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Abstract—The wiretap channel models secure communication
in the presence of a non-legitimate eavesdropper who has to
be kept ignorant. In this paper, the arbitrarily varying wiretap
channel (AVWC) is studied, in which the channel to both
legitimate receiver and eavesdropper may vary in an unknown
and arbitrary manner from channel use to channel use. It has
been shown that for AVCs coordination between the transmitter
and legitimate receiver based on common randomness (CR) is
indispensable for reliable communication. Approaches taken so
far yield CR-assisted strategies where the needed amount of CR
increases unbounded with the block length. In this paper, it is
shown that if we allow for a small but non-vanishing average
probability of error and information leakage (in terms of weak
secrecy), the amount of CR is always finite and independent
of the block length. The corresponding secrecy capacity equals
the one with asymptotically vanishing performance requirements.
Furthermore, it is shown that the average decoding error at the
eavesdropper can be made arbitrarily close to 1 regardless of the
applied decoding strategy.

I. INTRODUCTION

The security of sensitive information from unauthorized
access becomes more and more important as rapid develop-
ments in communications systems make information available
almost everywhere. Common approaches to keep information
secret rely on cryptographic techniques which are based on
the assumption of insufficient computational capabilities of
non-legitimate receivers. Such techniques are becoming more
insecure due to increasing computational power but also due
to improved algorithms and recent advances in number theory.

In particular, wireless communication systems are inherently
vulnerable for eavesdropping as the wireless channel makes
the communication easily accessible to external eavesdroppers.
But on the other hand, it also offers the possibility to apply
physical layer based security approaches. Such concepts are
becoming more attractive, since they solely use the physical
properties of the wireless channel to establish security.

The field of physical layer security or information theoretic
security was initiated by Wyner, who introduced the wiretap
channel [1]. It models secure communication with on legit-
imate transmitter-receiver pair and one eavesdropper to be
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kept ignorant. Recently, there is growing interest in physical
layer security as it is a promising approach to embed secure
communication in wireless networks; see for instance [2–4].

Most of previous studies have in common that all channels
are assumed to be perfectly known and fixed during the whole
time of transmission. In contrast to that, we consider in this
paper channels that may vary in an arbitrary and unknown
manner from channel use to channel use. For example, such
conditions apply to fast fading wireless channels but also
to scenarios with more malicious eavesdroppers which jam
the legitimate transmission. Such unknown varying channel
conditions are perfectly captured by the concept of arbitrarily
varying channels (AVC) [5–7]. Accordingly, the communi-
cation problem at hand is given by the arbitrarily varying
wiretap channel (AVWC) which is introduced in Section II.
In the context of AVCs, it has been shown that common
randomness (CR) is an important and often necessary resource
for reliable communication over AVCs; in particular, if the
channel is symmetrizable [5–7]. CR enables transmitter and
receiver to use CR-assisted strategies by coordinating their
choice of encoder and decoder. This is discussed in Section III.

In previous works, the secrecy capacity of the AVWC
is studied under the assumptions of asymptotically vanish-
ing average probability of decoding error at the legitimate
receiver and information leakage to the eavesdropper [8–
10]. Constructions of optimal coding strategies then yield
CR-assisted codes relying on CR whose amount increases
unbounded with the block length. In this paper, we show
that for small but non-vanishing probability of error and
information leakage, the amount of such resources needed to
achieve capacity is finite, i.e., in particular independent of the
block length. The corresponding secrecy capacity equals the
one with asymptotically vanishing performance requirements.
Interestingly, the construction used here holds only for the
weak secrecy criterion but not for the strong secrecy criterion.
However, the CR-assisted code can be constructed in such
a way that the average decoding error at the eavesdropper
can be made arbitrarily close to 1 depending only on the
non-vanishing performance requirements. This holds for any
decoding strategy the eavesdropper might apply; even if it
depends on the actual state sequence (which might be known
to the eavesdropper but not to the legitimate users). Thus,
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the confidential communication can be protected against this
kind of attack. This is discussed in detail in Section IV and
the corresponding proofs are given in Section V. Finally, a
conclusion is given in Section VI.1

