
1 INTRODUCTION 
The traditional, manual construction progress as-
sessment with human presence is still dominating. 
The main reason is the lack of reliable and easy to 
use software and also hardware for the demanding 
circumstances on construction sites. Automating 
construction progress monitoring promises to in-
crease the efficiency and precision of this process. It 
includes the acquisition of the current state of con-
struction, the comparison of the actual with the tar-
get state, and the detection of variations in the 
schedule and/or deviations in the geometry. 

A Building Information Model (BIM) provides a 
very suitable basis for automated construction pro-
gress monitoring. A BIM is a comprehensive digital 
representation of a building comprising not only the 
3D geometry of all its components but also a seman-
tic description of the component types and their rela-
tionships (EASTMAN et al., 2011). The model is in-
tended to hold all possible information for all project 
participants. In addition to the building itself, it also 
stores process information, element quantities and 
costs.  

A Building Information Model is a rich source of 
information for performing automated progress 
monitoring. It describes the as-planned building 
shape in terms of 3D geometry and combines this 
with the as-planned construction schedule. Accord-

ingly, the planned state at any given point in time 
can be derived and compared with the actual con-
struction state. Any process deviation can be detect-
ed by identifying missing or additional building 
components. 

The actual state can be monitored either by laser 
scanning or by photogrammetric methods. Both 
methods generate point clouds which hold the coor-
dinates of points on the surface of the building parts 
but also on all objects which occlude them. 

The main steps of the proposed monitoring ap-
proach are depicted in Figure 2. The minimum in-
formation which has to be provided by the BIM is a 
3D building model and the process information for 
all building elements. From this, the target state at a 
certain time step t is extracted. Subsequently the tar-
get stat is compared to the actual state, which is cap-
tured by photogrammetric techniques in this study. 
Finally, the recognized deviations are used to update 
the schedule of the remaining construction process. 

The paper is organized as follows: Section 2 
gives an overview on related work in the field. The 
proposed progress monitoring procedure is ex-
plained in detail in Section 3 and first experimental 
results are presented in Section 4. The paper con-
cludes with a summary and discussion of future 
work. 
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2 RELATED WORK 

2.1 Monitoring and object verification 
As mentioned in the previous section, as-built point 
clouds can be acquired by laser scanning or photo-
grammetric methods. Golparvar-Fard et al. (2011a) 
compare the accuracy of both techniques in different 
case studies regarding as-built documentation and 
visualisation. Bosche (2010) describes a method for 
object recognition based on laser scanning. The gen-
erated point clouds are co-registered with the model 
with an adapted Iterative-Closest–Point-Algorithm 
(ICP). The object recognition is performed based on 
a threshold on the ratio of the covered area to the en-
tire surface of object. The 3D model must be de-
composed to a triangular mesh.  

Turkan et al. (2012) use this method for the de-
tection of objects as input for their approach to de-
rive the construction progress and adjust the sched-
ule. Kim et al. (2013a) also use laser scanning data. 
In addition, RGB values of the points are recorded. 
First, they extract points of concrete structures using 
the color values in HSV color space with the aid of a 
supervised classification. The co-registration is per-
formed by means of ICP, what demands the conver-
sion of the model into a point cloud. Finally, the 
points are assigned to specific component types 
through a supervised classification algorithm.  

In Son & Kim (2010) also the HSV color space is 
used to detect metal structures. A stereo camera sys-
tem is used as recording device. Kim et al. (2013b) 
update the set schedule of a bridge structure by the 
detection of finished components in images of a 
fixed camera. Golparvar-Fard et al. (2011b) use un-

structured pictures of a construction site to create a 
point cloud. The orientation of the images is per-
formed using a Structure-from-Motion process 
(SFM). Subsequently, dense point clouds are calcu-
lated. For the comparison of as-planned and as-built, 
the scene is discretized into a voxel grid. The con-
struction progress is determined in a probabilistic 
approach. As an alternative configuration for record-
ing image data show Kluckner et al. (2011), the data 
received in a construction site scenario using a 
UAV. A dense cloud of points is determined by a 
global optimization. 

