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Abstract

The thesis Autonomous 3D Modeling of Unknown Objects for Active Scene Ex-
ploration presents an approach for efficient model generation of small-scale ob-
jects applying a robot-sensor system. Active scene exploration incorporates
object recognition methods for analyzing a scene of partially known objects
as well as exploration approaches for autonomous modeling of unknown parts.
Here, recognition, exploration, and planning methods are extended and com-
bined in a single scene exploration system, enabling advanced techniques such
as multi-view recognition from planned view positions and iterative recognition
by integration of new objects from a scene.

In household or industrial environments, novel and unknown objects appear
regularly and need to be modeled in order for a robot to be able to recognize
the object and manipulate it. Nowadays, 3D models of hand-sized objects are
usually obtained by manual scanning which represents a tedious and time con-
suming task for the human operator. For an autonomous system to take over
this task, the robot needs to autonomously obtain the model within the ob-
ject scene and thereby cope with challenges such as bad incidence angle, sensor
noise, reflections, collisions or occlusions.

In this thesis, sensor paths denoted as Next-Best-Scan are iteratively determined
by a boundary search and surface trend estimation of the acquired model. In
each iteration, 3D measurements are merged into a probabilistic voxel space,
which considers sensor uncertainties. It is used for scene exploration, planning
collision-free paths, avoiding occlusions, and verifying the poses of the recog-
nized objects against all previous information. In order to account for both
a fast acquisition rate and a high model quality, a Next-Best-Scan is selected
that maximizes a utility function integrating an exploration and a mesh-quality
component. The mesh-quality component allows for the algorithm to terminate
once the quality required by the application is reached.

The Next-Best-Scan algorithm is verified in simulation by comparison with
state-of-the-art approaches concerning processing time and final model qual-
ity and in real scenes. The versatile applicability of the method is shown by

iii



iv

several experiments with different cultural heritage, household, and industrial
objects. Modeling of single objects is evaluated on an industrial and a mobile
robot. On the industrial robot, the robot moves around the object, whereas
on the mobile robot, the object is moved in front of an external range sensor
using the same method. For modeling of larger workspaces, the mobile platform
moves around the scene. The active scene exploration approach is demonstrated
using several scenes with different levels of complexity. Here, Next-Best-Scan
planning is performed for improving both recognition and modeling.
Concluding, the developed methods enable the robot to learn object models of
unknown objects, to directly apply these models to the individual application
and therefore to become more autonomous. Here, the autonomously acquired
object models are successively inserted into an object database and utilized by
an object recognition module.



Zusammenfassung

Die Arbeit Autonomous 3D Modeling of Unknown Objects for Active Scene
Exploration - Autonome 3D-Modellierung von unbekannten Objekten zur Ak-
tiven Szenenexploration behandelt einen Ansatz zur effizienten Modellgenerie-
rung von kleinen Objekten unter Anwendung eines Robotersensorsystems. Ak-
tive Szenenexploration erfordert Objekterkennungsmethoden zur Analyse einer
Szene mit teilweise bekannten Objekten, sowie Explorationsansätze für die au-
tonome Modellierung von unbekannten Objekten. Dabei werden Erkennungs-,
Explorations- und Planungsmethoden erweitert und in einem einzigen Szenen-
explorationssystem integriert, um fortgeschrittene Techniken, wie Multiview-
Erkennung aus Sicht von geplanten Positionen und iterative Erkennung durch
Integration neuer Objekte aus einer Szene, zu ermöglichen.

In Haushalts- oder Industrieumgebungen, treten regelmäßig neue und unbekann-
te Objekte auf, welche modelliert werden müssen, damit ein Roboter die Lage
des Objektes schätzen kann, um es dann manipulieren zu können. Heutzutage
werden 3D-Modelle von handgroßen Objekten in der Regel durch manuelle Ab-
tastung erstellt, was für den Anwender eine langwierige und zeitraubende Auf-
gabe darstellt. Damit ein autonomes System diese Aufgabe übernehmen kann,
muss ein Roboter das Modell innerhalb der Objektszene autonom generieren
können und dabei mit Herausforderungen, wie z.B. schlechtem Einfallswinkel,
Sensorrauschen, Reflexionen, Kollisionen oder Verdeckung, umgehen können.

In dieser Arbeit werden Sensorpfade, die als Next-Best-Scan bezeichnet werden,
mit Hilfe einer Grenzflächensuche und Trendschätzung der Oberfläche des er-
worbenen Modells iterativ ermittelt. In jeder Iteration werden 3D-Messungen
in einem probabilistischen Voxelraum, welcher Unsicherheiten durch Sensoren
berücksichtigt, zusammengeführt. Dieser Voxelraum findet Verwendung bei der
Szenenexploration, kollisionsfreien Bahnplanung, Verdeckungsvermeidung und
Lageüberprüfung von erkannten Objekten. Um sowohl eine schnelle Erfassungs-
rate als auch eine hohe Modellqualität zu erreichen, wird ein Next-Best-Scan
basierend auf einer neuartigen Nutzenfunktion ausgewählt. Die Nutzenfunktion
integriert sowohl eine Komponente für die Exploration als auch eine für die Mo-
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dellqualität der Oberfläche. Erreicht die Modellqualität die für die Anwendung
benötigte Qualität, wird der Algorithmus beendet.
Der Next-Best-Scan Algorithmus wird sowohl in der Simulation durch Ver-
gleich mit Verfahren auf dem Stand der Technik bezüglich Verarbeitungszeit
und Modellqualität als auch in realen Szenen verifiziert. Mehrere Experimente
mit verschiedenen Objekten aus den Bereichen kulturelles Erbe, Haushalt und
Industrie zeigen, dass die Methode vielseitig einsetzbar ist. Die Modellierung
einzelner Objekte wird auf einem Industrieroboter und einem mobilen Roboter
ausgewertet. Im Gegensatz zum Industrieroboter, welcher sich selbst um das
Objekt bewegt, wird das Objekt beim mobilen Roboter vor einem externen Tie-
fensensor manipuliert. Für die Modellierung von Arbeitsstationen bewegt sich
die mobile Plattform rund um die Szene. Der Ansatz zur aktiven Szenenexplo-
ration wird anhand mehrerer Szenen mit unterschiedlichen Komplexitätsstufen
demonstriert. Dabei wird die Next-Best-Scan Planung sowohl zur Verbesserung
der Erkennung als auch der Modellierung angewandt.
Die entwickelten Methoden ermöglichen es dem Roboter, Objektmodelle von
unbekannten Objekten zu erlernen, um diese Modelle bei den jeweiligen Ap-
plikationen direkt anzuwenden, und so einen höheren Grad an Autonomie zu
erreichen. In dieser Arbeit werden die autonom erfassten Objektmodelle fortlau-
fend in eine Objektdatenbank eingefügt und durch ein Objekterkennungsmodul
verwendet.
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1
Introduction

Today, robots require to be given a lot of common sense knowledge to be able
to move in and interact with a dynamically changing world. For instance, in
order to locate, recognize, and manipulate real world objects, robots usually
require complete object or environment models. To be able to perceive the
world around them, robots are equipped with different sensors. As the sensor
output is just raw data, it has to be processed by intelligent algorithms to be able
to derive information from it. If given an object model database, a robot can
make use of it for pose estimation of objects which it sees. However, if the robot
views an unknown object, it will not be able to handle this object as it cannot
successfully match it to any object in the database. As robots are envisioned to
autonomously fulfill given assignments, the robot needs to autonomously acquire
a model of the unknown object itself and add the model to the database. Since
the performance of object pose estimation highly depends on the quality of the
3D models (Beetz et al., 2010), the object model’s accuracy and completeness
are key factors to be considered during the autonomous modeling process.

This thesis presents an approach to autonomous modeling of unknown objects
using a robot-sensor system. The system enables active exploration of scenes
consisting of known and unknown objects. Thereby, 3D models of unknown
objects, for which no a priori information is available, are autonomously acquired
considering the model quality and instantly added to an object model database.

1
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1.1 Problem Statement

As in human environments novel objects appear on a regular basis, real world
scenes are usually partially known, which means that models are available for
some but not all of the objects in a scene. Regarding robotic tasks such as grasp
planning or manipulation, at least the objects that should be interacted with
usually need to be known a priori. For instance, if the robot is given the task to
clean up a workspace, e.g. removing all objects from a table and putting them
into a shelf, then geometric models of all objects in the scene are needed for
robust object pose estimation and stable grasp planning. Objects that may be
occluded or are not in the field of view (FOV) typically remain unrecognized
by an autonomous system. Nowadays, object recognition is usually kept sepa-
rated from environment exploration and object model generation. Here, object
recognition is defined as identifying a known object and estimating its pose,
environment exploration refers to knowledge acquisition of initially unknown
environments by active sensing, and model generation denotes the acquisition
of a 3D model of unknown objects. However, for tackling the analysis of par-
tially known scenes in an autonomous way, object recognition and exploration
need to cooperate as a single scene exploration system. Thereby, exploration
can provide useful views of the global model for multi-view recognition, and,
vice versa, recognition can refine the global model with object information. As
pointed out by Roy et al. (2004), objects can often not be definitely recognized
from one view but need to be seen from further views. Therefore, a robot re-
quires additional actions to increase possibilities of interaction with the current
and future scenes. For instance, the detection of unmatchable data clusters
in a scene during recognition has to trigger autonomous modeling of unknown
objects and a database update.

In recent years, different 3D acquisition systems that allow for fast and pre-
cise digitization of hand-sized objects have been developed. Here, a hand-sized
object refers to an object that a human would usually grasp with its complete
hand and not just with two few fingers. Nowadays, 3D models of unknown ob-
jects are generated either by hand-guided scanner systems (D’ Apuzzo, 2006),
manipulators, for which scans are manually planned (Levoy et al., 2000), or
automatic scanning systems. The acquired range information from a sensor
motion is usually referred to as a scan. The automatic scanning systems only
work for very small, mostly convex objects, as is the case for automated turnta-
bles (Fitzgibbon et al., 1998) or they require a very large, fixed and expensive
setup (Weinmann et al., 2011; Kasper et al., 2012). All scanning systems need
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Figure 1.1: Autonomous and manual 3D modeling of unknown objects: The depth images of a range
sensor are merged with pose measurements to acquire globally aligned 3D points. Nowadays, in order
to acquire complete 3D models of unknown objects, usually manual scanning is performed. Here, a
human plans views and moves the device with support of real-time visualization. In case of autonomous
scanning, a robotic system requires a tight coupling of 3D modeling methods with autonomous view
planning, collision-free path planning and model quality evaluation in order to completely scan the
unknown object.

a human worker either for moving the sensor, planning the scan trajectory or
placing the object in the presumed position. The resulting 3D models can be
applied in a variety of applications such as cultural heritage digitization, rapid
prototyping, inspection or reverse engineering. In robotics, 3D models are usu-
ally required for object recognition, tracking, grasping, or manipulation.
Although hand-guided scanning works without any automatism, it is still the
most common approach for modeling of unknown objects as it offers the highest
level of workspace flexibility. However, it represents a very tedious and time
consuming task. A human operator iteratively plans views based on a real-time
visualization of the reconstructed model (Bodenmüller, 2009) and moves the
system along the contours of the object accordingly. Hence, scanning time and
model quality strongly depend on the skill of the operator as Scott et al. (2003)
point out:

“Humans are relatively good at high-level view planning for cover-
age of simple objects but even experienced operators will encounter
considerable difficulty with topologically and geometrically complex
shapes.”

Therefore, an autonomous 3D modeling system that automatically plans tra-
jectories and terminates the process when desired model coverage and quality
are reached would be highly beneficial. Fig. 1.1 compares the iterative loop for
manual and autonomous scanning based on a 3D acquisition system consisting
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Figure 1.2: An autonomous modeling system, which consists of an eye-in-hand robot-sensor system
and is utilized in this thesis, acquires a 3D model of a camel bust.

of a range sensor and pose estimation. During manual scanning, the human
operator needs to plan the views and paths for the range sensor, and decide
when the model is complete based on visual feedback of the acquired 3D model.
In order to perform the same task as a human, autonomous modeling demands
a tight coupling of 3D modeling methods with autonomous view planning and
collision-free path planning. Fig. 1.2 gives an example for an autonomous model-
ing system which consists of an eye-in-hand robot-sensor system and is utilized
in this thesis. When the sensor is attached to the robot’s end effector, the
configuration is denoted eye-in-hand. In contrast to most sensor-based robotic
approaches, which view the world at a distance, autonomous modeling requires
interaction with the real physical world by moving into the unknown scene. It
involves a robot-in-the-loop for range measurement, raw data integration into
3D models, planning of a Next-Best-View (NBV) based on a partial 3D model
and moving the robot along the planned trajectory without collision. The term
Next-Best-View, originally introduced by Connolly (1985), describes a sensor
viewpoint which provides the best sensory input for a given task. In addition,
for efficiency an autonomous system would need to measure the 3D model qual-
ity in each iteration and decide to abort if the desired quality which depends on
the application is reached. For instance, object recognition still performs well if
the models are accurate but not nearly complete (Kriegel et al., 2013a). In con-
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Figure 1.3: Comparison of the performance of KinectFusion with our autonomous modeling system
on a pneumatic filter (left box) and a bunny (right box) object. In each box from left to right:
picture of object, mesh generated with KinectFusion and mesh created with the autonomous modeling
approach suggested in this thesis. For KinectFusion, the details in the objects are lost and also the
object proportions are incorrect.

trast, non-adaptive grasp planning requires models with high coverage (Sahbani
et al., 2012). Nevertheless, most applications that rely on 3D models perform
better if the models are accurate and complete. As can be seen in Fig. 1.3, our
autonomous modeling system generates object models with significantly higher
quality than when using e.g. KinectFusion (Izadi et al., 2011). Obviously, au-
tonomous view planning does not only make the model quality measurable but
also saves a lot of time as Levoy et al. (2000) point out during their digitization
procedure of several Michelangelo statues:

“Since we did not have an automated view planning system, we
planned scans by eye - a slow and error-prone process. We often
spent hours positioning the gantry in fruitless attempts to fill holes
in our model of the David. A view planner might have saved 25%
of the man-hours we spent in the museum.”

1.2 Contribution of the Thesis

This thesis presents an active scene exploration framework, which incorporates
view planning for multi-view object recognition, exploration, and modeling of
unknown objects. Thereby, it focuses on the autonomous object modeling part.
Here, a scene can consist of several objects, which are either known or unknown
to the robot. To accomplish efficient and accurate scene exploration, a novel
approach to autonomous object modeling is introduced that emerges from the
current State of the Art (see Chapter 2). The lack of current autonomous
object modeling systems can be seen by the many aspects that are not yet
addressed as shown in Section 2.5. Our framework incorporates all the aspects
listed in Tab. 2.2 on page 27 and additionally it addresses and evaluates the
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efficiency of the system in fast acquisition of high quality 3D surface models.
Our system utilizes state-of-the-art sensors and aims at acquiring 3D models
that are particularly accurate and complete.
For accurate autonomous modeling, a viewpoint simplification is introduced
that is not restricted to a sphere or cylinder but is directly planned based on
the partially known object surface. This allows for optimally adjusting the
sensor to object distance. Most general NBV algorithms try to minimize the
number of necessary views to fulfill the task. In the context of 3D modeling,
however, it is more important to generate a 3D surface model with a certain
quality. Therefore, we introduce a quality criterion which is based on a triangle
mesh and is used for NBV selection and as a termination criterion. During the
NBV planning, not only a mesh but also a probabilistic voxel space is required,
since exploration of the unknown area is also regarded.
The key contributions of this thesis are:

• A tight integration of the developed autonomous object modeling ap-
proach with object recognition methods enabling active scene exploration.
Thereby, unknown objects are autonomously modeled and an object data-
base is automatically extended by the novel object models without manual
interaction. The updated database is directly applied for object recogni-
tion, which is enhanced by combining knowledge from multiple views,
improving the pose estimates and avoiding object ambiguities and occlu-
sions.

• The integration of surface reconstruction and probabilistic space update,
local model registration, NBV planning, exploration, and collision-free
motion planning into a unified framework allows for the completely au-
tonomous generation of object models. Furthermore, the process of au-
tonomous object modeling is improved concerning speed, model complete-
ness and accuracy.

• A novel method for viewpoint candidate generation is developed that al-
lows for autonomous modeling of arbitrary objects. In contrast to current
state-of-the-art methods, which select NBV based on a cylinder or sphere
search space, it searches for viewpoints locally based on the actual object
shape of the current 3D model, considering both constant and irregular
surface trend development. The method, which is called Boundary Search,
is extended by hole detection once a rough model is generated and enables
scan path calculation, allowing for the use of line range sensors in an in-
telligent way. Moreover, the environment is also considered allowing for
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view occlusion and obstacle collision avoidance.

• A definition of surface features improves the quality of previously scanned
areas together with the exploration of unknown areas. This is achieved by
the selection of NBVs based on both, the surface model quality and highest
expected information gain, combining local and global information. Ad-
ditionally, the system autonomously terminates when the required quality
is reached. This allows for the generation of surface models with defined
quality, speeding up the process e.g. for cases where a complete, high-
quality object model is not needed.

The approaches are implemented on different robot-sensor systems and applied
to real world scenarios. Thereby, the methods are first evaluated on single
objects and, second, extended for active scene exploration (see Fig. 1.4). For the
single object modeling, multiple sensors are integrated to allow for geometry and
texture information gathering. Furthermore, objects are moved to a different
orientation in order to register the model and continue scanning the bottom part.

Figure 1.4: Active scene exploration for an example tabletop scene. Top left: scene with 7 household
objects. Top right: probabilistic voxel space from multiple measurements. The probabilities are color
coded from black (almost free), through gray (unknown) to white (occupied). Free space is transparent.
Bottom left: intermediate scene with recognized objects. Bottom right: NBV planning and modeling.
The two previously occluded objects (purple) are successfully detected from this view. The flat box
remains unknown and is autonomously modeled. The lines show scan path candidates generated from
its partial mesh (blue) and their rating (red: low, green: high).
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For scene exploration, known objects are recognized, the initially unknown scene
is explored, occlusions by other objects are considered, and collision-free motions
are planned. The object scene is segmented and the clusters are attempted to be
matched with object models from a database. As object recognition sometimes
results in incorrect matches, the pose is validated by its conformity to the global
knowledge of the explored voxel space. If no object model can successfully
be matched to a cluster, it is assumed that the object is unknown. Then,
the unknown objects are autonomously modeled within the object scene using
the probabilistic voxel space to plan NBVs and collision-free motions. After
the desired quality is reached, the autonomously generated object models are
added to the database and can be directly utilized during object recognition in
future iterations. The proof of concept is demonstrated by simulations and real
experiments on an industrial and a mobile robot.

1.3 Outline of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 summarizes the
current State of the Art regarding 3D acquisition systems, autonomous ob-
ject modeling, view planning for object modeling, mapping, and exploration.
Thereby, range sensors and pose estimation techniques are compared, the need
for quality-oriented NBV planning is elaborated, and probabilistic 3D represen-
tations are discussed. Furthermore, the main limitations of current autonomous
object modeling systems are identified and considered for the development of a
novel approach.

Chapter 3 gives a System and Module Overview of the proposed active
scene exploration system together with the essential modules that it requires.
The requirements concerning the range and pose sensors for the robot-sensor
system and the used sensor calibration techniques are discussed. The motion
planning of the robot based on the probabilistic model and the local registra-
tion of range images for minimizing pose error are depicted. The applied 3D
model representations, a triangle mesh and a probabilistic voxel space, are de-
fined and their real-time update is described. Moreover, the geometry-based
object recognition method and the object pose estimate validation based on the
probabilistic voxel space are presented.

Chapter 4 describes the implemented Next-Best-View Planning for Mod-
eling of unknown objects. Thereby, NBV candidates are planned based on
the partial triangle mesh and an NBV is selected based on potential informa-
tion gain of the voxel space and novel surface quality features. In a simulation
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environment, the performance of the novel NBV algorithm is compared with
state-of-the-art methods based on an NBV benchmark object.
Subsequently, the suggested autonomous modeling approach is evaluated in Ex-
periments and Applications on an industrial and a mobile robot in Chap-
ter 5. Thereby, 3D models of several hand-sized objects, but also of larger
workspaces, are obtained. The model quality is assessed by comparison with
ground truth models, by their application to object pose estimation, and to
motion planning. The NBV planning approach is applied to different configu-
rations: the robot moves around the object and the object is grasped by the
robot and moved in front of the range sensor. Furthermore, the performance of
the complete active scene exploration system incorporating object recognition
and modeling is demonstrated with household and industrial object scenes.
Chapter 6 summarizes and gives a Conclusion of the thesis. Further, an out-
look on future work is provided.
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2
State of the Art

This chapter covers the current State of the Art of autonomous 3D object mod-
eling, taking related fields of research into account. Thereby, an overview of
3D data acquisition systems consisting of range sensors and pose estimation
techniques is given in the context of manual and autonomous object model-
ing. As discussed in the previous chapter, an autonomous modeling system
requires NBV planning. NBV planning is utilized in a variety of applications
such as exploration, object modeling, inspection or recognition (Chen et al.,
2008, 2011). However, here NBV planning is mainly discussed in the context of
object modeling but also depicted for exploration. Thereby, real robotic systems
which integrate NBV algorithms for autonomous object modeling are compared.
The difference between surface-based, volumetric, and global NBV methods for
modeling is examined and the need for a quality-oriented NBV approach is elab-
orated. Furthermore, NBV algorithms for mapping and exploration of unknown
environments are reviewed in the context of industrial and mobile robotics. For
this purpose, various 3D representations, which are based on a probabilistic ap-
proach, have been developed. These are also discussed as such a representation
(see Section 3.3.2) is used for our autonomous object modeling approach.

This chapter closes with a discussion on the main limitations of current au-
tonomous object modeling methods. This thesis addresses the problems of cur-
rent research, with the goal to create accurate and complete 3D models.

11
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2.1 3D Data Acquisition

3D data acquisition systems are utilized to analyze shape and possibly color from
real world objects or environments and collect the data. Thereby, range sensing
concepts measure the distance information and pose estimation approaches ac-
quire the pose of the sensor with respect to a world coordinate system. In the
following, different range sensing and pose estimation techniques are compared.

2.1.1 Range Sensing

Various approaches for contactless measurement of distances exist. In this work,
only optical range sensors are considered, as non-optical methods, such as sonar
and radar, although they provide depth information in an inexpensive way, lack
of accuracy in the measurement direction.
Furthermore, optical range sensors differ in their physical measurement tech-
nique. The most common systems are based on structured light, Time-of-Flight
(ToF), active or passive triangulation (Blais, 2004).
For structured light systems, a predefined light pattern is projected onto a scene
and simultaneously observed by a camera (Zhang et al., 2002; Scharstein and
Szeliski, 2003; Geng, 2011). The affordable and thus widely-used active RGB-
D (Red, Green, Blue plus Depth) cameras, such as the Microsoft Kinect 1 or
Asus Xtion 2, use an infrared sensor to infer depth from the deformation of a
projected speckle pattern and an RGB (Red, Green, Blue) camera to match color
information to the range image. For details on the working principle of RGB-
D cameras see (Han et al., 2013) and for a review on its various applications
see (Berger et al., 2013).
ToF sensors measure the absolute time (phase delay) between emitting a light
pulse and receiving its reflection. They require precise calibration and noise
reduction for accurate depth measurements (Fuchs, 2012), since the measure-
ment of returned light pulse is inexact due to light scattering and multipath
mitigation. For a detailed review of ToF sensors see (Foix et al., 2011).
Triangulation-based systems, which can be divided into active and passive, mea-
sure the distance by determining the size of a triangle, which is formed by two
non-parallel rays viewing the same point (Hartley and Zisserman, 2003). For
passive triangulation systems, the triangle consists of the two rays of a camera
pair, a so-called stereo camera. The method to match the reflected light of
the global illumination in both images is referred to as stereo matching. The

1Microsoft Kinect http://www.microsoft.com, 2014
2Asus Xtion Pro Live http://www.asus.com, 2014

http://www.microsoft.com
http://www.asus.com
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Table 2.1: Comparison of different range sensors (stereo camera, RGB-D camera, ToF sensor and
laser stripe profiler) in the context of 3D modeling: accuracy refers to the precision of the depth
measurement and robustness refers to how well the sensor performs under changing conditions such
as illumination and on untextured surfaces. The sensors are rated by best (++), good (+), bad (-)
and worst (- -) suitability for each category.

Stereo RGB-D ToF Laser
Resolution ++ ++ - - -
Data Rate ++ + + - -
High Illumination ++ - - + +
Low Illumination - - + + ++
Untextured Surfaces - - ++ ++ ++
Accuracy - - - - ++

distance between the two cameras is referred to as base distance.

For active triangulation systems which contain a light source, the ray of the
light source to the intersected surface point and the reflected ray captured by
an optical camera form the triangle. Structured-light sensors are also based on
the active triangulation principle and laser triangulation systems can also be
categorized as structured-light systems since a laser stripe or point also repre-
sent patterns. Nevertheless, these are treated separately here. In the area of
laser triangulation, we only consider laser stripe profilers such as presented by
Winkelbach et al. (2006) and Suppa et al. (2007). Here, laser light illuminates a
stripe when colliding with the object surface recording the reflection with a cam-
era. Laser stripers obtain high quality depth measurements, but only acquire a
1D range image. More recently, laser range scanners have been developed which
allow for a variable range due to an autofocus camera (Kielhöfer et al., 2011).
However, the application to 3D modeling still needs to be evaluated.

In Tab. 2.1 the different range sensor types (stereo camera, RGB-D camera,
ToF sensor and laser stripe profiler) are compared in the context of 3D acquisi-
tion concerning range image resolution, frame rate, measurement accuracy and
system robustness. The resolution is defined by the size of the range image
which represents a matrix or stripe of depth values. The data rate relates to
the amount of depth values per time segment. High illumination refers to very
bright scenarios such as outside or a room with sunlight coming in whereas low
illumination refers to dark areas. Untextured surfaces describe object surfaces
with no texture as in several industrial objects. Accuracy refers to the absolute
measurement error of the sensor. The sensors are rated by best (++), good
(+), bad (-) and worst (- -) suitability for each category. However, as several
examples for each range sensor type exist, this categorization only describes an
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estimation but might not be correct for each model.

A stereo system is not very robust against low illumination, as no active illu-
mination is given. Furthermore, stereo cannot measure untextured surfaces as
the measurement principle depends on the corresponding feature. However, this
disadvantage can be compensated by using a pattern projector in addition to
the passive stereo system. Stereo cameras are very flexible as the base distance
and the camera type and therefore working range and resolution can be ad-
justed depending on the application. Nevertheless, higher resolution does not
allow for real-time range image acquisition as is the case for the other sensors.
In order to acquire near real-time stereo reconstruction, the algorithms need to
be ported to GPU (Graphics Processing Unit) or FPGA (Field Programmable
Gate Array) boards. In (Gehrig et al., 2009) an FPGA implementation of the
Semi-Global Matching (SGM) algorithm (Hirschmüller, 2008) is presented. The
suggested system allows for real-time range image acquisition with VGA (Video
Graphics Array) resolution. RGB-D cameras also generate range images with
VGA resolution, ToF cameras only below QVGA (Quarter Video Graphics Ar-
ray) and laser stripers simply deliver a 1D range image. A major drawback of
the laser striper is that the acquisition of a complete view of an object requires
time, since the laser stripe needs to be moved over the object.

RGB-D sensors catalyzed a multitude of efforts for 3D modeling and recognition
due to the low-cost. Despite its indisputable uses, the work of Meister et al.
(2012) shows that for 3D reconstruction of objects, curved and concave details
in the scale of around 10 mm are lost and simply smoothed out. This indicates
that only with laser sensors accurate depth measurements can be generated.
In (Smisek et al., 2011), the accuracy of stereo, ToF and Kinect systems is
compared. Stereo and Kinect perform similar and the ToF sensor generates
the most inaccurate range images. However, the ToF does not seem to be
calibrated correctly and noise reduction is not considered. Stoyanov et al. (2011)
also compare Kinect and two ToF sensors with a laser sensor, which is used as
ground truth. In their evaluation, the Kinect is slightly better than the two
ToF but the difference in accuracy is minor.

In some robotic applications such as for flying robots, the weight and power
consumption of the sensor is an issue. Stereo cameras can be very light and
RGB-D cameras are also light. ToF and laser sensors are both rather heavy.
Although RGB-D sensors are light, their shape is not very reasonable for at-
taching it to the hand of a robot. The working range is also of interest as it
presents the depth area in which measurements can be obtained. The working
range of the Kinect is more limited than for ToF cameras. For stereo systems
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it is adjustable as mentioned before. The high accuracy of laser striper systems
comes at the cost of a very narrow working range.
Other robotic applications might also be considered to work outdoors or both
outdoor/indoor for example in case of a mobile robot. In general, stereo systems
work better in outdoor scenarios (Schmid et al., 2012) as they depend on the
global illumination. Outdoors, ToF sensors perform well (Langmann et al.,
2012), whereas RGB-D cameras have difficulties with direct sunlight and heated
surfaces (Mura et al., 2012).
In this thesis, we will refer to ToF, RGB-D and stereo sensors as aerial 3D
sensors. In contrast to laser stripers, these obtain a matrix of distances which
represents a larger area of the environment and not simply a line.

2.1.2 Pose Estimation

When range images are obtained from different viewpoints, as is needed for com-
plete object modeling, the sensor pose is required for alignment of the acquired
data. Pose estimation can be performed with optical tracking systems, passive
measuring arms, robotic manipulators or by the range sensor itself.
For optical tracking systems, passive or active markers are attached to the ob-
ject, which is then tracked with optical cameras. They allow for a large working
area depending on the size of the room at the cost of accuracy. In contrast,
passive measuring arms restrict the working area very much but measure highly
accurate poses. Nowadays, a range sensor in combination with a passive mea-
suring arm is usually used for accurate 3D modeling. In this work, a Faro
Platinum measurement arm 3 in combination with a Nikon ModelMaker D 4 as
in Fig. 2.1(a) is used to generate ground truth 3D models.
Robotic manipulators can be used for both handheld or autonomous sensor
placement. Various platforms such as industrial, light-weight or humanoid
robots with varying accuracy are available to which range sensors can be at-
tached. However, for all these robots, the positioning accuracy is not as accurate
as for passive measuring arms.
Alternatively, algorithms that estimate the pose based on the image or range
data of the range sensor itself also exist. The computation of the camera mo-
tion from a sequence of images is referred to as ego-motion (Burger and Bhanu,
1990). Strobl et al. (2009) present an ego-motion system for simultaneous object
modeling with a laser striper and ego-motion estimation with a stereo camera
by feature tracking. The different sensors are integrated in the DLR 3D Mod-

3Faro Platinum arm http://www.faro.com, 2014
4Nikon MMDx http://www.nikonmetrology.com, 2014

http://www.faro.com
http://www.nikonmetrology.com


16 CHAPTER 2. STATE OF THE ART

(a) measurement arm (b) ego-motion

Figure 2.1: Handheld 3D scanning system consisting of a Faro Platinum measurement arm and a
Nikon ModelMaker D laser scanner (left) and using ego-motion for pose estimation with the DLR
3D-Modeler (Suppa et al., 2007) (right).

eler (Suppa et al., 2007). Figure Fig. 2.1(b) shows a human moving the DLR
3D Modeler around the object in order to acquire a 3D model without external
pose sensor. In the work of Rusinkiewicz et al. (2002) 3D models of objects
which are moved in front of a structured-light system are generated by Iterative
Closest Point (ICP) alignment of the range images. A more recent application
for high quality geometry reconstruction, the KinectFusion (Izadi et al., 2011),
is based on the same principle but the compact sensor, the Microsoft Kinect,
is not restricted to a fixed setup. Nevertheless, ego-motion also lacks pose esti-
mation accuracy and fails if the pose is lost due to an abrupt movement of the
sensor or for feature tracking if not enough features are detected.
Autonomous modeling requires a robot as the object and/or sensor need to
be actively moved. All the other pose estimation techniques require a human
operator for moving the range sensor and therefore only allow for manual 3D
modeling. As the pose of the robot is inaccurate, ego-motion estimation could
be used to improve the pose measurements.

2.2 Autonomous Object Modeling

So far, little research in the area of real autonomous object modeling systems has
been exercised. In the work of Kasper et al. (2012), a semi-automatic approach
for 3D model generation is presented. A single object is placed on a turntable
and then two sensors are consecutively moved along fixed rigs for obtaining
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(a) Fixed semi-automatic approach (b) Automatic robotic approach

Figure 2.2: Systems which attempt to automate 3D modeling reach from large, fixed and expensive
systems consisting of several sensors and rigs (left) to automatic methods incorporating an industrial
robot, a turntable and a fringe projection system (right). For both, a human operator has to place
or even fixate the object in the desired place. Image credits: a) (Kasper et al., 2012) b) (Khalfaoui
et al., 2013)

geometry and texture information of the object. Here, object modeling requires
a very large, fixed and expensive setup (see Fig. 2.2(a)) and the acquisition
time of 20 minutes and 30 to 60 minutes for post-processing is quite high.
Furthermore, the 3D model are noisy and still contains holes. Therefore, the
model generation requires manual interaction by a human operator. A similar
approach for creation of object databases has been presented by Singh et al.
(2014). Here, the object modeling is performed automatically except for the
placing of the object. However, the model quality is not as good as for the system
of Kasper et al. (2012), since RGB-D sensors and high resolution cameras are
utilized. Both systems do not allow for scanning the bottom part of an object
and also view planning is not considered as the objects are of simple shape.

