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ABSTRACT

Historically, scientists have developed software programs with limited resources and a strong
focus on algorithms to generate scientific results and verify their approaches. With the rapid
growth of hardware power, computer networks, and progress in software engineering, this
brings a new challenge in scientific software development: how can scientists move from the
development on the “algorithmic level” to the development of theories and methods that
need the support of large-scale complex software systems.
Many computational science and engineering (CSE) projects have been developing sci-

entific software without a requirements specification. This is no longer possible in the de-
velopment of large complex systems. Software engineers use requirements specifications to
describe the complex systems being built, and bridge the gap of application domain (e.g.
a scientific problem) and solution domain (e.g. a software implementation). The lack of
requirements specifications hinder communication and collaboration between scientists and
software engineers. To enhance the quality of scientific software and to adopt good software
engineering practices, we claim that requirements specifications have to be used in CSE
projects.
However, formal requirements engineering methods are generally too heavyweight to be

adopted in CSE projects, because scientists prefer to focus on producing scientific findings,
not on spending time to learn the syntax for a requirements modeling language. On the
other hand, it is even more difficult to ask a software engineer to develop requirements for
scientific software, without obtaining deep domain knowledge.
This dissertation describes DRUMS (Domain-specific ReqUirements Modeling for Scien-

tists), which is a lightweight domain-specific requirements engineering framework. DRUMS
provides abstractions that describe requirements in the scientific domain and tool support.
Scientists can use these abstractions to effectively create and manage requirements with-
out prior requirements engineering knowledge. In addition, DRUMS uses an automated
approach that extracts requirements for scientific software systems to reduce the manual
effort of requirements recovery and reuse.
To demonstrate the applicability of DRUMS, experiments were conducted in three differ-

ent scientific domains: seismology, building performance and computational fluid dynamics.
The evaluation results show that DRUMS can effectively be used in early requirements en-
gineering in these domains. Using DRUMS had a significant impact on the number of ideas
generated in an early requirements engineering task, in comparison with a baseline practice.
In addition, our requirements extraction approach outperforms naive Bayes classification
on the same dataset.
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1
INTRODUCTION

Over the last decades, computers have been used broadly to support scientific studies and
applications. Complex calculations are carried out on computers to analyze and solve sci-
entific and engineering problems. This field is often called computational science and engi-
neering (CSE) or scientific computing [YL03]. CSE today is a well established ‘third pillar’
of scientific research, equal in importance with theory and experimentation [WL09]. CSE
is collaborative across various disciplines such as mathematics, computer science, natural
sciences (e.g. physics, chemistry and biology) and engineering (e.g. mechanical engineering,
civil engineering and architecture).
The software programs developed within the context of CSE are often referred to as

scientific software. Researchers claim that scientific software “is written for very specific
purposes” [SM08], and “such purposes are almost always much more esoteric than the needs
of commercial enterprises” [WL09]. Usually, the purposes of scientific software are primarily
research, training and external decision support [SK08]. Consequently, the end-user base
of scientific software is much smaller in comparison to users of general-purpose software
(e.g. word processing and spreadsheet applications). Most scientific software is used by the
developers themselves or a small user group of 10 - 100 people, who are mainly scientists
from the same domain [SK08].
In order to develop scientific software, developers need to have sufficient knowledge of the

application domain, numerical analysis and often high performance computing. This often
requires years of training and education. In this dissertation, we call the scientific software
developers scientists, to emphasize on their domain expertise and CSE-related knowledge.
Although the scientist developers possess expert knowledge of the domain, the average
knowledge about modern software engineering is low in a scientific software development
team [Wil06].
In CSE projects, scientists develop software with a great emphasis on implementing nu-

merical methods to generate accurate scientific results and improving the computational
performance. However, they often feel the frustration of a “productivity crisis” during soft-
ware development [FLVDV+09]. There are long and troubled development times to work
with unreadable and non-modularized code. Frequently, source code has been developed
over decades but without the use of structured refactoring, often resulting in large, com-
plex and fragile code, potentially leading to an excess of error-prone code [CHHB13]. They
print intermediate variables to validate the correctness of computations, making the normal
output of a program difficult to trace and slowing the program down considerably. Many
times, an underspecified problem and miscommunication lead to unnecessary rework. One
scientist developer shared a telling experience with us:

1



2 introduction

“Once I spent a month to develop a software application asked by my supervi-
sor. But when I showed him the application, we found that I misunderstood what
he wanted. So I had to spend additional weeks to re-implement what should be
implemented.”

Researchers have concluded that a primary cause of such productivity crises is a com-
munication gap between the CSE and software engineering communities [Kel07, BCC+08,
FLVDV+09]. Either scientists who develop scientific software are unaware of suitable soft-
ware engineering methods that can mitigate their productivity issues, or the software en-
gineering methods cannot be directly applied into scientific software development without
proper adaptations. For software engineers, on the other hand, without acquiring deep
domain knowledge, it is difficult to understand the sophisticated scientific software imple-
mentation and the low-level parallelism details. Such an understanding is necessary, in order
to provide customized software solutions.
But it is too costly and unrealistic to require software engineers to study underlying

theories of a scientific domain and CSE-related knowledge. An alternative is to ask scientists
to specify their software in higher level abstractions, such as requirements, so that software
engineers can better understand the software without struggling with complex algorithmic
details. They can then provide suitable software development solutions to scientists.
Software engineers use requirements to communicate ideas for the software to develop

and many software engineering methods are built upon requirements. In fact, successful soft-
ware projects allocate a significantly higher amount of resources to requirements engineer-
ing1 than average projects, according to Hofmann and Franz’s study [HL01]. Requirements
describe the software system to be built, and provide a basis for agreement on what the
software system is to do, a baseline for validation and verification, a basis for enhancement,
and a basis for estimating costs and schedules [iee98]. Therefore, requirements not only help
scientists to describe complex software systems and problems to solve, but also serve as a ba-
sis for applying software engineering methods. For instance, the aforementioned unnecessary
rework might be avoided if the software requirements are clearly specified. Based on spec-
ified requirements, applicable software architectures and design patterns can be employed
and adapted to develop modularized and maintainable software. Test oracles are defined
according to requirement specifications and various testing methods can be applied such as
automated unit testing and regression testing, to identify software defects early and resolve
them timely. In conclusion, to provide customized software development solutions that mit-
igate productivity crises, requirements are the ‘glue’ that bridges the communication gap
between the CSE and software engineering communities.

1 Requirements engineering refers to the process that deals with software requirements, including specifying,
documentating, analyzing requirements etc.
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1.1 requirements engineering in cse projects

Scientific software is complex and has many requirements. For instance, a particular nu-
merical method needs to be developed, the method must be computed only on certain
meshes, various data stores need to be connected to retrieve the data for computation, and
results should be output in compatible formats for external post-processing software. Be-
sides specific functional requirements for various software programs, there are common non-
functional requirements scientific software aims to achieve. Carver et al. [CKSP07] and Kelly
et al. [KS08] ranked correctness (for each input the system produces the correct computation
results) as the most important requirement in the projects they studied. Nguyen-Hoan et al.
[NHFS10] found reliability (the ability to perform with correct and consistent results) vital
to scientific software. Both studies of Carver et al. and Nguyen-Hoan et al. have identified
performance (the ability to run using a minimum of time and/or computational resources)
as another important requirement in CSE projects.
These requirements must be specified and well managed. As stated earlier, requirements

help people involved in the project identify and clarify their needs, understand the complex
software systems that represent sophisticated algorithms, decompose the system based on
functionalities, implement software interfaces for reusing functions from existing software
libraries, define test cases, and plan development. Even generic requirements such as correct-
ness and performance must be specified to test the oracles. For example: what computation
results are considered correct in this situation and what performance should be achieved on
this hardware.
However, previous work showed that the majority of scientific software projects do not

have a formal requirements engineering process. Schmidberger and Bruegge [SB12] found
that only 29% respondents in their survey practice “some kind of” requirements engineering
(e.g. analysis and specification of requirements). Nguyen-Hoan et al. [NHFS10] found that
requirements specification is the least commonly produced type of documentation, with only
30% respondents indicating that they document requirements. Kelly et al. [KS08] claimed
that the majority of scientific software is developed without a detailed requirements specifi-
cation. Sanders et al. [SK08] also quoted their survey findings of requirements engineering in
this domain: “none of our interviewees created an up-front requirements specification until
it was mandated, and only wrote it when the software was almost complete”. Hannay et
al. [HMS+09] reported that only 46.4% of their interviewed scientists thought formalizing
requirements is important.
An assumption of this dissertation is that one reason for the lack of formal requirements

engineering practices is that scientists have inadequate knowledge about requirements engi-
neering itself. Hannay et al. [HMS+09] discovered only 52% of the scientists have good/ex-
pert understanding of software requirements concepts and activities. In particular, formal
requirements engineering methods often need requirements to meet strict quality criteria
and abstract syntax. Education and training are necessary in order to learn these methods.
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Most scientific software developers never attended any requirements engineering training.
Hence, it is no surprise that formal requirements engineering practices remain unknown to
them and are difficult to apply.
Another assumption is that the lack of formal requirements engineering is due to lim-

ited time and interest. Nguyen-Hoan et al. [NHFS10] studied the reasons for lacking doc-
umentation, especially requirements documentation. The strongest reason stated by their
respondents is “limited time and high effort required”. Kelly et al. [KS08] also discussed
the fact that “scientists do not want to be spending time on software issues that do not di-
rectly and visibly contribute to their scientific research”. Not only for scientists, professional
software engineers often find that requirements analysis and documentation are tedious,
labor-intensive and time consuming activities [NE00].

1.2 research agenda

1.2.1 Problem Statement and Hypotheses

In many CSE projects software is developed without a requirements specification. This
hinders the application and adaptation of modern software engineering methodologies into
scientific software development, to address the common issues in scientific software, such
as low comprehensibility, modularity and maintainability of software systems. To enhance
the quality and productivity of scientific software, and to bridge the communication gap
between the CSE domain and the software engineering domain, we claim that requirements
need to be specified.
Formal requirements engineering methods are generally too heavyweight to be adopted

in CSE projects. Scientists are overwhelmed by such formal methods and requirements
specification languages. They are more comfortable working with mathematical formulas or
algorithmic details, rather than abstract syntax for a specification language.
In the opposite direction, it is hard for software engineers to specify requirements for a

scientific software system, without sufficient domain knowledge, since domain knowledge
has great impact on the effectiveness of requirements engineering [JBR+93, KS06].
These observations lead to the following problem we address in this dissertation:

How can we support scientists to perform requirements engineering that does
not require much effort to learn and to use, which also allows software engineers
to map scientific knowledge to software development knowledge that enables the
collaboration (between software engineers and scientists) in the production of
high-quality scientific software?

We reformulate the problem in the form of two hypotheses.
Hypothesis 1: Using a domain-specific requirements engineering approach, which pro-

vides abstractions that describe the requirements of the scientific domain, scientists can
effectively create and manage requirements with low effort.
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Hypothesis 2: An accurate automated approach that extracts requirements for software
systems reduces the manual effort of requirements recovery. Hence, software engineers and
scientists can collaborate starting from a base of the recovered requirements and reuse them.
In the scope of this dissertation, we focus on early requirements engineering. The

objective of early requirements engineering is to understand the problem domain, why the
system is needed, the constraints on the range of possible solutions, and how the concerns
might be addressed [Yu97, SRC05], whereas late-phase requirements engineering focuses on
completeness, consistency, and verification of requirements [Yu97]. To address the root cause
of the lack of requirements specification in CSE projects, we need to first focus on early-
phase requirements engineering, in order to help scientists gain deep understanding about
the project and resources and come up with an initial set of early requirements. Afterwards,
other late-phase requirements engineering methods can be adapted and applied to refine
and formalize early requirements to requirements specifications.

1.2.2 Contributions to the State of the Art

The main contributions of this work to the state-of-the-art scientific software development
are the following.

• This dissertation improves the requirements engineering process of scientific software
development. This process has not been the main focus when scientists develop soft-
ware but it is critical to the development of modularized and maintainable complex
software systems.

• A domain-specific requirements engineering framework, DRUMS (Domain-specific Re-
qUirements Modeling for Scientists), is developed in this work. DRUMS provides the
capability of requirements elicitation, requirements reuse, and requirements traceabil-
ity with tool support. By providing the domain-specific support, scientists can perform
requirements engineering with low effort and without prior knowledge of requirements
engineering.

• A DRUMS-based automated requirements extraction (dARE) approach is realized.
This allows scientists to recover requirements from legacy systems automatically, which
considerably reduces the effort to manually create requirements from scratch. Unlike
machine-learning based approaches for requirements recovery, dARE is a pattern-
matching approach that does not require manually labeled training data.

• DRUMS has been applied in two different scientific domains, namely, seismology and
building performance. To verify the general applicability of DRUMS in CSE projects,
DRUMS was evaluated in a third domain, computational fluid dynamics, and shown
to be effective in requirements elicitation and recovery.
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1.3 application domains

In the last five years, we worked closely with two interdisciplinary projects, namely MAC-
B22 and IW3. The goal of the MAC-B2 project is to apply and adapt software engineering
methods into CSE projects. In particular, we worked with the SeisSol sub-project, in which
software for seismology simulation is built. The Robert L. Preger Intelligent Workplace (IW)
is a project for building performance and diagnostics. Various scientific software programs
are used and developed in IW since 1997. Both projects are defined as CSE projects, but have
different focuses – one focuses on seismology and the other focuses on building performance.
We chose the two interdisciplinary domains, namely seismology and building performance

as the application domains of this dissertation for two main reasons: we are already familiar
with the two domains, and the two different domains allow our approach to be tested at a
level of generality allowing the majority of CSE projects to apply our approach. To give the
reader an impression of the two domains and what kind of software has been developed in
the domains, we introduce seismology and building performance, as well as example software
from each domain in Section 1.3.1 and Section 1.3.2.

1.3.1 Application Domain I: Seismology

Seismology studies the propagation of elastic waves through the earth or through other
planet-like bodies arising from diverse seismic sources such as volcanic and oceanic sources.
It is an interdisciplinary area, at the junction of geology, physics and sometimes astronomy
and meteorology.
A great amount of software applications have been developed for different areas of seismol-

ogy. They support studies of earthquake scenarios, volcanic processes, or seismic exploration
surveys. Moreover, they are widely developed and used for hazard analysis and risk man-
agement. High performance computing (HPC) is also incorporated into many seismological
applications, in order to efficiently handle huge data volumes and intensive computations.
The seismological software often requires accessing seismic data measured by sensors world-
wide and the information on the complex geometric model of a certain region of the earth.
The software also has many requirements such as the development of the special numerical
method and precision of calculation. Requirements also cover expected functionalities of
computation control and user interaction.
Figure 1.1 shows five selected seismology use cases where seismologists interact with

software systems. Seismologists request seismic data, such as time-series data recorded by
seismometers worldwide, via a software system. Sometimes they also need to calculate seis-
mic travel time, ray paths through the earth, pierce and turning points. Another use case
is to simulate seismic wave propagation. Numerical methods (e.g. finite element methods)

2 http://www.mac.tum.de/wiki/index.php/Project_B2
3 www.cmu.edu/iwess/
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are employed to compute seismic wave propagation on a generated mesh, representing the
geometry of an earth model. Finally, seismologists compare the real and synthetic seismic
data (e.g. generated by a seismology simulation software).

Seismologist

Request Seismic 
Data

Simulate Seismic 
Wave Propogation

Calculate Seismic 
Travel Information

Compare Real and 
Synthetic Data

Generate Mesh

<<include>>

Figure 1.1: Selected use cases of seismologists interacting with software systems.

Examples of software in the seismology domain are SPECFEM3D, SeisSol and OpenSHA.
The SPECFEM3D software4 simulates seismic wave propagation at the local or regional
scale based upon the spectral-element method (SEM). It has very good accuracy and per-
formance. The code is developed starting in 1998 at Harvard University. Since then it has
been developed collaboratively by over 30 developers (past and present) at many research
institutes world-wide, including Princeton University (USA), University of Pau/CNRS/IN-
RIA (France) and ETH Zurich (Switzerland). All SPECFEM3D code is written in Fortran90,
and conforms strictly to the Fortran95 standard. The package uses parallel programming
based upon the Message Passing Interface (MPI).
SeisSol5 also simulates seismic wave phenomena, but using a different method, the dis-

continuous Galerkin finite element method. Parallel computing is achieved via the Message
Passing Interface (MPI). It has been successfully run on SGI Altix 4700 and IBM Bluegene
P supercomputers with up to 50.000 cores. The development of SeisSol started in 2006 and
from 5 to 10 developers have contributed to the software. The main developer team is at
Ludwig-Maximilians University, Munich, Germany. Part of this thesis work is done collab-
oratively with the SeisSol developer team. The main programming language is Fortran 90
with a few Fortran 77 subroutines.

4 http://www.geodynamics.org/cig/software/specfem3d
5 http://seissol.geophysik.uni-muenchen.de/
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OpenSHA6 is an open source platform for seismic hazard analysis [FJC03]. It has an
active and growing developer team of about 20 developers (past and present) who are
mainly from two working groups, WGCEP and GEM, both active in earthquake research.
OpenSHA has evolved over the past 10 years. It is written in Java, and its goal is to build
an object-oriented infrastructure where any arbitrarily complex geophysics model may be
implemented. Three common applications, hazard curve calculator, scenario shakemap and
attenuation relationship plotter, are deployed as Java Web Start applications and available
on OpenSHA website.

1.3.2 Application Domain II: Building Performance

Building performance is an area that addresses comfort and energy efficiency issues in build-
ings such as indoor air quality, thermal comfort, and efficient energy usage. Green building
falls with in the scope of this area. It has at its core, the concept of sustainable development
and employing green practices to reduce the impact of buildings on the environment and
human health. Building performance is a field that integrates architecture, ecology, physics,
chemistry and biology.
Building performance simulation and diagnosis software are built for various purposes,

such as calculating daylight and solar energy transmission, sensing and calculating energy
consumption, and airflow simulation. These software applications typically require specify-
ing a large amount of information about the building geometry, construction materials and
properties, and context information (e.g., weather conditions). Numerical schemes are ap-
plied to carry out specific calculations. In particular, high performance numerics is applied
to deal with the huge amount of data efficiently. Similar to the seismology software, these
are all important requirements that must be specified clearly and agreed to by different
stakeholders.
We present four use cases from the building performance domain in Figure 1.2. Architects

predict the thermal comfort of a room based on different physiological and psychological
models. They also simulate how the daylight can be transmitted in a building with a given
facade design. Another use case is to monitor plug loads in a building and store the data
in a database. Further analysis of the data may be carried out to recommend more efficient
electrical usage. Finally, architects control the lighting of a building via a lighting control
system in order to maximize the energy saving.
The U.S. department of Energy provides a directory that lists information on 402 build-

ing software tools for evaluating energy efficiency, renewable energy, and sustainability in
buildings. For instance, EnergyPlus7 is a stand-alone software program for energy analysis
and thermal load simulation. EnergyPlus calculates heating and cooling loads necessary to
maintain thermal control set-points, conditions throughout a secondary HVAC system and

6 http://www.opensha.org/
7 http://apps1.eere.energy.gov/buildings/energyplus/
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Architects

Predict Thermal 
Comfort

Monitor Plug 
Loads

Simulate Daylight 
Transmission

Control Lightings

Figure 1.2: Selected use cases of architects interacting with software systems.

coil loads, and the energy consumption of primary plant equipment. It is a standardized
tool provided by the U.S. Department of Energy (DOE), to predict energy flows in commer-
cial and residential buildings before construction. EnergyPlus is one of the most popular
software programs in the building performance domain.
ESP-r8 is an open source software tool for simulating thermal, visual and acoustic per-

formance of buildings and the energy usage and gaseous emissions associated with envi-
ronmental control systems. It is mainly used in research contexts and has been applied in
over 30 dissertations. It has been developed since the 1970s, by a world-wide development
community. It is currently hosted by The Energy Systems Research Unit at the Univer-
sity of Strathclyde (UK). ESP-r is programmed in C, C++ and Fortran77 with Fortran90
extensions.

1.4 dissertation structure

The dissertation is structured as follows: Chapter 2 gives an introduction to requirements
engineering, modeling and related work on scientific software development. It presents exist-
ing techniques that aid various requirements engineering activities. We focus on activities,
where scientists need support. Chapter 3 identifies requirements for CSE-specific require-
ments engineering, based on our study. To meet these requirements, DRUMS is presented,
which provides a customized solution for scientists to easily deal with requirements engi-
neering. Chapter 4 presents DRUMS-based automated requirements extraction (dARE) to
automatically recover requirements for scientific software. Two applications of DRUMS in
seismology and building performance are presented in Chapter 5 and Chapter 6, respectively.

8 http://www.esru.strath.ac.uk/Programs/ESP-r.htm
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Chapter 7 presents the evaluations that have been conducted to test our two hypotheses.
Chapter 8 summarizes this dissertation and gives a prospect for the future extensions.



2
FOUNDATIONS

This chapter reviews literature related to requirements engineering, modeling and software
engineering research dedicated to supporting scientific software development.

2.1 requirements engineering

Till now, we have been using the term “requirement” extensively in this dissertation. But
what exactly is a requirement in the scope of our work? What is requirements engineering
and how are we perform requirements engineering? We answer these questions in this section.

2.1.1 Terminology

The term requirement has been defined differently in many sources over the years. Wiegers
[Wie09] stated that “there is no universal definition of what a requirement is”. But “to
facilitate communication, we need to agree on a consistent set of adjectives to model the
overloaded term requirement”.
Thayer and Dorfman [TD97] defined the term requirement, as (1) “a capability needed

by a user to solve a problem or achieve an objective.” This definition gives a general idea
of what a requirement is. However, this definition only defines requirements from user’s
point of view and ignores other stakeholders. Thayer and Dorfman gave a second and third
definition, (2) “a capability that must be met or processed by a system or system component
to satisfy a contract, standard, specification or other formally imposed documents” and (3)
“the set of all requirements that form the basis for subsequent development of the software
or software component.” Definition (2) and (3) are defined at an abstract level and are about
how requirements can be used in the software development process. Finally, they presented
the fourth definition, (4) “short description sometimes used in place of the term software
requirements specification.” Thayer and Dorfman’s definitions are based on definitions given
in the IEEE 610.12 standard [iee90].
Kotonya and Sommerville [KS98] discussed requirements in a different manner. Instead of

giving a restrictive definition, they defined the “range and scope” of the term requirement:
“Requirements are defined during the early stage of system development as a specification
of what should be implemented. They are descriptions of how the system should behave, or
of a system property or attribute. They may be a constraint on the development process
of the system. Therefore, a requirement might describe a user-level facility, a very general
system property, a specific constraint on the system, how to carry out some computation,

11
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and a constraint on the development of the system.” This description is a slightly adjusted
version of the definition given by Sommerville and Sawyer [SS97].

Based on these well-accepted definitions and the scope of this work, we define require-
ment as the following.

A requirement describes how a system should behave or should be. It may be a
constraint on the development process of the system. A requirement is requested
by stakeholders of the system such as users, clients, developers. In the context
of scientific software, the main stakeholders are scientists users and developers.
A requirement can refine or contain other requirements.

Requirements are typically categorized into functional requirements, non-functional re-
quirements and constraints [RR12]. Functional requirements are things the software system
must do. Non-functional requirements are qualities the software system must have. Con-
straints are global issues that shape the requirements.
Requirements engineering is often defined as “the process of discovering, document-

ing and managing the requirements for a computer-based system” [SS97]. Therefore, in this
dissertation we consider the term “requirements engineering” as equivalent to requirements
engineering process, which puts emphasis on its nature of being a process. A requirements
engineering process produces requirements engineering products such as requirements spec-
ifications and requirements models.

Requirements 
Engineering 

Process

Requirements 
Engineering 

Product

Requirements 
Engineering 
Technique

aids

interacts with

Artifact

interacts with

produces

Requirements 
Engineering 

Activity
*

Figure 2.1: Relations between concepts in requirements engineering.

