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Abstract—In this paper we propose a gossip algorithm for
average consensus in clustered wireless sensor networks called
superposition gossiping, where the nodes in each cluster exploit
the natural superposition property of wireless multiple-access
channels to significantly decrease local averaging times. More
precisely, the considered network is organized into single-hop
clusters and in each cluster average values are computed at a
designated cluster head via the wireless channel and subsequently
broadcasted to update the entire cluster. Since the clusters are
activated randomly in a time division multiple-access fashion,
we can apply well-established techniques for analyzing gossip
algorithms to prove the convergence of the algorithm to the
average consensus in the second moment and almost surely,
provided that some connectivity condition between clusters is
fulfilled. Finally, we follow a semidefinite programming approach
to optimize wake up probabilities of cluster heads that further
accelerates convergence.

I. INTRODUCTION

Fast-convergent average consensus algorithms that effi-

ciently exploit wireless resources (e.g., bandwidth, energy) are

highly desired in wireless sensor networks (WSN) as building

blocks for more advanced distributed signal processing and

optimization approaches [1], [2]. In particular, gossip algo-

rithms have received a great deal of attention in recent years

because they allow sensor nodes to distributively achieve a

network-wide consensus without a routing protocol by letting

nodes only locally exchange data with their nearest neighbors

(see for example [1], [3]–[6] and references therein).

With few exceptions (e.g., [7]–[9]), when designing gossip

algorithms for average consensus, the inherent broadcast prop-

erty of the wireless channel is usually seen to be obstructive

so that the design objective is to avoid interference caused by

simultaneously transmitting nodes via standard protocols that

orthogonalize transmissions in time or frequency. However,

since averaging is essentially superposition and the exchange

of raw sensor readings between nodes is in this context not

necessary, the broadcast property of wireless channels can

beneficially be exploited [9], [10]. Therefore, we propose in

this paper an iterative superposition gossiping for any WSN

that is organized into a fixed number of single-hop clusters.

In a randomly chosen/activated cluster, the local average-

iteration is computed at the cluster head in a single step by

letting the nodes transmit simultaneously their current states.

Subsequently, the cluster head updates the entire cluster by

broadcasting the computed local average. The algorithm leads

to significant improvements with respect to convergence speed,

provided that some connectivity condition between clusters is

fulfilled.

Boyd et al. presented in [3] a framework for the design

and the analysis of randomized gossip algorithms for average

consensus in arbitrary connected networks, where pairs of

nodes are chosen randomly to exchange the data. They found

that the convergence time of such a random pairwise gossiping

(RPG) depends on the second largest eigenvalue of the iter-

ative matrix that characterizes the algorithm. To analyze the

principal convergence behavior of superposition gossiping, we

consider in this paper the averaging over ideal multiple-access

channels and find out that the underlying weight matrix ex-

hibits properties that allow us to apply well-known techniques

from [3] to prove convergence in the second moment and

almost surely. Since the convergence speed of superposition

gossiping depends on the second largest eigenvalue of the

weight matrix as well, we follow a semidefinite programming

approach to optimize the probabilities with which cluster heads

are activated. This results in a considerable improvement in

convergence to the global average.

A. Related Work

It seems that [7]–[9] are the first publications in which

the authors recognized that the broadcast property as well

as the superposition property of wireless channels can be

useful in average consensus problems. The broadcast gossip

algorithm presented in [8] relies for example on the fact that all

nodes within a certain connectivity radius can benefit from the

current state of a single randomly chosen transmitting node.

On the other hand, Kirti et al. exploit in [7] the multiple-access

aspect of the physical layer, while similar to our work in this

paper, Nazer, Dimakis and Gastpar take in [9] advantage of

both, the superposition and the broadcast property of wireless

channels.

The main difference to our work lies in the fact that the

considerations in [9] were primarily focused on information
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theoretical aspects by using computation coding [11], while

our work exploits the idea of analog computation via multiple-

access channels [10].