Most NBV approaches for object modeling (see Section 2.3) suggest a method
to solve the view planning problem theoretically but neglect sensor and robotic
aspects and therefore do not take into account system calibration, sensor noise,
robot positioning errors or workspace limitations. In the remainder of this sec-
tion we want to inspect research, which applies NBV algorithms to autonomous
object modeling systems consisting of real sensors and robots.

In the work of Foissotte et al. (2009), 3D models of single objects are obtained
with the stereo camera and a humanoid robot. The objects are placed on a
table and the robot moves around the table for a complete model. However,
the model quality is not evaluated as the focus lies on recognition and also
the procedure is only tested in simulation. The pose reachability considering
stability and collisions are evaluated on the real robot. In (Callieri et al., 2004)
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and (Larsson and Kjellander, 2008), autonomous 3D modeling in three steps
is presented using an industrial robot in combination with a turntable. First,
a rough scan is performed in order to obtain only the bounding box of the
object. Second, NBVs are determined based on a cylinder model and the object
is scanned from several directions resulting in an approximate model containing
holes. The third step performs a rescan of hole areas where no information could
be obtained during the second step due to occlusions or a significantly differing
line of sight and surface normal. However, Larsson et al. have not implemented
the third step so far. Both systems are limited to a cylinder viewpoint space.
Callieri et al. (2004) focus on 3D modeling but do not consider path planning
aspects at all. In (Larsson and Kjellander, 2008), the user needs to manually
input object size and stand-off distance for each object individually, which does
not render the system autonomous.

Karaszewski et al. (2012) present a measurement system consisting of a turntable
and a vertically moveable pedestal for modeling small and large cultural heritage
objects. The human needs to initialize the size of the object for which a voxel
space is initialized with the state ’unknown’. Based on the depth measurements,
the voxels are simply updated with ’free’ and ’used’ not considering sensor noise.
Karaszewski et al. suggest that a system for 3D modeling should not depend
on a robot type. In a first step areas in the boundary area and in a second
step areas with low point density, are selected as viewpoint candidates. All
viewpoints are simply processed without reasonable NBV selection and also no
abort criterion is introduced. 3D modeling of a few cultural heritage objects
is shown but the quality of them is not evaluated. The system does not seem
to be optimized concerning time. For a small object, the digitization time was
over 19 hours.

Loriot et al. (2008) present a system with a similar setup using a fixed scanner
but moving the object in order to scan it. In a first step, the method deter-
mines NBVs by the Mass Vector Chain approach (Yuan, 1995), which is very
suboptimal considering the trajectory length as the NBV is in opposite direc-
tion of the main orientation of currently acquired data. In a second step, holes
are determined and rescans are planned for these. The system is restricted to
very small objects and aims at the development of a 3D scanner automated
turntable. Furthermore, the authors do not mention any processing times and
do not ensure a certain model quality.

In the work of (Khalfaoui et al., 2013), an automatic 3D digitization system
consisting of an industrial robot, a turntable and fringe projection system is
developed (see Fig. 2.2(b)). The fringe projection system is very large and ex-
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pensive. Therefore, this system is only applicable to standalone solutions and
not for robots which should perform different tasks such as modeling, recog-
nition and grasping. For view planning, the visibility of each face is checked
in the acquired surface model and well visible and barely visible surfaces (high
incidence angle) are defined. Each normal of a barely visible face represents a
viewpoint candidate from which an NBV is selected. For the selection mean
shift clustering is performed, considering a minimal distance criterion to avoid
viewpoints being too close to each other. The acquisition time for four objects
with different complexity, which are automatically obtained, is between 5 and
25min. However, several holes in the models remain, which can only be closed
by a post-processing step. Also, the bottom parts of the models cannot be
obtained. The automatic approach is compared with manual scanning and is
faster. However, the manually acquired models are complete in contrast to the
automatically acquired ones. Furthermore, the comparison should be with a
hand-guided system as manually moving an industrial robot is always slower.
The robot speed is significantly reduced in manual mode. Also, for a human it
is almost impossible to move the robot in configuration space manually in an
optimal way.

Torabi and Gupta (2012a) also use a 6DOF (six-degrees-of-freedom) robot with
mounted 2D range sensor. A set of points on the occlusion surface which the
authors call target points are scanned. The system switches between modeling
and exploration scans, in order to be able to move into initially unknown areas.
However, this is similar to other methods and they do not consider improvement
of the known surface. Furthermore, the viewpoint search space is still discretized
by four spheres with different directions. The average post-processing time per
scan iteration was 4min, resulting in a total model acquisition time beyond
1 hour, which is also very high. Although Torabi et al. introduce a model
completion criterion, both workspace scenarios are not sufficiently completed
and even for a simple mug still approx. Six percent of the target points could
not be eliminated. In (Torabi and Gupta, 2012b), this method is ported to a
mobile robot.

In the work of Krainin et al. (2011) the setup is inverted. Objects are modeled by
grasping them, moving them in front of an RGB-D camera, tracking them, and
planning an NBV regrasp for covering the previously occluded parts. However,
only for the regrasp an NBV is planned but the robot trajectory is predefined
obtaining all 3D measurements. The methods seems to work well for the test
objects, which are of simple shape though and highly textured which makes
tracking easier. The color matching in ICP would fail for untextured objects
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such as occur in industrial environments. The models look very noisy, which is
due to the fact that the quality of acquired 3D geometry models is very low for
RGB-D cameras and could be improved with laser stripers.

In the work of Aleotti et al. (2014a), an industrial robot with gripper and laser
scanner is presented for modeling multiple objects in a scene by manipulation.
The work does not contain view planning, as the laser scan is always a precom-
puted path. The objects are modeled by choosing to rotate the object by ±90 or
180 degree around the z-axis. The model quality is evaluated by comparing the
dimensions of the reconstructed model with the measured object dimensions.
However, no comparison with actual ground truth is performed. In (Aleotti
et al., 2014b), the same authors replace the gripper with a 3D camera and ap-
ply the system to similar scenarios with multiple objects. Here, the objects
are modeled by iteratively moving the 3D camera to planned NBVs based on
a standard approach. The NBVs are selected from a sphere search space for
each cluster which maximize the information gain of unexplored regions in the
volumetric model with an overlap with previous range data. Further, a global
registration is performed for matching the different range images which proved
to be better than pairwise ICP. Both these papers, are the only ones which
considers object scenes with multiple objects. However, the distances between
the objects are very large and also the objects are hardly occluded by other
objects at all. Box- and cylindrical-shape objects are used which are symmetri-
cal and thus no complete observation of these is needed if this assumption was
considered.

2.3 View Planning for Object Modeling

While the task where to position the sensor next in order to provide the best
sensory inputs, is intuitive for a trained human operator, it is very complex for
a robot. This problem is referred to as the view planning problem and has been
addressed by several researchers since the 1980s. However, in most cases, it is
not desirable to find the absolute best viewpoint as in 6DOF space an infinite
number of viewpoints is possible, which cost time and memory. Therefore,
usually a tradeoff between efficiency and performance is chosen by reducing the
search space.

Scott et al. (2003) present a good overview of model-based and non-model-
based NBV algorithms for object modeling and inspection. For model-based
approaches, which are used for inspection, the views can be planned offline
allowing for a quick online scanning procedure. On the contrary, for non-model-



2.3. VIEW PLANNING FOR OBJECT MODELING 21

based algorithms, an NBV needs to be selected in runtime since no a priori
information about the target object is given. Here, in a greedy manner, NBVs
are iteratively selected until a complete object model is generated. This problem
is more complex than when a preexisting model is given (Scott et al., 2003). In
the following, only non-model-based NBV algorithms are analyzed as the task
of this thesis is the autonomous modeling of unknown objects.

In (Scott et al., 2003) existing non-model based NBV methods are summa-
rized and classified as volumetric, surface-based and global. The advantage of
a volumetric model is that spatial information is available, which can be used
for occlusion avoidance, ray casting etc. Contrary, a surface model usually de-
scribes the object shape in more detail as the volumetric model uses a lower
resolution due to computation complexity. In the following, these methods are
compared, the difficulties of current NBV algorithms are described and the need
for efficient quality criteria during NBV planning is discussed.

Surface-Based The occlusion edge principle is introduced in the work of
Maver and Bajcsy (1993), Their NBV algorithm focuses on finding two different
types of occlusions along the boundaries of objects by “shadow zone pixels”. In
the work of García et al. (1998), a mesh is used to identify those vertices which
lie at the boundary of the regions contained in the triangular mesh and refers to
them as exterior vertices. A view sphere is applied onto which orientations are
mapped using spherical discretization maps. In (Milroy et al., 1996), an orthog-
onal cross sections model is built based on the surface model and laser scans are
planned perpendicular to cross sections at the boundary of the scanned surface.
A similar approach, the trend surface, is suggested by Chen and Li (2005) in
order to predict the unknown portion of an object, which is based on surface
information and not on occlusions. The global shape of the previously scanned
surface is estimated in order to determine the NBV for the expected surface.
Zhou et al. (2009) also predict the surface, to the left and the right side of the
visual surface and select the NBV with the larger visible surface. However, the
model is restricted to a cylinder and the method does not work on objects which
contain larger concave areas or occlusions.

Volumetric Most volumetric methods incorporate a voxel space, which is
initialized with the state “unknown”. Then, viewpoints are randomly sampled
over a given search space and an NBV is selected according to the visibility
criterion. The visibility criterion counts the amount of unknown voxels, which
are visible from a viewpoint and chooses the one with the highest amount as
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(a) View sphere (b) View cylinder

Figure 2.3: In many NBV algorithms a cylinder or sphere is used as search space from which an
NBV is selected. Image credits: a) (Wong et al., 1998) b) (Pito, 1999) ©1999 IEEE

NBV. The algorithm by Wong et al. (1999) method is based on this principle.
The authors randomly sample viewpoints over a sphere (see Fig. 2.3(a)), which
circumscribes the unknown object. Wong et al. additionally implemented a
surface normal and adaptive variant, which speeds up the process but does not
improve the model quality. The work of Blaer and Allen (2007) is based on
the same principle with the difference, that a 2D map instead of a sphere is
used for site modeling of a fort and church with a mobile robot. In (Banta
et al., 2000), three NBV algorithms are integrated into one large system giving
voxels the status occupied or unoccupied. This approach incrementally iterates
over a sphere and verifies the status of the voxels from the candidate viewpoint
direction.

Global The global methods determine an NBV from global rather than lo-
cal geometric shape information. However, these could also be classified as
surface-based as they also use surface information. In (Yuan, 1995), a Mass
Vector Chain approach is proposed for planning the NBV. A Gaussian mass
sum over all surface normals is calculated, which results in an NBV pointing
toward areas where unprocessed surface patches are assumed. However, the
method cannot handle holes due to self-occlusions. In the work of Pito (1999),
the occlusion-based concept of “positional space” is introduced as a basis for
visibility representation of the object surface and the sensor ability. A cylin-
der (see Fig. 2.3(b)) circumscribes the object, which is partitioned into three
types of information, recovered from range data: the void volume, the void sur-
face and the seen surface. Thereby, overlap constraints are considered but the
computational complexity is not addressed. Trummer et al. (2010) determine
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a covariance matrix for every measured 3D point. An NBV is chosen for the
point with the largest eigenvalue and calculated orthogonal to the corresponding
eigenvector. This represents the largest directional uncertainty over a sphere.
However, the authors do not consider self-occlusions or model completeness.

Difficulties For all NBV algorithms, a simplification of the 6DOF space is
required in order to perform NBV planning in reasonable time. Most non-
model based NBV algorithms for object modeling restrict the search space of
the viewpoints to a cylinder or sphere model. Thereby the candidate views
always point to the center of the cylinder or sphere reducing the problem from
six to two degrees of freedom. This makes it impossible to view all the surfaces
of objects with complex geometry. Therefore, a cylinder or sphere search space
is only optimal if the object itself is of cylindrical or spherical shape. There is a
need for a search space simplification which is not predefined but adapts to the
actual object shape.

Quality Criteria It is very difficult to give a measure for the quality of a
reconstructed object if no ground truth is given. That is probably the rea-
son why very little research (Massios and Fisher, 1998; Albalate et al., 2002;
Vasquez-Gomez et al., 2009) also considers model quality while planning the
NBV for an unknown object. These approaches are all based on a volumetric
model. Massios and Fisher (1998) were the first that used a quality criterion
in addition to the visibility criterion in a utility function, aiming at improving
the quality of the surface. The angle of incidence (the angle between surface
normal and viewing direction) is determined for each voxel and used as surface
quality criterion assuming to improve voxels which were seen at a bad angle.
However, the viewpoints generated over a tessellated sphere are constrained.
Only views on a circular arc with 10◦ steps were utilized in the experiments.
The authors do not prove that by using the quality criterion a better 3D surface
model quality is reached than without. In (Vasquez-Gomez et al., 2009), the
same quality criterion is used in the utility function and extended by traveling
distance and overlap with previous range images. Here, 80 candidate views are
sampled over a sphere starting at a low ray tracing solution and then evaluating
the best views with a higher resolution. This is done to speed up the process
and is described in detail in (Vasquez-Gomez et al., 2013). In (Vasquez-Gomez
et al., 2014a), the same authors apply their algorithm to a mobile robot and
plan views directly in configuration space. However, the experiments on the
real robot are only briefly described and no actual surface model of the object
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is generated.

The work of Albalate et al. (2002) also uses viewing angle and overlap but not
traveling distance as quality criterion. It seems intuitive that a low angle of
incidence leads to more accurate depth information. However, these authors
do not prove that this really leads to a better reconstructed model quality.
According to (Mehdi-Souzani et al., 2006), when using real laser scanners, the
quality of the reconstructed surface does not differ significantly if the angle
of incidence is below a threshold around 60◦ but then increases enormously.
In (Scheibe et al., 2006; Bodenmüller, 2009) similar observations have been made
with two laser scanners with completely different working ranges. However, if
the angle of incidence is higher than a cut-off angle, the quality of the 3D model
decreases significantly. One reason for this is that range data with a flat line-
of-sight onto the surface in combination with noisy measurements cause wrong
decisions on the sign of the estimated surface normal. Johnson et al. (1997)
also investigate the measurement error for different angles of incidence and find
out that the error is constant up to a certain angle. Therefore, vertices with a
certain cut-off angle are removed in the mesh. Therefore, the angle of incidence
should be used as quality criterion but only as a binary. Nevertheless, as you
can also see in (Suppa et al., 2007), the surface to sensor distance also plays a
very important role for laser scanners and should also be considered as quality
criterion. The evaluation of Scheibe et al. (2006) shows that the 3D point quality
depends a lot more on distance than on angle of incidence. In (Prieto et al.,
2003) also distance and incidence angle both are considered as important factor
for laser scan quality. However, if the search space is restricted to a sphere
like in the work mentioned early, then distance cannot be considered since it
is already predefined by the sphere and is only optimal if the object is evenly
sized. Therefore, a viewpoint space is required where the distance is not fixed.

2.4 Mapping and Exploration

In the area of mobile robotics, optimal robot positions are required for effi-
cient exploration of unknown environments. In order to apply information gain
driven exploration, metric grid maps are used. Several mapping methods that
integrate range data into a voxelmap have been presented (Thrun et al., 2005).
In contrast to a stationary robot, a mobile robot needs to build a map of its
environment and localize itself within the map by active perception before a
next-best robot position can be planned. This problem is known as simul-
taneous localization and mapping (SLAM) and has been addressed by many
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researchers (González-Baños and Latombe, 2002; Durrant-Whyte and Bailey,
2006; Nüchter and Hertzberg, 2008). The two key solutions to solve the SLAM
problem make use of the extended Kalman filter (Dissanayake et al., 2001) and
the Rao-Blackwellized particle filters (Montemerlo et al., 2002).

However, SLAM does not consider the problem of where the robot should go
next. This problem is similar to the NBV problem (see previous section), but
aims at exploration of unknown environments and not modeling of unknown
objects. In (González-Baños and Latombe, 2002), safe-regions for a mobile
robot are defined within the current map. A next robot position is iteratively
selected within the safe region, which maximizes the information gain consid-
ering an overlap with the global map. The frontier-based approach presented
by Yamauchi (1997), is a well-known concept which explores the environment
by planning robot positions on the frontier between free and unknown space.
This is similar to the occlusion edge principle (Maver and Bajcsy, 1993) for
object modeling. The frontier-based approach has been extended by several
researchers (González-Baños and Latombe, 2002; Freda and Oriolo, 2008) and
used in a variety of applications such as in (Blodow et al., 2011) for planning
positions of a mobile robot in order to explore a complete room. In the work
of Oriolo et al. (2004), the Sensor-based Random Tree (SRT) method, a sensor-
based version of the rapidly-exploring random tree (RRT) method (Kuffner and
LaValle, 2000) used for path planning, is introduced. SRT represents a roadmap
of explored areas with local safe regions associated to each node, providing an
estimate of the surrounding free space for each configuration. However, the SRT
method only works for disc shaped robots. The next robot positions are itera-
tively chosen by sampling random directions from the current configuration and
selecting a new configuration which is at least a certain distance away and is
still within the safe region. Here, only a 2D map is obtained and the problem of
localization is not considered. In (Low and Lastra, 2006), 3D models of larger
environments are obtained using a mobile platform with a 360 degree scanner.
The authors introduce a hierarchical NBV algorithm by grouping neighboring
views into view volumes and neighboring surface points into surfaces patches.
Then they evaluate the view metric for the groups and perform a subdivision (if
required) which finally leads into an NBV. Although here a 3D map of the en-
vironment is obtained, it is assumed that the robot always moves on one level.
Therefore, the viewpoint space is only a 3DOF problem in contrast to NBV
planning for object modeling. Therefore, these approaches do not seem to work
in feasible time if a 6DOF problem is given.

With a 2D map, the robot is restricted to moving around but cannot perceive
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(a) Table scene (b) Outdoor map

Figure 2.4: Probabilistic 3D representations are used in a variety of applications such as exploration
of table scenes with industrial robots (left) or mapping of larger outdoor environments with mobile
robots (right). Image credits: a) (Suppa, 2008) b) (Hornung et al., 2013)

or manipulate objects on a table. Therefore, for complex robotic tasks, local-
ization within a 3D map of the environment is required, which is referred to
by 6D SLAM (Nüchter, 2009). Thus, efficient 3D representations and meth-
ods to update the model by sensing have been developed in the field of SLAM
and exploration. An efficient approach to 3D mapping, the OctoMap, has been
proposed by Wurm et al. (2010) and advanced by Hornung et al. (2013), who
also give a more detailed overview of the literature. The map is a volumetric
model based on octrees and uses probabilistic occupancy estimation. For details
on octree data structures see (Samet, 1990). A very similar mapping approach
has been proposed earlier in the context of work cell exploration with an in-
dustrial robot (Suppa, 2008). In contrast to OctoMap, distant-dependent noise
is considered during ray tracing. In the work of Suppa, different probabilistic
update strategies for beam-based mapping relying on depth measurements are
compared. The necessity to consider sensor uncertainty is demonstrated and a
probabilistic approach which interprets the sensor data is utilized. Well-known
2D-mapping techniques as in (Thrun et al., 2005) are introduced to 3D. Suppa
gives a detailed survey of update-strategies and their application in the con-
text of autonomous robot work cell exploration. Furthermore, a preliminary
approach how to integrate NBV planning for exploration and 3D modeling is
shown. Suppa proposes to use a Bayesian update rule for voxels. The work of
Potthast and Sukhatme (2011) shows that a Bayesian space update proved to
be faster than using a simple approach for exploration of cluttered scenes. The
authors utilized a humanoid robot and an eye-in-hand camera in their evalua-
tion.
Probabilistic 3D volumetric models are applied in various fields such as local-
ization, mapping, 3D modeling and exploration. For instance, the models are
used for exploration of a table scenes with an industrial robots (see Fig. 2.4(a))
or mapping of larger outdoor environments with mobile robots (see Fig. 2.4(b)).
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2.5 Summary and Discussion

Here, the most important systems for autonomous object modeling of unknown
objects presented in Section 2.2 are summarized and compared in Tab. 2.2. The

Table 2.2: Comparison of autonomous object modeling systems
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Callieri et al. x x
Larsson and Kjellander x
Karaszewski et al. x x x
Loriot et al. x x x
Khalfaoui et al. x x
Torabi and Gupta x x
Krainin et al. x x x
Aleotti et al. x x

aspects refer to the kind of model utilized, the object characteristics, and active
sensing techniques applied. As described in Section 2.3, NBV algorithms are
categorized as surface-based, volumetric and global. Here, we only distinguish
between the kind of model that is used. Thus, global NBV methods are cat-
egorized as systems based on a surface model. The advantage of a volumetric
model is that spatial information is available which allows for direct access of
certain areas and instant ray tracing. However, a surface model, which is the
desired output for most applications, incorporates information on the quality
and accuracy of the surface shape. Thus, it would be beneficial to use both
models when planning an NBV which is not the case for the state-of-the-art
systems. Other model representations such as topological models also exist but
do not aid the NBV planning.
Only three systems consider objects from different application domains. None of
the approaches except for (Krainin et al., 2011), obtains texture and a complete
model of the object. Both of this information, is required e.g. for texture-based
object recognition or if the objects are placed on different sides as is the case
in a real world scenario. None of the state-of-the-art object modeling methods
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consider the accuracy, namely of the surface model, during the view planning
or verify the actual object completeness in the surface model. Therefore, the
quality of the acquired models cannot be evaluated or assured. This is manda-
tory if the object models should be directly applied to another application such
as object recognition or manipulation without manual interaction. None of the
methods show the applicability of the generated 3D models. Some of the pre-
sented work does not even generate a 3D model but simply outputs a point
cloud, which could be too noisy for a reasonable surface model. Furthermore,
most methods reduce the 6DOF search space to a box, sphere or cylinder. If the
search space is restricted suchlike, then for complex shapes not all areas of the
object can be scanned. In these cases, the object models cannot be completed.
Callieri et al. (2004), Karaszewski et al. (2012), and Loriot et al. (2008) try
to acquire complete models by rescanning holes but do not consider the bot-
tom part of the object. Moreover, for most methods the acquisition time of 3D
models is very long.
For all methods the object needs to be manually placed in the correct position
and object modeling of unknown objects within a scene consisting of multiple
objects is only considered by Aleotti et al. (2014a). This is desirable if a robot
needs to learn new objects itself which it encounters in a real scenario such as
on a table or in a shelf and there is no human, who can get the object for the
robot. Furthermore, none of the state-of-the-art approaches combines object
recognition and autonomous object modeling.
In this thesis, we present an approach for autonomous modeling of unknown
objects within a scene and thereby incorporate all the aspects listed in Tab. 2.2.
Furthermore, the autonomous object modeling is combined with active object
recognition for a better scene understanding. An overview of the system is given
in the following chapter.



3
System and Module Overview

This chapter gives an overview to the active scene exploration system and de-
scribes its essential modules. The modules do not describe new research and
have mainly been presented by others. However, the novel methods (see Chap-
ter 4) developed in this thesis require understanding of the basic modules, which
have been extended and combined into a unified robot-sensor system to achieve
autonomous object modeling and active scene exploration. The basic modules
include sensor calibration, motion planning, pose error minimization, 3D model
generation, and object recognition and validation. The context of these modules
within the scene exploration concept is given in the following section.

3.1 Overview

In the following, the procedure for active scene exploration is described in de-
tail. Active scene exploration denotes the exploration of an initially unknown
object scene by active recognition of objects for which a model is given and
autonomous modeling of unknown objects. Fig. 3.1 gives an overview of the
suggested modules and concepts which tightly integrate active object recogni-
tion and autonomous object modeling. However, the focus of this thesis lies on
the autonomous modeling part (right bounding box). For an example scene, the
different steps during scene exploration are depicted in Fig. 1.4 on page 7.
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Figure 3.1: Overview of active scene exploration concept: active object recognition and autonomous object modeling are tightly integrated for exploration of complete
object scenes with a robot-sensor system. The detection of unmatchable data clusters during recognition triggers the modeling of unknown objects and a database update.
This thesis focuses on the autonomous object modeling part (right bounding box). Yellow boxes represent modules, blue diamond boxes decisions and purple ovals
robot-sensor system actions. For the modules, the section (Sec) or chapter (Ch) in which it is described in this thesis is stated.
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Active scene exploration requires a robotic system and 3D range sensors which is
elaborated in Section 3.2. For quick overview range images and more accurate
models, different range sensors, a laser striper and an aerial 3D sensor, are
combined. As the 3D sensors are usually attached at the robot’s flange, the
system requires hand-eye calibration, in order to merge the range and pose data
into globally aligned 3D points. The sensor calibration of aerial 3D sensors and
laser stripers used in this work, is detailed in Section 3.2.1.

For exploring partially unknown object scenes, initially an overview range image
with the aerial 3D sensor is obtained from a random position on a half sphere
enclosing the complete object scene. The dominant plane of the tabletop is
detected using RANSAC (Random Sample Consensus). The resulting point
cloud is segmented by plane subtraction and Euclidean clustering. For each
cluster, a geometry-based object recognition (see Section 3.4) is performed using
an object model database. The database contains a set of a priori known object
models. If the quality of the highest object hypothesis is sufficient, the object
is considered to be correctly recognized. Then, the candidates are validated
through their conformity to the global knowledge of the explored voxel space.
Fig. 1.4 on page 7 bottom left depicts an example where for the initial view only
the green objects are successfully recognized.

If no object model can be matched to a certain cluster, it is assumed that the
object represented by this cluster is unknown. Then, the autonomous object
modeling is triggered. Here, the only difference to modeling single objects (see
Chapter 5) is that other objects might be in the way. In order to plan NBVs for
object modeling, information of the surface shape and the borderline between
occupied and free space is required. As a point cloud does not describe this
information directly, further 3D model representations are needed. Therefore,
based on the 3D measurements, a triangle mesh and a probabilistic voxel space
(PVS) are generated, which is described in Section 3.3. The PVS (see Fig. 1.4 on
page 7 top right for an example) is initialized for the dominant plane of the scene.
As the triangle mesh is the desired output representing the initially unknown
object, it is updated only for the 3D points within a bounding box defined
by the unknown cluster. A local registration (see Section 3.2.3) is performed
for minimizing the robot pose error of the 3D points assigned to the cluster.
It is mandatory for accurate 3D modeling due to the robot and calibration
inaccuracy. Registration refers to fine matching of different partial 3D models.
Local registration implies that two partial models obtained from different views
are locally merged. After the registration, using only the PVS information
within the cluster’s bounding box, NBVs are iteratively planned (see Chapter 4),
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collision-free motions are determined (see Section 3.2.2), and range images are
obtained until the desired model quality is reached. The collision-free motions
are planned based on the known environment and the constantly updated PVS.
Furthermore, the model quality requirements are evaluated in each planning
step and considered during the NBV planning. Thus, the surface features of
the triangle mesh and the PVS are fused into a single space as described in
Section 4.5.1. Fig. 1.4 on page 7 bottom right shows the partial mesh for a flat
box (blue), for which no object model is given, and the scan path candidates
with corresponding rating, which are color coded from low (red) to high (green).
A more detailed overview of the actual NBV planning algorithm is given in the
following chapter. The local registration, mesh generation and PVS update have
been briefly presented by Kriegel et al. (2013b) but are described in more detail
here.

Additionally, for each unknown cluster, the object recognition is repeated with
the aerial 3D sensor during the first laser scans to ensure that the object model
does not already exist. This could be the case if it has not been correctly rec-
ognized in previous steps e.g. due to occlusion or false object recognition. For
the object pose estimation, NBVs are planned using the same NBV algorithm
originally presented for modeling (see Chapter 4) in order improve the recog-
nition by gaining more information of the scene from multiple views. As the
scene is continuously explored and updated considering sensor uncertainties, the
robot can move into the initially unknown workspace (see Fig. 1.4 top left for
an example). This is required as it will not always be possible to view all parts
of an object from views outside the scene due to occlusions by other objects.
After an object model of an unknown object is autonomously generated, it is
automatically added to the object model database. For each model, the data-
base holds its currently estimated location as a bounding box computed from
the range image, and a merged triangulated model from the high quality laser
scans. Thus, the new model is directly applied for pose estimation in further it-
erations. The algorithm aborts when no unknown clusters remain which means
that for each cluster an object from the database could be matched.

Here, we assume that the unknown objects are separated in the scene which
means that they are at least a few millimeters apart. Otherwise, an object
model could be created which can contain information of both objects, as for
this case the segmentation is not successful. Furthermore, no object should be
totally occluded. Otherwise it is not possible to acquire any 3D data of this
object.
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3.2 Robot-Sensor System

Concerning the robot-sensor setup, for the range sensor two placements on the
robot are possible: eye-in-hand or external. For eye-in-hand configuration, the
robot needs to be moved in order to model the object. As presented in Sec-
tion 2.2, most autonomous modeling methods use a turntable in addition to
the eye-in-hand robot. This is not an option for our robotic system as it is
required to model several objects within one scene without the need of a human
to place each object on a turntable. Furthermore, a turntable limits the object
size. However, for fixed eye-in-hand robots without turntable, the workspace
limitations need to be addressed more carefully as objects will only be viewable
from all sides in a certain area. Therefore, the optimal object position needs to
be determined.

If the sensor is externally mounted, then a robot needs to grasp the object and
move it in front of a sensor in order to completely reconstruct it. An external
configuration may be required if the object is placed in the world so that it
cannot be viewed all around due to the robot arm workspace restrictions. For
instance, if a mobile robot navigates within everyday environments, objects on
a table or shelf may be reachable but cannot be viewed from behind.

As for both cases, the robot is moved to view different parts of the object, the
model reconstruction quality depends on the accuracy of the sensor and the
robot. Although there are methods for improving noisy data and range image
misalignment (see Section 3.2.3), the model quality will always be limited by
the hardware and therefore the robot-sensor system needs to be chosen carefully
depending on the application and desired output. Furthermore, only one or
several sensors can be applied. For active scene exploration, it is advantageous
to create a rough model of the scene with a sensor with high working range but
lower accuracy and afterwards a finer model with a more accurate sensor.

In Fig. 1.3 on page 5, we compare the performance of KinectFusion for modeling
of hand-sized objects with the autonomous modeling approach using a laser
striper and an industrial robot. For obtaining a mesh with KinectFusion, an
Asus Xtion was slowly moved around the object setting the volume size to
smallest possible value for more details. However, all the details of the objects
are lost and also the object proportions are incorrect. This shows that for
high quality 3D models of hand-sized objects, using an RGB-D sensor is not
reasonable.

In the following, the sensor calibration, motion planning and local registration
of partial 3D models utilized for our robot-sensor systems are explained.
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3.2.1 Sensor Calibration

For accurate fusion of range and pose sensor data, the range sensors need to be
calibrated with respect to the robot and the other sensors. This allows for bring-
ing the range data from different sensors to the same world coordinate system
(WCS) of the robotic system. For several vision applications, the algorithms
are only run on a single range image not considering information from several
views. In our case range information from several views is accumulated, which
requires accurate sensor calibration.
If the sensor system is not intrinsically pre-calibrated or the pre-calibration is
not as accurate as desired, first an intrinsic calibration needs to be performed.
Second, an extrinsic calibration is carried out in order to obtain the homoge-
neous transformation between tool center point (TCP) of the robot and sensor

TTS, also denoted as hand-eye transformation. As the sensors are usually rigidly
attached, the hand-eye transformation will not change over time and thus its cal-
ibration only needs to be performed once. If the static hand-eye transformation

TTS is known, the world-to-sensor transformation

WTS = WTT
TTS, (3.1)

can be determined, since the world-to-TCP transformation WTT can be mea-
sured in form of the robot’s readings. In contrast, if the transformation WTS is
provided e.g. by an NBV algorithm, the robot transformation can be determined
accordingly:

WTT = WTS (TTS)−1. (3.2)

For calibration of stereo and RGB-D cameras, the hand-eye calibration sug-
gested by Strobl and Hirzinger (2006) is applied. In this work, the sensors
are either attached to TCP of the robot, denoted eye-in-hand, or are rigidly
mounted somewhere in the robot’s environment. For eye-in-hand systems, the
robot is automatically moved to several poses viewing a planar checkerboard
pattern at different inclination angles and distances. For each view, the world-
to-TCP transformation WTT and a color image or images (for stereo cameras)
are saved. However, if the sensors are externally mounted, then the checker-
board is attached to the robot’s TCP and the checkerboard is moved to acquire
the robot transformations and images (see Fig. 3.2). Using DLR CalDe and
DLR CalLab (Strobl et al., 2005), the corners of the pattern in the images are
detected and located with sub-pixel accuracy and the intrinsic and extrinsic
calibration are performed by nonlinear optimization.
For laser stripers as in (Suppa et al., 2007) where the camera does not contain an
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Figure 3.2: Calibration of external 3D sensors: a checkerboard is attached to the robot’s end effector
and moved in front of an external 3D sensor. An additional checkerboard is used as a common reference
for eye-in-hand 3D sensors.

optical filter, the same procedure can be applied to calibrate the camera. As the
laser striper’s origin is already specified by the camera’s pose, only the remaining
3DOF of the laser striper’s laser plane need to be estimated. Therefore, the laser
striper is moved over any calibration plate of unknown pose from at least two
different distances with varying incidence angles. Simultaneously, images and
poses are obtained with the calibrated camera and used for the laser calibration
as described by Strobl et al. (2004). However, industrial laser stripe systems
usually have an integrated optical filter, which filters light with a wavelength
different from laser light. The camera cannot be calibrated itself but the hand-
eye transformation needs to be estimated completely from the laser scans. For
instance, all 6DOF of the laser striper’s laser plane need to be estimated. Thus,
either the pose of the calibration plate has to be known a priori (Strobl, 2014a) or
a cube is used instead (see Fig. 3.3). For both cases, more sweeps of the plate or
cube’s planes with all three possible sensor orientations (roll, pitch, and yaw) are
needed. The best fitting calibration plane from all the range images is estimated
by a nonlinear least squares optimization based on the Levenberg-Marquardt
algorithm (Strobl et al., 2004). First the calibration plate is estimated and
second the position of the range image data within the plane is determined.
For the optimization, a rough, initial estimation of the transformation, based
on the CAD (Computer-Aided Design) data of the laser attachment is used as
starting point, resulting in an accurate transformation TTS. The calibration of
industrial laser stripers was improved by using a cube as in (Chu et al., 2001)
and obtaining laser scans from all three orientations and different distances from
each of the five visible planes of the cube instead of the planar calibration with
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Figure 3.3: Laser striper calibration: laser scans of different orientations and at different distances
of the five visible planes of a cube are obtained utilizing an industrial robot.

a single, known calibration plate. In Fig. 3.3, the cube is shown that was used
for the laser striper calibration in this thesis. When using the cube, depth
measurements close to the edges are filtered as the measurement error increases
when moving the laser over the edge. Fig. 3.4 shows the residues for the single
plate and the cube for the depth measurements considered for the nonlinear
optimization. The root-mean-square error for the single plate is 0.488 mm and
0.324 mm for the cube. The residues are significantly reduced by using the cube.
The reason for this is that the fixed transformation between data on the cube
planes helps to constrain the optimization in the case of a higher number of
optimization parameters as is the case when using industrial laser stripers.

