of multivariate exponential distri-
butions, because the one-dimensional exponential law can be lifted to the multivariate
case in several ways. The seminal work of [Esary, Marshall (1974)] is briefly recalled, in
which several classes of multivariate exponential distributions are considered that are
obtained by lifting different univariate properties to the multivariate case. A random
variable X on a probability space (€2, F,P) has an exponential law with rate parameter
A > 0, denoted E(N), if its distribution function is given by

Fit)=P(X <t)=(1—e*)1ys0, teR.

The following two properties characterize the univariate exponential distribution.

(a) Lack-of-memory: A random variable X with support [0, 00) on a probability space
(Q, F,P) is exponential if and only if P(X > ¢t +s|X > s) = P(X > t) for all
t,s > 0.

(b) Min-stability: If two independent random variables X and Y are exponential with
rates Ax, Ay, then the minimum min{X,Y} is exponential with rate Ax + Ay.
Moreover, the parametric family of exponential distributions is the only parametric
family of distributions with this closure property.
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Considering the survival function F(t) = exp(—At), t > 0, of £(\), both properties (a)
and (b) follow from the fact that the exponential function is essentially the only function
f satisfying Cauchy’s equation f(z+y) = f(z) f(y), z,y > 0, see [Billingsley (1995), Ap-
pendix A20, p. 540]. Motivated from these two properties [Esary, Marshall (1974)] con-
sider three different families of multivariate exponential distributions, which we adopt.
We say that a random vector (X1, ..., Xy) with support [0,00)% on a probability space
(Q, F,P) has a ...

(a) ... Marshall-Olkin distribution (MO), if the multivariate lack-of-memory property
P(Xil >t1—|—8,...,Xik >tk—|—S|X¢1 > S,...,AX@',C >S) :P(Xil >t1,...,Xik >tk)

is satisfied for all 1 <11 <19 < ... < i <d, s,t1,...,t > 0.

(b1) ... min-stable multivariate exponential distribution (MSMVE), if each minimum
min{c; Xj,,...,cx Xj, } over scaled components is (univariate) exponential, for all
1<ii<io<. ... < <d, c1,...,c, > 0.

(b2) ... distribution with exponential minima (EM), if each minimum min{X;,,..., X;, }
over components is (univariate) exponential, for all 1 < i < i < ... <1} < d.

It is shown in [Esary, Marshall (1974)] that MO C MSMVE C EM. Moreover, the family
MO is finite-parametric with 2¢ — 1 parameters and named after the seminal reference
[Marshall, Olkin (1967)], where it first appeared. The family MO has been studied in-
tensively in the author’s dissertation [Mai (2010)], and parameter estimation for the
extendible subfamily is discussed in Subsection 5.1. Generally speaking, the Marshall—
Olkin distribution is a paradigm example for a dependence model whose complexity
grows exponentially in the dimension. For instance, there are many articles which
treat the parameter estimation for bivariate Marshall-Olkin distributions, but their un-
derlying idea is difficult to extend to larger dimensions. Already the simulation of the
Marshall-Olkin distribution is a time-consuming task in large dimensions, not to say im-
possible on a standard PC. In order to circumvent this difficulty, the article [A3] derives
a simulation algorithm for exchangeable (but not necessarily extendible) Marshall-Olkin
distributions, and shows how to extend it also to hierarchical MO laws. The idea is to
exploit both the exchangeability assumption (providing sufficient symmetry to join sev-
eral cases by combinatorial considerations) as well as the lack-of-memory property of the
Marshall-Olkin distribution (to implement the algorithm recursively). The algorithm
is recursive and the runtime is random itself. However, a worst-case estimate for the
runtime is provided, which is shown to outperform the classical simulation algorithm
based on the canonical construction of the original reference [Marshall, Olkin (1967)]
by far. For detailed information and pseudo-code of the sampling engine the interested
reader is referred to [A3].

The family MSMVE is infinite-parametric. It is most convenient to study members of
the family MSMVE from their (multivariate) survival functions, about which a lot is
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known. For instance, [Joe (1997), Theorem 6.2, p. 174] shows that a function F' in d
variables is the survival function of an MSMVE law if and only if it can be written as

F(t,....tg) = C(e7 M e M) 4yt >0,

for some exponential rates Ai,...,Aq > 0 and a so-called extreme-value copula C.
The latter are distribution functions on [0,1]¢ with uniformly distributed marginal
laws on [0,1] satisfying the extreme-value property C(ui,...,uq)" = C(ul,... ul),
Ui, ...,uqg € [0,1],¢ > 0. As the nomenclature suggests, these distributions play a
fundamental role in extreme-value theory. For instance, the family of distribution func-
tions which is obtained when plugging univariate extreme-value distribution functions
into an extreme-value copula coincides with the family of multivariate extreme-value dis-
tributions. Without going into details, this implies that studying MSMVEs is equivalent
to studying the dependence structure between rare events. One of the major findings
in multivariate extreme-value theory, at least known since [De Haan, Resnick (1977)]
but many times re-discovered and re-formulated since then, is a one-to-one relationship
between d-dimensional MSMVEs and certain measures on a subspace of R%, which is
somehow comparable with the one-to-one relationship between infinitely divisible distri-
butions and their associated Lévy measures. A quite recent, purely analytical derivation
of this result can be retrieved from [Ressel (2013)]. In terms of this measure representa-
tion the subfamily MO C MSMVE is always given by a certain discrete measure with at
most 2¢ — 1 atoms, which is explicitly stated in [A1]. Given the importance of the family
MSMVE in multivariate extreme-value theory, it is of paramount interest to determine
its extendible subfamily. Indeed, the upcoming Subsection 3.2 outlines how to construct
conditionally iid MSMVEs from certain stochastic processes, and later on in Subsection
4.2 multi-factor MSMVEs are constructed from the conditionally iid building blocks.

Given the findings from the author’s dissertation [Mai (2010)] on the subfamily MO C
MSMVE, one might hope that some results easily extend from MO to MSMVE in an
obvious manner. Unfortunately, there are a couple of difficulties preventing this strat-
egy from being straightforward — predominantly the fact that MO is finite-parametric
and MSMVE is not. One way of thinking, which turned out not to work, is illustrated
briefly, because it is educational and, luckily, provides a result of independent inter-
est in dimension d = 2. In terms of the aforementioned measure representations for
MSMVE, one could have hope that each representing measure of an MSMVE law can
be constructed as a convex mixture of representing measures from the class MO. Since
the latter have finite support, finite convex combinations still remain finite measures, so
representation measures with infinite support cannot be obtained without considering
closure properties of such a construction. One hope is that an arbitrary discrete rep-
resenting measure can be attained by such convex mixtures, and a second hope is that
discrete measures are dense in the set of all measures in some sense. Although there is
a positive answer to the second hope at least in dimension d = 2, the article [A2] shows
that already in the bivariate case d = 2 the first hope is too ambitious. It is shown that
an arbitrary discrete representing measure of a bivariate MSMVE can be attained as
the convex combination of certain measures with at most two atoms. Unfortunately, the

10
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discrete measures associated with Marshall-Olkin distributions turn out not to be the
relevant building blocks in this construction. Rather, another two-parametric family of
distributions, termed BC5 in [A2], is found to be essential, which is a result of indepen-
dent interest. Unfortunately, this finding makes explicit use of a construction idea that
only works in dimension d = 2.