A requirements engineering process consists of activities, such as writing requirement
documents and reviewing requirements. A “requirements engineering technique” describes a
sequence of systematic steps of how to perform a requirement engineering activity [NE00].
Both requirements engineering technique and activity interact with artifacts in the soft-

ware development, such as: requirements, diagrams of software design and source code.
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These artifacts contain the requirements engineering product produced by the requirements
engineering process. The relations between these terms are illustrated in Figure 2.1.
The Volere requirements process developed by Robertson and Robertson [RR12] is an

iterative requirements engineering process that has been applied by practitioners for decades.
The main activities and related artifacts in Volere requirements process are presented in
Figure 2.2.

Project 
Blastoff

Trawl for 
Knowledge

Start

Domain 
Knowledge

Reusable 
Requirements

Write  
Requirements

Requirements Quality 
Gateway

Requirements 
Specification

Requirement 
Reuse

Software Design 
and Develop

Prototype the 
Work

Product Use 
and Evolution

Figure 2.2: Main activities in the Volere requirements engineering process.

Kof [Kof05] grouped these activities and defined them as steps in two major requirements
engineering activities, requirements elicitation and requirements analysis, and supportive
steps. In the following we discuss these activities based on Kof’s categorization. We also
include our view of these activities in the context of CSE projects.
Requirements elicitation is often regarded as the first activity in a requirements engi-

neering process [NE00]. The goal of requirements elicitation is to understand and describe
the purpose of the system to be built [BD09]. Requirements elicitation consists of the steps:
“trawl for knowledge”, “prototype the work”, and “requirements reuse”. During “trawling
for knowledge”, domain knowledge is acquired and requirements of the prospective system
are discovered. “Prototyping” simulates real products and helps to find further requirements.
Requirements elicitation is intrinsically domain knowledge dependent. In CSE projects, the
domain knowledge includes the scientific theory of the domain, mathematical models used
to describe the problem and solution, and the numerical methods that are applicable to
solve the scientific problem. We want to stress that requirements reuse increases the pro-
ductivity of creating requirements by adopting the past reusable requirements knowledge
into a new software project. Software projects are recommended to reuse requirements from
the same domain to reduce the effort of creating requirements from scratch.
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Requirements analysis is the activity of formalizing requirements that aim to be
correct, complete, consistent and unambiguous [BD09]. The central step in requirements
analysis is “quality gateway” as described in Figure 2.2. Quality gateway checks that the
requirements satisfy the quality criteria, and then the requirements are formalized in re-
quirements specifications. The resulting requirements specifications can serve as a contract
between client and developer. We have discussed in Chapter 1 that scientific software is
often developed as in-house applications to serve scientific research. Thus, scientists give
lower priority to formalizing requirements documents than other coding and experimental
tasks; unless a formal document is required. In this work, we focus on early requirements
that are usually delivered by requirements elicitation, which can in turn be given as input to
requirements analysis. Early requirements describe the objectives, functions, properties and
constraints of the system, but they do not necessarily need to satisfy strict quality criteria.
The remaining activities in Figure 2.2 are supportive steps. “Project blastoff” helps iden-

tify stakeholders and determine the scope of the project. It provides important contextual
information for requirements elicitation and analysis. “Write the requirement” is not an inde-
pendent step, but is done partially during requirements elicitation or requirements analysis.
Additionally, the trace requirements activity is not explicitly included in the process,
but it is often carried out by practitioners to relate the requirements and other artifacts.
In a requirements process, requirements products and artifacts are created and evolved. It
is important to know how a requirement in the specification is realized and what is the
rationale behind this requirement.
Another activity we want to point out that is not mentioned in Figure 2.2 is require-

ments recovery. Requirements recovery is one type of reverse engineering. Reverse en-
gineering aims at analyzing a system and extracting many kinds of information, such as
requirements and design documentation [CC90]. Requirements recovery focuses on the re-
verse engineering of software systems into requirements, in order to reconstruct early aspects
for software systems. Fahmi and Choi [FC07] argued that it is necessary to recover require-
ments from the reverse engineered outcome and integrate this outcome in the requirements
elicitation. In order to produce requirements specifications for scientific software, require-
ments recovery is a significant activity – requirements need to be recovered for the complex
legacy scientific software systems that do not have a requirements specification. These re-
covered requirements can be revised afterwards through requirements elicitation to update
the old information and integrate new requirements.
We further elaborate and compare various techniques for the aforementioned activities,

namely, requirements elicitation (Section 2.1.2), requirements reuse (Section 2.1.3), trace
requirements (Section 2.1.4) and requirements recovery (Section 2.1.5).
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2.1.2 Requirements Elicitation

The goal of requirements elicitation is to discover explicit and tacit requirements with
stakeholders, by means of communication and acquiring knowledge about the domain and
system. In this dissertation, we call the requirements delivered by requirements elicitation
early requirements.
In a comprehensive survey conducted by Zowghi and Coulin [ZC05], various techniques

that aid the requirements elicitation activity are presented and compared. Based on Zowghi
and Coulin’s survey, we compare the requirements elicitation techniques within the context
of scientific software development. We classify the techniques into two types, techniques
that require a facilitator to conduct requirements elicitation and techniques that can also
be conducted without a facilitator.
First, let’s take a look at requirements elicitation techniques that require a facilitator. A

facilitator guides participants through requirements elicitation tasks in order to discover and
collect requirements. Hence, the facilitator is an active actor, who designs and asks questions
to participants, and observes participants to acquire knowledge and obtain requirements.
Participants are reactive actors in such a setup, who are often the domain experts or end
users. For the following techniques, both facilitator and participants, need to be involved in
requirements elicitation.

• Interviews: Interviews are commonly used and have been proven effective [DDH+06].
In an unstructured interview, the facilitator (interviewer) does not follow a prede-
termined agenda or a list of questions. The interview is exploratory; the facilitator
needs to be flexible to adjust and guide the discussion. In a structured interview, the
facilitator predefines interview questions that target the gathering of information on
certain topics. This requires that the facilitator have some basic knowledge about the
domain in order to prepare the questions. The facilitator needs to note down related
information during the interview, which are a type of early requirements.

• Questionnaires: A questionnaire can consist of multiple choice questions and open
questions that require participants to answer in free text. A facilitator can distribute
a questionnaire to many participants, who can be in different locations. Hence, ques-
tionnaires can easily scale, in comparison to interviews, in which one-to-one communi-
cation is often necessary. The questions must be clearly and unambiguously phrased
– so that a participant can understand and answer the questions without requiring
assistance in comprehending them.

• Ethnography: Ethnography is a technique where the facilitator participates in the
normal activities of the users. It usually takes a substantial period of time to observe
and collect information. Ethnography makes real world aspects visible in requirements
elicitation [HOR+95].



16 foundations

We present the comparison of techniques that require a facilitator in Table 2.1. We com-
pare the expertise required of the facilitator in order to conduct the elicitation. We consider
two perspectives: requirements engineering (RE) expertise and domain expertise. For in-
stance, to conduct interviews, the facilitator needs to have basic requirements engineering
knowledge and interview skills, in particular what questions to ask during the interview
and how to extract information from the interview response. It will be helpful to know the
domain basics in order to ask more in-depth questions. We then compare the overhead for
the facilitator to carry out requirements elicitation and the strengths and weakness of each
technique in Table 2.1.
The techniques described above do not necessarily require the participants to know how

to perform requirements elicitation – the facilitator guides them through the process. While
using the techniques below, the participants can elicit requirements individually without a
facilitator. Therefore, the participants are the active actors in requirements elicitation and
they are responsible for knowing and applying the techniques.

• Brainstorming: In a brainstorming session, participants aim to generate as many ideas
as possible about the software system to build. It encourages creative thinking in
problem-solving. Brainstorming can be conducted in group settings or individually.

• Scenarios: A scenario describes “what people do and experience as they try to make
use of computer systems and applications” [Car95]. In requirements elicitation, partic-
ipants describe scenarios for the software as a flow of human computer interactions.

• Prototyping: A prototype is an artifact that shares the main features and attributes of
a final product [Flo84]. Boehm [Boe00] described prototyping as a beneficial technique
to elicit requirements – “I’ll know it when I see it” (IKIWISI). Prototypes provide
direct and visual experience, in contrast to textual requirements which require par-
ticipants to imagine how to interact with a software system. Often prototypes allow
users to experience a scenario, where the sequence of user actions and system response
is predefined [Sta12]. Participants can build throwaway paper prototypes, or robust
prototypes that can be refined in the development, depending on their objectives and
resources.

• Domain Analysis: Participants carry out domain analysis to acquire domain knowledge
and identify early requirements from existing knowledge bases, related documentation
and applications. Ontology-based domain analysis [KS06, ZyZxYy+07] are often used
in requirements elicitation.

• Goal-based: Goal-based approaches start eliciting requirements as high-level goals
and elaborate them into sub goals. Usually, participants apply goal-based modeling
languages to describe requirements. We will further introduce goal-based modeling
languages in Section 2.2.3.
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We present a comparison of techniques that do not require a facilitator in Table 2.2. All
these techniques can be selected and combined to aid requirements elicitation. Zowghi and
Coulin [ZC05] presented strategies to combine these techniques. Tsumaki et al. [TT06] also
discussed how to match requirements elicitation techniques with project characteristics.

2.1.3 Requirements Reuse

In order to reuse software components and save development cost, requirements reuse is
essential. Researchers have argued that reuse at the requirements level can significantly
empower the software life cycle [LLP02, BR89].
Requirements reuse often relies on identified commonalities and variabilities between soft-

ware applications [HVS12]. Feature modeling is a common technique to express commonality
and variability [KCH+90]. It supports modeling common high-level features of a domain and
variation points. Other related work includes software product-line engineering, where the
identification of commonality and variability is a major prerequisite [PBVDL05].
Lam [Lam97] presented a domain-specific approach requirements reuse, which consists

of two phases: a domain analysis phase to identify reusable artifacts in the domain and
a domain engineering phase to package the reusable artifacts for facilitating future reuse.
He further conducted a case study of requirements reuse in the domain of aircraft engine
control systems [Lam98].
Lopez et al. [LLP02] applied meta-modeling to support requirements reuse. Diverse as-

pects of requirements are represented and stored differently. Therefore, it is difficult to
identify the reusable artifacts. They integrated semi-formal requirements representations
into a requirements meta-model, namely: scenarios, use cases, activity diagrams, data flows,
document-task and workflows. Based on the meta-model, a framework is created to support
requirements reuse.

2.1.4 Trace Requirements

Traceability is one major characteristic of a good requirements specification, recommended
by the IEEE Std 830-1998 [iee98]. Two types of traceability are often considered: backward
traceability (i.e., to previous stages of development) and forward traceability (i.e., to all
documents spawned by the requirements).
Winkler and von Pilgrim [WP10] conducted a systematic and in-depth survey on trace-

ability in requirements engineering and model-driven development. They discussed different
senses of traceability and traceability schemes that define the constraints needed to guide
the managing of traces. Ramesh and Jarke [RJ01] presented reference models for manag-
ing artifacts and their traceability links, based on a broad range of empirical studies. The
reference models are used to represent the following dimensions: what information is repre-
sented, who are the stakeholders that play different roles [WJSA06, MGP09] in using the
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information and traceability links across them, where the information is represented, how it
is represented, why the information is created and evolved, and when the information was
captured and evolved.
In the context of model-driven development, traceability schemes are usually explicitly

expressed in meta-models, which are also usually linked to models specifying model trans-
formations [WP10]. Many researchers [WJSA06, MGP09, SKR+08] have proposed ad-hoc
traceability meta-models, which define the classification of the information and traces, for
easy managing in traceability practices.
Additionally, representing and visualizing traceability is important to understand the un-

derlying information of traceability. For example, traceability can be visualized in matrices,
graphs and hyperlinks. We [LM12] conducted a comparison study about which visualization
techniques are suitable in different contexts. We found that matrices represent a structured
overview of the relationships between artifacts. Graphs are vivid and intuitive to represent
and explore relationships. Hyperlinks fit for fine-grained information needs and guide users
to access the related artifacts easily.
Extensive research has also been carried out on the task of recovering traceability, be-

cause traceability is not maintained in many software projects. Antoniol et al. [ACPT01,
ACC+02] and Capobianco et al. [Cap09, CLO+13] used various information retrieval tech-
niques to recover traceability links between code and text documents. Cleland-Huang et al.
[CHSCX05, CHSR+07, CHCGE10] introduced automated trace processes in the software
development lifecycle to support traceability practices, reducing the effort needed to create
and maintain traceability.

2.1.5 Requirements Recovery

One way to recover requirements is to analyze software systems from bottom up. Such ap-
proaches deal with abstraction at the code level; often program comprehension needs to be
carried out. Yu et al. [YWM+05] presented a methodology to reverse engineer goal models
from legacy code. The code is first refactored by extracting methods, states and transitions.
Then based on the extracted state transition, goal models of the software program are re-
covered. For instance, an OR decomposition of a goal is recovered by identifying an if-else
condition in the code. Klammer and Pichler [KP14] developed a toolkit for analyzing legacy
scientific software. The toolkit supports feature location and domain knowledge extraction
from source code. Their work facilitates program comprehension via code annotation for
scientific software. Kienle and Müller [KM10] described the Rigi reverse engineering sys-
tem that extracts information from software and visualizes information to support reverse
engineering.
Another way to recover requirements is from documents written in natural language. Doc-

uments are often an important, sometimes primary and formal source of information about
software [RGS00]. Various natural language processing techniques and tools have been de-
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veloped to extract requirements from documents. Cleland-Huang et al. [CHSZS06] proposed
an information retrieval based approach for the detection of non-functional requirements, in
both requirements specification and freeform documents (such as meeting minutes and inter-
view notes generated during the elicitation). While this approach requires pre-categorized
training data, a semi-supervised approach was proposed by Casamayor et al. [CGC10]. This
approach allows for the input of a small amount of training data of pre-categorized require-
ments. Therefore, it reduces the manual effort required for labeling requirement categories
in a big training data set.

2.2 modeling as a technique

The purpose of software engineering is to understand and build artificial software systems.
We believe that modeling is one of the basic methods of understanding complex systems.

2.2.1 Models, Modeling and Modeling Languages

Bruegge and Dutoit [BD09] defined a model as “an abstraction of a system aimed at sim-
plifying the reasoning about the system by omitting irrelevant details”. Here abstraction
means “the classification of phenomena into concepts”. Jackson [Jac09] had similar opinions.
He concluded that “models are built for many purposes”, but “an implicit purpose is always
to achieve, record and communicate some human understanding of its subject – that is, of
whatever is being modeled”. A model describes a subject in a simpler and more accessible
way to support human understanding and reasoning [Jac09]. For example, geophysicists
construct different earth models to represent the complicated underneath structure of the
earth. Architects create 2D or 3D building models to represent the real buildings, so that
they can apply their designs to the models and visualize the effects before the construction
of real buildings.
Software engineers build models to understand real world problems that can be solved by

software systems. In order to build a train ticket system, for instance, software engineers
need to know what kind of tickets people can buy, the price of the tickets, what payment
methods the system should support and so on. They create data models to store the ticket
information. They also model how the payment can be processed and how a user can access
the ticket machine.
Modeling languages and notations provide a grammar to help software engineers represent

models. Different languages and notations represent models from different perspectives, such
as functions of the system, interaction between users and the system, and the underlying
structure of the system. Well-designed modeling languages enable accurate description of
the system and effective communication. For instance, UML (Unified Modeling Language)
is a popular modeling language used in numerous software projects. A meta-model is a
model of models [MM03]. Meta-models define the syntax of how to model a model.
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2.2.2 Requirements Modeling

While being beneficial to other software engineering tasks, the modeling technique is es-
pecially useful in requirements engineering activities such as requirements elicitation and
analysis, to better support human understanding in these activities. Requirements consti-
tute a part of the system model from the problem domain, starting from an early stage in
the software development.
Berenbach [Ber12] discussed his experience in requirements modeling over a 25 year period.

He claimed that “the creation of models was done out of necessity as the system require-
ments were too complex to comprehend using pure text based techniques”. He observed
“a productivity improvement in requirements capture of 30-60% with model-driven require-
ments engineering as opposed to textual requirements capture”. Interestingly, Berenbach
also described his experience of working on designing scientific software, control systems
and simulators for chemical and power plants. They had difficulty understanding the re-
quirements of the systems. Introducing modeling techniques in the project helped greatly,
where stakeholders from different backgrounds needed to communicate and understand re-
quirements. Without models it would not have been possible to have a holistic view of those
systems in their entirety.
Greenspan et al. [GMB94] claimed that “formal requirements modeling languages are

needed”. Their view is that any such formalism can help descriptions be “assigned a well-
defined semantics”. Clear semantics benefit “adjudicating among different interpretations of
a given model, and offering a basis for various ways of reasoning with models”. However,
Greenspan et al. stressed that “the use of a formal requirements modeling language does not
preclude the concurrent use of informal notations”, due to “relative simplicity and flexibility
derived from informality”.
Introducing modeling into requirements engineering can improve the productivity and

understandability of requirements. Requirements modeling languages are developed to help
represent requirements models with well-defined semantics. In this work, we claim require-
ments modeling is a technique that can be used across various requirements engineering
activities within a requirements engineering process, such as in requirements elicitation and
analysis.

2.2.3 Requirements Modeling Languages

A number of modeling languages are used to serve requirements engineering. The Unified
Modeling Language (UML) was developed in the 1990s. It integrates three popular object-
oriented modeling methods, namely James Rumbaugh’s object-modeling technique (OMT),
Grady Booch’s object-oriented design (OOD) method, and Ivar Jacobson’s object-oriented
software engineering (OOSE) method. Later in 1997 UML was adopted by the Object Man-
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agement Group (OMG). In 2000 UML was accepted by the International Organization for
Standardization (ISO) as industry standard for modeling software-intensive systems.
UML provides a collection of ways for modeling through different stages of the software

development life cycle, such as data modeling and component modeling. The strengths of
UML include the easy comprehensibility, diversity of modeling, wide-acceptance, as well
as platform and implementation language independence. UML use case diagrams are of-
ten used in requirements engineering. A use case diagram represents events that describe
users’ interaction with a system. Use case diagrams are suitable to illustrate functional
requirements, but may neglect other types of requirements, such as security requirements
and legal constraints [SO05]. Besides use case diagrams, in the requirements analysis phase,
UML object diagrams and class diagrams are used to represent initial requirements analysis
objects.
Arlow [Arl98] commented that the UML use case diagrams are “quite weak semantically,

but show us high level functional requirements for the system”. Further, Simons and Graham
[SG99] listed a collection of flaws with UML modeling. For example, they identified seman-
tic inadequacies of the <�<include>�> and <�<extend>�> relationships in UML use case
diagrams. As we have discussed previously in Chapter 1, in scientific software development,
the emphasis is often on the development of sophisticated calculations at the algorithmic
level. Therefore, use case diagrams are not sufficient to describe fine-grained requirements
for scientific software, despite their simplicity.
The Systems Modeling Language (SysML) is a visual modeling language as an extension

to UML for Systems Engineering developed by the OMG1 and INCOSE2. The goal of SysML
is to model complex systems or system-of-systems at multiple levels, in the sense that the
integrated system model must address aspects of functions, performance, structure and so
on. In particular, SysML introduces requirements diagrams, while keeping the UML use
case diagrams, to facilitate requirements engineering activities. A requirements diagram
can be easily transformed to a textual requirements table. SysML allows tracing between
requirements and test cases. Furthermore, SysML also supports the specification of physical
and performance parameters for systems.
However, a critique about SysML requirements diagrams is that the relationship types

used in the diagrams are difficult to understand and distinguish. Furthermore, while SysML
is suitable to model complex large systems, it is too heavyweight for scientists getting started
with requirements elicitation. Specialized training and tutorials are required to develop
SysML models. SysML might be more useful in big development teams with support from
requirements engineers.
RML is a language for modeling software requirements provided by the requirements en-

gineering consultancy company, Seilevel3. RML offers a broad range of different diagrams
and templates from various perspectives for requirements engineering [BC12]. It helps orga-

1 Object Management Group http://www.omg.org
2 The International Council on Systems Engineering http://www.incose.org
3 http://www.seilevel.com/
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nize and communicate large quantities of information, identify missing requirements, give
context to individual details within the overall collection of requirements, and represent
different views of requirement details.
Although RML offers ready to use model templates, the target group of RML models

are business analysts. A broad spectrum of prior knowledge about various models such as
feature trees and state tables are required, in order to choose suitable models in a given
situation. This is an obstacle to introduce into RML to scientific software development,
because scientists are not able to see the direct benefits of RML without spending time to
understand the 22 different model templates.
KAOS (KAOS stands for Knowledge Acquisition in autOmated Specification) supports

goal-oriented requirements engineering. Goals are “objectives that the system under con-
sideration should achieve” [VL01]. It enables requirements analysts to collect goals and
refine them into subgoals for tackling a particular problem. Further, they identify conflicts
between goals and resolve them.
KAOS allows expressing requirements as goals, which belong to a general concept that

can be easily understood. Scientists are able to specify goals, without being overwhelmed
by many requirements engineering-specific terms. While leading to the expression of a more
complete set of requirements, the KAOS notation and methods are complicated – KAOS
suggests to elaborate four complementary sub-models, i.e., the goal model, the object model,
the agent responsibility model and the operation model.
The goal of User Requirements Notation (URN) is to facilitate the communicating of

requirements among stakeholders prior to and during the system development life cycle
[itu08]. URN helps to describe and communicate requirements, and to develop reasoning
about them. The main applications areas include telecommunications systems and services,
but URN is generally suitable for describing most types of reactive systems. The range of
applications is from goal modeling and requirements description to high-level design.
A subset of URN is the Goal-oriented Requirement Language (GRL), which is a language

for supporting goal-oriented modeling and reasoning about requirements, especially non-
functional requirements and quality attributes [ITU03]. GRL is developed based on the i*
modeling framework4. The three main categories of concepts in GRL are actors, intentional
elements and links. The other subset of URN is Use Case Map (UCM), which provides
an integrated view of behavior and structure by allowing the superimposition of scenario
paths onto the structure of abstract components of the system. Similar to other goal-oriented
languages like KAOS, URN is suitable for supporting early requirements engineering [Yu97],
but the notation is rather complex to learn.
Unified Requirements Modeling Language (URML) integrates system/process modeling,

danger modeling, product line modeling and stakeholder/goal modeling into one unified
language [Schng]. It provides a variety of icons for the model elements and annotation of
traceability links. This improves the comprehensibility of models greatly.

4 istar.rwth-aachen.de/
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Although URML has enhanced cognitive effectiveness, it is specialized in describing haz-
ard and quality requirements. Domain-specific requirements that target scientific software
are necessary to support an efficient requirements engineering for CSE projects.

2.3 software engineering for scientific software

Here we discuss other research work on scientific software development from different soft-
ware engineering perspectives.