Figure 3.4: The residues of the nonlinear optimization for the single plate (left) and the cube (right)
are shown. For both cases almost 4500 depth measurements are considered. The residues for the cube
are lower resulting in a better hand-eye calibration.
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3.2.2 Motion Planning

A motion describes the transformation of a robot, represented in joint values.
For complex kinematics with several DOF such as used in this work, motion
planning is usually performed in configuration space (C-space), which repre-
sents the robot’s joint space. In contrast, physical space represents the 6D
workspace in Cartesian coordinates. In order to transform the robot from the
current configuration to a desired configuration, the kinematics and geometry
of the robot have to be taken into account. For collision avoidance with the
environment, also a model of the environment is required and also needs to
be considered. Transforming the environment to the C-space is computation-
ally too costly. Therefore, roadmaps, i.e. graphs, in which the robot’s motion
is planned, are used to store C-space information. To solve the high dimen-
sional planning problem in reasonable time, a sampling-based motion planner
is utilized. As no hard real-time constraints are required for our application, a
heuristic method can be applied. Furthermore, in order to avoid the problem
of local minima, a global planner is used.

Rapidly-exploring Random Tree (RRT) methods (Lavalle et al., 2000) grow a
tree data structure into the free C-space. Starting at the current configura-
tion, the RRT algorithm samples configurations into free C-space until one of
its branches reaches the goal configuration. Probabilistic roadmap (PRM) ap-
proaches (Kavraki et al., 1996) break down the complexity of the planning space
by reducing the motion planning to a graph search. PRM algorithms create a
graph by iteratively sampling new configurations, checking them for collisions
and connecting these to given configurations within a map. However, PRMs are
computationally expensive if the environment often changes which is the case for
our work due to the constant PVS update. Therefore, we use an RRT-connect
variation of Kuffner and LaValle (2000), which tries to get as close as possible
to the sampled configurations and thus allows for several configurations close
to obstacles. This is suitable for our application, as for exploration tasks the
robot usually is required to move very close to the unknown area. However,
sampling-based planners tend to generate paths with sharp turns around obsta-
cles thus containing detours. Therefore, the generated paths are smoothed in a
post-processing step in order to avoid these strange motions in physical space
reducing the path length and execution time. We use the method suggested by
Berchtold and Glavina (1994) which removes and smooths triangle corners in
the path based on heuristic evaluations. Thereby, in a greedy manner the path
is interpolated by inserting additional points.

For obtaining a range image with a laser striper, we use the linear motion (short-



38 CHAPTER 3. SYSTEM AND MODULE OVERVIEW

est path in physical space between two points) of a robot. Linear motions are
carried out at constant speed with defined end effector orientation. Therefore,
it is suitable to obtain aerial range images with a laser striper and a constant
density. The number of obtained range images can be adjusted by the speed the
robot moves. It is usually selected slow enough to ensure a high point density
for qualitative mesh generation. As the speed is kept constant, linear motions
abort with an error if the robot drives through a singularity. Thus, the linear
path is divided into several 10mm path portions. For each sub-path, we check
if a Point-to-Point (PTP) motion (shortest path in configuration space between
two points) without additional waypoint is possible. If this is not the case, the
robot cannot perform a motion along the complete linear path. In order to map
the physical positions along the path into configurations for different robots, the
inverse kinematics methods of Konietschke (2008) are used.

For collision detection, we use the Software Library for Interference Detec-
tion (SOLID) by van den Bergen (2003), which extends the Gilbert-Johnson-
Keerthi (GJK) inference algorithm (Gilbert et al., 1988), denoted Incremental
Separating-Axis GJK (van den Bergen, 1999), in order to make the algorithm
significantly faster. SOLID was originally designed for interactive 3D graphics
applications containing 3D objects, which experience rigid motion and deforma-
tion. As it exploits temporal coherence in various ways, the library is especially
useful for collision detection between objects that move smoothly over time.
As this is the case for a robot moving within its workspace and the collision
detection algorithms of SOLID promise to be fast, we choose this library in our
work. Another advantage is that the Application Programming Interface (API)
is similar to the commands of OpenGL and easy to implement. SOLID supports
an internal representation of the environment based on objects in the VRML
(Virtual Reality Modeling Language) format. In our work, for the unchanging
environment and the robot, CAD models are only inserted once. During run-
time, the PVS, which represents the initially unknown space, is converted to
VRML and updated within the collision framework after each space update (for
details on the PVS update see Section 3.3.2). Thereby, voxels with a probabil-
ity to be free p below 0.05 are assumed to be free and all others are assumed
to be obstacles. For more efficient motion planning, all inner voxels which are
surrounded by others are removed.

For instance, the presented motion planning algorithm is applied for collision-
free path planning during pick and place operations with a mobile robot. Fig. 3.5
shows the scenario consisting of small load carriers, which need to be placed into
and picked from a gravity shelf. Partially unknown environments such as the
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Figure 3.5: Industrial pick and place scenario with mobile robot (left) and environment model for
motion planning (right) consisting of constant models, robot model, detected small load carriers (blue
boxes) and PVS, which is updated with range measurements from a stereo camera mounted on a
pan-tilt unit.

robot’s working surface or shelves are explored. The PVS is inserted into the
world model together with constant, detected and robot models, allowing for
collision-free motion planning.

3.2.3 Local Registration

A local registration is needed for fine matching of two models. This is the case
when the given transformation between the corresponding coordinate systems
is small and a relevant overlap between the two models can be assumed. In this
work, a variant of the well-known ICP algorithm, which has been introduced by
Besl and McKay (1992), is used to correct the robot pose error, also denoted
as 3D registration. In (Rusinkiewicz and Levoy, 2001) variants aiming at the
acceleration of the ICP algorithm are summarized. In this work, the ICP will be
used for pose error minimization and fine matching of partial models obtained
from the object in different poses.
As the absolute positioning errors of most robots are far too high for precise 3D
modeling, especially orientation errors easily lead to a misalignment of the range
images in global space. This results in a noisy or corrupted mesh during the
model update. The pose error can be minimized by using the range image data,
since the 3D sensor usually has much higher accuracy. For aerial 3D sensors the
ICP can be used directly on each range image. With line sensors, however, this
is not possible. Therefore, for laser stripers, the data of a complete scan path is
merged, and a local mesh is generated and registered to the global mesh with
ICP. In every iteration of the ICP, correspondences between the local and global
mesh are searched by assigning all points in a certain radius as corresponding
points. In this work, we use a radius of three millimeters. A least-square
estimation of the transformation is calculated from the correspondences. The
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Figure 3.6: The difference in modeling of a sensor head. From left to right: 3D model without ICP,
with ICP (two iterations) and comparison between two iterations (blue) and converged ICP (yellow).
Note the considerable gap between the surfaces marked with the red ellipse.

estimated transformation is applied to the range images and finally the corrected
range images are integrated into the global model.

The ICP requires a sufficiently structured surface and a significant overlap be-
tween the new data and the global model. The overlap needs to be considered by
the NBV planning algorithm. The surface structure, however, depends of course
on the object. Technical objects especially often contain poorly structured or
symmetric parts that cause the ICP to an overfitting of the local mesh. There-
fore, the ICP itself without using additional information will have problems with
completely symmetrical objects. Since it can be assumed that the pose error is
small, the ICP can be aborted after two or three iterations, minimizing possible
overfitting.

Fig. 3.6 shows the difference between modeling without ICP (left) and its ap-
plication with two iterations (middle). The model was generated from several
scans with a laser striper attached to an industrial robot. The application of
ICP leads to a smooth surface, as shown in the zoomed area. However, as can be
seen in Fig. 3.6 right, the overall model tends to be contracted if too many iter-
ations of the ICP are carried out. For the sensor head of Fig. 3.6 the distortion
was approximately four millimeter.

The standard ICP version has problems with registration of thin walls. Pulli
(1999) suggests a variant which allows for point matches only if the associated
normal vectors differ less than 45◦. In our work, the ICP algorithm was extended
by comparing the surface normals of the corresponding points and discarding
correspondences with an angle difference of more than 60◦. An angle of 60◦ was
chosen, as it allowed for avoiding registration of scans obtained from different
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Figure 3.7: 3D meshes of a coffee cup from top view with standard ICP registration (left) and the
suggested extension considering surface normals during the correspondence search (right).

sides of thin walls. Fig. 3.7 shows an example of a coffee cup with standard ICP
registration (left) and the suggested extension which considers surface normals
(right). Again, several scans of the object were obtained with a laser striper and
industrial robot. For standard ICP, the inside of the cup is fitted to the outside
in the upper area. Therefore, outside and inside overlap, which can be seen
by the dark area (backside of outside mesh). With the extension, this problem
does not occur and also the walls are not as thin in the upper area as in the left
figure. Without ICP, the pose error caused a noisy mesh with double walls.
The proposed ICP-based pose correction helps to improve the autonomous mod-
eling, since it reduces the influence of pose errors on the model generation.
However, it is based on the assumption that the relative pose error of a laser
striper during a single scan is low. This holds for most robots with serial kine-
matics, since here a local small motion is more accurate than a global motion,
which requires large motions in the base axes. For other systems, such as mo-
bile platforms, the assumption does not hold and thus the ICP correction is
either limited to aerial 3D sensors or additional pose sensing is required. Here,
a possible extension is to estimate local movement with feature tracking (Strobl
et al., 2009) and register this data via ICP (Izadi et al., 2011). Nevertheless, the
model-based correction always can result in a slight overfitting and may distort
the final 3D model. Hence, for an optimized model it is proposed that all scan
data is optimized in a post-processing with a bundle adjustment.
The local registration is also used for fine matching of two models from the
same object, which were obtained in different poses. Objects usually cannot be
scanned completely as part of the object is occluded by the table, shelf, floor
it is placed on or by other objects. Furthermore, the workspace of robots is
restricted which might not allow to view the object from every side. Therefore,
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the object needs to be brought in a different positions in order to complete
previously unmodeled parts. In order to match these models, assuming sufficient
structure, reasonable overlap of these is required. Before, the ICP is applied,
a rough transformation between these models needs to be identified e.g. by
a global registration algorithm and applied. Then, the ICP is used for fine
matching allowing for accurate 3D modeling of complete object models. Here,
the ICP does not abort after a few but after several iterations.

3.3 3D Model Generation

For the calculation and selection of NBVs, which is presented in the following
chapter, a triangle mesh and PVS are required in every planning step. Fig. 3.8
gives an example where the triangle mesh and PVS of a putto statue are updated
after 1, 8, and 16 sweeps with a laser striper. For the PVS, the probabilities
are color coded from black (almost free), through gray (unknown) to white

(a) 1 scan (b) 8 scans (c) 16 scans

(d) Initial (e) 1 scan (f) 8 scans (g) 16 scans

Figure 3.8: 3D Model Generation. Upper row: The mesh is updated during each laser scan. Lower
row: The PVS is initialized with unknown voxels and then updated during each scan. The probabilities
are color coded from black (almost free), through gray (unknown) to white (occupied). Free space is
transparent. The updates are shown after 1, 8 and 16 scans respectively.
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(occupied) while completely free space is not shown (transparent).
As the models are required in every planning step, new measurements have to
be integrated into the existing model at every iteration. Classical modeling
methods are designed to build a model from a fixed input dataset, resulting in
a recalculation of the complete model in every interaction with increasing com-
putation time. Here, we incrementally extend and refine the already existing
model by iteratively adding each measurement from stream. This reduces the
computational effort, because it depends only on the number of new measure-
ments and not on the size of the model.

3.3.1 Mesh Generation

For autonomous object modeling, the mesh represents the application goal.
Here, it is generated from a real-time stream which helps to speed up the process
when using a laser stripe profiler.
In this work, a triangle mesh

M := (VM, EM) ,

is defined by a set of n vertices

VM := {v1, . . . ,vn} ∈ R3 ,

and a set of m directed edges

EM := {e1, . . . , em} .

In order to save memory and for better edge traversal, the triangle faces are not
stored explicitly. A corresponding surface normal ni is defined for each vertex
vi. An edge ej represents the line segments connecting two adjacent vertices va

and vb along the surface. Each edge ej has a direction ej = dir(va,vb) with

dir(a,b) =
b− a

|b− a|
(3.3)

For each edge ej , two additional vertices vl and vr (see Fig. 3.9), which close
the adjacent triangle to the left and to the right with respect to the direction,
are assigned.
An early approach to surface reconstruction of non-closed surfaces with arbi-
trary shape was presented in the work of Hoppe et al. (1992). However, the
complete point data is converted into a surface model after the range data
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va

vl vr

vb

e j

Figure 3.9: An edge of the triangle mesh consists of two vertices defining the line segment (blue)
and two additional vertices closing the adjacent triangles (red) to the left and right.

acquisition. In (Bodenmüller, 2009) the streaming surface reconstruction is in-
troduced for instant model generation and visualization with handheld scanner
systems. This approach for the incremental generation and refinement of a tri-
angle mesh, is used here for quicker surface reconstruction. In the following,
the functional principle of the algorithm is summarized and the most relevant
points are explained.

The reconstruction consists of three principal stages, the density limitation, the
normal estimation and the mesh generation step, as already presented in (Bo-
denmüller, 2009). Each range image is converted into a set of 3D points and
incrementally inserted into the model. At insertion of a new point, it is tested if
the point is not closer than a distance Rr to any model point and rejected if the
test fails. The test can be performed by requiring an empty ball neighborhood
with radius Rr. The ball neighborhood is the subset of points that are within
a bounding sphere centered at the regarded point and with radius Rr . This
density limitation limits the overall Euclidean point density of the model. In
the normal estimation step, the ball neighborhood with radius Rn is calculated
for each newly inserted point. The surface normal is estimated using principal
component analysis with a weighted covariance matrix for all vertices within the
neighborhood. If the surface normal is a robust estimate, the point is forwarded
to the mesh generation step. During the mesh generation stage, the new points
are inserted as vertices of the emerging mesh. For every newly inserted vertex
a localized triangulation is performed by projecting a local ball neighborhood
with radius Rm to the tangent plane of the new vertex and a re-triangulation of
this 2D subset. Finally, triangles are recalculated from the changed edges. The
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result is a mesh with an average edge length l̄e between Rr and Rm.
The reconstruction approach was originally designed for out-of-stream data pro-
cessing from arbitrary manual scanner systems. Out-of-stream processing de-
notes the processing of data directly from a real-time data stream, e.g. the live
stream of a 3D sensor or camera. Hence, the approach is not restricted to a cer-
tain type of 3D sensor, but only requires that the sensor data can be transformed
into a point set with additional line-of-sight for each point. Since out-of-stream
processing requires fast computations, the whole approach is based on the usage
of localized data. All calculations use only a local subset of the data, namely the
ball neighborhood, which has an upper bound in size, due to the point density
limitation. The only global operation is the query of the neighborhood for each
inserted point, which is accelerated by an octree data structure. The octree is
used, because it is the best trade-off concerning computational effort between
insertion of new data and neighborhood query. The point set is stored in the
containing leave voxel of the octree. A query operation is performed by finding
all voxels that intersect with the neighborhood sphere and testing all points
in the voxels. Since the initial density limitation results in an upper bound
for the number of points per voxel, the query complexity depends only on the
octree search of the voxels. However, the latter increases only logarithmic for
unbounded volumes and is constant for a bounded volume.

3.3.2 Probabilistic Voxel Space Update

A voxel space is the partitioning of the R3 space into discrete elements, the
so-called voxels. The voxel edge length lv is denoted as resolution of the space.
In a PVS, each voxel holds a state value, representing the probability that
the cell is free or there is an obstacle. A PVS is usually initialized with the
state unknown. As such a space considers sensor uncertainties, it is useful for
entropy-based exploration and collision avoidance algorithms.
The data structure of the PVS is kept independent of the octree used for the
mesh generation (see Section 3.3.1), since it contains different data and the res-
olutions of the two are adapted to different requirements. However, for planning
NBVs which aim at improving the model quality, both models are fused into a
new space as described in Section 4.5.1.
In this work, a PVS as was already presented in (Suppa, 2008) is used for path
planning and for NBV planning. It has been extended by allowing for dynami-
cally adding additional octrees. Our PVS is similar to OctoMap (Hornung et al.,
2013) with the difference that an improved probabilistic approach (Suppa, 2008)
is used which considers reflections and is based on the actual sensor model.
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Figure 3.10: The inverse sensor model for a laser striper with a working range of 150mm to 450mm,
for which an obstacle is measured at a distance of 250mm (d=distance, p=probability).

The voxel space is built incrementally by updating it with each sensor mea-
surement. Therefore, the measurement beam for each pixel of a range image
is calculated. Having very similar tasks to accomplish as in (Suppa, 2008), we
follow his choice to use Bayes’ update. For mapping, forward sensor models
are calculated from inverse models in a preprocessing step and stored in a hash
table. Fig. 3.10 shows an inverse sensor model for a laser stripe profiler with a
working range of 150mm to 450mm. For this example, an obstacle was mea-
sured at a distance of 250mm. A distant dependent noise is assumed. The red
curve shows the probability assuming an obstacle at 250mm and the blue curve
describes the probability assuming that there is no obstacle. Each measurement
beam induces a state of occupancy and freedom for the hit cells. These induced
states are combined with the cell’s current states and stored as their new states.
When using Bayes’ update, the states represent a transformation of the like-
lihood quotient and can be interpreted as a measure for the cell’s probability
to be occupied, here denoted as p. In order to calculate p, the states free, surf
and spec are introduced, which represent the probability that a voxel is free,
occupied or a measurement was made on a specular surface. The states free
and surf are updated with the Bayes’ rule:

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ā)P (Ā)
. (3.4)

Under the assumption of n sensor measurements Bi, i ∈ [1, n], the probability
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for free P (A|B1:n) and surf P (Ā|B1:n) can be calculated as in (Konolige, 1997):

P (A|B1:n) =
n∑
i=1

P (A|Bi)P (Bi). (3.5)

The state spec is only updated for voxels which are measured to be free. As it
is the case for laser measurements, on specular surfaces rays are deflected. For
multiple deflections, the sensor only measures this ray in subsequent range im-
ages, which for laser sensors usually results in too small depth values. Therefore,
the probability of the state spec is calculated as follows:

P (spec) = min

(
log (P (surf))

3
, 1

)
. (3.6)

In order to acquire, the probability p for a voxel, first the likelihood quotient
L(A|B), which is defined by

L(A|B) =
P (A|B)

P (A|B̄)
(3.7)

needs to be determined for free (Lfree = L(A|B)) and surf (Lsurf = L(Ā|B)).
Finally, the probability p can be estimated by inserting these quotients and
P (spec) to the following approximation:

p = log (Lsurf) + log (Lfree (1− P (spec)) + P (spec)) . (3.8)

This approach is introduced by Konolige (1997) and known as MURIEL method.
In the OctoMap (Hornung et al., 2013) implementation, the probability of oc-
cupancy is determined by simply subtracting a fixed value for each voxel which
is measured as free and adding one for a measured obstacle. Thus, specularity
and distance dependent noise are not considered.

As the Bayesian update requires statistically independent measurements, not
every sensor beam is used. Therefore, all view positions and directions of each
measured beam are saved to a list and similar measurements during the update
are rejected (Suppa, 2008). This is reasonable, since due to usually high reso-
lution of 3D sensors, neighboring rays often intersect the same voxels. Clearly,
this has the effect of accelerating the update process significantly, in comparison
to a naive update that uses all sensor beams.

Our PVS is based on the Dynamic Multiple-Octree Discretionary Data Space
(Dymodda) implementation. In general, an octree provides fast operations for
both insertion and query of data at a low memory consumption. The basic
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Figure 3.11: Concept of Dymodda partitioning using multiple octrees

concept of octrees (Samet, 1990) is that parent elements are subdivided into 8
subelements, if the state of one of them differs from the state of the parent.
Contrary, if the state of eight corresponding octree elements is the same, these
are merged into their parent element and the subelements will not be considered
anymore. The data structure of Dymodda allows for arbitrary extension of the
space in any direction by using multiple octrees as can be seen in Fig. 3.11. Each
octree can dynamically be stored to hard disk and flushed to save memory.

We performed a comparison between the Dymodda and OctoMap (Hornung
et al., 2013) implementation with real range image data sets. Although the
Dymodda update approach is significantly more complex than the update in
OctoMap, Dymodda is able find and update the intersected voxels in about the
same time as OctoMap. The equal speed in spite of more complex calculations
can be achieved due to an efficient implementation of Dymodda. In Dymodda,
the states of the voxels which are penetrated by sensor measurements are directly
updated. OctoMap first copies the coordinates into a vector and then updates
them after.

Note that the resolution lv of the voxel space has various effects on the algorithm
and has to be chosen carefully. The smaller the resolution, the more accurate the
modeled object or environment will be within the voxel space. Disadvantages
of such a small resolution are the consumption of more memory and increasing
computation time. On the contrary, a larger resolution results in less localized
information per voxel, causing a larger occupied area around obstacles. If the
PVS is applied to collision-free motion planning, a larger occupied area restricts
the area where the robot is allowed to move within.

Similar to the mesh generation, the PVS is updated in run time which helps to
speed up the process when using a laser stripe profiler. For this case, the reso-
lution cannot be chosen to be too small, since otherwise the real-time streaming
space update cannot be maintained.
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Figure 3.12: Five industrial objects for which the poses need to be detected for manipulation with
a humanoid robot: the object models (green) were autonomously acquired and used for successful
geometric matching (see bottom right).

3.4 Object Recognition and Validation

In this work, object poses are estimated based on a geometric matching ap-
proach utilizing the autonomously generated 3D triangle meshes. A local visual
feature-based object detection as presented by Brucker et al. (2012) is ill-suited
to handle sparsely textured objects which often occur in industrial scenarios.
Therefore, we use a geometry-based object recognition method based on the
work of Drost et al. (2010). Fig. 3.12 shows an example of five industrial objects
for which the poses are detected in order to grasp the objects for teleoperation
with a humanoid robot (Hertkorn et al., 2013). Thereby, the geometric match-
ing approach explained in this section is utilized to estimate the object poses
based on geometric object models, which were autonomously acquired with our
industrial robot-sensor system (see Section 5.1.1).
The method of Drost et al. (2010) is extended in order to cope with noisy
data. Furthermore, instead of just using a single view, the pose estimates from
multiple views of a scene are combined for improved object pose estimation. As
the robot and sensor are synchronized (see Section 3.2), the pose estimates are
given in the robot’s WCS.
Here, a brief overview of the method of Drost et al. (2010) and the modifications
implemented in order to adapt it to our application are given. The geometric
matching approach builds a global model for each object utilizing a feature
similar to surflet pairs as in (Wahl et al., 2003). Specifically, the point-pair
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feature is a four dimensional feature vector f which specifies the geometrical
relation between two vertices (v1,v2) in the mesh with its corresponding normals
(n1,n2):

f(v1,n1,v2,n2) = (||d||2,∠(n1,d),∠(n2,d),∠(n1,n2)) , (3.9)

where d = v2 − v1 and ∠(a,b) describes the angle between two vectors.
Depending on the task, the point density of the object model acquired with the
laser striper is reduced for efficiency. For each of the objects in the database, the
features for all point-pairs are calculated. The generated features are discretized
and used as an index to a four dimensional hash table. Thus, all hash table
features that are similar to a feature in the scene can be found in constant time.
For object detection, an arbitrary significant point ps is chosen in the scene data
assuming that it is part of the object we want to detect. It is paired with all other
points pi in the scene. For each of these point pairs, pairs (vs,vi) in the model
hash tables with similar distance and normal orientation are searched. Assuming
that ps in the scene corresponds to vs in the hash table, and considering their
respective normals nps and nvs , the pose of the object in the scene is defined
up to a rotation around nps . By aligning pi and vi, the angle α of this rotation
can be calculated.
Hence, for each detected match of point pairs a voting is performed. The corre-
spondence between ps and vs as well as the angle α is cast in a two dimensional
accumulator array. All peaks in the array that received a certain amount of
votes are considered to be object pose hypotheses. Assuming there might be
multiple instances of an object in a scene, and ps might not be selected from the
surface of an object, multiple significant points are required. Furthermore, all
retrieved pose hypotheses are clustered in pose space allowing for only a slight
difference in translation and rotation. The rating of a cluster depends on the
total amount of votes the hypotheses in a cluster received. Consequently, for
the pose cluster with the highest rating, the pose is averaged and considered to
be an actual instance of the object in the scene.
However, the evaluation of Drost et al. (2010) was performed exclusively on
synthetic data and the high quality laser scan dataset from Mian et al. (2006).
As the original method has problems with lower quality range images such as
by stereo camera systems or RGB-D sensors, the object recognition module in
this work only examines a pre-segmented cluster of data. The range image is
segmented by plane subtraction and Euclidean clustering assuming each cluster
to only contain points of one object instance. Thus, each segment in the range
image is observed individually and only the most dominant peak in the voting
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Figure 3.13: Object pose hypothesis for the object in the center: The green model shows the correct
match for the object. The yellow models are the remaining objects from the database which have
been matched to the object incorrectly. At the top left of each image, the quality qh is given. It is
highest for the correct match and low for all other matches.

accumulator array is considered. Furthermore, instead of clustering the gener-
ated hypotheses and choosing the most dominant clusters, all hypotheses are
evaluated in an additional verification step.

The verification step is implemented on the GPU for high performance. For each
considered object pose hypothesis, the objects are rendered and the resulting
depth buffer is compared pixel wise with the data cluster in the acquired range
image. For each hypothesis, a rating is determined depending on how many
pixels in the projected image are within a certain distance to the sensor data.
Specifically, the quality qh of a hypothesis is calculated according to:

qh =
Nm

Nr

(
Nm

Nc

)2

, (3.10)

where Nm is the number of matching pixels, Nr is the number of rendered pixels,
and Nc is the number of pixels in the current cluster. If qh for the highest rated
hypothesis exceeds a threshold, the corresponding object is assumed to be at the
estimated pose. Fig. 3.13 shows the best object pose hypothesis of one cluster
for each object model from a database containing four models. The green model
with the highest quality qh is considered to be a correct match. Here, the object
poses are detected for teleoperation with a humanoid robot (Hertkorn et al.,
2013).

Although a verification step was implemented, sometimes still incorrect matches
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occur. This can be the case if the objects cannot be identified from this view
due to ambiguities or noisy sensor data. As the scene is explored during object
recognition and modeling, the information from the PVS (see Section 3.3.2) is
used to validate the recognized objects. In (Blodow et al., 2009), objects in a
kitchen scene are labeled by fitting planes, cylinders, cones and spheres to partial
views. A voxel space with the states occupied, occluded, free and unknown is
created based on laser scans and the object hypotheses are verified by checking
each point of the primitive model with the voxel space. If most of the points
are in free space (as is the case for all incorrect matches in Fig. 3.13), then this
hypothesis is most likely not possible. We will use a similar approach to verify
the estimated object poses. The triangle meshes of the detected objects are
transformed to the estimated pose of the object. Then, for each vertex vi ∈ VM
we check which voxel of the PVS it is inside and get this voxel’s probability of
occupancy pvi . All vertices of an object model are grouped into one of the three
groups: free, unknown, and occupied based on pvi :

Vfree := {vi ∈ VM|pvi < 0.25}

Vunk := {vi ∈ VM|0.25 ≤ pvi < 0.75}

Vocc := {vi ∈ VM|pvi ≥ 0.75}.

A validation rating vh of this hypothesis is determined according to the number
of elements within the three groups:

vh =
0.5 · |Vunk|+ |Vocc|

|Vfree|+ 0.5 · |Vunk|+ |Vocc|
. (3.11)

The unknown voxels are not considered as much as the free or occupied voxels.
If vh < 0.66, then we assume that a too big portion of the object is in free
space and this object hypothesis is rejected which means that no object can
be matched to this cluster. We assume that this object is actually unknown.
However, if vh ≥ 0.66, the hypothesis is validated and a correct object matching
is assumed. Then, for fine alignment of the models, the ICP algorithm (see
Section 3.2.3) is run for a more accurate pose estimate.

If a depth measurement from another view of the same scene is obtained, the
objects are simply rendered in the current range image at the pose estimated
in previous views and the pose is verified as suggested by Hager and Wegbreit
(2011). This speeds up the object pose estimation for all clusters for which the
objects could be verified since then no matching to the objects in the database
is needed.
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3.5 Summary and Discussion

This chapter gives an overview and describes different software and hardware
modules required for our active scene exploration framework. Thereby, different
range sensor placements and calibration techniques for robot-sensor systems are
discussed. Due to the variety of range sensors (see Section 2.1.1), every robot
vision application requires an individual, careful choice of one or more range
sensors. Suppa et al. (2007) present a system which combines the advantages
of a stereo camera, a laser striper and a rotating laser. In this work, we use
a stereo camera and laser striper for autonomous modeling of single objects
and a combination of an RGB-D sensor and a laser striper for active scene
exploration (see Chapter 5). Despite the longer acquisition time, a laser striper
is suggested for accurate modeling since for aerial 3D sensors details are lost as
shown in Fig. 1.3 on page 5. For the laser striper, a more accurate calibration is
performed by scanning a cube from each side instead of just using a plane. NBV
planning also requires motion planning for the robotic system. Here, we suggest
to use a variation of the RRT algorithm which additionally can plan collision-free
motions on the dynamically changing PVS model. A global planner is chosen
as real-time constraints are not required and local planners have problems when
planning paths close to obstacles which is the case in our work. Furthermore, we
have shown that a local registration based on the ICP algorithm can be used to
minimize the pose error of the robot and thus increase the final model quality.
The ICP is also utilized for fine matching of models obtained from different
poses in order to complete unmodeled parts.

The NBV algorithm presented in the following chapter requires a surface and a
volumetric model in order to consider both the surface model quality and the
unexplored space. For quicker mesh generation, we have chosen a streaming
surface reconstruction approach, which instantly updates the mesh based on
acquired range measurements. For instance, this allows for real-time surface re-
construction during the scan process with a laser striper in contrast to updating
the mesh after the scan as in (Torabi and Gupta, 2012a). For the volumet-
ric model, we suggest a PVS implementation which also allows for a real-time
update of laser measurements and additionally considers sensor uncertainties.
This is important for single object modeling but especially during active scene
exploration where the robot moves into the initially unknown scene. Our prob-
abilistic approach is favored over OctoMap (Hornung et al., 2013) as our space
update considers reflections and distance dependent sensor noise without costing
more time.



54 CHAPTER 3. SYSTEM AND MODULE OVERVIEW

In order to recognize the known objects in the scene and estimate their poses,
a geometry-based matching approach is chosen as it also works for sparsely
textured objects and it can utilize the autonomously acquired 3D surface models.
Furthermore, the PVS is used to validate the pose estimates and thus make the
object recognition more robust.
All these basic software modules are utilized for the experiments carried out
in Chapter 5. The core module of this thesis, namely the NBV planning for
autonomous object modeling, is described in the following chapter.



4
Next-Best-View Planning for Modeling

In this chapter, the generation of scan paths based on partial surface informa-
tion, the selection of a Next-best-scan (NBS) for autonomous object modeling,
and the process control are described. The basic concepts have been presented
by Kriegel et al. (2011, 2012, 2013b) but are further extended in this thesis by
strategies for sharp corner detection, avoiding occlusions and collisions, and an
improved rescan of holes.

NBS planning, as introduced by Kriegel et al. (2012), describes the planning
of continuous sensor paths such as linear robot motions. Thus, NBS planning
can be seen as an extension of the NBV problem that also requires additional
collision-free path planning along the trajectory. Furthermore, NBS planning
allows for the usage of line range sensors, such as laser stripe profilers. Nev-
ertheless, the method for the scan path estimation is also applied to aerial 3D
sensors by using the midpoint of start and end point of a scan path as NBV,
which however does not ensure that the complete object is scanned. As NBV is
a subproblem of the NBS planning, in this chapter, the methods are described
for NBS, but are also used for NBV in this work. The following section gives
an overview of the different methods within the NBS planning module.

