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Abstract

Existing pedestrian dynamics models differ in computational effort and their ability to authentically describe human movement

behaviour. Hybrid approaches combine different models to speed up simulation time and to improve the results of the simulation.

Current hybrid approaches can only combine a specific set of models. It is not possible to independently change the coupled models

from the hybrid approach. Furthermore, transition of pedestrians between the different models is only possible at specific entry

points. TransiTUM overcomes these issues and can combine any model if provided a certain set of parameters, which are common

in pedestrian dynamics (e.g., pedestrians’ positions, velocities). In this paper, the coupling of mesoscopic and microscopic scales

is presented.
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1. Introduction

Pedestrian dynamics simulations can be divided into three different types (microscopic, mesoscopic and macro-

scopic) by their spatial resolution. In macroscopic models the scenario is reduced to a network of nodes and edges.

The calculation itself is based on aggregated parameters of human crowds and not on the behaviour of individual

pedestrians (Shiwakoti and Nakatsuji, 2005). Therefore, these kinds of pedestrian dynamics models are computa-

tionally efficient for the price of low spatial resolution. Many macroscopic models draw from the theory of fluid

mechanics. For example, Henderson (1974) adopted the gas kinetic Boltzmann transport equation to describe the

motion of crowds. The Lighthill-Whitham-Richards (LWR) model (Lighthill and Whitham, 1955a,b; Richards, 1956)

and its variants (Hughes, 2003; Kachroo, 2009) are based on the continuity equation of fluid dynamics. These ap-

proaches are often simplified to one spatial dimension to reduce the complexity of the problem (Colombo and Rosini,

2005; Hartmann and Sivers, 2013). The second important kind of macroscopic simulations is the network flow model.

These models calculate the smallest amount of time pedestrians need to exit a given network scenario (Burkard et al.,

1993; Tjandra, 2003).
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Mesoscopic models, which are carried out by cellular automatons (Blue and Adler, 2001), have typically a finer

spatial resolution associated with increasing computational effort. Therefore, the complete scenario needs to be split

up into a regular grid. Each cell of the grid has an equal size and contains one or zero persons (Schadschneider et al.,

2009). In pedestrian dynamics, unit cells have rectangular (Varas et al., 2007; Ji et al., 2013) or hexagonal (Hartmann,

2010) shapes. Both geometries have advantages and disadvantages (Birch et al., 2007). A finite set of rules routes the

pedestrians locally, according to its boundary conditions, through the scenario (Schadschneider, 2001; Ji et al., 2013).

Since the spatial resolution is restricted by the size of the unit cell, the pedestrians move cell-wise to their targets. This

motion behaviour causes artefacts in comparison to pure euclidean movement (Köster et al., 2011).

Microscopic models simulate pedestrians, similar to cellular automatons, as discrete singular objects. However,

the simulation scenario is in continuous space. For this reason, the spatial resolution is only limited by computational

accuracy. Many microscopic models, like the social force (Helbing et al., 2002) or the centrifugal model (Yu et al.,

2005), are based on physical principles. In these concepts, each object in the scenario has its own potential. The

superposition of all forces controls the equations of the motion of crowds. Another microscopic approach is the use

of utility maximisation (Hoogendoorn and Bovy, 2004). It is based on the assumption that each pedestrian locally

optimises his or her walking behaviour by choosing the route with the least effort. Since an improvement in spatial

resolution increases the computational effort, scenarios with large crowds can not be simulated by very detailed

models in reasonable time. Usually, good simulation accuracy can be achieved even though only a small part of the

total scenario is simulated in detail, while the remaining parts are calculated roughly. Furthermore, some models are

more suitable to reproduce special pedestrian dynamic phenomena than others (Duives et al., 2013). In both cases, it

is necessary to simulate different parts of the scenario with different pedestrian dynamic models. Since persons can

exceed the borders between coupled models, transition rules have to be applied to ensure a coherent transition.

Various hybrid models exist, which carry out these tasks. Anh et al. combine a LWR-model with an agent based

Leader-Follower approach to simulate evacuation behaviour on a road network. The straight parts of the streets

are calculated by the macroscopic model and the cross-section, in which the pedestrians choose their next target, are

simulated in the microscopic scale. Chooramun et al. (2012) designed a concept in which three scales are coupled into

one hybrid model to investigate large area evacuations. The models are encapsulated in compartments (e.g., rooms)

and connected by small local transition regions (e.g., doors). A coupling of two scales is presented by Xiong et al.

(2010). They simulated multiple partitions of a corridor with a microscopic and a macroscopic models. Transition

cells are defined on the shared borders of unequal model types.

Current hybrid models have two common weaknesses. The transition of pedestrians between coupled models is

limited on elected regions of the boundary (e.g., doors, cross-sections). Therefore, a transition is not possible on the

whole border of a model. This approach is sufficient for restricted scenarios (e.g., road networks, buildings) in which

the transition can simply happen on local nodes (e.g., cross-sections, doors), but it is inadequate for settings on open

areas (e.g., public events). In these scenarios, persons can enter a region from any direction. Therefore, the whole

border of a coupled model has to be able to transmit pedestrians to adjacent models. Another weak point of state-of-

the-art hybrid modelling is the inflexibility of exchanging the combined models. There is no broad framework which

supplies a method to connect arbitrary pedestrian dynamic models. Therefore, we develop TransiTUM, a generic

transition framework based on transition zones. In the following we propose a first approach to solve the mentioned

problems (see Figure 1a) for the coupling of a cellular automaton and a microscopic model.