3.2 Extendible exponential distributions

In the author’s dissertation [Mai (2010)] it has already been shown that if the stochastic
process H = {H;};>0 in construction (2) is a (possibly killed) Lévy subordinator?, then
the random vector (X7, ..., Xy) has a Marshall-Olkin distribution. Even more, every ex-
tendible Marshall-Olkin distribution can be obtained by this construction. This result is
generalized to the superclasses MSMVE and EM in Theorem 3.3 below. In order to for-
mulate it, required is the notion of stochastic processes which are infinitely divisible with
respect to time (IDT). We distinguish between processes that are strong IDT and weak
IDT, the former have first been studied in [Mansuy (2005), Es-Sebaiy, Ouknine (2008)]

and the latter in [Hakassou, Ouknine (2012)]. In the following definition, 2 means equal-

ity in distribution. We recall that (X7, ..., X4) 4 (Y1,...,Yy) means E[f(X1,...,Xq)] =
E[f(Y1,...,Yy)] for all bounded, continuous functions f : R? — R, where the expectation
values E are taken on the respective probability spaces of (Xi,..., Xy) and (Y1,...,Yy),
which might be different. Equality in law for two stochastic processes X = {X;}i>0

and Y = {Y;};>0 means that (Xy,...,Xy,) 4 (Ys,, ..., Y;,) for arbitrary d € N and
ti,ta,...,tg > 0.

Definition 3.1 (Strong and weak IDT process)
A stochastic process H = {H;}+>0 is called weak IDT if for each n € N, each ¢ > 0, and
independent copies HY, ..., H™ of H it holds that

+HY ¢ 4+ gD (3)

a (1)
Hy=H t/n t/n°

t/n
Furthermore, if the equality (3) is even satisfied by whole paths, i.e. if for each n € N
and independent copies HY, ..., H™ of H we have

+H? 4+ 4+ HY

4 1)
{Hi}i>0 = {H t/n t/n}tZO’

t/n

then H is called strong IDT.

Every strong IDT process is also weak IDT by definition, but the converse needs not
hold. For an example of a weak IDT process which is not strong IDT we refer to [A4,
Example 5.1]. Every Lévy process is strong IDT, but the converse needs not hold.
For instance, if S = {S;}+>0 is a non-trivial Lévy subordinator and a > b > 0, then

2For background on these processes the reader is referred to the textbook [Applebaum (2004)].

11
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the stochastic process {Syt + Spt}e>0 is strong IDT by Lemma 3.2 below, but not a
Lévy subordinator. For further examples we refer the interested reader to [A4]. For a
cadlag, non-decreasing stochastic process { H }+>0 with Hy = 0 the Laplace transforms
x — Elexp(—z Hy)], * > 0, are well-defined for each ¢ > 0. Using standard arguments
from the theory of infinite divisibility, such as [Sato (1999), Theorem 7.10, p. 35], it can
be shown that a non-decreasing process H = {H;}+>0 with Hy = 0 is weak IDT if and
only if there exists a function W : [0, 00) — [0, 00) such that

E[e*x Ht} =e Y@ x> 0.

In such a situation, it is well-known that ¥ must be a so-called Bernstein function, i.e.
T e C®(0,00), (1)1 wE) () >0, z > 0, k € N, with ¥(0) = 0 and a possible jump
at zero. There exists vast literature on the study of such functions, because they play a
dominant role at numerous places in Probability Theory and Analysis. For instance, the
textbooks [Berg et al. (1984), Schilling et al. (2010)] contain extensive analytical studies
of Bernstein functions. Many results in the present thesis, e.g. the proof of Theorem 3.3
below, rely on the analytical treatment of infinite divisibility via Bernstein functions.
For more information on the latter the interested reader is also referred to Subsection
5.2, where a convenient Laplace inversion algorithm for densities of infinitely divisible
laws associated with certain Bernstein functions is developed.

In order to get a feeling for the notion of IDT processes, the following (new) lemma points
out a distinctive closure property of strong IDT processes, which is neither shared by
weak IDT processes nor by Lévy subordinators. It is required later on in Lemma 4.4.

Lemma 3.2 (Strong IDT processes form a cone in time and space)
Let H = {H;};>0 be a strong IDT process, m € N, and a;, b; > 0 constants, j =
1,...,m. Then the process {a1 Hy 1+ ...+ ap Hbmt}t>0 is also strong IDT.

Proof
Consider n € N independent copies of the stochastic process H, denoted H®, i =
1,...,n. The following observation is needed:

(¥) X ={X;}>0 and Y = {Y; }4>0 are arbitrary stochastic processes with { X }+>0 4

. d
{Y: }+>0, it follows that {a1 Xp ¢+ +am Xbmt}t>0 = {al Yo, ¢4 .. +am met}t>0’
as will be shown in the sequel: fixing some d € N and t1,ts,...,tq > 0, the random
vectors (Xbltla s 7Xbltd7Xb2t15 cee 7Xbmtd) and (}/;)1t17 s 7}/3)1?5017}/;721?17 .. 'ametd)
have the same distribution by assumption. Hence,

m m m m
d
<§ anbjtla"'7§ a’ijjtd):(E a/j}/bjtlv"'7§ aj}/bjtd)a
=1 =1 =1 =1

since these random vectors arise by applying the same measurable functional to
(Xbl t19 - 7Xb1 td7Xb2t17 o 7Xbmtd)7 reSpeCtiVely (}/2)1 t19- - 7Y2)1 td7}/i)2t17 v 7}/E7mtd)'
This proves the claim.
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3.2 Extendible exponential distributions

Defining X; := H; and Y; := S H")

t/n t > 0, it follows from the strong IDT property
d
that {X;}+>0 = {Y2}+>0. Hence,

n m

{ Z - aj ngj)t/n}tzo - {Jf;aj izn;Hg)t/”}po < { ;Zn;aj Hbjt}tzo’

i=1 j=

where the equality in distribution follows from (x) above and the first equality is trivial.
On the left hand side of the last equation one sees n independent copies of the process
{a1 Hy ¢+ ...+ an Hbmt}t>0, time-changed with ¢ +— t¢/n. Hence, the strong IDT

property of {a1 Hyt+...+am Hbmt}t>0 is established. O

If the stochastic process H in Lemma 3.2 is only weak IDT, then the stochastic process
{(11 Hy ++...+an Hbmt} >0 needs not be weak IDT in general, an example is provided
in the Appendix. Also this closure property does clearly not hold for the subfamily of
Lévy subordinators. So it is a property distinctive to the family of strong IDT processes.
The following theorem — together with Lemma 4.4 to be derived in Subsection 4.2 below
— explains the importance of IDT processes in the context of multivariate exponential
laws.

Theorem 3.3 (Extendible multivariate exponential laws)

(a) If the stochastic process H = {H;}+>0 is strong IDT, then the random vector
(X1,...,X4) in construction (2) has a min-stable multivariate exponential distri-
bution. Moreover, every extendible member of the family MSMVE can be obtained
by this construction.