55
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Figure 4.1: Overview of the NBS Planning procedure: in each iteration a scan is performed, the
triangle mesh and PVS are updated, scan candidates are determined, and an NBS is selected until the
desired model quality is reached. For each module, the section (Sec) in which it is described in this
chapter is stated except for the model updates which have been described in the previous chapter.

4.1 Overview

Fig. 4.1 gives an overview of the procedure during the NBS planning for au-
tonomous modeling, closing the loop for the methods presented in this chapter.
Here, only the autonomous object modeling part of Fig. 3.1 on page 30 is con-
sidered without modules relevant for a real robot-sensor system. After a scan
with a range sensor has been obtained, the triangle mesh and PVS, as described
in the previous chapter, are updated. Both models are required for the quality-
based NBS planning approach which is presented here. In this work, a set of
scan candidates S, representing possible future world-to-sensor transformations

WTS, is directly estimated based on the shape of the partial triangle mesh and
not simply sampled over a sphere or cylinder model as in several other NBV
algorithms (see Section 2.3). Therefore, during the initial mesh generation the
Boundary Search is applied for generating scan candidates S (Section 4.2). The
Boundary Search detects boundaries in the mesh and estimates a surface trend
in the boundary area using quadratic patches. Then, scan candidates are cal-
culated considering sensor characteristics and sufficient overlap (Section 4.3).
The overlap allows for local registration of different scans (see Section 3.2.3)
and ensures that the triangle mesh is enlarged step by step beside already filled
areas. In each iteration, new scan candidates acquired by the Boundary Search
are added to the given set S. Additionally, after the surface model is fairly
complete (the coverage of subsequent scans does not change much), the Hole
Rescan is performed and scan candidates are estimated which view the holes
(Section 4.4). Then, from the candidates S, an NBS (or also NBV) is itera-
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tively selected considering information gain (IG) of the unexplored space and
surface quality. The quality of the reconstructed surface model is improved by
using the surface features which are introduced in Section 4.5. For using them
during NBS planning, the surface features based on the mesh are calculated for
each voxel element and stored to the PVS. In each iteration, the process con-
trol (Section 4.6) monitors the modeling process, switches the planning mode
and terminates the process, if the model has a certain completeness and quality
level. A reasonable process control is mandatory if the generated 3D models are
directly applied to pose estimation or grasping methods. Finally, in Section 4.7
the complete NBS planning procedure as presented in Fig. 4.1 is evaluated for
different methods in simulation on an NBV benchmark object.

The presented methods operate under some general assumptions as described
in the following. The environment of the robot is expected to be mostly known
but partially unknown. Therefore, a bounding box of the unknown area needs
to be defined which contains the unknown object or the unknown object scene.
Usually, it is defined by the plane of the table, pedestal, shelf etc. and a height
that must exceed the height of the largest object within it. The remaining
environment is assumed to be known to allow for collision-free motion planning.
This decreases the computational complexity by reducing NBV planning, PVS
update, and mesh generation to the unknown area, and allows for obtaining a
first random depth measurement based on the bounding box. The bounding
box can be significantly larger than the volume of a single object but must
completely enclose the object. Alternatively, an initial overview range image
which views the complete surface plane can be defined and the bounding box
can be estimated (Rusu et al., 2008). For instance, a worker moves the robot so
that it views the table. Then, the dominant plane is detected and a rectangle
is fitted to encompass the edges of the table. The rectangle is then projected
upwards in order to create a cuboid, representing the bounding box. Here, only
the height of the highest object needs to be known. The bounding box is used
as a pass-through filter during the mesh generation in order to remove depth
points outside of the bounding box. Therefore, the mesh will only consist of
actual parts of the object and not contain e.g. the table it is placed on. Further,
we assume that in the initial depth measurements at least a part of one of the
objects is visible. If no depth measurements within the defined bounding box
are obtained, no mesh can be generated, and the surface-based view planning
algorithm presented in this chapter will instantly abort. Another assumption,
which is not mandatory but speeds up the algorithm, is that the objects cannot
be viewed from below as they are placed on a surface area.
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(a) Left boundaries (b) Boundary regions

Figure 4.2: Example of two boundaries detected on the left side of a partial camel mesh: after the
boundaries are detected (left), the boundary regions (right) are found in order to fit a quadratic patch
for the surface trend estimation.

4.2 Boundary Search

In this section, the Boundary Search, which can be used to generate viewpoint
or scan path candidates based on detected boundaries in a triangle mesh, is
described. The original concept is introduced by Kriegel et al. (2011).

The Boundary Search consists of two stages, which are described in detail in the
following. First, the Boundary Detection (Section 4.2.1) detects several bound-
aries in the current triangle mesh which represents the part of the unknown
object which has already been modeled. Second, the Surface Trend Estimation
(Section 4.2.2) searches for a boundary region of vertices for each boundary, in
order to fit these to a quadratic patch. Fig. 4.2 shows two example boundaries
detected in a partial mesh and the corresponding boundary regions. As part of
the triangle meshM (for mesh definition see Section 3.3.1), a set of boundaries

BM := {B1, . . . ,Bk} ∈ M ,

contains the detected boundaries

Bi := (VBi, EBi) ,
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composed of a set of n vertices

VB := {v1, . . . ,vn} ,

which represent the boundary region (red dots in Fig. 4.2(b)), and a set of edges

EB := {e1, . . . , em} ,

which describe the edges along the boundary (red lines in Fig. 4.2(a)).

For efficiency, the Boundary Search is only performed for the part of the triangle
mesh

Mcur ⊆M ,

which holds solely data from the current scan. Therefore, in each iteration the
mesh which is generated from the point cloud Pcur of the current scan is then
merged with the global mesh from all previous scans:

Pcur →M := {Mprev,Mcur} .

However, even if Pcur contains several 3D points, it can occur that due to the
density limitation (see Section 3.3.1) none or only few points are inserted to the
global meshM.

4.2.1 Boundary Detection

Here, we describe how the different sets of edges EB along the boundary are
detected. The edges of one EB must satisfy two requirements: all have a similar
orientation and are border edges. A border edge lacks only one assigned triangle,
either on the left or on the right side (see Fig. 3.9 on page 44) and therefore
satisfies

∀e, e→ vl ⊕ e→ vr . (4.1)

In order to detect a boundary, we attempt to locally walk over the mesh border.
Therefore, for each border edge e that additionally fulfills

∀e, e ∈Mcur ∧ e /∈ BM , (4.2)

we run the recursive boundary detection as described in Alg. 1. On success, the
function returns a set of edges EB which describe the boundary. However, only
boundaries with a length of at least bmin edges are considered.

The initial border edge e is added to the boundary edge list EB and all incoming
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Algorithm 1 Recursive boundary detection
EB : initially empty set of boundary edges
e : an edge
ρ : penalty for boundary end detection (initialized with 0)

BOOL findBoundaryRecursive(e)
Add e to EB
for all edges ẽ connected with e do
if (ẽ→ vl ⊕ ẽ→ vr) and ẽ /∈ BM then
/* Compares angle according to Equation (4.3) */
if α > αt then
ρ = ρ+ 1

else
ρ = 0

end if
if ρ > ρt then
return (size(EB) ≥ bmin)

end if
return findBoundaryRecursive(ẽ)

end if
end for
return false

Figure 4.3: The detection of a left boundary in the mesh is shown: for each edge along the boundary
the angle α between the sensor axis s (red, in this case y-axis) and the vector of the current edge ej
is computed and compared with the threshold αt.

and outgoing edges ẽ connected with e are inspected. These are all edges ej−1

or ej+1 (for an example see Fig. 4.3), which share a common vertex with e,
either va or vb. Among these, for all border edges the angle α between a sensor
coordinate axis s and the directed vector ẽ of the current edge candidate ẽ (see
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Table 4.1: Classification of different boundary types based on the sensor axis s and side on which a
triangle is assigned.

s = y-axis s = x-axis
e→ vr left bottom
e→ vl right top

Fig. 4.3) is determined via inverse dot product as follows:

α = arccos

(
s · ẽ
|s||ẽ|

)
. (4.3)

The angle α is utilized to detect a boundary type and abort if the end of a bound-
ary type is reached. Depending on the orientation of the edge, four boundary
types left, right, top, and bottom can be potentially identified. The side on which
the boundary is located in the mesh based on the range sensor position of the
last scan, will be referred to as boundary type. Here, the sensor coordinate sys-
tem (SCS) is defined so that the z-coordinate represents the viewing direction,
the x-coordinate is to the left, and the y-coordinate is in the up direction (see
Fig. 4.3). Therefore, the boundary types can be classified as listed in Tab. 4.1.
The sensor axis s is either defined by the y-axis for left and right boundaries
or the x-axis for top and bottom. Further, the difference of the two boundary
pairs is the side on which no vertex is assigned assuming the direction of e is
adapted to s. Thus, Fig. 4.3 shows a possible left boundary represented by blue
vectors.

In order to classify the initial boundary, the angle α in Equation (4.3) is deter-
mined between the current edge ej and both possible sensor axis s. This will
be continued for the outgoing boundary edge ej+1 and incoming boundary edge
ej−1. If the angle α is larger than a threshold αt, then a penalty value ρ, which
is initialized with zero, is increased for the currently observed boundary (see
Alg. 1). The penalty allows for slight deviations of the orientation of the sensor
axis, as can be seen in Fig. 4.4 right-hand side.

Thereafter, the angle will be calculated accordingly for the edge ẽ (previously
ej+1), which is next in the edge chain. This time we only compare with the
sensor axis defined by the identified boundary type. The penalty is reset to zero
once an edge with a good angle is found. As can be seen in Alg. 1, the boundary
detection is aborted if the penalty exceeds a threshold ρt and then the procedure
is repeated in the other direction with the previous edge ej−1 of the edge chain.
Fig. 4.4 shows an example in which the Boundary Search was aborted (left) and
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Figure 4.4: Two example boundaries for which the boundary detection was aborted (left) and
continued (right) after three consecutive edges (red arrows) with too low angle α with the sensor axis
s (up direction) were found, assuming a penalty threshold ρt = 3.

continued (right) after finding three edges for which the penalty was increased.
Conclusively, a boundary is considered as valid boundary if it comprises a certain
number of edges bmin. If the number of edges is too low, then a reasonable surface
trend estimation is difficult. Furthermore, the direction of the normals along
the boundary are compared with the sensor viewing direction and discarded if
they are from the opposing side. The angle threshold αt is set to 45◦, which
allows for a variation of the boundary and no mismatch with different boundary
types. The parameters ρt and bmin need to be adjusted depending on the size as
well as the resolution of the triangle mesh and the desired number of boundaries
as discussed in Section 4.7.1. If these values are selected to be too high, then
only very few boundaries are detected and vice versa. This is relevant since
many boundaries result in many viewpoints or scan paths as discussed in the
next Section 4.3.
Some example boundary edges in partial meshes of a putto statue and a pneu-
matic filter are depicted in Fig. 4.5.

4.2.2 Surface Trend Estimation

The surface trend or also trend surface describes the general shape of a sur-
face (Wren, 1973). It is often applied for fitting and interpolating regression
surfaces to a smoothed representation of area data. It is based on the assump-
tion that a spatial arrangement of a surface can be represented by a defined
geometric function. The surface trend can be applied for prediction of the
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Figure 4.5: Boundaries (thick red lines) detected in partial meshes of putto statue (left) and pneu-
matic filter (right).

unknown surface of an object or environment. Thus, it will be used in our
work to estimate the expected local trend of the surface. The surface trend is
estimated for each boundary individually, since complex objects cover several
different geometrical shapes and cannot be approximated by a single surface
trend estimation. In (Chen and Li, 2005), the surface trend is also used for
reconstruction of unknown objects. However, the surface trend is simply esti-
mated for the complete object. This method mostly works for simple objects,
e.g. cylindrical objects, but has problems with more complex shapes.

First, a boundary region VB needs to be found which can be used to estimate
the surface trend. Thus, for each detected boundary edge set EBi, a region
growing, limited by a bounding box, is performed. The region growing starts
with the center vertex of the boundary. As the edges in EB are sorted in order
of occurrence in the edge chain, the center vertex can be defined as

cb =

em+1
2
→ vb m = uneven

em
2
→ vb m = even

, (4.4)

which is the subsequent vertex vb (see Fig. 3.9 on page 44) of the center edge
element in the boundary edge set EB.
Starting at cb, all neighbor vertices are iteratively added which are within the
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bounding box. The bounding box is limited by the first and last vertex of the
boundary edge chain EBi, namely e1 → va and em → vb, in direction of the
sensor axis s and a fraction of the total expansion of the mesh in direction of
the surface trend.
Fig. 4.2 on page 58 shows an example of two left boundaries, which are detected
for a partial mesh of a camel statue, and their corresponding boundary regions.
The region growing is performed inward to the known part of the mesh. Then,
the surface trend of the unknown area beside the boundary is estimated using
the boundary region. We choose a simple approach to fit all the vertices vi =

[xvi , yvi , zvi ]
t of the boundary region, to a quadratic patch:

z = f(xvi , yvi) = a1x
2
vi

+ a2xviyvi + a3y
2
vi

+ a4xvi + a5yvi + a6. (4.5)

A quadric patch is chosen since it is of low order and gives a good estimate
of whether a boundary mesh area, which is not subject to too much change,
is curved outward or inward in the direction of the unknown area. Therefore,
the approximate curve (quadratic patch) in the unknown area can be estimated
quickly, which suffices to determine viewpoints according to the trend of the
surface.
In order to fit a model according to Equation (4.5), based on all vertices vi in
the boundary region we form a matrix of predictor variables

X =


x2
v1

xv1yv1 y2
v1

xv1 yv1 1
...

...
...

...
...

...
x2
vn

xvnyvn y2
vn

xvn yvn 1

 , (4.6)

an observations vector
z = [zv1 , · · · , zvn ]t, (4.7)

and a vector for the unknown parameters

a = [a1, · · · , a6]t, (4.8)

that need to be estimated. Then, a least square fit is performed to solve the
general linear model

z = Xa. (4.9)

Here, we apply a modified Golub-Reinsch singular value decomposition (Golub
and Reinsch, 1970) to the normal equation

â = (XTWX)−1XTWz. (4.10)
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to minimize the weighted sum of squares, where W is a diagonal matrix con-
taining the weights wi of the n observations. Here, the weight is defined by

wi =

1 if vi on boundary

||vi − vboundary|| otherwise
, (4.11)

depending on the distance to the boundary vertex vboundary closest to vi. This
means that vertices closer to the boundary are weighted higher and vice versa.
Finally, each set of boundary region VBi and boundary edge chain EBi forms a
boundary Bi which is added to the total set of boundaries BM.

4.3 Scan Candidate Calculation

In this section, the calculation of a set of scan candidates S based on the surface
trend information acquired during the Boundary Search is described. A scan
candidate is either defined as a single viewpoint S for aerial 3D sensors or as
a scan path for line range sensors. However, each sensor viewpoint represents
the transformation WTS and can be utilized to determine the required robot
position based on Equation 3.2 on page 34. Here, a scan path is defined by a
pair S1 and S2 representing start and end position with fixed orientation, that
is two homogeneous matrices with identical rotational part. Thus, the set of
scan candidates S either contains single viewpoints or scan path pairs.
First a single viewpoint is determined (which could be used for aerial 3D sen-
sors). Second, based on the viewpoint a scan path is determined, which consists
of several viewpoints. The length of the scan path depends on the expansion of
the partial triangle mesh of the object (for explanation see below).

4.3.1 Viewpoint calculation

For the viewpoint calculation, the goal is to find a sensor viewpoint S resulting
in an optimal range image. Therefore, S is considered optimal if it views the
estimated quadratic patch, representing the surface trend, at a perpendicular
angle and within an optimal distance ds, and has an overlap o with the previous
scans (see Fig. 4.6). ds is selected according to the sensor depth of field to
obtain optimal measurements, in contrast to a sphere search space, which is
fixed based on the sphere center. Furthermore, an overlap with the previously
scanned mesh is required to obtain a complete model and for registration of the
different scans. A viewpoint S is defined by its position and its orientation. The
sensor position sp is a 3D coordinate just as a mesh vertex vi. The axis sx, sy,
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mesh of 
previous scan

estimated 
quadratic patch

overlap o

Scan Candidate
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z
SCS
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Last View

Figure 4.6: Scan candidate calculation: the FOV of the scan candidate (gray sensor head) overlaps
with the mesh from previous scans by factor o. The overlap o (green line) represents a percentage
along the baseline defined by the ray that intersects the boundary center cb. The viewpoint or scan
path looks perpendicular onto the estimated quadratic patch at the optimal sensor distance ds. The
axes of the SCS only refer to the initial scanner pose (black sensor head).

Table 4.2: In order to calculate new surface points along the quadratic patch, either to xpi or ypi a
step size ∆p is added depending on the boundary type:

xpi ypi

left +∆p
right −∆p
top +∆p
bottom −∆p

and sz describe the orientation of the sensor for this viewpoint. It is defined
according to Fig. 4.6: the z-axis is in the viewing direction, the y-axis is along
the boundary but not necessarily parallel, and the x-axis perpendicular to the
other. We specify a sensor viewpoint by its homogeneous matrix

S =

(
sx sy sz sp

0 0 0 1

)
. (4.12)

For estimating S based on the Boundary Search, we start at cb according
to Equation (4.4) and iteratively calculate new possible surface points pi =

[xpi , ypi , zpi ]
t along the estimated quadratic patch in the direction of the un-

known area. Therefore, the values for xpi or ypi are changed by iteratively
adding a step size ∆p which depends on the boundary type as listed in Tab. 4.2
and inserting them in Equation (4.5) until the desired overlap o is reached. For
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instance, for a left boundary as in Fig. 4.6, ypi is kept constant and xpi in-
creased stepwise. Then, the corresponding surface normal ni = [xni , yni , zni ]

t is
calculated from the derivatives of Equation (4.5):

ni =


∂f
∂xpi
∂f
∂ypi

−1

 =

 2a1xpi + a2ypi + a4

a2xpi + 2a3ypi + a5

−1

 . (4.13)

The zni is set to −1 since the viewing direction of the scanner is described by the
positive z-axis and surface points are in the opposite direction. For this surface
point, a candidate viewpoint is calculated at the optimal sensor distance ds from
the curve and in direction of the normal. The candidate viewpoint S is required
to have an overlap of o with the previous mesh, with the constraint that the
angle between two consecutive viewpoints does not exceed a limit. The overlap
o represents the percentage of the part of the FOV which views the partial mesh
of previous scan data (see Fig. 4.6 on page 66) and is defined as

o =
lo
lb
, (4.14)

with lo being the length of the overlap part and lb the length of the complete
baseline. The algorithm aborts if the desired overlap o or maximum angle
is reached. The inverse of the quadric patch surface normal ni (see Equa-
tion (4.13)) represents the viewing direction or sz. To calculate the y-axis of
the sensor viewpoint, we use the boundary direction

db = dir(v1,vm), (4.15)

which is the normalized vector connecting the first v1 and last vertex vm of a
boundary.

As the boundary direction is independent of the estimated quadratic patch
normal, db is not necessarily perpendicular to sz. Therefore, we first calculate
sx, which is defined by the vector product:

sx = db × sz (4.16)

Then the sensor orientation of the y-axis is determined by:

sy = sx × sz (4.17)
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(a) Regular Boundary Search
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(b) With Rotation Strategy

Figure 4.7: Top view of the viewpoint calculation for a box-shaped object: the Boundary Search
fails for sharp corners and planar surfaces as it will generate a scan candidate which will not measure
anything. This is the case for the right boundary (left). Therefore, if the detected boundary is inside
the FOV and the estimated surface is planar, then the scan candidate will be rotated around the
boundary (right).

The scan position is in direction of sz at distance ds:

sp = p− dssz (4.18)

However, in some cases the Boundary Search fails as it assumes a constant sur-
face trend development. For instance sharp corners at planar surfaces such as in
box-shaped objects will not be estimated correctly. This behavior is illustrated
in Fig. 4.7(a). The sensor generates a range image which views one side of a
box-shaped object. As here the estimated quadric patch is planar, the scan
candidates are calculated with an overlap on the left and right side of the pre-
vious view with the same orientation. The right viewpoint candidate will not
measure anything. In this case, the algorithm will fail to move to other sides of
the box. Therefore, an alternative strategy needs to be followed for these cases.
We solve this problem by rotating the scan candidate around the boundary (see
Fig. 4.7(b)). The viewpoint candidate on the left side will measure more of the
box-shaped object and does not require any alternative strategy. Viewpoint can-
didates with planar surfaces and sharp corners are identified when the boundary
is not close to the limiting line of sights of the FOV but more inside. In order to
measure the planarity of this surface area, for each boundary region a principal
component analysis (PCA) is performed based on the surface normals. For each
boundary region the mean normal

n̄ =
1

k
·
k∑
i=1

ni ni ∈ R3 (4.19)
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is calculated from all k surface normals of the region and used to obtain a
mean-free matrix

N = (n1 − n̄|n2 − n̄| . . . |nk − n̄) ∈ R3×k, (4.20)

based on which a covariance matrix

CN =
1

k
NNT (4.21)

is determined. Then, the eigenvalues λ1 ≥ λ2 ≥ λ3 and corresponding eigenvec-
tors e1, e2 and e3 can be calculated quickly with the Jacobi method according to
Press et al. (1992). According to the PCA, the eigenvectors represent the prin-
cipal axes. The eigenvector e1 describes the axis in direction of the maximum
variance of the dataset, e2 the axis with second most variance perpendicular to
e1 and e3 defines the axis with the least variance of the principal axes. The
eigenvalues denote the variance of their corresponding eigenvector. If a surface
would be a completely planar surface, the surface normal of each vertex would
theoretically be equal. Then λ1 would be one and the other eigenvalues zero.
As we allow for small deviations from a planar surface, a boundary region is
considered planar if λ2 ≤ 0.09 and λ3 ≤ 0.09. Further, for all planar surfaces,
we check if the boundary is inside the FOV. If this is the case and the bound-
ary is not on the limiting line of sight, this is an indication for a sharp corner
(see right boundary in Fig. 4.7(a)) as nothing has been measured for part of
the FOV. Then, the scan candidate is rotated around the boundary by 45◦ (see
Fig. 4.7(b)).
When using a sensor, which measures 3D range data without moving the sensor,
these viewpoints can be utilized directly. Then, the mesh and the viewpoint
candidates are transformed back into the world coordinate system and one could
proceed with the NBS selection as presented in Section 4.5.

4.3.2 Scan path calculation

For line range sensors or also aerial 3D sensors which cannot hold the com-
plete object in the FOV, not only a single viewpoint S but a real scan path
is required defined by two sensor viewpoints S1 and S2. Here, a scan path is
represented by a linear motion of which the length is adapted to the current
known object surface. Adapting the scan path to the boundary area or surface
shape based on the voxel space as in Fig. 4.8 has also been investigated by Narr
and Kriegel (2012). However, the calculation of such an adaptive path is very
complex and better incidence angles and sensor to surface distances could not
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Figure 4.8: For a camel, based on the voxel contour (left), an adaptive scan path (right) is determined.
However, the advantages over a linear scan path are negligible.

be reached without a significant overhead of scanning and path planning. Thus,
we calculate a continuous (or linear) scan path along the boundary by using the
fixed orientation of the calculated viewpoint (see previous subsection) and only
changing the sensor position sp. An example for the scan path calculation is
given in Fig. 4.9. The figure shows all the detected boundaries (red lines along
edge) of a pneumatic filter from the initial range image (same as in Fig. 4.5 right)
and depicts the calculation exemplary for a boundary B on the left side defined
by v1 and vm which give the boundary direction db (see Equation (4.15)). The
surface trend is indicated by the dotted blue lines from which a surface point
pi with surface normal ni (see Equation (4.13)) are derived. Then, the sensor
position sp for a viewpoint is estimated (see Equation (4.18)). If the scan is only
performed along the boundary, then only part of the object will be scanned and
further scan path calculations for the boundary above and below with similar
orientation will be required. Therefore, the length of the scan path is chosen
so that the complete mesh is scanned by forming a bounding box around the
object based on the boundary direction db. Thus, we define a plane, having the
boundary direction db as normal, and intersecting the surface point pi. Then,
the surface points p1 and p2 are updated and s1

p and s2
p can be calculated by

inserting them to Equation (4.18). Now, the length of the scan path is defined
by the two vertices of the complete meshM with minimum and maximum dis-
tance to the plane resulting in s1

p and s2
p (see Fig. 4.9) which view the complete

object. This proved to be more efficient, since by scanning along the complete
mesh and not just the boundary, other unknown parts of the object were also
scanned. Otherwise more scans, which require time for planning and moving,
were required.
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Figure 4.9: The scan path calculation is depicted exemplarily for one boundary on the left side of
a pneumatic filter. All the detected boundaries are indicated by red lines along the edge. A mesh is
generated for the initial range image. The boundary direction db defined by the first vertex v1 and
last vm (blue line). A surface point pi is estimated along the estimated quadratic patch (blue dotted
lines) and used to determine the start point s1p and end point s2p of the scan path candidate.

4.4 Hole Rescan

When the surface model is fairly complete, typically some small holes may
remain in the model due to occlusions or objects with difficult surface properties
such as blackness or reflectivity. Therefore, when the coverage of two subsequent
scans is similar (see Section 4.6), the remaining scan candidates S from the
Boundary Search are discarded and for each hole an adequate linear scan path
is calculated.

Holes are detected by iterating over all edges of the triangle mesh and finding a
closed loop of border edges

EH := {e1, . . . , em} .

For each border edge, neighboring border edges are successively searched in the
same way as presented for the boundary detection (see Fig. 4.3 on page 60).
Thereby, a path of edges is traversed as in Fig. 4.10 until the path is closed
resulting in EH. Here, we only want to observe smaller holes as we assume that
the object has already been fairly modeled. Thus, EH is considered to be a hole
of interest if the number of edges is between a predefined hmin and hmax.

Loriot et al. (2008) suggest calculating center ch and normal nh for each hole
by averaging over all vertices and normals of the hole boundary and using these
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Figure 4.10: Hole Search: the algorithm searches for subsequent border edges in the triangle mesh
and traverses these (indicated by blue arrows) until the path is closed resulting in a hole.

to determine an NBV. However, averaging over all hole normals only performs
well if the object shape is mostly convex. If a hole is within a concavity as in
Fig. 4.11, averaging over the normals along the border of the hole fails. The
reason for this is that the normals are all pointing in very different directions and
therefore the averaged hole normal sometimes might even point in the wrong
direction, namely into the object. Thus, starting at the hole center ch we
sample 200 possible hole normals over a sphere showing in all directions and we
select an occlusion free direction with reasonable viewing angle. The procedure
is described in Alg. 2. First we determine a hole normal nh based on the
PCA method analogous to Equations (4.19)-(4.21) using the vertices along the
hole boundary. The vertices used as the normals are not reliable for holes in
concavities. Then, we iterate over the set of hole normal samples Ns and check
for view occlusions. This is done by ray tracing along the direction of the normal
sample until the required sensor distance ds is reached and checking the state
of each intersected voxel. If the complete normal view direction is occlusion
free, the distance of this normal direction to the PCA normal direction dn is
calculated and added to the mapNf along with the sample itself. Furthermore, if
the map remains empty, no valid view direction for this hole is given. Otherwise,
an occlusion free hole normal direction is determined taking the normal sample
from the map which distance is 20% of the distance difference longer than the
shortest distance to the PCA hole normal. This value was used as we wanted a
good viewing angle onto the hole (shortest distance) but also scan the complete
hole. Note that the front() element of the map has the lowest distance and
the back() element the largest distance to the PCA hole normal. In Fig. 4.12,
we see an example where a scan path has been determined based on averaging
the normals (red) of a hole (indicated by the blue circle). However, the hole
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Figure 4.11: Hole in concavity: the normals along the hole border are pointing in very different
directions, making it impossible to calculate a reliable hole normal.

Algorithm 2 Hole normal calculation by finding occlusion free view direction
Ns : set of hole normal samples
Nf : initially empty map of occlusion free hole normals with distances
nh : initially empty hole normal

nh = getPCAHoleNormal()
for all normal samples ñh in Ns do
if isOcclusionFree(ñh) then
/* Calculation of distance between PCA normal and sample normal */
dn = ‖nh − ñh‖
Nf .insert(dn, ñh)

end if
end for
if size(Nf) == 0 then
return false

else
/* Selecting hole normal with 20% shortest distance to PCA normal */
nh = Nf .lower_bound(Nf .front() + 0.2 · (Nf .back()−Nf .front()))
return true

end if
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Figure 4.12: For the detected hole (indicated by blue circle), from initial scan path based on averaging
over the normals the hole itself is not visible (left). Therefore, an occlusion free hole normal direction
results in a scan path (green) from which the hole is completely visible

cannot be seen from the initial view (left) as it is occluded by another part of the
object. Therefore, an occlusion free hole normal direction as described above is
determined resulting in a scan path (green) which views the complete hole and
scans it at a reasonable angle.

After an occlusion free hole normal direction is calculated, a scan path is deter-
mined along the largest hole direction dh = dir(ch,vmax), which we define by
the direction between ch and the boundary vertex vmax, that is farthest away
from the center (see Fig. 4.13). Finally, start and end position of the scan path
s1

p and s2
p are calculated by adding a relative threshold of 10% on each side and

multiplying the normal with the sensor distance ds:

s1
p = ch − 1.1 · dh + ds · nh (4.22)

s2
p = ch + 1.1 · dh + ds · nh. (4.23)

The scan direction is the inverse of the hole normal nh. Additionally, for holes
with similar center position and orientation, a combined scan path is determined.
Of course, one could close the holes in a post-processing step. However, this
would distort the real object contour and is not acceptable for accurate 3D
modeling. After the mesh is fairly complete, we only perform the hole detection
once and scan holes until the desired coverage is reached. Thereby, real holes
are only scanned once.
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Figure 4.13: Scan path calculation: for each hole (white area) within a measured surface (gray), a
scan path is determined in direction of the largest expansion of the hole dh (green) in inverse hole
normal nh direction (blue) and at optimal sensor distance ds (purple) .

4.5 Next-Best-Scan Planning

Based on the set of scan candidates S, which are either generated during the
Boundary Search or the Hole Rescan, an NBS (or NBV) needs to be selected.
Here, NBSs or NBVs are selected based on a utility function which considers
both IG and surface quality.

4.5.1 Surface Feature Update

In order to assess the surface quality of a scan candidate, surface features are
stored to the PVS.
The desired output of the autonomous 3D modeling is a complete, high quality
3D triangle mesh. Therefore, local features describing the completeness and
quality are derived directly from the mesh. In detail, two features describing the
quality are used here: a local sampling density and an incidence angle between
a measurement beam and the surface model. Concerning the completeness, the
percentage of border edges is calculated. As pointed out in Section 2.3, other
work simply uses incidence angle as quality criteria and has not considered
surface information. They simply estimate a average normal from neighboring
voxels which is not very precise.
The features are calculated for each voxel in the PVS which is considered to be
occupied (p ≥ 0.95) and stored additionally to state values described in Sec-
tion 3.3.2, since the NBS selection processing step is performed by ray tracing
based on the PVS. The combination of the proposed features enables the cal-
culation of an optimality-criterion with respect to an expected improvement of



76 CHAPTER 4. NEXT-BEST-VIEW PLANNING FOR MODELING

the surface quality of already scanned areas.

Sampling Density

Let Nact be the number of points within the normal estimation neighborhood
with radius Rn and let Nmax be the maximum possible number of neighbors
according to the reduction radius Rr of the density limitation. Then we call the
quotient

d(vj) =
Nact

Nmax
d ∈ [0, 1] (4.24)

the local point density. It describes the sampling density around a vertex vj

and can therefore be used to measure sampling sufficiency. The close-packing
of spheres theorem yields (see (Hales, 2005; Bodenmüller, 2009))

Nmax =

√
2π ·R2

n

R2
r

. (4.25)

In the following, let i denote (the index of) a voxel. Then, the average density
d̄i within voxel i is calculated by averaging over the density of all m vertices
within that voxel:

d̄i =
1

m

m∑
j=1

d(vj). (4.26)

Average Surface Normal

Also, we later use an angle of incidence for filtering voxels in the surface quality
determination. Since the exact calculation of the incidence angle of a surface
beam with the triangle mesh proved to be too time consuming, we calculate and
store an average surface normal

n̄i =
1

m

m∑
j=1

nj , (4.27)

which represents the average of the normals of all m vertices within voxel i. If
the space resolution is set properly, n̄i can be used for incidence angle estimation
of a sensor beam with the surface. It is utilized in Section 4.5.3 for a binary
decision not considering simulated measurements with a too large incidence
angle during the NBS selection.
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Figure 4.14: Occlusion Avoidance: the initial NBV is occluded by another part of the object and
requires view replanning.

Amount of Border Edges

In order to account for the completeness, the percentage of mesh border edges
bi is calculated for each voxel. A border edge is an edge to which a triangle is
only assigned on one side and on the other side there is nothing as defined by
Equation (4.1). The border edge percentage is defined by the number of border
edges N i

border divided by the total number of edges N i
total within a voxel i:

bi =
N i

border

N i
total

bi ∈ [0, 1]. (4.28)

For a complete mesh of an object, no border edges should exist. Therefore, the
border edge percentage reveals whether this voxel requires rescanning (Kriegel
et al., 2012) and is utilized during the quality-based NBS selection.