II. ARBITRARILY VARYING WIRETAP CHANNELS

Let X and Y , Z be finite input and output sets and S be
a finite state set. The channels to the legitimate receiver and
the eavesdropper are given by W : X × S → P(Y) and
V : X × S → P(Z) respectively. Then for a given state
sequence sn ∈ Sn of length n, the discrete memoryless chan-
nel to the legitimate receiver is given by Wn(yn|xn, sn) :=∏n
i=1W (yi|xi, si) for all yn ∈ Yn and xn ∈ Xn. Then the

arbitrarily varying channel (AVC)W to the legitimate receiver
is the family of channels for all state sequences sn ∈ Sn, i.e.,

W :=
{
Wn(·|·, sn) : sn ∈ Sn

}
.

Accordingly, for given state sequence sn ∈ Sn the dis-
crete memoryless channel to the eavesdropper is given by
V n(zn|xn, sn) :=

∏n
i=1 V (zi|xi, si) for all zn ∈ Zn and

xn ∈ Xn, and, further, V := {V n(·|·, sn) : sn ∈ Sn}.

Definition 1. The arbitrarily varying wiretap channel (AVWC)
W is the family of pairs of channels with common input as

W :=
{(
Wn(·|·, sn), V n(·|·, sn)

)
: sn ∈ Sn

}
.

The task is now to establish a reliable communication
between the transmitter and the legitimate receiver while
keeping the eavesdropper completely ignorant of it.

Definition 2. An (n, Jn)-code C for the AVWC W consists of
a stochastic encoder

E : Jn → P(Xn), (1)

i.e., a stochastic matrix, with a set of messages Jn =
{1, ..., Jn} and a decoder ϕ : Yn → Jn given by a collection
of disjoint decoding sets{

Dj ⊂ Yn : j ∈ Jn
}
. (2)

In contrast to the classical wiretap channel, the unknown
varying channel states have to be taken into account for
establishing reliable communication. Therefore, for given state
sequence sn ∈ Sn, the average probability of decoding error
at the legitimate receiver is given by

ēn(sn|C) :=
1

|Jn|
∑
j∈Jn

∑
xn∈Xn

Wn(Dcj |xn, sn)E(xn|j)

and further ēn(C) := maxsn∈Sn ēn(sn|C).
To ensure confidentiality of the message for all possible

state sequences sn ∈ Sn simultaneously, we require either

max
sn∈Sn

1

n
I(J ;Znsn |C) ≤ δn (3)

1Notation: Discrete random variables are denoted by capital letters and
their realizations and ranges by lower case and script letters; N is the set of
positive integers; P(·) is the set of all probability distributions; ‖P1 − P2‖
is the total variation distance of probability distributions P1 and P2 on A
defined by ‖P1 − P2‖ := 1

2

∑
a∈A |P1(a)− P2(a)|.

or
max
sn∈Sn

I(J ;Znsn |C) ≤ δn (4)

for δn > 0 with J the random variable uniformly distributed
over the set of messages Jn and Znsn = (Zs1 , ..., Zsn)
the channel output at the eavesdropper for state sequence
sn ∈ Sn. The first criterion (3) is known as weak secrecy
[1, 11] while the latter (4) is named strong secrecy [12, 13]
as it is strengthened by dropping the division by the block
length n. Both expressions describe how much information of
the confidential message is leaked to the eavesdropper. While
(3) has the form of a leakage rate, the stronger version (4)
actually corresponds to the total amount of information that is
leaked.

Definition 3. A non-negative number R is an achievable se-
crecy rate for the AVWC W if for all τ > 0 there is an n(τ) ∈
N and a sequence of (n, Jn)-codes C such that for all n ≥ n(τ)
we have 1

n log Jn ≥ R − τ , maxsn∈Sn ēn(sn|C) ≤ λn, and
maxsn∈Sn I(J ;Znsn |C) ≤ δn (or maxsn∈Sn

1
nI(J ;Znsn |C) ≤

δn) while λn, δn → 0 as n→∞. The secrecy capacity CS is
given by the supremum of all achievable secrecy rates R.

It has been shown that such traditional (deterministic) ap-
proaches as given in Definition 2 might not suffice to establish
reliable communication over AVCs; in particular, if the chan-
nel is symmetrizable then there is no communication possible
[6, 7, 9, 10]. This necessitates the use of more sophisticated
strategies based on coordination resources such as common
randomness (CR) as discussed in the following section.