There are not many research studies that focus on requirements engineering for scientific
software. In fact, we only found the work from Smith and Lai [SL05, Smi06], who proposed a
systematic approach to requirements documentation for scientific computing projects. They
provided a requirements template while addressing the challenges of writing validatable,
abstract requirements and non-functional requirements. However, the mentioned approach
does not focus on supporting a more efficient and easy-to-learn requirements engineering
process. Thus, the overhead of learning and applying the method is high without a CASE
tool and automation support.
Remmel et al.’s work [RPEB13] focused on testing and quality assurance for scientific

software. They described a software product line test strategy for scientific frameworks to
test both commonality and variability. They further applied a quality assurance process
into Distributed and Unified Numerics Environment (Dune) [RPEB14], a complex scientific
software framework. Requirements are vital to software testing. Hence, in their work they
concentrated on the known requirements in the project, often these are the laws of nature
in mathematical forms. They claimed that further requirements are not defined before hand
but emerge in the course of software development. Hence, a suitable method that easily
captures and manages requirements can complement their testing strategy.
Naguib’s work [Nag15] supports a different aspect of scientific software development, issue

tracking. According to the empirical study Naguib conducted, scientific software developers
tend to be involved only in a single issue tracking activity, such as reporting and reviewing
software issues, while traditional open source software developers are often involved in mul-
tiple issue tracking activities. Naguib developed a technique to recommend issue assignees
and applied it in mid-sized scientific software projects. Naguib’s work showed that auto-
mated recommendation is effective in assigning issues such as bugs and tasks to suitable
developers. However, in many small-sized CSE projects, an issue tracking system might not
have been used. We claim that such projects can start by creating issues based on an initial
set of requirements and establishing a lightweight issue tracking process.
Finally, Woollard’s work [Woo11] supports scientific software development at the architec-

tural level. Woollard presented KADRE, which is a domain-specific software architectural
recovery technique for scientific software. KADRE analyzes existing scientific code and iden-
tifies modularize-able code snippets. Woollard also described Scientific Workflow Software
Architecture (SWSA) to help scientists develop software at the level of scientific experiment.
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DRUMS : DOMAIN - SPEC IF IC REQUIREMENTS MODEL ING FOR
SC IENT ISTS

In the previous chapters, we discussed the characteristics of CSE projects and presented
a number of requirements engineering activities and techniques. Considering that the goal
of this dissertation is to provide lightweight requirements engineering supports for scien-
tists to elicit and manage early requirements, we describe the visionary scenarios in Sec-
tion 3.1. Next, in Section 3.2, we present our solution, DRUMS, to address these scenarios.
The DRUMS meta-model is elaborated in Section 3.3. Finally, Section 3.4 introduces two
DRUMS implementations.

3.1 to-be scenarios for cse-specific requirements engineering

Precisely what is a suitable lightweight solution for requirements engineering in the context
of scientific software? We describe the visionary scenarios in which scientists apply such a
solution, in forms of use cases and non-functional requirements.

3.1.1 Use Cases

Scientists have a vital interest in some requirements engineering activities over the others.
For instance, scientists are generally interested in eliciting requirements that help them to
understand the problem to solve, but they are not interested in analyzing the requirements
for formality, unless they are demanded to formalize the requirements. We identify five use
cases that a CSE-specific requirements engineering techniques should support, as shown in
Figure 3.1. Each use case is detailed below.

elicit requirements
Scientists elicit requirements for scientific software. In requirements elicitation, scien-
tists define what needs to be developed. They communicate ideas, acquire knowledge
about the domain and the software, as well as propose possible solutions. These ideas
are delivered as early requirements.

document requirements
Elicited early requirements are documented, to record what is expected for the soft-
ware system. Often documenting requirements is carried out in collaborative projects,
to help ensure a common understanding between every site on what needs to be
achieved. For small teams or solo developers, documenting requirements will also help

27
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Figure 3.1: Use cases for CSE-specific requirements engineering.

developers to schedule the development time and resources (such as external libraries)
more efficiently.

trace requirements
Related requirements need to be linked to track the dependency, refinement and other
relationships of requirements. Traceability allows scientists to better comprehend their
software and reason requirements. For example, a scientist is assigned to realize the
requirement ‘use an existing solver from external libraries to solve linear systems’. In
her implementation, she wants to know which external libraries she should use. She
traces this requirement and finds a related requirement ‘dependency to the LAPACK
library’. Hence, she understands the rationale and realizes the requirement by calling
LAPACK subroutines.

recover requirements
Often scientists have been working with a large and complex legacy system for many
years. As the legacy system becomes difficult to maintain, scientists want to refactor
the software by applying structured refactoring techniques. The scientists recover the
requirements of the legacy system, and incorporate the recovered requirements in re-
quirements elicitation. The goal is to have a clear understanding of what is redundant;
what must be kept, and what can be reused in the legacy system [FC07]. This helps
scientists to redesign the system and systematically carry out refactoring steps.
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reuse requirements
Scientists want to reuse requirements that were already specified in previous projects
to increase the productivity of requirements elicitation and documentation. However,
many CSE projects do not have requirements specifications. To address this problem,
requirements can first be recovered from legacy systems and afterwards be reused in
a new project.

The relationship between the use cases are also shown in Figure 3.1. In order to document
requirements, requirements must be elicited. Tracing requirements can only be managed
when the requirements are documented. Requirements are reused by identifying reusable
requirements from existing requirement documents and/or from recovered requirements.
Hence, the two fundamental use cases are “elicit requirements” and “recover require-
ments” (highlighted in grey), and the other three use cases are built on them.

3.1.2 Non-functional Requirements

The solution to the CSE-specific requirements engineering also needs to address the following
non-functional requirements.

3.1.2.1 Efficiency

In general, software engineering methods and tools aim for efficiency, which is defined here as:
“enabling a user who has learned the system to attain a high level of productivity” [Hol05].
Based on our assumption that scientists have limited time for requirements engineering,
efficiency is therefore of vital importance for the CSE-specific requirements engineering. In
order to support scientists to gain productivity in requirements engineering, great efficiency
must be provided. This includes:

• Scientists can elicit and document requirements, within a short amount of time, e.g.
less than 5% of the total software development time.

• Requirements can be recovered automatically and the recovered requirements can be
easily reused by scientists.

• Common requirement types that are frequently considered in scientific software devel-
opment are incorporated, to enable efficient associations and instantiation of project-
specific requirements.

3.1.2.2 Learnability

Scientists have limited knowledge about how to practice requirements engineering. There-
fore, a suitable requirements engineering technique should provide great learnability, so that
scientists can easily learn it and accomplish basic tasks as first-time users [Nie94]).
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• Cognitive effectiveness and self-explanation of how to perform requirements engineer-
ing tasks should be supported, so that scientists can easily start requirements engi-
neering.

• A suitable requirements engineering technique should use terms that can be easily
understood by scientists. Explanation or example illustration should be provided for
difficult and ambiguous terms.

3.1.2.3 Expressibility

Scientists can easily express requirements for complex scientific software systems in the
following ways:

• A suitable requirements engineering technique can help express knowledge, constraints
and ideas about the scientific software and its development clearly.

• The technique can evoke details or aspects of developing scientific software, which
might be hidden or forgotten.

3.2 solution: drums

To meet the requirements identified in Section 3.1, we present a requirements engineering
framework for scientific software development, named DRUMS (Domain-specificReqUirements
Modeling for Scientists).
DRUMS supports a CSE-specific requirements engineering process. The pre-defined domain-

specific DRUMS meta-model stimulates scientists to discover requirements that they might
ignore but are indispensable in development, such as what kind of data to handle and
what external libraries to depend on. The visualization of requirements prompts scientists
to understand and explore dependencies and rationale between requirements. Finally, we
also integrate an automated requirements extraction service to allow scientists to efficiently
recover requirements for a legacy system or reuse requirements from other projects.
We elaborate the main characteristics of DRUMS in the following:

• Model-based: A model describes a subject in a simpler and more accessible way to
support human understanding and reasoning [Jac09]. It is also used to communi-
cate understanding. In requirements modeling, requirements are expressed in terms
of models. A requirements model is at a higher level of abstraction than a textual
requirements specification. A model matches more closely the entities, relationships,
behavior and constraints of the problem to solve [CA07]. It can better deal with the
high complexity and frequent change in CSE projects. Models can support reusability
and extensibility. For example, a project-specific requirements model is created by
reusing common parts of an existing model and specializing generic model elements.
Model-based traceability supports creating links between artifacts that are predefined
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in a meta-model. Related artifacts are linked. Additionally, techniques of model-based
versioning together with a model repository can be applied. Due to the explorative na-
ture of scientific study, new requirements are created while the existing requirements
are evolving. We version these requirements to track and provide control over change.
A model repository provides the possibility for stakeholders to communicate, share
knowledge and collaborate with models.

• Domain-specific: In requirements engineering, the designated terminology provides
names to describe the application domain, the software and the interface between
them [GGJZ00]. The meta-model of a model-based approach provides abstractions
and notations targeted towards CSE projects. This makes requirements modeling less
complicated and reduces the learning effort for scientists. Therefore the approach
encourages requirements engineering practices in CSE projects.

• Visualization of Traceability: Techniques such as traceability matrices and graphs vi-
sualize relationships between artifacts and help users to access and understand them.
To satisfy the goals of efficiency and expressibility, we need to find a suitable means of
visualization. In our previous work [LM12], we reported a comparative study of com-
mon visualization techniques, namely matrix1, graph, list and hyperlink. We found
that for scientists’ common tasks such as implementation, hyperlinks are useful to
represent traceability, which capture fine-grained context information for implementa-
tion. Alternatively, traceability graphs are intuitive to understand, and suit in various
cases, such as testing and task planning.

• Automated Requirements Extraction: To support requirements recovery for CSE projects,
we apply dARE (drums-based Automated Requirements Extraction), to extract re-
quirements from sources such as project reports and software user manuals. It is a
pattern-matching approach so that manually annotated training data is not required
for the extraction of requirements. This automates the process of requirements extrac-
tion and help scientists to efficiently recover requirements from existing documents.
It also encourages scientists to recover requirements from past projects in the same
domain to reuse the recovered requirements in new projects, providing greater produc-
tivity and interoperability. In Chapter 4 we elaborate the automated approach.

3.3 the drums meta-model

The core of DRUMS is the DRUMS meta-model that provides domain-specific abstractions
for requirements modeling. It is the base for providing traceability, model reuse, as well
as automated requirements extraction. This makes requirements modeling less complicated

1 A traceability matrix represents many-to-many relationships between artifacts in the form of a matrix or a
table.
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and reduces the learning effort for scientists. The DRUMS meta-model was based on our
previous work with SCRM2 [LHN+11].
Solving scientific problems is a collaborative activity and requires shared scientific knowl-

edge. Therefore, identifying requirements inherently depends on related scientific knowledge.
The scientific knowledge cannot be ignored during requirements engineering, as this knowl-
edge is the key driving force behind the creation or evolution of functional as well as non-
functional requirements in this domain. Hence, the idea is to capture both requirements
and related scientific knowledge. Additionally, the meta-model also needs to deal with the
visualization of relationships between modeled artifacts.

An overview of the DRUMS meta-model is depicted in Figure 3.2. It consists of the core
meta-model and the diagram meta-model. The core meta-model has two sub-models, the
scientific knowledge meta-model and the requirement meta-model. In the remaining part of
this section, we detail the core meta-model in Section 3.3.1 and the diagram meta-model to
support visualization in Section 3.3.2.

core meta-model

scientific knowledge 
meta-model

requirement 
meta-model

diagram meta-model

Figure 3.2: Overview of the DRUMS meta-model.

We use UML class diagrams to describe each meta-model. In the class diagrams, involved
model elements are represented by nodes and related by lines. A hollow diamond shape
graphically represents an aggregation association (“has a”). A hollow triangle shape repre-
sents generalization (“is a”).

3.3.1 Core Meta-model

The core meta-model defines what should be incorporated in developing early requirements
for CSE projects. As shown in Figure 3.3, each DRUMSModelElement is an early requirement,
which has a name and a textual description. This abstract class can be inherited as either

2 SCRM stands for Requirements Model for Scientific Computing projects
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ScientificKnowledge or Requirement. They are interfaces for scientific knowledge required in
the research and requirements of the software project. Subsequent parts detail the scientific
knowledge meta-model and the requirement meta-model, as well as describe how elements
from each sub-model correlate with each other.

core meta-model

name
description

<<abstract>>
DRUMSModelElement

<<interface>>
ScientificKnowledge

<<interface>>
Requirement

Figure 3.3: Core meta-model.

3.3.1.1 Scientific Knowledge Meta-model

Typically in CSE projects, a ScientificProblem is first defined (see Figure 3.4). Then Models
are created to represent the scientific problem, such as geometry models and mathematical
models. In the mathematical modeling process, governing principles and physical laws are
determined and factors, which influence the scientific problem, are identified. In order to
obtain computational solutions, a ComputationalMethod for a model is applied to solve the
problem. The method contains the logic and strategies used in solving the problem, which
are usually expressed as algorithms. The models and computational methods are created on
assumptions.
For example, the following knowledge can be described based on the meta-model:

• Seismologists want to solve the seismological problem, “simulating seismic wave propa-
gation at the local or regional scale”. The problem can be represented by a geophysical
model, “a three-dimensional elastic material volume model”. This model depends on
the assumption that “the material properties of the simulating region is elastic”. This
problem can be solved by “the spectral element method (SEM) with explicit time
integration”.

• In the building performance domain, architects want to solve a different scientific prob-
lem, “calculating the daylight- and energy-transmission in a room”. They represent
this problem using a model describing how the daylight is distributed, “ASRC-CIE
model”. Further, architects derive “a daylight transmission model for the building fa-
cade system”. These are important factors in how daylight and energy are transmitted
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Figure 3.4: Scientific knowledge meta-model.

in the room. The architects assume that “all surfaces in the room are perfect diffuse
materials”. The problem is solved by applying “ray-tracing algorithm”.

In DRUMS, not only are software requirements (will be introduced in Section 3.3.1.2)
modeled, we also model the scientific knowledge as part of early requirements. This is
for three reasons. First of all, the use of sophisticated mathematical models and compu-
tation methods indicates the high complexity of the problem domain. Modeling scientific
knowledge reduces this complexity. Secondly, all these information can help elicit and de-
tail requirements. Finally, the modeled scientific knowledge can be reused in related CSE
projects.

3.3.1.2 Requirement Meta-model

Elements for the requirement meta-model are customized to incorporate important concepts
in scientific computing projects. Figure 3.5 depicts the requirement meta-model. Features
describe desirable properties that are end-user visible and represent an abstract view of
the expected solution. We model features to perform a preliminary acquisition step for
requirements engineering. A feature can be further refined and be detailed into the realizing
requirements.
Hardware is an influential factor in scientific software development. Some software needs

to connect to sensors to retrieve and analyze data. As scientific software applications are
often computational intensive, optimal utilization of hardware is of high importance. This
is especially true for supercomputing applications. Another key element associated with fea-
ture is the Interface. An interface can either be a software interface or a user interface. The
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former provides an interface for external libraries and the latter supports end-user interac-
tion with the software itself. Besides the above mentioned limitations, any other Constraints
that will limit the developer’s design choices, such as the implementation language, have to
be identified explicitly as well.
Processes specify the functions of processing data, including the algorithm or mathemat-

ical expression of each process. For example, a process can be parallel to perform higher
performance computing tasks, in comparison with a sequential process. A process can pre-
cede or succeed another process. DataDefinition defines the meta-data of the data to be
processed. It contains information such as data format, range and accuracy. This informa-
tion is used by the process to better manage the data flow. Furthermore, it is also beneficial
for data distribution in parallel computing. There can also be subclasses of a process that
are needed to satisfy the needs for scientific software projects.

requirement meta-model

<<interface>>
Requirement

Hardware Constraint

<<implements>>

Feature

isParallel
Process

version
Interface
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DataDefinition
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follows
Performance details requires

provides

uses

achieves

0..1
*

*

1

*

*
*

Figure 3.5: Requirement meta-model.

Referring back to the knowledge we described in our examples of seismology and building
performance (in Section 3.3.1.1), we continue to identify requirements according to the
requirement meta-model:

• Seismologists want to develop a feature, “a fast and accurate simulation of seismic wave
propagation on clusters of GPU graphics cards”. They define the data that needs
to be input to the software as “station latitude and longitude should be provided
in geographical coordinates; the width of the station label should be no more than
32 characters, and the network label should be no more than 8 characters”. Other
involved data such as “seismic source”, “earth mesh” and “synthetic seismograms” are
also specified accordingly. The seismologists define a requirement of the type process as
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“given seismic waves should be simulated numerically by the spectral element method”.
This requirement can be further refined to steps of the computation process, e.g. “mesh
creation” and “solving the wave equation”. The equation solving process should be
parallelized to increase the calculation speed. The requirements of the GPU graphic
cards are also described.

• Architects wish to have a feature, “a precise daylight calculation for complicated build-
ings”. The feature requires a connection to various “light sensors in a building”, which
is the hardware this feature depends on. The architects use these hardware sensors
to accurately measure light within the building, for further validating the simulation
results against real measurements. In order to use services provided by an existing
platform, the feature requires the interface, “EnergyPlus version 8.0.0”. To detail the
feature, first of all, the software system should read in data about the “geometry of
the building”, “facade materials”, “time, date and sky conditions” and the formats of
the data must be defined. Then a raytracing algorithm is used to calculate daylight
transmission in the given building. The calculation process “traces many rays to de-
termine the contribution at each point from the window area”. When the calculation
finishes, the software “outputs the contribution of the ray at various points of the
building, the direction of rays and the effective length of rays”.

3.3.1.3 Relationship between Scientific Knowledge and Requirement

So far, we have already looked at the two meta-models, the scientific knowledge meta-
model and requirement meta-model, separately. In the following, we discuss how the two
are integrated.

scientific knowledge meta-model requirement meta-model

isParallel
Process

algorithm
ComputationMethod realizes0..1

format
range
accuracy

DataDefinition
Model describes0..1

Figure 3.6: Link the two meta-models.

Figure 3.6 shows the links between the two meta-models. Data definition describes the
model representing the scientific problem. Processes realize the corresponding computation
method. During requirements elicitation, requirements about data definition and processes
are further elaborated, based on the model and computation method used in the scientific
research. The knowledge is detailed and transformed to help design and implement the
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software. Links within each meta-model and links between the two meta-models establish
the traceability support of DRUMS.

3.3.2 Diagram Meta-model

In each of the seismology and building performance examples we gave previously, the sci-
entific knowledge and requirements are instances of DRUMS model element and therefore
constitute a DRUMS model. Up to this time, they have been described textually. To make
the requirements models more intuitively understandable, the model elements can also be
represented graphically. We support visualization for DRUMS models in the form of dia-
grams.

core meta-model

diagram meta-model

name
description

<<abstract>>
DRUMSModelElement

diagramLayout
diagramType

DRUMSDiagram

color
icon

Node
lable
direction

Connection

represents

source

target

0..1

0..1

1

Figure 3.7: Diagram meta-model.

In order to visualize each DRUMS model element, we describe the diagram meta-model
as an extension of the core meta-model to integrate visualization support. We present the
diagram meta-model in Figure 3.7. DRUMSDiagram is also a model element of DRUMS.
Hence, a DRUMS diagram has the same properties and all the services provided for DRUMS
model elements. A DRUMS diagram has Nodes and Connections connecting the nodes. A
node has a color and an icon. Therefore, nodes in a diagram can be easily distinguished, using
different icon and color schemes. Each node represents a single DRUMS model element, such
as a computation method and a process. A connection has a label giving the meaning of the
connection, such as node_a dependsOn node_b. The direction of each connection denotes
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the source node and target node the connection connects. The connections are essentially
the relationships between model elements defined in the core meta-model.
Finally, we want to stress the early requirements that this dissertation focuses on are

all defined in the core meta-model (see Section 3.3.1). The diagram meta-model handles
the visualization of the defined early requirements. Scientists can therefore describe early
requirements based on the core meta-model with the visualization support.

3.4 drums’ implementations

In this section, we present two implementations of the DRUMS meta-model, to assist sci-
entists in requirements engineering. Section 3.4.1 introduces a computer-aided software en-
gineering (CASE) tool implementation, called DRUMS Case, which enables requirements
elicitation, traceability, model reuse, documentation and collaboration to address the goals
identified in Section 3.1. We describe another implementation, DRUMS Board, which is
designed to be more “lightweight” in comparison to DRUMS Case – it is simpler and more
flexible. DRUMS Board is introduced in Section 3.4.2.

3.4.1 Implementation I: DRUMS Case

We have implemented DRUMS Case as a CASE tool for requirements modeling based on
the DRUMS meta-model. In DRUMS Case, users can create instances of DRUMS models
for a scientific software project. An instance contains model elements of various types that
are predefined in the DRUMS meta-model. The contained model elements can be linked
according to the defined relationships between types. Figure 3.8 illustrates editing a require-
ments model for heat simulation consisting of different model elements such as a process of
“computing temperature u” and a data definition of u(x, t).

DRUMS Case is developed as a set of Eclipse plug-ins. It is built upon the EMF Client
Platform (EMFCP)3. EMFCP is a framework that allows building EMF4-based client appli-
cations. Given an EMF meta-model, EMFCP supports creating instance models of the given
meta-model. It provides an explorer that displays the model elements in tree-like hierarchy.
All model elements can be edited intuitively in the model element editor (MEEditor), which
displays all attributes and references of a certain model element. Model elements can be
added to or removed from any reference in many convenient ways, for example by drag and
drop or hotkeys. Referenced model elements can be traced easily via hyperlinks provided in
the editor. Furthermore, we employ EMFStore5 as the backend model repository to support

3 http://www.eclipse.org/emfclient/
4 The Eclipse Modeling Framework Project (EMF) is a modeling framework for building tools and other
applications based on a structured data model. EMF provides tools and great interoperability with EMF-
based tools and applications.

5 http://eclipse.org/emfstore/
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Figure 3.8: Edit a model element and interact with the model repository in DRUMS Case.

collaboration and versioning of models. We built DRUMS Case on EMFCP and EMFStore
in order to have these capabilities, which satisfy the requirements described in Section 3.1.
We further elaborate the main features of DRUMS Case in the following sections.

3.4.1.1 Traceability

Model elements are linked according to the meta-model defined links. As in the example of
seismological software system, the process “solve the weak form of the seismic wave equation
on the spectral elements” is linked to its predecessor process “create and partition the mesh”
and its successor process “results output”, as well as the numerical method “spectral element
method (SEM)” it realizes. Heterogeneous artifacts, such as design and source code, can
also be linked by introducing new artifact types into the meta-model.
We inherited the hyperlink-based traceability support of EMFCP in DRUMS Case. We

implemented the graph-based traceability visualization based on the DRUMS diagram meta-
model (see Section 3.3.2). By providing both hyperlinks- and graph-based traceability, users
can trace related elements via hyperlinks when they are editing or browsing the detail of
a model element, as well as trace intuitively in a DRUMS diagram. In Section 3.4.1.2, we
elaborate the features of the diagram support.
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Figure 3.9: DRUMS Diagram (overview of a requirements model and visualization in multiple layers).

3.4.1.2 Diagram Support

DRUMS Case facilitates visualization in so-called DRUMS diagrams. In a DRUMS diagram,
a node represents each model element in a requirements model, while links between model
elements are represented by edges. Users can choose different model elements from a palette
and drag them into the diagram editor. Model elements can be linked through predefined
rules. DRUMS diagrams enhance understanding of structural relationships between model
elements. They enable users to interact with models in an intuitive fashion, providing sup-
port for graphical manipulation of requirements models. A DRUMS diagram can better
represent the model information, in particular structural information of models. Users can
easily understand a requirements model and perform operations on the model intuitively.
We visualize DRUMS diagrams with the mechanism of multiple layers, as illustrated in

Figure 3.9. Users can grasp a global view of a whole requirements model. But navigating to
a layer that contains a smaller group of model elements also offers access to more detailed
information. While still having a global view on the visualized model, the user can partition
the diagram into multiple layers to avoid information overload [HMM00]. Furthermore, each
type of DRUMS model element has a unique icon and different color scheme to allow users
to distinguish various types more easily.
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3.4.1.3 Model Reuse

To meet the requirement of reusability, we extended the model reuse function provided by
EMFCP. A user can import existing model elements and reuse them in a new requirements
model. In scientific software development, previously implemented features such as reading
input data can be often reused in a new project. Such requirements can be identified and
reused.
Additionally, we implemented support for saving and loading DRUMS diagram templates,

allowing users to reuse knowledge when specifying requirements. A requirements model
template serves as an example of what to model and how these model elements can be related.
Templates illustrate reusable knowledge of requirements models within a domain. Scientific
software developers can therefore easily start requirements modeling using templates.

3.4.1.4 Collaboration and Version Control

DRUMS Case employs a model repository – EMFStore. It facilitates versioning and collab-
oration. Therefore, evolution of requirements over time is captured. Along with the well-
known checkout-update-commit workspace interaction schema, users can edit their own
working copy of requirements models and interact with the repository. This eases the collab-
oration work, especially among the geographically distributed working groups. Figure 3.8
shows the EMFStore operations for collaboration and versioning.