4.5.2 Replanning for Occlusions and Collisions

When handling objects with complex geometry, which are not mostly convex
and contain several self-occlusions, there is no certainty that the scan candidate
will actually view the unknown object part it was planned for. Fig. 4.14 shows
an example where the initial NBV is occluded by another part of the same
object. As shown by Kriegel et al. (2011), not all object parts can be modeled
simply with the Boundary Search but require additional replanning for occlusion
avoidance. The occlusions can occur due to an object to be modeled by itself
or also by other objects or obstacles in the scene.
Furthermore, the scan candidates could not be reachable by the robot or in
collision with the environment. Therefore, before an NBS is selected, all scan
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candidates S are checked and if required replanned avoiding occlusions and
collisions.
Thereby, similar to Prieto et al. (2003), all scan path candidates (defined by S1

and S2) are iteratively rotated around the part of the object, which is supposed
to be scanned. The rotation is performed around the x-axis and y-axis of the
SCS (see Fig. 4.6 on page 66). A rotation R around an axis a = [a1, a2, a3]t

with rotation angle β is defined by:

R(a, β) = aaT + cos(β) · (I− aaT ) + sin(β) ·A, (4.29)

with

A =


0 −a3 a2 0

a3 0 −a1 0

−a2 a1 0 0

0 0 0 1

 .

Alg. 3 describes the procedure of rotation that is performed for each scan path
candidate. At first no rotation is performed but we simply check if there is

Algorithm 3 Rotation of scan paths in occlusion or collision
for βx ∈ {0◦, ±10◦, ±20◦, ±30◦, ±40◦} do
for βy ∈ {0◦, ±10◦, ±20◦, ±30◦, ±40◦} do

s
′
z = R(sy, βy) ·R(sx, βx) · sz /* use Equation (4.29) */
Calculate new s

′
x /* see Equation (4.16) */

Calculate new s
′
y /* see Equation (4.17) */

Calculate new s1′
p and s2′

p /* see Equation (4.18) */
Form new S

′
1 and S

′
2 /* see Equation (4.12) */

if isOcclusionFree(S′
1,S

′
2) and isCollisionFree(S′

1,S
′
2) then

S1 = S
′
1

S2 = S
′
2

return true
end if

end for
end for
return false

an occlusion or collision for the actual scan path. Then, the rotation angles
around the x-axis, βx, and the y-axis, βy, are increased in both direction with
a step size of ±10◦ up to an angle of ±40◦. Then, rotational angles are not
further increased as the incidence angle onto the surface of interest is assumed
to be too high for reasonable depth measurements. First a rotation about the
positive and negative angle is performed until the angle is increased as the angle
should be as low as possible for convenient incidence angle. In each iteration, a
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rotated scan path candidate defined by the matrices S
′
1 and S

′
2 is calculated. As

the rotational part is identical in both matrices, sx, sy and sz only need to be
updated once. First, the viewing direction s

′
z of the sensor viewpoint is rotated

and the corresponding sensor axes s
′
x and s

′
y are updated. Second, the sensor

positions s1′
p and s2′

p are also updated. After the homogeneous matrices S
′
1 and

S
′
2 are formed, first an occlusion check and if successful second a collision check

are performed. The collision check is more costly, that’s why it is carried out
second. For checking the occlusions, ray tracing is performed in the PVS by
sampling points along the complete scan path. For these points, we check if
a ray reaches surface points along the boundary direction db (see Fig. 4.9 on
page 71) for boundaries or dh (see Fig. 4.13 on page 75) for holes. As only part
of the surface of interest could be occluded, the percentage of reached surface
points is determined. Furthermore, the scan path might be in collision with the
robot itself or the unknown or static environment. Thus, collisions of the linear
motion (scan path candidates) are determined by dividing the linear path into
several path portions and checking the PTP motion as described in Section 3.2.2.
Here, also the percentage of collision-free path portions is calculated. Finally, we
consider a scan path if 50% of it is without occlusion and 50% is collision-free. If
this is the case, the scan path candidate is updated and the algorithm aborts. If
all angles have been tried and no scan candidate, which sees the desired surface
and is reachable by the robot, is found, then the algorithm aborts without
success and this candidate is removed from the list. As can be seen in Alg. 3,
for the first iteration no rotation is performed.
Fig. 4.15 shows a further example during autonomous modeling of a camel. The
purple scan path, which is in collision, is replanned by a rotation around the
y-axis by −30◦ resulting in the blue path which is occlusion and collision-free.
All other paths in the figure are in collision with the platform on which the
object is positioned or not reachable by the robot workspace. Note that the
scan paths in Fig. 4.15 represent the center of the sensor system, of which the
dimensions need to be considered during collision-free path planning. Here, the
algorithm aborted before a rotation around the x-axis was performed.
As these collisions and occlusions already occur with single objects, when having
a scene with multiple objects the avoidance strategy is even more important.

4.5.3 Next-Best-Scan Selection

An NBS is selected based on a utility function, which considers both surface
quality and IG. To get a measure of the IG of a single viewpoint candidate,
usually ray tracing in the voxel space is performed. Some NBV methods simply
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Figure 4.15: A scan path candidate (purple, middle) in collision is replanned by rotating the paths
around the object part of interest. The purple and all red scan paths are in collision with the platform
or not reachable by the robot workspace. The blue scan path represents an occlusion and collision-free
path viewing the same area at the cost of a worse angle. Here, the PVS is partly explored for a camel.

count the number of the viewed unknown voxels (Blaer and Allen, 2007; Wong
et al., 1999). Thereby, sensor uncertainty is not considered and only the first
intersected unknown voxel of the beam is observed. In (Kriegel et al., 2012), the
entropy reduction is added up for each intersected voxel and the scan path with
highest expected entropy reduction (or expected IG) is selected as NBS. Ac-
cording to Suppa (2008), for exploration the expected IG can be approximated
by the expected entropy reduction in the voxel space. However, the expected
IG represents an estimate for the entropy reduction but does not represent the
actual entropy reduction as the scan is only estimated in simulation but has not
been carried out with the real robot.

Using the expected IG as measure for the NBS selection works very well for
the first scans. However, once the voxel space is sufficiently explored but the
required quality is not yet reached, this measure is not applicable since most
voxels are almost free or almost occupied. Therefore, as measure to select an
NBS, we use the entropy of the volumetric model ev but add a surface quality
value qs to a utility function futility, which is determined for each scan candidate
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of S. The weighting between the two can be adjusted depending on the task:

futility = (1− ω) · ev︸ ︷︷ ︸
Exploration

+ω · (1− qs)︸ ︷︷ ︸
3D Modeling

. (4.30)

The function consists of an exploration and 3D modeling part. The exploration
part selects an NBS which views the sum of voxels with the highest expected en-
tropy reduction. The 3D modeling part chooses an NBS which views previously
scanned voxels with poor mesh quality. For the first scans, the exploration part
needs to be weighted higher to get a rough model of the unknown object. Once
a rough triangle mesh is obtained, the 3D modeling part needs to be considered
more, since now the mesh quality should be addressed. Therefore, the weight ω
is selected such that it depends on the scan number ns:

ω(ns) =

ns
nq

ns
nq

+ 1
=

ns

ns + nq
. (4.31)

For nq a value of five is selected, which means that after five scans, the explo-
ration and the 3D modeling part are weighted equally. For all further scans,
3D modeling is considered more. Without the weight ω, the algorithm needed
a lot of scans to get a rough model of the object all around, which is not very
efficient.

For each scan candidate, rays are cast onto the PVS based on the sensor model
of the applied sensor. An important information that can be derived from a PVS
is the IG. Information or entropy of a sensor view is the sum of the weighted
logarithms of the probabilities of all voxels in that view. The total entropy
ev for a candidate view is defined by the entropy over all voxels i, which are
intersected by a beam until an occupied voxel is reached:

ev = − 1

Nv

k∑
i=1

pi log(pi)︸ ︷︷ ︸
occupied

+ (1− pi) log(1− pi)︸ ︷︷ ︸
free

, (4.32)

where k is the total number of intersected voxels. For normalization, the value
is divided by the total number of non-free voxels in the voxel space Nv.

The probability pi represents the probability of voxel i to be occupied. If a voxel
is free (pi = 0) or occupied (pi = 1) then the entropy is zero.

Additionally to the entropy, for each voxel i, which is intersected and contains
surface features, a surface quality qi is determined based on the border edge
percentage bi (see Equation (4.28)) and the average point density d̄i (see Equa-
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Figure 4.16: A Mozart bust is initially scanned from the front (light green mesh). After calculating
scan path candidates based on the Boundary Search, the scan with the highest rating is selected as
NBS. Here, the scan candidates are color coded from low (red) to high (green) utility rating. Based
on the NBS, in this case the rightmost scan path, the mesh is extended (dark green) and the NBS
planning continues until the required model quality is reached.

tion (4.26)):

qi =

λ · bi + (1− λ) · d̄i if θ < 70◦

0 otherwise
. (4.33)

The incidence angle θ is calculated by forming the dot product 〈rs, n̄i〉 between
the simulated ray rs and the average voxel surface normal n̄i. If θ ≥ 70◦ then
qi = 0, since we assume that a re-scan of this surface area will not increase the
quality of the surface model due to the large angle of incidence. The angle value
and binary decision are chosen as elaborated in Section 2.3. If θ is below 70◦,
the surface quality qi is determined by weighting the border edge percentage bi
and the average relative point density d̄i. The quality of the complete surface
model qs is calculated by computing the average of qi:

qs =
1

Nv

k∑
i=1

qi. (4.34)

For normalization, the value is also divided by the total number of non-free
voxels Nv in the voxel space.
After determining a rating for each scan candidate of S according to Equa-
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tion (4.30), the scan path with the highest value represents the NBS.

When simulating all beams of one scan path candidate, the voxels for which IG
or quality have already been considered in the utility function are marked as
visited and will not be considered during further intersections of other beams
with these voxels. This is done as otherwise the total entropy ev or surface
quality qs could be overrated for some views in which they are counted several
times for certain voxels. Additionally, less time is needed as less entropy and
surface quality calculations need to be carried out.

Furthermore, when applying a sensor with high resolution such as a stereo cam-
era system, it might take a long time to simulate all beams. Therefore, similar
to Vasquez-Gomez et al. (2013), not all beams are considered but the resolution
of the depth image is reduced and therefore e.g. only every forth beam row-wise
and column-wise is simulated.

Fig. 4.16 gives an example for the NBS selection during the autonomous model-
ing of a Mozart bust. The utility rating of each scan path of set S is represented
by color coding from low (red) to high (green). In this case, the rightmost scan
candidate is selected as NBS and the process will continue until the desired
model quality is reached.

4.6 Process Control

The control terminates the process, when the desired quality is reached, and
switches the scan planning mode, when the quality of subsequent scans is similar.

It is very difficult to find a reasonable termination criterion if the object is
unknown and thus one cannot know when the model is complete. Torabi and
Gupta (2012a) point out that most previous NBV methods lack a termination
criterion, which considers the actual object shape coverage. They abort if a
maximum number of views are reached (Trummer et al., 2010), if the model
does not change significantly anymore after a scan (Wong et al., 1999; Vasquez-
Gomez et al., 2014b) or if all air points (Larsson and Kjellander, 2008) or bound-
aries (Kriegel et al., 2011) have been scanned once. However, number of views
are not linked with the completeness and no new data after a certain NBV does
imply that also no new data could be obtained from another view. Torabi also
suggests that the model is complete if no boundaries in the point cloud remain.
However, even if the object is complete within the point cloud or voxel space,
the surface model can still contain several holes. A triangle for the mesh cannot
be generated if no neighborhood point can be found within a certain radius.
In (Kriegel et al., 2012), the percentage of border edges in the mesh is used as
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Figure 4.17: The area of an example hole is estimated by forming triangles to the hole center for
each edge vertex pair along the hole. The method does not describe the actual hole area accurately
but gives a quick and good estimate on it.

a factor to estimate the mesh completeness. Here, it is used as surface feature
of a voxel. However, this measure does not give a good estimate on the actual
completeness percentage of a partial mesh, as here the area, which is not filled,
is relevant. The size of the holes cannot be estimated based on the border edges,
since a certain number of border edges can describe several holes with very small
area or also one hole with a very large area.

In this work, we determine the surface area Afilled of all triangles in the mesh
and estimate the surface area for each hole individually, which is summed up to
the total area Aempty of all holes. The mesh coverage is estimated by:

ĉm =
Afilled

Afilled +Aempty
ĉm ∈ [0, 1] (4.35)

The filled mesh area is the sum of the area of all n triangles, which is half the
cross product of the two spanning vectors of a triangle consisting of the vertices
va, vb, and vc:

Afilled =
1

2
·
n∑
j=1

‖dir(vja,v
j
b)× dir(vja,v

j
c)‖ (4.36)

In order to determine Aempty, holes in the mesh are detected (see Section 4.4)
and a surface area Ahole for each hole area is approximated by forming a triangle
for all k vertex pairs along the hole boundary with the hole center ch:

Ahole =
1

2

k∑
i=1

‖dir(ch,vi−1)× dir(ch,vi)‖ (4.37)

Fig. 4.17 shows how for each edge vertex pair along a hole boundary, triangles
are formed by creating edges toward the center. Finally, the sum of the hole
areas Ahole for all k holes describes the total empty mesh area Aempty. Certainly,
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we could also fill the holes with a standard bicubic method (Liepa, 2003) and
determine the area of the filled hole. However, bicubic hole filling is complex
and computationally expensive. Since we estimate the mesh coverage ĉm after
each scan, the suggested method seems sufficient concerning time and result.
With a large neighborhood radius during the mesh generation, a 100 % complete
mesh can easily be achieved, at the cost of losing the details. Therefore, simply
evaluating the mesh coverage such as in (Khalfaoui et al., 2012; Torabi and
Gupta, 2012a; Kriegel et al., 2012) is not always reasonable. As our mesh
generation inserts new vertices even in areas, where the mesh is complete, a
combination of measuring mesh coverage and point density is important. The
algorithm aborts if a certain mesh coverage ĉm and average relative point density
d̄m over the complete mesh are reached. If both are never reached due to object
geometry and sensor restrictions, then the algorithm aborts after a predefined
number of scans nabort.
Further, the process control switches from the scan candidate generation based
on the Boundary Search to Hole Rescan, when the estimated coverage ĉm stag-
nates. Therefore, the mesh coverage for the previous scan ĉi−1

m and the current
scan ĉim are compared. If the estimated coverage increases less than 1%, i.e.

ĉim − ĉi−1
m < 0.01 (4.38)

then Hole Rescan is performed.

4.7 Evaluation of the Next-Best-Scan Algorithm

In this section, the different components of the NBS algorithm presented in
the previous sections are evaluated in simulation on an NBV benchmark object.
Thereby, the loop for the NBS planning methods is closed for autonomous object
modeling as described in Section 4.1. The evaluation presents a preexamination
to the experiments performed on real autonomous modeling systems in the
following chapter. Here, we compare the scan path candidate generation (in-
dicated by a storage symbol at bottom center in Fig. 4.1 on page 56) based
on the Boundary Search and Hole Rescan with just the Boundary Search and
also with a sphere search space as used in several NBV algorithms (see Sec-
tion 2.3). Furthermore, we compare the performance of random, IG (ω = 0 in
Equation (4.30)), surface quality (ω = 1) and IG/surface quality-based NBS
selection. For the latter, ω is used as suggested in Equation (4.31).
The evaluation was performed in simulation since first the performance of im-
plemented NBV algorithm should be assessed without having to deal with robot
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Figure 4.18: The NBV benchmark object (Munkelt, 2011) consists of curved surfaces, sharp edges,
and holes with difficult concavities. It represents different challenges that cover a wide range of real
objects

workspace problems. Moreover, we did not have a real-world object of the NBV
benchmark object that we wanted to compare the methods on. The object was
originally presented by Munkelt et al. (2007), but here the slightly modified
version as in (Munkelt, 2011) is utilized (see Fig. 4.18). Munkelt et al. (2007)
criticize that the complexity of most used test objects is rather low. The NBV
benchmark object was chosen as test object as it represents different challenges
that cover a wide range of real objects. The object contains several self occlu-
sions, curved surfaces, sharp edges, and holes with difficult concavities. The
actual methods can be compared ignoring restrictions of workspace for now as
we assume a robot with infinite workspace. Otherwise, a sphere search would
be at a disadvantage as it requires more space.

For the simulated laser scans, the sensor model of the DLR laser stripe profiler
(LSP) (Strobl et al., 2004) is used as here an accurate error model is given. A
depth measurement is simulated by determining the intersection of a beam with
the triangle mesh of the test object. A distance dependent sensor noise is also
applied to each simulated depth measurements based on the deviation

σ(d̃) = 0.005 + 0.0005 d̃+ 1.026e−5 d̃2 + 1.9979e−9 d̃3 + 1.2655e−12 d̃4 (4.39)

which is described by a polynomial of order 4 as in (Suppa et al., 2007). Af-
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Table 4.3: Evaluation Parametrization

Parameter Symbol Value
Rr Reduction radius 0.5mm
Rn Normal estimation radius 4mm
Rm Mesh generation radius 6mm
lv Voxel edge length 5mm
ρt Boundary penalty threshold 5
bmin Minimum edge number per boundary 15
λ Surface quality weight 0.7
ĉm Estimated mesh coverage 80%
d̄m Relative point density 20%
nabort Predefined abort scan number 30

ter each depth measurement, the mesh and PVS are updated and an NBS is
selected. The initial scan path is randomly chosen for each run. Again, we
assume that the object is standing on a pedestal and cannot be scanned from
the bottom.

4.7.1 Parametrization

As mentioned throughout this chapter, several parameters need to be adjusted
for the implemented methods. The parameters for the NBV planning depend
on the parameters from the mesh generation and PVS update (Sections 3.3.1
and 3.3.2). These must be adapted to the accuracy and resolution of the utilized
scanner system to allow for optimal modeling results. During this evaluation,
the settings from Tab. 4.3 are applied. During the experiments in the next
chapter, similar or partially equal values are used. The normal estimation and
mesh generation radius could be slightly lowered but not much due to the sensor
accuracy of the LSP. The suggested values represent a good trade-off between
model quality and sensor sampling density. A voxel edge length lv of about Rm

guarantees that the upper bound for the per-voxel point density, controlled by
Rr is sufficient. A too small lv increases the computation time and decreases
the number of mesh vertices that are used for per-voxel feature calculation.
However, a too high lv does not offer representable local surface features. Thus,
a lv of 5mm is chosen for the current system, which is a suitable trade-off
between performance, detail and robustness.
The parameters ρt and bmin need to be adjusted depending on the object size,
the resolution of the triangle mesh and the desired number of boundaries. If
these values are selected to be too high, then only very few boundaries are
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Table 4.4: Preliminary tests on a cultural heritage object for selection of quality weight after 30
iterations.

λ d̄m ca/%
0.3 0.41 94.6
0.5 0.40 94.7
0.7 0.39 95.8

detected and vice versa. This is relevant since many boundaries result in many
scan paths. These require a longer computation time if each scan is simulated in
order to select the best one. The values used here are chosen based on average
mesh edge length and object size. Based on the limitation radius Rr of 0.5mm
and mesh generation radius Rm of 6mm, the average edge length l̄e will be in
the area of 3mm to 4mm. The average boundary length can then be calculated
by:

l̄B = l̄e · bmin (4.40)

Note, that the Boundary Search does not abort if bmin is reached but considers
boundaries of at least this size. If we assume l̄e to be 3.5mm, then in our case
l̄B is 52.5mm. This boundary length seems optimal for object sizes in the area
of 100 to 300mm and is therefore used for the NBV benchmark object which
has a size of 160× 160× 160mm. However, for very large objects with smaller
details, these parameters need to be adjusted, as otherwise boundaries for small
object parts will also be detected resulting in several scan path candidates and
a high computation time.

The estimated mesh coverage ĉm is set to 80%. As it also considers the bottom
part, 100% will never be reached. For the NBV benchmark object, we have six
sides of a cube of which the bottom side cannot be seen. If we would assume a
perfect cube, the remaining five sides would accomplish to a mesh coverage of
83.33%. As we do not need 100% coverage for object recognition or grasping,
a value of 80% seemed reasonable. If the objects are very tall and only have a
small base area, then ĉm needs to be selected higher and vice versa in order to
accomplish similar results. The average relative point density d̄m is set to 20%
which seemed to be a sufficient value.

For λ a value of 0.7 was selected based on preliminary tests, which were per-
formed on a cultural heritage object. Tab. 4.4 summarizes the preliminary tests
with varying λ. The average point density and actual mesh completeness are
shown representing average values over all runs. A λ of 0.7 was chosen as for this
case the completeness is significantly higher than for other values. This means
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that mesh completeness is weighted higher than point density, which also seems
reasonable as coverage is more important than point density.

4.7.2 Comparison

For comparison of NBV planning algorithms, there is a number of accepted
criteria. In (Scott et al., 2003) the following three measures are suggested: view
plan quality (quality of the reconstruction), view plan efficiency (total path
the sensor is moved, number of views) and view plan computational efficiency
(complexity and time). Munkelt et al. (2007) criticize that only few authors take
the reconstruction accuracy into account and suggests to measure the quality of
an NBV planning algorithm by coverage, average error and average distance of
neighboring points. Since we perform our evaluation with the sensor model of
the same sensor and use the same parameters to generate a mesh (Bodenmüller,
2009), the average distance of neighboring points and average error was pretty
much the same for our experiments. Therefore, we use: number of scans ns

until the desired quality is reached, actual mesh completeness ca, total scan
path length ls, and average time for NBS selection t̄nbs. We do not abort the
algorithm after ns but continue to run until nabort in order to also compare the
mesh completeness ca(30) after 30 scans. Note that ca(ns) should be about the
same for different runs as the algorithm aborts when the estimated coverage
and desired point density (see previous section) are reached. The completeness
ca is measured by performing a ball neighborhood search for each vertex of
the ground truth model in the set of vertices of the generated model. For this
neighborhood radius we chose a value of 3mm, which seems feasible as it is half
the mesh generation radius Rm. Then ca is calculated by dividing the number
of vertices for which a correspondence was found by the total number of vertices
in the ground truth model. The total scan path length ls refers to the sum of
path lengths for the 30 scans.
Here, we compare different methods for scan path generation: the Boundary
Search and its combination with a Hole Rescan both suggested in this chapter
with a standard sphere search space. Also our novel utility function considering
IQ and Quality is compared with random NBS selection and just applying the
IG and the Quality part of the utility function. These three methods for scan
path generation are combined with the four NBS selection criteria (Random, IG,
Quality, IG/Quality) resulting in 12 different methods. For each NBS method,
the algorithm is run 100 times with a random initial scan. The random initial
scan is chosen along the five sides and eight edges of the object’s bounding box
which do not overlap with the pedestal the object is placed on. It is especially
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Figure 4.19: The distribution of the abort scan number for 100 runs is plotted for different NBS
approaches based on combinations of NBS selection (first letter: R=Random, I=IG, Q=Quality,
C=IG/Quality) and NBS search spaces (second letter: S=Sphere, B=Boundary Search, H=Boundary
Search/Hole Rescan). A standard notched boxplot showing mean (red line), notches, quartiles (blue
box) and whiskers (black lines) is overlaid with a kernel density plot (yellow).

relevant as the generation of scan paths based on the Boundary Search (BS)
and Hole Rescan (HR) both depend on the current mesh. The scan paths for
the sphere search space are obtained by discretizing the inclination and azimuth
angles. We chose 81 scan paths which seemed to be a good trade-off between
quality and efficiency. This falls in area of the number of sphere samples which
are suggested by Wong et al. (1999) and García et al. (1998). However, here we
do not have viewpoints but scan paths. As the sphere space is initialized before
the first scan, each sample scan path has a length of approximately 300mm so
that the complete object can be scanned.

The data distribution of the abort scan number ns for the 12 different NBS
approaches is overlaid with a notched boxplot in Fig. 4.19. Here, the different
NBS approaches are described with two letters: the first denoting the NBS
selection (R=Random, I=IG, Q=Quality, C=IG/Quality) and the second the
NBS search spaces (S=Sphere, B=Boundary Search, H=Boundary Search/Hole
Rescan). As the plot indicates that the data is not uniformly distributed,



4.7. EVALUATION OF THE NEXT-BEST-SCAN ALGORITHM 91

Table 4.5: Comparison of autonomous 3D modeling based on different NBS selection criteria (Ran-
dom, IG, Quality, IG/Quality) and search spaces (Sphere, BS=Boundary Search, BS/HR=Boundary
Search and Hole Rescan) for the NBV benchmark object. The results represent average values of the
100 runs per approach.

Selection Search ñs Notch c̄a(ns) c̄a(30) l̄s/m t̄nbs/s
Sphere 16 ±1.02 96.04 98.90 9.30 0.30

Random BS 15 ±0.94 95.30 98.03 8.19 0.35
BS/HR 16 ±2.04 95.38 98.27 4.16 0.37
Sphere 16 ±0.47 94.10 98.68 9.18 6.30

IG BS 12 ±0.31 95.96 98.54 7.04 1.16
BS/HR 12 ±0.63 95.95 99.37 4.07 0.94
Sphere 16 ±0.63 95.66 98.94 8.92 7.14

Quality BS 11 ±0.47 95.35 98.41 6.68 1.42
BS/HR 11 ±0.47 95.45 99.54 3.89 1.38
Sphere 20 ±1.10 95.90 98.80 8.92 7.14

IG/Quality BS 11 ±0.47 95.56 98.50 6.58 1.42
BS/HR 10 ±0.47 95.44 99.61 3.90 1.37

we will use the median ñs (red line) of the abort scan numbers for comparison
instead of the average. As an appropriate measure of spread, we accompany
the median with the notch size (Chambers et al., 1983), which is based on the
interquartile range (IQR) and the size of the samples s (in our case 100), leading
to:

Notch = ±1.57 · IQR√
s.

(4.41)

If the notches of two boxplots do not overlap, there is a 95% confidence that
their medians differ. The IQR is represented by the expansion of the blue box.

The medians, notch sizes and average of the criteria suggested above over 100
runs are listed for the 12 methods in Tab. 4.5. For the sphere space, the median
ñs is never lower than 16. The total path length after 30 scans is around 9m and
is a little larger than for BS and more than double the length as for BS/HR. Also
except for the random case, t̄nbs is considerably higher for the sphere than for
BS and BS/HR as more and longer scan paths need to be simulated. For both
BS and BS/HR, the number of scans is decreased from 15 and 16 for random
to 12 for IG, to 11 for Quality, and to 11 and 10 for IG/Quality respectively.
The best result for ñs is achieved for IG/Quality selection and BS/HR space.
As the notch for C_H in Fig. 4.19 does not overlap with any other methods we
can assume that the medians are actually different. However, as one can see in
the plot, that Q_B, Q_H, C_B, and C_H have quite similar distributions. For
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these four methods, the abort scan number is very reliable as one can see in the
plot where the value for ns is always between 8 and 15. In contrast the random
and the sphere distribution are very scattered. Nevertheless, a ca(30) of above
99% is only reached with a Hole Rescan. The highest value for ca(30) namely
99.61% is reached for IG/Quality selection and BS/HR space. In Fig. 4.20 on
page 95 the completeness is depicted for IQ/Quality selection and the three scan
path generation methods Sphere, BS and BS/HR by a boxplot for each scan.
As one can see, the completeness for the sphere space is significantly worse than
for the other two methods until about scan 23. After scan 23, the completeness
for BS is even worse than for the sphere search which indicates that with the
sphere space, details can be acquired better than with the Boundary Search.
BS and BS/HR are very similar in the beginning but after about scan number
13, the completeness is always higher for BS/HR. This shows that with sphere
or BS, the final details cannot be viewed and for high coverage the combination
of BS/HR is necessary. In Fig. 4.21 on page 96, the completeness is shown
after each scan for the different NBS selection methods using BS/HR for scan
path generation. Random selection results in a completeness significantly lower
than for the others. The other three NBS selection criteria are similar for
the first four scans. During these first few scans, the Quality selection is a
little worse which shows that IG is better for the first few scans. After scan
number five, IG cannot reach a completeness as high as Quality and IG/Quality
anymore. This shows that the quality criteria help to achieve a higher object
completeness. Furthermore, the variance of the completeness is always highest
for random, decreases for all methods the more scans are obtained, and is lowest
for IG/Quality during the last few scans. A reliable completeness for all NBS
selection methods except for random can be obtained after approximately nine
scans.

4.8 Summary and Discussion

In this chapter, we have presented a novel approach for NBV planning during
autonomous modeling of unknown objects. Thereby, the Boundary Search and
Hole Rescan methods iteratively generate scan candidates based on a partial
surface model. From the candidates, an NBV or NBS is selected in regard to a
utility function which considers IG of the unexplored space and surface quality
of previously modeled object parts. The NBV algorithm aborts if the desired
model quality level is reached which e.g. speeds up the process for cases such
where a complete, high quality model is not required.
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The presented Boundary Search approach is similar to the approaches which
find the NBV by an occlusion edge (Maver and Bajcsy, 1993; Pito, 1999), with
the difference, that not only occlusion edges are detected but also the known
object shape is utilized for surface trend estimation. The Boundary Search is
a fast method to generate reasonable scan path or viewpoint candidates. It
has been successfully applied for viewpoint planning with aerial 3D sensors
in object reconstruction (Foix et al., 2012), object recognition (Kriegel et al.,
2013a), and scan planning with laser stripers in object modeling (Kriegel et al.,
2012, 2013b; Thomas et al., 2014). The benefits of using the Boundary Search
for NBV selection in comparison to a sphere search space are that overlap is
already considered and thus NBVs or NBSs will be beside the known region.
Therefore, if one of the generated scan candidates is selected in the next step,
the traveling distance of the robot is low and does not need to be considered
specifically. The major advantage though is that the scan candidates are not
predefined, but estimated from the current sensor measurements and therefore
are adapted to the actual object shape. The search space is not restricted,
which allows for better modeling results, since the distance and incidence angle
of the sensor to the object are not fixed and regions which cannot be seen from
a sphere can also be viewed.

However, the performance of the Boundary Search is not optimal when the
surface model is fairly complete and only smaller holes in the mesh remain, since
usually the calculated paths view larger regions than necessary and might not
be able to view a complete hole with optimal viewing angle. Thus, by combining
the Boundary Search with a Hole Rescan, a higher model completeness and a
shorter total scan path can be reached.

For selecting an NBV from the candidates, a utility function is suggested which
incorporates both an exploration and mesh quality component. Therefore, sur-
face features are defined which improve the sampling density, sensor incidence
angle, and coverage of previously scanned areas. Again, a higher mesh com-
pleteness can be reached when not only considering the IG in the voxel space
but also the quality of the surface model.

During the evaluation with an NBV benchmark object, when using a combi-
nation of Boundary Search and Hole Rescan for scan candidate generation and
IG/Quality for the NBV selection, the best reconstruction results are achieved,
the desired coverage is reached after the least amount of scans and significantly
shorter scan paths are generated. Shorter scan paths do not only result in shorter
scanning time but also increase the probability of finding a collision-free path
when utilizing a real robot. We have shown that a higher mesh completeness
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can be reached by our suggested method for scan path generation in comparison
to a sphere search and for our quality-based NBV selection in comparison to
random or IG selection.
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Figure 4.20: Comparison of the actual mesh completeness ca for different scan path generation methods (Sphere, BS, BS/HR) using the IG/Quality NBS selection: for
each scan number the boxplots are depicted.
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Figure 4.21: Comparison of the actual mesh completeness ca for different NBS selection criteria (Random, IG, Quality, IG/Quality) using the BS/HR scan path
generation: for each scan number the boxplots are depicted.



5
Experiments and Applications

This chapter describes the results of different experiments carried out on two
real robotic systems, an industrial and a mobile robot. Thereby, the NBV
planning methods presented in the previous chapter are evaluated in different
applications, for autonomous modeling of single objects and active exploration
of object scenes.

On an industrial robot with laser striper, extensive experiments are carried
out which demonstrate the performance of the autonomous object modeling
approach. Here, the final 3D models are evaluated by comparison with ground
truth models. Further, the color is mapped to the model, the initially unknown
object is reoriented for modeling the bottom part, and these colored models are
applied to a pose estimation algorithm. For both cases, the NBVs are planned
for the laser striper and the industrial robot is moved around the static object.
These experiments are depicted in (Kriegel et al., 2013b; Thomas et al., 2014).

Further, gripped object and workspace scene modeling are shown on a mobile
robot with a pan-tilt unit (PTU) and a lightweight robot (LWR) arm to both
of which a stereo system is mounted. This enables a worker with no robot
programming abilities to help the robot autonomously create 3D models by
giving the robot the approximate position and size. For gripped object modeling,
the worker places the object into the gripper of the LWR and the robot moves
the object in front of a range sensor in order to acquire a complete model which
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can be used e.g. for pose estimation. For scene modeling, NBVs are planned for
the mobile platform and the PTU in order to acquire a model of a workspace
which can be used for collision-free path planning.

Moreover, the active scene exploration approach (see Section 3.1 for an overview)
is demonstrated by applying it to industrial and household object scenes. Here,
the autonomous modeling of single objects is extended and tightly integrated
with active object recognition for exploration of partially unknown object scenes
and dynamic update of an object model database. NBVs are planned for object
recognition with an RGB-D sensor and NBSs for modeling with a laser striper.
These experiments are depicted in (Kriegel et al., 2013a).

