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Abstract

In the last few decades there has been a great interest on improve-
ment and enhancement of industrial designs in order to reduce
costs and resources. For this reason computer aided engineering
tools are increasingly applied. Numerical shape optimization
automates this design process by use of computational meth-
ods. In this work, novel sensitivity analysis and regularization
methods are developed for node-based shape optimization with
applications to fluid and fluid-structure interaction problems.

In order to deal efficiently with the large number of design vari-
ables, gradient-based optimization methods are chosen and the
sensitivity information is evaluated using the adjoint method.
More precisely, emphasis is given to the adjoint sensitivity of
the fluid-structure interaction problem. The coupled sensitiv-
ity analysis is the only way to achieve exact gradients since
neglecting the interaction can lead to enormous inaccuracies.
This is analyzed and successfully validated through numerical
examples. Solution of the adjoint coupled system is a challenging
task mainly because of the complexity of the coupling operators.
Here, the adjoint problem is solved in a partitioned way similar
to the primal problem and verification of the method shows very
good agreement with finite differences as reference.

Moreover, special attention is given to the shape parametrization
of the design which is decisive for the evolution of the shape. In
this study, a node-based shape description is chosen in which the
shape is described solely by its discretization, in order to have
the widest possible design space. A drawback of node-based
shape optimization is that the noisy sensitivity field results in
non smooth shapes and element distortions. Two methods are
developed to deal with this issue: the Vertex-Morphing and the
In-plane regularization method. The Vertex-Morphing method
is an explicit method which produces smooth designs while
keeping the design features of the initial shape. The In-plane
regularization deals with the mesh irregularities by applying an
artificial stress field on the design mesh and can be used also as
a general purpose mesh smoothing tool.

The overall design chain is presented and the robustness and
accuracy of the methods is shown through the shape optimization
of industrial cases.
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Chapter 1

Motivation and objectives

1.1 Introduction

Optimal shape design receives great attention in aerospace, marine and
automotive industry as well as in architecture and civil engineering. The
aim of optimal shape design is to determine the shape that minimizes
a functional which describes mechanical characteristics of the design.
Nowadays, there is a tendency to automate this design process and
bring the designs to their limits regarding efficiency and performance
in order to reduce costs and resources. This work aims in design
optimization of fluid and fluid-structure interaction problems.

Fluid-structure interaction occurs when an elastic structure interacts
with a fluid flow. The flow exerts a pressure on the structure which
results in a structural deformation. This deformation affects the fluid
flow by changing its boundary. The problem is in general transient and
there are already good tools developed for the analysis and numerical
modeling of such a problem. Among others one can refer to the work
of Farhat et al. [29, 30, 32], Felippa et al. [37], Bletzinger et al.
[43, 72, 109], Wall et al. [42, 73], Lohner et al [76]. Turek et al. [61],
Tezduyar et al. [117, 118], Quarteroni et al. [41], and Degroote [21].
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The problem is in general involved. Apart from the modeling of the
single fields, the exchange of information between the fluid and the
structure, the stability of the overall problem, the treatment of the
discretization and the way that the coupled system is solved are some
challenges in this topic. The problem becomes even more involved when
gradient-based optimization is of interest. In this case the sensitivity
of a function which depends on the coupled state variables is required.
This work investigates such a sensitivity analysis performed in the
adjoint manner.

Observing the optimization workflow from a geometrical point of view,
a key element in this process is the parametrization of the shape.
Inspired from engineering design, Computer Aided Geometric Design
(CAGD) methods have been commonly used to represent the shape for
both structure [13, 27, 68] and fluid optimization problems [62, 104]. In
this instance, the design parameters of the CAD model are the design
variables of the optimization problem which control the shape. These
parameters can be for instance the position of control points in case of
NURBS or morphing boxes. The limited number of design variables
allows for application of zero-order methods like evolutionary strategies
[4] and genetic algorithms [48]. These methods do not require gradient
information and are preferred in early optimization stages. Moreover,
they are the only choice when gradient information is not available.
However a shortcoming of CAD parametrization is that the low number
of design variables restricts the design space and the resulting shape
has always the same geometrical characteristics as the initial one.

This motivates the use of enriched design spaces with larger number of
design variables. In contrast to CAD methods, the node-based shape
optimization approach regards the design space to be as large as possible
by considering the location of each surface point of the discrete design
as a control parameter (design variable). Hence, the discretization of
the design surface is also used to describe the geometry and provides
the vertex coordinates as design variables for the optimization problem.
This method suffers from mesh dependent results and non-smooth
shape derivatives which almost always lead to unphysical and jagged
shapes [89]. This work focuses on the regularization of the problem
by presenting ways to obtain smooth shapes while maintaining mesh
quality.
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In the sequence, the two topics of interest are further introduced.

1.1.1 Adjoint sensitivity for coupled problems

For node-based shape parametrization, zero-order methods are not
suitable due to the large number of design variables. Therefore a
gradient-based algorithm shall be used. In such a case, the evaluation
of the gradient information, i.e. the sensitivity analysis is a crucial
step.

Among others, adjoint methods provide sensitivity values on every
discretization element (cell, point, etc.) almost by the same cost as the
primal problem [64, 112]. While these methods are extensively used
and validated for the sensitivity analysis of structural [11, 50, 121] and
fluid [46, 91, 103] problems, the gradient evaluation with a coupled
problem as a constraint [33, 82, 111] is a relatively new field of research.
The challenge here is the interpretation and understanding of the
monolithic adjoint discrete system. More specifically, this coupled
system has terms which are always computed implicitly in the primal
problem. For the adjoint problem however, one has to derive these
terms, in order to be able to solve the adjoint coupled equations in a
partitioned way.

1.1.2 Regularization for node-based shape
optimization

As mentioned before an issue in node-based optimization is that the
problem is ill-posed and therefore shape and mesh irregularities are
to be expected. For this reason, various projection methods have
been suggested which smooth the shape derivatives or equivalently
the shape variation field. An implicit smoothing method based on
the Sobolev gradient is described in [63, 88, 89]. In this method the
smooth gradients are obtained as a solution of a differential equation
which penalizes the high curvatures of the sensitivity field. It performs
very well and is widely used particularly in aerodynamic shape optimal
design. This implicit smoother can be included in the calculation of the
gradients as pre-conditioner. Furthermore, a method used in structural
problems and proposed in [105] imposes shape and mesh regularity
criteria as constraints to the original optimization problem. In this
way, the mesh and the shape are controlled well, but the complexity
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of the problem is increased. Alternatively, explicit filtering methods
smooth the shape derivative field in a separate computational step
after sensitivity analysis. This type of filter can be implemented easily
for black-box adjoint solvers. These methods have shown success
both in structural optimization [39, 40, 74] as well as in aerodynamic
optimization [116] applications.

The above mentioned methods act only on the “out-of-plane” direction
of each design node. This is because by neglecting the discretization
error, only the normal variations of the surface can change the shape.
However, in discretized surfaces, updating the shape in the normal
direction without considering the tangential direction leads to high
distortion of the surface elements [66, 74, 105]. The quality of the
mesh limits the flexibility in shape deformation, and decreases the
accuracy of the results. Therefore, an “in-plane” regularization step is
also required in combination with the shape derivative filter in order
to ensure the quality of the surface discretization while morphing the
shape [114].

The two procedures described above: the out-of-plane and the in-plane
treatment of the surface can be performed consecutively or simultan-
eously. When applied consecutively, first the sensitivity smoothing
is done, and the geometry is updated. After that and in a separate
step, the mesh of the design surface is corrected with the In-plane
regularization method described in [114].

Alternatively, these mechanisms can be combined in one simultaneous
update step including both normal and tangential directions. This is
the chosen strategy in the method developed in this work. The method
is called Vertex-Morhing, and is a node-based shape parametrization
technique presented in [56]. The method controls the normal and
tangent update directions synchronously by introducing a control field
which is discretized with as many nodes as of the geometry space.
This field is linked to the geometry by a linear map. This definition
bridges the idea of node-based and CAD-based shape optimization,
since the role of the discretized control field is identical to the one of
the control points in CAD parametrization. The main difference is that
here, much more control points are used and moreover the location
of the control points coincides with the surface points. Additionally,
when a perfect conservation of the mesh quality is desired e.g. very
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large shape variations, the developed implicit In-plane regularization
[114] is applied.

1.2 Objectives of the present work

The aim of this thesis is to develop a partitioned methodology for
node-based shape optimization of the fluid-structure interaction (FSI)
problem. The focus is on the following crucial aspects: first, the
coupled sensitivity analysis for FSI and second, the regularization
methods needed for such node-based optimization. Further on, the
various methods are merged into a modular optimization framework
capable of optimizing the shape of industrial complex geometries.

More precisely:

e The monolithic formulation of the adjoint coupled problem is
presented and from this a partitioned problem is derived. Focus
is on the definition of the various terms of the monolithic system
and the formulation of the partitioned single field equations. The
verification of the obtained sensitivities is also of interest.

o The Vertex-Morphing method is shown in order to treat the noisy
design updates and further focus is given to the In-plane regular-
ization method used for maintaining a good quality discretization
during optimization.

The present thesis is organized as follows:

Chapter 2 examines how the sensitivity analysis can be performed for
structure, fluid and coupled problems. The sensitivity analysis is the
kernel of every gradient-based optimization problem. In this work the
sensitivity analysis is performed using the adjoint method. For the
structural problem the semi-analytical sensitivity analysis is explored
[11] while for the fluid problem the continuous adjoint method is chosen
[96]. In the coupled fluid-structure interaction problem the two single
field formulations are combined and the adjoint FSI problem is solved
in a partitioned way similar to the solution of the primal problem.
Emphasis is given to the construction of the partitioned solution out
of the monolithic FSI problem.
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Having an accurate sensitivity field, a gradient-based node-based shape
optimization can be performed and Chapter 3 provides all the necessary
regularization methods required for this task. More precisely, the
Vertex-Morphing method is exploited for regularization of the problem.
Additionally, the In-plane regularization method is presented in the
sequence to provide further improvement on the surface mesh required
for applications with a very large shape deformation. Various In-plane
regularization cases are presented which establish the method as a
general mesh smoothing and mesh refining tool.

Chapter 4 presents two CFD shape optimization cases where the afore-
mentioned regularization methods are successfully applied. Here, at-
tention is given to the performance of the Vertex-Morphing and In-
plane regularization methods in large scale industrial problems.

In Chapter 5, the adjoint sensitivity analysis and the presented regular-
ization methods are combined for the solution of a three-dimensional
shape optimization problem of a flexible pipe. First, the computed
gradients of the coupled problem are verified with finite differences.
Furthermore, the importance of a coupled sensitivity analysis is outlined
by comparing it with a sensitivity calculation in which the structure
is considered to be rigid. As it will be shown, the sensitivities are
dramatically different proving that performing shape optimization on
a flexible pipe by considering it rigid might lead the optimizer even in
different directions. In the sequence, the computed sensitivities are used
in the shape optimization of the flexible part. Here, the regularization
methods described in Chapter 3 are successfully applied.

In Chapter 6 the overall summary of the work is given. Moreover,
directions for further research are addressed.



Chapter 2

Sensitivity analysis

2.1 Introduction

In general, sensitivity analysis determines the impact that variations
of the input parameters of a system have on its output parameters.
Sensitivity analysis plays an important role in uncertainty quantifica-
tion, error analysis, inverse and identification studies and numerical
optimization. In the context of gradient-based shape optimization it is
used to assess the gradients of the response functions i.e. objectives
and constraints which drive the optimization.

For steady state problems the response function J depends on the
design variable s and on the response variable w. In sequence, however,
the response variable w depends on the design variable s as well,
ie. J = J(s,w(s)). In parallel, the system is governed by a set of
differential equations R(s,w(s)) = 0, with R(s,w(s)) = 0 being its
discrete form, where now s = [s1,..,8,] and w = [wy, .., w,,] are the
vector of the design variable and state variable, respectively. n and
m is the number of design and state variables, respectively. The goal
of sensitivity analysis in this case is to determine the total derivative
dJ/ds.
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A simple way to compute this derivative is with the finite difference
approach. For instance, a first order approximation using this approach
is

dJ J(SZ + Asl) — J(SZ)

@5, As, + o(As;). (2.1)

Resulting from a Taylor series expansion, the truncation error of this
approximation is of order o(As;) and thus, the error decreases as
the finite difference step As; is decreasing. However, subtracting the
floating point numbers J(s; + As;) and J(s;) introduces a cancellation
error which increases as the step As; is decreasing. Consequently, there
is an optimal step size that gives the least error. This fact should be
considered during evaluation of gradients with finite differences and an
additional effort should be made to estimate the optimal step size.

Furthermore, the calculation of d.J/ds using the forward finite difference
scheme of equation (2.1) requires n + 1 evaluations of the response func-
tion J which in turns involves n+1 solutions of the system R(s, w) = 0.
This is the main reason why finite differences are not preferred for
problems with many design variables even though their implementation
is straightforward and can be used even with black-box solvers.

In contrast to the finite difference method, analytical methods can
offer more efficient and reliable solutions to the problem. Applying
the chain rule, the total derivative of the response with respect to the
design variable is

dJ 0J 0Jdw

L2y 2R 2.2

ds Os + ow ds (2:2)
Usually, the derivatives involving the response function J can be com-
puted analytically. Furthermore, the derivative of the state variables
with respect to the design variables, dw/ds can be evaluated by apply-
ing the chain rule to the derivative of the state equation R (s, w(s)) =0

dR  OR  ORdw

= =0, 2.
ds Os + ow ds (23)

Substituting equation (2.3) to (2.2) and assuming that OR /0w is not

singular results
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dJ 9J 0JOR'OR

ds  9s Owaw Os’
In the above equation, 0R /0w is the Jacobian matrix of the problem.
According to the sequence that the evaluations are performed in this
equation two methods can be distinguished.

(2.4)

In the direct approach, the evaluations in equation (2.4) are carried
out from right to left, which means that first the term

OR'OR
— = 2.5
ow  Os (2:5)
is determined as the solution of the following system
OR dw OR
— = ——. 2.
ow ds Js (2:6)

The right-hand side of this equation consists of n columns which means
that n linear system solutions are required. After solution of this system
and substitution of dw/ds in equation (2.4), n vector multiplications
of size m are needed.

In contrast, in the adjoint approach, the evaluations are carried out
from left to right and the following, so called dual, system is solved
T T
9R a= _o . (2.7)
ow ow
The parameter « is the adjoint variable of the problem. As it can
be observed from equation (2.7), the Jacobian of the dual problem
is the transpose of the Jacobian of the original or primal problem
while the right-hand side of the system is dependent on the number
of response functions. In case that the sensitivity of more responses
is needed, the system (2.7) needs to be solved as many times as the
number of responses. Finally, the adjoint variable is substituted back
into equation (2.4),
dJ 0J 70R
— = ta —.
ds Os Os

Here, n vector multiplications of size m are required.

(2.8)

From all the above it is clear that the choice between direct and adjoint
approach depends on the number of design variables and responses.
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In problems where the number of responses is more than the number
of design variables the discrete approach is preferable. Otherwise the
adjoint method is more efficient. In this work the adjoint method is
preferred since the number of design variables is vastly more than the
number of responses.

Alternatively, the adjoint variables can be identified as the Lagrange
multipliers related to the state equations as equality constraints of an
extended problem where the design and the state variables are treated
independently.

Derivation of the adjoint equations can be done by one of the following
approaches: In the discrete approach, the adjoint equation is derived
using a discrete state equation, which is the formulation presented in
this section. Contrary, in the continuous approach the adjoint equation
is formulated upon the linearized primal continuous equation and then
primal and adjoint equations are discretized separately. According
to the application and the existing numerical implementation of the
primal problem one or the other method can be preferred. Moreover, it
is noteworthy that the discrete equation systems produced by the con-
tinuous and discrete approaches are identical only if the discretization
schemes used for discretizing the continuous equations match the ones
used for the primal discrete equation and the derived discrete adjoint
equation. By all means, by refining the discretization regardless of the
schemes, the two approaches tend to the same solution.

A review of the methods used for the sensitivity analysis for linear
elastic structural problems can be found in [122] and the references
therein. In these problems, the equation of equilibrium of the structure
acts as an equality constraint and the response function depends on the
structural displacements. Among the various continuous [17, 50] and
discrete [121] methods, the discrete method of semi-analytic sensitivity
analysis is one of the most favored because of its efficiency and simplicity
in implementation. Within this method the derivatives of element data
are approximated with finite differences which introduces a truncation
and a cancellation error in the computation of elemental derivatives.
These errors are amplified when these derivatives are used for further
computations [6]. There exist various methods to eliminate these errors
among which the most significant can be found in [11, 16, 77].

10
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Concerning compressible and incompressible flow problems the basic
formulation can be found in [46] and a review of the various adjoint
implementations can be found in [115]. Unlike the structural problem,
for the fluid problem there is an ongoing discussion on the advantages
and disadvantages of the various discrete and continuous methods [91].
Furthermore, even though the adjoint equations where derived initially
for the potential, Euler and compressible Navier-stokes equations [5,
64, 103] there is a great work done also for incompressible flows both
on the field of continuous [96, 112, 132] and discrete [92, 93] adjoints.