(b) If the stochastic process H = {H;};>0 is weak IDT, then the random vector
(X1,...,Xg) in construction (2) has a distribution with exponential minima. More-
over, every extendible member of the family EM can be obtained by this construc-
tion.

Proof
These results are the main contribution of [A4], where the proofs can be found. O

Theorem 3.3 implies that IDT processes play a fundamental role in the context of mul-
tivariate exponential distributions. This is surprising, since IDT processes so far have
found only little attention in the academic literature, but MSMVEs are very well studied
because of their connection to extreme-value theory. The only articles dealing with IDT
processes that the author is aware of are [Mansuy (2005), Es-Sebaiy, Ouknine (2008),
Hakassou, Ouknine (2012)], and they merely present a couple of examples but no fur-
ther study such as, e.g., a canonical stochastic construction or a convenient analytical
description of their stochastic nature, which is an interesting topic for further research.
The results of the author’s dissertation and of Theorem 3.3 are summarized in Figure
2.

13



4 A generic recipe for multi-factor models

laws with exponential minima non-decreasing weak IDT
MSMVE laws non-decr. strong IDT
Marshall-Olkin (killed) Lévy
laws subordinators

Fig. 2 Subfamilies of EM and weak IDT processes. Whenever a member of a class of
processes on the right hand side is applied in construction (2), the result is a
vector (X7i,...,Xy) with corresponding distribution from the left hand side of
this Venn diagram.

4 A generic recipe for multi-factor models

The previous sections dealt with determining and describing the extendible subclass of
a family of multivariate distributions. The author hopes at this point that the reader is
convinced that such a study contributes a certain amount of inner-mathematical value,
because coherences between analytical concepts such as Bernstein functions on the one
hand, and probabilistic concepts such as extendibility and multivariate exponential laws
on the other hand, are revealed. Nevertheless, the application-oriented reader might
ask whether the conditionally iid nature of extendible distributions is of much practical
value at all, because many real world phenomena exhibit a much more complicated
dependence structure than that. Firstly, later on in Section 5.3 one specific field of
application in Mathematical Finance is indicated, where the conditionally iid nature
of these models actually offers an appealing trade-off between realism and practical
viability. Secondly, the present section shows how multi-factor models — which go far
beyond the cosmos of the conditionally iid setup — can be constructed conveniently from
extendible building blocks. By “conveniently” it is meant that all the “hard math”
is actually done, when the conditionally iid models are well-developed, because the
approach works basically like a tool box that allows to combine extendible building
blocks in a very simple way. Compared with the conditionally iid setup, one looses a
certain level of analytical viability. However, and this is one decisive point, the presented
parametric models are easy to simulate whenever the conditionally iid building blocks
can be simulated, and they allow for the number of parameters to be controlled at
one’s personal taste. We call multivariate distributions that are constructed like this
h-extendible, and the generic construction idea is outlined in detail in [A6]. In the sequel,
the basic idea is only briefly sketched, and rather two explicit examples are discussed in
greater detail (namely h-extendible Archimedean copulas and h-extendible MSMVEs).

14



4.1 H-extendible Archimedean copulas

The motivation for the notion h-extendibility is the synthesis of two desirable properties:
(i) the dependence structure is induced by multiple factors which affect the components
of the resulting random vector in a hierarchical manner (i.e. the “h” in “h-extendible”
stands for “hierarchical”), and (ii) the structure is “dimension-free” in the sense that
components can be added or removed from the system without affecting the overall
dependence structure, as is the case for extendible models. The following definition
aims at formalizing this intuitive idea.

Definition 4.1 (H-extendibility)

A d-dimensional random vector (Xi,...,X ) on a probability space (2, F,P) is called
h-extendible with n € {1,...,d} levels of hierarchy if for n > 2 there exists a o-algebra
H C F and a partition dj + ...+ dj = d such that conditioned on #H: (a) the random
vector (Xi,...,Xy) splits into J independent subvectors according to this partition,
(b) each subvector is h-extendible with at most n — 1 levels of hierarchy, and (c) at
least one subvector has n — 1 levels of hierarchy. For n = 1, i.e. at the end of the
recursion, h-extendibility with one level of hierarchy corresponds to the usual definition
of extendibility.

Definition 4.1 is recursive, but it can alternatively be reformulated iteratively. However,
the notation is more involved in this case, see [A6, Remark 2.4]. Explaining the iterative
definition in simple terms, an h-extendible random vector (X7, ..., Xy) with n levels of
hierarchy has to be thought of as follows: conditioned on a o-algebra H;, the random
vector splits into J independent subvectors. The o-algebra H; might be thought of
as being generated by a stochastic process H(1) = {Ht(l)} which affects all groups in
the same way. On the second level, there is a o-algebra Hs conditioned on which
each subgroup again splits into independent subsubgroups. The o-algebra Hy can be
thought of as being generated by H1) and J group-specific and independent stochastic
factors HZY ... H®)) where H2J) = {Ht@’j)}, j=1,...,J, affects all components
of subgroup j € {1,...,J} in the same way. Subdividing the subsubgroups further, this
procedure ends at level n, so that one obtains an increasing sequence of o-algebras H; C
Ho C ... C H,y ©F. The factors inducing the dependence between the components are
arranged hierarchically in the sense that the factors entering the construction at level k
are included in all o-algebras H; with i > k.

One might ask what is the use of Definition 4.1. The main motivation is that this
definition serves as an umbrella for many hierarchical factor models that can be found
in the literature, and therefore provides formalism to compare these stochastic models.
In the sequel, some examples of h-extendible structures are introduced.

4.1 H-extendible Archimedean copulas

One of the most popular families of multivariate distribution functions is the family of
Archimedean copulas. A multivariate distribution function C, : [0,1]¢ — [0,1] is an

15



4.1 H-extendible Archimedean copulas

Archimedean copula if it has the functional form

Co(uy,...,uq) = <p(g071(u1) + ..+ gofl(ud)),

for a non-increasing function ¢ : [0,00) — [0, 1] with ¢(0) = 1 and lim,_ p(z) = 0,
called (Archimedean) generator. A result of [Malov (1998)] shows that a necessary and
sufficient condition on the generator ¢ for C, to be a proper distribution function
is d-monotonicity, see also [McNeil, Neslehova (2009)] who provide a probabilistic in-
terpretation for this notion and derive a probabilistic construction for Archimedean
copulas. For the precise definition of d-monotonicity we refer the interested reader to
[Malov (1998), McNeil, Neslehové (2009)]. We denote by @4 the set of all d-monotone
Archimedean generators. It is known that ®9 2 &3 D ... D ®,, where ®, denotes the
set of all completely monotone generators, i.e. all ¢ with ¢(0) =1, ¢ € C*°(0, 0), con-
tinuous at zero, and (—1)F ¥ () > 0 for all z > 0, k € Ny. By the seminal Bernstein
Theorem the set @, coincides with the set of Laplace transforms of probability measures
on (0,00). The original reference is [Bernstein (1929)], see also [Schilling et al. (2010),
Theorem 1.4, p. 3]. An Archimedean copula C, is extendible if and only if ¢ € @,
and in this case a random vector (X1,...,X4) ~ C, can be constructed canonically as
in construction (1) with

0, t<0
Hy = { exp(~M ¢1(1)), te(0,1), (4)
1, t>1

where M is a positive random variable with Laplace transform ¢ € ®.,. Since the
stochastic process H = { H,; }4cR is quite trivial in this case, the infimum in the canonical
construction (1) can be computed explicitly, yielding the definition Xy, := ¢(—log(Uy)/M),
k = 1,...,d. This provides a simple stochastic model which is typically found in
the literature, for the first time probably in [Marshall, Olkin (1988)]. The o-algebra
H = o({Ht}ier) is generated by the random variable M, conditioned on which the
components of the resulting random vector (X1,...,Xy) in (1) are iid.

