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Abstract. In this document, an approach for a cooperative traffic signal control will be 

introduced that is based on the technique of model predictive control. The described approach 

is of theoretic nature and comprises a simple microscopic traffic flow model in order to inte-

grate the estimation of the traffic state and the derivation of optimal signalization. Data from 

conventional detection as well as from cooperative vehicles is used to obtain a control that 

despite its flexibility offers predictability in a way that reliable speed advisory information for 

drivers can be obtained. Model predictive control is used in order to determine an optimized 

signal timing under consideration of constraints. 
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1 INTRODUCTION 

In light of emerging communication technologies, the development of strategies to realize 

the potential benefits of vehicle-2-x (V2X) communication has become of major interest in the 

field of traffic engineering in recent years. The main goals are to increase the efficiency and 

improve the safety of transportation systems. As intersections can be seen as the bottleneck of 

urban traffic flow, the improvement of traffic signal control by making use of the data generated 

by V2X technologies and by informing drivers about signal phase and timing is investigated in 

several research projects. These applications mainly address a raise of efficiency in urban areas 

due to an optimized adaptive traffic signal control as well as an increase in driver comfort by 

reducing the number of stops. It is difficult to generate reliable information for drivers because 

modern traffic signal control systems are continually adapting. This paper proposes a theoretic 

approach towards a highly flexible but predictable control of traffic signals that incorporates 

information provided by equipped vehicles and conventional detection. This paper is based on 

a German publication by the author [1]. 

2 CONTROL APPROACH 

The aim of the proposed control approach is to obtain an optimized signal timing by taking 

into account non-aggregated microscopic data from conventional detection and floating vehicle 

data (FVD), which are provided by equipped vehicles via vehicle-2-infrastructure (V2I) com-

munication. Conventional detection, provided by inductive loops for example, is considered 

because a high equipment rate of cooperative vehicles cannot be expected in the near future. A 

state estimation is used to fuse data from different sources and to estimate the traffic state in 

cases where incomplete measurement data are available. The same traffic flow model that the 

state estimation relies on is used to obtain an optimized signal timing while taking into account 

several constraints according to the principles of model predictive control (MPC). By imple-

menting MPC, future information about the signal timing and the traffic state is calculated and 

can be used to provide green light optimal speed advisory (GLOSA) information to equipped 

vehicles via infrastructure-2-vehicle (I2V) communication, allowing drivers to avoid stopping.  

 

 

Figure 1: Control Approach 
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Figure 1 gives an overview of the proposed control approach. The different elements of the 

control approach are described in Section 3 to 5. The results of a functional test are shown in 

Section 6 and Sections 7 and 8 provide an outlook and summary. 

3 TRAFFIC FLOW MODEL 

The traffic flow model builds the core of the traffic state estimation and the control. The 

model is formulated in state-space to facilitate the usage of standardized methods of control 

theory such as the Kalman-filtering for state estimation (Section 4) or MPC for controlling 

(Section 5). Furthermore, reusability and interchangeability of different parts of the proposed 

concept are increased by using standardized methods. According to the time-discrete state-

space formulation, the state of a system in the following time step k+1 is defined by the system 

matrix A, the input matrix B, the current system state xk and the current input uk. The output of 

the system is obtained by a multiplication of the output matrix C with the current state xk. The 

respective formulation is as follows:  

xk+1 = Axk + Buk 
 (1)    

y = Cxk 

Despite the previously stated advantages, traffic flow models are generally not formulated 

in this manner. However, the well-established traffic flow model by Daganzo [2] can be formu-

lated in state-space as shown by Tampère & Immers [3]. Similar to this approach, a formulation 

of the microscopic cellular automaton originally proposed by Nagel & Schreckenberg [4] is 

feasible. Both models are not time-invariant, which makes the implementation of MPC very 

difficult. For this reason, Sun & Bayen [5] propose a simplified model where the matrices A 

and B in eq. (1) are constant over time, which makes the use of MPC with standardized proce-

dures possible, as shown for example by Camacho [6]. Thus, the use of the simplified model is 

justified despite its low level of detail.  

To apply the model, the considered road segment must be discretized into cells as shown in 

the example in Figure 2. 

