Algebraic Multigrid Methods for mortar-based finite element discretizations in contact mechanics

Part1: Condensed formulation

Tobias A. Wiesner¹, Alexander Popp¹, Michael W. Gee² and Wolfgang A. Wall¹

¹⁾Institute for Computational Mechanics, Technische Universität München ²⁾Mechanics & High Performance Computing Group, Technische Universität München www.lnm.mw.tum.de

ehrstuhl für Numerische Mechanik

Motivation

Iterative linear solvers are crucial for solving large scale contact problems + Multigrid methods are known to be efficient solving strategies

Contact problems

Saddlepoint formulation

- Problem formulation based on mortar FE methods
- Initial boundary value problem of nonlinear elastodynamics
- KKT conditions for contact and Coulomb friction (optional)
- Direct Lagrange multiplier method

Algebraic Multigrid Methods

Basic idea

Reconstruct fine level solution from information of coarse representations of fine level problem

Algebraic Multigrid [3]

Build multigrid hierarchy with an aggregation strategy using the fine level matrix information only Restriction and prolongation operators transfer information between different multigrid levels

Condensed formulation

Dual (biorthogonal) basis functions \rightarrow Condensation of Lagrange multipliers [1]

Matrix properties

- ► constant system size
- no saddlepoint structure enables usage of standard iterative solvers

$$\begin{pmatrix} \mathsf{K}_{\mathcal{N}_{1}\mathcal{N}_{1}} & \mathsf{K}_{\mathcal{N}_{1}\mathcal{M}} & \mathbf{0} & \mathbf{0} \\ \mathsf{K}_{\mathcal{M}\mathcal{N}_{1}} + \mathsf{P}_{\mathcal{A}}^{\mathsf{T}}\mathsf{K}_{\mathcal{A}\mathcal{N}_{1}} & \mathsf{K}_{\mathcal{M}\mathcal{M}} + \mathsf{P}_{\mathcal{A}}^{\mathsf{T}}\mathsf{K}_{\mathcal{A}\mathcal{M}} & \mathsf{K}_{\mathcal{M}\mathcal{S}} + \mathsf{P}_{\mathcal{A}}^{\mathsf{T}}\mathsf{K}_{\mathcal{M}\mathcal{S}} & \mathsf{K}_{\mathcal{M}\mathcal{N}_{2}} + \mathsf{P}_{\mathcal{A}}^{\mathsf{T}}\mathsf{K}_{\mathcal{A}\mathcal{N}_{2}} \\ \mathsf{K}_{\mathcal{I}\mathcal{N}_{1}} & \mathsf{K}_{\mathcal{I}\mathcal{M}} & \mathsf{K}_{\mathcal{I}\mathcal{M}} & \mathsf{K}_{\mathcal{I}\mathcal{S}} & \mathsf{K}_{\mathcal{I}\mathcal{N}_{2}} \\ \mathbf{0} & \mathsf{N}_{\mathcal{M}} & \mathsf{N}_{\mathcal{S}} & \mathbf{0} \\ \mathsf{a}\mathsf{T}_{\mathcal{A}}\mathsf{D}_{\mathcal{A}\mathcal{A}}^{-1}\mathsf{K}_{\mathcal{A}\mathcal{N}_{1}} & \mathsf{a}\mathsf{T}_{\mathcal{A}}\mathsf{D}_{\mathcal{A}\mathcal{A}}^{-1}\mathsf{K}_{\mathcal{A}\mathcal{M}} & \mathsf{a}\mathsf{T}_{\mathcal{A}}\mathsf{D}_{\mathcal{A}\mathcal{A}}^{-1}\mathsf{K}_{\mathcal{A}\mathcal{S}} - \mathsf{F}_{\mathcal{S}} & \mathsf{a}\mathsf{T}_{\mathcal{A}}\mathsf{D}_{\mathcal{A}\mathcal{A}}^{-1}\mathsf{K}_{\mathcal{A}\mathcal{N}_{2}} \\ \mathbf{0} & \mathsf{0} & \mathsf{K}_{\mathcal{N}_{2}\mathcal{S}} & \mathsf{K}_{\mathcal{N}_{2}\mathcal{N}_{2}} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \Delta \mathsf{d}_{n+1,\mathcal{N}_{1}} \\ \Delta \mathsf{d}_{n+1,\mathcal{S}} \\ \Delta \mathsf{d}_{n+1,\mathcal{S}} \\ \Delta \mathsf{d}_{n+1,\mathcal{N}_{2}} \end{pmatrix} = - \begin{pmatrix} \mathsf{r}_{\mathcal{N}_{1}} + \mathsf{P}_{\mathcal{A}}^{\mathsf{T}}\mathsf{r}_{\mathcal{A}} \\ \mathsf{r}_{\mathcal{A}}} \\ \mathsf{r}_{\mathcal{A}}\mathsf{D}_{\mathcal{A}\mathcal{A}}^{-1}\mathsf{r}_{\mathcal{A}} \\ \mathsf{r}_{\mathcal{A}} \\ \mathsf{r}_{\mathcal{A}}} \\ \mathsf{r}_{\mathcal{A}} + \mathsf{P}_{\mathcal{A}}^{\mathsf{T}}\mathsf{r}_{\mathcal{A}} \end{pmatrix} \end{pmatrix}$$

