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Prelusion of this Treatise

Before starting, I would like to emphasize that this prefae stands not only for the brief

explanation of the sienti� ontent of the treatise, but also proposed to be a summary of the

motivation of working on it, and exploding the philosophy of best pratie of onstruting

the survey and its ontent. This foreword is partially written to impose the oneption of

the line of ation up on the reader. The abstrat of the sienti� elements of the work,

whih mainly represents the bakbone of the work, will be presented thereafter.

The subjet of this dissertation is a sub�eld of the Biomehanis, namely the Continuum

Biomehanis, more spei�ally with fous on living �brous soft-tissue. The initial de�nition

of the subjet will be more preisely revised after introduing initial arguments. Before

starting to network the ideas behind the priniple of line of ation, one has to start with

the formal de�nitions of the subjet.

Biomehanis is de�ned as to be "the study of the struture and funtion of biologial

systems suh as humans, animals, plants, organs, and ells by means of the methods of

mehanis" Ref.[

Hatze 1974

℄ .This de�nition is generally aepted to be very omprehensible,

and thus a redi�nition is avoided and had not seen to be neessary. There are ertainly similar

de�nitions, however, older or novel, all these do neither ontribute additional message, nor

narrow the points of signi�ane. However, sine then, there is though some di�erenes

developed. These are mainly as a result of disrete jumps in the state of the art of disiplines

ontributing the �eld of biomehanis, namely in engineering and medial siene. Many

Pioneers onsidered the �eld of Mehanis as a tool whih is used to understand the funtion

of biologial struture. For instane Ref.[

Fung 1993

℄ states that " the interest in ontinuum

biomehanis is spurred by the need for realism in the development of medial simulation".

Whih more expliitly than impliitly indiates that, in the absene of this interdisiplinary

interest, the �eld of biomehanis would never been born at all, or would not be the same

whih is now. This observation is well aepted and appreiated by the writer of this treatise.

Moving on, more up-to date publiations about mehanobiology, state the expeted realism

above learly enough. For instane, Ref.[

Humphrey 2003

℄ forewords his opinion on this subjet

by writing that, "biomehanis has yet to reah its full potential as a onsistent ontributor

to the improvement of health-are delivery." This pragmati manifest was ertainly not a

seret, but the ahievements are spoken out now on�dently as before. As bakground

message, it is also emphasized not to forget onsistent ontribution. Aording to the

subjetive opinion of the writer, behind this emphasis, there is presumably the apprehension

of loosing the attention on ontinuum mehanis, by failing to hit the point of objetive, or

landing far beyond of the diameter of interest. If this apprehension tends to move towards

anxiety or should soldier on to keep the stress level high enough for improvement, to �nd

the answer more experiene is required. However, this disussion leads to the lari�ation

of the best pratie and line of ation of this treatise.

There is an impliative question to be answered. The fat is, during the development
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of interdisiplinary �elds, one �eld served and supplied logistis to another (where the

pratial interest fouses). The question is, does it take plae without evolving its own

struture, or vendor branh has gained also power and self-interest by involving in the

proposed interdisiplinary �eld?

The arguments an be put on the table simultaneously, or sequentially. The latter is

preferred by the writer here. Considering one single property of matter of onern here,

that is anisotropy. Please reall that several �brous soft tissue types are mehanially

anisotropi, suh as skin, ardio-vasular system, artilage, tendons, ligaments and more.

However, the term is in fat visited several times by the leading engineers of the �eld, even

before the disussion of existene of a �eld named biomehanis. For instane S.Timoshenko

and J.N.Goodier in their master piee of Ref.[

S.Timoshenko 1951

℄ mention about anisotropy,

"...,a ertain orientation of the rystals in metals prevails, the elasti properties of the metal

beome di�erent in di�erent diretions and the ondition of anisotropy must be onsidered.".

They obviously mention about the anisotropy aused by engineering proess, preisely metal

forming. Frankly writing, it would be quite an arrogant ation to laim that, the founders

of the Theory of Elastiity were unaware of the existene of naturally anisotropi material,

beause they were ridiulously unable to observe the �brous struture of redwood. It is thus

an obvious fat that, terms like anisotropy was ertainly postulated earlier in the borderlines

of ontinuum mehanis, and found another �eld of appliation; Biomehanis.

Keeping this example in mind, the �rst postulations of the hyperelasti anisotropi energy

funtions date not as bak as foundational elements of elastiity. Fung, being aepted

as one of the fathers of ontinuum biomehanis, mentioned about the residual stresses

in arterial walls in Ref.[

C.J. Chuong 1986

℄, however �rst postulated the famous exponential

formula for the anisotropi materials, quite later, in Ref.[

Fung 1993

℄. Similarly, nearly before

Fung, another hyperelasti anisotropi formula postulated in Ref.[

J.M. Guione 1991

℄. In the

seond work, Guiionne JM et al. reahed one of the �rst quantitative statements; "...the

sti�ness of passive myoardium (de�ned for a 20 perent equibiaxial extension) would be

2.4 to 6.6 times greater in the �ber diretion than in the transverse plane...". Later works

of Ogden and Holzapfel, suh as in Ref.[

Ogden 2003

℄ and Ref.[

Holzapfel 2008

℄ inlude more

spei� and reliable material models based on emprial tehniques and validation methods

based on reent publiations of themselves. Among all the ontributions done until now,

one is ommon that, the researhers and pioneers of the �eld of biomehanis applied the

fundamental postulates of lassial ontinuum mehanis, suh as the de�nitions done by

Green, Ref.[

Green 1970

℄.
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2 Chapter 1. Soft Tissue as Biphase Mixture

1.1 Introdution

This hapter of the thesis is dediated to introdue the �rst order kinematis and

thermodynamis of biphasi media using theory of mixtures as a �oor requirement for

investigating the soft biologial tissue. This base requirement is either diretly stated, or is

imposed by the pioneers of the ontinuum Biomehanis.

Several elements of this general statement requires lari�ation. The initial one is the so

alled "First order Kinematis". The keyword brings out the possibility of postulations of

higher order kinematis. This spei�ation exludes the so alled strain gradient e�ets,

whih is visited in the remaining hapters of the thesis. Additionally, it should be emphasized

that the di�erene of �rst order and higher order kinematis are not analogous de�nitions of

German study onepts of Theorie Erster und Zweiter Ordnung lari�ed in Ref.[

Bletzinger 2009

℄

learly. The latter one deals with the statis and dynamis of strutures with and without

of the e�ets of geometrial, loading and material types of nonlinearities. The prior one,

whih is the subjet of this thesis, imposes the nonlinear kinematis, in another novel way.

Keeping this in mind, the �rst order and the seond order Kinematis used in this work, both

onsider nonlinear geometrial e�ets, and thus appliable for large deformational studies.

The seond keyword of the statement is the fundamental neessity of onsideration of

multyphasi nature of the soft tissue. As stated above, the base requirement is imposed by

the pioneers of the ontinuum Biomehanis. For instane, Fung in Ref.[

Fung 1993

℄ alls the

soft tissue (irrespetive of the type of the tissue) as being pseudoelasti, by pointing out

the phenomenologial ause of visoelastiity. As an be seen by this hapter, the soures

of the hysteresis, whih is onsistently the main di�erene in between the assumption of

pseudoelastiity and true elastiity (whih is in fat the true idealization, and does probably

not exist at all), an be well linked to the seond law of thermodynamis, in terms of

the miromehanial interation of di�erent phases of the tissue. At this stage it would

be appropriate to mention that the omprehensive mehanis of the ausality of hysteresis

is not an trivial task to determine. Impliitly, the reformulation of the phenomenon with

the de�nition of visoelastity points out that the visous e�ets are responsible for the

pseudo-harateristis of the solid.

Aording to the writer of this hapter, to link the phenomenon and ausality in terms

of physial quantities, is still a more omprehensible approah then estimating oe�ients

for the rheologial material models. No doubt that the latter has ertainly some pratial

engineering advantages. However, in short, the writer had hosen the way of researher,

not the way of engineer.

The hapter is divided into seven setions. In the beginning, the properties of the

biphasi mixture is summarized. In the follower setions, the kinematis, the assumptions

under onsideration of soft-tissue in fous is presented. The weak form, and disretized

equations is visited in the remaining setions. Aordingly, several di�erent numerial

examples is shown to prove appliability and ompleteness of the approah. The pioneering

formulations an be found under the study of the theory of the mixtures by Truesdell and

Toupin in Ref.[

C.Truesdell 1960

℄, and by Atkin and Craine in Ref.[

R.J.Atkin 1976

℄. Following this
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initial works, one of the �rst appliations of the study an be found in Mow et al. in

Ref.[

V.C.Mow 1980

℄. The historial development and basis of the theory of porous media

an be found in the notes of de Boer in Ref.[

de Boer 1996

℄, who is another founder of the

marosopi theories of the multiphase mixtures. The state of the art of the Theory of

porous media and various numerial and experimental appliations an be found in the

reent editorial publiation of Ehlers and Bluhm in Ref.[

W.Ehlers 2002

℄.

The writer of the thesis had used many of these works and it is stated spei�ally if a

novel self-ontribution is present or another referene is used for the soure of information.

Otherwise, this introdutory hapter is a short and pieewise summary of the fundamental

sienti� works in the aforementioned referenes above.

1.2 Partial and Total Properties of the Mixture

The main aim of this setion is to provide fundamental de�nitions. The kinematis of the

mixture is developed aording to these basi de�nitions in hand. Aordingly, the governing

equations are formulated on the basis of theory of mixture, namely a thermodynami balane

and unbalane governing equations, as well as inequalities are presented.

The total material domain of the problem is a omposition of a binary mixture.

Ω =
⋃

Γ

ΩΓ = ΩS ∪ ΩF (1.1)

Another spatial domain, whih is not (neessarily) kinematially onjugated with the

material domain de�ned above, is also a omposition. The priniple of kinematial

inonjugation of the theory presented here is abbreviated with the subsript '*' beneath.

Ω∗ =
⋃

γ

Ωγ∗ = Ωs∗ ∪ Ωf∗ (1.2)

The theory of porous media assumes that the total in�nite and �nite volumes in the material

as well as in the spatial on�gurations do obey the priniple of additive split. In this ase,

as indiated previously in setion Ch.[1.1℄, a two-phase material is under onsideration.

V =
∑

Γ

V Γ =
∑

Γ

∫

ΩΓ

dV Γ =

∫

Ω

∑

Γ

dV Γ =

∫

Ω
dV (1.3)

The same series of fundamental de�nitions an be also made for the spatial in�nite and

�nite volumes.

v∗ =
∑

γ

vγ∗ =
∑

γ

∫

Ωγ
∗

dvγ∗ =

∫

Ω∗

∑

γ

dvγ∗ =

∫

Ω∗

dv∗ (1.4)

The volume fration of a material onstituent Γ in the material oordinates is depending

on the material loation of that onstituent.

nΓ = nΓ
(
XΓ
)

(1.5)
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As well, the volume fration in the spatial oordinates depending on the the spatial

oordinates of that onstituent.

nγ = nγ
(
XΓ, t

)
= nγ (xγ) (1.6)

The volume fration determines the partial volume of that onstituent in the saturated

mixture.

V =
∑

Γ

V Γ =
∑

Γ

nΓV =

∫

Ω

∑

Γ

dV Γ =

∫

Ω

∑

Γ

nΓdV =

∫

Ω
dV

v∗ =
∑

γ

vγ∗ =
∑

γ

nγ∗v∗ =

∫

Ω∗

∑

γ

dvγ∗ =

∫

Ω∗

∑

γ

nγ∗dv∗ =

∫

Ω∗

dv∗

(1.7)

The in-onjugated quantities referred here again with an asterisk. To make it lear,

onsidering the volume frations are not neessarily equal,

nγ (X, t) 6= nγ∗ (X∗, t) (1.8)

To repeat it again, in general, the material domain Ω is not the kinemati origin of the

spatial domain Ω∗. Besides, the last two equation set of equation (1.7), omprises the

saturation ondition.

∫

Ω

∑

Γ

nΓdV =

∫

Ω
dV

∫

Ω∗

∑

γ

nγdv =

∫

Ω∗

dv (1.9a)

∑

Γ

nΓ = nS + nF = 1
∑

γ

nγ = ns + nf = 1 (1.9b)

The partial and realisti true densities are de�ned as,

ρΓR =
dmΓ

dV
ρΓ =

dmΓ

dV Γ

̺γR =
dmγ

dv
̺γ =

dmγ

dvγ

(1.10)

The total mass in referene and urrent on�gurations are,

m =

∫

Ω

∑

Γ

dmΓ =

∫

Ω

∑

Γ

ρΓdV Γ =

∫

Ω

∑

Γ

ρΓRdV =

∫

Ω

∑

Γ

nΓρΓRdV Γ

m∗ =

∫

Ω∗

∑

γ

dmγ
∗ =

∫

Ω∗

∑

γ

̺γ∗dV
γ
∗ =

∫

Ω∗

∑

γ

̺γR∗ dV∗ =

∫

Ω∗

∑

γ

nγ∗̺
γR
∗ dV Γ

∗

(1.11)

This onludes the relationship between the partial and true densities in material and

another kinematially in-onjugated spatial oordinates,

ρΓ = nΓρΓR ̺γ∗ = nγ∗̺
γR
∗ (1.12)

This basi de�nitions an be found in any state of the art texts, suh as Ateshian

Ref.[

G.A.Ateshian 2008

℄ makes a very brief de�nition of these bakbone identities of mixture

ontinuum.
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1.3 Kinematis of the Mixture

In the theory of mixtures, it is assumed that eah individual onstituent has its own

Lagrangian mapping. Alternatively, the way of expression of motion is that, eah individual

omponent of the mixture originates from di�erent referene oordinates, but ends and

thus omposes the �nal unique spatial urrent state of mixture. Spei�ally, the urrent

oordinate is a result of a two-to-one mapping. For the ase of solid and �uid (�ber and

surrounding �uid) mixture,

x = x |s = x |f = x (X |S , t) = x (X |F , t) (1.13)

Sine the oordinates are neither a state nor a proess variable, the appropriate

mathematial notation of suh that:(|) is used instead of super or subsript. Sine the

evaluation of the urrent oordinates are appriorily are known (de�ned) to be the same

1

,

one single urrent oordinate is used next, instead of two separate. However, the "matter"

of the oordinate is indiated. Being onsidered as an gradient operator only (independent

of any violation indiations of material penetration), the same notation of evaluated at

(suh that) an be applied for the deformation gradient too.

F |F =
∂x

∂X |F
= F |sF =

∂x |s
∂X |F

= F |fF =
∂x |f
∂X |F

(1.14)

The deformation gradient of the solid onstituent (the gradient of the urrent mixture

evaluated at the solid referene oordinates) is similarly,

F |S =
∂x

∂X |S
= F |sS =

∂x |s
∂X |S

= F |fS =
∂x |f
∂X |S

(1.15)

Sine there are two mappings and two deformation gradients, there will be neessarily

another two spatial gradients of the reverse motions. The spatial gradients are -as tensor

operators- inverse of the forward material gradients. The spatial gradients for the reverse

�uid motion reads,

F−1 |F =
∂X |F
∂x

= F−1 |Fs =
∂X |F
∂x |s

= F−1 |Ff =
∂X |F
∂x |f

(1.16)

The spatial gradients for the reverse solid motion are,

F−1 |S =
∂X |S
∂x

= F−1 |Ss =
∂X |S
∂x |s

= F−1 |Sf =
∂X |S
∂x |f

(1.17)

In short notation, the material and the spatial (G)gradients of eah onstituent are,

F |Γ = F |γΓ = Grad |Γ x |γ = Grad |Γ x (1.18a)

F−1 |Γ = F−1 |Γγ = grad |γ X |Γ = gradX |Γ (1.18b)

1

The "oordinates" are quantitatively the same, yet the "matter" as quality of ourse are not

the same. This implies the well known "smeared" model postulated by many writers, see Ehlers

Ref.[

W.Ehlers 2002

℄ for instane.
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As the urrent mixture omponents originates from di�erent referene loations, the

statement of onstutients do keep the same smeared om�gurations in another state, is

still arbitrary. By speifying this another state as the state of in�nite next

2

, one an

state that the veloity vetors of the urrent omponents are arbitrary and thus di�erent,

even though the time derivative is evaluated at the ommon urrent oordinates. This

indiates that even though there are two deformation gradients, there are in total four rates

of deformation gradients. Next, only the rates whih are relevant for the formulation are

presented in this ontent. This relevany is determined by the hemial omposition. The

rates of deformation gradients for hemially idential omponents of the mixture are,

Ḟ |sS =
∂ẋ |s
∂X |S

= Grad |S ẋ |s (1.19a)

Ḟ |fF =
∂ẋ |f
∂X |F

= Grad |F ẋ |f (1.19b)

The spatial veloity gradient of the solid omponent an be dedued from the previous

equations as follows,

L |s = L |ss = L |sf =
∂ẋ |s
∂x

=
∂ẋ |s
∂X |S

·
∂X |S
∂x

= Ḟ |sS · F−1 |S

L |s = gradẋ |s = (Grad |S ẋ |s ·) (gradX |S )

(1.20)

The spatial veloity gradient of the �uid omponent is kinematially idential,

L |f = L |fs = L |ff =
∂ẋ |f
∂x

=
∂ẋ |f
∂X |F

·
∂X |F
∂x

= Ḟ |fF · F−1 |F

L |f = gradẋ |f = (Grad |F ẋ |f ·) (gradX |F )

(1.21)

Lastly, for the kinematis of the mixture, the spatial veloity gradients an be further

additively splitted into symmetri and skew symmetri tensors.

L |γ =D |γ +W |γ

D |γ =
1

2

(
L |γ +LT |γ

)

W |γ =
1

2

(
L |γ −LT |γ

)
(1.22)

This split is for the balane equations absolutely neessary, sine the true stress tensor is

symmetri (for the sake of balane of angular momentum), and thus energetially orthogonal

to the skew symmetri part of the spatial veloity gradient. In general, for the omponents

2

ontinuum neighborhood of the smeared on�guration
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whih are hemially idential, the following orrelation an be written;

hemially idential :

{
γ = s, | Γ = S

γ = f, | Γ = F
⇐⇒

⇐⇒ L |γ = Ḟ |γΓ · F−1 |Γ

L |γ = gradẋ |γ = (Grad |Γ ẋ |γ ·) (gradX |Γ )

(1.23)

The writer of the treatise, strongly suggests to follow the identities and orrelations

introdued in the setion of Kinematis of the Mixture Ch.[1.3℄, in the very well written

textbooks of Holzapfel Ref.[

Holzapfel 2006

℄, and Bonet&Wood Ref.[

J.Bonet 2008

℄. Even though

these books do not mention about the nature of biomaterials omposed of multiple physial

phases expliitly, they are still the best among many others to verify the validity of the

proposed �rst order kinematis.

