
I S S U E T R A C K I N G M E T R I C S A N D A S S I G N E E
R E C O M M E N D AT I O N I N S C I E N T I F I C S O F T WA R E

P R O J E C T S

hoda naguib

Chair of Applied Software Engineering
Institut für Informatik

Technische Universität München

September 2014

Anlage 4

Muster für das
TITELBLATT DER DISSERTATION

 Institut für Informatik

..

Issue Tracking Metrics and Assignee Recommendation in Scientific Software Projects

Hoda Mohamed Naguib Gunidi Khalafalla

Vollständiger Abdruck der von der Fakultät für ..

der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors ..

genehmigten Dissertation.

Vorsitzende(r): ...

Prüfer der Dissertation:

1. ...

2.

3. ...

Die Dissertation wurde ambei der Technischen Universität München

eingereicht und durch die Fakultät für ...

am angenommen.

Lehrstuhl Für Angewandte Softwaretechnik - Chair for Applied Software Engineering

Informatik

der Naturwissenschaften (Dr. rer. nat.)

Univ.-Prof. Dr. Michael Bader

 Univ.-Prof. Bernd Brügge, Ph.D.

Univ.-Prof. Dr. Hans Michael Gerndt

23.09.2014

Fakultät für Informatik
08.01.2015

Hoda Naguib: Issue Tracking Metrics and Assignee Recommendation in Scientific Software
Projects, Doktors der Naturwissenschaften (Dr. rer. nat.), © September 2014

"We may be small in numbers, but we stand for something bigger than anything the
world can pin against us" –How to Train your Dragon

To my family and friends! Thanks for being there always. Love you all.

Dedicated to the loving memory of Yusra El-Zu`bi
1931 – 2004

A B S T R A C T

Issue tracking is the process of reporting, assigning, prioritizing, reviewing, and re-
solving software issues. This process is crucial for successful collaboration between
developers and for managing the projects’ progress. However, in scientific software
projects there is only little evidence on how issue tracking is practiced. Generally, sci-
entific developers tend to informally handle and track these software issues, which
becomes difficult when managing frequently evolving large-scale projects.

The goal of this dissertation is to support scientific software developers in their
collaboration activities involving tracking and handling of software issues. The con-
tribution of this dissertation is twofold. First, we describe a study on issue tracking
in the domain of scientific software, in which scientists intensively collaborate to de-
velop and use complex software systems. We analyzed and compared issue tracking
data of two scientific and two open source software engineering projects. We also sur-
veyed 612 project participants about their issue tracking practices, preferences, and
problems. We found that members within software engineering projects tend to get
involved in multiple issue tracking activities. On the other hand, members of scientific
projects tend to be involved only in a single issue tracking activity. The results also
indicate that issue tracking quality documentation is higher in the studied software
engineering projects. These differences in issue tracking documentation quality and
interconnectivity between activities indicate that issue tracking tools might need to be
tailored to the specific domain needs of the individual projects. For example, issue
tracking systems in scientific projects should provide additional features for adminis-
tering the existing issue tracking activities, to provide an incentive to project members
to exert more efforts.

Second, we describe INExPERT, a technique for issue assignees recommendation,
which utilizes issue-tracking activities in identifying and ranking suitable assignees.
INExPERT encourages the collaboration among project members by making it easier
for software issues to be allocated to a specific project member, while at the same time
hiding the technical and managerial complexities of the assignment activity. Our re-
sults indicate that INExPERT was able to have one or more suitable assignees in 88 %
of the recommendations. In addition, an experiment with senior developers and man-
agers in a large-scale scientific software project confirms the precision of INExPERT
and its suitability for the scientific software domain.

v

A C K N O W L E D G M E N T S

I would like to express my special appreciation and thanks to my advisor Professor
Bernd Brügge, Ph.D. Thank you for encouraging my research and for allowing me to
grow as a research scientist, as well as a person.

I am very grateful to Prof. Dr. Walid Maleej for having been a tremendous mentor
for me. Thank you for helping and contributing a great deal to my research work, as
well as my professional career.

I would also like to thank my committee members, Prof. Dr. Michael Gerndt and
Prof. Dr. Michael Bader for taking part in my dissertation effort.

Special thanks to Helmut Naughton, Jonas Helming, Miriam Schmidberger and
Maximilian Kögel for the great support all throughout my Ph.D. thesis.

Many thanks to all of whom supported me in collecting the data for my Ph.D. thesis,
in particular, Dr. Benedikt Hegner, Victor Diez and Alex Hodgkins form SFT Group at
CERN, Thomas Kuhr from Karlsruhe Institute of Technology (KIT), Stefan Kluth and
Stefan Stonjek from the MPI group for Physik in Munich, Germany.

In addition, I would like to thank Oliver Meister, Tariq Saeed, Dina Helal, Shady
Hussien, Omar Aly, Omar Othman, Ameirah Abu-azama, Mariam Rady, Ahmed Kha-
laf, Magda Hassan,Yomna Ali, Ahmed Farag, Ibrahim Tawifik, Ibrahim Sadik, Sara
Mustafa, Salma Mahmoud, Ayman Khattab, Alyaa Mahmoud, Marouane Sayih, Karim
Emara, Safey Halim, Daniel von Teller, Sherif Zaidan, Mohamed F. Eid and Wessam
Abdrabo for their technical advice and support.

Thanks is due to the members of the chair of applied software engineering at TUM,
in particular Jan Knobloch, Dennis Pagano, Tobias Roehm, Stefan Nosovic, Juan Hal-
adjian, Monika Markl and Helma Schneider. Special thanks goes to the best support
system and advisors in the whole world Emitza Guzman, Nitesh Narayan, Yang Li,
and Han Xu. I really can not repay you for what you have contributed to my research
and my personal life, you are my superheroes, love you guys.

A special thanks to my family. Words cannot express how grateful I am to my father,
mother, brother, uncle, auntie Reem Kelani and Lubna Kelani for all of the sacrifices
that you’ve made on my behalf. Your prayer for me was what sustained me this far.

I am also grateful to my friends Ghadeer Eresha, Doaa Nassar, Samah Shams El-
deen, Serena Fritsch, Rania Elhelw, Azza Fayek, Sara El-Tonsy, Sherine Hassab, Weaam
El-Desouki, Salma Hassan, G. Weber, Giulia Maesaka, Mirna Ayman, Mai El-Sayad,
Rana Salem, Nadiah El-Sayed, Yasmine Ogeil, Amr Nour El-deen, Haseeb Zia, Yujing
Liu, Vinita Radhakrishnan, Hala El Ashi, Magi Mobasher, Tarek Attia, Hassan, Ahmed
El-Atawy, Alaa Ibrek, Mohamed Abbas, Ahmed Azab, and Heba Khalifa for pushing
me to strive towards my goal.

Finally, I would like to express my deepest gratitude towards God for all the bless-
ings that he has bestowed upon me and for sending me the above mentioned people
and for giving me the strength throughout the time.

vii

C O N T E N T S

1 Introduction 1

1.1 Problem Statement 3

1.2 Research Approach 4

1.3 Thesis Structure 6

2 Related Work 7

2.1 Studying Issue tracking practices in Scientific Software projects 7

2.2 Assignee Recommendation 8

3 A Study on How Issue Tracking is Practiced within Scientific Software Projects 11

3.1 Study Design 11

3.1.1 Studied Issue Tracking Activities 12

3.1.2 Study Metrics 14

3.1.3 Research Methods 14

3.1.4 Case Studies 17

3.2 Study Results 20

3.2.1 Data Analysis-Results 20

3.2.2 Survey-Results 22

3.3 Summary 35

3.3.1 Main Similarities 35

3.3.2 Main Differences 35

3.3.3 Specific Domain Issue Tracking Practicses 37

4 Issue Assignees Recommendation Technique-INExPERT 39

4.1 INExPERT Design 40

4.1.1 Categorizing Issue Reports into Topics 41

4.1.2 Issue-Tracking Activity Profile 42

4.1.3 Assignee Recommendation 45

4.1.4 Assignee Ranking 47

4.2 Case Study 48

4.2.1 Formative Evaluation 48

4.2.2 Pre-Post testing Quasi-Experiment 53

4.2.3 Experiment Metrics and Findings 60

4.3 Evaluation 65

4.3.1 Experts’ Feedback 66

4.3.2 Benchmarking 68

5 Conclusion and Future Work 75

5.1 Research Outcome Highlights 75

5.2 Research Limitations 76

5.3 Future work 76

5.4 Final Thoughts 76

i Appendix 77

a Appendix 79

a.1 Layout of the Interview Used In INExPERT Formative Evaluation 79

ix

x contents

a.2 A Copy of the Survey Used in Our Comparative Study 80

bibliography 85

L I S T O F F I G U R E S

Figure 3.1 Study Design 12

Figure 3.2 Documentation Quality metrics 20

Figure 3.3 Frequency of issue tracking activities (Analyzed) 22

Figure 3.4 Participants’ educational background 23

Figure 3.5 Participants’ project roles 23

Figure 3.6 Participants’ project experience 24

Figure 3.7 Participants’ software engineering experience 24

Figure 3.8 Stated frequency of the issue tracking activities (survey) 26

Figure 3.9 Quality ratings of issue tracking practices 26

Figure 3.10 Benefit gained from using a bug tracking system (survey) 27

Figure 3.11 Tool preference Vs. performed issue tracking activity 28

Figure 3.12 Activities performed using a bug tracking system (survey) 28

Figure 3.13 Issue tracking problems (survey) 29

Figure 3.14 The significance of issue tracking problems (survey) 30

Figure 3.15 Issue tracking activities that are considered as an overhead 31

Figure 4.1 Issue Report’s Topic Model 42

Figure 4.2 User’s Activity Profile 43

Figure 4.3 Issue-Tracking Activities 43

Figure 4.4 Newly Reported Issue Topics Selection 46

Figure 4.5 Formative evaluation stages 49

Figure 4.6 Pre-INExPERT Stage’s Activities 50

Figure 4.7 Post-INExPERT Stage’s Activities 52

Figure 4.8 Comparison of a participant’s decision before and after the use
of INExPERT 53

Figure 4.9 INExPERT’s Early Design Abstraction 55

Figure 4.10 Overview of the activities done to generate and rank a list of
recommendations 55

Figure 4.11 Overview of INExPERT integrated into issue-tracking practices 58

Figure 4.12 Overview of the Website Architecture 59

Figure 4.13 Stage’s Duration 62

Figure 4.14 Number of Assigned Issues (Manual Vs. INExPERT) 62

Figure 4.15 Number of Chosen Assignees Matching Recommendations (Man-
ual Vs. INExPERT) 63

Figure 4.16 Number of Times a Participant Chose Same Assignee Within Pre-
& Post-INExPERT Stages 63

Figure 4.17 Responses Vs. Qualitative Metrics 64

Figure 4.18 Experts’ Judgement on Recommended Assignees Capabilities 66

Figure 4.19 Experts’ Judgements Vs. Justifcations 67

Figure 4.20 Hit ratio for having the main resolver against the total number
of issues 71

Figure 4.21 Top-n Hits, INExPERT vs LDA-SVM; Atlas 72

xi

Figure 4.22 Top-n Hits, INExPERT vs LDA-SVM; Birt 72

Figure 4.23 Top-n Hits, INExPERT vs LDA-SVM; UNICASE 73

Figure 4.24 Overall hit ratio 73

L I S T O F TA B L E S

Table 3.1 Heuristics used for identifying issue tracking activities 13

Table 3.2 Documentation Quality-Measures 15

Table 3.3 Survey-Measures 17

Table 3.4 Overview of studied projects 17

Table 3.5 Overview of original issue tracking data 19

Table 3.6 Overview of analyzed issue tracking data 19

Table 3.7 The survey samples 19

Table 3.8 Proportion test of Documentation Quality metric variables 21

Table 3.9 Number of open ended responses regarding issue tracking prob-
lems or overheads 32

Table 3.10 Issue tracking problem categories vs. number of open ended re-
sponses 32

Table 3.11 Issue tracking overheads categories vs. open ended responses
percentage 33

Table 3.12 open ended responses regarding issue tracking enhancements 34

Table 3.13 Issue tracking enhancements categories vs. open ended responses
percentage 34

Table 4.1 Heuristics Rules Used for Identifying Issue-Tracking Activities 44

Table 4.2 Experiment Participants 54

Table 4.3 Experiment Metrics 61

Table 4.4 Overview of the Investigated Projects 70

Table 4.5 Overview of Training and Testing Datasets 70

Table 4.6 Overview of Issue-Tracking Activities Distribution in Training
Set 71

xii

A C R O N Y M S

inexpert Issue Assignee Activity Profile Recommendation Technique

lhc Large Hadron Collider

cern European Organization for Nuclear Research

vcs Version Control System

casea Creation Assistant for Easy Assignment

lda Latent Dirichlet allocation

svn Apache Subversion

pmac Project Member Activity Counter

scm Software Configuration Management

svm Support Vector Machines

smo Sequential Minimal Optimization

weka Waikato Environment for Knowledge Analysis

drex Developer Recommendation with k-nearest-neighbor search and expertise rank-
ing

xiii

1
I N T R O D U C T I O N

By the late 40s, the first generation of electronic computers had the capabilities to set
up sequences of calculations, motivating scientists, especially in the domain of physics,
to use them in developing their algorithms. This allowed them to achieve successful re-
sults in many applications such as ballistics and fluid mechanics. Currently, computer
software has become an essential element for the scientific research community [10],
marking the start of a community of "Scientific Software" developers. These develop-
ers create software that enables researchers to perform complex tasks such as the ma-
nipulating, analyzing, and modeling of large amounts of data with relative ease and
speed when compared to manual methods. As the capabilities of computers’ memory
and speed is in constant increase, the use of computers and computer software has ex-
panded within the scientific software community to include the development of large
complex software systems. For example, 600 scientists collaborated in developing a
large-scale software system that consists of 97 modules to analyze the products of
high-energy collisions at ATLAS 1, a particle accelerator located at the Large Hadron
Collider (LHC) at the European Organization for Nuclear Research (CERN), Europe’s
particle physics laboratory in Switzerland. The software system enables the consolida-
tion of a large amount of raw data; its distribution on the Worldwide LHC Computing
Grid; and, additionally, allows researchers to conduct scientific analysis, simulations,
and reconstruction of their experiments.

The term "Scientific Software" according to Farhoodi et al. [21] refers to software
that is developed by scientists for scientists, which is based on mathematical models
or complex algorithms used to analyze, simulate, and even solve a specific scientific
problem. According to Hannay et al. [29], scientists spend more time developing or
using scientific software than they did a decade ago. This is due to the fact that com-
puters nowadays have the ability to store and analyze large amounts of data, provide
data visualization, and even perform 33.86 quadrillion floating point operations per
second. Thus, scientists are able to address much more ambitious problems such as
modeling genome structure, simulating the early evolution of the universe or even
predicting the weather by analyzing past climate data.

Killcoyne et al. [42] consider scientific research to be a manic foraging exercise, that
involves a constant change in the used techniques and research outcome. This is due
to the scientific approach where scientists follow a hypothesis-based approach. This
approach recognizes that there are multiple possible explanations for any given prob-
lem, in which all possibilities need to be investigated and multiple possible solutions
have to be evaluated until the suitable one can be identified. However, scientists can
reduce the time and effort investigating a given hypothesis through the progressive
computational capabilities of computers and computer software. For example, assess-
ing the complexity of a genome structure with a computer model and predicting how
it will react under different environments; has now become possible. This is accom-

1 http://atlas.ch/

1

http://atlas.ch/

2 introduction

plished by scientists developing their own software using specialized algorithms and
visualization techniques, as it requires a substantial amount of specific knowledge in
the domain of bioengineering that is hard to achieve for many software developers.

Recently, software engineering has evolved with solution-oriented techniques such
as continuous integration, issue tracking, unit testing, and agile methods to improve
and support the development and quality of software systems. We cannot expect a sci-
entific software developer to become an expert in all software engineering techniques,
especially in a constantly evolving scientific research paradigm [78]. By the same argu-
ment, we cannot expect a software engineer to become an application domain expert
in a specific scientific area. The fact that there is limited adoption of software engi-
neering best practices within scientific software projects led to the creation of a gap
between both communities [39].

Scientific software usually evolves through the combined collaborative efforts of
different scientists over the years resulting in many software change requests that
are referred to as software issues [69], which represent new requirements, software
bugs, and features. Consequently, collaboration and issues management have become
a challenge for scientists, particularly in large-scale projects. As Zaytsev et al. [86]
pointed out that if the change in scientific software is not controllable, both the quality
of software and the speed of development will suffer. Hence, it is important to provide
developers with sufficient means to control technical and managerial complexities of
change in scientific software development [47] .

Therefore, several software engineering researchers have collaborated with scientific
software developers to investigate the extent to which basic software engineering prac-
tices. For example, Li et al. [46], Kelly et al. [41], and Zaytsev et al. [86] investigated
the use of requirements reengineering, mutation testing, and continuous integration
respectively in reducing the complexity and change in scientific software develop-
ment. The applicability of these software engineering practices in scientific software
development projects are influenced by many factors, such as developers’ software en-
gineering experience, targeted users behavior and team organizations [29, 58]. Mesh et
al. [49] recommended that scientific software developers need to have a better under-
standing of these factors before attempting to apply or customize software engineering
practices into their development process to guarantee their effectiveness [32, 80].

However, in scientific software projects there is only little evidence on how issue
tracking is practiced. Killcoyne et al. [42] discovered that there is no direct support
for collaboration among scientists on the development of software, since they tend
not to implement any formal processes that are required for successful collaboration.
Consequently, documentation related to planning, project management, and software
implementation (such as defects, designs and potential improvements) are scarce[61].
In such a flexible environment, these highly independent developers themselves seem
to reject any level of project management or instituting development processes, getting
involved only in what interests them and serves their research activities [47]. The lack
of collaboration support within scientific software projects adds several problems, es-
pecially in large-scale projects. This can have unfavorable outcomes, in particular when
handling software issues related to software bugs. While software bugs in commercial
software projects can be detected or prevented at early stages of development, in sci-
entific software projects they have been shown to be discovered at the latest stages of

1.1 problem statement 3

development, causing the retraction of a lot of published scientific work [49]. For ex-
ample, a simple mistake such as flipping two columns of data in molecular structure
analysis software has caused a group of researchers to retract three science papers and
report that two papers in other journals also contained erroneous structures [50].

The main goal of this dissertation is to provide support to scientific software de-
velopers in their collaboration activities involving tracking and handling of software
issues. Our work focuses on issue tracking activities related only to bug reports and
feature requests, due to their significant impact on software quality. The contribution
of this dissertation is twofold. First, we present an empirical study that analyzes the
issue tracking practices of two scientific software projects and compare the outcome
against two open source software engineering projects. The study can help software
engineers understand how various members within different project domains collab-
orate on handling and tracking software issues. This is done through identifying gen-
eral characteristics and points of strengths and weaknesses within the practiced issue
tracking activities. Hence, the study outcomes can be exploited for collaboration en-
hancement, especially to overcome the limited support of issue tracking activities in
the scientific software domain. Second, we present ‘Issue Assignee Activity Profile Rec-
ommendation Technique (INExPERT)’, a lightweight technique for the recommendation of
software issue assignees that utilizes the project members’ issue-tracking activities for
identifying their roles, expertise, and involvement within the project. INExPERT aims
at encouraging the collaboration among project members by making it easier for bug
fixes and feature requests to be allocated to a specific project member while at the
same time hiding the technical and managerial complexities of the assigning activity.

Parts of the presented contributions were published in [53, 54].

1.1 problem statement

Project members collaborate to keep track, coordinate, and handle ongoing software
issues such as development tasks, new feature requests and bug fixes. This will help
them avoid duplicated work, as each members’ responsibilities are defined and visible
to everyone in the project. Additionally, tracking software issues facilitate communi-
cation among project members as both developers and users are informed about the
status of their issues and concerns.

Carver et al. [13] found that software teams in scientific software projects infre-
quently apply software engineering issue tracking practices. They informally track
issues without defining the specific activities that must be implemented in order for
them to successfully collaborate on fixing and handling the raised issues. As reported
by Heaton et al. [30], they tend to keep track of issues in ad-hoc manner via mail-
ing lists or their own personal logs. Consequently, the success of the collaboration is
bound to the amount of effort spent by team members.

One of the main reasons why formal issue tracking is not considered important,
is that scientists developing the software tend to give higher priority to achieving
accurate scientific results over improving the software development process [15, 16, 72].
Additionally, the duration of scientific software projects is either too long or too short
[14] which makes it difficult to commit to improving the project management practices.
Another reason is that scientists developing the software are not familiar with many

4 introduction

software engineering practices such as: unit testing, issue tracking, code reviews, agile
methods, version control, and software process management [13, 30]. According to
Hanny et al. [29] and Prabhu et al. [63], 90% or more of the scientists developing
software are self-taught or taught by other fellow scientists. Consequently, the lack of
knowledge regarding a specific practice makes it harder for the software development
team to adopt it [13]. Software development teams in scientific software projects are
faced with the following two problems:

1. Managing the complexity of collaboration in issue tracking. In scientific soft-
ware projects issues are not tracked through a set of defined activities that can
guarantee the integrity and quality of information that describes how they were
handled, managed, and resolved. Consequently, issues might end up being in-
complete, conflicting, or even unrecorded, making it more expensive to handle
and resolve them [30]. As stated by Faulk et al. [22], the dominant barriers to
project productivity improvement are in the software processes. Therefore, it
is important to provide managers of scientific software projects with means to
control managerial complexities that can help them to improve issue tracking
process. For example, we can provide them with a higher level of abstraction
of the issue tracking process’ variables such as the level of commitment, effort,
common procedures used, and behaviors of involved project members. These ab-
stractions can help managers easily control and improve the collaboration when
tracking software issues. Additionally, we can automate the tedious parts of the
issue tracking process that are error prone to help increase the process effective-
ness.

2. Assigning issue reports to developers can be error-prone. An important step in
getting an issue resolved is to assign the issue report to a suitable developer that
will have enough expertise to resolve it. The correctness of that decision may
have an important impact on the cost of the project, as it can increase the time
taken to fix the software issue [75]. Nevertheless, in scientific software projects
developers seem to reject any level of project management getting only involved
in what interests them and serves their research activities [47]. As a consequence,
issue assignment tends to be a voluntary action that is performed by project
members who have the time to delegate ongoing issues to other team members
to resolve them. Volunteers’ experience, regarding how to assign issue reports
may vary, because this requires contextual information about the project. There-
fore, less experienced or new project members might not be able to assign bug
reports correctly. As a result, manual issue assignment requires more effort and
time to ensure that it was appointed to a suitable assignee.

1.2 research approach

This dissertation focuses on providing scientific software developers and managers
with a mean to control the managerial complexities of issue tracking practices, by ap-
plying a set of software engineering strategies. As mentioned by Bryant et al. [11], a
tighter coupling between the description of a software system and its application do-
main gives a great potential to improve its correctness and reliability. Furthermore, this

1.2 research approach 5

leads to more opportunities for software automation. To that end, we applied two soft-
ware strategies; that were mentioned by Faulk et al. [22]: measurement and automa-
tion. In order for the currently implemented issue tracking practices to be effective, we
have to continuously observe and measure how scientific software projects members
perceive them and to which extent they are influenced by them. Additionally, tedious
tasks within issue tracking practices (such as issue assignment) can be improved if
the repetitive work belonging to it is automated. To this end, we first investigated
the current state of adopted issue tracking practices within scientific software projects
by exploring the question, How do software developers track issues in scientific software
projects and how can we make the process more effective ? In order to address this question,
we first reviewed the existing literature related to the characteristics and problems
of collaboration software engineering practices in the scientific domain, focusing on
issue tracking activities. The literature review helped us gather the basic foundation
that identifies the characterizations of issue tracking practices in scientific software
projects; along with potential strategies that could make issue tracking more effective.
Second, we conducted an empirical study that provides a deeper insight into the level
of commitment, effort, used common procedures and behaviors of project members
involved in tracking issues. The empirical study included multiple case studies from
both the software engineering and scientific software projects. It was designed to help
software engineers determine the necessary improvements for issue tracking practices
in both project domains. The study investigates three main issue tracking activities:
reporting, management, and resolvement of software issues. For each studied activ-
ity we defined five metrics : interconnectivity, tools, documentation quality, frequency, and
enhancements and problems. These were measured using quantitative and qualitative
values that reflected: (1) the inconsistency or incompleteness of the tracked informa-
tion, (2) the tools used in tracking each activity, and (3) the problems or enhancements
related to it, which helped us identify:

• The strength of interconnectivity between different issue tracking activities;

• The tools that are frequently used in performing a certain issue tracking activity;

• Inconsistency or incompleteness within information related to the recording of an issue
tracking activity;

• The significance of a specific issue tracking activity in terms of its frequency compared
to others;

• The problems encountered during each issue tracking activity;

• The types of enhancements needed to make issue tracking practices more effective.

Third, we provided a technique that supports the task of issue assignment by iden-
tifying and recommending suitable assignees, i.e., developers, to submitted software
issue reports. The technique enabled us to:

• Identify a suitable assignee to resolve a specific issue report;

• Rank the recommended assignees according to their expertise and roles.

6 introduction

The issue assignees recommendation and ranking technique, INExPERT, is based
on identifying and ranking suitable assignees through mining their profiles. Profiles
are defined by roles and expertise mined from the history of all the issue tracking
activities, i.e., review, assign, and resolve.