Due to different coordinate systems for structural equations and contact constraints matrix A is not diagonally-dominant at slave DOF rows!

Multigrid level smoothers

- ► Use smoothing effect of iterative methods (e.g. Jacobi, Gauss Seidel) to attack different components of the error on different multigrid levels
- Multigrid level matrices have to fulfill minimum prerequisites for convergence of the level smoothing algorithms
- Minimum requirement for convergence for most methods is at least a diagonally-dominant matrix

Contact Algebraic Multigrid Method

Perumtation strategy

- fix mathematically non diagonallydominant matrix rows by applying a column permutation strategy
- Constrained permutation strategy: permute only columns which belong to

Constrained permutation strategy

Let $\mathcal{N}_{\mathcal{S}}$ be the set of slave DOF ids and $\mathcal{N}_{\mathcal{N}_{\mathcal{S}}}$ the corresponding set of slave node ids with

 $f: \mathcal{N}_{\mathcal{S}} \to \mathcal{N}_{\mathcal{N}_{\mathcal{S}}}$

a surjective mapping between the slave DOF ids and the corresponding slave node ids. Find a permutation $p : \mathcal{N}_{\mathcal{S}} \to \mathcal{N}_{\mathcal{S}}, i \mapsto p(i)$ such that it is $\max_{p} \prod A_{i,p(i)}$

Aggregation strategy

- ► Use contact information: Build segregated aggregates which do not overlap between the distinct solid bodies
 - \rightarrow keep distinct solids separated on all multigrid levels
 - \rightarrow enables reuse of aggregates

- same mesh node/aggregate
- Use contact information: only permute columns that correspond to (possibly) problematic contact slave DOFs
- ► permute fine level matrix only Standard multigrid transfer operators preserve diagonal dominance of coarse level matrices

s.t. $f(p(i)) - f(p(j)) = 0 \quad \forall i, j \in \mathcal{N}_S.$

 $A_{i,j}$ denotes the entry of matrix A in the i^{th} row and j^{th} column.

- no mix-up of node information through column permutations 000000000 000000000
- prerequisite for segregated aggregates 000000000
- ► **Full multigrid:** no special handling of interface nodes in aggregation routine
 - \rightarrow consistent coarsening rate throughout whole domain

alization of segregate

Parallelization

- Uncoupled aggregates: aggregates cannot overlap processor boundaries (simplifies implementation drastically)
- Automatic rebalancing: optimal choice of number of processors on coarse levels minimizes communication overhead

Test example

Two solid bodies contact

- Rotate problem configuration around y-axis and z-axis
- No change in physics through rotation

Problem setup and solver parameters

a<mark>tion parameters</mark> rial: NeoHooke

Timestep size: 0.02s

 $0.1 rac{kg}{m^3}$ 10 GPa 0.3

- ► Iterative solver: GMRES Preconditioner: AMG (3 level)
- Coarse solver: direct (UMFPACK)
- Transfer operators: PG-AMG [4]
- ► Level smoother: 2 SGS (0.5)