1.4 Governing Relations

In this setion the balane equalities of the onservation of mass, the onservation of linear

momentum, the onservation of internal and kineti energy are introdued initially. After

that, the introdution of the inequality of entropy for the biphase material an be found.

1.4.1 Conservation of Mass

In this setion, the onservation of mass for a ontrol volume is introdued brie�y. The

ontrol volume is taken as the urrent volume oupied by the urrent mixture omponents,

and thus de�nes a thermodynamially open system. This indiates, that there might be a

mass input into the system. At this stage of formulation, the system an be further assumed

to be isolated, and aordingly the mass supply term an be negleted for the time being.

To start with, the urrent mass and the urrent rate of mass supply in terms of the urrent

apparent (partial) density and urrent rate of apparent (partial) density supply an be written

as,

mγ =

∫

Ωγ

dmγ =

∫

Ωγ

̺γdv m̂γ =

∫

Ωγ

dm̂γ =

∫

Ωγ

ˆ̺γdv (1.24)

Obviously, the statement of onservation of mass requires the equality of rate of hange of

mass to the rate of mass supply into the volume.

ṁγ |γ = m̂γ
(1.25)

Realling the equations of rates of deformation gradients (1.19) makes it lear, why the

evaluation loation of the rate of urrent mass should be onsidered.

ṁγ |γ =

˙(∫

Ωγ

̺γdv

)∣∣∣∣∣∣
γ

(1.26)
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The loal form of this equation an be obtained stepwise. Firstly, by pulling bak the spatial

total volume to the material partial volume with the determinant of the orresponding

deformation gradient, one gets,

ṁγ |γ =

˙(∫

Ωγ

̺γdv

)∣∣∣∣∣∣
γ

. =

˙(∫

Ωγ

̺γdet (F |Γ ) dV Γ

)∣∣∣∣∣∣
γ

=

∫

Ωγ

˙
̺γdet (F |Γ )

∣∣∣
γ
dV Γ

(1.27)

This rate derivative

3

an be further partitioned to reah the loal form,

∫

Ωγ

˙
̺γdet (F |Γ )

∣∣∣
γ
dV Γ =

∫

Ωγ

(
˙̺γ |γ det (F |Γ ) + ̺γ

˙
det (F |Γ )

∣∣∣
γ

)
dV Γ

=

∫

Ωγ

(
˙̺γ |γ det (F |Γ ) + ̺γ

∂ (det (F |Γ ))

∂F |Γ
: Ḟ |γΓ

)
dV Γ

=

∫

Ωγ

(
˙̺γ |γ det (F |Γ ) + ̺γdet (F |Γ )F

−T |Γ : Ḟ |γΓ
)
dV Γ

(1.28)

Where the derivative of the third invariant of a tensor with respet to the tensor itself is

omitted here, and an be found elsewhere, the writer had followed the notation used by

Bonet&Wood Ref.[

J.Bonet 2008

℄. Besides the simpli�ation of the onstituent mapping of

the in�nite volume, the double ontration term an be further simpli�ed by using the index

notation,

dv = det (F |Γ ) dV
Γ

(1.29a)

F−T |Γ : Ḟ |γΓ =

(
∂X |Γ
∂x

)

Ji

(
∂ẋ |γ
∂X |Γ

)

iJ

=

(
∂ẋ |γ
∂x

)

ii

= tr (gradẋ |γ ) = tr (L |γ ) = div (ẋ |γ )

(1.29b)

The �nal global form beomes;

ṁγ =

∫

Ωγ

(
˙̺γ |γ det (F |Γ ) + ̺γdet (F |Γ )F

−T |Γ : Ḟ |γΓ
)
dV Γ

=

∫

Ωγ

(
˙̺γ |γ + ̺γdiv (ẋ |γ )

)
dV Γ

(1.30)

and the loal inhomogeneous form is then;

˙̺γ |γ + ̺γdiv (ẋ |γ ) = ˆ̺γ (1.31)

3

Please note that the integrand is time dependent, the integration variable as the referene real

volume of the onstituent is predetermined, and this time-invariant.
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Considering that the omponent under onsideration is intrinsially inompressible, by

getting it together with equation (1.12) the following alternative inhomogeneous form is

ahieved,

ˆ̺γ =
˙

(nγ̺γR)
∣∣∣
γ
+ nγ̺γRdiv (ẋ |γ ) = ṅγ |γ ̺

γR + nγ |γ ˙̺γR + nγ̺γRdiv (ẋ |γ ) (1.32)

The �nal form of the balane of mass equation in terms of volume frations is as follows;

˙̺γR = 0 ⇒ ṅγ |γ + nγdiv (ẋ |γ ) =
ˆ̺γ

̺γR
(1.33)

The �rst identity of the �nal form of the equation of onservation of mass in equation (1.33),

implies the onept of intrinsi inompressibility. Conerning the numeris of the ontinuum

solid mehanis, the onservation of mass is usually omitted. The main reason of this is

that, the fous of the lassial ontinuum solid mehanis is usually based on single-phase

materials, or on thermodynamially losed systems. The writer suggests Zienkiewiz&Taylor

Ref.[

O.C.Zienkiewiz 2000

℄, whih over also numerial appliations of the subjet. Sine the

topi overs two-phase mixture, the equation of onservation of mass (1.33) will be used

in the following hapters and setions.

1.4.2 Conservation of Translational Momentum

Verbally, the onservation of momentum requires that the total sum of external, (body

and tration) fores should be balaned by the rate of hange of momentum. For a

thermodynamially open system, the rate of hange of momentum has a further supply

term. In global form,

− ṗγ |γ + fγb + f
γ
t + p̂γ = 0

with,

ṗγ |γ : rate of hange of momentum of a spatial ontrol volume

f
γ
b : body fores ating on ontrol volume

f
γ
t : tration fores ating on ontrol surfae

p̂γ : �ux of momentum supply

(1.34)

Eah of whih is investigated and �nally summed individually. Starting with the rate of

hange of momentum of the body in global form, whih results in;

ṗγ |γ =
∂
(∫

Ωγ
̺γẋ |γ dv

)

∂t

∣∣∣∣∣∣
γ

=

∫

Ωγ

˙̺γ |γ ẋ |γ dv +

∫

Ωγ

̺γẍ |γ dv +

∫

Ωγ

̺γẋ |γ F
−T |Γ : Ḟ |γΓ dv

=

∫

Ωγ

˙̺γ |γ ẋ |γ dv +

∫

Ωγ

̺γẍ |γ dv +

∫

Ωγ

̺γẋ |γ div (ẋ |γ ) dv

(1.35)
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The rate of hange of momentum term an be further redued by taking the onservation

of mass equation into onsideration. The ompressible form of the onservation of

mass equation (1.33) multiplied by the veloity of the urrent onstituent at the spatial

oordinates gives;

̺γdiv (ẋ |γ ) ẋ |γ = ˆ̺γẋ |γ − ˙̺γ |γ ẋ |γ (1.36)

Inserting this expression bak into equation (1.35) gives;

ṗγ |γ =

∫

Ωγ

( ˆ̺γẋ |γ + ̺γẍγ |γ ) dv (1.37)

The body fores with the onsideration of the apparent density-spei� body fores

4

, in

global form;

f
γ
b =

∫

Ωγ

̺γ f̆γb dv (1.38)

Where the apparent density spei� quantities are abbreviated with a breve symbol. The

surfae tration (on the system, not by the system) is, -aording to the de�nition of

Cauhy Ref.[

C.Truesdell 1960

℄-is the surfae integral of the true stress projeted on the surfae

outward normals. These bunh of statements are in fat overing the de�nition of stress

in ontinuum mehanis, and an be found anywhere else then the referene given in the

paragraph itself.

f
γ
t =

∫

Bγ

tγda =

∫

Bγ

σγ · nBγda =

∫

Ωγ

div (σγ) dv (1.39)

The last point, namely the onversion of surfae integral into the volume integral is due

to the very well-known Gauss divergene Ref.[

Mueller 2009

℄ theorem. Combining all together,

one gets the �nal loal form of the balane of translational momentum equation evaluated

in the spatial oordinates.

div (σγ) + ̺γ
(
f̆
γ
b − ẍ |γ

)
− ˆ̺γẋ |γ + p̂γ = 0 (1.40)

It should be noted that the third term whih is related to the mass soure of the system

is a natural onlusion of the enforement of the onservation of mass into the rate of

momentum part of the onservation of translational momentum equation as done in identity

(1.36). The mass soure has in this ontext no momentum ontribution as long as stated

otherwise. The reason of this assumption is that, the time integral of the apparent density

�ux does not oexist (yet) with the spatial veloity of the onstituent. There is a balane

of rate as stated in the equation of onservation of mass, but this does not indiate that,

in the urrent time the soure term is already gathered into the existing mass.

4

The apparent density spei� fores in this ontext refer dimensionally to fores per matter, thus

has the same units of body aeleration
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1.4.3 Conservation of Internal and Kineti energy: An extended �rst

law of Thermodynamis

The �rst law of thermodynamis verbally states that, no matter what proess our, there

exist a property of the universe, alled energy, whih an not hange, neither an be

destroyed nor an be produed. This statement an be found in many early works, the

writer had followed the de�nitions done in more reent publiations and books, suh as

Sonntag et. all. Ref.[

R.E.Sonntag 1998

℄ and deHo� Ref.[

deHo� 2006

℄. Espeially the latter one

is more appropriate for the study of Thermodynamis in material siene.

This verbal statement in terms of di�erent types of energy terms an be formulated. For a

given interval of time,

U (t∗)− U (t∗ −∆t) = ∆U = Q+W + Ẃ

∆U : Change of internal energy in the time interval of ∆t

Q : Heat supplied by the surroundings towards to the system in the time interval of ∆t

W : Mehanial work done onto the system in the time interval of ∆t

Ẃ : Other types of work done onto the system in the time interval of ∆t

(1.41)

Aording to this statement, any hange in the internal energy of the system should be (is)

balaned by the thermal, mehanial or any means of energy in�ux (out�ux) into (outside

to) the system. The di�erential form of equation (1.41) for in�nite hanges is,

dU = δQ+ δW + δẂ (1.42)

Quite purposely, a di�erential operator is usually used for the in�nite hange in the internal

energy, whereby a variation operator is used for the energy supplies to the system. The

reason beyond this notation is the fat that, the internal energy is a state funtion, but

the heat supplied, the mehanial work done onto the system and other types of energy

inputs are proess variables

5

. The underlying meaning of a state funtion in the urrent

ontext is impliitly given in the de�nition of �rst law of thermodynamis. A hange of

state funtion depends only on the initial and the �nal states of a system, not on the path.

Sine the internal energy has to be onserved, no matter how, if many di�erent systems

are supplied with the same amount of thermal and mehanial energies, the hange in their

internal energy has to be the same, being independent of the path. However, otherwise

is not neessarily true, i.e. the pressure (as pressure of a �uid at a time instant or as the

volumetri part of the true stress tensor) of a system in equilibrium (say in the absene of

pressure gradients), is also a state funtion but not onserved. There is of ourse a variation

of di�erential equations whih govern the spatial and temporal hange of pressure, and

thus indiate a type of onservation of pressure, but it is not a generi law, whih an be

5

Refer to Deho� Ref.[

deHo� 2006

℄ for an elaborate survey of state funtions and proess variables
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ompared with the �rst law of thermodynamis. The law an be extended for a spatially

inhomogeneous system by onsidering the in�nite hanges in the kineti energy as well.

dU + dK = δQ+ δW (1.43)

Where the kineti energy of the system is also taken as a state funtion. In this ontext,

the internal energy is driven by the mehanial stress-strain ontrations (Helmholtz type

free energy), and the relative thermal �utuations. The kineti energy is driven by the

averaged spatial rates of the system inertia. Any other magneti, eletrial or hemial

potentials whih an be onsidered additionally as onserved quantities are omitted here.

The temporal integral form of the equation of onservation of energy is,

∫ t+∆t

t
U̇dt+

∫ t+∆t

t
K̇dt =

∫ t+∆t

t
Q̂dt+

∫ t+∆t

t
Ŵdt (1.44)

The notation of di�erential and variational forms of orresponding state funtions and

proess variables are kept for the equation above. The state funtions undergo rate type of

hange, where the proess variables enter the equation system in terms of �uxes, as done in

the previous setions. They all hange temporally. The temporal loal form, whih inlude

the spatial integrations and are all evaluated at the urrent spatial on�guration. Those

beome then;

U̇γ |γ + K̇γ |γ = Q̂γ |γ + Ŵ γ |γ (1.45)

Next, eah term is introdued after eah other. Like previously, the apparent density spei�

internal energy of a onstituent is abbreviated with breve symbol, see Ŭγ beneath.

Uγ =

∫

Ωγ

̺γŬγdv (1.46)

The rate is then,

U̇γ |γ =
∂
(∫

Ωγ
̺γŬγdv

)

∂t

∣∣∣∣∣∣
γ

=

∫

Ωγ

˙̺γ |γ Ŭ
γdv +

∫

Ωγ

̺γ
˙̆
Uγ |γ dv +

∫

Ωγ

̺γŬγF−T |Γ : Ḟ |γΓ dv

=

∫

Ωγ

˙̺γ |γ Ŭ
γdv +

∫

Ωγ

̺γ
˙̆
Uγ |γ dv +

∫

Ωγ

̺γŬγdiv (ẋ |γ ) dv

(1.47)

The third term an be redued by using the ompressible form of the equation of

onservation of mass (1.36),

̺γdiv (ẋ |γ ) Ŭ
γ = ˆ̺γŬγ − ˙̺γ |γ Ŭ

γ
(1.48)

Inserting this expression bak into equation (1.47), gives the �nal loal form of the rate

of hange of internal energy in terms of the apparent density spei� internal energy and

other partial quantities.

U̇γ |γ =

∫

Ωγ

(
ˆ̺γŬγ + ̺γ

˙̆
Uγ |γ

)
dv (1.49)
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Moving forward, the kineti energy aused by the average rate of hange of oordinate of

the onstituent an be de�ned as;

Kγ =
1

2

∫

Ωγ

̺γẋ |γ · ẋ |γ dv (1.50)

The rate of kineti energy an be obtained by following similar steps of getting the rate of

internal energy.

K̇γ |γ =
1

2

∂
(∫

Ωγ
̺γẋ |γ · ẋ |γ dv

)

∂t

∣∣∣∣∣∣
γ

=
1

2

∫

Ωγ

ˆ̺γ‖ẋ |γ ‖2dv +

∫

Ωγ

̺γẋ |γ · ẍ |γ dv

(1.51)

The �rst term of the right hand side of equation (1.51) as being the mehanial energy, is

nothing but the rate of work done by the external surfae trations and body fores.

Ŵ γ = fγb · ẋ |γ + fγt · ẋ |γ (1.52)

By negleting the body fores at this stage, the mehanial work done by the singular ation

of surfae trations is;

f
γ
t · ẋ |γ =

∫

Bγ

tγ · ẋ |γ da =

∫

Bγ

σγ · nBγ · ẋ |γ da =

∫

Bγ

(
σγT · ẋ |γ

)
· nBγda (1.53)

and by applying the divergene theorem at this stage one gets;

f
γ
t · ẋ |γ =

∫

Bγ

(
σγT · ẋ |γ

)
· nBγda =

∫

Ωγ

div
(
σγT · ẋ |γ

)
dv (1.54)

The spatial divergene an be further simpli�ed by turning into the index notation. For the

equation below, the symmetry property

6

of Cauhy stress tensor is taken into aount,

div
(
σγT · ẋ |γ

)
=

∂

∂xi

(
σγij (ẋ |γ )j

)
=
∂σγij
∂xi

(ẋ |γ )j + σγji
∂ (ẋ |γ )j
∂xi

(1.55)

Bak, in terms of tensorial notation,

div
(
σγT · ẋ |γ

)
= div (σγ) · ẋ |γ + σγ : gradẋ |γ

= div (σγ) · ẋ |γ + σγ : L |γ

= div (σγ) · ẋ |γ + σγ : D |γ

(1.56)

Where the seond equation results as a onlusion of the de�nition of spatial veloity

gradient, and the last equation is due to the orthogonality of Cauhy stress tensor (as being

symmetri) to a skew symmetri tensor. This pure algebrai fat is written to state formally

that the spin tensor does not ontribute into the �rst law of thermodynamis.

σγ : W |γ = 0 (1.57)

6

The onservation of angular momentum is implied here
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Realling the equation of onservation of (translational) momentum (1.40)

7

is multiplied

with the spatial veloity,

div (σγ) · ẋ |γ = −̺γ
(
f̆
γ
b − ẍ |γ

)
· ẋ |γ + ˆ̺γẋ |γ · ẋ |γ − p̂γ · ẋ |γ (1.58)

Inserting this bak into equation (1.56),

f
γ
t · ẋ |γ = −̺γ

(
f̆
γ
b − ẍ |γ

)
· ẋ |γ + ˆ̺γẋ |γ · ẋ |γ − p̂γ · ẋ |γ + σγ : D |γ (1.59)

Together with the previously negleted power aused by the body fores, the total global

form of the mehanial energy supplied into the system by one onstituent beomes;

Ŵ γ = fγb · ẋ |γ + fγt · ẋ |γ

=

∫

Ωγ

(̺γẍ |γ · ẋ |γ + ˆ̺γẋ |γ · ẋ |γ − p̂γ · ẋ |γ + σγ : D |γ ) dv
(1.60)

The �nal ontribution of energy is due to the thermal soure and heat input from the

surroundings towards to the system,

Q̂γ =

∫

Ωγ

̺γrdv −

∫

Bγ

qγ · nBγda =

∫

Ωγ

̺γrdv −

∫

Ωγ

div (qγ) dv (1.61)

The integral form of all ontributions inserted bak into the master equation of �rst law

of thermodynamis (1.45) leads into,

0 =

∫

Ωγ

(
ˆ̺γŬγ + ̺γ

˙̆
Uγ |γ

)
dv

+
1

2

∫

Ωγ

ˆ̺γ‖ẋ |γ ‖2dv +

∫

Ωγ

̺γẋ |γ · ẍ |γ dv

+

∫

Ωγ

(−̺γẍ |γ · ẋ |γ − ˆ̺γẋ |γ · ẋ |γ + p̂γ · ẋ |γ − σγ : D |γ )

−

∫

Ωγ

̺γrdv +

∫

Ωγ

div (qγ) dv

(1.62)

The homogeneous integrand results in the loal form, whih was searhed.