Finally, we evaluated the precision and suitability of INExPERT within scientific
software projects, by implementing a prototype. Using the INExPERT prototype, we
conducted a formative evaluation method that involved two iterations of direct feed-
back from domain experts regarding the points of improvement within INExPERT.
The feedback was obtained using a quasi-experiment and semi-structured interviews.
Afterwards, the feedback was analyzed, and changes were applied to the INExPERT
prototype to enhance its precision and make it more suitable for use in scientific soft-
ware projects. Then, a second iteration of feedback was obtained to evaluate the ap-
plied enhancements.

1.3 thesis structure

The dissertation is organized as follows:
Chapter 2 presents the related work on software engineering concepts directed to

the development of scientific software. We focus on two aspects: issue tracking prac-
tices and issue assignee recommendation techniques.

Chapter 3 describes the empirical study we conducted to help characterize and de-
termine areas of improvement within issue tracking practices in the scientific software
domain. The chapter includes details of the study design, the used case studies, the
outcomes of the case studies and their implications.

Chapter 4 we present our issue assignees recommendation technique, INExPERT.
The chapter includes the steps used for the categorization of topics, creation of ac-
tivity profiles for potential assignees, assignee recommendation for new issue report,
and assignee ranking. It also provides: (1) an overview of how we evaluated the suit-
ability and precision of INExPERT in scientific software projects, and (2) details of the
evaluation setup, projects involved, and evaluation outcome and its implications.

Chapter 5 summarizes the highlights and implications of the outcomes of our re-
search work, as well as details about the limitations of the empirical study we con-
ducted and the issue assignees recommendation technique we implemented. We con-
clude our work with remarks on suggestions related to future directions for research.

2
R E L AT E D W O R K

In this chapter we give an overview of the relevant existing research contributions that
tie in with the work presented in this dissertation. Section 2.1 describes the existing em-
pirical studies that use issue tracking information in analyzing the software develop-
ment process within several projects, as well as empirical studies focusing on software
engineering concepts directed to the development of scientific software. Section 2.2
describes the approaches that semi-automatically assign different types of artifacts to
developers. We discuss related work employing artifacts similar to and different from
ours. For empirical research effort we considered different goals such as evaluating
process quality and identifying the effect of different development paradigms on the
adopted software engineering practices. For the assignee recommendation approaches,
we considered various other factors, such as developer preferences and workloads.

2.1 studying issue tracking practices in scientific software projects

Issue tracking systems are an important source for gaining insight on the software
quality and the reproduction of software issues [76]. Therefore, most empirical stud-
ies tended to analyze groups of widely used software projects with a long data history
of issue tracker’s database [33]. Commonly, these studies investigated the software de-
velopment process. However, they tended to focus on different goals. Bettenburg et
al. [9] investigated the features that makes a bug report more informative and useful.
Bachmann et al. [4] provided a group of measures that evaluate the software devel-
opment process’s quality and characteristics and their affects on the number of bugs
. Saha et al. [67] analyzed the proportion, severity, assignment, reasons, and the na-
ture of fixes related to persistent bugs within four open-source projects to understand
the extent of and reasons for their existence. Cavalcanti et al. [17] surveyed 36 partic-
ipants to investigate the effort invested in assigning change requests to appropriate
developers. They identified fundamental strategies to perform the assignments and
the complexity involved in them. Other studies [89, 37, 45, 48] focused on improving
the issue tracking system for the purpose of improving the issue modification pro-
cess. Additionally, other studies [85, 60] investigated the differences between software
projects having different development paradigms.

During recent years, software for scientific computing and research purposes has
received increased attention from the software engineering community [58]. For in-
stance, Carver et al. [12, 6, 13] and Heaton et al. [30] both investigated the use of
software engineering practices such as issue and bug tracking, integration testing, re-
gression testing, and code reviews in the scientific software community by conducting
interviews and surveys with domain experts. Hanny et al. [29] conducted an online
survey and received almost 2000 responses shedding light on how scientists develop
and use scientific software applications. Prabhu et al. [63] randomly selected 114 re-
searchers from diverse fields of science and conducted a survey to investigate the

7

8 related work

software engineering practices and tools applied within the participants’ community.
Sanders [69] et al. interviewed 16 scientists to identify the approaches they used to
manage risks in the development process, testing, and documentation. Generally, the
above mentioned studies were able to identify a generalized perception of software
engineering concepts and their level of usage within the scientific community; no de-
tailed information was obtained on software issue tracking tools and approaches.

Pawlik et al. [61] conducted a study that included 21 interviews and thematic anal-
ysis of interview data. They aimed at identifying the perception of the scientific soft-
ware community on which documentation approaches and tools are most useful to
them. Additionally, they investigated the influence of the scientific software user com-
munity on the documentation practices. However, they did not focus on documenta-
tion practices related to implementation defects, i.e., software issues.

Many researchers such as Segal et al. [73, 74], Howison et al. [36], and Kelly [40] con-
ducted literature reviews, interviews, and data analysis to gain different insights on
the culture of how and why scientists develop software and cooperate among differ-
ent scientific disciplines and domains. Monteith et al. [52] used several state-of-the-art
analysis techniques to examine the artifacts from several scientific research projects
to identify problems inhibiting sustainability in the scientific software development,
maintenance, funding, and leadership.

To our knowledge, none of the above mentioned studies focused on mining issue
tracking repositories to study the issue tracking practices within the scientific soft-
ware domain. In general, these studies did not present any clear indications on the
quality of documentation, common implemented procedures, and used tools by sci-
entists in the tracking and management of software issues. Therefore, it is our aim to
gain a deeper insight on the level of commitment, efforts, used common procedures,
problems encountered, and behaviors of scientists involved in tracking issues. Some
of the metrics we used in our study were based on the work of Bachmann et al. [5],
which evaluated the quality of software process data obtained from several artifacts
including issue trackers.

2.2 assignee recommendation

Most of the existing work for assignee recommendation relied on analyzing the bug re-
ports and other artifacts stored in the same repository–for example, comments on the
bug reports and the attached stack trace file [87]. Several other approaches considered
heterogeneous artifacts collected from different repositories used within a software
project, eg., Version Control System (VCS) commit history and source code artifacts
[51, 70, 24], to determine the expertise of the developers. Work from Yingbo et al. [84]
used event logs of the workflow system to identify patterns of activities, which is
common with our work. However, they used machine learning to identify the various
activities each person undertakes, and focus on the field of workflow.

Anvik et al. [2] applied a supervised machine learning algorithm in their work on
the information extracted from the bug repositories of three big open source software
projects. They achieved high precision on the Eclipse and Firefox development projects.
They also highlighted an important project-specific aspect, i.e., “one developer dom-
inating the report resolution process", which we try to overcome in our approach by

2.2 assignee recommendation 9

allocating appropriate weights to various other activities. Anvik et al in 2013 extended
their work by developing ‘Creation Assistant for Easy Assignment (CASEA)’, a tool that
uses a project member’s knowledge to create an assignment recommender specific to
the software development project. It assists the user in labeling and filtering the bug re-
ports used for creating a project-specific assignment recommender. The authors claim
their work is more practical compared to our approach.

Cubranic et al. [18] emploed text categorization using a naive Bayes classifier to pre-
dict the developer that should work on the bug based on the bug’s description. They
predict 30% of the assignments over a collection of 15,859 bug reports from the Eclipse
bug tracking repository. Hossen et al. [35] developed ‘iMacPro’, for assigning the in-
coming change requests to appropriate developers who have the necessary expertise
to resolve them. iMacPro uses Latent Semantics Indexing to retrieve textual descrip-
tion of an incoming change request and locate it to relevant units from a source-code
snapshot, which are change prone. To that end, authors and maintainers of change-
prone source code units are most likely to best assist with the incoming change re-
quest’s resolution. A similar approach by Shokripour et al.[75] predicted the source
code files that will be changed to fix a new bug report, by extracting from four distinct
text information sources indexes of unigram noun terms that links it to source code
files. Afterwards, they used these predicted source code files to recommend suitable
developers for handling the new reported bug.

Wu et al. [81] presented an approach called Developer Recommendation with k-
nearest-neighbor search and expertise ranking (DREX) that performs developers rec-
ommendation, using K-Nearest-Neighbor search that is based on: (1) bug similarity
and (2) social network expertise ranking metrics. Work from Zhang et al. [87] also
considered social networks for retrieving candidate developers, along with creating a
concept profile for extracting bug concepts and topic terms. On the other hand, Yang
et al. [83] constructed a multi-developer network that helps in verifying the develop-
ers’ ability to fix a given bug report based on the number of received comments and
sent commits. This work not only considered the comment activities, but also focused
on the commit messages for source code files change. Work from Mainur et al. [64]
additionally considered developers’ workloads to estimate the required time to fix a
new bug. They applied different variants of Greedy Search (with varying parameters)
for nine milestones of the Eclipse JDT project. Similarly, work from Park et al. [59] also
considered the workload factor. They applied Latent Dirichlet allocation (LDA) to iden-
tify bug types, and quantify each value of the developer’s profile as the average time
to fix the bug in the corresponding type. Baysal et al. [8] presented a theoretic frame-
work for automated bug assignment considering developer preferences, expertise, and
workloads.

Nagwani et al. [55] implemented a tool that ranks developers within a certain project
based on their contribution within bug resolution and fixes. The contribution score of
each developer is calculated using a number of attributes from the bug tracking repos-
itory that included; bug fixes of a certain severity and priority, and reporting new
problems and comments, i.e., bug resolving activities. Gousios et al. [25] proposed
a model for calculating the activities a developer has performed during the develop-
ment process, which they refer to as “contribution" towards different tools like Apache
Subversion (SVN), bug tracking repository, wiki, mailing lists, and forums. Some ex-

10 related work

ample, of these activities are, adding a line of code, committing fixes to code style,
committing code that closes a bug, closing a bug report, reporting a bug, comment-
ing on a bug report, and starting a new wiki page. Xie et al [82] presented a bug
assignment recommendation model that is based on topic models and bug resolving
activities. Upon the arrival of a new bug report, a ranked list of developers is gen-
erated. These developers are likely to contribute to resolving the new bug according
to their matching interests and expertise. Nguyen et al. [57] implemented FixTime,
a time-aware approach for issue assignment. FixTime is a topic-based, log-normal re-
gression model to predict the resolution time of a given issue if it is assigned to a given
developer. FixTime uses that model to predict all available developers and ranks them
based on the predicted resolution time to recommend the fixing assignment. The ap-
proach we used in ranking the developers differs from the work of Nagwani et al. and
Xie et al. in: (1) The activities they considered are contribution and resolving activities,
while we focus on resolving, assigning, and reviewing. (2) The attributes of the bug
tracking repositories they used in identifying the activities are: bug report’s priority,
status, and comments, while we use the bug report’s status and resolution.

3
A S T U D Y O N H O W I S S U E T R A C K I N G I S P R A C T I C E D W I T H I N
S C I E N T I F I C S O F T WA R E P R O J E C T S

Issue tracking is the process of reporting, assigning, prioritizing, reviewing, and re-
solving software issues. In large complex projects, issue tracking is crucial for a suc-
cessful collaboration between developers and for managing the projects’ progress. Pre-
vious research [67, 89, 37, 45, 48] has focused on issue tracking in large Open Source
projects, often carried-out by developers with substantial software engineering back-
ground. However, there is only a little evidence on how issue tracking is practiced in
other domains.

In this chapter, we studied issue tracking in the domain of scientific software de-
velopment, in which scientists intensively collaborate to develop and use complex
software systems. We empirically analyzed and compared issue tracking data of two
scientific and two open source software engineering projects. We also surveyed 612

project participants about their issue tracking practices, preferences, and problems.
Chapter content:

• An empirical study that utilizes activities within issue tracking repositories, to iden-
tify project specific overheads and problems within issue tracking practices ap-
plied in software projects.

• A comparison between the results obtained from the scientific software projects and
the open source software engineering projects.

• An insight into the pattern of activities performed by developers in issue tracking
repositories of various project domains. These patterns indicate how various
project members interact with issue reports and how issue tracking is practiced
within each project domain.

The rest of the chapter is organized as follows. Section 3.1 describes the design of
our study including the research questions, methods, and data used. Then, we report
on the results of the survey and the data analysis in Section 3.2. In Section 3.3 we
summarize our findings, and discuss their limitations and implications for researchers
and practitioners.

3.1 study design

In this section we describe how the study was designed to determine the character-
istics of issue tracking activities, behaviors and impediments belonging to a specific
project. In the study we targeted three main issue tracking activities: reporting, man-
agement and resolvement of issue reports. As shown in Figure 3.1, for each issue
tracking activity we focused on identifying five metrics: interconnectivity, tools, doc-
umentation quality, frequency, enhancements, and problems. These metrics were used to
answer the following research questions:

11

12 a study on how issue tracking is practiced within scientific software projects

,QWHUFRQQHFWLYLW\

)UHTXHQF\

'RFXPHQWDWLRQ�4XDOLW\

7RROV

(QKDQFHPHQWV�
DQG�3UREOHPV

2QOLQH�6XUYH\

5
HV
RO
YL
QJ

0
DQ
DJ
LQ
J

5
HS
RU
WLQ

J

6W
XG
\�
0
HW
ULF
V

�5
HV
HD
UF
K�

0
HW
KR

GV

�6WXGLHG�,VVXH�
7UDFNLQJ�
$FWLYLWLHV

'DWD�$QDO\VLV
5HVROYLQJ
'RFXPHQWDWLRQ�4XDOLW\

'DWD�$QDO\VLV�

H[DPSOH��PHDVXULQJ�WKH�UDWH�RI�
LVVXH�UHSRUWV�WKDW�FRQWDLQHG�
DWWDFKPHQWV

Figure 3.1: Study Design

• Are issue tracking activities interconnected with each other?

• Which tools are frequently used in performing a certain issue tracking activity?

• Is the documentation of issue tracking activities inconsistent or incomplete?

• Are there any activities more frequently performed compared to others?

• What are the problems encountered during each issue tracking activity?

• What types of enhancements are needed to make issue tracking practices more effective?

These metrics provide a deeper insight on the level of commitment, effort, common
procedures used, and behaviors of project members involved in tracking issues. Addi-
tionally, pointing out the problems encountered during issue tracking activities, their
frequencies, and their impacts. This allows the identification of the needs of the project
members, their priorities, and potentials for improvement.

3.1.1 Studied Issue Tracking Activities

Within a typical software project, an issue report goes through a standard lifecycle,
in which it gets submitted, assigned, resolved, verified and finally closed. The issue
tracking activities are actions done to transfer an issue report from one of these states
into another. Considering our goal in providing distinctive characterization of the is-
sue tracking practices within a certain project, we categorized the characteristics of
issue tracking practices into three main activities: reporting, managing, and resolving.
Reporting includes the capturing and communication of a discovered issue. Managing
an issue report is the activity of deciding the progress of the issue within its life cy-
cle, which includes assigning, prioritizing, and reviewing the issue. Finally, resolving
concerns how the issue’s resolution was implemented.

3.1 study design 13

The way each of these activities are represented within different issue tracking repos-
itories may vary due to the fact that issue report attributes may differ from an issue
tracking repository to another. For example, in a certain issue tracking repository, two
attributes (namely: status and resolution) are used to give a more descriptive trace to
the report’s status, (e.g. an issue can have a “Resolved" status together with a “Fixed"
resolution), while in another issue tracking repository only one attribute (namely: sta-
tus) is used to give a brief indication of the report’s current status.

We identify an issue tracking activity as a specific pattern in the history logs of the
issue tracking repository. The pattern is a series of specific changes within certain issue
reports’ attributes. For example, an assigning activity is acknowledged if the history log
indicates that the report’s attribute referring to the assignee (the person involved in
resolving the issue) has been updated with a valid assignee id. We have formulated
a set of heuristics summarized in Table 3.1 that defines the patterns of history log
entries. The heuristics can be further adjusted to fit the issue reports’ attributes of a
certain issue tracking repository.

Table 3.1: Heuristics used for identifying issue tracking activities
Activity Rule

Reporting If the history log recorded the submission of an issue report.
Then, the individual responsible for that submission, i.e. (issue re-
port submitter) has performed a reporting activity.

Assigning If the history log recorded a change in the issue report’s attribute
referring to the person involved in resolving the issue, i.e. assignee.
Then, the individual responsible for that change has performed an
assigning activity. (i.e. has assigned/reassigned an issue report to
an existing assignee).

Prioritizing If the history log recorded a change in the issue report’s attribute
referring to the issue report’s priority.
Then, the individual responsible for that change has performed a
prioritizing activity. (i.e. has set the priority of an issue report to
certain level).

Reviewing For an unassigned issue report, if the history log recorded a change
in the issue report’s attribute referring to its resolution status, indi-
cating that the issue report was either invalid or a duplicate.
Then, the individual responsible for that change has performed a
reviewing activity.
For a resolved issue report, if the history log recorded a change in
the issue report’s attribute referring to its status, indicating that the
issue report’s resolution was set toverified.
Then, the individual responsible for that change has performed a
reviewing activity.
For a closed issue report, if the history log recorded a change in
the issue report’s attribute referring to its status, indicating that the
issue report was reopened (i.e. status changed from closed to open).
Then, the individual responsible that change has performed a re-
viewing activity.

Resolving For an already assigned issue report, if the history log recorded a
change done by the issue report’s assignee to the issue report’s
attribute referring to its resolution status indicating that a formal
resolution has been reached (e.g. fixed/won’t fix/duplicate).
Then, the individual responsible for that change has performed a
resolving activity.

14 a study on how issue tracking is practiced within scientific software projects

3.1.2 Study Metrics

This section presents a brief description of the five metrics used to characterize each
studied issue tracking activity.

Interconnectivity: is a metric that measures the level of interdependence between
two issue tracking activities, indicating the influence of one activity on the other.
This provides an estimate on the project members dynamics and how defined are
the boundaries between the issue tracking activities. In other words, the metric of
interconnectivity can indicate if the studied projects have distinct subgroups perform-
ing only one specific activity or if they consist of subgroups that perform multiple
activities belonging to other groups.

Tools: is a metric that determines the frequently used tools in performing a certain
issue tracking activity, indicating the common procedures in performing a certain
activity.

Documentation Quality: is a metric that determines how well a certain issue track-
ing activity was documented. This provides an indication on the performed activity
conformance with issue tracking specifications. In addition, it verifies the complete-
ness and consistency of information related to the documentation of the performed
activity.

Frequency: is a metric that evaluates the importance of a certain activity in terms of
its frequency compared to others, enabling to identify irregularities or inconsistencies
within the issue reports’ lifecycle.

Enhancements and Problems: is a metric that determines the problems encountered
during each issue tracking activity, pointing out the areas, which needs to be improved.
Additionally, it defines the types of enhancements needed by the project members that
can add significant value to the project.

All data used in calculating these study metrics were collected using both research
methods: (1) data analysis of project artifacts and (2) online-survey, are further dis-
cussed in the next section.

3.1.3 Research Methods

This section presents details of the research methods used in collecting quantitative
and qualitative variables that represent the study metrics.

3.1.3.1 Data Analysis-Measures

We used data analysis as a method for collecting quantitative values to determine the
Documentation Quality, Frequency, and Interconnectivity metrics. We studied the con-
tents of the issue tracker artifacts: feature requests and bug reports, focusing on the
changes in the history logs concerning issue reports’ attributes such as status and res-
olution. The measured values were used to identify three main aspects: (1) if a certain
issue tracking activity was performed according to a predefined specification, (2) re-
lationships between the issue tracking activities performed by project members, and
(3) the frequency of a certain activity with respect to the total number of performed
issue tracking activities. This was mainly done by counting the issue reports having

3.1 study design 15

Table 3.2: Documentation Quality-Measures

Activity Measure Description Incident
Type

Reporting RCNI Rate of issue reports that contained all
the necessary attributes for describing the
problem. (title, description, operating system,
release and system component)

Positive

RCA Rate of issue reports that contained attach-
ments.

Positive

Assigning RA Rate of assigned issue reports. (closed re-
ports)

Positive

ATC Assignee tossing count, represents the num-
ber of times an issue report was reas-
signed.

Negative

Reviewing RNR Rate of issue reports that where closed but
had no resolution, i.e. the issue reports at-
tribute indicating its resolution was set to
null or indefinite value.

Negative

RRCSP Rate of issue reports that where closed
and resolved by the same person.

Negative

Prioritizing PCC Priority change count, represents the num-
ber of issue reports that encountered
changes in the attribute indicating its pri-
ority.

Positive

Resolving RNRA Rate of issue reports that were not re-
solved by the assignee.

Negative

RCR Rate of issue reports that had comments
indicating a description of how it was re-
solved.

Positive

its contents (i.e. attributes) meeting a certain criteria. For example, we counted the
number of issue reports that were having status: closed, but did not have any trace
on how it was resolved, which can indicate that the actual method of performing the
resolution activity was not documented, i.e., the issue report attribute referring to its
resolution has no actual trace to how the problem was solved (equals to null). In this
case, this measure can be used to represent the Documentation Quality metric.

The documentation quality measured values are divided into two categories: nega-
tive and positive incidents. The negative incident concerns an issue tracking activities
that were incompletely or inconsistently recorded or an incident that indicates a low
level of collaboration or unclear information or lack of experience. While a positive in-
cident concerns the activities that were performed according to specific requirements
that guarantees the confidence of recorded information or high level of collaboration
or useful information or high level of experience. Our interpretation of a positive and
a negative incident was deduced from the work of Bachmann et al. [5]. Consequently,
both types of incidents can give an estimate on the maturity level of the issue tracking
process within the investigated projects, i.e., the project with higher number of posi-
tive incidents and less number of negative incidents implies a high maturity level of
its issue tracking process. Table 3.2 gives a short description of each measured value
representing the Documentation Quality assessment metric. The measured values were
then categorized based on the concerned activity and incident type.

To determine how activities interconnect with each other, we calculated Project
Member Activity Counter (PMAC), that represents for each project member

i

the num-

16 a study on how issue tracking is practiced within scientific software projects

ber of times he performed a certain issue tracking activity
j

. After then we calculated
Pearson Product-Moment Correlation Coefficient r [68], between all possible combi-
nation of every activity pair using the P

i

MA

j

C variable. As shown in equation 3.1,
we determined the interconnectivity between two activities X and Y by calculating the
correlation coefficient r of P

i

MA

j

C variables belonging to each project member
i

that
is related to activity X and Y. For interpreting the relationships among P

i

MCA

X

&
P

i

MCA

Y

, we used the scale provided by Salkin [68].

r =
1

n- 1

nX

i=1

✓
P

i

MCA

X

- P

i

MCA

X

S

P

i

MCA

X

◆
⇥
✓
P

i

MCA

Y

- P

i

MCA

Y

S

P

i

MCA

Y

◆
(3.1)

• n is the number of project members.

• The mean of the P

i

MCA

X

& P

i

MCA

Y

is denoted by a horizontal bar over it.

• The standard deviation of the P

i

MCA

X

& P

i

MCA

Y

is denoted by S

P

i

MCA

X

&S

P

i

MCA

Y

.

We calculated the frequency f of an issue tracking activity i by counting the number
of times the activity i has occurred within a specific period of time as shown in Equa-
tion 3.2. Afterwards, we normalized the frequency through dividing it by the total
number of issue tracking activities N.

f

i

=
n

i

N

(3.2)

• N represents the total number of issue tracking activities performed within a specific
period of time.

3.1.3.2 Survey-Measures

We conducted an online survey to collect quantitative and qualitative data for a rep-
resentative evaluation of our study metrics. The survey included 16 closed questions,
which were divided into two groups: (1) twelve questions were designed to measure
specific data values for determining one or more study metrics, and (2) four demog-
raphy questions were designed to capture the survey participants’ educational back-
ground, software engineering background, and project experience. The demography
data can serve as a useful tool for drawing statistical analysis on the influence of the
participants’ environment and background on issue tracking activities, which if used
can add another dimension to the study. However, this is not the focus of our research.

Table 3.3 gives a short description on each of 16 survey questions, categorizing them
according to the study metric(s) they represent. A detailed copy of the 16 questions
and provided answer options can be seen in the Appendix at Section A.2.

3.1 study design 17

Table 3.3: Survey-Measures

Question ID Question Content Study Metric

Q1 Performed activities Interconnectivity,
Frequency

Q2 Average completion time per activity Documentation
Quality

Q3 Rating of project’s issue tracking practices Documentation
Quality

Q4 Perceived benefits of using an issue tracker

ToolsQ5 Activities performed using an issue tracker
Q6 knowledge level of issue tracking tools
Q7 Preferred tools in each activity
Q8 Frequently encountered problems Enhancements
Q9 Severity of encountered problems & problems
Q10 Activities that are seen as an overhead
Q11 Project specific overheads & problems
Q12 Project specific issue tracking enhancements
Q13 Participant’s role in the project

DemographyQ14 Participant’s project experience
Q15 Participant’s educational background
Q16 Participant’s software engineer experience

3.1.4 Case Studies

We applied our study metrics within several case studies, in which we empirically
analyzed the issue tracking logs of two scientific software projects and conducting
an online survey with their project team members. Additionally, we compared the
outcomes against two open source software engineering projects. The investigated
four software projects are introduced in Table 3.4. ATLAS-Reconstruction and Bell2
projects represent the scientific software domain, while Eclipse and UNICASE are
projects from the software engineering domain, i.e., the nonscientific domain. The
projects were selected to ensure diversity within the quality of issue reports, how they
got assigned, reviewed, and resolved; so that we could draw unbiased interpretations.
For each project we defined two different datasets that were used in the data analysis
and online surveying, they are described in Section 3.1.4.1 and 3.1.4.2.