Expected behaviour: number of linear iterations independent of geometric configuration

rotation around v -axis in [°]															rotation around y-axis in [°]										
		0	10	20	30	40	45	50	60	70	80	90			0	10	20	30	40	45	50	60	70	80	90
rotation around z-axis in [°]	0	-	-	-	-	-	-	-	-	-	-	-	_	0	32.4	32.3	32.1	31.7	31.7	31.6	31.7	31.7	31.8	32.0	31.9
	10	-	-	-	-	-	-	-	-	-	-	-	s in [10	32.5	32.3	31.7	31.6	31.6	31.4	31.4	31.7	31.6	31.7	31.9
	20	-	-	-	-	-	-	-	-	-	-	-		20	32.4	32.1	31.6	31.6	31.4	31.4	31.2	31.2	31.5	31.8	32.1
	30	-	-	_	-	-	-	-	-	-	-	-	axi	30	32.4	32.2	31.8	31.6	31.5	31.4	31.5	31.5	31.7	32.0	32.3
	40	-	56.0	48	not	not robust			116.3	114.1	-	-	-Z	40	32.3	29.9	27.3	2				28.5	30.8	31.9	32.8
	45	-	39.4	38					117.2	114.2	-	-	pur	45	32.4	28.2	27.6	2	ror	JUST		27.7	31.3	31.8	32.4
	50	-	44.4	35.0	33.9	38.3	41.4	48.4	115.3	114.2	-	-	lor	50	34.6	29.7	28.9	31.2	21.5	27.4	21.8	28.9	30.0	31.2	31.2
	60	-	-	36.5	34.4	32.8	36.5	37.1	89.4	114.2	-	-	n a	60	31.5	31.5	27.9	26.5	27.9	28.5	29.8	28.9	29.7	30.4	30.2
	70	-	-	59.3	33.2	34.0	35.0	36.5	84.0	-	-	-	rotatio	70	30.1	30.0	30.1	29.4	27.9	32.5	32.5	32.3	29.5	29.4	29.8
	80	-	-	-	59.7	43.8	48.5	53.4	-	-	-	-		80	29.2	29.2	29.4	29.8	34.3	32.7	32.5	32.3	31.9	30.1	29.2
	90	-	-	-	-	108.0	106.2	-	-	-	-	-		90	29.0	29.2	30.0	30.9	34.5	37.9	32.0	32.0	31.7	31.8	30.9
	venere number of linear iterations over OF timesters													umber of linear iterations over OF timesters											

average number of linear iterations over 25 timesteps

average number of linear iterations over 25 timesteps

Contact Algebraic Multigrid Method

Two tori impact example

Problem configuration

- ▶ #DOFs: 1050624, #Procs: 64, # timesteps: 50
- condensed contact formulation (Petrov Galerkin) [2]

Solver parameters

- ► Iterative solver: GMRES
- Preconditioner: AMG (4 level)
- Coarse solver: direct (UMFPACK)
- Transfer operators: PA-AMG
- ► Level smoother: 2 SGS (0.7)
- ► Min. aggregate size: 27 nodes

Findings

- number of non diagonallydominant rows corresponds
- to number of active contact

nodes

number of linear iterations depends on number of non diagonally-dominant rows

Conclusions

- Full Multigrid method for contact problems in condensed formulation.
- Robust and flexible preconditioner for large scale problems.
- Fully parallelized algorithm with optimal rebalancing of transfer operators.

References

- [1] Wohlmuth, B.I., "A mortar finite element method using dual spaces for the Lagrange multiplier", SIAM Journal on Numerical Analysis, 38, 989-1012, (2000).
- Popp, A., Seitz, A., Gee, M.W. and Wall, W.A., "Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach", [2] Comptuer Methods in Applied Mechanics and Engineering, 264,67-80, (2013).
- Vanek, P., Mandel, J. and Brezina, M., "Algebraic Multigrid by Smoothed Aggregation for Second and Fourth Order Elliptic problems", Computing, 56, 179-196. (1996)
- Sala, M., Tuminaro, R.S., "A new Petrov-Galerkin Smoothed Aggregation Preconditioner for nonsymmetric Linear Systems.", SIAM Journal on Scientific Computing, 31(1), 143-166, (2008)
- Wiesner, T.A., Tuminaro, R.S., Wall, W.A. and Gee, M.W., "Multigrid Transfers for Nonsymmetric Systems Based on Schur Complements and Galerkin Projections", Numerical Linear Algebra with Applicaötions, in press, (2013).