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ABSTRACT

Image registration is described as the process of bringing two or more images into spatial
alignment. An important application of image registration is the construction of a larger
field of view of a scene from its partially overlapping observations. Transformations to
bring such partial images into an alignment can be estimated by exploiting different prop-
erties of images, ranging from extracting sparse feature sets to using full image content.
Intensity-based image registration is a remarkable subcategory of these approaches which
uses image intensity values directly. Intensity-based image registration methods address
the consistency between partial images in terms of pixel intensity value correspondences
in their overlapping region. Nevertheless, estimation of a plausible transformation using
only local intensity correspondences can be difficult especially when the size of overlap is
small or when the amount of shared information is insufficient to drive an optimization
procedure. In such cases, it is often a challenge to find a solution that is consistent, both
locally and globally. Hence, this thesis investigates different consistency measures to be
used as regularization constraints in intensity-based registration of partial images.

We, first, present a new technique called structure propagation for creating structural prob-
ability maps based on the geometry of locally salient structures. This approach enables
us to generate “perceptually good” artificial structures beyond the observed partial image
regions. The probabilistic structures are inferred using the perceptual properties of the
prominent features contained in the partial observations. We show how structural prob-
ability maps can be used to assess the consistency when creating extended field of view
images from partial observations. Second, we introduce a novel regularization term into
the registration framework to ensure global shape consistency. To this end, we propose to
use the Hough space parametrization of a known target anatomy or region together with a
voting scheme during registration. Learned parametrization of target shapes helps us to
constrain possible transformations and avoid locally consistent but globally inconsistent
transformation estimates. We demonstrate how the introduced regularization term can
be effectively employed for registering partial observations of a scene. The proposed tech-
niques have been evaluated on several medical applications including microscopy image
stitching and histology volume reconstruction.

In this thesis, we aim at developing a novel approach to classical image registration
problems by introducing contextual consistency which benefits from the recent advances
in computer vision and machine learning. This thesis will hopefully bring new insights
into computer vision tasks dealing with field of view extension.

Keywords:
Medical Image Registration, Structural Consistency, Field-of-view Extension, Mosaicing,
Stitching






ZUSAMMENFASSUNG

Unter Bildregistrierung versteht man den Prozess, bei welchem zwei oder mehr Bilder
raumlich aneinander ausgerichtet werden. Eine wichtige Anwendung fiir die Bildregistrie-
rung ist die Erweiterung des sichtbaren Bereichs bei sich teilweise iiberlappenden Beob-
achtungsbereichen. Die Transformationen um solche Teilbereiche aneinander auszurich-
ten konnen durch Ausnutzung verschiedener Eigenschaften der Einzelbilder abgeschétzt
werden, angefangen beim Extrahieren von sparse-feauture-sets bis hin zur Ausnutzung
des gesamten Bildinhalts. Intensititsbasierte Bildregistrierung ist eine bedeutende Unterka-
tegorie dieser Ansétze, bei welcher die Bildintensitdt direkt verwendet wird. Die inten-
sitdtsbasierte Bildregistrierungs-Verfahren greifen das Thema von Konsistenz zwischen
Teilbilder nur im Sinne der Pixelintensitidtswert-Korrespondenzen in ihrer tiberlappenden
Region auf. Trotzdem kann die Schédtzung einer plausiblen Transformation allein mit lo-
kalen Intensitdtskorrespondenzen problematisch sein, insbesondere wenn die Grofse der
Uberlappungen klein ist oder wenn die Gesamtmenge der verfiigbaren Informationen un-
zureichend ist, um ein Optimierungsverfahren durchzufiihren. In solchen Fillen ist es oft
eine Herausforderung eine Losung zu finden, die sowohl lokal als auch global konsistent
ist. Daher werden im Rahmen dieser Dissertation unterschiedliche Konsistenz-Ansétze
untersucht, um sie als Regularisierungseinschrankungen bei der intensitdtsbasierten Regis-
trierung von Teilbildern einzusetzen.

Zuerst préasentieren wir eine neue Technik namens structure propagation fiir die Erstellung
von Strukturwahrscheinlichkeitskarten basierend auf der Geometrie von lokal auffilligen
Strukturen. Dieser Ansatz ermoglicht es uns, “gut wahrnehmbare” kiinstliche Strukturen
zu erzeugen, die iiber die beobachteten Teilbildbereiche hinausgehen. Die probabilistischen
Strukturen werden aus den Wahrnehmungsseigenschaften der in den Teilbeobachtungen
enthaltenen auffilligen Features abgeleitet. Wir zeigen, wie die Strukturwahrscheinlich-
keitskarten verwendet werden konnen, um wéahrend der Erzeugung eines erweiterten
Sichtfeldes aus partiellen Beobachtungen die Konsistenz zu bewerten. Aufierdem fithren
wir einen neuartigen Regularisierungs-Begriff ein, damit die globale Gesamtform des Bil-
des erhalten bleibt. Zu diesem Zweck schlagen wir vor, die Houghraum Parametrisierung
einer bekannten Ziel-Anatomie oder einer Region zusammen mit einem Auswahlschema
bei der Registrierung verwenden. Die gelernte Parametrisierung der Ziel-Objekte hilft uns,
die mogliche Transformationen zu beschrianken und die lokal konsistente aber global in-
konsistente Transformationsabschédtzungen zu vermeiden. Wir zeigen, wie der eingefiihrte
Regularisierungsterm effektiv zur Registrierung von Teil-Beobachtungen einer Szene einge-
setzt werden kann. Der Einsatz der vorgeschlagenen Techniken wurde fiir verschiedene me-
dizinische Anwendungen evaluiert, einschlieflich der Bereiche Mikroskopiebild-Stitching
und Volumenrekonstruktionen in der Histologie.

Diese Dissertation zielt darauf ab einen neuartigen Ansatz fiir klassischen Bildregistrier-
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KAPITEL 0: ZUSAMMENFASSUNG

ungs-Problemen zu entwickeln, indem eine inhaltlichen Konsistenz eingefiihrt wird, die
von den jiingsten Fortschritten in Computervision und maschinellem Lernen profitiert.
Diese Dissertation wird hoffentlich neue Erkenntnisse fiir Aufgabenstellungen im Bereich
der Computervision erbringen, welche mit Sichtfeld-Erweiterung zu tun haben.

Schlagworter:
Bildregistrierung, Strukturkonsistenz, Sichtfeld-Erweiterung, Mosaikierung
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Introduction and Background






CHAPTER
ONE

INTRODUCTION

With the advent of sophisticated image analysis and scene understanding techniques, hav-
ing a large field-of-view in many applications ranging from terrestrial imaging to computer
vision to medical imaging has become crucial for having more reliable measurements as
well as making better generalizations from such measurements. However, the fundamen-
tal limitation of existing image acquisition devices in capturing larger regions with high
resolution still remains a challenge and requires additional efforts to do the same. A typi-
cal approach for reconstructing a large field-of-view with sufficient image resolution is to
combine partially overlapping high resolution images covering different parts of the scene,
leading to an extended field-of-view.

There are several ways for combining partial images of a particular scene. If possible,
the coordinates of the partial images can be recorded during the acquisition phase. Then,
the partial images can be positioned in a global scene where post-processing steps such
as blending might be necessary to account for the global illumination differences between
partially overlapping images. Although such simple procedures might be applicable when
the scene being imaged is static, more sophisticated techniques are necessary to account
for possible deformations, which are unavoidable in most real world applications. This
process gets usually more complicated if the coordinates of partial images in the global
scene are inaccurately recorded or even totally unknown. Moreover, having an extended
field-of-view presents further challenges if, in particular, the acquisitions are performed in
an uncontrolled manner and an overlap between the partial images cannot be guaranteed.

Majority of typical approaches for having an extended field-of-view in such scenarios em-
ploy image registration techniques for estimating transformations for every partial image
of the scene. Transformations are then used to bring images into a consistent configuration
in the global scene. The alignment of partial images can be handled pairwise where pairs of
images are aligned together in a consecutive manner or groupwise where all partial images
are registered simultaneously. Simultaneous approaches have the advantage of obtaining
a globally more consistent alignment at the cost of greater computational load.

In both subgroups of image registration techniques, estimation of transformations falls
under two categories; geometric and iconic. Approaches employing a geometric or feature-
based registration exploit the geometrical properties of the underlying scene for estimating
transformation parameters. Usually, interest points derived from a particular image are
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FIGURE 1.1.: Inference of surfaces and surface intersections from noisy data using tensor voting.
Figures and caption are from [Mord 05]. Courtesy of Philippos Mordohai.

matched to the interest points detected in another image to obtain correspondences between
them. Transformations are then estimated based on the established correspondences. Iconic
or intensity-based registration algorithms, on the other hand, take full advantage of image
intensities either by comparing them directly or by exploiting the statistical relationships
between their distributions.

Both classes of registration techniques have strengths and limitations in typical image
registration setups where there is usually a sufficiently large overlap between the images to
be registered together. Nevertheless, they are not directly applicable for solving registration
problems of partially overlapping images with the above mentioned challenges. While it is
necessary to have an overlap for feature-based, geometric registration approaches to work
properly, intensity-based, iconic registration additionally suffers when the information
in the limited overlap is unreliable. The unreliability of the overlap can be due to the
presence of noise or other artifacts such as geometrical distortions introduced during image
acquisition.

As a consequence of the limitations of classical image registration approaches mentioned
above ensuring structural consistency beyond the overlapping region becomes challenging.
In many applications, however, a consistent fusion of partial images is crucial for perform-
ing accurate measurements on the reconstructed scene. Any violation of properties of the
underlying structures might lead to major consequences. For instance, in medical imag-
ing, subsequent diagnoses would be directly affected by the performance of reconstruction
scheme causing possible false treatment. Violations of structural consistency can be local
where a sub-optimal solution obtained through a registration method such as intensity-
based leads to local structural discontinuities or it can be global where, despite an optimal



local consistency, global properties of the underlying object of interest is not respected.

In this thesis, we mainly address the problem of field-of-view extension using partially
overlapping or non-overlapping images. In particular, we focus on the intensity-based
registration as a means of estimating transformations for partial images. We approach the
problem of structural consistency among partial images in two aspects. First, we propose
a method for addressing local consistency in terms of structural continuity and smooth-
ness. We believe that a locally consistent alignment between partially overlapping or non-
overlapping images should respect the local continuity and smoothness of underlying
structures. Moreover, in the absence of sufficient structural information, local neighbor-
hoods should be taken into account for augmenting a registration algorithm. To this end,
we present a structure propagation technique for inferring structures within the overlap
of partial images if an overlap exists or within the extended image regions otherwise. We
build upon the vast amount of established research on perceptual organization techniques
focusing on modeling of human visual system. Such techniques try to infer structures from
unorganized point sets by imposing laws of perceptual organization such as smoothness
and continuity. Among other works on perceptual organization, tensor voting [Medi 00a]
was introduced in the last decades and has proven to be a successful method for inferring
structures from noisy, unorganized point sets (c.f. Figure 1.1). Therefore, we build upon
the tensor voting framework for inferring structures in or beyond partial images through
propagation. Tensor voting based structure propagation works completely model-free and
respects the local structural continuity and smoothness during extension.

Secondly, we handle the global consistency between partial images during field of view
extension by parametrizing an object of interest in a particular scene in a parametric space.
The primary motivation here is the observation that not only the information in the overlap
of partial observations should contribute to the registration but also the non-overlapping
parts present important cues about the configuration of the overall scene. The vast amount
of information in the non-overlapping parts is often not utilized and therefore the registra-
tion is constrained only by the information in the overlap leading to suboptimal solutions.
Space transformations allow us to make local inference about the global consistency of a
particular configuration of partial images independent of the amount of overlap between
them. This enables the incorporation of the full amount of available information contained
in partial images.

In Figure 1.2, we illustrate a possible image registration scenario where partial images of
a certain object of interest are acquired with a small overlap between them. Due to the lack
of salient structures in the overlapping region, the solution to the registration problem can
be suboptimal and the part of the structures spanning the entire scene might be inconsistent
with each other. Based on this observation, we claim that, in this case, a better strategy
would be to incorporate the partially visible structures into the registration process which
would provide additional regularization in terms of structural consistency.

A side benefit of our approach is the possibility of aligning partial images even without
overlap, which is in general not possible otherwise. Our parametrization method is mainly
inspired by the model-based object recognition techniques in typical computer vision prob-
lems. In particular, we focus on part-based model representations since they combine the
appearance of object parts, represented in terms of visual vocabularies, with a geometrical
relationship between them. This combination makes a detector robust to occlusions. Since
partial image observations can be considered as occluded object parts, part-based object
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Object of Interest Suboptimal Alignment
First Partial Image

Second Partial Image
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FIGURE 1.2.: Illustration of the overlap dependence of intensity-based image registration and
the issue of structural consistency. (a) shows an image of a very simple object with
two structures visible. In (b), a possible image acquisition scenario is demonstrated.
Note the limited size of the overlapping region which might be due to the limita-
tions of the image acquisition protocol. (c) shows a possible alignment based on the
information contained only in the overlapping region. The inconsistency in terms
of the structures as well as the global shape of the object is illustrated by dashed
lines.

models with geometrical layouts seem to be suited for detecting object in partial images.

There are different methods for defining geometrical relationships between object parts.
Starting from fully inter-dependent structures as in the constellation model [Ferg 03], there
can be looser dependencies as in the star shape model [Leib 04] or even no geometrical
constraints as in the bag-of-words model [Csur 04]. While bag-of-words model imposes
no geometrical constraints, a full connected model has the disadvantage of being compu-
tationally inefficient due to its exhaustive search mechanism for inference. Therefore, we
focus on the star shape representations of object categories where parts are connected to
a central reference part. In star shape representation, inference is done based on a voting
mechanism inspired by the Generalized Hough Transform.

Recent research in the vision community on voting based inference mechanisms estab-
lished the basic idea for this work. Such methods try to infer the existence of a known
object category in a particular scene based on a model learned on object instances from the
same category. The original Hough transform [Houg 62] as well as its derivatives such as
[Ball 81] constitute a considerable amount of voting based detection approaches. In Hough
transform, local features vote for the location or the configuration of a particular shape
in the Hough space where the configuration or the location is detected by searching for
the maximum in the Hough space. For a strong hypothesis, however, it is important to
have a consensus between the votes in the Hough space. This constitutes the basis for our
approach in this work for assessing the consistency between partial images. Similarly, it
is possible to check the consistency between strongest hypotheses generated by different
partial images within the same Hough space.

As the application area of above mentioned concepts, we consider only the field of medi-
cal image analysis though the proposed strategies can be employed for solving problems
with similar characteristics in other fields such as general computer vision.



CHAPTER
TWO

OUTLINE

In this chapter, we first describe how this thesis is organized. Then, we briefly describe the
main contributions made in this dissertation along with the problems addressed.

2.1. Thesis Organization

This thesis is organized as follows. Since the aspect of medical image analysis that we
focus in this thesis is image registration, in Chapter 3, we provide a brief background on
medical image registration. Then, in Chapters 4 and 5, two main contributions made in
the course of this work to the intensity-based registration of partial images for field-of-
view extension are presented. We present our conclusions derived from the theoretical and
experimental observations from this dissertation in Chapter 6. Then we describe various
ways to improve the strength of the methods presented in this thesis. Finally, we conclude
with a discussion of several open issues.

2.2. Summary of Contributions

2.2.1. Structure Propagation for Locally Consistent Image Alignment

Problem: Image field-of-view extension by combining two or more partial images is a
necessary practice in several applications. The main challenge in such procedures, however,
is the estimation of transformation parameters for an optimal alignment between the partial
images. Most of the existing image registration techniques optimize a cost function based
on an overlap between images. For such methods to work properly, the overlapping region
should be sufficiently large and should be salient enough in order to provide necessary in-
formation for the correspondence estimation in terms of intensities or features. While these
constraints can be easily fulfilled in some applications like consumer photography, such
methods are not suited for aligning partial images that have noisy or distorted overlaps or
do not have an overlap at all. Such kinds of images are usually encountered in biological
imaging where either the modality itself has noisy characteristic (e.g. Ultrasound), inherent
distortions (e.g. MRI) or the imaging protocol introduces distortions in the images (e.g.
histopathology). Moreover, while an optimal alignment is often sought for by minimizing
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intensity difference or feature distances, crucial properties of underlying structures such as
consistency or smoothness are often ignored. Without taking such constraints into account,
an intensity-based image registration approach is doomed to result in potential suboptimal
alignments with local and global structural inconsistencies.

Contribution: [Yigi 13, Muel 14] In this thesis, as our first contribution, we address the
issues of missing overlap and try to ensure local structural consistency in intensity-based
registration of partial images. In Chapter 4, we approach to both issues by introducing
a structure propagation technique for creating salient structural probability maps. These
maps are established in regions where no overlap between the images exists or in regions
where an overlap is unreliable due to distortions and noise in the images. Structure prop-
agation builds upon the powerful tensor voting framework to infer structures based on
salient information in a local neighborhood. Structural probability maps are incorporated
into the standard registration frameworks in the form of regularization terms. The pro-
posed method is employed for solving various field-of-view extension problems in med-
ical imaging. An application for mosaicing 2D microscopic images is demonstrated in
Section 4.3.1. Section 4.3.2 describes how the reference-free volumetric reconstruction of
histopathology sections can benefit from the proposed technique. Finally, an application
for creating whole-body MRI is presented in Section 4.3.3.

2.2.2. Hough Space Parametrization for Globally Consistent Image Alignment

Problem: While our previous contribution tries to ensure local consistency through struc-
ture propagation, there is still need for methods that take into account the global proper-
ties of underlying structures and shapes. Intensity-based image registration methods are
mostly based on local correspondences. Therefore, a point in one image does not provide
any contribution to the overall registration process unless a corresponding point in a target
image is given. Without imposing any constraints on the global configuration of partial
images, a registration method might lead to locally consistent but globally inconsistent
solutions. Given the fact that the parts of particular scene often provides cues about the
contained objects, local information can be exploited for inferring the global consistency
when aligning partial observations in the scene.

Contribution: [Yigi 14] As the second contribution of this dissertation, we propose a reg-
ularization method that ensures a globally consistent alignment of partial images through
intensity-based registration. To this end, we describe a novel Hough space parametrization
approach in Chapter 5 which learns an object of interest from previous data and helps
to make local inference about the global consistency during image registration. We dis-
cuss several ways of how different configurations of partial images can be evaluated for
assessing global consistency between them. Measures defined in a parametric space can
be seamlessly plugged in as regularization terms into standard registration functionals. In
Section 5.3, as an application of the proposed concept, we demonstrate how the proposed
global consistency measure can be used for obtaining a wider field-of-view in Ultrasound
images.
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BACKGROUND

In image analysis, extending the field-of-view by combining multiple images require a
variety of image processing and analysis steps. The most important task in field-of-view
extension is the image registration. Therefore, in this chapter, we attempt to provide a
concise background on image registration where we put more emphasis on medical image
registration. In what follows, we give an overview of image registration and explain its
main components. Finally, while there are numerous image registration approaches pro-
posed in the literature, we describe a particular technique based on discrete optimization
which we will employ in the applications presented in this thesis.

3.1. Medical Image Registration

Image registration is a fundamental task in a wide range of image analysis applications
including medical image analysis, satellite imagery and computer vision, to name a few. It
is defined as the process of finding geometric transformations for two or more images of a
particular scene originating from different sources, taken at different times or from varying
viewpoints [Zito 03]. Depending on the application, the purpose could be, for instance, to
fuse information coming from different sources, to measure certain changes over time or to
observe variations in a group. The goal of an image registration method is to find a set of
transformation parameters such that a cost function is optimized. In addition to the images
being registered, an image registration method is composed of mainly three components:
transformation model, (dis)similarity measure and optimizer.

Image registration methods are usually classified based on either the type of compo-
nents such as transformation models (e.g. deformable registration) or the applications
like medical image analysis (e.g. medical image registration). Sometimes, the dimen-
sionality or the modality of images are also used as the basis for classification. An-
other broad classification base is the parametrization. If a transformation is defined in
terms of parameters (e.g. linear transformation), then, it is called parametric registra-
tion. Second class which is called non-parametric registration usually refers to deformable
registration where a dense deformation field needs to be estimated without using any
parametrization. Such methods are often based on a variational framework. We do not
consider non-parametric methods in this dissertation, therefore, such methods are not cov-
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ered in this overview. We, however, refer the interested reader to the relevant literature
[Mode 03, Fisc 04, Verc 09]. In the following, we will focus on the parametric image regis-
tration methods. Finally, although we make an attempt to give a concise overview here,
for more details, we refer the reader to the excellent review papers and books on image
registration [Brow 92, Main 98, Hill 01, Zito 03, Mode 03, Soti 13].

3.1.1. Medical Image Modalities

While there are numerous imaging modalities commonly used in clinical research and
practice, we limit ourselves only those which are used in the applications presented in this
thesis.

Ultrasound Imaging Mainly due to its speed and cost effectiveness, ultrasound has be-
come one of the most popular imaging modalities. While it is possible to have high sam-
pling rate in time using ultrasound, image analysis tasks for ultrasound still suffer from
the low quality of images [Merc 05]. Imaging in ultrasound can be done in 2D as it is
traditionally done and also in 3D thanks to the recent developments in ultrasound im-
age acquisition techniques such as the free-hand ultrasound and phased-array transducers
[Rank 93, Fens 01]. One of the main challenges of ultrasound in the clinical practice is the
difficulty to penetrate through bony structures and air. Another common issue is the lim-
ited field-of-view. For this reason, often multiple partial ultrasound images are acquired
and combined in order to see a wider region than a transducer normally covers. However,
this task is usually challenging mainly due to the low quality of ultrasound images. We
will come back to this issue when we discuss globally consistent alignment in Chapter 5.

Magnetic Resonance Imaging Magnetic Resonance Imaging (MRI) provides superb soft
tissue contrast with high image resolution in contrast to other imaging modalities. Due
to this characteristics of MR, it is one of the most commonly used imaging modalities in
clinical practice. MRI is also free of ionizing radiation which is another advantage over
other modalities. However, long acquisition time for MRI, which prevents the acquisition
of volumetric data in real time [Sieb 08], still remains as the main challenge for 3D dynamic
imaging or 4D imaging. Another common issue in MRI is the geometric distortion artifacts
near the boundaries of the image field-of-view which requires special treatment if multiple
partial images need to be combined with the purpose of having an extended field-of-view.
We will present a solution for this issue in Section 4.3.3. For more details about MRI, we
refer the interested reader to [Brow 10].

Computed Tomography Computed Tomography (CT) has been considered as the gold
standard imaging modality in many medical applications. Its wide availability and shorter
acquisition times than MRI have rendered CT more popular than MRI. On the other hand,
it does not provide the level of soft tissue contrast that MRI does. Other advantages of
CT include the fact that the information contained in CT images can be directly used in
radiotherapy to estimate the amount of dose to be applied to a patient [Dais 03]. However,
the issue of ionizing radiation exposed to patients is the main obstacle for the usage of this
modality for dynamic 3D image acquisitions.
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3.1 MEDICAL IMAGE REGISTRATION

3.1.2. Medical Image Representation

Medical images are represented as two or more dimensional finite and structured sampling
grids where each node of the grid is called a pixel (in 2D) or voxel (in 3D). Depending on the
imaging modality, each pixel (or voxel) contains a certain measurement value regarding
a physical point in the body. In projection-based imaging modalities such as X-ray, a
pixel represents the integration of attenuation along a ray cast through a patient, whereas
in ultrasound a pixel or voxel value stands for echo signal of the ultrasound beam sent
through the tissue. In addition to the measurements, medical image data contains also
spacing information which tells us the size of the region that a pixel covers. Pixels can be
isotropic if the sampling grid is equidistant in each dimension or anisotropic otherwise.
Additional information such as the world coordinates of the origin of the image coordinate
system as well as its orientation helps when associating a pixel with a spatial point in
patient coordinate system.

3.1.3. Need for Registration

Rapid advancements in medical imaging technology have led to the introduction of di-
verse imaging modalities being used in clinical practice. Some of these modalities are
briefly discussed previously. Furthermore, thanks to the increasing availability of digital
storage capacities, huge amounts of medical images of different modalities are produced
and digitally stored everyday. The analysis of this huge amount of medical imagery for
several purposes such as treatment planning or studying disease progression is a crucial
task in the medical field. However, such analysis tasks often require a comparison either
between images in different modalities (e.g. MRI vs CT) or between the images of single
modality taken at different times (e.g. pre-operative vs post-operative) or from different
viewpoints.

Besides the challenges of processing this large amount of data, various factors such as
tissue deformations, patient movements or variations in imaging setups make a direct
comparison between medical images difficult and necessitate an image registration step.
Moreover, since these factors are usually unavoidable in most cases, medical image regis-
tration has become a core part of almost every medical image analysis procedure. In most
medical applications such as the prediction and monitoring of tumor growth, verification
of treatments, fusion of images of different modalities, one needs to align images in order
to obtain anatomical correspondences between medical images.

3.1.4. Formulation

Image registration aims at the spatial alignment of two or more images in general. However,
here, for the sake of simplicity, we will consider the co-registration of two images. Let
I:x1€Qr—I(xy) e Rand J : x5 € Q; — J(x7) € R be two images to be registered
together where (2 € RY defines a region in space covered by an image with dimensionality
N. I is called moving or source image which is being registered and J is called fixed or
target image. The goal is then to find a spatial transformation or mapping 7" for every point
x; € Q7 such that

T:X]i—>XJ<:>T(X]):XJ. (31)
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There are different ways for estimating the transformation 7. While it is possible to
find a mapping for every point in the image using a variational formulation, here, we
only consider parametric approaches where the transformation is approximated with a few
number of parameters. In practice, depending on how the transformation is modeled, a set
of n parameters t = {t1,--- ,¢,} is used to parametrize the transformation 7. We denote
this parametrization with 7;. One class of image registration approaches estimate t by
matching features extracted from both images. Such techniques are called feature-based
image registration. The most straightforward way of doing this is to let a medical expert
manually annotate some point pairs in the overlapping region of the images. Then, one
seeks for the optimal set of parameters using least squares. However, due to the cost and
the difficulty of manual annotations, automatic methods have been developed in order
to extract anatomically salient landmarks from the images. While feature-based methods
are fast, their performance depends often on the availability of salient features and the
reliability of feature extraction methods.

The second class of approaches use direct image intensities for estimating the best trans-
formation parameters. For this reason, they are often referred to as intensity-based methods.
Depending on the relationship between the intensities of images, a (dis)similarity measure
tells the goodness of an alignment given a set of transformation parameters. Usually, an
iterative optimization process is involved where, in each optimization step, the similarity
measure is evaluated in the overlapping region of the images. Depending of the similarity
value, the parameters are adapted (optimized) in order to achieve a better similarity value
in the next step. Therefore, intensity-based image registration is often formulated as an
energy minimization problem as follows

Ty = arg min £(1, Ty, J) (3.2)
t

= arg n}in&([ oTy,J) + R(T) (3.3)

where T} is the parametrization of 7' by t and I o T} represents the warping of I by the
transformation 7;. Since, in practice, / and J have different sampling grids, warping
often involves a resampling step where [ is resampled in the coordinate frame of J via
intensity interpolation. In practice, the inverse mapping 7! is estimated and I is warped
backwards mainly due to the advantages of backward warping over forward warping
such as the prevention of occurrence of holes and multiple intensity mappings causing
blockiness artifacts during resampling [Soti 13].

The energy in Equation (3.3) usually consists of two terms; a data similarity term
&(I 0Ty, J) which reflects the goodness of alignment in terms of image based similarity mea-
sures and a second term R(7%) to impose soft constraints on the solution. This term is often
referred to as regularization. In case of deformable registration, for instance, regularization
of the deformation field might be desirable in order to address the ill-posedness of the regis-
tration problem and to obtain anatomically plausible deformations. Prior knowledge about
the scene under consideration can also be included in the functional as a regularization
term. While regularization terms are often functions of transformations, we will show in
Chapters 4 and 5 that regularization terms can be based on the images as well.

The forms of the three main components of image registration, namely transformation
model, similarity measure and optimization method vary depending on the kind of the
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FIGURE 3.1.: Diagram showing the pipeline and the main components of an iterative intensity-
based image registration algorithm.

modalities of images being registered and the amount of tissue deformations etc. In the
following section, we will discuss different forms of each component briefly.

3.1.5. Registration Components

Figure 3.1 shows a diagram of a standard, iterative intensity-based image registration
pipeline. Once source and target images are provided along with an initial guess for the
transformation 7', the registration iterates until some stopping criteria are met. Stopping
criteria used in practice include the maximum number of iterations, minimum relative
or absolute changes in the similarity measure as well as parameter values. At the end of
registration, the final transformation parameters are used to resample the source image
within the coordinate frame of the target image. In the following, we will have a deeper
look in each component of the registration pipeline.

Transformation Models

Geometric deformations occurring in images can be represented using different transfor-
mation models depending on the type of application. Usually, the characteristics of the
scene are considered when deciding for a transformation model. Deformations can be
modeled by linear transformations if the objects of interest undergo global deformations.
Such models range from simple ones such as rigid transformations where only translational
and rotational motions are assumed to affine transformations if there is also scaling and
shearing in the scene. Figure 3.2 illustrates the effects of different transformation types on
a triangle shape.

The number of parameters to be optimized during registration is often linked to the
degrees of freedom in the deformation model. While registration using linear transforma-
tion models are usually tractable even with increasing image dimensionality, non-linear
registration suffers from the curse of dimensionality with a huge number of transformation
parameters where a displacement for each pixel or voxel needs to estimated. In non-linear
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FIGURE 3.2.: Transformation types. While rigid transformation does not change the scale of the
objects, affine transformations may change the scale and the aspect ratio. On the
other hand, deformable transformations are local and cannot be modeled by a linear
equation. Therefore, they are called non-linear transformations.

registration, the goal is to find a transformation for each point p

T(p) =p+ D(p) (3.4)

where D(p) is a displacement field. The number of entries in D is the image size times the
image dimension which results in a parameter vector of enormous length. There have been
efforts in the literature to overcome the curse of dimensionality through dimensionality
reduction and approximations. Such approaches often make use of interpolation theory
and try to significantly reduce the number of parameters to be estimated by looking for dis-
placements only at a subset of points in the images. Displacements for the remaining points
are approximated via interpolation using different strategies including thin-plate splines
[Book 89], free-form deformations (FFD) [Ruec 99] and locally affine models [Piti 06].

FFD using B-spline for interpolation is one of the most popular deformable registration
techniques in medical image analysis [Soti 13]. A regular grid of control points is overlayed
onto an image and only the displacements for the control points are optimized using the
image content in their surroundings. Displacements for the points in between the control
points are interpolated using B-splines. The support range of a control point is determined
by the order of the B-splines as well as the spacing between the control points. The most
commonly used type of B-splines is the cubic one, which produces smoother deformations
compared to the lower order ones but comes with an increased computational complexity.
Since we will be also using FFD-based transform model for deformable registration in
this dissertation, let us define the equations for FFD-based transformation using B-spline
interpolation.

Given a uniform grid of m control points with displacements ® = {¢1,--- , ¢p, }, the
deformation at point p = (z, v, z) is approximated as

Ts(p) =p+ > _ Bi(p)¢; (3.5)

where B; is the tensor product of cubic B-spline basis functions for each control point index
j ={i,j,k} and ¢; is the corresponding displacement. ® in the above equation corresponds
to t in Equation (3.3), i.e. the parametrization of transformation 7. Let us further denote
the number of control points in 3D with m, x m, x m. and assume uniform spacing §
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between the control points. Then, this gives the transformation

3 3 3
T (p) =p+ Z Z Z B, (T)Bb(S)Bc(u)¢i+a,j+b,k+c (36)

a=0 b=0 c=0

where i = |z/0| — 1,5 = |y/é] — 1, k = |2/0] — 1, r =2/6 — |z/6], s = y/d — |y/d],
u=2/d — |z/0| and By to B3 are cubic B-spline basis functions.

The advantage of using B-spline based FFDs over other parametric deformation models
include the inherent smoothness providing implicit regularization and local support of
control points allowing local computation during optimization.

Similarity Measures

Another important component of intensity-based image registration is the criterion used
for the measurement of similarity. Given a transformation between two images, similarity
measures tell us the goodness of alignment. There are various measures for comparing
images ranging from simple least squares difference to more complicated statistical mea-
sures giving the statistical similarity between the intensity distributions in the overlapping
regions. The choice of a similarity measure usually depends on the type of images being
registered. While difference-based measures are commonly used for the registration of
intra-modality images, statistical measures are more suitable for multi-modal registration.

The most common measure of similarity is the sum of squared differences (SSD) between
two images which is defined as

Essp(L,J) =1 Z )2 (3.7)

xeN

where () is the region of overlap. Normalization of the sum of squared differences makes
the measure independent from the size of the overlap. A simpler version SSD, which is
more robust to large intensity value differences, is the sum of absolute differences (SAD)
defined as

§sap(d,J) =i Z 1I(x (3.8)

x€e)

SSD and SAD show poor performance if there is a constant multiplicative factor between
the image intensities being registered. For such cases, a statistical similarity measure which
is called the normalized cross correlation (NCC) is more appropriate where a linear rela-
tionship between image intensity values is assumed. NCC can be written as

Yxeo () -D (T -T) (3.9)
e [6) -1 Sen (7 () — 7)°

where I and J are the mean image intensity values. NCC simply performs a cross correla-
tion of normalized images which are obtained by subtracting their mean and dividing by
their standard deviations. This normalization removes any global additive or multiplicative
constants between the image intensities. Although the NCC is suited for within-modality
registration scenarios, it is not always applicable to multi-modality registration tasks. For

Ence(l,J)
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multi-modal problems, information theoretic approaches such as mutual information (MI)
[Viol 97] have been proposed in the literature. As the name already suggests, MI tries to
maximize the mutual information contained in both of the images. It is defined as

£MI(LJ):h(I)“‘h('])_h(I"])’ (310)

h(-) being the image entropy and h (-, -) being the joint entropy. Modified versions of
mutual information proposed to reduce its sensitivity to the size of overlap between the im-
ages include normalized mutual information [Stud 99] and entropy correlation coefficient
[Maes 971].

Note that regardless of whether a similarity measure needs to minimized or maximized,
we will consider image registration as a minimization problem. It should be also noted that
all the similarity measures discussed here are overlap-based. That is, they are calculated
only in the overlapping regions of images being registered. Therefore, they are not suitable
for registering images having very small or no overlap. We are aware of only the work
of August and Kanade [Augu 05] who suggested to include the intensity histograms of
non-overlapping regions into a common joint distribution to avoid overlap dependence.

Optimization Procedures

Image registration is usually posed as an optimization problem where a cost function
is optimized with respect to the parameters of the transformation. Depending on the
type of the similarity measure, it is either minimized (e.g. SSD, SAD) or maximized (e.g.
NCC, MI). The chosen similarity measure is evaluated using the current parameters of the
transformation at each iteration of the optimizer. While the number of parameters to be
optimized is small for linear image registration, optimization becomes difficult in the case
of non-linear registration where the degrees of freedom is often very large. For such cases
a reduction of dimensionality of the parameter space is helpful where the deformation can
be modeled, for instance, using free form deformations.