ˆ̺γŬγ + ̺γ
˙̆
Uγ |γ −

1

2
ˆ̺γ‖ẋ |γ ‖2 + p̂γ · ẋ |γ − σγ : D |γ − ̺γr + div (qγ) = 0 (1.63)

For this �nal form, any soure for internal energy is omitted for the sake of simpliity.

Before moving into the next setion, a last but neessary omment is let here about the

notation. With the time derivatives for example in

˙̆
Uγ |γ it is not the intent to mean the

material time derivative. The motion, -as expressed previously- is taken to be Lagrangian,

and time derivatives indiate only, that the quantities assoiated with one omponent

undergo a hange of rate, whih is depending on a single oordinate, whih is shared

by two onstituents. Sine this single oordinate has two di�erent time derivatives (again

not the material or spatial meant here), it should be expressed whih time derivative is

taken.

7

This bak-insertion of this multipliation is neessary for further derivations
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1.4.4 The Entropy Inequality-Dissipation of Mixed Field

Until this point, the Balane equations of the Governing relations are introdued. In

this sub-setion, entropy inequality is introdued shortly. Initially, ontinuum mehanial

de�nition of entropy is going to be done brie�y. Shortly after, the dissipation inequality,

namely the seond law of thermodynamis is going to be made both verbally and formally.

Immediately after, Helmholtz free energy as a state funtion is going to be de�ned. This

results in the so-alled strain energy density funtion, whih de�nes the main onstitutive

relation

8

of thermoelastiity. The other types of state funtions, like Entalpy and Gibbs free

energies are omitted in this sope.

1.4.4.1 Change of Entropy as a State Funtion

The miromehanial de�nition of entropy, de�ned as the system in equilibrium has the

on�guration of the most probable marostate, is omitted here, and an be �nd elsewhere

Ref.[

D.F.Styer 2007

℄ . The ontinuum mehanial marosopi de�nition of entropy follows

rather initial postulates and supporting theoretial statements. The de�nition starts with

the relation of entropy with the heat supply into the system. For any proess, whih is not

neessarily a yli one, the integral on the left hand side and the fration on the right hand

side are state funtions, and the di�erentials of those state funtions respetively.

∆Srev [A ⇀ B] =

∫ B

A

δQrev
T

dSrev =
δQrev
T

(1.64)

With the subsript it is not meant that the heat transfer has reversible properties, rather

it is meant that the proess from state A to state B has took plae reversibly, i.e. without

dissipation or loss of energy. Energy is globally not lost, �rst law of thermodynamis

holds, but it an be still dissipated to the surroundings, or onverted in another form.

The situation in orrelation (1.64) an be partially ahieved for slow enough, aka almost

reversible proesses.

Remembering the de�nition of a state funtion, it is not only a delaration that the

temperature spei� variation of heat absorbtion of equation (1.64) is a state funtion.

It an be shown Ref.[

R.E.Sonntag 1998

℄ i.e. for Carnot yle that the yli integral of the

aforementioned quantity for reversible proess has zero value. Again, the reversible proess

should ful�ll the following riteria for a yle;

∆Srev [A ⇀ B] + ∆Srev [B ⇀ C] + ∆Srev [C ⇀ D] + ∆Srev [D ⇀ A] = 0 (1.65)

Sine the integral is a state funtion, for two di�erent proesses one being reversible, if

the amount of heat exhange and operation temperature is same the other irreversible, the

hange of entropy should be the same.

∆Sirr [A ⇀ B] = ∆Srev [A ⇀ B] (1.66)

The seond law states that, for any irreversible proess, there is a transfer and prodution of

entropy, where the prodution is always greater then zero. The notion of positive prodution

8

potential funtion of the elasti part of pseudo-elastiity; material law
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is interpreted in statistial physis as most probable tends to happen, and thus indiates a

diretion of the real proesses. For ontinuum mehanial de�nition the di�erential loal

form, the in�nite hange of entropy of a system Ref.[

deHo� 2006

℄,

dSsysirr = dStransirr + dSprodirr dSprodirr > 0 (1.67)

The verbal de�nition of seond law states that, "There is a property of the universe, alled

its entropy, whih always hanges in the same diretion no matter what proess our

Ref.[

deHo� 2006

℄". The main agreement whih an be also phenomenologially proven is

that, the irreversible proess has an entropy transfer and prodution term. On the other

side, the system undergoing a reversible proess an only, absorb the entropy.

∆Sirr [A ⇀ B] = ∆Stransirr [A ⇀ B] + ∆Sprodirr [A ⇀ B]

= ∆Srev [A ⇀ B] = ∆Stransrev [A ⇀ B] + ∆Sprodrev [A ⇀ B]

= ∆Stransrev [A ⇀ B]

(1.68)

Equation (1.67) together with equation (1.68) leads into the following onlusion,

∆Stransirr [A ⇀ B] = ∆Stransrev [A ⇀ B]−∆Sprodirr [A ⇀ B]

=⇒ ∆Stransirr [A ⇀ B] < ∆Stransrev [A ⇀ B]
(1.69)

Whih results into the following integral and di�erential forms,

∫ B

A

δQirr
T

<

∫ B

A

δQrev
T

δQirr
T

<
δQrev
T

= dS (1.70)

First and seond inequalities show that, for isothermal proesses, the reversible heat transfer

takes the maximum. For yli proesses, the hange in state funtion entropy is zero. This

gives the well known Clausius Inequality in integral form,

∮ A

A

δQ

T
6 0 (1.71)

The stritness of the inequality is removed, sine there is no information about the

reversibility of the heat transfer made. The time integral form of equations (1.70) and

(1.71) are,

∫ t+∆t

t

Q̂

T
dt 6

∫ t+∆t

t
Ṡdt =⇒

Q̂γ

T

∣∣∣∣∣
γ

6 Ṡγ |γ (1.72)

Where the omposition and orresponding time derivatives are onsidered in the last form of

the equation. This rate form is taken to be onsistent with the previous balane equations,

namely, onservation of mass, translational momentum and the internal and kineti energy

sum.
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1.4.4.2 Combined Statement and Helmholtz Free Energy

From the de�nition of entropy, for as reversible proess, the proess variation of total heat

transfer and prodution of the system an be expressed in terms of temperature and entropy

di�erential as follows,

δQrev = TdS (1.73)

Inserting this bak into the �rst law of thermodynamis, equation (1.42), one gets,

dU = TdS + δW (1.74)

This equation, where the alternative energy soures are omitted, is known as the ombined

statement of �rst and seond laws of thermodynamis. The state funtion of Helmholtz

free energy and its di�erential are de�ned as

9

,

A = U − TS =⇒ dA = dU − SdT − TdS (1.75)

Inserting the ombined statement into the Helmholtz free energy;

dA = TdS + δW − SdT − TdS = δW − SdT (1.76)

Whih indiates that the di�erential of Helmholtz free energy for isothermal and reversible

proesses is balaned by the variations of mehanial work (A:Arbeit) done on to the system.

This is most probably the main reason that in the theory of elastiity, the so alled strain

energy density funtion is abbreviated as the Helmholtz free energy density state funtion.

1.4.4.3 Seond law of Thermodynamis for the two phase mixture

In this part, another form of the ombined statement of seond and �rst law is done. This

statement is performed by onsidering the seond law of Thermodynamis as the master

relation, and thus results in an inequality. The strain energy density funtion is enfored

into this inequality in order to quantify admissible ranges for positive dissipation. Realling

the temporal and spatial di�erential form of the seond law (1.72),

Q̂γ

T γ
6 Ṡγ |γ (1.77)

The temperature spei� total heat gain, onsisting of a heat soure and heat transfer

beomes then,

Q̂γ

T γ
=

∫

Ωγ

1

T γ
̺γrdv −

∫

Bγ

qγ

T γ
· nBγda =

∫

Ωγ

1

T γ
̺γrdv −

∫

Ωγ

div

(
qγ

T γ

)
dv (1.78)

The symbol of evaluated at:| is not anymore used for proess variables of heat and work,

sine they are anyway given in rate form. The apparent, or partial density spei� entropy

has the form,

Sγ =

∫

Ωγ

̺γ s̆γdv (1.79)

9

By means of di�erentiation by parts
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The rate of this quantity an be obtained by using the onservation of mass,

Ṡγ |γ =

∫

Ωγ

(
ˆ̺γ s̆γ + ̺γ ˙̆sγ |γ

)
dv (1.80)

Previously, the onstituents of the mixtures were assumed to obey the balane laws

independent of eah other. Eah onstituent had its own onservation of mass equation,

translational momentum balane equation and �nally, ombined internal and kineti energy

onservation equation. Some of the interations in between the onstituents are donated by

momentum or energy input to the system, bu their origin were not addressed. In opposite,

for the ase of entropy inequality, the mixture is onsidered as a whole.

∑

γ:f,s

Ṡγ |γ >
∑

γ:f,s

∫

Ωγ

1

T γ
̺γrdv −

∑

γ:f,s

∫

Ωγ

div

(
qγ

T γ

)
dv (1.81)

The loal form together with equation (1.80) beomes,

∑

γ:f,s

(
ˆ̺γ s̆γ + ̺γ ˙̆sγ |γ −

1

T γ
̺γr + div

(
qγ

T γ

))
> 0 (1.82)

The Helmholtz free energy in the integral form, together with spatial mass free energy,

internal energy and entropy, rewritten again,

Aγ = Uγ − T γSγ

Aγ =

∫

Ωγ

̺γΨ̆γdv

Uγ =

∫

Ωγ

̺γŬγdv

Sγ =

∫

Ωγ

̺γ s̆γdv

(1.83)

The strain energy density funtion

10

, and the rate of hange of it are given then in loal

form,

Ψ̆γ = Ŭγ − T γ s̆γ (1.84a)

˙̆
Ψγ |γ =

˙̆
Uγ |γ − Ṫ γ |γ s̆

γ − ˙̆
s
γ |γ T

γ
(1.84b)

The seond term in equation (1.82) an be dedued from equation (1.84b)

̺γ ˙̆sγ |γ = −̺γ
˙̆
Ψγ |γ
T γ

+ ̺γ
˙̆
Uγ |γ
T γ

− ̺γ
Ṫ γ |γ s̆

γ

T γ

= (T γ)−1
(
−̺γ

˙̆
Ψγ |γ + ̺γ

˙̆
Uγ |γ − ̺γṪ γ |γ s̆

γ
) (1.85)

10

The strain energy funtions is de�ned as the apparent density (in spatial domain) spei�

Helmholtz free energy of the onstituent
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The seond term of equation (1.85) an be replaed by the rate of hange of internal energy

from the equation of onservation of energy;

(T γ)−1 ̺γ
˙̆
Uγ |γ = (T γ)−1

(
− ˆ̺γŬγ +

1

2
ˆ̺γ‖ẋ |γ ‖2 − p̂γ · ẋ |γ

+σγ : D |γ + ̺γr − div (qγ))

(1.86)

After suessful replaement, the following form for the rate of partial density spei�

entropy rate is obtained;

̺γ ˙̆sγ |γ = (T γ)−1

(
−̺γ

˙̆
Ψγ |γ − ˆ̺γŬγ +

1

2
ˆ̺γ‖ẋ |γ ‖2 − p̂γ · ẋ |γ

+σγ : D |γ + ̺γr − div (qγ)− ̺γṪ γ |γ s̆
γ
) (1.87)

Inserting this expression into the �nal dissipation inequality (1.82) yields;

∑

γ:f,s

(
Ṡγ |γ −

Q̂γ

T γ

)
=
∑

γ:f,s

(T γ)−1

[
T γ ˆ̺γ s̆γ − ̺γ

˙̆
Ψγ |γ − ˆ̺γŬγ +

1

2
ˆ̺γ‖ẋ |γ ‖2 − p̂γ · ẋ |γ

+σγ : D |γ + ̺γr − div (qγ)− ̺γ Ṫ γ |γ s̆
γ − ̺γr + T γdiv

(
qγ

T γ

)]
> 0

(1.88)

Further insertion of equation (1.84b), gives one the internal energy-free version of the

inequality;

∑

γ:f,s

(
Ṡγ |γ −

Q̂γ

T γ

)
=
∑

γ:f,s

(T γ)−1

[
− ˆ̺γΨ̆γ − ̺γ

˙̆
Ψγ |γ +

1

2
ˆ̺γ‖ẋ |γ ‖2 − p̂γ · ẋ |γ

+σγ : D |γ − div (qγ)− ̺γṪ γ |γ s̆
γ + T γdiv

(
qγ

T γ

)]
> 0

(1.89)

Heat �ux related quantities an be further redued by spreading the divergene of

temperature spei� heat �ux term as follows;

T γdiv

(
qγ

T γ

)
= T γ

∂
(
qγi (T

γ)−1
)

∂xi
= div (qγ)− (T γ)−1 grad (T γ) · qγ (1.90)

Replaing this result of this term;

∑

γ:f,s

(
Ṡγ |γ −

Q̂γ

T γ

)
=
∑

γ:f,s

(T γ)−1

[
− ˆ̺γΨ̆γ − ̺γ

˙̆
Ψγ |γ +

1

2
ˆ̺γ‖ẋ |γ ‖2 − p̂γ · ẋ |γ

+σγ : D |γ − ̺γṪ γ |γ s̆
γ −

grad (T γ)

T γ
· qγ
]
> 0

(1.91)
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In ommon parenthesis of partial density and partial density input;

∑

γ:f,s

(
Ṡγ |γ −

Q̂γ

T γ

)
=
∑

γ:f,s

(T γ)−1

[
̺γ
(
−

˙̆
Ψγ |γ − Ṫ γ |γ s̆

γ
)
+ ˆ̺γ

(
−Ψ̆γ +

1

2
‖ẋ |γ ‖2

)

−p̂γ · ẋ |γ +σγ : D |γ −
grad (T γ)

T γ
· qγ
]
> 0

(1.92)

The equation above is known as a speial version of Clausius-Duhem inequality. Stress

tensors, spatial rate of the deformation gradients and strain energy funtions are involved

in this version of the governing relation. The main assumptions an be applied on this

ombined version of seond and �rst laws, and lead into a weak form, whih an be merged

into the numerial methods for solving partial di�erential equations.

1.5 Assumptions, Narrowed Relations and Constitutive

Restritions

In this setion, the previously given governing relations are simpli�ed aording to the

assumptions, whih will be postulated in this setion. Immediately after, the onsisteny of

number of �eld variables with the number of equations are ompared. Sine the number

of equations in hand are stritly depending on the assumptions done (under assumptions

done, energy equation an be redued to the balane of momentum), the impat on the

determinability of the system is disussed.

1.5.1 Assumptions

The list of assumptions done are,

Assumption1: The solid phase of the mixture is taken to be fully inompressible. The

realisti density of the solid phase does not undergo temporal hanges.

˙̺sR |s = 0 (1.93)

Assumption2: Similarly, the �uid phase of the mixture is taken to be fully inompressible.

The realisti density of the �uid phase does not undergo temporal hanges either.

˙̺fR |f = 0 (1.94)

Assumption3: The temporal di�erential of the temperature �eld is negleted. The

proesses are assumed to �nd plae isothermally, for both phases, the rate of hange

of the temperature is ignored.

Ṫ γ |γ = 0 (1.95)
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Assumption4: The proess is assumed to take plae in equal temperatures for the solid and

�uid phases. The temperature gradients are not only negleted in between phases,

but also in the phases.

T s = T f = T grad (T γ) = 0 (1.96)

Assumption5: The proess is quasi-stati for both phases.

ẍγ = 0 (1.97)

Assumption6: No mass supply into any phase.

ˆ̺γ = 0 (1.98)

Assumption7: No body fores applied on the system for any onstituent.

f̆ sb =
˘
f
f
b = 0 (1.99)

1.5.2 Narrowed Governing Relations

In this subsetion the simpli�ations aording to the assumptions introdued above are

presented.

Simpli�ation 1: Saturation ondition and partial density equations

∑

γ

nγ = ns + nf = 1 ̺s = ns̺sR ̺f = nf̺fR (1.100)

Simpli�ation 2: Generi equations for onservation of mass for inompressible materials

˙̺sR = 0 ⇒ ṅs|s + nsdiv (ẋ |s ) =
ˆ̺s

̺sR
(1.101a)

˙̺fR = 0 ⇒ ṅf
∣∣∣
f
+ nfdiv (ẋ |f ) =

ˆ̺f

̺fR
(1.101b)

With the further assumption of no mass soure;

ˆ̺s = 0 ⇒ ṅs|s + nsdiv (ẋ |s ) = 0 (1.102a)

ˆ̺f = 0 ⇒ ṅf
∣∣∣
f
+ nfdiv (ẋ |f ) = 0 (1.102b)

Simpli�ation 3: The generi balane of translational momentum equations,

div (σs) + ̺s
(
f̆ sb − ẍ |s

)
− ˆ̺sẋ |s + p̂s = 0 (1.103a)

div
(
σf
)
+ ̺f

(
˘
f
f
b − ẍ |f

)
− ˆ̺f ẋ |f + p̂f = 0 (1.103b)
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With the assumptions of quasi-stati proess, lak of body fores and lak of mass

soure the translational balane of momentum equation set redue to;

ˆ̺s = 0, f̆sb = 0, ẍ |s = 0 ⇒ div (σs) + p̂s = 0 (1.104a)

ˆ̺s = 0,
˘
f
f
b = 0, ẍ |f = 0 ⇒ div

(
σf
)
+ p̂f = 0 (1.104b)

Simpli�ation 4: The generi inequality of the Clausius-Duhem,

∑

γ:f,s

(
Ṡγ |γ −

Q̂γ

T γ

)
=
∑

γ:f,s

(T γ)−1

[
̺γ
(
−

˙̆
Ψγ |γ − Ṫ γ |γ s̆

γ
)
+ ˆ̺γ

(
−Ψ̆γ +

1

2
‖ẋ |γ ‖2

)

−p̂γ · ẋ |γ +σγ : D |γ −
grad (T γ)

T γ
· qγ
]
> 0

(1.105)

The lak of mass input, lak of temperature gradients, and the assumption of

isothermal proess redues the dissipation inequality as,

ˆ̺γ = 0, grad (T γ) = 0, Ṫ γ |γ = 0 T = T s = T f ⇒

∑

γ:f,s

Ḋγ |γ =
∑

γ:f,s

T−1
[
σγ : D |γ − ̺γ

˙̆
Ψγ |γ +−p̂γ · ẋ |γ ] > 0

(1.106)

Simpli�ation 5: The simple agreement of �uid solid interation, requires the momentum

inputs to be balaned by eah other.

p̂s + p̂f = 0 (1.107)

1.5.3 Constitutive Restritions

The equations in hand for solving initial/boundary value problem -whih is not expliitly

stated yet- are 3 equations from the saturation and partial density relations, 2 onservation

of mass equations, 3 of eah in total 6 onservation of translational momentum equations,

and �nally 3 equations from the momentum interation balane of onstituents. Aording

to the sum, in total 14 equations in loal form are present. Additionally, the real densities in

material oordinates of the onstituents are known, namely 2 equalities for ̺s, ̺f are in hand.