To overcome the exchangeability of Archimedean copulas, the notion of hierarchical
Archimedean copulas is introduced in [Joe (1993), Joe, Hu (1996)]. Given a partition

d = dy + ...+ dy of the dimension d and a vector u := (ug,...,uq) € [0,1]¢, we
introduce the notation w; := (g, 4. 4+d; 1415+ Udy+..4d;_1+d;)> J = 1,...,J, so that
u = (uy,...,uy). With given Archimedean generators g, @1, ..., @, if the function
d
C(u) :=Cpy (Cypy (ur),...,Cy,(uy)), uel0,1]% (5)

is a proper distribution function, it is called a hierarchical Archimedean copula (with
two levels of hierarchy). Assume for a minute that C is a distribution function and
consider a random vector X = (Xi,...,X) ~ C. The nice thing about such a
dependence structure is that within each group j € {1,...,J}, the random vector
X; ~ Cyp, has a well-known and well-understood Archimedean copula. Moreover, if
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4.1 H-extendible Archimedean copulas

the indices 1 < i1 < ... < 4 < d are chosen from k distinct groups, the random
vector (Xj,,...,X;,) ~ Cyy also has an Archimedean copula. Therefore, such a non-
exchangeable dependence model is appealing in the sense that a good understanding
can be deduced from simpler, exchangeable building blocks. Unfortunately, the involved
Archimedean generators g, ¢1, - - ., ¢ need to satisfy compatibility conditions in order
for the function C' in (5) to define a proper distribution function. In particular, it is
not sufficient that ¢; € ®, for all j = 0,1,...,J. The only known sufficient condition
for compatibility is that the functions ¢q, ¢1,..., s are all in &, and, additionally,
that the first derivatives of the functions gpgl owj, 7 =1,...,J, are in &, as well,
see [McNeil (2008)]. However, it is not straightforward to find two Laplace transforms
w0, P1 € Poo such that (gpal o <,01), € @, as well. Even though some examples of com-
patible generators have been found in [McNeil (2008), Hofert (2008)], a comprehensive
understanding of the compatibility condition was an open problem for quite a while.
In particular, it has been difficult to find examples of two different parametric families
of Laplace transforms to satisfy the compatibility condition. This gap is filled by [A5],
who derive the set of all compatible Laplace transforms of positive random variables in
a convenient form. As a byproduct of the proof, one also obtains a convenient stochastic
model for random vectors with distribution function (5), based on Lévy subordinators.
These results are summarized in the sequel.

Theorem 4.2 (On the compatibility of Archimedean generators)
Let @0, 91 € ®oo. Then (5! 0 1) € ®oy if and only if

p1(z) = @o(ba? + /OOO (1—e"") u(dt)), x>0,

where b > 0, v is a measure on (0,00) satisfying [;~ min{1,¢} v(dt) < oo, and either
b >0 or v((0,1)) = oo, or both.

Proof
See [A5, Theorem 2.1]. O

Given an arbitrary Archimedean generator ¢g € @, Theorem 4.2 parameterizes the set
of all generators 1 € ¥, compatible with ¢q in terms of a constant b and a measure v.
The key to Theorem 4.2 is the fact that the set of functions whose first derivative is in
d, coincides with the family of Bernstein functions, which appear at various places in
this thesis. The Lévy—Khinchin formula for Bernstein functions then provides the given
measure representation. The statement of Theorem 4.2 can also be stated as follows:
(9061 0¢1) € By if and only if ¢ = g o ¥y for a continuous Bernstein function ¥,
with limy 00 ¥1(2) = co. In probabilistic terms, this means that the Laplace transform
1 must correspond to a random variable of the form Sjs, where S = {S;}+>0 is a Lévy
subordinator with associated Bernstein function W7 and M an independent, positive
random variable with Laplace transform ¢g. The technical extra conditions given in
Theorem 4.2 merely prevent the Lévy subordinator from being of compound Poisson
type, which guarantees that Sy is strictly positive with probability one. The connection
to Lévy subordinators leads to the following theorem.
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4.2 H-extendible exponential distributions

Theorem 4.3 (Construction of h-extendible Archimedean copulas)

Let w9 € &, and Vq,...,¥; be continuous, unbounded Bernstein functions, and con-
sider a partition d = d; +. ..+ d; of the integer d. Consider a probability space (€2, F,P)
supporting d iid exponential random variables €1, ..., €4 with unit mean, J independent
Lévy subordinators SU) = {St(j)}tzo, j=1,...,J, with associated Bernstein functions
VU;, and an independent random variable M with Laplace transform ¢q. The random
vector

(X1,...,Xq) = <<p0o\1'1(;(11)),...,gpoo\Ill<;?11)>,gooo\Ifg(€;1(;r)l),...
M M M

------ ,woo‘I/J(%),...,%o%(%ﬂiX@)
Shr Syt

has distribution function (5) with ¢; := oo W¥;, j=1,...,J.

Proof
See [A5, Theorem 3.1]. O

Together with Theorem 4.2 this result provides a canonical construction for all hier-
archical Archimedean copulas of the form (5) whose completely monotone generators
satisfy the known compatibility condition. A convenient simulation algorithm is imme-
diate from this construction and the interested reader is referred to [Mai, Scherer (2012),
Chapter 2, p. 91-93] for details. Clearly, the random vector constructed in Theorem 4.3
is h-extendible with two levels, the respective o-algebras being H; := (M) C Ho =
o(M, s .,S(‘])) C F. Deeper levels of hierarchy can be constructed easily in an
analogous manner, see [A6] for details.

4.2 H-extendible exponential distributions

We have seen in Subsection 3.2 how to construct extendible exponential distributions
from weak IDT processes. This construction can be extended to overcome exchange-
ability, as the following (new) lemma shows.

Lemma 4.4 (Multi-factor exponential distributions)

Consider a probability space (2, F,P) supporting n+1 € N independent, non-decreasing
weak IDT processes HO = {ﬁt(i)}tzo, 1 =0,...,n, and an independent iid sequence
€1,...,€q of exponential random variables with unit mean. Moreover, let A = (a;;) €
R**("+1) be an arbitrary matrix with non-negative entries, and at least one positive
entry per row. We define the vector-valued stochastic process

O A a0 A 4.+ g A
2 Fr(1 (0 Fr(n
A A a0 B0 + .+ agn A
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4.2 H-extendible exponential distributions

whose component processes are all weak IDT processes. The random vector (X7, ..., Xy)
defined via

Xp=inf{t>0: H® >}, k=1,....d,

has an EM law. Moreover, if all processes H®, i = 0,...,n, are strong IDT, then
(X1,...,X4) hasan MSMVE law, and if they are all (possibly killed) Lévy subordinators,
then (Xi,...,X4) has an MO law.