Existing optimization methods work either gradient-based where a differentiation of
the cost function (i.e. similarity measure) is needed at every iteration or gradient-free or
derivative-free where no differentiation is needed but the cost function is evaluated directly.
In the latter case, a modification of the parameters is done by considering the change of
cost function values between the optimization iterations.

Gradient-based optimizers include simple methods such as gradient descent where only
a first order derivative is needed and more complicated ones such as Gauss-Newton which
has quadratic convergence. Derivative-free methods include simplex-based optimizers
such as the Nelder-Mead Simplex optimizer [Neld 65] and the Powell’s Method [Powe 64].
Derivative-free optimizers are good when the cost function is complicated and it is difficult
to find its derivative. In Chapter 5, we will use the Nelder-Mead Simplex optimizer which
is implemented in the NLopt non-linear optimization package [John].

While optimization in image registration is an inherently continuous problem, methods
have been proposed to solve the registration problem in a discrete setting. The main advan-
tages of discrete optimization approaches are the optimization speed and their success in
handling non-convex cost functions. While the accuracy is more guaranteed in continuous
optimization strategies given a good initialization, the same and even better accuracies can
be obtained through discrete optimization with an intelligent discretization strategy. In the
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following section, we will focus on a recently proposed image registration technique using
discrete optimization through Markov Random Fields formulation [Gloc 08, Ziki 10]. This
method constitutes the base for our intensity-based image registration approach discussed
in Chapter 4.

3.1.6. Markov Random Field Registration

Markov Random Field (MRF) registration [Gloc 08] treats the estimation of transformation
parameters of an image registration problem as discrete optimization. Instead of search-
ing for continuous parameter values t, it quantizes the parameter space and converts the
optimization problem into a labeling procedure. Regardless of the deformation model, a
range of possible transformation parameter values are assigned labels and the goal is set
as to find the best label configuration that leads to the optimal cost function value. Once
the task of parameter estimation is seen as a labeling problem, it can be expressed in terms
of a discrete MRF syntax [Gloc 11].

In MRF-based formulation, parameters can be seen as the nodes (random variables) of an
undirected graph G = (V, E) where discrete labels 1 = {l | [ € R} chosen from predefined
parameter ranges are assigned to each node p € V. The energy of a first order MRF is

defined as
EM = Volp)+ Y. Voqllplq) (3.11)

pev (pa)eN

where N is a neighborhood system and [}, is a labeling of the node p. The unary term
Vp(lp) corresponds to the cost of assigning label I, to the vertex p whereas the pairwise
term Vpq(lp, lq) represents the cost of assigning two labels to the two neighboring nodes
simultaneously reflecting the dependency between the parameters.

The MRF energy defined in Equation (3.11) can be solved using efficient discrete MRF op-
timization algorithms such as Fast primal-dual (FastPD) [Komo 07, Komo 08] or quadratic
pseudo-boolean optimization (QPBO) [Kolm 07]. In terms of registration, the forms of
unary and pairwise terms depend on the task at hand. In case of deformable registra-
tion, for instance, the similarity measure is used for the unary potential while deformation
regularization replaces the pairwise term.

In the following two sections, we will give brief overviews for two recent methods for
deformable [Gloc 08] and linear [Ziki 10] intensity-based registration. Both methods are
based on a discrete Markov Random Field (MRF) formulation. Note that the following
two overview sections heavily depend on [Gloc 08, Ziki 10, Gloc 11]. For a more detailed
discussion, however, we refer the reader to these excellent papers.

Deformable Registration

Estimation of transformation parameters for deformable image registration can be solved
using discrete MRF formulation. But, how is this done? As discussed previously, in order
to cast the parameter estimation as a labeling problem, parameter space has to be first
quantized and labels need to assigned. To explain this, let d, = D(p) be the displacement
vector for a point p (c.f. Section 3.1.5 for the definition of the displacement field D). While
a different parameter range quantization for each parameter is possible, here, we use the
same range for all parameters. Once a quantization is done, possible range of values for d
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are assigned labels [. This means that the assignment of a label I, to the point p results in a
displacement d;, at p. Using this notation, optimal displacement field D can be obtained by
solving the dual problem of finding optimal labeling of points in the image space [Gloc 08].

In practice, instead of trying to assign labels to every image point, often, a dimension-
ality reduction is performed in order to reduce the computational complexity [Gloc 11].
Using the FFD-based transformation model introduced in Section 3.1.5, one aims at finding
displacement vectors @ for a subset of points defined by the control point grid. Assum-
ing @ = 0 in the beginning, at each iteration of registration, displacement vector updates
AP = {A¢1,- -, A¢p,}, which are considered as random variables, are calculated via dis-
crete optimization. In fact, labels are not assigned to the complete displacement vectors
but to their updates. The complete dense displacement field D can be calculated using
B-spline interpolation as discussed in in Section 3.1.5. The neighborhood system used for
the random field is similar to the FFD topology. Usually, 4-connected neighborhood in 2D
and 8-connected neighborhood in 3D are used.

An interesting aspect of discrete MRF registration using FFD-based transformation
model is the two-fold dimensionality reduction. In addition to the significant simplification
thanks to the FFD, discrete labeling assigns integer labels to the high dimensional displace-
ment vectors. Without labeling, one has to consider each component of a displacement
vector as a single parameter, whereas labeling considers all components of a displacement
vector as a single parameter.

After defining the random variables of the MRF formulation which corresponds to the
control point displacement updates, a strategy is needed to define the parameter search
space and the way how the discretization is performed. Glocker et al. [Gloc 08] suggests
different sampling patterns for assigning labels to continuous displacement update vectors.
The simplest strategy is to uniformly sample displacements along the main coordinate axes.
A better and suggested way is to sample not only along the main axes directions but also
along diagonal directions. Finally, a dense sampling of the search space can also be used but
with the additional cost of increasing label vector size. Usually, a maximum displacement
magnitude ||d;,q || is determined and s samples are taken along each direction. Maximum
displacement magnitude is rescaled by a factor 0 < f < 1 if a certain sampling does not
lead to a decrease in energy. This also leads to a better accuracy which cannot be achieved
if a very sparse sampling is utilized. It is also suggested that the maximum displacement
is linked to spacing between the FFD control points by allowing a displacement at most
40% of the inter-grid spacing. This ensures that the final transformation is diffeomorphic
[Gloc 11].

In every iteration step of the optimization, a discrete MRF labeling is solved. This requires
the calculation of the MRF potential functions given in Equation (3.11) which represents
Equation (3.3). While we briefly discuss the unary term here, we leave the discussion of the
pairwise term to Section 3.2 where we will focus on regularization. The unary term V;(lp)
corresponds to a similarity measure such as the ones mentioned in Section 3.1.5. However,
it is computed only locally around each control point given a certain displacement label.
Displacement is applied patch-based where all the points in the patch around the control
point are moved using the same displacement vector. This results in an approximation of
the actual deformation by ignoring the contributions from the neighboring control points.
But, it also leads to an efficient computation of a look-up table to be used while searching
for the optimal labeling.
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Linear Registration

While discrete MRF registration was originally proposed for deformable registration in
[Gloc 08], an extension to linear registration was later presented by Zikic and Glocker et
al. [Ziki 10]. When seen from a parameter optimization point of view, both linear and
non-linear image registration methods can be treated similarly. However, there are big
differences if one wishes to apply the same discrete optimization strategy for both. While
parameters of deformable registration have only local impact and thus local dependencies
exist between the random variables, linear registration parameters are globally coupled
by construction due to their global influence [Ziki 10]. In the following, we will briefly
describe the suggested strategy to enable discrete MRF optimization also for linear image
registration.

Following the same notation used in Section 3.1.4, let t = {¢;,--- ,¢,} be a set of linear
transformation parameters. In [Ziki 10], the parameter set t consists of translation, rotation
and shearing components leading to only 6 degrees of freedom in 2D or 12 degrees of
freedom in 3D. Again, parameters are treated as random variables and an undirected
graph G = (V,() is defined where the nodes V represent the random variables and C,
represent the second order cliques of nodes.

Although a linear transformation with n parameters (i.e. degrees of freedom) requires
n'" order MRF model, an approximation scheme was proposed in [Ziki 10], where only
pairwise dependencies are considered between the parameters and complete dependency
is established by taking all possible pairs simultaneously into consideration. Thanks to this
approximation, the registration energy £ in Equation (3.3) can be represented by a second
order MRF model instead of an n'" order one if a fully connected graph was considered.

The approximated energy is written in terms of only pairwise potentials as

&= — > Vil b)) (3.12)

’C2| {ti,tj}€C2

where ‘N/Z-j(lti, It;) = §(I o Tyis, J) represents the cost of simultaneous labeling of ¢; and ¢;,
while keeping other variables fixed. Here, t"/ is a parameter set where only ¢; and ¢; are
varied.

Again, the discrete nature of the MRF model requires that each parameter variable ¢;
takes a value from a set of discrete labels £; = {l |l € R}. While we assumed the same
parameter space discretization for all random variables in deformable registration, here,
mainly because of the different nature of linear transformation parameters, each random
variable has different set of label space £;. The number of labels |£;| for each parameter
variable ¢; is a free parameter, which is used to discretize a search range for that parameter
by uniformly sampling a given interval [t/"", {7"**] about its initial value. This interval is
refined in every iteration in order to achieve a better accuracy similar to the deformable case.
We will discuss the specific design choices for each type of registration in the contribution
chapters.
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3.2. Regularization in Medical Image Registration

There are several challenges associated with medical image registration. One of the com-
mon problems we have discussed in the previous sections was the difficulty of optimization
due to the dimensionality of the parameter space. Dimensionality reduction techniques
using interpolation methods and parametric approaches were already mentioned in Sec-
tion 3.1.5.

Another important and common issue, especially in deformable registration, is the regu-
larization. Deformable registration seeks to find a high dimensional vector displacement
for every image point by using often scalar, one dimensional, image intensity values. This
leads to an ill-posed problem where the number of unknowns is larger than the number
of measurements [Mode 03]. In order to overcome this issue, additional constraints have
to be included into the registration. Such constraints render the registration well posed
by imposing conditions like smoothness of the deformation field to penalize deformations
that are physically undesired or unlikely. Other constraints include inverse consistency
where the registration should still be valid when the order of the images being registered
is changed and the obtained transformation is inverted. Task specific constraints such as
the rigidity of underlying tissue can be also included in order to allow only anatomically
plausible transformations [Star 07]. The regularization term R (7}) in Equation (4.28) is of-
ten designed to achieve the previously mentioned goals. If the regularization is included in
the functional via a weighting factor, then, it becomes a soft constraint. In this dissertation,
we will only use soft constraints.

Typical regularization terms used in deformable image registration include diffusion
regularization

N
R@—Z/wmm%p (3.13)
i=1 V%

which is a first order regularization where V is the gradient operator and curvature regu-
larization

N
_ . 2
mm-;ém&wwp (3.14)

which is a second order regularization [Fisc 04] where A is the Laplace operator. Please
note that the argument to the regularization term is the displacement field rather than the
transformation since regularization operates directly on the displacement field. A nice
property of curvature regularization is its invariance to affine deformation components.
This way, global motion is implicitly compensated without being penalized. It should be
noted that these regularization strategies also apply to the discrete MRF registration where
the pairwise potential take the role of a regularizer. This time, the above equations are
approximated by their discrete versions in terms of labels. Special attention has to be paid
if the employed regularization term makes the MRF energy non-submodular where an
appropriate discrete optimization scheme has to be chosen.

The amount of regularization during registration can be controlled by a locally varying
weighting function in order introduce rigidity penalty. Such spatially varying weighting
functions can also be used to impose tissue specific constraints on the deformation field.
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So far, regularization has always been meant for deformation field. However, prior in-
formation about the image data or other types of information extracted from local image
regions can be incorporated into the registration functional as additional terms. We call
such terms data-driven regularization terms. For instance, structural information in the
neighborhood of a certain point in the image can be used to infer probabilistic structured-
ness at that point to result in higher costs if no structure is observed at a certain iteration of
registration. In Chapter 4, we will show how such a data-driven term can be added to the
registration functional.

So far, regularization has always been about deformable registration where the goal is
to convert an ill-posed problem into a well-posed one. Another way of incorporating the
observed data into the regularization of the solution space is the utilization of prior data in
terms of models [Comm 05, Star 07, Mode 08]. An interesting aspect of this approach is that
it can be employed also for linear image registration. Mainly due to the well-posedness of
the linear image registration problem, the concept of regularization has not been explored
too much for this task. However, there are often cases where images of a scene to be
registered have little in common and, even for linear registration, a good initialization is
required for the alignment to be successful. Prior knowledge can help in such cases by
establishing a base for the registration. This can be interpreted as regularization where a
non-convex parameter search space is evolved to convex one thanks to the regularization.

Image mosaicing is a good example of application of image registration where the lack
of a sufficiently informative overlapping region hinders the alignment and the chances
of getting trapped in a local optimum is high. In such scenarios, additional information
contained in non-overlapping regions of images can be utilized to regularize the solution
space. Moreover, any prior knowledge about the object of interest can be incorporated into
the registration process as regularizer. Such prior knowledge can be in the form of a shape
model, appearance model or even geometrical heuristics about the structures contained
in the images. For instance, the interest could be to have no structural discontinuity after
registration. An alternative constraint is to force parametric shapes contained in the partial
images to be consistent with each other after an alignment. In Chapter 5, we will show how
prior information can be incorporated in the registration functional to act as a regularizer
for ensuring the consistency of an alignment with respect to the prior.
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CHAPTER
FOUR

STRUCTURE PROPAGATION FOR LOCAL STRUCTURAL
CONSISTENCY

Field-of-view extension is a commonly used technique in many medical imaging appli-
cations where partial observations of a certain scene are stitched or stacked together in
order to obtain a larger field-of-view. The step of stitching or stacking usually requires a
registration between partial images either in their overlapping region or at their interface.
This registration task becomes often challenging when the information shared by partial
images in their overlapping region is absent or small. While it is not possible to perform an
alignment without overlap using existing registration techniques, imaging artifacts such
as noise or geometrical distortions towards image boundaries present further complica-
tions during registration by decreasing the reliability of available information. Even in
the presence of an overlap, without taking such issues into consideration, a registration
approach might result in a suboptimal solution and therefore create inconsistencies such as
the violation of the continuity and the smoothness of structures across partial observations.

To alleviate these issues, in this chapter, we propose a novel registration approach for
the registration of partial images in such challenging scenarios. By employing a percep-
tual grouping approach, we extend partially observed images beyond their acquisition
boundaries. This is done by propagating available structures in order to create structural
probability maps in the extended regions representing the possible extensions of observed
structures. These structural maps are then used either to establish correspondences be-
tween partial images when the shared information is absent, small or unreliable or they
can be employed in a data-based regularization term in addition to the existing correspon-
dences to incorporate structural constraints on the solution. Our approach ensures that the
structures across sub-image boundaries maintain their inherent smoothness and continu-
ity properties. Furthermore, since only structures are used for propagation, the proposed
method can also be used for the stitching or stacking of multi-modal partial images.

In the following, we first provide a brief introduction to the problems addressed here
along with the shortcomings of existing approaches. Then, a detailed description of the
structure propagation method is given where structural probability maps are formulated
using the tensor voting framework. Finally, the effectiveness of our method is demonstrated
in linear and non-linear registration settings through experiments on synthetic and real
medical images.
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Ali

ned Translation Rotation

FIGURE 4.1.: Illustration of the possible challenging scenarios in partial image alignment. Ini-
tially aligned subimage pairs on the left can be misaligned by translational or ro-
tational transformations applied to one of the subimages. In this case, it is very
difficult to restore the applied transformations without having an overlapping re-
gion to be used as a base for the alignment. It is much more challenging when there
is an occluded region between the partial observations.

4.1. Introduction and Related Work

Image field-of-view extension is the process of combining two or more images in order
to obtain an extended field-of-view (FOV). The simplest form of extension is in lateral
dimension where 2D images are combined together to get a larger 2D image. The extension
can also be in the form of 3D reconstruction where several 2D images are stacked along
their axial dimension in order to extend the FOV in that direction yielding a 3D image. The
most complex form is the combination of several 3D images with the purpose of extending
the visible area in all possible directions.

Image FOV extension has many application areas ranging from computational pho-
tography to computer vision to medical imaging. Especially in the field of medical
imaging, there has been an increasing interest in having larger FOV images. 3D his-
tology reconstruction [Lee 08, Cape 09, Bagc 10, Feue 11, Saal 12], extended FOV mi-
croscopy [Verc 06, Chow 06, Prei 09, Tsai 11, Loew 11], laparoscopy [Moun 09], endoscopy
[Atas 08, Totz 12, Warr 12], 3D ultrasound mosaicing [Wach 07, Brat 11], and whole-body
Magnetic Resonance Imaging (MRI) [Wach 08, Dzyu 13] are some of the applications where
an extended FOV is created by stitching subimages or subvolumes or stacking lower di-
mensional images. Having a large FOV is especially important in microscopy images since
it, for example, enables studying several questions that arise in neuroscience [Tsai 11] and
therefore having a high resolution images with a wide FOV is crucial. Moreover, mosaicing
is often a necessity since most of the existing microscopes have a limited view either in
lateral (e.g. confocal, multi-photon) or axial (e.g. histology) dimensions.

The main step of FOV extension is the combination of subimages by estimating transfor-
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FIGURE 4.2.: Zebrafish embryo stained with TOTO3 to visualize all cell nuclei. Middle section of
a confocal stack, gamma corrected (y = 0.3). For quality control each tile is colored
differently. The homogeneous mix color in the overlapping regions indicates a good
placement of the tiles. (Figure and caption reprinted from [Emme 09], ©2009 The
Authors Journal compilation (©2009 The Royal Microscopical Society)

mations that will bring them into a spatial alignment in a common coordinate space (c.f.
Figure 4.1). This is often done by using an image registration algorithm. However, classical
image registration techniques usually assume minor differences in the viewpoints of im-
ages to be registered. On the other hand, this is not the case in microscopic imaging such as
confocal microscopy where a large FOV is obtained by stitching subimages each covering
a limited portion of the sample [Tsai 11]. In such settings, the amount of overlap between
neighboring sub-images is often small in size and contains distortions. Figure 4.2 shows
an example of such stitching scenario where the overlap regions are relatively smaller than
the non-overlapping image regions.

On the other hand, in 3D digital pathology, in order to have a better analysis in 3D,
several histology slices are stacked along the axial direction in order to reconstruct a 3D his-
tology volume [Feue 11, Bagc 10, Saal 12]. The challenges for the reconstruction, however,
are the artifacts caused by the sectioning process. Besides having no physical overlap be-
tween adjacent slices due to the characteristics of slice preparation procedure, artifacts such
as tissue tears or folds reduce the amount of reliable correspondence between neighboring
slices. Finally, whole-body MRI for extended FOV has similar challenges where partially
overlapping MR images are deformably stitched in their overlapping regions. The main
challenge, however, is geometrical distortions in overlapping regions making an anatom-
ically correct stitching difficult. Therefore, special registration techniques are needed for
extending the field-of-view in either lateral or axial directions. Such techniques should be
able to handle 1) very small or distorted overlap between subimages or subvolumes (as in
the confocal microscopy or whole-body MRI cases), 2) adjacent images having no overlap
at all (maybe just touching each other as in 3D histology case).

In the conventional image stitching, the amount of overlap between subimages to be
stitched is important for finding correspondences for the estimation of necessary trans-
formation parameters through image registration. Usually, a predefined value for the
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amount of overlap is used to decide whether a stitching between two subimages is feasible
[Cape 09, Kayn 10, Tsai 11, Khur 11]. Besides not being able to extract sufficient features
(if a feature-based registration is used) or intensity correspondences, the continuity and
smoothness of structures across subimages cannot be guaranteed unless a sufficient amount
of overlap is present. Moreover, in particular in the case of deformable FOV extension,
even if sufficient overlap is present, the registration is done only in the overlapping re-
gion, guaranteeing alignment in the overlap but leaving the gross natural alignment of
distant structures. Having a consistent alignment in such cases also between distant struc-
tures is essential especially in microscopic imaging since the subsequent measurements on
the structures will also be influenced by inconsistencies introduced during the alignment
procedure.

To motivate the problem further, let us assume that one of the initially aligned subimages
in Figure 4.1, which are simply two pieces obtained by cutting a whole image into two,
undergoes some misalignments such as translational or rotational transformations. It is
very challenging to bring these two pieces into a spatial alignment again even in the case of
a simple translational misalignment without having an overlapping region. This obvious
issue becomes even more challenging and complicated to solve when there is also a physical
gap between the pieces, in other words, when there is an occluded region between the
pieces as illustrated in the last column of Figure 4.1. Although these images are in 2D, one
could imagine the same scenario in 3D where partial images are either 3D subimages or 2D
slices to be stacked together.

Since an overlap between the subimages cannot always be guaranteed, there have
been efforts in the literature to address the overlap dependence. One scheme is, as-
suming that there is a shared border between the subimages, which holds for 3D digital
pathology, to perform contour matching after extracting contours at image boundaries
[Kong 01, Tsam 10]. Although this approach works on puzzle solving tasks, where par-
tial images usually have clean shared borders, it fails when applied on medical images
where boundaries usually have low signal to noise ratios or geometric distortions. Another
approach, which is often used for 3D digital pathology, is the use of slices at subvolume
boundaries. Subvolumes are created by stacking together a small set of 2D slices by as-
suming minor structural differences. Using boundary slices of such subvolumes directly as
done in [Cape 09, Berl 11], however, the final reconstruction might be sensitive to potential
distortions in boundary slices [Lee 08]. Based on this observation, Bagci et al. [Bagc 10]
proposed to select best reference slices from each subvolume, which are then registered to-
gether assuming that they are anatomically similar. Although this seems to be a better
strategy than using only boundary slices, the difficulty associated with the selection of a
“good” representative slice as well as the potential anatomical variations due to the distance
or physical gap between the selected slices are the main challenges associated with this
approach.

All of the techniques mentioned so far rely on the information contained either at the
boundary or in a specific slice of a subvolume. However, structures in medical data often have
certain morphological smoothness and continuity properties which can be exploited to ensure that
a final stitching is consistent with respect to the continuity of structures spanning the stitched
subimages. Following this idea, Lee & Bajcsy [Lee 08] proposed a feature-based approach
for the volumetric reconstruction from the confocal laser scanning microscopy subvolumes.
Feature trajectories extracted from vessel centerlines in subvolumes are used for fitting
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polynomial curves that are fused with a corresponding trajectory in a neighboring subvol-
ume. However, they search for an affine transformation only in the lateral plane while
ignoring transformations in the stitching direction. Moreover, their method heavily de-
pends on the extraction of centerlines through vessel segmentation. It is usually hard to
find feature correspondences and segmentation is often an error prone task.

Reconstruction of histology volumes are even more difficult when the sections or the
slices are registered separately. The main difficulty comes from the fact that all slices
undergo a cutting process which introduces deformations, foldings or tears, therefore,
there is no “target slice” to which a slices can be registered. Therefore, when the slice are
simply registered to each other (e.g. consecutively), there is no guarantee that the original
shapes of the structures will be preserved in the final volume. This is known as the classical
“banana problem” [Stre 97]. A possible solution for this issue is to use external reference
images such as block-face images [Bard 02, Feue 11]. Block-face images are simply the
photographs of sections taken before cutting. In this setting, each slice is registered to
both its block-face image and its neighboring slice. However, the main limitation of such
methods is the difficulty related to the acquisition setup and requirement for multi-modal
registration.

To alleviate the above-mentioned issue, there have been also reference-free histology
reconstruction attempts in the literature where no external references are required. Gaffling
et al. [Gaff 11] introduced a reference-free method that uses the regression of manually
extracted landmarks to restrict the deformation. By using a polynomial regression over
corresponding landmark positions, they obtain a smooth and consistent reconstruction of
histology slices. Although the results of this method seem promising, given the large size
of histology slices, manual extraction of landmarks is not feasible in practice. Cifor et al.
[Cifo 11] proposed a smoothness-guided approach where a min-max curvature flow only
in lateral directions is calculated. Once the in-place flows are computed, transformations of
different complexity can be extracted from the flow. This method, however, requires the ex-
traction of surfaces in order to perform a curvature flow. Saalfeld et al. [Saal 12] proposed
a hybrid reconstruction method where an initial feature-based alignment is followed by
block-matching. Deformation of a slice is coupled with the deformations of neighboring
slices using a spring model. Gaffling et al. [Gaff 14] proposed a very interesting approach
where they separate anatomical information which has low frequency from the high fre-
quency errors due to deformations.

Based on these observations, we believe that there is still no promising solution to the
problem of registering/stitching images/volumes in the absence of sufficient or reliable
overlap. Ensuring morphological continuity and local consistency of structures has remained a
challenging task in various applications in medical imaging including digital pathology and wide-
field microscopy. Thus, in this chapter, we aim at proposing novel registration techniques
addressing the local structural consistency in medical image registration.

The main difference between the presented scheme and the other existing solutions for
extending image field-of-view is that a sufficient overlap region is not assumed to be readily
available from the outset. It is enough for our method if the subimages are “sufficiently
close” to each other. Furthermore, we assume that their relative positions are roughly
known. That is to say, we know the adjacency relationship between the subimages in ad-
vance. Such challenges associated with medical image mosaicing like the initial positioning
of partial images by identifying adjacency relationships or avoiding error accumulations
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during mosaicing have been extensively studied and addressed in several recent works
[Brow 07, Emme 09, Prei 09, Tsai 11, Loew 11]. Moreover, most acquisition protocols record
the physical coordinates and extents of images being acquired that can be used for rough
initialization. Therefore, in this work, we will focus on strategies for the registration of subimages
having limited or no overlap while ensuring the continuity and the smoothness of structures cross-
ing their boundaries. It should be noted that, for a successful registration, it is important that
image structures have inherent continuity, which is a property that can be observed and
exploited in most medical images.

In this work, we are inspired mostly by the ability of the human visual system to perceive
the “good continuity” of structures by integrating information from pieces. It has been
reported in the literature that the human visual system can construct a whole from its
pieces by integrating the continuity information of apparent contours within each piece, i.e.
by perceptually grouping them based on the Gestalt law of good continuation [Wert 38].
The principle of good continuity states that, when perceiving a scene, the human visual
system tends to prefer a smooth continuity of pieces rather than allowing sharp changes
leading to high curvatures. Similarly, we believe that a computer aided solution to the
problem of image FOV extension should mimic this property of the human visual system
by reconstructing a scene from its partial observations in such a way that, at the end,
structures are perceptually smooth and continuous.

Recently, there has been extensive research in the field of computer vision to un-
derstand and model the perceptual grouping mechanism of the human visual system
[Pare 89, Fiel 93, Augu 03, Sing 07]. Several methods for modeling the perceptual grouping
have been developed for curve and surface inference in computer vision [Shas 88, Sark 93,
Thor 95, Medi 00a, Mord 06]. Among these methods, tensor voting [Medi 00a] has been
employed in numerous applications [Tong 04, Fran 06, King 08, Jia 08, Loss 11]. Besides
the problem of curve and surface inference, it has been also used for solving many other
computer vision problems such as image repairing [Jia 03], color correction [Jia 05] and
terrain extraction [King 08]. More interestingly, several relatively recent works in the field
of medical imaging have successfully employed tensor voting in applications such as gap
filling for vascular structures [Riss 08], catheter detection in fluoroscopic images [Fran 06]
and detection of curvilinear structures in microscopic images [Loss 11]. These works also
exploit the continuity property of structures in medical images to reconstruct or detect
objects.

In this work, we propose a novel technique that uses tensor voting for the inference of
structures beyond observed image regions. The goal here is to establish a region shared
by the subimages to be stitched as demonstrated in Figure 4.3(a). To this end, we create
structural probability maps by propagating salient structures from observed image regions
into other regions. Then, these structural probability maps are used for the subsequent
alignment of subimages. Finally, resulting transformations are transferred to the original
subimages for the optimal alignment with respect to the smoothness and the continuity of
structures across subimage boundaries. So far, we are not aware of the use of a conceptual
grouping technique for extending the field-of-views of medical images.

The same technique can be used also for inferring existing structures based on the avail-
able information in the surroundings. Such an approach is quite useful for scenarios where
the available measurement is corrupted and there is no ground truth for the underlying
shape, which is often the case in histology images. When aligning digital histology slices
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with the purpose of having a digital histology volume reconstruction, artifacts due to the
sectioning process renders information within each slice unreliable to be used as basis for
registration. However, we will demonstrate that, using the proposed structure propaga-
tion technique, it is possible to infer the reliability of existing structures by letting their
neighborhoods vote for their existence. This voting process results in a map of structural
probability that can be used as a self-reference during reconstruction.
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(a) Overview of the proposed four-step stitching method using structure propaga-
tion. Here, we use a simple example where two pieces of a partial ellipse are to be
stitched together. In Step I, the edge images, E; are obtained by extracting struc-
tures , i.e. the edges, from the input images, I;. This is followed by the propagation
of structures into a predefined region ;. for E; in Step II. We create structure im-
ages denoted by .5; in 2, which is constructed by combining the extended, €2;., and
the overlapped, 2;,, regions of the edge image E; in Step III. Finally, these newly
created images are registered to each other followed by the application of resulting
transformations to the original images, I; in Step IV. (b) The same technique can
be directly applied to the stitching of images having a physical gap (see missing
part in I5). The proposed technique is capable of aligning image even in this case
thanks to the fact that the structures are extrapolated by making sure that the global
continuity of structures is not violated.

In summary, there are several benefits of using structure propagation;

e First of all, in the absence of an overlap region, structural probability maps can serve
as a basis for the estimation of necessary transformation that will bring subimages
into a spatial alignment.

e Secondly, if an existing overlap region is small or has severe geometrical distortions or
deformations arising from slide preparations etc., then, this region can be supported
by structural probability maps created by extrapolating the structures that are salient
or that present with no or less distortion into this region.
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e Finally, an image stitched together from subimages using structural probability maps
will have smooth connections between the corresponding structures of subimages.

Once structural probability maps are created, then, either they can be registered to each
other directly or one can employ them in a regularization term while registering partial
observations with independent measurements. The transformations needed to combine
partial observations can be linear or non-linear depending on the needs of applications.
For instance, while a linear transformation is sufficient to register partial images for mi-
croscopic image mosaicing of a fixed sample, in 3D digital pathology, one has to correct
for local deformations which requires a non-linear transformation model. Here, we will
demonstrate how both types of transformations can be estimated using structural probabil-
ity maps obtained through structure propagation. For both types of registration, we use a
registration framework based on Markov Random Fields (MRF) [Gloc 08]. For linear regis-
tration, we employ the method proposed in [Ziki 10] whereas for non-linear (deformable)
registration we base our work on the registration method proposed in [Gloc 08]. A brief
review of these methods was presented in Section 3.1.6.

The organization of this chapter is as follows. In Section 4.2, we explain our method
where we give the theory of tensor voting in Section 4.2.2 and describe how it is used for
structure propagation in Section 4.2.3. Alignment of partial observations with the support
of structural probability maps in several applications is discussed in Section 4.3.1. Ex-
perimental results demonstrating the performance and the effectiveness of the proposed
method on synthetic and real medical images are presented in Section 4.4. Sections 4.5
and 4.6 conclude the chapter with discussions.

4.2. Method

The main idea behind our approach is the extension or propagation of information available
in partial observations or subimages in order to allow registration when it is not possible
otherwise. A secondary motivation is to improve registration performance by augmenting
the existing registration frameworks with data-based regularization terms. The extension
is in terms of image structures such as strong edges in the subimages that are extrapolated
beyond subimage boundaries. By posing this as an inference problem, we employ the ten-
sor voting method to infer structures based on the orientation and the saliency properties of
existing structures in the neighborhood. Inferred structures can be then used in estimating
transformations at different scales for the optimal alignment between subimages.

In this section, we first give an overview of our approach followed by theoretical back-
ground on tensor voting and then we explain how structures are propagated using tensor
voting. Finally, the complete registration strategy is discussed at the end of this section.

4.2.1. Overview

Letl; : Qy cRY 5 Rand Ir : Qs € RY — R be two images with dimensionality IV to be
stitched together in order to extend the field-of-view. In this work, we use strong edges as
structural information to be propagated. Therefore, we further define £y = ((I2) : 1 C
RY — Rand By = ((I5) : Q2 C RY — R as the structural representations where ((-) is an
edge operator. Strong edges in images can be detected by using even the simplest methods
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like calculating the gradient magnitude and applying a threshold on it. We have chosen to
use an efficient implementation of edge detection with recursive filtering [Mong 91]'. It
should be noted that no post processing such as thinning is necessary for our method to
work.

In order to be able to register /; and I», one has to have a rough initial idea about their
positions relative to each other. In classical registration, based on the assumption of minor
viewpoint differences, the images are usually placed such that a large overlap is guaranteed.
The capability of a registration algorithm to refine the relative positions of images often
depends on the employed correspondence estimation techniques. The prior positional
information can be obtained in several ways such as using a step motor in microscopic
imaging or using other existing methods as mentioned in Section 4.1. Moreover, in most
image acquisition protocols, image coordinates are saved in headers. Therefore, in this
work, we will assume that such prior information is available. In other words, we will
assume that we know the rough adjacency relationship between the subimages. Note that
the goal here is to find the necessary transformation parameters that will bring these two
subimages into spatial alignment such that the structures in the subimages are smooth and
continuous across the boundary between them.

Let 1. and Q9. be the regions corresponding to the extensions of image regions 2; and
2y, respectively. Using structure propagation, a scalar structural probability map in the
extended region €. is created from the structures available in the edge image F;. € is
now assumed to be overlapping with a small, if not entire, portion of region ; (j # i and
i,j € {1,2}) of the other subimage. This region of overlap will be denoted by 2, i.e. the
overlapping portion of 2; with the extension from §2;. Further we define

Qo =i UQye, 1€ {1, 2} (4.1)

which is simply the union of the overlapped and extended regions for the edge image E;.
We denote the corresponding images with S; : ©, C RY — R, i.e. the structure images
that are constructed by combining the extended, 2;., and the overlapped, ©2;,, regions of
the edge image E;. This is illustrated graphically in Figure 4.3(a). In this way, we create
an overlap region between subimages by means of a two-sided structure propagation. For
the optimization of transformation parameters to align the original images I; and I3, the
information present in the established overlap region €2, can be used. Finally, the stitched
image will be denoted by I, : 2, C RN — R where Q, is the union of the domains of two
subimages as shown in the fourth step of Figure 4.3(a).

Note that if an overlap is already available but not reliable enough, then, the overlapping
region can be defined as the region into which structures should be propagated. For the
registration, however, one could use only the propagated structures or couple it with the
unreliable information already contained in the overlapping region. A marginal example
for this case is the 3D deformable reconstruction from 2D slices where the overlapping
region can be chosen as the entire stack itself. Therefore, one could also infer structures
already inside the observed partial images.