Table 3.4: Overview of studied projects

Scientific Software Software Engineering
ATLAS-
Reco

Belle2 Eclipse UNICASE

P. language C++/Python C++/Python Java Java
Lines of code ˜7 Mio. ˜1 Mio. ˜3 Mio. ˜5 Mio.
Issue tracker Savannah Redmine Bugzilla UNICASE
Avg. reports/ day 1 2 100 1

Management of issue
reports

Volunteer-
based

Volunteer-
based

Developer-
based

Developer-
based

18 a study on how issue tracking is practiced within scientific software projects

ATLAS-Reco1 : ATLAS is a particle accelerator experiment conducted at the LHC at
CERN in Geneva, Switzerland. ATLAS roughly involves 3,000 scientists and engineers
from 165 institutions and 35 countries. The ATLAS software infrastructure consists of
97 sub-projects, which consolidate raw data and distribute it on the Worldwide LHC
Computing Grid, providing scientific analysis, simulations, and reconstruction of dif-
ferent scientific experiments. We study the ATLAS-Reconstruction project which is re-
sponsible for the event reconstruction in the experiments. The ATLAS-Reconstruction
team created about 7 Mio. lines of code. Managing of issue reports depends on the
voluntarily efforts of team members, in which they use Savannah2, a proprietary web-
based tool since 2003.

Belle23: is a particle physics experiment conducted by the Belle Collaboration, an
international project of roughly 400 physicists and engineers from 19 countries and 65

institutions organization around the globe. It investigates CP-violation effects at the
High Energy Accelerator Research Organization (KEK) in Tsukuba Japan. We studied
the issue tracking of Belle2. It includes 28 stakeholders who created about 1. Mio lines
of code. Managing of issue reports is based on the voluntarily efforts of the team
members. Starting from 2011, they are using Redmine4, an open source web-based
issue tracking system.

Eclipse: is an open source development platform, which comprises extensible frame-
works; tools, and runtime environments to build, deploy, and manage software sys-
tems. The Eclipse community is one of the largest open source communities including
11 million users and more than 30 000 individuals who are involved in the issue track-
ing process. Eclipse is frequently used in software engineering empirical studies [66],
as its data is is publicly available and easily accessible from the web. For issue tracking
since 2001, Eclipse uses Bugzilla5, a popular open source bug tracker.

UNICASE6: is an open source CASE tool, which enables to collaboratively create
and manage software engineering models such as class and use case diagrams. UNI-
CASE also allows for linking the models and their elements to tasks, bug reports, and
other project documentation. The UNICASE team involves 51 individuals who have
created about 5 Mio lines of code. The team uses UNICASE itself as an issue tracker.

3.1.4.1 Data Analysis-Dataset

The dataset used in the data analysis method consisted of issue reports as well as
the activity history (i.e. records of users’ interactions with the bug tracker). We trans-
formed the database dumps of the issue trackers into a unified database. The uni-
fication enabled us to (a) filter unnecessary details such as the user credentials, (b)
unify the attribute name across the databases simplifying the referencing and com-
parison, and (c) conduct the statistical analysis more efficiently to avoid complicated
join operations and attribute matching. The unified issue report data included the
following information: issue_id, project_id, title, description, assignee, submitter, cre-

1 http://www.atlas.ch/
2 https://savannah.cern.ch/projects/atlas-bugs/
3 http://belle2.kek.jp/
4 http://www.redmine.org/
5 http://www.bugzilla.org/
6 https://code.google.com/p/unicase/wiki/UNICASEClientNavigation

http://www.atlas.ch/
https://savannah.cern.ch/projects/atlas-bugs/
http://belle2.kek.jp/
http://www.redmine.org/
http://www.bugzilla.org/
https://code.google.com/p/unicase/wiki/UNICASEClientNavigation

3.1 study design 19

ation_date, priority, resolution, status and category. The unified activity history in-
cluded the following information bug_id, activity_id, project_id, activity_type, who,
when, old_value, new_value. The data were filtered to ensure the accuracy of the anal-
ysis.

The analyzed sample consisted of only closed issues to ensure that the issue re-
ports are at a steady state that is reflecting a complete life cycle. Thus, including all
information about reporting, resolvement and management activities. Table 3.5 and
3.6 summarize the four original and analyzed datasets.

Table 3.5: Overview of original issue tracking data

ATLAS-Reco Belle2 Eclipse UNICASE

DB size 47.9 MiB 960.0 KiB 2.9 GiB 1.7 MiB
Studied period 2003-2012 2011-2012 2001-2010 2008-2011

reports 3035 566 316911 1079

project members 501 29 30908 53

Table 3.6: Overview of analyzed issue tracking data

ATLAS-Reco Belle2 Eclipse UNICASE

closed issue reports 2923 364 66581 812

project members 312 16 6818 37

issue tracking activities 6525 415 234514 2330

3.1.4.2 Survey-Dataset

The survey sample included all individuals from the target population who have per-
formed at least two issue tracking activities in one of the studied projects. To ensure
a minimum level of involvement in the project and knowledge with its issue tracking
practices we excluded individuals who participated only once in a single report. To be
representative, our sample should reflect different stakeholders in the project. There-
fore, we emailed all addresses available in the issue tracking repository from each
population.

Table 3.7: The survey samples

ATLAS-Reco Belle2 Eclipse UNICASE

Population 399 28 32178 51

of full responses 72 15 515 (240 Reporters & 275 Developers) 10

% of sample 18 53.6 1.6 19.6
Margin of error 10.21 17.56 4.28 28.06

The sample size we targeted was calculated with an online Sample Size Calculator
7 with a 95% Confidence Level and 5% Confidence Interval (i.e. Error Margin). As,
response rates of online surveys typically vary between 36% to 93% [19], we doubled
the calculated target sample size to get enough responses. We then sent personalized

7 http://www.surveysystem.com/sscalc.htm

http://www.surveysystem.com/sscalc.htm

20 a study on how issue tracking is practiced within scientific software projects

emails to the participants and reminded them after one week, two weeks, and one
month. The details of the samples are summarized in Table 3.7. Since Eclipse had
the largest number of target population among all the other projects, we wanted to
increase the quality of its participants interactions to avoid excessive survey length
and irrelevant questions, which eventually would help us achieve high number of
responses within our sample. To that end, we have created two survey instances, one
similar to the one used within all the other projects and another one that is shorter in
length containing only questions relevant to issue reporters.

3.2 study results

This section provides a summary of the outcome from applying the data analysis
measures described in Section 3.1.3.1 on the issue tracking repositories belonging to
the studied projects. Additionally, the section summarizes the outcome of analyzing
the 612 survey responses based on the study metrics described in Section 3.1.3.2.

3.2.1 Data Analysis-Results

This section provides a summary of the outcome from applying the data analysis mea-
sures described in Section 3.1.3.1 on the dataset described in Section 3.1.4.1. The data
analysis measures represent the study metrics: documentation quality, interconnectiv-
ity, and frequency. This provides an in-depth knowledge on the level of collaboration
among project members, and the quality and amount of effort exerted in documenting
the issue tracking activities.

3.2.1.1 Documentation Quality

ATLAS−Reco Belle2 Eclipse Unicase

Rate of Assigned Issue Reports

R
A

(%
)

0
20

40
60

80
10

0

ATLAS−Reco Belle2 Eclipse Unicase

Rate of Issue Reports that Contains Descriptive Attributes

R
C

N
I (

%
)

0
20

40
60

80
10

0

ATLAS−Reco Belle2 Eclipse Unicase

Rate of Issue Reports that Contains Attachments

R
C

A
(%

)

0
20

40
60

80
10

0

ATLAS−Reco Belle2 Eclipse Unicase

Rate of Issue Reports not Resolved by Assignee

R
N

R
A

(%
)

0
20

40
60

80
10

0

●●

●●

●●●●●●●●●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●●●

●

●●

●●

●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●

●●●●●

●

●●●

●

●●

●●●●●●●●●●●●●

●●●

●

●

ATLAS−Reco Belle2 Eclipse Unicase

0
5

10
15

Number of Times an Issue Report is Reassigned

AT
C

●●

●●●●●●

●●

●

● ●●●

●●●

●●

●●●

●●

●●●●●●●●●●●●●●●

●●●●●

●●●

●

●●

●

●●●

●●●●●●●●●●●●●●●●●●●●

●●●

ATLAS−Reco Belle2 Eclipse Unicase

0
2

4
6

8
10

Number of Times an Issue Report's Priority Changes

PC
C

ATLAS−Reco Belle2 Eclipse Unicase

Rate of Issue Reports with Commented Resolvement

R
C

R
 (%

)

0
20

40
60

80
10

0

ATLAS−Reco Belle2 Eclipse Unicase

Rate of Issue Reports Closed Having no Resolution

R
N

R
 (%

)

0
20

40
60

80
10

0

ATLAS−Reco Belle2 Eclipse Unicase

Rate of Issue Reports Closed & Resolved by Same Person

R
R

C
SP

 (%
)

0
20

40
60

80
10

0

Figure 3.2: Documentation Quality metrics

3.2 study results 21

Figure 3.2 shows, nine measures indicating the documentation quality of issue track-
ing activities within the four investigated projects. From, the rate of issue reports with
commented resolvement (RCR) and the rate of issue reports that contains descrip-
tive attributes (RCNI), we can deduce the amount of effort exerted from the project
members when they are resolving and assigning issue reports (i.e., positive incident).
Additionally, given the rate of assigned issue reports (RA) and the rate of closed
issue reports having no documentation of its resolution (RNR), we can infer the com-
pleteness and consistency of information related to the documenting of assigning and
reviewing activities (i.e. negative incident).

We performed a proportion test [56] on the four measured values, to identify if
teams within scientific software projects perform issue tracking differently from soft-
ware engineering projects. The test indicates the probability of all proportions being
the same. A low p-value indicates there is a significant difference among tested groups.
Table 3.8 provides a summary of the test outcome. For RCR, it is was more likely for
software engineering projects members to exert more effort in documenting the re-
solvement of issue reports compared to scientific software projects.

Table 3.8: Proportion test of Documentation Quality metric variables

Variables X-
squared

CI, df, p-value ATLAS-
Reco

Belle2 Eclipse UNICASE

RCR 10365.17 95%, df=3, 0.13 0.00 0.797 0.0086

RCNI 27956.04 p- value < 0.560 0.92 0.99 0.78

RA 18953.29 2.2e- 16 0.71 0.99 1.00 0.92

RNR 40807.42 0.57 0.70 0.0 0.0

Given the proportion of the measured RCNI values, the issue reports within soft-
ware engineering projects have a higher probability to contain more descriptive at-
tributes compared to scientific software projects. For RA, ATLAS-Reco has the low-
est probability for it to contain assigned issue reports compared to all other projects,
which indicates that ATLAS-Reco has the highest amount of incomplete recordings of
issue assigning activities. For RNR, scientific software projects are more likely to have
inconsistent and incomplete recordings of the issue reviewing activities compared to
software engineering projects. In conclusion, scientific software projects showed more
negative quality incidents and relatively less positive incidents in comparison to soft-
ware engineering projects.

3.2.1.2 Interconnectivity

To determine the differences on how activities interconnect with each other among the
investigated projects, we calculated pearson product-moment correlation coefficient of
the variable: PMAC belonging to each issue tracking activity described in Section 3.1.3.1.
For scientific software projects, members engaged in reporting activity had a weak to
no correlation with issue resolvement and management activities. On the other hand,
reporters in software engineering projects had a moderate to very strong positive
correlation with issue reviewing, prioritizing and resolvement activities. Within all
four projects the members involved in resolving activity had a moderate to a very
strong positive correlation with issue reviewing and assigning activities. In conclusion,

22 a study on how issue tracking is practiced within scientific software projects

scientific software projects seem to have a clear separation between roles who report
issues and those who resolve and manage them. In other words, people who report
issues do not engage in any management or resolvement activities.

ATLAS−Reco Belle2 Eclipse Unicase

Reporting
Resolving
Assigning
Prioritizing
Reviewing

Fr
eq

ue
nc

y
of

 is
su

e
tra

ck
in

g
ac

tiv
ity

0
20

40
60

80
10

0

Figure 3.3: Frequency of issue tracking activities (Analyzed)

3.2.1.3 Frequency

Figure 3.3 shows the frequency of all the issue tracking activities. The activity fre-
quency is derived from the PMAC variable and the total number of issue tracking
activities described in Section 3.1.3.1. The figure indicates that the frequencies within
scientific software projects are skewed compared to software engineering projects. The
great difference indicated between the frequencies of reporting and resolving activity
strongly implies the irregularity and inconsistency of the adopted issue tracking life-
cycle within scientific software projects.

3.2.2 Survey-Results

This section provides a summary of the analysis outcome from the 16 survey questions
represented in Section 3.1.3.2 belonging to 612 participants represented in Section
3.1.4.2. The questions were analyzed to identify the five study metrics: interconnec-
tivity, tools, documentation quality, frequency, enhancements, and problems, which
provides a deeper insight on the level of commitment, effort, common procedures
used, and behaviors of project members involved in tracking issues.

3.2.2.1 Demographic

612 valid responses were collected from August 2011 to August 2012. Figure 3.4 in-
dicates that all of the Belle2 participants are of a physics background as well as the
majority of the participants of ATLAS-Reco project (83%). Software engineering is the

3.2 study results 23

ATLAS−Reco Belle2 EclipseDeveloper EclipseReporter Unicase

[Software engineering]
[Physics]
[Mathematics]
[Computing]

What is your main educational background?

R
es

po
ns

e
R

at
e(

%
)

0
20

40
60

80
10

0

Figure 3.4: Participants’ educational background

main educational background for the Eclipse developers, Eclipse reporters and Uni-
case (47%, 44% and 54% respectively). The next highest background for these three
groups is computing (38%,34% and 38.5% respectively). Software engineering presents
a small percentage in the ATLAS-Reco (3.5%) and no cases in Belle2. Mathematics
background showed the lowest overall percentage, with zero % in Belle2, followed by
ATLAS-Reo (7.2%), Unicase (7.6%) , Eclipse developers (12.5%) followed by Eclipse
reporters (16%).

Figure 3.5 shows that the highest overall percentage of responses among all projects
belonged to the role developers who are also users of the software (51.39% ATLAS-
Reco, 46.67 % Belle2, 29.45% Eclipse developers, 15.83 % Eclipse Reporters, 30% UNI-
CASE).

ATLAS−Reco Belle2 EclipseDeveloper EclipseReporter Unicase

User who is not involved in the development of the software
Tester
Release or project manager
Other
Documentation maintainer
Developer who is also a user of the software
Developer

Which of the following best describes your main role within the project?

Re
sp

on
se

 R
at

e(
%

)

0
20

40
60

80
10

0

Figure 3.5: Participants’ project roles

For the Eclipse reporters, the majority of its responses (58%) belonged to the role of
a user who is not involved in the development of the software. Additionally, 22.22% of
ATLAS-Reco, 13.33% of Belle2, 9.81% of Eclipse developers, 2.92% of Eclipse reporters

24 a study on how issue tracking is practiced within scientific software projects

and 20% of UNICASE responses belonged to release or project managers roles. Tester
role belonged only to 2.78% of ATLAS-Reco, 4% of Eclipse developer and 0.42% of
Eclipse reporters responses. Documentation maintainer role belonged only to 0.4%
Eclipse developers and 10% UNICASE responses.

ATLAS−Reco Belle2 EclipseDeveloper EclipseReporter Unicase

More than 5 years
Less than 1 year
2−5 years
1−2 years

How long have you been enrolled within your project?

R
es

po
ns

e
R

at
e(

%
)

0
20

40
60

80
10

0

Figure 3.6: Participants’ project experience

Figure 3.6 illustrates how long the participants have been enrolled within their
projects, 36.1% of ATLAS-Rec, 33.33% of Belle2, 39.32% of Eclipse developers, 33.75%
of Eclipse reporters and 20% of UNICASE responses stated they have been enrolled
within a period of 2-5 years. While 16.67% of ATLAS-Reco, 40% of Belle2, 24.34% of
Eclipse developers, 7.08% of Eclipse reporters and 70% of UNICASE participants have
been enrolled within a period of 1-2 years. More than 5 years period of enrollment was
reported by 47.2% of ATLAS-Reco, 24.35% of Eclipse developers and 57.5% of Eclipse
reporters participants.

ATLAS−Reco Belle2 EclipseDeveloper EclipseReporter Unicase

Very inexperienced
Very experienced
Unexperienced
Somewhat experienced
Experienced

How do you rate your level of software engineering knowledge?

R
es

po
ns

e
R

at
e(

%
)

0
20

40
60

80
10

0

Figure 3.7: Participants’ software engineering experience

Figure 3.7 indicates the percentage of participants that were experienced in soft-
ware engineering within all the projects represented 38.89% of ATLAS-Reco, 33.33%

3.2 study results 25

of Belle2, 48% of Eclipse developers, 45% of Eclipse reporters and 80% of UNICASE
responses.While, 34.72% of ATLAS-Reco, 60% of Belle2, 10.18% of Eclipse developers,
14.58% of Eclipse reporters and 10% of UNICASE responses stated that they are some-
what experienced in software engineering techniques. Very experienced participants
represented 12%, 10%, 41% and 38% of ATLAS-Reco, UNICASE, Eclipse developer
and Eclipse reporters responses respectively. Unexperienced participants represented
12.5% of ATLAS-Reco responses. Very inexperienced participants are the least among
all the responses representing only 1.39% of ATLAS-Reco and 0.42% of Eclipse re-
porters responses.

3.2.2.2 Interconnectivity

The participants were asked to specify the issue tracking activities they usually per-
form on daily basis. Using these responses, we determined the level of interconnectiv-
ity between these activities. We calculated the phi coefficient of a binary variable that
represents the response of each participant, the variable was set to zero when the par-
ticipant did not perform a specific activity, and was set to one otherwise. For interpret-
ing the level of interconnectivity we used the scale provided by Salkin [68]. The results
indicate that members of scientific software projects involved in prioritizing issues
had a moderately positive correlation with resolvement activities and a moderately
negative correlation with activities related to discussing issues among team members.
ATLAS-Reco and UNICASE members engaged in the documenting of issues tracking
activities had a moderately to strong negative correlation with activities related to
discussing issues with team members. Members of software engineering projects in-
volved in reviewing activities have a moderately positive correlation between activities
related to either reporting or documenting issue tracking activities. While, in scientific
software projects members engaged in reviewing activities had weak to moderately
negative correlation with resolvement activities. This indicates that scientific software
projects have a clear separation between management roles and resolvement and com-
munication activities compared to software engineering projects. For all the projects it
was observed that members responsible for resolving or reporting of issues had a mod-
erately positive correlation to the documenting of issues tracking activities. Except for
UNICASE, all members engaged in reporting tend to get involved in prioritizing ac-
tivities. This may indicate that the work flow of how issues are prioritized is different
for the other projects with the possibility that managers or resolvers gets to set the
issues’ priority.

3.2.2.3 Frequency

Using the participants responses about the issue tracking activities they usually per-
form, we calculated the number of times an issue activity was mentioned by partici-
pants. After that, we calculate the frequency according to the previously mentioned
equation in Section 3.1.3.1. Figure 3.8 represents the frequency of each issue tracking
activity in relative to all other activities performed by participants within each project.
In scientific software projects, issue prioritizing and scheduling activities tend to have
the lowest frequency compared to software engineering projects, as seen within Belle2

project non of participants were engaged in these activities. On the other hand, among

26 a study on how issue tracking is practiced within scientific software projects

ATLAS−Reco Belle2 EclipseDeveloper Unicase

Discussing a bug report with team members
Prioritizing & scheduling a bug report
Recording the procedure of handling & resolving a bug report
Resolving a bug report
Reviewing & assigning a bug report
Submitting a bug report

Fr
eq

ue
nc

y
of

 is
su

e
tra

ck
in

g
ac

tiv
ity

0
20

40
60

80
10

0

Figure 3.8: Stated frequency of the issue tracking activities (survey)

all the projects the activities related to the recording of issue handling and resolvement
had the lowest frequency compared to all other activities. As indicated in Figure 3.8
within all the projects, the ratio between the resolving and reviewing frequencies were
within a fairly close proportion (1.3-1.6) in comparison to each other, except for Belle2

project the ratio between resolving (41%) and reviewing (7%) frequencies was larger
(5.86) than all the rest.

3.2.2.4 Quality Ratings of Issue Tracking Practices

Figure 3.9 illustrates the quality ratings of issue tracking practice within the inves-
tigated projects. We have defined four adjective pairs to describe the issue tracking
practices in general using a semantic differential scale ranging from (-1 till 2). The par-

[Ambiguous | Clear]

[Disintegrated from development cycle | Integrated within development cycle]

[Obsolete | Up to date]

[Verbal | Documented]

ATLAS−Reco

Belle2

EclipseDeveloper

Unicase

ATLAS−Reco

Belle2

EclipseDeveloper

Unicase

ATLAS−Reco

Belle2

EclipseDeveloper

Unicase

ATLAS−Reco

Belle2

EclipseDeveloper

Unicase

100 50 0 50 100
Percentage

Response −2 −1 0 1 2

How would you rate the bug tracking practices within your project?

Figure 3.9: Quality ratings of issue tracking practices

3.2 study results 27

ticipants were asked to give an objective feedback on which adjectives best describe
the issue tracking practices adopted within their projects.For software engineering
projects (83-90%) of the participants stated that issue tracking practices were clearly
defined within their projects. While in scientific software projects, (76-79%) stated the
same. A higher number of participants (77-90%) within software engineering projects
believed that the issue tracking practices applied within projects are integrated within
their development cycle in comparison to responses (40-58%) form scientific software
projects. More than 70% participants from all projects stated that applied issue track-
ing practices are up to date. In scientific software projects, 57% of participants believed
that their adopted issue tracking practices are documented, while more than 70% par-
ticipants from the software engineering projects stated the same.

3.2.2.5 Tools

Figure 3.10 presents the participants different perspectives on the gained benefit of
using a bug tracking system to track and handle software issues. Most of the partici-
pants of ATLAS-Reco (40%) and Eclipse (30% & 32%) stated that they benefited from
having a unified platform for sharing information regarding software issues.

ATLAS−Reco Belle2 EclipseDeveloper EclipseReporter Unicase

Sharing of bug reports information within one place
Other
None
Monitoring of development progress
Increased awareness and responsiveness to issues
Easier release planning
Communication with developers

What was the biggest benefit you've gained from using a bug tracking system within your project?

Re
sp

on
se

 R
at

e(
%

)

0
20

40
60

80
10

0

Figure 3.10: Benefit gained from using a bug tracking system (survey)

In UNICASE the largest number of the participants (40%) as well as 22% of Eclipse
developers, 15% of Eclipse reporters, and 31% of ATLAS-Reco participants, expressed
that the use of a bug tracking system has increased awareness and responsiveness to
software issues within their projects. Most of Belle2 responses (33%) as well as 20% of
UNICASE expressed that they benefited from monitoring the software development
progress. However, 13% of Belle2 and 12% responses stated that they didn’t gain any
benefits from using a bug tracking system within their projects.

The participants were asked to name the tool they preferred to use in performing
each of the issue tracking activities. As shown in Figure 3.11, the results indicate that
among all the projects for most of the issue tracking activities bug tracking system was

28 a study on how issue tracking is practiced within scientific software projects

Discussing an issue Prioritizing an issue Recording issue progress Resolving an Issue Reviewing an issue Submitting an issue

0

25

50

75

100

AT
LA

S−
R

ec
o

Be
lle

2

Ec
lip

se
D

ev
el

op
er

Ec
lip

se
R

ep
or

te
r

U
ni

ca
se

AT
LA

S−
R

ec
o

Be
lle

2

Ec
lip

se
D

ev
el

op
er

Ec
lip

se
R

ep
or

te
r

U
ni

ca
se

AT
LA

S−
R

ec
o

Be
lle

2

Ec
lip

se
D

ev
el

op
er

Ec
lip

se
R

ep
or

te
r

U
ni

ca
se

AT
LA

S−
R

ec
o

Be
lle

2

Ec
lip

se
D

ev
el

op
er

Ec
lip

se
R

ep
or

te
r

U
ni

ca
se

AT
LA

S−
R

ec
o

Be
lle

2

Ec
lip

se
D

ev
el

op
er

Ec
lip

se
R

ep
or

te
r

U
ni

ca
se

AT
LA

S−
R

ec
o

Be
lle

2

Ec
lip

se
D

ev
el

op
er

Ec
lip

se
R

ep
or

te
r

U
ni

ca
se

Projects

Fr
eq

ue
nc

y

IssueTrackingTools
Bug tracking system
Comments in source code
Discussion Forum or Mailing list
None
Phone & face to face communication
Private emails
Shared Files
Wiki

Figure 3.11: Tool preference Vs. performed issue tracking activity

the (60%-100%) participants most favorite tool. However, for discussing an issue report
among team members participants in Belle2 (40%), Eclipse (23%) and UNICASE (60%)
preferred to perform it using phone and face to face communication. Additionally
33% of Belle2, 15% of Eclipse and 13% of ATLAS-Reco participants preferred using
discussion forums or Mailing lists. In Belle2, 13% of the participants preferred review-
ing and assigning issue reports either using phone and face to face communication or
discussion forums or Mailing lists.