Those 2 equalities from the assumption of full inompressibility

11

, are not ounted on the

side of knowns. At �nal stage, one has 16 equations. The balane of angular momentum

requires the true stress tensors σs and σf to be symmetri. Instead of onsidering the

balane of angular momentum equation, one an admit that the number of �eld variables

of eah stress tensor to be 6, instead of 9. Furthermore, it should be stated here that, the

balane of energy is not onsidered in this ontext, beause in the absene of eletrial,

thermal and hemial e�ets, it does not supply more information then the onservation of

11

sine these are enfored ompletely into the other balane/unbalane equations/inequalities
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translational momentum equation does.

The number of �eld variables are, 6 from the �uid and solid mappings (x |f and x |f ),

12 from the �uid and solid stresses (σs and σf ), 6 from the �uid and solid momentum

inputs (p̂s and p̂f ), 2 from the �uid and solid spatial partial densities (nf and nf ), 2 spatial

(yet material) �uid and solid real densities (ρfR and ρsR) and lastly 2 variables from the

apparent densities of �uid and solid phases (̺f and ̺s). At the end, aording to the total

sum, one has 30 �eld variables.

In mehanis, the equations whih are losing the aforementioned signi�antly

underestimated system (16-30=-14), are known to be the onstitutive relations. To enlose

the system, there are stress to gradients of mappings relationship postulates to be made.

The nature of the onstitutive law, is usually determined by the Helmholtz free energy

funtion for the solids, and follows empirial statements for the ase of �uids. The free

energies are to be found in the entropy inequality and balane of energy equation, whih

are not ounted to be one of the �eld equations, and thus not onsidered as a �eld variable

here. Therefore, the resulting fat is, there are in total 12 (eah 6) postulates made de�ning

those onstitutive relationships.

σs = σs (Grad |S x, . . . ) σf = σf (Grad |F x, . . . ) (1.108)

However, this funtion might be depending on further internal parameters, or �eld variables

as already indiated. The same postulate an be also made for one of the momentum

inputs, fore instane to the �uid onstituent only, (p̂f = p̂f (. . . )). The sort of dependeny

is onsistently postulated in the following setions. A similar postulate is not done here

for the ase of solid phase, not to ause a on�it with the interation equation, namely

Narrowed Governing Relations number 6.

At the end, 12 true stress relations and 3 Ansatz relationships for the momentum input

to the �uid (in total 15) are present. The �nal sum as the number of knowns minus the

number of unknowns is, (16+15-30=-1), indiates that the system is singular. To lose

this redundany, an additional unknown will be introdued in the next setions, whih will

enfore the saturation, and lose the onstitutive dependeny in equation (1.108) and the

�uid momentum input.

1.5.4 Dary Veloity, Saturation Rate and Pore Pressure

The de�nitions whih are done in this subsetion are neessary for onstitutive modeling,

building the weak form, and the �nite element formulation. The natural element formulation

are taken under onsideration in a separate hapter (Ch.[5℄).
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1.5.4.1 Dary Veloity

Dary veloity

12

in soil mehanis has been known as the veloity of the �uid moleules in

the pores. In the ontext of theory of mixtures, Dary veloity is de�ned as the relative and

thus objetive spatial veloity of �uid onstituent observed by the solid onstituent.

wfs = ẋ |f − ẋ |s (1.109)

It (equation (1.109)) is spatially and temporally objetive, independent of the rate of the

global oordinate observer.

1.5.4.2 Rate Form of the Saturation Condition

Rate form of the following ondition is neessary to move on;

ns + nf = 1 (1.110)

It is self-evident that the solid spatial rate form is homogeneous.

ṅs |s + ṅf |s = 0 (1.111)

The rates of solid and volume frations with respet to the solid �uid veloities are,

ṅs |s =
∂ns

∂x
· ẋ |s = grad (ns) · ẋ |s ṅf |f =

∂nf

∂x
· ẋ |f = grad

(
nf
)
· ẋ |f

ṅs |f =
∂ns

∂x
· ẋ |f = grad (ns) · ẋ |f ṅf |s =

∂nf

∂x
· ẋ |s = grad

(
nf
)
· ẋ |s

(1.112)

The relative rate of �uid volume fration an be represented in terms of the Dary veloity,

ṅf |f − ṅf |s =
∂nf

∂x
· ẋ |f −

∂nf

∂x
· ẋ |s =

∂nf

∂x
· (ẋ |f − ẋ |s ) = grad

(
nf
)
·wfs

(1.113)

Inserting the solid rate of the �uid volume fration bak into the equation (1.111),

ṅs |s + ṅf |f − grad
(
nf
)
·wfs = 0 (1.114)

The solid rate of the solid volume fration, and the �uid rate of the �uid volume fration

an be well realled from the redued version of onservation of mass equations.

ṅs|s = −nsdiv (ẋ |s ) = −nstr (grad (ẋ |s )) = −nstr (L |s ) = −nstr (D |s ) (1.115a)

ṅf
∣∣∣
f
= −nfdiv (ẋ |f ) = −nf tr (grad (ẋ |f )) = −nf tr (L |f ) = −nf tr (D |f ) (1.115b)

Where, the seond equality is a tensorial identity, the third is the de�nition of spatial veloity

gradient whih is de�ned previously, and �nal equality is another basi tensorial identity,

12

Some writers Ref.[

Smith 2013

℄ prefer the term seepage, some Ref.[

J.W.Delleur 2007

℄ prefer pore veloity.

Here the very initial Ref.[

H.Dary 1856

℄ de�nition Dary veloity is taken.
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whih states that the skew symmetri tensors are trae-free. Inserting the last form of the

volume fration rates into the equation (1.114),

nsD |s : I + nfD |f : I + grad
(
nf
)
·wfs = 0 (1.116)

gives the �nal form of the rate form of the saturation equation in terms of the streth

tensors, gradient of the �uid volume fration and the relative �uid veloity. This equation

(1.116) is used to de�ne permeability and enables to move on with the weak form of the

equation system.

1.5.4.3 E�etive Stress and Pore Pressure

Closure of the system of equations should not violate the seond law of thermodynamis,

whih is not onsidered in the set of �eld (in)equalities. Realling the narrowed version of

the Clausius-Duhem inequality after onsidering the assumptions,

σs : D |s − ̺s
˙̆
Ψs |s +−p̂s · ẋ |s + σf : D |f − ̺f

˙̆
Ψf
∣∣∣f +−p̂f · ẋ |f > 0 (1.117)

Rearranging the terms and imposing the �rst replaement below,

−p̂s · ẋ |s − p̂f · ẋ |f = −p̂f · (ẋ |s − ẋ |f ) = −p̂f ·wfs
(1.118a)

−̺s
˙̆
Ψs |s − ̺f

˙̆
Ψf |f + σs : D |s + σ

f : D |f − p̂f ·wfs
> 0 (1.118b)

The rate of strain energy density funtion

˙̆
Ψs |s is de�ned per spatial density, reall equation

(1.83). The spatial volume spei� Helmholtz free energy is donated by grave hat notation.

˙̀
Ψs |s = ̺s

˙̆
Ψs |s (1.119)

This assumption is a onlusion of the fat that, the rate of the Helmholtz energy is free,

not the energy, whih is arbitrarily integrated in time. De�ning the Helmholtz free energy

�ux, similar to equation (1.83) one gets;

Ȧs =

∫

Ωs

̺γ
˙̆
Ψsdv =

∫

Ωs

˙̀
Ψs |s dv =

∫

ΩS

Ψ̇s |s dV
S

(1.120)

The above statement of (1.120) is onform with (1.84a) and (1.84b). In many ontext,

the Helmholtz free energy is meant to be material volume spei� one, as shown in the last

integral of equation (1.120). Together with the last omments, equation (1.118b) an be

represented by the spatial volume spei� free energies as follows,

−
˙̀
Ψs |s −

˙̀
Ψf |f + σs : D |s + σ

f : D |f − p̂f ·wfs
> 0 (1.121)

Realling the rate form of the saturation equation (1.116), over-saling it with an arbitrary

parameter λ, and adding it to the last form of the entropy inequality leads into;

−
˙̀
Ψs |s −

˙̀
Ψf |f

+ (σs + λnsI) : D |s +
(
σf + λnfI

)
: D |f

+
(
λgrad

(
nf
)
− p̂f

)
·wfs

> 0

(1.122)
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Remembering that the �uid part is fully inompressible and postulating another intermediate

assumption that the �ow is invisid, there is only the rate of urrent volume spei�

Helmholtz free energy is remaining

13

,

˙̀
Ψs |s = (det (F |S ))

−1 Ψ̇s |s = (det (F |S ))
−1 ∂Ψ

∂C |S
:

˙(
F T |S · F |S

)∣∣∣
s

= (det (F |S ))
−1 ∂Ψ

∂C |S
:
(
Ḟ
T
|sS · F |S + F T |S · Ḟ |sS

)

= (det (F |S ))
−1 ∂Ψ

∂C |S
:
(
F T |S · LT |s · F |S + F T |S ·L |s · F |S

)

= (det (F |S ))
−1 ∂Ψ

∂C |S
:
(
F T |S · 2D |s · F |S

)

= 2 (det (F |S ))
−1

[
F |S ·

∂Ψ

∂C |S
· F T |S

]
: D |s

=
(
J−1 |S F |S · SSe · F T |S

)
: D |s = σse : D |s

(1.123)

The initial replaement of the determinant of solid deformation gradient results from

equation (1.120). After this onversion, the time derivative an be taken with respet

to the strain tensors with material oordinate base vetors. The part of the stress tensor

depending on the material-spei� free energy funtion is the so alled e�etive stress tensor.

Bak substitution of e�etive stress into the last version of dissipation inequality results in;

(σs + λnsI − σse) : D |s +
(
σf + λnfI

)
: D |f +

(
λgrad

(
nf
)
− p̂f

)
·wfs

> 0

(1.124)

Aording to the de�nition of e�etive stress and pore pressure, the �rst two terms in the

equation above are free of dissipation. The true total stresses of solid and �uid onstituents

are then,

σs = σse − λnsI σf = −λnfI (1.125)

The meaning of parameter lambda, introdued for losing the slightly overestimated system

of equations gets learness now. The parameter ats as a penalty parameter of pressure,

reduing the e�etive stress, whih is proportional to the volume fration of eah omponent.

The initial expetation of that the volume fration is proportional with the pore pressure

and inversely proportional with the total stress of the solid phase is in fat a deeption. One

an not expet high pore pressures from almost (densely) �lled void-free ontinuum solid.

The opposite of this an be explained by means of the intrinsi dependene of parameter

lambda to the other �eld parameters and roleplayers, volume fration being among them.

Returning bak, the dissipation an be summarized as;

(
λgrad

(
nf
)
− p̂f

)
·wfs

> 0 (1.126)

13

The intermediate steps of the equation (1.123) an be veri�ed by any tensor algebra referene,

suh as Ref.[

J.Bonet 2008

℄
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1.5.4.4 Momentum input onstitutive law

For the postulate of onstitutive law for the momentum input to the �uid onstituent,

one should onsider the thermodynami onsisteny, i.e. no violation of Dary veloity

dependent dissipation inequality. One postulate

14

an be done aordingly,

p̂f = λgrad
(
nf
)
− βwfs

(
λgrad

(
nf
)
− p̂f

)
·wfs = β

∣∣∣wfs
∣∣∣
2
> 0 ⇐ β > 0

(1.127)

Realling the momentum equation for �uid with body fores,

div
(
σf
)
+ ̺f

˘
f
f
b + p̂f = 0 (1.128)

Aording to this equation, by replaing the �uid true stress with �uid pore pressure the

momentum input beomes,

p̂f = div
(
λnfI

)
− ̺f

˘
f
f
b (1.129)

In indiial notation,

∂
(
λnfδij

)

∂xi
= nfgrad (λ)i δij + λgrad

(
nf
)
i
δij = nfgrad (λ)j + λgrad

(
nf
)
j
(1.130)

Inserting this expression bak into the onstitutive law for the momentum input to the �uid

gives the �nal expression for the determination of the Dary veloity,

nfgrad (λ) + λgrad
(
nf
)
− ̺f

˘
f
f
b = λgrad

(
nf
)
− βwfs

=⇒ wfs = β−1

(
̺f

˘
f
f
b − nfgrad (λ)

)
(1.131)

1.6 Weak Forms

In this setion, the weak forms of onservations of balane, translational momentum and

mass di�erential equations are introdued after eah other. The weak forms in spatial

oordinates are pulled bak into solid material oordinates, and the umulative weak forms

are presented in terms of the solid material oordinates.

1.6.1 Weak Form of Balane of Translational Momentum in Solid

Material Coordinates

For a quasi-stati proess, the balane of momentum equations in the absene of mass

input and in the presene of body fores beome,

div (σs) + ̺sf̆ sb + p̂s = 0 (1.132a)

div
(
σf
)
+ ̺f

˘
f
f
b + p̂f = 0 (1.132b)

14

The parameter β postulated here an be seen as the Impermeability and depends on the urrent

morphology of the ontinuum neighborhood.
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The virtual power priniple gives the variational power of eah balane equation under

variational hanges of spatial veloities.

δẆ s =

∫

Ωs

(
div (σs) + ̺sf̆sb + p̂s

)
· δẋ |s dv = 0

δẆ f =

∫

Ωf

(
div
(
σf
)
+ ̺f

˘
f
f
b + p̂f

)
· δẋ |f dv = 0

(1.133)

Sine the stresses are funtions of deformation gradients, this weak form inludes seond

gradients of the displaements and an be further weakened by integration by parts. The

virtual power supplied by the divergene of true stress is,

div (σγ) · δẋ |γ = div
(
σγT · δẋ |γ

)
− σγ : δD |γ (1.134)

The more weakened version of virtual power equation set beomes;

∫

Ωs

(σs : δD |s ) dv =

∫

Ωs

div
(
σsT · δẋ |s

)
dv +

∫

Ωs

̺sf̆sb · δẋ |s dv +

∫

Ωs

p̂s · δẋ |s dv

∫

Ωf

(
σf : δD |f

)
dv =

∫

Ωf

div
(
σfT · δẋ |f

)
dv +

∫

Ωf

̺f
˘
f
f
b · δẋ |f dv +

∫

Ωf

p̂f · δẋ |f dv

(1.135)

By the appliation of Gauss divergene theorem, the �rst integrals on the right hand side

of the equations an be represented by means of the surfae trations,

∫

Ωs

(σs : δD |s ) dv =

∫

Ωs

ts · δẋ |s da+

∫

Ωs

̺sf̆ sb · δẋ |s dv +

∫

Ωs

p̂s · δẋ |s dv

∫

Ωf

(
σf : δD |f

)
dv =

∫

Ωf

tf · δẋ |f da+

∫

Ωf

̺f
˘
f
f
b · δẋ |f dv +

∫

Ωf

p̂f · δẋ |f dv

(1.136)

The rate form of the saturation ondition ombined with the balane of onservation of

mass an be formulated as follows,

I : nsD |s + I : n
fD |f +

1

3
(I : I)

(
grad

(
nf
)
·wfs

)
= 0 (1.137)

With the dot produt of �uid true stress tensor,

nsσf : D |s + nfσf : D |f +
tr
(
σf
)

3

(
grad

(
nf
)
·wfs

)
= 0 (1.138)

The virtual power aused by the �uid stress an be represented in terms of the virtual rate

of solid spin tensor as,

σf : δD |f = −
ns

nf
σf : δD |s + λnf

(
grad

(
nf
)
· δwfs

)

= σf : δD |s −
1

nf
σf : δD |s + λnf

(
grad

(
nf
)
· δwfs

)

= σf : δD |s + λI : δD |s + λnf
(
grad

(
nf
)
· δwfs

)
(1.139)
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Replaing the left hand side of equation (1.136) with equation (1.139) leads a ompliated

umulative weak form. It is in general not suggested

15

to punish the strong form, namely

the original balane of equation of mass and translational momentum with the variations of

the realisti test funtions. Instead, both strong forms (�uid and solid) are projeted onto

the test funtions of variations of the solid veloity, to get more weaker, however in a more

simpli�ed manner. The aumulated virtual power equation beomes thereafter,

δẆ = δẆ s + δẆ f

=

∫

Ωs

(
div (σs) + ̺sf̆ sb + p̂s + div

(
σf
)
+ ̺f

˘
f
f
b + p̂f

)
· δẋ |s dv = 0

(1.140)

Imposing the fat that the momentum input should be aneled by eah other, assuming

that the body fores are equal, and spreading the divergene operator into the total sum of

true stresses with e�etive stresses and pore pressures,

δẆ =

∫

Ωs

(
div
(
σse − nsλI − nfλI

)
+ f̆ b

(
̺s + ̺f

))
· δẋ |s

=

∫

Ωs

(
div (σse − λI) + f̆ b

(
̺s + ̺f

))
· δẋ |s dv = 0

(1.141)

Following the same proedure,

∫

Ωs

((σse − λI) : δD |s ) dv =

∫

Ωs

t̀
s
· δẋ |s da+

∫

Ωs

(
̺s + ̺f

)
f̆ b · δẋ |s dv (1.142)

Where the tration vetor is not orresponding to the real true stress tration. Similarly,

although there is no diret physial orrespondene (or not straightly expressible if there is

any), it is assumed that there is a mapping exists in between the material �uid and solid

oordinates

16

. Aordingly, there is a tangent mapping in between those two material

tangents,

F |SF =
∂X |S
∂X |F

=

(
∂x |s
∂X |S

)−1

·
∂x |f
∂X |F

= F−1 |S · F |F (1.143)

Sine the pull-bak operation is kinematially multipliative, �rst pulling bak the urrent

�uid tensors to the �uid material tensors, and then pulling bak to those �uid material

tensors into the solid material oordinates is idential to pulling bak all the tensors from

urrent oordinates to the solid material oordinates. By doing so, the virtual internal power

beomes;

δẆ int =

∫

ΩS

((
Sse − λC−1

)
: δĖ |s

)
dV S

=

∫

ΩS

1

2

((
Sse − λC−1

)
: δĊ |s

)
dV S

(1.144)

15

the writer did not observe referenes, whih performs the ation other way around

16

The physial existene of this mapping would indiate that one referene phase turns into other

referene phase, whih indiates in fat a very fast hemial phase transition. This type of proesses

are negleted, as stated in the setion of Ch.[1.5℄. Nevertheless, a mathematial tangent mapping is

de�nable and neessary, and thus de�ned.
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1.6.2 Weak Form of Conservation of Mass

As done for the onservation of translational momentum, for the onservation of mass, the

integral form of the umulative sum of the mixture is onsidered.