 

Figure 2: Discretized Road Segment 

The state vector contains zeroes for empty cells and ones for occupied cells. For the example 

shown in Figure 2 it therefore would be: 

xT = [1 0 1] (2)    

For this example, the simple traffic flow model is given by the following system and input 

matrices: 

A = [
   0    0    0
   1    0    0
   0    1    0

] 

 

(3)    
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B = [

   1    0    0

−1    1    0

   0 −1    1

] 

The system matrix A moves the entries of the state vector x one position forward as long as 

the corresponding entry in vector u is zero. If the entry in vector u is one, the state vector’s entry 

will not change due to the input matrix B and thus, the vehicle will remain in its cell. An occu-

pied downstream cell or a red traffic signal can cause this behavior. The input vector is a result 

of the optimization that is depicted in Figure 1 and it represents the signalization as well as a 

part of the model behavior. The signalization is modelled in such a way that the cell positioned 

downstream of the stop line contains a zero in the input vector u for a green signal and a one 

for a red signal. The microscopic behavior of the model is achieved by setting up constraints 

for the occupation of the cells as described in Section 5. In the simple form that is described 

here, the model behaves like a deterministic cellular automaton with only two discrete speed 

states, zero and one. 

The output matrix C from eq. (1) is composed of two components. The first part is the iden-

tity matrix, which is necessary to impose the already mentioned constraints on the state varia-

bles. The second part performs a weighted summation of the vehicles that are currently 

occupying the approach. The weight increases with the distance of the vehicles from the inter-

section. As explained in Section 5, the objective of the optimization is an output y of zero, 

which leads to a downstream propagation of vehicles through the weighting and a maximum 

outflow through the summation of vehicles. For the example given in Figure 2, the output ma-

trix would be: 

C = [

1 0 0
0 1 0
0
3

0
2

1
1

] (4)    

4 TRAFFIC STATE ESTIMATION 

In order to use a standardized method for fusing data from conventional detection and coop-

erative vehicles, a Kalman-filter is implemented, which relies on the traffic model described in 

the previous section. Based on the current state, a prediction is made using the model, which is 

then corrected using position data as depicted in Figure 3. 

 

 

Figure 3: Principle of Kalman-filter (according to [7]) 

The mathematical description of the Kalman-filter is not given here as it is described exten-

sively in the literature, for example by Welch & Bishop [7]. It should be highlighted here that 
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the filter can be implemented in a straightforward manner thanks to the standardized mathemat-

ical formulation of the model in state-space. Because the measurements used in the example 

that is described in this paper are not noisy and the model depicts microscopic behavior, the use 

of the Kalman-filter is not mandatory. To achieve the desired behavior, the measurement noise 

covariance is set very small compared to the process noise covariance. Nevertheless, Kalman-

filtering is used in order to raise transferability and interoperability of the proposed approach 

and to facilitate the integration of further data sources or different traffic flow models. For ex-

ample, cooperative vehicles with Lidar-sensors as stated by Dittrich & Busch [8] could be used 

as a further data source to provide the distance to downstream vehicles.  

5 USING MODEL PREDICTIVE CONTROL FOR AN ADAPTIVE TRAFFIC 

SIGNAL CONTROL 

The MPC control concept was used for the first time in the mid 1970’s in the chemical in-

dustry. An advantage of this type of controller is the fact that it includes the principle of opti-

mality while offering the possibility to directly consider constraints. For example, constraints 

on inputs can be imposed and the search for the optimal solution will take place within these 

boundaries. The main disadvantages of MPC are the necessity for knowledge of models and the 

high computational effort for the optimization. Due to the latter disadvantage, the application 

of MPC was first restricted to systems with low dynamics such as chemical processes. However, 

with increased computing capacity, the application is now possible for systems with higher 

dynamics as well [9]. Several examples can be found where MPC or its generic methodology 

is applied to control traffic in urban areas [10], [11], [12] or on highways [13].  

MPC is chosen as a control algorithm for the work presented in this document because of 

the possibility to explicitly set a goal with an objective function and to impose constraints. The 

latter is essential for traffic signal control as, for example, legal restrictions have to be taken 

into account. Another reason to use MPC is the implied predictability of signalization and traffic 

state while still offering a very flexible control. The predicted states can be used to generate 

reliable speed advisory information for the drivers of equipped vehicles and thus, reducing the 

number of stops. 