Gossip algorithms are generally designed for WSNs with

planar topology. In contrast to this paper, [9] considers only

implicitly a simple clustering structure that changes randomly

over time. Another publication that incorporates clustering

techniques for average consensus can be found in [12]. How-

ever, the applicability of the results may be limited, since

(i) the proposed cluster-based fixed iterations require that all

nodes are globally synchronized, which is illusive to ensure

in large-scale networks, and (ii) it is assumed that averages

within clusters impact the remaining clusters only by a costly

information exchange between cluster heads.

B. Paper Organization

The paper is organized as follows. Section II presents the

system model, while our superposition gossip algorithm is

outlined in Section III. Section IV is devoted to an extensive

convergence analysis. Afterwards, in Section V, the conver-

gence rate of our proposed algorithm is further be improved

by an optimization of the wake up probabilities of cluster

heads. Some numerical examples in Section VI demonstrate

the performance of superposition gossiping in comparison to

some alternative algorithms, and finally, Section VII concludes

the paper.

C. Notational Remarks

Vectors are denoted by bold lowercase letters and matrices

by bold uppercase letters, respectively. The sets of real,

nonnegative real, nonnegative integer and natural numbers are

described by R, R+, Z+ and N. The length n vector of all

ones is denoted by 1n and the n×n identity matrix and matrix

of all zeros by In and 0n×n, respectively. ” � ” denotes

matrix inequality, that is A � B means that A−B is negative

semidefinite.

II. SYSTEM MODEL

A. Network Model

Consider a wireless sensor network consisting of N ∈ N

spatially distributed nodes that are organized into a fixed set of

clusters C := {C1, . . . , C|C|}, where Ci denotes the set of nodes

belonging to cluster i, i = 1, . . . , |C|, and |Ci| = Ni ∈ N the

corresponding number of nodes, respectively. The nodes in a

cluster are arbitrarily numbered such that Ci = {0i, . . . , Ni −
1}, with 0i the label of the ith designated cluster head (see

Fig. 1).1

Definition 1 (Connected Clusters). Two clusters in a clustered

WSN, say Ci and Cj , i, j = 1, 2, ..., |C| and i 6= j, are called

connected if Ci and Cj share at least one common node (i.e.,

Ci
⋂

Cj 6= ∅).

1Note that the numbering of nodes does not mean that they have unique
identities which could be used for computations.
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Fig. 1. Qualitative representation of a connected clustered WSN C consisting
of N = 16 nodes and clusters C1, C2, C3, where 0i denotes the cluster head
of cluster i, i = 1, 2, 3.

Definition 2 (Connected Clustered WSN). A clustered WSN

is called connected if for any two clusters Ci and Cj , i 6= j,

there exists a sequence of connected clusters from Ci to Cj .

According to Definitions 1 and 2 we are able to describe a

clustered WSN by an undirected graph G = (C, E), with C the

set of clusters as above and E = {(i, j)} the set of edges.

Remark 1. Note that (k, ℓ) ∈ E means that clusters Ck and Cℓ
are connected. If the clustered WSN is connected, of course

the corresponding graph G is connected as well.

See Fig. 1 for an example of a connected clustered WSN.

B. Time Model

Based on the asynchronous time model in [3], we assume

that cluster heads wake up according to a clock that ticks inde-

pendently at a rate µi ∈ R+ Poisson process, i = 1, . . . , |C|.
We adjust µi such that in a sufficiently small time interval

and with high probability two cluster heads do not wake up

simultaneously.