]Implementation available from ftp://ftp-sop.inria.fr/epidaure/Softs/Malandain/
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4.2.2. Tensor Voting

The Tensor Voting is a perceptual organization method designed for the inference of per-
ceptually salient structures from a set of incoherent input points [Medi 00b, Medi 04]. In
[Medi 04], “perceptual saliency” is defined as the quality of features to be important, stand
out conspicuously, be prominent and attract our attention. It provides a computational
framework based on the Gestalt principles for perceptual organization to extract informa-
tion regarding the underlying structures. The Gestalt principles describe the properties that
the human visual system exploits when organizing input signals into structures [Wert 38].
These principles include proximity, good continuity, closure, simplicity and similarity. We
can get some intuition about some of these principles if we consider the fragments in Fig-
ure 4.4(a). Using the closure principle alone would lead to three groups while using the
good continuity principle alone will result in only two curves. According to the latter prin-
ciple, for the human visual system, it is more likely to have a curve out of the fragments (1)
and (3), rather than (1) and (2) as shown in Figure 4.4(c). This is an evidence that our visual
system prefers to perceive structures with minimal amount of abrupt changes.
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FIGURE 4.4.: Example for perceptual grouping based on the Gestalt principles. Colors indicate
different groups. (a) A set of fragments as input. (b) Perceptual organization based
on the closeness principle. (c) Perceptual organization into curves based on the
good continuity principle. Note the grouping with respect to minimal total curva-
ture.

In tensor voting, structure inference is done locally based on the contextual support from
neighborhood. It is based on a communication scheme where every point, called voter, casts
its local structural information encoded as a second order real symmetric positive semi-
definite tensor vote, T, to other points in its neighborhood, called votee, over a hypothesized
smooth curve with a low total curvature. Tensor representation enables us, at a certain
point, to encode all possible structure types and their saliences in a single term. Such
structure types include point and curve in 2D /3D and surface in 3D. The employed tensor
here is similar to the structure tensor used in computer vision for encoding local geometry.
The shape of a ellipsoid corresponding to a tensor intuitively represents the local shape
of the underlying structure. The positive semi-definiteness of the tensor ensures that the
saliences are non-negative. In addition to this, a second order tensor is needed to encode
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the orientation information in 2D and higher dimensional spaces.

The strength of the vote cast depends on the voter’s perceptual saliency, the voter-to-
votee distance and the curvature of the assumed curve connecting them. In the following
two subsections, we provide more details about structure representation and tensor com-
munication.

Structure Representation

In tensor voting, every structure type in N-dimensional space is characterized by the di-
mensionality d of its normal space Ny and its associated saliency s; [King 08]. For instance,
in 2D an isolated point has a ball-shaped tensor (d = 2, i.e. the normal space has the dimen-
sionality of 2), whereas a point on a curve has a stick-shaped tensor (d = 1, i.e. the normal
space has the dimensionality of 1) where the dominant component of the corresponding
high dimensional ellipsoid represents the orientation of the normal (c.f. Figure 4.5). The
strength of a d-structure is related to the magnitude of its saliency s4. In the following, we
will show how all possible structure types are represented by a single tensor.

T~

normal spaces

tensors

point line
FIGURE 4.5.: Structure types in 2D, their normal spaces and corresponding tensor representations.
Left: point structure (red). Right: linear structure (red). Note stick tensor is shown
as a normal ellipse for the ease of representation. In reality, its minor axis radius

goes to zero, i.e. its rank is 1.

A second order symmetric tensor T can be decomposed as [Itsk 09]

N
T =) Aéqe) (4.2)
d=1

where A\ > ... > Ay > 0and €, ... éy are eigenvalues and eigenvectors of T, respectively
and N is the dimensionality of the input space. Due to [Medi 00a], we can reformulate it as

N—-1 d N
T = Z ()\d — >‘d+1) Akéz + AN Z ékég (4.3)
d=1 k=1 k=1

which can be further written as

N
T=) siNg with sq= (4.4)

{Ad—AdH d< N
d=1

AN d=N
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where s, is the saliency and V; = Zgzl €€y, is the d-dimensional normal space associated
with the d-structure type [King 08]. This representation can be interpreted as the decoding
of the encoded information in the tensor into different structure types. Every possible
structure type has a normal space and an associated saliency. The rank of the normal space
gives hints about the type of the structure.

As discussed earlier, such a representation is suitable for combining information related
to different structure types in a single term. By using a joint representation with saliences,
it is not necessary to classify underlying structures into discrete class labels. This could
also be related to Gaussian mixture models in the sense that at each point, a mixture of
N models is fitted where structural saliences can be seen as the model weights. Another
advantage of this representation is the ease with the aggregation of encoded information
coming from different sources through tensor addition. This property will be especially
important during tensor-based communication which we discuss in the following.

Tensor Communication

Tensor communication consists of two stages; encoding and decoding. Encoding happens
at the voter site while decoding is done at the votee. A votee at point q € RY accumulates
incoming votes from all voters p € P C RY, using tensor addition

T(q) = )  AP(q) (4.5)

peP

where P denotes the set of voters in the local neighborhood of the votee. Decoding of this
tensor into structures can be done by using the decomposition described in Equations (4.2)
to (4.4). Here, AP(q) represents the incoming second order symmetric tensor vote from
voter at p encoding the local structural information.

Using the same decomposition scheme, AP(q) can be written as the sum of vote compo-
nents for every d-structure as

N
AP(q) =) shAR(q) (4.6)
d=1

where s¥ is the saliency of the d-structure type and A¥(q) represents the vote component
for the d-structure at p.
A vote component for a d-structure is defined as

d
AP(q)=> 8% (q) with SF.(q)=w(p,q,N})¥ 97, (4.7)
=1

where S} (q) is a stick voting field for the j basis vector of N}, i.e. the normal space
of the d-structure. Before we continue with the explanation of stick voting field, let us
give an intuitive definition of vote components. In plain words, a vote component for a
certain d-structure is composed of contributions from the basis vectors of its normal space.
A contribution of a certain basis vector is also in tensor form obtained by the covariance
matrix of the inferred version of this vector.

To give more intuition, let us assume that, in 2D, the underlying structure at a point p
is a curve, then, according to Figure 4.5 and Equation (4.6), the saliency of the 2-structure
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FIGURE 4.6.: Illustration of tensor voting. A voting scenario in 2D from a voter at p to a votee at
q along an hypothesized circular arc s. A weighting function (color) determines the
strength of a vote based on the distance between the voter and the votee. Here only
a vote for a 1-structure, i.e. curve, which has information regarding only its normal
space, N1, is sent.

becomes zero and we are left with a 1-structure having N, i.e. only a single normal vector.
Therefore, the tensor vote cast by the voter reduces to

AP(q) = s7A7(q) with Af(q) =S7;(q) (4.8)

where s; is a constant depending on the eigenvalues of the local tensor. This means only
a single stick voting field for a single basis vector, i.e. the normal vector, is used. If there
would be only a 2-structure type (isolated point), then, the only vote component for this
structure will be the sum of stick voting fields for each basis vector of the corresponding
normal space No.

The stick voting field, Sg j(q) for the j** basis vector, Vn,j, of Ny is the product of a
weighting term w(p, q,N}) with the covariance matrix of the implied vector V. ;. The
implication process for v ; is depicted in Figure 4.6. It is based on the observation that the
most appealing curve connecting the voter to the votee is a circular arc [Guy 97, Medi 04,
King 08]. The implied normal can be seen as the vector that we would obtain if the normal
vector, V,, ;, is slid on an assumed circular arc as shown in Figure 4.6 while preserving its
orthogonality to the tangent of the circle. This circle is unique once p, q and the normal at
p is given.

Following this assumption and by projecting V. ; onto the unit basis vectors of the normal
space N, at p, we get

Ve,j = Vn,j c0s(20) — v sin(26) 4.9)

where V; is the unit vector in the direction of the projection of v = q — p in the associated
tangent space and 6 is the vote angle defined as the complementary of the angle between
Vy,,; and v. This simply gives the inferred normal at q if there would be a circular arc
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FIGURE 4.7.: Communication between ball tensors. Note how the normal space of a voter
(dashed vectors) is oriented for each votee and how different accumulated tensor
votes depend on the location of votees. Votee 1 received more stick votes in a certain
orientation than votee 2 since it is more aligned with the voters than votee 2.

connecting p and q. Mordohai [Mord 05] and later King [King 08] observed that if the
first basis vector in N is chosen to be the unit vector in the direction of the projection of
v onto this normal space, the implication operator in Equation (4.9) reduces to identity
for the remaining orthogonal basis vectors spanning A;. This is due to the orthogonality
of the remaining basis vectors to v and it leads to a simplification in the computation of
component votes.

Since a low total curvature of the assumed curve connecting the points is desired
[Medi 00b], the magnitude of votes cast over arcs having high curvatures should be pun-
ished in order to reduce the likelihood of high curvature arcs. Furthermore, the requirement
that the strength of the vote should decrease as the distance between the points justifies the
usage of a weighting term based on the curvature of the assumed curve and the distance
between the points.

The weighting term w(p, q, N}’) in Equation (4.7) essentially controls the magnitude of a
tensor vote depending on the angle, 6, and the distance between the points, r = ||v||. Itis
defined as

w(p,q,N}) = ) (4.10)
s =r6/sin(0) 4.11)
Kk = 2sin(0)/r (4.12)

as proposed in [Medi 00a] where s is the arc-length, « is the curvature of the assumed
curve, o is a scale parameter controlling the voting distance and c is a parameter that can
be tuned to change the compactness of the voting field. Although Medioni et al. [Medi 00a]
fixed this value as ¢ = w
of applications.

While increasing r penalizes the votes cast to the points beyond some scale, larger values
of 6 reduces the effects of votes cast through a hypothesized curve. w(p, q, N; j’ ), as shown

in color in Figure 4.6, is simply a scaling function for the vote components. The strength of

, it can be adapted depending on the characteristics
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FIGURE 4.8.: Tensor weight profiles with changing free parameter and scale. Free parameter ¢
can be used to control the sharpness of the weighting profile. The image size for
each parameter pair is 500x500 pixels.

the stick vote is larger if the curvature is zero and if the voter-to-votee distance is minimal.
Figure 4.8 shows different weighting profiles for changing values of ¢ and c.

It should be noticed that the weighting profiles shown in Figure 4.8 are based purely on
the normal at the voter. The local curvature of the underlying structure is not considered
for voting. We believe that including the local structural curvature would lead to a better
inference by respecting more to the properties of the local structure as well as a longer
range inference. In Section 4.2.4 we give the description of curvature based tensor voting
along with some sample results on synthetic images.

The final accumulated vote cast by a set of voters, P, to a certain votee at q becomes

N d . +m
SRS e v T (4.13)

peP d=1 j=1

A subsequent decomposition applied to T(q) as described in Equations (4.2) to (4.4) will
allow us to extract the saliences of different structure types. In summary, given a set of
points with tensors assigned to them, one can let all points cast votes to a certain point
where it becomes possible to infer a structure. In the following section, we will describe
how the points are initialized and how they are used to propagate existing structures.
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4.2.3. Structure Propagation
Tensor Initialization

Structure propagation is based on the local structural composition of voters. This means
that before casting structural information through voting, every point should be aware of
the composition of its underlying structures. This can be accomplished in several ways. The
most straightforward way is to first calculate the structure tensor at every point in the image.
Structure tensor is used quite often in computer vision to estimate the local orientation
and coherence which parallels our definition of local structural composition [Schu 09]. If
structure tensor is used as the initial tensor, then, every point in the image can be considered
as voter. Although this would introduce robustness to the inference, the voting process
becomes extremely expensive in term of computational cost.

We, instead, limit the set of voters to the most prominent structures in the image to
simplify the voting complexity. This can be achieved by performing an edge detection
and keeping only the edge pixels as the set of voters. This way, the complexity reduces by
several factors since we do not include the points in regions with no structural significance.

For initializing the edge pixels we can either calculate and use the local structure tensor
or assume local structural isotropy. What is interesting in the latter case is that we can
let edge pixels, i.e. tokens, cast votes between each other in order to find mutually agreed
representations for local structural compositions. Moreover, using the latter approach leads
to a more robust normal estimation with respect to possible outliers during edge detection.
Therefore, we have chosen to estimate the orientation directly from the unoriented tokens
in order to provide a scheme that is applicable in cases where local gradient computation
from image data is difficult.

The process of estimating normals from unordered point data is called token refinement
or sparse tensor voting which we explain in the following.

Tensor Refinement

We define a set of tokens, i.e. edge pixels, P; € ), for each edge image, F;. Assuming
that these tokens do not have any preferred orientation in the beginning, each of them is
assigned a unit ball tensor with an arbitrary orthogonal basis as depicted in Figure 4.9(a).
Making this assumption helps eliminating the dependence on the orientations of the edges
as detected by the edge detector. Next, every token casts vote to every other token in its
neighborhood using the voting mechanism described before. Since their local structural
composition is only a unit ball tensor, the only non-zero saliency is sy = 1 which fol-
lows from the eigen-decomposition of the identity matrix. Also their normal spaces are of
dimension N.

At this stage, a vote component is created for each token that consists of contributions
from each basis vector of its normal space. If the orthogonal basis of the normal space is
chosen such that the projection of voter-to-votee vector is along the first unit basis vector,
then, the total sum of the vote components reduces to a vote that will reinforce linearity.
That is, unorganized tokens lying on a locally linear structure such as curve or plane will
agree on a preferred normal space, which is the normal space of the underlying structure.

For instance, in 2D, without any preferred orientations, a voter will always vote in the
favor of a locally linear curve, i.e. stick votes, passing through a certain votee and itself.
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(a) Before token refinement. (b) After token refinement.

FIGURE 4.9.: Token refinement during tensor voting using a set of unorganized input tokens.
Green dots represent the token positions while sticks stand for the eigenvectors
of associated tensors. (a) Tokens are assigned ball tensors initially. They have no
preferred orientations. (b) After a refinement step, they agreed on a certain orienta-
tion by exchanging information with each other in a local neighborhood. Note how
tokens lying on a (possible) structure have similar orientation preferences.

This practically means that the stick voting field in Figure 4.6 is always aligned with the
voter-to-votee vector v. This is possible due to the fact that the basis vectors of the normal
space of a unit ball tensor can always be chosen such that one of the vectors is along v and
others are orthogonal to it. The contribution from the first basis vector will be negligible
due to the large angle, while the contributions from the other remaining vectors will be
strong due to the vote angle being zero (c.f. Figure 4.7).

At the end of this procedure, each token accumulates stick votes coming from other
tokens in its neighborhood into a tensor which is then decomposed according to Equa-
tion (4.4). Tokens that are close to each other or lie on a structure mutually agree on a
preferred orientation and have higher saliences for the underlying structure type as de-
picted in Figures 4.7 and 4.9(b). In our 2D example, if a votee receives more line votes
from voters along a certain orientation, then, after decomposition, this will be its preferred
orientation, which is an indication of the presence of a linear structure passing through
this token with an associated saliency. At the end of this step, edge pixels will be assigned
tensors encoding possible structure types and their saliences.

After the refinement step, it is possible to eliminate voters which are non-salient. This can
be achieved by analyzing the structural composition of tensors. A votee with orientation
uncertainty has larger ball saliency (i.e. sy) compared to remaining structure types. At this
point, a more suitable measure for local anisotropy is the fractional anisotropy (FA), which
is a measure commonly used in diffusion tensor analysis [Bass 96]. It gives a normalized
value in [0, 1] where 0 means full isotropy and 1 means full anisotropy. For N = 3, FA is
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FIGURE 4.10.: Token refinement based on the angle of incidence. If the angle « for a token is
smaller than a threshold it can be discarded from structure propagation.

defined as

o \[wl + (Ao — A2+ (A3 — A)2 Wi

N2YESYEDY

where \ = (A1 + A2 + A3)/3. For N = 2, one can employ the normalized coherence measure
(NCM) to assess local anisotropy [Jahn 93]. Normalized coherence is defined as

(A1 — Xp)?

NCM = ——=2.
(A1 + X2)?

(4.15)

In both Equations (4.14) and (4.15), the case where all eigenvalues are zero can be detected
and eliminated. This is actually unlikely in the sparse voting case since all voters are
assigned ball tensors which is fully isotropic. Thus, FA and NCM can be used as normalized
anisotropy measures for 3D and 2D, respectively. By using these measures along with a
threshold in [0, 1], it is possible after the initial sparse voting step to choose a subset of
voters that are structurally anisotropic. Such a threshold ensures that only tokens lying on
structures are used in the subsequent propagation stage.

Structure Propagation

After having assigned tensors to edge pixels, i.e. tokens, encoding structure types and their
associated saliences, every token can now propagate its information again using tensor vot-
ing. In other words, based on their self information about the underlying structures, tokens
vote for possible structures in other regions. We use this for the inference of structures in
the extended regions (2;. in Figure 4.3(a). Practically, each token in 2; sends a vote to every
pixel in (.

At this point, it is possible to put a restriction on the voters such that only the ones lying
on a structure which makes a sufficient angle of incidence with the boundary of ), are
included in the propagation. The reason for this could be, for instance, to filter out those
points lying on structure with small probability of passing through the image boundary.
Therefore, P;’s can be further refined depending on the angle o = arccos(\fanfo) where v,
is the unit normal vector of the boundary of (2, as shown in Figure 4.10. This restriction
may help to avoid ineffective votes due to the voter-to-vote angle leading to computational
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overhead. If curvature information is available, a similar strategy can be employed to
eliminate points with high curvatures. A dense voting is performed using the remaining
salient voters by

T(q;) = Z APi(q;), i€{1,2},pi € Qi,qi € Qi (4.16)
p:EP;

where every pixel position q; in the extended region (2. is considered as a votee.

It should be noted that, at this stage, any point in space can be considered as a votee.
Employing such a strategy, for instance, might be helpful to obtain intrinsic structural
representation contained in a noisy or distorted image. Once dense voting is finished,
structural saliency maps, which we consider as the structural probability maps, can be
extracted from the accumulated tensors as follows

Sz(ql) = )\1 (qz) — )\Q(qi) 1€ {1, 2} ,qi € Qie (4.17)

where A1 (q;) and A\2(q;) are calculated using the eigendecomposition of T(q;) according to
Equations (4.2) to (4.4). This structural saliency corresponds to curve saliency and surface
saliency in 2D and 3D, respectively. Although we make use only one type of structural
saliency for creating the scalar structural probability maps, it is also possible to create a
vector valued map where each component corresponds to a different structure type.
Finally, we create the structure images .S; by setting intensity values from the overlapping
region 2, = Q;, U Q;.. This is done simply by cropping the portion of the extended edge
image [; falling in €2, as shown in Figure 4.3(a). This is a combination of probabilistic and
deterministic structural maps. Now, we have a pair of completely overlapping structure
images, S1 and S>. The observed structures in S; corresponds to the estimated structures
in Sy, and vice versa. Alternatively, one could also obtain a structural probability map
for the observed structures if the observed structures are too noisy or distorted. Here,
for the sake of simplicity, we will assume that our observed structures are free of noise.
However, in the experiments, we will show that the proposed method is already robust
against noise. This property will be important when using structural probability maps for
digital pathology images where structures are often distorted. In order to make sure that
structures at different scales are treated appropriately, one could also employ a multi-scale
approach for structure propagation, which we will mention in the context of registration.

4.2.4. Curvature-based Structure Propagation

Curvature is one of the important descriptors for the local surface geometry. Although it
is straightforward to estimate if the surface is represented analytically, special techniques
are necessary in case of discrete representations such as triangular meshes. Therefore,
estimating curvature has been studied extensively for the analysis of mesh data. Two major
approaches include local analytical surface fitting and discrete approximation. While fitting
methods benefit from locally having an analytical representation for the surface that can be
used to analytically derive curvature, discrete methods enjoy the lower computational cost
compared to the former methods [Gatz 06].

One of the discrete approaches for estimating curvature is the curvature tensor. Taubin
[Taub 95] provides a very elegant formulation for discretely estimating the curvature tensor
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using local neighborhoods. Curvature was introduced into the tensor voting framework by
Tang and Medioni [Tang 02]. They included an additional step after the initial sparse voting
for the estimation of local surface shape with the help of the sign of curvature. They classify
each point into labels {planar, elliptic, parabolic, { hyperbolic, outlier, discontinuity}} that
are considered during the last dense voting step along with the estimated sign of curvature.
[Tong 05] later extended this work by introducing the curvature tensor into the voting
framework. Using this approach it is possible to estimate the principle curvatures and
associated directions at each input token using tensor voting. However, this is only limited
for surfaces where 2D curvature tensors are estimated in the tangent plane of each token.

Curvature Tensor

In 3D, the local surface geometry can be represented by the Darboux frames [Peti 02] which
is defined as
Aq = (q, Vp, Vi, V2, K1, o). (4.18)

Here, q is a surface point, v,, is the normal at q and Vi, k; are respectively the maximum
and minimum curvature directions and associated curvatures. The curvature tensor is
defined as a mapping form every point q to the directional curvature x(¥;) along a unit
length tangent vector v; [Taub 95]. If v, is written in terms of an orthonormal basis Vi V2

in the tangent space of the surface at q as v, = tvy + tgff?, then, x(V;) can be expressed in

the quadratic form
t1 g K11 K12 3]
) = 4.19
w(Ve) ( to > ( Ko1 K22 > < to ) ( )

k11 and kg9 are the curvatures along the basis vectors th, \7?, respectively, and k12 = k2;.
If k12 = k21 = 0, then, ¥}, V2 become the principle directions (v}, v2 in Equation (4.18)) and
K11, ko2 become the associated principle curvatures (x1, k2 in Equation (4.18)), respectively.
Hereafter, we will use the principle vectors as the orthonormal basis of the tangent space.

Let v be a arbitrary vector in the tangent plane of the surface at q where ¢ is the angle
between the first principle vector v} and v?. Then, one writes the curvature along v¢ as

k(VY) = Kk cos? (B) + kg sin? (0). (4.20)

A second order symmetric matrix can be obtained by integrating this for all possible unit
tangent vectors
1 ™
T or
which represents the curvature tensor at q. Taubin [Taub 95] shows that the eigenvectors of
M correspond to the principle directions {v{,v7} in addition to the normal vector and the
corresponding eigenvalues lead to the principle curvatures using the following linear map

K1 = 3&1 — ag (4.22)
R9 = 3&2 — a1 (4.23)

RN AC AR L (4.21)

with a; and a; being the eigenvalues of M corresponding to {v}, v?}. Equation (4.21) can
be approximated by

M = Z Wpky pvt (v (4.24)
pEVq
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where Vj, is the neighborhood of q, V¥ is the projection of r = p — q onto the tangent space
of the surface at q. wp is a normalized weighting term for neighboring element. This can
be computed from the local triangular mesh if the surface is estimated on a mesh [Taub 95]
or from the votee and voter normals in terms of vote consistency in tensor voting [Tang 02].
The directional curvature r¢p in the direction VP can be estimated using differential geom-

etry as

(4.25)

In fact, this is equivalent to our definition in Equation (4.12) for the curvature of the oscu-
lating circle that passes through p and q.

In order to factor out the principle directions and corresponding curvatures from Equa-
tion (4.24), we use an approach similar to [Taub 95]. The matrix M in Equation (4.24) has
the normal vector v,, as one of its eigenvectors with an eigenvalue equal to zero. This is due
to the projection of the vector r onto the tangent plane leading to a rank-deficient matrix M.
Taubin [Taub 95] shows that using a Householder transformation for restricting the matrix
to the tangent plane and a subsequent Givens rotation for diagonalizing the remaining
minor matrix, it is possible to find the principle directions and curvatures.

Curvature Tensor Estimation using Tensor Voting

Using the formulation above, curvature information can be obtained for curves in 2D and
surfaces 3D. Although this formulation is developed for estimating curvature for vertices
on a mesh with known normal directions, it can be used also for estimating the curvature
information for points in an unorganized point set. However, it is necessary to first extract
normals for curves in 2D and surfaces in 3D. This can be accomplished through sparse
tensor voting as described in Section 4.2.2. This results in a set of points with encoded local
structural saliences that can be used to filter out non-salient points in terms of curve or
surface.

Similar to the sparse voting step for normal estimation, curvatures can be estimated by
using the decoded normals at each point. Each point receives weighted “curvature votes”
from its neighbors as shown in Equation (4.24). Weights can be computed by using the same
weighting term as the one used for tensor voting Equation (4.10). Scale parameter o should
be chosen such that a sufficient local neighborhood is used for estimating the curvature of
the underlying structure. This often depends on the curvature of the underlying structure.

During curvature voting, the sign of curvature is efficiently encoded by using the ap-
proach of [Tong 05] where the votee-to-voter vector r is projected onto the normal vector
and the sign of the projection is used as the sign of curvature. In fact, this is the sign of the
cosine between the normal at the votee and the votee-to-voter.

At the end of the second tensor voting pass, all the input points contain their surface
saliency as well as curvature information. This means that at this point, the underlying
structure, i.e. curve in 2D or surface in 3D, can be fully described by the available informa-
tion obtained via the two sparse voting steps.
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FIGURE 4.11.: Illustration of curvature-based tensor voting. Vote cast by the voter will be
weighted depending on the local surface shape.

Curvature-based Structure Propagation

Local structural information can be propagated in a manner similar to the previously dis-
cussed locally linear structure propagation. Despite its success demonstrated in this work,
the main limitation of the locally linear structure propagation approach was the limited
amount of information (first order, i.e. orientation) that was being propagated. Thanks
to the scheme described here, it is now possible to encode and propagate second order
structural information using curvature tensors.

Curvature-based structure propagation works in a very similar way to the linear struc-
ture propagation discussed previously. The major difference is the modification of the
decay function (the weighting term in Equation (4.10)). We propose to add the underlying
curvature to the curvature of the assumed circular arc connecting a voter to a votee. The
new weighting term for a vote cast by p at q becomes

s2+ck2 )

w(p, g, NP) = e o2 (4.26)
o (4.27)

where s is given by Equation (4.11), s is given by Equation (4.12) and rya, the directional
curvature at p in the direction of v}, can be obtained using Equation (4.20) given principle
directions and corresponding curvatures. The directional curvature is added to or sub-
tracted from the assumed curvature depending on whether the votee q is in the lower or
the upper half space of the tangent plane at p. This can be easily determined by sign(r - vy,).

Figure 4.11 shows a scenario where a voter at p casts a stick vote to a votee at q. Using
curvature-based tensor voting, the vote will not be weighted down due to the distance of
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FIGURE 4.12.: Top row: Curvature-based vote weighting function with increasing local curvature
from left to right. A circle with the corresponding radius of curvature is shown as
reference on the rightmost figure. Bottom row: Weighting function with increasing
scale parameter from left to right. Note the capture range is limited by the radius
of curvature.

the votee from the tangent plane of the voter. The directional curvature will be taken into
account so that the vote cast to the votees that are far from the circular arc contained in the
normal plane defined by the normal of the votee and the voter-to-votee vector are weighted
down.

Figure 4.12 shows in the top row different weighting profiles for a voter with changing
local curvatures. It is clear that the votees in the support of osculating circles get higher
weights than the others. In the bottom row are the 2D profiles for a fixed curvature but
changing scale parameter. With a curvature, the strength of a vote is limited with the
osculating circle. The weighting profiles get more complicated in 3-dimensional space.
Depending on the sign of the Gaussian curvature, defined as the product of principle cur-
vatures, one differentiates between elliptical, hyperbolic and parabolic points. Weighting
profiles for these cases are shown in Figure 4.13.

We use the curvature-based tensor voting approach to extend one of the structure images
shown in Figure 4.15. We applied both linear and non-linear structure propagation tech-
niques and varied the scale parameter to observe the differences as shown in Figure 4.14. It
can be observed from the figure that non-linear approach has much more consistent propa-
gation compared to the linear one especially in the region where the structure is non-linear.
However, what is also noteworthy is the decreasing propagation quality of the non-linear
approach with increasing scale parameter. This is especially the case where the structure is
highly curved. The main reason for this is the usage of a much larger neighborhood for the
estimation of curvature than necessary with increasing o.

The above observation suggests that the neighborhood size for curvature tensor esti-
mation should be adapted to the non-linearity of underlying structures. In this sense,
curvature estimation bears some similarities with the non-linear dimensionality reduction
techniques where the goal is to recover the underlying manifold surface using local in-
formation. Therefore, we believe that a local neighborhood analysis such as estimating
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FIGURE 4.13.: 3D weight profiles for curvature-based tensor voting. Columns show weighting
profiles for hyperbolic, parabolic and elliptic surface points, respectively. Rows
show surface rendering for each case and cuts of the surfaces along x and y planes,
respectively.

o =100 o =150 o =200

FIGURE 4.14.: Comparison of linear vs non-linear structure propagation. Top row shows linear
propagation (i.e. using only normals) whereas bottom row shows non-linear (i.e.
normal and curvature-based) propagation. Columns show structure propagation
with varying scale parameter o.
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geodesic distances would help improve curvature estimation, thus structure propagation.

This section has shown how local curvature information can be estimated and exploited
for structure propagation. Results on synthetic images indicate potential improvement in
structure propagation when applied on real images. The benefits of using non-linear struc-
ture propagation would be the improved consistency of propagated structures especially
in cases of occlusion or gaps. Finally, it should be noted that this section provides only
a theoretical extension to the previous linear structure propagation and it has not been
experimentally validated.

4.2.5. Implementation Details

The implementation of structure propagation was done purely in C++. We use an adapted
version of the tensor voting library presented in [King 08] with its implementation as a
part of VXL 2. The implementation is both in 2D and 3D. While tensor voting related parts
are implemented based on the VXL syntax, pre- and post image processing tasks were
implemented using an in-house developed image processing library called Colibri.

4.3. Applications

In this section, we will describe some of the potential applications of structure propagation.
First, we will show how stitching of 2D images can be formulated within the structure
propagation framework. Due to the ease of demonstration in 2D, we used this application
in previous sections for explaining our method. This application was published in [Yigi 13].

Although it is possible in some applications to secure a shared region to be used later for
alignment purposes, there are cases where it is not possible to have an overlap. Creating
3D digital volumes from 2D slices in the context of digital pathology is an example for
this. Therefore, we will demonstrate how existing histology reconstruction techniques
can benefit from the structure propagation framework for an improved local structural
consistency. This application was published in [Muel 14].

Finally, as the last application of our contribution, we will show how structure propaga-
tion can be employed for distortion correction with the purpose of creating whole-body
Magnetic Resonance Images (MRI). This application was published in [Yigi 15].

4.3.1. 2D Image Stitching

When creating a wide field-of-view of a certain scene, partial observations have to be
stitched together in a consistent way. This consistency is usually ensured by allowing an
overlap region between subimages. This overlap is later used for estimating the transfor-
mation parameters that will bring the subimages into a consistent alignment. In this work,
we claim that for a successful alignment of subimages such an overlap does not need to
be secured during acquisition. In previous sections, we have demonstrated how such an
overlap can be established in the absence of an existing one. In order to achieve a consistent
alignment, a registration method is needed to recover the transformation parameters using
the information in the established overlap region. Stitching of non-overlapping images can

VXL library is available for download at http://vx1l.sourceforge.net/.
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FIGURE 4.15.: 2D image stitching by structure propagation using a synthetic image pair. (1)
Shown are only the structure images. (2) Structures in one of the subimages are
propagated towards the other one. (3) Then, the subimages in the established
overlapping region are used for estimating the necessary transformation parame-
ters. (4) Finally, resulting parameters are applied to the original images yielding a
smooth and continuous stitching of structures at the stitching boundary.

be cast as a problem of registering structural images S; which contain propagated struc-
tures in the overlapping region. Transformations obtained from the successful registration
of structural images can be transferred to the original images I;. Figure 4.15 shows an
example of registering non-overlapping partial observations in 2D.

Considering again two partial observations introduced earlier in Section 4.2.1, registra-
tion of S1 and S», which we can put as the source and the target images respectively, is
posed as an optimization problem such that a transformation 7" optimizes an energy &.
Transformation 7' can be parametrized in terms of a set of n parameters t = {¢1,--- , ¢}
Optimal transformation parameters t can be estimated via the following equation

t = arg mtiné'(t) (4.28)

where £ is defined in terms of a similarity measure as
E(t) = £(51 0T, 52) (4.29)

with T; being the parametrization of 7" by t.

Misalignment between subimages can be global, which can be corrected by using a linear
registration technique, but it can also be local where a non-rigid or deformable registration
method is needed. In this section, we consider only global, linear misalignments. We em-
ploy a recently proposed intensity-based affine registration method [Ziki 10] which is based
on a discrete Markov Random Field (MRF) formulation. For the details about the used
affine registration and discrete optimization methods, we refer the reader to Section 3.1.6.
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For the optimization of Equation (3.12), Fast-PD [Komo 07, Komo 08], an efficient MRF
optimization algorithm is used. Registration is performed in a multi-resolution setting to
avoid local minima, where the optimal transformation is communicated between levels.
Note that both structure propagation and stitching take place in a multi-resolution setting.
Such an approach during structure propagation ensures that structures present at larger
scales are considered first for the optimization whereas structures at a smaller scale are used
for refining the transformation parameters. Although not implemented here, alternatively,
one could also combine different scales of structure propagation and registration to make
use of a larger scale propagation also in a finer scale registration for regularization purposes.

In this work, after experimenting with several standard similarity measures for inten-
sity based image registration, we ended up using the normalized cross-correlation (NCC)
measure (Equation (3.9)) as the similarity measure £(-, -) in Equation (4.29). We integrated
the structure propagation library into the discrete MRF based linear image registration
framework [Gloc 08, Ziki 10].

For the demonstration of locally consistent stitching of 2D subimages by respecting the
local smoothness and the continuity of structures across subimage boundaries, we have
used synthetic as well as real image pairs. In Section 4.4.1, we show and interpret the
results of the experiments on these images.

4.3.2. Deformable Histology Reconstruction

In digital pathology, the reconstruction of a 3D volume from a stack of 2D digital histology
slices remains as a challenge especially if no external references are available. Without
a reference, standard registration approaches tend to align structures that should not be
perfectly aligned.

In this section, we show how structural probability maps can be effectively used as a
regularization term for the deformable, reference-free reconstruction of histology volumes.
Structural probability map gives an estimate of the original 3D structure of the sample from
the misaligned and possibly corrupted 2D slices. Here, we describe two reconstruction ap-
proaches, consecutive and simultaneous, that incorporate this estimate in a deformable
registration framework. In Section 4.4.2, we demonstrate experiments on synthetic and
mouse brain data sets showing that using structural probability maps yields similar results
when compared to techniques that operate reference-based on synthetic data sets. More-
over, it improves the smoothness of the reconstruction compared to standard registration
techniques on real data with no references.

Let Z = (I1,...,14) be a stack of 2D images that we consider as a volumetric image.
We further define structural probability map images S = (51, ...,.55) where S;(y) is the
structural saliency at y € R?. As discussed in Section 4.2.3, we consider strong edges in
images I; detected by a standard 2D edge detector as the set of voters £ = (Ey, ..., E,) and
every point in S as votees. After the initial sparse voting performed in 3D, inference is
also done in 3D by performing a dense voting for each votee and then extracting surface
saliences from the accumulated tensors T(y) using Equations (4.2) to (4.4). Finally, surface
saliences are set as scalar values for S(y).