Our approach can be distinguished from the men-
tioned methods that the accuracy of the photogram-
metric point clouds are explicitly calculated, that 
control points are incorporated in the process and 
that the “as-built”-“as-planned” comparison is per-
formed in a very direct way. 

2.2 Process information and dependencies 
Process planning is often executed independently 
from conceptual and structural design phases. Cur-
rent research follows the concept of automation in 
the area of construction scheduling. 

Tauscher describes a method that allows automat-
ing the generation of the scheduling process at least 
partly (Tauscher, 2011). He chooses an object-
oriented approach to categorize each component ac-
cording to its properties. Accordingly, each compo-
nent is assigned to a process. Subsequently, im-
portant properties of components are compared with 
a process database to group them accordingly and 
assign the corresponding tasks to each object. Suita-
ble properties for the detection of similarities are for 
example the element thickness or the construction 
material. With this method, a "semi - intelligent" 
support for process planning is implemented. 

Huhnt (2005) introduced a mathematical formal-
ism which is based on the quantity theory for the de-
termination of technological dependencies as a basis 
for automated construction progress scheduling. 
Enge (2009) introduced a branch and bound algo-
rithm to determine optimal decompositions of plan-
ning and construction processes into design infor-
mation and process information. 

These innovative approaches to process model-
ling form a very good basis for the automated con-
struction monitoring, but have so far not been ap-
plied in this context. 

 
 
 
 

Figure 1: construction progress monitoring schema 



3 CONCEPT 

The developed methodology comprises the follow-
ing steps: 

During the design and planning phase, the build-
ing model and the process is modelled. During con-
struction, the site is continuously monitored by cap-
turing images. These are processed to create point 
clouds (Section 3.1), which are compared to the as-
planned building model (as-built – as-planned com-
parison), what is described in Section 3.3. Process 
and spatial information can help to further improve 
the detection algorithms (Section 3.2). 

3.1 Recording 
The generation of the point cloud consists of four 
steps: Data acquisition, orientation of the images, 
image matching and co-registration. 

Image acquisition: Photogrammetric imaging 
with a single off-the-shelf camera is chosen as data 
acquisition since it is inexpensive, easy to use and 
flexible. When using a camera, some acquisition po-
sitions such as on top of a crane can be arrived more 
easily than when using a laser scanner. In addition, a 
major requirement is that the image acquisition pro-
cess shall be conducted without any disturbance of 
the construction process. During the acquisition pro-
cess the construction site should be covered as com-
plete as possible. At least parts which have changed 
should be imaged, together with some images which 
can link them to unchanged parts on or beyond the 
construction site for making the orientation process 
possible. 

Orientation: The orientation process is performed 
using a structure-from-motion system like Visu-
alSfM (Wu 2013) for an automatic generation of tie 
points. By means of the algorithm, also the relative 
orientations of the cameras are determined. For the 
following reasons we also introduce (manually) 
measured control points: 
- Having two control points, a distance is intro-
duced and the missing scale is known then. 
- With the help of control points we can combine 
image groups which could not be orientated relative-
ly to each other by the usage of only the automated 
measured correspondences.  
- Control points are preferably in the same coordi-
nates system as the one which is used for the con-
struction work itself. If this is ensured, the point 
cloud is already co-registered to the model (assum-
ing it is having also the same coordinate system). 

This process can be automatized by using mark-
ers for control points, which are automatically 
measured in the images. 

Finally, a bundle block adjustment is accom-
plished to determine the exterior orientation of all 
images and the corresponding standard deviations. 

Image matching: Using either calibrated parame-
ters or parameters from self-calibration (i.e. deter-
mined simultaneously with the orientation parame-
ter) distortion free images are calculated. In this 
study, a calibration device has been used to calibrate 
the camera in advance. 