In multidisciplinary sensitivity analysis the objective is to evaluate the
gradient of a system’s response which is governed by a set of coupled
equations describing the interaction of the physical fields involved.
The analytical formulation of such a problem is presented in [111].
Generally, in this field the bibliography is significantly less but there
are indeed some interesting publications in the field of steady-state
sensitivity analysis for a fluid-structure interaction problem. Among
others one can refer to the work of Maute et al. [84, 85] who presented
a three-field formulation for the adjoint problem similar to the solution
of the primal problem presented in [30] using the discrete adjoint
method for both the structure and the fluid field. Moreover, Martins
et al. [82, 83] combined the continuous adjoint method on the fluid
side with the discrete on the structural side giving emphasis on the
construction of the different components of the Jacobian matrix of
the problem. Fazzolari et al. in [33] presents the coupled problem
in its continuous form and applies the coupled terms as boundary
conditions to the continuous equations. An approximation of the fully
nonlinear Jacobian of the coupled problem is shown in [78]. Finally, a
one-dimensional demonstration of the time-dependent problem and the
physical interpretation of the adjoint problem compared to the primal
one is introduced in [24].

In the present work, the discrete formulation is used for the structural
problem and the continuous formulation is used for the fluid one. A
combination of the two approaches is applied for the sensitivity analysis
of a coupled fluid-structure interaction problem. In what follows, the
single-field adjoint sensitivity formulations for the structural and fluid
problems are presented in Section 2.2. More precisely, in Section 2.2.1
the semi-analytic sensitivity analysis for a linear structural problem is
described and in Section 2.2.2 the continuous adjoint equations for the

11
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steady-state incompressible Navier-Stokes are shown. Using these two
single field adjoint equations the coupled adjoint sensitivity analysis is
presented in Section 2.3.

2.2 Single-field adjoint sensitivity

In the following sections the single field sensitivity analysis formulation
is presented for the structural and fluid problem, in Sections 2.2.1
and 2.2.2, respectively. This formulation is used in Section 2.3 to
demonstrate the sensitivity analysis for a steady-state coupled fluid-
structure interaction problem.

2.2.1 Structural adjoint sensitivity

Hereafter, the equilibrium equations for a linear elastic structure are
presented in their continuous and discrete form. Based on the discrete
form, the sensitivities for a general response function are derived using
the adjoint method.

In what follows, a body of volume €25 with a smooth boundary I’y is
considered. On this body a prescribed body force b; per unit volume
defined on Q) as well as a traction ¢; on each boundary surface s, CTs
is applied. On the remaining part of the surface I's, a displacement 4,
is prescribed. The displacement u; on €2 that the body will exhibit
under the above conditions is of interest.

Furthemore, let € be the infinitesimal strain tensor defined as

1 /0u; Ouj

and o;; be the stress tensor related to the strain tensor through the
constitutive equation

0ij = Fijri€rr. (2.10)

The forth order tensor Ejjx; is the elasticity tensor satisfying major
and minor symmetries as well as positive-definiteness.

The strong form of the boundary-value problem presented above is the

12
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following
Ly
u; =4; only, (211)
0455 = tAi on Pst

The derivation of the above equation can be found in [35, 60, 120]. The
discrete form of the above problem is the following

R(s,u) = K(s)u(s) — f(s) = 0, (2.12)

considering that boundary conditions are already incorporated into the
system. Here, the state variable w is the structural displacement u.
The matrix K is the stiffness matrix of the problem and depends on
the design variable s. The vector f is the external loading defined on
each degree of freedom and depends also in many cases on the design
variable s.

The response function in such a case depends also on the structural
displacements,
J = J(s,u(s)) (2.13)

and for instance it can be the strain energy, the displacement or the
stress at a point, the mass or the volume of the structure or the
eigenfrequency.

According to equation (2.7) the adjoint system under these considera-
tions is .
oJ
Kla=-—"- . 2.14
Tu (2.14)
After evaluation of the adjoint displacements, equation (2.8) gives the

total gradient of the response

4 dJ

oY 7Y Tp*
=S +aPr, (2.15)
where oK of

is the Pseudo load “vector”. Each column of this matrix represents a
pseudo load case defined for each design variable s;,i =1...n.

13
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Consequently, evaluation of the total derivative of the response funtion
requires solution of the primal equation (2.12), solution of the adjoint
equation (2.14) and evaluation of (2.15). Since the response function
is given usually analytically the partial derivatives of the response
function can be computed straightforward. The involved parts to be
evaluated are the terms 0K /0s and 0f /0s. Specially, the term 0K /Js
requires an assembly of the stiffness matrix for each design variable.
In semi-analytic sensitivity analysis these quantities are computed
with finite differences on the element level and such a costly assembly
is avoided. For instance, for the evaluation of the derivative of the
stiffness matrix K with respect to the design variable s; a forward finite
difference scheme could be used

OK _ K(u,s; +As) — K(u,s;)
881' - ASZ‘

. (2.17)

The semi-analytic method overcomes the element specific cumbersome
derivations required for the evaluation of the derivative of the stiffness
matrix. This makes the sensitivity evaluation robust and independent
of the element formulation. However, this analysis shows high trunca-
tion errors when applied to structural problems modeled with finite
elements [6]. The exact semi-analytic sensitivity analysis overcomes
these accuracy problems by introducing correction factors based on
product spaces of rigid body rotation vectors [11].

2.2.2 Fluid adjoint sensitivity

In what follows, the derivation of the continuous adjoint Navier-Stokes
equations and the formulation of the gradients with respect to the
design shape are presented. The derivation of the adjoint equations
follows the one by Othmer [96, 98], Stiick [115] and Soto and Lohner
[112, 113].

After presenting the primal equations and the response function in
their integral form, the derivation is done by applying the augmen-
ted Lagrangian method. Using this method, the adjoint problem of
the Navier-Stokes equations is formulated and respective boundary
conditions are derived in the subsequent sections. Finally, a surface for-
mulation based on [96] for computing shape design gradients, without
a dependence on volume mesh sensitivities (which is one of the main

14
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advantages of the continuous adjoint method over the discrete one) is
covered in the last section.

Navier-Stokes equation and response function

The steady incompressible Navies-Stokes state equations together with
the conservation of mass describe the motion of a Newtonian incom-
pressible fluid as follows

R,=v-Vv+Vp—V - 2ve(v) =0

(2.18)
R,=V-v=0,

with the first and second equation being the momentum and continuity
equation, respectively. Variable v is the fluid velocity, p denotes the
density-normalized pressure with units kg m=! s72 /kg m~3 = m?/s?,
v the kinematic viscosity and

1
e(v) = i(Vv + (Vo)1) (2.19)
the symmetric strain rate tensor.

Equation (2.18) is nonlinear because of the convective term v- Vo of the
momentum equation. Moreover, there is no explicit transport equation
for the pressure which appears only on the momentum equation which is
a transport equation for the velocity. An idea to overcome this problem
is to find an equation for the pressure which makes the velocity field
solenoidal. For this, an additional equation which links the pressure
to the velocities is required. This equation is the Poisson equation
for the pressure and is solved iteratively together with the momentum
equation. In this way the velocity field is projected through the Poisson
equation in such a way which satisfies continuity. Among the various
projection methods, the SIMPLE algorithm is applied in this work and
it is described in detail in Appendix B.1.

The response functional depends on the state variables (v,p) and on
the design variable s. It is integrated over the fluid domain €2 and the
boundary I' = 052 as follows

J = J(S,'U,p) = JF(S7v7p) + JQ(S,'U,p)
. , (2.20)
Z/erF+/JQdQ-
T Q

15
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A typical response function used for internal flow problems is the power
loss or power dissipation function described in [96] as

J = —/F(p+ %vQ)v ‘n, (2.21)

where n is the outward normal vector to the boundary I'.

A force component like drag or lift can be also defined as response
function and is presented in [113] as

J = —/S'n - (2ue(v) — pI) - d, (2.22)

where d is the direction of the force and S is the surface that the
force is applied. By definition these response functions are defined on
the boundary of the fluid domain which as it is shown in the sequel,
results only in contributions to the boundary conditions of the adjoint
equations. The flow uniformity at the outlet and a target velocity
distribution can be further examples of response functions.

The Lagrange method

In order to calculate the sensitivities of the response function with
respect to the design variables, the Lagrange method is applied to the
continuous problem presented in the previous section. Initially, the
response function is augmented as follows

L:J+/\II~R. (2.23)
Q

The variable ¥ = (1,,,) is the continuous adjoint variable of the
problem which consists of the adjoint velocity v, and the adjoint
pressure 1, while R = (R,, R,) is the vector of the momentum and
continuity equations.

Variation of L = L(s,v,p) yields to

SL = 6Ly + 6Ly + 0L,
oJ OR

oJ OR o.J OR
- v 2 T - ) sp.
+(3v+/9 av)év+(3p+/sz ﬁp)ép

(2.24)
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2.2. Single-field adjoint sensitivity

Choosing ¥ = (1), ¢p) such that

aJ OR, R,
(87’04_ . ov + pr' ov )51)

o.J R, OR, .
+(7+ '(»bv' ap +/Q¢;D'ap)6p 0,

8Ly + 0L, =
(2.25)

the sensitivity of the response functional with respect to the design
variable can be computed as

5L 77(; +/\1: —53 (2.26)

Equation (2.25) initiates the continuous adjoint problem and its re-
spective boundary conditions. Computing the adjoint variables based
n (2.25), the surface sensitivities of equation (2.26) can be evaluated.

Variation of the Navier-Stokes equations

For setting up the adjoint problem of equation (2.25) the variation of the
Navier-Stokes equations with respect to the state variables is required.
Taking the variation of the momentum and continuity equations with
respect to the velocity and pressure yields respectively
dpRy =0v-Vv+v-Viv—V - 2ve(dv),
0y Ry, =V - dv,
0p Ry = Vip,
o0pRy, = 0.

(2.27)

Here, the variation of the kinematic viscosity v is neglected. This is
indeed true as the viscosity of the fluid in certain temperatures remains
constant. However, in turbulence modeling based on the eddy viscosity
assumption v represents both the molecular viscosity and the sub-grid
turbulence effects. In that case, assuming the variation of the kinematic
viscosity equal to zero brings inconsistency to the adjoint flow problem
compared to the primal one. This assumption is known as the frozen
turbulence assumption.

Adjoint Navier-Stokes equations

Substituting the variations of the Navier-Stokes equations of the previ-
ous section to the adjoint problem of equation (2.25) yields to
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2. Sensitivity analysis

—5v+/1,b,,~(5v Vo) /1,[1,,~vV5v)
—/ ¢v-(V~2I/5(5v))+/ YpV - dv (2.28)

—5p+/1,bv Vép =0.

In order to separate the variations, integration by parts and the diver-
gence theorem which is described in Appendix A is applied on each
integral term of equation (2.28) as follows

[ 50 50) = [ v maty ) = [ 50 (V-0

(2.29a)

o - 950) = [ wom)Go-w) = [ (0o Twn) -5,
(2.29D)

/Q’l,[)v (V- 2ue(dv)) = / 201, - £(0V) - — /F(Zun - &(thy )0V
/(51} (2ve(1hy))), (2.29¢)
/Qz/JpV S = Aév T /Q(Sv - Vb, (2.29d)
[ vio= [ mip— [ 590, (2200)

The first integration by part presented in equation (2.29a) is not really
crucial since the term depends only on the variation of the velocity
d0v and not on any gradient of it. This idea was successfully applied
by Stiick [115]. For the integration by parts of this term the relation
V - dv = 0, derived in the previous section, is applied and for the
relation in (2.29b) the continuity equation V - v = 0 is used. It should
be noted that (v-V)v =v - V.

Substituting (2.29) to (2.28) and separating the domain integrals from
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2.2. Single-field adjoint sensitivity

the boundary integrals results in

/(7V1,[Jv"U*’U'VI/JU*V‘QVE(T/JU)*V'L/)p*F%)'(;’U
o v
dja
V- hy + —=22)6
+/Q( Py + 8p)p

—l—/(n('z,bv ) + (V- n)y + 2vn - e(hy) + Ypn + %j—r) -dv (2.30)
r v

—/ 2y -e(dv) - m
r
Jr
+/ Py -n+ 5=)ip=0.
1"< v ap)
This equation has to be valid for every dv and dp. Consequently,

the domain integrals give the adjoint equations of the steady-state
incompressible Navier-Stokes for a general response function

—Vpy - v —v - Vb, =V - 2ve(1hy) + Vo, — 88]79
iy v (2.31)
Vo tpy = 220p,
dp

and from the boundary integrals the adjoint boundary conditions are
derived. In the special case that the response function is only a surface
integral over the domain boundary, the adjoint equation is independent
of the response. Then for evaluation of the adjoint variables of several
response functions only a modification in the boundary conditions is
needed.

The derived adjoint system is linear and has a similar structure to
the primal state. According to Lohner [113] the term v - Vb, can be
neglected resulting to a first order linearization of the Navier-Stokes
problem. Then the adjoint problem has the same convection-diffusion
behavior as the primal one with the difference that the adjoint velocity
is convected upstream compared to the primal flow. Even though the
adjoint problem is linear, the problem caused by the lack of an explicit
transport equation for the pressure remains, as already described in
Section 2.2.2. For this reason, a SIMPLE-based algorithm is used again
for the solution of the adjoint problem. The procedure is described in
detail in Appendix B.2.
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2. Sensitivity analysis

Adjoint Boundary conditions

In this section the adjoint boundary conditions will be shown for the
power loss and the total force at a specific direction. By definition, these
response functions are defined on the boundary of the fluid domain
which results only in contributions to the boundary conditions of the
adjoint equations as described before.

In the case of the power loss response function (2.21), the variation
with respect to the flow variables is

0J aJ . 1 4
a—v5v+a—p5p——/r[(p+ v )n—(v-n)’u}év—/r'u nop (2.32)

and if the response function is the force at a defined direction (2.22)
then

oJ oJ
8—0(51) + a—pép = —/Sn 2ue(dv) - d + /Sn - ddp. (2.33)

Furthermore, the boundary terms of equation (2.30) from which the
boundary conditions are derived are the following

/F (o - 0) (- 0) + (50 o) (v - 1) + 20(60 - (3h)) -

— 201y - €(0V) -+ Ypdv -+ Pudp - (2.34)
djr Jr
+ 37 ov + Fpép]

At the inlet T';,, and wall ', boundaries the velocity v is prescribed and
consequently v = 0. Moreover a zero-gradient boundary condition is
applied for the pressure p. Concerning the force response functional, it
is enough to set

P, =0o0nTy,, \ S (2.35)

and
¥, =—don S. (2.36)

In the case of the power loss response function as shown in [96], it
holds that
P, =v on Fin,w~ (237)
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2.2. Single-field adjoint sensitivity

At the outlet I'y,¢, for the primal equations, the pressure and the
normal gradient of the velocity are set to zero. For the force in a
specific direction response setting

Py =0 on T'yyy (2.38)

fulfills the boundary conditions of equation (2.34). Concerning the
power dissipation, according to Othmer [96] by decomposition of (2.34)
into tangential and normal components the boundary condition is as
follows
Lo 1 2
¢p:¢v"U+(1/)v'n)(v'n)"’_’/(n'v)(wv'n)_iv —5(’0'77,) )
0=(v- n)(wvt —v) +v(n- V)"pvt,
(2.39)
where v; and 1,, are the tangential components of the velocity and
the adjoint velocity, respectively.

Adjoint Surface Sensitivities

After computing the adjoint fields 1), and 1), the sensitivity of the
response function can be evaluated from equation (2.26). This evalu-
ation requires the variation of the Navier-Stokes equation with respect
to the design variable s which is related to the variation of the Navier-
Stokes equations with respect to the state variables through the total
variation:

OR = 5 b8+ 5 0u+ 5 bp (2.40)

The last two terms of the above equation appear in equation (2.25)
which after the integration by parts presented in (2.29) gives equation
(2.30). So, substituting these two terms in (2.26) and applying the
same ideas, the sensitivity equation is

OR OR
— . —Hv v.—§
/sz 0 Q Op P
g—jés — /(n(d;v -0) + (V- n)Py + 2vn - e(y) + Ypn) - dv

/2mpv e(dv) /¢v nop = 0.

(2.41)
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2. Sensitivity analysis

The volume integrals disappear because the adjoint fields satisfy the
adjoint Navier-Stokes equations of (2.31) with the assumption that the
objective function is defined only on the fluid boundary. However, the
variations of v and p need to be expressed as a variation of the design
variable s. Using a first order Taylor series expansion it can be shown
[59, 89] that

ov = —nVvds and dp = —nVpds. (2.42)

Substituting (2.42) into (2.41) results to an expression with boundary
integral depending on the variation ds. Since this variation is zero
everywhere except on the wall, the boundary integrals of (2.41) restrict
on this boundary. Furthermore, 1, = 0 because of the boundary
conditions derived in the previous section. All the above lead to the
following expression for the sensitivity

oL 0J
g SR 2wn - (n- . 2.4
L et ) (Ve (249
Further simplifications detailed in [96] lead to the final expression for
the surface sensitivities

0L

F —Av(n - V)hy, - (- V)vy, (2.44)

with A the area influenced by the movement of the design variable s.