III. COMMON RANDOMNESS ASSISTED COMMUNICATION

If common randomness is available at all users, then the
transmitter and legitimate receiver can use this resource to co-
ordinate their choice of encoder and decoder. This is modeled
by a random variable Γ taking values in Gn according to the
distribution PΓ ∈ P(Gn). Then, encoder (1) and decoder (2)
depend on the particular realization γ ∈ Gn.

Definition 4. A CR-assisted (n, Jn,Gn, PΓ )-code CCR for the
AVWC W is given by a family of traditional codes{

C(γ) : γ ∈ Gn
}

together with a random variable Γ taking values in Gn
according to PΓ ∈ P(Gn).

Using such a CR-assisted code CCR, the mean average
probability of error for state sequence sn ∈ Sn is then given
by ēCR,n(sn|CCR) = EΓ [ēn(sn|C(Γ ))], i.e.,

ēCR,n(sn|CCR) :=
1

|Jn|
∑
j∈Jn

∑
γ∈Gn

∑
xn∈Xn

×Wn(Dcγ,j |xn, sn)Eγ(xn|j)PΓ (γ)

and ēCR,n(CCR) := maxsn∈Sn ēCR,n(sn|CCR). The strong
secrecy criterion (4) becomes maxsn∈Sn I(J ;Znsn |CCR) =
maxsn∈Sn EΓ [I(J ;Znsn |C(Γ ))], i.e.,

max
sn∈Sn

∑
γ∈Gn

I(J ;Znsn |C(γ))PΓ (γ) ≤ δn.
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The definition of the mean weak secrecy criterion (3) for CR-
assisted codes follows accordingly.

Definition 5. A non-negative number R is a CR-assisted
achievable secrecy rate for the AVWC W if for all τ > 0
there is an n(τ) ∈ N and a sequence of CR-assisted
(n, Jn,Gn, PΓ )-codes CCR such that for all n ≥ n(τ) we
have 1

n log Jn ≥ R − τ , maxsn∈Sn ēCR,n(sn|CCR) ≤
λn, and maxsn∈Sn I(J ;Znsn |CCR) ≤ δn (or
maxsn∈Sn

1
nI(J ;Znsn |CCR) ≤ δn) while λn, δn → 0 as

n→∞. The CR-assisted secrecy capacity CS,CR is given by
the supremum of all achievable secrecy rates R.

From [9] we know that there exists CR-assisted codes which
satisfy the following properties:

Theorem 1. For any CR-assisted secrecy rate R < CS,CR,
there exist a constant ε > 0 and an n0 ∈ N such that for
all n ≥ n0 there exists a CR-assisted (n, Jn,Gn, PΓ )-code
with 1

n log Jn ≥ R,

max
sn∈Sn

∑
γ∈Gn

ēn(sn|C(γ))PΓ (γ) ≤ e−nε, (5)

and
max
sn∈Sn

∑
γ∈Gn

I(J ;Znsn |C(γ))PΓ (γ) ≤ e−nε. (6)

The result in Theorem 1 provides for any secrecy rate R <
CS,CR, a CR-assisted code whose average decoding error and
strong secrecy decrease both exponentially fast, cf. (5)-(6). In
addition, we know from [9] that the following is true as well:

Theorem 2. For any CR-assisted secrecy rate R < CS,CR,
there exist a constant ε > 0 and an n0 ∈ N such that for
all n ≥ n0 there exists a CR-assisted (n, Jn,Gn, PΓ )-code
with 1

n log Jn ≥ R, ēCR,n(CCR) ≤ e−nε as in (5), and

max
sn∈Sn

∑
γ∈Gn

∥∥PJZn
sn
,γ − PJ,γPZn

sn
,γ

∥∥PΓ (γ) ≤ e−nε (7)

with PJZn
sn
,γ(j, zn) for all j ∈ Jn and zn ∈ Zn is the

joint distribution according to the codebook C(γ) and ‖ · ‖
is the total variation distance. Note that in this case, only the
randomized encoding depends on the particular γ ∈ Gn.