As next step, stereo pairs (image pairs which are 
appropriate for image matching, i.e. they shall be 
overlapping and shall have approximately an equal 
orientation) have to be determined. This can be done 
based on conditions on the baseline or by using the 
tie point distribution, what allow to identify overlap-
ping images. 

Every image of each stereo pair is rectified. That 
means artificial camera orientations are calculated so 
that the camera axes of the pair are orientated nor-
mal to the base and parallel to each other. The recti-
fied images are resampled from the original images. 
These images can then be used for dense-matching. 
For every pixel, a corresponding pixel in the other 
image is searched and the disparity is determined. 
The disparity is the distance of two pixels along an 
image row. To determine this, semi-global-matching 
(SGM) has been established in the last years 
(Hirschmüller 2008). Different implementations are 
available, e.g. SGBM in the openCV-library or 
LibTSGM (Rothermel et al. 2013). By means of the 
disparity (what corresponds to the depth of the 
point) and the exterior orientation of both images, 
the 3D point can be triangulated. 

To get a more robust estimation of the points, to 
reduce clutter and to estimate the accuracy of the 
depth, not simply all 3D-points of all stereo-pairs are 
combined but overlapping disparity maps are 
merged and only 3D-points are triangulated which 
are seen in at least three images. The following pro-
cedure follows the approach of Rothermel et al. 
(2013). First, an image has to be selected to become 
a master image. For every pixel of the undistorted 
master image, the disparities are interpolated from 
all n disparity maps the master image is involved in. 
Now for every pixel, n disparity values are available. 
An interval for the distance D from the camera cen-
ter to the 3D-point is determined by add-
ing/subtracting an uncertainty value s from the dis-
parity value. For every pixel, the depth values are 
clustered into one group if the intervals are overlap-
ping. For calculating the final depth, the cluster hav-
ing the most entries is chosen. The final value and its 
accuracy are determined by a least-square adjust-
ment as described by Rothermel et al. (2013). The 
final 3D-point coordinates (X, Y, Z) are then calcu-
lated by  
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with rotation matrix R (from object to camera coor-
dinate system), unit vector n from perspective center 
to pixel and camera position X0, Y0, Z0. By applying 
the law of error propagation, the accuracy of the co-
ordinates are calculated, using the standard devia-
tions estimated in the bundle block adjustment (R 
and X0, Y0, Z0) and the determination of the depth 
(D), respectively. 

As last step, the point clouds of all master images 
are fused. For every point, the coordinate, the RGB-
color, the accuracy in depth, the accuracy for the co-
ordinates and the ID of the reference image are 
stored. With the latter information, the ray from the 
camera to the point can be retrieved. This is a valua-
ble information to apply visibility constraints for 
comparing target and actual state. 

Co-registration: If the model coordinates as well 
as the control point coordinates are in a common 
construction site reference frame, a co-registration is 
not necessary. Otherwise, corresponding features 
which can be determined unambiguously in the 
model and the images have to be measured to calcu-
late the transformation parameters. Of course, only 
building parts which have been proofed to be built 
correctly can be used for that. This has to be per-
formed only once in an early time step, since the pa-
rameters are constant during the construction pro-
cess. 

3.2 Technological dependencies and checkpoint 
components 

In principle, a building information model can con-
tain all corresponding process data for a building. In 
the version 4 of the standardized data model Indus-
try Foundation Classes (IFC), the IfcProgress entity 
was introduced to represent all process information 
and dependencies for a building element with direct 
relations to corresponding elements (BuildingSmart 
2014). This entity gives the possibility to combine 
geometry and process data in a convenient way. 

In current industry practice, construction sched-
ules are created manually in a laborious, time-
consuming and error-prone process. As introduced 
by Huhnt (2005), the process generation can be sup-
ported by detecting technological dependencies au-
tomatically. These dependencies are the most im-
portant conditions in construction planning. In the 
following, the concept of the technological depend-
encies is illustrated with the help of a simple two 
story-building (Figure 2).  