2.3 Coupled adjoint sensitivity

In this section the sensitivity analysis for a fluid-structure interaction
problem is presented and the respective formulation is derived. First
the primal problem is discussed and then its adjoint form is shown.
Finally, the evaluation of the coupled sensitivities is presented.

2.3.1 Steady-state fluid-structure interaction

When a steady incompressible Newtonian fluid defined in €2 interacts
with an elastic structure defined in €2, the equilibrium equations of
both fields should be satisfied, i.e.

(2.45)
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2.3. Coupled adjoint sensitivity

where S(s,w(s)) = 0 is the structural response of equation (2.12)
and F(s,w(s)) = (M(s,w(s)),C(s,w(s))) are the momentum and
continuity equations (2.18) represented here in their discrete form. The
fluid problem in each equilibrium state should be set in the unknown
domain defined by the displacement of the deformed structure. The
state variable w = (u, v, p) of such a problem is the vector structural
displacements as well as the fluid velocities and pressures. The boundary
conditions of such a problem are inherited from the single field problems
at 0€) and 00y, respectively with the additional condition that

os:n=—0f-n on 00, NONy. (2.46)

For a mathematical definition of the steay-state fluid structure interac-
tion problem as well as the existence of a smooth solution the reader
can refer to [49].

In such a problem the response function J can be fluid or structural
related, so J = J(s,w(s)). The problem is nonlinear and it is often
solved with the Newton-Raphson method. So, linearization of equation
(2.45) around an equilibrium point or the previous iteration k results
to a linear system of equations

OF  OF -

a1 A ) F ) ’
d(v,p) Ou v P - (vt P ) , (2.47)
0S 0S
a(V, p) % Auk S(Vk,pk,uk)

with A(v,p)r = (V,pP)k+1 — (Vv,p)r and Aup = ugy; — ug. The
matrices in the main diagonal of equation (2.47) are the Jacobian
matrices of the single-field problems and the off-diagonal terms are
responsible for the coupling of the two fields, evaluated at iteration k.

The above problem can be solved in a monolithic manner as one system
of nonlinear equations [41, 44, 53, 57, 117, 118] or in a partitioned
way by splitting it into two subsystems which interact with each other
[30, 37, 73, 76, 101, 102, 124, 131].

When the problem is solved in a partitioned manner and there is a
significant interaction of the two fields, the Gauss-Seidel loop between
the two fields converges slowly and in many cases does not converge
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2. Sensitivity analysis

at all. For this problem many algorithms have been developed which
stabilize and accelerate the problem. The Aitken method was one of
the first methods developed for this reason [61, 90] and among all, the
interface GMRES and the interface quasi-Newton methods [22, 23]
have shown great performance in partitioned problems using black-box
field solvers.

Another aspect in the fluid-structure interaction problem is the update
of the fluid mesh during the fluid-structure interaction simulations.
Usually, during an FSI simulation the structure is described in a Lag-
rangian way while the fluid is described using the Eulerian description.
In the Langrangian description the node of the computational domain
is linked to a material point during the computation while in the Eu-
lerian description the material particles are moving through a fixed
computational grid. When deformations of the common boundary of
the two fields occur like in a fluid-structure interaction problem the
disretizations of both fields should be adapted in a way which retains
the quality of the computation. Usually this adaptation is essential
in the fluid fixed Eulerian grid, which mesh is usually more prone to
distortions. The Arbitrary Lagrangian-Eulerian (ALE) formulation
combines the Lagrangian and the Eulerian formulation by keeping their
best features [25, 55] and allows the mesh to move arbitrarily with its
own velocity. However, the ALE description requires a mesh-update
procedure. The various update procedures that are commonly used are
discussed in Section 3.4.3 of the next chapter.

Nevertheless, the mesh update procedures are in general limited to
relatively small shape changes and result to meshes with bad element
quality when the deformations or rotations of the structural boundary
are getting large. In these cases the fixed-grid methods appear to
give more reliable results. In this class of problems the fluid remains
fixed while the deforming structural boundary is not conforming the
fluid domain. The immersed boundary method [28, 87, 100] and the
fictitious domain method [47] are the most prominent among this class
of problems. There are also applications which combine the ALE
method with the fixed-grid approach [127].

In this work, the fluid-structure interaction problem is solved in a par-
titioned way. Moreover, since the problem is steady, the fluid-structure
interaction boundary has zero velocity and the ALE adaptation in the
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2.3. Coupled adjoint sensitivity

Navier-Stokes equations is not required. However, the methods used for
the mesh update in ALE computations are applied in order to correct
the mesh in each nonlinear fluid-structure interaction iteration.

2.3.2 An adjoint fluid-structure interaction

In this section the adjoint system of the aforementioned steady fluid-
structure interaction problem is derived. The primal variables w =
(v, p,u) are the velocities and pressures of the fluid and the structural
displacements. The response function J of such a problem can be fluid
and/or structure related, so J = J(s,w(s)). According to (2.7), the
adjoint system of such a problem is

T
OF OF oJ
d(v,p) Ou V) _ | 9(v,p) ] (2.48)
oS oS oJ
d(v,p) Ou Yu du

The unkowns of the above problem are the vector of adjoint velocity and
pressure P, ) and the adjoint displacement ,,. The right hand side
consists of the partial derivatives of the response function with respect
to the state variable w and for the individual fields its evaluation can
be done analytically or with finite differences as described in Sections
2.2.1 and 2.2.2.

Concerning the Jacobian matrix of the problem, its diagonal compon-
ents OF/9(v,p) and JS/0u are the Jacobian matrices of the single
fields. Assuming that the fluid flow is as described in Section 2.58
and is evaluated with finite volumes with one unknown per cell for the
pressure and one for each velocity component, the matrix OF /9(v, p)
is of size 4N, where N, is the number of cells. The structural problem
is solved with finite elements and its stiffness matrix is of size Ngoys
which is the number of degrees of freedom per node times the number
of nodes. The off-diagonal components of the Jacobian matrix are the
coupling components of the system showing how the residual equation
of a single field is changing by changing the state of the other field.
In the sequence, these coupling terms are discussed and the way to
evaluate them is described.
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2. Sensitivity analysis

The change of the structural residual at each degree of freedom of the
structure by varying the velocity and pressure of the flow is described
by the matrix 9S/0(v, p) which is of size Ngofs X 4N.. Since a change
of the velocity field does not have a direct effect on the structural
residual S = K(s)u(s) — f(s, p), there is no direct dependence of S on
the fluid velocities. So,

oS
5 =0 (2.49)

Considering that the stiffness matrix and the displacement vector do
not relate to a change of the pressure field, the only direct dependence
of the structural equation to the fluid state variables is through the force
vector f(s,p), representing the total forces applied on the structure.
The total force is the sum of all external forces applied on the structure,
like self weight and the forces applied from the fluid. The later ones
are evaluated by interpolating the surface pressure field exerted by
the fluid on the structural nodes and this interpolation rule gives the
direct relation between forces and pressures. Numerically, taking a
zero-gradient boundary condition for the pressure on the design surface,
only the pressures of the adjacent cells to the design surface have
non-zero interpolation coefficients and contribute to the interpolation
of their own nodes. In case of non-conforming meshes the interpolation
rule relating the two meshes has also to be taken into account.

For the simple 2-dimensional case of figure 2.1 the force f3 can be
computed by the following interpolation scheme

1 1
f3 = §A2P2 + §A3P37 (2.50)
then the partial derivative of f3 with respect to ps would simply be
1/2A,.
As a result, by separating the domain velocities and pressures from the

boundary ones and the boundary degrees of freedom of the structure
from the volume ones, the matrix 9S/9(v, p) can be further simplified
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2.3. Coupled adjoint sensitivity

Figure 2.1: A simple 2-dimensional fluid mesh.

as
AN,, 4N,. 4N, AN,
os Naofsr | O Cs B 0 0 Cs,]
o(v,p) Niofsq| O 0 0 0

(2.51)
As described with the simple 2-dimensional example the above matrix
is non-zero only for the entities which relate the boundary degrees of
freedom of the structure and the pressures of the cells of the boundary
I' = 0Q, N 0. For linear problems, where the integration is done on
the initial undeformed surface, the matrix Cg, is constant during the
primal and adjoint state since it depends only on the initial geometry.

The off-diagonal term OF /Ju describes the change of the flow equations
caused by a change of the structural displacements and its size is
4Nc X Ndofs,

Ndofs
3N, oM
oF ou 959
ou oc |- (2:52)
N, —-—
ou

The partial derivatives of the momentum and continuity equations
with respect to the structural displacements can be calculated with a
forward finite difference scheme as follows

8M(s,u,v,p) M(S’u + Auvvap) — M(S,u,v,p)

Bu ~ Au (2.53)
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GC(S, u, v, p) ~ C(S, u—+ Au7 Vv, p) - C(S7 u,v, p)
Ou - Au

. (2.54)

The momentum and continuity equations, M and C, are zero at
(s,u,v,p) since at this point the system is in equilibrium. For the
evaluation of the equations at the point (s,u + Au,v,p) no addi-
tional fluid solution is required and the residual change is evaluated
for the disturbed geometry while the velocity v and pressure p remain
constant.

Alternatively, the term OF /Ou is possible to be calculated analytically
if the fluid code is available. In [1] the term is decomposed as follows

oF _ 00X, 255)
Ju 0X Ou

where X is the volume mesh. The first term of the right-hand side of
(2.55) is evaluated in [128] with matrix-vector multiplications via auto-
matic differentiation or an analytic differentiation of the Navier-Stokes
equations. The second term can be understood only in its discrete form
and expresses the influence that the surface displacement has on the
position of the volume vertices. It is obtained by differentiating the
mesh update tool of the fluid solver.

A change of the volume degrees of freedom of the structure does not
result to a change of the flow equations and for these degrees of freedom
the above derivatives are zero. Moreover, for a linearized problem an
infinitesimal change on the structural boundary will have an effect only
on the boundary cells. In practice, the finite disturbance is applied to
the fluid domain using a mesh motion algorithm. Depending on the
mesh motion algorithm which is used this matrix can be dense or sparse
and respective efficient storage algorithms are required. Regarding only
a local change and by separating again the boundary from the domain
terms the derivative matrix of equation (2.52) results to

i
0 |0
F |
CLI N — (2.56)
au Cf |
M } 0
Cfc}
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2.3. Coupled adjoint sensitivity

where the matrices Cy,, and Cy, are the non-zero entities of the
derivatives of equations (2.53) and (2.54), respectively.

After substitution of equations (2.51) and (2.56) to (2.48) the following
adjoint equation system is obtained

- ; ; - - - - -
| |
o | o Yy, aJ
} } a(vvp)Q
(2 G en
a(V,p)> i i
i cr i 0 Yy, oJ
} s ! a(v7p)F
,,,,,,,,,,, e
]
T
0 i Cf i VP,
77777 (SN aJ
i i ou dur g
01 0 | b,
\ \
L | Il L ]
(2.57)
where the evaluation of the matrices Cy = [ Cy,, Cy, ] and Cg is

described earlier in this section.

Expanding the matrix, the following system of equations are obtained

T 78J 0
OF a(v,

v,p 8J CT
a(V, p)F o

os\” a7 0

(811) ll)u - auF’Q - w(v,p)' (259)
T
Cy
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Equation (2.58) is the discretized form of the adjoint Navier-Stokes
equations (2.31) with the last term being an additional source term
in the equation bringing the structural adjoint influence on the fluid
problem. Moreover, equation (2.59) is the structural adjoint equation
(2.14) with the last term being the additional coupling term showing
the impact of the adjoint flow to the structural problem. As a result
it is enough to evaluate the original single field adjoint problems by
adding the additional source terms.

For the solution of the above system a partitioned approach is followed
and the equations (2.58) and (2.59) are solved iteratively in a staggered
manner. The procedure is described in algorithm (1) and is very similar
to the one followed for the solution of the primal steady state fluid-
structure interaction problem.

Algorithm 1 Solution of the adjoint fluid-structure interaction prob-
lem

1: calculate C}: and C%

2: initialize P{,, ), Py,

3: k=0

4: while (!converged) do

5: predict lbﬁH

6: k=k+1

7: calculate the source term [ (;)T ] 1])’3'H
s

8: calculate 11)?:” 11)) from equation (2.58)

9: calculate the source term [ (%: ] Py p)

10: calculate PF* from equation (2.59)
11: check convergence
12: end while

As described in algorithm (1) starting with a converged fluid-structure
interaction result first the matrices C? and C% are evaluated. These
matrices depend only on the primal state and can be calculated once
before the adjoint fluid-structure interaction loop. After the initializa-
tion of the unknown variables w?vyp), 1|)?l the adjoint fluid-structure
interaction loop begins. In step (5) of algorithm (1) the new adjoint
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2.3. Coupled adjoint sensitivity

displacement is predicted. This prediction can be made using any of
the available algorithms used in fluid-structure interaction problems
presented in [20]. Then the source terms of equations (2.58) and (2.59)
are evaluated and the problem is solved till convergence is reached.

After the evaluation of the adjoint variables (P, Py ;) the sensitiv-
ity of the objective function with respect to the design variable s is
computed according to equation (2.8) as follows

dJ oJ OF oS
When the response function J is not defined on the design boundary
as in the case of power loss defined in (2.21), the first partial derivative
of equation (2.60) is zero. The evaluation of the second term was
described in Section 2.2.2 and in this work the formulation presented
by Othmer [96] is used.

Expanding the last term of the sensitivity in (2.60) gives

[0S _ g (0K 0
Ip“@s_ll)“ os = 0s)” (2.61)

This equation is zero in case the design boundary does not coincide
with the fluid-structure interface. When the two surfaces coincide it
can be evaluated using semi-analytic sensitivity analysis described in
Section 2.12.

2.3.3 The SIMPLE algorithm for the adjoint coupled
problem

In this section the discrete formulation of equation (2.58) is presented
in its continuous form in order to clarify how the additional coupling
term can be added to the continuous adjoint Navier-Stokes equations.
Then the solution procedure for the adjoint Navier-Stokes equation for
the coupled problem is shown.

The discrete adjoint Navier-Stokes equations with the additional coup-
ling term of equation (2.58) can be written in a continuous form in
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Cartesian coordinates as

Oty; My 0 oy
0w 7T Y, T %2%@‘(%) + e, (2.62a)
Mpui
0z, ~ s (2.62b)

For sake of simplicity, a response function defined only on the boundary
of the computational domain is considered. On the above equation, the
additional coupling term appears only in equation (2.62b) since there
is no direct dependence of the structural residual on the fluid velocities,
as already discussed in equation (2.49) of the previous section. The
additional coupling term is constant during the solution of the fluid
equations at each iteration of the adjoint fluid-structure interaction
problem since it is the result of the multiplication of the adjoint struc-
tural displacements with the derivative of the structural residual with
respect to the pressure.

Due to the lack of an explicit adjoint pressure transport equation a
SIMPLE-based algorithm is followed for the numerical solution of the
above equation system. The notation used is the one of Ferziger and
Peric [38] and the solution strategy is similar to the one followed for
the solution of the primal and adjoint single field problems presented
in detail in Appendix B. Starting with a pair of adjoint velocities
and pressures ( U;”_l,w;”’l) which satisfy equation (2.62), the semi-
discretized momentum equation for the adjoint velocities is

b m—1 o U7_n71
ap s+ anh, = —AQ (%) —AQ (W Puy )
l P

i Ox;
(2.63)
The index P is the current index of the velocity while [ refers to its
neighboring nodes for each discretized equation. Here, the second term
of equation (2.62a) is treated explicitly.

As a result the adjoint velocity at node P is

e ~mx AQ (O,
vip = Yoip — —— <1/)p > , (2.64)
P

ap al‘i
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where
~omek 1 mx* 6¢u§n71
Yuip = ap (-Zl:al%i,z - AQ (Ujazvi ) (2.65)

The * symbol on the above equations denotes that the resulting adjoint
velocities will not satisfy equation (2.62b). Thus, a “projection” or
“correction” of this field is required such that

Iy
8581'

— —Cs,d. (2.66)

The pair (,;",1,") which satisfies the above equation should also
satisfy equation (2.64). As a result it holds that

m ~ Mm* AQ a m
Vol'p = Yuoip— — (de ) . (2.67)
P

ap 83%

By substituting equation (2.67) to (2.66), a discrete equation for the
adjoint pressure is obtained

Ox; (Ap ( 3;7),- )P) = ( oz, )P - AQ (Cspd)P. (2.68)

After solution of the above equation the adjoint velocity field which
satisfies (2.66) is evaluated from equation (2.67). The new pair of
adjoint variables (¢,;",;") does not satisfy the momentum equation.
Consequently, an iterative procedure is initiated until the pair satisfies
both equations.
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Chapter 3

Node-based shape
optimization

In this chapter the methods required for regularization of the ill-posed
node-based shape optimization problem are presented. The chapter is
organized as follows: Section 3.1 introduces the optimization problem
in its general form. The various out-of-plane regularization methods
are briefly presented in Section 3.2 and the proposed Vertex-Morphing
method is discussed in Section 3.3. At the end of the chapter (Section
3.4), the implicit In-plane regularization method which is utilized
for retaining the quality of the surface mesh during optimization is
presented.