3.4.1.5 Documentation

When users create and edit a model element in DRUMS Case, the model element is stored
locally in users’ file systems and can be shared with preconfigured EMFStore. The diagrams
are also persisted. This provides a basis for model reuse and collaboration. Additionally,
DRUMS models elements can be aggregated as a requirements document and exported as
.pdf and .rtf files, which serves as a requirements specification.

3.4.2 Implementation II: DRUMS Board

To mitigate the steep learning curve that case tools often present [Kem92], we implemented
DRUMS Board, a lightweight implementation of DRUMS. Although DRUMS Case offers
many useful functions that address users’ needs, DRUMS Board is much simple and straight-
forward, in comparison to DRUMS Case – users can start putting requirements into the
predefined requirement types without learning how to create a type of requirement in a
CASE tool. DRUMS Board represents the main abstractions described in the DRUMS
meta-model.
The layout of DRUMS Board is shown in Figure 3.10. For better visibility, this is a

modified version of the board with increased font size and removed descriptions in each
slot. A snapshot of the original board is shown in Figure 3.11. The layout of the board is
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Figure 3.10: Layout of DRUMS Board.

inspired by the Business Model Canvas [OP10]. Each slot in DRUMS board represents a
DRUMS type, that is defined in DRUMS meta-model. The slots can be grouped into two
parts. On the left side (marked in orange), the slots represent scientific knowledge such as
the problem to solve, the underlying mathematical models, and the methods that can be
used to solve the problem. On the right side (marked in blue), the slots represent software
requirements, such as what data needs to be handled in the software and what external
interfaces the software needs to depend on. Filling out the slots helps scientists to discover
and organize the knowledge and software requirements they need. It also helps transform
scientific knowledge into a software solution. Below is a short description for each slot:

• Scientific Problem/FeatureWhat scientific problem are you trying to solve? What
features do you want to realize in the software product?

• Assumption Have you made any assumptions in order to solve this problem? Are
the models and computational methods created on certain assumptions?

• Model Models represent concepts that are used during problem solving, such as
geometry models and mathematical models. The governing principles and physical
laws can be described in models.

• Computation Method Computation methods contain logics and strategies of solv-
ing a problem, which are usually expressed in algorithms.

• Constraint Are there any other constraints that will limit the developer’s design
choices, such as the implementation language?
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• Data Definition It defines the data to be processed in the software program. It
contains information such as data format, range and accuracy.

• Process What are the steps or tasks that need to be carried out, in order to produce
the specified features?

• Interface The software product might require or provide a software interface for
communicating with external libraries or a user interface that supports end-user in-
teraction.

• Hardware Does the software need to connect to sensors in order to retrieve and
analyze data? Does the software rely on certain types of computer platform/memo-
ry/graphic card/compiler?

• Performance Are there any specific requirements for processing speed, response time,
latency, bandwidth and scalability of the software product?

3.4.2.1 Paper-based DRUMS Board

Figure 3.11: An example of using paper-based DRUMS Board.

Similar to other tools like Business Model Canvas and Kanban Board, DRUMS Board
can be produced easily on paper. Although computer-based tools provide many features,
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organizations still find using paper-based solution in a common workspace is more acces-
sible and visible to a whole team, and encourages more face-to-face information exchange
[AMKM11].
When using a paper-based DRUMS Board, users can directly write requirements on it.

For better changeability and reusability of the paper-based board, we recommend to use
sticky notes. Users write requirement ideas on sticky notes and post them in the corre-
sponding block (e.g. Figure 3.11). When changes occur, users can simply modify the notes,
move the notes to a different block, add new notes or discard unnecessary notes. DRUMS
Board is simple and easy-to-use, which increases the learnability and flexibly of performing
requirements elicitation, in comparison with using a CASE tool for the first time.

3.4.2.2 Computer-based DRUMS Board

Naturally, DRUMS Board can also be realized on computers. Figure 3.12 shows DRUMS
Board in a web browser. Its look-and-feel is similar to the paper-based DRUMS Board.
Users can add a new idea (early requirement) onto the board as a new sticky note. Users
edit each sticky note and “stick” it to its corresponding block.

Figure 3.12: An example of using computer-based DRUMS Board in a web browser.
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3.4.2.3 Recommended Practice: Requirements Elicitation by Brainstorming

Brainstorming is a requirements elicitation technique that does not require much require-
ments engineering expertise (see Section 2.1.2) and fosters creative thinking. We recommend
users use DRUMS Board to brainstorm for ideas for scientific software. The procedure for
this practice is described below and illustrated in Figure 3.13.

Model
Models represent concepts that are used during problem 
solving, such as geometry models and mathematical models. 
The governing principles and physical laws can be described 
in models.

Computation Method
Computation methods contain logics and strategies of 
solving a problem, which are usually expressed in algorithms. 

Assumption
Have you made any assumptions in order to 
solve this problem? Are the models and 
computational methods created on certain 
assumptions?

Scientific Problem / Feature
What scientific problem do you try to solve? What features do you want to realize in the software product?

Constraint
Are there any other constraints that will limit the developer’s design choices, such as the implementation language?

Data Definition
It defines the data to be processed in the software program. 
It contains information such as data format, range and 
accuracy. 

Process
What are the steps or tasks that need to be carried out, in 
order to produce the specified features?

Interface
Your software product might require or provide  
a software interface for communicating with 
external libraries or a user interface that 
supports end-user interaction.

Hardware
Does your software need to connect to sensors to 
retrieve and analyze data? Does your software rely on 
certain types of computer platform/memory/graphic 
card/compiler?

Performance
Are there any specific requirements for processing 
speed, response time, latency, bandwidth and 
scalability of your software product?

© 2014 Yang Li <liya@in.tum.de>

1

2

3

3

2

2

4

3

3 3

a three-dimensional
elastic material volume model

simulating seismic wave propagation at the local 
or regional scale

the material of the 
simulating region is 
elastic

spectral element method 
(SEM) with explicit time 
integration

• ASCII format mesh data 
of hexahedral elements

• ASCII format file of the 
equation and material 
parameters

• seismic station latitude 
and longitude provided in 
geographical coordinates

• read in mesh data and 
material files

• create and partition the 
mesh 

• solve the weak form of 
the seismic wave equation 
on the spectral elements

• output the results as a 
time series

• require interface to 
meshing tool XXX

• communicate with 
seismic station 
databases

• require interface 
to visualization 
software YYY

• provide a basic user 
interface

Figure 3.13: Requirements elicitation by brainstorming using DRUMS Board (a seismological ex-
ample).

scope:
Use DRUMS Board to elicit requirements for a feature to implement or one specific
scientific problem to solve.

procedure:
1. Define the problem to solve or the high-level feature to implement.
2. Identify assumptions, models used to describe the scientific phenomena, and com-

putation methods used to solve the problem.
3. Identify data the software system should handle and persist, what functions the

system will provide, what external libraries the system should depend on, and
what hardware and performance requirements there are.
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a) Transform the identified models to the data to persist. Based on the models,
define what kind of data the software system needs to handle.

b) Adapt the computation methods to the process that the software system
needs to implement. This will consist of different computation steps or func-
tions.

c) Based on the processing data, steps of the process and hardware require-
ments, specify interfaces the feature needs to depend on or provide.

4. Identify other constraints that might influence development.



4
AUTOMATED REQUIREMENTS EXTRACTION

The previous chapter has presented DRUMS Case and DRUMS Board, which support scien-
tists to elicit requirements. DRUMS Case also enables requirements documentation, trace-
ability and reuse. Another use case that needs to be supported in CSE-specific requirements
engineering is requirements recovery. This chapter presents dARE (drums-based Automated
Requirements Extraction) to extract requirements from software artifacts automatically in
CSE projects using natural language processing. Furthermore, we show how to present the
extracted requirement candidates in DRUMS Case and DRUMS Board without information
overload. Hence, requirements can be efficiently recovered and presented.

4.1 dare: drums-based automated requirements extraction

Sources of domain knowledge and software systems written in natural language are attractive
for eliciting requirements since rich knowledge about the problem domain is described in
the sources [LK95]. We recover requirements from sources in natural language because we
found such knowledge has greater interoperability than lower level information such as
source codes. Natural language is close to human thoughts and working at this level allows
us to identify requirements more accurately.
Figure 4.1 shows the two main phases of dARE, namely, input data preparation and

pattern matching. First, the knowledge sources are prepared as input data. Afterwards,
in the pattern matching phase statements in text are extracted into a set of requirement
candidates based on defined pattern-matching rules.

4.1.1 Input Data Preparation

We utilize software user manuals and project reports as the main sources for extracting
requirements. Software user manuals give users an introduction to various “How-to” guides,
which include a wide variety of themes, such as installation instructions and getting started
descriptions. Installation guides often contain requirements about hardware, computer plat-
forms and external software interfaces, among others. In getting-started guides, common
features of the software are mentioned and the procedure to use these features is described.
Another type of knowledge source are project reports. Scientific projects that involve

software development often define work packages and the features that need to be realized in
project reports. High-level functional and non-functional requirements, as well as constraints
on software development can be identified in these reports.

47
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Figure 4.1: dARE – an automated approach to extract requirements.

The mentioned textual documents contain noise, such as the table of content and refer-
ences. Users can choose to manually remove these parts. Then, the text is tokenized into a
sequence of words and punctuation symbols.

4.1.2 Pattern Matching

In the phase of pattern matching, we apply natural language processing techniques to auto-
matically analyze the input data and extract requirement candidates from the text which
match defined pattern rules. We employ the GATE tool [CMB11] for text analysis.
As a first step, keywords in the input text are looked up in a gazetteer [CMBT02]. A

gazetteer is a index or dictionary that consists of lists of entity names. In our approach, we
provide default lists of names for the entities of the DRUMS types defined in Section 3.3.
The sources of entity names in our gazetteer include text books and wikipedia entries.
The lists provided by the approach can be extended to include additional entities and
domains. When the gazetteer processes a document, it annotates the occurrence of the
different DRUMS types in the text. For instance, the list belonging to the Computation
Method type contains entities describing classic computation methods such as “Gaussian
Elimination”, “Monte Carlo” and “Finite Element”. Whenever these terms are found in the
text, they are annotated as a Computation Method DRUMS type.
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Table 4.1: Patterns for DRUMS types.

DRUMS
type

Patterns Remarks

Computation – method of {noun | noun phrase} method denotes the word “method”,
and its synonyms, including {method,
technique, approach, algorithm}.Method – method of | for {doing verb}

– {adjective | doing verb | noun} method

Data – require ... data of | for... data denotes the word “data”, its
synonyms and words related to
defining data, including {data,
information, file, accuracy, format},
require denotes the words {require, use,
need, accept, allow, take}.

Definition – data {modal verb}...

Process – {noun | noun phrase} process process denotes the word “process”, its
synonyms and words related to
processing data, including {process,
calculate, compute, discretize, input,
output}.

– {proper noun} {modal verb} {verb}
– {proper noun} {do-verb}

Constraint – constraint of | that | ... constraint denotes the word
“constraint”, and its synonyms
{restraint, limitation}. restrict denotes
the words {restrict, limit}.

– {modal verb} restrict
– {be-verb} restricted to

Assumption – assume that | ... –
– assumption | hypothesis of | for ...

Interface – {proper noun} interface interface denotes the word “interface”
and words related to software interface
and user interface, including {API,
library}.

– interface of | for ...

Model – {noun | noun phrase} model –
– model of | for ...

Performance – no pattern specified. We only find key-
words in gazetteer, such as “efficient”

Hardware – no pattern specified. We only find key-
words in gazetteer, such as “CPU”
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However, the gazetteer can only find a limited set of occurrences of DRUMS types in text.
For example, the following text describes a computation method for calculating illuminance.

“Radiance overcomes this shortcoming with an efficient algorithm for com-
puting and caching indirect irradiance values over surfaces, while also provid-
ing more accurate and realistic light sources and surface materials.” – (S1)

The text above does not contain any of the names specified in our gazetteer. Consequently,
it will not be annotated, although it certainly describes a computation method. Hence, only
using gazetteers is not enough to identify requirement statements in text.
Because DRUMS types cannot be identified by only using gazetteers, we define rules to

match patterns that represent DRUMS types. These rules are based on parts of speech (e.g.
nouns, verbs, adverbs). Therefore, we use part-of-speech (POS) tagging to annotate the
different parts of speech present in text. In Table 4.1 we define the patterns for DRUMS
types. For simplicity, in each rule, we only present the base form of each word (e.g. “calculate”
represents {“calculate”, “calculates”, “calculated”}). With the inclusion of these patterns
the sentence shown in (S1) could be identified as a Computation Method, as it matches
the “...method for {doing verb}...” pattern, where method stands for any word from the set
{method, technique, approach, algorithm}.

During this phase of pattern matching, matched patterns and keywords are annotated in
the text. However, without context a pure sequence of words (e.g. “algorithm for comput-
ing and caching”) will not help scientists understanding the requirements, instead it will
be confusing to figure out what these words represent. Through a manual evaluation of
examples of extracted sequences and their context we found that the sentence that contains
a matched pattern can in most cases be understood in isolation. Hence, we extract these
sentences and export them together with their DRUMS types. We call these sentences re-
quirement candidates. Table 4.2 shows examples of extracted requirement candidates and
their classified DRUMS type.

4.2 presentation of requirement candidates

The extracted requirement candidates need to be presented to scientists to review, revise and
reuse. To reduce information overload, topic modeling is performed to group the extracted
requirement candidates that contain similar content together, i.e., the grouped candidates
have the same topic. Furthermore, we provide a transformation mechanism to transform
the extracted requirement candidates to DRUMS models and present in DRUMS tools.
Afterwards, a manual review can be carried out to further elicit and revise the requirements.
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Table 4.2: Example of extracted requirement candidates.

Extracted Requirement Candidate DRUMS
type

Instead Reynolds-averaged simulation (RAS) turbulence models are used to solve
for the mean flow behavior and calculate the statistics of the fluctuations.

Model

The overall application performance is highly dependent on the properties of
the data storage and management service, which needs to be able to efficiently
leverage a large number of storage resources that are distributed across local
infrastructures of the VERCE partners and large European scale infrastructures
(HPC, Grid and emerging Cloud).

Performance

The two-phase algorithm in interFoam is based on the volume of fluid (VOF)
method in which a specie transport equation is used to determine the relative
volume fraction of the two phases, or phase fraction a, in each computational
cell.

Computation
Method

The SPECFEM 3D software package relies on the SCOTCH library to partition
meshes created with CUBIT.

Interface

Again this is a geometric constraint so is defined within the mesh, using the
empty type as shown in the blockMeshDict.

Constraint

The program assumes that the surface temperatures on both sides of the surface
are the same.

Assumption

The mesher at these resolutions however needs temporary access to more shared
memory (50 GB).

Hardware

What file format could be used for the meshes to allow flexibility (e. g., SCEC
community model approach)

Data

During the processing step, depending on the application, seismograms must be
filtered and normalized in a certain way.

Process

4.2.1 Topic Modeling

For large input documents, the requirements extraction process can extract hundreds of
requirement candidates. It is challenging to manually review and reason about the hun-
dreds of requirements all at once. To avoid such an information overload, we perform topic
modeling to group requirement candidates containing similar content together. Then, the
grouped requirement candidates of the same topic can be more easily processed.
Latent Dirichlet Allocation (LDA) is a generative probabilistic model that is often used

in topic modeling introduced by Blei et al. [BNJ03], to discover “topics” that occur in
a collection of documents. In comparison to a classical clustering model that only allows
documents to be associated with a single topic, LDA allows documents to be associated
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with multiple topics. LDA has been applied to solve a number of topic modeling problems,
such as modeling author-topic for authors and documents [RZGSS04], finding scientific
topics from publications [GS04], and modeling online user reviews [TM08]. We adopted the
LDA-based topic modeling approach from Guzman and Maalej [GM14]. Unlike other topic
modeling applications, Guzman and Maalej used bigrams to represent each document and
its associated topics, instead of a sequence of words. This eases the human reasoning of
topics, as bigrams are more descriptive than single words. In the following, we explain how
the bigrams are extracted and the LDA-based algorithm for topic modeling.

4.2.1.1 Bigrams Extraction

A bigram is a pair of two words that occur commonly. To produce more explanatory topics,
we extract bigrams from the requirement candidate text. This in turn allows a modeled-
topic to be described by a set of bigrams. For example, a LDA-modeled topic is the set of
words {water, flow, rate, mass, ...}. The single words are general that can be associated
to many things. For example, this topic can be about water flow, rate of water usage, and
mass of something. However, for scientific software development, we need more specific
information about each topic, to associate requirement candidates. Therefore, to increase
the descriptiveness of our topics we input word bigrams instead of single words to the
LDA algorithm. By using bigrams in the LDA algorithm, the previous topic example can
be described with the following set of bigrams {flow_rate, mass_flow, water_mass, ...},
which describes a topic referring to mass flow rate or water mass flow rate. This set is
more expressive and more specific than the previous example. Hence, modeled topics can
be understood more easily and the requirement candidates can be better associated.
To extract bigrams from the extracted requirement candidates, logically, the two words

should be often collocated. Collocations include noun phrases like “performance bottleneck”,
phrasal verbs like “benefit from” and other phrases that often co-occur [Man99]. We used
the Natural Language Toolkit (NLTK) [BKL09] for the extraction of bigrams, which applies
a collocation algorithm using a likelihood metric [Man99].
Before giving the requirement candidates to the collocation algorithm we performed the

following additional preprocessing steps:

• Remove stopwords: We removed stopwords to eliminate terms that are common in
the English language, but are not informative, such as “the” and “with”. The approach
uses the stopword list provided by Lucene1

• Lemmatize: To group different inflected words, we lemmatized the words in the text.
With this step, for example, the terms “big” and “larger” are grouped into the term
“big”, while the terms “sees” and “saw” are grouped into the term “see”.

A bigram is denoted by w1w2, where w1 and w2 are two words. We use c12 to represent the
number of occurrences of w12 amongst all the words in the text input, and d12 to represent

1 https://lucene.apache.org/
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the word distance between w1 and w2. A bigram w1w2 is extracted, when c12 > 3 and
d12 ≤ 3. For example, a requirement:

The spectral element approach admits spectral rates of convergence and allows
exploiting hp-convergence schemes.

is represented by a set of bigrams:

{spectral_element, admit_spectral, allow_exploit, approach_admit, conver-
gence_allow, element_approach, exploit_hp, hp_convergence, rate_convergence,
spectral_rate}

by using the bigram extraction.

4.2.1.2 Algorithm for Topic Modeling

We applied the algorithm for topic modeling described by Steyvers and Griffiths [SG07] and
their Matlab Topic Modeling Toolbox2 was used for implementation. Steyvers and Griffiths
used a Markov chain Monte Carlo algorithm with Gibbs sampling for inference in the LDA
model for documents. It is an efficient method for extracting a set of topics from a large
corpus. Details of this algorithm are elaborated in [GS04, SG07]. In the following we describe
how this algorithm was applied.
We input a bigram set for each extracted requirement candidate as a document d. The

core of the sampling is to compute a conditional probability P (zi = j|z−i,wi, di). The Gibbs
sampling algorithm computes the probability of assigning the current word i to each topic
j, conditioned on the topic assignments to all other words. This probability is computed by:

P (zi = j|z−i,wi, di) ∝
CWT
wij

+ β∑W
w=1C

WT
wj +Wβ

CDTdij
+ α∑T

t=1C
DT
dj + Tα

(1)

where zi = j indicates the jth topic is sampled for the ith word; z−i refers to the topic
assignments to all other word tokens; wi is the word indices and di is the document indices
of word i; CWT

wj is the occurrences of word w that is assigned to topic j excluding the current
instance i and CDTdj is the occurrences of topic j that is assigned in document d excluding
the current instance i. W represents the number of words in the corpus, D represents the
number of documents in the corpus, T is the number of topics, and α and β are Dirichlet
hyperparameters.
In order to associate documents with topics, the distribution of topics need to be estimated.

The topic-word distribution is denoted by φ and the topic distribution for each document
by θ. The word-topic distribution φ and word-document distribution θ are computed by:

φ
(j)
i =

CWT
ij + β∑W

k=1C
WT
kj +Wβ

, θ
(d)
j =

CDTdj + α∑T
k=1C

DT
dj + Tα

(2)
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Algorithm 1 Algorithm for topic modeling [GS04].
1: define T , α and β
2: initialize zi to values in {1, 2, ... T}
3: while interation < MaxIterations do
4: assign words to topics by Gibbs sampling according to Equation 1
5: estimate φ and θ according to Equation 2
6: return z, φ and θ . the topics and their distribution are returned

Hence, by performing Algorithm 1, topics are discovered in the extracted requirement
candidates, and the mapping of topic-candidates are created based on φ and θ. Griffiths
and Steyvers suggested that a large value of β can find a relatively small number of topics,
while a smaller value of β can find more topics. Usually for our input, we used a small value
of β , e.g. β = 0.1, T = 20 and α = 50/T . Table 4.3 and Table 4.4 shows an example in
the seismology domain and an example in the building performance domain, respectively.
Each table has two extracted topics and of two of the requirement candidates associated
to each of the topics. The topics generated by the LDA algorithm are used to group the
requirement candidates by their content. Therefore, requirement candidates belonging to the
same topics can be analyzed together. This reduces the information overload that would
occur if scientists would need to analyze and process all requirement candidates at once.

4.2.2 EMF-based Transformation

The dARE-extracted requirement candidates are exported as .csv files. Each row in a .csv
file represents a candidate, containing its id, its location in the document, its DRUMS
type and its text description. A mechanism is needed to transform the candidates into
DRUMS-compliant model elements that can be used in DRUMS Case. Therefore, we can
easily store, modify and reuse the requirements. In the following we describe the procedure
of transforming the extracted requirement candidates (in .csv files) to DRUMS models.
As DRUMS Case is implemented as a set of EMF-based plugins, we employed EMF-based

technologies, namely, EMFText3 and the ATL Transformation Language4 to perform the
transformation. EMFText supports the definition of text syntax of languages (e.g. domain-
specific languages and ontology languages) by using an Ecore5-compliant meta-model. We
used the EMFText provided CSV meta-model to specify a .csv file as a CSV model that
complies to the CSV meta-model.
ATL provides a means to transform models that conform to various meta-models. As

illustrated in Figure 4.2, the CSV model created by EMFText is given as the source model,

2 http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm
3 http://www.emftext.org/index.php/EMFText
4 http://www.eclipse.org/atl/
5 Ecore is the core meta-model of EMF
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Table 4.3: Extracted requirements and their topics from the Verce project report D-JRA1.1.

Topic: model_update, theory_observation, interface_be, meta_data, service_orient,
earth_model
– The generated misfit data (difference between theory and observations) will then be used for the
calculation of so-called sensitivity kernels for subsequent model updates( adjoint techniques), thus
creating an iterative circle and evolving the model in a unified way.
– However, these files also include meta-data, specific to the simulation (e. g. used background
model, version of the code, etc), which might not be compatible with the current (quite rigid)
seismological meta-data standards..

Topic: data_base, high_performance, model_inversion, real_synthetic, computa-
tional_mesh, waveform_inversion, earth_model
– Full-Waveform Inversion Tomographic inversion of the real seismograms (or differences between
real and synthetic seismograms) to determine the underlying earth model. Earth Model Assumed
one to three dimensional parameter sets of the earth’s interior on which a simulation is based.
– In this context, specialized solutions based either on large parallel data-base systems, i.e., see
for example Vertica, SciDB, MonetDB, relying on a conventional shared-nothing architecture, or
MapReduce based file systems like HDFS-together with Dryad interface-enable exploiting data
workflow parallelism to a certain degree.

Table 4.4: Extracted requirements and their topics from the EnergyPlus user manual.

Topic: flow_rate, mass_flow, design_water, water_flow, low_temp, radiant_design,
temp_radiant, water_mass
– The internal variable called “Hydronic Low Temp Radiant Design Water Mass Flow Rate for
Heating” provides information about the cooling design water flow rate for radiant systems defined
using a ZoneHVAC:LowTemperatureRadiant:VariableFlow input object.
– The model operates by varying the flow rate to exactly meet the desired set-points.