∫

Ωs

(
ṅs|s + ṅf

∣∣∣
f
+ nsdiv (ẋ |s ) + nfdiv (ẋ |f )

)
dv = 0 (1.145)

Replaing the �rst two omponents with equation (1.114),

∫

Ωs

(
grad

(
nf
)
·wfs + nsdiv (ẋ |s ) + nfdiv (ẋ |f )

)
dv = 0 (1.146)

Applying further modi�ation on the last two terms to eliminate solid volume fration and

�uid veloity,

∫

Ωs

[
grad

(
nf
)
·wfs +

(
1− nf

)
div (ẋ |s ) + nf

(
div (ẋ |s ) + div

(
wfs

))]
dv = 0

(1.147)

Realling the following divergene to gradient tensor identity,

div
(
nfwfs

)
= grad

(
nf
)
·wfs + nfdiv

(
wfs

)
(1.148)

Replaing the �rst and the fourth terms with this identity, and adding the seond and the

third terms gives the �nal expression for the umulative onservation of mass equation in

integral form, free of �uid veloity and solid fration.

∫

Ωs

(
div (ẋ |s ) + div

(
nfwfs

))
dv (1.149)

The weak form is then,

∫

Ωs

(
div (ẋ |s ) + div

(
nfwfs

))
δλdv (1.150)

Applying integration by parts to the seond term,

∫

Ωs

div
(
nfwfs

)
δλdv =

∫

Ωs

div
(
nfwfsδλ

)
dv −

∫

Ωs

nfwfs · grad (δλ) dv

=

∫

Ωs

(
nfwfsδλ

)
· nda−

∫

Ωs

nfwfs · grad (δλ) dv

(1.151)

The internal weak form beomes,

δM̂ int =

∫

Ωs

div (ẋ |s ) δλdv −

∫

Ωs

nfwfs · grad (δλ) dv (1.152)

Realling the Ansatz for the relative �uid veloity inluding the pore impermeability

oe�ient;

δM̂ int =

∫

Ωs

tr (D |s ) δλdv +

∫

Ωs

β−1
(
nf
)2
grad (λ) · grad (δλ) dv (1.153)
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For the material frame formulation the gradients of the seond term should be puled bak

to the solid material gradients as follows,

grad (λ)·grad (δλ) = F−T |s ·Grad (λ)·F
−T |s ·Grad (δλ) = Grad (λ)·C−1 |s ·Grad (δλ)

(1.154)

Additionally, from the long expression of equation (1.123) one gets;

D |s =
1

2
F−T |s · Ċ |s · F

−1 |s (1.155)

Using these identities, the �nal form in the solid material oordinates ends up;

δṀ int =

∫

Ωs

I : D |s δλdv +

∫

Ωs

[
C−1 |s : (Grad (λ)⊗Grad (δλ))

]
dv

=

∫

Ωs

[
J−1 |s C

−1 |s : Ċ |s
]
δλdV S

+

∫

Ωs

[
β−1

(
nf
)2
J−1 |s C

−1 |s : (Grad (λ)⊗Grad (δλ))

]
dV S

(1.156)

1.7 Disretized balane equations

The linearized �eld equations are to be solved for �nal veri�ation. For this purpose,

�nite element method, as well as natural element method(see Ch.[5℄) are used. Higher

order tensorial qualities are represented in terms of matrix algebra, if neessary Voigt-type

notations are applied. Following this, the total Lagrangian approximations are presented.

The neessary material time derivations based on Newmark's method are presented brie�y.

Finally, the matrix-vetor algebrai form are linearized for preparing the system of equations

for an iterative solution.

1.7.1 Matrix-Vetor Form on Total Lagrangian Con�guration

For the matrix-vetor notations of the tensors, alligraphy symbols

17

are used. The tensors

whih are onverted into Voigt notation are namely, the seond Piola-Kirho� stress tensor,

the Cauhy strain tensor and the inverse of it, and the dyad of material gradient of pore

pressure variable λ with the variation of material gradient of it.

S |S =
[
SSXX , S

S
Y Y , S

S
ZZ , S

S
XY , S

S
Y Z , S

S
ZX

]T

C |S =
[
CSXX , C

S
Y Y , C

S
ZZ , 2C

S
XY , 2C

S
Y Z , 2C

S
ZX

]T

C−1 |S =
[(
C−1

)S
XX

,
(
C−1

)S
Y Y

,
(
C−1

)S
ZZ

,
(
C−1

)S
XY

,
(
C−1

)S
Y Z

,
(
C−1

)S
ZX

]T

δĊ |S =
[
δĊSXX , δĊ

S
Y Y , δĊ

S
ZZ , 2δĊ

S
XY , 2δĊ

S
Y Z , 2δĊ

S
ZX

]T

(1.157)

17

Throughout the treatise, other forms of symbols are also used. If the notation hanges, the

information will follow. Please refer to the front-page of List of Abbreviations.
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The missing oe�ients in the o�-diagonal terms of the inverse Cauhy strain tensor are

dropped on purpose, beause this tensor ats as a pulled bak stress tensor in the weak

form. The total variational weak form is;

δẆ int + δṀ int =

∫

ΩS

1

2

((
Sse − λC−1

)
: δĊ |s

)
dV S

+

∫

Ωs

[
J−1 |s C

−1 |s : Ċ |s
]
δλdV S

+

∫

Ωs

[
β−1

(
nf
)2
J−1 |s C

−1 |s : (Grad (λ)⊗Grad (δλ))

]
dV S

(1.158)

Using the symmetry property of the inverse Cauhy strain tensor, the last double

ontration an be reformulated,

C−1 |s : (Grad (λ)⊗Grad (δλ)) = C−1 |s :
1

2
[Grad (λ)⊗Grad (δλ) +Grad (δλ)⊗Grad (λ)]

= C−1 |s :
δ

2
(Grad (λ)⊗Grad (λ))

=
(
C−1 |s

)T
· δQ |S

(1.159)

Now the right hand side of the ontration an be also represented in 6 to 1 Voigt notation.

1

2

[
δ
∂2λ

∂X2
, δ

∂2λ

∂Y 2
, δ

∂2λ

∂Z2
, δ

∂λ

∂X

∂λ

∂Y
, δ

∂λ

∂Y

∂λ

∂Z
, δ

∂λ

∂Z

∂λ

∂X

]T

=
1

2

[
2
∂δλ

∂X

∂λ

∂X
, 2

∂δλ

∂Y

∂λ

∂Y
, 2

∂δλ

∂Z

∂λ

∂Z
,

∂δλ

∂X

∂λ

∂Y
+
∂λ

∂X

∂δλ

∂Y
,

∂δλ

∂Y

∂λ

∂Z
+
∂λ

∂Y

∂δλ

∂Z
,

∂δλ

∂Z

∂λ

∂X
+
∂λ

∂Z

∂δλ

∂X

]T
≈ δQ |S

(1.160)

The matrix-vetor notation is ertainly nonlinear, and is visited in the next hapters in

detail. The total variational weak form in matrix-vetor notation is then,

δẆ int + δṀ int =
1

2

∫

ΩS

(
δĊ

T
|s ·
(
SS
e − λC−1

))
dV S

+

∫

Ωs

(
J−1 |s Ċ

T
|s · C

−1 |s
)
δλdV S

+

∫

Ωs

(
β−1

(
nf
)2
J−1 |s δQ

T |S · C−1 |s

)
dV S

(1.161)
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1.7.2 Newmark-Method-Consistent Material Time Derivatives

The Newmark method and the algorithm of it are usually used for onditionally stable time

integration of rate dependent disrete forms of weak di�erential equations. Sine the inertial

e�ets are negleted, only the time derivatives are presented here. Newmark postulated

in his original work Ref.[

Newmark 1959

℄, fourth order and third order series expansions for

displaement and the veloity (not neessarily spatial) respetively. With the notation

whih is adapted to �nite deformation theory,

u (X, t) = u (X , t−∆t) + ∆tu̇ (X, t−∆t)

+
(∆t)2

2
ü (X, t−∆t) +

(∆t)3

6

...

u (X, t−∆t) + . . .

u̇ (X, t) = u̇ (X , t−∆t) + ∆tü (X, t−∆t) +
(∆t)2

2

...

u (X, t−∆t) + . . .

(1.162)

The e�et of the remainders an be manipulated by applying a variable oe�ient to the last

terms of the expansions. The newmark type deformation and the rate (spatial or material

material) of deformation are given as;

u (X , t) = u (X, t−∆t) + ∆tu̇ (X , t−∆t) +
(∆t)2

2
ü (X, t−∆t) + β1 (∆t)

3 ...u (X , t−∆t)

u̇ (X , t) = u̇ (X, t−∆t) + ∆tü (X , t−∆t) + β2 (∆t)
2 ...u (X, t−∆t)

(1.163)

Assuming there is (was)-at least bakward-linear aeleration �eld, one gets the following

expression.

...

u (X , t−∆t) =
ü (X , t)− ü (X, t−∆t)

∆t
(1.164)

Inserting the rate of aeleration term into equation (1.163), one gets deformation, veloity

and aeleration dependent Newmark series,

u (X, t) = u (X, t−∆t) + ∆tu̇ (X, t−∆t)

+

(
1

2
− β1

)
(∆t)2 ü (X, t−∆t) + β1 (∆t)

2
ü (X, t)

u̇ (X, t) = u̇ (X, t−∆t) + (1− β2)∆tü (X , t−∆t) + β2∆tü (X, t)

(1.165)

The urrent veloity and the urrent aeleration are onsidered to be unknowns. The

urrent aeleration from the �rst equation above yields into;

ü (X, t) =
1

β1 (∆t)
2u (X, t)−

1

β1 (∆t)
2u (X, t−∆t)

−
1

β1∆t
u̇ (X, t−∆t)−

(
1

2β1
− 1

)
ü (X, t−∆t)

(1.166)
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Inserting this expression into the seond equation gives;

u̇ (X, t) = u̇ (X, t−∆t) + (1− β2)∆tü (X, t−∆t)

+
β2
β1∆t

u (X, t)−
β2
β1∆t

u (X, t−∆t)

−
β2
β1
u̇ (X , t−∆t)−

(
β2
2β1

− β2

)
∆tü (X, t−∆t)

(1.167)

Negleting at this stage the terms ausing inertial e�ets, namely aeleration,

u̇ (X, t) =
β2
β1∆t

u (X, t)−
β2
β1∆t

u (X, t−∆t) +

(
1−

β2
β1

)
u̇ (X, t−∆t) (1.168)

Taking that the series is expanded around the initial time, in the material on�guration,

leaves one with the following identities;

t−∆t = t0 ⇒ u (X , t−∆t) = x (X , t0)−X = 0, u̇ (X, t−∆t) = 0 (1.169)

The Newmark onsistent material time derivative beomes;

u̇ (X, t) =
β2
β1t
u (X, t) (1.170)

This material time derivative an be applied for eah variable with homogeneous initial

onditions.

1.7.3 Disrete Form of the Translational Momentum Part

Apart from the pore pressure term, the disrete form of the �rst addend of equation

(1.161), an be found elsewhere. However, for the sake of ompleteness and adaptedness

to the following setions, the derivation proposed by Zienkiewiz Ref.[

O.C.Zienkiewiz 2000b

℄ is

re-introdued here. For this purpose, the vetor form of the variation of the Cauhy strain

tensor is given again;

δC |S =
[
δCSXX , δC

S
Y Y , 2δC

S
ZZ , 2δC

S
XY , 2δC

S
Y Z , 2δC

S
ZX

]T
(1.171)

The rate form is dropped on purpose. Instead of variation of rate, the rate of variation

is taken and this rate is evaluated numerially, whih is going to be presented in the next

setions. The variation in tensor notation beomes;

1

2
δC |S =

1

2

(
δF T |S · F |S + F T |S · δF |S

)
(1.172)
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In indiial notation,

1

2
(δC |S )IJ =

1

2

((
δF T |S

)
Ii
(F |S )iJ +

(
F T |S

)
Ii
(δF |S )iJ

)

=
1

2
((δF |S )iI (F |S )iJ + (F |S )iI (δF |S )iJ)

=
1

2

(
∂ (δx |S )i
∂ (X |S )I

(F |S )iJ + (F |S )iI
∂ (δx |S )i
∂ (X |S )J

)

=
1

2

(
∂ (δu |S )i
∂ (X |S )I

(F |S )iJ + (F |S )iI
∂ (δu |S )i
∂ (X |S )J

)

(1.173)

Bak substitution into equation (1.172) gives with the summation onvention over index i;

1

2
δC |S =

1

2




δCS11

δCS22

δCS33

2δCS12

2δCS23

2δCS31




=




(F |S )i1 (δu |S )i,1
(F |S )i2 (δu |S )i,2
(F |S )i3 (δu |S )i,3

(F |S )i1 (δu |S )i,2 + (F |S )i2 (δu |S )i,1
(F |S )i2 (δu |S )i,3 + (F |S )i3 (δu |S )i,2
(F |S )i3 (δu |S )i,1 + (F |S )i1 (δu |S )i,3




(1.174)

Applying the natural element shape value interpolation, on the deformations, variation of

deformations and their material gradients leads into the following representations;

(u |S )i ≈

# shape neigh.∑

L

NL (ũ |S )
L
i (δu |S )i ≈

# shape neigh.∑

L

NL (δũ |S )
L
i

(u |S )i,J ≈

# shape neigh.∑

L

NL
,J (ũ |S )

L
i (δu |S )i,J ≈

# shape neigh.∑

L

NL
,J (δũ |S )

L
i

(1.175)

The approximate vetor form of the variation of the half Cauhy strain tensor is then,

1

2
δC |S ≈

#ngh∑

L




(F |S )i1N
L
,1 (δũ |S )

L
i

(F |S )i2N
L
,2 (δũ |S )

L
i

(F |S )i3N
L
,3 (δũ |S )

L
i

(F |S )i1N
L
,2 (δũ |S )

L
i + (F |S )i2N

L
,1 (δũ |S )

L
i

(F |S )i2N
L
,3 (δũ |S )

L
i + (F |S )i3N

L
,2 (δũ |S )

L
i

(F |S )i3N
L
,1 (δũ |S )

L
i + (F |S )i1N

L
,3 (δũ |S )

L
i




=

#ngh∑

L

BL |S · (δũ |S )
L

(1.176)
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The nonlinear strain displaement matrix is in full form is;

B
L |S =




(F |S )11N
L
,1 (F |S )21N

L
,1 (F |S )31N

L
,1

(F |S )12N
L
,2 (F |S )22N

L
,2 (F |S )32N

L
,2

(F |S )13N
L
,3 (F |S )23N

L
,3 (F |S )33N

L
,3

(F |S )11N
L
,2 + (F |S )12N

L
,1 (F |S )21N

L
,2 + (F |S )22N

L
,1 (F |S )31N

L
,2 + (F |S )32N

L
,1

(F |S )12N
L
,3 + (F |S )13N

L
,2 (F |S )22N

L
,3 + (F |S )23N

L
,2 (F |S )32N

L
,3 + (F |S )33N

L
,2

(F |S )13N
L
,1 + (F |S )11N

L
,3 (F |S )23N

L
,1 + (F |S )21N

L
,3 (F |S )33N

L
,1 + (F |S )31N

L
,3




(1.177)

The disrete form of the internal energy as a sum of neighboring nonlinear strain

displaement interpolators beomes;

δW̃ int =

#ngh∑

L

(δũ |S )
L ·

∫

ΩS

((
BL |S

)T
·
(
SS
e − λC−1

))
dV S

(1.178)

The �rst order trunation gives the residuum in between two subsequent iterations,

δR̃W
∣∣i+1

(
ũ |S , λ̃

)
= δW̃ int

∣∣i+1
(
ũ |S , λ̃

)
− δW̃ int

∣∣i
(
ũ |S , λ̃

)

=

#ngh∑

L

#ngh∑

M

(δũ |S )
L ·KWu

LM · (dũ |S )
M +

#ngh∑

L

#ngh∑

M

(δũ |S )
L ·KWλ

LM

(
dλ̃
)M (1.179)

The omponent of the tangent sti�ness aused by neighbor nodes L and M,and supplied

by the translational momentum equation depending on only deformation an be shown as;

KWu
LM =

∂

∂ (ũ |S )
M

∫

ΩS

((
BL |S

)T
·
(
SS
e − λC−1

))
dV S

=

∫

ΩS

(
∂
(
BL |S

)T

∂ (ũ |S )
M

·
(
SS
e − λC−1

)
)
dV S +

∫

ΩS

(
(
BL |S

)T
·
∂
(
SS
e − λC−1

)

∂ (ũ |S )
M

)
dV S

(1.180)

The seond addend known as the material tangent sti�ness an be formulated by hain

rule,

KWuMat
LM =

∫

ΩS

(
(
BL |S

)T
·
∂
(
SS
e − λC−1

)

∂ (ũ |S )
M

)
dV S

=

∫

ΩS

(
(
BL |S

)T
·
∂
(
SS
e − λC−1

)

∂ (C |S )
·
∂ (C |S )

∂ (ũ |S )
M

)
dV S

=

∫

ΩS

(
(
BL |S

)T
·
∂
(
SS
e − λC−1

)

∂ (C |S )
· 2
(
BM |S

)
)
dV S

=

∫

ΩS

((
BL |S

)T
·DS ·

(
BM |S

))
dV S

(1.181)
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The oe�ient 2 at the third equation of(1.181) is a result of equation (1.176). The matrix

form of the total tangent moduli an be deomposed into e�etive and pore pressure tangent

moduli.