The main principle of MPC is, as the name of the concept implies, the prediction of a sys-

tem’s future behavior using a model. In the discrete case, this is done in a defined step size over 

the prediction horizon Np based on the prior estimated state xk. The calculation of optimal con-

trol inputs is subsequently carried out over the control horizon Nc, which must be equal to or 

shorter than the prediction horizon. Only the first of the calculated control inputs uk is applied 

to the system and the calculation is carried out again at the subsequent time step. An analogy 

that is often used is a car driver who subconsciously plans steering maneuvers for a certain 

amount of time in the future. The maneuvers are carried out on a very short term basis and the 

prediction is renewed constantly. The principle is shown in Figure 4, where the subsequent time 

step is illustrated with dashed lines. 

 

Figure 4: Basic principle of model predictive control 
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Again the modelling in state-space allows for the straightforward implementation of the con-

trol approach using formulations that are given in literature. The formulation given by Camacho 

& Bordons [6] is briefly described below. 

In a first step, the state-space formulation from eq. (1) is extended such that the input vector 

becomes the change of the actual input to the system: 

[
xk+1

uk
] = [

A B
0 I

] [
xk

uk−1
] + [

B
I
] ∆uk 

 (5)    

y = [C 0] [
xk

uk−1
] 

The resulting extended matrices and the state vector from eq. (5) can be shortened to Ae, Be, 

Ce and xe,k respectively. The predicted system outputs over the prediction horizon based on the 

current state xe,k can be given in a clear form by using the auxiliary matrices F and Φ: 

Y = Fxe,k + Φ∆U (6)    

In order to do so, the state vector is effectively inserted into eq. (5) repeatedly to predict the 

next state and the respective output. Thus, the matrices F and Φ are given as follows: 

F =

[
 
 
 
Ce ∙ Ae

Ce ∙ Ae
2

⋮

Ce ∙ Ae

Np
]
 
 
 

 

(7)    

 

Φ =

[
 
 
 
 
 
 
 
 

                                                                                                                       
   

 ]
 
 
 
 
 
 
 
 

 

The input vector ∆U in eq. (5) contains all inputs over the control horizon and is therefore 

composed as follows: 

∆U = [∆uk   ∆uk+1   ∆uk+2  ∆uk+3 …∆uk+Nc−1]
T
 (8)    

The goal is to determine this extended input vector by solving the following quadratic opti-

mization problem: 

minimize  J = ∆U 
T
(Φ 

T
Φ + S)∆U − 2∆U 

T
Φ 

T
(Rs − Fxe,k) (9)    

Where S enables the consideration of the magnitude of ∆U and is used, to achieve suffi-

ciently long green times in case of high traffic volumes. If S is chosen very small, short gaps 

lead to frequent transitions of the traffic signal and therefore to a lower capacity of the intersec-

tion. RS is the command variable and is set to zero in this example as previously mentioned. 

Because of the chosen output matrix C a propagation of vehicles is achieved and the set target 

is an empty approach with the goal to reach highest outflow of vehicles. 
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If there were no constraints and the variables were continuous, a usual search for extreme 

values through a derivation of eq. (9) could be carried out. As constraints should be imposed 

and all entries of the input vector are integers, the optimization problem is of the type Mixed-

Integer Quadratic Programming (MIQP). To solve such problems, several commercial algo-

rithms are available, such as the “IBM ILOG CPLEX Optimizer”, which has been used for the 

simulation study in Section 7. 

5.1 Formulation of Constraints 

Two types of constraints are input into the optimization algorithm: 

M∆U ≤ γ 
(10)    

E∆U = d 

The matrices M and E as well as the vectors γ and d have to be formulated such that the 

desired restriction of the behavior of the control is achieved. As described by Wang [14], con-

straints can be formulated in order to restrict the: 

 change of the input 

 amplitude of the input 

 amplitude of the output. 

As mentioned before, the output matrix is built such that the state variables are accessible as 

outputs in order to constrain them. The concrete numeral formulation of the quantities in eq. 