C. Intra-Cluster Communication

Let the nodes jointly observe a physical phenomenon result-

ing in sensor readings xi ∈ X ⊂ R, i = 1, . . . , N , such that

the vector x(0) := [x1(0) = x1, . . . , xN (0) = xN ]T ∈ XN

denotes the initial state of the network. Then, intra-cluster

communication can usually be described by the standard affine

model of a wireless multiple-access channel (MAC). That is,

if cluster Ci, i = 1, . . . , |C|, is active at time t ∈ Z+, the real

signal received by cluster head 0i can be written as

y0i(t) =
∑

k∈Ci\{0i}

hik(t)sk
(

xk(t)
)

+ ni(t) , (1)

where sk : R → R denotes a transmit signal of node k ∈ Ci
depending on state xk(t), hik ∈ R a flat-fading coefficient

between node k and cluster head 0i and ni ∈ R receiver

noise at 0i, respectively. If we ignore fading and noise in

combination with transmit signals sk(x) ≡ x, for all k ∈ Ci,
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Algorithm 1 Superposition Gossiping

1: Initialization: t = 0, xk(0) = xk ∈ X , k = 1, . . . , N
2: At t ∈ Z+ the clock of the cluster head of cluster i ∈

{1, . . . , |C|} ticks randomly

3: Cluster head 0i wakes up all nodes in cluster Ci ∈ C
4: Nodes 1i, . . . , Ni − 1 of Ci transmit their values simulta-

neously to cluster head 0i, resulting in receive signal

y0i(t) =
∑

k∈Ci\{0i}

xk(t) (3)

5: Cluster head 0i computes the local average

x0i(t+ 1) =
1

Ni

(

x0i(t) + y0i(t)
)

(4)

6: Cluster head 0i broadcasts the local average x0i(t + 1)
resulting in updates

xk(t+ 1) =

{

x0i(t+ 1) , k ∈ Ci\{0i}

xk(t) , k /∈ Ci
, (5)

k = 1, . . . , N
7: Back to step 2 until convergence (in some sense)

(1) reduces to an ideal MAC

y0i(t) =
∑

k∈Ci\{0i}

xk(t) , (2)

which reveals that the natural mathematical operation of a

wireless MAC is simply superposition.

III. SUPERPOSITION GOSSIPING FOR CLUSTERED

WIRELESS SENSOR NETWORKS

The distributed average-consensus problem is to design ad-

equate interaction rules between the nodes of the network (i.e.,

a protocol) such that the state vector x(t) → x̄1N as fast as

possible, with x̄ := 1
N

∑N

i=1 xi(0) the average over the initial

values. To achieve this, most of the cited work try to avoid

the superposition (2) caused by simultaneous transmissions

by using standard protocols such as time-division multiple

access. However, since averaging is essentially superposition,

the interference property as well as the broadcast property of

wireless channels can profitably be exploited to significantly

accelerate the averaging in clusters [10], [11].

This observation leads us to the following gossiping pro-

cedure. Let randomly wake up any cluster head according to

the time model in Section II-B that subsequently wakes up

all remaining nodes in the cluster. Then, the nodes transmit

simultaneously their current state values to the cluster head,

resulting in a receive signal (2) that enables the cluster head

to compute the average of the entire cluster in a single

step since it is not interested in raw individual state values.

Finally, if it broadcasts the average to all nodes in the cluster,

a local average-consensus is achieved in merely two steps.

The resulting algorithm, which we denote as superposition

gossiping, is formally stated in Algorithm 1.

Remark 2. Although practical gossip algorithms suffer from

limitations such as power constraints, fading, receiver noise,

synchronization issues, we focus in this paper on the principal

behavior of superposition gossiping and consider therefore

averaging over ideal MACs (2) only. Extensions to realistic

MACs (1) follow along similar lines such as in [10], [13] and

will be part of future work.

IV. CONVERGENCE ANALYSIS

In this section, we study the convergence behavior of

superposition gossiping for connected clustered WSNs. If we

denote by x(t) = [x1(t), . . . , xN (t)]T the state vector at time

t ∈ Z+, evolving from initial state x(0), Algorithm 1 can be

concisely summarized by the linear equation

x(t+ 1) = W (t)x(t) , (6)

where for every t ∈ Z+, matrix W (t) ∈ R
N×N is randomly

chosen from the set {W i}
|C|
i=1 of weight matrices that consist

of elements

W
(i)
jk

:=











1 , if j /∈ Ci, k = j
1
Ni

, if j, k ∈ Ci

0 , else

. (7)

In other words, W (t) = W i if the clock of cluster head 0i
ticks at time t. The following useful property of the symmetric

matrices W i can be easily proven.