Proof

First, notice that the component processes of H are all weak IDT processes by [A4,
Lemma 4.1(b)]. Fix t > 0, k € {1,...,d}, a subset of indices 1 <i; < ... < i, <d, and
let c1,...,c > 0 be constants. We observe that

k
P(min{ey Xy, o o0 Xi } > 6) = P(H,2) < ey, j =1, k) =E|exp (= > H,2) )]

J

j=1
= (£
:E[exp(— Zaijfot(/ij)}
¢=0 j=1
First assume ¢y = ... = ¢, = 1. Then Y := {Z?:o (Z?Zl aij,g) ﬁt(e)} . equals a
¢

weighted sum of n independent weak IDT processes, which itself is a weak IDT process
by [A4, Lemma 4.1(b)]. Hence there exists a Bernstein function ¥ such that

P(min{X;,,...,X;} >t) = E[Q—Yt} _ v,

implying that min{X; ,...,X;, } is exponential with rate ¥(1). Hence, (X1,...,Xy4)
has an EM law. Next let cq,...,c, arbitrary and assume that all involved processes
are actually strong IDT. In this case it follows from Lemma 3.2 that the processes

{ Z§=1 ;e H t(fzj }t>0 are independent, strong IDT processes, £ =0, ...,n. Hence, their

sum is a weak IDT process by [A4, Lemma 4.1(b)] and again it follows the existence of
a Bernstein function ¥ such that

]P’(min{cl Xiyyoooyok Xip b > t) — YD),

implying that min{c; X;,,...,cx X, } is exponential with rate ¥(1), and (X1,...,Xq4)
has an MSMVE law. Finally, if all involved processes are (possibly killed) Lévy subor-
dinators then the resulting random vector (X7,...,Xy) has an MO law, which can be
derived analogously to [Mai (2010), Lemma 5.2.5, p. 133]. O

All members of the family MO can be obtained by the stochastic construction in Lemma
4.4, see, e.g., [Sun et al. (2012), Theorem 4.2]. In particular, the construction of Lemma
4.4 goes far beyond the cosmos of conditionally iid models. However, it is an interesting
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4.2 H-extendible exponential distributions

open question how far-reaching the subclass of MSMVE is which is obtained via the
construction in Lemma 4.4 with strong IDT processes.

The random vectors constructed in Lemma 4.4 are h-extendible if the matrix A is of
a special form. For example, assume a partition dy + ... 4+ dj of the dimension into J
groups, and set n := J. We interpret the factor H©O) ag the global factor and the factors
HU  j =1,...,J, as group-specific factors. If k € {1,...,d} is an index of group 7,
then the k-th row of A must be defined as

(aho,...,ak’(]) = (1,0,...,0,1,0,...,0),
~——

i.e. a loading vector which loads the global factor H(®) and the j-th group-specific factor
HU . This produces an h-extendible structure with two levels of hierarchy. Deeper
levels can be produced in a similar manner. For the sake of notational simplicity, let us
proceed with the example of two levels. The vector-valued process H looks as follows
in this case:

ﬁt(l) +ﬁt(0) E[t(O) ﬁt(l) 0
At ||t | g :
7?4 7O 7o 0 0
H; = : = : + : +...+
~ - ~ rr(J
a9 4 g© 7o 0 il
~ : ~ ~: ; ~'J
Ht(J) +Ht(0) Ht(O) 0 Ht( )

In particular, it equals the sum of independent processes, say HO H® .. H),
whose non-zero components are identical. One can construct independent random vec-
tors (Yl(o), cee Yd(o)), (Yl(l), . ,Yd(l)), ce (Yl(‘]), . ,Yd(‘])) from the stochastic processes
HO O HY as follows:

Yk(o) :=1inf{t >0 : f[t(o) >6§€0)}, k=1,...,d,
v . oo ' {0 £0
P inf{t >0 : Ht(J) > e,(g)}, else 7

where e](gj) are iid unit exponentials, j = 0,1,...,J, k=1,...,d. It then follows that

d . 1 . i
(X1,...,X4) = (jgj{g‘]{Yfﬂ}, - min {Yd(])}>, (6)
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4.3 H-extendible scale mixtures of Marshall-Olkin distributions

a proof is postponed to the Appendix. The finite components of the random vectors
(Yl(j ), e ,Yd(] )) are conditionally iid. Hence, the stochastic model (6) relies solely on
the computation of componentwise minima of otherwise conditionally iid random vec-
tors. We have seen earlier that each conditionally iid random vector arises from an IDT
process, which is {lflt(j )}tzo for the j-th group. In words, the operation “addition of
independent IDT processes” in the canonical construction corresponds to the operation
“componentwise minima” on the level of the associated multivariate exponential laws.
This indicates why h-extendibility is a nice feature, in particular with regards to simu-
lation. Sampling these models is accomplished easily by the minimum operation, once
the extendible building blocks can be simulated.

4.3 H-extendible scale mixtures of Marshall-Olkin distributions

The reference [A7] studies an extendible family of distributions called scale miztures of
Marshall-Olkin copulas (SMMO), as well as h-extendible generalizations thereof. The
family SMMO is a superclass of both the extendible Archimedean copula family as well
as the extendible Marshall-Olkin survival copula family. Therefore, the main motivation
for studying this class of distributions lies in combining the distinct properties of the two
building blocks. This example is therefore perfect in order to illustrate how the concept
of h-extendibility allows to combine different families of distributions to obtain richer
families. Interestingly, in the bivariate case the family SMMO is a subclass of a family of
copulas called Archimaz copulas, which was introduced by [Capéraa et al. (2000)]. The
interested reader is referred to [A7] for a precise definition, a thorough investigation of
dependence properties, and an application to the pricing of portfolio credit derivatives.

5 Applications and related results

The present section deals with diverse applications related to the distributions pre-
sented in earlier sections and is organized as follows. Subsection 5.1 tackles parame-
ter estimation for (high-dimensional) Marshall-Olkin distributions with a conditionally
iid structure. Subsection 5.2 shows how to compute densities for a large family of
(one-dimensional) infinitely divisible distributions. This might be necessary when the
stochastic model (2) is applied with a weak IDT process which is parameterized in terms
of its associated Bernstein function and its density is required. One such application —
the pricing of portfolio credit derivatives — is illustrated in Subsection 5.3.

5.1 Parameter estimation for extendible Marshall-Olkin distributions
One of the classical statistical problems is the parametric estimation of distributions from

observed data. The family of d-dimensional Marshall-Olkin distribution functions is
parameterized by 2¢—1 parameters in general. It is known from the author’s dissertation
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5.1 Parameter estimation for extendible Marshall-Olkin distributions

[Mai (2010)] that the extendible subfamily can be constructed from Lévy subordinators,
and parameterized in terms of their associated Bernstein functions. Consequently, every
parametric family of Bernstein functions ¥ = Wg induces a parametric (sub)family of
Marshall-Olkin distributions. In other words, the 2¢ — 1 parameters of the general
Marshall-Olkin law are given as functions of the parameter (vector) 8. The article [AS§]
investigates parametric estimation in such a model, and the main finding is sketched in
the sequel.