DS = DS
e +DS

p = 2
∂SS

e

∂ (C |S )
+ 2

∂
(
−λC−1

)

∂ (C |S )
(1.182)

The oe�ient 2 an be eliminated by onsidering the de�nition of the material modulus,

whih is based on Green-Lagrange strain funtion.Both in tensor and voigt notations, the

following holds

C
S
e =

∂2Ψ

∂ (E |S )
2 ⇒

1

2
C
S
e =

∂SSe
∂C |S

= 2
∂2Ψ

∂ (C |S )
2 =

1

2

∂2Ψ

∂ (E |S )
2 ⇒

1

2
D
S
e =

∂SS
e

∂C |S

1

2
C
S
p =

∂
(
−λC−1 |S

)

∂C |S
⇒

1

2
D
S
p =

∂
(
−λC−1

)

∂ (C |S )
(1.183)

The tangent moduli of pore pressure term an be evaluated as,

0 = −λ
∂I

∂C |S
= −λ

∂
(
C−1 |S ·C |S

)

∂C |S
=
∂
(
−λC−1 |S

)

∂C |S
·C |S − λC−1 |S ·

∂C |S
∂C |S
(1.184)

In indiial notation then,

1

2

(
CSp
)
INKL

CSNM = λ
(
CS
)−1

IO

∂CSOM
∂CSKL

1

2

(
CSp
)
INKL

CSNM
(
CS
)−1

MJ
=

1

2

(
CSp
)
INKL

δNJ =
1

2

(
CSp
)
IJKL

= λ
(
CS
)−1

IO

∂CSOM
∂CSKL

(
CS
)−1

MJ

(
CSp
)
IJKL

= λ
(
CS
)−1

IO
(δOKδML + δOLδMK)

(
CS
)−1

MJ

= λ
((
CS
)−1

IK

(
CS
)−1

JL
+
(
CS
)−1

IL

(
CS
)−1

JK

)

(1.185)

At the last equation, the symmetry property of the inverse Cauhy strain tensor is used.

The fourth order identity tensor whih is used above is not a de�nition, but the result of

the derivative of a seond order tensor with itself as shown beneath;

IIJKL =
∂AIJ
∂AKL

=
1

2

∂ (AIJ +AJI)

∂AKL
=

1

2
(δIKδJL + δJKδIL) (1.186)

For pratial purposes, the element (or Voronoi-Nodal) sti�ness matries are splitted into

material, geometri and if neessary also in volumetri parts. The names of the additive

splitting originates from the lassial Finite-element ontext, and named after the same

analogy. As stated, the reason is to ath simpliity in the ompliated derivations of the
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neessary matrix-vetor system of equations. The geometri sti�ness matrix omponent

an be obtained by the linearization

18

of the geometri residual salar,

δR̃WuGeo
∣∣i+1 = (δũ |S )

L ·KWuGeo
LM · (dũ |S )

M

= (δũ |S )
L ·

∫

ΩS

(
∂
(
BL |S

)T

∂ (ũ |S )
M

·
(
SS
e − λC−1

)
)

· (dũ |S )
M dV S

(1.187)

The diretional derivative an be onsidered in the total variational weak form, where the

strain displaement matrix is not introdued yet,

(δũ |S )
L ·KWuGeo

LM · (dũ |S )
M =

∫

ΩS

(
∂ (δC |s /2)

L

∂ (ũ |S )
M

:
(
Sse − λC−1

)
)

· (dũ |S )
M dV S

=

∫

ΩS

(
∂ (δC |s /2)

L
IJ

∂ (ũ |S )
M
j

(
Sse − λC−1

)
IJ

)
(dũ |S )

M
j dV S

(1.188)

Realling equation (1.173),

1

2
(δC |S )IJ =

1

2

(
∂ (δu |S )i
∂ (X |S )I

(F |S )iJ + (F |S )iI
∂ (δu |S )i
∂ (X |S )J

)

=
1

2

(
∂ (δu |S )i
∂ (X |S )I

(
δiJ +

∂ (u |S )i
∂XJ

)
+

(
δiI +

∂ (u |S )i
∂XI

)
∂ (δu |S )i
∂ (X |S )J

)

≈
1

2

[(
∑

L

NL
,I (δũ |S )

L
i

)(
δiJ +

∑

M

NM
,J (ũ |S )

M
i

)

+

(
δiI +

∑

M

NM
,I (ũ |S )

M
i

)(
∑

L

NL
,J (δũ |S )

L
i

)]

=
1

2

[(
∑

L

NL
,I (δũ |S )

L
i

)(
δiJ +

∑

M

NM
,J δij (ũ |S )

M
j

)

+

(
δiI +

∑

M

NM
,I δij (ũ |S )

M
j

)(
∑

L

NL
,J (δũ |S )

L
i

)]

(1.189)

18

The types of notation and terminology for the linearizations applied in this ontext belong

originally to Bonet Ref.[

J.Bonet 2008

℄
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The fous is however a derivative of a spei� variation;

1

2

∂ (δC |S )
L
IJ

∂ (ũ |S )
M
j

=
1

2

∂

∂ (ũ |S )
M
j

[(
NL
,I (δũ |S )

L
i

)(
δiJ +

∑

M

NM
,J δij (ũ |S )

M
j

)

+

(
δiI +

∑

M

NM
,I δij (ũ |S )

M
j

)(
NL
,J (δũ |S )

L
i

)]

=
1

2

[(
NL
,I (δũ |S )

L
i

)
NM
,J δij +NM

,I δij

(
NL
,J (δũ |S )

L
i

)]

= δũ |S
L
i N

L
,IN

M
,J δij

(1.190)

Inserting this expression bak into the equation (1.188) gives the tensorial form of the

geometri sti�ness matrix.

KWuGeo
LM =

∫

ΩS

(
Grad

(
NL
)
⊗Grad

(
NM

)
: S |S

)
IdV S

(1.191)

The tangent sti�ness matrix depending on the pore pressure lagrangean parameter is,

KWλ
LM =

∂

∂λ̃M

∫

ΩS

((
BL |S

)T
·
(
SS
e − λC−1

))
dV S

=
∂

∂λ̃M

∫

ΩS

(
(
BL |S

)T
·

(
SS
e −

∑

M

NM λ̃MC−1

))
dV S

= −

∫

ΩS

NM
(
BL |S

)T
· C−1dV S

(1.192)

Whih is in fat a vetor value (a redundant matrix), oupling the pore pressure to

the deformations. In this setion, the geometri, material and pore pressure dependent

nonlinearities onsidering the weak form of the translational momentum equation are

presented. In the next setion the disrete form based on the weak formulation of the

onservation of mass are presented.

1.7.4 Disrete Form of the Conservation of Mass

The tangent sti�ness matries of the following matrix-vetor form is to be found.

δṀ int =

∫

Ωs

(
J−1 |s Ċ

T
|s · C

−1 |s
)
δλdV S

+

∫

Ωs

(
β−1

(
nf
)2
J−1 |s δQ

T |S · C−1 |s

)
dV S

(1.193)

There will be several tangent omponents produed from the identity above. Therefore, a

areful subdivision of the equation above, and the orresponding tangent operations are to
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be performed.

δR̃M1

∣∣i+1
(
ũ |S , λ̃

)
= δM̃ int

1

∣∣i+1
(
ũ |S , λ̃

)
− δM̃ int

1

∣∣i
(
ũ |S , λ̃

)

=

#ngh∑

L

#ngh∑

M

(
δλ̃
)L
KM1u

LM · (dũ |S )
M +

#ngh∑

L

#ngh∑

M

(
δλ̃
)L
KM1λ

LM

(
dλ̃
)M (1.194)

Despite of the fat that, the �rst omponent of the sti�ness matrix is a vetor, and the

seond one is a salar, for the onsisteny of the assembly of individual addends, those all

will be presented as matries as done previously. The �rst derivative is,

δλ̃LKM1u
LM =

∂

∂ (ũ |S )
M

∫

Ωs

(
J−1 |s Ċ

T
|s · C

−1 |s
)
NLδλ̃dV S

=KM1uJ
LM +KM1uGeo

LM +KM1uMat
LM

(1.195)

The individual omponents are, �rstly the tangents originated by the determinant of the

solid deformation gradient 'J',

KM1uJ
LM =

∫

Ωs

NL
(
Ċ
T
|s · C−1 |s

)
⊗
∂
(
J−1 |s

)

∂ (ũ |S )
M
dV S

=

∫

Ωs

NL
(
Ċ
T
|s · C−1 |s

)
⊗

(
∂ (detC |S )

−1/2

∂C |S
:

∂C |S

∂ (ũ |S )
M

)
dV S

=

∫

Ωs

NL
(
Ċ
T
|s · C−1 |s

)
⊗

(
− (detC |S )

−3/2

2

∂ (detC |S )

∂C |S
:

∂C |S

∂ (ũ |S )
M

)
dV S

=

∫

Ωs

NL
(
Ċ
T
|s · C−1 |s

)
⊗

(
−
1

2

(
J−1 |s

)3 ∂ (detC |S )

∂C |S
:

∂C |S

∂ (ũ |S )
M

)
dV S

=

∫

Ωs

NL
(
Ċ
T
|s · C−1 |s

)
⊗

(
−
1

2

(
J−1 |s

)3
(detC |S ) (C |S )

−T
:

∂C |S

∂ (ũ |S )
M

)
dV S

=

∫

Ωs

NL
(
Ċ
T
|s · C−1 |s

)
⊗

(
−
1

2

(
J−1 |s

)2 (
C−1 |S

)T
·
∂ (C |s )

M

∂ (ũ |S )
M

)
dV S

=

∫

Ωs

NL
(
Ċ
T
|s · C−1 |s

)
⊗


−

1

2

(
J−1 |s

)2 (
C−1 |S

)T
·
∂
(
B

M |s · (ũ |S )
M
)

∂ (ũ |S )
M


 dV S

=

∫

Ωs

−
1

2

(
J−1 |s

)2
NL

(
Ċ
T
|s · C−1 |s

)
⊗
[(
C−1 |S

)T
· BM |s

+
(
(ũ |S )

M
)T

· I
(
Grad

(
NM

)
⊗Grad

(
NM

)
: C−1 |S

)]
dV S

(1.196)
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The material parts,

KM1uMat
LM =

∫

Ωs

NL

(
J−1 |s

(
Ċ |s

)T
·
∂
(
C−1 |s

)M

∂ (ũ |S )
M

)
dV S

=

∫

Ωs

NL

(
J−1 |s

(
Ċ |s

)T
·
∂
(
C−1 |s

)

∂ (C |s )
·
∂ (C |s )

M

∂ (ũ |S )
M

)
dV S

=

∫

Ωs

NL

(
J−1 |s

(
Ċ |s

)T
·

(
−

1

2λ
D
S
p

)
·BM |s

)
dV S

(1.197)

and �nally geometri part(s),

KM1uGeo
LM =

∫

Ωs

NL


J−1 |s

(
C
−1 |s

)T
·
∂
(
Ċ |s

)M

∂ (ũ |S )
M


 dV S

=

∫

Ωs

NL

(
J−1 |s

β2
β1t

(
C
−1 |s

)T
·
∂ (C |s )

M

∂ (ũ |S )
M

)
dV S

=

∫

Ωs

NL


J−1 |s

β2
β1t

(
C
−1 |s

)T
·
∂
(
B

M |s · (ũ |S )
M
)

∂ (ũ |S )
M


 dV S

=

∫

Ωs

NL

(
J−1 |s

β2
β1t

(
C
−1 |s

)T
·
(
B

M |s
))

dV S

+

∫

Ωs

NL


J−1 |s

β2
β1t

(
(ũ |S )

M
)T

·
∂
(
B

M |s
)T

∂ (ũ |S )
M

· C−1 |s


 dV S

=

∫

Ωs

NL

(
J−1 |s

β2
β1t

(
C
−1 |s

)T
·
(
B

M |s
))

dV S

+

∫

Ωs

NL

(
J−1 |s

β2
β1t

(
(ũ |S )

M
)T

· I
(
Grad

(
NM

)
⊗Grad

(
NM

)
: C−1 |S

))
dV S

(1.198)

Where the last addend of the material parts is not written beause of a simple reason

whih is visited here immediately. This ould be pointed out before evaluating the material

sti�ness part of the weak form of translational momentum equation (1.181). The neighbor

sum of the integrals with the integrand under disussion multiplied with the inrement of
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the diretion of the diretional derivative has the form

19

,

#ngh∑

M

∫

Ωs

(
(ũ |S )

M
)T

· I
(
Grad

(
NM

)
⊗Grad

(
NM

)
: C−1 |S

)
· (dũ |S )

M dV S

=

#ngh∑

M

∫

Ωs

((
F̃ |S · dF̃ |S

)
: C−1 |S

)
dV S = 0

(1.199)

Additionally, the �rst residuum of the disretized version of the onservation of mass is

linear in pore pressure Lagrangian multiplier. Seondly, the material rate of the vetor form

of the Cauhy an be evaluated by using the Newmark-onsistent time derivative.

KM1λ
LM = 0 (1.200a)

˜̇
C |s = ˙̃

C |s

#ngh∑

O

NO
(
˙̃
C |s

)O
=

β2
β1t

#ngh∑

O

NO
(
C̃ |s

)O
=

β2
β1t

#ngh∑

O

NO (B |s )
O · (ũ |S )

O

(1.200b)

Using this additional numerial approximation and onsidering the negleted term, the �nal

sti�ness addends of the �rst part of the mass balane weak form beomes;

KM1uJ
LM +KM1uGeo

LM +KM1uMat
LM =

∫

Ωs

−
1

2

(
J−1 |s

)2
NL

(
˜̇
C
T
|s · C

−1 |s

)
⊗
((

C−1 |S
)T

· BM |s
)
dV S

+

∫

Ωs

NL

(
J−1 |s

β2
β1t

(
C−1 |s

)T
·
(
BM |s

))
dV S

+

∫

Ωs

NL

(
J−1 |s

(
˜̇
C |s

)T
·

(
−

1

2λ
D
S
p

)
·BM |s

)
dV S

(1.201)

For the linearization of the seond part

20

of the weak mass balane equation, the following

residuum parts should be introdued;

δR̃M2

∣∣i+1
(
ũ |S , λ̃

)
= δM̃ int

2

∣∣i+1
(
ũ |S , λ̃

)
− δM̃ int

2

∣∣i
(
ũ |S , λ̃

)

=

#ngh∑

L

#ngh∑

M

(
δλ̃
)L
KM2u

LM · (dũ |S )
M +

#ngh∑

L

#ngh∑

M

(
δλ̃
)L
KM2λ

LM

(
dλ̃
)M

(1.202)

19

The proof ould not be found by the writer of the treatise, after long literature survey of most

frequently ited �nite element method texts

20

Remember that the weak form of the onservation of mass was divided into two parts for the sake

of simpliity
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Before taking the diretional derivative, the exat (approximated) form of the Lagrangian

multiplier gradient should be introdued.

(
δQ̃ |S

)L
=
δλ̃

2

[
2NL

,1

∂λ

∂X
, 2NL

,2

∂λ

∂Y
, 2NL

,3

∂λ

∂Z
,

NL
,1

∂λ

∂Y
+
∂λ

∂X
NL
,2 , NL

,2

∂λ

∂Z
+
∂λ

∂Y
NL
,3 , NL

,3

∂λ

∂X
+
∂λ

∂Z
NL
,1

]T

= δλ̃ (Γ |S )
L

(1.203)

The tangent sti�ness of the seond part of the onservation of mass with the tangent

depending on only the deformation is,

δλ̃LKM2u
LM =

∂

∂ (ũ |S )
M

∫

Ωs

(
δλ̃Lβ−1

(
nf
)2
J−1 |S

(
ΓL |S

)T
· C−1 |s

)
dV S

=KM2uJ
LM +KM2uMat

LM

(1.204)

Using the �rst narrowed assumption (see hapter Ch.[1.5.2℄), namely the saturation

ondition, one an express the �uid volume fration in terms of the determinant of the

solid deformation gradient and true densities.

nf = 1−ns = 1−
̺s

̺sR
= 1−

̺s

ρSR
= 1−

dm/dv

dm/dV S
= 1−

dV S

dv
= 1−nS

dV

dv
= 1−nSJ−1 |S

(1.205)

The total derivative of the jaobian dependent terms with respet to jaobian itself is,

∂
((
nf
)2
J−1 |S

)

J−1 |S
= −2nS

(
1− nSJ−1 |S

)
J−1 |S +

(
1− nSJ−1 |S

)2
(1.206)

Applying the same analogy of equation (1.196),

KM2uJ
LM =

∫

Ωs

−
1

2

(
J−1 |s

)2
((

nf
)2
J−1 |S

)

,J−1|S

((
ΓL |S

)T
· C−1 |s

)
⊗
((

C−1 |S
)T

·BM |s
)
dV S

(1.207)

The material part, with the same analogy to equation (1.197),

KM2uMat
LM =

∫

Ωs

β−1
(
nf
)2
J−1 |S

(
ΓL |S

)T
·

(
−

1

2λ
D
S
p

)
·BM |s dV

S
(1.208)

And the last term, in a straightforward way,

KM2λ
LM =

∫

Ωs

(
β−1

(
nf
)2
J−1 |S

∂
(
ΓL |S

)T

dλ̃M
· C−1 |s

)
dV S

(1.209)
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The derivative of Lagrangian multiplier gradient vetor with respet to the nodal inrement

of Lagrangian multiplier is,

∂
(
ΓL |S

)

dλ̃M
=

1

2

[
2NL

,1N
M
,1 , 2NL

,2N
M
,2 , 2NL

,3N
M
,3 ,

NL
,1N

M
,2 +NM

,1 N
L
,2 , NL

,2N
M
,3 +NM

,2 N
L
,3 , NL

,3N
M
,1 +NM

,3 N
L
,1

]T

(1.210)

Finally, the total nodal tangent sti�ness matrix with individual omponents an be summed

up together as;

K = K
WuMat
LM +K

WuGeo
LM +K

Wλ
LM +K

M1uJ
LM +K

M1uGeo
LM

+K
M1uMat
LM +K

M2uJ
LM +K

M2uMat
LM +K

M2λ
LM

=

∫

ΩS

(

(

B
L |S

)T

·DS ·
(

B
M |S

)

)

dV S

+

∫

ΩS

(

Grad
(

NL
)

⊗Grad
(

NM
)

: S |S
)

IdV S

−

∫

ΩS

NM
(

B
L |S

)T

· C−1dV S

+

∫

Ωs

−
1

2

(

J−1 |s
)2

NL

(

˜̇
C

T

|s · C−1 |s

)

⊗

(

(

C
−1 |S

)T

·BM |s

)

dV S

+

∫

Ωs

NL

(

J−1 |s
β2

β1t

(

C
−1 |s

)T
·
(

B
M |s

)

)

dV S

+

∫

Ωs

NL

(

J−1 |s
(

˜̇
C |s

)T

·

(

−
1

2λ
D

S
p

)

·BM |s

)

dV S

+

∫

Ωs

−
1

2

(

J−1 |s
)2

(

(

nf
)2

J−1 |S

)

,J−1|S

(

(

Γ
L |S

)T

· C−1 |s

)

⊗

(

(

C
−1 |S

)T

·BM |s

)

dV S

+

∫

Ωs

β−1

(

nf
)2

J−1 |S
(

Γ
L |S

)T

·

(

−
1

2λ
D

S
p

)

· BM |s dV S

+

∫

Ωs

(

β−1

(

nf
)2

J−1 |S
∂
(

Γ
L |S

)T

dλ̃M
· C−1 |s

)

dV S

(1.211)
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The individual omponents in terms of matrix format;













K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44













=













KWuMat
11

KWuMat
12

KWuMat
13

0

KWuMat
21

KWuMat
22

KWuMat
23

0

KWuMat
31

KWuMat
32

KWuMat
33

0

0 0 0 0













+













KWuGeo
11

0 0 0

0 KWuGeo
22

0 0

0 0 KWuGeo
33

0

0 0 0 0













+













0 0 0 KWλ
1

0 0 0 KWλ
2

0 0 0 KWλ
3

0 0 0 0













+













0 0 0 0

0 0 0 0

0 0 0 0

KM1uJ
1

KM1uJ
2

KM1uJ
3

0













+













0 0 0 0

0 0 0 0

0 0 0 0

KM1uGeo
1

KM1uGeo
2

KM1uGeo
3

0













+













0 0 0 0

0 0 0 0

0 0 0 0

KM1uMat
1

KM1uMat
2

KM1uMat
3

0













+













0 0 0 0

0 0 0 0

0 0 0 0

KM2uJ
1

KM2uJ
2

KM2uJ
3

0













+













0 0 0 0

0 0 0 0

0 0 0 0

KM2uMat
1

KM2uMat
2

KM2uMat
3

0













+













0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 KM2uλ













(1.212)



46 Chapter 1. Soft Tissue as Biphase Mixture

1.8 Numerial Examples

In this setion there are in total 3 di�erent numerial examples are presented. The �rst one

represents the growth of an initially spherial biologial struture, as a result of exessive

�uid feeding at some presribed arterial loations. The e�et of growing volume on some

surrounding tube-like primary tissue is investigated in the seond example. The third

example is related to vertial ontat of the artiular artilage with the menisus tissue.