 

 
Figure 2: Sample building used to illustrate technological de-
pendencies. 
 

The specimen building has four walls and a slab 
for each floor. One example for deriving dependen-
cies from the model is the following: The walls on 
the second floor cannot be built before the slab on 
top of the first floor is finished. The same applies for 
this slab and the walls beneath it. These dependen-
cies are defined as technological dependencies. Oth-
er dependencies which have to be taken into account 
for scheduling, such as logistical dependencies, are 
defined by process planners and thus cannot be de-
tected automatically. 

 

 
Figure 3: The technological dependencies for the sample build-
ing depicted in Figure 3 in a precedence relationship graph 

 
A good solution for representing and processing 

these dependencies are graphs (Enge 2009). Each 
node represents a building element, the edges repre-
sent the dependencies. The graph is directed since 
the dependencies apply in one way. 

Figure 4 shows the technological dependencies of 
the sample building in the corresponding precedence 
relationship graph.  

The graph visualizes the dependencies and shows 
that all following walls are depending on the slab 
beneath them. In this research, these objects are de-
noted as checkpoint components. They play a crucial 
role for helping to identify objects from the point 
clouds (see following Section 3.3). 

In graph theory, a node is called articulation 
point, if removing it would disconnect the graph 
(Deo 2011). As defined in this paper, all articulation 
points represent a checkpoint component. These 



points are very interesting for supporting object de-
tection, since all objects left of them (in a left-to-
right oriented graph) are depending on them. In oth-
er words, all objects have to be finished before the 
element linked to the articulation point can be start-
ed to be built. 

3.3 Comparing as-built and as-planned state 
The “as-planned” – “as-built” comparison can be di-
vided into several stages. This includes the direct 
verification of building components on the basis of 
the point cloud and the indirect inference of the ex-
istence of components by analyzing the model and 
the precedence relationships to make statements 
about occluded objects. 

3.3.1 Matching point cloud and object surfaces 
For the direct verification, a measure is needed 
which allows to decide if certain points confirm the 
existence of a building part or not. To this end, we 
introduce the measure M based on the orthogonal 
distance d from a point to the surface of the building 
parts, taking into account the number of points and 
their accuracy σd. 
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For the calculation of M, every object’s surface is 
treated individually and points within the distance 
∆d before and behind this surface are extracted from 
the point cloud. This surface is then divided into 
quadratic raster cells of size xr for which M is calcu-
lated individually. The value µd denotes the mean 
value of the distances of all points to the surface 
within one raster cell. The condition additionally de-
fined in Equation 2 by the minimum distance dmin 
limits the maximum weight of a single point (which 
would be very high for close points). We compare M 
against a threshold S to decide if the raster cell is 
confirmed as existent through the points. S can be 
calculated by defining minimum requirements for a 
point configuration which is assumed to be sufficient 
(see example in Section 4). 

3.3.2 Graph-based identification 
To further improve the process of comparing actual 
and target state, checkpoint components and espe-
cially articulation points from the precedence rela-
tionship graph which represents the technological 
dependencies help to infer the existence of objects 
which cannot be detected by point cloud matching 
due to occluded objects. Those objects are present 

on the construction site but are occluded by scaffold-
ing, other temporary work equipment or machines.  

Identifying articulation points in a graph can be 
achieved with the following method: 
Loop over all existing nodes in the graph and per-
form the following routine: 

- Remove node 
- Depth first search (DFS) to check whether 

the graph is still connected 
- Add node 

This routine helps to automatically detect checkpoint 
components. 

4 CASE STUDY 

For a case study, we chose a 5 story office building 
currently under construction in the inner city of Mu-
nich, Germany. In regular time intervals, the build-
ing was captured by means of the photogrammetric 
methods explained in Section 3.1. A snippet of a 
point cloud created by the procedure is depicted in 
Figure 4. The accuracy of the points is in the range 
of one to a few centimeters. Points with a standard 
deviation larger than 5 cm have been removed. For 
co-registration 11 corresponding points were meas-
ured in the images and the model on building parts 
which were already built. 
 

