
Motivation

References
[1] Wohlmuth, B.I., "A mortar finite element method using dual spaces for the Lagrange multiplier", SIAM Journal on Numerical Analysis, 38, 989-1012, (2000).
[2] Popp, A., Seitz, A., Gee, M.W. and Wall, W.A., "Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach", 

Comptuer Methods in Applied Mechanics and Engineering, 264,67-80, (2013).
[3] Vanek, P., Mandel, J. and Brezina, M., "Algebraic Multigrid by Smoothed Aggregation for Second and Fourth Order Elliptic problems", Computing, 56, 

179-196, (1996).
[4] Sala, M., Tuminaro, R.S., "A new Petrov-Galerkin Smoothed Aggregation Preconditioner for nonsymmetric Linear Systems.", SIAM Journal on Scientific 

Computing, 31(1), 143-166, (2008).
[5] Wiesner, T.A., Tuminaro, R.S., Wall, W.A. and Gee, M.W., "Multigrid Transfers for Nonsymmetric Systems Based on Schur Complements and Galerkin

Projections", Numerical Linear Algebra with Applicaötions, in press, (2013).

Basic idea

Reconstruct fine level solution from information of 
coarse representations of fine level problem

Algebraic Multigrid [3]

► Build multigrid hierarchy with an aggregation 
strategy using the fine level matrix information only

► Restriction and prolongation operators transfer 
information between different multigrid levels

Multigrid level smoothers

► Use smoothing effect of  iterative 
methods (e.g. Jacobi, Gauss Seidel) 
to attack different components of the 
error on different multigrid levels

► Multigrid level matrices have to fulfill 
minimum prerequisites for convergence 
of the level smoothing algorithms

► Minimum requirement for convergence 
for most methods is at least a 
diagonally-dominant matrix

Level 1

Level 2

Exemplary aggregates for two solid bodies 
contact example on 4 processors

Basic multigrid algorithm with 3 
multigrid levels
(V-cycle)

Algebraic Multigrid Methods

► Full Multigrid method for contact problems in condensed formulation.

► Robust and flexible preconditioner for large scale problems.

► Fully parallelized algorithm with optimal rebalancing of transfer operators.
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Saddlepoint formulation

► Problem formulation based on mortar FE methods

► Initial boundary value problem of nonlinear elastodynamics

► KKT conditions for contact and Coulomb friction (optional)

► Direct Lagrange multiplier method

Contact problems

Condensed formulation

Dual (biorthogonal) basis functions 
→ Condensation of Lagrange multipliers [1]

Matrix properties

► constant system size 

► no saddlepoint structure enables 
usage of standard iterative solvers

Due to different coordinate systems for structural equations and contact constraints
matrix A is not diagonally-dominant at slave DOF rows!

Two solid bodies example

ProbTest example

► Iterative solver: GMRES

► Preconditioner: AMG (3 level)

► Coarse solver: direct (UMFPACK)

► Transfer operators: PG-AMG [4]

► Level smoother: 2 SGS (0.5)

► Min. aggregate size: 18 nodes

Two solid bodies contact

► Rotate problem configuration around 
y-axis and z-axis

► No change in physics through rotation

Expected behaviour: number of linear iterations independent of geometric configuration

Multigrid without contact specific extensions Contact Algebraic Multigrid Method

not robust robust
Problem setup and solver parameters

Contact Algebraic Multigrid Method

Perumtation strategy

► fix mathematically non diagonally-
dominant matrix rows by applying a 
column permutation strategy

►Constrained permutation strategy: 
permute only columns which belong to 
same mesh node/aggregate

►Use contact information: only 
permute columns that correspond to 
(possibly) problematic contact slave 
DOFs

►permute fine level matrix only
Standard multigrid transfer 
operators preserve diagonal 
dominance of coarse level matrices

Aggregation strategy

► Use contact information: Build segregated aggregates
which do not overlap between the distinct solid bodies

→ keep distinct solids separated on all multigrid levels

→ enables reuse of aggregates

► Full multigrid: no special handling of interface nodes 
in aggregation routine

→ consistent coarsening rate throughout whole domain

Visualization of segregated 
aggregates which do not 
overlap two distinct solids

►no mix-up of node information through 
column permutations

►prerequisite for segregated aggregates

Parallelization

► Uncoupled aggregates: aggregates cannot overlap processor 
boundaries (simplifies implementation drastically)

► Automatic rebalancing: optimal choice of number of processors 
on coarse levels minimizes communication overhead

Findings

►number of non diagonally-
dominant rows corresponds 
to number of active contact 
nodes

►number of linear iterations 
depends on number of non 
diagonally-dominant rows

Two tori impact example
Solver parameters

► Iterative solver: GMRES

► Preconditioner: AMG (4 level)

► Coarse solver: direct (UMFPACK)

► Transfer operators: PA-AMG

► Level smoother: 2 SGS (0.7)

► Min. aggregate size: 27 nodes

Problem configuration

► #DOFs: 1050624, #Procs: 64, # timesteps: 50

► condensed contact formulation 
(Petrov Galerkin) [2]

Timestep 0 Timestep 25 Timestep 50

Algebraic Multigrid Methods for mortar-based finite element
discretizations in contact mechanics

Iterative linear solvers are crucial for solving large scale contact problems + Multigrid methods are known to be efficient solving strategies

Part1: Condensed formulation
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