All the models generated here onsist of Hexahedral elements only, with tri-linear shape

funtions. There is a single di�erene of the element formulation of the typial 8-Node

Hexahedral framework, whih is the number of integration points. The elements ontain

layers, and therefore has at least 8 integration points, or more are assigned depending on

the number of layers. . For eah layer there are 4 integration points taken, and on the

plane Gauss quadrature rule is applied. In the thikness diretion Simpson's rule �nishes

the omplete integration. Before giving the examples, the details of the written ode is

presented next.

1.8.1 Finite Element Implementation: Software Spei�ations

The disretized form of the equations evaluated in setion Ch.[1.7℄ were suessfully

implemented via Finite Element Method (FEM), as well as the Natural Element Method

(NEM - see Ch.[5℄). In this subsetion, only the FEM ode is presented with details,

instrutions and limitations.

The ode is ompatible with Linux-Environment

21

. Some user de�ned & embedded

nonommerial (publi and free) software libraries together with self-written make�les

provide ompilation and exeution of the presented software solution. Sine moderate

to large systems of equations aimed to be solved by the writer of the treatise, sparse

matrix storage methods and solvers whih are apable of dealing with sparse matrix-vetor

algebra are implemented and used. The sparse matrix-vetor library ontains basi yet

e�ient linear-algebra operators, suh as multipliation and addition of arbitrary sparse

matries, and expliit inversions of large sparse matries. The programming has been

hosen to be C++, and ompilers with the general publi liense Ref.[

GNU 2009

℄ agreements

are used. Objet oriented features suh as lass inheritene, polymorphism, enapsulation

and funtion overloading (virtual funtions) are fully bene�ted from. The writer prefered

to be guided by the referend Ref.[

Yang 1996

℄, sine the speial fous of the treatise on

engineering appliations. For solving the large system of equations, mainly the Pardiso

©

sparse solver developed by the Pardiso

©
Solver Projet Team Ref.[

Pardiso 2009

℄ is used.

One of the very initial versions of the solver was embedded into Intel-math kernel

library

©
projet Ref.[

Library-MKL 2008

℄, the sparse solver Pardiso

©
is aessed indiretly from

Intel-MKL

©
library. In addition to these, optionally another make�le proedure is applied

to generate Abaqus

©
software Ref.[

Simulia 2011

℄ output database (.odb) binary types of

outputs. The Appliation Programming Interfae (API) library of software Abaqus

©
is

intensively used for this purpose as well. The ode written would be also su�ient without

21

CentOS release 5.11 (�nal)
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these aforementioned add-ons, nevertheless, issues suh as performane and visual aids

supplied by those ommerial and publi liense software produts onvined the writer

to do it so. Additional to those listed above, the personal pre- and postproessor GiD

©

Ref.[

personal post proessor GiD 2009

℄ and Metapost

©
of Beta Systems Ref.[

Beta 2009

℄ are used

for �gures generated in the next setion of examples.

Figure 1.1: The shell sript used for ompiling and linking the external libraries using Intel

©
ompiler

Figure 1.2: The shell sript used for ompiling and linking the external libraries using Abaqus

©

ompiler

After this short information about the environment of the software, the ontents of

the individual �les of the ode of biphasi media an be summarized next. The �les in

alphabetial order;

• Abq_TPM_MASTER_MAKEFILE.sh: Make�le ompiling and generating the

master �le and exeutable using API library

• alloaters.pp: inludes loal and global alloations
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• sr_Matrix.h & sr_Matrix.pp: ompressed sparse row matrix library delarations

and de�nitions

• gauss.pp: integration point spei� funtions

• global_funtions.pp: funtions relevant to the global matrix parameters

• headers.h: main header �le inluding the lass delarations

• input.inp: any input �le in Abaqus

©
format, this �le is parsed by readers

• Intel_TPM_MASTER_MAKEFILE.sh: Intel make�le ompiling and generating the

master �le and exeutable

• linear_algebra.pp: some funtions of linear algebra used for small matrix-vetor

operations

• natural_b.inp: the nodal natural boundary onditions

• neumann_b.inp: the nodal essential boundary onditions

• odb_writers.pp: funtions generating the output database

• readers.pp: readers and parsers of the input �les, model and boundary onditions

• TPM_MASTER.pp & TPM_MASTER.exe: the master �le and the exeutable of

the master �le

• tpm_internal.pp: funtions of internal residuals of onservation of mass and

translational momentum

• tpm_main.pp: the main funtion

• tpm_sti�.pp: funtions of element sti�nesses of onservation of mass and

translational momentum

• writers.pp: any type of writers for post-proessing or manual debugging purposes

After any hange or modi�ation done in a spei� �le, one of the make�les should be used

to generate new master �le and the exeutable. As indiated, the �le

22

the model, and

aordingly the boundary onditions an be hanged and run under Linux-environment. In

the next, some examples will be presented.

1.8.2 A Numerial Senario: Growth of Uterine Fibroids

The �rst example stands only for the growth of an initially spherial-shaped abstrat tissue.

The abstrat senario together with the next one, an be analogously linked to some real

22

Only nodes, oordinates, elements, solid setions materials and laminar lay-up informations are

parsed. Caution, the omplete list of parameters or header that follows the well known Abaqus

©

format. Abaqus

©
is not used as �nite element analysis software, only the neessary part (ompiler,

API) is used used as an aid for the implementation.
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(a) This study mimis likely

the variation a,:subserosal

or submuosal �broid

growth

Hi.et.nun 2012

(b) The spherial layer-wise strutured initial

�broid geometry taken for this study

Figure 1.3: Shemati Drawing of various types of uterine �broids and initial �broid geometry

biomehanial phenomena, for instane �broid growth as shown in the left side of the

Figure 1.3

23

. In this ase, some arti�ial hot points, or �uid supply network is preassigned,

namely the pore-pressure is to be prede�ned. The traing paths of the pressure supply

nodes an be seen in the results of next pages, for instane fourth piture of Figure 1.5.

The senario of growth is however a novel one, and not based on any other phenomenologial

or theoretial postulates done by pioneers of the �eld. It should be noted here that,

the theory and numeris of the growth in the �eld of biomehanis is already postulated

and signi�ant amount of very valuable work is delivered to the siene and engineering

publiity. Among many of them, Menzel Ref.[

A.Menzel 2004

℄ postulated a general theoretial

and numerial framework of remodeling and growth of �ber reinfored material. Garikipati

Ref.[

K.Garikipati 2005

℄, has disussed stationary strain energy and thermodynami aspets

of remodeling with the realization of ell-tration experiments. Kuhl Ref.[

E.Kuhl 2008

℄

and Holzapfel Ref.[

G.Holzapfel 2006

℄ have showed that gradual alignment of unit-ell an

represent ollagen network orientation of an engineered tendon-like tissue. Hariton

& Holzapfel Ref.[

I.Hariton 2007

℄ and Driessen Ref.[

N.J.Driessen 2003

℄ have reently used

stress-driven reorientation of ollagen �bers of arterial walls and porine aorti valve

lea�et. Wilson Ref.[

W.Wilson 2006

℄ has predited the ollagen orientation of depth dependent

ollagen orientation of AC with remodeling. These are all examples of modeling of

growth, some of whih will be re-visited in this treatise. In this stage, growth is assumed

to be stritly depending on the seleted pressure (or Dary veloity) supply of �uid, or blood.

23

piture:By Hi et nun Own work CC-BY-SA-3.0, via Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Uterine_fibroids.png
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Figure 1.4: The development of the pore pressure distribution on the xy plane; time steps 1-20

Figure 1.5: The development of the pore pressure distribution on the xz plane; time steps 1-20

(a) time step: 1 (b) time step: 7 () time step: 10 (d) time step: 11 (e) time step: 20

Figure 1.6: The development of the pore pressure distribution on the yz plane; time steps 1-20
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(a) legend (b) time step: 12 () time step: 13 (d) time step: 14 (e) time step: 15

Figure 1.7: The development of the �uid fration distribution in layered struture; time steps 12-15

(a) time step: 15 (b) time step: 16 () time step: 17 (d) time step: 18 (e) time step: 19

Figure 1.8: The development of the �uid fration distribution in layered struture; time steps 15-19
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The model has in total 2190 nodes, and 1143 elements. The model has been built to

onsist of two hexahedral rows, and the �ber diretion is to be assigned randomly, but lying

on the ground of the element row layers. Eah element is assummed to ontain 4 layers,

thus 16 integration points eah, means that the funtions of element sti�ness matrix and

omputing of internal fores are alled 18288 times for eah iteration, if one implements

the typial Newton-Rhapson algorithm for the solution. As stated before, the pore-pressure

is given as input, and the internal-most layer of the struture is assigned with very low

permeability values, suh that the tissue does not dehydrates from inside, and thus one

an not observe the deterministi form of the growth over the pseudo time. Aording to

the formulation given in the previous pages, the pore-pressure driven analysis orresponds

to a natural boundary ondition type of analysis, and thus shows better onvergene

harateristis.

The results of pore pressure with the deformed (or grown) tissue an be seen in �gures

of 1.4 to 1.6. The results of �uid fration distribution an be seen in the �gures of 1.7

and 1.8. Initially forty perent of the tissue is assumed to ontain �uid. The maximum

�uid fration gains around twenty perent of �uid for the given example. Before showing

the results of this senario of tissue growth on the surrounding primary tissue, the steady

state streamlines of the growth on one layer (where the �ber diretions are determined to

be random), visualized as beneath,

(a) streamlines on xy plane (b) streamlines on xz plane () streamlines on yz plane

Figure 1.9: Steady state streamlines, olor plot of �uid fration, diameter sale of �uid veloity

1.8.3 A Numerial Senario: Impat on the Surrounding Tissue

For modeling the impat of the tissue growth on the primary tissue, whih is plaed

anatomially right next to the growing one, penalty type of ontat is formulated, modeled

and implemented. Besides, for the proper de�nition of the permeability, the anisotropi

permeability behavior is implemented also, whih is visited in this setion. In this ase,

along-�ber permeability oe�ient is taken to be signi�antly high, whereby the inter-�ber

permeability is taken to be onsiderably small, but �nite. Beneath in Figure 1.10, the

12-layer struture of the surrounding tissue and the plaement of the healthy tissue inside
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of it before the start of in�ation is shown.

(a) 12-Layer substruture of the

surrounding tube-like tissue

(b) Replaement of the two-body

on�guration for the ontat preparation

Figure 1.10: Model for the senario of growth of seondary tissue on the primary one

In the next page in �gures 1.11 to 1.13, the quasi-isotropi layer-up struture are shown

illustratively. This type of layup �ber orientation is not only quite frequently exist in

soft living tissues, but also has very ommon industrial appliations, suh as arbon �ber

reinfored thermoplast omposites or similar. But this type of industrial appliations are

kept to be ompletely out of the sope of this thesis. Returning and realling bak the �nal

de�nition of the seepage veloity in terms of the impermability oe�ient, �uid fration,

pore-pressure and more,

wfs = β−1

(
̺f

˘
f
f
b − nfgrad (λ)

)
(1.213)

The e�et of permeability on the seepage veloity an be divided into �ber-parallel and

�ber-perpendiular omponents as follows,

wfs =β−1
‖ (M ⊗M)

(
̺f

˘
f
f
b − nfgrad (λ)

)

+ β−1
⊥ (I −M ⊗M)

(
̺f

˘
f
f
b − nfgrad (λ)

) (1.214)

Even though quantitative information about the permeability values are missing, one an

state that the along-�ber resistane against �ow is signi�antly less then perpendiular to

the plane of �ber, or layup.

β‖ ≤ β⊥ (1.215)
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(a) layer 1: 90

◦

wrt. Axis (b) layer 2: 45

◦

wrt. Axis () layer 3: -45

◦

wrt. Axis (d) layer 4: 0

◦

along Axis

Figure 1.11: Fiber lay-up layers 1-4

(a) layer 5: 90

◦

wrt. Axis (b) layer 6: 45

◦

wrt. Axis () layer 7: -45

◦
wrt. Axis (d) layer 8: 0

◦

along Axis

Figure 1.12: Fiber lay-up layers 5-8

(a) layer 9: 90

◦

wrt Axis (b) layer 10: 45

◦
wrt. Axis () layer 11: -45

◦

wrt. Axis (d) layer 12: 0

◦

along Axis

Figure 1.13: Fiber lay-up layers 9-12
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(a) on axial layer (b) on 45

◦
layer

() on -45

◦
layer (d) on 90

◦
layer

Figure 1.14: The steady state streamlines on 4 layers of 12

The model onsists of three rows of hexahedral element, eah of whih ontains 4

layers. The layup struture is illustrated in �gures 1.11 to 1.13. Aording to the de�ned

anisotropi permeability ondition, for eah individual layup, as long as the permeability

ratio is given to be quite dominantly di�erent in along and perpendiular diretions, one

expets to see streamlines following the pattern of layup �ber diretions. As shown in

Figure 1.14, the expetation is ompletely ful�lled, at least qualitatively quite satisfatory.

Conluding with some quantitative information about the model, is that the model onsists

of 2190 nodes, 4 degree of freedom at eah node, 1456 elements, with 16 integration points

at eah. The ase is loaded only at three kinemati degrees of freedoms per Node by means

of ontat displaements, whih was supplied from the numerial senario of deterministi

tumor growth. At the free edges, the pore-pressure is fored to stay zero, onsidered as

natural boundary ondition. The initial �uid fration is given to be only twenty perent,

representing a dry thus an extraordinary ase, as shown in the �gures of 1.15 to 1.16.
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(a) legend (b) time step: 1 () time step: 3 (d) time step: 5 (e) time step: 7

Figure 1.15: The development of the �uid fration distribution in layered struture time steps 1-7

(a) time step: 9 (b) time step: 11 () time step: 15 (d) time step: 17 (e) time step: 19

Figure 1.16: The development of the �uid fration distribution in layered struture time steps 9-19
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(a)

legend

(b) time step:1 () time step:6 (d) time step:20

Figure 1.17: Pore pressure distribution with deformation, states 1, 6, and 20

1.8.4 A Numerial Senario: Cartilage under Compression

For the third senario a rather realisti geometry and loading ondition is taken. The �nite

element mesh-tree was obtained from a very appreiated soure of Ref.[

Erdemir 2014

℄. The

ase onsist of a porous media of artilage with 25274 nodes and 18546 elements. There

are four element rows and 4 layups at eah element onsidered, whih results in 296736

integration points in total. In this senario, the master surfae with 1320 elements losures

to the slave artilage surfae linearly with the pseudo time. The master surfae is taken to

be rigid, and the ontat is of type kinemati. Realisti values are assummed for the �uid

fration of the artilage, the omposition onsists of 80% �uid and 20% �brous ground

struture. As de�ned previously, the �ber orientation is modelled fo be quasi-isotropi and

is visited via illustration in this hapter.

Sine it is di�ult and meantime might be misleading to reah solid upshots on the

results, the onlusions based on these results are intrepreted ursorily. As an be seen

in Figure 1.19, for the given parameters and boundary onditions the deformation �eld

seems to e�et only ontat region of solid part and the very near neighborhood of it. The

same onlusion an be also done for the distribution of the �uid fration as one an see

from Figure 1.21. As opposite to the previous example of surrounding tissue of the growing

spherial tumor, one an see here that, the ontat region dehydrates signi�antly rapidly

then anywhere else. . This numerial phenomena might be explainable if one onsideres

that the super�ial zone permeability in the ase of artiular artilage was given exessively

low as in reality, therefore, the �uid is fored to �ow apart from the ontat region to

the other regions of the tissue, whereby in the previous example the surrounding �uid was

allowed to enter the super�ial layers from outside. The pore pressure in Figure 1.23 is more

smoothly distributed, and signi�ant di�erene in medial and lateral surfaes is observable.

This observation draws the attention of importane of loading boundary onditions as well,

it may be the wrong approximation to steer the simulation with vertial displaement only

and for reliable solutions of �nite element simulation some maro-sale musuloskeletal

analysis and the output of it might be neessary.
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(a) legend (b) time step: 2 () time step: 3 (d) time step: 4 (e) time step: 5

Figure 1.18: The development of the deformation of artiular artilage in between time steps 1-5

(a) time step: 6 (b) time step: 7 () time step: 8 (d) time step: 9 (e) time step: 10

Figure 1.19: The development of the deformation of artiular artilage in between time steps 6-10
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(a) legend (b) time step: 2 () time step: 3 (d) time step: 4 (e) time step: 5

Figure 1.20: The development of the �uid fration of a layer of artiular artilage; time steps 1-5

(a) time step: 6 (b) time step: 7 () time step: 8 (d) time step: 9 (e) time step: 10

Figure 1.21: The development of the �uid fration of a layer of artiular artilage; time steps 6-10
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(a) legend (b) time step: 2 () time step: 3 (d) time step: 4 (e) time step: 5

Figure 1.22: The development of the pore pressure of a layer of artiular artilage; time steps 1-5

(a) time step: 6 (b) time step: 7 () time step: 8 (d) time step: 9 (e) time step: 10

Figure 1.23: The development of the pore pressure of a layer of artiular artilage; time steps 6-10
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2.1 Introdution

Kinematis is the initial building blok of ontinuum solid mehanis in matter and

manner. Kinematis, whih de�ne the spatial and pseudo-temporal hange of 'motion'

of a ontinuum, is historial and essential prologue. Therefore, any plaement of

postulates, extensions, su�x, annex, orretions or rede�nitions, whih deepens the subjet

of ontinuum mehanis, should be initiated at the stage of Kinematis.