 
Figure 4: point cloud of monitored building 

 
 
For the experiment, the model surfaces are split into 
raster cells with a raster size of xr = 10 cm. Points 



are extracted within the distance ∆d = 5 cm.  As 
minimum requirement for S, a point density of 25 
points per dm2 is defined, with all points having an 
accuracy of σd = 1 cm and a distance of d = 2 cm to 
the model plane.  
In Figure 5, thirteen building parts with the con-
firmed raster cells (in dark grey) can be seen. White 
numbers with black background indicate existing 
building parts, black numbers are used for parts 
which are not yet existing.  

 
Figure 5: raster cells on object surfaces 

 

 
Figure 6: precedence relationship graph for building section in 
Figure 5 
 
 

Existing parts  Non-existing parts 
5 85 %  9 7 % 
13 72 %  11 7 % 
3 54 %  4 27 % 
8 50 %  6 29 % 
10 49 %    
2 47 %    
1 46 %    
14 42 %    
7 26 %    
12 13 %    

Table 1: percentage of confirmed raster cells per element 
 
As can be seen in Figure 5 and Table 1, not all ele-
ments can be confirmed unambiguously with the 
available data, shown in Figure 4, and the applied 
measure M. Column 7 has only 26% confirmed ras-

ter cells while column 5 has a rate of 85%. In this 
special case, the low rate for element 7 is due to a 
scaffolding in front of it. Column 5 can be identified 
very well, as there were no occlusions present. An-
other problem are false positives: Although column 
6 does not yet exist, several raster cells were con-
firmed due to a formwork. 

As discussed in Section 3.2, additional infor-
mation can help to identify objects that cannot be de-
tected but must be present due to technological de-
pendencies. Figure 6 shows the corresponding 
precedence relationship graph for the shown build-
ing section. 

The column with element-id 5 can be detected by 
the point cloud by 85% and thus is present with high 
probability. In contrast, column 7 has very few con-
firmed raster cells. Nevertheless, the technological 
dependencies can help to verify this element. Since 
object 5 is present, Element 13, 7 and 8 have to be 
also present, since they are depending on element 7. 

5 DISCUSSION AND FUTURE WORK 

This paper presents a concept for photogrammetric 
production of point clouds for construction progress 
monitoring and gives an outlook on the procedure 
for as-planned – as-built comparison based on BIM 
and the detailed use of additional information pro-
vided by the model and accompanying process data. 

For the determination of the actual state, a dense 
point cloud is calculated from images of a calibrated 
camera. To determine the scale, control points are 
used, which requires manual intervention during ori-
entation. For each point, the accuracy is calculated 
which is in the range of several centimeters. The 
evaluation measure introduced for component verifi-
cation can provide unambiguous results only for 
components with very few occlusions and thus needs 
to be extended by additional features and visibility 
analysis. 

Future research will target at achieving greater au-
tomation of image orientation, e.g. by automatically 
identifiable control points. The as-planned vs. as-
built comparison can be improved by additional 
component attributes provided by the BIM, such as 
the color of the components. The rasterization is so 
far only implemented for flat component surfaces 
and must be extended to curved surfaces. The auto-
mated generation of precedence relationship graphs 
will be addressed by a spatial query language ap-
proach. 

The proposed methods and concepts presented in 
Section 3 introduce new possibilities for an en-
hancement in progress monitoring. Currently, the ef-
fort for photogrammetric techniques and object de-
tection is still very high and needs to be investigated 
further to improve those methods. Though, they can 
offer a variety of new possibilities for planners and 



on-site personnel, including: (1) Time for photo-
documentation can be reduced to a very low level, 
since the monitoring process is based on images.  
(2) Automated process optimization can be pursued 
directly from the results of the process monitoring. 
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