Having the total variation distance between the “true” joint
distribution PJZn

sn
,γ and its corresponding product distribution

PJ,γPZn
sn
,γ small, cf. (7), is a desirable property. In fact,

not only the mutual information (6) becomes small, but also
this implies a worst behavior of decoding performance at
the eavesdropper in the sense that its average decoding error
approaches 1 exponentially fast for all possible decoding
strategies the eavesdropper might use, cf. [9]. This establishes
an operational meaning for the secrecy requirements.

However, such codes realizing (5)-(7) usually require a
“strong” coordination between transmitter and receiver. In
particular, with the construction above, cf. Theorems 1-2 and
[9], the amount of common randomness, that is needed to meet
the requirement of vanishing decoding error, strong secrecy,

and total variation distance increases unbounded with the block
length.

Due to the need of unlimited coordination resources, such
codes are far away from being applicable in practical systems.
Therefore, the question arises if it is possible to control the
amount of needed resources and to achieve the same rates with
a fixed amount of CR (i.e. independent of the block length
n) when we allow for fixed but non-vanishing probability of
decoding error and non-vanishing information leakage.

IV. FINITE COORDINATION RESOURCES

We will study this question for CR-assisted codes that con-
sist of a finite number of deterministic codes, i.e., |Gn| <∞,
chosen according to a uniform distribution. Important is that
we will stick to the weak secrecy criterion (3) in the following.

Definition 6. A non-negative number R is a (λ, δ)-achievable
secrecy rate with resource L if for all τ > 0 there is an
n(τ) ∈ N such that for all n ≥ n(τ) there exist L deterministic
(n, Jn)-codes C(γi), γi = 1, ..., L, (each of rate 1

n log Jn ≥
R− τ ) with

max
sn∈Sn

1

L

L∑
γi=1

ēn(sn|C(γi)) ≤ λ

and

max
sn∈Sn

1

L

L∑
γi=1

1

n
I(J ;Znsn |C(γi)) ≤ δ.

The supremum of all (λ, δ)-achievable secrecy rates with
resource L is denoted by CS(λ, δ, L).

We have the following result.

Theorem 3. Let λ ∈ (0, 1) and δ ∈ (0, 1) be arbitrary but
fixed. Then for every secrecy rate R < CS,CR there exists a
finite number L such that

R < CS(λ, δ, L).

Proof: The proof can be found in Section V-A.

Corollary 1. Every secrecy rate R < CS,CR is achievable with
a finite amount of coordination resources.

This result shows that if we make the practical assumptions
of finite, non-vanishing average probability of decoding error
and secrecy leakage, then there exists a “good” CR-assisted
code consisting of a finite number of L deterministic codes
(independent of the block length n). Note that Theorem 3
only holds for the weak secrecy criterion. At least the proof
technique used in this paper does not directly carry over to
the strong secrecy criterion.

As discussed before in Section III, the property of small
total variation distance, cf. (7), is desirable as well. Thus, it
is further important and interesting to study the following:

Theorem 4. Let λ ∈ (0, 1) and µ ∈ (0, 1) be arbitrary but
fixed. Then for every secrecy rate R < CS,CR there exists an
n0 ∈ N and an L0 > 0 such that for all n ≥ n0 and L ≥ L0,
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there exists L deterministic codebooks C(γi), γi = 1, ..., L
with

max
sn∈Sn

1

L

L∑
γi=1

ēn(sn|C(γi)) ≤ λ

and

max
sn∈Sn

1

L

L∑
γi=1

∥∥PJZn
sn
,γi − PJ,γiPZn

sn
,γi

∥∥ ≤ µ. (8)

Proof: The proof can be found in Section V-B.

This result shows that if we allow for a finite, non-vanishing
average probability of decoding error and total variation dis-
tance, then there exists a “good” CR-assisted code consisting
of L deterministic codes (independent of the block length n).

Similarly as in [9], with this result we immediately obtain
a bound on the decoding performance of the eavesdropper. To
be on the safest side from a secrecy perspective, we assume
the worst which is an eavesdropper who knows the particular
state sequence sn ∈ Sn and the used codebook C(γi), i.e., in
particular the realization γi ∈ {1, ..., L}. Then he may choose
any decoder ψ : Zn ×Sn × {1, ...L} → Jn given by disjoint
decoding sets {

D̃γi,sn,j ⊂ Zn : j ∈ Jn
}
.