(10) are omitted here for the sake of clarity. In order to achieve the desired microscopic behavior 

of the modelled traffic flow and the control, the following constraints are imposed: 

 restriction of the input signal to values between zero and one 

 restriction of the cell occupation to values between zero and one 

Furthermore, constraints are introduced in order to include specifications given, for example, 

in the German Guidelines for Traffic Signals [15]. In the scenario described in the following 

section, these constraints include: 

 a minimum of one signal group has to show “red” 

 minimum green times 

 intergreen times 

 maximum green times (in order to constrain the cycle time) 

6 PROOF OF CONCEPT 

In this section, a simulation study is presented with the intension of proving the concept in 

principle. For this reason, the proposed algorithm is embedded in the microscopic traffic flow 

simulation “SUMO” [16]. Figure 5 depicts the embedment of the algorithm as shown in Figure 

1 into the simulation via the Python interface “TraCI” that is part of SUMO. Calculated signal 

timing for traffic signals is input into the simulation as well as speed advice for equipped vehi-

cles. Data from detectors and vehicles is fed back to the algorithm as an input. Because the 

presented investigation is of purely theoretic nature, no real data is used to calibrate the param-

eters of the car-following model. Instead, the typical parameter set proposed by Krauss [17] is 

used (response time T = 1s; maximum acceleration a = 0.8m/s2; maximum deceleration b = 4.5 

m/s2).  
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Figure 5: Embedment of the algorithm in a microscopic traffic flow simulation 

In the following sections, the considered scenario and the reference control are described. 

The results of the simulation study are presented subsequently. In contrast to Figure 5, the re-

sults shown in the following section do not include any information of the drivers, i.e. no speed 

advisory messages are provided. Nevertheless, an equipment rate of 100% is assumed in order 

to have a comprehensive detection of vehicles. 

6.1 Scenario 

The chosen scenario consists of a simple intersection with four arms that is controlled with 

a two stage signal. One lane is available in each direction and turning vehicles and pedestrians 

are not considered, as only a principle proof of the proposed concept is intended. 

Figure 6: Intersection with respective transition diagram 
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Figure 6 shows the intersection and the respective stage diagram in a schematic way. The 

considered length of the approaches is set to 112.5m, which leads to 15 cells as their length is 

set to 7.5m. 

The traffic demands q1 and q2 are kept at a constant level in the opposing approaches and 

are varied in steps of 180veh/h to a maximum of 900veh/h per approach in order to investigate 

the system’s behavior in different situations. 

6.2 Parameters of the Model Predictive Control 

The constraints are chosen such that a minimum green time of five seconds is guaranteed, 

an intergreen time of four seconds is kept between the stages and the maximum green time is 

set to 40s. The prediction horizon is 15s while the control horizon is set to 10s. 

6.3 Reference Control 

The chosen reference control is a fixed time control based on German guidelines [15], [18]. 

A saturation volume of 1620veh/h results from the chosen car-following parameters and is used 

for the calculation of the cycle time. The used cycle time is held between 60s and 90s according 

to the guidelines and is denoted in Figure 7 as tcyc,ref. The green split is chosen according to the 

traffic demand. To keep the proposed control approach comparable to the reference control, 

equivalent intergreen times and minimum green times are chosen. For the same reason, the 

maximum green times are chosen to be 40s for the fixed time control, although an optimal green 

split would in some cases lead to a higher value. 

6.4 Simulation Study 

The duration of each simulation run is 1000s. The number of simulation runs necessary to 

achieve significant results with a confidence level of 95% with an accuracy of 5% is determined 

according to the respective guidelines for simulations [19]. For the analysis, 20 runs were car-

ried out for each demand scenario using the reference control and 17 runs for the model predic-

tive control. 

6.5 Results 

The results presented in this section are meant to prove the functional capability of the pro-

posed theoretical approach to control traffic signals within the mentioned assumptions. 

Figure 7 shows the change in the average number of stops per vehicle when using MPC 

compared to the fixed time control. For lower demands the higher flexibility of MPC results in 

a significant decrease in the number of stops as it can be seen for example with the low demand 

of 180veh/h on all approaches. As Figure 7 depicts, a reduction in the number of stops of 41% 

is achieved. However, frequent transitions that go along with an average cycle time of only 45s 

lead to this improvement. Only an average value of the cycle time can be stated as the proposed 

approach deliberately omits a fixed cycle time. It became apparent that the results do not differ 

considerably when violating the guidelines by choosing a reduced cycle time of 45s for the 

reference control. This can be explained by the efficient distribution of green times by MPC, 

which leads to a clear reduction of the number of stops compared to the reference control.  

Figure 7 shows that in case of higher demand, the reduction of the number of stops will be 

relatively low. With a demand of q1 = q2 = 900veh/h even a slight increase arises, though the 

level of significance is scarcely exceeded. This behavior results from a saturated intersection as 

the MPC in this case makes use of the maximum green times and therefore behaves comparable 

to the fixed time control. 
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Figure 7: Change of the number of stops per vehicle compared to the reference control 

To illustrate the system’s behavior in case of low demand, an extract of the signal plans 

resulting from the demand q1 = q2 = 180veh/h by using MPC and the reference control is given 

in Figure 8. The fluctuation of green times can be seen, which results from the adaption to the 

current state of the approach. 