2. Composition of the transition framework

The proposed transition framework couples a more detailed model with a more coarse model. The scenario is

separated by these models into two independent parts. Each model has knowledge solely about components of the

setting which are inside its own layer. The transition framework itself knows about all layers of the scenario. If pedes-

trians approach the border of their current scale they get transmitted by TransiTUM to the adjacent scale. Therefore,

a shared set of parameter has to be assigned to the pedestrians. The minimum set contains the current velocity �vi, the

next target �zi, the diameter dped,i and the current position �oi for each pedestrian Pi. The index i flags pedestrians in the

microscopic model, while the index j flags pedestrians of the mesoscopic model. Additionally, a global peak speed

vmax and the duration of time steps for each scale (Δtds, Δtcs respectively) is necessary. These parameters are sufficient

for successful transformations. The coupled models export parameters after each simulation time step. TransiTUM

reads and modifies this data to enforce the transition of pedestrians. Before the next simulation step, the models import
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Fig. 1. (a) Direction independent transition and flexible exchange of models. (b) Components of the transit area.

the modified parameters and execute the simulation based on that information. The transformation of persons from

one scale to another is based on the position of the pedestrians �oi. If a pedestrian entity is put into another model,

it is deleted from its current scale and added in the new scale at the nearest possible position (see Section 3). If a

pedestrian is placed in one cell of the mesoscopic grid, no further pedestrians can access this cell, since a cell has

a maximum capacity of one person. The composition of the transit system is shown in Figure 1b. The microscopic

and mesoscopic models plus the α-transit area specify the scenario. The mesoscopic model simulates on the αmeso- ,

αout- and αtrans-areas, while the microscopic model simulates the αmicro-, αin- and αtrans-areas. So the αtrans-area of

the scenario is calculated by both coupled models. In this area, the transformation between the different models takes

place. Only pedestrians inside αtrans can be transmitted to another scale. Since no pedestrian should reach the borders

of his current model during one mesoscopic time step Δtcs, the width rtrans of the αtrans-area has to be large enough:

rtrans = vmax · Δtcs (1)

This distance is sufficient, since a transition is executed after each time step Δtcs and since no pedestrian can be faster

than vmax. We define the areas αin and αout as relaxation zones. If pedestrians are converted to another scale, they

mostly have to be shifted to a slightly different position in the scenario. The artefacts caused by the conversion event

can decay in the relaxation zones. Therefore, simulation results taken from αin respectively αout have to be considered

carefully. Due to the relaxation zones, the outcome of αmeso and αmicro should be free of any transition artefacts.

Another problem arises, if the next destination of a person is located outside of his current layer. Then the vector

�zi has to be truncated to the borders of the actual scale (see Figure 2a) until this person gets transformed.

Different pedestrian dynamic models can have different duration of time steps. Therefore, a generic framework

has to support the coupling of models with unequal time steps. Since a finer spatial resolution requires a smaller time

resolution, it is assumed that Δtds ≤ Δtcs. For each coarse time step, Δtcs
Δtds
≥ 1 detailed time steps are necessary to

reach the same amount of simulation time. This proportion is usually no natural number, so the detailed steps do not

match exactly the duration of the coarse time step. The surplus fractions Δt f rac < Δtds gets add up in the following k
simulation steps till

∑
k Δt f rac ≥ Δtds. At that time, an additional time step Δtds is executed. The necessary number dn

of detailed time steps Δtds to match the nth time step Δtcs can be calculated by:

dn =

⌊
n
Δtcs

Δtds

⌋
−
⌊
(n − 1)

Δtcs

Δtds

⌋
(2)

After the execution of the nth mesoscopic time step Δtcs, an amount of dn + 1 microscopic time steps Δtds are ex-

ecuted(see Figure 2b). Subsequently, the interpolation and transition phase is carried out (see Figure 2c). The in-

terpolation of pedestrian positions is necessary to bring the mesoscopic and microscopic time steps in line for the

transformation. We have information about the microscopic positions at the time steps dn and dn + 1, but the positions

at the simulation time step n are required. So we need to interpolate the microscopic positions from �oi to �o∗i :

�o∗i = �oi + �vα · Δtα (3)
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Fig. 2. (a) Reduced target vector �zi. (b) Time flow of the detailed and the coarse scale. (c) Interpolation of a pedestrian’s positions from the dnth

microscopic to the nth mesoscopic step. Small black dots are microscopic and the large red dots mesoscopic positions.