Lemma 1. The weight matrices W i, i = 1, . . . , |C|, are doubly

stochastic.

Now, let us denote the expectation of weight matrices W i

as W = (Wjk) :=
∑|C|

i=1 piW i, where pi ≥ 0,
∑|C|

i=1 pi = 1,

denotes the probability that W i is chosen independently out

of {W i}
|C|
i=1. Because the expected matrix W ∈ R

N×N is

important for analyzing the convergence of Algorithm 1, we

start by proving some properties.

Let G(W ) be defined as the directed graph of node set

V := {1, . . . , N}, where a directed edge leading from node

j ∈ V to node i ∈ V exists, if and only if Wij 6= 0.

Lemma 2. If G is connected, then G(W ) is strongly con-

nected.

Proof: For any two nodes m ∈ V and n ∈ V , it suffices

to consider the following two cases:

(i) Let m and n be distinct nodes in the same cluster Ci.
Then, from (7) follows immediately W

(i)
mn = 1

Ni
> 0 and

according to the definition of the expectation W that

Wmn =

|C|
∑

i=1

piW
(i)
mn > 0 . (8)

(ii) Now, let nodes m and n belong to two different

clusters Ci and Cj , respectively. Since G is connected, there

exists a sequence of connected cluster pairs from Ci to Cj .

Consider therefore the sequence of length ℓ, 1 ≤ ℓ ≤
N − 2, of clusters (Ci, Ci1), (Ci1 , Ci2), . . . , (Ciℓ , Cj), and rep-

resentatives of the common nodes m1 ∈ Ci
⋂

Ci1 ,m2 ∈
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Ci1
⋂

Ci2 , . . . ,mℓ+1 ∈ Ciℓ
⋂

Cj . Then, we get a sequence

of weight matrices W i,W i1 , . . . ,W iℓ ,W j , where the el-

ements W
(i)
mm1 ,W

(i1)
m1m2 , . . . ,W

(iℓ)
mℓmℓ+1

,W
(j)
mℓ+1n are all pos-

itive. Thus, according to (8), the corresponding elements

Wmm1
,Wm1m2

, . . . ,Wmℓmℓ+1
,Wmℓ+1n of W are positive as

well, which means that there is a path from node m ∈ V to

node n ∈ V and vice versa.

In order to achieve an average consensus in expectation (i.e.,

x(t) → x̄1N in expectation for t → ∞), it can be easily

concluded that the tth power W t of W has to converge in

expectation to J := 1
N
1N1

T
N , as t tends to infinity. From

[3] we already know that to ensure this, W has to fulfill the

following two properties:

(P.1) W is doubly stochastic.

(P.2) The spectral radius ρ(W − J) of matrix W − J is

smaller than 1.

Lemma 3. The average weight matrix W of superposition

gossiping satisfies properties (P.1) and (P.2).

Proof: (P.1): Lemma 1 in conjunction with (8) leads to

W1N =





|C|
∑

i=1

piW i



 1N =

|C|
∑

i=1

pi1N = 1N ,

and

1
T
NW = 1

T
N





|C|
∑

i=1

piW i



 =

|C|
∑

i=1

pi1
T
N = 1

T
N .