Then, the associated average probability of error (for fixed
sn ∈ Sn and γi ∈ Gn) is given by

ēEve,n({D̃γ,sn,j}, γi, sn)

:=
1

|Jn|
∑
j∈Jn

∑
xn∈Xn

V n(D̃cγi,sn,j |x
n, sn)Eγi(x

n|j).

For a CR-assisted code with L elements we then have

ēEve,n({D̃γi,sn,j}, sn) :=
1

L

L∑
γi=1

ēEve,n({D̃γi,sn,j}, γi, sn).

Theorem 5. For any given CR-assisted (n, Jn,Gn, PΓ )-code
of Definition 4 of rate R < CS,CR with finite coordination
resource |Gn| = L satisfying (8) of Theorem 4, we have for
all possible decoding strategies of the eavesdropper

min
sn∈Sn

1

L

L∑
γi=1

ēEve,n({D̃γi,sn,j}, γi, sn) ≥ 1− 1

2nR
− µ. (9)

Proof: The proof can be found in Section V-C.

The previous results show that if we allow for a small,
but non-vanishing average probability of decoding error and
information leakage, we able to find a CR-assisted code with
finite coordination resources if we stick to the weak secrecy
criterion. Unfortunately, for the strong secrecy criterion the
proof technique used above does not hold. However, we can
construct this code in such a way that the decoding error at the
eavesdropper is arbitrarily close to 1 regardless of the decoding
strategy the eavesdropper applies. Moreover, the eavesdropper
is able to choose his decoding sets depending on the particular
state sequence sn ∈ Sn. But however, the decoding error
approaches 1 − µ, where µ > 0 is the information leakage
that we tolerate.

V. PROOFS

In the following we present the proofs of the main results.

A. Proof of Theorem 3
Let λ ∈ (0, 1), δ ∈ (0, 1), and α1, α2 > 0 be arbitrary but

fixed. Then for any R < CS,CR we know from Theorem 1 that
there is a CR-assisted code CCR such that the decoding error
probability and information leakage satisfy (5) and (6). Thus,
the probability that for finite |Gn| = L and fixed sn ∈ Sn this
is not satisfied, is given by

P
{ 1

L

L∑
γi=1

ēn(sn|C(γi))≥λ or
1

L

L∑
γi=1

1

n
I(J ;Znsn |C(γi))≥δ

}
≤ P

{
exp

(
α1

L∑
γi=1

ēn(sn|C(γi))
)
≥ exp(α1λL)

}
+ P

{
exp

(
α2

L∑
γi=1

1

n
I(J ;Znsn |C(γi))

)
≥ exp(α2δL)

}
≤ exp(−α1λL)

L∏
γi=1

E
[

exp
(
α1ēn(sn|C(γi))

)]
+ exp(−α2δL)

L∏
γi=1

E
[

exp
(α2

n
I(J ;Znsn |C(γi))

)]
.

(10)

In the following, we consider both terms in (10) separately. By
the fact that ēn(sn|C(γi)) ≤ 1 always holds and by standard
arguments, cf. also [14], we obtain for the expectation in the
first term

E
[

exp
(
α1ēn(sn|C(γi))

)]
= E

[ ∞∑
k=0

(
α1ēn(sn|C(γi))

)k
k!

]
≤ E

[
1 +

∞∑
k=1

αk1
k!
ēn(sn|C(γi))

]
≤ 1 +

( ∞∑
k=1

αk1
k!

)
e−nε

= 1 + e−nε(eα1 − 1)

< 1 + exp(−nε+ α1)

so that we obtain for the first term

P
{

exp
(
α1

L∑
i=1

ēn(sn|C(γi))
)
≥ exp(α1λL)

}
≤ exp(−α1λL)

(
1 + exp(−nε+ α1)

)L
.