5.1 System Setup

For the experiments, the parameters as suggested in Section 4.7.1 are used for
the NBV algorithm. Parameter tuning was mostly not required. However, if
different values for certain parameters were chosen, it is explained for the indi-
vidual experiment. Furthermore, for each experiment the position and size of
the PVS are adjusted depending on the setup. This is necessary for computa-
tional reasons as the larger the unknown area, the more area the robot needs
to explore. Nevertheless, the PVS size can only be approximate but must cover
at least the largest unknown object or unknown scene. The parameters only
need to be configured once as long as a single object is not in a totally different
position in relation to the robot. For small object position changes, nothing
has to be done as the size is usually defined as a significant portion larger than
the expected object to allow for these variations. For the modeling of a gripped
object with the mobile robot, these parameters are known assuming a maxi-
mum object size. When modeling workspace scenes, we assume a worker places
the mobile robot in front of the workspace so that at least the PVS position in
relation to the initial pose of the mobile robot is fixed. During the active scene
exploration, the dominant plane of the tabletop is detected using RANSAC and
a maximum object height is defined.

The experiments are carried out on two different robot-sensor systems, an in-
dustrial and a mobile robot. Section 5.1.1 presents the utilized industrial robot,
which was chosen due to a large workspace and positioning accuracy. It holds
an RGB-D camera, a stereo camera system, and a laser striper. Furthermore,
a mobile robot (see Section 5.1.2) is used containing an LWR and a PTU with
mounted stereo camera systems. The sensors here are calibrated as described
in Section 3.2.1.
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Figure 5.1: The setup for the industrial robot: a laser striper is mounted on the TCP of a Kuka KR16
whereas stereo camera, and RGB-D sensor are attached to the laser striper vertically. The objects are
placed on a pedestal which allows for viewing the objects all around up to a certain distance.

5.1.1 Industrial Robot

For evaluation of the autonomous modeling, a 6DOF industrial robot with eye-
in-hand laser striper, stereo camera system, and RGB-D sensor is utilized (see
Fig. 5.1). The Kuka KR16-2 1 with Kuka Robot Controller 4 (KRC4) is selected
as it is designed to have a large workspace e.g. for accomplishing manufacturing
tasks in larger areas. For the KR16, the absolute positioning error is in the
millimeter range. Its maximum length is about 2.5 times more than for the Kuka
LWR (Bischoff et al., 2010). Here, the reachability of the KR16 is evaluated
using the capability map workspace representation (Zacharias, 2011). As the
workspace of the KR16 is restricted, the objects need to be within a certain area
so that the robot can move around them and obtain views of them from each
side. For laser stripers, the sensor needs to be moved along the complete object
preferably applying linear motions. As industrial robots are made for solving
palletizing tasks efficiently, the sensor is attached to the TCP at a 90 degree
angle (see Fig. 5.1) which allows for moving along several linear paths without
self-collisions. This would not be possible if the sensor were attached in viewing
direction of the z-axis of the TCP as in (Suppa, 2008).

1Kuka KR16-2 http://www.kuka-robotics.com/, 2014

http://www.kuka-robotics.com/
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Figure 5.2: The capability map of the Kuka KR16 from a side view: The spheres (diameter of
100 mm) represent the reachability index at this position. These are encoded from high (blue), to
medium (yellow), and to low (red) reachability. The white bounding box represents a recommendable
position for performing linear paths around an unknown object of the size of 200× 200× 300 mm.

Fig. 5.2 shows the capability map for the Kuka KR16. The spheres with a
diameter of 100 mm represent the reachability index, which is encoded from high
(blue), to medium (yellow), and to low (red) reachability. A high reachability
index means that this position can be reached by the end effector from several
orientations, whereas for a low value only from few orientations. For linear
paths in vertical direction, which are the best way to scan an object with this
robot-sensor setup, a large cylindrical area of reachability is required. Based
on the capability map, we suggest an object position assuming a size of 200 ×
200 × 300 mm as represented by the white bounding box in Fig. 5.2. Then,
the robot is able to perform linear motions on a cylinder around the object at
a distance between 600 mm and 800 mm from the object center. As you can
see the bounding box is not positioned exactly in the middle of the blue region
horizontally. Therefore, the object cannot be viewed at a distance larger than
600 mm exactly in between object and robot but beside the robot. The center of
the bounding box is at a height of 650 mm and a distance of 1000 mm from the
robot base. For modeling single objects, these should be placed on a pedestal or
table with a height of 500 mm at the suggested distance. For our experiments,
the pedestal position was selected accordingly as can be seen in Fig. 5.1.

The autonomous modeling modules are running on an external computer as
the KRC4 is not designed for additional modules. The PC used for processing
has Quad Xeon W3520 2.67GHz CPUs and 6GB RAM. For communication
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Table 5.1: Comparison of the utilized range sensors

Sensor RIS FOV SR/m FPS/Hz
ScanControl 2700-100 640x1 14.25◦ 0.3− 0.6 50
2x Guppy Pro F-125 1292x964 57.4◦H 44.3◦V > 0.2 31
Asus Xtion Pro 640x480 58◦H 45◦V 0.5− 3.5 25

RIS (range image size), SR (sensor range), FPS (frames per second)

between the KRC4 and the external PC, the Kuka Robot Sensor Interface (RSI)
is used which is running on the real-time operating system of the controller. On
each end, XML (Extensible Markup Language) telegrams are sent and received
at 250Hz via UDP (User Datagram Protocol). In order to perform PTP or
linear motions, a robot program in Kuka Robot Language (KRL) containing
RSI objects interprets the telegram on the robot controller. The current pose of
the robot is sent to the external computer every 4 ms, where it is synchronized
with the range sensors. When moving the robot and performing a laser scan at
the same time, accurate data fusion is mandatory.
Technical details of the utilized laser striper, stereo camera system, and RGB-D
camera are listed in Tab. 5.1. The Asus Xtion can obtain a range image with
a resolution of 640x480 for distances between 0.5 − 3.5 m. The stereo camera
system consists of two Guppy Pro F-125 from Allied Vision Technologies with a
resolution of 1292x964 with Pentax 6mm f/1.4 manual iris lenses in 1/2 format.
The base distance should not be selected to be larger than 1

3 of the minimal
required range as otherwise the perspective changes in the picture are too large
for dense stereo matching. As we wanted to be able to obtain close-up images,
we choose a base distance of 80mm which allows for a minimal range of 0.24 m.
This seemed convenient as the minimum range for the laser striper was 0.3m.
The ScanControl 2700-100 laser striper from Micro-Epsilon only obtains a stripe
with 640 depth points and therefore requires to be moved in order to obtain
an image of the scene. Furthermore, its working area is very limited with a
relatively narrow FOV angle of 14.25◦ and a range of 0.3m to 0.6m. However,
the depth measurements of the laser striper are very accurate in contrast to
RGB-D or stereo cameras (see Section 2.1.1). Concluding, the RGB-D and
stereo sensor are able to provide a fast overview of a complete scene at once,
whereas the laser striper generates high quality range images. Moreover, the
RGB-D and stereo system provide color information.
The maximum measuring error is approximately 0.5mm for the laser striper
and 2.5mm for the complete robot-laser striper system. Thus, object parts
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Figure 5.3: The setup for the mobile robot: the Kuka omniRob with mounted Kuka LWR4+
is extended by a stereo camera systems on the PTU and robot’s TCP and sensors all around the
platform. This allows for avoiding 3D obstacles and perceiving the environment.

which are less thick than this value cannot be reconstructed as range images
taken from both sides will overlap. The complete system error was determined
by obtaining a range image from both sides of a very thin board with triangle
patterns and calculating the distance between the patterns in the range data.
In this chapter, the laser striper is used to autonomously generate 3D models
of unknown objects and the stereo cameras are applied for evaluating the ac-
quired models by pose estimation. Furthermore, the stereo cameras are also
used to obtain color images for fitting texture onto the geometry models. The
Asus Xtion is utilized for the active scene exploration experiments as it is more
compact.

5.1.2 Mobile Robot

As mobile robot, we used the Kuka omniRob 2 platform with mounted Kuka
LWR4+ and extended it by a gripper, a PTU and multiple sensors (see Fig. 5.3).
In contrast to an industrial robot, objects at different places can be viewed if no
obstacles are in the way. However, the workspace of the LWR is very limited in
comparison to the KR16 and also one needs to keep a certain safety distance from

2Kuka omniRob http://www.kuka-labs.com, 2014

http://www.kuka-labs.com
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obstacles with the mobile platform. This makes it very difficult to completely
view objects in the environment and therefore it seems more practical to model
objects by gripping them and moving them in front of a fixed range sensor.
Furthermore, the LWR is also less accurate than the KR16 and additional pose
error due to the platform’s odometry needs to be considered.

The Kuka omniRob is a platform with four omnidirectional wheels and inte-
grated autonomous navigation concept (Röwekämper et al., 2012) within a 2D
map based on two 2D laser scanners, namely SICK S300. The map is ob-
tained by manually moving the robot platform in a preprocessing step. By scan
matching, the robot can localize itself in reference to a taught position which
is error-prone e.g. if something in the map has changed. The robot arm and
platform are both controlled by a KRC4. Unfortunately 3D obstacles such as
tables, shelves, fences etc. cannot be detected with the basic system and also
no further sensors for viewing the environment are incorporated.

Therefore, at DLR additional sensors were mounted around the mobile platform,
on a sensor pole with a Schunk PTU, and on the LWR’s TCP. On the PTU, a
stereo camera system with a speckle pattern projector was chosen to overcome
sensor specific problems. Here, only the projector of the Asus Xtion Pro (for
details on the sensor see previous subsection) is utilized to improve the number of
matches between the two images of the stereo camera especially for untextured
surfaces. It is used for viewing the environment and referencing the mobile robot
to a workspace. At the robot’s end effector, a more compact stereo camera is
mounted for getting close-up views or viewing areas which are occluded for the
PTU. Both stereo systems consist of two Allied Vision Prosilica GC 1600H with
a resolution of 1620 × 1220 running at 25Hz. As for the stereo system on the
KR16, Pentax 6mm f/1.4 manual iris lenses in 1/2 format with opening angles
of 57.4◦H 44.3◦V were mounted on each camera. For the stereo cameras on the
PTU, we chose the same base distance as for the KR16, namely 80mm. The
base distance for the cameras on the robot’s TCP of 50mm was restricted by the
gripper size. The gripper, a Schunk PG70 two-finger parallel gripper, is attached
directly to the TCP of the LWR and the cameras are attached onto the side
of the gripper. To enable the system to work without exterior infrastructure,
four I7 processor boards and an FPGA for fast SGM stereo processing were
integrated into the robot. The mobile robot is moved by an interface to the
Kuka Robotics API. On top, a communication framework for the robot, the
PTU, the sensors, the gripper and processing methods based on ROS (Robot
Operating System) have been implemented. Due to the small workspace of the
LWR and the limitations of linear motions, mounting a laser striper on the
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robot arm would have restricted the 3D modeling considerably. The mobile
robot allows for autonomous modeling in two different ways: moving the robot
platform or robot arm around the object or holding the object with the gripper
and moving it in front of the PTU. The latter seems to be the best choice due
to the limited workspace of the LWR which is additionally restricted because of
the PTU.

5.2 Object Modeling with Industrial Robot

In this section, our approach suggested in the previous chapter for NBS planning
considering the quality is compared with a preceding NBS approach (Kriegel
et al., 2012) by applying it to nine different objects from three different fields
of application (see Fig. 5.4). The comparison is with respect to the number of
scans, total execution time, average point density, object coverage and modeling
error. Additionally, the modeling of a Chinese statue demonstrates the difficul-
ties of the system and the modeling of a car door shows the performance on a
larger object. Here, single objects are placed on the pedestal and simply the
laser striper of the industrial robot is utilized. Due to the sensor base distance,
some object parts such as cavities simply cannot be scanned. Today, good post-
processing techniques are available for filling holes considering the object shape.

Figure 5.4: The objects used during the geometric modeling experiments. Top: camel, Mozart and
Zeus (cultural heritage). Middle: cookies, dog spray and Santa Claus (household). Bottom: control
valve, filter and pressure valve (industrial). The largest object is the camel with 340mm height, the
smallest the control valve of 95mm.
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Table 5.2: Evaluation parameters used for comparison

Variable Description
ns number of scans
t total execution time in min
d̄m average relative point density over all vertices
ĉm estimated object coverage rate in %
cb actual completeness rate (with bottom) in %
ca actual completeness rate in %
ē coordinate root-mean-square error in mm

These will not be used here, since then the scan data is manipulated. Never-
theless, as the methods should be applied to active scene exploration, where
efficient scene understanding is required, the goal here is a tradeoff between
good model quality and efficiency.
Almost the same parameters as suggested in Section 4.7.1 are used for the
experiments in this section. Only the PVS resolution is set to 10mm for the
hand-sized objects and to 20mm for the car door for speedup. The PVS was
adapted to the object size. For the car door, the abort scan number nabort was
increased to 40 and the estimated mesh coverage ĉm was set to 50% as only one
side was modeled. All other parameters are not changed. Even the minimum
edge length per boundary bmin remained at 15 for the car door as the object
does not contain smaller details which would result in short boundaries.
The evaluation criteria used for comparison of the nine test objects are listed
in Tab. 5.2. The point density d̄i and estimated coverage ĉm are determined for
the final model as suggested in Section 4.5.1 and Section 4.6. For comparison, a
ground truth mesh model is obtained with an expensive hand-guided scanning
system (see Fig. 2.1(a) on page 16), which comprises a maximum sensor error
of 0.05mm and a system accuracy of 0.1mm. The manual ground truth model
generation took approximately 40 to 70 minutes per object including scanning,
repositioning, manual registration and post-processing. Due to manual post-
processing, the ground truth models could be completed. The ground truth
allows for evaluation of the actual object completeness ca and the coordinate
root-mean-square error ē, which seems feasible since the hand-guided system
has an accuracy, which is higher by a factor of approximately 25. The actual
completeness cb (with bottom) is also measured by comparing the generated
mesh with the ground truth model, where a mesh exists for the bottom area.
This is not feasible for actual completeness evaluation, since the objects for the
autonomous 3D modeling are placed on a platform and therefore the bottom



106 CHAPTER 5. EXPERIMENTS AND APPLICATIONS

of the objects cannot be scanned. Obtaining the bottom part of the objects is
described in the next section. However, it seems fair to use cb for evaluating
the performance of our termination criteria, the estimated coverage ĉm, which
also considers the hole at the bottom.

Often autonomous 3D modeling systems are evaluated on objects with complex
shapes but reasonable surface properties such as for cultural heritage objects.
However, especially industrial parts pose a challenge concerning surface proper-
ties due to dark and reflective parts. Therefore, the presented autonomous 3D
modeling system will be tested on different industrial, household and cultural
heritage objects (see Fig. 5.4). Due to the different surface properties of the
objects areas, for each area an individual termination criterion is defined.

In Section 4.7, we have already shown that when using a combination of Bound-
ary Search and Hole Rescan (see Chapter 4) for view planning, more complete
3D models can be generated and less scans are required than with a standard
sphere search space. Here, we compare our previously presented method IG
which considers IG as NBS selection criterion (Kriegel et al., 2012) with the
novel method IG/Quality which considers both IG and quality as suggested in
Section 4.5. For the NBS selection simply based on IG, ω is set to zero in
the utility function (see Equation (4.30)). The novel method IG/Quality also
features space update in a real-time stream (see Section 3.3.2) and pose error
minimization by local registration (see Section 3.2.3). For better comparison,
the process control including termination criteria of the novel method is used
for both. The results for both methods applied to the test objects are compared
in Tab. 5.3 (left value: IG, right: IG/Quality).

In order to acquire dense sampled surface data, the laser striper is moved along
a commanded linear trajectory at a low speed. Here, the fusion between robot
pose and range measurement or at least the temporal labeling and logging must
be performed in real-time. All other processing steps could basically be executed
between the robot motions, as a quasi-offline processing. This would, however,
result in a bad performance for the overall system. Therefore, in this work,
the updates of the triangle mesh and the PVS are performed out-of-stream
during the scan motion as described in Chapter 3. The other steps, namely the
local registration, the NBS planning, and the motion planning are performed
after the scan motion, since they require the complete set of new data from
the scan. Although all these steps have to perform operations quickly on a
steadily growing dataset, the computation time did not increase with the mesh
or PVS data size. However, the time for the NBS selection increased with a
larger number of scan path candidates.



5.2.
O

B
JE

C
T

M
O

D
E

LIN
G

W
IT

H
IN

D
U

ST
R

IA
L

R
O

B
O

T
107

Table 5.3: Comparison of our autonomous 3D modeling method simply based on IG and based on a combination of IG and quality with streaming space update and ICP
registration for different objects (for parameter description see Tab. 5.2). The results are given for both methods: IG (left), IG/Quality (right).

Camel Mozart Zeus Cookies Spray Santa Control Filter Pressure
ns 30/16 15/14 14/15 6/5 30/14 6/6 9/11 17/15 30/14
t 27.5/9.3 10.8/5.5 10.7/6.5 3.0/1.5 21.7/5.8 3.1/1.9 5.5/3.8 11.7/6.1 19.6/5.4
d̄m 0.51/0.64 0.52/0.60 0.54/0.52 0.42/0.42 0.58/0.62 0.37/0.37 0.50/0.58 0.46/0.46 0.42/0.46
ĉm 81.1/84.4 85.8/88.7 83.4/86.4 78.6/86.6 74.5/82.5 90.7/91.3 69.5/77.2 75.8/81.9 64.9/77.2
cb 80.7/84.2 90.5/93.0 88.4/90.5 82.3/88.6 90.7/89.8 93.0/91.6 74.7/78.1 88.1/88.6 81.9/83.0
ca 93.6/95.2 98.5/99.9 97.8/99.2 90.0/99.5 97.7/97.2 99.5/99.1 94.6/97.9 92.7/93.2 85.4/86.2
ē 0.76/0.80 0.80/0.76 0.70/0.64 0.81/0.70 0.95/0.98 1.10/0.73 0.91/0.96 0.79/0.77 1.58/1.50



108 CHAPTER 5. EXPERIMENTS AND APPLICATIONS

Table 5.4: Average processing time for each module per iteration in seconds and percentage of total
iteration time

Moving robot in between scans 6 s 35.3%
Streaming modeling and scanning 7 s 41.2%
Local registration 1 s 5.9%
NBS planning 2 s 11.8%
Motion planning 1 s 5.9%
Complete Iteration 17 s

As described in the previous chapters, modeling and planning are tackled in a
soft real-time way. Instead of analyzing the complete dataset, only local areas
with bounded data size are concerned for modeling and current changes are
regarded for NBV planning. The few necessary global operations on the dataset
are accelerated by an octree data structure.
In Tab. 5.4, the iteration times for the individual modules are listed. During our
experiments one complete iteration of the IG/Quality method took 17 s on the
average. The time for moving the robot according to the motion planner to the
start position of the NBS trajectory took 6 s. The modeling is performed during
an average of 7 s while moving the robot and acquiring an average of 224000
depth points per scan. The local registration, NBS planning and path planning
took only 4s, which represents only 23.5% of the total iteration time. Hence,
the robot had to wait 4 s after each scan. For our previous approach (Kriegel
et al., 2012), the space update was not performed during, but after each scan.
Furthermore, independence of measurements as outlined in Section 3.3.2 was
not considered, which led to a multiple of space updates. Therefore, the waiting
time was 20 s. This is an average speedup of approximately 16 s per iteration to
the previously presented method by Kriegel et al. (2012). For the nine objects,
the total execution time t for IG/Quality is significantly less by an average factor
of 2.3. This is also due to the fact that on the average less scans are required.
As can be seen in Tab. 5.3, for the camel, dog spray and pressure valve, the de-
sired quality (coverage and point density) was never reached for the IG method
and the algorithm aborted after the fixed number of 30 scans. This also shows
that the IG approach does not really aim at increasing the quality. The relative
point density d̄i is only better for the previous approach for the Zeus object. The
model error ē is mostly below one millimeter and only less for the IG method
for the camel, dog spray and control valve. For the pressure valve, the error is
a lot higher than one millimeter, which is probably due to the many reflections
during the scanning of the object. As ē is always significantly lower than the
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Figure 5.5: Development of the actual mesh completeness ca during the acquisition process of the
camel and filter object for NBS selection based on IG (red) and IG/Quality (green).

complete system error of 2.5mm, this shows that the ICP algorithm aided to
reduce the model error. The estimated coverage ĉm and actual completeness cb

(including bottom part) are mostly similar. ĉm underestimates cb by an average
of 5.4%.

Furthermore, the actual completeness ca is better with the new approach for
all objects except for the spray and Santa Claus. However, for the spray more
than twice as many scans were performed with IG and still the desired point
density is never reached. Fig. 5.5 shows the development of the completeness ca
of the triangle mesh exemplary for the camel and filter object after each scan.
The suggested termination criterion was not used for better comparison, but
the system simply aborts after the predefined 30 scans. Here, the IG/Quality
method reaches a significantly higher completeness than IG after a few scans.
For both objects, the completeness is more than 20% higher after seven scans.
The completeness starts to stagnate between 12 and 17 scans. After that, for
IG/Quality the completeness is only between zero and two percent higher. How-
ever, the last few percent contain the object details and cost the major amount
of time to address. For objects with complex geometry, it takes a human op-
erator less time to scan the first 90% than the last 10% using a hand-guided
scanning system.

The final 3D surface models for the novel method are shown in Fig. 5.6. As can
be seen from Tab. 5.3, the range of the actual mesh completeness considering
bottom part cb varies depending on the size of the bottom area of the object,
which cannot be scanned. For the Santa Claus, the completeness is very high
since the bottom area is small. The control valve has a large floor space. The
actual completeness ca of the models generated with the new approach is over
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Figure 5.6: Final 3D surface models of test objects from different domains: cultural heritage (top),
household (middle), industrial (bottom).
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Figure 5.7: The presented autonomous modeling has problems with a Chinese statue (left) containing
several small details and high reflectivity. The final 3D model (right) is not complete due to the
restrictions of the laser striper and noisy especially in the area of the head due to the robot pose error.

99% for the Mozart, Zeus, cookies and Santa Claus objects. This indicates
that these objects are basically complete. However, the other objects were more
difficult to scan, which is indicated by the visible holes in the final surface
models (see Fig. 5.6), and did not reach such a high completeness. The camel
contains areas at the bottom that the sensor cannot reach. Furthermore, the
industrial objects and the dog spray (middle row, center) are very reflective
and contain dark areas, which are difficult even for the laser to handle. For the
pressure valve (bottom right in Fig. 5.6), the back part of the clock could not be
scanned due to sensor characteristics, which is the reason for the lowest ca of all
objects. Also, the industrial objects contain actual holes, e.g. for screws. These
are not considered by a completeness criterion, as it assumes that the object
can be 100% scanned. Also, if objects cannot be scanned perfectly due to
object shape or sensor limitations, it is unlikely that other vision systems could
measure the corresponding part of the object. In contrast, some remaining holes
in the models might also be avoided if the values for the termination criteria
are increased, which, however, would lead to more scans and a longer execution
time. The models are of significantly higher quality than with RGB-D or ToF
sensors. However, they are not as good as with the expensive hand-guided
scanning system. But the acquisition time is a lot lower.

In Fig. 5.7 an example object is given where the presented autonomous modeling
system had difficulties to obtain an adequate 3D model. The object is a Chinese
statue with several small details and high reflectivity. Therefore, the statue was
covered with a whitening spray. Whitening sprays are applied in 3D scanning
for covering objects with a thin white matte layer, avoiding scanning difficulties
with dark, light-transmissive or glossy surfaces. While scanning the object with
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Figure 5.8: For a Lancia car door, NBS are iteratively planned utilizing the industrial robot (left)
and resulting in a reasonable 3D triangle mesh (right).

the laser striper, especially when moving over an edge, noise in the range images
is created which could not be filtered as otherwise valid data was also removed.
Furthermore, the object contained small details in the area of 1mm which could
be obtained by a single scan but when registering the scans to each other, these
areas were noisy as one can see in the top head area of the statue (Fig. 5.7 right-
hand side). The noisy areas resulted in holes in the mesh which could not be
filled by rescanning. However, the algorithm tried to rescan these areas assuming
an actual hole. This shows that our method does not perform satisfactory if no
good mesh can be created due to hardware restrictions.

The IG/Quality method is also applied to a larger object, a Lancia car door
(see Fig. 5.8). As can be seen in the figure, the window was also covered with
white powder using a whitening spray. A car door model was required in order
to print logos or text onto the door. Therefore, not a complete model but only
the front side of the door was needed. Due to the robot workspace, a complete
model would not have been possible without repositioning and registration.

In total 36 scans with the laser striper were performed which took about 33min,
resulting in the final model as depicted in Fig. 5.8 right-hand side. A small part
of the object on the side of the door knob has not been modeled but was not
required for the printing. Here, each scan path was very long (up to 1m) in
comparison to the hand-sized objects and therefore took significantly longer to
execute. Some of the scan paths require a rotation of the laser striper by 180◦

around the z-axis in order to avoid robot singularities and to carry out the
complete path. This experiment shows that the same system and algorithm can
also be applied to larger objects.
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Figure 5.9: Autonomous object modeling of a shower gel including texture. Top left: Image from
front mono camera view of object in initial position. Bottom left: Image from front view after moving
object to the side. Right: Textured 3D Model.

5.3 Colored Object Modeling with Industrial Robot

In the previous section, the autonomous generation of geometric object models
was shown. Here, we additionally obtain color images with a mono camera in
order to map color onto the 3D surface model. For obtaining color, we chose
the Guppy Pro over the Asus Xtion due to the higher image resolution (see
Tab. 5.1). For these experiments, only supermarket items were considered as
cultural heritage and industrial objects hardly contain any texture. Addition-
ally, the bottom part of the object was also modeled which is important for pose
estimation if we consider the fact that an object can be placed on a plane on
different object sides. For instance, from a single range image maybe only the
bottom part is visible as it is placed on another side.

Fig. 5.9 shows the object positions and the textured 3D model exemplary for
a shower gel. The industrial robot is used and the objects were placed on the
pedestal as described in Section 5.1.1. To ensure uniform illumination, a soft
box was oriented so that it shined towards the ceiling of the room. As some
of the objects have a very small base area, the objects were placed on a small
elevation so that parts close to the pedestal can also be viewed with the laser
striper. Otherwise, due to the triangulation principle of the laser striper when
scanning along a vertical scan path, these parts were not modeled. The object is
first placed in upright position (see Fig. 5.9 top left) and then the NBS planning
as described in the previous chapter was performed. The algorithm aborts when
the model quality is sufficient without the underside. Then, nine color images
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are obtained: one from the top of the object and eight on a circular path with
45◦ steps around the object. As the object geometry of the initially unknown
object is now known, the view positions for the color images are optimally
planned considering the dimensions of the object. In order to scan the object
from the bottom, the object was manually rotated by 90◦ to the side (for an
example: see Fig. 5.9 bottom left). Therefore, a human operator needs to lay
the object onto the defined side. In our case, the rotation was always around
the y-axis of the robot coordinate system. Thus, the initial position needed
to be chosen so that the side position was also stable. One could argue that
the bottom could simply be filled planarly. However, the shape was not always
planar as for the shower gel and also most objects contained texture at the
bottom.

In order to continue the view planning after the manual rotation, two laser
scans are performed along the two most significant edges of the part of the
object model that is known based on the assumption of the 90◦ rotation. The
data of the two scans is merged and transformed by a −90◦ rotation around the
y-axis and a translation of the object center from the previous position into the
position after rotation. The position after rotation is estimated based on the
two scans. Then the exact transformation between the previous object position
and the rotated object is estimated using the ICP algorithm. In contrast to the
local registration as described in Section 3.2.3, a larger radius of 20mm is chosen
and 40 iterations are performed. The ICP worked fine in our experiments for
matching the two models. Also a global registration as suggested by Rink et al.
(2013) was tested as a preprocessing step to the ICP, but was not required if
the manual rotation was fairly accurate.

Finally, the complete transformation (assumptions from manual rotation and
ICP result) is applied to the scan paths and the generated surface model, and
the NBS planning is continued until also the bottom part in the triangle mesh
is filled. Then, a final color image is taken from the bottom. The triangle mesh
from the laser striper and color images from the mono camera are merged by
acquiring a color value for each vertex from the color image, the view direction
of which is most similar to the inverse of the corresponding surface normal. The
time for acquisition of the textured 3D model was approximately six to seven
minutes per object including the manual rotation by the user. Fig. 5.10 shows
the final models and states the names of the supermarket items.

As most of these supermarket items are of simpler shape, not the completeness
of the single objects was evaluated, but the performance of a pose estimation
algorithm on different object scenes. Thereby, range images were obtained with
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Figure 5.10: Colored 3D models of supermarket items. Top: Kinder Bueno, Santa Claus, sugar
powder, crisp bread, sugar mill. Bottom: yellow shower gel, purple shower gel, fennel tee pack, jam
sugar, mint tee pack, cereal box.

the stereo camera from three scenes (see Fig. 5.11) consisting of the modeled
objects, which are placed in different orientations. Thomas et al. (2014) show
that the suggested pose estimation approach considering color and geometry
information performs significantly better than just using the geometry informa-
tion for these supermarket items. This was especially obvious for some objects
with identical geometry but different texture (tee packs and shower gels). Fur-
thermore, a simply texture-based pose estimation algorithm runs into problems
as the color distribution is quite similar for the Kinder Bueno, sugar powder
and the sugar mill. Note that for pose estimation the autonomously acquired
3D models were downsampled for performance reasons. We compared the pose
estimation results based on the acquired object models with a ground truth.
The ground truth for the object poses was obtained with the laser striper as
it is more accurate than the stereo camera (Meister et al., 2012; Kriegel et al.,
2013a). Several scans of the table scene from different views were performed
with the industrial robot and the accumulated range images were clustered by
the dominant plane of the tabletop. The translational and rotational errors in
relation to the ground truth are illustrated for the test scenes in Fig. 5.12.
The errors were rounded to 0.5mm and then the number of objects per error
group is listed. For scene A, seven objects have a translational error of 2mm
or less and only one object has an error of 3.5mm (red line). Note, that the
pose estimation is done in full 6D neglecting the assumption from the table top.
Then, the error was estimated in xy-plane translational and around the z-axis
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Figure 5.11: From left to right: range images with the stereo system of table top scene A, B and C.
The scenes are used to evaluate the colored 3D models by pose estimation.
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Figure 5.12: Translational (left) and rotational error (right) of the object pose estimation per number
of objects grouped by error in comparison to the laser scan ground truth for the table scenes A (red),
B (green), C (blue). The error is rounded to 0.5mm or degree.

rotational and contains combined errors from the pose estimation and stereo
camera system.
As the pose estimation based on the textured geometric models performs sig-
nificantly better than just based on the geometric model, this shows that pose
estimation gains from adding the texture to the geometric model. Furthermore,
it was shown that the quality of the autonomously modeled objects allows for
accurate pose estimation with errors in the millimeter range. Also, the bottom
part of the object model is needed, if the objects are placed on different sides.

5.4 Gripped Object Modeling with Mobile Robot

As pointed out in Section 5.1.2, with the utilized mobile robot it seems intuitive
to learn new object models by gripping the object and moving it in front of the
PTU (see Fig. 5.13). Therefore, the NBV algorithm as described in the previous
chapter is adapted so that the object is moved instead of the sensor. However,
this only works for objects the gripper can actually grasp. For instance, the
pneumatic filter object can only be firmly gripped at its top, as depicted in
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Figure 5.13: Gripped object modeling: a pneumatic filter object is modeled by planning NBVs in
order to move the robot, which holds the object, and observe the object with the stereo camera of
the PTU. Here, the NBV algorithm is inverted which means that the object is moved instead of the
sensor.

Fig. 5.13. For all other parts the two-finger gripper’s maximum stroke length is
too low or the grasp is not stable enough.

As the object is moved instead of the sensor, the general assumptions as de-
scribed in Section 4.1 are a little different. The bounding box which represents
the area of the unknown object is defined at the TCP of the robot arm assum-
ing a maximum object size of 100× 100× 200 mm. The origin of the bounding
box is chosen so that only the two fingers of the gripper are modeled but no
further parts of the robot. As a CAD model of the gripper is given, the fingers
can be extracted. This is automatically carried out after the final object model
has been generated. Thus, not only the side of the object in direction of the
gripper but also the parts of the object occluded by the gripper cannot be ini-
tially modeled. For adaption of the NBV algorithm, we pretend that the object
is at a fixed position and the sensor is moved around the object. In order to
achieve this, the WCS is defined at the TCP and the TCP at the actual base
of the robot. Thus, in order to manipulate the robot based on NBV candidate
transformations WTS, the inverse of Equation 3.2 on page 34 is determined:

TTW = (WTT)−1 = TTS (WTS)−1. (5.1)
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Note that here, TTS is the static transformation between the robot base and
the stereo camera on the PTU. Furthermore, the transformations WTS in the
acquired range images are inverted to correctly align the data.

In contrast to the autonomous object modeling with the industrial robot and
laser striper (see Sections 5.2 and 5.3), both the range images and robot poses
are significantly noisier resulting in object models with a lot worse quality.
Additionally, some of the objects cannot always be firmly grasped with the two-
finger gripper, causing the object to drift. Therefore, tracking the robot arm
does not reliably improve the pose error as the object’s position in relation to
its initial grasp changes while moving the robot arm. Furthermore, tracking
articulated models with a defined kinematic tree as suggested by Schmidt et al.
(2014) does not work satisfactory as for the last element of the tree, namely the
unknown object, no model is given resulting in mismatches and tracking errors.
Also, improving the ICP by adding color matching as carried out by Krainin
et al. (2011) is not possible for untextured objects as is the case for industrial
objects. Thus, KinectFusion would not perform well and additionally it was
actually developed for static environments. Moreover, there is no guarantee that
the unknown object will always remain in the FOV which poses an additional
challenge for tracking.