The probability law of a d-dimensional random vector (Xi,...,Xy) on a probability
space (€, F,P) belongs to the extendible subfamily of MO if and only if there is a
Bernstein function ¥ : [0,00) — [0, 00) such that

d
Flty, ... tg) =P(X1 > t1,..., Xg > tg) = exp ( St (WR) — Uk~ 1))),
k=1

where 0 < ) < ... <ty denotes the ordered list of the arguments ¢1,...,t;4 > 0. In
the sequel, we assume that ¥ = Wy is chosen from a parametric family for a parameter
(vector) 8 € © C RP. It is furthermore assumed that the p-dimensional parameter
space O is open and Wy (1) = 1. The latter condition normalizes the univariate marginal
laws in the sense that X ~ &£(1) for all components k = 1,...,d, which implies that
the estimator derived below focuses solely on the dependence structure. Regarding the
considered family of multivariate distributions, there is one interesting aspect indicating
that parameter estimation is difficult in general: considering a subvector (Xj,,..., X, )
of length 2 < k < d, its distribution function is completely determined by the numbers
U(2),...,¥(k), even though the law of the full vector (X7, ..., Xy) is only determined by
the full sequence ¥(2), ..., ¥(d). This means that a statistical estimator based on proper
subvectors in general cannot be a sufficient statistic for the d parameters U(1),...,¥(d)
of the extendible Marshall-Olkin law. This makes parameter estimation difficult and is a
fundamental difference compared with, e.g., the multivariate normal distribution, where
bivariate subvectors determine the overall distribution. Another difficulty is the fact
that the Marshall-Olkin distribution does not have a density with respect to Lebesgue
measure, rendering standard Maximum Likelihood techniques infeasible.

The main result of [A8] is summarized in Theorem 5.1 below. The estimation procedure

pursues the following two-step algorithm, based on n iid observations (Xfi), e ,Xéi)),
i = 1,...,n, sharing the extendible Marshall-Olkin distribution of (Xj,...,Xy) with
true parameter vector 8y € ©:

(i) Unbiased and strongly consistent estimators Ek’n, k=2,...,d, are derived for the
sequence by (0) :=1/(Yg(k)+ 1), k=2,...,d.

(ii) It is shown that the minimum-distance estimator
d

6, = i bi. — b(0))° 7
aregenélnkZQ( k, k( )) (7)
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5.1 Parameter estimation for extendible Marshall-Olkin distributions

is well-defined for sufficiently large n, strongly consistent, and asymptotically nor-
mal.

In order to formulate the estimator, required are certain constants that have to be
defined recursively. We denote &y, , := 1 and

k
Bn—kn 1= — E S(n,n —1i) kp—gp—i, k=1,...,n—1,
i=1

where

(-1 ¢ (LY ik
S(k,1) := (=17 (") j*, 1,k eN,,
! z% (J) ’ ’

j=

are the so-called Stirling numbers of the second kind. Furthermore, the following battery
of technical assumptions on the parametric family {¥g}gco of Bernstein functions is
required:

(IC) If {6, }nen is a sequence of parameters with lim, .. Vg, (k) = Yg,(k), k =
2,...,d, then lim,_,. 6, = 6y. Moreover, 8 — Wy(k) is continuous for every
fixed k=2,....d.

(SC1) The partial derivative %;ejbk(e) exists and is continuous for every 1 < i,j <
p,2<k<d.

SC2) The Hessian matrix of ®(0) := d: br(6g) — b(0 ? is invertible at 0.
k=2

The identifiability condition (IC), as well as both smoothness conditions (SC1), (SC2),
are satisfied for typical parametric families of Bernstein functions. The condition (IC)
implies in particular that two different parameter vectors 81 # 6, imply two differ-
ent Marshall-Olkin distributions, which is a reasonable assumption for any parametric
model.

Theorem 5.1 (Parameter estimation for extendible MO)
For k = 2,...,d, define the statistics

Bk’n = %ZLk<exp ( _XY))P-'anp ( _X((;))>,
=1

(d—k)! & .
Lk(ula s ,Ud) = d! Z Kk Z v <u[l+1} - u[l])’
=1 =1

where 0 < upy) < ... < uyg < upgyq) = 1 denotes the ordered list of uy,...,uq € [0,1]
with the convention wug;1) := 1. Moreover, define the estimator 6, as in (7). The
following statements are valid:

(a) (bin,... ,I;d,n) tends almost surely to (b2(6o), ..., bq(600)), as n — oo.
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5.2 Evaluating the density of distributions from the Bondesson class

~

(b) If (IC) holds, 6, is well-defined for almost all n and tends almost surely to 8y as
n — 0o.

(c) If additionally (SC1) and (SC2) hold, then /n(6,, — @) tends in distribution to a

multivariate normal distribution with zero mean vector.

Proof
See [AS]. O

The asymptotic normality statement (c) implies the strong consistency statement (b),
and therefore requires more technical assumptions. It is obvious that the evaluation
of the estimator 6, itself is a numerically burdensome task, because a p-dimensional
minimization has to be carried out. From a practical point of view this prevents the
dimension p of the parameter space © from being large. Typical examples are such
that p < d, for example p = 2. Interestingly, the empirical example carried out in [A8]
indicates that the accuracy of the estimator improves not only with the sample size
(which is clear by consistency), but also massively with the dimension d. Finally, the
asymptotic covariance matrix of the estimator can be given in closed form.

5.2 Evaluating the density of distributions from the Bondesson class

As we have seen, the family of univariate probability laws 1 on [0, o] which are infinitely
divisible, denoted by ID[0, 0] in the sequel, is of paramount interest in the theory of
multivariate exponential distributions. It is well-known that there is a one-to-one rela-
tionship between this family of probability laws and the family of Bernstein functions,
denoted BF in the sequel. For each p € ID|0,o0] there exists a unique ¥ € BF such
that the Laplace transform of p equals exp(—W). Conversely, for every U € BF the
function exp(—V) is the Laplace transform of some uniquely determined p € ID[0, o0].
Clearly, there are many applications (e.g. Maximum Likelihood estimation), where it is
convenient to be able to compute the density (if existent) of p € ID]0, 00| efficiently.
There exist some p € ID[0,00] for which the density is known analytically, but the
Bernstein function is not explicitly known, a prominent example being the lognormal
distribution. However, the reverse situation occurs much more frequently: in the lit-
erature one can find numerous Bernstein functions with nice algebraic form for which
the associated density is known to exist but an algebraic expression is unknown and/or
difficult to evaluate numerically. The most prominent example is probably the stable
distribution with Bernstein function ¥(x) = z% for a € (0,1). In such a situation,
deriving the density numerically via Laplace inversion algorithms appears to be natu-
ral. The article [A9] provides a convenient Laplace inversion algorithm for distributions
of the so-called Bondesson class BOI[0,00] C ID|0, 0], which is a large subfamily of
IDI0, oc].