3. Node-based shape optimization

3.1 The optimization problem

The following discrete optimization problem is considered

J(s,w(s)) — min

st. R(s,w(s) = 0 ,

and g; = gi(s,w)<0 ,Vjel, ., n, (3.1)
hy = hk(S,W) =0 ,Vkel,.,ng
spever < s < PP VsieR,I=1,.,n,

where J is the objective function and s, w the discrete design and state
variables respectively described in the previous chapter. The problem
is constrained by the state equation R, which can be for instance the
equation describing a linear-elastic structure or an incompressible flow.
It can also have additional n; inequality and n; equality constraints
defined as g and h, respectively. The design variables can be also
bounded by lower s'°%" and upper s"PP* bounds.

The methods and derivations presented in this chapter are independent
of the nature of the state equation as well as the type of the objective
function and constraints. Any gradient-based optimization algorithm
can be applied and the gradients can be evaluated as in (2.2.1) for
a linear elastic structural state, or as in (2.2.2) for an incompressble
Newtonian steady-state flow problem, or as in (2.3) for a steady-state
fluid-structure interaction problem using the adjoint method. Generally,
here the control of the design as well as the surface and volume mesh is
discussed independent of the optimization method applied. The goal of
the chapter is to show how the node-based shape during optimization
problem can be regularized from a geometrical perspective and for this
reason the optimization applications will be restricted for simplicity to
unconstrained problems.

3.2 Out-of-plane regularization

The sensitivity field evaluated on the design surface is generally non-
smooth. The non-smooth sensitivity field results in a noisy geometry
update with small scale oscillations. This irregularity arises from the
fact that the computed gradients are less regular than the parameteriz-
ation and for this reason a projection or a smoothing step is required
[64, 89, 106-108]. Generally, the methods used for smoothing the sens-
itivity field or the design update can be explicit or implicit. Regarding
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3.2. Out-of-plane regularization

each method in an operator form, the explicit methods operate dir-
ectly on the noisy field while the implicit ones operate on the smooth
(unknown) field. In the sequence, an overview of the most commonly
applied methods is presented constraining the derivations in the one-
dimensional case.

The Sobolev gradient smoothing is a well established implicit filter
commonly used in aerodynamic adjoint shape optimization [106, 108].
According to [106], the method delivers a smooth gradient field by
approximating the Hessian of the problem with the Laplace-Beltrami
operator

I—e——. (3.2)

Using this operator is equivalent to employing a modified Sobolev inner
product to describe the shape derivative.

More precisely, a Newton’s step for the design variable s results in the
following update
Spi1=sn— H;'G, (3.3)

where G and H, are the gradient and the Hessian of the objective
function J, respectively. By approximating the Hessian with the
Laplace-Beltrami operator (3.2) the smooth descent direction G' can
be evaluated as the solution of the following PDE:

G-e29 _g

T x0T (8.4)

with zero Neumann boundary conditions. In one-dimensional problems,
the variable € can be interpreted as an arbitrary positive value which
penalizes the high curvatures detected by the curvature operator
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The higher the €, the higher the penalization. It should be noted
that the same idea can be applied directly on the design update (s).

Equation (3.4) can be solved separately for the unknown G or can be
applied as a preconditioner to the sensitivity equations.

(3.5)

By definition the obtained gradient is two classes smoother than the
initial one. Considering the zero Neumann boundary condition of (3.4),
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3. Node-based shape optimization

for the variation of the objective it follows

5J:/G§sdx

= /(C:Y g%)ésdw (3.6)

= 965 0G
_ [ 2
7/( SR Ox 8x)dx'

The last relation can be seen as a modified Sobolev inner product
(weighted by €2) and therefore this preconditioning is often referred
to as a Sobolev smoothing. Moreover, the smooth gradient G is a
Riesz-representative of the L? gradient G in the scalar product defined
n (3.6) as discussed also in [106].

Then, the variation of the design ds can be obtained using the smooth
sensitivity field as B
0s = =G, (3.7)

with A the step size. Therefore, it follows that the variation of the
objective function J is the following

6J = /G(Ssdx = —)\/(@2 +€ (gi)Q)dx, (3.8)

which guarantees decrease on the objective J.

Explicit filters act directly on the raw sensitivity field or the geometry
update by convoluting it with a kernel K as follows

Gl(€o) = /K Gl(&o — £)dE. (3.9)

The local coordinate £ is defined on the design surface I' and K is
selected to be the Gaussian kernel

2
Lk

K(o)= ————e 207, (3.10)

(vV2mo)P

where D is the dimension of I" and o2 the variance. The higher the
variance, the wider the effect of the filter and thus the variance o is
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3.3. The Vertex-Morphing method

often referred to as filter radius. For this type of filtering there is no
linear system solution needed as the filter acts as an external operator.

In the sequence the relation between the presented implicit and explicit
filters is shown in the one-dimensional case. The convolution of the raw
sensitivity field with the Gaussian filter with o2 = 2/t is the solution
of the following linear, isotropic diffusion equation

oG 0?G
with initial condition -
G(z,0) = G(x). (3.12)

The variable § is the “diffusion” coefficient showing how fast is the
diffusion of G over the pseudo-time ¢. According to [108, 116] a first
order time discretization of equation (3.11) yields

G — pt—— = G(0) (3.13)
Comparing equations (3.4) and (3.13) results to the following relation
o? = 2e. (3.14)

Hence, a convolution filtering with a Gaussian kernel is first order
equivalent to the implicit Sobolev-gradient method.

An optimal choice of € and o would correspond to a Newton’s step [107]
but then an additional effort would be required for the determination of
this optimal value. Alternatively, this projection can be understood as
a design handle. The choice of o determines the wave lengths appearing
on the improved shape and can be decided upon the manufacturing
constraints.

3.3 The Vertex-Morphing method

The smoothing methods presented in the previous section regularize the
optimization problem in an extra step, decoupled from the optimization
problem, by applying an operator on the sensitivity field. In this
section, a consistent formulation, the Vertex-Morphing method [9, 56],
is presented in which the smoothing is not done anymore as a "post-
processing" step, but it is incorporated into the optimization problem.
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3. Node-based shape optimization

In addition to the geometry field, a control field is introduced, on
which the optimization problem is defined. As described in the next
paragraphs, the control field is related to the geometry through a
mapping operator.

More precisely, consider the one-dimensional optimization problem
J(x,u) = min defined in 2(§) € T : (=1,1) — R for which the state
equation R(z,u) = 0 should be satisfied. The geometry is obtained
from the design or control variable s(£), s € T' by a linear transformation

A:T—T,
1
o60) = s = [ (&, s(6)ds. (3.15)
If A is translation invariant then
1
o) = [ Al ©)s()d¢ (3.16)
1

and the geometry x is obtained by a convolution of the continuous con-
trol field s with a kernel A which can be considered as a generalization
of the Gaussian kernel K presented in (3.10).

According to the above equation the variation of the geometry is

5a(£y) = / Al )56 e = / AlG— s @)

and the sensitivity of the objective function with respect to the control
variable s is given by

dJ 9]  0Jdx

g—%—kads. (3.18)

The first term of equation (3.18) is zero since the objective function
does not depend directly on the control field. Finally, substituting
equation (3.17) to (3.18) yields

dJ L aJ
E(fo) = ) %A(ffo)d? (3.19)

The partial derivative 0J/0x implies that during this evaluation s is
not varying. However, the state variables of the problem can still vary.
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3.3. The Vertex-Morphing method

Consequently, this term can be evaluated at each point of the design
surface using the adjoint method presented in Chapter 2.

The essential difference to the methods presented in the previous section
is that in Vertex-Morphing the filtering operation is included in the
optimization problem consistently through the chain rule. Thus the
filtering appears twice during an optimization step. Once during the
design update and once for the evaluation of the sensitivities. Moreover,
using a generalization of the rule of equation (3.15) one can regularize
simultaneously both the normal and tangential update, as described in
[56].

In numerical shape optimization one deals with discretized geometries
and therefore the control field is discretized as well. Let us first
consider that the geometry and the control field have identical spatial
discretizations, @ = [x1,...,2,] and s = [s1,..., S,], respectively. In
such a case and equivalent to equation (3.15), the mapping between s
and x is a square matrix and the linking is as follows

T = As. (3.20)

If an equidistant spatial discretization is chosen and the linear map of
equation (3.16), A is symmetric then the operator A is also symmetric
and thus AT = A. However, it is not necessary to have the same dis-
cretizations for  and s. Based on the above definition, CAD geometry
representation is nothing but a coarse discretization of the control
field through a set of "control points" which describe the fine geometry
mesh. There, the A operator is a rectangular matrix containing the
weightings of the control points for each mesh point.

From equation (3.20) it follows that the variation dx and the sensitivity

VsJ with respect to s can be written as
ox = Afds, (3.21)
Vel = ATV J. '

Again, here it becomes clear that the linear operator A appears twice
during one optimization step: once during the design update and once
in the evaluation of the sensitivities.

In order to study the effect of the linking rule of equation (3.20) on the
optimization problem, the second order Taylor series approximation of
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3. Node-based shape optimization

the objective function is considered

1
J=J+ (V) ds + 553TH353, (3.22)

where H is the Hessian matrix with respect to s. Furthermore, a
Taylor series expansion of the stationary condition VgJ = 0 yields to
the Newton’s method for the update in s

bs=-—H;'V,J. (3.23)
Considering that
Vel = ATV, J,
. (3.24)
H,=A"H,A
equation (3.23) becomes
bs=—(ATH,A) ATV J. (3.25)

Therefore, the geometry update results to
bx=A(-AT'H'A™ATV ] = ~H_ 'V J, (3.26)

which implies that the geometry update is not influenced by the control
field s and the solution of the optimization problem remains unchanged.
In other words, assuming that the problem is convex, there is no effect
on the optimum solution from the choice of A and the operator A
defines only a reparamerization of the geometry. Moreover, because of
equation (3.26), this reparametrization takes effect only in combination
with first order or quasi-Newton optimization algorithms as it cancels
when the full second order information is used. Then, different choices
of A would result in different iteration histories, which in case of a
non-convex problem, may lead to different local minima.

In most engineering applications, the optimization problem is non-
convex. The goal in this case is to find a local minimum, which satisfies
the manufacturing and design requirements. Typically, individual local
minima are defined by the characteristic wavelengths of the shape. It
appears that different operators A are related to those minima through
the filter radius. So, the filter radius can be used as a design handle
to steer the optimizer to local minima with the appropriate design
prerequisites.
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3.3. The Vertex-Morphing method

In three-dimensional problems, where a three-dimensional design sur-
face is to be optimized, the surface mesh quality is the main limiting
factor and must be treated through an in-plane regularization step,
such as the one presented in the next section. However, in three-
dimensional Vertex-Morphing, the in- and out-plane regularization is
done simultaneously and through a suitable choice of the mapping
operator A, as described in [56]. As such, large design updates can be
obtained with no additional effort. The performance of the method in
mesh quality improvement in three-dimensional industrial examples is
demonstrated in the next chapter.

Moreover, a crucial point in industrial shape optimization is the pre-
servation of the design characteristics, such as sharp corners and edges.
Filter-based methods such as Vertex-Morphing, perform the shape
variation in wavelengths much larger than these features. As the result,
design features are preserved after large shape changes in the design
surface until late stages of the optimization. Clearly, after many op-
timization iterations the shape converges to its optimal which may
eliminate design features.

Besides the theoretical aspects, the method is easy to implement. Due
to its explicit nature, it can be applied even to black-box primal and
dual solvers as an external module and no additional linear system
solution is needed. Additionally, the construction of the linear operator
A requires only the cloud of the points of the design surface without
their connectivity. For the neighbor-search already developed efficient
algorithms can be explored [79-81].

From the users point of view, there is no additional parameterization of
the geometry required which is time consuming and requires experience
from the user. The method applies directly on the existing discretization
of the design surface which was already used for the primal calculation.
In this way, a design space as large as possible is obtained while the
only design handle is the filter radius of the linear operator. The filter
radius is defined globally representing the smaller wavelengths desired
during optimization.
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3. Node-based shape optimization

3.4 In-plane regularization

3.4.1 Motivation

The Vertex-Morphing method presented in the previous section regular-
izes both the normal and tangential components of the design update
simultaneously and its performance in industrial examples is shown in
Chapter 4. Here, in order to evaluate the method only with respect
to the quality of the resulting surface meshes during optimization the
two-dimensional ducted flow of figure 3.1 is considered. The objective

R

Figure 3.1: 2D ducted flow.

is the power dissipation defined in Section 2.21 and the curved part of
the upper wall of the duct is the design surface. As one can expect,
the optimizer will update the surface such that the clogged section
gets unblocked such that the flow passes freely through the duct. As
a result the curved part will move upwards and the high curvatures
will be smoothened out. Reduction of curvature is a very common but
challenging task in shape optimization since this reduction will cause
overlapping of elements. For sake of comparison three different cases
were studied. In the first case, a smoothing on the sensitivity field is
applied as described in Section 3.2. In the second case, the Vertex-
Morphing method is applied and in the third one an additional In-
plane regularization [114] is used to reinforce the quality of the mesh.

Figure 3.2 compares the mesh density conservation in the first 25
optimization iterations at which the clogged part of the duct is almost
flat. The values are normalized, therefore a mesh density of 1 indicates
the perfect mesh and 0 the collapse of the mesh. As one can observe the
first case were no additional treatment of the tangential direction takes
place, the optimization fails at the 11th iteration while the other two
cases continue till the 25th iteration. The Vertex-Morphing method
has almost the same computational cost as the smoothing of only the
sensitivity field but it delivers higher quality of surface meshes and
thus allows for more optimization steps. Adding In-plane regularization

44



3.4. In-plane regularization
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Figure 3.2: Comparison of the surface mesh density conservation for
two filter radii (the filter of the bottom graph is 1.6 times larger of the
top one).

will keep the surface mesh quality almost at its best. However, an
additional effort has to be given as described in the rest of this chapter.

In what follows, a global method which regularizes the surface mesh
to a desired condition is presented. In this method, an artificial stress
field is applied on the surface or on the volume mesh and a global linear
system for the equilibrium is solved. The applied stress adapts the
shape of each element towards a desired predefined template geometry
and at the end a globally smooth mesh is achieved. In this way, both
the shape and the size of each element are controlled. The method can
be applied on both structured and unstructured grids since there is no
additional assumption on the mesh topology.
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3. Node-based shape optimization

The remainder of this section is organized as follows: Section 3.4.2
presents the additional in-plane regularization term with which the
optimization problem of Section 3.1 is augmented. In Section 3.4.3, a
short overview is given on the methods used so far for mesh smoothing
and mesh quality control with emphasis to elliptic smoothers since the
proposed method is also elliptic. Finally, the In-plane regularization
method is discussed in Section 3.4.4 and the role of the fundamental
components of the method is demonstrated.

3.4.2 The augmented optimization problem

In general, in node-based shape optimization the shape is described
only by the discretization and no other geometrical link is established.
Therefore, the coordinates of the surface nodes are considered to be
the design variables of the optimization problem, since changing the
position of the internal nodes will not alter the shape. More precisely,
an update of the position of a surface point can be decomposed into
two components, normal and tangential to the surface, as follows:

Ty =Xy + T ntz-t=5-n+r-t, [=1,...,n, (3.27)

where &, is the initial position, ns is the number of surface nodes and n
and t are the unit update vectors normal and tangential to the surface
at node [.

Neglecting the discretization error and the finite step size of the optim-
ization, small variations of z; ,, in the “out of plane” direction will cause
a change in the shape, while small variation of z;; in the “in-plane”
direction will only alter the discretization. In other words, z; , is the
shape relevant component s;, while z; ; is the mesh relevant component
r;. Thus, only the normal component s; is regarded as design variable
and consequently in each optimization step only the out of plane direc-
tion is updated. However, during this process the quality of elements
could deteriorate and severely distorted elements might appear. In
extreme cases, the elements become degenerate and further progress of
analysis is restricted. Hence, a correction in the ”in-plane“ direction is
required.

For this reason, the optimization problem of Section 3.1 with response

function J, constraints (g;, ki) and variable bounds (sloVer, s;'PP°") for
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3.4. In-plane regularization

each surface node [ is modified as follows:

J(s,w(s)) = J(s,w(s))+R(s,r) — min
st. R(s,w(s) = 0 ,
and g; = gij(s,w) <0 Viel, . n;
hi = hg(s,w)=0 Vel . ng
spower < s < PP Vs eR,l=1,..,n,

(3.28)
where J is the augmented objective function of the original objective J
modified by a regularization term R responsible for retaining the mesh
quality. The surface sensitivity of the augmented objective function J

is
dJ dJ dR
ds ds + ds (3.29)
The augmented objective function should not alter the problem and
since the only shape modifications occur in the normal to the surface
direction, the term R should be modeled such that the shape derivative

of the modified optimization problem is the same as the initial one, i.e.

dj _dJ
—_— = — (3.30)
ds ds
Here, in order to prevent any influence from the mesh regularization
term on the original optimization problem, we define R such that its
derivative with respect to the normal direction is zero. Also, in absence
of discretization errors it holds in the tangent space
dJ dJ _dR
— =0 and — = —. 3.31
dr dr dr ( )
Of course after discretization, the effects of s and r are not as clearly
separated anymore and consequences due to discretization have to be
accepted. Still the regularization term R controls the mesh quality.
This term and its modeling is the main focus of the following sections.