As shown in Fig. 5.13, the stereo camera on the PTU is utilized for the au-
tonomous modeling of the gripped object. Thus, not NBS but NBV candidates
as described in Section 4.3.1 are generated. After the object is manually placed
into the gripper, an initial range image, which views the complete unknown
bounding box, is obtained. Based on the initial range image, viewpoint candi-
dates are generated and an NBV is selected considering exploration and surface
quality. As the workspace of the LWR is very restricted in comparison to the
KR16, for several NBV candidates, the robot cannot move the object in or-
der to view it from the required side. Since not a scan path but only a single
viewpoint is required, the orientation of the viewpoint around the z-axis of the
sensor does not make a difference as long as the unknown part of interest is
within the FOV. Therefore, for each determined NBV where the initial robot
movement fails, the motion planner is called for different transformations WTS.
Thereby, three additional transformations by rotating around the z-axis of the
SCS by 90◦, 180◦, and 270◦ are tested. This led to a significant increase of NBV
candidates which the robot could actually carry out.

With the mobile robot, three objects that have also been modeled with the in-
dustrial robot, namely the pneumatic filter, the Kinder Bueno, and the yellow
shower gel, are autonomously modeled. Thereby, all calculations are carried
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Figure 5.14: The pneumatic filter object (left) is modeled with the mobile robot. The quality of the
resulting point clouds from the different views (middle left) is poor. When performing ICP registration
and streaming meshing, the resulting mesh (middle right) contains many holes and double walls. When
applying a mesh growing as suggested by Wiedemann and Kriegel (2014), the final mesh (right) is
watertight and its shape seems more consistent with the actual object than with the streaming mesh
generation method. However, the model is very uneven.

out on the I7 boards of the mobile robot, which are slower than the external
computer utilized for the modeling with the industrial robot. Nevertheless, the
object models are obtained in about two to three minutes, which is faster than
on the industrial robot. The reason for this is that no laser scans but only single
range images are acquired. The quality of the resulting 3D models proved to be
much noisier than with the industrial robot and laser striper system. Fig. 5.14
shows the results exemplary for the pneumatic filter (compare with Fig. 5.6
bottom middle). Note that the top of the object cannot be modeled as it is
occluded by the gripper. Due to the poor data quality of each scan in combi-
nation with a large error in the pose of the different scans, even with ICP a
very noisy model is acquired with the mesh generation method as suggested in
Section 3.3.1. Thus, the mesh growing method suggested by Wiedemann and
Kriegel (2014) is applied to the point cloud without ICP. The resulting mesh
(see Fig. 5.14 right-hand side) is watertight and its shape seems more consistent
with the actual object. The model errors ē are 4.68mm for the streaming mesh-
ing and 2.72mm for the mesh growing when comparing with the ground truth.
Thus, the mesh based on the mesh growing algorithm seems more applicable to
object recognition or grasping. Nevertheless, the performance of these models
for recognition or grasping still needs to be investigated. Furthermore, algo-
rithms need to be implemented to cope with the sensor and robot uncertainties.
This, however, is not the main focus of this thesis.
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5.5 Scene Modeling with Mobile Robot

Here, the application of the NBV algorithm to obtain 3D models of larger
objects, in particular complete scenes or workspaces, for collision-free motion
planning is shown. In comparison to all the other experiments here the sur-
face quality-based NBV algorithm was not required and thus only the PVS is
updated based on which NBVs are planned in each step. However, after the
number of free voxels in the PVS stagnates, the algorithm aborts and an op-
timized model is created based on the PVS and applied to the utilized motion
planner (see Section 3.2.2).

As described in Section 5.1.2, the DLR/Kuka omniRob platform autonomously
navigates within its environment based on a previously recorded 2D map. How-
ever, here collisions are only avoided when moving the platform and not for
motions with the LWR arm. The robot arm needs to be moved e.g. for pick-
ing up parts at one place and carrying them to another. Therefore, a precise
3D environment model of each scene the LWR will interact with is required in
addition to the 2D map. This could be achieved by obtaining a complete 3D
map of the environment. However, this is very costly as a high resolution model
would be required for the complete site and more importantly in real produc-
tion environments many workspaces are movable and might not be exactly in
the same position as last time. Thus, we suggest to autonomously create a
3D model of each scene separately using the mobile platform and to afterward
search for the position of the scene each time interaction is required. This is
needed as workspaces such as shelves, conveyor belts or workbenches are often
custom-made and no CAD data is given.

As the environment models of the initially unknown scenes are autonomously
acquired in a preprocessing step, some measure for referencing the robot to
the 3D model is required during scene interaction such as object picking or
placing. Thus, we suggest to use AprilTags (Olson, 2011) and attach them to
each workspace or scene (see Fig. 5.15 on page 122). AprilTags are similar to
QR (Quick Response) Codes but are designed to encode smaller data allowing
for precise detection of its 3D position with respect to the camera. Before
modeling the scene, the human worker needs to attach the AprilTags in the
scene, remove all objects not relevant for scene model and teach a platform
position in front of each unknown scene. The position teaching can either be
done by manually moving the platform to a position in front of the scene or by
marking the position on the 2D map. The position should be selected so that
the robot is approximately centered in front of the workspace along the long



5.5. SCENE MODELING WITH MOBILE ROBOT 121

side with the PTU facing the scene (see Fig. 5.3 on page 102).

For scene modeling, we use the stereo camera system on the PTU since it is a
lot faster to move the PTU than the LWR to view in different directions. In
contrast to the other experiments in this chapter, due to the use of the PTU
the viewpoint space is already very restricted. Thus, scan candidate generation
as suggested in the previous chapter is not applicable. Furthermore, here a
triangle mesh, as in the previous experiments, is not a suitable representation
as not all parts of the workspace can be modeled due to the limited sensor
workspace and could lead to collisions with the robot arm. Therefore, only a
PVS is updated and utilized for the NBV planning. The PVS is initialized
with the state unknown for the area where the workspace is assumed. The
human can configure the approximate size of the unknown area manually for
each scene or else a predefined size is used. Finally, the robot autonomously
explores the unknown scene and creates a 3D model utilizing viewpoints only
from one side of the scene. During our experiments carried out at Grundfos 3

and the Automatica exhibition 4, all workspaces were not accessible for the
robot from the backside which meant that the robot could also only interact
with the scene from the front-side. Moreover, when using the PTU, the space
beneath lower tables, shelves cannot be freed completely and thus the robot
cannot move into these areas. However, this is not a problem as the LWR is
also not able to move to these positions.

Fig. 5.15 shows two workspaces (left), a conveyor belt and a shelf, for which
environment models (right) were obtained. These are two examples of several
workspaces the mobile robot needed to interact with at a Grundfos factory in
Denmark. Here, the task of the robot was to pick up industrial parts (cans and
cores), assemble them, drop them into a small load carrier, and transport them
to the shelf. As one can see, for both examples, the mobile robot cannot move
behind.

For the viewpoint space or set of scan candidates of the omniRob we allowed
for different platform positions in y-direction with 250mm increments. The
maximum and minimum value were limited by the width of the PVS size. At
each platform position we sampled 15 viewing angles for the PTU: pan angle
between −20◦ and 20◦ and tilt angles between −60◦ and 20◦ both with an
increment of 20◦. Here, for the NBV selection, we used just the IG part of the
utility function from Equation (4.30) by setting ω to 0. Additionally, a penalty
was added to the utility value only if the platform needed to be moved for an

3Grundfos http://www.grundfos.com/, 2014
4Automatica exhibition http://www.automatica-munich.com/, 2014

http://www.grundfos.com/
http://www.automatica-munich.com/
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Figure 5.15: Two workspaces (left), a conveyor belt and a shelf, in a real production environment at
Grundfos in Denmark are exemplarily shown. At both workspaces, the mobile robot needs to pick up
or place parts. The final scene models (right) show that the modeling is able to cope even with the
very shiny shelf or conveyor belt.
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NBV:
futility = 0.8 · (1− oy

3m
) · futility. (5.2)

The penalty value depends on the platform offset oy, the platform would need
to move in y-direction from the current position to the NBV candidate assum-
ing a maximum distance of 3m. The maximum distance was chosen since all
workspaces during our experiments at Grundfos and the Automatica exhibition
were never wider than 3m. The penalty was added to avoid too many platform
movements, as each time the platform is moved, additionally a scan matching is
required to calculate the platform offset in relation to the taught position. Scan
matching is required as the platform odometry itself is not accurate enough. As
no triangle mesh is needed, in contrast to the other experiments in this chap-
ter, the initial viewpoint could also be planned selecting an NBV within the
unknown PVS.

After an NBV is selected, the platform and PTU are moved to the NBV and a
range image is obtained with the stereo system on the PTU in relation to the
WCS. For performance reasons, the space update is performed by downscaling
the range image by a factor of four and the NBV planning is carried out by
also reducing the resolution of the range image by a factor of four as described
in Section 4.5.3. Additionally, for each AprilTag which is visible in an acquired
range image, its position and orientation are saved if the incidence angle is less
than 60◦. For too high incidence angles, the AprilTag detection does not perform
well (Olson, 2011). This procedure is repeated until the number of voxels which
are free in the space does not change significantly anymore. Finally, all voxels
with a probability p to be occupied below 25% are removed and based on all
remaining voxels in the PVS, a data size-optimized model is created by removing
inner voxels.

Fig. 5.16 shows a shelf which was autonomously modeled at the Automatica
exhibition. At the bottom left-hand side, the final PVS with a resolution lv of
10mm is shown based on 25 range images obtained during the NBV planning.
Note that the probability of occupancy is color coded from black (almost free),
through gray (unknown) to white (occupied). Voxels which are free are not
shown. In Fig. 5.16 top right-hand side, the final model is shown created by
removing voxels in the PVS assumed to be free or free-floating. Smaller groups
of voxels which are free-floating in the air are erased as an obstacle always needs
to be in contact with the floor. However, the final model still contains all voxels
which could not be freed during the space update including voxels which do not
actually represent an obstacle. This can be seen for the area above the top shelf
where the stereo camera could not view everything. Still this is sufficient as the
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Figure 5.16: A shelf (top left) is modeled and utilized for collision-free motion planning during
manipulation with the mobile robot (top right). Therefore, a PVS has been updated based on 25
range images (bottom left) acquired during NBV planning. Note that the probability of occupancy is
color coded from black (almost free), through gray (unknown) to white (occupied). Voxels which are
free are not shown. In the final model (bottom right) free-floating regions and almost free voxels have
been removed.

3D model just needs to allow for collision-free motion planning with the LWR
within reachable regions. For the shelf, the robot cannot reach objects on the
bottom or top shelf and therefore only the middle two shelves are of interest for
motion planning. Fig. 5.16 top right shows the application of the scene model
within a world model for motion planning during manipulation of small load
carriers.
As the shelf is viewed from several positions, the AprilTags are also viewed
multiple times. Therefore, after the NBV algorithm aborts, the positions and
orientations of each detected AprilTag are optimized by averaging over all mea-
surements with same AprilTag type. When the robot arrives at this workspace
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Figure 5.17: A scene consisting of a press table, a work bench and another mobile robot (left) has
been autonomously modeled (right) using different PVS resolutions for different areas of interest.

again during its working procedure, it can reference itself to the workspace model
using the AprilTags. This works well even if the workspace has been moved e.g.
by a worker as the robot first searches for the AprilTags in the expected area.

Furthermore, Fig. 5.17 shows an example of a press table workspace acquired
at the Automatica exhibition. Here the PVS resolution lv was set to 10mm in
the area where the omniRob will manipulate, namely the table top, to which
six AprilTags are attached. The resolution of the rest is set to 20mm for per-
formance reasons as here the robot does not have to move close for picking and
placing. In areas where the robot needs to be able to move very close to obsta-
cles, it is mandatory that the PVS resolution lv is chosen to be low enough as
otherwise the robot will not be able to move very close to the actual surface.
The reason for this is that obstacles will always be represented larger in the
PVS than for the actual obstacle. In Fig. 5.17, the robot arm of another mobile
robot is modeled at a defined position as the two mobile robots will not perform
manipulation at the same time. Note that the PVS is only modeled up to a
certain height which is sufficient due to the workspace of the robot arm.

The created 3D scene models were directly applied to the motion planner, as de-
scribed in Section 3.2.2, in order to manipulate detected objects in the scenes.
This has been evaluated by performing fetch and carry tasks with the om-
niRob for a complete week at the Automatica exhibition. Thereby, the collision-
free motion planning based on the autonomously acquired scene models is ap-
plied each time an object should be picked from a workspace or placed onto a



126 CHAPTER 5. EXPERIMENTS AND APPLICATIONS

workspace using the LWR. The robot arm was always able to successfully find
a path and never collided with its environment. The autonomous modeling of
the workspaces, which was performed in a preprocessing step, took between 5
and 20 minutes depending on the size of the workspace.

5.6 Active Scene Exploration with Industrial Robot

Here, the presented active scene exploration approach (see Section 3.1 for an
overview) is evaluated with different tabletop scenes consisting of household or
industrial objects.

As described in (Beetz et al., 2010), the performance of object pose estimation
concerning accuracy and robustness highly depends on the quality of the gen-
erated 3D models, which again depends on the pose and range sensor accuracy.
Therefore, we utilize the industrial robot and laser striper (see Section 5.1.1) in
order to acquire range images for modeling the objects, which will be used dur-
ing pose estimation. The table is aligned so that the center of the table coincides
with the recommended position in Fig. 5.2 on page 100 and the longer table side
is oriented so that the robot’s workspace is reasonably used (see Fig. 5.18). For
combined object modeling and recognition, in addition to the laser striper which
is suitable for model generation due to the accuracy, the Asus Xtion is utilized
for exploration and pose estimation as it is more appropriate for acquiring range
images of the complete scene due to the larger working range. The Asus Xtion
is favored over the stereo system as it is more compact and high resolutions
color images as in Section 5.4 are not required. Thus, the stereo camera system
has been removed to allow for more possible sensor positions, especially when
moving into the initially unknown space.

As can be seen in Fig. 1.3 on page 5, we have shown that a significantly higher
model quality can be achieved with the laser striper e.g. in comparison to an
RGB-D sensor. However, the laser striper requires time for scanning. Thus, the
range images of the scene (see Fig. 3.1 on page 30) are obtained with the Asus
Xtion for performance reasons.

In the following, reasonable values for the object modeling abort criterion (see
Section 4.6) are identified by autonomously modeling all objects within two
scenes, the pose estimation accuracy by multi-view recognition is evaluated, and
the performance of the complete active scene exploration approach is demon-
strated.
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Figure 5.18: The setup for the industrial robot during active scene exploration: the objects are
placed on a tabletop which allows for viewing the objects all around up to a certain distance. The
stereo camera system has been removed as it makes the sensor head very bulky and restricts the
possible sensor positions when moving into the initially unknown scene.
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Figure 5.19: The average coverage and relative point density as a function of the number of iterations
are shown for 12 objects. The error bars represent minimum and maximum estimated coverage.
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5.6.1 Object Modeling

An evaluation of the modeling step was performed separately, using two scenes,
one containing five, the other seven objects, which are all autonomously mod-
eled. The variations in the proposed quality criteria (see Section 4.5.1 for detail)
are presented in Fig. 5.19. As the number of scans increases, the average rel-
ative point density d̄m and the estimated mesh coverage ĉm, as suggested in
Section 4.6, both increase. The estimated coverage can go down a bit since
no ground truth of the model is given. Also the relative point density might
slightly decrease when new areas with low point density are scanned. The min-
imum/maximum values for the coverage are also plotted.

Since the bottom of the objects is not scannable in a scene, the estimated
coverage starts to stagnate between 75 and 95% (after about scan 14). Therefore
75% was selected as a suitable stopping criterion for modeling in this work. To
achieve such coverage, 15 scans are needed in the worst case, and to reach a
coverage of 50%, 10 scans are necessary in some cases.

For the two scenes, acquiring object models with 75% coverage with the laser
striper took approximately two to three minutes per object, depending on the
number of scans and the object size. As during all the experiments in this chap-
ter: the robot was not moving at full speed due to safety reasons, the scanning
was performed slowly for high point density, mesh generation, and space up-
date are performed in real-time while scanning. Still, for a time efficient scene
understanding, the recognition of already modeled objects is clearly necessary.
For recognition to work, an estimated coverage ĉm of around 75% proved to be
sufficient.

5.6.2 Object Recognition from Multiple Views

To evaluate the precision of the object recognition module, the scene presented
in Fig. 5.18 on page 127 was examined. First, as already done in Section 5.6.1,
all objects in the scene were autonomously modeled to provide both, the object
models for recognition, as well as the ground truth pose for pose verification.
Then, the object recognition module (see Section 3.4) was run on several ran-
domly sampled views of the scene. In order to get meaningful measures for the
precision of the object pose estimation, the state of the scene was not tracked in
this setup. Therefore, in each view, the object recognition is run from scratch,
without any prior knowledge of the objects’ poses in the scene.

Specifically, 48 views of the scene consisting of seven different objects were
taken. In total, there were 326 possibly visible object instances in the scenes,
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Figure 5.20: Detected object positions and angular errors for four selected objects. For better
visualization the positions are projected in the xy-plane. Middle row: the estimated translations. The
reference translation is shown in red and the average position in green. Bottom row: the corresponding
histograms of angular errors.

not counting object instances that were either out of the FOV of the camera
or completely occluded by others. Nonetheless, several heavily occluded and
therefore barely visible objects are included. From those, 245 objects were
correctly recognized, which means an estimated position was no more than
30 mm from the actual known position in the scene. This threshold was chosen
large enough to ensure the exclusion of a total of eight false positives, i.e. object
instances that were wrongfully detected in a cluster of data caused by another
object.

Fig. 5.20 shows the distribution of the translational and angular error for four
selected objects. For the sake of better visualization only the x and y-component
of the translational errors and the angular error around the z-axis is shown. For
the translation of the objects it can be observed, that while single estimates
exhibit errors of up to 23 mm (in the x/y plane), the average of all poses (green)
is considerably closer to the reference poses. The angular error distribution,
however, is extremely dependent on the shape symmetries of an object. In case
of the rotationally symmetric pepper mill, the distribution is roughly uniform,
whereas there are two major peaks for the two box-like objects and only one for
the asymmetric Santa Clause object.
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Figure 5.21: Top row: The three industrial objects (control valve, pneumatic filter, pressure valve)
examined in 20 NBV planned views each. Bottom row: Translational (left) and angular (right) errors
of the estimates in each view as well as the errors of the running average poses.

As suggested by these results, multiple viewpoints can lead to better pose es-
timation. Thus, the performance of the NBV planning algorithm for pose esti-
mation is first evaluated for individual objects as in Fig. 5.21. Three industrial
objects were separately placed on the pedestal and recognized in 20 different
views generated by the NBV algorithm. Fig. 5.1 shows the translational and
angular error for the single estimates after each view and the development of
the average pose error in comparison to the acquired ground truth models. The
assumption of reasonably well distributed view positions is guaranteed by NBV,
even in the case of scenes with partial occlusions, as we will show later.
We used the methods from Pham et al. (2011) to compute the extrinsic dis-
tance and average of rotations. However, nearest neighbor pose clustering was
performed instead of mean-shift, so that a separate cutoff value for distance
and rotation could be specified. Then, the largest pose cluster is selected and
its average computed. For displaying the rotation errors, the angle from the
axis-angle representation is used, which was computed from the relative trans-
formation between the detected and the ground truth rotation.
Due to the simpler setup in this test case, the error distributions show smaller
overall errors, and all detections form a single cluster. However, the pose av-
eraging significantly decreased the errors, converging to below 4 mm and 1◦

respectively. We can observe the steepest decline in the first 5-10 iterations,
suggesting that under ideal conditions around 10 views should be enough for
high-precision recognition.
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Figure 5.22: Active scene exploration procedure: industrial scene (top left), initial view (top right),
final view after autonomous modeling of unknown clusters (bottom left) and same objects used in a
different scene with different sensor and robot (bottom right). The images include detected objects
(green) and unrecognized clusters, i.e. occluded (red) and unmodeled objects (yellow).

5.6.3 Combined Object Recognition and Modeling

Next, we want to demonstrate the performance of the complete scene exploration
system on a partially unknown industrial scene (see Fig. 5.22 top left). The
scene consists of a pneumatic filter, a control valve, a spray can, a screwdriver,
a connector, and a pressure valve (from top left to bottom right row-wise). Due
to surface properties (dark parts and reflectivity) of the industrial objects, this
scene proved to be a lot more difficult to handle than the household scene and
the generated 3D models are much noisier. In order to generate ground truth
for the object poses, again each object in the scene is autonomously modeled
with the laser striper. For the pose estimation evaluation, an initial database is
created containing only the three previously modeled objects (see Fig. 5.21).
As can be seen in Fig. 5.22 top right, in the initial range image only one of the
three objects from the database, namely the filter, is recognized. The reason
for this is that the pressure valve is occluded and the control valve is not in
the FOV. Therefore, four clusters of unexplainable data are observed, for which
NBVs are planned for further observation. The translational and rotational pose
estimation errors after each view and the development of the running average for
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Figure 5.23: Translational (left) and angular (right) errors of the estimates in each view as well as
the errors of the running average poses of the largest clusters. After objects get modeled (after about
11 scans) they start to be recognized. The meaningless rotation errors for the symmetric spray can
were left out.

this scene are shown in Fig. 5.23. Note that pose estimates are only possible after
the object is recognized and objects often cannot be recognized in a certain view
as they are occluded, not in the FOV, and for some views only laser scans were
performed. Due to view planning, the remaining two known objects, which could
not be matched in the initial view, are recognized (pressure valve in view two
and control valve in view nine). The three unknown objects are autonomously
modeled and added to the database (connector in view 12, spray can in view
23, and screwdriver in view 34). Finally, Fig. 5.22 bottom left shows a range
image of the last step after 34 views, where all objects are correctly recognized.
The bottom right figure shows that the quality of the generated object models is
sufficient to recognize them in a new scene and on a different system, namely the
DLR Space Justin (Borst et al., 2009), with a stereo camera, possibly enabling
further application scenarios.
The improvements of averaging the pose estimation errors (see Fig. 5.23) are
not as large as for the previous simple case, but still considerable. Additionally,
the pose clustering successfully grouped the correct detections, filtering out
incorrect ones. Thus, first results of the scene exploration system are promising
but require further evaluation concerning e.g. improvement of the autonomous
view planning over randomly generated or manual view selection.

5.7 Summary and Discussion

In this chapter, experiments for autonomous modeling of single objects, and
for active scene exploration of partially known tabletop scenes, by integrating
NBV planning for multi-view recognition of known, and autonomous modeling
of unknown objects, are carried out. As all utilized sensors have problems with
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direct sunlight or changing light conditions, we have learned that the blinds
should be shut in laboratories with windows in order to avoid additional noise.
Moreover, although the experiments applied the NBS planning algorithms in
different scenarios, most of its parameters had the same values for all experi-
ments. Only a few parameters had to be adjusted for example if the size of the
unknown area or object differed significantly. This shows that the presented
NBS planning methods do not require much parameter tuning and work well
for different objects with varying surface properties.

During the experiments with an industrial robot and a laser striper, 3D models
with fairly good quality are obtained of hand-sized objects from different ap-
plication domains. However, the system has problems with very thin walls or
objects with high reflectivity. Still, overall the results represent a good trade-off
between surface quality and duration time. Furthermore, we have shown that
with our novel approach 3D models are obtained a lot faster and also the quality
(completeness rate and point density) of the surface model is higher than for a
previous approach. The average waiting time in between scans, which includes
local registration, NBS planning, and motion planning, was approximately 4 s
during our experiments. This is 60 times faster than for the autonomous 3D
modeling system of Torabi and Gupta (2012a) which also uses a line range sensor
with lower resolution than ours. Their system requires almost four minutes for
data processing, NBV planning, and motion planning in between two scans on
a similar PC with Quad i5-760 2.8GHz CPUs and 8GB RAM. The speedup in
our work is achieved by real-time updates of triangle mesh and PVS during the
scanning, direct interaction of the perception modules, and more efficient NBV
planning and motion planning algorithms. Moreover, texture and the bottom
part are added to the geometric model by applying a mono camera and reori-
entation of the object. The resulting textured and complete 3D model helped
to achieve a more accurate object pose estimation than by simply using the
geometric model.

Furthermore, the NBS planning methods are applied to an LWR where the
object itself is grasped and moved in front of a 3D camera. The setup is similar
to the system of Krainin et al. (2011) as pointed out in Section 2.2. However,
they only perform two fixed robot motions, one simply rotates the last axis of
the robot resulting in low pose errors, and use all range data to generate the
object models. In contrast, we plan actual NBV motions, and acquire only the
range images for the planned NBV making it a more complex problem. Since the
LWR is more inaccurate than the industrial robot and the range data from the
stereo camera is noisier than for the laser striper, the quality of the 3D models is
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lower as model quality is always limited to the system’s accuracy. Nevertheless,
the estimated mesh coverage which was applied on both robot-sensor systems
has proven to be a reasonable termination criterion and therefore is also applied
for the active scene exploration scenario.

Moreover, the NBS algorithm has been adapted for autonomous modeling of
complete workspace scenes in industrial environments such as shelves, conveyor
belts, and press tables by utilizing a mobile robot. As elaborated in Section 2.4,
a lot of research addresses the problem of exploration and mapping for mobile
platforms. However, this does not solve the problem how to perform manip-
ulation with a robot arm attached to the mobile platform. Here, 3D models
of unknown workspace scenes are autonomously obtained and can directly be
utilized for collision-free motion planning with the LWR arm on the mobile plat-
form. However, additional registration of the mobile robot to each workspace is
required in order to cope with uncertainties such as workspace position change
in the environment. This has been accomplished with the help of AprilTags.
In combination with state-of-the-art 2D map navigation, the presented concept
allows for collision-free navigation of both the mobile platform and the mounted
robot arm. The scene modeling could be used as a preprocessing step for the ac-
tive scene exploration approach. For instance, a rough model could be acquired
and then utilized for collision-free motion planning within complex scenes.

Finally, the scene exploration system at a whole and its different aspects have
been evaluated with the industrial robot system combining the laser striper and
a 3D camera. We have shown that the object recognition and modeling parts
mutually benefit from each other in the context of autonomous perception tasks
in partially known environments, opening the way for grasping experiments.
However, in general the active scene exploration approach performs better the
larger the distance between the different objects. Therefore, if the scene is too
cluttered, one could perform an interactive singulation such as in (Hausman
et al., 2013; van Hoof et al., 2014) as a preprocessing step. Furthermore, the
active scene exploration could be applied in more complex scenes such as shelves
or cupboards e.g. by performing scene modeling as a preprocessing step.

Planning NBV poses that moved the robot into the analyzed scenes were re-
quired for viewing objects from different sides. Thus, for acquiring models with
reasonable completeness within scenes, it is mandatory to simultaneously ex-
plore the initially unknown scene. Applying the view planning to the pose
estimation of previously known objects and thus considering multiple views
increases the robustness of the object detection. Moreover, object pose estima-
tion still performs quite well, even if larger parts of the object are not modeled.
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Therefore, for speedup, the autonomous object modeling can abort if a mesh
completeness in the area of 70% or 75% is reached.
Thus, such tight integration of different perception modules is an important
step towards completely autonomous systems that can act in real world environ-
ments. The use of complementary sensors is beneficial, since aerial 3D sensors
can speed up object recognition, while laser stripers are best for modeling. The
presented approach enables mobile or humanoid robots to autonomously learn
models of unknown objects in scenes and directly add these to a database for
further use.
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6
Conclusion

This chapter provides concluding remarks on the achievements of this thesis and
gives an outlook to potential future research and applications.

6.1 Conclusion

This thesis presents a framework for autonomous modeling of unknown objects.
This is achieved in an efficient way by integrating surface reconstruction, explo-
ration, scan registration, occlusion avoidance, motion and view planning algo-
rithms into complete robot-sensor systems. Novel surface quality-based Next-
Best-View (NBV) planning methods are presented that allow for higher model
quality and shorter acquisition time than state-of-the-art approaches. The au-
tonomous object modeling approach is first demonstrated for single objects and
then for multiple objects in a scene. Not only are the objects in the scenes au-
tonomously modeled but also actively recognized utilizing the generated models.
This is denoted as active scene exploration. Thereby, objects which are initially
not visible e.g. due to occlusion can be quickly located by intelligent view plan-
ning. The presented active scene exploration system allows for autonomous and
simultaneous exploration of the initially unknown scene, for recognition of the
known objects in the scene, and for modeling of the unknown objects in the
scene.

137
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For autonomous object modeling, we have shown that determining NBV can-
didates based on both surface trend along boundaries and holes in the
object’s surface model instead of using a sphere search space, results in less
scans, less traveling distance, and a higher model quality. As pointed out in Sec-
tion 2.3, other researchers consider quality criteria such as traveling distance,
incidence angle, and range image overlap during the NBV planning process.
However, if the desired output is the surface model, which is the case for object
modeling, clearly it makes sense to consider the quality of the surface model for
the NBV selection. By introducing surface features as described in Section 4.5.1,
to the best of our knowledge, we are the first to consider the quality of the
surface model during the actual NBV planning process. In order to realize
this quality-based NBV planning in an efficient way, information from the mesh
such as coverage and point density have to be stored in the voxel space in each
iteration. The highest mesh completeness is reached by considering both infor-
mation gain of the unexplored voxel space and quality features of the surface
model during the NBV planning. The reason for this is that during the first
scans the unknown space needs to be explored, whereas after a rough model is
obtained the surface model quality needs to be increased.

In this work, object models of different size are obtained completely au-
tonomously utilizing different robot-sensor systems. The total acquisition time
ranges from a few minutes for hand-sized objects to about half an hour for shelf-
sized objects, depending on the complexity of the object. This speed could only
be reached by a smooth and direct interaction of the different autonomous mod-
eling modules. For instance, pose and range sensors need to be synchronized
for the streaming modeling and the NBV planning module requires instant ac-
cess to both constantly changing 3D model representations. Furthermore, the
methods are not limited to a certain type of range sensor or robot. However,
the less accurate the range and pose data are, the more difficult it is to acquire
object models with reasonable quality. For noisy data, additional methods to
increase accuracy such as registration, tracking, or mesh growing showed small
model quality improvements. For object modeling, the robot-sensor system is
usually moved around the objects. However, depending on the workspace and
the setup, e.g. if external sensors are available, it might be more reasonable to
grasp the object and move the object in front of the range sensor. The presented
NBV algorithm has been successfully applied to both variants. Moreover, by
adding color to the models, the robustness and accuracy of object recognition is
increased. In order to acquire accurate models of industrial workspaces with a
mobile robot, additional registration after each platform movement is required.
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The presented active scene exploration concept enables robots to learn object
models of unknown objects in a scene, in order to be able to interact with these.
For instance, the generated object models are added to a database and can be
directly applied to pose estimation and manipulation in order to e.g. clean up a
table. Thereby, the pose estimation still performed very well even if larger parts
of the object have not been modeled. The direct application of the models
can only be accomplished by a reasonable termination criterion based on an
estimated mesh completeness of the unknown object. However, a task such
us “Bring me the screw driver” cannot succeed without any further knowledge
as the robot holds the object models but does not know what they represent.
For acquiring semantic information, an object classification or manual labeling
would be required. However, this is out of the scope of this work.

Moreover, we have learned that range images from multiple views increase the
confidence on the object’s pose. Thus, for more robust grasping, multiple views
should be taken into account. Furthermore, active scene exploration requires a
reasonable occlusion avoidance strategy and termination criterion as otherwise
the robot will not be able to obtain fair model completeness and decide when
the completeness suffices. In this work, this has been accomplished by a tight
integration of different perception modules, which is a crucial step towards
autonomous systems that act in complex real world environments consisting of
numerous object scenes.

6.2 Future work

In this thesis, a novel NBV planning algorithm for object modeling is integrated
into a complete autonomous system and extended for active exploration of par-
tially known object scenes. Although its benefits have been exemplarily shown
for different applications, many more extensions and fields of application can be
considered, as outlined in the following.

Physical Interaction with Objects Currently, the active scene exploration
approach interacts with the real physical world by moving the robot into the
initially unknown scene. However, an actual contact with the objects in the
scene is not performed which would require grasp planning. For the gripped
object modeling (see Section 5.4), the unknown object is manually placed into
the gripper. Therefore, once an object is modeled in the scene, it could be
grasped with the robot and the modeling could be continued for previously
unmodeled parts such as the object’s bottom area or areas which were badly
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occluded by other objects. Here, active scene exploration could be combined
with the gripped object modeling and the continuation of the view planning (see
Section 5.3). Picking an object from a scene also allows for viewing new object
areas or even new objects in the remaining scene. Furthermore, the physical
interaction should not only be performed with objects that can be grasped, but
also with larger objects that need to be moved e.g. for modeling them from
the other side. In addition, it would be highly beneficial to run a classification
process on the models in order to add semantic information to the models in the
database. This would enable a mobile robot to carry out the complete pipeline
from learning new object models in real scenes, learning what they represent,
being able to find them at a different location, and bringing them to a human.
Although approaches exist that grasp objects without having a model (Hsiao
et al., 2010; Marton et al., 2011; Lippiello et al., 2013), these can only be applied
for simple pick and place operations. In the future, object models will still be
required for robotic manipulation in an everyday environment.