Assume that a probability law p € ID]0,00] has Bernstein function ¥ and density
fu. By the well-known Bromwich inversion formula, under mild conditions f,, can be
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5.2 Evaluating the density of distributions from the Bondesson class

retrieved from V¥ via the formula
at+i R
fu(z) = lim / e V@ dz, x>0, (8)

with an arbitrary parameter a > 0. Conditions ensuring the validity of (8) are existence,
bounded variation and continuity of the density f,. Unfortunately, these conditions can
often not be checked, because f,, is not known and we only know ¥ — that’s why we con-
sider Laplace inversion at all. However, in our situation [Sato (1999), Proposition 28.1]
states that f, € C!if [, |exp(—¥(—is))|ds < oo, constituting a sufficient condition for
(8) to be valid that can be checked solely from ¥. By elementary manipulations, the
integral in (8) can be simplified to

1 a+i R
fu(z) = lim Im(/ % e~ V() ds), x>0,
R—oo T a

yielding only a one-sided improper integral. When applying this formula for numerically
retrieving the density there are two numerical issues: (i) one faces a truncation error
because R > 0 must be fixed, and (ii) irrespectively of the Bernstein function the
integrand is naturally oscillating due to the term exp(z (a +1is)) = exp(z a) (cos(x s) +
i sin(xs)), s € (0, R). One standard approach to tackle the second issue is by resorting
to Cauchy’s Theorem and change the path of integration to a different, more convenient
contour. That is, instead of evaluating the integrand along the Bromwich contour a+7 s,
s € (0, R), the integrand is evaluated along an alternative contour in the complex plane
that avoids the regions of high oscillations. Such a strategy is pursued below.

A probability measure 1 € ID[0, 0o] is said to be in the Bondesson class BO|0, oo], which
has been introduced in [Bondesson (1981)] under the name g.c.m.e.d. distributions, if
its associated Bernstein function W is complete, i.e. the associated Lévy measure has
a completely monotone derivative with respect to the Lebesgue measure. The family
BOI0, o0] can alternatively be introduced as the smallest class of distributions closed
under convergence and convolution containing mixtures of a special family of distribu-
tions, see [Sato (1999), Definition 51.9, p. 389]. Using the complete monotonicity of
the Lévy density together with Bernstein’s Theorem, the associated complete Bernstein
function ¥ for p € BOJ0, c0] can be written as

\Il(x)z,uac—i-/ooo

with ¢ a measure on (0,00) satisfying f(O,oo) 1/(1 +t)o(dt) < oo, called the Stielt-
jes measure, see [Schilling et al. (2010), Theorem 6.2(ii), p. 49]. Compared with the
classical Lévy-Khinchin formula, which holds for arbitrary Bernstein functions, the rep-
resentation (9) for complete Bernstein functions implies the existence of a holomorphic
extension of ¥ from the domain [0,00) to the sliced complex plane C \ (—o0,0), see
[Schilling et al. (2010), Theorem 6.2, p. 49]. This is an essential observation which al-
lows to consider integration contours ending in the left half-plane {z € C : Re(z) < 0}.
We can now state the main result of [A9].

T
T+t

o(dt), x>0, (9)
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5.2 Evaluating the density of distributions from the Bondesson class

Theorem 5.2 (Laplace inversion for distributions from the Bondesson class)
If p is a distribution from BOJ0, co] with associated complete Bernstein function ¥ and
density f, such that (8) holds, then for > 0 one has

71' v

xa 1
fo(e) = Me / Im(gzM log(v) (bi=a) —¥(a—M log(v) (bi=a)) (1 _ a)) dv
0

with arbitrary parameters a,b > 0 and M > 2/(ax). This integral is a proper Rieman-
nian integral as one can show that the integrand vanishes for v | 0.

Proof
See [A9, Theorem 3.1]. O

The heuristic idea for the proof of Theorem 5.2 is explained best in the following picture.

Im

CE:a+iu, 0<u<R l f/'/ 1 :
CE. a+ Re", zgu§7r—a1rctan(b/a) A ] R

2 ] o
Chiatupi-a, osus— R PNC [

’ T T Vet : OR :

| | | Re
| | a |

The classical Bromwich contour evaluates the integrand along the contour Cfi. Since
this contour is quite unfavorable due to the high oscillations along lines that are parallel
to the imaginary axis, one would rather like to evaluate the integrand along the contour
C’f, which ends in the left half-plane, where the oscillations disappear rapidly due to
the exponential decay of the term exp(z z) in (8) as Re(z) — —oo. Cauchy’s Theorem
implies that the integral along the closed contour CF + CJt — C§ is zero. It can be
shown that the integral along the connecting path Cf tends to zero as R — oo, which
is the major technical step in the proof of Theorem 5.2. Consequently, the integral
along the Bromwich contour C{* equals the integral along the alternative contour C4%,
as R — oo.

Regarding practical applications, [A9] discuss some recommendations regarding the
choice of the free parameters a,b, M. As a prominent example, the case of the stable
distribution is investigated in great detail, and the resulting Laplace inversion algorithm
is shown to be able to keep up in terms of efficiency and accuracy with an alterna-
tive formula that is specifically designed for the stable law in [Nolan (1997)]. This is
surprising given the generality of Theorem 5.2, which is by far not restricted to stable
distributions. Moreover, as a corollary to Theorem 5.2 — with almost identical proof
— a convenient Laplace inversion algorithm for computing the distribution function of
€ BO|0, 00 is derived as well.
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5.3 Pricing portfolio credit derivatives

5.3 Pricing portfolio credit derivatives

The author’s initial motivation to study random vectors with conditionally iid depen-
dence structure stems from an application in Mathematical Finance: the pricing of
portfolio credit derivatives. Before the default of the investment bank Lehman Brothers
in 2008, the market for so-called collateralized debt obligations (CDOs) has experienced
a period of steady growth and was one of the paramount topics in the banking industry.
CDOs are credit derivatives whose market value depends critically on the creditwor-
thiness of an underlying basket of credit-risky assets. From a mathematical viewpoint,
there are two fundamental challenges that make this kind of products interesting also for
theorists: (i) the dependence structure between the underlying assets has a strong effect
on the market value of CDOs, and (ii) the number d of underlying assets is quite large,
e.g. d = 125 is a standard assumption in many baskets. Therefore, one has to build a
high-dimensional stochastic model with an intuitive dependence structure which is still
simple enough to guarantee a high level of practical viability — a Herculean task.