Topic: power_level, design_level, internal_variable, provide_information,
power_associate
– The internal variable “Process District Heat Design Level” provides information about the max-
imum district heating power level associated with each HotWaterEquipment input object.
– The internal variable “Lighting Power Design Level” provides information about the maximum
lighting electrical power level associated with each Lights input object.

which conforms to the CSV meta-model (source meta-model). On the other side, the target
model we wanted to produce is a DRUMS requirements model that conforms to the DRUMS
meta-model (target meta-model). Both source and target meta-model conforms to the Ecore
model, which is the meta-meta-model.
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Figure 4.2: Transform CSV model to DRUMS model using ATL.

We defined transformation rules in ATL, which check every row in a .csv file6. ATL creates
a DRUMS model element that is of the given DRUMS type and has the naming convention of
[DRUMS type][id]. The description of each DRUMS model element is populated with the
text description given in the row. In the end, all DRUMS model elements are created in
DRUMS Case as described in the .csv file.
Figure 4.3 shows an example of a transformed requirements model from dARE-extracted

requirement candidates in DRUMS Case. The requirements model serves as a base for
manual review and further processing. It is up to users to decide how they want to review
and refine the requirement candidates. One possibility is to manually revise the requirements
model in requirements elicitation and create more and new requirement ideas based on the
model.

4.2.3 Text-based Transformation

It is straightforward to present extracted requirement candidates in DRUMS Board. For ex-
ample, as shown in Figure 4.4, nine dARE-extracted requirements are presented in DRUMS
Board as printouts sticking into various blocks, according to their classified DRUMS types.
The extracted requirements are highlighted in yellow sticky notes. In the shown example,
a scientist reviewed the extracted requirement candidates and decided to reuse all of them.
Based on these requirements, the scientist further elicited requirements for the feature they
want to implement, which are represented as the sticky notes with handwriting.

6 specified by a CSV model
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  id, DRUMS type, description
  32163, Model, For flows with weak to moderate swirl (<)...
  10078, Process, The source parameters will be displayed...
  33711, Constraint, Mesh Sensitivity in Swirling and Rotating Flows in ....
  ...
  ...

transform

Figure 4.3: Transform dARE-extracted candidates to a requirements model in DRUMS Case.

4.3 related work

In this section we give an overview of previous work studying the extraction of knowledge
from software artifacts. An early work proposed by Rolland and Proix [RP92] defined lexical
and syntactic rules to recognize and transform natural language sentences into formalized
conceptual schema. Their work focuses on generating conceptual specification for early phase
development of databases and information systems. They classify owner, owned, actor,
target, constrained, constraint, localization, action and object in natural lan-
guage description. Then patterns are matched based on the defined classes, to generate
conceptual schema such as connecting a constraint to an object. Our approach also applies
pattern matching. However, instead of generating conceptual schema, our approach extracts
requirements for scientific software systems.
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Gervasi and his colleagues presented a web-based environment that supports creation, val-
idation and evolution of natural language requirements [AG97, GN02]. Their work focused
on the completeness and precision of requirements (i.e. late-phase requirements). Berry and
his colleagues have applied grammatical parsers, repetition-based approaches and signal
processing algorithms to identify abstractions from documents [BYY87, AB90, GB97]. Ab-
stractions are usually in forms of significant words and short phrases that capture the main
ideas or concepts in a document. The identified abstractions can help humans to under-
stand the document and further elicit and write formal requirements. While their work
focused on generating abstractions that serve as a prompt for requirements, we aim to ex-
tract instances of early requirements from documents by utilizing known abstractions in the
scientific computing domain.
In comparison to the more recent work presented by Cleland-Huang et al. [CHSZS06]

and Casamayor et al. [CGC10] (introduced in Section 2.1.5), our approach targets the
scientific domain and predefines general domain-specific knowledge and rules which allow
the detection and extraction of requirements without any training data. The requirement
candidates extracted with our approach could be used as training sets in Cleland-Huang et
al.’s and Casamayor et al.’s approaches.
Kof [Kof05] described the extraction of a domain ontology from requirements documents.

The extracted ontology is used as a common language among project stakeholders and
therefore improves the traditional requirements analysis process. The work applies a set
of text analysis techniques to extract the ontology and perform inconsistency detection.
Kof’s approach does not rely on any previous knowledge of the application domain. Our
approach also applies text analysis techniques for requirements engineering. In particular,
we concentrate on the recovery and reuse of requirements, while Kof’s approach focuses on
the analysis of requirements. Whereas Kof’s approach requires the existence of requirements
specification, our approach can also deal with the lack of requirements documents.
Farfeleder et al. [Far12] developed a tool, which semi-automatically transforms require-

ments written in natural languages into semi-formal requirements templates. These tem-
plates, referred to as boilerplates, have placeholders for variable parts to enforce certain
linguistic style. The tool helps improve the quality of requirements and strongly reduces the
manual effort needed for enforcing a specific linguistic style for requirements. The require-
ment candidates extracted by our approach can be post-processed by Farfeleder’s tool.
Abbott [Abb83] provided a technique to derive Ada program code from informal descrip-

tions of problem solutions. The technique described is not automated due to the amount
of real-world knowledge needed to transform an informal description into working program
code. For example, common nouns in informal descriptions correspond to data types in pro-
gram code. Proper nouns correspond to objects. Verbs, attributes, predicates are mapped
to operators. Bruegge and Dutoit [BD09] used Abbott’s heuristics during object-oriented
analysis, to identify entity objects from problem statements. They used a more up-to-date
terminology: Common nouns correspond to classes, proper nouns to objects, verbs to oper-
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ations, adjectives to attributes, predicates to constraints. Inspired by their work, we incor-
porate parts of speech in rules defined for pattern matching in text. The matched text is
extracted and forms the requirement candidates.



5
APPL ICAT ION IN THE SE I SMOLOGY DOMAIN

In Chapter 3 and Chapter 4, we have presented the DRUMS framework and how it addresses
the two fundamental activities, requirements elicitation and recovery. In this chapter, we
apply DRUMS in seismology. Software applications are developed in the seismology domain
to study, for instance, earthquake scenarios and volcanic processes, as well as further used
for hazard analysis and risk management. Seismology software has many requirements such
as an finite element method solver to be developed, required precision of calculation, and
required data format to output in order to post-process the data in external tools.
Figure 5.1 depicts the procedure we performed that applies DRUMS in the seismology

domain. We started with inputting domain documents and used dARE to extract require-
ment candidates. Afterwards, topic modeling was applied to group the candidates by topics.
The grouped candidates were presented in a DRUMS tool, either DRUMS Case or DRUMS
Board. The requirement candidates were manually reviewed, and reusable knowledge for
solving two common problems in the domain were identified and formulated as two require-
ments patterns, namely the forward simulation pattern and data access pattern. Finally,
the two requirements patterns were applied to elicit requirements for the dynamic rupture
feature.
Before we detail our application and the resulting requirements patterns and models, we

illustrate the relationships between the DRUMS core meta-model, the forward simulation
pattern, the data access pattern and the requirements model for dynamic rupture in Fig-
ure 5.2. Both patterns are two instances of the DRUMS core meta-model we have introduced
in Section 3.3.1. The two patterns are applied to create the requirements model for dynamic
rupture, which is also an instance of the core meta-model. Often we call the models that are
instances of the core meta-model DRUMS-compliant models, or in short DRUMS models.
In the remainder of this chapter, Section 5.1 elaborates the procedure of applying DRUMS

in seismology. Afterwards in Section 5.2, we present the two requirements patterns identified
through this procedure. And last, we apply the two patterns in modeling requirements for
implementing the dynamic rupture feature in Section 5.3.

5.1 applying drums in seismology

We applied dARE to recover requirements. We input the user manual of SPECFEM 3D1

and a project report of the Verce2 project. SPECFEM 3D is a software package for simu-

1 http://geodynamics.org/cig/software/specfem3d
2 http://www.verce.eu
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dARE requirements
extraction

Topic modeling

Presentation of candidates
in DRUMS Board

Creation of
requirements patterns

Presentation of candidates
in DRUMS Case

Application of
requirements patterns

Requirements model for dynamic rupture

Data access requirements pattern

Forward simulation requirements pattern

8 topics, 5 - 15 candidates/topic (SPECFEM 3D)

8 topics, 5 - 15 candidates/topic (Verce)

Choose tool

125 requirement candidates (SPECFEM 3D)

90 requirement candidates (Verce)

DRUMS CaseDRUMS Board

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 5.1: Applying DRUMS in the seismology domain.

lating seismic wave propagation. Verce is a research project which supports data intensive
applications in the seismology field. Using dARE, 125 and 90 requirement candidates were
extracted from SPECFEM 3D and Verce, respectively. This automated process took less
than 5 seconds to process the documents and extract the requirement candidates.
The candidates needed to be presented and reviewed. To avoid information overload, we

grouped the requirements by performing topic modeling (see Section 4.2.1), and eight topics
were formed for each set of requirement candidates. For instance:
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<<metamodel>>
DRUMS core meta-model

<<model>>
Dynamic Rupture 

Requirements Model

<<model>>
Forward Simulation 

Pattern
<<model>>

Data Access Pattern

<<instanceOf>>
<<instanceOf>>

<<instanceOf>>

<<apply>>

<<apply>>

Figure 5.2: Relationships between the core meta-model, the forward simulation pattern, the data
access pattern and the requirements model for dynamic rupture.

• A modeled-topic for the SPECFEM 3D requirement candidates is {generate_database,
wave_speed, domain_id, name_file, material_id, xgenerate_database, parameter_be,
anisotropy_flag, model_material}. This topic is about how to describe the earth mate-
rials and parameters for seismology simulation in SPECFEM 3D. The grouped require-
ment candidates of this topic are presented in DRUMS Board as shown in Figure 5.3.

• Amodeled-topic for the Verce requirement candidates is {data_base, high_performance,
model_inversion, real_synthetic, computational_mesh, waveform_inversion, earth_model}.
This topic is about how to handle the intensive data required in the Verce project to
offer high performance seismology simulation. The grouped requirement candidates of
this topic are presented in DRUMS Board as shown in Figure 5.4.

In both examples, the extracted requirements are mainly classified into Model, Process,
Hardware and Performance. Seismologists can apply the requirements elicitation practice
recommended in Section 3.4.2 to describe the Data Definition based on the Model require-
ments and further describe Interface requirements. Figure 5.5 shows the dARE-extracted
requirements from SPECFEM3D and Verce grouped in topics that are stored in DRUMS
Case. The green track and red track show that the extracted requirements are reused into
a new project.
While we were reviewing the extracted requirement candidates, we found common re-

quirements in the seismological software projects – for instance, what models are required
in a forward simulation and how to manage the big volume of seismic data. Hence, we sum-
marized the common requirements and identified two commonly used requirements patterns
for computational seismology software.
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Figure 5.5: Manage dARE-extracted requirements and reuse them in DRUMS Case.

Patterns provide reusable solutions to common problems in a domain. Problems to solve,
forces and stakeholders constitute a context for a particular requirements pattern. Given
a defined context, patterns are identified and constructed. Requirements patterns are
used to productively capture desired functionalities and properties of a system by reusing
knowledge and can be refined with design and implementation details [WZL11, KC02].
Patterns stimulate the awareness of issues, which might be hidden but are actually critical
to seismological software development. Therefore, requirements can be easily established
and they tend to be complete. The patterns are subjected to the needs of seismological
software by providing generic abstractions for specialization as per requirements need and
pattern-based extension of existing requirements.
Our pattern identification process consisted of three main phases. We first summarized the

common requirements from the extracted requirement candidates. However, terminologies
can vary between projects. Therefore, to ensure the quality of requirements, in particular
correctness, during the second phase, we referred to available seismology ontology [SV07], in
order to comply with a common knowledge base. The ontology is produced by the 2004 seis-
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mology ontology workshop held at Scripps Institution of Oceanography in San Diego, and
merged with a seismology workflow-driven ontology. Based on the identified requirements
and the ontology, we prepared a draft for the identified requirements patterns. Finally, we
interviewed developers of seismology software. They validated the patterns’ understandabil-
ity, and whether the patterns are suggestive in their requirements engineering practices.
They also suggested what might be missing in the proposed pattern. The whole pattern
identifying process is incremental and iterative. We revisited the software document and
ontology based on the feedback from interviews, to revise the patterns.

5.2 identified requirements patterns

In this section, we describe the two requirements patterns we identified, namely, the for-
ward simulation pattern and the data access pattern. In order to help the readers to easily
understand the patterns, we first introduce how they are presented. The structure of each
requirements pattern is shown below:

activity
The requirements pattern can be used in what kind of activities.

stakeholders
Who are the stakeholders of the requirements? A stakeholder is a person with an
interest or concern in a requirement.

problem
What is the typical problem faced by the stakeholders?

forces
What are the forces behind the creation of the pattern?

solution
What is the solution to address the mentioned problem and balance the forces?
We use Unified Modeling Language (UML) class diagrams to illustrate the essence
of a requirements pattern, i.e. involved requirements (nodes) and how they are
related (lines). In UML, a hollow diamond shape graphically represents a “has
a” relationship. A hollow triangle shape represents a generalization relationship
(“is a”). A pattern is an instance of the DRUMS core meta-model. We use <�<
stereotype >�> to indicate how each element in a pattern is instantiated from the
meta-model.

application
How to apply the solution?



68 application in the seismology domain

5.2.1 Forward Simulation Pattern

Forward simulation (also called forward modeling) in seismology is a numerical computa-
tion process of theoretical or synthetic seismograms, for a given geological model of the
subsurface. Forward simulation is frequently applied in computational seismology systems.
Although many forward simulation techniques are based on different numerical methods,
their structures are similar to organize into a pattern.

activity
The pattern can be used during requirements elicitation and specification, when for-
ward simulation needs to be developed in a system.

stakeholders
Seismologists, high performance computing experts, software engineers and risk man-
agement organizations.

problem
How to specify various required elements for a forward simulation process. A forward
simulation process has many requirements and some might be forgotten at an initial
project stage or lead to misunderstanding between various stakeholders. Stakeholders
need to be able to easily communicate and exchange their expertise, to achieve a
common agreement on the requirements.

forces
• Various types of data, which describe seismic waves and earth properties, should

be given as input data for the forward simulation. Data types are application-
specific, as well as how data is represented.

• The complexity of numerical calculation vs. easy-to-control: Numerical calcula-
tions in seismology are often complex and involve sophisticated numerical opera-
tions. Numerical methods that are used in forward simulation influence calcula-
tion and its results greatly. A calculation procedure often needs to be adjusted
by users to achieve specific numerical requirements based on the seismological
problem to solve and the required numerical precision. Users also expect to easily
control the calculation to output required types of data.

• Representation of output data must be well defined, for example output according
to a data format standard.

solution
An aggregate of input data should be given to a forward simulation solver. The pattern
provides generic types of data that are commonly required in forward simulation input.
Special types of data for intended applications can be specialized or extended based
on the pattern. Computation parameters should be specified to control the numerical
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Figure 5.6: UML class diagram of the forward simulation pattern.

calculation. For example, the time step of the simulation and the order of accuracy
of the numerical method should be set. The pattern also indicates that stakeholders
should agree on the requirements of output data.
Figure 5.6 shows elements and their relations of the forward simulation pattern in a
Unified Modeling Language (UML) class diagram. The InputData for a forward simu-
lation Solver usually consists of StationLocation, SeismicSource, GeophysicalModel, and
ComputationalMesh. To perform parallel computing, the computational mesh needs to
be partitioned. AttenuationModel and VelocityModel are two common types of geophys-
ical models used in a forward simulation process. A Solver does main calculation for
the forward simulation based on a specific ComputationMethod and outputs calculation
results. ComputationParameter controls the solver. The most common OutputData is
SyntheticSeismogram. Meanwhile, the Metadata, for instance about the synthetic seis-
mogram format or about the location information, is also generated.
Referring to the DRUMS meta-model (see Section 3.3.1), it is worth noting that the
GeophysicalModel in the pattern is of the type DataDefinition. It denotes the data that
describe the mathematical/geophysical model based on the scientific knowledge.

application
This pattern is applied by starting with eliciting and specifying desired data to input.
Stakeholders select a geophysical model and specify types of computational meshes
they need. Requirements about seismic source and seismic station locations also need
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Figure 5.7: The forward simulation pattern in DRUMS Case populated with extracted requirements.

to be specified. Other types of input data can be added to the data aggregate. Subtypes
of data can be specialized based on the generic types. Stakeholders need to decide
which numerical method to use, and what functionalities of the solver need to be
controlled by users. In the end, stakeholders agree on what output data needs to be
produced, for example, whether an animation of seismic wave propagation is desired.
By applying this pattern, a requirements model or a requirements specification for
forward simulation is created.
Figure 5.7 displays the forward simulation pattern in DRUMS Case. Some model
elements in the pattern are populated with dARE-extracted requirements, which serve
as examples. Stakeholders can use the pattern to further elicit requirements.

5.2.2 Data Access Pattern

Data access, data mining, data transfer and data storage are important issues in seismology
software projects. Seismology related data are stored in different media and in multiple
locations. Sets of compatible data from worldwide stations and networks over time are
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collected in data facilities (e.g. IRIS3 and ORFEUS4). These data are crucial to providing
reliable results in seismology applications.

activity
The pattern can be used during requirements elicitation and specification activities,
when data needs to be accessed, especially to be accessed externally.

stakeholders
Seismologists, high performance computing experts, software engineers, database ex-
perts and risk management organizations.

problem
How to access different types of data in a seismology software application. Sometimes,
developers face implementation difficulties that some data cannot be accessed easily.
Therefore, they might need to redesign the software architecture to incorporate such
issues. This problem should be mitigated by considering constraints of access data
during requirements elicitation.

forces
• Stakeholders might want to integrate data access into a system. However, different

types of data have different interfaces and regulations for access.
• Users should be able to interactively explore the observed and synthetic seismo-

grams.
• Data should be able to be transferred between HPC facilities to enable simulation

and post-process the calculated results.
• Data formats, storage and exchange standards are not yet fully established or

not well applied in the seismology community.

solution
For each type of data object to access, interfaces to the data access should be speci-
fied explicitly and individually. Figure 5.8 shows the UML class diagram for the data
access pattern. DataObject can be required from interfaces of Facilities. On the other
hand, DataObject can also provide interfaces for access. For instance, an external vi-
sualization tool can visualize output data of a system by means of the provided data
access. Facilities such as MeshingLibrary, Pre-processingModule, Post-processingModule
and HPCFacility often provide or require access to data objects. Sometimes, it is neces-
sary to interact with data through a UserInterface. For example, a user needs to select

3 IRIS (Incorporated Research Institutions for Seismology), is an association of over 100 US universities dedi-
cated to the acquisition, management, and distribution of seismological data. Website: http://www.iris.edu

4 ORFEUS (Observatories and Research Facilities for European Seismology), is a non-profit foundation in
Europe. It provides seismological waveform data from high quality broadband stations in Europe. Website:
http://www.orfeus-eu.org
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a certain region of earth via a user interface, in order to generate a computational
mesh. Data can be stored or retrieved from different types of DataStore.

has

has

provides/requries

stores/retrieves
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Figure 5.8: UML class diagram of the data access pattern.

application
Stakeholders apply the pattern to specify a type of data object that requires external
access from facilities outside or provides access to the outside. For example, computa-
tional meshes of required types might need to be generated by certain external meshing
tools. Stakeholders also need to decide whether a user interface is required or data
needs to be stored and in what form. Constraints of access need to be specified clearly.
For instance, licensing issues of external tools, access protocols to HPC systems need
to be defined.
With DRUMS Case the data access pattern can be created and used as shown in
Figure 5.9. Stakeholders detail the data access requirements using the pattern in
DRUMS Case. As an example, we populated some model elements in the pattern with
dARE-extracted requirements. The process of the extraction and reuse of requirements
has been described in Section 5.1.

5.3 example: dynamic rupture

This section presents an example scenario to illustrate how the DRUMS meta-model, as well
as the identified patterns are applied in a system of dynamic rupture simulation. Dynamic
rupture is a source type of particular interest for earthquake engineering and seismic hazard
assessment [PlPA+12]. Based on the meta-model, seismologists first quickly brainstorm
and organize their scientific knowledge about dynamic rupture simulation. The scientific
problem is combining earthquake rupture and wave propagation in complex fault geometries.
Tetrahedra are used to better represent the geometrical constrains of a fault5 and a friction

5 a surface along an earthquake rupture is propagating
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Figure 5.9: The data access pattern in DRUMS Case populated with extracted requirements.

law is used to model initial rupture. The medium is assumed to be isotropic. A high-order
discontinuous Galerkin (DG) method combined with an arbitrarily high-order derivatives
(ADER) time integration method is employed to solve the three-dimensional elastodynamic
equations.
To computationally solve this problem, seismologists want to develop a feature of simu-

lating dynamic rupture using ADER-DG scheme. They specify the hardware, on which the
simulation runs. They further detail requirements for this feature, where the two identified
patterns are applied to help them specify required elements productively.
Figure 5.10 is a simplified class diagram of the requirements for the dynamic rupture

simulation application. The forward simulation pattern is applied that is represented by the
white elements in the diagram. The gray elements in the diagram indicate that they are
specified or newly added requirements based on the forward simulation pattern. The seismic
source is now specialized to be a dynamic rupture source type. In addition to attenuation
models and velocity models, the application should also support background stress models.
Furthermore, the geophysical models should include frictional parameters to represent the
status of the earthquake fault. It should use tetrahedral elements as computational meshes
and the given station locations should be converted to UTM coordinates6. The simulation of
dynamic rupture prefers a particular solver namely the ADER-DG method in combination with
Upwind Schemes. As for the output, it should generate fault specific output besides synthetic

6 Universal Transverse Mercator (UTM) is a geographic coordinate system, which uses a 2-dimensional Carte-
sian coordinate system to give locations on the surface of the Earth
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seismograms. The application should also output metadata that consists of information
about the solver, the input mesh, the seismic source and the geophysical model.
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Figure 5.10: Simplified UML class diagram of dynamic rupture. This is a revision of the requirements
model created by Christian Pelties.

The black elements are created by employing the data access pattern. The background
stress model needs to be pre-processed via a user interface. The solver should be able to
access an HPC facility to transfer calculation data, where valid user accounts on the HPC
with suitable privilege should be organized. An external mesh generator should be used to
generate the required two- and three-dimensional meshes. The output data should be stored
in HDF 5 files.
By using DRUMS Case, we can create the requirements model graphically (see Figure

5.11). Each model element (a node) can be elaborated into details. It takes about 20 minutes
for a user to create such an initial model, including the textual description of each model
element. The model can be further refined based on group review and discussion. Through
the mentioned requirements elicitation activity, seismologists have clearer ideas about what
they want for the feature. They are able to create and specify requirements in an efficient
way without much pre-knowledge/training in requirements engineering. In particular, the
requirements elicitation process is more structured based on the meta-model and patterns.
Discussion about issues such as how to access certain data is carried out to support decision-
making on the software design.
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Figure 5.11: Graphically creating a requirements model of dynamic rupture in DRUMS Case (revised
based on discussion with Christian Pelties).





6
APPL ICAT ION IN THE BUILD ING PERFORMANCE DOMAIN

We have shown how the DRUMS framework can help requirements elicitation and recovery
in a seismology application in Chapter 5. We have also shown what kind of DRUMS models
can be created to capture and structure the requirements for seismological software. As
noted in the previous chapter, the identified requirements patterns are project-independent
and can be applied and adapted for future development of seismological software.
Another application domain of this dissertation is building performance. In building per-

formance, software programs are developed, for example, to monitor energy usage, control
electricity and thermal consumption intelligently, as well as simulate thermal flow and light-
ing in buildings. While seismological studies usually put more emphasis on the physics of the
earth, building performance often deals with the physics in buildings and human impacts
on energy consumption.
Different from the previous application, in this chapter, we wanted to study not only

the applicability of DRUMS in another domain, i.e. building performance, but also the
usefulness of DRUMS in comparison to alternative requirements engineering solutions. We
conducted an exploratory study to investigate DRUMS’ usefulness with researchers from a
building performance lab. The exploratory study is described in Section 6.1. In Section 6.2,
we show two DRUMS models created in the domain.