3.4.3 Overview of mesh quality control methods

Generally, there are two main classes of problems in the field of mesh
quality control: the mesh quality improvement and the mesh motion
problems. In mesh smoothing, the goal is to improve the quality of a
2D or 3D mesh [52, 70, 119, 129], whereas in mesh motion problems
the resulting 2D or 3D mesh is seeked after moving the 1D or a 2D
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3. Node-based shape optimization

boundary, respectively [18, 19, 65]. In both fields the ideas are similar.
As the mesh motion solvers advance, bigger boundary updates can
take place. These larger modifications of the design surface give rise
to the mesh distortion problem of the boundary. For this reason, in-
plane regularization methods are required which deal with retaining
the surface mesh quality during the evolution of the shape [74, 105].

Mesh smoothing and grid generation

Various methods have been developed for mesh smoothing (mesh re-
laxation) or grid generation for complex surfaces and volume domains.
Usually, in order to reduce this complexity, the physical domain where
the computations need to be performed is transformed to a simpler
region commonly called the logical space. The logical space can be a
unit square in case of a two-dimensional problem or a unit cube for a
three-dimensional problem. After defining a trivial grid in this region,
the goal of these methods is to define a transformation from the logical
to the physical space, as shown in figure 3.3. This transformation
should have a non zero Jacobian. A zero Jacobian transformation can
produce folded grids in reentrant corners and low quality elements.

n Y
1
x(&,m)
N
~____~
&(z,y)
g x
0 1

Figure 3.3: Transformation map x(£,7) from the logical (left) to the
physical (right) space.

More precisely, according to [70] let Uy be the unit logical space of
dimension k£ and €2} the physical region defined in the n-dimensional
space. Then, the map from the logical to the physical space is defined
as

X Uy = QF. (3.32)

Hense, the problem of grid generation can be reduced to the following
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3.4. In-plane regularization

Given the parametric boundary of the physical domain,
Oxy : OUy, — 00, (3.33)
find the transformation map

XP U, — QP (3.34)

The proposed methods for this type of problems can be geometrically,
mechanically or mathematically motivated. For instance the ideas
behind the Delaunay triangulation and the octree methods arise from
geometrical principles, while there are methods based on mechanical
principles like the spring analogy. Moreover, in algebraic smoothing
an interpolation between the given boundary curves is taking place.
This type of grid generators are explicit in the sense that no linear
system solution is needed and they can apply directly on an initial
discretization. Furthermore, there are methods that solve a partial
differential equation for the unknown transformation using with this
way the general properties of the PDE equations . One can distinguish
between hyperbolic, parabolic and elliptic grid generators that employ
the advantages of each respective type of equation for generating a
mesh.

Among them, the elliptic grid generators are the most commonly used.
In this case elliptic equations are applied for smoothing the mesh or for
propagating the motion of a boundary to the domain. A well known
elliptic equation is the Laplace equation

Viu=0 (3.35)
or the Poisson’s equation
Vu = f(x), (3.36)

for a given function f. Elliptic equations describe usually steady-
state problems and produce smooth solutions even for non-smooth
boundaries.

In this class of methods, the Amsden-Hirt and the Thompson-Thames-
Mastin grid generators are broadly used [69, 119] for both structured
and unstructured grids.

49



3. Node-based shape optimization

In the elliptic Amsden-Hirt method, the transformation & between
a square logical domain and the physical surface is sought and is
considered to satisfy the Laplace equation

Vi = Tee + Ty = 0, VQy = Yee + Yny = 0, (3.37)

in 2D, with the parametric boundaries of the domain defining the
boundary conditions of the above equation.

These equations are linear and satisfy the following variational form

1 1
Iag = 5 // (gl -g1+go- gg)dA — min, (338)
O r

where g, and g, are the covariant base vectors of the physical domain

ox

ox
9= e and go = o (3.39)

0
and the integration is performed over the square logical domain. Min-
imization of this functional will lead to the Laplace equation (3.37) of
the transformation map from the logical to the physical domain.

By solving this variational problem, the resulting transformation may
have zero Jacobian and non-folded meshes in non-convex domains are
therefore not guaranteed [70]. Solved in a local manner the equation
reduces to the well know Laplacian smoother.

The Thompson-Thames-Mastin method guaranties non-zero Jacobians
for the continuous problem by solving the same Laplacian problem for
the inverse of the aforementioned transformation

v2§ = fwac + gyy7 v277 = Nzz + Nyy- (340)

Thus, the functional describing the method is the following:

ITTM = / (gl . gl + 92 . gz)da — min, (341)
Q T
where g' and g? are the contravariant base vectors of the physical
domain oe oe
1 2
== d == 3.42
g ax a1 g ay) ( )
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and the integration is performed over the physical space. Unlike the
Amsden-Hirt method, this equation leads to a nonlinear system of
equations.

Castillo et al. [15] introduced a third target space which links the logical
space and the physical space as in figure 3.4, where he introduced some
desired properties of the final mesh. Hansen et al. in [51] extended this
method for mesh smoothing of unstructured meshes by discretizing
the resulting equation with finite elements and using a metric which
incorporates influences from the neighboring elements.

Ui v Yy
! w(En) 2(u,0)
N TN
~_" ~_
£(u,v) w(z,y)
¢ u v
0 1 0

Figure 3.4: Transformation for logical (left) to target (middle) and
then to physical space (right).

The regularization method presented in the Section 3.4.4 is also an
elliptic method, which uses an idea similar to the target space in a
local manner and individually for each element. Moreover, even though
it is mechanically motivated it will be shown that in special cases, it
reduces to the Amsden-Hirt method.

Mesh motion methods

In mesh motion problems the goal is to find a resulting volume or
surface mesh after the surface of curve boundary is displaced. This
mesh update is required by many applications like ALE flows with
moving boundaries and shape optimization. There are several ways to
perform a mesh update in such a case and the ideas are often similar
to the ones for grid generation and mesh smoothing presented in the
previous paragraph.

Farhat et al. [19, 31] developed a physically motivated approach which
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3. Node-based shape optimization

Figure 3.5: Starting from an initial mesh the goal is to find the resulting
mesh after a boundary is displaced

introduces a net of linear and torsional springs in order to propagate
the motion from the boundary to the fluid domain in moving boundary
problems. Furthermore, in free-surface flows [7] and fluid-structure
interaction applications [123], the fluid domain is regarded as a linear
elastic body which deforms in the Lagrangian framework absorbing the
boundary displacement. An algebraic method that does not require
the connectivity of the nodes of the fluid domain and is based on the
interpolation of the displacement of the boundary to the domain using
radial basis functions was developed in [18]. In addition to the above
methods, the diffusive property of the elliptic equations was used in
various Laplacian methods and applied in unstructured grids and time
dependent flows by Jasak et al. [65]. Here, according to [65], the
Laplacian equation is solved for a defined variable diffusion

V- (yVu) =0, (3.43)

where wu is the velocity of each point. Thus, the updated position x,, of
a point after mesh motion can be evaluated from the previous position
T,_1 as

Ty = Tp_1 + uAt, (3.44)

where At is the time step. The boundary conditions are inherited
from the motion of the boundary and the equation is solved with finite
elements using an iterative solver, [54].

This method is also used in this work for the update of the fluid
domain during shape optimization as seen in the applications of the
next chapter.
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3.4. In-plane regularization

3.4.4 The In-plane regularization method

The proposed mesh regularization method is inspired by form-finding
which is a method to determine the free-form equilibrium shape of
membrane and shell structures subjected to a certain stress field [10, 75,
130]. In other words, assuming a stress field applied on the resulting
structure, the displacement field which brings the system to equilibrium
is seeked. Consequently, since no body forces and surface tractions are
regarded, the weak form of equilibrium in the context of geometrical
nonlinear analysis reduces to the internal virtual work done by the
predefined stress field,

dw(s,r) = dwip = t/ oo : deda = 0, (3.45)
a

with og being the prescribed Cauchy stress tensor components acting
on the resulting geometry with area a and € the Euler-Almansi strain
tensor, [12]. The membrane stresses are considered constant through
the thickness t. Therefore, the integration is performed on the mid-
surface of the structure. When a constant isotropic stress field is
applied, the resulting surface is a minimal surface, which is the surface
of minimal area content connecting given boundaries.

Since the desired internal stress field is given, there is no material
description needed and the problem reduces to a geometrical one
even though the formulation is initiated by a mechanical equilibrium.
Consequently, the input parameters required for the solution of the
form finding problem without external loading is a set of Dirichlet
boundary conditions on a boundary I' and a stress field o¢ defined on
the deformed geometry.

Again, optimal positions of the shape variables s have to be found.
Typically, the tangential mesh related variables » cannot be eliminated
to allow for large changes of shape. They remain as unknowns in the
formulation. As a consequence, the resulting problem is singular with
respect to the mesh related variables r because of the non-uniqueness
of the discretization, [10]. In particular, the reason is that the base
vectors of g are related to the unknown geometry and are functions
of r as well. Also, the governing equations are non-linear in s and 7.

For the regularization of the problem, the Updated Reference Strategy
is suggested, [10]. In this method the problem is solved on the “updated
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3. Node-based shape optimization

reference geometry” of the form finding step (4):

Sw(s,r)=t [ S':0EdA' =0, (3.46)
Al

where 87 is the 2nd Piola-Kirchhoff stress tensor acting on the updated
reference geometry and E the Green-Lagrange strain tensor. The
updated reference geometry of step (i) with surface area A’ is defined
as the intermediate equilibrium shape of the previous step (i — 1). If
the stress tensor S’ was defined from a “pull back” operation of the
Cauchy stress tensor &g, equation (3.45) would remain unaltered as
well as the singularity with respect to r. Instead, S? is defined by the
equivalent components of og with respect to the covariant base vectors
G', of the updated reference geometry, defined later in the text, which
remain fixed in the iteration step (7),

S =o' G @G, 3.47
0 «@ B

As a consequence, equation (3.46) is well defined and even linear with
respect to s and r and both, the shape and the mesh are uniquely
and smoothly modified during the form finding procedure [8]. As the
updated reference reaches the final shape, the Cauchy stress defined in
the actual configuration at iteration step (i), o converges to oy.

Applying the method, the free-form shape of figure 3.6(b) is obtained for
a predefined stress field og and a set of Dirichlet boundary conditions.
In this example, the four corner points are fixed and prestressed cables
are supporting the edges of the membrane. Furthermore, since equation
(3.46) is solved numerically, an initial discretization is required to
initiate the procedure (fig. 3.6(a)).

Neither the initial discretization nor the initial geometry influence
the final shape obtained by form finding. However, the discretization
describing the final shape is highly influenced by the initial one because
of the update rule for the reference geometry. The initial mesh is the
seed of the iteration sequence. For instance, by changing the initial
discretization of the problem of figure 3.6 by adding a refinement
(fig. 3.7(a)), while keeping the same set of boundary conditions and
prestress, solution of form finding will lead to the same shape, with the
difference that the refinement of the initial mesh is maintained in the
final one (fig. 3.7). Consequently, the final mesh is influenced by, and
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3.4. In-plane regularization

(a)

Figure 3.6: Initial discretization (a) and final shape (b) after form
finding of a 4-point membrane structure.

Figure 3.7: Form finding of a 4-point membrane structure with local
refinement on the initial mesh.

closely related to the initial one, while the final shape obtained with
the method is unique and independent of the initial geometry.

The same principle applies to the mesh regularization method, with
the difference that this time the shape has to be retained and the
discretization has to be improved. The point of departure is again
equation (3.45). Now, a “template” or “ideal” element is defined as the
reference configuration and the movement is restricted to the surface
directions r since the surface geometry should remain unchanged. The
template element describes the desired shape for each individual element
and is described in detail in the next section. The shape is retained by
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reference
configuration
(e.g. template)

actual
configuration

Figure 3.8: Deformation in the context of geometrical nonlinear ana-
lysis.

applying additional Dirichlet boundary conditions normal to the surface
for each surface node. In this work the multi-freedom constraints were
implemented based on the master-slave method.

Applying these constraints and numerically solving the equilibrium,
leads to a non-singular system of equations which is linear in the surface
tangent space. As a consequence, the proposed method will generate
proper meshes even for large distortions of the surface (or volumetric)
mesh after solving one linear system of equations. Here, equation (3.46)
is solved by the finite element method. For this, the discretization is
done in the reference configuration as defined by the template using
the isoparametric element concept, [12], i.e. the surface geometry and
the displacement field are piecewise approximated by the interpolation
of nodal coordinates and displacements, respectively

X =Y N(0",60)Xi;; u=>Y» N(6"6%)u;, (3.48)

i=1 i=1
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3.4. In-plane regularization

where N are the standard shape functions and n is the number of
nodes (fig. 3.8). The nodal displacements w;,i = 1,..,n are the
unknowns of equation (3.46) and represent in this case the change of
the mesh relevant tangential variable r and the amount that each node
should displace in the tangential space in order to regularize the mesh.
Consequently, the position of a surface point in the actual configuration
is defined as

n
= N'(0,6°)(X; +u). (3.49)
i=1
In this context, the base vectors on the reference and on the actual
configuration, respectively are

0x 2”: ON(6',6%)

Go = Fga ogn
oz " ON(6,62) (3:50)
ga:%:zjiaea x, a=12.

On this basis, the 2nd Piola Kirchhoff stress and the Green-Lagrange
strain are defined in the reference configuration accordingly

S =5%G, ®Gg, (3.51)

1
E = EopG 06" = S(ga'gs—Go-Gp)G"@G" a,f=1,2. (352)

Hence, taking the variation of equation (3.46) with respect to the
unknown displacements w,,, m = 0, ..,dofs and substituting equations
(3.51) and (3.52) to (3.46), it can be rewritten for each degree of freedom
m of the system as

1
/ S: —dA = t/ Saﬁﬁ(gwgﬂ,m—i—gg-ga,m)dzﬁl =0, m=0,..,ndofs,

(3.53)
This equation system with the displacements u; as the unknowns is
linear. The resulting stiffness matrix is

K /s PB4 0..ndof: (3.54)
mn — : y m,n =0..n s .
A Oy, Oy, oF

whereas the right hand side is

E
:/ S 0 dA, m=0..ndofs. (3.55)
A 3um
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3. Node-based shape optimization

The unknown of this system is the update of the displacement Aw;
and since the initial system is linear, the problem is solved in one step.
In the case that the prescribed stress tensor is symmetric, the stiffness
matrix and the right hand side reduce to

Kmn = / Saﬂ : (goz,m . gﬁ,n)dA
A

(3.56)
R, = / SeB. (ga,m - g3)dA m,n = 0..ndofs.
A

In the above equations S*? are the components of the predefined 2nd
Piola-Kirchhoff stress tensor and gg,m, = 1,2 are the derivatives
of the base vectors of the actual configuration with respect to the
displacement of the m-th degree of freedom. However, the integration
is done in the reference configuration. In the reference configuration
each element is assumed to have an ideal shape, i.e. its template.
The individual templates are acting independently and there is no
need that they match geometrically. For instance, as described also in
the next section, the template can be a unit square for each element.
Consequently, the calculation of the base vectors G, a = 1,2, the 2nd
Piola-Kirchhoff stress tensor, the Green-Lagrange strain as well as the
area A are evaluated based on this template element.

As it can be seen from equation (3.56) there is no dependency of the
stiffness matrix to the unknown displacement field since the stiffness
matrix depends only on the constant predefined 2nd Piola-Kirchhoff
stress tensor S and on the derivatives of the base vectors with respect
to the displacements which are constant values as well. Thus, the
problem of in-plane regularization is linear.

As it was discussed earlier, when the method is applied to three-
dimensional surfaces, additional Dirichlet boundary conditions have
to be enforced in order to retain the shape. In practice, each node
is restricted to move in the tangential plane to the surface at that
point. The tangential plane is calculated by a weighted averaging of
the normals of all the elements sharing the node. Here, each normal
is weighted by the inverse of the element area. This averaging results
in a more accurate normal direction compared to equally weighted
averaging. For instance in a 2D case, the average of the weighted
normals of each element around a node points exactly to the center of
a circle passing through the discretization points. Of course, this is
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only an approximation and since the movement of each node during
the process is finite, the nodes will deviate from the original surface.
However, the true surface is usually not analytically given. These
deviations are automatically corrected during shape optimization when
the shape in normal direction is simultaneously modified. Moreover, if
needed, higher order local approximations of the surface can also be
used which of course will damage the linearity of the problem. In case
of corners and sharp edges the nodes are fixed since these areas should
be regarded as features of the initial design which should be retained
during regularization.