Parameter Δtα is the time interval from the dnth microscopic to the nth mesoscopic step. The velocity �vα can be

calculated by the weighted average value of the velocities �vdn and �vdn+1:

�vα = �vdn

(
1 − Δtα
Δtds

)
+ �vdn+1

Δtα
Δtds

(4)

The procedure for the estimation from the nth mesoscopic to the dnth microscopic step is similar. However, given

the fact that the (n + 1)th mesoscopic time step is not calculated yet (see Figure 2b), an extrapolation from the nth

mesoscopic step has to be executed to find �o∗j:

�o∗j = �o j + �vn (Δtds − Δtα) (5)

After the positions were inter- and extrapolated, the transformation of the pedestrians can be carried out.

3. Transition of the pedestrians

The propagated movement vector �σi is calculated for all microscopic pedestrians Pi in the area of αtrans.

�σi =
�vi

vi
· vmax · Δtcs (6)

A pedestrian can be transformed if his vector �oi approaches the area of αout. So only persons, who approach the

borders of the microscopic model, can be converted to the mesoscopic scale (see Figure3a). A microscopic person Pi

can intersect multiple unoccupied cells. Next all pedestrians Pi are considered, who intersect at least one ”singular-

manned” cells. A cell cm,n is ”singular-manned” if exactly one person intersects this cell cm,n. The pedestrians are

placed in their ”singular-manned” cell with the lowest dCoM value:

dCoM =
∣∣∣∣�oi − �S cm,n

∣∣∣∣ (7)

Equation 7 calculates the distance between the center-of-mass of the pedestrian Pi and of the cell cm,n (see Figure

3b). The remaining Pi are staying on cells, which are manned by multiple persons. These cells get occupied by the

pedestrian with the lowest d∗CoM value (see Figure 3c). Individuals, who are still not transformed, intersect solely with

cells which are not accessible. So the nearest free cell c∗m,n inside of αtrans has to be found for these persons (see

Figure 3d). Therefore, all cells with dCoM ≤ rplace are examined to find the cell with the lowest dCoM value for each

remaining Pi. If dCoM > rplace the mistake of translating the pedestrian to his nearest cell is larger than refusing the

transition of Pi for one time step. The assumption rplace = vmax · Δtcs seems reasonable since a pedestrian can have a

maximum speed of vmax and the time between two transition phases is Δtcs long. After the cells c∗m,n are determined for

all remaining Pi, the pedestrian with the lowest dCoM value is transmitted to his preferred cell c∗m,n. If other pedestrians

have the same c∗m,n, they have to calculate a new nearest cell. If a person can not find an accessible cell, he does not get

transformed during the current transition phase. The process is repeated until all Pi are transmitted to the mesoscopic

scale.
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Fig. 3. (a) P1 and P2 will be transformed since their propagation vectors �σ1 and �σ2 reach the mesoscopic scale. (b) P1 is transformed to the cell

with the lowest distance dCoM . (c) P3 is put into the cell due to the lowest d∗CoM compared to P2 and P3. (d) Search for the nearest free cell,

yellow-crossed cells are not accessible. (e) Collision detection to find accessible space. (f) Selection of the nearest solution.

By the transition from mesoscopic to the microscopic scale, sufficiently large areas have to be found in the con-

tinuous space. Since a pedestrian is assumed as having a circular shape, the minimum needed space is 1
4
πd2

ped,i with

dped,i as the pedestrian’s diameter. At first, the propagation vector �σ j is calculated for each mesoscopic pedestrian Pj

in αtrans:

�σ j =
�v j

v j
· vmax · Δtcs (8)

If �σ j intersects αin, the person can be transformed to the microscopic scale. Based on the centre-of-mass of the

pedestrian’s current cell S cm,n , 2D-collision detection tests (Lin, 1993) are executed to find accessible space to place

Pi in the microscopic scale (see Figure 3e). Thereby, only pedestrians with dCoM ≤ rplace are considered. If multiple

solutions are possible, the spot with the lowest dCoM value is chosen (see Figure 3f). In the case, that no solution could

be found, the pedestrian does not get transformed in the current transition phase.

4. Conclusion

In this paper, the first part of the transition framework TransiTUM was introduced. Doing so, the coupling of

microscopic models with cellular automatons was presented. TransiTUM overcomes two main issues of current

hybrid modelling. Firstly, it is independent of the connected models and can be applied to any pair of microscopic and

mesoscopic models. The coupled models export their current position at the end of each time step Δtcs to an external

data file. TransiTUM executes the transition by modifying this data file. At the beginning of each time step Δtcs,

the coupled models import the new positions to start the next simulation steps. Therefore, the simulation is executed

independently from the transition of pedestrians. Secondly, pedestrians can enter the transit area from any direction.

Furthermore, a coupling of different time scales is possible, since TransiTUM matches unequal time steps by inter-
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and extrapolation routines during the transition phase. If pedestrians get transmitted to another model, they are placed

in the nearest possible position or into the closest cell to reduce conversion artefacts. Relaxation zones between the

coupled models help to minimise left over disruptions. In further research, the coupling of mesoscopic models with

the macroscopic scale will be developed. In addition, we plan to develop a zoom-aproach which allows to dynamically

switch the applied simulation model for a given region of interest.
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