Consecutive Registration We assume that the histology stack was already roughly pre-
aligned by a standard rigid registration, thus our method aims to improve the smoothness
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FIGURE 4.16.: Example for MRF labeling around a control point.

by performing a modified deformable registration based on 2D Free-Form Deformations
(FFD). We refer to Section 3.1.5 for more details about FFD-based image registration. We
pose the deformable registration as a discrete optimization problem using Markov Random
Fields (MRFs) [Gloc 08]. A 2D FFD grid G! is assigned to every slice I;, thus each control
point p represents a node in the MRF. In order to model the actual displacement of control
points we designate a labeling [ of discrete values to all nodes. Each label I}, therefore
describes the displacement d;, of the control point p (see Figure 4.16). The labeling prob-
lem can then be solved with a quadratic pseudo-boolean optimization (QPBO) algorithm
[Kolm 07].

In our first approach the labeling is solved consecutively for each slice I; in the stack by
minimizing the following cost function

52(” = Z <5data(lia I’i+17 lp) + PYES(E’M S’ia lp) + pR(lp)) (430)
peG’

where § = (54, ..., 54) depict the structural probability maps obtained through structure
propagation and E = (E1, ..., E,) the edge maps for each slice in the stack, v and p weight
the contributions of the respective terms. &4, is defined as

Eaata(Li; Tiv1, lp) = NCC(I;, Tiy1) (4.31)

and it compares the deformed slice (denoted by prime) with the undeformed neighbor
using Normalized Cross Correlation (NCC) which yields robust results with lower compu-
tational cost. It is also possible to replace this data term with more sophisticated measures
such as mutual information.

Notice that we do not register to the deformed neighboring slice because this would
accumulate deformations and therefore introduce a strong drift. Therefore this term alone
can only align the slices roughly since the deformations of two neighboring slices are
independent from each other.

The novel data-based regularization term £g, on the other hand, introduces further con-
trol regarding the consistency of structures in the neighborhood. This term measures the
similarity between the existing structures in a slice, represented by E;, with the estimated
structural probability map S; through structure propagation from its local 3D neighbor-
hood. Since the structural probability map provides a perceptually salient approximation
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FIGURE 4.17.: The banana problem: the 3-D reconstruction of a 3-D curved object is not easy.
(a) Take a 3-D curved object (e.g., a banana); (b) cut it into slices; (c) digitize the
slices; (d) mix the digitized slices; (e) the 3-D reconstruction results in a cylindrical
banana. (f) Using a shape prior (e.g., MRI) may help to reconstruct the curved
banana. (Figure and caption reprinted from [Mala 04], Copyright(2014), with
permission from Elsevier).

of the local 3D structure of the stack, it also constrains the 2D FFDs in order to respect the
local structural consistency and avoid the clustering of slices which is enforced by the data
term. This data-based regularization term enables us to cope with the “banana problem”
(c.f. Figure 4.17) [Stre 97, Mala 04, Daug 07, Gaff 11] by imposing local intrinsic structural
consistency without having to resort to an external reference, such as block-face images
(also called as photographic volume [Daug 07]) or in vivo MRI of the target region before
cutting.
The data-based regularization term can also be written in terms of NCC as follows

Es(Ei, Si,lp) = NCC(EL, Sy) (4.32)

where it is again possible to replace NCC with a more specific similarity term that takes the
probabilistic nature of the structural representation into account. Finally, the deformation
regularization term R in Equation (4.30) penalizes implausible or unnatural deformations
and, in our case, depends only on the distance of all in-plane neighbors N (p) of each
control point p

Rp) = > |ldy, —dyyl*. (4.33)
q€eN(p)

The consecutive registration method has the advantage of being fast and performs well
when the stack does not involve too complex structures or deformations (e.g. the synthetic
data used in Section 4.4.2). However, because the deformations are not directly linked
between slices, its performance deteriorates when the tissue deformations are complicated
which is often the case in real histology data.

Simultaneous Registration In an attempt to improve the registration, we extended our
algorithm to register the whole stack simultaneously, which is computational more expen-
sive but also yields better results. For this we employ a method similar to the one proposed
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in [Feue 11], which splits the MRF energy into one pair-wise term and two unary ones as
follows

g—1 g
ED=3""Y" CutalliIip1 lpslg) + > > (VSS(Ei, S, lp) + pR(zp)>. (4.34)
i=l peGi i=1 peGi
qeGit!

In this formulation, the unary terms £s and R remain the same as in Equations (4.32)
and (4.33) respectively and act as regularizers in terms of both structural consistency and
deformation field smoothness. However, to make the model even better, we recapitulate
the data term Eg44, in a pair-wise manner by coupling the deformations of neighboring
slices.

Eaata(Liy Iiv1,lp, lq) = NCC(I}, I}, ) (4.35)
Contrary to Equation (4.31), by comparing deformed version of slices, the term now links
the control points (or more accurately the corresponding graph nodes) of neighboring slices,
thus significantly increasing their possible alignment simultaneously. This approach is sim-
ilar to the spring-based model proposed in [Saal 12] in that the deformations of neighboring
slices are coupled.

This also means that the weighting v should be treated differently in the simultaneous
case (Equation (4.34)) than in the consecutive one (Equation (4.30)), because £g is now only
responsible for the regularization in terms of structural consistency and no more for the
smoothness itself. For the consecutive one, we empirically found out that v = 1.0 is a good
overall value but can be increased if the structure map is of good quality, which depends on
the amount of deformations in the slices. Whereas for the simultaneous registration, a lower
value around 0.5 usually produces regularized but still structurally consistent results. p can
be again chosen empirically by observing the amount of deformation smoothness. Large
values lead to more global transformation while very small values result in unregularized
deformation fields.

4.3.3. Whole Body MRI

As another application of the structure propagation method introduced in this work, we
have chosen the creation of whole-body MRI. This type of imaging is becoming popular
thanks to the improvements in MRI acquisition and the diagnostic quality of MRI. In clinic,
whole-body MRI is useful for several studies ranging from oncology applications to foren-
sics [Wach 08]. However, the main limitation of whole-body MRI is the long acquisition
time and limited field-of-view making it difficult to have a single, consistent high resolution
scan. An established way of overcoming this issue is performing a multi-station acquisi-
tion using, for instance, step-wise moving table. Although there are alternative acquisition
techniques such as continuous table movement, the step-wise acquisition is technically less
complicated compared to the former [Diet 08]. However, the main disadvantage, other
than the relative longer acquisition time compared to continuous table movement, is the
geometric distortion artifacts near the boundaries of the field-of-view.

In multi-station scanning, multiple scans covering overlapping regions of the body are
successively acquired. The subimages are than fused together in their overlapping regions.
The geometric distortions in the regions far from the iso-center often leads to discontinuities
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FIGURE 4.18.: Illustration of stitching, €2, overlap, €2, and image, §2(; 5}, domains. Note the
distortion in €2,.

in the composite volume. Wachinger et al. [Wach 08] proposed a deformable registration
approach to handle such discontinuities. They suggested to iteratively register overlapping
areas to their linearly weighted average. Although, the resulting composite images look
visually pleasing, it remains a question whether linear average converges to the “natural”
shape of the structures in the overlap.

We instead propose to utilize the reliable information in the undistorted regions to sup-
port the fusion of the distorted regions. To do this, we propose to propagate the reliable
structures in the overlapping region and use the structural maps for regularization pur-
poses similar to our approach for histology reconstruction.

Given two subimages I, Io with a certain overlap between them as illustrated in Fig-
ure 4.18, using the same philosophy of 2D image stitching, we pose the fusion in the
overlapping region as an optimization problem. In a way similar to [Wach 08], we define

TLQ = argrqgin/ﬂ 5(E1,51,T1,E2,52,T2,X)dx (4.36)
1,2 o

where x € RV is pixel position, T > is the set of transformation parameters for 77 and 7>
bringing the two images into a spatial alignment in €, £(+) is a cost function based on the
edge images E; and the structural representations 5;. We look for one transformation 7;
per image FE; since, in our case, both images will have possibly unreliable information, i.e.
geometric distortions, within their overlapping regions. Different from [Wach 08], we warp
each edge image E; towards the weighted average, WV, of the structural probability maps,
S;,in Q,. W is defined as

f(x), ifx € Q, )
W(x) =14 S1(T1(x), ifxeQ\Q with f(x)=>Y um(x)S(Ti(x)) (4.37)
So(Tr(x)), ifx e\ i—1

where f(x) is a weighting function with p;(x) being linear in [0, 1], which is 0 at 9; and 1
at 9(€2; \ ,) on the stitching side. We use the Normalized Cross Correlation (NCC) as the
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similarity measure between W and E;(7;). Now Equation (4.36) becomes

Thp = arg I%linZ/ EW(x), Ei(Ti(x)))dx. (4.38)

We alleviate the optimization by defining free-form deformation (FFD) grids [Ruec 99],
G, in ), in order to parametrize 7} in terms of cubic B-splines. Displacement of a grid point
p by d, induces a deformation of the underlying structure. FFD-based image registration
is discussed in more detail in Section 3.1.5. An MREF is obtained by assigning nodes to
grid points and defining a discrete labeling such that an assignment of a label to a grid
point induces a displacement of that point. Definition of the first-order MRF’s is given in
Equation (3.11) and we repeat here for completeness.

ED) =) Volp)+ > Voqllp:lq) (4.39)
peG (P,a)eN
Our data term in Equation (4.38) corresponds to the unary term in a first order MRF,
while an explicit grid regularization can be enforced by defining a regularization term as
the pairwise potential of the MRF. The unary term is defined as

Volla) = [ illx = pl) - €OV(). (Tl + d,))dx ¥pEGi, i€ {12} (440)
where 7)(|x — p|) is a B-spline weighting term controlling the effect of x on p [Gloc 08]. The
pairwise terms, V4 (Ip, lq), are used for explicit grid regularization and are defined as

Vpallp: la) = p||(dy,) = (di)|]° Vp,a € GiA(p,q) € N. (4.41)

Since the data term is defined over €2, the resulting deformations might lead to disconti-
nuities at the boundaries between the overlapping and the non-overlapping regions of each
image. Finally, deformations are smoothly propagated beyond (2, due to the incorporated
explicit regularization term as well as the implicit smoothness properties of the FFD model,
which is defined over 2.

For finding the optimal labeling, Fast-PD [Komo 07, Komo 08], an efficient MRF opti-
mization is used. We put everything in a multi-resolution setting to avoid local minima
where the optimal labeling is communicated between levels. Note that both structure prop-
agation and stitching take place in a multi-resolution setting. During structure propagation,
this ensures that structures present in coarser scales are considered first for the optimization
whereas structures at finer scales are used for refining the local deformations.

4.4. Experiments and Results

For the evaluation of the proposed structure propagation framework, several experiments
have been conducted using synthetic and real medical images for each application dis-
cussed in the previous section. Synthetic images were used to demonstrate the capacities
of the proposed approach in a controlled environment where different challenging sce-
narios can be synthetically produced. Real medical image datesets are used to assess the
performance of the proposed technique on clinical data sets.
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4.4.1. 2D Image Stitching

Field-of-view extension by stitching partial observations together by means of registration
can be quite challenging. In particular, this is the case where not only there is no overlap
but also there is a physical gap between the subimages to be stitched together. Similar
challenges exist when the images to be stitched are too noisy or corrupted. It can be further
difficult if the information in the overlapping region can not be reliably used for the stitch-
ing due to geometric distortions or severe deformations. We have created several synthetic
image pairs in order to evaluate the performance of the stitching of subimages in such sce-
narios without violating the smoothness and the continuity of structures across subimage
borders. In the following, we show and interpret the results of synthetic experiments.

The proposed method has also been applied to the stitching of real medical images.
To do this, we have extracted 2D slices from a two-photon microscopic image data set
acquired from a rat brain. Again, as in the synthetic experiment case, slices were cut
into two. Furthermore, four microscopic image pairs with overlapping subimages to be
stitched are used. Both for the experiments with the synthetic as well as the real microscopic
images, manual linear transformations were applied to one of subimages. The goal of these
experiments is to demonstrate that, using structure propagation, it is possible to recover
transformations in various challenging scenarios. These experiments are important in that
they showed the feasibility of the proposed method for being used for the stitching of real
medical images.

For the evaluation of results, in addition to the visual assessment, we have compared
the stitched images to the ground truth data using a correlation technique. Moreover, we
evaluated the performance of the method in recovering the applied individual linear trans-
formation parameters. Transformations are designed by varying one of the parameters at
a time in a predefined range while keeping the others fixed to their initial values. In this
way, we assess the sensitivity of our method to the variations in transformation parameters.
In an ideal recovery of the parameters, the sum of the applied and the recovered trans-
lational or rotational parameters should add up to zero. For the scaling parameters, the
multiplication of the applied and the recovered parameter values should be equal to one.
Moreover, since a variation in a single parameter can also be compensated by variations in
other parameters during optimization, we have also evaluated the recovery error for trans-
formation matrices as a whole where all parameters (including shearing) have non-trivial
values.

As an additional quantitative evaluation of the proposed method, we have developed
a continuity index called structural continuity index (SCI), which is designed to evaluate
the smoothness of structures across stitched subimages. We compute SCI again using
tensor voting where structures extracted from one side of the stitching boundary after the
alignment vote for the possible locations of structures on the other side. The real structures
are then correlated with the estimated ones via tensor voting using the same notation in
Section 4.2. SCI can be formulated as

SCI = Z Z Si(pI))Sj(P) (4.42)
i,j€{1,2} PEP;,s Pl
i#]

where P;, C P; is the set of structure points in €2;,. Note that this measure is in fact a cross
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correlation where only the detected structure points are used in the computation. This
measure can also be used as a cost function during registration. Here, we use it only for
evaluation in order to have an objective testing.

The robustness of the proposed approach against noise was also tested where varying
degrees of white noise was added to a pair of synthetic images before applying any ini-
tial transformation. The magnitude of the noise added ranges between 0%-50% of the
maximum image intensities.

There are several parameters to be set both for the tensor voting and for the employed
registration method. First of all, the size of the overlapping region €,; to be established
for each subimage in the stitching direction was set to be 20mm. This was considered
to be sufficient for performing a registration on the used datasets that will be described
later. This value can be adapted depending on the application and the image acquisition
settings. A prior knowledge about the acquisition setup can be exploited for this purpose.
Moreover, in cases where subimages are already touching each other, if the images to be
stitched are well structured, then, smaller sizes for the overlapping regions can be preferred
for increased computational performance. A value of 40 was used for the scale parameter
o in Equation (4.10). For this experiment, this value guarantees that a structure point
20mm inside a subimage can also vote for an image point 20mm inside of the other image
although the influence decreases by the increasing distance. As a rule of thumb this value
can be chosen as the double of the estimated overlap size. The edges are detected using the
recursive edge detection method proposed by Deriche [Deri 87].

For defining the search interval for the affine transformation parameters in Equa-
tion (3.12), we set the search range to +40mm for the translational and rotational com-
ponents and to 1 =+ 0.20 for the scaling components. Two pyramid levels are used for all
synthetic experiments except for the experiments with noisy images where only a single
level is used. The number of pyramid levels for the experiments with microscopic images
is set to 2. The size of the discrete label space |£;| for each parameter is set to be 7 which is
refined by a factor of 0.6 as suggested in [Ziki 10] in every pyramid level. The maximum
number of iterations on each pyramid level is set to 512 while, in practice, the registration
is terminated if the change of energy is very small in 5 consecutive iterations.

For all experiments, a PC equipped with Intel® Core"" i7 28200QM, 230 GHz and 12GB
RAM was used. It takes about 2s to stitch an image of size 512x512 pixels with 1.6x1.6mm
pixel size.

Synthetic Images

Synthetic experiments were conducted to demonstrate the capabilities of the proposed
method for the stitching of subimages without overlap in different scenarios. In order to
make sure that the method successfully copes with the lack of an overlapping region, we
simply cut a full image into two pieces and created simple scenarios by applying affine
transformations to one of the pieces. Given a full 2D image with smooth structures, it was
cut into two subimages I and I5, which are stitched again to obtain the original image I.
Note that by simply cutting into two, we do not allow any overlap between the subimages.
This is important because this is one of the main challenges that we are trying to address
in this work.

In Figure 4.19, we demonstrate how stitching can be done in different scenarios. A
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(b)

FIGURE 4.19.: Image stitching without overlap. A synthetic image of “M” letter is cut into two
and the lower piece is translated, scaled or rotated which is then restored using
the proposed approach. In the first row, the initial stitching before the alignment
is shown. The gray horizontal line delineates the boundary between the pieces.
In the second row, the final stitching is overlaid onto the initial one where the red
and green colors show the lower piece of the letter before and after the alignment,
respectively. In (a)-(b), translations in horizontal and vertical directions, respec-
tively, are applied to the lower piece which are then successfully restored using
the proposed stitching method. Note the physical gap in (a) created by applying a
vertical translation. (c) demonstrates the ability to restore a change in scaling. In
(d)-(e), a small and a relatively large rotation is recovered. Again, there is a gap as
a result of the applied rotation which makes the stitching much more challenging
than the case where there is no gap between the pieces to be stitched together.

synthetic image of the letter “M” of size 102x124 pixels with Immx1mm uniform pixel size
was divided into two and the lower piece was translated, scaled or rotated as shown in the
tigure. These transformations were then recovered using the proposed approach. In the
first row, the initial stitching before alignment is shown. The gray horizontal line stands for
the boundary between the subimages. In the second row, the final stitching is overlayed
onto the initial one, where the red and green colors show the lower piece of the letter
before and after the alignment, respectively. In Figures 4.19(a) and 4.19(b) translations
in horizontal and vertical directions, respectively, are applied to the lower piece which
is successfully restored using the proposed stitching method. Note the physical gap in
Figure 4.19(a) which is caused by the applied vertical translation. Figure 4.19(c) shows the
ability to restore a change in scaling. In Figures 4.19(d) and 4.19(e), a small and a relatively
large rotation, respectively, are applied and then recovered. Again, there is a gap as a result
of rotation which makes stitching much more challenging than the case where there is no
gap between the pieces to be stitched together. In all cases, it is visually obvious that a
stitching is possible in different scenarios, where the common issue is the lack of image
overlap.

For the quantitative evaluation of the proposed method, several transformations, in
which only one of the parameters ¢ in Equation (3.12) was varied, were applied to the lower
piece of the letter image. In each case, only one of the parameters changed its value in a
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FIGURE 4.20.: Parameter recovery and ground truth correlation experiments. Several transforma-
tions, which differ from the identity only by the variation of one of the parameters
in p in Equation (3.12), have been applied to the lower piece of the letter image
shown in Figure 4.19. In each case, only one of the parameters changed its value in
specific interval which was chosen to be 10 for translations (mm) and rotations
(degrees) and 1 + 0.20 for scalings. 21 equally spaced values for each parameter
were sampled from the given interval. In each case, the error between the applied
and the recovered transformation parameter was computed for (a) translation
and rotation and (b) scaling. (c)-(d) Correlations of the aligned subimage with the
ground truth subimage for (c) translation and rotation and (d) scaling.

specific interval which was chosen to be +10 for translations (mm) and rotations (degrees)
and 1 £ 0.20 for scalings. Shearing parameter was not tested here as it makes no difference
without a non-identity scaling. Instead, it was tested together with the other parameters
while evaluating the transformation recovery performance which is explained later in this
section. 21 equally spaced values were sampled from the given interval. Afterward, for
each case, the error between the applied and the recovered parameter was computed. For
translation and rotation parameters, the absolute value of the summation of the applied
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and the recovered parameter values is computed whereas for scaling the deviation of their
ratio from identity is used as a measure of error. The error plots for each parameter in the
specified interval are shown in Figures 4.20(a) and 4.20(b).

Several observations can be made based on the results. First of all, it is obvious that
the most problematic parameter is the rotation. Although the parameter recovery error
is reasonable in the vicinity of 0 degrees, i.e. small rotations, it gets quite large towards
the marginal values. Another observation is that the recovery error for the translation
parameter in the direction orthogonal to the stitching boundary (y) is quite larger than its
counterpart in the parallel direction (x). Same behaviour can be observed for the scaling, too.
The reason for this is obvious; the physical gap created in both cases makes the recovery
more difficult. The recovery error for the other parameters are almost zero, meaning that
all the parameters are successfully restored even for the marginal parameter values.

We also compute the correlation of the aligned subimages with the ground truth before
cutting to see whether the alignment was correct in terms of the image intensities. Fig-
ures 4.20(c) and 4.20(d) show the correlation results for each parameter for the specified
value range. What is noteworthy is that although the correlation results for the rotation and
the translation parameters are consistent with the parameter recovery error shown in Fig-
ure 4.20(a), this is not the case for the other parameters especially for the scaling parameter
in the direction parallel to the stitching boundary, which can be observed in Figure 4.20(b).
This indicates that the misalignment caused by the variation of this parameter has been
mostly compensated by the variations in other parameters. This is quite possible as all of
the parameters were optimized simultaneously for the best alignment. Furthermore, we
take the middle of the stitching border as the origin of the image coordinate space. For this
reason, although a scaling in the direction orthogonal to the stitching boundary (y) does not
lead to a padding, a scaling in the parallel direction (x) definitely results in padding during
registration. Therefore, a direct correlation of image intensities might be misleading in this
case. Yet another observation that can be made from Figure 4.20 is that, in almost all cases,
the alignment performance decreases towards the marginal values of the varied parameters.
This is an expected behavior since the performance of every registration algorithm highly
depends on the initial position.

In addition to the evaluation in terms of individual parameter errors, we also compute
the recovery error for transformation matrices as a whole. The error is computed as the
mean distance of a set of points before applying an initial transformation and after restor-
ing it. The point set consists of 200 points drawn randomly from a square with a side
length of 200mm centered at the origin. Ideally, a successful recovery should lead to zero
mean distance error. The applied transformations are composed by drawing parameter
values randomly from the following ranges; translations from +10mm, rotation from +10°,
scalings from 1 + 0.20, and finally the shearing from +10°. Three cases were tested; only
rigid parameters (rigid), rigid plus anisotropic scaling (affine) and finally including all six
parameters (full-affine). In each case, initial transformations were composed of only rele-
vant parameters and only those parameters were optimized for. 200 random registration
experiments were performed in each cases. The statistics of transformation recovery errors
are shown in Figure 4.21(a). From the figure, it is obvious, as expected, that the perfor-
mance decreases as the number of degrees of freedom increases. The median error for each
case are 6.3mm, 12.4mm and 12.2mm, respectively. It is interesting that including shearing
in transformations did not introduce a significant change in the performance. Non-trivial
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Stitching experiments testing the sensitivity of the proposed technique to non-
trivial transformations. The applied transformations are composed by randomly
drawing transformation parameters from the following ranges; translations from
+10mm, rotation from +10°, scaling range from 1 + 0.20, and finally the shear-
ing from +10°. Three cases were tested; only rigid parameters (rigid), including
anisotropic scaling (affine) and finally including all six parameters (full-affine).
In each case, 200 random initial transformations were composed of only relevant
subset of parameters and only those parameters were optimized for. (a) Box plots
show the transformation recover error statistics in each case. It is clear that the er-
ror increases as the number of degrees of freedom increases. Furthermore, adding
shearing parameter did not make a significant difference in the overall perfor-
mance. (b) Mean correlations of the aligned subimage with the ground truth
subimage for different transformations. (c) Mean distance error in the presence
of white noise. The added noise ranges from 0% to 50% of image pixel intensities.
The results present parallelism with (a) and (b) with a good performance in rigid
case and a decreased performance for affine and full-affine transformations. More-
over, it is obvious that the noise did not affect the performance of the proposed
method.



4.4 EXPERIMENTS AND RESULTS

random transformations were also used for ground-truth correlation of image intensities.
The results shown in Figure 4.21(b) bear parallelism with the results of transformation
recovery error as shown in Figure 4.21(a). The median correlation is about 70% for rigid
case dropping to 35% as the complexity increases.

The proposed method was further assessed in terms of its robustness against noise. To
this end, varying degrees of white noise was added to the initial pair of synthetic im-
ages before applying any transformation. The noise added ranges between 0%-50% of
image intensities with 10% bins. For each noise level and for each transformation type (i.e.
rigid, affine, full-affine), 100 random transformations were applied to one of the synthetic
images which was then recovered by the proposed approach. Since a multi-resolution
setting would eliminate the added noise during image pyramid creation, we performed
registration only on the finest level to make sure that the noise is present during structure
propagation. The results shown in Figure 4.21(c) demonstrate the robustness of the pro-
posed approach to the amount of noise contained in subimages, which also confirms the
the robustness of structure propagation. Performance with respect to the order of applied
transformations has similar patterns with the previous experiments.

The last method that we use for the assessment of the stitching performance is the struc-
ture continuity index, SCI, as defined in Section 4.4.1. Here, for the same experiments
described above, we computed the SCI before and after a stitching was performed. Statis-
tics on the SCI values computed from 21 experiments for each parameter are presented in
Figure 4.22. Figure 4.22(a) shows the box plots for the SCI values before doing a stitching.
Parameters tx, sx, i.e. translation and scaling in the direction parallel to the stitching bound-
ary, respectively, as well as the rotation parameter, rz, have a low median SCI value, which
is mainly due to the fact that the initially applied transformations resulted in misalignments
between the structures of subimages. Such misalignments occurred less in the cases of ty
and sy, i.e. translation and scaling parameters in the direction orthogonal to the stitching
boundary. This is mainly because the structures are either scaled or shifted in the stitching
direction which did not influence the structure alignments that much. SCI values were also
computed after the stitching as presented in Figure 4.22(b) and the changes in SCI values
is shown in Figure 4.22(c).

We can make several observations looking at Figure 4.22(c). First of all, one can say
that there has been an improvement in the estimation of the translation and the scaling
parameters in the direction parallel to the stitching boundary. On the other hand, there
has been little or no improvement for their counterparts in the orthogonal direction. Ro-
tation parameters also present an increased SCI value. One can conclude that stitching
performance for correcting the misalignments caused by the variations in in translation
and scaling parameters in the direction orthogonal to the stitching boundary is not as good
as the performance for correcting other types of misalignments. However, one should note
that the structure continuity index, SCI, is based on the correlation between the votes cast
by structure points in one of the subimages and the actual structure points in the other
subimage. A transformation in the direction of stitching usually leads to a loss of structure
points, which also influences the value of the SCI. Therefore, SCI should not be taken as a
sole performance indicator when evaluating the proposed method.
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FIGURE 4.22.: Stitching performance in terms of the structural continuity index (SCI). SCI was
computed for each stitching task as shown in Figure 4.20. For each parameter
there are 21 experiments where the parameter takes a value from an interval
as discussed in Section 4.4.1. Here, we show the box plots of SCI values for each
parameter. (a) Initial SCI values before performing a stitching. (b) Final SCI values
after stitching. (c) Change in SCI after stitching. Looking at (c), one can say that
there has been a positive change for the translation and the scaling parameters in
the direction parallel to the stitching boundary. On the other hand, there has been
little or no improvement for their counterparts in orthogonal direction. Rotation
parameter also presents with an increased SCI value.

Microscopic Images

Experiments have also been conducted on medical images to show the effectiveness of the
proposed technique on real images. To this end, we have extracted 2D slices from a two-
photon microscopy data set, which was taken from a mouse brain. The images were taken
to examine the vasculature in the brain. There are two slices of size 512x512 pixels with
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(a) Translation (b) Scaling (c) Rotation (d) Translation (e) Scaling (f) Trans.+Gap

FIGURE 4.23.: Stitching experiments on 2D microscopy images. There are two microscopy image
pairs P1 [(a)-(c)] and P2 [(d)-(f)] used for the experiments. The first row shows the
initial mosaics obtained by applying affine transformations. In the second row, the
final mosaics after the alignment is overlayed onto the initial one where red and
green colors are used for initial and final versions of the aligned subimage. The
last row shows the final mosaics without overlay. In (a)-(b), similarly in (d)-(a),
misalignments caused by the variations in the translation and scaling parameters,
respectively, are restored. In (c), the correction of a misalignment due to rotation
is demonstrated. Finally, a misalignment caused by a translational transform in
the presence of a physical gap between the subimages is recovered in (f). See the
text for the interpretation of this figure.

1.16pum uniform pixel size. Again, as it was done in the previous synthetic experiments,
the slices were cut into two pieces where one of the pieces underwent a transformation in
order to induce a misalignment of structures across the cutting border. Figure 4.23 shows
a series stitching experiments on the created pairs demonstrating the performance of the
proposed method on microscopic images with synthetic misalignments.

In order to test the proposed registration technique using structure propagation on a real
data without synthetic transformations and also to compare it to a competitive registration
method, four microscopic image pairs, with subimages of 256x256 pixels resolution and
2.32um uniform pixel size, were used for the experiments. An example pair along with
corresponding structure images are shown in Figures 4.24(a) and 4.24(b). The overlap re-
gion was further removed from one of the subimages for each pair in order to assess the
proposed approach in no overlap case. Ground truth rigid transformations were obtained
by using corresponding landmarks manually annotated in both subimages which resulted
in overlap sizes of 53.47um, 62.76m, 55.79um and 62.76um, respectively. For the experi-
ments with overlap, three different scenarios were used for registration with and without
structure propagation. First, a good initialization of transformation close to the ground
truth was provided in the beginning. Secondly, white noise in the range of 50% of the im-
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(a) Before alignment (b) Structure images (c) After alignment

FIGURE 4.24.: Pair of microscopy images used for the evaluation of the proposed method in
comparison to the classical approach. (a) Before an alignment was performed. (b)
Corresponding structure images with propagated structures. (c) After the subim-
ages were aligned using the proposed method. Aligned subimage is overlayed
onto the original one.

age intensity were added to the images. Finally, subimages were placed only side-by-side
where stitching boundaries were touching each other. The last scenario was further used
for aligning without overlap. Again, mean distance error between the landmarks was used
for the quantitative evaluation of the registration performance. For structure propagation,
the value of scale parameter was fixed to 50m for each pair.

The errors shown in Figure 4.25 indicate the comparable performance of the proposed
approach in the presence of an overlap when a good initial estimate of the transformation
is provided. Our approach already outperforms the classical approach when the overlap
region is degraded with white noise. However, when the alignment is initialized by plac-
ing the subimages only side-by-side (i.e. touching), the classical approach fails to find a
transformation close to the ground truth whereas the current approach can still success-
fully align the subimages. Moreover, it was not possible to use the classical approach in
no-overlap case where, again, a good performance was obtained by using structure propa-
gation. The results reveal that registration with structure propagation can be successfully
used also for correcting misalignments in real images.

Based on the previous experiments, it is clear that the physical gap between subimages
has a negative influence on the stitching performance. Since one of the goal of the proposed
techniques it to overcome the limitations caused by the physical gap between the subim-
ages, we have conducted further experiments to test the sensitivity of the technique to the
size of physical gap between the subimages. To this end, we have manually introduced
a physical gap of varying size to the lower subimage of the microscopic image pair P2
as illustrated in Figure 4.23(f). There are 21 different gap sizes sampled from the interval
[0pm,20pm]. For each gap size, misalignments of varying magnitude were introduced by
applying 21 different translational transformations from the interval +20pm in the direc-
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Comparison of mean distance errors for registering different image pairs
with and without structure propagation (SP) and median of all pairs
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FIGURE 4.25.: Comparison of the proposed technique using structure propagation to registration
without structure propagation. Four different microscopic image pairs are used.
For the experiments with overlap, three different scenarios are used. First, a good
initialization close to the solution is provided in the beginning. Secondly, white
noise in the range of 50% of the image intensity is added to the images. Finally,
subimages are placed only side-by-side where stitching boundaries are touching
each other. The last scenario is further used for aligning without overlap. Mean
distance error of a randomly drawn point set is used for the evaluation. Note
the errors are shown in log scale for better visualization. The results indicate the
good performance of the proposed approach in various scenarios with and even
without overlap whereas it is only possible to do an alignment in the presence of
an overlap and when a good initialization is provided.

tion parallel to the stitching boundary. We have calculated the parameter recovery error
in order to evaluate the influence of the amount of translation and the size of physical
gap, respectively. Figure 4.26(a) shows that the stitching performance is not influenced too
much by the amount of misalignment in the presence of a physical gap. However, when
the parameter recovery error is plotted against the size of the introduced physical gap as
shown in Figure 4.26(b), it becomes obvious that the stitching performance decreases with
the increasing gap size. This is again an expected behavior since initially it was claimed that
a non-overlap stitching is possible if the subimages are sufficiently close to each other. This
is a much looser condition than the one that classical stitching techniques often require. It is
still noteworthy that with the proposed technique it is still possible to stitch two subimages
even if there is a physical gap on the order of 20um between them. However, looking at
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FIGURE 4.26.: Stitching experiments testing the sensitivity of the proposed technique to the phys-
ical gap size. 21 different gap sizes from the interval [0pm,20um] are introduced
to one of the subimages in the direction of stitching as illustrated in Figure 4.23(f).
For each gap size, 21 translational transforms from the interval +20um are ap-
plied in the direction parallel to the stitching border. In each case, parameter
recovery error is computed. In (a), the parameter recovery error is plotted against
the amount of translation. It is clear that there is not much correlation between
the amount of translation and the associated recovery error in the presence of a
physical gap. However, when plotted against the size of the introduced physical
gap as shown in (b), it becomes clear that the parameter recovery error increases
with the increasing gap size, which is an expected behavior. It should be noted
that it is still possible to perform a stitching even if the size of the gap is on the
order of 20pum, which is the novel side of the proposed method.

Figure 4.26(b), in order to guarantee a successful stitching, one can allow a physical gap of
around 12um as a threshold after which the deviation of the error from the median starts
to increase.

4.4.2. Deformable Histology Reconstruction

In this section, we demonstrate the two histology reconstruction approaches based on
structural probability maps, i.e. consecutive and simultaneous, that we have described in
Section 4.3.2. To this end, in Section 4.4.2, we describe our experiments on synthetic and
mouse brain data sets showing that using structural probability maps yields similar results
when compared to techniques that operate reference-based on synthetic data sets.

Synthetic Dataset

The synthetic data consists of a stack of 20 slices with a resolution of 128x96 and a pixel
spacing of Imm. An example of an original slice is shown in Figure 4.27(a). The slices
contain a circular tissue which grows towards the middle and several skewed vascular
structures. Each slice is deformed by a random FFD with a maximum displacement of
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(@)

FIGURE 4.27.: Deformable reconstruction using synthetic dataset. Top and bottom rows show re-
spectively the axial and coronal views of the volume in each case. (a) undeformed
original stack, (b) stack corrupted with non-linear deformations, (c) volume recon-
structed using the edge maps of corrupted slices, (d) volume reconstructed using
the structural probability maps of corrupted slices.

Method EE AE

Error (mm) STD (mm) Error (°) STD (°)
Consecutive Registration w/o SPM 291 1.78 60.31 31.41
Consecutive Registration w/ SPM 1.69 1.25 45.39 26.63
Simultaneous Registration w/o0 SPM 2.37 1.27 57.31 33.17
Simultaneous Registration w/ SPM 1.68 1.13 45.95 26.89

TABLE 4.1.: End point error (EE) and angular error (AE) of the presented methods using structural
probability map (SPM).

5mm for each node and the corresponding deformation field is saved as ground truth for
evaluation. Additional tears are introduced in randomly selected slices to simulate the real
histology cutting process. Distorted slices are shown in Figure 4.27(b). This is the same
synthetic dataset used in [Feue 11].

In order to quantify the results of our approach, we calculated the absolute end point
error (EE) and the relative angular error (AE) between the resulting deformation fields
and the ground truth fields [Bake 11]. Table 4.1 shows the errors after the application of
different reconstruction approaches discussed in Section 4.3.2.