Now what is required for such a model to be viable? Extracting the essential mathe-
matical issues related to CDO pricing, required is a stochastic model for the random
vector (X7q,...,Xy) of default times of the d underlying assets such that the probability

distribution of the stochastic process {Lgd)}tzo, defined by
1 d
Lgd) = kzl 1{x <ty = relative portfolio loss until time ¢,

is given in convenient form. Since the default times Xi,..., Xy have to be modeled
dependently, the distribution of Lgd) is far from trivial in general. However, in the
conditionally iid setup of construction (2) the Theorem of Glivenko—Cantelli implies the

almost sure convergence
d _
Lg ) _s1-e He  d - o0,

uniformly in ¢ > 0, see [Mai et al. (2013)]. For continuous (and hence bounded) func-
tions f : [0,1] — R this justifies approximations such as

E[f(L\P)] ~ E[f(1 - e_Htﬂ, t>0,

which render several pricing formulas for CDOs numerically tractable. A survey of
numerous models in this spirit is provided in [Mai et al. (2013)]. Generally speaking,
pricing CDOs in a conditionally iid setup relies on homogeneity assumptions, which are
required in order to make the aforementioned approximation technique feasible, but are
unrealistic in general. Nevertheless, extendible models are typically the ones that are
used in the industry to track observed market prices in front office systems, because
their computational efficiency is indispensable.

In this context, an interesting analysis is to explore precisely which stylized facts can be
explained via conditionally iid models, and which cannot. Many CDO pricing models
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5.3 Pricing portfolio credit derivatives

can be subsumed under the umbrella of so-called (one-factor) copula models. The term
“one-factor” is added intentionally in brackets because what people often mean implicitly
when referring to “copula models” is an approach which combines marginal distributions
with a copula function inherited from an extendible distribution — predominantly a one-
factor Gaussian copula, a one-factor t-copula, an Archimedean copula, or extensions of
a Gaussian one-factor copula which replace the underlying normal distribution of the
latent factor by another distribution. All these copula families are static in the sense
that the underlying stochastic factor inducing dependence is a single random variable.
This fact provides solid ground for criticism — of which the academic literature is packed
— because all these models cannot explain changing developments over time. It is one of
the major concerns of the present author to point out that using a one-factor structure
is not equivalent to static modeling. As we have seen, in general a latent factor in a
conditionally iid model is a stochastic process H = {H;}. The aforementioned popular
copula families are all such that H = {H,} is a function of a single random variable and
time t, e.g., like in (4) for the case of Archimedean copulas. Clearly, it is impossible
to extract a reasonable information flow (i.e. filtration) from such a (trivial) stochastic
process. However, we have also seen that there exist popular multivariate distributions
arising from stochastic processes H = { H;} with non-trivial natural filtration, like Lévy
subordinators, or strong and weak IDT processes. Stemming from a similar motivation,
the so-called Cox processes (or doubly-stochastic processes) have found their way into
credit risk modeling, precisely due to the fact that the market’s opinion about future
defaults changes continuously and this information flow needs to be modeled. Studying
the connection between stochastic “drivers of information flow” on the one hand and
the associated law of static, future event times on the other hand is another perspective
that might be taken on the investigations carried out in the present thesis. Indeed,
the formalism of a canonical construction like (2) can help to compare apples (“static”
one-factor copula models) and oranges (“dynamic” top down models for the portfolio
loss process), see [Mai et al. (2013)].

The article [A10] presents a new conditionally iid model which is based on two indepen-
dent stochastic building blocks: a Lévy subordinator and a Brownian motion. On the
one hand, the jumps of the Lévy subordinator can account for cataclysmic events which
are required in order to explain market quotes for CDOs. A huge proportion of these
observed prices can be attributed to the market’s fear of dramatic downturns. Moreover,
the connection between Lévy subordinators and Marshall-Olkin distributions has been
studied intensively in the author’s dissertation, where it is also shown that CDO market
prices are explained well. However, observed fluctuations of market prices over time
cannot be captured by the Lévy subordinator alone. This is due to the lack-of-memory
property of the Marshall-Olkin distribution, implying constant credit spreads between
observed defaults. On the other hand, it is well-known that multivariate default mod-
els built solely on the “doubly-stochastic” idea from Brownian drivers fail to explain
observed market prices of CDOs, because cataclysmic events do not happen with high
probability, see, e.g. [Das et al. (2007)]. However, these models can explain fluctuations
of market prices, as desired. In the combined model proposed in [A10], the two building
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6 Conclusion

blocks are put together in such a way that their synthesis inherits the desirable features,
but not too much analytical tractability is lost. In particular, efficient pricing algorithms
based on Laplace inversion algorithms are feasible.

6 Conclusion

A constructive approach to the modeling of high-dimensional random vectors was pre-
sented. The major idea was to first study conditionally iid models in depth, and then
construct multi-factor models from conditionally iid building blocks. Particular focus
has been put on multivariate exponential distributions. It has been shown that the
underlying, dependence-inducing factors are stochastic processes which are infinitely
divisible with respect to time. Finally, applications of the introduced concepts to para-
metric estimation of Marshall-Olkin distributions, to the numerical density evaluation
for certain infinitely divisible laws, and to the pricing of portfolio credit derivatives have
been demonstrated.

Appendix

Proof (that Lemma 3.2 does not hold for weak IDT processes)

Let a € (0,1) and consider a probability space (2, F,P) supporting the following three
independent objects: an a-stable Lévy subordinator S = {S:}+>0, a positive random
variable M with Laplace transform Elexp(—z M)] = exp(—z®), z > 0, and a Bernoulli
variable Z with success probability 1/2. The stochastic process { H;}+>0, defined by

Hi:=ZS+0—-2Z)Mt'/> >0,

is weak IDT but not strong IDT, as shown in [A4, Example 5.1]. We show in the sequel
that the process {H; + Ha¢}i>0 is not weak IDT, showing that the closure property of
Lemma 3.2 is distinctive to strong IDT processes.

We fix t > 0 and x > 0 and compute

E {e”” (Hi+Ho t)} _ 1 E {e"” (5t+52t)} + 1 E [e*“Mtl/a (1+21/a)}

2 2

_ 1 (eftxa(zaﬂ) 4t (1+21/a)a>_

2
If the process { Hi+ Ha¢ }+>0 were weak IDT, then the logarithm of its Laplace transforms
were linear in ¢ by [A4, Theorem 1.1]. However, it can be checked that the logarithm of
the last expression is not linear in ¢, because 2% + 1 # (1 + 2%/*) (even though it looks
“almost” linear when visualized numerically). This implies the claim. O
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Proof (of Equation (6))
Let s1,...,84 > 0. For the sake of notational simplicity we denote

I(l)::{l,...,dl}, I(j)::{d1+...+dj_1—i—l,...,dl—l-...—l-dj}, j =2,

the set of indices corresponding to group j =1,...,J, and compute

P(X1>51,...,Xd>sd) P(ﬂ N {inf{t>0:ﬁfj)+ﬁ§0>>ek}>sk})

J=1kel(j)
J
= () (0) (BD 4O
qulkew) {H Thes Ek}) E[E kel () k }
d ~ J ) E
— E[kHl e*Héz)} jHlELg;Hép} _ P(}Q{Hé? < 61@}) HP(kQJ){Hﬁi) ) 619)})
=P ﬂ {H§J)<€(3)})ﬂ<ﬁ{ﬁ§2)<€;§0)}>)

(
((F) ) (ot =) ) (e 0> )
<
<

.
~

ﬁ m {mln{mf{t H]) >ek }mf{t H >€§€O)}} >sk})

J=1kel(j)

‘IniI‘lJ{}/l(j)}>81,...,j:II()l7i.?’J{Y(1(j)}>8d). O
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