(P.2): We start by stating some results on the eigenvalues

of W . According to (7), there exists for each i = 1, . . . , |C|
an orthogonal matrix Ci ∈ R

N×N such that

W i = Ci

(

Iri

0Ni×Ni

)

CT
i ,

with ri := rank(W i) = N −Ni. Then, we have

0 ≤ zTWz =

|C|
∑

i=1

piz
TW iz

=

|C|
∑

i=1

piz
TCi

(

Iri

0Ni×Ni

)

CT
i z

≤

|C|
∑

i=1

piz
T z = zT z ,

for all z ∈ R
N , which means that W is positive semidefinite

and W − IN is negative semidefinite, that is

0 ≤ λi(W ) ≤ 1

i = 1, . . . , N , where λi(W ) denotes the ith largest eigenvalue

of W . Further, we notice that

(W − J)1N = W1N −
1

N
1N1

T
N1N = 0N , (9)

with 0N the length N vector of all zeros. Eq. (9) offers that

1N is an eigenvector which corresponds to the eigenvalue 0

and to the only nonzero eigenvalue of J . Thus there exists an

orthogonal matrix M that diagonalizes W − J

M (W − J)MT = diag
(

0, λ2(W ), . . . , λN (W )
)

.

Now, according to Lemma 2, G(W ) is strongly connected

and matrix W therefore irreducible (see [14, Observation

A.30]) such that from the Perron-Frobenius theorem for irre-

ducible matrices [14, Theorem A.32] follows that λ1(W ) = 1
is simple and λi(W ) < 1, for all i = 2, . . . , N . Hence,

ρ(W − J) = maxi λi(W ) < 1 which completes the proof.

Consider now any initial state x(0) ∈ XN . If we define

the error vector at time t ∈ Z+ as ε(t) := x(t) − Jx(0) ∈
R

N , we obtain in addition to the convergence in expectation

of superposition gossiping in connected clustered WSNs the

following upper bound for the mean squared error [3]

E
{

ε(t)T ε(t)
}

≤ λ2(W )ε(t− 1)Tε(t− 1)

≤ λt
2(W )ε(0)T ε(0) , (10)

from which we conclude with λ2(W ) < 1 the following

theorem.

Theorem 1. The mean squared error of Algorithm 1 converges

to zero as t ∈ Z+ tends to infinity, that is

lim
t→∞

E
{

ε(t)T ε(t)
}

= 0 . (11)

In addition, we state in Theorem 2 a somewhat stronger

convergence property of superposition gossiping.

Theorem 2. Algorithm 1 converges to the average consensus

almost surely, that is

P

(

lim
t→∞

x(t) = Jx(0)
)

= 1 . (12)

Proof: The proof follows immediately from Theorem 1,

from Robbins & Siegmunds theorem and from Fatou’s Lemma

[15].

V. IMPROVING THE CONVERGENCE SPEED

The right hand side of (10) shows that the convergence

speed of superposition gossiping is determined by the second

largest eigenvalue of W . Therefore, to improve the conver-

gence speed we want to minimize λ2(W ) in this section.

Obviously, the eigenstructure of W is determined by the

following factors:

• The number |C| of clusters,

• the distribution of nodes among different clusters,

• the number of common nodes between clusters,

• the wake up probabilities pi, i = 1, . . . , |C|.

Since the first three bullets are a matter of topology control,

which we want to consider in our future work, we address in

the following the last bullet by optimizing the vector of wake

up probabilities p := [p1, . . . , p|C|]
T (i.e., in some sense the
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order of cluster activation). The corresponding optimization

problem can therefore be written as

min
p∈R

|C|
+

λ2(W )

s.t. W =
∑|C|

i=1 piW i
∑|C|

i=1 pi = 1

(13)

which can be reformulated to the convex program

min ξ
s.t. W − J � ξIN

W =
∑|C|

i=1 piW i
∑|C|

i=1 pi = 1
pi ≥ 0, i = 1, . . . , |C| .

(14)

Such problems (14) are readily transformed to a standard

semidefinite program by defining v := [pT , ξ]T ∈ R
|C|+1, that

is

min cTv
s.t. diag

(

F (v),aT
1 v, . . . ,a

T
|C|v

)

� 0(|C|+1)×(|C|+1)

aT
0 v = 1 ,

(15)

where c := [0, . . . , 0, 1]T ∈ R
|C|+1, F (v) :=

∑|C|
i=1 piW i −

ξIN − J , a0 := [1T
|C|, 0]

T , ai := [−eTi , 0]
T ∈ R

|C|+1, i =

1, . . . , |C|, and ei ∈ R
|C|+1 the ith unit vector, respectively.