6.1 exploratory study

We conducted an exploratory study to compare DRUMS with an alternative requirements
engineering solution and sought user feedback for DRUMS. In the study, we focused on
requirements elicitation. The idea of the exploratory study went like this: Each subject in the
study use both DRUMS and another requirements engineering solution in two requirements
elicitation tasks separately; We observe how the subject conduct each task; The subject
gives feedback on using both DRUMS and the alternative.

6.1.1 Subjects

We recruited nine researchers from Robert L. Preger Intelligent Workplace (IW), Carnegie
Mellon University, USA. IW is a research laboratory that tests the impact of built environ-
ment on air quality, thermal comfort and lighting quality. As part of their research, the nine
researchers develop various scientific software systems in the building performance domain.

77
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6.1.2 Setup

We chose the CASE tool implementation of DRUMS, DRUMS Case, because we also wanted
to seek users’ feedback on its various features such as diagraming and traceability. Addition-
ally, we used an industrial standardized tool ProR1 as a baseline tool for comparison. ProR
is a CASE tool for requirements engineering that is a part of the Eclipse RMF2 project.
ProR is built based on the OMG ReqIF standard. Figure 6.1 shows the user interface of
ProR, which is a table view consisting of the description of requirements and links between
requirements. Users can create a new requirement, edit a requirement and link requirements
in the table. Both tools were new to the subjects. In the study, the subjects were asked to
work with both CASE tools and give their feedback on the tools.

Figure 6.1: ProR: a baseline tool used in exploratory study.

6.1.3 Procedure

The study consisted of three phases, namely preparation, requirements elicitation and inter-
view phases. Figure 6.2 illustrates the three phases and the main activities in each phase.

In the preparation phase, each subject defined two features he or she wanted to imple-
ment for the research. For example, a subject defined featurea as “automated simulation
using real enclosure material data” and featureb as “occupant thermal comfort assessment”.
We did not define the same features for all subjects, because we wanted to study how
DRUMS can affect requirements elicitation in subjects’ real research work, meaning that
the subject was interested in and familiar with the defined features. In the next requirements
elicitation phase, the subject detailed the defined features.
Each subject had the chance to use both CASE tools for requirements elicitation. However,

subjects might be biased or get familiarized with requirements elicitation techniques in
the course of requirements elicitation. Therefore, the order of tool usage can influence the
comparison between ProR and DRUMS, since a subject can apply the newly obtained
requirements elicitation skills from the first used tool in the second tool. Therefore, the
instructor (the author) randomized the order of tool usage for all subjects. Based on the

1 http://www.eclipse.org/rmf/pror/
2 RMF is a framework for working with textual requirements.
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Figure 6.2: Procedure of the exploratory study.

randomized order, the instructor assigned either ProR or DRUMS Case to the elicitation
task for featurea and featureb.
In the requirements elicitation phase, each subject was asked to first elicit require-

ments for featurea and afterwards for featureb using the assigned tool (ProR or DRUMS
Case). A tutorial of the tool was given before each subject started working on a requirements
elicitation task. The instructor showed the basic functions in both tools, including create a
requirement, edit a requirement and link requirements. An instruction of requirements elici-
tation was also given in the tutorial: brainstorm for requirements about the feature, which
include the desired functions, data to process, properties and constraints; the requirements
created in the tools should be understandable.
In the next step, each subject was required to perform two tasks: requirements elicitation

for featurea and featureb using either ProR or DRUMS Case. The instructor measured the
time taken till a subject stopped producing ideas and observed behaviors of each subject.
After the requirements elicitation for each feature, each subject was asked to assess the

following statements:

a. The terms used in the tool are easy to understand.

b. The tool is easy to use.

c. The tool helps me elicit requirements efficiently (requirements are specified at a satisfying
level of detail with little effort).

d. Having these requirements improves my understanding of the problem to solve.

e. Using the tool will help communicating ideas, when I work in distributed teams.

f. The tool is applicable in my research projects.

g. I would like to use the tool for requirements engineering in my future work.
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Subjects assessed the statements above by rating based on the following Likert scales:
strongly disagree (=1), disagree (=2), undecided (=3), agree (=4), and strongly agree (=5).
Finally, in the interview phase, the instructor asked open questions about the elicitation

tasks and tool usage. The subjects shared their opinions on using ProR and DRUMS Case
in the two tasks. They gave feedback and suggestions.

6.1.4 Results

In the following, we report the quantitative results of the time taken for requirements
elicitation and the amount of requirements elicited, as well as the self-assessments. We also
summarize the subjects’ feedback.

6.1.4.1 Quantitative Results

We measured the time taken (time) for requirements elicitation using the different tools and
the amount of elicited requirements (#req.), which are two quantitative measures for the
productivity and efficiency of requirements elicitation. We measured them because efficiency
is a main goal for CSE-specific requirements engineering. Since this is an exploratory study,
we did not set a time limit for the requirements elicitation task – a subject can stop the task
when he or she could not generate any more requirements. Therefore, we also calculated
another measure, the average time taken for generating a requirement (time/#req.).

Table 6.1: Measurements of the requirements elicitation performed by nine subjects.

Subject
ID

RE experience Tool
usage3

#req.
DRUMS

#req.
ProR

time (min)
DRUMS

time (min)
ProR

time/req. (min)
DRUMS

time/req. (min)
ProR

1 Basic D-P 11 6 24 6.5 2.18 1.08
2 Below Basic P-D 15 8 12.8 5.9 0.85 0.74
3 Below Basic D-P 8 19 20 16.8 2.5 0.88
4 Below Basic P-D 14 6 11 3.2 0.79 0.53
5 Below Basic D-P 9 7 14 5 1.56 0.71
6 Advanced P-D 5 5 – – – –
7 Below Basic D-P 12 6 15.5 7.75 1.29 1.29
8 Below Basic P-D 8 3 10.75 5.5 1.34 1.83
9 Below Basic D-P 31 10 22.6 8.5 0.73 0.85

Mean: – – 13 7.8 16.33 7.39 1.24 0.88
S.d.: – – 7.6 4.6 5.21 4.14 0.77 0.51

The quantitative measurements for each subject are presented in Table 6.1. We also report
each subject’s requirements engineering experience and the sequence of the tool usage in

3 The oder of the tool usage. D-P stands for DRUMS Case was used first and ProR was the next. P-D stands
for ProR was used first and DRUMS Case was the next.



6.1 exploratory study 81

the table. Subjects tended to write more requirements using DRUMS Case than ProR,
however, the time taken for eliciting the requirements was also longer using DRUMS Case
than ProR. The average time taken per requirement was slightly longer using DRUMS
Case. By using DRUMS Case, most subjects elicited 2-3 times as many requirements as
using ProR, independent of the order of tool usage. An exception was made by subject 3,
who created many more requirements using ProR. We found that this subject was much
more familiar with the feature he detailed using ProR, in comparison to the other feature.
Another possibility is that using DRUMS Case as the first tool influence the efficiency of
requirements elicitation using the second tool substantially for this subject.
Among the subjects, only one subject had advanced requirements engineering knowledge

(id=6). She had five years industrial experience and was dealing with many user require-
ments. In the requirements elicitation task, she first wrote down the requirements in white
paper and than put the requirements into DRUMS Case and ProR. We considered the time
taken was invalid, because the elicitation was done without using neither of the tools.
We applied Mann-Whitney test on the three measures. The statistical tests found no

significant difference in the aforementioned measurements between DRUMS and ProR.

6.1.4.2 Self-assessments

The self-assessments of statements a.– g. from all nine subjects are visualized in Figure 6.3
color-coded by tool used. Subjects assessed for both DRUMS and ProR based on their
experience in the two requirements elicitation tasks they performed.

a. Assessments to “easy to understand”: Generally, subjects found the terms used in both
tools easy to understand. However, terms used in ProR tended to be easier to understand
than in DRUMS Case.

b. Assessments to “easy to use”: Subjects found ProR is easy to use, with one outlier. The
ratings of the usability of DRUMS Case ranges from ‘undecided’ to ‘strongly agree’.

c. Assessments to “elicit requirements efficiently”: The subjects found DRUMS Case can
help elicit requirements efficiently, while many subjects were uncertain about the effi-
ciency of requirements elicitation by using ProR.

d. Assessments to “improves my understanding”: All subjects agreed that the resulting re-
quirements by using DRUMS Case can improve subjects’ understanding of the problem
to solve. By using ProR, half of the subjects were uncertain in this regard.

e. Assessments to“help communicating ideas”: Concerning if the tools can help communi-
cating ideas in team work, DRUMS Case received all satisfaction, while ProR had the
full spectrum from ‘strongly disagree’ to ‘strongly agree’.

f. Assessments to “applicable”: Subjects rated similarly to the applicability of DRUMS
Case and ProR in their research work, either ‘undecided’ or ‘agree’.
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Figure 6.3: Boxplot of self-assessments from subjects.

g. Assessments to “would like to use”: Subjects were more in favor of DRUMS Case for
carrying out requirements elicitation in the future.

A Mann-Whitney test was applied on the assessments. The test results revealed that subjects
assessed that using DRUMS helped their understanding of the problem to solve (statement
d.), significantly greater than using ProR (p− value = 0.022). Subjects were more in favor
of using DRUMS in the future for requirements elicitation (statement g.) than ProR (p−
value = 0.029). However, we did not find further statistical significant difference on other
statements between DRUMS and ProR.

6.1.4.3 Summary of Feedback

In the interviews, we discussed with the subjects about their experience in the two require-
ments elicitation tasks using DRUMS Case and ProR respectively. We also used the chance
to verify issues we observed during the execution of the tasks. Overall, all subjects were in
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favor of DRUMS Case. A subject commented “DRUMS is great and I believe that it can
be useful in my work”, although it requires usability enhancement. We summarize subjects’
feedback as follows.
DRUMS invokes more detailed requirements. All subjects expressed that the predefined

model elements in DRUMS Case gave them more hints about what to specify. A subject
even complained that “I do not know what to write in ProR”. DRUMS is especially helpful
to elicit requirements for solving “problems I do not have much clue about”. Subjects found
that DRUMS leads them to “think about things I might ignore, such as certain constraints
and software interfaces”. This finding also correlates to the higher numbers of requirements
elicited by using DRUMS.
DRUMS Diagrams help representing ideas, especially for complicated problems to solve.

All subjects found that the visualization of requirements and their links in DRUMS diagrams
help them better understand the problem to solve, in comparison to ProR. Subjects stated
“Diagrams are cool, especially helpful to communication” and “I really like the graphic
representation that gives me a better idea”. “The linear links presented in ProR is too
simple and not sufficient,” a subject commented. Subjects mentioned, “for simple problems,
ProR might be sufficient. But in most cases of my research, DRUMS suits better to help
discover ideas for complicated cases”. Subjects also found the icons and color schema of
DRUMS Diagram help them to distinguish different types of requirements.
The know-how of requirements engineering is incorperated in DRUMS. Although short

instructions for requirements elicitation were given, the simplicity of ProR did not “provide
any logic (of requirements elicitation)”, while DRUMS “provides a general methodology”.
Even the subjects, who did not have much requirements engineering experience, were able
to elicit many more requirements using DRUMS Case than using ProR, independent of the
order of tool usage.
The usability of DRUMS Case needs to be improved. ProR has a simple user interface and

is easy to use. Subjects had no problem of using ProR after the tutorial. On the other hand,
DRUMS Case has a more complicated user interface including diagraming support. Subjects
frequently asked question about how to perform certain operations, such as creating a link
between requirements. “I feel overloaded as a first time user. I need some time to play with
it,” a subject expressed. Subjects suggested, tutorials, cheatsheets and tooltips need to be
integrated with the tool, to assist users access the different features provided.
The terms in DRUMS need to be better defined for users. ProR only uses the general

terms including “description”, “requirement type” and “link”, while DRUMS includes more
specific terms such as “computation method”, “interface” and “constraint”. Although the
terms used in DRUMS are common terms for CSE projects, subjects had their “own per-
ceptions about the terms”. Subjects stressed that “I am not confident during requirements
elicitation” and “everyone has their own understanding, and the terms might have different
meanings in different domains”. This was the major reason why the average self-assessment
of understandability (statement a.) was higher for ProR than DRUMS.
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6.1.5 Discussion

We have described the exploratory study, the gathered results and subjects’ feedback. In
the following, we present our findings and discuss the lessons learned from the study.
Although subjects were similarly satisfied with the applicability of DRUMS Case and

ProR, subjects found DRUMS Case is preferable to be used in their real work. We identified
two main reasons for this. First, the underlying domain-specific meta-model in DRUMS Case
incorporates a requirements elicitation methodology. For average scientists who do not have
knowledge about requirements elicitation, ProR is too generic and does not give information
on what to elicit and how to elicit. Second, the diagram support in DRUMS Case is intuitive
for scientists to express ideas for software development and connect them. The connections
between elements make the ideas even clearer as a whole.

Figure 6.4: Define customized types of requirements in ProR.

In fact, ProR supports user-defined requirement types, so that users can also create
domain-specific types of requirements. However, our subjects commented that, most proba-
bly they would not define anything in such a tool but rather use the default settings, unless
it is necessary and simple to perform. Figure 6.4 shows the user interface for configuring
customized requirement types in ProR. Our subjects were overwhelmed by the choices in



6.2 requirements models 85

the context menu. They immediately questioned about for example “what is a Spec Object
Type” and “how will this configuration influence the requirements elicitation”. We argue that
such configuration is more suitable and beneficial for professional requirements engineers
and experts who already have knowledge about meta-modeling.
Additionally, our subjects elicited on average more requirements in DRUMS Case than

in ProR, but they also took more time. A direct cause is that subjects spent more time
on discovering requirements from more aspects. Besides, we also observed that subjects
were overloaded by features offered in DRUMS Case and took more time to explore its
functionality than using ProR. Furthermore, we have observed a common problem our
subjects encountered, that they tried to connect two model elements in a DRUMS diagram,
but often they were not able to perform the connection, because the specific connection is
not defined in our meta-model. A remedy for this problem is to specify generic types of
connections in the diagram meta-model (see Section 3.3.2), to offer a greater flexibility in
modeling.
As a final remark, we found that both CASE tools are not the best solution for brain-

storming. The elicitation tasks were performed by applying a combination of techniques,
i.e., brainstorming and modeling using CASE tools. However, such modeling CASE tools
might not be suitable for brainstorming, since meta-models have restrictions on the model-
ing syntax and this can limit brainstorming as a creativity activity. Sometimes, only certain
types of requirements can be created as defined in the meta-models. A simpler tool such as
DRUMS Board that provides flexibility for requirements creation might be more suitable
for brainstorming in early requirements engineering, while DRUMS Case and ProR can
be helpful for documenting elicited requirements, tracing, storing and reusing them in the
future.

6.2 requirements models

To illustrate how requirements in building performance can be expressed by DRUMS, we
present two requirements models, for thermal comfort prediction and daylight simulation,
respectively. Each model is an instance of DRUMS meta-model as shown in Figure 6.5. Each
model consists of DRUMS model elements that represent early requirements.
There is no specific order to create various DRUMS model elements. When scientists

want to elicit requirements by brainstorming, we recommend to carry out the practice we
introduced in Section 3.4.2.3. They can start with defining a problem to solve or a feature
to implement, then detail the scientific knowledge for it. Based on the scientific knowledge,
they further elaborate what kind of data to handle in the software and what interfaces need
to be connected with. The subsequent sections detail the requirements models.
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Figure 6.5: Instanciate the DRUMS core meta-model.

6.2.1 Thermal Comfort Prediction

For energy-efficient buildings, thermal comfort is an important index that expresses satisfac-
tion with the thermal environment. When the occupants of the buildings are not comfortable,
their perception of discomfort will influence the heating and cooling variables in the build-
ings. For instance, they will turn on space heaters that might be much less effective than
the typical heating and HVAC systems. Therefore, building designers want to maintain a
standard of thermal comfort for occupants in buildings.
In the following we specify requirements for a software application that predicts thermal

comfort. For simplicity’s sake, we represent each created early requirement as a node and
visualize their connections in Figure 6.6. The requirements model instantiates the DRUMS
meta-model. We use <�< stereotype >�> to indicate an instantiation of a DRUMS type. The
following textual description elaborates on each element in the model.
Thermal comfort is subjective and difficult to measure. Common models and methods to

characterize thermal comfort are developed based on physiological and psychological experi-
ments with a large number of human subjects. Some general environmental variables that
influence the conditions of thermal comfort include air temperature, water vapor pressure
in ambient air, etc. The physiological variables that influence the conditions of thermal com-
fort are for example, skin temperature and skin wettedness. Fanger comfort model is one of
the most used physiological and psychological models to predict thermal comfort. The model
assumes that the person is thermally at steady state with his environment. Another model
that is often used is the adaptive comfort model.
The software that supports thermal comfort prediction can be run on all types of PCs.

It must offer a Web-based user interface that allows users to interact with the software
directly from a web browser, without pre-installing any software packages. The software
should support users to describe models for the comfort prediction. A list of thermal comfort
parameters that describe the chosen comfort model shall be verified by users. The unit
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Figure 6.6: DRUMS-based requirements model for thermal comfort prediction (UML class diagram).

and range of each parameter are defined according to ASHRAE Standard-554. The thermal
comfort metrics are calculated according to the chosen model type and given parameters.
Results including graphical representation are exported as a report to users. A interface to
EnergyPlus shall be defined so that users can also input EnergyPlus format weather files.
The calculation and report is ASHRAE Standard-55 compliant.

Referring back to the DRUMS meta-model (Section 3.3), it is worth noting that we did not
specify any “computation method” for the thermal comfort prediction feature. In some cases,
various physical and mathematical models are more important in scientific software, than
scientific computing methods. In thermal comfort prediction, defining a suitable thermal
comfort model plays a bigger role. A specific computation method is not used for the
thermal comfort prediction in this example.
By modeling DRUMS requirements, the ideas of required comfort models, corresponding

parameters, and functions for a thermal comfort prediction application become clear. Based

4 Standard 55 specifies conditions for acceptable thermal environments and is intended for use in design, opera-
tion, and commissioning of buildings and other occupied spaces. Source: https://www.ashrae.org/resources–
publications/bookstore/standard-55
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on the requirements, developers can search for suitable solutions that handle the various
parameters and code libraries that can be used.

6.2.2 Daylight Simulation

Daylight simulation is another topic in building performance. Through daylight simulation,
architects calculate how much daylight can be transmitted into a building. Architects predict
the optical effect of the building by interactively visualizing daylight simulation results. The
simulation also aids the design of energy-efficient buildings by comparing the simulated
energy consumption of different building design.
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Figure 6.7: DRUMS-based requirements model for daylight transmission simulation (UML class di-
agram).

We illustrate the simplified requirements model in Figure 6.7, in which only names of
the involved DRUMS model elements and their connections are presented. We expand on
the requirements below. Daylight is transmitted into buildings in different ways. In daylight
simulation we use scene models and sky models to represent building characteristics and sky
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conditions. Two methods are usually used for daylight simulation, i.e. the ray-tracing method
and the Radiosity method.
To develop daylight simulation as a software program, CAD files are used to describe the

geometry of a scene model, for example in the format of .dxf or .xyz coordinates. Addition-
ally, we use a material parameter file to describe the parameters especially optical properties
of the scene materials. For example, it describes if the north facade of a building uses an
extremely reflected material. The position of the sun is a major factor in the heat gain of
buildings. A matrix that describes sun positions of every longitude, latitude and time zone of
locations throughout the world needs to be provided. Furthermore, the location parameters
of the building must be specified in order to decide the sun position for the scene.
A user can define a scene by providing the material parameters, CAD files and location

parameters. When the user starts to calculate daylight- and energy transmission, the program
looks up in the sun position matrix according to the defined scene. The user can choose to
run the calculation using either the ray-tracing or Radiosity method. The calculation results
can be exported as a report, which contains the solar heat gain and light transmittance
summary of the building for every month of the year. The daylight transmission shall also
be visualized inside the software program or in an external tool such as AutoCAD 2014.
The software program can be to run on the Linux, Mac OS and Windows platforms. A

user Interface for the desktop application must be provided. A simulation needs to be done
within seconds. A progress bar showing the approximate progress of simulation shall be
shown and notify the user when the simulation finishes.
Figure 6.8 displays a part of the requirements document (requirements specification) for

daylight simulation generated from the requirements model above (Figure 6.7) by using
DRUMS Case. The requirements document serves as a basis for developers to design and
implement the daylight simulation software. Developers can decompose the system into three
subsystems, namely, scene creation, simulation kernel and visualization. Interfaces for the
three subsystems are clearly specified based on the requirements for data and functions, to
support interoperability and future reuse of the subsystems. For example, the scene creation
subsystem can be reused in developing a software system for thermal flow simulation to
provide the function of scene definition.
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The user interface should be intuitive to use, without much learning effort for architects.
Realistic visualization should be provide to enhance the understanding of how lighting can be 
influenced,
using different blind models, in different location, different glass properties.

Providing Feature Ray Tracing

    Normal PC
         The ray tracing simulation should be able to run on a normal PC.

Depending Feature Ray Tracing
Platform cross platform

     AutoCAD Interface
          The software should be able to read the input file of AutoCAD format, e.g. .dxf files

Data Types .dxf
Requiring Features Ray Tracing

Performance
Each calculation should be done in seconds

Specified Feature Ray Tracing

Figure 6.8: Rrequirements document generated by DRUMS Case.
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EVALUATION

In this chapter we describe the experiments that have been conducted to evaluate the two
hypotheses of this dissertation. Section 7.1 presents an controlled experiment on DRUMS to
evaluate Hypothesis 1. Section 7.2 describes the evaluation of Hypothesis 2 on dARE. Lastly,
Section 7.3 provides anecdotal evidence of DRUMS’ efficiency, learnability and expressibility.

7.1 controlled experiment on drums

In Section 3.1, we have identified requirements elicitation as a core activity we ought to sup-
port scientists to perform early requirements engineering. This includes discovering knowl-
edge, constraints, ideas, and possible solutions of the scientific software and describing them
in the form of requirements. The described requirements can be informal, meaning they are
not formalized via a formal requirements analysis process. We refer to these informal de-
scriptions of requirements as ideas or early requirements.
Although scientists rarely apply formal requirements engineering methods, we found that

scientists actually perform some requirements elicitation techniques without knowing the
concept “requirements engineering”. For example, scientists brainstorm and discuss about
the ideas that they want to implement, and note them down as bullet points. We consider
this as the baseline practice for early requirements engineering.
Therefore, we reformulate Hypothesis 1 that we introduced in Section 1.2.1 to:

DRUMS can effectively support early requirements engineering, in particular
requirements elicitation.

The corresponding null hypothesis is:
H10: Using DRUMS has no effect on the number of elicited early requirements, in com-

parison to using the baseline practice.
The corresponding alternative hypothesis is:
H1A: Using DRUMS has an effect on the number of elicited early requirements, in com-

parison to using the baseline practice.
A controlled experiment was conducted to compare the effectiveness of DRUMS and the

baseline practice in requirements elicitation.

7.1.1 Context

We needed to define a requirements elicitation task for subjects to perform in the controlled
experiment, in the context of eliciting requirements for some software feature in some do-
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main. We have already applied DRUMS to elicit requirements in seismology and building
performance, as shown in Chapter 5 and Chapter 6. We needed to choose a third domain
to carry out the controlled experiment, so that we can apply DRUMS in a new domain
with different research subjects who did not have DRUMS experience. Computational Fluid
Dynamics (CFD) was chosen for the experiment. CFD is an interdisciplinary field that uses
numerical algorithms to solve fluid mechanics problems. Scientists in the CFD domain de-
velop software programs and use them in CFD simulations such as gas or liquid fluid flow
and air turbulence.
In the CFD domain, there are a variety of software programs. The context for the re-

quirements elicitation task should be about some basic CFD feature – it cannot be too
specific so that some of the subjects do not know about it. Also, supporting materials and
related information for the chosen feature should be provided to the subjects for reference.
Based on these, we defined the context for the requirements elicitation task as a software
program that allows users to define physics properties of fluid flows. We chose the ANSYS
Fluent user manual Chapter 2 “modeling basic fluid flows” as the supporting material in
the experiment. ANSYS Fluent1 is a commercial software product in the CFD domain. It
offers a variety of features and a comprehensive user manual.