Furthermore, in the special case of a square initial template for all
the surface elements and an isotropic stress state, the problem reduces
to the linear Amsden-Hirt method described earlier. One can easily
conclude this statement by comparing the variational form of the
Amsden-Hirt generator given in equation (3.57) and the variational
form of the in-plane regularization problem

U=t / S: EdA. (3.57)
A

Hence, the method can be regarded as a generalization of the Amsden-
Hirt method which offers two additional mesh control parameters: the
ideal (target) element shape, which can be individually assigned for
each element, and the prestress controlling the size or concentration of
the elements. These control parameters are discussed in detail in the
following section.

3.4.5 The template element

The kernel of the in-plane regularization method is the proper choice
of adequate element reference geometries or “element templates” and
the choice of the applied prestress. These are the two handles used
during optimization to control the mesh. The template is the ideal
shape of each element defined in the reference configuration. Obviously,
for a given surface discretization there will not be any modification if
the actual element geometries are taken as templates assuming a unit
stress tensor. In any other case, each element will change its shape
towards its template shape in a global sense.

The use of different templates and the role of the predefined stress field
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Figure 3.9: Demonstration of the in-plane regularization method for a
simple 9-element example. From top to bottom: initial mesh, regulariz-
ation with square templates, regularization with square templates with
local refinement, regularization with shearless templates, regularization
with initial templates in a moving boundary problem.

S can be demonstrated with the 9-element example of figure 3.9. In
this example the nodes are placed in an irregular distance from each
other. Keeping the geometry of the boundaries by applying proper
boundary conditions and applying in-plane regularization using square
templates and a unit stress field will lead to the second figure from
the top of figure 3.9. Here, the shape of the elements changes in order
to approach the square template in a global sense, conforming the
Dirichlet boundary conditions. Since during this process no element is
preferred, the elements cover the same distances over the span of the
geometry and the skewness is automatically corrected.

Changing the applied stress field changes the relative size of elements.
In the third figure from top of figure 3.9, elements 3 and 4 have three
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3.4. In-plane regularization

(b)

Figure 3.10: Noise removal and local refinement around a point.

and two times more stress, respectively than the rest of the elements.
As a result, these elements will cover three and two times less distance
in the spanwise direction of the domain respectively. In general, higher
predefined stress will cause elements to shrink which is a property
which can be applied to achieve local refinements on the boundary or
even inside the computational domain.

A more local effect is observed by using a rectangular template with
edges as large as the midsegment of each element. This individual
template for each element corrects the skewness locally (fig. 3.9).
Obviously, stress adaptation in desired areas can also be achieved.

In evolutionary problems, like in shape optimization or problems with
moving boundaries, the goal is to retain the quality of the initial
mesh which usually possesses certain properties like local refinements,
boundary confined element layers and certain growth ratios between
the elements. In this type of problems the initial shape of each element
is regarded as the template and throughout the evolution of the process
the elements retain their shape and relative size independent of the
number of steps required to arrive at the specific deformed state. For
instance, by moving the right boundary of the initial example of figure
3.9 together with this type of template results to the bottom mesh of
figure 3.9. It is obvious that after the deformation the elements keep
their initial properties.

The method applies to more dimensions. For instance, in figure 3.10(a) a
square template and a unit stress tensor is applied as reference geometry
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3. Node-based shape optimization

to remove the distortion (noise) from a two-dimensional plane mesh
consisting of quad elements. Figure 3.10(b) shows the mesh after
regularization, i.e. the solution of a linear system of equations. The
same square template was used for every element and the resulting mesh
consists of elements which match perfectly the predefined template. In
this particular case the topology of the mesh allows the elements to
reach their template shape. In general, this is not the case and thus
the method results in a global compromise after this linear step. As
it has been already shown for the one-dimensional case, changing the
applied local prestress, local refinements can be achieved. In figure
3.10(c), the isotropic stress decrease when the distance to the refinement
point increases. In the same way, a proper refinement for boundary
layer resolution in fluid problems can be achieved with one linear step
starting from any initial mesh.

A three-dimensional surface noisy mesh of a pipe is depicted in figure
3.11(a). Here, an equilateral triangle, the same for all elements was
used to regularize the mesh (fig.3.11(b)). In general for a 3D case,
additional boundary conditions have to be applied in order to retain
the shape. However, in most of the cases the shape is not explicitly
given and only an approximation of it can be estimated through the
discretization. In this work, the nodes are allowed to move only on
the tangential direction to the surface and they are restricted in the
normal direction. The node normal n is computed as the weighted
average of the normals n;,7 = 1,...,ny,4, of the elements sharing the
node as follows
Nngh n;

> T
n= iA’, (3.58)

nih 1
i=1 Xz

where A; is the area of the element. In practice, this approximation
has shown good results for shape optimization applications.

Moreover, as in the one-dimensional case, by assuming for each element
a rectangular template with edges as large as the midsegment of each
element, the skewness of elements can be reduced. In the next example,
the mesh of figure 3.12(a) created by a mesh generator will be improved
using this template. The elements of this mesh are not severely distorted
as in the previous example but still there is a group of elements around
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3. Node-based shape optimization

the boundary circle which are not well aligned to the boundary. This
type of non-orthogonality is a remarkable source of error in numerical
simulations, especially in the finite volume method. In the resulting
mesh shown in figure 3.12(b), the first layers of elements around the
circle are following the curved lines of the boundary. In figure 3.13
the distribution of the angle of distortion is plotted. Here, the angle
of distortion is defined as |90 — ¢|, where ¢ is the angle between the
midsegments of the quadrilateral. It can be observed that the mesh
quality is significantly improved after regularization while more elements
have small distortion angles and the elements with bigger distortion
angles are reduced. The method can not guarantee non-folded grids
when used for mesh smoothing like in this example but in many cases
it can be used to improve the quality of the mesh with a proper choice
of individual templates. For problems with sharp reentrant corners like
the ones presented in the Rouge’s Gallery [70], nonlinear procedures
are required and the reader is refered to [52].

These limitations do not apply in the case of evolutionary processes
which begin with an initial high quality mesh which gets distorted
during the computation. For this type of problems, the initial shape
of each element can be used as the template as described for the one-
dimensional case. Examples of such problems are CFD simulations
with moving boundaries or fluid-structure interaction problems.

As commonly observed in engineering practice, the increase in the
curvature of the surface mesh can have severe effects on the mesh quality.
In figure 3.14(a) the resulting mesh of an initially flat surface, after
applying a displacement field normal to the surface in 100 iterations is
shown. This can be the case, for example, in a metal forming process
or the inflation of a rubber membrane as anticipated in figure 3.14.
The resulting elements are elongated, even though, the initial mesh
had a good quality consisting of square elements of the same size.
Applying the regularization method together with the initial shape of
each element as template, the elements of the deformed shape still have
very good aspect ratios (fig. 3.14(b)). Moreover, since this method
regularizes the mesh globally, there are no more elements with high
aspect ratios, for the price that some of the elements with perfect initial
aspect ratios were slightly deformed (fig. 3.15). This is exactly what
is desired in shape optimization, because the low quality elements are
the ones which limit the computation. The transmission from a flat or
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3. Node-based shape optimization

Figure 3.14: The resulting mesh after a curving process without and
with regularization, respectively.

60
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Figure 3.15: Distribution of element aspect ratio (ratio of midsegments)
on final design with and without regularization.
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3.4. In-plane regularization

slightly curved surface to highly curved one is a common incident in
node-based optimization as well.

A more critical process appearing also very often in shape optimization
is the reduction of curvature of the boundaries and is more often
encountered in the shape optimization of internal flows. In this kind of
applications, the update of the shape takes place usually only on the
normal direction and depending on the size of the update the elements
get closer to each other and often overlap as described in figure 3.16.
In this figure, the curved wall is updated normal to the surface and two
cases were studied without and with In-plane regularization depicted
in figures 3.16(b) and 3.16(c), respectively. In this point the use of the
method is decisive for the optimization because the elements overlap
and an evaluation of the objective, if possible, would not be accurate.

(b) (©)

Figure 3.16: Reduction of the curvature of a 2D mesh (a) to a plane
mesh without (b) and with (c) regularization.

From all the above, it follows that the In-plane regularization method
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3. Node-based shape optimization

is necessary for evolutionary processes with large design updates. Fur-
thermore, the choice of the template and the prestress is decisive for
each application. For optimization problems the most suitable template
is the one coinciding with the initial shape of each element.
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Chapter 4

CFD shape optimization

In the previous chapters the theoretical framework and the basic ele-
ments of node-based shape optimization were discussed. More precisely,
in Chapter 2 the adjoint sensitivity analysis for a structural, fluid or
coupled problem is presented while Chapter 3 is concentrated on the
treatment of the design surface and the maintenance of the quality of
the shape and mesh during shape optimization. As it will be shown in
the sequence, these are the key elements for performing efficiently gradi-
ent-based, parameter-free shape optimization. Having the mentioned
elements of the shape optimization chain, the next challenging task
is to combine the individual modules into a framework with suitable
interfaces and data structures.

Thus, the current chapter is organized as follows: In Sections 4.1 and
4.2 the computational framework of a node-based shape optimization as
well as the structure of the actual codes are discussed. The optimization
chain is presented and each of its features is explored in detail. In
the next sections industrial applications supporting the efficiency and
feasibility of the chosen methodology are shown. More precisely, in
Section 4.3 the optimization with respect to power dissipation of a
rigid three-dimensional industrial duct is described. The focus in this
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application is on the necessity of the smoothing methods presented
in Chapter 3. In Section 4.4 the parameters of the vertex-morphing
method and their influence on the optimization problem are studied
on a car engine intake geometry. The fluid mesh of this example at the
wall layer is a low-Reynolds mesh with prism layers of yT less than 5.
In these cases additional effort has to be given on the update of the
volume mesh. The procedure which is followed is also presented.

4.1 Computational framework

The formulation of the optimization problem is already discussed in
Section 3.1. Generally, there are two approaches for the solution of such
a PDE-constrained optimization problem: The “simultaneous analysis
and design”, SAND and the “Nested Analysis and Design” approach,
NAND. In SAND, the PDE describing the equilibrium of the physical
system is considered as an equality constraint to the optimization
problem and the state variables of the problem are treated also as
optimization variables. As a result, in each optimization iteration the
equilibrium equation is not necessarily satisfied. In contrary, in NAND
approach the equilibrium equation is satisfied in each optimization
iteration and only the design variables are regarded as the optimization
variables of the problem. An overview of the two approaches can be
found in [3].

In this work, the NAND approach is applied. In this case, the general
optimization workflow for parameter-free, gradient-based shape optim-
ization is presented in figure 4.1. The procedure is generally iterative
and the optimizer is the driving force of the overall loop. As shown
in the figure, initially, the optimizer suggests the updated values of
the design variables. Then, according to these values the geometry
is modified. On the new geometry, the primal equations are not in
equilibrium. Hence, as a next step, the primal equations are solved.
Having a converged primal state, the sensitivities can be computed.
Finally, according to the new values of the sensitivities the optimizer
suggests a design update and this loop repeats until the convergence
criterion is met. In the sequence, the overall process is described in
detail by concentrating on each of the four important elements of the
overall optimization workflow (figure 4.1). The actual codes as well as
the overall implemented framework used in this work are described in
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S
optimizer _— shape
update
oJ
Bs (s,2)
sensitivity primal
analysis state
J(s,z,w)

Figure 4.1: Optimization workflow

the next Section.

4.1.1 Optimizer

In gradient-based shape optimization the optimizer decides for the up-
date of the design variables based on the gradient information provided
by the sensitivity analysis. According to the order of derivative in-
formation needed by the optimization algorithm one can distinguish
between zero-order, lst-order and 2nd-order methods. Most of the
methods require a starting value for the design variable sy and in each
iteration the solution is updated as follows:

Sn+1 = Sp + @Sy, (4.1)

where S,, = S, (VJ(sn); H(s,)) € R™ is the search direction in the
design space and «, is the step size which is usually calculated with
a line-search algorithm. For the various algorithms available one can
refer to [2, 125].

In this work for the unconstrained optimization problems presented
later in this chapter the Steepest Descent algorithm is used mainly due
to the large problem size and the type of design variables as explained
later in the section. In 1847 Cauchy observed and reported the property
of the “steepest descent” of the negative gradient direction. It can be
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4. CFD shape optimization

shown that the negative gradient direction
S =-VJ(s), (4.2)

of a multivariant, continuous and differentiable function J : R™ — R is
exactly the direction where the values of J(s+ aS) decrease the fastest
and this exactly is the search direction that the algorithm is using.

Generally, Steepest Descent is a simple minimization algorithm which is
efficient when the initial guess is far from the minimum but by getting
closer to the minimum it converges rather slowly. This algorithm was
chosen for various reasons. Firstly, the Vertex-Morphing method, used
for the linking between the design variables and the geometry, is a
generalized type of a kernel filter and thus an analog to the implicit
Sobolev-gradient methods. These methods are already enhanced by
some approximation of the Hessian matrix. Moreover, due to the large
number of design variables, the explicit evaluation of the Hessian would
be very costly [56].

Furthermore, from a geometrical view point, the design variables are
defined on a local space normal to the surface at each point. Thus,
the direction of the update for each design variable is approximated by
the node normal in every optimization iteration. Hence, a higher order
algorithm would require the storage of the deformation gradient at each
surface node at each optimization step. The Steepest descent algorithm
does not require any higher order information or the geometrical history
of the design variables.

Moreover, from a computational point of view, the use of a higher order
algorithm would not affect the efficiency significantly. The vast compu-
tational time at each optimization step is spend on the convergence of
the primal and adjoint solutions. A smaller design update results in
a faster convergence and the cost is almost proportional to the total
design update and not on the size of the optimization steps itself.

4.1.2 Shape update

The update of the shape comes after the optimizer evaluates the
improved set of design variables. At this stage, the whole computational
mesh needs to be updated according to the design variable values and
its quality needs to be retained. In the general case, the mesh contains
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the design surface mesh and the volume mesh attached to the surface.
In the Vertex-morphing method the geometry of the design surface
is linked to the design variables through equation (3.15). Thus, the
update of the surface geometry given the value of the design variables
is

5(&) = / A6 = (O (4.3)

At this point experience shows that the quality of the surface mesh
is already good enough because of the construction of the operator A
that the method suggests. In case additional regularization is required
the surface mesh is regularized with the In-plane regularization method
presented in Section 3.4. As discussed earlier, the In-plane regulariz-
ation method improves the quality of the surface mesh by applying
an artificial stress field on the surface and a global linear system for
the equilibrium is solved. The discrete system is obtained by finite
elements.

After updating the design surface, the volume mesh, if any, is adapted
in order to conform to the new boundary geometry. While various
different methods can be explored for this purpose - from remeshing to
fixed-grid approaches - in this work the mesh is deformed by solving
the Laplace equation for a defined variable diffusion ~y

V- (yVu) =0 (4.4)

for the velocity uw of each point, as described in Section 3.4.3 and
originally in [65].

4.1.3 Primal state and sensitivity analysis

The primal state and sensitivity values should be reevaluated after a
change of the geometry. In the applications following this section steady-
state CFD and fluid-structure interaction primal states are examined
and the adjoint method is used for the evaluation of the sensitivities
required by the Steepest Descent algorithm. More precisely, for the CFD
applications the steady-state incompressible Navier-Stokes equations
(2.18) are solved using the SIMPLE algorithm presented in Appendix
(B.1). The continuous adjoint approach for such a problem is developed
by Othmer in [96, 98] and shown in Section 2.2.2. Concerning the fluid-
structure interaction application of Chapter 5 a detailed explanation
of the primal and adjoint equation is given in Section 2.3.2.
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In the applications presented in the sequence the iterative CFD primal
and adjoint calculations consume the most of the computational time.
Experience has shown that the use of not fully converged primal and
adjoint variables gives satisfactory results since the values are normal-
ized and only a search direction is needed for the small increment of an
optimization step. Moreover, by using a Steepest Descent algorithm
with constant and relatively small step size and by initializing the
computation of each optimization step with the previous converged
fields accelerates the overall computation.

4.2 Implementation issues

In the present work the following two software packages are used:
OpenFOAM, the C++ open source toolbox for numerical simulation
of continuum mechanics problems and the research in-house code
Carat++. The two codes communicate through an MPI interface.

The overall process is controlled by the optimization module of Carat+-+
which is developed to act as an external optimizer independent of the
code which provides the primal solution and the sensitivities. In
this module the optimization algorithm which provides the update
of the design variables, the Vertex-Morphing method which controls
the smoothness of the design surface and the In-plane regularization
method designed to control the surface discretization are included.

Moreover, the structural finite element module of Carat++ is used for
the evaluation of the structural part of the primal problem as well as
the adjoint semi-analytic sensitivites for the coupled fluid-structure
interaction computation. OpenFOAM is used for the evaluation of
the primal and adjoint flow solutions as well as for the update of the
volume fluid mesh. The standard SIMPLE algorithm is used for the
evaluation of the primal solution while the implementation presented
in [96, 98] provides the continuous adjoint sensitivities. A modification
of this algorithm which includes the necessary additional source terms
provides the coupled adjoint sensitivities required for the coupled FSI
problem.