For the registration we used a grid spacing of 15mm and 2 grid levels. In the consecutive
case both p and v in Equation (4.30) were set to 1.0 in order to put more emphasis on the
structural probability map (SPM). For the simultaneous method (Equation (4.34)), we used
0.5 for both instead. The results in Figure 4.28 show the same coronal slice as Figure 4.27
after reconstructing by using different methods.

The consecutive registration without the SPM regularization performs the worst in terms
of the error but also in its visual appearance (c.f. Figure 4.28(a)). All curvilinear structures
get straightened in stack direction and especially two vessel structures on the right side
cluster into four distinctive structures. This is a case for the banana problem that we dis-
cussed in Figure 4.17. Extending this with the use of SPM for structural regularization
maintains the outer round shape but also preserves the curvilinearity of the vessels inside
(Figure 4.28(b)). This is similar for the simultaneous method: while the unregularized
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(c) (d)

FIGURE 4.28.: Deformable reconstruction results using different methods. First row shows the
volumes while in the second row absolute differences with Figure 4.27(a) are
shown. Reconstruction by using (a) consecutive registration w/o SPM, (b) consec-
utive registration w/ SPM, (c) simultaneous registration w/o SPM, (d) simulta-
neous registration w/ SPM.

registration (Figure 4.28(c)) does perform significantly better than the unregularized con-
secutive method from a visual perspective, it still produces a high error which can be again
compensated with the use of the SPM. Since the simultaneous methods put more emphasis
on aligning the actual image data, the reconstructed stacks have a slightly smoother appear-
ance (Figure 4.28(c)). However, without the regularization through a structural map, there
is a drift error. Also the results of both of our methods are visually closer to the original
stack in Figure 4.27(a) than the unregularized methods.

Real Dataset

We also performed experiments on a mouse brain dataset of 100 slices with 213x168 pix-
els that was provided online by [Ju 06]. Since the spacing infomation was missing, we
assumed it to be Imm. The FFD grid size was therefore set to 20mm and subdivided on 3
grid levels. v and p in Equation (4.34) were set to 0.5 again. The slices were aligned rigidly
beforehand (see Figure 4.29(a)). Since there is no ground truth available, only visual results
are provided. As indicated before, the consecutive method (Figure 4.29(c)) improves the
structural consistency over the source stack but the result is less smoother than the unreg-
ularized simultaneous method (Figure 4.29(b)). Our simultaneous method (Fig 4.29(d)),
however, improves the results significantly over the other two approaches. It especially
corrects drift errors that are present on the highlighted structures in Figure 4.29(b). The
overall simultaneous reconstruction including the tensor voting took around 20 minutes
while the consecutive one only needs around 7 minutes which is a potential advantage on

big datasets. For all experiments, a PC equipped with Intel® Core'" i7,2.80 GHz, 8 logical
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FIGURE 4.29.: Deformable reconstruction of mouse brain from histology sections. Shown are
the coronal views of the reconstructed mouse brain dataset. (a) rigidly aligned
source stack, (b) simultaneous registration w/o SPM, (c) consecutive registration
w/ SPM, (d) simultaneous registration w/ SPM.

cores and 12GB RAM was used.

4.4.3. Whole Body MRI

For the multi-station scanning based whole-body MRI imaging, a post-processing stage
is necessary for the fusion of partial observation in their overlapping regions [Diet 08].
However, approaches for fusing the images in the overlapping region do not consider the
natural continuity of the geometrically distorted structures beyond this overlapping region.
Although, it is not possible, without a shape prior, to infer the distorted structures using
the existing salient far structures, it is still possible to exploit the saliency of relatively close
structures to make an inference about the distorted structures.

As described in Section 4.3.3, we propose to use the propagated structures for regulariza-
tion in terms of consistency and smoothness in the overlapping region. To demonstrate the
effectiveness of structure propagation for this application, we have designed experiments
on synthetic as well as real images. In the synthetic case, we use two partial images of size
100x100 pixels with Imm uniform pixel spacing, containing two sticks, which exhibit dis-
tortions in the overlapping region (40mm) as shown in Figure 4.30(a). The corresponding
edge and the structure images are shown in Figures 4.30(b) to 4.30(d).

For the registration, two levels are used for both the grid and the image pyramids while
the number of discrete optimization iterations on each level is set to 20. The inter-grid
spacing is set to 30mm and the maximum allowed displacement of each control point is set
to 5mm with 5 steps for the sparsely sampled label sets. For the structure propagation, the
scale parameter (o) is set to 30mm and the compactness parameter (c) in Equation (4.11) is
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FIGURE 4.30.: Stitching on synthetic images with distortions in the overlap. Blue-dashed lines
show the overlap boundary. (a) Overlayed images to be stitched (originals are
shown in Figure 4.18). (b) Corresponding edge images. (c)-(d) Structure images
each spanning €);. (e) Initial stitch without deformable registration. (f) Stitched
image by using only intensity information. (g) Stitching result when structural
information is utilized. The effect of using structure propagation can be clearly
observed in the final stitched images.

set to 30. The edges are detected using the Gaussian approximation of Deriche [Deri 93]
with a scale parameter of 3.

By registering the edge images to the average structure image in the overlapping area
and applying the resulting transformation to the original images, we stitch the two images
while simultaneously correcting the distortions. Initial stitching result and the result after
registering with and without structure propagation are shown in Figures 4.30(e) to 4.30(g).
This example visually demonstrates the effectiveness of using structure information. Note
that without using structures, images are iteratively registered to the weighted average of
the original images. Although this will lead to a locally optimum correspondence in terms
of intensities, a alignment that respects the natural continuation of structures cannot be
guaranteed.

For the quantitative evaluation, we apply varying degrees of synthetic distortions with
known displacements to non-distorted stick images. Then, we recover displacements fields
by performing stitching using our method with structure propagation and the method of
[Wach 08] without structure propagation. Two displacement error measures, mean angu-
lar error (AE) and mean end-point-error (EE), which are commonly used in optical flow
[Bake 11], are used for evaluation. For the synthetic distortion, we use a distortion model
F(l) = cie "’/ where [ is the distance from the stitching border in the stitching direc-
tion, ¢; and ¢y are variables controlling the amount and the sharpness of the distortion,
respectively. Both 2D and 3D experiments are conducted where a 3D image is obtained
by stacking 20 2D stick images. Several pairs were created and stitched together by using
both methods where ¢; and ¢y were varied between [10-20] and [20-30], respectively. These
ranges were empirically chosen in order to generate meaningful synthetic data. Note that
these values are not part of the algorithm. Two registration levels with 20 pixels control
point spacing were used. For each run, AE and EE values as well as their standard devia-
tions were computed for both methods. We first tested the sensitivity of our method alone
to the given ranges as shown in Figure 4.31, which demonstrates that the method is more
sensitive to the amount of distortion (i.e. ¢;) than its sharpness (i.e. c2). Overall statistics
of errors for both methods are shown in Figure 4.32. It is clear that the use of structural
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FIGURE 4.31.: Performance analysis of structure propagation using synthetic distortion model.
Performance analysis of our method by varying the parameters of the synthetic
distortion model.
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FIGURE 4.32.: Performance analysis of structure propagation using synthetic distortion model.
Evaluation of the method on synthetic images in 2D and 3D. Please note that the
y-axis has logarithmic scale. It is obvious that the use of structure propagation
leads to smaller mean angular and endpoint errors as well as smaller standard
deviations in both cases.
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FIGURE 4.33.: Whole-body MRI stitching experiments. Edge and intensity representations are
shown on the first and second rows, respectively. Columns from left to right:
(1) Initially overlayed input images. (2) Stitching with structure propagation. (3)
Structure stitching combined with a subsequent intensity stitching. (4) Result with
only the intensity stitching without taking the structures into account. Arrows are
added to emphasize changes in regions with severe distortions.

maps rather than the intensities alone leads to much smaller mean errors in both 2D and
3D cases.

For experiments on real data sets, two 3D MR images from the lower body are used for
creating a larger field-of-view. The resolution of both images is 448 x 318 x 30 pixels with
1 x 1 x 7.8 mm spacing and a known overlapping region of 70 mm along the head-to-foot
direction. For the registration, two levels are used for both the grid and the image pyramids
while the number of discrete optimization iterations on each level is set to 20. The inter-grid
spacing is set to 30mm and the maximum allowed displacement of each control point is set
to 5mm with 5 steps for the sparsely sampled label sets. For the structure propagation, the
scale parameter (o) is set to 50mm and the compactness parameter (c) in Equation (4.11) is
set to 30 while the size of the region for propagation is set to 70mm in accordance with the
prior information. The edges are detected using the Gaussian approximation of Deriche
[Deri 93] with a scale parameter of 5.

Only qualitative experiments with visual inspection have been performed as there was
no ground truth stitching to quantify the stitching error. We compare to the case where no
structural information is utilized. After stitching by using structural probability maps, we
perform another intensity based stitching deploying the method presented in [Wach 08].
This was only to correct for very local fine intensity misalignments while the dominant
structures are already aligned by registering to the propagated structures. Results with
comparison to the case where only intensity based stitching is used are shown in Figure 4.33.
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Overlaid edge and intensity images are shown in the first and second rows, respectively.
Note that edge and intensity images are shown simultaneously to highlight the influence
of stitching in both representations. Furthermore, no blending is performed in the over-
lapping region for a better assessment of matching quality. Edge images are registered if
a structure-based stitching is performed and intensity images registered otherwise. The
resulting deformation fields are applied to both representations simultaneously.

The first column in Figure 4.33 shows the original images where the distortion is visible
in the overlapping region (highlighted with dashed lines) especially in the lateral direction.
In the second column, non-rigidly aligned structure images are shown in the upper image
with the corresponding intensity images in the lower one. Note the improvement of align-
ment in the highlighted regions with respect to the first column. Although structures are
aligned to a great extent in the overlapping area, a subsequent intensity based registration
is still needed in order to align the intensities. This is due to the fact that only the edges
are considered during registration. In the third column, we show the results after this
additional intensity-based alignment. Note the improvement of alignment of intensities
compared to the previous column. Finally, in the last column, we show the stitching result
where only intensity information is utilized without considering the structures at all.

It is clear that the use of structural information alone already leads to smoother edges
as well as better continuation of structures across the overlapping area. This is mainly
due to the gross alignment of structures. Subsequent intensity-based alignment helps
further refinement of local intensity correspondences. On the other hand, if only intensity
information is utilized without taking the structures into account, as depicted in the last
column, distortions do not vanish leading to bulges in the middle of the overlapping region.
Finally, based on these observations, we can argue that a simultaneous use of structure and
intensity information in a joint optimization fashion could result in even better outcomes.

4.5. Discussion

The proposed stitching method presented here is designed to overcome the limitations
of classical techniques by means of structure propagation by enabling a “perceptually
good” alignment of images under difficult conditions such as subimages having small or
no overlap, or distortions in the overlapping region. Although the method is addressing
the state of art, there are still several limitations of the framework arising either from
the employed method for the structure propagation or from the used image registration
technique.

The tensor voting technique is capable of propagating the information regarding the un-
derlying structure. However, in the presented technique only the local anisotropy is taken
into account for the propagation of the information. Therefore, currently, structures can
be propagated only as locally linear structures. Although, this is sufficient for structural
propagation in short ranges, it cannot properly extend curvilinear structures in its current
design. There have been attempts to include the local curvature of the underlying structure
into the voting procedure [Tong 05]. In Section 4.2.4 we also showed how local curvature
can be included into the structure propagation framework enabling curvature-based struc-
ture propagation. We demonstrated the feasibility of estimating the tensors of curvature
and exploiting them for an improved structure propagation respecting to the geometry of
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underlying structures.

The scale parameter o of the weighting term Equation (4.10) for tensor voting is another
factor that has an influence on the quality of propagation. Having a too large value for
o causes blurry propagation of structures while having it too small yields to a limited
propagation of local structural information. The choice of this parameter is strongly related
to the size of the region of extension, 2. in Figure 4.3(a). In our synthetic 2D stitching
experiments, for instance, we used a value of 20mm for the overlap region which proved
to be enough. Accordingly, the scale parameter was chosen to be 40, which guaranteed
that a structure point located 20mm into €2; can send a vote with sufficient saliency to the
farthest point within the region of extension, €2;.. The choice of this parameter depends
also on the size of physical gap. Obviously, for a large gap size, a larger value of scale
parameter is needed. An interesting direction of research here would be adapting the scale
parameter to the non-linearity of the underlying structure. Such an approach should allow
larger extensions for relatively linear structures.

Although promising results were observed during experiments, the obtained registration
errors, especially the ones shown in Figure 4.21 for the 2D image stitching task, indicate
that the proposed registration is still far from being compared to the errors obtained using
classical registration techniques. However, it should be noted that these results are despite
the absence of an overlap whereas no errors have been reported so far in such challenging
cases. On the other hand, the experimental results on the deformable reconstruction of
histology sections show that there is big potential in the analysis of local structural con-
sistency for a reference-free reconstruction. However, the quality of reconstruction is still
not comparable to reference-based methods, which is an expected outcome. Nevertheless,
the reconstruction quality was visually comparable to the results obtained by min-max
curvature flow based reference-free reconstruction proposed by Cifor et. al. [Cifo 11] and
another novel reference-free reconstruction based on frequency separation proposed in the
recent work of Gaffling et. al. [Gaff 14]. For the validation of our approach to histology
reconstruction on real images, we have used only visual inspection. This was mainly due
to the absence of ground truth data for histology images. However, a more elaborate quan-
tification of performance can be performed by using simulated histology images as done
in [Gaff 14], which we leave as a subject of future work.

As another application, whole-body MRI is used to show how structure propagation can
be exploited for a locally consistent fusion of multi-station MRI volumes in their overlap.
Experiments indicate that the structural information alone is not sufficient to find a consis-
tent matching in terms of full intensity correspondences. This is due to the sparsity of the
structural correspondences when only the edges are used. In order to smoothly propagate
the deformation obtained from the registered structural representation, it is necessary to
employ structural consistency as a regularization term in the registration functional.

As a result of structure propagation for local structural consistency, we obtain structural
probability maps. It should be however mentioned that these probability maps do not obey
the rules of a probability distribution such as the sum of the entries should sum up to 1.
We still call it probability maps as they reflect the likelihood of the presence of a certain
structure in a particular region in the image. For the assessment of similarity between these
maps as well as when comparing to deterministic structural images (i.e. egde maps), we
have so far used normalized cross correlation. Since these images have probabilistic nature,
the study of more appropriate similarity measures designed for comparing probabilistic
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distributions such as the Kullback-Leibler divergence [Chun 02], or the Jensen-Renyi diver-
gence [He 03] would be another interesting direction for future work.

Finally, although the demonstrations for the 2D image stitching application include only
two images, the proposed method could also be extended for the alignment of multiple
images. If prior information in terms of adjacency relationships is available, a simultaneous
optimization strategy similar to bundle adjustment can be employed to obtain the optimal
transformation parameters for neighboring images. Otherwise, a method similar to the
one employed in [Brow 07] can be used to first identify adjacency relationships between
subimages. Here, the proposed structure propagation technique can be employed to enable
the comparison between subimages when no overlap is available.

4.6. Conclusion

In many medical imaging applications ranging from microscopy to ultrasound to digital
pathology, a wide field-of-view is usually desired to enable a better analysis at different
scales. However, having a wide field-of-view is often limited by the capabilities of the
imaging devices in guaranteeing a large field-of-view at the highest resolution. Therefore,
it is a common practice to acquire smaller tiles which are then stitched together in order
to get a larger field-of-view. There have been many solutions proposed in the past for the
stitching of subimages in various applications. The common requirement for almost all
of these techniques is that the subimages to be stitched have to have at least a sufficient
amount of overlap in order to be able to optimize some transformation parameters using
the information shared in this overlapping region. The amount of overlap has remained
as a challenging issue which is often circumvented by the undesired solution of enforcing
a sufficient overlap during image acquisition. Although this is a solution in some cases,
it not only brings further complications to the acquisition protocol such as using accurate
motorized stages as in the acquisition of large field-of-view microscopic images but also
introduces further computational complexity during the final stitching.

Registration of neighboring histology sections with the purpose of a 3D volumetric re-
construction can also be cast as an overlap issue. Due to the characteristics of the imaging
modality, having overlap along the stack direction is not possible. Independent artifacts
introduced to each slice have a direct effect on the amount of structural overlap between
neighboring slices. Although reference-based reconstruction techniques are able to handle
such inconsistencies, complicated acquisition protocols due to the additional reference vol-
ume remain as a major limitation of such approaches. Ideally, without using any external
references, it should be possible to estimate the local geometry of anatomical structures
from the distorted partial observations from digital histology slices.

Although recent advancements in the imaging technologies have enabled better ways
for creating whole-body MRI, such technologies are not commonly available yet. A whole
image of a human body using MRI is usually possible only by using multi-station image
techniques. In this acquisition setting, multiple images covering different overlapping
regions of the body are acquired and fused together to reconstruct a whole-body MRI.
However, fusing multiple images in their overlapping area needs special consideration
due to the geometrical distortions inherent to MRI. A straightforward approach would be
to acquire more images than needed to cover to the entire body and stitch together after
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cropping distorted regions. However, this may result not only in a much longer overall
acquisition time but also motion artifacts due to the extended acquisition time which would
lead to inconsistencies. Therefore, the optimal protocol should be the one that acquires the
minimum possible number of partial images in the shortest possible acquisition time. In
this case, geometric distortions should be handled in such a way that local continuity and
consistency of structures should be respected.

Here, we have proposed a novel structure propagation technique to address the local
structural consistency in medical computer vision problems. Our approach was mainly
inspired by the perceptual grouping principles from the field of the Gestalt psychology.
Principles such as closeness and good continuity for inferring curves and surfaces from
noisy data has been the starting point for our approach. Using a similar approach on feature
sets such as edge points extracted from image data, we posed the structure propagation
as an inference problem. Then, we solved the inference problem using the tensor voting
framework where feature points such as edge points first learn their self structural saliences
and, then, propagate their local structural information using tensor voting by respecting
the perceptual grouping principles. Propagated structures result in a structural probability
map indicating the saliences of types of structures at the inferred locations.

We have applied the proposed structure propagation method to solve the above men-
tioned problems in medical image analysis. First, 2D image stitching using structure propa-
gation was demonstrated, which addresses specifically the classical overlap issue in image
stitching. The main motivation for incorporating a perceptual grouping mechanism in
the stitching task is our belief that such an approach will ensure the continuity and the
smoothness of structures across subimages to be stitched. This belief is based on the fact
that perceptual grouping techniques are usually inspired by the perceptual power of the
human visual system that can visually reconstruct an occluded region by imposing the
smoothness and the continuity principles on the observed signals. Smoothness and conti-
nuity of structures are essential properties for medical images. Although ensuring these
properties is possible with the existing methods when a sufficient amount of overlap is
present, it gets challenging as the amount of overlap decreases. It becomes even impossible
to perform a stitching with the existing stitching methods if there is no overlap between the
pieces. Therefore, the proposed method is designed to overcome this limitation by allow-
ing a “perceptually good” alignment in such scenarios by means of structure propagation
which helps to create an overlap region where the information is extrapolated from the non-
overlapping regions of subimages. Experiments on synthetic as well as real medical images
have shown the potential use of the proposed technique for creating wide-field-of-view
microscopy images. The only requirement for our method that the structures should have
inherent smoothness indicate that the proposed technique can be employed for solving
many similar scenarios in the field of medical image analysis.

As the second application, we employed the structure propagation for creating struc-
tural probability maps to be used for regularization during deformable reconstruction of
histology sections. In the absence of a ground-truth reference image, it is hard to know
whether a local optimum is indeed leading to a structurally smooth and consistent volu-
metric reconstruction. To alleviate this issue, we infer the most locally consistent locations
of distorted structures through local voting. While registering neighboring slices to each
other based on intensity features, we use the inferred structures as regularization to ensure
the loyalty of the optimum to the local structural consistency. Results of experiments on
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synthetic and real histology images revealed that using structural probability maps yielded
a better deformable reconstruction of histology sections.

Finally, we applied structure propagation to the problem of fusing multi-station partial
MR images to create a whole-body MRI. The distorted image region was augmented by
the structural probability map created by propagating structures that are relatively salient.
Aligning structures for initial alignment and then refining the registration by using intensity
information, we are able to fuse partial images in a natural manner. We compared our
approach to a baseline method where the partial images are registered to their linearly
weighted average. Experimental results showed that using structural probability maps as a
regularization term leads to much more smoother fusion of structures in the region where
the images overlap.

In this chapter, we have demonstrated by several applications that structural probability
maps obtained through structure propagation can be easily incorporated into any regis-
tration functional as a regularization term to guarantee the local structural consistency.
However, the application of the proposed regularization technique is not limited to the
ones presented here. It can help solving similar problems in the field of medical image
analysis where distorted or missing structures is an issue.
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CHAPTER
FIVE

HOUGH SPACE PARAMETRIZATION FOR GLOBAL
STRUCTURAL CONSISTENCY

Field-of-view extension via mosaicing of partially overlapping images has been used in
various applications ranging from remote sensing to computer photography to medical
imaging. The main challenge in most applications is having an extended field-of-view
without sacrificing spatial resolution. A variety of methods have been developed over
the decades for aligning partially overlapping images. These include matching features
extracted from partial images and intensity-based alignment where correspondences are
built between image intensities in overlapping regions.

While feature-based approaches may fail in the absence of salient, distinctive features,
intensity-based approaches suffer when the amount of information in overlapping regions
is insufficient for estimating transformation parameters. In particular, in the absence of
dominant structures such as strong edges in such regions, obtaining a solution that ensures
consistency between the structures spanning partial images becomes difficult.

Towards addressing this issue, in Chapter 4, we have presented a method for ensuring
local structural consistency by propagating salient structures from non-overlapping parts.
While this approach yields locally consistent fusion of partial images, it is, however, hard to
assure a globally consistent alignment of all partial observations by employing only a local
approach. Thus, in this chapter, we propose a global regularization term for consistency in
intensity-based image registration. This term exploits the vast amount of available informa-
tion beyond the overlapping area, irrespective of the distance to the overlap. This approach
has advantages over the previous local one particularly in terms of being unbounded to
the support range of structures as well as to the size of overlap between images.

In this work, the global regularization term is formulated in terms of the Generalized
Hough Transform (GHT) [Ball 81]. Using GHT-based object representation, we learn a
flexible model of the object of interest using prior data by parametrizing the object shape
in the Hough space. This parametrization is then used for global regularization when
registering partially overlapping images of a particular scene including the learned object
without using any prior data.

This chapter is organized as follows. In Section 5.1 we start by motivating the problem
of registering partially overlapping images. Then, we present the relevant prior art on
this subject. Especially, we look into the object recognition approaches using part-based
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object representations. Then, we relate our shape-based representation with similar tech-
niques for object recognition in computer vision. Section 5.2 provides the details of the
proposed global consistency measure where we also give an overview of the Generalized
Hough Transform. Our empirical evaluation through experiments on synthetic as well as
on sample real medical images is presented in Section 5.3. Finally, we close the chapter
with concluding remarks after discussing the results of the experiments.

5.1. Introduction and Related Work

Construction of high resolution images with a wide field-of-view has been an active area
of research for many decades. Applications where field-of-view extension is used include
consumer photography for panorama imaging, remote sensing, satellite imagery and med-
ical imaging. While most of the existing solutions are based on extracting and matching
features from images covering different partially overlapping regions of a scene, such ap-
proaches are likely to fail when it is difficult to find salient features in the overlapping
regions. Intensity-based alignment is an alternative approach where full intensity con-
tent is used. Intensity-based registration offers better accuracy with the cost of increased
computational cost compared to the relatively more sensitive feature-based methods.

Traditional approaches to field-of-view extension rely solely on the overlap between im-
ages covering different parts of a scene. Therefore, existing solutions cannot be employed
in cases where images do not overlap. Moreover, the quality and the amount of informa-
tion in the overlap is a crucial determining factor in the success of any alignment method.
Degradations due to imaging setup or lack of structural information present challenges
both for feature-based and for intensity-based registration. In addition, and more impor-
tantly, to the best of our knowledge, no image mosaicing technique using overlap considers
the global properties of underlying structures during alignment. In fact, local primitives in-
cluding structures as high level features and intensities as the lowest level features provide
valuable cues about the composition of a particular scene. Therefore, such local primitives
can vote for the global properties of the scene. In this work, we present an approach to ex-
tending image field-of-view by incorporating local primitives in the estimation of optimal
transformations respecting the global properties of underlying objects or structures such
as position or scale.

The primary observation that led to this work is the contextual relationship of the infor-
mation available in partial images of a certain scene. It can be easily observed that objects or
structures in natural images have certain geometrical or physical constraints. For instance,
knowing the positions of the legs of a cat gives cues about the possible location of its head.
Once such constraints are learned and partial observations of the scene are available, it
should be possible to make predictions about the spatial configuration of these observa-
tions within the scene. Constraints on the objects may be represented through models of
objects of interest in different forms. In medical image analysis, for instance, models are
quite popular through which prior knowledge can be exploited while performing certain
analysis tasks on images. The most successful application of models is the segmentation of
objects of interest in medical images. There is a vast amount of literature on different meth-
ods using prior shape and appearance information in terms of statistics for segmenting
objects of interest [Heim 09].
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In some applications, however, the goal is not an accurate segmentation of an object in
the first place but rather its detection or localization in a particular scene. Such approaches
also rely on prior knowledge in terms of models or training images. Our approach is also
in line with such methods in regards to using prior data. However, the main difference
between this work and previous works on object detection is that we are not directly in-
terested in detecting objects. In this work, we perform soft detections on partial images
and independently generate object configuration hypotheses. We, then, use the consistency
between hypotheses to assess the consistency of alignment between partially overlapping
images. Here, we use the term soft to indicate that our final goal is not the detection or
localization of the object within the scene. Due to this relationship with object recognition
methods, we will have a deeper look into the literature about detection approaches based
on training data before describing our measure of consistency using partial soft detections.

5.1.1. Related Work on Object Recognition

Object recognition task can be classified as specific vs generic [Grau 11]. In the first category,
the goal is to detect the presence and the location of a specific object, such as a certain book
or a particular car. The usual steps in specific object recognition include extraction of
features on the object in a scene and matching of these features. Finally, a verification step
is needed to ensure a consistent geometric configuration of the feature correspondences. In
the second class of object recognition tasks, one tries to identify and locate objects belonging
to a generic object category [Grau 11]. For instance, detecting humans in video sequences
is a good example for this class of tasks. An algorithm for detecting humans does not make
any distinction between different humans. Since we are interested in the registration of
partial images of generic objects such as human organs, in the following, we will focus on
generic object recognition methods.

In generic object recognition, we differentiate between window-based and part-based
methods. Window-based approaches model the object appearance within a region of in-
terest in terms of image gradients or texture. Feature descriptors extracted from the entire
region or within its sub-windows are used to summarize the appearance. Descriptors for
window-based representations include SIFT [Lowe 04], SURF [Bay 06], HoG [Dala 05] and
Haar-like box filters [Viol 04] among others. On the other hand, part-based representations
handle object as a combination of its parts and try to establish geometrical relationships
between parts for introducing flexibility. Although window-based recognition approaches
have been successfully used for many applications, they have certain limitations when the
object of interest is textureless or goes under global appearance changes or occlusions. On
the other hand, part-based models combine the local appearance in the form of a visual
vocabulary with spatial relationships making it robust to global changes in illumination or
appearance as well as partial occlusions [Grau 11].

The goal in this work is to incorporate local information contained in partial images in
assessing the global consistency of alignment between them. Similar to part-based object
recognition approaches, local parts in partial images give cues about the underlying object.
Due to this similarity, in what follows, we give more details about part-based models for
object category recognition.
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Part-based Object Recognition

In part-based models, geometrical relationships between object parts can be formulated
in different ways. The simplest form is the bag of visual words model [Csur 04] where
there is no geometrical relationship between the parts. The most complicated form, on
the other hand, is a fully connected graph where all parts are assumed to be connected
to each other [Ferg 03]. Leibe et al. [Leib 04] introduced a star-shaped spatial model for
layout representation which stands in between. In this type of representation, local parts
are connected to only a central reference part, thus, they are conditionally independent
from each other. Such a representation has computational advantage compared to a fully
connected model. Many subsequent works for visual object recognition in the last decade
use similar approaches in part-based modeling due to its efficiency. Therefore, we mainly
focus on the star shape representations in the following.

Since each part of an object is treated independently given a reference part, the instantia-
tion of an object is also relative to the central part where local parts make predictions about
the location of the reference. Usually, local parts are chosen as representations for appear-
ance in terms of codebook entries. Codebooks or visual vocabularies can be constructed
by grouping together similar parts of different objects in the same category. Therefore,
each codebook entry represents varying appearances of a part in different training images.
During recognition, a local patch around an interest point can be compared against code-
book entries and then corresponding hypotheses stored in the codebook are used for the
prediction of the reference part. A powerful mechanism called Implicit Shape Model (ISM)
for implementing this idea is proposed in [Leib 04]. This approach models the implicit
geometric layout between the parts of an object along with part appearances.

The hypothesis generation mechanism employed in ISM is inspired by the evidence
gathering technique used in the Generalized Hough Transform (GHT). We will present
more details about the GHT in the methods section. In contrast to the GHT where the
orientations of object contour points are used for indexing a table of offsets storing the
vectors for the reference point, in the ISM, patch appearances are matched against a visual
codebook casting probabilistic votes for the reference part. Votes cast are accumulated in
the Hough space and then peaks are detected as agreed hypotheses for the object reference
point.

Despite its popularity, robustness to partial occlusions and proven success in detecting
objects with large number of parts, voting-based methods based on visual codebooks come
with prohibiting computational cost with increasing number of object parts [Gall 13]. To
address this issue Gall et al. [Gall 13] formalized the Hough voting-based detection process
within a discriminative random forest framework, which is called Hough Forests. In Hough
Forests, mappings between image patches and probabilistic votes for the reference point
of an object are learned from annotated training data along with the class probabilities.
The main difference between the two approaches is that while codebook-based approaches
have a unsupervised way of learning an explicit appearance codebook from the training
data, Hough Forests does the same in a supervised manner yielding an optimized implicit
codebook for voting [Gall 11].

Random Forest, which is the basis for Hough Forest, consists of decision trees that are
trained on random subsets of a training data set. It can be applied both for classification
or regression leading to either discrete or continuous result on a test image patch. The
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power of random forests comes mainly from its capacity of processing large training data
sets as well as from its speed and generalization capabilities [Fane 13]. During training,
each randomized tree gets a random subset of the training data and at each non-leaf node
of the tree, patches from the training images are sent either to the left or the right child
node based on a binary test that optimizes the information gain after split. This procedure
continues until some criteria such as the maximum tree depth or the minimum number of
points in a child node are met. The binary test applied on each node is chosen to be the one
from a randomly chosen subset of binary tests that yields the best information gain, thus
minimum uncertainty in the set going to each child node.

Hough Forest [Gall 11] extends the Random Forest training procedure by changing two
components. First, the input to the decision tree includes not only the labeled pixel data,
but also, depending on whether it is from the figure or ground, it contains the correspond-
ing offsets for the object reference point. Secondly, the function optimized at each node
is modified by adding another term that minimizes the uncertainty among the offset vec-
tors belonging to a child node. During training, one of these two functions is chosen also
randomly at each node. Hough Forest exceeds the performance in the state of the art. It
is suitably designed to handle multi-class and multi-aspect views, and adapts to detect
deformed and occluded instances of the model in cluttered environments. We will bire-
fly discuss the potential use of the Hough Forest for the purpose of globally consistent
alignment in the discussion section.

Contour-Based Object Representation

In addition to the Hough Forest, several other extensions of the ISM framework [Leib 04]
have been proposed for voting-based inference in part-based object category recognition.
Some of them have focused on representing the shape of an object instead or in addition to
the appearance [Shot 05, Opel 06, Shot 08]. The principle idea behind using shape is that
shape elements such as boundaries provide a natural representation of the object. This
kind of representation is particularly useful for less textured objects [Opel 06]. In addi-
tion, it provides a better means of representation for objects having unreliable textures
due to degradation or noise. It should be noted that boundary-based representations can
be coupled with texture-based representations for a better overall performance. We will
discuss this among the possible extensions of our framework in Section 5.4. Other advan-
tages of contour- or boundary-based representation include robustness to the changes in
appearance due to illumination, color or texture [Shot 08].

Opelt at al. [Opel 06] proposed a Boundary Fragment Model (BFM) where they train weak
detectors using small subsets of boundary fragments and obtain a strong detector via boost-
ing. They use star-based representation as the spatial prior where votes for the object center
are stored along with the contour fragments. Shotton et al. [Shot 05] independently pro-
posed a similar approach. Both methods use Chamfer distance for matching contours from
a testimage to the codebook of learned boundary fragments. Similar to Leibe et al. [Leib 04],
based on the matched codebook entries, votes for the object center are cast and peaks in the
Hough space are detected as the instance of the object class. Another related approach is
proposed by Riemenschneider et al. [Riem 10] where contour descriptors based on angular
representations are matched partially to the model object contour. Then, the votes gener-
ated by the matched contour fragments are accumulated in the Hough space for subsequent
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hypothesis detection. Angular descriptors are used to improve the discriminative power
of the matching process.

Inspired by part-based object recognition approaches for detecting objects through parts,
we introduce a global consistency measure to be used when putting parts of an object or a
scene together for widening the available field-of-view. Our consistency measure depends
on the detection hypotheses generated via partial images of an object or a scene of interest.
A consensus between the strongest detection hypotheses for partially overlapping images
in a parametric space indicates a consistent configuration of images with respect to the
underlying object of interest. Thus, global consistency when registering partial images can
be seen as the consistency between the detected object hypotheses in partial images.

5.1.2. Related Work on Field-of-view Extension

In the previous section, we draw a parallelism between object detection approaches using
part-based modeling and the idea of assessing global consistency via local information.
It this section, we will discuss the prior art on field-of-view extension in different fields,
particularly in medical imaging.

Computer Vision

The problem of field-of-view extension has been studied extensively in the literature. While
generic methods exists, most approaches are tailored towards specific applications. Of
these, consumer photography is the most popular application area of field-of-view exten-
sion. A excellent review on image stitching is presented in [Szel 06]. In his review, Szeliski
states that film photography was the first area where a panoramic imaging was used for
getting a wide field-of-view. Later, it was also used for creating panoramas from consumer
cameras [Mann 94, Szel 96]. Subsequent works focused on getting a globally consistent
alignment (still based on overlap) [Shum 00].

Researchers have also focused on automatic determination of adjacency relationships
between the overlapping partial images of a particular scene [Brow 07, Shum 00, McLa 02].
These methods use the idea of bundle adjustment [Trig 00] for obtaining the globally most
consistent alignment of partial images. Despite the proven success of these methods in
many data sets and applications leading to various commercial products, their performance
is bounded mainly by the amount and the quality of overlap between partial images. For
instance, it could be difficult to solve the parallax error (created by seeing an object from
different viewpoints) when the overlap size is limited [Szel 06].