The optimal solution p⋆ of problem (15) as well as of prob-

lems (13) and (14) can then be found by standard algorithms

from semidefinite programming.

VI. NUMERICAL EXAMPLES

To demonstrate the huge potential of the proposed superpo-

sition gossiping in clustered WSNs, we compare in this section

Algorithm 1 with the RPG protocol from [3] as well as with

the broadcast gossiping approach (BG) from [8]. To this end,

we consider a sensor network example consisting of N = 16
nodes that are distributed among 1, 2 or 3 clusters and we

assume that the corresponding clustered WSN is connected if

the number of clusters is greater one (i.e., |C| > 1). The nodes

are deployed to monitor temperature values and we suppose

that the initial state xi(0) of each node is drawn uniformly

from [0 ◦C, 10 ◦C].
According to the considerations in Section V, we distinguish

in the three cluster scenario between two cases. First, we

consider cluster heads that wake up equally likely (i.e., p =
1
313) and second, we consider cluster heads that wake up due

to the optimal probabilities p⋆ = (0.2771, 0.4053, 0.3177)T ,

resulting from solving problem (15).

The corresponding simulations are depicted in Fig. 2, where

the “average error” is defined as

ε̄(t) :=
1

M

M
∑

m=1

‖εm(t)‖2 ,

with ‖εm(t)‖2 the error in the mth simulation round, m =
1, . . . ,M , and M chosen to be 103. The plots verify the

convergence of superposition gossiping in connected clus-

tered sensor networks and indicate huge performance gains
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Fig. 2. Superposition gossiping vs. random pairwise gossiping (RPG) [3] and
vs. broadcast gossiping (BG) [8] for a wireless sensor network with N = 16

nodes and |C| ∈ {1, 2, 3} connected clusters. The small figure represents a
zoom to illustrate the acceleration due to optimized wake up probabilities as
a solution of the optimization problem (15).

in comparison to RPG and BG, also for uniform wake up

probabilities.

Note that the difference between p and p⋆ has only a

marginal impact in the considered example (see the zoom

in Fig. 2) since the number of clusters in the considered

numerical example is relatively small.

Remark 3. The plots in Fig. 2 indicate that the number of

clusters crucially impacts the convergence speed of superpo-

sition gossiping. Since we considered error-free computation

over ideal MACs as well as error-free broadcasting of updated

states within clusters, the case |C| = 1 is of course optimal

and requires only 2 iterations to converge. In practice, how-

ever, adequate cluster design/topology control have to take

into account the trade-off between convergence rate, energy

efficiency and computation accuracy, since due to path losses

and fading, steps 4–6 in Algorithm 1 are superimposed by

noise. The consideration of these practical issues will therefore

be part of our future work.

VII. CONCLUSIONS

In this paper, we proposed a randomized iterative gossip

algorithm for wireless sensor networks that are organized into

clusters, called “superposition gossiping”, that rapidly reaches

an average consensus. The benefit of the algorithm lies in the

exploitation of the superposition and the broadcast property of

wireless channels, which significantly increases the averaging

speed in each cluster. Under the assumption of noiseless

computation in each cluster, we have shown that the algorithm

converges to the average consensus in different stochastic

senses, if the clustered network fulfills connectivity between

clusters due to common nodes. Since the convergence speed

depends on the second largest eigenvalue of a network de-

scribing mean weight matrix, we formulated a corresponding

eigenvalue-minimization problem to calculate optimal wake
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up probabilities that further increase the convergence rate.

Since the paper was devoted to deliver the idea and principal

behavior of superposition gossiping, we incorporate realistic

channels in our future work.
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