 

 

Figure 8: Extract of the signal plans of MPC (top) and reference control (bottom) for q1 = 180veh/h; q2 = 

180veh/h 

Comparable results are achieved under asymmetric demands of q1 = 900veh/h; q2 = 180veh/h 

or q1 = 540veh/h; q2 = 180veh/h. The use of MPC leads to average cycle times of around 60s, 

which corresponds to the cycle times of the reference control. Nevertheless, Figure 7 shows a 

decrease of the number of stops of 29% and 20% respectively. Again, green times are used 

more efficiently as they are chosen more accurately for the approaches with lower demand and 

green is given preferably when gaps are existent in the conflicting stream. Figure 9 shows an 

exemplary extract of the signal plans for a demand of q1 = 540veh/h; q2 = 180veh/h. The dif-

ferences are less obvious, but a shortened green time of signal group 2 can be seen after around 

140s. 
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Figure 9: Extract of the signal plans of MPC (top) and reference control (bottom) for q1 = 540veh/h; q2 = 

180veh/h 

The good results shown in Figure 7 for a demand of q1 = q2 = 540veh/h result from a rela-

tively short cycle time of 60s that was chosen for the reference control. For the MPC case, the 

average cycle time is clearly higher and therefore the result would be more comparable if a 

cycle time of 80s was used for the reference control. 

For the sake of completeness, Figure 10 shows the change of the waiting time per vehicle. 

The results are comparable to those given in Figure 7, but as the results differ more between 

the simulation runs, the confidence level is not reached with the number of simulation runs that 

were carried out. 

In summary, the proposed control algorithm leads to promising results under the given as-

sumptions. Especially in scenarios with low and moderate demand, significant improvements 

compared to the chosen reference control are achieved. However, as expected, in cases with 

high demand, significant improvements cannot be achieved.  

 

Figure 10: Change of the waiting time per vehicle compared to the reference control 
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7 OUTLOOK 

The described control method is of theoretic nature and the further directions of research are 

threefold:  

Firstly, the complexity has to be raised in order to cover more realistic designs of intersec-

tions and to offer the possibility for a control with multiple stages. Another increase of com-

plexity worth to investigate is the behavior on stretches or networks where the described 

concept would have to be extended to a decentralized network control. 

Secondly, one reason to choose MPC was the implicit prediction of control actions and traf-

fic states. Thus, a speed advisory system for equipped vehicles is relatively easy to implement 

in order to further reduce the number of stops. To raise the reliability of such information, a 

consolidation of the predicted control inputs should be carried out. First investigations show 

promising results despite the relatively low level of detail of the traffic flow model. A worth-

while step beyond this simple speed advisory system would be the direct consideration and 

optimization of driven speeds and thus, influencing the drivers’ and the traffic signals’ behavior 

at the same time. However, a more complex traffic flow model with multiple speed states would 

be necessary. 

Both of the aforementioned enhancements require an increase in complexity, which leads to 

a higher computational effort. The simulation study that is described in the previous section 

already led to high computation times, exceeding the requirements of a real-time control. There-

fore, as a third point of action, a decrease of calculation times is desirable and could be achieved 

by higher computational power and the ongoing improvements in the field of optimization. 

Those include branch-and-cut algorithms such as ”CPLEX” but also other approaches to solve 

constrained MIQP such as the one described by Potočnik et.al. in [20] that is making use of 

neural networks. 

8 CONCLUSIONS 

In this document, a concept for an adaptive traffic signal control was introduced that relies 

on the technique of model predictive control. Input data from conventional detection as well as 

from equipped vehicles can be considered and fused by making use of a state estimator. A 

simplified traffic flow model of microscopic nature is used for the state estimation as well as 

the model predictive control. With a theoretical scenario, the general proof of the functional 

capability of the proposed approach is given. Especially for low traffic demand the increase in 

flexibility leads to a clear reduction in the number of stops and waiting times when compared 

to an optimized fixed time control. Further research is necessary to bring the theoretic approach 

that it is described in this document to maturity as well as to exploit further potential of coop-

erative systems as it is stated in the outlook. 
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