[Discussing a bug report with team members]

[Prioritizing & scheduling a bug report]

[Recording the procedure of handling & resolving a bug report]

[Reviewing & assigning a bug report]

[Submitting a bug report]

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

100 50 0 50 100
Percentage

Response Never Rarely Sometimes Often Usually

How often do you use a bug tracking system to fulfill the following activities?

Figure 3.12: Activities performed using a bug tracking system (survey)

Figure 3.12 illustrates how frequently a bug tracking system was used in perform-
ing a certain issue tracking activity. We used a Chi-square test for measuring how
likely the observed distributions among the investigated projects are due to chance.

3.2 study results 29

The results indicate for 60% of UNICASE, 53% of Eclipse, 46% of ATLAS-Reco and
27% of Belle2 responses stated that bug tracking system was used in discussing issue
reports among the development team (insignificant difference p-value = 0.072). For
prioritizing and scheduling issue reports in UNICASE projects participants, used it
more frequently than the other teams (50% verses Eclipse 39% , ATLAS-Reco 22% and
Belle2 13%, p-value= 0.025). When recording the procedure of handling and resolv-
ing issue reports 40% of UNICASE , 37% of Eclipse , 24% of ATLAS-Reco and 13%
of Belle2 participants used a bug tracking system (insignificant difference p-value=
0.136). For reviewing and assigning issue reports, 51% of Eclipse developers, 30% of
UNICASE, 42% of ATLAS-Reco and 13% of Belle2 participants used it (insignificant
difference p-value= 0.084). Lastly, for submitting software issue reports, Eclipse devel-
opers used it more often than Eclipse reporters and all the other teams (63% verses 4%
Eclipse reporters, 40% Unicase, 47% ATLAS-Reco and 13% Belle2, p-value= 0.000)

3.2.2.6 Problems, Overheads and Enhancements

[Assigning a bug report to the incorrect developer]

[Assigning duplicate bug reports to different developers]

[Not recording the procedure of handling & resolving a bug report]

[Not setting a priority or properly scheduling a bug report]

[Not tracking a bug that was fixed on the fly]

[Submitting a bug report with an incorrect category]

[Using different bug tracking methods within the same team]

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

100 50 0 50 100
Percentage

Response Never Rarely Sometimes Often Usually

How often do you encounter each of the following problems?

Figure 3.13: Issue tracking problems (survey)

We have defined seven issue tracking problems and asked the participants to state
how frequently do they encounter each of them. We used a Chi-square test for mea-
suring how likely the observed distributions among the investigated projects are due
to chance. Figure 3.13 indicates how frequent the issue tracking problems were en-
countered among the investigated projects. The results indicate that assigning a bug
report to the incorrect developer was encountered more frequently (usually/often/-
sometimes) by ATLAS-Reco participants compared to others (61% of ATLAS-Reco re-
sponses verses 38% of Eclipse developers, 32% of Eclipse reporters, 10% of UNICASE
and 7% of Belle2 responses, p-value =0.00). Also, assigning duplicate bug reports to
different developers was frequently encountered by ATLAS-Reco participants com-
pared to others (43% of ATLAS-Reco responses verses 29% of Eclipse developers, 13%
of Belle2 and 10% of UNICASE responses, p-value=0.024). 40% of UNICASE and

30 a study on how issue tracking is practiced within scientific software projects

Belle2, 22% of Eclipse and 15% of ATLAS-Reco participants expressed that they usual-
ly/often encounter an unrecorded procedure of handling and resolving a bug report
(insignificant difference p-value = 0.065). Not setting a priority or properly scheduling
a bug report was encountered more frequently (usually/often) in Belle2 compared to
other projects (47% verses 25% ATLAS-Reco, 22% Eclipse developers and 10% UNI-
CASE responses, p-value=0.040). 60-73% of all participants mentioned that they fre-
quently encounter (usually/often/sometimes) untracked bug reports that were fixed
on the fly without being documented. Submitting a bug report with an incorrect cat-
egory was mostly common to occur in ATLAS-Reco and Eclipse projects compared
to others (63% of ATLAS-Reco, 52.5% of Eclipse Reporters and 52% of Eclipse Devel-
opers responses verses 20% UNICASE and 13% Belle2, p-value=0.010). Belle2 partic-
ipants are more likely (usually/often) to use different bug tracking methods within
the same team compared to other projects. (20% of Belle2 participants verses 9% of
Eclipse developers and 7% of ATLAS-Reco, p-value=0.010).

[Assigning a bug report to the incorrect developer]

[Assigning duplicate bug reports to different developers]

[Not recording the procedure of handling & resolving a bug report]

[Not setting a priority or properly scheduling a bug report]

[Not tracking a bug that was fixed on the fly]

[Submitting a bug report with an incorrect category]

[Using different bug tracking methods within the same team]

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

100 50 0 50 100
Percentage

Response Strongly Disagree Disagree Undecided Agree Strongly Agree

Do you agree that these problems cause severe overhead for your team?

Figure 3.14: The significance of issue tracking problems (survey)

We have asked the participants to state their opinion on whether they agree or not
that certain issue tracking problems causes significant overheads on the development
team. We used Chi-square test to measure the statistical significance of differences
among projects. Figure 3.14 indicates the level of agreement among participants re-
garding the significance of overheads caused by issue tracking problems. The results
indicate that ATLAS-Reco had the highest level of agreement on the significance of
overheads caused by assigning a bug report to the incorrect developer than the other
projects (53% verses 40% Eclipse Reporters, 36% Eclipse Developers, 33% Belle2 and
30% UNICASE, p-value=0.030). 65% of ATLAS-Reco, 51% of Eclipse developers, 33%
of Belle2 and 30% of UNICASE participants agreed on the significance of overhead
caused by assigning duplicate bug reports to different developers (difference is in-
significant p-value=0.285). 13–40% of all participants agreed on the importance of the
overheads caused by not recording the handling and the resolving of issue reports.
40% of UNICASE, 36% of Eclipse Developers, 31% ATLAS-Reco and 13% of Belle2

3.2 study results 31

agreed (strongly-agreed/agreed) that not setting a priority or properly scheduling a
bug report imposes a significant overhead on their teams. 40% of UNICASE, 33% of
ATLAS-Reco and Eclipse participants agreed that bug reports that were fixed on the
fly without being documented imposed a significant overhead on their teams, while
only 7% of Belle2 participants agreed to that. 50% of UNICASE, 47% of ATLAS-Reco,
40% of Eclipse reporters and 38% of Eclipse developers participants agreed on the sig-
nificance of overheads imposed by submitting a bug report with an incorrect category,
while only 20% of Belle2 participants agreed to that. 47–56% of all participants agreed
on the importance of overheads imposed when using different bug tracking methods
within the same team.

[Submitting a bug report]

[Assigning a bug to the correct developer or category]

[Detecting & linking duplicated bugs]

[Discussing a bug report among team members]

[Maintaining the bug tracking log or system]

[Prioritizing & scheduling a bug report]

[Recording the procedure of handling & resolving a bug report]

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

ATLAS−Reco
Belle2

EclipseDeveloper
EclipseReporter

Unicase

100 50 0 50 100
Percentage

Response Strongly disagree Disagree Neutral Agree Strongly agree

The following activities produce an overhead that has a negative impact on the overall project performance,Do you agree or disagree?

Figure 3.15: Issue tracking activities that are considered as an overhead

Participants were asked to state their opinion on whether they agree or not that
certain issue tracking activities produce an overhead that has a negative impacts on
the overall project performance. We used Chi-square test to measure the statistical
significance of differences among groups. Figure 3.15 illustrates the level of agreement
among participants regarding the issue tracking activities that imposes a negative
impact on team performance. The results indicate that UNICASE had the highest
level of disagreement compared to other groups on submitting a bug report imposing
a negative impact on team performance (100% verses 87% Belle2, 83% ATLAS-Reco,
80% Eclipse developers and 68% Eclipse reporters, p-value=0.008). While, UNICASE
and Belle2 participants had the highest level of disagreement among other projects
on assigning issue reports to the correct developer having negative impacts on project
performance (80% verses 78% ATLAS-Reco, 64% Eclipse developers and 54% Eclipse
reporters, p-value=0.004). The level of disagreement on discussing a bug report among
team members having negative impacts was generally high overall (80%–71%). The
level of disagreement on the following activities: (1) maintaining the bug tracking log
or system, (2) prioritizing and scheduling a bug report and (3) detecting and linking
duplicated bugs, imposing negative impacts was generally the same (45%–60%). 53%
ATLAS-Reco, 45% of Eclipse developers, 40% of UNICASE and Belle2 participants

32 a study on how issue tracking is practiced within scientific software projects

disagreed that recording the procedure of handling and resolving a bug report places
reduces teams performances.

Table 3.9: Number of open ended responses regarding issue tracking problems or overheads

Project # of responses # of valid responses

Eclipse 127 95

UNICASE 1 0

ATLAS-Reco 9 9

Belle2 1 1

Table 3.9 indicates the total number of participants open ended feedback related to
project specific issue tracking problems or overheads that were not mentioned in the
survey. We have reviewed each of the submitted responses and came up with specific
categories that represent their context. The responses were categorized into 17 issue
tracking problems and 18 overheads categories.

Table 3.10: Issue tracking problem categories vs. number of open ended responses
of Responses

Problem Categories Eclipse ATLAS-Reco

Rejecting bug reports without thorough examination 3 0

Receiving negative or no feedback from developers re-
garding a submitted bug

5 1

Bug Tracking System Poor Usability & Functionality 15 1

Delayed bug resolvement & feedback 9 1

Lack of traceability between duplicated bug reports 3 1

Unresolved bug reports that are obsolete 2 1

Submitting bug reports to inactive team 1 0

Lack of integration between development, project man-
agement & collaboration tools

16 4

Lack of traceability between bug reports & its target
release

3 2

Lack of transparency in release planning & workload
scheduling

2 1

Ineffective planning and administration of bug reports’
lifecycle

3 0

Difficulty in decomposing complex bugs into several
tasks

2 0

Conflicts between team members regarding the use of
project management tools

1 0

Lack of support for release planning 1 0

Losing track of long discussion on bug tracking system 1 0

Unrecorded change within bug reports’ status 2 0

Reopening bug reports without investigating its rele-
vance to the arising problem

1 0

Table 3.10 represents the number of participants’ open ended feedback related
to any of the 17 issue tracking problem categories, which included only responses
from Eclipse and ATLAS-Reco projects since the responses from UNICASE and Belle2

projects did not contain any information related to issue tracking problems.
The problem category having the highest percentage of responses among both

projects (16.84% in Eclipse and 44.44% in ATLAS-Reco) was the lack of integration

3.2 study results 33

between development, project management and collaboration tools. Most of the par-
ticipants expressed their discontent of not having interconnectivity among these tools.
For example, if a project member would like to assign a bug report to the last per-
son who has caused a change in the affected part of the source code, then he has to
look up this information within the version control system and then update the bug
report via bug tracking system with corresponding information. In addition, some re-
sponses mentioned that having no real integration among bug tracking system, IDE
and project planning tools (e.g. agile) increases conflicts and inconsistency of informa-
tion. In Eclipse, 15.79% of responses indicated that it is sometimes difficult and un-
pleasant for the participants to use some of the bug tracking system features, i.e. the
system had a poor usability and functionality. In ATLAS-Reco, 22.22% of responses
indicated that there is no traceability between bug reports and target releases, which
made release planning a more difficult and complex process. On the other hand, in
both projects (9.47% in Eclipse and 11.11% in ATLAS-Reco) the participants stated that
it takes a long time for the bugs to get fixed or it takes the developers a long time to
give a feedback regarding an inquiry.

Table 3.11: Issue tracking overheads categories vs. open ended responses percentage
of Responses

Overhead Categories Eclipse ATLAS-Reco Belle2

Prioritizing bug reports 1 0 0

Bug reports notifications 1 0 0

Finding the right category 4 1 0

Finding the right assignee 1 1 0

Finding if a bug is a duplicate or not 7 1 0

Writing reproducible & comprehensible bug reports 2 1 0

Triaging obscure incomplete & invalid reported bugs 18 1 1

Keeping bug reports’ status up-to-date 5 1 0

Feature Requests submitted as bugs 7 0 0

Submitting bug reports that can be fixed right away 2 0 0

Bug reports concerning backwards compatibility 1 0 0

Recovering the resolution of untracked bug 1 1 0

User communicating with developers through private
emails

1 0 0

Managing patches submitted by non-project contribu-
tors

1 0 0

Managing a bug to be fixed in multiple releases 1 1 0

Verification of resolved bugs 2 0 0

Following up on unfinished tasks with developers 0 2 0

Unassigned bug reports 0 1 0

Table 3.11 represents the number of participants’ open ended feedback related to
any of the 19 issue tracking overhead categories, which included only responses from
Eclipse, ATLAS and Belle2 projects as responses from UNICASE project where invalid.
A common overhead among all three projects was the process of triaging unclear and
invalid bug reports. Participants consider it a very arduous and time consuming task
to either figure out the problem itself or identify if it was an invalid claim. Only in
the ATLAS project, 22.22 % of the participants mentioned that it is an overhead to
follow up on unfinished tasks with developers. Team members stated that they are
overloaded with their own research, and they tend to avoid software resolving tasks

34 a study on how issue tracking is practiced within scientific software projects

that is not relevant to their research work. Only in eclipse project 7.37% participants
stated that it is an overhead to deal with feature and change requests that are submit-
ted as bug reports, not having a clear distinction that the report describes a feature
request makes it harder for the triager to process it. In both Eclipse and ATLAS project,
7.37% to 11.11% of the participants stated that it is a hard and tedious process to find
out if an issue report is a duplicate or not. Only in the ATLAS-Reco project, 11.11%
of the participants stated that having unassigned bug reports is an overhead that, can
cause issue reports not be resolved or even increase their resolution time. Since it is
hard with having no direct trace of the issue report’s assignee to communicate with
the person in charge.

Table 3.12 illustrates the number of open ended responses regarding the participants
suggestions on how to enhance the current issue tracking activities. We have reviewed
each of the submitted responses and came up with specific categories that represent
their context. The responses were categorized into 9 enhancement categories.

Table 3.12: open ended responses regarding issue tracking enhancements

Project # of responses # of valid responses

Eclipse 10 7

UNICASE 0 0

ATLAS-Reco 2 2

Belle2 3 3

Table 3.13 represents the open ended responses belonging to the 9 issue tracking
enhancement categories within Eclipse, ATLAS, and Belle2 projects.

Table 3.13: Issue tracking enhancements categories vs. open ended responses percentage
of Responses

Enhancement Categories Eclipse ATLAS-
Reco

Belle2

Automatically detect & link duplicated issue re-
ports together

2 1 0

Automatically assign a suitable assignee or cate-
gory to a newly reported bug

1 1 0

Linking the developers version control activities to
the bug tracking system

1 0 0

Integrating development, project management &
collaboration tools together

2 0 0

Integrating the bug reporting system with the de-
veloped software product

2 0 0

Ensuring a well documented process of issue re-
porting & resolving

1 0 0

Enhance or replace the bug tracking system to
achieve a better usability & functionality

3 2 1

Document minor development bugs as a comment
in source code.

0 0 1

Issue assigning and reviewing to be performed by
a specialized & dedicated developer

0 0 1

In all three projects (42.86% in Eclipse, 100% in ATLAS and 33.33% in Belle2), most
of the participants stated that the bug tracking system usability and functionality

3.3 summary 35

need to be enhanced in order to achieve a more effective and efficient issue tracking
practice. In ATLAS (50%) and Eclipse (14.29%-28.57%), of the participants suggested
that some parts of the reviewing and assigning of issue reports should be automated,
in particular: (1) the detection and linking of duplicated issue reports, and (2) the
determination of a suitable assignee or a category to a newly submitted issue report,
as they consider them tedious and time consuming activities.

In the Eclipse project, 28.57% of the participants suggested that the IDE should
support the ability to directly report software issues instead of using Bugzilla’s web
interface to make issue reporting a less time consuming activity.

In addition, they suggested the tight integration between the development and
project management tools to reduce conflicts between the different activities. For exam-
ple, if a project member was planning a meeting on reviewing a software release using
a team collaboration tool, through this tool he should be able to add information about
software issues that are stored in issue tracking repositories. In Belle2 33.33%, of the
participants suggested that issue assigning and reviewing should be developer-based
activities, in which a specific developer is exclusively dedicated to their performance.

3.3 summary

This section summarizes the significance of our findings along with an interpretation
of the found similarities and differences when comparing issue tracking practices in
scientific and software engineering domains.

3.3.1 Main Similarities

Regardless of the level of interconnectivity between issue tracking activities, partici-
pants of both project domains who were involved in issue resolvement tended to be
involved in management activities as well. This shows that issue resolvement is an
influential activity that involves individuals who possess enough project organization
and domain knowledge that enables them to handle and manage software issues.

Large scale projects from different domains tend to have commonalities in tool us-
age, as well as issue tracking problems and encountered overheads. That case was
strong for ATLAS-Reco and Eclipse. As seen in Section 3.2.2.6 and Section 3.2.2.5,
most of ATLAS-Reco and Eclipse participants stated that they benefited from having a
unified platform for sharing information regarding software issues. Additionally, sub-
mitting a bug report with an incorrect category was more common in ATLAS-Reco
and Eclipse projects than to all other projects. Regardless of the domain differences
the two projects share many similarities in terms of project organization and adopted
issue tracking practices. We can assume that these similarities are due to the fact that
both projects share a globally distributed software development paradigm.

3.3.2 Main Differences

There was a large difference in the level of interconnectivity of issue tracking activities
between both project domains. Participants from software engineering projects tended
to be engaged in multiple activities, whereas participants from scientific projects fo-

36 a study on how issue tracking is practiced within scientific software projects

cused on single activities. This indicates a higher level of collaboration within software
engineering projects in comparison to scientific software.

The value of issue tracking activities frequency obtained from the survey and the an-
alyzed issue tracking repositories indicated an irregular distribution within the stud-
ied scientific projects. Some activities had frequencies that are inconsistent with the
normal distribution of a regular issue tracking activity lifecycle. For example, in Belle2

reporting formed the higher frequency in comparison to resolving and managing. This
demonstrates that a lot of issue reports were unprocessed and just closed. This is an
indication that the documentation of issue tracking activities is more balanced in the
software engineering projects and that it tends to be inconsistent within the studied
scientific projects.

Scientific software projects showed more negative documentation quality incidents
and relatively less positive quality incidents in comparison to software engineering
projects. The members of software engineering projects exerted more effort in doc-
umenting the resolvement, as well as in the reporting and reviewing activities. The
documentation within software engineering projects contained more consistent, de-
scriptive, and useful information that can indicate how the issue progressed while
performing these issue tracking activities. Additionally, ATLAS-Reco had the high-
est amount of incomplete recordings of issue assigning activities compared to other
projects. Furthermore, the surveyed participants of ATLAS-Reco stated that one of
the major projects’ overheads was due to assigning an issue report to an incorrect
developer. This confirms the findings of Shokripour et al. [75] that the time spent in
examining each submitted bug report and deciding about how the report will be orga-
nized within the development process of the software project represents an overhead
to the project.

There was a noticeable difference between both domains in the quality ratings of
issue tracking practices, in which less number of participants in scientific software
projects believed that their issue tracking practices were documented in comparison
to participants from software engineering projects. This indicates that scientific soft-
ware participants are actually aware of the shortage they have in project management
artifacts. The result was also confirmed by our data analysis results and corroborates
the findings of the study of Pawlik et al. [61].

Our results, showed an interesting correlation with the observation stated by Pawlik
et al. [61] that documentation related to planning and project management is produced
more for larger scientific software projects in comparison to other project scales. For
the case of ATLAS-Reco (large-scale) and Belle2 (small-scale) projects, the frequency of
issue tracking activities within ATLAS-Reco seemed to be more balanced than Belle2,
where there was a great difference between the frequencies of reporting and resolving
activity. This implies a lot of irregularities and inconsistencies of the adopted issue
tracking documentation activities within Belle2, where less activities are actually being
documented in comparison to ATLAS-Reco.

Regarding the documentation quality metrics measured for Belle2 and ATLAS-Reco
especially for positive and negative incidents. Belle2 showed a lower rate of issue re-
ports with commented resolvement (RCR), in comparison to ATLAS-Reco. This in-
dicates that Belle2 members exert a lower amount of effort in documentation when
resolving issues in comparison to ATLAS-Reco. Additionally, Belle2 showed a higher

3.3 summary 37

rate of closed issue reports having no resolution (RNR), indicating a higher rate of in-
formation inconsistency. However, Belle2 showed more positive documentation qual-
ity incidents regarding the rate of issue reports that contain descriptive attributes
(RCNI) and rate of assigned issue reports (RA) in comparison to ATLAS-Reco. This
indicates the existence of more descriptive and informative issue reports within Belle2.

Our study results indicate that scientific software projects have problems regarding
the documentation of issue tracking activities, participants from the studied software
engineering projects had ineffective planning and administration in the bug reports’
lifecycle, difficulty in decomposing complex bugs into several tasks and incidents of
reopening bug reports without investigating its relevance to the arising problem. This
indicates a shortcoming in the planning area of issue tracking within software engi-
neering projects.

In summary, scientific projects tend to have more problems in the documentation
and triaging processes, whereas software engineering projects tend to have problems
on the management and planning levels. The differences in the frequency of issue
tracking documentation and planning activities, indicate that issue tracking tools
might need to be tailored to the specific domain needs of the individual projects. For
example, for software engineering projects issue tracking tools might need to be en-
hanced with scheduling and management features. Issue tracking tools for scientific
projects should provide additional features for administering the existing documen-
tation, and aid the participants in decisions related to assigning and validating the
uniqueness of an issue (i.e., identify if the issue was a duplicate or not), to encourage
them to exert their effort in issue tracking.

3.3.3 Specific Domain Issue Tracking Practicses

We developed INExPERT, a technique for assignee recommendation which is de-
scribed in Chapter 4, based on the following two aspects. First, the fact that any
reduction in the time spent on assigning issue reports frees resources for software
product improvement [75]. Second, the results of our study showed that the type and
frequency of activities performed by project members can indicate their expertise and
the level of involvement within the project. INExPERT leveraged these aspects by in-
ducing the roles and expertise of suitable assignees. Additionally, INExPERT aims at
encouraging the collaboration among project members of scientific software projects
by making it easier for software issues to be allocated to a specific project member,
while at same time hiding the technical and managerial complexities of the assign-
ment activity.

4
I S S U E A S S I G N E E S R E C O M M E N D AT I O N T E C H N I Q U E - I N E x P E RT

Issue-tracking repositories are widely used Software Configuration Management (SCM)
tools. Apart from serving their primary purpose of storing issue reports, they are oc-
casionally used as a database of feature requests and simple TO-DOs. Especially in
open-source projects, these repositories are accessible to the end-users; allowing them
to collaborate directly with the developers. This possibility of collaboration from vari-
ous stakeholders helps identify relevant features and improves the quality by allowing
more issues to be identified [65]. However, this advantage comes with significant costs
[2], because every new issue report has to be triaged. An important task in the triaging
process is the assignment of an issue report to a developer.

A number of approaches exist to semi-automatically identify and recommend de-
velopers, e.g. using machine learning techniques, social network-based approaches,
and traceability between software development artifacts [2][31][87]. These approaches
mine history data of issue-tracking repositories to create a ranked list of recommended
assignees. Assignees in the list are either good candidate(s) for working on the issue
report themselves, or they have the expertise to assign it to a suitable developer. The
list does not include any unqualified/non-matching candidates, i.e. "tossing" effect
[38].

In this work, we describe a new approach for assignee recommendation named
INExPERT, that leverages user activities in an issue-tracking repository. Mining history
of all the activities (i.e. review, assign, and resolve) done by a user within the issue-
tracking repository can indicate his role, expertise, and involvement in the project to
some extent. For example, if the user’s activity logs indicate that most of what he
does is assigning issue reports, this represents that he is either a project manager or
an issue triager. Activities done in an issue-tracking repository are divided into three
main categories: reporting, managing, and resolving issue reports. Reporting an issue
report includes capturing and communicating identified problems as issue reports.
Managing an issue report is the activity of deciding on its progress. Finally, resolving
an issue report is concerned with the implementation of its resolution. These activities
are derived from a set of heuristics obtained from previous studies [3][76] [82][55][25].

INExPERT constructs an activity profile for each issue-tracking repository user. Can-
didate assignees are identified based on the relevance of their expertise in the topic
of the new issue report, and are then ranked using the activity profile. For example,
a project member associated with a certain type of issue (e.g. memory leak related
issues) can be included in the list of assignee candidates for a new issue in the same
category, and is then ranked higher if his activity profile is that of a manager special-
ized in assigning similar issue reports. With an activity profile of a manager, he will
either have enough expertise to work on the issue himself; or reassign it to a more
suitable developer. So, by having a list of recommended assignees, less experienced
(or new) project members can still be able to triage issue reports. Further, by saving
time and effort, it can benefit volunteer-based triaging process.