The interaction of the two codes through MPI as well as the computa-
tional workflow is presented in figures (4.2) and (4.3).
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4.3 Minimization of power dissipation in an
S-bend 3D duct

In this section the in-plane regularization method presented in Section
3.4 is successfully applied to the shape optimization of the three-
dimensional industrial S-bend of figure 4.4. The geometry is chosen
from a series of test cases provided by Volkswagen AG within the frame
of the "7th Framework Programme" EU-project, FLOWHEAD (Fluid
Optimisation Workflows for Highly Effective Automotive Development
Processes). Therefore, it reflects the up to date challenges and needs
in CFD shape optimal design in automotive industry.

The air duct used for rear seat ventilation is studied in [97]. The design
surface is depicted with dark gray in figure 4.4 and has 8324 nodes and
thus design variables s.

Figure 4.4: Initial mesh of S-bend with 2081346 finite volume cells.
The design surface is marked with dark gray [97].

The objective function is the dissipated power defined earlier in Section
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Figure 4.5: History for the normalized power dissipation with and
without in-plane regularization.

2.2.2:

== /F(p + %pvQ)v -ndl, (4.5)

where p and v are the pressure and the velocity, respectively whereas
v - n is the normal component of the velocity and I' the fluid boundary.

The procedure followed for the shape optimization of this duct is as
described in Section 4.1. A detailed information about the software used
is found in the previous section. In brief, for the shape optimization a
kernel filtering on the normal update is applied, described in Section
3.2. The filter radius is about 10 times the element size. In addition
the In-plane regularization method of Section 3.4 is used to retain the
quality of the surface mesh of the design surface. Here, the initial shape
of each element is taken as template and a unit stress tensor is applied
to regulate the size of each element uniformly.

The optimization algorithm is the steepest descent algorithm with
constant step. The step size is about the element size. The required
sensitivities are evaluated with the adjoint method using the basic
structure of OpenFOAM and a code developed in the framework of the
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4. CFD shape optimization

FLOWHEAD EU-project by ICON. The continuous adjoint formulation
is based in [96]. At the end of each optimization step the volume mesh
is updated by solving the Laplacian equation with variable diffusion
[65]. Convergence is reached when the value of the objective function
between two successive iterations remains almost unchanged.

Figure 4.5 shows the history of the optimization with and without In-
plane regularization. By applying In-plane regularization around 27%
of improvement in power loss is achieved. If no regularization is applied
the optimization fails already at the 11th iteration because of failure of
the mesh of the design surface. This failure can be clearly seen in figure
4.6 where the final designs without and with In-plane regularization are
compared. The surface mesh of the S-bend at the 11th iteration suffers
from degenerated elements and no further computation is allowed. In
contrary, the final mesh when In-plane regularization is applied is
smooth and the mesh density and quality is maintained throughout
the computation. In this way significant design changes can take place
while no kinks, wrinkles or any other mesh irregularities appear. This
becomes obvious in figure 4.7 which shows the evolution of the shape
at a cross section located at the bend of the duct.

The improvement of the design can be also seen through the sensit-
ivity map on the bend of the duct. Figure 4.8 displays the surface
sensitivity at the initial design as well as at the improved design us-
ing in-plane regularization. The high sensitivity region undergoes the
largest deformation. This area is where the mesh fails when no in-plane
regularization is applied. In the final design the high sensitivities are
removed while some sensitivity still remains close to the boundary of
the design domain since it should be kept unchanged during optimiza-
tion in order to have a smooth transition from the design to the non
design surface.

In order to study the mesh quality more quantitatively, the proportional
change of area of the surface elements compared to the initial mesh is
shown in figure 4.9. The value 0 means that the area of the element
has not been changed and the value —1 shows an element with zero
area. Note that figure 4.9(b) refers to iteration 43 and figure (4.9(a))
to iteration 11, at which, the case with no in-plane treatment collapses.
Although the shape is much more deformed in (4.9(b)), the elements
still have much better quality compared to (4.9(a)).
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Figure 4.7: Cross sections at the bend for iterations 11, 22, 33 and 43,

respectively. The filter radius is about 10 times the element size and
In-plane regularization is also applied.
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(b)

Figure 4.8: Surface sensitivity distribution for the initial and final
design.

81



4. CFD shape optimization
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Figure 4.9: Proportional change of element area w.r.t the initial mesh

without (a) and with (b) in-plane regularization, plotted on the initial

shape.
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4.4 A filter and step size study

In the current section the node-based shape optimization of an intake
geometry of a car engine is examined. More precisely, the purpose
of this example is to discuss two important aspects in such industrial
optimization problems. The first aspect is the update of the thin
boundary layer in low-Re meshes, which is commonly used in turbulent
flows. The second aspect is the influence of two important parameters
of the optimization procedure which are the filter radius and the step
size of the optimization algorithm.

The function of the part is to bring air to the combustion chamber.
The design of this part has a large impact on the efficiency and the
performance of the engine and therefore several optimization tasks
are involved. For instance, the turbulence and the swirl have to be
minimized and the mass flow rate has to be maximized. The actual
geometry which is provided by VW for testing the optimization workflow
is confidential but it is very similar to an older design shown in figure
4.10. The fluid mesh consists of around 2.5 million cells and the design
surface has 15.000 nodes and thus design variables.

Figure 4.10: Intake Geometry
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4. CFD shape optimization

If the adjoint solver does not use adjoint wall functions, which is often
the case, the only way to correctly resolve the adjoint field is to use
very thin mesh (prism) layers. This is a common practice in industrial
applications and the produced meshes have prism layers with extremely
high aspect ratios. Albeit the fact that these meshes can have an initial
good quality, small disturbances during optimization can destroy the
mesh completely.

An important measure of the mesh quality is non-orthogonality which
is usually the first mesh issue which leads to crashing of the numerical
solution in the examples of this work. The non-orthogonality is the
angle between the line connecting two cell centers and the normal of
their common face. It is defined per face and the value 0.0 is the
best. Mesh studies have shown that non-orthogonality more than 80-85
degrees is causing failure of the fluid solver.

As discussed before, in shape optimization, after the update of the
design surface using the method presented in Chapter 3 the volume
mesh is updated by solving the Laplace equation with variable diffusion
[65]. Within this volume update, the cells with high aspect ratios close
to the wall boundary are very sensitive and the following observations
can be made:

e The initial thicknesses of the layers is not preserved: The thickness
is getting smaller and in many cases the first cells on the layer
collapse.

¢ Small disturbances of the design boundary cause big angle changes
on the short face of the cells on the prism layer which results to
big non-orthogonality for these faces.

To overcome this problem a correction of the boundary layer after
the mesh update is suggested. The mesh is divided in two areas, the
area of the prism-layer and the inner mesh. After the volume mesh
deformation, the inner mesh exhibits low non-orthogonality and the
problem is concentrated in the prism layers. For this reason, the inner
mesh is kept as resulted from the mesh motion algorithm while the
prism layers are corrected in a pure geometrical manner. The correction
is such that each node is displaced the same amount and in the same
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(deformed)
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Figure 4.11: Final update of a 2D mesh after mesh motion and correc-
tion.

direction as the node on the design surface belonging to the same prism
line.

This becomes more clear in figure 4.11. In this figure the two areas of
the 2D mesh after the mesh motion and the correction are depicted.
The update suggested from the optimizer is dy, ..., ds and the nodes
of each prism line are displaced by the same update.

For the various intake geometries with low-Reynolds meshes that were
tested no optimization was possible without the prescribed correction
on the prism layers even with a very small step size. Applying the
aforementioned procedure made the following shape optimization study
possible and as it is seen in the sequence relatively large design updates
are achieved.

For this geometry two parameter studies are performed: one for the
filter radius and one for the optimization step size, in order to in-
vestigate their influence to the improvement of the objective function.
Here, the objective function is flow-rate and the adjoint sensitivity
calculation is performed by the in-house code of VW. The Vertex-
morphing method presented in Section 3.3 and the steepest descent-
algorithm with constant step size is applied. The focus in this case is
the mesh and geometry robustness and the impact of the parameters
to the optimization.
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Figure 4.12: A filter radius study for the intake geometry.
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Figure 4.13: A step size study for the intake geometry. The total
update is defined as the maximum update length at each iteration
multiplied by the number of iterations.
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4.4. A filter and step size study

The filter radius is the standard deviation of the Gaussian filter used
to model the operator A of the Vertex-morphing method. As already
presented in [56], the smaller the filter radius the faster the optimizer
approaches the local optimum. This is also the conclusion derived from
this industrial case. Of course there are certain restrictions on the size of
the filter radius. First, it can not be smaller than a certain limit because
then the stability criterion is not fulfilled and shape irregularities appear
rabidly. In other words, the ill-posed shape optimization problem which
can be solved only by a regularization operator will remain ill-posed
due to the small regularization intensity of the operator. Moreover, a
limit on the filter size is set from the designers since the final geometries
should preserve a certain level of smoothness and a minimum curvature.
Figure 4.12 compares the objective improvement for four different
filter radii for the first 30 optimization iterations. The final geometry
for a certain amount of improvement is similar in all four cases with
small differences in the curvatures. As already expected, the rate of
improvement of the objective function is the highest for the smallest
filter radius.

Furthermore, concerning the influence of the step size of the steepest-
descent method on the objective improvement the study of figure 4.13 is
performed. It demonstrates the improvement on the objective function
as a function of the total design update defined as iterations times step
size, for various step sizes. The question that this study tries to answer
is how influential is the linearity assumption for the update direction
and the gradient vector. Theoretically, because of the linearization of
the gradient information a bigger step size would cause the optimizer
to deteriorate from the real direction to the local optimum. As seen in
figure 4.13 this idea applies also in practical application since for smaller
step sizes the improvement rate of the objective is higher. This study
also verifies the fact that the computational cost is almost proportional
to the total design update and not on the size of the optimization steps
itself as already discussed in Section 4.1.

87






Chapter 5

Adjoint coupled optimization

In this chapter the sensitivity analysis and the regularization methods
presented in the previous chapters are applied on the node-based
shape optimization of a flexible pipe. Firstly, the coupled sensitivity
analysis and the verification of the results is discussed. Then, the shape
optimization is performed based on the coupled adjoint sensitivity for
the flexible part of the pipe using the Vertex-Morphing and the In-
plane regularization methods.

5.1 Sensitivity analysis on a flexible pipe

In this section the coupled sensitivity analysis for a three-dimensional
elastic pipe which interacts with an internal flow is studied. The
primal and the adjoint solutions are presented as well as the computed
sensitivities and the results are verified against finite differences.

More precisely, the pipe of figure 5.1 is examined. The pipe has a
circular cross section of diameter D and a thickness t = D/20. Only
the dark gray bend is elastic while the rest of the pipe is considered to
be rigid.



5. Adjoint coupled optimization

6D 2.5D 6D

2.5D

(a) Front view

(b) Cross section (c) 3D view

Figure 5.1: Elastic pipe.

The internal flow of Reynolds number 10, with inlet on the left of figure
5.1(a), exerts a pressure field which causes a deformation to the elastic
bend. This deformation changes the internal flow considerably and
hence results in an interaction between the fluid and the structure.
For the investigation of such a problem a fluid-structure interaction
analysis is required. In this case, the system reaches a steady state
and no time evolution is considered. The response function here is the
power loss between the inlet and the outlet at the converged state. The
derivatives of this response function with respect to the normal at each
surface point with the coupled steady primal problem as a constraint
are of interest.

The coupled primal problem is solved for three different meshes with
10.416, 35.280 and 147.840 fluid cells. The number surface points on
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5.1. Sensitivity analysis on a flexible pipe

the elastic part are 448, 984 and 2600, respectively. For the evaluation
of the structure and flow fields with a partitioned way matching meshes
are considered.

More precisely, the elastic bend has a radius to thickness ratio of 10
and thus is considered to be a thick shell. The deformation of the
bend given the pressure applied by the fluid flow is computed with
finite elements using a linear corotational shell element developed in
[34, 36, 86]. For the formulation of this shell element additional to
the base configuration which is the origin of the displacements in
the Lagrangian framework, a corotational configuration is considered.
This configuration is obtained from a rigid body motion of the base
configuration and the displacements are measured accordingly. Thus,
the formulation allows for large element rotations although the strains
are considered small.

After computing the deformation of the elastic bend, the fluid discret-
ization is updated accordingly. For this, the mesh motion method
described in Section 3.4.3 is used. On the new boundary the fluid
equations are not in equilibrium and thus the fluid problem needs to
be computed. In this case, the Navier-Stokes equations are solved and
the SIMPLE pressure-correction scheme is used [38, 126]. The updated
pressure field is applied on the elastic bend and the fluid-structure
interaction loop is repeated till convergence. The convergence of the
primal with a residual measured on the structural displacements is
shown in figure 5.2 and the deformed structure in comparison to the
initial (undeformed) bend is shown in figure 5.3.

After the primal calculation the adjoint calculation is performed as
described in Section 2.3.2 and the algorithm which is followed is the
one of table 1. The dual problem is linear but is solved with a staggered
manner. The convergence of this staggered loop is shown in figure 5.4.

Having the converged primal and adjoint fields the sensitivities are

evaluated from equation (2.60) repeated here for clarity
dJ oJ OF 0S8
L
ds Os Os Js

The first term of this equation is zero in the case of power loss response.

Moreover, the third term is non-zero only on the elastic bend. For
the calculation of the sensitivity field equation (5.1) is evaluated with

(5.1)
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Figure 5.2: Convergence of the steady fluid-structure interaction prob-
lem as a part of every optimization iteration.

Figure 5.3: Deformation of the bend (dark gray) after FSI convergence.
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Figure 5.4: Convergence of the adjoint fluid-structure interaction prob-
lem.

the coupled adjoint fields computed according to Section 2.3.2. This
sensitivity field involves the interaction between the structure and the
fluid and the elasticity of the bend is included. In the sequence it will
be referred to as the “coupled” or “fully-coupled” sensitivity field.

In order to show the importance and the necessity of the coupled
sensitivity analysis the aforementioned sensitivities are compared to
the “rigid” sensitivities obtained when the bend is rigid. In this case,
the structure does not have any influence on the problem and only a
CFD adjoint calculation is required.

Moreover, the term "semi-coupled" sensitivity is defined to be the
CFD adjoint sensitivities calculated on the deformed pipe after a fluid-
structure interaction. In other words, for the "semi-coupled" sensitivity,
the primal problem is treated as a coupled system and the adjoint
as a decoupled one, but on the deformed geometry. It will be shown
that the “fully-coupled” sensitivities are significantly different than the
"semi-coupled" ones.

In figure 5.5 the “rigid”, “semi-coupled” and “fully-coupled” sensitivities
are compared. This figure clearly shows that the “rigid” and “semi-
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Figure 5.5: From left to right: “rigid”, “semi-coupled” and “fully-
coupled” sensitivity maps (note the different color scale).

coupled” sensitivity fields are similar with only their peak values and
their influence area to be different. In contrary, the map of “fully-
coupled” sensitivity field is significantly different with higher peak
values appearing on the top as well as on the bottom part of the pipe
(fig. 5.6).

One more notable difference between the sensitivity maps is the sign of
the values. The peak values on the coupled case can be both negative
or positive ordering the bend the be updated outwards or inwards,
respectively while in the other two cases the update would take place
only on the outward direction. Interestingly, on the sides of the bend
a sensitivity peak appears for the “fully-coupled” map which did not
exist and could not be predicted from the calculation of the “rigid” or
“semi-coupled” sensitivities as appears in figure 5.7.
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(a) “rigid” sensitivity map

an 0 200

M

(b) “fully-coupled” sensitivity map

Figure 5.6: Bottom view (note the different color scale).

(a) “rigid” sensitivity map (b) “fully-coupled” sensitivity map

Figure 5.7: Side view (note the different color scale).
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Figure 5.8: Comparison of the “semi-coupled” and “fully coupled ”
sensitivities against finite differences along the bend.
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Figure 5.9: Comparison of the “rigid”, “semi-coupled” and “fully
coupled ” sensitivities against finite differences on a cross section of
the bend.
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A more qualitative result is the one of figures 5.8 and 5.9. Here, the
three types of sensitivities are compared against finite differences on
a line along the bend and on a cross section of the bend. The “fully-
coupled” sensitivities match perfectly with the finite difference reference
values with an average error bellow 2%. Moreover, the method predicts
the correct sign for the sensitivities unlike the other two sensitivity

types.

As already shown in Section 2.3.2, the presented method involves the
following finite difference calculations:

(a) The coupling term of equation (2.52) representing the change of
the fluid residuals by a change of the structural displacements.

(b) The derivative of the stiffness matrix with respect to the design
variables, 0K /Js appearing in the final sensitivity equation (2.61).

(¢) The derivative of the applied force on the structure with respect
to the design variables 0f /0s appearing in the same equation.

For the evaluation of the term (a) the residuals of the fluid equation
have to be computed for a disturbance of the design nodes of the
interface in three Cartesian directions since the structural displacement
field is defined in these three directions. In this step no additional fluid
solution is required and therefore the computation time is limited to
evaluation of the derivatives for the perturbed interface cells.