7.1.2 Variables

In this controlled experiment, there were a number of variables about each subject perform-
ing the requirements elicitation task.
The independent variables were:

• Setup: a subject was assigned to use either DRUMS or the baseline practice to perform
the requirements elicitation task.

• RE Experience: a binary variable of a subject’s Requirements Engineering (RE) ex-
perience. A subject has either some RE experience, or no RE experience.

• Domain Familiarity: familiarity of a subject with the CFD domain. Three values are
possible, the subject 1) knows the basics about the domain, 2) is familiar with domain
and 3) is domain expert.

• ANSYS Familiarity: familiarity of a subject with the ANSYS software. Three values
are possible, the subject 1) has no idea about ANSYS, 2) is a basic ANSYS user and
3) is an advanced ANSYS user.

• Level of Education: level of education of a subject. Three values are possible, 1) Master
student, 2) Ph.D student and 3) industry professional, who holds a Master degree.

The dependent variables were:

1 ANSYS website: www.ansys.com



7.1 controlled experiment on drums 93

• Number of Relevant Ideas: the number of ideas generated by a subject in the ex-
periment that are relevant and feasible in the defined context. These are valid early
requirements generated by the subject.

• Number of Innovative Ideas: the number of ideas generated by a subject in the ex-
periment that are relevant and innovative. Since we provided supporting materials to
subjects, it is possible that subjects can write down many relevant ideas, if they can
read and search for information fast from the given materials. Thus, the innovativeness
of ideas is also an important variable.

7.1.3 Subjects

We recruited in total 15 subjects, who are all from a computational science and engineering
background. All subjects had experience developing software programs for CFD. None of
the subjects have expert requirements engineering knowledge, but five subjects did have
some requirements engineering experience from a university software engineering course. We
believe that having some requirements engineering experience will help a subject to generate
more ideas. Therefore, the RE experience of each subject was chosen as the blocking variable
to apply a randomized block design. This led to two types of subjects: five have some RE
experience and ten have no RE experience. The subjects of each type were randomly assigned
to the DRUMS and baseline setups.

7.1.4 Setup

A lesson learned from the exploratory study presented in Chapter 6 is: in spite of the
applicability of DRUMS Case in building performance, we have observed that new users
need some time to learn it. To mitigate the learning curve effect that case tools often present
[Kem92], the paper-based version of DRUMS Board (see Section 3.4.2) was chosen for the
DRUMS setup in the controlled experiment. Analogously, we provided A4-sized white paper
for the baseline setup.

7.1.5 Procedure

The experiment was divided into three parts. In the first part, the experiment instructor
gave a five minutes introduction about the task. The given scenario for the task is that
the subjects are developing the feature, modeling basic fluid flows. Before simulating the
dynamic behavior or any fluid (e.g. air turbulence), the fluid flow first need to be modeled.
The physical property of the fluid flow and the governing equation need to be described.
For subjects with the DRUMS setup, a walk-through of each section in DRUMS Board was
given and how to use a paper-based DRUMS Board was introduced.
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In the second part of the experiment, each subject had 30 minutes to brainstorm for
as many ideas as possible for the “Modeling Basic Fluid Flow” feature. As a reference,
each subject received the ANSYS Fluent user manual2, which describes how to use the
same feature in ANSYS Fluent. We informed the subjects about the near ending of the
experiment 10 minutes before the time ended, so that they could focus the remaining time
on putting ideas on the paper rather than reading the provided user manual.
Finally, each subject was asked to fill out a questionnaire about his or her familiarity

with the CFD domain and the ANSYS software. They were also asked to give their opinion
about the requirements elicitation practice they had just performed.

7.1.6 Evaluation of Generated Ideas

To measure the dependent variables, number of relevant ideas and number of innovative
ideas, we conducted a two-phase review to evaluate the ideas written by subjects. For each
written idea, we examined its relevance and innovativeness using the following definitions
that are adapted from Niknafs and Berry’s definitions [NB12]: (1) relevance: an idea is
considered relevant if it has something to do with the “Modeling Basic Fluid Flow” feature
and is correct and implementable, (2) innovativeness: an idea is considered innovative if it
is relevant, and is not presented in the given supporting material.
The author and a Master’s student were the evaluators. The author has basic CFD domain

knowledge and one year experience of programming for CFD software applications. The
second evaluator had majored in computer science and taken university courses in both
domains of software engineering and scientific computing. The evaluation was carried out
in two phases. In the first phase, each evaluator evaluated all the ideas according to the
defined metrics individually. To keep the same idea granularity level from different subjects,
the evaluators broke down big ideas into smaller ones. For example, when a subject wrote the
idea “early handling of changing models and settings of boundary conditions”; the evaluator
broke down this idea into two smaller ideas, i.e. “early handling of changing models” and
“early handling of changing settings of boundary conditions”.

The first phase of the individual evaluation resulted in similar results between evaluators.
The differences were mostly mis-counting and unsureness about the relevance and innova-
tiveness of an idea. In the second phase, the evaluators verified the first evaluation together
and resolved the differences. Together they counted idea by idea, and discussed and verified
the unsureness.

2 page 505 - 533
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7.1.7 Experiment Results

7.1.7.1 Collected Data

We summarize the setup, RE experience, CFD familiarity, ANSYS familiarity, level of edu-
cation, number of relevant ideas and number of innovative ideas of each subject in Table 7.1.
Table 7.2 shows the idea counts visualized in the randomized block design, where RE ex-
perience is the blocking variable. In each block subjects were randomly assigned to either
DRUMS or baseline setup. However, the bottom block (some RE experience) is smaller than
the top block, because most subjects had no RE experience. The numbers of relevant ideas
and innovative ideas for the two setups and two levels of RE experience are visualized in
Figure 7.1. Table 7.3 displays the number of subjects grouped by setup and grouped by RE
experience. The mean and standard deviation of the relevant ideas and innovative ideas are
also presented per group.

Table 7.1: Gathered data from the controlled experiement.

Setup RE Ex-
perience

CFD Famil-
iarity

ANSYS Fa-
miliarity

Level of
Education

#Relevant
Ideas

#Innovative
Ideas

baseline no familiar basic user Master 13 1

baseline some familiar no Master 13 4

baseline no familiar no Master 8 0

baseline some familiar no Master 26 11

baseline no domain
expert

basic user Ph.D 11 3

baseline no familiar advanced
user

Professional 8 1

baseline no basic no Ph.D 9 6

DRUMS no domain
expert

advanced
user

Ph.D 33 8

DRUMS no basic no Ph.D 16 4

DRUMS some familiar no Professional 25 11

DRUMS no familiar basic user Ph.D 22 1

DRUMS some domain
expert

basic user Master 29 7

DRUMS no familiar no Master 21 7

DRUMS no familiar no Master 10 5

DRUMS some domain
expert

advanced
user

Master 25 6
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Table 7.2: Idea counts (randomized block design).

#Relevant Ideas #Innovative Ideas
RE Experience DRUMS baseline DRUMS baseline

33 13 8 1
16 8 4 0

No 22 11 1 3
21 8 7 1
10 9 5 6

25 13 11 4
29 26 7 11

Some 25 11
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Figure 7.1: Scatterplots of generated ideas.
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Table 7.3: Evaluation of ideas grouped by setup and RE experience.

Group #Subjects #Relevant Ideas #Innovative Ideas
Mean S.d. Mean S.d.

baseline 7 12.6 6.3 3.7 3.8

DRUMS 8 22.6 7.2 6.1 2.9

no RE experience 10 15.1 8.1 4 3

some RE experience 5 23.6 6.1 7.8 3.1

7.1.7.2 Outliers

A box plot is a useful graphical means of describing data and identifying outliers. As shown
in Figure 7.2, the points are suspected outliers in our gathered data grouped by setup or RE
experience. When the samples are grouped by setup, we identify a suspected outlier in the
baseline setup group (#subjects=7). The suspected outlier has a number of 26 generated
relevant ideas using the baseline practice. An examination of this outlier reveals that the
subject who generated those ideas had much more advanced RE experience compared to
the other subjects. For example, he generated ideas with regard to non-functional require-
ments, such as portability and usability, which are not typical for a beginner. Therefore,
we identified this as a valid outlier, because the goal of DRUMS is to support average
scientists who do not possess sufficient requirements engineering expertise.
When the samples are grouped by RE experience, two suspected outliers are identified in

the group of some RE experience (#subjects=5). However, we manually inspected the two
outliers and did not find major abnormalities. We believe this is due to the small dataset
size, which results in unusual narrow fences [Daw11]. Therefore, data are easily identified
as outliers and we consider them invalid outliers.

7.1.7.3 Statistical Analysis

In our randomization design of experiment, we blocked the variable, RE experience. We ap-
plied ANOVA to test the DRUMS treatment effect on the dependent variables, by adding
this blocking variable. The ANOVA test confirmed that RE experience had significant im-
pact on both relevant ideas (p = 0.04) and innovative ideas generated (p = 0.02). Since our
experiment was to investigate the effect of using DRUMS, we focus on the test for the setup
variable as presented below:
Effect of setup on relevant ideas: There is a significant effect of using DRUMS setup

on the relevant ideas generated by subjects (F − value = 10.92, p = 0.006).
Effect of setup on innovative ideas: There is no significant effect of using DRUMS

setup on the innovative ideas generated by subjects (F − value = 2.72, p = 0.12).
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Figure 7.2: Boxplots of generated ideas.

We performed the ANOVA test after removing the outlier we identified in the previous
section. The result revealed an even greater impact of the setup, but less impact of the RE
experience.
Effect of setup on relevant ideas (outlier removed): There is a significant effect of

using DRUMS setup on the relevant ideas generated by subjects (F − value = 17.64, p =

0.001).
Effect of setup on innovative ideas (outlier removed): There is a significant effect

of using DRUMS setup on the innovative ideas generated by subjects (F − value = 7.33, p =
0.02).
We further analyzed the impacts of other independent variables on the dependent vari-

ables. Besides setup and RE experience, CFD familiarity and ANSYS familiarity could also
impact the resulting generated ideas. In the experiment design, in order to balance ANSYS
familiarity in each blocks, we handed out the ANSYS user manual as a reference. Hence, we
can ignore the effect of ANSYS familiarity in the ANOVA analysis. A further analysis found
that there is no significant evidence of a positive correlation between ANSYS familiarity
and number of relevant/innovative ideas. We found a weak evidence of a positive correla-
tion between CFD familiarity and number of relevant ideas (Spearman’s rank correlation
ρ = 0.47, p− value = 0.08). However, no strong evidence of a positive correlation between
CFD familiarity and number of innovative ideas was found. There was no significant evi-
dence of a positive correlation between level of education and number of relevant/innovative
ideas.
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7.1.7.4 Exit Interview

After the subjects finished the requirements elicitation task, they were asked to assess a set
of concluding statements about the task. Subjects gave their assessments on the following
statements in the form of a five-level Likert scale (1=strongly disagree and 5=strongly
agree): (a) I was able to generate ideas easily; (b) generation of these ideas improves my
understanding of the problem to solve or the feature to implement; (c) this idea generation
practice is applicable in my scientific software projects; (d) I would like to carry out this
idea generation practice in my future work.
Figure 7.3 presents the subjects’ response to these four statements. For the response to

statement (a), there is no significant difference between the two groups (Meanbaseline = 3.29,
MeanDRUMS = 3.25). The subjects who used the baseline practice did not need any training
or other learning process in order to generate ideas. In the DRUMS group, subjects needed
to first learn how to use DRUMS, but subjects could still generate ideas easily.
For statement (b), the majority of the baseline group (71%) found the idea generation

improves their understanding of the problem. In total, 50% of the DRUMS group also
agreed or strongly agreed to this point, while the other 50% remained neutral. Some of
them explained that they spent most of the time thinking about the ideas of the pre-defined
categories in DRUMS Board. In the experiment they wrote down a lot of ideas, but some of
the ideas they might not directly improve their understanding of the problem. Overall, there
is no significant difference between the two groups (Meanbaseline = 3.7, MeanDRUMS =

3.63).
Most subjects in the DRUMS group (87.5%) thought the idea generation practice is

applicable in their scientific software projects, while only (42.86%) subjects from the baseline
group agreed to this. The Mann-Whitney-Wilcoxon test results (W = 8.5, p = 0.02) showed
that the mean value of the responses between the baseline group and the DRUMS group
differ significantly (Meanbaseline = 3.14, MeanDRUMS = 4.38). Subjects commented that
the DRUMS Board “is very nice to structure my ideas” and “It seems helpful to break
things down into predefined categories, which can also help to plan tasks”.
Finally, 62.5% subjects in the DRUMS group would like to carry out this practice in

their future work, while only 28.6% subjects in the baseline group agreed upon it. Al-
though on average the DRUMS group overruns the baseline group (Meanbaseline = 3.29,
MeanDRUMS = 3.75), we did not find statistical significant evidence.

7.1.7.5 Discussion

The ANOVA test shows that the DRUMS setup had a significant impact on the number of
ideas generated, in comparison to using the baseline practice, while we took the RE expe-
rience as a nuisance factor. Based on our observation, we found that the baseline practice
(brainstorming on white paper) can be easily applied by everyone at anytime. The overhead
cost of learning and practicing the brainstorming practice is extremely low. However, it was
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difficult for subjects to elaborate their ideas in detail, to support the understanding and
development of a complex system.
Using DRUMS fosters a sense of thinking about software development, in comparison

to the typical algorithmic level of thinking. Subjects were able to write significantly more
early requirements using DRUMS, including requirements about data to handle, API to
depend on, and etc. These requirements were not commonly elicited by the subjects using
the baseline setup. Subjects gave us positive feedback on how DRUMS helped them to
discover ideas. Interestingly, two subjects even asked to get a copy of DRUMS Board, to use
in their daily work. The overhead cost of training for using DRUMS is low (two minutes in
our experiment) and we recommend instructors to provide small examples to help scientists
learn DRUMS more effectively.

7.1.8 Threats to Validity

We are aware of the threats to validity of the controlled experiment that are listed below.
The style of individual brainstorming might be a threat to the experiment’s validity. Some

subjects might not be able to elicit requirements individually as effectively as in a group
brainstorming session. In the future we plan to evaluate the effectiveness of DRUMS when
doing requirements elicitation in groups. Furthermore, the setting of the experiment might
not represent a real world setting. To mitigate this, we formulated the task to simulate a
real-life scenario: elicit requirements for a feature to implement, which has similar functions
to an industrial standardized software product, ANSYS Fluent; subjects were able to find
related information on the provided ANSYS user manual.
Additionally, the selection of subjects in the controlled experiment could be a threat to

validity. Although they all have experience in writing software programs for computational
fluid dynamics, their familiarity in the domain and software development differs. The prior
knowledge of requirements engineering and ANSYS Fluent could also influence the results
of the controlled experiment. We have verified the impact of these independent variables
on the generated ideas, and found they did not influence our results substantially. However,
there is a risk that other independent variables might not be identified in our experiment.
Another possible threat is that our evaluators could be biased. Although they have knowl-

edge in the scientific domain we evaluated, they could have incomplete knowledge or misun-
derstandings about the specific information needs as a developer in the domain. To mitigate
this threat, we conducted a two-phase evaluation process by two evaluators to assure a fair
evaluation on all gathered data.
Finally, the experiment was carried out only in the CFD domain. Hence, it is a potential

threat that the results are hardly generalizable to other application domains.
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7.2 evaluation of requirements extraction

The second hypothesis of this dissertation (see Section 1.2.1), that an automated approach
to extract requirements for scientific software performs accurately to support requirements
recovery with low manual effort, requires evaluation of its performance. In Chapter 4, we
have presented the automated requirements extraction approach, dARE. The metric “accu-
rate” in the hypothesis means that dARE-extracted requirement candidates are true early
requirements for scientists to further revise and reuse. Additionally, in comparison to other
approaches for requirements extraction, dARE performs better or at least on the same level,
in terms of accuracy and efficiency. Therefore, we refine Hypothesis 2 as follows:
H2.1: The requirement candidates extracted using dARE are clearly stated as early

requirements that are relevant to the application domain, and describe ideas that conform
to the assigned DRUMS types.
H2.2: To identify and classify DRUMS requirements, dARE performs as accurate as

other approaches, without requiring training data.
To evaluate H2.1 and H2.2, we conducted two evaluations respectively that are reported

in Section 7.2.1 and 7.2.2.

7.2.1 Evaluation of Extracted Requirement Candidates

In this section, we evaluate the quality of the dARE-extracted requirement candidates, to
test H2.1.

7.2.1.1 Experimental Setting

For this evaluation, we chose the CFD domain, in which we conducted the controlled exper-
iment (see Section 7.1), along with the two application domains of this dissertation, namely,
seismology and building performance. We input two documents for each domain from two
different scientific projects. ANSYS Fluent3 and OpenFOAM4 are two major software prod-
ucts in the computational fluid dynamics domain. SPECFEM 3D5 is a software package
for simulating seismic wave propagation. Verce6 is a research project which supports data
intensive applications in the seismology field. Radiance7 is a research tool for analysis and
visualization of lighting in buildings. EnergyPlus8 is an energy analysis and thermal load
simulation program. Table 7.4 lists the input documents for the evaluation, their domains,
the size of the documents, and the number of dARE-extracted requirement candidates. Five

3 http://www.ansys.com
4 http://www.openfoam.com
5 http://geodynamics.org/cig/software/specfem3d
6 http://www.verce.eu
7 http://www.radiance-online.org
8 http://www.eere.energy.gov/buildings/energyplus
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of the input documents are user manuals and a project report. All documents are publicly
available.

Table 7.4: Overview of the evaluation dataset.
ID Input Domain Size Size #Req.

(#pages) (#sentences) candidates
ANSYS ANSYS Fluent

User Manual
(Chap. 9)

Computational
Fluid Dynamics

29 650 35

OpenFOAM OpenFOAM User
Guide

Computational
Fluid Dynamics

185 1853 214

SPECFEM SPECFEM 3D
User Manual

Seismology 46 1500 125

Verce Verce project re-
port D-JRA1.1

Seismology 36 640 90

Radiance Radiance User
Manual

Building Perfor-
mance

38 587 41

EnergyPlus EnergyPlus Basic
Concepts Manual

Building Perfor-
mance

66 1493 91

7.2.1.2 Process and Metrics

The manual evaluation of each extracted candidate requires an evaluator, who is patient
and careful and has knowledge of scientific software development in the three domains. The
Master’s student, who also evaluated the generated ideas in the controlled experiment (see
Section 7.1), is qualified for this evaluation task. She possesses knowledge of scientific com-
puting, software development and requirements engineering. Although she is not a domain
expert of the three domains, she spent roughly 10 - 20 hours to obtain the basic domain
knowledge of each domain, before the evaluation. A trial evaluation was conducted together
by her (the primary evaluator) and the author to establish the evaluation standard.
The primary evaluator manually reviewed each extracted requirement candidate and

rated: (1) is-requirement: if a candidate can be considered an early requirement that de-
scribes the objectives, functions, properties and constraints of the system, (2) clarity: a
requirement candidate is clearly understandable to reviewers (to the evaluator in our case),
and (3) relevance: a requirement candidate is considered relevant if it describes some idea
that conforms to the identified DRUMS type. We used a three-level scale for the rating,
i.e. yes, yes/no and no, where yes/no represents a borderline case. The average time the
evaluator spent on reviewing and rating is 1-2 minutes per candidate.
To validate the evaluator’s rating, a second evaluator (the author) evaluated a subset

of the dataset. We calculated the Spearman’s rank correlation coefficient on the ratings of
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is-requirement, clarity and relevance from both evaluators. The resulting Spearman’s rank
correlation coefficients (Spearman’s ρ) indicate that the ratings between the two evaluators
have fair agreement and their ratings positively correlate (ρisrequirement = 0.58, ρclarity =

0.32 and ρrelevance = 0.25). The major difference between the ratings from the two evaluators
are the borderline cases. The correlation coefficients suggest that the primary evaluator’s
evaluation is valid and we report on her evaluation results on the whole dataset for the
rating scale consistence.
For each metric, we calculate a strong form and a weak form. The strong form is

the percentage of requirement candidates that are rated as “yes”. The weak form is the
percentage that also takes the borderline cases (“yes/no”) into account. The metrics are
calculated by:

isrequirementstrong =
|{ratingisrequirement = “yes”}|

#requirement_candidates

isrequirementweak =
|{ratingisrequirement = “yes”}|

#requirement_candidates +
|{ratingisrequirement = “yes/no”}|

#requirement_candidates

claritystrong =
|{ratingclarity = “yes”}|

#requirement_candidates

clarityweak =
|{ratingclarity = “yes”}|+ |{ratingclarity = “yes/no”}|

#requirement_candidates

relevancestrong =
|{ratingrelevance = “yes”}|
#requirement_candidates

relevanceweak =
|{ratingrelevance = “yes”}|+ |{ratingrelevance = “yes/no”}|

#requirement_candidates

7.2.1.3 Evaluation Results

The results of the evaluation of the requirement candidates are presented in Table 7.5.
The high is-requirement scores indicate that 80-97% of the extracted candidates can be
considered early requirements such as goals, constraints and functions of the software. The
candidates are reusable knowledge and examples of relevant ideas that scientists should
think about when developing software in a similar domain. Radiance has the lowest is-
requirement score. A manual inspection shows that the writing style and the tone of all
ratingisrequirement = “no” candidates in Radiance were different than other requirement
candidates we evaluated. For instance, a candidate is “you have heard good things about
3D Studio, so you make use of the export and import options to get your model over to
this package and start to play around with it”. It sounds like storytelling and does not
provide clear information for how the ‘import and export option’ can be included in the
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software to build. Our primary evaluator was strict and rated such candidates as non-early
requirements.
The primary evaluator rated many candidates as borderline cases in the clarity metric.

The main reason for this, is that many extracted candidates contain a coreference to some
previous part in the input text. For example, a candidate contains “...these files” that refers
to files specified in a previous part of text, but not in the extracted candidate. Hence, it is
difficult to comprehend such requirement candidates individually. Another reason she rated
the borderline cases is that many requirement candidates are at a low-level of abstraction,
such as a particular command line. They are not clearly understandable, but they do give
some hints of certain software functionality.

Table 7.5: Measurements of extracted requirement candidates.

Is-requirement Clarity Relevance
Input ID strong weak strong weak strong weak
ANSYS 0.97 0.97 0.57 0.60 0.66 0.86
OpenFOAM 0.88 0.93 0.50 0.60 0.59 0.71
SPECFEM 0.89 0.93 0.44 0.72 0.58 0.77
Verce 0.93 0.95 0.52 0.78 0.62 0.82
Radiance 0.78 0.80 0.33 0.63 0.60 0.83
EnergyPlus 0.81 0.92 0.40 0.81 0.54 0.70

Regardless of the clarity in which they are expressed, the majority of the extracted require-
ment candidates present ideas that conform to the identified DRUMS type. This is reflected
in the relevance scores shown in Table 7.5. Many candidates were rated as borderline cases
in this metric too, because dARE only assigns a single DRUMS type to a candidate, while
often a candidate can be associated to various DRUMS types. Nevertheless, these score val-
ues are a good indicator of the potential of using the requirement candidates for stimulating
more ideas for related requirements.