Medical Imaging

Extending the field-of-view of biomedical samples for visualization under microscopes
without sacrificing spatial resolution is another related active area of research. In biological
imaging, for instance, it is necessary to see an entire section of a sample at high resolution
which is usually higher than the resolution offered by acquisition devices. Therefore, in
order to acquire a high resolution image, often multiple tiles are captured with or without
overlapping regions and combined or stitched together [Rank 05, Verc 06, Chow 06, Prei 09,
Emme 09, Saal 10, Tsai 11, Loew 11]. Usually, a step motor is used during image acquisition
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to record the positions of tiles which are used for initializing a mosaicing or stitching
process. If the initial configuration of tiles is unknown, feature-based matching can be
used given sufficient overlaps between the tiles are available [Saal 10]. Ensuring global
consistency in microscopic imaging is remaining as a challenge since most micron level
structures do not have predefined global shapes that can be learned and used as constraints.
Instead local consistency is ensured through structural continuity and smoothness [Yigi 13].
See Chapter 4 for details.

Other applications of field-of-view extension include in-vivo micro-image mosaicing
[Loew 11], in-vivo navigation for minimally invasive surgery [Moun 09], endoscopy
[Reef 06, Sesh 06, Atas 08], ophthalmic image analysis [Catt 06] and cystoscopy [Hern 10].
Ultrasound (US) imaging is another area of research where field-of-view widening is often
required. The primary reason for this need is that the acoustic window of the transducer is
limited; therefore, to capture a large field-of-view, several acquisitions are necessary where
partial images of a target region have to be stitched together [Wach 07, Brat 11, Oye 12].
However, primarily due to the typical imaging artifacts inherent to US, information con-
tained in the overlapping region is often not salient enough for a purely intensity-based
tield-of-view extension.

Wachinger et al. [Wach 07] proposed an algorithm for aligning multiple US volumes of
a baby phantom acquired from different viewpoints. Even though promising results are
reported and this work pioneered the groupwise alignment of US volumes, their approach
is purely intensity-based and does not utilize any structural or geometrical properties of
region of interest. In [Ni 08], a feature-based US mosaicing method is presented. 3D SIFT
[Lowe 04] features are detected and transformations are obtained via matching. Schneider
et al. [Schn 12] suggested a similar approach where small changes between partial images
are assumed and simpler features are employed yielding a real-time performance. This
method however requires sufficient amount of overlap between images in addition to the
salient feature points in those regions. Similarly, Brattain and Howe [Brat 11] presented a
real-time method where electrocardiograph (ECG) gating and electromagnetic (EM) track-
ing are used for compounding. Thanks to the ECG gating, similar partial volumes were
used for compounding, eliminating the need for intensity-based registration. However,
again, a complicated setup involving gating and tracking is required.

3D transcranial ultrasound (TC-US) [Ahma 11] imaging serves as an example of such
challenging setups where partial images or volumes are acquired through the temporal
window from both sides and then reconstructed to create a larger field-of-view of the
brain. However, stitching partial US images using only intensity information, especially
in this setting, is very difficult due to the the typical imaging artifacts inherent to US
such as low signal-to-noise ratio, large speckle patterns and low image quality [Ahma 13].
Therefore, the reconstruction is often done via a freehand ultrasound system [Wein 06]. In
this system, US probe is tracked using optical tracking which keeps track of the coordinates
of acquisition planes. A subsequent registration is also needed to correct for tracking errors.
This however requires an additional tracking setup that is not often available in clinical
settings.

Ahmadi [Ahma 13] proposed a joint segmentation, registration, reconstruction (JSR2)
technique to address the challenges in multi-view 3D TC-US imaging. The reconstruction
is performed in an iterative manner where the target region (the mid-brain in that case)
is first segmented in every partial image as well as in the initially reconstructed image.
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FIGURE 5.1.: (a) Illustrates a possible imaging setup where partial images may have limited
overlap. (b) Given that the underlying shape is known, other structures from non-
overlapping regions can be utilized for regularization. Copyright: Liver illustra-
tions reproduced with the permission of [Sing 14].

Then, the individual segmentations are deformably registered to the segmentation of the
reconstructed image (joint segmentation). Through iteration, this leads to the optimal
deformations of partial images minimizing the distances between their segmentations and
the joint segmentation. Although promising results are demonstrated, this approach has
strong dependency on the segmentation method involved. An incorrect segmentation can
easily lead to an incorrect deformation, thus an incorrect reconstruction. To address this
issue, reconstruction step is regularized through an anatomical shape prior in the form
of statistical shape model (SSM). Furthermore, the available structural information is not
utilized directly but rather indirectly through segmentation.

5.1.3. Globally Consistent Alignment

Having discussed the prior art on field-of-view extension, we return back to the funda-
mental issue of global consistency and overlap dependence when expanding field-of-view
by putting many partial images together. Figures 5.1(a) and 5.1(b) show a case where
two US images of the liver with little overlap need to be registered to have an extended
field-of-view. Obviously, most purely intensity-based registration methods would fail here
due to the limited structural information contained in the overlap to drive the registration
process. On the other hand, there is a rich amount of information beyond the overlap that
can support the registration. An existing solution for this problem is to register each par-
tial image to an atlas of the target organ thus indirectly registering partial images to each
other. Alternatively, one can propagate structures contained in the surroundings of the
overlapping region. See Chapter 4 for details.

Several works have been done to alleviate the above mentioned issues regarding overlap.
For instance, acquisitions can be performed such that there are large overlaps between
partial images as done in [Oye 12]. Another typical approach is to augment the registration
using previous data such as computed tomography (CT) scans [Haci 13] where each partial
image is registered to the prior as well as to other partial images simultaneously [Kutt 09,
Wein 09]. For such approaches to work, however, a previous scan of the same patient has
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to be available, which may not always be the case in particular when no intervention is
planned [Brat 11].

When no previous scans are available, other kinds of prior data such as anatomical atlases
are used for registration. Although it is possible to have good registration results using
atlases, an explicit use of the intensity distribution of an atlas biases registration towards the
chosen reference, therefore, making it inflexible and necessitating additional regularization.
Our previously described approach seeks for a consistent alignment of structures beyond
overlapping region [Yigi 13]. This method, however, provides only local smoothness and
continuity; thus, it cannot be generalized as a global regularization constraint.

Therefore, all the previously mentioned existing approaches for field-field-view exten-
sion will have difficulties when the overlap size is small, non-salient or no prior data is
given. As a result, they cannot ensure a globally consistent alignment of partial images that
respects the shape of the underlying structures. In this work, we propose not to use prior
data explicitly, but we learn a global parametrization P of the anatomy in question. Al-
though parametrization or learning can be represented in a number of ways as mentioned
in Section 5.1.1, we use the Generalized Hough Transform (GHT) [Ball 81] to learn Py of
the target anatomy in the Hough space. GHT has the favorable property of being robust
to partial occlusions and noise. Here, we exploit such properties of GHT to enable global
regularization for intensity-based image registration. When coupled with a local similarity
measure, Py will serve as a regularization that ensures global consistency while registering
partially overlapping images to each other.

In the following sections, we first describe the GHT. Then, we explain how known
shapes can be learned in the Hough space. Afterward, the details of the entire intensity-
based image registration framework are given. We also describe how non-overlapping
partial images can be consistently aligned thanks to our novel intensity-based registration
framework.

5.2. Hough Space Parametrization

In this work, we use the parametrization of the shape of an object of interest in the Hough
space to enable a global regularization through local voting. The parametrization is done by
learning the shape from training data. Learning is done via Generalized Hough Transform
(GHT), which is a voting-based object recognition method. Voting-based schemes have the
advantage of being robust to outliers, missing data, occlusions and small deformations.

5.2.1. Hough Transform

The origins of the Hough Transform (HT) dates back to 1950s. It was named after its in-
ventor who originally proposed it for tracking particles in bubble chamber photographs
[Houg 62]. In his patent, Hough described the basic idea of representing lines composed
of co-linear points as the intersection of geometric shapes in a parametric space [Hart 09].
However, in his invention disclosure, Hough did not give any algebraic definition of the
transform. It was Rosenfeld [Rose 69] who discovered the invention and in his seminal
book, he gave an algebraic definition of the HT [Hart 09]. He described how zero dimen-
sional points can be mapped to one dimensional lines in a parametric space. Later, Duda
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and Hart [Duda 72] proposed to use polar representation of lines in order to resolve the
issue of detecting vertical lines in images whose points map to lines in parametric space
intersecting at infinity. They also extended the standard formulation to detect higher order
analytical shapes such as circles [Hart 09]. Kimme et. al. [Kimm 75] included gradient in-
formation into the Hough Transform leading to more efficient detection of circular patterns.
Finally, Merlin and Faber [Merl 75] demonstrated how arbitrary shapes at a certain orien-
tation and scale can be detected using the HT. This work was later extended by Ballard
[Ball 81] as the Generalized Hough Transform (GHT) for detecting arbitrary shapes at any
orientation and any scale.

Linear Hough Transform

The idea behind the HT is as simple as transforming a shape of interest to its parameter
space.! Simple case of two dimensional lines in Cartesian space is introduced as trans-
forming points” spatial coordinates to a parametric space of their slope and intercept using
point-to-line transformation. Every point in image space corresponds to a line in Hough
space representing lines passing through this point with all possible orientations. Each
point adds votes along a line in an accumulator corresponding to the discrete Hough space,
and eventually, the areas with maximum votes are most probably the parameters of the
line passing through the voting points in the image space.

Given an image I : Q C R? — R every point p = (z,y) € R? in the image space can
hypothetically lie on a line with the Cartesian equation

f((m;n), (z,y)) =y —mz —n=0 (5.1)

where (m, n) is a pair of parameters for slope and intercept, respectively. For every fixed
point (z;,y;), the HT plots the trace of all possible (m, n) pairs that satisfy the following
equation

(z,y) = {(zi, ) € (D)}, (5.2)
f((m,n),(:c,y)):m—&-én—%zo (5.3)

letting ((-) an operator over the image space to detect features (e.g. edge detector). The most
common features used are the edge points. Its popularity comes from the fact that edges in
images play an essential role in the perception of objects in human visual system. Human
eye primarily decodes the appearance of shapes based on their boundaries. The linear
model defines a line in the parameter space. Strictly speaking, all potential lines which a
point might lie on are gathered in the parameter space, and this trace will appear as a single
line in the parameter space defined by slope and intercept. If one continues repeating this
for all g edge points in the image space, it will produce g lines in the parameter space.
The pipeline of a HT-based line detector starts with detecting edge points in the image
space. An empty accumulator array with axis m (slope) and n (intercept) is allocated. For
every line trace relating to an edge point, the corresponding accumulator cells on the trace
are incremented by 1. By the end of the process, the accumulator cell containing the largest

!Parts of the background study on Hough Transform have been conducted by Javad Fotouhi as part of his
master thesis.
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(a) Representation in Cartesian coordinates (b) Representation in polar coordinates

FIGURE 5.2.: Different representations of line in the Hough space

peak is most probably defining the parameters (my, ng) of the common line passing through
the majority of points [Rose 69]. This is illustrated in Figure 5.2(a).

This type of line representation might lead to issues since vertical lines in image space
have a gradient of infinity. Therefore, in a discrete, bounded parameter space, it would
not be possible to identify the intersection of lines which most probably happens to be at
infinity. Alternatively, polar representation of a line is used [Duda 72]. In Figure 5.2(b) a
line is described by its perpendicular distance p to the origin of the image, and the angle 6
of the perpendicular vector p'with the positive x-axis. Then, the polar representation of the
line follows as

p=xcosf+ ysinb. (5.4)

While the absolute value of p is bounded with the diagonal size of the image, 6 value
varies from 0 to 180. Unlike the Cartesian representation, the points in the image space are
no more mapped to straight lines in the parameter space. The parameter space with p and
6 axes will map image points as bounded sinusoidals.

Figure 5.3 illustrates the common steps of a polar linear HT process. Linear HT is used
when there are several line segments after a poor edge detection and results in locating
potential lines. Methods integrating further knowledge can constrict the number of edge
pixels by sampling approaches, and restrict the scanning area employing gradient informa-
tion extracted from the image [Kimm 75].

Generalized Hough Transform

While the standard HT is able to detect analytical shapes, most objects in the world cannot
be described in an analytical way. On the other hand, in most object recognition appli-
cations, the shape of an object is usually known a priori. Generalized Hough Transform
(GHT) is designed to learn priors and facilitate the detection of object instances. Likewise,
it enables locating complex shapes using a set of elementary structures.

GHT was introduced as an extension to the standard HT where any arbitrary shape
can be used as the prior for object detection [Ball 81]. GHT parametrizes a shape with the
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FIGURE 5.3.: Linear Hough Transform using polar representation. (a) Target image where dom-
inant lines need to be located. (b) Edge map using Canny edge detector. (c) Polar
accumulator computed over the edge map with respect to distance p and angle
0. Red squares are positioned on the peaks of the array. (d) Back-projected lines
detected through the linear Hough Transform are overlaid on the input image. The
line with the maximum number of votes is indicated by blue. Figures are courtesy
of Javad Fotouhi.

offsets of each shape element from a reference point. This parametrization is stored in a
look-up table. This table is later used for detection where elements in a target image vote
for the hypotheses that might have generated them. The peaks in the Hough space created
by accumulating such votes correspond to the parameters (such as the chosen reference
point) of possible target object.

GHT parametrizes or learns an object shape by mapping shape features to an arbitrary
reference point. The mapping is defined in terms of offset vectors which are stored in
a lookup table R, so-called the R-table [Ball 81]. The R-table is in fact a codebook which
groups offset vectors according to the discrete orientations of corresponding gradients.
During testing or detection, edge points as well as their gradients in the target image
are extracted. Then, for each edge point, the R-table is indexed based on the gradient
orientation. The offset vectors stored in the corresponding orientation bin are added to the
coordinate of the edge point. Resulting coordinates define the bins in the accumulator that
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Gradient Direction Bin A¢; | Voting Vectors V;

0 A Vo
1 20 ¢ Vv,
2 3A¢ Vo

TABLE 5.1.: R-table R(¢) used in the Generalized Hough Transform

need to be incremented.

A common choice for the reference point of the shape is the center of mass, which is
stable and introduces less accumulation errors. Let A¢ be the orientation step, for every
edge pixelin theset P = {p = (x,y) € {(I)} where ((-) is an edge operator, the orientations
#(p) and offset vectors to the reference point o is computed and stored in the R-table R(¢)
as illustrated in Table 5.1.

Offset vectors corresponding to a single bin are calculated as

Vj=A{rfo—r=p, peP, jA¢<4(p)<(j+1)A¢} (5.5)

Figure 5.4 depicts the typical voting process with and without using edge orientation
information in the R-table. Figure 5.4(a) shows the offset vector for a sample subset of
edge points of an arbitrary shape with a given reference point. In Figure 5.4(b), a voting
scenario on the same shape without using orientation information is shown. This is in
fact equivalent to having only a single row in the R-table during training. In this case,
for each candidate edge point, all of the stored offset vectors are retrieved and applied.
Obviously, this leads to a very dispersed accumulator in the Hough space as well as a
higher computational complexity.

Figure 5.4(c) shows how orientation information can be used when indexing an R-table.
For clarity only the points on the line segment highlighted with green color are used for
voting. Since there is another line segment with similar edge orientation (highlighted
with red color), offset vectors coming from that segment during learning are also used for
generating votes for the green segment. For clarity again, only the offsets corresponding to
the endpoints of the segments are shown. The dashed lines depict the distribution of votes
in the image space. This clearly will lead to a more structured accumulator array in the end
and significantly reduces the number of false votes.

Once the R-table is built, starting with an empty accumulator A with dimensions equal
to the size of a test image, every edge pixel p € P in the test image with gradient direction
¢(p), we let all vectors in the corresponding row of the R-table vote by incrementing A(a),
where a is defined as

a=p+V; VpeP jA¢<¢(p)<(j+1)A¢. (5.6)

The estimate of reference point in the test image is detected as the maximum in the accumu-
lator. The resolution of the accumulator as well as the orientation step size can be used to
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(a) Offset vectors stored in R- (b) Voting without orientation (c) Voting with orientation
table

FIGURE 5.4.: Illustration of Generalized Hough Transform voting process. (a) Stored offset vec-
tors corresponding to a sample set of edge points. (b) Voting based on the same
shape with a subset of edge points without using orientation of edges. Obviously,
there are too many votes in arbitrary directions coming from all edge points in the
template making a inference difficult. (c) Voting from a selected boundary segment
(green) using gradient orientation information. Green and red dashed lines show
the distribution of votes coming from the segments with the same color.

control the speed and the accuracy of detection. While a coarser sampling in the parameter
space increases the robustness of detection to the discretization errors and having sharper
peaks in the vicinity of the parameters for the correct reference point, a coarser quantization
of the R-table rows (gradient orientations) reduces the sensitivity of detection to errors in
gradient estimation.

Figure 5.5 demonstrates the detection of lung reference point in a Computed Tomography
(CT) image. Figure 5.5(a) shows how the orientation bin for an offset vector is determined.
In Figure 5.5(b) 2D accumulator in the Hough space is shown. Notice the peak correspond-
ing to the parameters (coordinates) of the lung reference point. The detected reference
point overlayed on the input lung CT image is shown in Figure 5.5(c).

Depending on the image quality, level of noise, distortion, and occlusion the incrementa-
tion strategy might go beyond a single parameter. Gaussian weighted voting is an accepted
strategy to increase confidence by casting weighted votes also in the neighborhood of a
parameter. Voting along with gradient modulus, local curvature, or local consistency infor-
mation is widely used as well. A set of connected boundary points are more consistent and
reliable than unconnected segments of edges. However, incorporating neighboring infor-
mation into the incrementation strategy requires more iterations since the points voting for
a certain parameter have to be identified. Dynamic programming-based Hough transform
was introduced to answer this problem [Ball 76].

Instances of the object can be rotated along the image axis by 7 degrees or scaled by a fac-
tor of s. So far, the translation ¢ is addressed in GHT. Letting v the model and u the expected
shape in the target image, 7 and 7’- the respective scaling and rotation transformations,

94



5.2 HOUGH SPACE PARAMETRIZATION

(a) GHT template shape (b) GHT accumulator space  (c) Detected reference
point overlayed

FIGURE 5.5.: GHT in lung CT image (a) Shape template of lung used for R-table construction.
Gradient binning includes 100 entries, leading to 100 rows in the R-table. (b) 2D
accumulator array constructed from the lung CT image. A canny edge operator is
applied on the input image. CT lung image introduces many false edges as there
are complicated structures of bronchi channels, which are absent in the template
model; therefore, the accumulator carries relatively large number of false votes. (c)
The blue circle in the image reflects the position of the reference in the input image.
Having the shape template and the input images of the same size has resulted
identical reference points in the model and the input test. Figures are courtesy of
Javad Fotouhi.

the relation between the model and the expected shape becomes
u(t,s, ) =t+ T[T [v]]. (5.7)

Assuming an isotropic scaling s along the entire image, the rigid body transformation and
scaling of the template results in 4 degrees of freedom

a=(Tp,Yo,5,T). (5.8)

Computing all 4 degrees of freedom requires running an exhaustive search over a 4D
accumulator. Ballard [Ball 81] studied the application of scaling and rotation through R-
table transformation. Scaling is addressed as following

Ti[R(9)] = sR(¢). (5.9)

This implies that scaling can be directly encoded as scaling of individual vectors in the
R-table. Rotating a structure will both change the gradient direction and the vector’s
direction

T,[R(9)] = Rot[R(¢ — 7),7] (5.10)

Vectors stored as pairs of Cartesian coordinates R(¢) = Ewég ] are rotated and scaled as
y

nr 0] - [ ). -
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The GHT transforms a global object recognition task into a much simpler peak detec-
tion in parameter space (i.e. Hough space) [Illi 88]. Locating a maximum or a cluster
in parameter space can be achieved in a number of ways. These range from simple
methods such as using a global threshold for the minimum number of votes to more
complicated searching strategies like using hierarchical searching by dividing parameter
space into multiple subspaces. More complicated tools such as mode-seeking methods
including Mean-Shift [Chen 95] and its derivatives Medoid-Shift [Shei 07] and Quick-Shift
[Veda 08] have also found their applications in Hough-voting based object recognition
[Leib 04, Leib 08, Wood 14].

There is an ever increasing number of applications of GHT and its voting scheme in
computer vision including object classification [Leib 04], detection [Gall 13] and tracking
[Gode 13] to name a few. However, it has fewer applications in intensity-based image reg-
istration where there is a large potential of usage. In [Varn 13], GHT was used to estimate
the initial pose of intraoperative images where possible poses of target object are learned a
priori. Shams et al. [Sham 07] addressed the initialization of intensity based rigid registra-
tion by using standard Hough Transform on gradient fields. To the best of our knowledge,
GHT has not been used for global regularization of intensity-based image registration.

5.2.2. Global Consistency in Intensity-based Image Registration

As discussed before, GHT has the favorable property of being robust to the presence of
partial occlusions, noise and clutter in target images. Therefore, this property allows us to
detect a previously learned object even if it is only partially visible in a novel image.

This observation lets us to exploit this property of the GHT to enable global regularization
for intensity-based image registration of partially overlapping images independent of the size
of overlap between them. To do this, given an object of interest, we learn a Hough space
parametrization Py from its prior data such as previous scans, statistical shape models
or atlases. Afterward, following the traditional Hough-like voting frameworks discussed
in previous sections, and using Py, the voting elements? in partial images vote for the
hypotheses about the instance as well as the parameters of the object in a parameter space.
Finally, a global consistency measure (GCM) for the alignment of partial images in image
space is inferred from the resulting independent vote distributions.

Distribution where strong hypotheses are gathered together indicates a better global
consistency in contrast to a scattered distribution of strong hypotheses. This in fact means
that local voting elements contained in partial observations agree on the parameters of the
global shape of the underlying object. Although this procedure seems at first as an object
detection scheme, the ultimate goal is not the localization of the object in a novel image,
but rather the assessment of consistency in the configuration of the parts of the object observed
in various partial images. This is the key difference between the existing object recognition
works and the presented work.

In the voting-based inference, various types of voting elements can be used ranging
from contour elements [Opel 06, Shot 08, Ferr 10] to more complex features such as key-

The elements do not have to be necessarily in the overlapping region which is one of the key idea behind
this work.
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points [Leib 04] or image patches [Gall 13]. Here, only edge pixels are considered as voting
elements which can be extracted via standard edge detection methods such as Canny.

Global Consistency Measure

Let
I={L:Q—RQ cN} (5.12)

be a set of g partial images of an object to be registered together in order to widen the
field-of-view, where N is the image dimension. Furthermore, let 2. be the common spatial
domain of partial images and

T= {Tz DX X, X, Xe € RN}le (5.13)

be the corresponding set of transformations parametrized by t = {¢;}7_,, which, when
optimal, will bring partial images into spatial alignment in the common coordinate frame.
We further define Hough images

H = {H;(x|;, t;, Prr) : Qa = R, Qa C NM}7_ (5.14)

where M is the dimensionality of Hough space and a is a coordinate in the Hough parame-
ter space. The goal in this work is to define a measure using the Hough images (i.e. vote
distributions in parameter space) which should reflect the consistency in a particular con-
figuration of partial images that have generated them. We will investigate different ways
of defining such a measure and discuss their strengths and limitations in what follows.

We interpret the compactness of votes in the joint Hough space as the global consistency
criterion among the sub-images. In this context, compactness is defined as the measure of
clusteredness in the joint parameter space, or simply as the peak alignment between the
sub-accumulators. The motivation behind the compactness is demonstrated in Figure 5.6
where changes in the vote distributions are observed based on partial image configuration.
As a result of proper alignment, vote distributions coming from partial images lead to the
maximum compactness in the joint parameter space.

In the following we assess metrics which represent the amount of compactness in a
distribution function. The goal is to cluster a dispersed distribution in Figure 5.7(a) and
achieve a compact distribution as in Figure 5.7(b) 3,

Entropy of Joint Vote Distributions The accumulator in GHT demonstrates the number
of counts of votes for a parameter for being the predefined reference point. Therefore, if
we normalized the vote distribution, the GHT voting space stands as a probability distri-
bution function (PDF) for the parameter of the reference point. Thus, one can treat it like a
normalized histogram.

Entropy of a distribution is a powerful metric of uncertainty and is widely used to assess
the structuredness of a probability distribution. This is in fact a measure of the amount
of information content in a distribution. The Shannon entropy [Shan 48] h of a random

*Hough-space based similarity measures discussed in this section have been implemented by Javad Fotouhi
as part of his master thesis.
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(a) Template (b) Sub-images set apart (c) Sub-images aligned properly

FIGURE 5.6.: Superimposed votes in Hough space (a) Template model learned in the R-table. (b)
The template in (a) is split into four partial images and are set apart from each other.
In the next step, sub-images are set to cast votes for position of the parameters of the
learned model. In this figures, votes are overlaid with the edge points. Partial im-
ages construct four small peaks in their local coordinate frames. (c) Sub-images are
registered properly with respect to the global model. The four small local peaks are
now superimposed, thus constructing a single global reference. The largest possible
peak happens at this setup, therefore resulting in the most probable parameters for
the global reference. Figures are courtesy of Javad Fotouhi.

(a) Dispersed accumulator (b) Compact accumulator

FIGURE 5.7.: Compactness in Hough space (a) Initial joint vote distibution in the joint parameter
space constructed from two sub-accumulators. (b) Compact joint vote distribu-
tions resulting in the proper alignment of corresponding sub-images. Figures are
courtesy of Javad Fotouhi.

variable X with possible values in [z1, - - - , z,] and a probability distribution function (PDF)
p(X) is defined as

h(X) = pla:)logy(

r,€X

) ==Y p(x;)logy(p(x:)). (5.15)

p(l‘z) z,€X

Entropy can be interpreted as a measure of uncertainty about the random variable. There-
fore, a uniform distribution has the maximum entropy since it has the most uncertain form
of distribution. In contrast, a peaky distribution has always smaller entropy values due to
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the fact that the probability of the random variable taking certain values is higher, leading
to having more information about the behavior of the random variable.

Therefore, the Shannon entropy can be utilized to evaluate the compactness of the vote
distribution in the joint parameter space. This should also reflect the extent of agreement
between the predictions of partial images about the global properties of the underlying
object. The compactness measure in the joint parameter space is defined as

CM(,T,Py)=h(H) with H=|JH (5.16)

where h(-) is the Shannon entropy, H is the set of individual vote distributions and # is
the joint vote distribution. The union is obtained simply by adding up the individual vote
distributions. Ideally, a smaller entropy values are expected when the joint distribution
has a single peak. Unfortunately, however, it is possible to have smaller entropy values
when there are multiple peaks in the distribution. This behavior is in fact exploited in the
mutual information similarity measure [Viol 97, Maes 97] for multi-modal image registra-
tion where a more clustered joint intensity histogram is desired regardless of the number
of peaks.

In order to study the applicability of vote distribution entropy for consistency assessment,
we have conducted an experiment. To this end, we created distributions consisting of mul-
tiple Gaussian components. First, we used only two components with equal variances.
As shown in Figure 5.8(a), starting from a configuration where the components coincide,
we increased the distance between their means. The idea was to observe the behavior
of entropy of PDF with varying configuration of peaks in the distribution. Figure 5.8(b)
shows that in most cases entropy cannot capture how the peaks are close or far from each
other. Actually, this conclusion can be also drawn from the formulation of the Shannon
entropy. A random shuffling of values in a distribution does not change the value of the
entropy. Therefore, minimization of entropy will only result in a more clustered joint vote
distribution which may not contain a single peak. However, if we change the definition of
consistency between partial images from having the same predictions for reference point
to having consistent predictions for multiple properties of the object, entropy of vote dis-
tributions can be successfully used as a consistency measure. We will go into more details
about this in the discussion section.

To make the measure sensitive to spatial configuration of clusters in a distribution, in
other words, to have a measure that captures the difference in terms of closeness of peaks,
we considered Cumulative Distribution Function (CDF). CDF is obtained by integrating
a PDFE. Therefore, different CDFs can be obtained if peaks are configured differently in a
distribution. To this end, we calculated CDFs as shown in Figure 5.8(c) corresponding to
the PDFs shown in Figure 5.8(a) and evaluated the entropies of them. Figure 5.8(d) shows
the resulting entropies. Itis clear that entropy of CDFs tell us more about how the peaks are
located within the distributions. This gives an initial impression that the entropy of CDFs
of joint vote distributions can be used as measure of consistency in terms of predictions of
reference points in the Hough space.

In order to further evaluate the entropy of CDF, we introduced another random Gaussian
component to the distributions and repeated the same experiment in Figure 5.8. Results
shown in Figure 5.9 indicate that the entropy of CDF is still able to differentiate between
far peaks and close peaks despite another randomly introduced peak in the distribution.
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FIGURE 5.8.: Analysis of sensitivity of entropy to peak locations in distributions. (a) shows PDFs
with varying distances between Gaussian component means. For clarity only a
subset is shown with different colors. (b) Entropy of PDFs with varying distances.
(b) shows clearly that there is a large range where entropy cannot capture how the
peaks are close or far from each other. (c) shows CDFs corresponding to the PDFs
shown in (a). (d) Entropy of CDFs with varying distances. It is clear from (b) that
CDF entropy is sensitive to how peaks are located in the distributions.

However, when the distribution is very peaky, that is, the two components are very close to
each other, the third random component changes the expected behavior of this approach.

CDFs in higher dimensions can be obtained via integral images. Although this approach
seems promising in toy examples, it does not produce sufficient results when applied on
real joint vote distributions in higher dimensions. The reason for this could be the fact that
CDFs are not probability distributions. Therefore, they may contain large flat regions in
higher dimensions. Nevertheless, we still believe that further investigation of the usage of
entropy is necessary for a better understanding of reasons of failure in real cases.
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FIGURE 5.9.: Analysis of sensitivity of entropy to peak locations in distributions with noise. (a)
shows PDFs with varying distances between two Gaussian component means along
with another Gaussian component with random mean. For clarity only three of
them are shown with different colors. (b) Entropy of PDFs with varying distances.
(c) shows CDFs corresponding to the PDFs shown in (a). (d) Entropy of CDFs with
varying distances. Entropy of CDF still gives reliable information regarding the
spatial closeness of largest peaks in the distribution.

Weighted Distribution Functions The original goal here was to achieve a joint vote dis-
tribution where there is only a single peak which is the superimposition of the strongest
parameter hypotheses generated by partial images. Entropy of the distribution is insensi-
tive to locations of the peaks in the distribution and it tries to cluster the votes instead of
forcing a single peak.

In order to have a single sharp peak in the distribution, we studied weighting the bins
in the joint vote distribution with respect the strongest peak. The perception of weighted
distribution functions is originated from k-means clustering. The compactness term in this
case is defined as

CM(LT,Py) =) d(a)H (5.17)

The distance map d(-) associates larger weights to distant coordinates a in the parameter
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(a) Joint vote distributions (b) Distance function d(+) (c) Weighted joint vote distribution

FIGURE 5.10.: Weighted joint vote distribution. (a) shows a joint distribution with two distinct
peaks. (b) Distance function has its minimum at the position of the largest peak.
Bins farther from the peak are weighted by their distances. (c) The largest peak in
the distribution is suppressed to zero. Minimization of Equation (5.17) will force
the distant elements to get closer to the largest peak. Figures are courtesy of Javad
Fotouhi.

space from the peak. It is described as

d(a) = ||a — anez|| With a,., = argmaxH(a). (5.18)

In this way, the votes in the vicinity of a,,,, are suppressed, therefore, when minimized,
this term forces all strong peaks far from a,;,,, to get closer by assigning higher costs to
them. Other peaks far from the largest one have usually large vote counts. Thus, they are
affected more than any other bin with less number of votes. Figure 5.10 illustrates the effect
of weighting by the distance map d(-). Although this approach seems to be more promising
in terms of being sensitive to the spatial locations of the peaks, it is not robust enough to
spurious peaks with large number of votes which do not correspond to the reference point
of the object of interest in a partial image. Due to boosting with the distance, such spurious
peaks can be easily falsely aligned with the largest peak.

Peak Distance Minimization Peaks are the only meaningful properties of the Hough
space. Superimposing the peaks generated by different partial images is equivalent to
solving the problem of configuration, which is the maximum compactness in this context.
If the hypotheses are in an agreement, partial images are positioned correctly relative to
the object parametrization. However, having all the peaks clustered does not answer the
problem of rotation. Rotation of a partial image around the reference point may result in a
similar distribution which is the reason for not being sensitive to rotation. Including more
constraints in terms of structural consistency can solve the issue of rotation. We will come
back to this issue in the following paragraphs.

Now, assuming that rotation is not an issue, the most straightforward way of aligning
peaks in partial vote distributions can be achieved by first detecting them and then mini-
mizing the distance between them. Following this idea, we can define a global consistency
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(a) Joint vote distribution with distant peaks (b) Vote distribution peaks superim-
posed

FIGURE 5.11.: An illustration of peak distance minimization. (a) Joint vote distribution with
respect to the initial guess. (b) Peaks are superimposed in the proper alignment
in terms of translation. Figures are courtesy of Javad Fotouhi.

measure (GCM) as the following

2 g g

g(g—l)Z 2

i=1 j=i+1

GCM(I, T, Py) = : (5.19)

arg max H;(a;) — arg max H;(a;)
a; a;

Equation (5.19) minimizes the overall distance between all pairs of largest peaks in in-
dividual Hough images. Figure 5.11 illustrates superimposed partial distribution peaks.
Note that as long as the peaks in partial distributions are accurately identified, this measure
forces the partial images to come to an alignment in terms of reference point location. Peaks
are detected using a very simple arg max operation where the index with the largest num-
ber of votes is selected. In order to cope with quantization artifacts, Gaussian smoothing is
performed before the peak detection. Later, we will discuss the possible issues with peak
detection and other kinds of deformations.

Evaluation of the Compactness Measures Figure 5.12 compares two main compactness
measures of entropy and GCM that we have discussed so far. The peak size for the same
alignment problem increases from entropy to GCM indicating that GCM has the highest
potential of superimposing peaks. Consequently, the vote distribution in Figure 5.12(c) has
the sharpest distribution compared to distributions in Figure 5.12(a).

Table 5.2 compares the statistics of the obtained joint accumulator. As expected from
the formulation, the peak distance is smaller in GCM compared to entropy. However, the
number of non-zero votes in the joint distribution is larger in the case of GCM. This is
indeed not a suprise since entropy tries to cluster the votes but not to reduce the number
of peaks in the distribution. GCM, on the other hand, only overlays the peaks, while other
votes are more spread.

In this work, the sum of pairwise distances between the maxima in Hough images is
considered as the global consistency measure Equation (5.19). Using the same Hough
space size for each partial image, the goal is to bring the strongest hypotheses into a clus-
ter. Equation (5.19) is a function of parametrization, partial images and corresponding
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FIGURE 5.12.: Comparison among the compactness measures. Each distribution is constructed
from two sub-distributions by superimposing them and are obtained by minimiz-
ing the corresponding compactness cost. (a,c) Final joint distributions based on
the entropy and GCM minimization, respectively. (b,d) Compactness measures of
entropy and GCM over iterations of an alignment procedure. Figures are courtesy
of Javad Fotouhi.

transformations. The goal here is then to minimize the GCM in order to increase the agree-
ment between the prediction of partial images about the location of reference point in the
parameter space.