The last two terms, (b) and (c¢) are evaluated by the semi-analytic
method presented in Section 2.2.1 which involves calculations of the
element stiffness matrix and element force vector for a disturbance
of the design node to the normal to the surface direction. As shown
n [11] the method is efficient and it does not slow down the overall
computation.

In general, for the aforementioned terms the proper finite difference
step should be chosen which compromises between the truncation and
cancellation error discussed in Section 2.1. For the specific problem it is
shown in figure 5.10 that the range of the finite difference step for which
the sensitivity values are not changing is relatively large. In this figure
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the deviation of the sensitivity value from a reference value at a point is
shown while changing the finite difference step size for the calculation
of the terms JF /0u and 0K /ds. During this numerical experiment
only the step size was changing while all the other parameters remained
the same. Both terms have proven to be very stable concerning the
finite difference step size since the deviation of the sensitivity value
was almost zero for a range of step values from 10e — 3 to 10e — 13.
The calculations were performed on the coarsest mesh and a slight
smaller range is expected for the finer meshes. This error analysis shows
that the finite difference evaluation of the mentioned terms brings a
negligible amount of error on the sensitivity calculation.

30
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Figure 5.10: Deviation of the sensitivity values from the value of a
finite difference step of 10e — 8 obtained by changing the step size for
the terms OF /Ou and 0K/Js.

In what follows the results obtained using the method are compared
with finite differences sensitivity values by varying the finite difference
step. For this, two sample points one on the flexible part of the pipe
(bend) and one on the rigid part are chosen and their sensitivities
obtained on three different meshes with 10.416, 35.280 and 147.840
fluid cells are compared against various finite difference step sizes. In
figure 5.11 the final results are presented. Here, in each subfigure, the
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5.1. Sensitivity analysis on a flexible pipe

relative error against various finite difference step sizes for each point
on three different meshes is shown.

The two points have the same behavior with respect to the order of
the error for each mesh and at the finest mesh the error is less than
1%. Moreover, the range that the finite difference step gives an almost
constant error is relatively large. As expected, the error is bigger on
the coarse mesh and gets smaller as the mesh is refined. The errors of
the coarse mesh at point (2) are relatively high. This is because the
fluid and structural problem are calculated with different numerical
schemes. The structural equations are solved by a node-based finite
element discretization whereas the fluid equations are discretized by
finite volume with pressures defined on the cells centers. Hence, the
error comes from the interpolation from the faces to the nodes and
vice versa within the coupling. This is more pronounced when the
values from the two fields should be added to each other like in the
final sensitivity equation (2.60). In this equation the second term is
evaluated on the design faces while the third one on the design nodes.
The addition of these terms requires an interpolation from the faces to
the nodes which on coarse meshes gives a relative big error and this
becomes obvious comparing the points (1) and (2) of figure 5.11. Point
(2) is on the bend where both terms are non-zero and point (1) is on
the straight pipe where the third term of equation (2.60) is zero. The
error of point (1) is noticeably smaller on the coarse mesh compared to
point (2) and this difference is getting smaller as the mesh is refined.
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Figure 5.11: Finite difference calculations for two sample points on the
pipe for three difference meshes. Point (1) is on the rigid part of the
pipe while point (2) is on the flexible bend of the pipe.
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5.2 Node-based shape optimiztion on a flexible
pipe

In this section a node-based shape optimization of the flexible pipe of
figure 5.1 is performed with 35.280 fluid cells and 984 surface points
on the elastic bend. The design surface is the flexible bend of the
pipe and the objective is the power loss shown in equation (2.21). The
required sensitivity analysis is validated in the previous section. For
this case, the Vertex-Morphing and the In-plane regularization methods
presented in Chapter 3 are used to maintain the smoothness of the
shape and mesh. The computer programs used for the optimization are
explained in detail in the previous chapter. First, the computational
loop is presented and in the sequence the improved shape is discussed
and compared with the one obtained by a CFD shape optimization of
the pipe considering the bend to be rigid.

For the optimization, first the coupled sensitivity analysis is performed
based on algorithm (1) of Chapter 2, through the following steps: After
the convergence of the fluid-structure interaction iteration loop, the
adjoint coupled analysis is performed until its convergence. As the
result, the adjoint velocity and pressure from the fluid side and the
adjoint displacement on the structure side are obtained. Having the
adjoint fields available, the coupled sensitivities are computed based
on equation (2.60). As it is observed before, both fluid and structure
contribute to this evaluation since the design surface is also flexible.
The optimizer uses the derived sensitivity field and calculates the
shape update vector based on the Vertex-Morphing technique. In the
sequence, the In-plane regularization method is applied to smooth the
surface mesh. The initial shape of each surface element is used as
template and a unit stress tensor is defined to regulate the size of
each element uniformly. Having the surface update, the mesh motion
algorithm, which in this case is the one suggested by [65] and presented
in Section 3.4.3, updates the volume fluid mesh. At the end, the primal
and adjoint states are computed on the updated discretization. The
loop is continued until a desired improvement is reached.

For the specific problem the final (optimal) shape is trivial since the
optimizer tries to displace the boundaries of the bend far from the flow
so the power loss decreases. However, the intermediate stages of the
optimization procedure are interesting as they show great differences
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5. Adjoint coupled optimization

(a) flexible pipe

(b) rigid pipe

Figure 5.12: Shape update on a longitudinal section during CFD and
FSI shape optimization.
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5.2. Node-based shape optimiztion on a flexible pipe

(a) flexible pipe (b) rigid pipe

Figure 5.13: Shape update on a cross section during CFD and FSI
shape optimization.

from an optimization with the assumption of a rigid bend. For instance
figure 5.12 compares the update pattern in an early stage of the optim-
ization for the flexible as well as the rigid pipe. As expected from the
sensitivity map of figure 5.5, the update on the flexible pipe directs
the shape inwards in some areas while in the rigid pipe the update
is always outwards. This does not mean that the cross section of the
pipe is getting smaller since the update on the sides is outwards with a
larger magnitude compared to the inward vectors as shown in figure
5.13.

The different update pattern of the coupled sensitivity optimization
causes the shape to improve in a slightly different direction which brings
a 9% of improvement compared to the 5% improvement achieved by the
decoupled sensitivity assumption. Figure 5.14 compares the updated
shape after 5 optimization steps with the one of a CFD (rigid wall)
optimization with the same step size and the same filter radius. The
shape resulted from the fully-coupled sensitivity is depicted with red
color while the one obtained by regarding the bend as rigid is shown
with blue color. It is clear that two different improvement paths are
followed. The mechanical interpretation of the inward sensitivities at
the "neck® of the bend can be that stiffening of this part of the flexible
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5. Adjoint coupled optimization

Figure 5.14: Improved shape comparison based on CFD (blue line) and
FSI (red line) sensitivitivies. Black line: initial design

bend would decrease the structural deformation at that position and
consequently the bend angle becomes smaller which is favorable for
pressure loss.
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Chapter 6

Conclusions and outlook

6.1 Concluding remarks

This thesis deals with gradient-based steady-state shape optimization
of fluid and coupled problems using a node-based parametrization. The
focus is on the following aspects of the optimization procedure:

e the adjoint-based sensitivity analysis with emphasis to coupled
problems.

o the regularization of the design surface as well as the discretiza-
tion.

The sensitivity analysis is performed in the adjoint manner because
of the vast number of design variables. For the structure, the discrete
semi-analytic method is applied which involves an element-level finite
difference step allowing for a robust solution of the structural self-
adjoint problem. On the other side, for the adjoint sensitivity analysis
of the fluid problem the continuous method is used. These different
adjoint formulations have to be coupled at the interface of the fluid and



6. Conclusions and outlook

structure domains for the adjoint sensitivity analysis of the coupled
fluid-structure interaction problem. Here, this coupling is done in a
partitioned way, which is similar to the solution of the primal problem.
This is achieved by decomposing the adjoint monolithic system into a
structure and a fluid problem. The effect of coupling matrices is added
to the respective equations as sources. These “fixed-point” iterations
are performed until a desired level of residuum is achieved. In this work,
emphasis is given to the construction of the different components of the
monolithic system and their role during the solution of the partitioned
problem. Moreover, the inclusion of the discrete coupling terms to the
continuous fluid adjoint equations is also described.

Updating the design in each optimization step is performed by the
Vertex-Morphing method. This method incorporates the smoothing
operator into the definition of the design variables. In this way, large
design updates are achieved while retaining a smooth design surface.

The maintenance of the quality of the mesh during shape evolution is
also considered. For the treatment of the design surface mesh, a novel
In-plane regularization method is developed. This method regularizes
the surface mesh by assuming an artificial stress field on the surface and
a global structural equilibrium is solved. The applied stress adapts the
shape of each element towards a desired predefined template geometry
and at the end a globally smooth mesh is achieved.

Finally, the various methods are incorporated in a robust and efficient
optimization workflow and the performance of the method is proven
by successfully optimizing the shape of industrial cases.

It can be concluded that node-based shape optimization enhanced
with the presented regularization tools is a powerful design tool which
facilitates the design process and offers wide range design solutions.
Furthermore, taking into consideration the elasticity of the structure,
even for small structural deformations, has a dramatic influence on the
sensitivity field and thus should not be neglected.
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6.2. Outlook

6.2 Outlook

Concerning the sensitivity analysis of a coupled problem, the presented
method can be extended to transient problems. Then, the memory
and computation time requirements will be an obstacle and therefore
efficient and robust algorithms which deal with this issue are required.

In general, a field of application for which such a method is essential
is the shape optimization of wind turbine blades. These structures
undergo large deformations due to wind loads and at the same time
their shape has a great impact in their efficiency. Even though there
has been many publications on the FSI numerical modeling of this
problem [45, 58, 67], an adjoint-based shape optimization of the blade
geometry is still missing. The wind blade has a complex geometry and
thus the abilities of the Vertex-Morphing and In-plane regularization
methods can be well used.

Moreover, the wind turbine problem by its nature is transient, but
because of the rotational pattern of the motion, it can be modeled as a
quasi-steady fluid-structure interaction system defined on a rotational
frame. At this end, additional momentum terms should be added to
the state equations of both the structure and fluid. For this primal
system, the adjoint coupled sensitivity analysis can be performed in
a steady manner and will result in additional terms in the adjoint
coupled equations. A basis for this research can be the work of Nielsen
et al. [94, 95] and Economon et al. [26] on the adjoint CFD sensitivity
analysis of rotating geometries. As a starting geometry the NREL
Phase VI rotor [110] can be used. The NREL Phase VI Unsteady
Aerodynamic Experiment can provide an excellent validation test case
for the primal state.
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Appendix A

Gauss and Divergence
theorem

Let Q be a closed volume bounded by a smooth surface I' = 92 and
consider the unit normal to the surface pointing outwards as shown in
the figure A.1. Consider also f(x) being a scalar, vector or tensor field

€3
/j\ F
€1 €2

Figure A.1: Volume 2 and elementary area dT'.
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A. Gauss and Divergence theorem

of any order. The following relationship holds

/QV-fdQ:/Ff-ndA (A.1)

and is called the Gauss’ theorem. The Gauss’ theorem relates a volume
integral to an integral over each bounded surface.

The most common form of the Gauss’ theorem is in vector form where
f is a vector field denoted by F and is usually referred to as divergence
theorem

/V-FdQ:/F-ndA, (A.2)
Q T

and physically, it states that the source rate in € is equal to the
integral of the fluxes along the closed boundary I". The proof of these
theorems can be found in any text book of multi-variable calculus and
an presentation closely related to fluids can be found in [71].
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Appendix B

The pressure-correction
method

B.1 The SIMPLE method for the Navier-Stokes

The Navier-Stokes equations for incompressible flows (2.18) in a three-di-
mensional case are composed from the three momentum equations for
each velocity component and one continuity equation constraining the
velocity field. The gradient of the pressure field contributes to each
component of the momentum equation. The way that these equations
are defined implies that the momentum equation should be used to
determine the velocity components. As a result, the pressure should
be evaluated from the continuity equation. However, the continuity
equation itself does not contain any pressure term and for this reason
it is combined with the momentum equation to produce an equation
for the pressure. This elliptic equation is the Poisson equation for the
pressure and together with the momentum equation determines the
unknown velocity and pressure fields.

The Poisson equation is derived by taking the divergence of the mo-
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B. The pressure-correction method

mentum equation (2.18)

0 dv; dp 0
— (v + — — —(2ve;;) + b; | =0. B.1
8;vi ( J 5$j 8xj aij( ”) ¢ ( )
Here the momentum equation is presented in Cartesian coordinates
and b; is the source term. Assuming a constant viscosity and density
field and applying the continuity in the above equation results to the
following Poisson equation for the pressure

o (op\ 0 ov;
Baci (8%) h _8xi (U] axj) ' (BQ)

In the following, the iterative SIMPLE method [14, 99] used to solve
the momentum and Poisson equation is presented and the notation
used is the one of Ferziger and Peric [38].

In the SIMPLE method the semi-discretized momentum and Poison
equations are solved iteratively. The starting point of iteration m is
a divergence-free velocity and pressure field (vf”_l, p™~1). Then the
discrete momentum equation for the velocity is solved

0O m—1
Apuls + Y Al = —AQ < I(Z)x ) +SAQ.  (B3)
l g P

The index P refers is the current index of the velocity while [ refers
to its neighboring nodes for each discretized equation. S is the source
term containing all the constant terms and the ones treated explicitly
with respect to the velocity. The solution v]** of the above nonlinear
equation does not satisfy continuity and a “projection” or “correction”
of this field such that it results to a divergence free-field is required.

In these class of methods the velocity field is corrected by a correction

A
Ui

T T (B.4)
which results to the divergence-free velocity v/". The pressure is cor-

rected from the previous iteration m — 1 as follows
pm — pm—l +p/ (B5)
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B.2. The SIMPLE method for the adjoint Navier-Stokes

Inserting the above corrections into (B.3) yields to a momentum equa-
tion for the correction v}

a /
Apvi p + ZAZUQ,I =—-AQ (85) (B.6)
l v/ P

since (B.3) is satisfied also from the pair (v, pI").

From this equation the correction for the velocity is obtained

AQ [ Op'
U;,P =T A < )Pa (B.7)

D 8.%1'

by neglecting the second term of the left hand side of (B.3).

Furthermore, the term v]" should satisfy continuity. So, taking the
divergence of equation (B.4) and substituting to it equation (B.7), the
semi-discrete pressure correction equation is obtained

0 [(AQ [ op _[ou
Ox; (Ap (3%‘)1?) B < Ox; )P. (B2)

After the solution of the pressure-correction equation which results in
the update of p’, the pressure and velocity fields are corrected to obtain
v and p™. This procedure is repeated till the corrections p’ and v;

are negligibly small.

Omitting the second term of the left hand side of (B.3) makes the
SIMPLE method to converge very slow. The convergence can be
significantly improved by underrelaxing the correction of velocities and
pressures, as for instance

P =" app (B.9)
with 0 < a, < 1.
B.2 The SIMPLE method for the adjoint
Navier-Stokes

The SIMPLE method is also applied for the solution of the adjoint
Navier-Stokes problem and the procedure which is followed is similar.
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B. The pressure-correction method

The adjoint Poisson equation is obtained by taking the divergence of
the adjoint momentum equation (2.31). This equation in Cartesian
coordinates is the following

8 8’(/Jp a a’(/}'u] a 51% 3

=— i) == (v, L. B.10
8£E1' (6$Z> 8951 ( 6@ UJ (9561 Uj al’j ( )
Compared to respective equation (B.2) of the primal problem one
additional term appears: the first term of the right hand side. This

term is treated explicitly and by that only small modifications compared
to the primal solution are required.

Following the same sequence as in section (B.1), the starting point is the
divergence-free adjoint velocity and the adjoint pressure (1/JUT_1, Q/J;"’l)
of the previous iteration m — 1. In the next iteration m, the semi-
discretized momentum equation for the adjoint velocity is

OéPvaI; + Z alwvzll* =
l
. - (B.11)
_AQ (a%> ~AQ <vjwﬂ> +SAD
T P 6:61 P

The problem is solved also with a projection manner by correcting the
adjoint velocities 1,;"* such that they give a divergence-free adjoint

7
velocity field 9,."

%T = %Zn* + wv; (B12)
The pressure field is again corrected from the previous iteration m — 1
w = (B.13)

As already mentioned before the second term of equation (B.11) is
treated explicitly and thus it can be included on the last source term s
of the same equation. Hence, the adjoint velocity correction is obtained
as in the primal solution by

;A (oY)
Yuip = 7, <8mi ., (B.14)

by neglecting the second term of the left hand side of (B.11), exactly
as in the primal solution.
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B.2. The SIMPLE method for the adjoint Navier-Stokes

Following the same ideas, the term ,." should satisfy continuity.
Hence, by taking the divergence of equation (B.12) and substituting
v from equation (B.14), the adjoint pressure-correction equation is

obtained 5 [AQ [0, e
= Z7p S B CT . B.1
Ox; (Ap (5%‘ )p) ( Ox; )p (B.15)

After the solution of the above equation which gives the adjoint correc-
tion for the pressure v,’, the adjoint velocity and adjoint pressure fields
are corrected to obtain v,; " and " and the procedure is repeated till
convergence.
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