39

40 issue assignees recommendation technique-inexpert

To evaluate the applicability of INExPERT, the research team has applied it to issue
reports from three different projects: (1) a software engineering research project, (2)
an open-source project with market orientation, and (3) a scientific software research
oriented project. The first two projects have a developer-based triaging process, where
a specific developer is obliged to administer issue reports. The third project relies
on a volunteer-based triaging process, where the responsibility of assigning issue re-
ports is stipulated among developers. We compared our results to a state-of-the-art
approach [77] that combines a supervised learning model based on Support Vector
Machines (SVM) [27] and an unsupervised generative model based on LDA [79]. Re-
sults of the comparison have shown that INExPERT outperforms the LDA-SVM–based
approach. Additionally, in contrast with LDA-SVM, INExPERT is able to provide sen-
sible recommendations for any issue report having a resolver who was not present in
the training set.
Chapter content:

• An assignee recommendation approach, INExPERT, which utilizes the activity pro-
files of the users of an issue-tracking repository to identify roles, expertise, and
involvement in the project. The obtained heuristics are used for ranking devel-
opers in the candidate list.

• An insight into the pattern of activities performed by developers in issue-tracking
repositories of various projects. These patterns detail how various users interact
with issue reports and how the triaging process is done in a certain project.

• A formative evaluation of INExPERT that incorporated a Quasi experiment and
structured interview.

• Domain experts’ feedback on the accuracy of INExPERT.

• A comparison between the results obtained from INExPERT and the LDA-SVM–
based approach.

The Chapter is organized as follows: Section 4.1 presents our approach of assignee
recommendations: INExPERT. We detail the steps of: (1) categorizing issue reports into
topics, (2) creating an activity profile for users, (3) assignee recommendation(s) for a
new issue report, and (4) assignee ranking. Section ?? presents a case study, which
investigates the use of INExPERT within a scientific software project. The outcome of
this investigation consists of qualitative and quantitative data that was collected by per-
forming a pre-post testing quasi experiment and a structured interview. Section 4.3 gives
an overview of the evaluation setup and the dataset. Subsequently, it presents a sum-
mative evaluation of INExPERT along with its comparison with the LDA-SVM–based
approach. Additionally we obtained a direct feedback from three scientific domain
experts regarding the accuracy of INExPERT.

4.1 inexpert design

In order to provide a list of recommended assignees, we start by categorizing all the
issue reports from our dataset. We achieve this using a topic model that groups the
issue reports into topics (see Section 4.1.1). Next, we mine the issue-tracking activities

4.1 inexpert design 41

for each project member (activity profile) to determine their topic associations (see
Section 4.1.2). When a new issue report is submitted, and is in the process of assignee
recommendation (see Section 4.1.3); we first determine the topics this issue report
is associated with (see subsection 4.1.3.1), and then generate a list of recommended
assignees that match the new issue’s topics (see subsection 4.1.3.2). Finally, we rank
the developers based on the type and frequency of the issue-tracking activities they
perform (within topics similar to the newly reported issue’s) (see Section 4.1.4).

4.1.1 Categorizing Issue Reports into Topics

In this step, LDA [79] (an unsupervised generative model) is used to cluster issue
reports into topics. We create a Topic Model for each issue report. This is done by cat-
egorizing the terms (i.e. words within issue reports) into clusters (topics). We only
consider title, description, and system component of the issue report; as these features
contain the most relevant detail of the problem (namely, release and component infor-
mation). Selected features of the issue reports are tokenized using Apache Lucene to-
kenizer1. Subsequently, the tokenized data is filtered by removing stop words, HTML
tags, hexadecimal numbers, and numerical information. The filtering process is done
in an iterative manner. Regular expressions and term elimination methods are cre-
ated and adjusted for each iteration to make sure that terms that belongs to parts of
speech such as nouns, verbs, adjectives and adverbs are not eliminated. The terms are
additionally processed by a lemmatizer from Stanford CoreNLP tools2 for grouping
the different inflected forms of a word. For example, the term “better” and “good”
are grouped into a single term “good”. Consequently, this pre-processing reduces the
noise in the dataset, and increases the quality of topic categorization.

Next, we use a topic modeling MATLAB toolbox3 to create the topic model. A
constraint is added so that each issue report should only be associated with a fixed
number of topics, and each topic should be associated with a fixed number of terms.
However, a term can be associated with more than one topic. The LDA model assigns
terms to topics based on the Gibbs Sampler approach [26]. This approach first assigns
any topic randomly to a term. Then, iteratively, it assigns a topic to each term based
on (1) the number of times the term is related to the topic in the issue report, and (2)
the number of times the issue report is related to the topic. The final output of the
LDA computation is R⇥ T matrix namely B

R⇥T

, where R represents the total number
of issue reports, and T represents the total number of topics. Each column in a given
row B

i,j contains the number of times a certain topic t

j

is associated with a certain
issue report r

i

.
From B

R⇥T

, given the value of each row B

i

, it would be difficult to induce significant
information, such as knowing if a certain issue report r

i

is more relevant to a topic t

j

in comparison to other issue reports. To be able to draw comparisons among topics
associations in issue reports from B

R⇥T

, the value belonging to any given row and
column B

i,j is normalized to assign a fraction of its value (i.e., topic association of r
i

with t

j

) against the rest of the values in B

i

.

1 http://lucene.apache.org/
2 http://nlp.stanford.edu/software/corenlp.shtml
3 http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm

http://lucene.apache.org/
http://nlp.stanford.edu/software/corenlp.shtml
http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm

42 issue assignees recommendation technique-inexpert

birt
build
verify
crosstab
show
width
close
cell
version
description
….
….
….

page
result
text
image
report
actual
expect
step
layout
shortcut

Topic A

Topic D

Bug Report Topic Association

Topic A 2

Topic B 3

Topic C 4

Topic D 5

Topic
Model

Topic Association

Topic A 0.143

Topic B 0.214

Topic C 0.286

Topic D 0.357

LDA
Computation

Figure 4.1: Issue Report’s Topic Model

Figure 4.1 shows an example of a given 4-topic model that has topics A, B, C & D
extracted using LDA. Each topic is associated with only 10 terms. Where a given issue
report r

i

having the topics associations within B

i

: 2, 3, 4 & 5. From this output we can
deduce that topic A is related to issue report r

i

twice, topic B is related to issue report
r

i

thrice, and so on. As a result, 14 (2+3+4+5) represents the total number of times all
four topics are related to issue report r

i

. Therefore, the ratios are 2/14 for B

i,A, 3/14

for B
i,B, 4/14 for B

i,C and 5/14 for B
i,D.

4.1.2 Issue-Tracking Activity Profile

After categorizing issue reports into topics, we create an Activity Profile for each user
of the issue-tracking repository, by mining history logs and issue report topic models
(as shown in Figure 4.2).

A user’s activity profile consists of two parts: (1) User’s roles (see subsection 4.1.2.1),
which indicates the activities done by him (e.g. review, assign, and resolve), and (2)
User’s topic associations (see subsection 4.1.2.2), which indicates his involvement with
the issue reports. We detail each of these parts in the next sections.

4.1 inexpert design 43

History Logs

User’s Activity Profile

Topic Models

Roles Topics
Associations

Figure 4.2: User’s Activity Profile

4.1.2.1 User Roles

In an issue-tracking repository, users can perform various activities, as per their role
in the project. Figure 4.3 presents a typical activity-role scenario. While this scenario
might be valid in a project-specific context, users often play multiple roles in the same
project. Hence, the activities they perform in the issue-tracking repository are not a
precise representative of one single role.

Bug Tracking Repository or Log

Bug Reporter

Reporting

Developer

Resolving

Manager Prioritizing

Assigning

Reviewing

Managing

Figure 4.3: Issue-Tracking Activities

For example, a developer can assign, as well as resolve issue reports; and a manager
can also be a developer. In this work we consider three activities: reviewing, assigning,
and resolving; relevant for identifying assignees who either have enough knowledge
to resolve the issue, or to reassign it. We leave out reporting as it does not add value to
the expertise determination (actually, even end-users or clients are allowed to report
new issues in various projects). Prioritizing an activity is left out as it is often done as
part of the reviewing process. For each of the three activities we consider as relevant,
a user can have the role of an assigner, a reviewer, or a resolver.

Within a typical software project, an issue report goes through a standard lifecycle;
in which it gets submitted, assigned, resolved, verified, and finally closed. The issue-
tracking activities are actions done to transfer an issue report from one of these states
into another. However, the way each of these activities is represented within different
issue-tracking repositories may vary, due to the fact that issue reports’ attributes may

44 issue assignees recommendation technique-inexpert

differ from an issue-tracking repository to another. For example, in a certain issue-
tracking repository, two attributes (namely, status and resolution) are used to indicate
a trace to the issue report’s status (e.g., an issue can have a “Resolved” status together
with a “Fixed” resolution, while in another issue-tracking repository the status attribute
is the only indication). The main question to be answered next is how to identify an
issue-tracking activity. We identify an activity as a specific pattern in the history logs
of the issue-tracking repository. For example, an assigning activity is acknowledged if
the history log indicates that the issue report’s attribute referring to the assignee (the
person involved in resolving the issue) has been updated with a valid assignee ID.
Therefore, the pattern that indicates the occurrence of an activity depends on the issue
reports’ attributes within the issue-tracking repository. However, we have formulated
a set of heuristics rules that define the patterns of history log entries that can be further
adjusted to fit the issue reports’ attributes of a certain issue-tracking repository. The
heuristics rules used to identify the occurrence of these activities are summarized in
Table 4.1.

Table 4.1: Heuristics Rules Used for Identifying Issue-Tracking Activities

Activity Rule

Assigning If the history log records a change in the issue report’s at-
tribute referring to the person involved in resolving the issue
(i.e., assignee)
Then the user responsible for that change has performed an as-
signing activity (i.e., has assigned/reassigned an issue report
to an existing assignee).

Resolving For an already assigned issue report, if the history log records
a change made by the issue report’s assignee (that change
should be in the issue report’s attribute referring to its resolu-
tion status, and should indicate that a formal resolution has
been reached (e.g. fixed/won’t fix/duplicate))
Then the user responsible for that change has performed a
resolving activity.

Reviewing For an unassigned issue report, if the history log records a
change in the issue report’s attribute referring to its resolu-
tion status (this change should indicate that the issue report
is either invalid or a duplicate)

Then the user responsible for that change has performed a
reviewing activity.
For a resolved issue report, if the history log recorded a change
in the issue report’s attribute referring to its status, indicating
that the issue report’s resolution was set toverified.
Then, the user responsible for that change has performed a
reviewing activity.
For a closed issue report, if the history log recorded a change
in the issue report’s attribute referring to its status, indicating
that the issue report was reopened (i.e. status changed from
closed to open).
Then, the user responsible that change has performed a re-
viewing activity.

4.1 inexpert design 45

4.1.2.2 User Topics Association

Users’ topics associations are represented in a M ⇥ T matrix namely C

U⇥T

, where
U represents the total number of users, and T represents the total number of topics.
C

U⇥T

was formulated in a way that represents the user’s level of experience within
certain topics (i.e., area of expertise). The more roles (assigner, reviewer, or resolver)
a user performs regarding issue reports, the more experienced he gets within topics
associated with these particular issue reports. Therefore, the value of a user’s u

i

topics
associations C

i

is induced from B

R⇥T

(the topic model) of the issue reports he has a
role in.

For a given u

i

& t

j

, C
i,j =

P
x

1

B

d,j

x

(4.1)

A User’s u

i

topic t

j

association C

i,j (shown in Equation 4.1) represents the average
of topic t

j

associations of all the issue reports he has a role in (where x represents the
total number of issue reports the user has a role in, and B

d,j represents the value of a
given issue report r

d

’s topic t

i

, where d represents the indices of the issue reports user
u

i

has a role in, the value of B
d,j is deduced from issue reports topic association matrix

B

R⇥T

(the topic model)). For example, if user u

bob

has a role in three issue reports,
having associations with topic t

1

as follows: 0.03, 0.1 and 0.2; then ubob’s associations
of topic t

1

, C
bob,1 would be the average value of topic t

1

associations belonging to
the three issue reports he has a role in (i.e., 0.11 (0.03+0.1+0.2=0.33/3=0.11)).

4.1.3 Assignee Recommendation

After building the knowledge of all the activities performed by an issue-tracking repos-
itory’s users (see subsection 4.1.2.1) and their area of expertise (topics) (see subsection
4.1.2.2), the topic model of a newly arriving issue report r

new

is extracted. Subse-
quently, a list of recommended assignees corresponding to the topics of the new is-
sue report r

new

is created, and then ranked as per the activity profile of individual
assignees. In the next subsections, we detail the process of deriving a list of recom-
mended assignee(s) for a newly reported issue r

new

.

4.1.3.1 Newly Reported Issue Topics Selection

Extracting the topic model for a newly reported issue r

new

can be done using an
online LDA method [34] in which the whole issue-tracking repository is analyzed (in-
cluding the arriving stream of newly reported issue reports). However, for evaluating
our approach, we did not include any in-stream data (i.e., newly arriving issue re-
ports). Therefore, we have analyzed pre-collected issue reports (offline data) using the
standard LDA method [79], where no in-stream data is considered.

After extracting a newly reported issue r

new

topics associations, the next step is
to find assignees with experience in these topics. However, we do not include all of
the extracted topics associations. Rather, we select the ones that fit a certain threshold
✓

j

. Selecting the topics with highest significance reduces the number of candidate
assignees, and only includes the most expert assignees associated with the topics. A

46 issue assignees recommendation technique-inexpert

Topic 1 2 3 4 5 6 7 8 9 10

Association 0 0.103 0.035 0.172 0 0 0 0.620 0.035 0.035

New Bug Report’s Topic Model

Topics Selection Thresholds

Bnew,j ! "j

Topic 4 8 10

Association 0.172 0.620 0.035

New Bug Report’s Selected
Topics

Topic 1 2 3 4 5 6 7 8 9 10

Association 0.3 0.2 0.1 0.12 0.05 0.3 0.5 0.3 0.06 0.030

Figure 4.4: Newly Reported Issue Topics Selection

topic t
j

within the n-topic model gets selected only if the newly reported issue r

new

’s
topic t

j

association B

new,j is greater than or equal to the topic t

j

threshold ✓

j

(see
Figure 4.4). Equation 4.2 defines topic t

j

’s threshold ✓

j

as the average of issue reports’
topic t

j

association (where R represents the total number of issue reports within the
issue-tracking repository, and B

i,j represents the value of a given issue report r
i

’s topic
t

j

association).

For a given t

j

, ✓
j

=

P
R

i=1

B

i,j

R

(4.2)

4.1.3.2 Assignee Topic Matching and Elimination

To find the candidate assignees, we consider two criteria: (1) the assignee’s experience
within the topics selected in the previous step (see 4.1.3.1), and (2) the number of
topics the assignee should be experienced in.

The level of experience within each topic t

j

is determined by the assignee u

i

’s topic
t

j

association C

i,j value defined in Equation 4.1. We add a constraint such that only
the assignees having C

i,j value greater than or equal to the threshold ✓

j

defined in
Equation 4.2 are included in the list of recommended assignees.

The number of topics that the assignee should be experienced in is determined by
the number topics included in the newly reported issue r

new

. If the newly reported
issue r

new

contains more than one topic, then an assignee u

i

must have enough ex-
perience in at least half of the topics to be included in the candidate list. If the new
issue report r

new

has only one topic, then the assignee u

i

with the required level of
experience in this topic is added to the candidate list. We use the criteria of satisfying
at least half of the topics in order to provide sufficient scope (so that all relevant devel-
opers are on the candidate list, and still, not everyone). This criteria can be changed
to consider any assignee satisfying all the required number of topics within the new
issue report r

new

, but this will restrict many relevant (though not so experienced (in
all topics) assignees) from getting onto the candidate list.

4.1 inexpert design 47

4.1.4 Assignee Ranking

To be able to rank the list of the new issue report r
new

’s matched assignees, we needed
to compute a ranking score RS for each of them. The assignee u

i

’s RS
i

is deduced from
both his activity profile and the new issue report r

new

’s topic model. RS
i

represents
the assignee u

i

’s capability of resolving the issue report (which is determined by his
topic expertise and issue-tracking activities).

For a given u

i

, RS
i

=
yX

1

(C
i,g ⇥B

new,g ⇥ Score

g

) (4.3)

RS is defined in Equation 4.3, where y represents the total number of topics within
the new issue report r

new

that is needed to be matched with assignees’ expertise, C
i,g

represents the assignee u

i

’s topic t

g

association (i.e., level of topic expertise (from
Equation 4.1)), B

new,g represents the new issue report’s topic t

g

association (g rep-
resents the value of indices referring to the selected topics within r

new

), and Score

g

represents the assignee u

i

’s issue-tracking activities score within a topic t
g

(from Equa-
tion 4.4).

The activity score is considered a key element in ranking the assignees, since it
induces the frequency and type of activities performed by the assignees within a cer-
tain topic, thus indicating the assignee’s role. The issue-tracking activities’ frequencies
differ within the same project, and that is why the activity score was formulated in a
way to favor certain activities over others (for the purpose of favoring the assignees en-
gaged in performing the most frequent activities, since they have the most influential
roles and expertise within the project). In Equation 4.4, k represents the total number
of issue-tracking activities (in this case, the three aforementioned activities we mine
from the user’s role described in Section 4.1.2.1).

For a given t

i

& u

L

, Score
i

=
3X

k=1

w

k

⇥ A

k,i

A

i

(4.4)

For each activities score Score

i

of a given topic t

i

and assignee u

L

, A
k,i represents

the number of times an assignee has performed an activity a

k

within a specific topic t
i

.
A

i

represents the total number of issue-tracking activities related to a specific topic t

i

and performed by a specific assignee u

L

. We added a constraint that limits the number
of issue reports counted within A

k,i and A

i

, to the ones having topic t

i

association
value that is either greater than or equal to topic t

i

’s threshold ✓

i

defined in Equation
4.2.

For a given a

k

, w
k

= 10⇥ Z

k

A

(4.5)

The variable w

k

represents the weight of a certain activity a

k

. w
k

acts as a tuning pa-
rameter defined in a way that gives a high activity score Score

i

for assignees engaged
in the most common activities (i.e., most influential roles). w

k

is a real number that
varies from 0.0 to 10.0 depending on the activity a

k

’s frequency (compared to all other
issue-tracking activities) as shown in Equation 4.5. The value of w

k

is deduced from

48 issue assignees recommendation technique-inexpert

the occurrences of activity a

k

, where Z

k

represents the total number of occurrences of
a

k

, and A represents the total number of all issue-tracking activities performed within
the issue-tracking repository. Consequently, issue-tracking activities with high rate of
occurrences will have higher activity weight w

k

.

4.2 case study

In this section we describe the research strategy, which investigates the use of IN-
ExPERT within a scientific software project. Our main hypothesis in this study is
that "integrating INExPERT within the issue-tracking practices of scientific software
projects, will result in an increase of issue assignment quality in terms of: (1) reducing
the number of unassigned issue reports and (2) increasing the probability of selecting
experienced assignees". This was evaluated using qualitative and quantitative data
collected by performing a pre-post quasi experiment and a structured interview.

The first of our study goals was to validate the correctness of INExPERT’s recom-
mendation model. The second goal was to prove INExPERT’s usefulness for scientific
software projects. The third was to identify the problems and shortcomings of IN-
ExPERT’s preliminary design pointing out any missing requirements and/or domain
specific needs.

Section 4.2.1 describes that the study has followed a four-stage formative evalua-
tion approach involving the development of a rapid prototype that is further detailed
in Section 4.2.2.1. Throughout the formative evaluation approach, the prototype was
tested by a group of scientific software domain experts involved in a mid-sized scien-
tific software project serving an experiment within the particle physics domain. The
experts’ responses towards the use of the prototype were captured through a pre-post
quasi experiment and a structured interview that are further discussed in Section 4.2.2
and Section 4.2.2.3. Collecting the experts’ responses from the targeted environment
helped us in gaining a rapid feedback and collecting their ideas about how could the
implementation of INExPERT be improved.

4.2.1 Formative Evaluation

Formative Evaluation [71] takes a social science perspective to evaluating how to en-
hance a specific process prior to its completion. However, in software development,
the formative evaluation approach is used as a software examination method to ob-
tain feedback for several purposes, such as: (1) refining software development’s scope,
and (2) improving aspects of software design like functionality or usability. Conse-
quently, formative evaluation consists of several activities involving the collection and
analysis of project data and users’ or development team’s feedback. It incorporates
some techniques, such as in-depth interviews, surveys, observations, and dialogues
with participants. Accordingly, findings from these evaluation activities can help iden-
tify potential areas of improvement within the software development process through
investigating the changes from targeted baselines.

Figure 4.5 shows that the case study has followed a formative evaluation approach
consisting of four stages: briefing, pre-INExPERT, post-INExPERT and rationale &
feedback.

4.2 case study 49

Figure 4.5: Formative evaluation stages

These stages are described in detail within Sections 4.2.1.1 till 4.2.1.4. The case study
was conducted by applying a pre-post experiment design described in Section 4.2.2.
The experiment involved a group of seven experts within scientific software projects.
Data was collected during the time when participants have already manually assigned
a group of issue reports. The same data was once again collected after the participants
have assigned the same group of issue reports using the INExPERT prototype. To that
end, we have used a web interface described in Section 4.2.2.2, that applies a mock
object of the INExPERT prototype. The mock object mimics INExPERT’s behavior in
predefined scenarios. By using the web interface with its different functionalities, we
were able to observe, interview, and record activities of the participants during con-
trolled experiment scenarios.

After recording the participants’ behavior and responses to the use of the INExPERT
prototype, we analyzed and compared the data recorded during both phases of the
experiment (i.e., pre- and post-INExPERT). This aimed at validating INExPERT’s preci-
sion in terms of (1) recommendations and ranking of assignees and (2) heuristic rules
used in describing issue-tracking activities. The evaluation also aimed at investigating
whether INExPERT is suitable to be used within scientific software projects in general.
To this end, we collected and analyzed the experts’ responses on how to improve the
current design to make it more suitable and effective in meeting the scientific software
domain’s requirements.

All four evaluation stages were recorded via a screen- and audio-recording software
to obtain a more accurate documentation of the evaluation activities, inquiries, and
feedback of each participant. This reduced the vulnerabilities of lost/misunderstood
information and helped achieve accurate analysis and review of the experiment’s out-
comes and interpretations. This also gave more freedom for the researcher to think,

50 issue assignees recommendation technique-inexpert

interact and engage with the participants without worrying about tracking what was
happening. Additionally, going through each recorded evaluation session provided us
with more insight into whether they were performed in the intended conduct.

In conclusion, the outcome from this formative evaluation activities was used to
identify new requirements and improvements that were later included in the formal
design and implementation of INExPERT. We actually discarded the rapid prototype
afterwards.

4.2.1.1 Briefing Stage

This stage is designed to last for 10 to 15 minutes. The briefing stage is used to ensure
that all participants have the common foundation regarding INExPERT’s functionality
and the problem’s domain, aiming at reducing misconceptions and misinterpretations
of the goals and procedures of the experiment. Towards that end, the researcher uses
different presentation aids to provide the participants with an overview about (1) the
motivation behind the conducted research work, (2) the experiment’s goals, (3) the
scope of this work within the issue report life cycle, (4) the different types of issue
assignment techniques, (5) the tasks he has to perform, (6) issue-tracking activities,
and (7) INExPERT’s functionality.

4.2.1.2 Pre-INExPERT Stage

This stage serves as a baseline to identify the participants’ decisions regarding every
issue report they receive.

l oop

a l t

Task1 Description Page

Task1 Summary
Page

Participant

Task1 Page

2: Click [Start Time]

1.1: <<http redirect>>

1: Click [Start]

9: summary of participant activities

8: Create

5: Click [Skip]

4: Click [Assign]

3: Select(assignee)

7: elapsed time

6.1: next report's information

6: DisplayNextReport()

2.1: first Issue report's information

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.6: Pre-INExPERT Stage’s Activities

4.2 case study 51

We have recorded the participants’ decisions before and after using the aid of IN-
ExPERT, which allowed us to draw inferences on the effect of using INExPERT on
assigning issue reports (by observing what changed from the baseline). In more de-
tails, defining the differences between "Pre" and "Post" stages in terms of (1) the rate
of assigned reports, (2) selected assignees and (3) their relevance to the list of recom-
mended assignees.

First the researcher initiates the Pre-INExPERT stage, as illustrated in Figure 4.6.
Each participant is presented with a brief description of an assignment task that he
needs to perform (i.e., a new issue report waiting for being assigned). Every partic-
ipant manually assigns five issue reports to project members they think are capable
of handling. The issue reports that were given to the participants were previously as-
signed, resolved and closed. This was done to ensure that the involved issue reports
had already completed their life cycle, thus insuring a complete and consistent con-
tent. Additionally, in order to standardize our findings, all participants got to assign
the same set of issue reports. When a participant was ready to perform the assign-
ment task, she could click Start. That directed her to the webpage presenting the issue
reports. She then was asked to initiate a timer by clicking Start Time, in order to record
the time she took to successfully complete this stage. For every issue report, she was
asked to either (1) select a specific assignee from a given list of project members then
click Assign to submit her decision or (2) click Skip in case she was unable to determine
a suitable assignee. Afterwards, she was redirected to a page containing a summary
of outcomes (selected assignees and the time it took her to do the whole round).