7.2.2 Evaluation of Classification

The requirements extraction task can be transformed into a classification problem: for a
given input document that consists of sentences, the goal is to classify the sentences as
DRUMS types. Instead of a pattern-matching approach like dARE, other related work
for extracting or detecting requirements employs machine learning approaches [CHSZS06,
CGC10]. To compare our approach, we test a common text classification approach, naive
Bayes [Seb02]. We used the same documents for the evaluation as described in Table 7.4.
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7.2.2.1 Truth Set Creation

In classification tasks, a truth set is typically used to train an algorithm and analyze the
classification results against the ‘truth’. In continuation of the previous evaluation (see
Section 7.2.1), our primary evaluator created the truth set for each document. She read
through each document and annotated the parts of text that are DRUMS requirements.
Afterwards, the annotated text and associated DRUMS type(s) were exported. The time
needed to create the truth set of each document exceeded the period of seven hours. This
time varied depending on the size of the document. Indicatively, the creation of the truth
set for OpenFOAM, the largest document in our dataset, took approximately 14 hours. The
truth sets were reviewed and revised by the author.
In total 1092 requirements were annotated for the six documents. The size of each truth set

is as follows: |TruthSetANSY S | = 146, |TruthSetOpenFOAM | = 247, |TruthSetSPECFEM | =
209, |TruthSetV erce| = 165, |TruthSetRadiance| = 151, and |TruthSetEnergyP lus| = 174.

7.2.2.2 Naive Bayes Classification

We configured multinomial naive Bayes [SZLM08] in Weka9 [HFH+09] for the evaluation.
Our task is to classify nine DRUMS types. We used the one-vs.-all strategy in multi-class
classification that trains a single classifier per class (a DRUMS type).
To evaluate our hypothesis on all three domains, we conducted three tests, namely
{TANSY S ,TSPECFEM ,TRadiance}. We created three test data sets that consist of sentences
from ANSYS Fluent User Manual, SPECFEM 3D User Manual and Radiance User Manual
respectively for the three tests. In each test, the corresponding test set was not used in
training. For instance, for TANSY S , the training data contains the requirements in the truth
set from the other five documents except the ANSYS document. As pre-processing steps,
the word vectors were created and the stop words were removed for both training and test
data.

7.2.2.3 Metrics

We calculate precision, recall, and F-measure metrics in the evaluation. For each test, we
counted true positives (correctly classified requirements), false positives (requirements in-
correctly classified in the category), true negatives (incorrect requirements not classified in
the category) and false negatives (requirements that are not classified in the category). The
metrics are computed as follows:

Precision =
#TruePositive

#TruePositive+ #FalsePositive

Recall =
#TruePositive

#TruePositive+ #FalseNegative

9 www.cs.waikato.ac.nz/ml/weka/
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Furthermore, we compute F0.5-measure, which puts more emphasis on precision than
recall, as our objective is to present reviewers precise requirement candidates for manual
review. It is defined as:

Fβ = (1 + β2)
Precision×Recall
β2Precision+Recall

, where β = 0.5

7.2.2.4 Evaluation Results

We report the evaluation results of both classification approaches, dARE and naive Bayes,
in Table 7.6. For each test, we present precision, recall and F0.5-measure per DRUMS type,
and the average metrics. The precision of dARE is higher than naive Bayes classification
for most DRUMS types in all three tests. Naive Bayes performs better in recall. Overall,
dARE achieves higher F0.5-measure.

We found that in each test, classification metrics for some DRUMS types were zero for
both approaches. A manual inspection in the truth set reveals that there are only few
requirements of those DRUMS types in the truth set. For instance, in the TRadiance test,
both classification approaches were not able to classify any assumptions and constraints.
We found that only two assumptions and one constraint were annotated in the truth set.

It is worth noting that relevance ( |{ratingrelevance=“yes”}|
#requirement_candidates or #TruePositive

#requirement_candidates) in Ta-
ble 7.5 has higher values than the average precision ( #TruePositive

#TruePositive+#FalsePositive) in Ta-
ble 7.6, although they are both metrics for the percentage of correctly classified candi-
dates among all extracted candidates. The reason is that dARE only classifies a candi-
date into one type, while in the truth set each requirement can have multiple types, as
requirements are not exclusively of one DRUMS type. Hence, it is often the case that
#FalsePositive > #requirement_candidates−#TruePositive. Therefore, the percent-
age of correctly classified candidate is diluted using the precision measure.

7.2.3 Discussion

The requirements extraction approach we developed using pattern matching shows its ca-
pability of extracting high quality requirement candidates. It can also identify and classify
DRUMS requirements with higher precision than naive Bayes classification, although naive
Bayes achieves higher recall. This result suggests that when users’ objective is to find as
many requirements as possible of a certain DRUMS type, a machine learning approach
might be more suitable. However, users compensate for the recall by spending more time on
reviewing a bigger set of classification outputs and training data creation. In this work, our
goal is to present a precise set of requirement candidates without training data, to reduce
the required time and effort for review and data preparation.
The current implementation of dARE only labels one DRUMS type for each candidate.

However, we found that an extracted requirement should not be of one DRUMS type exclu-
sively. This leads to many false negatives in the evaluation of classification. For instance, in
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Table 7.6: Results from classifying DRUMS.
dARE Naive Bayes

DRUMS Type Precision Recall F0.5-
measure

Precision Recall F0.5-
measure

TANSY S : test data = {ANSYS}, training data = {OpenFOAM, SPECFEM, Verce, Radiance, EnergyPlus}
ComputationMethod 1 0.2 0.56 0 0 0
DataDefinition 0 0 0 0.84 0.05 0.19
Process 0.29 0.1 0.2 0.19 0.7 0.22
Constraint 1 0.25 0.63 0 0 0
Assumption 1 0.09 0.33 0.11 0.03 0.07
Interface 0 0 0 0.28 0.33 0.29
Model 0.53 0.19 0.39 0.11 0.02 0.06
Performance 0 0 0 0 0 0
Hardware 0 0 0 0 0 0
Average 0.5 0.08 0.24 0.25 0.13 0.21
TSPECFEM : test data = {SPECFEM}, training data = {ANSYS, OpenFOAM, Verce, Radiance, EnergyPlus}
ComputationMethod 0.2 0.33 0.21 1 0.33 0.71
DataDefinition 0.5 0.03 0.12 0.25 0.4 0.27
Process 0.21 0.06 0.15 0.14 0.61 0.17
Constraint 0 0 0 0 0 0
Assumption 0 0 0 0 0 0
Interface 0.31 0.13 0.24 0.09 0.53 0.11
Model 0.05 0.4 0.06 0 0 0
Performance 0.5 0.2 0.38 0.2 0.11 0.17
Hardware 0.67 0.63 0.66 0.2 0.07 0.15
Average 0.25 0.11 0.2 0.15 0.41 0.18
TRadiance: test data = {Radiance}, training data = {ANSYS, OpenFOAM, SPECFEM, Verce, EnergyPlus}

ComputationMethod 0.17 0.25 0.18 0 0 0
DataDefinition 0 0 0 0.08 0.52 0.09
Process 0.5 0.08 0.25 0.04 0.42 0.05
Constraint 0 0 0 0 0 0
Assumption 0 0 0 0 0 0
Interface 0 0 0 0.06 0.5 0.07
Model 0.32 0.29 0.31 0 0 0
Performance 0 0 0 0.17 0.15 0.16
Hardware 0.4 0.5 0.42 0 0 0
Average 0.28 0.1 0.21 0.06 0.31 0.07

TANSY S and TRadiance, zero requirements of Data Definition were classified using dARE. We
inspected the false negatives and found that they were labeled as Model by our approach.
In fact, many requirements about Model could be exchangeable with requirements about
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Data Definition. In the scientific domain, Models are often used to describe the physics of
the problem. Such information needs to be stored as certain data type for computation. A
Hardware requirement describing the depending computation power might also be a Perfor-
mance requirement. An Interface requirement gives a short introduction to how the interface
can be used, which also describes a Process requirement in some way. Additionally, many
requirements about Process could be more accurately expressed by the Data Definition type.
While our evaluation results show that the extracted requirement candidates have a high

relevance for their domain, some of the candidates have low clarity. This can be improved
by substituting the coreferences in extracted requirement candidates (e.g. substitute “this”
to its referred noun phrase from previous text).
The gazetteers used in our approach are an initial set of entities manually collected from

wikipedia entries and text books that can be applied to all scientific computing domains,
however they can be incomplete. The available gazetteers can be manually extended to
include additional entities and domains. The approach can also be customized through the
application of automatic gazetteer techniques, such as the one presented by [Koz06]. Our
approach can also be improved with the inclusion of additional patterns.

7.2.4 Threats to Validity

We are aware of the following threats to validity. The dataset we used for the evaluation is
limited to data from three scientific domains. Although we did not find any major differences
between different domains in the evaluation results, the performance of dARE in a different
domain is a potential threat.
Another possible threat is that our evaluator could be inconsistent in the long evaluation

process. To mitigate this threat, the evaluator carried out the manual rating and truth set
creation tasks in a sequence of 20–30 minute slots with breaks, to avoid mistakes due to lack
of concentration. Also the author validated the evaluator’s rating on a subset of the data
and reviewed the truth sets. However, there is a risk that both the author and the evaluator
could be biased. To mitigate this, we compared dARE with naive Bayes classification, so
the performance of dARE can be implied with reference to naive Bayes.

7.3 anecdotal evidence

We have identified three non-functional requirements for CSE-specific requirements engineer-
ing, namely, efficiency, learnability and expressibility (see Section 3.1.2). In the following,
we provide anecdotal evidence of DRUMS’ efficiency, learnability and expressibility.

• Efficiency: We have shown in Section 7.1 that in the same period of time (30 minutes),
subjects were able to elicit more early requirements and more innovative ideas using
DRUMS Board than a baseline practice. Subjects found DRUMS Board is easy-to-use
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and helpful to stimulate and structure ideas efficiently. For requirements recovery, the
time cost for recovery-related operations on a 30 pages document is presented in Ta-
ble 7.7. It takes only 2–5 seconds to extract requirement candidates automatically and
15–30 seconds to review each extracted candidate. However, without any automation
support, our evaluator spent 7 hours to create the truth set for the 30 pages document.

Table 7.7: Time cost for a 30 pages document.
Operation Time cost
apply dARE to extract requirement
candidates from the document

2–5 seconds

review the extracted candidates 15–30 seconds/candidate
create a truth set for the document 7 hours

• Learnability: The subjects in the controlled experiment were able to learn DRUMS
Board in a two-minute tutorial and to perform the elicitation task using DRUMS
Board. They found it simple and self-explanatory. DRUMS Case requires a longer
learning period, according to the exploratory study we conducted (see Section 6.1), to
allow scientists to get familiarized with the tool. Nevertheless, the subjects’ feedback
on the cognitive effectiveness of the digram support in DRUMS Case was positive, in
comparison to the other requirements modeling CASE tool. Subjects from both the
controlled experiment and the exploratory study found DRUMS applicable and would
like to use it for their future work.

• Expressibility: We have presented requirements patterns and models created by us-
ing DRUMS in Chapter 5 and Chapter 6. Early requirements for software systems
in seismology and building performance ware captured and structured in the require-
ments models. Additionally, in our experiment, we found the requirements generated
by the DRUMS group were more specific – they specified more details about what to
develop, such as what kind of data needs to be handled and what external libraries
can be used. On the other hand, subjects in the baseline group generated require-
ments only from a limited range of software development aspects. They often gave
only high-level requirements but ignored or under-specified what exactly needs to be
developed. Subjects in the exploratory study also found DRUMS Case can evoke de-
tails or hidden information that help the software development. Furthermore, 80–97%
of the dARE-extracted requirements candidates were valid early requirements. They
express relevant knowledge for the development of related scientific software and serve
as examples of early requirements.
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CONCLUS ION AND FUTURE WORK

8.1 conclusion

Requirements engineering is a fundamental activity in software development life cycles,
which supports other software engineering activities such as coding and testing, and is crucial
to a project’s success. This dissertation stressed the need for eliciting early requirements in
computational science and engineering (CSE) projects, which describe objectives, functions
and constraints of a software system. However, requirements engineering is not a common
practice in CSE projects. One reason for this is that scientists do not often see the benefit
of directing their time and effort towards documenting requirements. Additionally, there
is a general lack of requirements engineering knowledge amongst scientists who develop
software.
To tackle this problem, DRUMS (Domain-specific ReqUirements Modeling for Scientists)

has been presented, which provides lightweight supports for scientists to create and manage
requirements. The underlying meta-model of DRUMS has been described in detail. Two im-
plementations of DRUMS, DRUMS Case and DRUMS Board have been shown, which both
support requirements elicitation. In addition, DRUMS Case has the strength of supporting
requirements documentation, reuse, traceability and collaboration, whereas DRUMS Board
is suitable for eliciting requirements by brainstorming. Furthermore, as part of the DRUMS
framework, dARE (drums-based Automated Requirements Extraction) has been developed
to recover early requirements from software documents automatically without requiring
manually created training data.
DRUMS has been applied in two domains, seismology and building performance. In seis-

mology, we have used dARE to extract requirements and presented the extracted require-
ments in DRUMS Case and DRUMS Board for review. Two requirements patterns were iden-
tified and described, which capture reusable knowledge for solving two recurring problems
in requirements engineering for seismological software systems. In building performance,
we have conducted an exploratory study. The subjects of the study were in favor of using
DRUMS Case for eliciting requirements, in comparison to a general requirements modeling
CASE tool. Two DRUMS requirements models in the building performance domain were
created and presented.
The evaluation results showed that: DRUMS allowed subjects to elicit early requirements

significantly more effectively than using a baseline practice; more than 80% of the dARE-
extracted requirement candidates were valid early requirements; and dARE performed bet-
ter in terms of precision than naive Bayes classification.
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8.2 future work

We have identified topics that can be further improved and extended.

8.2.1 Improvement on DRUMS

The underlying client-server architecture of DRUMS Case allows users to work remotely on
their DRUMS Case clients and share requirements on a server. DRUMS Board can apply
the same architecture, to support requirements elicitation collaboratively.
Additionally, the usability of DRUMS Case can be improved, especially, to support new

users. The international standards for HCI and usability [Bev01] gives us suggestions for us-
ability improvements. In particular, it provides recommendations with respect to the design
of menu dialogues, presentation of information, form filling and icon symbols among others.
Based on the findings from our exploratory study, we can apply suitable recommendations
to improve DRUMS Case’s usability.
We have discussed possibilities for improving dARE in Section 7.2.3. Automatic gazetteer

techniques can be introduced to dynamically update the gazetteer and further improve the
performance of dARE. dARE can perform without training data and achieved high precision
in our evaluation but low recall. It is worth researching the combination of dARE with
machine learning approaches, to define various extraction strategies for fulfilling different
objectives.

8.2.2 Extension of DRUMS

A useful extension is to create a requirements repository for scientific software, which allows
scientists to share requirements and software development knowledge. As a starting point,
dARE can be used to recover requirements from various software and project documents.
After a review and revision process, the requirements are visible to the whole CSE com-
munity. Scientific software has commonalities and variabilities. The idea of product line
development can be adopted to support commonality and variability analysis, and further
identify reusable requirements [MYC05, Smi06, KCH+90]. By extending the traceability
support that traces artifacts such as code and test cases, the reusable requirements can also
lead to reusable code snippets and other artifacts.
Another extension of this work is to support the manual review of dARE-extracted re-

quirements. For large requirement sets, users can first apply topic modeling to group the
requirements to review. LDA-based topic modeling is an emerging research area in machine
learning and there are many new directions for research [Ble12]. With respect to our ap-
plication, some future research directions include evaluation of the topic models’ usefulness
in supporting requirements review, as well as new methods of visualizing and interacting
with the topics and requirements. Furthermore, the manual review process can be improved
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by offering automated assistance. From any meta-model, a finite automaton that generates
questions to guide the review and revision process can be created [Schng]. Similarly, a seam-
lessly integrated recommender system can support requirements elicitation with DRUMS.
As we have described in Section 3.4.2 and Section 7.2.3, a DRUMS early requirement can
be derived from others. For example, Model knowledge can be transformed to Data Defi-
nition requirements. The recommender system can therefore suggest scientists to elaborate
on requirements and transform knowledge into software requirements.
Additionally, tool integration with DRUMS is an exciting future direction, to support the

whole software development life cycle of scientific software. Studies have shown that agile
methods are suitable for scientific software development [SHPL12, KHC+06]. One possibility
is to integrate DRUMS Board with other agile boards, such as the JIRA Agile Board1.
Therefore, requirements elicited by DRUMS can contribute to the product backlog for agile
management. Other possibilities are, for example, the integration with code generators such
as Acceleo2, to generate source code from DRUMS requirements, and the integration with
common development environments used by scientists such as MATLAB.
We are inspired by the experiment results and subjects’ feedback, which indicate that

DRUMS Board is easy-to-use and effective in brainstorming. Thus, an interesting future
extension is to adapt DRUMS Board to support requirements elicitation for general software
systems or other types of domain-specific software. It will be a new direction for lightweight
requirements elicitation with less restrictions on modeling syntax and encourage creative
thinking.
Finally, mobile software engineering is an emerging trend in software engineering. Mobile

app usage has been increasing tremendously over the past few years. In the future, DRUMS
Case and DRUMS Board can be designed and developed as mobile apps to help scientists
managing the requirements more freely and easily.

1 JIRA agile board help software development teams plan and assign tasks. Website: www.atlassian.com/JIRA-
Agile

2 Acceleo is EMF-based code generator. Website: http://www.acceleo.org/pages/planet-acceleo/
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A
CONTROLLED EXPERIMENT

a.1 experiment materials

Checklist*for*Instructor*
 
Pre Idea Generation                10 minutes 

1. Distribute the description of the exercise (task description)  1 mins 
2. Ask if the participants have any further questions 2 mins 
3. Answer the questions. Tell participants their submission will be 

collected as research data anonymously. If they are willing to get a 
copy of their submission, please leave their email addresses at the 
end of exercise. 

 

4. Distribute “user manual” and paper for writing down ideas 1 mins 
5. Announcement: “Please check if you received both the user manual 

and the idea paper with a participant ID.” 
1 mins 

6. Give a tutorial on how to use the idea paper. 2 mins 
7. Announcement: “You may start working on generating ideas for the 

modeling basic fluid flow feature. Write down your ideas on the 
blank paper in the format you like. Please note that it is not valid to 
only annotate in the user manual. You have in total 30 minutes, 
starting from now.”  

 

8. Start the timer  
 
During Idea Generation          30 minutes 

1. Observe participants behavior. Make notes about their behaviors, 
especially, questions asked and visible obstacles. 

 

2. 10 minutes before the end. Announcement: “You have ten minutes 
left to finish writing your ideas. In case you haven’t started putting 
ideas onto the idea paper, please do it as soon as possible.”  

 

 
After Idea Generation              5 minutes 

1. Announcement: “Time’s up! Please stop writing.”  
2. Distribute the survey. Announcement: “And last, please fill out a 

small survey. Make sure that you fill out the Participant ID at the 
right upper corner. It is the same ID as in your idea paper” 

 

3. Participants answer the survey.  5 mins 
4. When all participants stop writing, make the announcement: “Thank 

you very much for your participation. I hope this exercise shows you 
one way of generating ideas for developing a CFD software program. 
Please leave all paper on the table and I will collect them afterwards. 
If you want to get a copy of your ideas, please leave your email 
address on your idea paper and we will send a copy to you within 
couple of days.” 

 

5. Collect all materials. Write down missing participant IDs, if there’re 
any. 
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Problem(Statement(
 

Scenario(
ANSYS Fluent is a software for CFD simulation, which realizes state-of-the-art CFD 
technologies. However, its license is very expensive. Alternatively, we are developing 
our own open source version that realizes the same features of ANSYS Fluent. Let's 
call it OpenANSYS. You are responsible for the implementation of the “modeling 
basic fluid flow” feature in OpenANSYS. As a first step, you will perform individual 
brainstorming to generate ideas for this feature.  
 
 

(

Task((30(minutes)(((
Brainstorm for ideas for the “modeling basic fluid flow” feature that you want to 
realize in OpenANSYS. You should try to write as many ideas as possible on the 
canvas.  
 
If you are already familiar with the “modeling basic fluid flow” feature of ANSYS 
Fluent, you might not need to focus on the users’ manual. Try to brainstorm for your 
own ideas that you want to realize for this feature.  
 
If you are not familiar with the “modeling basic fluid flow” feature of ANSYS Fluent, 
you can try to extract the ideas from the ANSYS users’ manual Chapter 9. 
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Requirements Engineering in  Participant ID:……..…………. 
Scientific Software Projects  Date:..………………. 

Thank you for participating in this experiment! 
Your response will remain anonymous. 

 
In this idea generation practice, I found that: 
 
1.1. I was able to generate ideas easily. 

1        2       3         4             5  
Strongly disagree Disagree Neutral  Agree  Strongly agree 

 

1.2. Generation of these ideas improves my understanding of the problem to solve or feature 
to implement. 

1        2       3         4             5  
Strongly disagree Disagree Neutral  Agree  Strongly agree 

 

1.3. This idea generation practice is applicable in my scientific software projects. 
1        2       3         4             5  

Strongly disagree Disagree Neutral  Agree  Strongly agree  

 

1.4. I would like to carry out this idea generation practice in my future work. 
1        2       3         4             5  

Strongly disagree Disagree Neutral  Agree  Strongly agree 

 
 
 
Do you have other comments or suggestions? 
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a.2 anova analysis

Analysis of Variance Table

Response : X. RelevantIdeas
Df Sum Sq Mean Sq F value Pr(>F)

setup 1 377.34 377.34 11.1066 0.01255 *
RE_ experience 1 188.92 188.92 5.5606 0.05048 .
setup:ANSYS_ experience 2 125.28 62.64 1.8437 0.22740
setup: education 2 45.10 22.55 0.6637 0.54457
RE_ experience : education 1 6.47 6.47 0.1904 0.67573
Residuals 7 237.82 33.97
---
Signif . codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 �
with outlier:

Analysis of Variance Table

Response : # RelevantIdeas
Df Sum Sq Mean Sq F value Pr(>F)

setup 1 377.34 377.34 10.9198 0.006288 **
RE_ experience 1 188.92 188.92 5.4671 0.037510 *
Residuals 12 414.67 34.56
---
Signif . codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 �

Tukey multiple comparisons of means
95% family -wise confidence level

Fit: aov( formula = # RelevantIdeas ~ setup + RE_experience , data = df
)

$setup
diff lwr upr p adj

baseline -DRUMS -10.05357 -16.68233 -3.42481 0.0062879

$RE_ experience
diff lwr upr p adj

some -none 7.494643 0.4794216 14.50986 0.0382287 �
Response : # InnovativeIdea

Df Sum Sq Mean Sq F value Pr(>F)
setup 1 21.696 21.696 2.7237 0.12478
RE_ experience 1 52.714 52.714 6.6176 0.02443 *
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Residuals 12 95.589 7.966
---
Signif . codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 �

Tukey multiple comparisons of means
95% family -wise confidence level

Fit: aov( formula = # InnovativeIdea ~ setup + RE_experience , data =
df)

$setup
diff lwr upr p adj

baseline -DRUMS -2.410714 -5.593338 0.7719095 0.1247777

$RE_ experience
diff lwr upr p adj

some -none 3.958929 0.5907562 7.327101 0.0249573 �
without outlier:

Df Sum Sq Mean Sq F value Pr(>F)
setup 1 518.0 518.0 17.642 0.00148 **
RE_ experience 1 70.2 70.2 2.392 0.15023
Residuals 11 323.0 29.4
---
Signif . codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 �
Tukey multiple comparisons of means

95% family -wise confidence level

Fit: aov( formula = X. RelevantIdeas ~ setup + RE_experience , data =
df)

$setup
diff lwr upr p adj

baseline -DRUMS -12.29167 -18.73262 -5.850717 0.0014849

$RE_ experience
diff lwr upr p adj

some -none 4.827083 -2.228624 11.88279 0.160288 �
Df Sum Sq Mean Sq F value Pr(>F)
setup 1 45.05 45.05 7.328 0.0204 *
RE_ experience 1 18.74 18.74 3.049 0.1086
Residuals 11 67.63 6.15
---
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Signif . codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 �
Tukey multiple comparisons of means

95% family -wise confidence level

Fit: aov( formula = X. InnovativeIdea ~ setup + RE_experience , data =
df)

$setup
diff lwr upr p adj

baseline -DRUMS -3.625 -6.572381 -0.6776186 0.0203998

$RE_ experience
diff lwr upr p adj

some -none 2.49375 -0.7349445 5.722445 0.1172008 �
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