So far, transformations other than translation have been ignored for simplicity. Since
partial observations of the objects may not be in the same pose as the learned template,
it is necessary to include other parameters such as scaling and rotation depending on the
expected amount of deformation in the partial images. For instance, in 2D, isotropic scaling
and rotation around image center can be included in the Hough space, leading to a 4D
parameter space. Higher order transformations can be handled in a similar manner, but
leading to a very high dimensional parameter space. We will discuss such issues related to
the complexity due to higher order transformation is the discussion section.

Using the proposed setting, it is possible to find the parameters of transformations that
generated partial observations from a template. Afterward, one can simple apply the in-
verse of each transformation to map partial images to the coordinate frame of the template.
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Method Final peak distance Final non-zero bins
Entropy of PDF 36 412817
GCM 0 553324

TABLE 5.2.: Comparison of entropy-based and peak distance minimization based compactness
measures.

However, although this can solve the registration problem, it becomes merely a pose es-
timation procedure for partial images. Our goal in this work is not pose estimation but
rather to employ the agreement between the hypotheses in parameter space as a global
regularization in registration where both global and local consistency are simultaneously
ensured. Therefore, we prefer to iteratively compute the GCM during registration in order
to assess the global consistency as the optimization evolves. This measure will be then
coupled with a local intensity-based similarity term which will account for the quality of
alignment in terms of intensity in the overlapping region.

Intensity-based Image Registration

We define the local similarity measure (LSM) in terms of intensities as

Q] g g

LSM(Lt) = g<g2_1> SN ST i), L (T (%)) (5.20)

k=1 i=1 j=i+1

with Tj, being the parametrization of T; by ¢;. Finally, we pose the alignment of all partial
observations as an optimization problem such that optimal transformations T optimizes
an energy £. Optimal parameters t then can be estimated via the following equation

t=arg mtiné’(t\l, Pr) (5.21)

where £ is defined as
EML Py) = LSM(I, t) + ¢CCMIEPH)=p, (5.22)

In this functional, LSM serves as a data fidelity term evaluated in the overlapping regions,
whereas the exponential part is a global regularization term evaluated in the Hough space.
We use the exponent of the GCM in order to exponentially punish globally inconsistent
misalignment though it should still work without an exponent if a weighting factor is care-
fully chosen. p in the exponent is a constant controlling the amount of regularization based
on the uncertainty in GCM. The choice of p depends on several factors such as the quanti-
zation of the parameter space as well as on the image content. For large parameter spaces,
there is more uncertainty regarding the location of maxima in the Hough space, therefore,
inconsistent local alignments should be penalized less. Similarly, object deformations as
well as clutter in the scene cause dispersions in Hough space, thus, leading again to an
increased uncertainty. When there is more uncertainty, p should be set to a smaller value
to give more flexibility to the local term. In the experiments we will perform a sensitive
analysis for this parameter.
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The data term £(-) can be chosen according to the modalities being registered. We have
defined several similarity measures for intensity-based image registration in Section 3.1.5.
In this work, we have chosen to use Normalized Cross Correlation (NCC). Although dif-
ferent kinds of transformations given in Section 3.1.5 can be recovered using the proposed
technique, in this work, we will demonstrate only similarity transformations in 2D by
assuming that the optimal transformations T include translation, rotation and isotropic
scaling only, leading to 4D Hough images. For the optimization of Equation (5.21), various
optimization techniques as listed in Section 3.1.5 can be used. While some of the procedures
require the derivative of the registration functional, others operate without derivatives. For
practical purposes, we have chosen Nelder-Mead Simplex algorithm as part of the NLopt
package [John] as the optimizer in our registration framework.

5.2.3. Global Consistency Measure as a Regularization Term

Before moving on to the experimental validation of globally consistent intensity-based
image registration, in this section, we will theoretically demonstrate that the global con-
sistency measure (GCM) that we defined in Section 5.2.2 increases the capture range of an
intensity-based image registration even when there is a sufficient overlap between images
to be registered together.

Initial positioning is often an issue in general intensity-based image registration which
is usually addressed by allowing large step sizes in the beginning of the transformation
optimization. Another common technique is to use a multi-resolution approach where
global motion is captured in the higher pyramid levels.

Here, we will show that a registration method becomes insensitive to initial positioning
of images thanks to the global consistency measure which is independent of the overlap.
This sounds similar to using a hybrid image registration method where global motion is
compensated by the feature-based term. However, although feature-based image registra-
tion approaches need an overlap to match detected landmarks, the method proposed here
works even when there is no overlap between the images to be aligned together.

To this end, here, we study an alternative version of the functional given in Equa-
tion (5.22). We propose the following formulation

EGXL Py) = LSM(ILt) + GCM(L,t, Py)el —p/GEMILPm)) (5.23)

where GCM is not only in the exponent any more. In this formulation, GCM dominates the
overall cost until its value is on the order of p. As its value gets smaller, the contribution
of GCM to the overall cost will be negligible leading to an implicit handshake between the
local and global terms. In the following, we will study different behaviors of Equation (5.23)
as we vary the parameter p. For this experiment, we use two identical images of size
180x120 as shown in Figure 5.13(a).

To see the effect of the GCM, we varied p in [0, 400] with increments of 100 where a value
of 0 implies full regularization whereas a value of 400 means negligible amount of regular-
ization in this setting. To plot the cost function values, we have chosen to change only the
position of the source images within a global image canvas. The ranges of translations are
[—150, 150] and [—100, 100] for x and y coordinates respectively with increments of 10.

Figure 5.14 shows the cost function behaviors in the vicinity of optimum. Each row
shows the results obtained by using the respective values of p. From left to right, we show
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(a) Test image (b) Different initial positionings

FIGURE 5.13.: (a) Test image used in the experiments. (b) Examples of initial positioning of
source image with respect to the target image.

the function plots for the logarithm total cost, only intensity cost and only regularization
term, respectively. The logarithm of the total cost was plotted to be able to visualize the
local minima in the cost function. It can be clearly observed from the figure that while
a full regularization allows no room to the intensity term, the total cost has a lot of local
optima in the vicinity of the optimum when no regularization is used. The parameter p
in fact shapes the regularization function as seen in the last column of Figure 5.14. Large
values lead to a flat function around the largest peak in the Hough space and renders the
regularization effective only in regions far from the peak. On the other hand, small values
result in a more effective regularization also around the optimum.

While it is often an issue to fine tune a parameter in similar settings, we have observed
that choosing the regularization parameter value close to the size of the object of interest
gives sufficient results in practice. Moreover, the shape of the overall cost function does
not change much unless a very large value is used for this parameter.

5.3. Experimental Validation and Results

We have conducted several experiments on synthetic as well as on real Ultrasound images
to demonstrate the performance of the proposed registration framework. Since our claim is
to have a globally consistent alignment between partial images regardless of the presence
and the size of the overlap between them, through the synthetic experiments, we have
analyzed the robustness of our approach to the size of overlap and to the varying degrees
of imaging noise. For this purpose, a binary image with 400x190 pixels containing a certain
shape was used as a template to learn the object. Two partially overlapping images are
extracted from the same shape as the observed images as shown in Figure 5.15(a).

This pair of synthetic images is deliberately chosen to demonstrate the need for a global
regularization in cases when the information contained in the overlapping region is not suf-
ficient for an optimal alignment. Therefore, it should be noted that if the shape information
is not utilized for the alignment of partial images in Figure 5.15(a), a registration method
will be insensitive to horizontal translations in the overlapping region to a certain extent.
The ultimate goal in this experiment is to reconstruct the same geometry starting from a
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FIGURE 5.14.: Cost functions depending on the choice of the regularization parameter p in Equa-
tion (5.23). Please refer to text for the details.

randomly chosen initial relative positioning of partial images within a specified range.

To study the effect of the size of overlap, starting from a full overlap of objects in the
partial images, we varied the overlap size by increments of 10% of the image width till we
get a —60% overlap, which is a gap of size 60% of the image width. In order to simultane-
ously evaluate the robustness to the amount of image noise, for each increment of overlap
size, we added uniform noise by varying its maximum relative to the the image dynamic
range. Then, for each overlap size and noise level, we applied 20 combinations of initial
rigid transformations with translations and rotations chosen from [—200, 200] pixels and
[—50, 50] degrees respectively.

For synthetic experiments, the value of the peak uncertainty parameter p is set to 10. For
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Part 1 Part2

(a) Synthetic image with overlap (b) Synthetic image with gap and noise

FIGURE 5.15.: (a) An arbitrary shape and sample selection of partial images for experiments. (b)
Same partial images with a physical gap of 40% of image width and uniform noise
with a maximum of 100% of maximum intensity added.

the Nelder-Mead simplex optimizer as part of the NLopt package, [100, 100, 20] are used as
the initial steps for translations and rotation, respectively. Moreover, the parameter bounds
are set to [£200, £200, £50°]. The size of the canvas used as the common coordinate is set
to three times the size of the template shape. Finally, 100 cost function evaluations are
allowed for the optimizer.

For the evaluation, we warped the original partial images without noise using the opti-
mal transformations obtained and compared to the corresponding part of the original full
image using Dice similarity score. Dice similarity coefficient between two segmentations
A and B is defined defined as DSC = 2|A N B| /|A| + |B|) and its value is in [0, 1] where
0 means no overlap and 1 means full overlap. Finally, in order to clearly show the effect
of the global regularization term, we have conducted the same experiments without using
the GCM.

Registration results, in terms of the mean Dice score of 20 runs and their standard de-
viation (STD), obtained using the proposed global consistency measure are shown in the
top row in Figure 5.16. When compared to results on the bottom without using GCM, the
results have two indications; first, the proposed method is able to align partial images even
when there is gap between the partial images; second, it is robust to the amount of uniform
noise in the images. It is also clear that the usage of GCM improves the capture range
of local cost function and avoids undesired local optima. Please refer to Section 5.2.3 for
detailed explanation regarding the cost function capture range.

In order to demonstrate the performance of the proposed intensity-based image registra-
tion technique on real images, we conducted an experiment where we took a pair of slices,
each having 512x384 pixels with a pixel spacing 0.45mm, from a co-registered Ultrasound-
Computed Tomography (US-CT) pair corresponding to the liver area. After segmenting the
liver region in the CT image, we learned the parametrization Py of the shape of the liver in
the Hough space. Then, we cut the US image into two partially overlapping sub-images as
shown in Figure 5.17(a). The goal of this experiment is then to reconstruct the original US
image using both the local information contained in the US partial images and the global
information through Pg. The size of the overlap was about 15% of the original US image
size.

With the purpose of quantifying the performance of registration, we applied random ini-
tial rigid transformations in a range around the optimum to achieve a statistically relevant
result. 50 initial rigid transformations composed of translations in x and y and rotations
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FIGURE 5.16.: Performance evaluation against noise and the amount of overlap using synthetic
images. Top row: Dice score and its standard deviation (STD) using GCM. Bottom
row: Dice score and STD without using GCM. A negative overlap value indicates
a gap between images. Noise added to each pixel is uniformly drawn between
[0, p * max(I)] where p is in [0, 100] as x-axis labels and max(I) is the maximum
intensity value in the image. It is clear that the method is robust to noise and
can tolerate even gaps between the images if the GCM is used. Whereas, without
GCM, Dice score is very low with a high STD even when the overlap is sufficient
and it is not possible to register with a gap.

around the z-axis were randomly sampled from [(—100, 300), (100, 500), £30] relative to the
optimum, respectively.

Parameter of the optimizer for the US experiment are set as follows. The value of the
peak uncertainty parameter p is set to 50. [100, 100, 20] are used as the initial steps of the
optimizer for translations and rotation, respectively. Moreover, the parameter bounds are
set to [(—100,200), (100,600), £50] for translation in x and y and rotations, respectively.
The size of the canvas used as the common coordinate is set to three times the size of
the template shape. 100 cost function evaluations are allowed for the optimizer. Finally,
minimum relative changes in cost function values and parameter values are set to e ~'% and
e~ 8, respectively.

For the evaluation of each registration run, we warped the corresponding segmentation
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(a) US-CT image pair

FIGURE 5.17.: US-CT pair with CT segmentation overlayed on CT (left) and registered partially
overlapping US images (right) where the overlapping region is highlighted.

masks of partial US images and compared with the segmentation of the original ground
truth US image using Dice score. The overall mean, median and STD values with and
without using GCM were recorded as 0.95, 0.99, 0.07 and 0.48, 0.45, 0.34, respectively. Re-
sults shown also in Figure 5.19(a) support our previous observations in terms of robustness.
Moreover, we calculated the scores with respect to changing uncertainty parameter p in
Equation (5.22) by varying its value in [0, 100]. Figure 5.19(b) shows that the large values
of uncertainty lead to a degradation of performance which is expected due to the reduced
amount of regularization giving more emphasis to the local similarity term which is more
sensitive to initial positions. This is also valid for small values resulting in a very strict
regularization, thus, making it sensitive to the possible errors in detecting peaks in the
Hough space.

For further evaluation in terms of Target Registration Error (TRE), we used 16 pairs of
landmarks manually extracted from the overlapping region. The same experiments de-
scribed above were repeated by using US and CT segmentation masks as well as their
slightly deformed versions respectively for learning P. In this case US mask is also used
for learning while in the previous experiments CT mask was employed as the template
shape. Finally, the goal of introducing deformations to the template shapes is to demon-
strate the performance of the method to variations in the object shape.

As seen in Figure 5.19(c), the best median TRE (8.46 pixels) was obtained by using CT for
learning followed by using US (13.38 pixels). Slight performance reductions were observed
in each case when their deformed versions were used for learning, indicating the tolerance
of the method to small deformations. A median error of 127.88 pixels was obtained when
GCM was not employed. Obviously, most of the registration runs without using GCM
failed due to the small size of the overlap and the sensitivity to the initial parameters
indicating a very limited capture range of the cost function. The slightly worse performance
when using the US mask as the shape template compared to CT is due to the speckle and
shadows in US images leading to false edges, thus, more uncertainty.
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FIGURE 5.18.: Intermediate results from the US field-of-view extension experiment. From top to
bottom: Results for the first, middle and last iterations of registration, respectively.
From left to right: overlay of partial images within the image canvas, overlay of
edge maps as well as votes, surface plot of joint vote distributions.

5.4. Discussion
The concept of registration that we have demonstrated in this chapter differs from model-

based segmentation and registration methods in that we do not make any explicit use of
prior data. We only learn a parametrization in order to employ it later for registering partial
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FIGURE 5.19.: GCM evaluation on partial US images. (a) Dice scores with and without using
GCM. (b) Sensitivity analysis with respect to the changing uncertainty parameter
p (x-axis) in Equation (5.22). Dashed line represents the mean value. (c) TREs
when US(w/ GCM US), CT(w/ GCM CT), deformed US (w/ GCM US Def) and
deformed CT (w/ GCM CT Def) are used for learning. The last one is when GCM
is not used at all.

images. This differentiates our work also from the model-to-image alignment methods
[Toew 13] where the goal is to match a model to an observed image. Therefore, in our case,
once the parametrization is learned, the full intensity distribution of the prior image is not
required for registering partial instances of an object.

GCM term does not depend on the modality of images as long as features required
for the GHT can be extracted from the images. Given that features as simple as edges
can be efficiently used, this property makes the proposed framework suitable also for
multi-modal applications where, for instance, partial observations of an object in different
modalities need to be registered to have an widened field-of-view. Theoretically, as prior
data, it is possible to use 1) a different modality, 2) an image of the slightly deformed target
anatomy, 3) or a statistical shape model for learning the parametrization. This is one of the
key features of the proposed concept allowing flexibility in model-based reconstruction.
It should be further noted that we are not making any comparisons to the atlas-based
registration techniques. Here, we propose an alternative concept with its own advantages.

Here, it should be emphasized that, during GCM computation, we did not employ any so-
phisticated techniques for finding modes in the Hough space, emphasizing the simplicity of
the proposed concept. This, in turn, slightly effected the performance of regularization due
to false detections by simply finding the parameter with maximum number of votes. Nev-
ertheless, it is possible to augment the proposed Hough space parametrization approach
by using advanced voting and mode finding techniques such as Mean-Shift [Chen 95] and
its derivatives Medoid-Shift [Shei 07] and Quick-Shift [Veda 08] which are quite popular
in computer vision applications. In this work, a theoretical concept along with a minimal
implementation and its key features are presented.

We see several directions in which this line of approach can be further developed. In-
cluding more local information such as the contextual features could improve the inference
power of Hough space parametrization based partial image alignment. Furthermore, due
to the deformable nature and huge shape variability of most objects of interest, an optimal
alignment between the partial images of an object may not be in terms of just a reference
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point. Incorporating more constraints such as the smoothness and continuity of local struc-
tures, which can be again inferred via a Hough space parametrization, will further increase
the robustness of the presented approach.

Although we have chosen to learn the shape of an object of interest in this work, an
alternative formulation of global consistency would be an implicit consistency measure that
takes the available structures into account. For instance, the continuity of straight lines and
curvilinear structures could be integrated into this framework to enable the measurement
of structural consistency directly in terms of structure and without knowing the underlying
object shape. Such a concept, however, should employ multiple Hough models to handle
different models of structures. One can think of a linear Hough model that tries to align
linear structures combined with a circular Hough model to ensure the global consistency
of such structures beyond the overlap between the images. In the case of a linear model,
the objective should be having a more clustered parameter space in the case of a good
alignment compared to a more dispersed one when images are not aligned in a consistent
manner in terms of linear structures. Similarly, having a structured vote distribution in the
circular case would mean that circular structures spanning multiples partial images agree
to form a consistent shape.

For the assessment of how structured a vote distribution in the parameter space is, the
approach of calculating the entropy of vote distributions in the Hough space would be
a suitable choice. We have discussed the limitations and strengths of the entropy-based
measure in Section 5.2.2. Moreover, in addition to the parametric shapes such as lines and
circles, any prior information about the shape of an object can be seamlessly integrated
again using the Generalized Hough Transform as demonstrated here.

The classical GHT is invariant to rotations and isotropic scaling of the object and tolerates
small deformations which was confirmed by our experiments using slightly deformed seg-
mentation masks for learning. However, it still cannot handle large deformations. One of
the reasons is the approximation of complex transformations with a few degrees of freedom.
The GHT framework is not suitable for detecting object with large shape variations. This
limitation, however, can be relaxed by employing large training datasets in the learning
phase in a decision trees framework [Gode 13]. This stands as a potential future extension
of the proposed method by posing it as a regression problem and by solving it in a random
forest framework. When implemented in such a framework, this would allow employing
higher order features such as interest points or image patches as voting elements [Gall 13].
The edge contour-based approach studied here can be extended by including deformable
shape models as done in [Ferr 10]. Finally, using higher order transformations such as
affine or deformable as well as mosaicing in 3D are the potential immediate extensions of
the proposed concept.

5.5. Conclusion

In this chapter, we have demonstrated an intensity-based image registration approach
where a novel Generalized Hough Transform based global regularization term called Global
Consistency Measure (GCM) is used to enable globally consistent alignments of partially
overlapping as well as non-overlapping images. The key idea is the parametrization of the
shape of an object of interest in the Hough space and its usage for generating parameter
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hypothesis in a joint parameter space about the underlying objects via local features in
partial images.

The main strength of the proposed approach comes from its ability to infer global
properties using local information. This allows us to use information contained in non-
overlapping image regions to jointly estimate the global consistency of an alignment.
Thanks to this property of being independent to the size of the overlap between images
being registered, different from the conventional image registration techniques, it can be
employed for aligning even non-overlapping parts of an object. If an overlap is available,
this term can be further combined with a local similarity metric based on feature matching
or intensity correspondences. Such a combination profits from a globally consistent align-
ment thanks to the GCM and locally consistent alignment due to the local similarity metric.
The GCM can be efficiently used for the alignment of partially overlapping images when
the local information in the overlapping regions is insufficient or corrupted.

In order to demonstrate the above mentioned features of the proposed global regulariza-
tion term, we have conducted experiments on synthetically generated data as well as on
real data. Through experiments, it was demonstrated that the proposed method is able to
align partial images with large physical gaps between them. It was also shown that such an
approach can handle corrupted as well as noisy overlaps where only using local similarity
measure might lead to an incorrect alignment.

Thanks to the continuous development in Hough-based object recognition techniques
in computer vision, the presented approach has a huge potential of further improvements
and developments. Also, given the novelty and demonstrated strengths of the proposed
method, there is a variety of potential applications both in general computer vision as well
as in medical image processing waiting to be discovered. Last but not the least, while
a basic implementation of our approach is shown in this work, the proposed concept is
massively parallelizable and it is suited for reconstructing sparsely sampled scenes.
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CHAPTER
SIX

CONCLUSIONS AND OUTLOOK

In our final chapter, we present our conclusions derived from the theoretical and experi-
mental observations from this dissertation. Then we describe various ways to improve the
strength of the methods presented in this thesis. Finally, we conclude this chapter with a
discussion of several open issues.

In this dissertation, we have looked into different structural consistency measures to
be employed in various intensity-based image registration applications. We have devised
regularization terms within the existing image registration functionals to include additional
constraints with the purpose of having structurally consistent registration solutions. We
have presented two ways of establishing measures of local and global consistency.

6.1. Local Consistency

First, for the local structural consistency, we proposed to create structural probability maps
by propagating salient structures into regions where the existing information is either
missing or corrupted. Our main motivation was the availability of salient contextual in-
formation in the neighborhood of any image region that can be exploited while doing a
registration. To this end, we have extended the popular tensor voting method to infer
structures based on the neighborhoods. Such propagated structures serve to impose addi-
tional constraints when the existing information is not enough to find a good estimation of
the correct transformation parameters. We have mainly considered structural consistency
where our goal was to make sure that the structures spanning a region wider than the one
used for registration are smooth and continuous after the registration.

We have demonstrated a few of several applications where such a consistency constraint
is needed. Applications demonstrated here can be listed under the category of image field-
of-view extension, in which the goal is to have a broader picture of the scene by putting
together two or more partially observed images. We have used the term field-of-view
extension to mean the widening of image field-of-view in any direction. Therefore, we
have put the 2D image mosaicing where images are stitching together in the plane and
the 3D volume reconstruction where 2D images are stacked along the z-axis in the same
category.

First, we have attacked the problem of 2D image mosaicing. In traditional approaches,
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only the overlap between sub-images is used for the estimation of transformation param-
eters. Here, we showed how the information contained in the non-overlapping image
regions can be incorporated into the registration process for a more consistent combination
of sub-images. Our experimental results showed that, besides improving the registration
quality if an overlap exists, such a strategy even enables the registration of non-overlapping
images. The latter result has opened a new perspective in the field of image mosaicing
where the alignment of non-overlapping images had been so far avoided.

Secondly, we have demonstrated how the reconstruction of 3D digital histopathology
images could benefit from the proposed structural probability maps. The main challenge
in this application is the independent distortions in the 2D images as a result of the cutting
process. Due to this reason, reconstruction becomes an ill-posed problem where addi-
tional constraints such a regularization or anatomical priors in terms of reference images
are required. Our method has followed the recent trend of reference-free reconstruction
approaches where only the implicit information is used to obtain an anatomically sound
3D reconstruction. Our experiments on synthetic and real data showed that the use of
structural probability maps for local structural consistency leads to a reconstruction quality
which is comparable to the approaches that use external references for anatomical consis-
tency between neighboring histology slices.

Our final application on whole-body MRI reconstruction was chosen to demonstrate
the capacity of our structure propagation method in handling geometric distortions that
might be present in the image data. Without having any reference data with the ground
truth image information, reconstruction of whole-body MRI solely based on the overlap
between partial images often leads to an alignment that might be far from having consis-
tency between the anatomical structures passing through the overlap. Experiments have
indicated that extending structures from the less distorted image regions and incorporating
them in the registration in the overlapping region leads to a structurally more consistent
reconstruction.

The three applications of structure propagation presented here have shown that estab-
lished registration methods benefit from including more contextual information from the
surrounding of regions that are not salient enough for registration. While we have at-
tempted to demonstrate the potential uses and variations of structure propagation, there
is a variety of ways of how our approach can be further improved or extended. Firstly, the
structure propagated here are only edge features extracted from images. We believe that
inclusion of higher order features as well as direct intensity values would lead to a better
inference quality. Moreover, structural information inferred so far was the salience and the
orientation of structures. We have shortly discussed how higher order structural informa-
tion such as curvature can be employed in the inference to enable a non-linear extension of
structures. Finally, in this work, only one type of structural saliency was used as a scalar
value. For instance, in 2D, we used curve saliency whereas in 3D surface saliency was used.
It is, however, possible to extract all kinds of saliences such as point, curve or surface at a
votee position. Therefore, if needed, one could use other types of structural saliences, too.

Since the focus in this dissertation is image registration, our examples were also chosen
from this field. Other potential applications include the creation of wide field-of-view Op-
tical Tomography Images (OCT), stitching of two-photon microscopy tiles among others.
Furthermore, it should be noted that the application of the structure propagation method is
not limited to only image registration. This idea can be used equally well for segmentation,
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for instance. Especially, the segmentation method that are based on the boundary informa-
tion could benefit from the structure propagation. Weak and missing boundaries can be
augmented by the structural probability maps which can be plugged in again as regulariza-
tion terms into the segmentation functionals. Furthermore, detection and segmentation of
elongated structures in low quality and noisy medical images would be among the possible
applications of curvature-based structure propagation.

6.2. Global Consistency

As a second measure of consistency, we have proposed a parametrization method for the
alignment of partial observation of a previously seen object or scene. The goal was to
utilize the parametrization of the object in a different space to ensure a globally consistent
alignment. The consistency measure devised here acts as a regularization term in a standard
image registration method where the usual intensity-based similarity term accounts for the
local consistency.

The primary motivation in this part was similar to the one in the case of local consistency
where we made the observation that not only the information in the overlap of partial ob-
servations should contribute to the registration but also the non-overlapping parts present
important cues about the configuration of the overall object. To this end, we proposed
to learn or parametrize the shape of an object in the Hough space using the Generalized
Hough Transform. Then, we let each partial image make an inference about the global
properties of the object of interest in the current scene. For the inference, we have used
simple edge features that cast votes in the parametric space. Once every partial image has
made an inference, we proposed to use the agreement between the inferences coming from
partial observations as a measure of consistency in terms of the global configuration of the
object parts.

Experiments on synthetic as well as on partial ultrasound images have shown that such a
consistency measure renders the search space of a registration problem more convex, thus,
leads to a better convergence. Experiments have also indicated that, as a regularization
term, the global consistency measure devised here relaxes the dependency on the initial
configuration of the parts of an object during intensity-based image registration. This is a
very important property since most of the existing image registration methods tend to end
up in a local optima unless a good initialization in terms of parameters is provided.

While we have assumed only linear transformation in our applications, with some modi-
fications and methodological improvements, the proposed concept is suitable also for the
registration scenarios where higher order transformations are sought for. To make this
happen, first, the method of parametrization needs to be improved where the Generalize
Hough Transform should be abandoned. Instead, a more sophisticated parametrization
that is based on training on large data sets including deformations should be utilized. Re-
cent advancements in learning based object detection and tracking methods in computer
vision should be utilized while doing this. Decision forest based learning mechanisms, in
particular Hough Forest, would be a good direction to look into.

Another theoretical extension we see is the exploration of different ways of handshaking
mechanisms between the global consistency measure and the local similarity term. We have
proposed to use an uncertainty measure to enable this handshake where the influence of
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the global consistency measure becomes negligible when the value of (in)consistency falls
in the range of the uncertainty parameter. From this point on, the local similarity measure
becomes more effective in refining the solution. While we have made use of heuristics for
determining this uncertainty parameter in our experiments, it would be beneficial to have
an implicit strategy for handing over the responsibility of alignment.

The term consistency in this context was used for the agreement of hypotheses in the
parameter space. The hypotheses generated were for the reference point of the shape of
interest. An interesting theoretical extension, which we have also discussed in Chapter 5,
would be the further investigation of measures in the parametric space that would reflect
the internal consistency of existing structures in the partial images. This could be done
either by carefully studying the statistics of natural shape of structures in the target object
or by using heuristics about the possible configuration of structures. For instance, it might
be desirable to have an orientational consensus between the linear structures spanning two
partial images. This could impose additional constraint if the information in the overlap
of partial images could not lead to a unique solution. Similarly, partial circular structures
could be forced to compose a unique large circular structure during the alignment which
would again bring a regularization to the registration. For this purpose, going into the
directions of multi-modal Hough transforms as well as studying natural image statistics
would be beneficial.

In terms of applications, we have demonstrated the use of the proposed concept for
the mosaicing of partial ultrasound images of the human liver. However, it should be
noted that the application of our method is not limited to only this kind of cases. Similar
scenarios where partial observations of a previously seen object of interest need to be
registered together could be potential applications of our method. For instance, industrial
applications where a reconstruction of a scene from partial views is required could also
benefit from the proposed approach.

Final Words: This dissertation has investigated various ways of including additional
information into the intensity-based image registration with the purpose of having more
regularized solutions. While we have presented two separate method for ensuring local and
global structural consistency, respectively, we do not see any reason for not combining them
in a unified framework for ensuring both types of consistencies during image registration.
Finally, we hope that this work will give inspirations for new approaches for structural and
contextual consistency in intensity-based image registration.
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OTHER MAJOR CONTRIBUTIONS

A.1. Out-of-Plane Motion Compensation in Cine-MRI
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34

Significant socio-economic burden of colonic motility disorders necessitates in-depth
analysis of this pathology. Current analysis techniques are based on diameter measure-
ments of colonic lumen on cine-MR images. Interleaved multi-plane acquisition makes it
difficult to perform simultaneous measurements on the line of plane intersections due to
the out-of-plane motion (OPM) caused by respiration affecting the underlying anatomy.
Low temporal acquisition rate and dark-banding artifact are the challenging factors for
OPM compensation. In this paper, we propose the use of manifold learning in combination
with in-plane motion tracking for estimating OPM. We evaluate the effectiveness of our
approach on 8 MR patient data sets. Experimental results show the good performance
of our approach. The proposed method is independent of the acquisition rate and is not
limited to this specific application.

A.1.1. Introduction

Functional gastrointestinal disorders, such as diarrhea and chronic constipation, are con-
ditions presenting with a significant socioeconomic burden. Chronic constipation is one
of the most common of these conditions being one of the leading diagnoses for gastroin-
testinal (GI) disorders in the United States [Tall 08]. One important type of constipation
is the slow-transit constipation associated with slow colonic transit time which is usually
attributed to colonic motility disorders [Bass 05]. Therefore, it is necessary to study colonic
motility in order to understand its effects on colon pathologies mentioned above leading
to an improved and more adequate therapy in the end.

Existing well-established examination techniques such as manometry or scintigraphy
are either invasive and inconvenient or expose patients to ionizing radiation creating the
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Hnstitute of Clinical Radiology, Klinikum der Universitdt Miinchen, Germany
3This work was funded by DFG (German Research Foundation)
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demand for a fast and non-invasive monitoring technique for the evaluation and quantifi-
cation of colonic motility. On the other hand, functional cine magnetic resonance imaging
(cine-MRI) allows for non-invasive, fast dynamic imaging with a superb soft tissue con-
trast [Lien 00].

The first use of cine-MRI for the analysis of colon motility was reported in [Buhm 05]
and the authors considered luminal diameter changes as motility parameter and manual
diameter measurements were performed in the ascending, transverse and descending parts
of the colon. Sets of 2D dynamic image sequences from the same imaging plane over
time were acquired. Due to the respiratory gating, the sampling in time was irregular
making the continuous tracking of lumen diameters infeasible. In [Gloc 07], this approach
was extended by addressing the irregular sampling in time and manual measurements
on each 2D frame. A semi-automatic tool was developed to perform automatic diameter
measurements on the data acquired during free breathing. However, measurements were
still performed in 2D and the analysis of complex colon motion in 3D was not feasible by
using this approach. Kutter et al. [Kutt 08] proposed a multi-plane image acquisition of
the colon by concentrating only on the descending part. In this setting, the images of the
descending colon were acquired in multiple quasi-orthogonal planes in an interleaved way
in order to perform simultaneous measurements on sagittal and coronal planes at various
points on the line of intersection (LOI) between the planes and, then, to combine these
values to have an approximation of the colon motion in 3D. However, since the acquisition
in two planes is not simultaneous but sequential, the colon undergoes an out-of-plane
movement caused by respiratory motion. This necessitates an OPM compensation in order
to perform simultaneous diameter measurements at anatomically corresponding locations
on two intersecting planes.

One approach to deal with this issue, is to approximate the breathing curve by fitting
a sinusoidal to in-plane displacements via a Fourier analysis, as proposed in [Kutt 08].
However, this idea is based on the assumption that the sampling rate per orientation plane
is high enough according to the Nyquist-Shannon sampling theorem [Shan 49] for the
recovery of the breathing curve with a frequency approximately 0.20 Hz. Apparently this
is not feasible in our case where sampling rates per orientation are approximately 0.25 Hz.
Another approach is the usage of the shared information, i.e. the intensity profiles (IP)
along the lines of intersection (LOI), to have a rigid alignment as in [Kim 10]. However,
due to dark banding artifact in the images caused by fast MRI acquisition [Dera 10], the IPs
from two images present large variations resulting in uncorrelated intensity patterns along
the LOL

Therefore, in this work, we propose the use of manifold learning, a method that has re-
cently been successfully applied to the image-based recovery of breathing motion [Geor 08],
for the recovery and the compensation of the OPM in sagittal and coronal cine-MRI se-
quences. To this end, we perform dimensionality reductions on both sequences indepen-
dently and use the average of the parameterizations of these embeddings to approximate
the breathing curve in order to establish a basis for relating the sequences. In combination
with in-plane motion tracking, significant compensation of the OPM can be achieved. The
performance of the method is not affected by the data sampling rate as long as enough
samples per orientation are collected.
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FIGURE A.1.: Flow diagram of the OPM compensation algorithm.

A.1.2. Materials and Methods

In this study 8 subjects were examined with functional cine-MRI [Kirc 11]. The acquisi-
tion was performed using a half Fourier acquisition single shot turbo spin echo sequence
(HASTE; TR: 476 ms, TE: 54 ms, SL: 5 mm, FOV: 320 x 400 mm, i-Pat-factor: 3.0, voxel
size: 1.25 x 1.25 x 5.0 mm, duration: 8 min). Three orientations oblique to each other were
set, examining 1 slice per orientation (transversal, sagittal, coronal) with a time interval of
4 s between image-sets to be able to physiologically image and track bowel motility. An
alternating acquisition scheme, {...,uf,uf ,uf ,,ul 5, u? , uf -, ...}, was used in order
to equally sample data from each orientation. The transversal sequence is not used in this
work as it is not used for colon motility analysis. For more details regarding the image
acquisition protocol, please refer to [Kirc 11].