4.2.1.3 Post-INExPERT Stage

This stage helped us identify changes to the baseline (i.e., participants’ decisions ob-
tained in the Pre-INExPERT stage). It clarified how our participants behaved when
they received a list of assignee recommendations from INExPERT (i.e., changed their
decision or not). Additionally, it helped us gain a deeper insight into the "satisfaction
index" of the involved participants (how satisfied and motivated they were to use IN-
ExPERT when assigning new issue reports). To that end, we asked the participants to
rate the quality of the generated assignee recommendations in terms of (1) how help-
ful the list was in reaching a decision (helpful), (2) whether the list contained suitable
assignees (complete), and (3) how accurately the list was ranked (accurate).

The stage included many activities (shown in Figure 4.7). First, a participant was
presented with a brief description of an assignment task, in which he was required
to assign five issue reports guided by a list of recommended assignees generated by
INExPERT. After clicking Start, the webpage presenting the task popped up. He then
clicked Start Time to record the time he took to successfully complete this stage (note
the similarities to the Pre-INExPERT stage). For each issue report, he was asked to
either (1) select a specific assignee from the list of recommended assignees, rate the
quality of the generated list, and click Assign to submit his decision and evaluation
or (2) click Skip in case he was unable to determine a suitable assignee. Upon the
successful completion of this task, he was redirected to a page containing the summary
of changes compared to the baseline.

52 issue assignees recommendation technique-inexpert

l oop

a l t

Task2 Summary
Page

Task2 Description Page Task2 Page

Participant

4: Select (ratingScale)

2.2: LisrofRecommendations

10: summary of participant activities

9: Create

6: Click [Skip]

5: Click [Assign]

3: Select (assignee)

2: Click [Start Time]

1.1: <<http redirect>>

1: Click [Start]

2.1: first Issue report's information

8: elapsed time

7.2: LisrofRecommendations

7.1: next report's information

7: DisplayNextReport()

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.7: Post-INExPERT Stage’s Activities

4.2.1.4 Rationale & Feedback Stage

This stage was designed to last for 15 to 20 minutes, where we interviewed each
participant to (1) understand the rationale behind their activities during the Pre- and
Post-INExPERT stages and (2) acquire their impressions about possible shortcomings
of INExPERT’s design, drawbacks, and potential impacts of integrating it with the
project’s current issue-tracking practices. To that end, during the interview we focused
on identifying the following:

• The similarities/differences between the rationale of

– manually choosing an assignee

– choosing an assignee guided by INExPERT

• The shortcomings of the heuristic rules implemented to define issue-tracking
activities.

• The expected drawbacks of integrating INExPERT within their project’s issue-
tracking practices.

• The expected impact of using INExPERT on the average resolution time of issue
reports.

• The degree of issue assignment automation (semi vs. full) preferred by most
participants.

4.2 case study 53

The interview followed a structured layout (mentioned in Section 4.2.2.3) in which
all participants were asked the same questions within the same order and answering
options, enabling us to reliably aggregate and compare all the responses with a high
confidence.

4.2.2 Pre-Post testing Quasi-Experiment

By using a Pre-Post testing experiment design, we gathered data on the participants’
decisions when they were asked to assign a group of issue reports without the use
of INExPERT (pre-), and did the same after they used INExPERT (post-) as shown in
Figure 4.8.

Issue # 1 Issue # 1

Pre-INExPERT
 Post-INExPERT

Bob$ Bob$

Assigned$to:$Jack$$ Assigned$to:$$
$$$$$$$$$$$$$$$$$$$$Tom$$
$$$$$$$$$$$$$$$$$$$$Jack$
$$$$$$$$$$$$$$$$$$$$David$

Figure 4.8: Comparison of a participant’s decision before and after the use of INExPERT

This type of experiment design focuses on one group of individuals who have re-
ceived the intervention (i.e., INExPERT), in which the collected data is compared for
providing an explanation of the effects of the used intervention on each participant. By
collecting the decision of each participant twice (before and after the intervention), we
have paired observations of the same subject. The whole point of using these paired
observations is to control the experimental variability as each subject serves as his
own control group, since we only measure the differences among the same subject
and thus reduce the variability that can occur between different subjects. However,
the sample has to be doubled to achieve the same number of degrees of freedom as
unpaired samples.

To give the participants a realistic view of how INExPERT would look like if it were
integrated into their current issue-tracking practices, we constructed a web interface
that simulates the integration of INExPERT’s prototype with their issue-tracking sys-
tem (it was not possible to apply it to the actual system, due to time and managerial
constraints). Section 4.2.2.1 and Section 4.2.2.2 describe in detail how INExPERT’s pro-
totype and web interface were implemented. Finally, we interviewed the participants
to clarify the reasoning behind their performed activities during the experiment stages.
The interview followed a structured layout described in Section 4.2.2.3 to achieve more
accurate interpretations of the outcomes.

54 issue assignees recommendation technique-inexpert

Since the main focus of our research is to identify and analyze the impacts of us-
ing INExPERT within software development teams of scientific software projects, we
conducted the experiment within an ongoing project of the Munich Centre of Ad-
vanced Computing: MAC-B2

4, which attempts to support and enhance the current
issue-tracking practices of a scientific software project called ATLAS-Reconstruction5

in a way that reduces the time and effort exerted. ATLAS-Reconstruction is a part of
the software infrastructure of a particle accelerator experiment conducted at the Large
Hadron Collider (LHC) at CERN in Geneva, Switzerland. Its software infrastructure
team wrote about 7 million lines of code for event reconstruction in their experiments.

We conducted the experiment within the first two weeks of December 2012, dur-
ing which we consulted the software project leader of ATLAS-Reconstruction to find
participants with diverse roles and years of experience. The project leader selected
15 project members out of 52, based on their background and availability by that
time. We contacted all 15 project members via email to explain the purpose of the
experiment, its procedures, and its duration. Only seven project members agreed to
participate, which naturally reduces the observations’ level of significance. Table 4.2
gives a summary on the background and years of experience of the participants.

Table 4.2: Experiment Participants

Project Role # of participants Years of Experience

Senior Convener 3 Average 6

Software Librarian 1 Minimum 2.5
Senior Developer 2 Maximum 10

Project Leader 1 Standard Deviation 2.66

4.2.2.1 Rapid Prototyping of INExPERT

In this section we describe how we have implemented a rapid vertical prototype of IN-
ExPERT to help experts understand how the recommendation technique is intended
to work. The sole purpose of this prototype was to gather their feedback regarding the
shortcomings of the initial design of INExPERT in terms of (1) how it identifies differ-
ent issue activities, (2) how it is intended to match and eliminate the assignees, and (3)
how it ranks the list of recommended assignees. Based on their feedback, we were able
to identify points of potential improvement that might help achieve more accurate and
correct outcomes. After that, the prototype was completely discarded and INExPERT
was formally developed based on the identified points of potential improvement. Ad-
dressing these at an early stage of development was very effective, as it helped reduce
the amount of rework needed for improving the technique’s performance later.

The prototype was implemented in Java. Figure 4.9 describes an abstraction of its
design. The prototype is represented as a composition of both (1) a FeatureExtractor
responsible for extracting the relevant information regarding topics associated with
the involved issue report and the relevant project members, and (2) an RAListGener-

4 http://www.mac.tum.de/wiki/index.php/Project_B2-b2
5 http://atlas.ch/

http://www.mac.tum.de/wiki/index.php/Project_B2-b2
http://atlas.ch/

4.2 case study 55

ator responsible for generating a list of ranked recommended assignees for a specific
issue report.

Figure 4.9: INExPERT’s Early Design Abstraction

FeatureExtractor is basically responsible for retrieving the data related to the topics
of issue reports and the expertise of project members, through a set of implemented
queries. In order to be usable by machine learning techniques, this data is converted
into numerical values and stored in a unified database. Details on how these features
are converted and stored were previously mentioned in Section 4.1.1 and Section 4.1.2.

RAListGenerator is responsible for matching, eliminating and ranking assignees.
Figure 4.10 illustrates an overview of the activities involved in generating a ranked
list of assignees that may be able to resolve a specific issue report.

Figure 4.10: Overview of the activities done to generate and rank a list of recommendations

To match assignees for a specific issue report we use SVM. The implementation of
SVM was provided by Waikato Environment for Knowledge Analysis (Weka) [28], a
machine learning API. SVM analyzes the features provided by FeatureExtractor and
recognizes certain patterns related to the topics associated within each issue report. It
then matches these patterns to a specific assignee (class or label). Features extracted
from each issue report form a model that represents topics associations as a R⇥ T

56 issue assignees recommendation technique-inexpert

matrix, where R represents the total number of issue reports and T represents the
total number of topics. Each column in a given row M

i,j contains a fraction of the
value of the topic association of report

i

with topic

j

against the rest of values in M

i

(more details were mentioned in Section 4.1.1). Given the M

R⇥T

matrix (with each row
belonging to one assignee), the SVM training algorithm builds a model that classifies
every set of features to a class (in our case, assignee), rendering it a non-probabilistic
binary linear classifier. The features of the training set are represented as points in
an N-dimensional space whose mapping tries to assure that issue reports belonging
to separate classes/assignees are divided by a clear hyperplane that is as wide as
possible. New issue reports (i.e., the testing sample) are then mapped into that same
partitioned space, and are predicted to belong to a certain assignee based on which
portion of the space they fall in.

This prototype uses the Sequential Minimal Optimization (SMO) [62] multi-class
classifier provided by Weka, since it is one of the most commonly used classifiers to
solve multi-class problems. It creates multiple hyperplanes to split the points among
the classes/assignees. The classifier tries to identify the assignee of an issue report
among all possible pairs of assignees (one-versus-one). The classification is done by a
max-wins voting strategy [20], in which the classifier matches the issue report to one
of the two assignees in the pair. The appointed assignee’s score is increased by one
vote, and the assignee with the highest score determines the classification. After build-
ing the SVM training model that indicates how issue reports are mapped to project
members’ area of expertise (topics), a list of recommended assignees corresponding to
the topics of the new issue report (i.e. testing sample) should be created. However, as
previously mentioned, SVM matches only a single assignee, the one having the highest
voting score. Consequently, the generated list will contain only one recommendation.
Assignees having high probability yet scored a lower voting score than the classified
assignee are still likely to posses many of the desired levels of expertise in one or
most of the required topics. Nevertheless, SVM discards them from the classification
output. This will defiantly exclude assignees that are capable either of reassigning or
resolving the issue. In order to include these assignees within the generated list of rec-
ommendations, we have used the prediction metrics reported by Weka. The prediction
matrix contains the probability that each issue report actually belongs to an assignee.
From the matrix, we were able to identify the predicted assignee and the probability
distribution among all other assignees for each issue report. Subsequently, a list of rec-
ommendations that includes assignees having a probability value less than or equal
to the chosen assignee (i.e., maximum level of expertise) and greater than or equal to
a specific threshold (i.e., minimum level of expertise) can be generated. The threshold
is defined at runtime (i.e., considered to be a tuning parameter).

Finally, the ranking phase. To be able to rank the list of recommended assignees,
we need to compute a ranking score RS for each of them. Assignee i’s RS

i

is deduced
from both (1) the probability value assigned to them (by Weka’s prediction matrix,
details in the previous paragraph) and (2) the type and frequency of all activities
they have performed. RS is defined in Equation 4.6, where Assignee

i

Probability

represents the probability of classification assigned to assignee

i

which indicates their

4.2 case study 57

capability of resolving the issue, and ActivityScore

i

represents assignee

i

’s issue-
tracking activities score.

For a given assignee

i

, RS
i

= Assignee

i

Probability⇥ 100+ActivityScore

i

(4.6)

The activity score ActivityScore is considered a key element in the process of rank-
ing assignees, since it induces the type and frequency of activities performed by each
assignee (thus indicating their role). ActivityScore was formulated in such a way to
favor certain activities over others for the purpose of selecting assignees engaged in
performing the most influential roles, such as resolver and manager roles. An assignee
belonging to either of these two roles is experienced enough to handle the given issue
as he has formerly done that (i.e. resolved or managed issue reports). ActivityScore

is defined in Equation 4.7, where w

k

represents the different weights of the four activ-
ities related to the most knowledgeable assignees.

For a given assignee

i

, ActivityScore

i

=
4X

k=1

w

k

⇥ %activty

k

(4.7)

These four activities are (1) prioritizing, (2) assigning, (3) reviewing and (4) resolv-
ing. w

k

is an integer number that varies from 1 to 4, and was set to favor the resolving
activity (four, the highest number) over the other three. The prioritizing activity gets
the lowest value (one) as it is often hard to indicate if the person is directly involved in
any managing tasks. %activty

k

represents the percentage of performing an activity

k

over the total number of all issue-tracking activities performed by assignee

i

. Con-
sequently, assignees having a high rate of performing “high weight” activities will
have higher ActivityScore over others assignees, thus giving a higher rank to more
knowledgeable assignees.

In general, an experiment’s participants tend to be motivated in putting more effort
and thought into the study if the experiment were set in a realistic context that is
connected to their organizational settings or professorial experience [7]. Accordingly,
we created a web interface that demonstrates a broad view of how it would look like
if INExPERT were integrated into their current issue-tracking practices, as shown in
Figure 4.11.

4.2.2.2 INExPERT’s Web Interface

As we can see in Figure 4.11, the details of the issue report were laid out along with
the list of recommended assignees. This setting can help the participants have a better
understanding of (1) how INExPERT is intended to function and (2) its role within the
issue-tracking practices.

The web interface implemented applies a mock object pattern [43] to imitate the be-
havior of generating INExPERT’s list of recommended assignees. Instead of providing
real INExPERT functionality, the web interface was used to capture the participants’
interactions and feedback during the experiment. Each participant was asked for their
feedback on how useful and accurate the given list of assignee recommendations was.
The feedback was captured through an evaluation form shown on the bottom of page

58 issue assignees recommendation technique-inexpert

Figure 4.11: Overview of INExPERT integrated into issue-tracking practices

(see Figure 4.11). Finally, each stage within the experiment was timed using a timer
(located at the upper side of page, see Figure 4.11).

The web interface was implemented using a Three-Tier architecture as shown in
Figure 4.12. It was developed using ASP.NET and a MySQL database. The first pack-
age represents the Presentation Tier, which is responsible for displaying informa-
tion related to the experiment stages. It involves (1) the BriefingStagePage; represent-
ing the output that introduces the main goals of the experiment to the participant,
and collects their personal information (project role and years of experience), (2)
the Pre-INExPERTStage-Page; representing the user interface displaying manual as-
signment tasks (in which data is collected on participants’ interactions), (3) the Post-
INExPERTStage-Page; representing the user interface used to collect data on partici-
pants’ interactions and feedback after introducing INExPERT, and (4) the FeedbackStage-
Page; representing a summary on participants’ interactions during the Pre-Post INEx-
PERT Stages. Additionally, it displays the interview questions that were used to collect
more information about the participants’ interactions and feedback during the exper-
iment. The second package is the Application Tier that is represented as a black box
for simplification. It consists of a lot of detailed classes that are responsible for con-
trolling and updating the changes within the Presentation Tier and the Data Tier. The
final package represents the Data Tier.

4.2 case study 59

Presentation Tier

BreifingStagePage Pre-INExPERTStage
-Page

Post-INExPERTStage
-Page

FeedbackStage
-Page

Application Tier

Data Tier

IssueReport RecommendationList

ManuallySelected
Assignees

ProjectMember

Participent INExPERTSelected
Assignees

Feedback

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >
< < u s e > >

< < u s e > >

< < u s e > >

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.12: Overview of the Website Architecture

The Data Tier package notifies the Application Tier classes after changes (resulting
from changes in the Presentation Tier) have occurred in the database. The package
consists of seven classes interacting with the database. The database contains infor-
mation related to the experiment stages and participants’ interactions and feedback.
The IssueReport class is responsible for presenting details about issue reports (such
as a report’s title, description and reporter). The RecommendationList class is respon-
sible for conveying the list of recommended assignees that was generated by INEx-
PERT. Since we implemented a mock object pattern, we don’t intend to provide any
real system functionality for INExPERT; that’s why both classes were set to interact
with static data generated from INExPERT’s prototype (details in Section 4.2.2.1). First,
we randomly selected 20 issue reports from the issue-tracking repository of ATLAS-
Reconstruction (only from the project’s last 12 months). We then divided these issue
reports equally into (1) a training set and (2) a testing set. We used both data sets
against INExPERT’s prototype and generated lists of recommended assignees for the
10 issue reports in the testing set; from which we randomly selected 5 issue reports

60 issue assignees recommendation technique-inexpert

along with their list of recommended assignees to be added to the database used
within the experiment. Furthermore, we added the ProjectMember class and the Par-
ticipant class responsible for retrieving and updating the details of project members
and participants (name, role, etc...). ManuallySelectedAssignees and INExPERTSe-
lectedAssignees classes were responsible for retrieving and updating the database
with participants’ decisions regarding choosing an assignee for each issue report be-
fore and after using INExPERT. The Feedback class updates the database with the
participants’ feedback on how helpful and accurate the list of recommendations gen-
erated by INExPERT was.

4.2.2.3 Interview Outline

In order to get a more clear insight into the rationale behind the decisions made by the
participants during the different stages of the experiment, we developed an outline of
a structured interview that aimed at gathering information on the impact imposed
by using INExPERT on the participants’ choices. Additionally, the interview was de-
signed to gather the participants’ feedback on the formulation of the heuristics that
define the issue-tracking activities; as these may significantly influence the accuracy
of INExPERT’s outcomes.

The interview layout consisted of five open-ended and three close-ended questions.
Two open-ended questions asked the participants to state the main aspects they con-
sidered while choosing an assignee, once without using INExPERT, and once again
while using it. Additionally, two close-ended questions asked the participants to an-
swer with a yes/no, stating the reasons of (1) whether using INExPERT would reduce
issue reports’ resolution time and (2) whether they preferred an automated process of
issue reports’ assignment. Furthermore, two open-ended questions asked participants
to state (1) the drawbacks of integrating INExPERT into their current issue-tracking
practices and (2) the reasons behind having unassigned issue reports that were closed.
Another close-ended question evaluated the level of (dis)agreement the participants
had on whether issue-tracking activities do affect the ranking of assignees within IN-
ExPERT’s list of recommendations, in which we used a five-level symmetric (dis)agree
scale. Finally, we created a graphical and textual description of the heuristic that we
formulated to describe the issue-tracking activities, which was then added to an open-
ended question that asked the participants to state whether these heuristics where
formulated correctly, in addition to justifying their answers. A copy of the interview’s
layout is described in the Appendix at Section A.1.

4.2.3 Experiment Metrics and Findings

Section 4.2.3.1 gives a brief description of the experiment’s metrics and their calcula-
tion methods. These metrics were used to compare participants’ decisions before and
after using INExPERT. Section 4.2.3.2 analyzes and highlights the testing results of the
experiment’s main hypothesis: Integrating INExPERT within the issue-tracking prac-
tices of scientific software projects will improve issue assignment quality in terms of
(1) reducing the number of unassigned issue reports and (2) increasing the probability
of selecting experienced assignees.

4.2 case study 61

4.2.3.1 Experiment Metrics

Table 4.3: Experiment Metrics

Metric Description Purpose Metric Type

Number of
Assigned
Issues

The number of issue reports as-
signed by each participant dur-
ing a specific stage

Evaluates whether using INEx-
PERT reduces the number of
unassigned issue reports

Quantitative

Recommended
Assignee Hit
Ratio

A “hit” occurs when the chosen
assignee during a specific stage
belongs to INExPERT’s list of
recommended assignees

Investigates whether using IN-
ExPERT increases the probabil-
ity of selecting experienced as-
signees

Number of
Matched
Choices

Summarizes the outcomes of
the Pre- and Post-INExPERT
stages by indicating the num-
ber of times the chosen assignee
was the same within both stages

Assesses “learning effects”
among participants due to the
order of presentation of issue
reports

Helpful An ordinal scale that indicates
how helpful the list of recom-
mended assignees is for finding
a suitable assignee

Evaluates how beneficial INEx-
PERT is to the experts Qualitative

Complete An ordinal scale that indicates
wether the list of recommended
assignees contains suitable as-
signees

Evaluates the experts’ satisfac-
tion with finding suitable as-
signees within the list of recom-
mendations

Accurate An ordinal scale that indicates
how accurately the list of recom-
mended assignees was ranked

Evaluates the experts’ satisfac-
tion with the accuracy of the list
of recommendations ranking

Within this experiment, we used six metrics, described in details in Table 4.3. Since
the experiment focused on paired observations per subject (to identify the impact
of using INExPERT on the number of unassigned issue reports and the probability
of selecting experienced assignees), the first two quantitative metrics were adopted;
namely (1) Number of Assigned Issues and (2) Recommended Assignee Hit Ratio.
These were measured twice; before and after the subject used INExPERT.

Since participants got to assign issue reports manually before assigning the same
ones using INExPERT, they might have developed enough familiarity with the pre-
sented issue reports in a way that could influence their choices in the second time.
We added additional steps to account for those learning effects, such as changing the
order of the presented issue reports in the second time, and placing the list of recom-
mendations before the UI components that captured the participants’ choices (in order
to “force” the participant into reading the presented recommendations before rushing
into doing the same action as the first time). It was vital to identify whether the ap-
proach used to compensate for learning effects was effective enough, so we adopted
the Number of Matched Choices metric that simply counted the number of times the
chosen assignee was the same within the pre- and post- INExPERT stages. To evaluate
and understand the experts’ impressions on how helpful and accurate INExPERT’s
list of recommendations was, we adopted three qualitative metrics. Refer to Table 4.3
for details.

62 issue assignees recommendation technique-inexpert

4.2.3.2 Experiment Findings and Interpretations

Pre-INExPERT Post-INExPERT

50
0

10
00

15
00

20
00

S
ta

ge
 D

ur
at

io
n

(S
ec

on
ds

)

Figure 4.13: Stage’s Duration

Figure 4.13 indicates that the participants spent more time engaging within the
Post-INExPERT Stage over the Pre-INExPERT Stage; since they had several inquires
regarding the layout, role and ranking of the recommendations generated from INEx-
PERT. Since our sample size was very small (less than 10 participants contributed to
the experiment), it is unlikely that normality tests will detect any non-normality. Nev-
ertheless, we used one parametric test —the Paired T test [88] —to test our interval
and ratio metrics (based on the assumption that our population distribution is nor-
mal). Additionally, we used a non parametric test —Fleiss’ Kappa [23] —that is more
suitable for testing our ordinal scale metrics (in which the level of agreement between
participants was induced).

Manual INExPERT

0
1

2
3

4
5

N
um

be
r o

f A
ss

ig
ne

d
Is

su
es

Figure 4.14: Number of Assigned Issues (Manual Vs. INExPERT)

4.2 case study 63

Figure 4.14 indicates that the number of assigned issue reports tends to increase (or
remain the same) for most of the participants after using INExPERT. We used a paired
t-test, having t = -1.6859, 6 d.f., and p-value = 0.071. Unfortunately, due to the small
sample size, the increase in the number of assigned reports couldn’t be significantly
indicated through the t-test.

Manual INExPERT

0
1

2
3

4
5

N
um

be
r o

f C
ho

se
n

A
ss

ig
ne

es
 M

at
ch

in
g

R
ec

om
m

en
da

tio
ns

Figure 4.15: Number of Chosen Assignees Matching Recommendations (Manual Vs. INEx-
PERT)

0
1

2
3

4

N
um

be
r o

f T
im

es
 a

 P
ar

tic
ip

an
t C

ho
se

 th
e

S
am

e
A

ss
ig

ne
e

Figure 4.16: Number of Times a Participant Chose Same Assignee Within Pre- & Post-
INExPERT Stages

Figure 4.15 shows that during the manual assignment task, some participants did
choose assignees that were later included in the list of recommendations. Subsequently,
using INExPERT did increase the number of chosen assignees that belonged to the list
of recommendations. We used a paired t-test to validate this increase, having t = -
2.9314, 6 d.f., and p-value = 0.013, which resulted in supporting our hypothesis that
using INExPERT increases the probability of selecting experienced assignees.

64 issue assignees recommendation technique-inexpert

The main point of Figure 4.16 is to illustrate the existence of learning effects, through
the number of times a participant chose the same assignee within both Pre- & Post-
INExPERT stages. We conducted a one sample t-test to investigate whether partici-
pants went for same choices within both stages. Using t = -5.1962, 6 d.f., and p-value
= 0.002, the test validated the effectiveness of the approach we used to compensate for
learning effects.

Agree Neutral Disagree

R
es

po
ns

es
 (%

)

0
20

40
60

80
10
0

Accurate
Complete
Helpful

Figure 4.17: Responses Vs. Qualitative Metrics

We used three qualitative metrics to determine how helpful, complete and accurate
INExPERT’s recommendations were to the participants during the assignment of all
given issue reports. Figure 4.17 indicates that the participants’ responses stated that
the list of recommendations were within 26.67% of the time accurate, 33.33% of the
time complete and 40% of the time helpful. To measure inter-rater reliability (i.e., the
degree of agreement between participants’ ratings concerning each issue report), we
used a Fleiss’ Kappa test; which indicated that the participants’ ratings were mostly
heterogeneous. Having only a slight-to-fair agreement among all raters on the list of
recommendations being helpful with a Kappa = 0.2 and p-value = 0.045.