Now, taking all state sequences sn ∈ Sn into account yields

P
{

exp
(
α1

L∑
γi=1

ēn(sn|C(γi))
)
≥exp(α1λL) for some sn∈ Sn

}
≤ exp(−α1λL)

(
1 + exp(−nε+ α1)

)L
exp(n ln |S|)

≤ exp(−nελL+ ln 2L+ n ln |S|)
= exp

(
− nελ

(
L−

(
ln 2
nελ + ln |S|

ελ

)))
(11)
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where the second step follows with the choice α1 = nε.
Now, if we choose

L > L1 :=
1

ελ
ln |S|, (12)

then the probability that the average probability of error of the
constructed code is smaller than the required λ is

P
{ 1

L

L∑
γi=1

ēn(sn|C(γi)) < λ for all sn ∈ Sn
}
−→
n→∞

1

exponentially fast as given by (11).
Now we turn to the second term in (10). We obtain for the

expectation

E
[

exp
(α2

n
I(J ;Znsn |C(γi))

)]
= E

[
1 +

∞∑
k=1

αk2
k!

( 1

n
I(J ;Znsn |C(γi))

)k]
≤ E

[
1 +

∞∑
k=1

αk2
k!

I(J ;Znsn |C(γi))
n

ck−1
]

≤ E
[
1 +

1

n

I(J ;Znsn |C(γi))
c

∞∑
k=1

αk2
k!
ck
]

≤ E
[
1 +

I(J ;Znsn |C(γi))
nc

exp(α2c)
]

≤ 1 +
exp(−nε+ α2c)

nc

with c a constant upper bound (depending only on the
cardinalities of the message set and output alphabet of the
eavesdropper) on the mutual information term I(J ;Znsn |C(γi))
so that the second term in (10) becomes

P
{ 1

L

L∑
γi=1

1

n
I(J ;Znsn |C(γi)) ≥ δ

}
≤ exp(−α2δL)

(
1 +

exp(−nε+ α2c)

nc

)L
.

Now, taking all state sequences sn ∈ Sn into account yields

P
{ 1

L

L∑
γi=1

1

n
I(J ;Znsn |C(γi)) ≥ δ for some sn ∈ Sn

}
≤ exp(−α2δL)

(
1 +

exp(−nε+ α2c)

nc

)L
exp(n ln |S|)

≤ exp
(
− nεδ

c

(
L−

( ln 2c

nεδ
+

ln |S|c
εδ

)))
(13)

with the choice α2 = nε
c .

Now, if we choose

L > L2 :=
c

εδ
ln |S|,

then the probability that the information leakage rate of the
constructed code is greater than the required δ is

P
{ 1

L

L∑
γi=1

1

n
I(J ;Znsn |C(γi)) < δ for all sn ∈ Sn

}
−→
n→∞

1

exponentially fast as given by (13).
So if

L > max{L1, L2} =
ln |S|
ε

max
{ 1

λ
,
c

δ

}
,

then the probability that the constructed CR-assisted code
(consisting of finite L deterministic codes) does not satisfy
the λ-requirement on the probability of error and the δ-
requirement on the secrecy for all state sequences sn ∈ Sn is
exponentially small. This completes the proof.

B. Proof of Theorem 4

Basically, the proof follows the lines of Theorem 3 in
Section V-A for the weak secrecy criterion so that we highlight
only the main differences.

As in Section V-A let λ, µ ∈ (0, 1) and α1, α3 > 0 be
arbitrary but fixed. Then we know from Theorem 2 that exists
“good” CR-assisted codes for any secrecy rate R < CS,CR
where the conditions (5) and (7) are satisfied. Similarly, the
probability that for finite |Gn| = L and fixed sn ∈ Sn this is
not true, is given by

P
{ 1

L

L∑
γi=1

ēn(sn|C(γi)) ≥ λ or

1

L

L∑
γi=1

∥∥PJZn
sn
,γi − PJ,γiPZn

sn
,γi

∥∥ ≥ µ}
≤ exp(−α1λL)

L∏
γi=1

E
[

exp
(
α1ēn(sn|C(γi))

)]
+ exp(−α3µL)

L∏
γi=1

E
[

exp
(
α3

∥∥PJZn
sn
,γi−PJ,γiPZn

sn
,γi

∥∥)].
(14)

The first term follows exactly as in the proof of Theorem 3,
cf. Section V-A. So if we choose

L > L1 :=
1

ελ
ln |S|,

then the probability that the average probability of decoding
error at the legitimate receiver is smaller than the required λ
goes exponentially fast to 1, cf. also (12).