Manifold Learning

The general idea of manifold learning is to project a manifold in high dimensional space RY
to a low dimensional space R", while preserving the local neighborhood. In our case, we
consider one dimension of the ambient space for each image pixel, so NV is corresponding
to the resolution of the MRI images. For the low dimensional space, we set n = 3, in
order to keep as much relevant information as possible while performing a significant
dimensionality reduction. Considering £ MR images / = {uy,...,u;} that are acquired
over several breathing cycles in one orientation, the manifold learning M assigns each
image to a coordinate in the low dimensional space ¢;

M:RY 5 R (A1)

with 1 < 4 < k. The suggestion that images lie on a low dimensional manifold in the
ambient space seems to be justified because variations between neighboring slices are
smooth, and furthermore, slices from the same breathing phase but different acquisition
times share similar information. Moreover, since manifold learning techniques try to op-
timally preserve local information [Belk 03], meaning that similar images are mapped to
similar positions in the low dimensional space, it is reasonable to use ¢; as an estimate for
the respiratory phase.
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FIGURE A.2.: Estimation of the mean motion curve via manifold learning. Curve fitting and
parametrization are applied to each of the embeddings. In the figures on left and
right, the color encodes the index before (upper) and after (lower) reordering.

We propose the application of Laplacian eigenmaps [Belk 03] for the respiratory phase es-
timation because the technique is well founded on mathematical concepts (Laplace Beltrami
operator) and computationally efficient. Laplacian eigenmaps build upon the construction
of a graph, which represents the neighborhood information of the data set. Subsequently,
the graph Laplacian is applied to calculate a low-dimensional representation of the data
that preserves the local neighborhood information in an optimal way.

We construct a graph with a node for each point u; and with edges connecting neigh-
boring nodes. In order to deal with contrast differences between frames, we use cross
correlation (NCC) as our similarity measure which is essential for neighborhood selection
and weighting. We select for each image u; the [ nearest neighbors, by evaluating the term
NCC(u4,u;). Further, heat kernel-based weights are assigned to the edges with

wyy = e~ (FINCO(au7))2/(20%) (A3)

and o? the variance [Belk 03]. Once the neighborhood graph is constructed, the eigenvec-
tors of the graph Laplacian provide the embedding map. After performing independent
dimensionality reductions on coronal and sagittal sequences, these two embeddings need
to be related in order to do further processing. The fact that both sequences are affected
by the same breathing motion enables us to estimate the mean motion curve by using low
dimensional embeddings of two sequences. Since the embeddings approximate curves in
3D, see Figure A.2, we first fit a 3rd order polynomial curve onto which we project original
embedding points. Then, each curve is parametrized by point distances from one side of the
curves. The direction of parametrization is chosen so that both of them are parametrized
from end-exhale (EE) to end-inhale (EI). After normalizing the parametrized curves, the
mean breathing curve to be used as a basis for compensation is computed by taking the
average of the normalized curves.
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FIGURE A.3.: lllustration of the motion compensation process. The region of interest around
the LOI is highlighted where the difference after the compensation can be clearly
observed by looking at the lumen borders. Contrast enhanced for better visibility.

Out-of-plane Motion Compensation

Since it is not possible to directly infer metric displacement values from the mean breathing
curve, we need to compute the range of displacements in mm’s, d, along the direction of
dominant breathing motion, i.e. z-axis [Rohl 04] in the reference coordinate frame. Then,
we use this factor to scale the mean breathing curve in order to get the metric displacement
values along the z-axis relative to the EE phase that is assumed to have no displacement.

In order to find d., we first estimate the range of in-plane displacements, d,,, in the sagittal
orientation plane and then back project it onto the z-axis in order to approximate d,. To this
end, we perform tracking using block matching on the sagittal sequence to find a sequence
of in-plane displacements, D = {dp1,...,d,;}, relative to the first frame. A region that
is highly influenced by the respiratory motion and close to the diaphragm is chosen for
tracking. This is the visible part of the liver in our case. In-plane displacement range, d,, is
computed as d, = maxz(D) — min(D). This value is projected on z-axis as

ifa>0 (A.4a)
0 otherwise (A.4b)

where « is the angle between the sagittal plane normal and the z-axis calculated from the
DICOM orientation data. The sagittal plane is chosen for estimating d. since it is more
aligned with the z-axis than the coronal plane. Once d, is obtained, the mean breathing
curve is updated by scaling it with d.. Then, for each pair {uj,uf, ,}, we compute the
difference between their z-displacements relative to the EE phase, see Figure A.3. We shift
the coronal plane by applying a translational transform along the z-axis to bring it to the
breathing phase of the sagittal plane leading to real anatomical correspondence along the
LOlIs.

A.1.3. Experiments and Results

We have conducted experiments on 8 different patient data to evaluate the performance
of the proposed method. For each data set, we first separated coronal and sagittal 2D se-
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quences each consisting of 336 frames with a size of 256x320 pixels. Then the proposed
method was applied to compensate for the OPM. Sagittal sequences of each subject un-
derwent a tracking in order to estimate the in-plane-displacement range. In each case,
Laplacian eigenmaps was used as the manifold learning technique. We set neighborhood
size to 70 which empirically seemed to be sufficient for our application.

As discussed in Section A.1.1, direct use of IPs for alignment is not possible due to
large variations along the LOIs. Due to the same reason, we can not use IPs directly
for validation purposes. Instead, we used a landmark that is affected by the breathing
motion and that can easily be located in both of the IPs before and after the application of
the motion compensation technique. A good landmark candidate is the edge of the liver
which lies on the LOI and has a higher contrast that can be distinguished from the rest.
In the case of a simultaneous acquisition, the positions of this landmark would match on
both planes. Therefore, we used the difference between the positions of this landmark to
asses the performance of compensation. A reduction of the difference indicates a good
performance of the compensation technique. The location of the landmark in IPs was
detected by searching for the maximum intensity around a predefined point. This point is
associated with a high intensity standard deviation (STD) in time, see Figure A.4(a). There
are also other points having high STD values, but, this one can be simply identified by
picking the first one from the top.

For each subject, we performed difference measurements on 336 different pairs. We
plot the statistics of the landmark error for each patient in Figure A.4(b). In each case,
compensation resulted in a reduction of landmark error showing the effectiveness of the
proposed approach.

A.1.4. Discussion and Conclusion

For an accurate analysis of the colon motility, motion due to respiration must be suppressed
both in- and out-of-plane. It is of great importance to compensate for the OPM since the
subsequent diameter measurements are directly based on LOIs. Therefore, in this work,
we proposed a novel OPM compensation technique for dynamic, multi-plane, cine-MRI
sequences of the colon. Experimental results show the good performance of our method
and high potential for being used in similar scenarios with multi-plane acquisitions and
OPM artifacts.

The novelty of our method is based on the use of manifold learning for the estimation
of out-of-plane breathing motion on multiple planes. This gives a ground for relating
sagittal and coronal planes in terms of breathing motion. Since low dimensional embedding
gives a relative distribution of high dimensional data in the low dimensional space, it
is not possible to deduce metric displacements using manifold learning. Therefore, in-
plane motion tracking on sagittal sequences is included to assign metric values to the
low dimensional embeddings relative to EE phase. Correlations between tracking and
manifold learning for sagittal sequences were above 0.95 in average. This also reveals the
effectiveness of manifold learning in detecting motion patterns.

Due to the nature of the problem, a simple validation approach based on IPs was not
feasible. Dark banding artifact along the LOIs did not allow us to use IPs directly for the
evaluation. Instead, we detected landmarks along LOISs that are highly influenced by the
breathing motion. By measuring the difference between positions of landmarks on two
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FIGURE A.4.: (a) Mean IPs for each orientation plane and the intensity STD curve along the LOL
The landmark is searched for in the vicinity of the first peak from the right side
in the STD curve. (b) Plot of normalized landmark errors for each patient. Each
patient data has 336 pairs of coronal and sagittal to be aligned. Therefore, in this
figure, each box pair represents error statistics for 336 image pairs before (left) and
after (right) compensation.

planes before and after motion compensation, we were able to evaluate the performance of
the proposed method. Experimental results revealed the possibility of recovering the out-
of-plane breathing motion using a combination of in-plane motion tracking and manifold
learning on image sequences.
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A.2. Dynamic Graph Cuts for Colon Segmentation in Functional
Cine-MRI

Mehmet Yigitsoy', Maximilian Reiser?, Sonja Kirchhoff?> and Nassir Navab!

56

A major limitation of graph cuts for the segmentation of large 2D image sequences is its
interactive nature. The user has to provide seeds for almost every image frame to get an
accurate segmentation. Straightforward approaches like direct copying of seeds provided
in the first frame to other frames of the sequence fail in cases of great contrast or topological
changes that occur when there is a large temporal distance between frames. In this work,
we propose a dynamic seed propagation technique which can automatically adjust to any
contrast or topological changes in a sequence. To this end, distance transform and skeleton
extraction methods are employed to initialize the segmentation of the current frame using
the result of the previous one. The proposed methods were used for the segmentation of
functional cine-MRI sequences of colon which is especially challenging due to the large
temporal distance between its frames. Both quantitative and qualitative results show good
performance of the proposed method.

A.2.1. Introduction

Functional gastrointestinal disorders, to name the most common diarrhea, chronic consti-
pation, irritable bowel syndrome and pseudo-obstruction, are conditions presenting with
a significant socioeconomic burden. Chronic constipation is one of the most common of
these conditions which is one of the leading diagnoses for gastrointestinal (GI) disorders
in the United States [Tall 08]. One important type of constipation is the slow-transit con-
stipation associated with slow colonic transit time which is usually attributed to colonic
motility disorders [Bass 05]. Therefore, it is necessary to study colonic motility in order
to understand its effects on such conditions leading to an improved and more adequate
therapy in the end.

Existing well-established examination techniques such as manometry or scintigraphy
are either invasive and inconvenient or expose patients to ionizing radiation creating the
demand for a fast and non-invasive monitoring technique for the evaluation and quantifi-
cation of colonic motility. On the other hand, functional cine magnetic resonance imaging
(cine-MRI) allows for non-invasive, fast dynamic imaging with a superb soft tissue con-
trast [Lien 00].

The first use of cine-MRI for the analysis of colon motility was reported in [Buhm 05]
where luminal diameter changes were considered as a motility parameter and manual di-
ameter measurements were performed in the ascending, transverse and descending parts
of the colon. Sets of 2D dynamic image sequences from the same imaging plane over time
were acquired using a T2-weighted single shot HASTE sequence. Due to the respiratory
gating the sampling in time was irregular, therefore, a continuous tracking of lumen diam-
eters was not feasible. Glocker et al. [Gloc 07] extended this approach by addressing the
irregular sampling in time and manual measurements on each 2D frame. A semi-automatic

5This work was funded by DFG (German Research Foundation)
5The original publication [Yigi 12b] ((©2012 IEEE) is available at http:/ /ieeexplore.ieee.org/
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tool was developed to perform automatic diameter measurements on the data acquired
during free breathing. Prior to diameter measurements, the colon was segmented in 2D
dynamic sequences using the graph cuts [Boyk 01] approach where the user provides seeds
for object and background in the first frame. Due to the inconvenience of placing seeds in
each frame separately, the seeds on the first frame were directly propagated to the other
frames of the sequence and a subsequent segmentation was performed by considering a
2D sequence as a volumetric image.

Although graph cuts provides globally optimal solutions, one needs to fine tune the
region and boundary parameters for every segmentation. Despite the global motion com-
pensation, the colonic contractions between successive frames might be large enough to
leave the seeds from the first frame invalid leading to an inconsistent segmentation in the
end. A possible solution to this is to update the seed points for every frame to be seg-
mented by using the segmentation of the previous frame reducing the human interaction,
thus bias. Such a dynamic seed placement procedure will provide more flexibility for the
segmentation method to allow for large morphological differences of the colon over time.

Therefore, in this work, we propose the use of a dynamic seed placement procedure for
the segmentation of 2D dynamic MR-image sequences where topological changes do not
allow for direct use of the same seed brushes for subsequent frames.

A.2.2. Materials and Methods
Functional Cine-MRI Acquisition

Functional cine-MRI was acquired using a half Fourier acquisition single shot turbo spin
echo sequence (HASTE; TR: 476 ms, TE: 54 ms, SL: 5 mm, FOV: 320 x 400 mm, i-Pat-factor:
3.0, voxel size: 1.25 x 1.25 x 5.0 mm, duration: 8 min). Three orientations oblique to each
other were set, examining 1 slice per orientation (transversal, sagittal, coronal) with a time
interval of 4 s between image-sets to be able to physiologically image bowel motility. For
more details about the image acquisition protocol, we refer the reader to [Kirc 11].

Dynamic Graph Cuts

Graph Cuts The interactive graph cuts approach was proposed by Boykov and Jolly
[Boyk 01] and has since been used extensively in a multitude of applications. Let P be
the set of pixels p in the image I : @ — R,Q C Z?, \ set of neighboring pixel pairs (p, )
inP, L = (Li,...,Lp,..., L p‘) a label configuration for a binary segmentation where
L, € {obj,bkg}, G = (V,E) a graph with nodes, V, and edges, E, Sy,; and Sy, sets of
pixels defined by the user for object and background, respectively. The label configuration,
i.e. segmentation, can be formulated as an energy minimization problem

E(L)=R(L)+ X B(L) (A.5)

which when minimized assigns image pixels into two subsets O (object) and B (back-
ground) where

[ sobj ifpeO
LpGQ = { “bk:g” ifp c B. (A-6)
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Here, the regional term R penalizes the labeling of the pixels based on the intensity models
of object and background. The function R is defined as

R(L) =) Ry(Ly) (A7)
peP
where
R,(Ly) = —log Pr(I, | Ly) (A.8)

is the negative log-likelihood of object or background intensity distributions obtained from
the user seeds. For the pixels the label of which are provided by the user, the regional term
is defined as
oo if L, = “obj” A p € Spig
R,(Ly) = ¢ oo if L, = “bkg" Ap € Sop; (A9)
0 otherwise.

The second part B of the segmentation energy is called the boundary term representing the
energy for pairs of neighboring pixels p, ¢ € N to have to the same segmentation label. It
is defined as

B(L)= Y Bpg-6(Lp Ly (A.10)
p,qeEN
where
1 ifL,# L,
OLp; Lq) = { 0 otherwise. (A-11)
B, 4 can be defined as a penalty function
(I, — I,)? 1
B - : A12
b o ezp( 202 dist(p, q) ( )

which penalizes the dissimilar neighbors to have the same labels. The minimum of this
functional can be computed by finding the minimum cut on the corresponding graph using
efficient min-cut/max-flow algorithms [Boyk 04].

Dynamic Seed Placement The traditional graph cut segmentation algorithm proposed
by Boykov and Jolly [Boyk 01] is applicable to N-D data, including 3D medical image data
and temporal volumes constructed from video frames. However, when the size of the data
to be segmented gets larger, the segmentation becomes a difficult problem to solve and the
performance turns out to be an issue. Furthermore, the large size of the data leads to an
inconvenient interaction for the user. For the segmentation of volumetric images, one could
initialize the segmentation on one of the slices and use the region properties, such as the
intensity distribution, extracted from that slice for the entire volume since they are similar
for the object in every slice of the volume. For live video sequences, the flow recycling
approach [Kohl 07] provides good initialization on a frame using the resulting flow from
the previous cut. However, it is based on the assumption that changes between consecutive
frames are small.

The above mentioned methods cannot be directly applied to our data sets where there
are significant contrast changes between consecutive frames. Several factors, such as the
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(b) (c) (d) (e)

FIGURE A.5.: (a) Seed brushes in one frame of the dynamic image sequence. (b) Resulting seg-
mentation of the descending colon. (c) Distance map of the segmentation. (d)
Extracted level curve. (e) Extracted centerline.
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dynamic nature of the abdominal region causing out-of-plane motion, fast imaging require-
ments for capturing colon motility which leads to low resolution and the low quality of
images, require special treatment for cine-MRI sequences.

Due to the changes in regional properties for the object and the background between
successive frames and topological changes throughout an image sequence, the hard con-
straints provided by the user have to be updated for every frame. It is inconvenient for the
user to place seeds in every frame in a large sequence. Instead we propose an automatic
initialization procedure by using centerline extraction and distance transform. For every
frame to be segmented, we initialize the object seeds using the samples taken from the cen-
terline and/or the level curves of the distance map. Given a binary image corresponding
to the segmentation of the previous frame, we obtain the distance map using a distance
transform D(p) : 2 — R defined as

where
d(p, q) = \/(px —4z)* + (py — qy)? (A.14)

is the Euclidean distance. A level curve is extracted from the distance map by thresholding
at a user defined level c. The centerline of the binary image is extracted using a thinning
algorithm[Pala 01]. The level curve and the centerline are sampled equidistantly and these
samples are used as object seeds for the next frame. We place the background seeds around
the object making sure that they are placed in the surrounding tissue and that they never
cross the object boundary throughout the whole sequence.

A.2.3. Experiments and Results

Experiments have been conducted to demonstrate the effectiveness of the proposed method.
A dynamic 2D coronal Cine-MRI sequence was used for the study. The sequence consists
of 336 frames of size 256x320 pixels and presents significant contrast and topology changes.
Four different initialization techniques were used for the segmentation of this sequence; a
standard copy/paste (CP) technique where the seeds for the first frame are directly copied
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FRAME CPY/PST SKE LC LC+SKE

FIGURE A.6.:

134

Sample frames from the dynamic image sequence together with their segmentation
results obtained by using different seed placement approaches. The flexible nature
of the dynamic approaches is quite obvious especially for frame 25 where the colon
shape is very different from the initial frame shown in Fig. A.5(a). Note: Please
refer to the electronic version of this paper to make full use of colors in this figure.
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Statistics CcP SKE LC SKE+LC
Dice Mean 0.946 0.966 0.966 0.964
Dice STD 0.088 0.027 0.029 0.019

TABLE A.1.: Mean and standard deviation of Dice scores for different seed placement approaches.

to every other frame, proposed dynamic seed placement techniques using skeleton (SKE)
and level curve (LC), finally, a combination of skeleton and level curve extraction (SKE+LC).
We set ¢ = max(D)/2 for the level curve extraction.

User seeds are provided for the first frame as shown in Fig. A.5(a). The background
seeds are copied always from the first frame. Object seeds are updated depending on the
chosen seed placement technique. Sample frames from the sequence are shown in Fig. A.6
where the unsegmented frames are shown in the first column and the segmentation results
overlayed on the original frames are shown in columns 2 to 5. Note that the region of
interest (ROI) is defined by the user seeds. Therefore, only the descending part of the colon
is segmented by placing the seeds only around this part of the colon.

The results in Fig. A.6 qualitatively demonstrate the poor performance of the copy/paste
procedure based on the assumption that minor changes in terms of contrast and topology
occur in the sequence. On the other hand, the results also reveal the good performance of
dynamic seed placement techniques based on the previous segmentation and their flexi-
bility during colon contractions leading to large topological changes. Dice coefficient was
used for the quantitative evaluation of the results. Segmentation of each frame was com-
pared to a ground truth where object seeds were placed manually on every frame. The Dice
scores of each scenario for every frame in the sequence are plotted in Fig. A.7. Dynamic
seed placement based segmentations represent a higher consistency over time. The mean
and the standard deviations (STD) of the Dice scores for each case are shown in Table A.1.
Dynamic techniques present not only with higher mean Dice scores but also with lower
standard deviations throughout the sequence.

A.2.4. Discussion and Conclusion

In this paper, a dynamic seed placement technique for the semi-automatic segmentation of
dynamic 2D Cine-MRI image sequences using graph cuts has been proposed. The quali-
tative and quantitative evaluation of the experimental results suggest that using dynamic
seeds for the segmentation of abdominal Cine-MRI increases the robustness of the segmen-
tation against intrinsic topological and contrast changes throughout the sequence.
Currently, only the object seeds are being updated. The background seeds have to placed
on the first frame so that they never fall in the object region throughout the sequence. This
requires a careful selection of neighboring tissues that remain stable over time. Although
it is easy to find such regions in the ROI, a semi-automatic selection of background seeds
would make intuitively more sense within the context of this paper. A straightforward
approach would be the use of outer level curve from the signed distance function. However,
this is not an easy task as in the case of inner level curve where the seeds always fall in the
object region. During the distension of the colon, the extracted seeds might fall into the
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FIGURE A.7.: Dice scores for every frame plotted against frame number using different seed
placement approaches.

colon region in the current frame resulting in an erroneous segmentation. Extension of the
dynamic placement approach to the background seeds is the subject of future research.
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A.3. Random Ferns for Multiple Target Tracking in Microscopic
Retina Image Sequences

M. Yigitsoy!, V. Belagiannis!, A. Djurka’, A. Katouzian?, S. Ilic!, F. Pernug’,
A. Eslami!, N. Navab!
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Accurate and robust tracking of retina in operating microscope images is critical for an
augmented reality assistance system for retinal surgery. Most retinal surgeries such as the
peeling are performed using hand-held intraocular light and hence the tool and its shadow
have two different motions, independent from the motion of the retina. In this paper, we
propose multi-object motion estimation in high definition operating microscopic images
by using a parallel network of random ferns, followed by RANSAC in order to achieve a
simultaneous and robust tracking of the retina, the tool, and the tool shadow. Thanks to
the separate tracking of each object, the number of outliers is dramatically reduced and
the extracted motions are more accurate and reliable even in complex scenes which are
considerably occluded by the tool and its shadow. The proposed method is evaluated on
several challenging sequences in comparison with SIFT tracking, direct visual tracking,
and single random ferns tracking of the retina. The experimental results show that the
proposed method has a significantly higher success rate in comparison to the other three
approaches with the accuracy of 4 pixels in tractable frames which is comparable with the
intra- and inter-observer error of manual tracking (3.4 and 8.5 pixels, respectively).

A.3.1. Introduction

Retinal surgeries are among the most difficult operations due to the limited field of view,
the reduced depth perception and uncertainty in localizing the tool by the surgeons. Several
methods have been proposed in the past for assisting the surgeon either by means of robots
or by fusion or overlay of pre- and intra-operative images [Pitc 12]. In general, fast and
accurate tracking of the retina and the tool is the key component of a successful solution for
computer assisted eye surgery. However, the inherent characteristics of the interventional
imaging of retinal surgeries such as uneven illumination of the retinal surface, occlusion
by tool or its shadow, variable zooming scale and variable appearances pose challenges for
the intraoperative tracking in retina. For these reasons the conventional computer vision
techniques are not completely successful and a specially designed method is required for
tracking the retina in operating microscopy images.

Different approaches have been proposed for interventional retina and tool tracking
including feature- or intensity-based or hybrid methods. A gradient-based tracker is em-
ployed in combination with a classifier-based detector for tool tracking in [Szni 12]. In their
recent work, Richa et al. [Rich 12] proposed a hybrid approach based on direct visual and
feature-based tracking using SURF features for retina tracking. The feature-based tracking
in [Rich 12] is employed as backup to recover the transformation when the direct visual
tracking may not reliably perform and its confidence goes below a threshold. Although,
direct visual tracking performs reasonably good in case of lower resolution videos such, it

"Fac. of Electr. Eng., Univ. of Ljubljana, Ljubljana, Slovenia
8This work has been submitted to ISBI 2015 and it is currently under review.
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FIGURE A.8.: An example of matches between the reference frame on the left, and live frame on
the right. The false matches with the tool in the live frame may cause an error in
the estimated homography.

is not computationally efficient for the new high resolution microscopes.

On the other hand, feature based methods rely on the performance of their feature de-
scriptors as well as their detectors. New feature descriptors have been proposed which
were specially customized for retinal images [Stew 03, Broe 11]. Nevertheless, they are
computationally expensive which makes them more suitable for registration but not as
much for interventional retina tracking.

In this paper, we propose a purely feature-based multi-object tracking approach using
multiple random ferns classifiers [Ozuy 10] along with RANSAC [Fisc 81] in order to effi-
ciently and accurately track the retina without excessive computation. We introduce the
novel concept of using multiple random ferns classifiers which are trained on a reference
frame using robust keypoints and used simultaneously on live frames to classify detected
keypoints into retina, surgical tool and its shadow even in the occluded scenes. During
training, we perform a keypoint sparsification step that helps prevent sample selection bias
which can happen when the keypoints (i.e. the training data) are not uniformly sampled.
During testing, we perform a pre-grouping of detected live keypoints based on the posteri-
ors returned by classifiers. Thanks to the exclusive parallel tracking, the proposed solution
is more robust to the occlusions created by the tool and its shadow in the scene. As a result,
the estimated homography for retina is more accurate and reliable even with less retinal
features. Three different random ferns classifiers are employed for tracking by detecting
the corresponding features exclusively on the tool, retina and the tool shadow.

Fig.A.8 illustrates more the rationale behind the proposed multi-target feature-based
tracking. The green lines show the inliers detected by RANSAC after extracting and match-
ing live and reference keypoints using a single random ferns classifier. The remaining
keypoints are those which correspond either to matches which were detected as outliers
after RANSAC, or were not matched at all. It should be noted that the RANSAC could not
discriminate between different objects but, by randomly selecting a subset of putative pairs,
tries to find a transformation leading to the most inliers. Hence, the performance crucially
depends on the scene. If the scene is occluded by the tool and its shadow, then it is most
likely that many of the inliers be the tool or shadow features, as observed in Fig.A.8, and
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the final homography be wrong. Besides that, large number of false matches requires more
RANSAC iterations leading to an increased runtime. Therefore, as we demonstrate experi-
mentally in this paper, separate handling of each object by employing multiple classifiers
simultaneously will increase the performance of homography estimation by decreasing
the number of false matches for each object in the scene. Moreover, the pre-grouping of
detected keypoints will enhance the tracking further by limiting the number of correspon-
dences passed to the estimator.

A.3.2. Method

We pose retina tracking as a classification problem and employ random ferns classi-
tier [Ozuy 10] to estimate the motion of the retina from the reference frame to each sub-
sequent frame in a sequence. After training on the reference frame, detected keypoints
from subsequent frames are matched via random ferns and a motion per frame is robustly
estimated through RANSAC. However, occlusions due to multiple objects in retina images
leads to outliers which has a negative influence on the estimation performance. Therefore,
we track each object independently via multiple ferns classifiers, each separately trained
on the reference frame for each object along with individual robust estimations. In the
following, we provide a brief overview of the random ferns and discuss the tracking of
multiple targets via multiple random ferns classifiers simultaneously.

Random Ferns

Ferns classification approach has successfully treated the keypoint matching as a clas-
sification problem [Ozuy 10]. Based on random trees [Lepe 06], ferns has introduced a
non-hierarchical structure for classification. The combination of this structure with binary
features have led to a fast algorithm.

For the ferns classifier, the object of interest is expressed as a set of keypoints. Each
keypoint defines a patch centered on it and the number of keypoints is equal to the number
of classes. The goal is then to learn these classes during training and detect them using a
Semi-Naive Bayesian formulation afterwards [Ozuy 10]. Consider ¢;,i = 1, ...H classes to
be learned. In addition, a set of binary features, f;,j = 1,...N, are calculated over the image
patches. Binary features are selected randomly and divided into M ferns (i.e. groups) of
size S = 4. In order to estimate the joint probability of the binary features f; conditioned
on the learned classes ¢;, independence between the ferns is assumed. Then, the conditional
probability of an image patch given the classes becomes

M
P(fi, for o fn | C =) = [[ P(Fx | C =) (A.15)
k=1

where Fy, = {fot1)s fok,2)s > Jotk,8)} -k = 1,...M and o(k,j) a random permutation
function for grouping the binary features randomly.

During training, there is a reference image from which robust keypoints are being de-
tected. This is done by transforming the reference frame, detecting and matching keypoints
iteratively. The keypoints with the most votes are kept for learning. In the last step of train-
ing, a normalization is done for each class separately and on each fern independently. In
our problem, the process of training is repeated for each object separately.
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FIGURE A.9.: Flow chart of the proposed multi-target tracking algorithm. The entire process con-
sists of two phases, namely, the training phase(left) where we train our classifiers
individually and the testing phase (right) where we test our classifiers on detected
live keypoints simultaneously.

Multi Target Tracking

In our image data sets, in addition to retina as the main object of interest, there is also a
surgical tool and its shadow. The presence of these additional objects leads to occlusions
and/or illumination differences creating large number of outliers in the detected correspon-
dences by random ferns reducing the tracking performance. To overcome this issue, we
propose to track each object separately by employing a random ferns classifier for each
object.

Let R = Ry,..., R, be a set of classifiers for n objects O = O1,...,0y,, i =1,...,n. We
start by training each classifier R; on the reference frame where O; is visible. In order to do
that, we perform a manual segmentation of each object region for initialization. Then, each
classifier, R;, is trained in one of this subregions as described in Section A.3.2 where the
number of robust keypoints in each subregion determines the number of classes, Hp,, for
that classifier. After the extraction of robust reference keypoints, we apply a non-maximum
suppresion criteria to sparsify the occurrences of the robust keypoints in densely sampled
regions to have a uniform distribution of keypoints for each object in the scene. This
novel sparsification step helps prevent sample selection bias for the estimated homography
towards densely sampled regions. Once each classifier is trained, the following steps are
illustrated in Fig. A.9.

We use a very simple keypoint detector [Lepe 06] along with binary features proposed in
[Ozuy 10]. Another novel aspect of our approach is the pre-grouping of detected keypoints
based on their matching scores, which improves the estimation performance significantly.
Class posteriors are used as match scores where a live keypoint is removed from the corre-
spondence list of classifier R; if the posterior assigned by R; is smaller than the posteriors
assigned by the others classifiers. This pre-grouping step decreases the probability that
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Dataset 1 Dataset 2 Dataset 3 Dataset 4
Error S.Rate Error S.Rate Error S.Rate Error S.Rate
NCC 82474  32% 5704540 0% 2104130 2% 3404280 0%
SIFT 4+1 100% 6204+1100 22%  310+200 0% 78467 8%

Single Classifier 512 96% 84+140 52%  270+£340  24% 14+18 72%
Multiple Classifiers 442 100% 31+£50 68% 2845 60% 16+12 54%

TABLE A.2.: Comparison of tracking errors (pixels) and success rates of each method on 4 differ-
ent datasets. It is obvious that the proposed approach performs much better that the
others especially on datasets 2 and 3 where the scene had occlusions.

candidate keypoints for an object O; actually belong to a different object O; and become
outliers for O;.

A.3.3. Experiments and Results

For evaluation, the proposed method was applied to 4 in vivo human image sequences
from peeling operation. The images were acquired by Carl-Zeiss Lumera 700 operating
microscope with 1080p resolution at 25 fps. Ground truth for each data set was generated
by choosing several (at least 6) landmarks on the reference images as well as in subsequent
frames (c.f. Fig. A.11(a)). The process was repeated to determine the intra- and inter-
observation variations. All experiments were performed using an unoptimized C++ imple-
mentation of ferns, running on an Intel Core2Duo 3GHz machine. The runtime limited us
to process up to 5 frames per second. However, an efficient implementation by exploiting
GPU would lead to considerably speedup.

For each dataset, from the reference frame, we extracted 150, 100 and 100 robust key-
points from retina, shadow and tool regions, respectively, which we used to train 3 random
ferns classifiers. The robust keypoints were selected by creating 3000 random warps of the
reference image, extracting keypoints from each warped image, and then back-projecting
the locations of the extracted keypoints. Then, we applied the sparsification method as
described in Section A.3.2. Each octave was treated separately, and the ferns were trained
using patches on the corresponding octave level, with patches of sizes 32x32. After the
classifiers were trained, each live frame was processed by extracting 300 keypoints. All
keypoints were matched using each of the 3 classifiers. We only kept 1-to-1 matches, i.e.
each reference keypoint of each object had maximum 1 corresponding keypoint with the
highest probability of match on the live frame. We selected the match with the highest
probability from the classifier.

The effectiveness of the proposed method in terms of motion estimation accuracy can be
first visually inferred from Fig. A.10 where a pair of reference and live frames before and af-
ter motion compensation are overlayed using checkerboard pattern. Despite the occlusion
due to the tool and its shadow in the live frame and their absence in the reference frame, the
estimated motion is still accurate and the vascular structures are continuous in Fig. A.10(b).
The performance can be further inferred from Fig. A.11(b) where the consistency between
the ground truth landmark in the live frame (red) and warped landmarks of the reference
frame (green) can be clearly observed.

For quantitative evaluation, the proposed multi-target tracking approach was compared
with three different approaches; (1) SIFT-based tracking [Lowe 99], (2) the NCC-based di-
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(a) Overlay before tracking (b) Overlay after tracking

FIGURE A.10.: Demonstration of the effectiveness of the proposed tracking approach on a pair
of reference and live images. The images are overlayed (a) before and (b) after
the motion was compensated. Note the consistency of vascular structures after
compensation despite the presence of occlusions.

¥ Landmark points
Estimated landmark positions

(b)

FIGURE A.11.: Illustration of the matching performance in terms of ground truth landmark
matching. (a) Manual selection of corresponding landmarks on the reference
(left) and live (right) frames. (b) Annotated landmarks in the live frame (red) and
mapped landmarks from the reference frame by using the proposed homography
estimation for retina. Note the agreement between the mapped and the manually
extracted landmarks.

rect visual tracking, (3) tracking only a single object using a single random ferns classifier
(without pre-grouping of keypoints) and RANSAC. The average distance error for retina
landmarks is used as the evaluation criterion. Fig. A.12 and Table A.2 compares the overall
performance of our approach to others. A success rate of each method on each dataset is
calculated by deeming a tracking failed if the error is more than 15px and then taking the ra-
tio of the number of successful and the total number frames. Clearly, the proposed method
outperforms the single-target tracking and other approaches especially on datasets 2 and
3 where the scenes were considerably occluded by the tool whereas a similar performance
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FIGURE A.12.: Comparison of the performance of our approach with others. (Left) Tracking
errors for each method on 4 datasets. The proposed multiple classifiers led to
significantly lower tracking errors compared to the others, especially for the case
of the single classifier. (Right) Tracking errors per frame for dataset 2 where the
scene was often occluded.

of single and multi-object tracking is observed in dataset 1 where there are no occlusions.
Dataset 4 also contained no tool but low contrast frames with extreme non-uniform illu-
mination leading to a decrease in the performance. Overall, the average success rate was
70.5% whereas it was 64% on average in cases with occlusions which is comparable to the
error reported in [Rich 12] considering the differences in frame resolutions. The intra- and
inter-observer variations of manual extraction of landmarks from our 1080p image data
sets were 3.4 and 8.5 pixels, respectively.

A.3.4. Discussion and Conclusion

In this paper, we have presented a novel multi-object tracking approach using multiple ran-
dom ferns classifiers in order to efficiently and robustly track the retina. Other contributions
include the sparse sampling of reference keypoints during the training of classifiers which
helps prevent sample selection bias and the pre-grouping of matched live keypoints into
object categories reducing the number of false matches and resulting in an increased perfor-
mance of subsequent robust homography estimation. The proposed multi-target tracking
method proved to be robust to the occlusions which was experimentally demonstrated on
retina image sequences. We compared our approach to tracking with single classifier and
other state of the art methods such as SIFT-based tracking. Note that although we estimate
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the homographies also for the tool and its shadow, we did not quantify this since our main
object of interest is the retina itself. However, we use the classification response for the tool
to boost the matching performance for the retina.

A nice extension of our approach would be the detection and /or avoidance of occlusions
during surgery for an augmented reality assistance system for retinal surgery. Besides
that, several other improvements can be made. For instance, although the keypoints are
uniformly sampled from the reference frame, extraction of live keypoints are still biases
towards highly illuminated regions. Therefore, employment of the same sparsification
approach could further improve the matching performance. Moreover, a quadratic motion
model can be incorporated which can help reduce the tracking error.
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