4.2.3.3 Interview Findings and Interpretations

All seven experts mainly considered the relevance of the assignee’s expertise and re-
sponsibility to the involved package or sub-group when they chose an assignee (both
manually and using INExPERT). One difference while using INExPERT was taking
into account how the ranking was associated with the assignee’s responsibility within
the package. To that end, we had to modify INExPERT’s design to consider the as-
sociation between the assignee’s level of expertise within specific packages or topics
and his responsibility within these topics (i.e., role (main developer, package owner,
etc...)).

We asked the experts to identify the shortcomings in the heuristic rules we imple-
mented for defining the issue-tracking activities. Most of the experts pointed out that
we had wrong assumptions regarding the activity of reviewing, resolving and priori-
tizing of issue reports. According to them, setting the priority should not be counted

4.3 evaluation 65

as an issue-tracking activity, since it may be done by a manager or even a report
submitter (which will not give any strong indication on the role of the activity ini-
tiator). Also, the reviewing activity should be detailed more carefully to distinguish
it from the resolving activity (e.g., through checking the value of the assigned-to and
resolution-status fields). Furthermore, a possible reviewing activity we didn’t consider
was if an unassigned issue report’s resolution was set to duplicate and status to closed.
Last but not least, we should consider the reopening of a closed issue report as a re-
viewing activity.

57% of the experts agreed that there are no real drawbacks of integrating INExPERT
within issue-tracking practices. Other experts were concerned with having issues be-
ing “tossed” among unqualified assignees. Others highlighted a possible drawback
as the lack of flexibility in being limited to the list of recommendations instead of
manually choosing other unlisted assignees.

All seven experts agreed that using INExPERT would reduce the issue report’s res-
olution time. Adding to INExPERT’s list the right information that relates the rec-
ommendations to project’s sub-groups or package would help inexperienced or new
team members select more suitable assignees using minimum efforts. Even if the se-
lected assignee were not in charge of the fix, they would still be capable of reassigning
the issue to the one in charge. This was a clear indication for us that the involved
participants viewed INExPERT as a beneficial tool for speeding the workflow.

All seven experts stated that full automation of issue assignment would not be
preferred since there is a lot of contextual information involved that requires human
intervention within the assignment process. On the other hand, one expert suggested
that full automation could be used to categorize newly submitted issue reports under
sub-groups/packages, after which human intervention could start.

85% of the experts agreed that the issue-tracking activities performed by an assignee
should influence their ranking within the recommendations list, since their expertise
is associated with the amount and type of activities they perform on issue reports
related to a specific category or topic. Additionally, one expert suggested that when
we calculate the activity score of each assignee, we should consider how strongly this
assignee is associated with the topic relevant to the newly added issue report .

The experts were asked to state the reasons behind having unassigned issue reports
that were either resolved or closed. The most common causes for this phenomenon
were (1) less amount of commitment and efforts from team members in keeping infor-
mation up-to-date (since issue assignment is a voluntary act), (2) lack of experience,
(3) lack of communication, and (4) the report was invalid or duplicate. The first two
causes provided an indication that INExPERT could be beneficial in helping inexpe-
rienced and/or overloaded project members achieve a better quality of issue assign-
ment.

4.3 evaluation

This section presents the evaluation of INExPERT’s accuracy and effectiveness, a pro-
cess which followed a summative evaluation approach [71], which mainly focuses on ex-
amining a technology after it was introduced to assess whether its targeted goals were
effectively achieved. To this end, our evaluation approach consisted of the analysis of

66 issue assignees recommendation technique-inexpert

the experts’ feedback on assessing the effectiveness of INExPERT’s recommendations,
along with the benchmarking of its accuracy against an LDA-SVM–based approach
(using several datasets belonging to different domains, thus ensuring diversity and
better quality).

The goal of the summative evaluation of INExPERT was to gather a realistic im-
pression on how satisfied our experts with the accuracy and effectiveness of INEx-
PERT’s recommendations were within the targeted environment (i.e., scientific soft-
ware projects). Additionally, we wanted to evaluate the value of INExPERT’s contri-
bution given the standards of the current state-of-the-art assignee-recommendation
approaches. To this end, we developed the formal prototype of INExPERT mentioned
in Section 4.1.

4.3.1 Experts’ Feedback

Acquiring feedback from the targeted community of scientific software on how ef-
fective INExPERT’s outcomes are requires a large amount of effort and time. A less
cumbersome, more effective approach would be to work with domain experts who are
well aware of the community, along with its formal and informal rules. Those can give
us feedback about the targeted environment we want to deploy INExPERT in. To this
end, we approached three domain experts within the ATLAS-Reconstruction project
who helped us before during INExPERT’s formative evaluation (see Section4.2.1).

5%

16%

5%

67%

67%

56%

Expert.1

Expert.2

Expert.3

0 25 50 75 100
Percentage

Response Maybe No Yes

Figure 4.18: Experts’ Judgement on Recommended Assignees Capabilities

We asked the three experts to evaluate 43 assignee recommendations for existing is-
sue reports (dated between February 2011 and March 2012) generated by INExPERT’s
formal prototype. In the evaluation, we used one criterion for determining the effec-
tiveness of INExPERT’s assignee recommendations: Assignee’s Capability. This refers
to the needed expertise and correct role for the recommended assignees to fix or re-
solve a specific report (i.e., are the recommended assignees capable enough of fixing
or reassigning this specific issue report?). To be able to reliably aggregate and compare

4.3 evaluation 67

the evaluation metric from all participants’ feedback, we asked them to choose from a
simple level-of-agreement scale: No, Maybe, Yes.

For documentation purposes, we provided each participant with an evaluation form
that consisted of (1) the details of 43 issue reports for identifying the needed exper-
tise, (2) a ranked INExPERT list of assignee recommendations for each given issue
report, and (3) participant’s judgment (i.e., No/Maybe/Yes) and the justifications for
choosing this specific level concerning the assignees capabilities within each list of rec-
ommendations. Figure 4.18 shows the experts’ final judgments (i.e., No/Maybe/Yes)
regarding the capability of recommended assignees in fixing or reassigning the 43

given issue reports. On average, all three experts stated that within 63.57% of the time,
the assignees within the list of recommendations were either cable of fixing or reas-
signing the issue report. On the other hand, 36.44% of the time they were uncertain. To
measure the reliability of the experts’ feedback, we used a Fleiss’ Kappa test; which
indicated that experts judgments were fairly coherent: a fair level of agreement on
both the issue reports rated with ’No’ (kappa = 0.229 and p-value = 0.009) and ’Yes’
(kappa = 0.398 and p-value = 0.000134).

Experts.1

0%

30%

60%

90%

120%

No Maybe Yes

Main developer/package owner is missing
The list includes more than one member from the targeted team
Inaccurate ranking
The list includes the project leader only
Non of the needed team members are included in the list

Expert.3

0%

20%

40%

60%

80%

No Maybe Yes

Experts.2

0%

30%

60%

90%

120%

No Maybe Yes

Figure 4.19: Experts’ Judgements Vs. Justifcations

Figure 4.19 presents the justifications provided by all experts for each given judg-
ment. The most common justification when judging with ’No’ was that the list of
recommended assignees didn’t include the main developer/package owner. On the
other hand, the most common justifications used when judging a ’Yes’ were: "list in-
cluded the project leader who won’t fix it but can reassign it to a more suitable person",
"list was ranked correctly" and "list included more than one member from the targeted
team".

68 issue assignees recommendation technique-inexpert

These outcomes imply that INExPERT was – in general – effective. Even when the
experts stated that the main assignee was missing, the list usually included someone
who is capable of reassigning the issue to a more suitable assignee. However, there
definitely is a need for improvement within the areas of ranking and elimination;
given INExPERT’s tendency to favor high level roles (e.g., project leaders) over other
important roles (e.g., developers and package owners). To that end, more investigation
on how to tune the activity score within the assignees’ activity profiles is required for
overcoming this issue.

4.3.2 Benchmarking

We selected a combined LDA/SVM technique [77] as the baseline reference to use
for benchmarking INExPERT’s performance, since it represents the current state-of-
the-art work in automated issue assignment. Using the probability matrix from the
LDA computation as the feature vector for SVM classification results in (1) a smaller
feature vector and (2) added stability when computing the SVM prediction results. SVM
calculates a separating hyperplane between data points from different classes and
tries to maximize the margin between them. For evaluating SVM against INExPERT,
we used a multi-class SVM classifier, in order to predict a suitable class (i.e., assignee)
from a given list of project members. The implementation of SVM was provided by
Weka [28], a machine learning framework with a user interface (Explorer). We used it
to get a prediction matrix that contains the probability distribution of having a certain
issue report belonging to a certain class of assignees.

4.3.2.1 Evaluation Dataset & Contextual Information gathering

To evaluate INExPERT, we used issue-tracking repository data from three different
software projects. The projects were selected to ensure diversity within the quality
of issue reports, how they get assigned, and issue-tracking activities in general; so
that we could draw unbiased interpretations. ATLAS-Reconstruction6 is a mid-sized
scientific software project. Eclipse BIRT7 is a large open-source project with market
orientation, and UNICASE8 is a mid-sized software engineering research project.

The data obtained from these projects consisted of issue reports as well as the activ-
ity history (i.e., log files of user interactions within the issue-tracking repository). We
transformed the database dumps from the three projects into a unified database. Uni-
fication made it possible to easily (1) filter unclassified and invalid reports, (2) obtain
issue-tracking activities, and (3) extract LDA input features for the topic.

To gather contextual information regarding how issue reports within these inves-
tigated projects get assigned —which should help us understand the assignment of
issue reports before applying INExPERT —we conducted a semi-structured interview
that consisted of five open-answer questions. These investigated how issue reports are
triaged (i.e., how issue reports are assessed to see if they describe a meaningful new
problem or enhancement, how they are assigned to an appropriate developer, and
how they are prioritized for further handling). The interview questions also focused

6 http://atlas.ch/
7 http://www.eclipse.org/birt/phoenix/
8 http://code.google.com/p/unicase/

http://atlas.ch/
http://www.eclipse.org/birt/phoenix/
http://code.google.com/p/unicase/

4.3 evaluation 69

on identifying who is responsible for assigning (or reviewing the assignment) of is-
sue reports. We interviewed one to three senior developers within each investigated
project, asking them the following questions:

1. Were you ever involved in the process of issue triaging? If yes, please describe
your experience in details.

2. When an issue report is submitted, who gets to be notified? And How?

3. Who is responsible for triaging issue reports? Please describe the triaging pro-
cess in details.

4. Who is responsible for assigning issue reports?

5. When a user assigns an issue report to a certain developer during submission,
does anyone review his decision concerning the developer he chose? Or it’s just
reviewed by the developer himself directly?

Additionally, we analyzed the projects’ documentation concerning the submission
and assignment guidelines of issue reports published on the projects’ wikis, in order
to fill any gaps in our understanding of the interview responses.

In the ATLAS-Reconstruction project, any new issue report is usually assessed and
assigned by the issue tracker owners (as they are the ones who get notified upon sub-
mission). However, other issue tracker members can take the initiative to assign and
assess new issue reports, as this task is not restricted to the role of tracker owners
(i.e., it is more of a voluntarily task). This is due to the busy schedule of the project
members (since they are involved in many other research activities) so they have to
collaborate on handling and resolving ingoing issues. Additionally, newly submitted
issue reports can also be assigned by their reporters. However, if they are unable to
determine a suitable developer, they usually assign it to one of the main managers
or leave it unassigned. Consequently, new issue reports sometimes get to be closed
without being assigned to a specific developer. This lack of tractability due to incom-
plete information makes it very difficult to verify or reassess the resolution of the
incomplete issue reports.

The Eclipse BIRT project is divided into multiple components, each owned by a
specific developer. When a new issue report is submitted, it is typically assigned to the
component owner, who then assesses the issue report. If it is a valid issue, it is assigned
to a suitable developer, who can then either accept or refuse it. This indicates that the
task of assigning an issue is restricted to the component owner role. Therefore, only
Eclipse committers and component owners can edit/move/reassign issue reports.

When an issue report is submitted to the UNICASE project, it is assigned by its
reporter to a specific developer. However, if he is unable to determine a suitable devel-
oper, it is assigned to one of the two main committers. Either the assigned developer
or the main committers assess the issue report and check if it is a valid issue, then
work on it. In case the assignee is overloaded, or unable to resolve the issue, it is
reassigned to another, more suitable developer. Table 4.4 gives a summary on the
evaluation dataset and contextual information of the investigated projects.

70 issue assignees recommendation technique-inexpert

Table 4.4: Overview of the Investigated Projects
Project ATLAS-Reco BIRT UNICASE

Domain Scientific Software Market Orientation Research
Issue Repository Savannah Bugzilla UNICASE
Issue Reports are assigned by Volunteer Developer Developer
Issue Assignment Informal Formal Formal
Avg. Reports/day 0.73 3.39 0.28

Avg. Issue-Tracking Activities/day 2.34 11.34 1.60

4.3.2.2 Training & Testing Dataset

Not all issue reports were included in the evaluation dataset (i.e., training set and test-
ing set, combined). Some issue reports were excluded to guarantee that the expertise
of the assignee is determined based on a set of “completed” issue reports. To that
end, we excluded all the reports that were not closed, assigned or resolved (i.e., issue
reports having an undefined state). In addition, we adjusted the original assignee ac-
cording to [1] for BIRT, since they state that if a report had a resolution of “fixed”, label
it with whoever changed the state of the report to “fixed”. This is due to the fact that
sometimes the given email for the assignee in the repository is not of an individual
person, but rather of a group that is responsible for a certain project component.

The criteria for selecting the evaluation dataset were based on the time period over
which the issue reports had occurred, as suggested by [1]. Furthermore, the dataset
was split into a training dataset and a testing dataset. Table 4.5 gives an overview of
the total number of issue reports, project members and time frame included in our
training and testing datasets.

Table 4.5: Overview of Training and Testing Datasets
Training Set

Project ATLAS BIRT UNICASE

#Reports 149 506 98

#Project Members 47 62 12

Time Period 7 months 8 months 5 months
Testing Set

Project ATLAS BIRT UNICASE

#Reports 46 118 28

#Project Members 22 37 9

Time Period 1 month 1 month 1 month

Selecting the training set was based on including the most recent issue reports in
the project. The duration we choose varied from one project to another, depending
on the quantity needed to enable us extract topics and user activities from the issue
tracking activities logs. Table 4.6 provides an overview of the issue-tracking activities
distribution within the training set. Consequently, the testing set was chosen over a
time frame of one month after the training set’s time frame, ensuring it is consistent
and up-to-date with the training set.

After pre-processing the dataset as mentioned in section 4.1.1, we extracted a 10-
topics ⇥ 10-terms model for the issue reports of both the training and the testing
datasets. We added a constraint for each issue report to be associated with only 10

topics, and for each topic to be associated with only 10 terms. However, a term can be
associated with more than one topic.

4.3 evaluation 71

Table 4.6: Overview of Issue-Tracking Activities Distribution in Training Set
% of Issue-Tracking Activities

ATLAS BIRT UNICASE

#Assigning 35% 32% 15%
#Resolving 32% 31% 36%
#Reviewing 33% 37% 49%

Weight of Issue-Tracking Activities
ATLAS BIRT UNICASE

Assigning Weight 3.50 3.21 1.48

Resolving Weight 3.16 3.09 3.62

Reviewing Weight 3.35 3.70 4.91

4.3.2.3 Benchmarking Results

To evaluate how our approach performs in comparison with the existing LDA-SVM–
based approach, we evaluated data from three different projects. A comparison was
done over (1) finding the actual assignee by measuring the actual assignee hit ratio,
and (2) evaluating the ranking by measuring the top-n ranking hit ratio.

Actual Assignee Hit Ratio: We compared the two approaches based on hit ratio (i.e.,
having the actual assignee within the list of recommended assignees, see Figure 4.20).

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

UNICASE" BIRT" Atlas"

INExPERT"

LDA?SVM?based"

Figure 4.20: Hit ratio for having the main resolver against the total number of issues

INExPERT counts a “hit” when the list of recommended assignee contains the actual
assignee of the new issue report. For LDA-SVM, a “hit” is considered if it predicts the
actual assignee correctly. Being a binary classifier, SVM does not perform better than
INExPERT, which produces a ranked list of assignees for each issue report. As the
results show, LDA-SVM performed better in the BIRT project, but the results are still
not close to our approach.

Top-n Hit: We did a Top-n hit comparison between the two approaches. For LDA-
SVM, we used the probability distribution for each of the candidate assignees as their
ranking (in decreasing order), so as to have a ranked list for both approaches. The hit
ratio in top 1, top 3, top 5, and top 10 was computed for each project. We considered a
hit for INExPERT if the ranked list contained any assignee who has performed either
of the three activities (assigning, reviewing, or resolving). Performing any of these
activities implies that the assignee has some expertise in the issue report’s topic.

Figure 4.21 shows the hit ratio for the Atlas-Reconstruction project using activity
and LDA-SVM approaches. Over a testing set of 40 issue reports within the project,

72 issue assignees recommendation technique-inexpert

0"

5"

10"

15"

20"

25"

30"

35"

40"

Top1" Top3" Top5" Top10"

INExPERT"

SVM4based"

Figure 4.21: Top-n Hits, INExPERT vs LDA-SVM; Atlas

INExPERT performed better in comparison with LDA-SVM for top 1, top 3, top 5, and
top 10 hits. Considering the small testing datasets, our approach managed to correctly
predict the assignee for almost all the issue reports. In contrast, the assignee predicted
by LDA-SVM for three-quarters of the issue reports were within the top 10 hits.

0"

20"

40"

60"

80"

100"

120"

Top1" Top3" Top5" Top10"

INExPERT"

SVM6based"

Figure 4.22: Top-n Hits, INExPERT vs LDA-SVM; Birt

BIRT (see Figure 4.22) had three times as many issue reports as Atlas-Reconstruction
had in its testing set. LDA-SVM performed almost the same as INExPERT in this
project for top 1 hit, but our approach excelled in top 3, top 5, and top 10 hits. We
believe this is because INExPERT only considers the most relevant assignee during the
candidate selection phase, so that the number of assignees in the final list is eventually
smaller in comparison with LDA-SVM. We also observed that LDA-SVM falls behind
in the top 3 and top 5 tests, but eventually manages to trail our approach in the top
10 test (with linear progression).

For the UNICASE project (see Figure 4.23), both approaches gave almost similar
results. Although INExPERT performed slightly better for top 1 and top 3 hits, it fell
behind the LDA-SVM approach in the rest. A common observation in all three projects
was that INExPERT performs quite well for top 1, top 3, and top 5 hits; but LDA-SVM
manages to reach better results at the end. This is because INExPERT recommends the
suitable assignee for most of the issue reports within top 5 hits only; while LDA-SVM
with linear progression —as shown for all projects —has the suitable assignees spread
across different hit ratios. The reason for this is that INExPERT uses elimination for
creating a list of candidates, while LDA-SVM considers all project members against

4.3 evaluation 73

0"

5"

10"

15"

20"

25"

30"

Top1" Top3" Top5" Top10"

INExPERT"

SVM3based"

Figure 4.23: Top-n Hits, INExPERT vs LDA-SVM; UNICASE

each issue report. Since UNICASE consists of rather a small dataset, the elimination
performed by INExPERT came in favor of the LDA-SVM results, especially at top
10 hit ratio, where the whole nine project members were included in the LDA-SVM
probability distribution list (see Figure 4.23).

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

Top1" Top3" Top5" Top10"

INExPERT"

SVM9based"

Figure 4.24: Overall hit ratio

This further becomes obvious looking at the overall hit ratio calculated for all three
projects (see Figure 4.24), where INExPERT achieves a hit ratio of 88%, while LDA-
SVM is close enough by 85% for top 10 hits. Hence, we believe our approach can be
quite useful to predict a suitable assignee, if the recommendation list size has to be
kept shorter with better precision.

5
C O N C L U S I O N A N D F U T U R E W O R K

This chapter highlights the outcomes of our research work, as well as details of the
limitations within the conducted empirical study and the issue assignees recommenda-
tion technique INExPERT. We also conclude our work with remarks related to future
directions for research.

5.1 research outcome highlights

We presented the results of an empirical study which investigates issue tracking activ-
ities in software engineering and scientific software projects. The study analyzed issue
reports and issue history logs, as well as answers given by 612 project participants. The
results of the study can help software engineers define the necessary improvements of
issue tracking practices in both software engineering and scientific software projects.

Additionally, we applied LDA-SVM as well as an issue tracking activity-based tech-
nique, ’INExPERT’ for issue assignees recommendation. Both techniques were eval-
uated using bug reports from three existing projects: (1) ATLAS-Reconstruction is a
mid-sized scientific software project, (2) Eclipse BIRT is a large open-source project
with market orientation, and (3) UNICASE is a mid-sized software engineering re-
search project. This work confirms the results from previous research work that SVM
is an efficient solution for the classification task in the case that the probability distri-
bution of predicted classes is considered for ranking the developers in the candidate
list. INExPERT performs better in most of the projects, albeit requiring the mining
of an activity profile for each of the developers. As seen from the results, INExPERT
performs significantly better if the recommendation list size is a constraint, i.e., the
number of produced recommendations should be relatively small. Additionally, it is
able to provide consistent results across varying dataset sizes. This is due to the stricter
selection criteria of topic associations used for the new issue report on which the se-
lection of assignees in the candidate list is based. Hence, the most relevant developers
are the only ones to make it to the final ranked recommendation list.

We believe that combining both approaches can be an interesting option as well. This
would facilitate having a recommended list introducing the intersection of the results
of both approaches. In addition, an experiment with senior developers and managers
in a large-scale scientific software project confirms the precision of INExPERT and its
suitability for the scientific software domain. The outcomes imply that INExPERT was
in general effective. Even when the experts stated that the main assignee was missing,
the list usually included someone who is capable of reassigning the issue to a more
suitable assignee.

75

76 conclusion and future work

5.2 research limitations

The generalizability of the empirical study we conducted to the scientific software as
well as software engineering domain is limited since we only studied single projects.
However, the selected projects were large and included a total of 612 participants.
Therefore, the results for the single projects are representative. Another threat to va-
lidity is the survey: participants contributed on a voluntary basis and this self-selection
can introduce unwanted bias.

Regarding INExPERT performance, there is a need for improvement within the ar-
eas of ranking and elimination given INExPERT’s tendency to favor high-level roles
over other important roles.

5.3 future work

While the study detected differences in issue tracking activities in software engineer-
ing and scientific projects, further research is needed to detect the possible causes
for these differences. Furthermore, we can reuse the study metrics and survey ques-
tions as an assessment framework for evaluating the quality of issue tracking practices
in different projects. However, a suitable benchmark is needed to indicate what is a
positive and a negative evaluation result. To that end, more interviews and observa-
tional studies of participants and their issue tracking activities should be conducted.
Additionally, we aim at applying and evaluating our assignee recommendation tech-
nique INExPERT on an even larger dataset, e.g., Eclipse, Firefox. Moreover, we plan
to do an evaluation over time analysis, as opposed to the state-based (snapshot of the
bug repository) evaluation done in this work. We further plan to investigate how to
tune the activity score within the assignees’ activity profiles, in order to overcome the
tendency to favor high-level roles. In addition, we plan to investigate the use of the ac-
tivity profiles within INExPERT as an add-on to enhance the performance of existing
assignee recommendation techniques.

5.4 final thoughts

We support the strategy suggested by Pawlik et al. [61] and Lethbridge et al. [44],
which states that rather than forcing members of scientific software projects to be com-
mitted to formal and strict guidelines within software engineering practices, software
engineers should conduct more research to measure how these practices are perceived
and used, in order to identify what exactly is needed to make them more useful for
the scientific software domain.

Part I

A P P E N D I X

A
A P P E N D I X

a.1 layout of the interview used in inexpert formative evaluation

1. What do you think is the reason behind having closed issue reports that are
unassigned?

2. In the first stage of the experiment within issue report #1, what were the main
aspects you considered when choosing the assignee?

3. In your opinion what is the impact of using INEXPERT on issue reports resolu-
tion time?

• Increase

• Decrease

Please state the reason behind your answer.

4. In the second stage of the experiment with issue report #1, what were the main
aspects you consider when choosing the assignee from the list of recommenda-
tion?

5. In your opinion, what would be the main drawback of integrating INEXPERT
within your issue tracker?

6. Would you have preferred if the issue assignment was done automatically with-
out human intervention?

7. Are the following descriptions of issue tracking activities correct or not? (Answer
with Yes or No) Please state the reason behind your answer.

• Resolving: change in resolution field to fixed, won’t fix, need info, unpro-
ducible.

• Managing–assigning activity: Change in assigned to field.

• Managing–reviewing activity:

– change in closed field, that is not done by same person who changed
the resolution.

– change in resolution invalid or duplicate.

8. Do you agree that the issue tracking activities of a project member influences
his/her ranking within the list of assignee recommendations? (Strongly agree –
Strongly disagree)

79

80 appendix

a.2 a copy of the survey used in our comparative study

Bug Tracking Practices

I. About Your Project

Gathers information about the project you are currently working on.