The derivation of the second term in (14) basically follows
by replacing the weak secrecy criterion by the total variation
distance term. In more detail, for the expectation we get

E
[

exp(α3‖PJZn
sn
,γi − PJ,γiPZn

sn
,γi‖)

]
= 1 +

∞∑
k=1

αk3
k!

E
[
‖PJZn

sn
,γi − PJ,γiPZn

sn
,γi‖k

]
= 1 +

∞∑
k=1

αk3
k!

E
[
‖PJZn

sn
,γi − PJ,γiPZn

sn
,γi‖

× ‖PJZn
sn
,γi − PJ,γiPZn

sn
,γi‖k−1

]
. (15)

Since

‖PJZn
sn
,γi−PJ,γiPZn

sn
,γi‖≤‖PJZn

sn
,γi‖+‖PJ,γiPZn

sn
,γi‖=2
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we get for the term in (15) the following bound

E
[

exp(α3‖PJZn
sn
,γi − PJ,γiPZn

sn
,γi‖)

]
≤ 1 +

∞∑
k=1

αk3 · 2k−1

k!
E
[
‖PJZn

sn
,γi − PJ,γiPZn

sn
,γi‖
]

≤ 1 +
e−nε

2

∞∑
k=1

αk3 · 2k

k!

< 1 +
exp(−nε+ 2α3)

2
.

Now, if we choose α3 = nε
2 , we can follow the proof of

Theorem 3 to arrive, similarly as in (13), at

P
{ 1

L

L∑
γi=1

‖PJZn
sn
,γi− PJ,γiPZn

sn
,γi‖ ≥ µ for some sn∈ Sn

}
≤ exp(−α3µL)

(
1 +

exp(−nε+ 2α3)

2

)L
exp(n ln |S|)

≤ exp
(
− nεµ

2

(
L−

(2 ln 2

nεµ
+

ln |S|
εµ

)))
.

So with

L > L3 :=
1

εµ
ln |S|,

the probability that the total variation distance is smaller
than the required µ goes exponentially fast to 1; similarly
as in Section V-A for the weak secrecy criterion. So with
L > max{L1, L3} the theorem is proved.

C. Proof of Theorem 5

Let γi ∈ Gn with 1 ≤ γi ≤ L be fixed. Then for every sn ∈
Sn and γi ∈ Gn the eavesdropper can choose his decoding sets
{D̃γi,sn,j} accordingly and we obtain for each such choice

ēEve,n({D̃γi,sn,j}, γi, sn)

≥ 1− 1

2nR
− ‖PJZn

sn
,γi − PJ,γiPZn

sn
,γi‖.

A similar derivation can be found for instance in [15, Section
2.2] for the compound wiretap channel or in [16, Section 3]
for the wiretap channel with side information.

With this we get for the CR-assisted code with L elements

ēEve,n({D̃γi,sn,j}, sn)

=
1

L

L∑
γi=1

ēEve,n({D̃γi,sn,j}, γi, sn)

≥ 1− 1

2nR
− 1

L

L∑
γi=1

‖PJZn
sn
,γi − PJ,γiPZn

sn
,γi‖

≥ 1− 1

2nR
− µ

by Theorem 4. As this holds for all sn ∈ Sn simultaneously,
we obtain (9) completing the proof of the theorem.

VI. CONCLUSION

The AVWC models secure communication in the presence
of a non-legitimate eavesdropper and unknown varying chan-
nel conditions. It has been shown that CR is indispensable for
reliable communication under AVCs. If the average decoding
error and information leakage are required to vanish asymptot-
ically, the amount of needed CR increases unbounded with the
block length. It is shown that allowing for a small, but non-
vanishing average decoding error and information leakage,
allows to use CR-assisted codes that require only a finite
amount of CR independent of the block length. Surprisingly,
the corresponding proof technique only holds for the weak
secrecy criterion and the total variation distance. The latter has
the practically relevant consequence that the decoding error at
the eavesdropper can be made arbitrarily close 1 regardless
of his decoding strategy. It holds for an eavesdropper who
can adapt his decoding sets according to the actual state
sequence. If these results extend to the strong secrecy criterion
is unknown and an interesting question for future work.
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