Surface Model Improvement This thesis focuses on the view planning part
for autonomous object modeling. Thereby, the actual surface modeling is per-
formed but several methods could be applied to improve the surface model
quality based on the acquired range data. During modeling, pose error is min-
imized by applying the ICP algorithm. However, the model could be further
optimized by performing a final bundle adjustment of the collected range scans
in a post-processing step (Strobl, 2014b). Moreover, the influence of feature
or robot tracking on the final model quality could be further exploited. Also,
several mesh post-processing techniques exist which could be applied.

Requirements for Robust Object Recognition In this thesis, we have
shown that when using multiple views during pose estimation of objects in
a scene, the robustness of the pose estimates increases and more objects are
recognized. Here, the NBV algorithm, which has been developed for object
modeling, is applied to object recognition. For exploration of partially unknown
scenes, an additional factor that considers the recognition of known objects
should be added to the utility function of the NBV selection (see Section 4.5.3).
Furthermore, it would be beneficial to perform a more extensive evaluation
on how the object pose estimation for different object groups depends on the
model quality concerning pose error and execution time. This could be used to
identify a desired model and sensor quality depending on the application where
pose estimation is needed.



Bibliography

M. T. L. Albalate, M. Devy, and J. M. S. Martí. Perception planning for an
exploration task of a 3d environment. In Proceedings of the International
Conference on Pattern Recognition (ICPR), pages 704–707, Washington, DC,
USA, 2002.

J. Aleotti, D. Lodi Rizzini, and S. Caselli. Perception and grasping of object
parts from active robot exploration. Journal of Intelligent & Robotic Systems,
pages 1–25, 2014a.

J. Aleotti, D. Lodi Rizzini, R. Monica, and S. Caselli. Global registration of
mid-range 3d observations and short range next best views. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3668–3675, Chicago, Illinois, USA, Sept. 2014b.

J. E. Banta, L. R. Wong, C. Dumont, and M. A. Abidi. A next-best-view system
for autonomous 3-d object reconstruction. IEEE Transactions on Systems,
Man, and Cybernetics, Part A, 30(5):589–598, 2000.

M. Beetz, F. Stulp, P. Esden-Tempski, A. Fedrizzi, U. Klank, I. Kresse, A. Mal-
donado, and F. Ruiz-Ugalde. Generality and legibility in mobile manipulation.
Autonomous Robots, 28(1):21–44, 2010.

S. Berchtold and B. Glavina. A scalable optimizer for automatically gener-
ated manipulator motions. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), Workshop on color-depth fusion in robotics,
pages 1796–1802, Munich, Germany, Sept. 1994.

K. Berger, S. Meister, R. Nair, and D. Kondermann. A state of the art report on
kinect sensor setups in computer vision. In German Conference on Pattern
Recognition (GCPR), Workshop on Imaging New Modalities, pages 257–272,
2013.

P. J. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE

141



142 BIBLIOGRAPHY

Transactions on Pattern Analysis and Machine Intelligence (PAMI), 14(2):
239–256, 1992.

R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe, A. Albu-Schäffer, A. Beyer,
O. Eiberger, S. Haddadin, A. Stemmer, G. Grunwald, and G. Hirzinger. The
KUKA-DLR lightweight robot arm - a new reference platform for robotics
research and manufacturing. In Proceedings for the joint conference of ISR
2010 (41st Internationel Symposium on Robotics) und ROBOTIK 2010 (6th
German Conference on Robotics), pages 1–8, Munich, Germany, June 2010.

P. Blaer and P. K. Allen. Data acquisition and view planning for 3-d modeling
tasks. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 417–422, San Diego, California, USA, Nov.
2007.

F. Blais. Review of 20 Years of Range Sensor Development. Journal of Electronic
Imaging, 13(1):231–240, Jan. 2004.

N. Blodow, R. B. Rusu, Z. C. Marton, and M. Beetz. Partial View Modeling and
Validation in 3D Laser Scans for Grasping. In Proceedings of the IEEE/RAS
International Conference on Humanoids Robots (Humanoids), Paris, France,
December 7-10 2009.

N. Blodow, L. C. Goron, Z.-C. Marton, D. Pangercic, T. Rühr, M. Tenorth, and
M. Beetz. Autonomous semantic mapping for robots performing everyday
manipulation tasks in kitchen environments. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
4263–4270, San Francisco, CA, USA, Sept. 2011.

T. Bodenmüller. Streaming Surface Reconstruction from Real Time 3D Mea-
surements. PhD thesis, Technische Universität München (TUM), 2009.

C. Borst, T. Wimböck, F. Schmidt, M. Fuchs, B. Brunner, F. Zacharias, P. R.
Giordano, R. Konietschke, W. Sepp, S. Fuchs, C. Rink, A. Albu-Schäffer, and
G. Hirzinger. Rollin’ justin - mobile platform with variable base. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 1597–1598, Kobe, Japan, May 2009.

M. Brucker, S. Léonard, T. Bodenmüller, and G. D. Hager. Sequential scene
parsing using range and intensity information. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 5417–
5424, St. Paul, Minnesota, USA, May 2012.



BIBLIOGRAPHY 143

W. Burger and B. Bhanu. Estimating 3d egomotion from perspective image
sequence. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 12(11):1040–1058, 1990.

M. Callieri, A. Fasano, G. Impoco, P. Cignoni, R. Scopigno, G. Parrini, and
G. Biagini. Roboscan: An automatic system for accurate and unattended 3d
scanning. In Proceedings of International Conference on 3D Data Process-
ing, Visualization and Transmission (3DPVT), pages 805–812, Thessaloniki,
Greece, Sept. 2004.

J. Chambers, W. Cleveland, B. Kleiner, and P. Tukey. Graphical Methods for
Data Analysis. The Wadsworth Statistics/Probability Series. Boston, MA:
Duxury, 1983.

S. Chen and Y. Li. Vision sensor planning for 3-d model acquisition. IEEE
Transactions on Systems, Man, and Cybernetics, Part B, 35(5):894–904, 2005.

S. Chen, Y. Li, J. Zhang, and W. Wang. Active Sensor Planning for Multiview
Vision Tasks. Springer, 2008.

S. Chen, Y. Li, and N. M. Kwok. Active vision in robotic systems: A survey of
recent developments. International Journal of Robotics Research (IJRR), 30
(11):1343–1377, 2011.

C. W. Chu, S. Hwang, and S. K. Jung. Calibration-free approach to 3d recon-
struction using light stripe projections on a cube frame. In Proceedings of the
IEEE International Conference on 3D Digital Imaging and Modeling (3DIM),
pages 13–19, Quebec City, Canada, May 2001.

C. I. Connolly. The determination of next best views. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), pages
432–435, St. Louis, MO, USA, Mar. 1985.

N. D’ Apuzzo. Overview of 3d surface digitization technologies in europe. In
Proceedings of the Society of Photo-Optical Instrumentation, volume 6056,
pages 605605–605605–13, 2006.

M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba.
A solution to the simultaneous localization and map building (slam) problem.
IEEE Transactions on Robotics and Automation, 17(3):229–241, 2001.

B. Drost, M. Ulrich, N. Navab, and S. Ilic. Model globally, match locally: Effi-
cient and robust 3D object recognition. In Proceedings of IEEE International



144 BIBLIOGRAPHY

Conference on Computer Vision and Pattern Recognition (CVPR), San Fran-
cisco, CA, USA, June 2010.

H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part
I. IEEE Robotics & Automation Magazine, 13(2):99–110, 2006.

A. W. Fitzgibbon, G. Cross, and A. Zisserman. Automatic 3d model construc-
tion for turn-table sequences. In Proceedings of the European Workshop on
3D Structure from Multiple Images of Large-Scale Environments, SMILE’98,
pages 155–170, London, UK, 1998. Springer-Verlag.

T. Foissotte, O. Stasse, A. Escande, P.-B. Wieber, and A. Kheddar. A two-steps
next-best-view algorithm for autonomous 3d object modeling by a humanoid
robot. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 1078–1083, Kobe, Japan, May 2009.

S. Foix, G. Alenya, and C. Torras. Lock-in time-of-flight (ToF) cameras: a
survey. IEEE Sensors Journal, 11(9):1917–1926, 2011.

S. Foix, S. Kriegel, S. Fuchs, G. Alenyà, and C. Torras. Information-gain view
planning for free-form object reconstruction with a 3d ToF camera. In Pro-
ceedings of International Conference on Advanced Concepts for Intelligent
Vision Systems (ACIVS), volume 7517 of LNCS, pages 36–47, Brno, Czech
Republic, Sept. 2012. Springer.

L. Freda and G. Oriolo. Frontier-based probabilistic strategies for sensor-based
exploration. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 2157–2164, Nice, France, 2008.

S. Fuchs. Calibration and Multipath Mitigation for Increased Accuracy of Time-
of-Flight Camera Measurements in Robotic Applications. PhD thesis, TU
Berlin, 2012.

M. A. García, S. Velázquez, and A. D. Sappa. A two-stage algorithm for planning
the next view from range images. In Proceedings of the British Machine
Vision Conference (BMVC), pages 720–729, Southampton, UK, 1998. British
Machine Vision Association.

S. K. Gehrig, F. Eberli, and T. Meyer. A real-time low-power stereo vision
engine using semi-global matching. In International Conference on Computer
Vision Systems (ICVS), volume 5815 of Lecture Notes in Computer Science,
pages 134–143, Liège, Belgium, Oct. 2009. Springer.



BIBLIOGRAPHY 145

J. Geng. Structured-light 3d surface imaging: a tutorial. Advances in Optics
and Photonics, 3(2):128–160, 2011.

E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for comput-
ing the distance between complex objects in three-dimensional space. IEEE
Journal of Robotics and Automation, 4(2):193–203, 1988.

G. Golub and C. Reinsch. Singular value decomposition and least squares solu-
tions. Numerische Mathematik, 14(5):403–420, 1970.

H. H. González-Baños and J.-C. Latombe. Navigation strategies for exploring
indoor environments. International Journal of Robotics Research (IJRR), 21
(10-11):829–848, 2002.

G. D. Hager and B. Wegbreit. Scene parsing using a prior world model. Inter-
national Journal of Robotics Research (IJRR), 30(12):1477–1507, 2011.

T. Hales. A proof of the kepler conjecture. Annals of Mathematics, 162:1065–
1185, 2005.

J. Han, L. Shao, D. Xu, and J. Shotton. Enhanced computer vision with mi-
crosoft kinect sensor: A review. IEEE Transactions on Cybernetics, 2013.

R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, New York, NY, USA, 2 edition, 2003.

K. Hausman, F. Balint-Benczedi, D. Pangercic, Z.-C. Marton, R. Ueda,
K. Okada, and M. Beetz. Tracking-based interactive segmentation of texture-
less objects. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 1114–1121, Karlsruhe, Germany, May 2013.

K. Hertkorn, M. A. Roa, M. Brucker, P. Kremer, and C. Borst. Virtual real-
ity support for teleoperation using online grasp planning. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), page 2074, Tokyo, Japan, Nov. 2013.

H. Hirschmüller. Stereo processing by semiglobal matching and mutual infor-
mation. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 30(2):328–341, 2008.

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface re-
construction from unorganized points. In Proceedings of International Confer-
ence on Computer Graphics and Interactive Technique (SIGGRAPH), Com-



146 BIBLIOGRAPHY

puter Graphics Proceedings, Annual Conference Series, pages 71–78, Chicago,
Illinois, July 1992.

A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard.
OctoMap: An efficient probabilistic 3D mapping framework based on oc-
trees. Autonomous Robots, 34(3):189–206, 2013. Software available at
http://octomap.github.com.

K. Hsiao, S. Chitta, M. T. Ciocarlie, and E. G. Jones. Contact-reactive grasping
of objects with partial shape information. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
4516–4521, Taipei, Taiwan, Oct. 2010.

S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,
S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon. Kinectfusion: real-
time 3d reconstruction and interaction using a moving depth camera. In
Proceedings of the Annual ACM Symposium on User Interface Software and
Technology, pages 559–568, Santa Barbara, CA, USA, Oct. 2011.

A. E. Johnson, R. Hoffman, J. Osborn, and M. Hebert. A system for semi-
automatic modeling of complex environments. In Proceedsings of the IEEE
International Conference 3-D Digital Imaging and Modeling (3DIM), pages
213–220, Ottawa, Ontario, Canada, May 1997.

M. Karaszewski, R. Sitnik, and E. Bunsch. On-line, collision-free positioning of
a scanner during fully automated three-dimensional measurement of cultural
heritage objects. Robotics and Autonomous Systems, 60(9):1205 – 1219, 2012.

A. Kasper, Z. Xue, and R. Dillmann. The KIT object models database: An
object model database for object recognition, localization and manipulation
in service robotics. International Journal of Robotics Research (IJRR), 31(8):
927–934, 2012.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. K. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 12(4):566–580, 1996.

S. Khalfaoui, R. Seulin, Y. Fougerolle, and D. Fofi. View planning approach
for automatic 3d digitization of unknown objects. In European Conference on
Computer Vision (ECCV). Workshops and Demonstrations Part 3, volume
7585 of Lecture Notes in Computer Science, pages 496–505. Springer, Oct.
2012.

http://octomap.github.com


BIBLIOGRAPHY 147

S. Khalfaoui, R. Seulin, Y. Fougerolle, and D. Fofi. An efficient method for fully
automatic 3d digitization of unknown objects. Computers in Industry, 64(9):
1152 – 1160, 2013. Special Issue: 3D Imaging in Industry.

S. Kielhöfer, T. Bahls, F. Hacker, T. Wusthoff, and M. Suppa. DLR VR-SCAN:
A versatile and robust miniaturized laser scanner for short range 3d-modelling
and exploration in robotics. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1933–1939, San
Francisco, CA, USA, Sept. 2011.

R. Konietschke. Planning of Workplaces with Multiple Kinematically Redundant
Robots. PhD thesis, Technische Universität München (TUM), 2008.

K. Konolige. Improved occupancy grids for map building. Autonomous Robots,
4(4):351–367, 1997.

M. Krainin, B. Curless, and D. Fox. Autonomous generation of complete 3d
object models using next best view manipulation planning. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA),
pages 5031–5037, Shanghai, China, May 2011.

S. Kriegel, T. Bodenmüller, M. Suppa, and G. Hirzinger. A surface-based next-
best-view approach for automated 3d model completion of unknown objects.
In Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 4869–4874, Shanghai, China, May 2011.

S. Kriegel, C. Rink, T. Bodenmüller, A. Narr, M. Suppa, and G. Hirzinger.
Next-best-scan planning for autonomous 3d modeling. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2850–2856, Vilamoura, Portugal, Oct. 2012.

S. Kriegel, M. Brucker, Z.-C. Marton, T. Bodenmüller, and M. Suppa. Com-
bining object modeling and recognition for active scene exploration. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2384–2391, Tokyo, Japan, Nov. 2013a.

S. Kriegel, C. Rink, T. Bodenmüller, and M. Suppa. Efficient next-best-scan
planning for autonomous 3d surface reconstruction of unknown objects. Jour-
nal of Real-Time Image Processing (JRTIP), pages 1–21, 2013b.

J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-
query path planning. In Proceedings of the IEEE International Conference on



148 BIBLIOGRAPHY

Robotics and Automation (ICRA), pages 781–787, San Francisco, CA, USA,
Apr. 2000.

B. Langmann, K. Hartmann, and O. Loffeld. Depth camera technology compar-
ison and performance evaluation. In Proceedings of the International Confer-
ence on Pattern Recognition Applications and Methods (ICPRAM), Volume
2, pages 438–444, Vilamoura, Algarve, Portugal, Feb. 2012.

S. Larsson and J. A. P. Kjellander. Path planning for laser scanning with an
industrial robot. Robotics and Autonomous Systems, 56(7):615–624, 2008.

S. M. Lavalle, J. J. Kuffner, and Jr. Rapidly-exploring random trees: Progress
and prospects. In Algorithmic and Computational Robotics: New Directions,
pages 293–308, 2000.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginz-
ton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The dig-
ital michelangelo project: 3D scanning of large statues. In Proceedings of
International Conference on Computer Graphics and Interactive Technique
(SIGGRAPH), pages 131–144, July 2000.

P. Liepa. Filling holes in meshes. In ACM Eurographics Symposium on Geometry
Processing, pages 200–205, Aachen, Germany, 2003.

V. Lippiello, F. Ruggiero, B. Siciliano, and L. Villani. Visual grasp planning for
unknown objects using a multifingered robotic hand. IEEE/ASME Transac-
tions on Mechatronics, 18(3):1050–1059, 2013.

B. Loriot, S. Ralph, and P. Gorria. Non-model based method for an automation
of 3d acquisition and post-processing. Electronic letters on computer vision
and image analysis (ELCVIA), 7(3):67–82, 2008.

K.-L. Low and A. Lastra. Efficient constraint evaluation algorithms for hierar-
chical next-best-view planning. In Proceedings of International Conference on
3D Data Processing, Visualization and Transmission (3DPVT), pages 830–
837, Chapel Hill, North Carolina, USA, June 2006.

Z.-C. Marton, L. Goron, R. B. Rusu, and M. Beetz. Reconstruction and verifi-
cation of 3d object models for grasping. In Robotics Research, pages 315–328.
Springer, 2011.

N. A. Massios and R. B. Fisher. A best next view selection algorithm incor-
porating a quality criterion. In Proceedings of the British Machine Vision



BIBLIOGRAPHY 149

Conference (BMVC), pages 780–789, Southampton, UK, 1998. British Ma-
chine Vision Association.

J. Maver and R. Bajcsy. Occlusions as a guide for planning the next view.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
15:417–433, 1993.

C. Mehdi-Souzani, F. Thiebaut, and C. Lartigue. Scan planning strategy for a
general digitized surface. Journal of Computing and Information Science in
Engineering (JCISE), 6(4):331–339, 2006.

S. Meister, S. Izadi, P. Kohli, M. Hämmerle, C. Rother, and D. Kondermann.
When can we use KinectFusion for ground truth acquisition? In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Work-
shop on color-depth fusion in robotics, Vilamoura, Portugal, Oct. 2012.

A. S. Mian, M. Bennamoun, and R. Owens. Three-dimensional model-based
object recognition and segmentation in cluttered scenes. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 28(10), 2006.

M. Milroy, C. Bradley, and G. Vicker. Automated laser-scanning based on
orthogonal cross-sections. Machine Vision and Applications, 9(3):106–118,
1996.

M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored
solution to the simultaneous localization and mapping problem. In Proceed-
ings of the National Conference on Artificial Intelligence and Conference on
Innovative Applications of Artificial Intelligence (AAAI/IAAI), pages 593–
598, Edmonton, Alberta, Canada, July 2002.

C. Munkelt. Aktive daten- und modellbasierte Sensorpositionierung zur 3-D
Vermessung. PhD thesis, Friedrich-Schiller-Universität Jena, 2011.

C. Munkelt, M. Trummer, S. Wenhardt, and J. Denzler. Benchmarking 3D
Reconstructions from Next Best View Planning. Machine Vision and Appli-
cations, pages 552–555, 2007.

M. D. Mura, M. Aravecchia, and M. Zanin. Outdoor 3D with Kinect: prelimi-
nary results in the granulometry of fluvial sediments. In National Workshop
on Low cost 3D: sensori, algoritmi e applicazioni, Trento, Italy, Mar. 2012.

A. Narr and S. Kriegel. Automated 3d reconstruction of unknown objects by
planning the next-best-view based on a spatial data structure. Bachelor’s
thesis, Hochschule Heilbronn, 2012.



150 BIBLIOGRAPHY

A. Nüchter. 3D Robotic Mapping - The Simultaneous Localization and Map-
ping Problem with Six Degrees of Freedom, volume 52 of Springer Tracts in
Advanced Robotics. Springer, 2009. ISBN 978-3-540-89883-2.

A. Nüchter and J. Hertzberg. Towards semantic maps for mobile robots.
Robotics and Autonomous Systems, 56(11):915–926, 2008.

E. Olson. AprilTag: A robust and flexible visual fiducial system. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA),
pages 3400–3407, Shanghai, China, May 2011.

G. Oriolo, M. Vendittelli, L. Freda, and G. Troso. The SRT method: Ran-
domized strategies for exploration. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 4688–4694, New Or-
leans, LA, USA, Apr. 2004.

M.-T. Pham, O. J. Woodford, F. Perbet, A. Maki, B. Stenger, and R. Cipolla. A
new distance for scale-invariant 3D shape recognition and registration. In Pro-
ceedings of the IEEE International Conference on Computer Vision (ICCV),
pages 145–152, Barcelona, Spain, Nov. 2011.

R. Pito. A solution to the next best view problem for automated surface ac-
quisition. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 21(10):1016–1030, 1999.

C. Potthast and G. S. Sukhatme. Next best view estimation with eye in hand
camera. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), The PR2 Workshop, San Francisco, CA, USA, Sept. 2011.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numer-
ical Recipes in C (2Nd Ed.): The Art of Scientific Computing. Cambridge
University Press, New York, NY, USA, 1992. ISBN 0-521-43108-5.

F. Prieto, R. Lepage, P. Boulanger, and T. Redarce. A CAD-based 3d data
acquisition strategy for inspection. Machine Vision and Applications, 15(2):
76–91, 2003.

K. Pulli. Multiview registration for large data sets. In Proceedings of the IEEE
International Conference on 3D Digital Imaging and Modeling (3DIM), pages
160–168, Ottawa, Canada, Oct. 1999.

C. Rink, Z.-C. Marton, D. Seth, T. Bodenmüller, and M. Suppa. Feature
based particle filter registration of 3d surface models and its application in



BIBLIOGRAPHY 151

robotics. In Proceedings of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), Tokyo, Japan, Nov. 2013.

J. Röwekämper, C. Sprunk, G. D. Tipaldi, C. Stachniss, P. Pfaff, and W. Bur-
gard. On the position accuracy of mobile robot localization based on par-
ticle filters combined with scan matching. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
3158–3164, Vilamoura, Portugal, Oct. 2012.

S. D. Roy, S. Chaudhury, and S. Banerjee. Active recognition through next view
planning: a survey. Pattern Recognition, 37(3):429–446, 2004.

S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In Pro-
ceedings of the International Conference on 3D Digital Imaging and Modeling
(3DIM), pages 145–152, Quebec City, Canada, 2001.

S. Rusinkiewicz, O. A. Hall-Holt, and M. Levoy. Real-time 3d model acquisition.
SIGGRAPH, 21(3):438–446, 2002.

R. B. Rusu, Z. C. Marton, N. Blodow, M. E. Dolha, and M. Beetz. Functional
object mapping of kitchen environments. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Nice,
France, Sept. 2008.

A. Sahbani, S. El-Khoury, and P. Bidaud. An overview of 3d object grasp syn-
thesis algorithms. Robotics and Autonomous Systems, 60(3):326–336, 2012.

H. Samet. Applications of spatial data structures - computer graphics, image
processing, and GIS. Addison-Wesley, 1990. ISBN 978-0-201-50300-5.

D. Scharstein and R. Szeliski. High-accuracy stereo depth maps using structured
light. In Proceedings of IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), pages 195–202, Madison, WI, USA, June
2003.

K. Scheibe, M. Suppa, H. Hirschmüller, B. Strackenbrock, F. Huang, R. Liu,
and G. Hirzinger. Multi-scale 3d-modeling. In Advances in Image and Video
Technology, First Pacific Rim Symposium, PSIVT, pages 96–107, Hsinchu,
Taiwan, Dec. 2006.

K. Schmid, H. Hirschmüller, A. Dömel, I. L. Grixa, M. Suppa, and G. Hirzinger.
View planning for multi-view stereo 3d reconstruction using an autonomous
multicopter. Journal of Intelligent and Robotic Systems, 65(1-4):309–323,
2012.



152 BIBLIOGRAPHY

T. Schmidt, R. Newcombe, and D. Fox. Dart: Dense articulated real-time
tracking. In Proceedings of Robotics: Science and Systems, Berkeley, USA,
July 2014.

W. R. Scott, G. Roth, and J.-F. Rivest. View planning for automated 3d object
reconstruction inspection. ACM Computing Surveys (CSUR), 35(1):64–96,
2003.

A. Singh, J. Sha, K. Narayan, T. Achim, and P. Abbeel. Bigbird: A large-scale
3d database of object instances. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 509–516, Hong Kong,
China, May 2014.

J. Smisek, M. Jancosek, and T. Pajdla. 3d with Kinect. In IEEE International
Conference on Computer Vision (ICCV), Workshops, pages 1154–1160, Nov.
2011.

T. Stoyanov, A. Louloudi, H. Andreasson, and A. J. Lilienthal. Comparative
evaluation of range sensor accuracy in indoor environments. In Proceedings of
the European Conference on Mobile Robots (ECMR), pages 19–24, Sep 7–10
2011.

K. Strobl. A Flexible Approach to Close-Range 3-D Modeling. PhD thesis,
Technische Universität München (TUM), 2014a.

K. H. Strobl. Loop closing for visual pose tracking during close-range 3-d mod-
eling. In Proceedings of the International Symposium on Visual Computing
(ISVC), volume 8887 of LNCS, pages 390–401, Las Vegas, NV, USA, Dec.
2014b. Springer.

K. H. Strobl and G. Hirzinger. Optimal hand-eye calibration. In Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4647–4653, Beijing, China, October 2006.

K. H. Strobl, W. Sepp, E. Wahl, T. Bodenmüller, M. Suppa, J. F. Seara, and
G. Hirzinger. The DLR multisensory hand-guided device: the laser stripe
profiler. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 1927–1932, New Orleans, LA, USA, Apr.
2004.

K. H. Strobl, W. Sepp, S. Fuchs, C. Paredes, M. Smisek, and K. Arbter. DLR
CalDe and DLR CalLab, 2005. URL http://www.robotic.dlr.de/callab/.

http://www.robotic.dlr.de/callab/


BIBLIOGRAPHY 153

K. H. Strobl, E. Mair, T. Bodenmüller, S. Kielhöfer, W. Sepp, M. Suppa,
D. Burschka, and G. Hirzinger. The self-referenced DLR 3d-modeler. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 21–28, St. Louis, MO, USA, Oct. 2009.

M. Suppa. Autonomous Robot Work Cell Exploration using Multisensory Eye-
in-Hand Systems. PhD thesis, Leibniz Universität Hannover, 2008.

M. Suppa, S. Kielhöfer, J. Langwald, F. Hacker, K. H. Strobl, and G. Hirzinger.
The 3d-modeller: A multi-purpose vision platform. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), pages
781–787, Roma, Italy, Apr. 2007.

U. Thomas, S. Kriegel, and M. Suppa. Fusing color and geometry information
for understanding cluttered scenes. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Robots in Clutter Workshop, Chicago,
Illinois, USA, Sept. 2014.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, MA,
2005.

L. Torabi and K. Gupta. An autonomous six-DOF eye-in-hand system for in
situ 3d object modeling. International Journal of Robotics Research (IJRR),
31(1):82–100, 2012a.

L. Torabi and K. Gupta. An autonomous 9-DOF mobile-manipulator system
for in situ 3d object modeling. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4540–4541, Vil-
amoura, Portugal, Oct. 2012b.

M. Trummer, C. Munkelt, and J. Denzler. Online next-best-view planning for
accuracy optimization using an extended e-criterion. In Proceedings of the
International Conference on Pattern Recognition (ICPR), pages 1642–1645,
Istanbul, Turkey, Aug. 2010.

G. van den Bergen. A fast and robust gjk implementation for collision detection
of convex objects. J. Graphics, GPU, & Game Tools, 4(2):7–25, 1999.

G. van den Bergen. Collision Detection in Interactive 3D Environments. CRC
Press, 2003.

H. van Hoof, O. Kroemer, and J. Peters. Probabilistic segmentation and tar-
geted exploration of objects in cluttered environments. IEEE Transactions
on Robotics (TRo), 2014.



154 BIBLIOGRAPHY

J. I. Vasquez-Gomez, E. Lopez-Damian, and L. E. Sucar. View planning for 3d
object reconstruction. In Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 4015–4020, St. Louis,
MO, USA, Oct. 2009.

J. I. Vasquez-Gomez, L. E. Sucar, and R. Murrieta-Cid. Hierarchical ray trac-
ing for fast volumetric next-best-view planning. In Proceedings of the Na-
tional Conference on Computer and Robot Vision, pages 2850–2856, Regina,
Saskatchewan, Canada, May 2013.

J. I. Vasquez-Gomez, L. E. Sucar, and R. Murrieta-Cid. View planning for
3d object reconstruction with a mobile manipulator robot. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4227–4233, Chicago, Illinois, USA, Sept. 2014a.

J. I. Vasquez-Gomez, L. E. Sucar, R. Murrieta-Cid, and E. Lopez-Damian. Vol-
umetric next best view planning for 3d object reconstruction with positioning
error. International Journal of Advanced Robotic Systems, 11:159, 2014b.

E. Wahl, U. Hillenbrand, and G. Hirzinger. Surflet-pair-relation histograms:
A statistical 3D-shape representation for rapid classification. In Proceedings
of the IEEE International Conference on 3D Digital Imaging and Modeling
(3DIM), Banff, Canada, Oct. 2003.

M. Weinmann, C. Schwartz, R. Ruiters, and R. Klein. A multi-camera, multi-
projector super-resolution framework for structured light. In Proceedings of
International Symposium on 3D Imaging, Modeling, Processing, Visualization
and Transmission (3DIMPVT), pages 397–404, Hangzhou, China, May 2011.

M. Wiedemann and S. Kriegel. Watertight surface reconstruction for uncertain
data. Master’s thesis, Technische Universität München (TUM), 2014.

S. Winkelbach, S. Molkenstruck, and F. M. Wahl. Low-cost laser range scanner
and fast surface registration approach. In Proceedings of the Annual Sym-
posium of the German Association for Pattern Recognition (DAGM), pages
718–728, Berlin, Germany, Sept. 2006.

L. M. Wong, C. Dumont, and M. A. Abidi. A next best view algorithm for
object reconstruction. In SPIE, volume 3523, pages 191–200, Boston, MA,
1998.

L. M. Wong, C. Dumont, and M. A. Abidi. Next best view system in a 3-d
object modeling task. In Proceedings of the IEEE International Symposium



BIBLIOGRAPHY 155

on Computational Intelligence in Robotics and Automation (CIRA), pages
306–311, Monterey, California, Nov. 1999.

E. Wren. Trend surface analysis - a review. Canadian Journal of Exploration
Geophysics, 19:39–44, 1973.

K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard. Oc-
toMap: A probabilistic, flexible, and compact 3D map representation for
robotic systems. In IEEE International Conference on Robotics and Automa-
tion (ICRA), Workshop on Best Practice in 3D Perception and Modeling for
Mobile Manipulation, Anchorage, AK, USA, May 2010.

B. Yamauchi. A frontier-based approach for autonomous exploration. In Pro-
ceedings of the IEEE International Symposium on Computational Intelligence
in Robotics and Automation (CIRA), pages 146–151, 1997.

X. Yuan. A mechanism of automatic 3d object modeling. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 17(3):307–311, 1995.

F. Zacharias. Knowledge Representations for Planning Manipulation Actions.
PhD thesis, Technische Universität München (TUM), 2011.

L. Zhang, B. Curless, and S. M. Seitz. Rapid shape acquisition using color struc-
tured light and multi-pass dynamic programming. In Proceedings of Interna-
tional Conference on 3D Data Processing, Visualization and Transmission
(3DPVT), pages 24–37, Padova, Italy, Sept. 2002.

X. Zhou, B. He, and Y. F. Li. A novel view planning method for automatic
reconstruction of unknown 3-d objects based on the limit visual surface. In
Proceedings of the IEEE International Conference on Image and Graphics
(ICIG), pages 301–306, Xi’an, Shanxi, China, 2009.


	Abstract
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	Abbreviations and Symbols
	Introduction
	Problem Statement
	Contribution of the Thesis
	Outline of the Thesis

	State of the Art
	3D Data Acquisition
	Range Sensing
	Pose Estimation

	Autonomous Object Modeling
	View Planning for Object Modeling
	Mapping and Exploration
	Summary and Discussion

	System and Module Overview
	Overview
	Robot-Sensor System
	Sensor Calibration
	Motion Planning
	Local Registration

	3D Model Generation
	Mesh Generation
	Probabilistic Voxel Space Update

	Object Recognition and Validation
	Summary and Discussion

	Next-Best-View Planning for Modeling
	Overview
	Boundary Search
	Boundary Detection
	Surface Trend Estimation

	Scan Candidate Calculation
	Viewpoint calculation
	Scan path calculation

	Hole Rescan
	Next-Best-Scan Planning
	Surface Feature Update
	Replanning for Occlusions and Collisions
	Next-Best-Scan Selection

	Process Control
	Evaluation of the Next-Best-Scan Algorithm
	Parametrization
	Comparison

	Summary and Discussion

	Experiments and Applications
	System Setup
	Industrial Robot
	Mobile Robot

	Object Modeling with Industrial Robot
	Colored Object Modeling with Industrial Robot
	Gripped Object Modeling with Mobile Robot
	Scene Modeling with Mobile Robot
	Active Scene Exploration with Industrial Robot
	Object Modeling
	Object Recognition from Multiple Views
	Combined Object Recognition and Modeling

	Summary and Discussion

	Conclusion
	Conclusion
	Future work

	Bibliography