1. Which project are you contributing to?

Please choose *only one* of the following:
o ATLAS-Reconstruction
o Belle(2)
o CMS
o Eclipse
o UNICASE
o Other:

2. Which of the following best describes your main role within the project?

Please choose *only one* of the following:
o Release or project manager
o Developer
o Developer who is also a user of the software
o User who is not involved in the development of the software
o Tester
o Documentation maintainer
o Other:

3. How long have you been enrolled within your project?

Please choose *only one* of the following:
o Less than 1 year
o 1-2 years
o 2-5 years
o More than 5 years

A.2 a copy of the survey used in our comparative study 81

II. Bug Tracking Practices

Determines how bug tracking is being practiced within your project

1. How would you rate the bug tracking practices within your project?

Please choose the appropriate response for each item:
-2 -1 0 1 2

Ambiguous | Clear o o o o o
Obsolete | Up to date o o o o o
Disintegrated from devel-
opment cycle | integrated
within the development cycle

o o o o o

Verbal | Documented o o o o o

2. Which of the following activities do you mostly do?

Please choose *all* that apply:
o Submitting a bug report
o Reviewing & assigning a bug report
o Recording the procedure of handling & resolving a bug report
o Discussing a bug report with team members
o Prioritizing & scheduling a bug report
o Resolving a bug report
o Other:

3. What was the biggest benefit you’ve gained from using a bug tracking system within
your project?

Please choose *only one* of the following:
o Sharing of bug reports information within one place
o Communication with developers
o monitoring of development progress
o Increased awareness and responsiveness to issues
o Easier release planning
o None
o Other:

82 appendix

4. In your project, how often do you use a bug tracking system to fulfill that following
activities?
Rarely ⇡ yearly / Sometimes ⇡ monthly / Often ⇡ weekly / Usually ⇡ daily

Please choose the appropriate response for each item:
Submitting a bug report
Reviewing & assigning a bug resort
Recording the procedure of handling & resolving a bug report
Discussing a bug report with team members
Prioritizing & scheduling a bug report

5. Which of the following bug tracking methods have you used before?

Please choose *all* that apply:
o Bug tracking system
o Comments in source code
o Discussion Forum or mailing list
o Private emails
o Phone and face-to-face communication
o Wiki
o Shared files (e.g. excel sheets)
Other:

6. Which of the following tools would you prefer to use when performing the follow-
ing activities?

Please choose the appropriate response for each item:
Submitting a bug report
Reviewing & assigning a bug report
Recording the procedure of handling & resolving a bug report
Discussing a bug report with team members
Prioritizing & scheduling a bug report
Resolving a bug report

7. What is the average time, you activity spend on completing the following activities?

Please choose the appropriate responses for each item:
Submitting a bug report
Reviewing & assigning a bug report
Recording the procedure of handling & resolving a bug report
Discussing a bug report with team members
Prioritizing & scheduling a bug report
Resolving a bug report

A.2 a copy of the survey used in our comparative study 83

III. Problems and Enhancements

Evaluates the problems your team encounters and your suggestions on how
to solve them.

1. How often do you encounter each of the following problems? Do you agree that
these problems cause severe overhead for your team?
Rarely ⇡ yearly / Sometimes ⇡ monthly / Often ⇡ weekly / Usually ⇡ daily

Please choose the appropriate response for each item:
Assigning a bug report to the incorrect developer
Assigning duplicate bug reports to different developers
Not recording the procedure of handling & resolving a bug report
Not setting a priority or properly scheduling a bug report
Not tracking a bug that was fixed on the fly
Submitting a bug report with an incorrect category
Using different bug tracking methods within the same team

2. The following activities produce an overhead that has a negative impact on the
overall project performance, Do you agree or disagree?

Please choose the appropriate response for each item:
Submitting a bug report
Assigning a bug to the correct developer or category
Detecting & linking duplicated bugs
Recoding the procedure of handling & resolving a bug report
Discussing a bug report among team members
Prioritizing & scheduling a bug report
Maintaining the bug tracking role or system

3. Can you recall any other problems or overheads that weren’t previously mentioned?
Please write your answer here:

4. How would you solve some of the previously mentioned problems and overheads?
Please write your answer here:

84 appendix

IV. Context

The questions within this section will help us gather information about your
educational and professional expertise.

1. What is your main educational background?

Please choose *all* that apply:
o Computing
o Mathematics
o Physics
o Software engineering
Other:

2. How do you rate your level of software engineering knowledge (i.e. using and
adopting state-of-the-art software engineering tools and techniques)?

Please choose *only one* of the following:
o Very experienced
o Experienced
o Somewhat experienced
o Unexperienced
o Very inexperienced

Thank you

As a token of our appreciation on your participation, we would like to have your
email address in order for you to take part in a lottery, where you can win a 100 euro
Amazon gift card or some other interesting girts.
Please write your answer(s) here:
Email: :
Survey Result If you would like to get a summary of the survey results without pro-
viding us your email address, please check here in about 4 weeks from now.

Submit your survey.

Thank you for completing this survey.

B I B L I O G R A P H Y

[1] John Anvik and Gail C. Murphy. Reducing the effort of bug report triage: Recom-
menders for development-oriented decisions. ACM Trans. Softw. Eng. Methodol.,
20:10:1–10:35, 2011.

[2] John Anvik, Lyndon Hiew, and Gail C. Murphy. Who should fix this bug? In Pro-
ceedings of the 28th international conference on Software engineering, ICSE ’06, pages
361–370. ACM, 2006.

[3] A. April and A. Abran. Software maintenance management: evaluation and continuous
improvement. Wiley-IEEE Computer Society Press, 2012.

[4] A Bachmann and A Bernstein. When process data quality affects the number of
bugs: Correlations in software engineering datasets. In Mining Software Reposito-
ries (MSR), 2010 7th IEEE Working Conference on, pages 62–71, May 2010.

[5] Adrian Bachmann and Abraham Bernstein. Software process data quality and
characteristics: a historical view on open and closed source projects. In Proceed-
ings of the joint international and annual ERCIM workshops on Principles of software
evolution (IWPSE) and software evolution (Evol) workshops, pages 119–128. ACM,
2009.

[6] V R Basili, J C Carver, D Cruzes, L M Hochstein, J K Hollingsworth, F Shull, and
M V Zelkowitz. Understanding the High-Performance-Computing Community:
A Software Engineer’s Perspective, 2008.

[7] Victor R Basili, Forrest Shull, and Filippo Lanubile. Building knowledge through
families of experiments. Software Engineering, IEEE Transactions on, 25(4):456–473,
1999.

[8] O. Baysal, M.W. Godfrey, and R. Cohen. A bug you like: A framework for auto-
mated assignment of bugs. In Program Comprehension, 2009. ICPC ’09. IEEE 17th
International Conference on, pages 297 –298, may 2009.

[9] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmermann.
What makes a good bug report? In Proceedings of the 16th ACM SIGSOFT Inter-
national Symposium on Foundations of software engineering, pages 308–318. ACM,
2008.

[10] Ronald F Boisvert. Mathematical software: past, present, and future. Mathematics
and computers in simulation, 54(4):227–241, 2000.

[11] Barrett R. Bryant, Jeff Gray, and Marjan Mernik. Domain-specific software engi-
neering. In Proceedings of the FSE/SDP workshop on Future of software engineering
research, FoSER ’10, pages 65–68. ACM, 2010.

85

86 bibliography

[12] Jeffrey Carver. Empirical studies in end-user software engineering and view-
ing scientific programmers as end-users. In proceedings of Dagstuhl Seminar on
End-User Software Engineering, Internationales Begegnungs-und Forschungszentrum
für Informatik (IBFI) Schloss Dagstuhl. Citeseer, 2007.

[13] Jeffrey Carver, Dustin Heaton, Lorin Hochstein, and Roscoe Bartlett. Self-
perceptions about software engineering: A survey of scientists and engineers.
Computing in Science & Engineering, 15(1):7–11, 2013.

[14] Jeffrey C Carver. Software engineering for computational science and engineering.
Computing in Science & Engineering, 14(2):8–11, 2012.

[15] Jeffrey C Carver, L Hochstein, Richard P Kendall, Taiga Nakamura, Marvin V
Zelkowitz, Victor R Basili, and Douglass E Post. Observations about software
development for high end computing. CTWatch Quarterly, 2(4A):33–37, 2006.

[16] Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E. Post.
Software development environments for scientific and engineering software: A
series of case studies. In ICSE ’07: Proceedings of the 29th international conference on
Software Engineering, pages 550–559, Washington, DC, USA, 2007. IEEE Computer
Society.

[17] Yguaratã Cerqueira Cavalcanti, Paulo Anselmo da Mota Silveira Neto, Ivan
do Carmo Machado, Eduardo Santana de Almeida, and Silvio Romero
de Lemos Meira. Towards understanding software change request assignment:
a survey with practitioners. In Proceedings of the 17th International Conference on
Evaluation and Assessment in Software Engineering, pages 195–206. ACM, 2013.

[18] D. Čubranić and Gail C. Murphy. Automatic bug triage using text categorization.
In In SEKE 2004: Proceedings of the Sixteenth International Conference on Software
Engineering & Knowledge Engineering, 2004.

[19] Don A Dillman, Robert D Tortora, and Dennis Bowker. Principles for constructing
web surveys. Joint Meetings of the American Statistical Association, 1998.

[20] Kai-Bo Duan and S Sathiya Keerthi. Which is the best multiclass svm method?
an empirical study. In Multiple Classifier Systems, pages 278–285. Springer, 2005.

[21] Roshanak Farhoodi, Vahid Garousi, Dietmar Pfahl, and Jonathan Sillito. Devel-
opment of scientific software: A systematic mapping, a bibliometrics study, and
a paper repository. International Journal of Software Engineering and Knowledge En-
gineering, 23(04):463–506, 2013.

[22] Stuart Faulk, Eugene Loh, Michael L Van De Vanter, Susan Squires, and
Lawrence G Votta. Scientific computing’s productivity gridlock: How software
engineering can help. Computing in science & engineering, 11(6):30–39, 2009.

[23] Joseph L Fleiss, Bruce Levin, and Myunghee Cho Paik. The measurement of
interrater agreement. Statistical methods for rates and proportions, 2:212–236, 1981.

bibliography 87

[24] Thomas Fritz, Gail C. Murphy, and Emily Hill. Does a programmer’s activity in-
dicate knowledge of code? In Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering, ESEC-FSE ’07, pages 341–350. ACM, 2007.

[25] Georgios Gousios, Eirini Kalliamvakou, and Diomidis Spinellis. Measuring de-
veloper contribution from software repository data. In Proceedings of the 2008 in-
ternational working conference on Mining software repositories, pages 129–132. ACM,
2008.

[26] Thomas L. Griffiths and Mark Steyvers. Finding scientific topics. Proceedings of the
National Academy of Sciences of the United States of America, 101(Suppl 1):5228–5235,
2004.

[27] S.R. Gunn. Support vector machines for classification and regression. Technical
report, Dept. of Electronics and Computer Science, University of Southampton,
1998. Address: Southampton, U.K.

[28] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The weka data mining software: an update. SIGKDD Explor.
Newsl., 11:10–18, 2009.

[29] Jo Erskine Hannay, Carolyn MacLeod, Janice Singer, Hans Petter Langtangen,
Dietmar Pfahl, and Greg Wilson. How do scientists develop and use scientific
software? In Proceedings of the 2009 ICSE Workshop on Software Engineering for
Computational Science and Engineering, pages 1–8. IEEE Computer Society, 2009.

[30] D Heaton, JC Carver, R Bartlett, K Oakes, and L Hochstein. The Relationship
between Development Problems and Use of Software Engineering Practices in
Computational Science & Engineering: A Survey. In Proceedings of the E-Science,
IEEE 8th International Conference, 2012.

[31] Jonas Helming, Holger Arndt, Zardosht Hodaie, Maximilian Koegel, and Nitesh
Narayan. Automatic assignment of work items. In Evaluation of Novel Approaches
to Software Engineering, volume 230 of Communications in Computer and Information
Science, pages 236–250. Springer Berlin Heidelberg, 2011.

[32] Michael A Heroux and James M Willenbring. Barely sufficient software engi-
neering: 10 practices to improve your cse software. In Software Engineering for
Computational Science and Engineering, 2009. SECSE’09. ICSE Workshop on, pages
15–21. IEEE, 2009.

[33] Kim Herzig and Andreas Zeller. Mining bug data. In Recommendation Systems in
Software Engineering, pages 131–171. Springer, 2014.

[34] MD Hoffman, DM Blei, and Francis Bach. Online learning for latent dirichlet
allocation. Advances in Neural Information Processing Systems, 23:856–864, 2010.

[35] Kamal Hossen, Huzefa H Kagdi, and Denys Poshyvanyk. Amalgamating source
code authors, maintainers, and change proneness to triage change requests. In
ICPC, pages 130–141, 2014.

88 bibliography

[36] James Howison and James D Herbsleb. Scientific software production: incentives
and collaboration. In Proceedings of the ACM 2011 conference on Computer supported
cooperative work, pages 513–522. ACM, 2011.

[37] Akinori Ihara, Masao Ohira, and Ken-ichi Matsumoto. An analysis method for
improving a bug modification process in open source software development. In
Proceedings of the joint international and annual ERCIM workshops on Principles of
software evolution (IWPSE) and software evolution (Evol) workshops - IWPSE-Evol ’09,
page 135. ACM Press, August 2009.

[38] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. Improving bug triage
with bug tossing graphs. In Proceedings of the the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering, ESEC/FSE ’09, pages 111–120. ACM, 2009.

[39] D.F. Kelly. A Software Chasm: Software Engineering and Scientific Computing.
IEEE Software, 24(6), 2007.

[40] Diane Kelly. Industrial scientific software: A set of interviews on software devel-
opment. In Proceedings of the 2013 Conference of the Center for Advanced Studies on
Collaborative Research, CASCON ’13, pages 299–310, Riverton, NJ, USA, 2013. IBM
Corp.

[41] Diane Kelly, Robert Gray, and Yizhen Shao. Examining random and designed
tests to detect code mistakes in scientific software. Journal of Computational Science,
2(1):47–56, 2011.

[42] Sarah Killcoyne and John Boyle. Managing chaos: lessons learned developing
software in the life sciences. Computing in science & engineering, 11(6):20–29, 2009.

[43] Taeksu Kim, Chanjin Park, and Chisu Wu. Mock object models for test driven
development. In Software Engineering Research, Management and Applications, 2006.
Fourth International Conference on, pages 221–228, Aug 2006.

[44] Timothy C Lethbridge, Janice Singer, and Andrew Forward. How software en-
gineers use documentation: The state of the practice. Software, IEEE, 20(6):35–39,
2003.

[45] Jingyue Li, Tor Stalhane, Reidar Conradi, and JMW Kristiansen. Enhancing De-
fect Tracking Systems to Facilitate Software Quality Improvement. Software, IEEE,
29(2):59–66, March 2012.

[46] Yang Li. Reengineering a scientific software and lessons learned. In Proceedings of
the 4th International Workshop on Software Engineering for Computational Science and
Engineering, pages 41–45. ACM, 2011.

[47] Douglass E li2011reengineering and Richard P Kendall. Software project man-
agement and quality engineering practices for complex, coupled multiphysics,
massively parallel computational simulations: Lessons learned from asci. Interna-
tional Journal of High Performance Computing Applications, 18(4):399–416, 2004.

bibliography 89

[48] Rafael Lotufo, Leonardo Passos, and Krzysztof Czarnecki. Towards improving
bug tracking systems with game mechanisms. 2012 9th IEEE Working Conference
on Mining Software Repositories MSR, pages 2–11, 2012.

[49] Erika S. Mesh and J. Scott Hawker. Scientific software process improvement
decisions: A proposed research strategy. In Proc. SE-CSE, pages 32–39. IEEE,
2013.

[50] Greg Miller. A scientist’s nightmare: Software problem leads to five retractions.
Science, 314(5807):1856–1857, 2006.

[51] Audris Mockus and James D. Herbsleb. Expertise browser: a quantitative ap-
proach to identifying expertise. In Proceedings of the 24th International Conference
on Software Engineering, ICSE ’02, pages 503–512. ACM, 2002.

[52] J. Yates Monteith, John D. McGregor, and John E. Ingram. Scientific research
software ecosystems. In Proceedings of the 2014 European Conference on Software
Architecture Workshops, ECSAW ’14, pages 9:1–9:6. ACM, 2014.

[53] Hoda Naguib and Yang Li. (position paper) applying software engineering meth-
ods and tools to cse research projects. Procedia Computer Science, 1(1):1505–1509,
2010.

[54] Hoda Naguib, Nitesh Narayan, Bernd Brugge, and Dina Helal. Bug report as-
signee recommendation using activity profiles. In Mining Software Repositories
(MSR), 2013 10th IEEE Working Conference on, pages 22–30. IEEE, 2013.

[55] Naresh Kumar Nagwani and Shrish Verma. Rank-me: A java tool for ranking
team members in software bug repositories. Journal of Software Engineering and
Applications, 5(4):255–261, 2012.

[56] Robert G Newcombe. Interval estimation for the difference between independent
proportions: comparison of eleven methods. Statistics in medicine, 17(8):873–890,
1998.

[57] Tung Thanh Nguyen, Anh Tuan Nguyen, and Tien N Nguyen. Topic-based, time-
aware bug assignment. ACM SIGSOFT Software Engineering Notes, 39(1):1–4, 2014.

[58] L. Nguyen-Hoan, S. Flint, and R. Sankaranarayana. A survey of scientific software
development. In Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, pages 1–10. ACM, 2010.

[59] Jin-Woo Park, Mu-Woong Lee, Jinhan Kim, Seung won Hwang, and Sunghun
Kim. Costriage: A cost-aware triage algorithm for bug reporting systems. In
AAAI, 2011.

[60] J.W. Paulson, Giancarlo Succi, and A. Eberlein. An empirical study of open-source
and closed-source software products. IEEE Transactions on Software Engineering, 30

(4):246–256, 2004.

90 bibliography

[61] Aleksandra Pawlik, Judith Segal, and Marian Petre. Documentation practices in
scientific software development. In Cooperative and Human Aspects of Software En-
gineering (CHASE), 2012 5th International Workshop on, pages 113–119. IEEE, 2012.

[62] John C. Platt. Sequential minimal optimization: A fast algorithm for training
support vector machines. Technical report, ADVANCES IN KERNEL METHODS
- SUPPORT VECTOR LEARNING, 1998.

[63] Prakash Prabhu, Thomas B Jablin, Arun Raman, Yun Zhang, Jialu Huang, Hanjun
Kim, Nick P Johnson, Feng Liu, Soumyadeep Ghosh, Stephen Beard, et al. A
survey of the practice of computational science. In State of the Practice Reports,
page 19. ACM, 2011.

[64] Md. Mainur Rahman, Guenther Ruhe, and Thomas Zimmermann. Optimized
assignment of developers for fixing bugs an initial evaluation for eclipse projects.
In Proceedings of the 2009 3rd International Symposium on Empirical Software Engi-
neering and Measurement, ESEM ’09, pages 439–442, Washington, DC, USA, 2009.
IEEE Computer Society.

[65] Eric Raymond. The cathedral and the bazaar. Knowledge, Technology & Policy, 12:
23–49, 1999.

[66] G. Robles. Replicating msr: A study of the potential replicability of papers pub-
lished in the mining software repositories proceedings. In Mining Software Repos-
itories (MSR), 2010 7th IEEE Working Conference on, pages 171 –180, may 2010.

[67] Ripon K Saha, Sarfraz Khurshid, and Dewayne E Perry. An empirical study of
long lived bugs. In Software Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE), 2014 Software Evolution Week-IEEE Conference on, pages 144–153.
IEEE, 2014.

[68] Neil J Salkind. Encyclopedia of measurement and statistics, volume 1. Sage Publica-
tions, Inc, 2007.

[69] Rebecca Sanders and Diane Kelly. Dealing with risk in scientific software devel-
opment. IEEE software, 25(4):21–28, 2008.

[70] David Schuler and Thomas Zimmermann. Mining usage expertise from version
archives. In Proceedings of the 2008 international working conference on Mining soft-
ware repositories, MSR ’08, pages 121–124. ACM, 2008.

[71] Michael Scriven. Beyond formative and summative evaluation. 1991.

[72] Judith Segal. Some problems of professional end user developers. In Visual
Languages and Human-Centric Computing, 2007. VL/HCC 2007. IEEE Symposium on,
pages 111–118. IEEE, 2007.

[73] Judith Segal. Software development cultures and cooperation problems: A field
study of the early stages of development of software for a scientific community.
Computer Supported Cooperative Work (CSCW), 18(5-6):581–606, September 2009.

bibliography 91

[74] Judith A Segal and Chris Morris. Developing software for a scientific community:
some challenges and solutions. 2011.

[75] Ramin Shokripour, John Anvik, Zarinah M. Kasirun, and Sima Zamani. Why so
complicated? Simple term filtering and weighting for location-based bug report
assignment recommendation. In IEEE International Working Conference on Mining
Software Repositories, pages 2–11, 2013.

[76] J. Singer. Practices of software maintenance. In Software Maintenance, 1998. Pro-
ceedings., International Conference on, pages 139 –145, nov 1998.

[77] Kalyanasundaram Somasundaram and Gail C Murphy. Automatic categorization
of bug reports using latent dirichlet allocation. Proceedings of the 5th India Software
Engineering Conference, pages 125–130, 2012.

[78] DE Stevenson. A critical look at quality in large-scale simulations. Computing in
Science and Engineering, 1(3):53–63, 1999.

[79] M. Steyvers and T. Griffiths. Probabilistic topic models. Handbook of latent semantic
analysis, 427(7):424–440, 2007.

[80] Greg Wilson, DA Aruliah, C Titus Brown, Neil P Chue Hong, Matt Davis,
Richard T Guy, Steven HD Haddock, Kathryn D Huff, Ian M Mitchell, Mark D
Plumbley, et al. Best practices for scientific computing. PLoS biology, 12(1):
e1001745, 2014.

[81] Wenjin Wu, Wen Zhang, Ye Yang, and Qing Wang. Drex: Developer recommenda-
tion with k-nearest-neighbor search and expertise ranking. In Software Engineering
Conference (APSEC), 2011 18th Asia Pacific, pages 389 –396, dec. 2011.

[82] Xihao Xie, Wen Zhang, Ye Yang, and Qing Wang. Dretom: developer recom-
mendation based on topic models for bug resolution. In Proceedings of the 8th
International Conference on Predictive Models in Software Engineering, PROMISE ’12,
pages 19–28. ACM, 2012.

[83] Geunseok Yang, Tao Zhang, and Byungjeong Lee. Utilizing a multi-developer
network-based developer recommendation algorithm to fix bugs effectively. In
Proceedings of the 29th Annual ACM Symposium on Applied Computing, pages 1134–
1139. ACM, 2014.

[84] Liu Yingbo, Wang Jianmin, and Sun Jiaguang. A machine learning approach
to semi-automating workflow staff assignment. In Proceedings of the 2007 ACM
symposium on Applied computing, SAC ’07, pages 340–345. ACM, 2007.

[85] L. Yu and K. Chen. Evaluating the post-delivery fault reporting and correction
process in closed-source and open-source software. In Software Quality, 2007.
WoSQ’07: ICSE Workshops 2007. Fifth International Workshop on, page 8. IEEE, 2007.

[86] Yury V Zaytsev and Abigail Morrison. Increasing quality and managing com-
plexity in neuroinformatics software development with continuous integration.
Frontiers in neuroinformatics, 6, 2012.

92 bibliography

[87] Tao Zhang and Byungjeong Lee. An automated bug triage approach: A concept
profile and social network based developer recommendation. In Intelligent Com-
puting Technology, volume 7389, pages 505–512. Springer Berlin Heidelberg, 2012.

[88] Donald W Zimmerman. Teacher’s corner: A note on interpretation of the paired-
samples t test. Journal of Educational and Behavioral Statistics, 22(3):349–360, 1997.

[89] Thomas Zimmermann, Rahul Premraj, Jonathan Sillito, and Silvia Breu. Improv-
ing bug tracking systems. In Software Engineering-Companion Volume, 2009. ICSE-
Companion 2009. 31st International Conference on, pages 247–250. IEEE, 2009.

	Dedication
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Problem Statement
	1.2 Research Approach
	1.3 Thesis Structure

	2 Related Work
	2.1 Studying Issue tracking practices in Scientific Software projects
	2.2 Assignee Recommendation

	3 A Study on How Issue Tracking is Practiced within Scientific Software Projects
	3.1 Study Design
	3.1.1 Studied Issue Tracking Activities
	3.1.2 Study Metrics
	3.1.3 Research Methods
	3.1.4 Case Studies

	3.2 Study Results
	3.2.1 Data Analysis-Results
	3.2.2 Survey-Results

	3.3 Summary
	3.3.1 Main Similarities
	3.3.2 Main Differences
	3.3.3 Specific Domain Issue Tracking Practicses

	4 Issue Assignees Recommendation Technique-INExPERT
	4.1 INExPERT Design
	4.1.1 Categorizing Issue Reports into Topics
	4.1.2 Issue-Tracking Activity Profile
	4.1.3 Assignee Recommendation
	4.1.4 Assignee Ranking

	4.2 Case Study
	4.2.1 Formative Evaluation
	4.2.2 Pre-Post testing Quasi-Experiment
	4.2.3 Experiment Metrics and Findings

	4.3 Evaluation
	4.3.1 Experts' Feedback
	4.3.2 Benchmarking

	5 Conclusion and Future Work
	5.1 Research Outcome Highlights
	5.2 Research Limitations
	5.3 Future work
	5.4 Final Thoughts

	i Appendix
	A Appendix
	A.1 Layout of the Interview Used In INExPERT Formative Evaluation
	A.2 A Copy of the Survey Used in Our Comparative Study

	Bibliography

