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Motivation (1)

Communication systems can be impaired by data-independent
sources with memory, e.g.,

phase noise

multiplicative fading

a combination of the two previous

In general, these channels are referred to as communication
channels with free-running hidden Markov state. We consider the
case of no channel state information available at the transmitter.

Estimation of information rates transferred through these channels
can be challenging because

the state space is not finite and it is multidimensional, therefore
it cannot be approached by trellis-based techniques based on
quantization of the state space, because the number of states
of the trellis would be enormous

the observation can be a nonlinear function of the state,
therefore the optimum front-end filter can be a complicated
nonlinear function of channel’s output

Motivation (2)

Our contribution:

Upper and lower bounds to the information rate between the
hidden state and the measurement based on approximated
inference

Application of these bounds to multiplicative communication
channels

Experimental results for the discrete-time autoregressive
moving average (ARMA) phase noise channel

System Model

The dynamical system is based on the state transition equation

Sk = fk−1(Sk−1, Vk−1) (1)

and on the measurement equation

Yk = hk(Sk , Nk). (2)

V is the process noise, N is the measurement noise, S is the state
process, Y is the measurement process, and {fk−1(·)} and {hk(·)}
are sequences of known functions.

By Markov property of process S, and since process Y is
memoryless given S, we have the factorization

p(sn
0 , yn

1 ) = p(s0)
n
∏

k=1

p(sk |sk−1)p(yk |sk) (3)

Shannon’s mutual information rate between S and Y is

I(S;Y ) = lim
n→∞

1

n

n
∑

k=1

E

{

log2

(

p(Yk |Sk)

p(Yk |Y k−1

1
)

)}

= h(Y ) − h(Y |S)

(4)

Bayesian Inference

Based on channel’s observations, one can track the hidden state by
a two-step recursion:

p(sk |yk−1

1
) =

∫

S

p(sk |sk−1)p(sk−1|yk−1

1
)dsk−1 (5)

p(sk |yk
1 ) =

p(sk |yk−1

1
)p(yk |sk)

p(yk |yk−1

1
)

(6)

If the functions {fk−1(·)} and {hk(·)} are affine then the
Kalman filter is the solution to the recursion

In general, the solution to the two-step recursion is unknown,
and to make the problem treatable some approximations to the
actual probabilities are used

The normalization factor in (6), p(yk |yk−1

1
), is the term needed

to compute h(Y )

Bounds based on Bayesian Inference

Upper bound based on Bayesian filtering

The upper bound is

I(S;Y ) = h(Y ) − h(Y |S) ≥ I(S;Y ) (7)

h(Y ) = lim
n→∞

1

n

n
∑

k=1

log2

1

q(yk |yk−1

1
)

≥ h(Y ) (8)

q(yk |yk−1

1
) is an approximation to p(yk |yk−1

1
) of (6), and yn

1
is a

sequence drawn according to the actual model (3), i.e., by using (1)
and (2).

Lower bound based on Bayesian smoothing

The lower bound is

I(S;Y ) = h(S) − h(S|Y ) ≤ I(S;Y ) (9)

h(S|Y ) = lim
n→∞

1

n

n
∑

k=1

log2

1

q(sk |yk+l
k , sk−1)

≥ h(S|Y ) (10)

q(sk |yk+l
k , sk−1) is the approximation to p(sk |yn

k , sk−1) worked out
by a lag-l Bayesian smoother initialized from the state sk−1 visited
by the realization (sn

1 , yn
1 ) at time k − 1, the time lag l being up to

the user.

Computing the Bounds by Particle Methods

Due to nonlinearity of functions {fk−1(·)} and {hk(·)}, the actual
distributions (5) and (6) can be multimodal. In Bayesian inference,

a particle list {(s
(i)
k , w

(i)
k )}P

i=1
is a common nonparametric method

for representing q(sk |yk−1

1
), where P is the number of particles.

Specifically, (5) is substituted by

s
(i)
k ∼ p(sk |s

(i)
k−1

), i = 1, 2, . . . , P, (11)

where ∼ means drawn with probability, and (6) by

w
(i)
k =

w
(i)
k−1

p(yk |s
(i)
k )

∑P
j=1 w

(j)
k−1

p(yk |s
(j)
k )

, i = 1, 2, . . . , P. (12)

Channels with Free-Running State

Consider a communication channel described by the joint probability

p(rn
1 , xn

1 , sn
0 ) = p(s0)

n
∏

k=1

p(sk |sk−1)p(rk |xk , sk)p(xk), (13)

where R is the channel output process and X the source process.

Using the chain rule for mutual information we have

I(X ;R) = I(X ;R|S) + I(S;R) − I(S;R|X ) (14)

therefore I(X ;R) can be sandwiched as

I(X ;R) = I(X ;R|S) + I(S;R) − I(S;R|X ) (15)

≥ I(X ;R) (16)

≥ I(X ;R|S) + I(S;R) − I(S;R|X ) = I(R;X ), (17)

or using the differential entropy rates as

I(X ;R) = h(R) + h(S|X , R) − h(S|X ) − h(R|X , S) (18)

≥ I(X ;R) (19)

≥ h(S) + h(R|S) − h(S|R) − h(R|X ) = I(R;X ). (20)

h(R) and h(R|X ) are evaluated as in (8)

h(S|X , R) and h(S|R) are evaluated as in (10)

Discrete-Time ARMA Phase Noise Channels

The model is
Rk = XkejΦk + Nk (21)

Φk+1 = Φk +Ωk +
m
∑

i=1

biΩk−i , Ωk = Vk +
m
∑

i=1

aiVk−i , (22)

and the Markovian state is Sk = (Φk ,Ωk−1

k−m). Example for m = 1:

Pink frequency model: ai = 3 · 4−2i , bi = 3 · 4−2i+1, i = 1, . . . , 4.
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Conclusions

Summary:

Shannon information between the hidden Markov state process
of a dynamical system and the measurement process has been
evaluated by the probabilities inferred by Bayesian tracking

Upper and lower bounds to the information rate between the
hidden state and the measurement can be computed from
approximate Bayesian tracking

Specific results have been derived for the discrete-time ARMA
phase noise channel

Outlook:

Bounds for continuous-time channels with free-running
continuous state
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