The neesary reasoning of onsideration of strain-gradient e�ets is in fat very ruial

and a matter of sale problem. Irrespetive of sale of interest, in many ases, the notion

of material point and the size of its neighborhood might be quite omparable of the sale

of interest itself. In other words, one may �nd itself quite on a border line, at the sale of

grain, where unique material parameters an not be aepted to be generally valid. These

parameters would be even not valid for the near next of point of interest, as obvious from

Figure 2.1 in Ref.[

J.M.Clark 1990

℄. Considering the fous of interest of this thesis, namely

�brous biologial soft-tissues, the previously mentioned sale-phenomenon is so lear that

one an not deny the presene of it.

The sale problem fores the observer to stak in a borderline, where parametrization of

signi�ant quantities having an impat on energy density funtion, is no longer negligibly

sensitive to little hanges of the size of fous, and thus loses robustness. Reonsidering

the example given in Figure 2.1, the seletion of the material size as on the left hand

size would indiate of inlusion of voids or porosity �ller matrix exessively (or other way
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around). Meanwhile, it may also indiate of ignoring some forms of kinematis (for instane

bending an twisting of spae urves), if the matter of onern, that one deals with, onsists

of signi�antly "long �bers" as in the ase of Figure 2.1. The deviation of the material

standard an be redued, and some objetivity an be gained by moving towards to the

middle form of Figure 2.1, however the seond problem stated above would still persist to

exist. The full �ber length an (for instane) be ahieved by the seletion of the size as

suggested in the rightmost piture, however this would throw one out of to the stability limit

and onsisteny radius of the method of solution for the partial di�erential equations. The

least losing door is obviously de�ning a borderline from top, therefore one reahes bak

to the initial problem statement, namely the sale problem, if the harateristi material

dimension is omparably near to the dimension of geometry. One improvement that is

suggested here in this thesis is onsidering the strain gradient e�ets whih enables one to

get smaller in the size of the material and meanwhile preserving to stay in the onsisteny

radius of solution method of PDE.

1

Figure 2.1: Material size subjetivity illustrated on real Human biologial speimen (SEM Image

taken from Ref.[

J.M.Clark 1991

℄. The original image does not ontain the blue triangle. Bar=1mm)

The sanning eletron mirosopy result of Figure 2.1 is not a single evidene,

whih is seleted spei�ally. Several other an be given here suh as; Hughes

et. all. Ref.[

L.C.Hughes 2005

℄, Clark Ref.[

J.M.Clark 1990

℄ again, and Kurogouhi et. all.

Ref.[

S.Kobayashiv 1995

℄ present similar pitures, where similar onlusions an be driven from.

Keeping the introdutory statement given above in mind, whih is assembled in the following

setion, the neessary non-linear strain gradient kinematis is de�ned here. It is shown in

a novel way that, quite unusual to lassial kinematis, strain gradient kinematis fores

the tangent maps of di�erent on�gurations both additively and multipliatively. Following,

the straight referene to urved spatial tangent mappings and the inverse, as well as the

tangent mappings in between two arbitrary urved on�gurations are numerially shown to

be fully onsistent with eah other along the theory presented here. As mentioned above,

the impat of the preditions on the balane is visited and assembled then in the subsetion

of numerial examples (see Ch.[2.3℄).

Hereby, initially the kinematis of ontinua with hypergradient e�ets, present in their

motion, is de�ned. The parametri referene to urved system tangential mapping, as

well as the urved urrent to straight referene tangential mapping are de�ned. In order to

1

Please refer to Zienkiewiz Ref.[

O.C.Zienkiewiz 2000a

℄ for the relationship of element size to stability,

onsisteny and onvergene of FEM as a method of solving PDE's
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support and show the reversibility of tangential motion, the tangential mapping of arbitrarily

urved on�guration into another arbitrarily urved on�guration is mentioned shortly.

The validity of the presented kinematial relationships are shown to be onsistent with

the given numerial examples. The drifting errors of lassial kinemas and strain-gradient

kinematis are ompared with eah other by onsidering a smooth motion.

2.2 Theory: Kinematis

In this setion, the neessary kinematis and its omponents are introdued. In the next

ontext, the referene on�guration is taken to be as an aumulation of in�nitely many,

in�nitely small straight line inrements. Whereby the spatial and material on�gurations are

de�ned to be the forward and reverse mappings of that referene on�guration respetively.

With these de�nitions in hand

2

, in three main subsetions, referene to spatial, material

to referene and �nally material to spatial point and tangent mappings are introdued.

2.2.1 Referene to Spatial: From Referene Lines to Spatial Curves

The referene to spatial mapping of the 'ontinuous motion', and the inverse spatial to

referene 'reverse ontinuous motion' are assumed to exist and be bijetive, and thus

ontinuum preserving and penetration averting.

ψ : ΩX ⊂ R
3 7→ Ωx ⊂ R

3, x = ψ (X) (2.1a)

ψ−1 : Ωx ⊂ R
3 7→ ΩX ⊂ R

3, X = ψ−1 (x) (2.1b)

The material oordinatesX and spatial oordinates x are assumed to be Cr di�eomorphi.

Thus ,the bijetive mapping ψ and it's inverse ψ−1
are r times di�erentiable, but not

neessarily smooth. Besides, it is assumed that, at least in the neighborhood of the in�nite

domain, the mapping and it's inverse are analyti.

With the assumptions above, the material to spatial mapping at lousX∗+dX∗
onverges

to the Taylor series expansion of the mapping ψ around X∗
with an in�nite neighborhood

diretor of dX∗
. In general, for r > 2 for a Cr di�eomorphi analyti mapping the following

2

In short, in this setion and in the followings, if not otherwise stated, the referene and material

on�gurations would not ollide anymore, those will be taken to be di�erent.
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an be written,

x+ dx = ψ (X + dX) =
1

0!

(
∂0ψ

∂Υ0

∣∣∣∣
Υ=X

)
(X + dX −X)⊗0

+
1

1!

(
∂1ψ

∂Υ1

∣∣∣∣
Υ=X

)
· (X + dX −X)⊗1

+
1

2!

(
∂2ψ

∂Υ2

∣∣∣∣
Υ=X

)
: (X + dX −X)⊗2

+ · · ·

+
1

r!

(
∂rψ

∂Υr

∣∣∣∣
Υ=X

)
·r (X + dX −X)⊗r

(2.2)

As shown subsequently, even though it is not stated expliitly in many textbooks, the series

expansion given in equation (2.2) is fully onsistent with the lassial deformation gradient

kinematis. Before moving on, the �rst three powers of the �rst order tensor diretors in

terms of binary tensor operator (A)⊗i is de�ned. For i ∈ N0 being a nonnegative integer

and A ∈ R
3
being a �rst order tensor, dyad power operator an be de�ned with i=1 being

the identity operator. The power of zero is not the absorbing element, sine it has to be

salar unity to be onsistent with the equation (2.2). The remaining powers are i times

dyadi foldings of the vetor A. The �rst three powers read;

[A]⊗i :
(
A ∈ R

3×1, i ∈ N0

)
7→ B ∈ R

3×i

(A)⊗0 = 1

(A)⊗1 = A

(A)⊗2 = A⊗A

(2.3)
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Using the de�nitions above,for instane, the trunated series expansion of salar valued

vetor funtion x2 = x2 (X1,X2,X3) at an instant is written in tensor-o� form as follows,

x2 + dx2 = x2 (X + dX)

= x2 (X1 + dX1, Y + dY,Z + dZ)

≈

(
∂0x2
∂α0

∣∣∣∣
α=X

)
+

(
∂1x2
∂α1

∣∣∣∣
α=X

)
· (dX) +

(
1

2

∂2x2
∂α2

∣∣∣∣
α=X

)
: (dX)⊗2

=x2 (X) +
∂x2
∂X1

dX1 +
∂x2
∂Y

dY +
∂x2
∂Z

dZ

+
1

2

(
∂2x2

(∂X1)
2 (dX1)

2 +
∂2x2

(∂X2)
2 (dX2)

2 +
∂2x2

(∂X3)
2 (dX3)

2+

)

+
1

2

(
2

∂2x2
∂X1∂X2

dX1dX2 + 2
∂2x2

∂X3∂X1
dX3dX1 + 2

∂2x2
∂X2∂X3

dX2dX3

)

(2.4)

Of ourse, similar tensor-o� form an be written for other salar valued omponents of

mapping (2.1). Having trunated the series one term earlier, one gets the diretional

derivative of the point mapping, towards the diretion of dX. This spei� type of

linearization gives the bakbone identity of the lassial kinematis.

dx = F · dX dX = F−1 · dx (2.5)

As obvious, the forward tangent mapping of linearization F in equation (2.5) preserves

�nite line segments as rotated and strethed line segments. De�ning the gradient of the

deformation gradient in tensor and indiial notations;

G = ∇XF Gijk =
∂xi

∂Xj∂Xk
(2.6)

With this de�nition of (2.6), equations (2.2) & (2.4) are shown in tensor notations

3

beneath.

dx = F · dX +
1

2
∇XF

r
: (dX ⊗ dX) (2.7)

The illustrative hypermatrix-matrix-vetor notation shown in Figure 2.2 gives a better

understanding of the equation above. The linearized tangent mapping (2.5) is homogeneous

of order 1, whereby equation (2.7) is not, and thus nonlinear. To show this, parameter α

is introdued and sale the in�nite referene diretor in the parametri interval of alpha.

[−1, 1] = {α ∈ R | −1 ≤ α ≤ 1}

F · αdX = αF · dX ⇒ αdx = (∇Xψ)|X,αdX

(2.8)

3

Left, Right and Mid double ontrations

(

l
:
)

, beneath
(

r
:
)

,
(

m
:
)

are named aording to the

repeated indies, i.e. for the

(

l
:
)

ontration the leftmost two indies are repeated.



66 Chapter 2. Hyperkinematis

This statement obviously does not hold for equation (2.7). To move on, the sharp, �at and

neutral referene diretors (dX♯, dX♭, dX♮
)

4

are de�ned by hoosing alpha extremities as 1,

-1 and again 1 respetively. As an be noted, sharp and neutral referene diretors indiate

the same and depending on the ontext, will be used from this point on interhangeably.

The spatial sharp and �at diretors are de�ned via mapping, not via parametrization.

Using (2.8) and the obvious identity of the equality of sharp and �at dyadi squares, i.e.(
dX♯ ⊗ dX♯

)
=
(
dX♭ ⊗ dX♭

)
, one obtains the following tensor-algebrai equalities;

dx♯ = F · dX♯ +
1

2
G

r
:
(
dX♯ ⊗ dX♯

)
= −F · dX♭ +

1

2
G

r
:
(
dX♭ ⊗ dX♭

)

dx♭ = F · dX♭ +
1

2
G

r
:
(
dX♭ ⊗ dX♭

)
= −F · dX♯ +

1

2
G

r
:
(
dX♯ ⊗ dX♯

) (2.9)

∇X

x,X,∇X

x,X,∇X

dx
♯

dy
♯

dz
♯

x,Z

y,Z

z,Z

x,Y

y,Y

z,Y

x,X

y,X

z,X

=

dX

dY

dZ

.

dXdX
dXdY

dXdZ

dY dZ

dZdZ

dY dY:

z,XX

z,Y Y

z,ZZ

y,XX

y,Y Y

y,ZZ

x,XX

x,Y Y

x,ZZ

x,ZX x,ZY

x,YX

+0.5

Figure 2.2: Hypermatrix-matrix-vetor form of mapping of the sharp spatial tangent with the neutral

referene tangent and its metri.

In the absene of ontration of gradient of deformation gradient with the dyadi square,

equation (2.9) is homogeneous of order 1. Thus, it was essential to have sharp, neutral and

�at de�nitions of the diretors.

dx♯ = −dx♭ ⇐⇒ G
r
:
(
dX♭ ⊗ dX♭

)
= 0 (2.10)

Sine the sharp and �at referene diretors are linearly dependent, it is implied that the

referene on�guration is an only straight on�guration. Correspondingly, sine the sharp

and �at spatial diretors are not neessarily linearly dependent, it should be admitted that

the urrent on�guration is urved & straight.

4

Instead of algebrai symbols, symbols of musial harmony is hosen, interhangable usage of

algebrai symbols may ause onfusion in this ontext.
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dx♭\dx♯

dx♯\dx♭

dx♯ ∩ dx♭dX♯ ⊗ dX♯

dX♯

dX♭

−
I·(−I·)

(F·)

(F·)

(∇F: )

Figure 2.3: Kinematis of referene tangents to spatial tangents

2.2.2 Spatial to Referene: From Spatial Curves to Referene Lines

The di�erential behavior of the reverse kinematis is to be analyzed in this subsetion.

To do it so, it will not be tried to reverse the tangential mappings from the trunated

approximations. Similar to the previous subsetion, the (are) referene oordinates around

the neighborhood of (were) urrent oordinates will be expanded, however this time via

inverse motion.

X + dX = ψ−1 (x+ dx) ≈
1

0!

(
∂0ψ−1

∂υ0

∣∣∣∣
υ=x

)
(dx)⊗0

+
1

1!

(
∂1ψ−1

∂υ1

∣∣∣∣
υ=x

)
· (dx)⊗1

+
1

2!

(
∂2ψ−1

∂υ2

∣∣∣∣
υ=x

)
: (dx)⊗2

(2.11)

The reverse tangent mapping in the form of (2.7), without using sharp and �at diretor

de�nitions.

dX = F−1 · dx+
1

2
∇xF

−1 r: (dx⊗ dx) (2.12)

The �rst term in equation (2.12) is well-known. For further evaluation of the higher order

part, remember the fat that, the spatial gradient of the spatial deformation gradient is

the spatial gradient of the inverse referene deformation gradient. Denoting this as H and

following the derivation in indiial notation leads into;

Hijk =
∂F−1

ij

∂xk
=
∂F−1

ij

∂Xl

∂Xl

∂xk
=
∂F−1

ij

∂Xl
F−1
lk

(2.13)



68 Chapter 2. Hyperkinematis

As obvious of equation (2.13) the reverse higher order gradient H (from spatial to

referene) is not the inverse

5

of the forward higher order gradient G. For reformulation of

the referene gradient of the inverse referene deformation gradient appearing in equation

(2.13), the following identities are used;

0mjl =
∂

∂Xl

(
FmiF

−1
ij

)
=
∂Fmn
∂Xl

F−1
nj + Fmi

∂F−1
ij

∂Xl
⇐⇒

F−1
kmFmi

∂F−1
ij

∂Xl
= −F−1

km

∂Fmn
∂Xl

F−1
nj ⇐⇒

δki
∂F−1

ij

∂Xl
= −F−1

km

∂Fmn
∂Xl

F−1
nj ⇐⇒

∂F−1
ij

∂Xl
= −F−1

im

∂Fmn
∂Xl

F−1
nj

(2.14)

Inserting it bak into the equation (2.13) the reverse higher order gradient in indiial and

tensor notations, one gets;

Hijk = −GmnlF
−1
im F

−1
nj F

−1
lk H = −

[
F−1 l·

(
G

m
· F−1

)]
r
· F−1

(2.15)

Sine this identity is obtained from the point motion only, it should be shown that it holds

for the tangential reverse mappings too. To show it, the push forwarded tangents are pulled

bak. In the following, the index notation is used. Beause the proof is straightforward but

lengthy, not to squander the indies, and hinder index rash, index and in�x notations are

applied together.

dXi = F−1
ij dxj +

1

2
Hijkdxjdxk = F−1

ij dxj −
1

2
GmnlF

−1
im F

−1
nj F

−1
lk dxjdxk (2.16)

The push forward omponents at the rhs of equation (2.16) are,

dxj = FjodXo +
1

2
GjopdXodXp (2.17a)

dxk = FkrdXr +
1

2
GkrsdXrdXs (2.17b)

The �rst addend of the rhs in�x of equation (2.16) reads then,

F−1
ij dxj = F−1

ij FjodXo +
1

2
GjopF

−1
ij dXodXp = δiodXo +

1

2
GjopF

−1
ij dXodXp

= dXi +
1

2
GjopF

−1
ij dXodXp

(2.18)

5

So far, the writer ould not �nd in the literature general de�nitions for hyperdeterminants and

hyperinverses in R
3×3×3
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Dyadi square dxjdxk in the seond addend in equation (2.16)in index and in�x notations

are shown below,

dxjdxk = FjoFkrdXodXr +
1

2
GkrsFjodXrdXsdXo

+
1

2
GjopFkrdXodXpdXr +

1

4
GjopGkrsdXodXpdXrdXs

(2.19)

The seond and third terms are the dyads of gradient push-forwards, with the hypergradient

push-forwards. The last addend is the dyad square of the hypergradient push-forward.

Dropping the last three addends of equation (2.19) is onform with the seond order

trunation of the mappings and reverse mappings. Inserting the �rst addend push-forwarded

dyadi square of equation (2.19) into the seond addend of equation (2.16), one gets,

−
1

2
GmnlF

−1
im F

−1
nj F

−1
lk FjoFkrdXodXr = −

1

2
δnoδlrGmnlF

−1
im dXodXr

= −
1

2
GmnlF

−1
im dXndXl

(2.20)

In the �nal version of equation (2.16) it an be seen that the reverse hypergradient of

(2.15) together with the inverse of deformation gradient, maps push-forwarded sharp and

�at diretors into the referene sharp and �at diretors.

dXi =

(
dXi +

1

2
GjopF

−1
ij dXodXp

)
−

1

2
GmnlF

−1
im dXndXl = dXi (2.21)

dx♭\dx♯

dx♯\dx♭

dx♯ ∩ dx♭

dX♯

dX♭

−
I·(−I·)

(
F−1·

)

(
F
−1 ·
)

(
-F

−1 ·
)

(
F−1·

)

(
-F−1·

)
(
F−1·

)

Figure 2.4: Kinematis of spatial tangents to referene tangents

In Figure (2.4) as well as in Figure 4.1 the parallel tensor operators are additively ating.

Deformation gradients are the same, standing for the referene to spatial mapping in those



70 Chapter 2. Hyperkinematis

two illustrations. As an be seen from the Figure 2.4, sine the straight referene tangents

are mapped only by inverse deformation gradient ating on the omplements of urved

spatial tangents from eah other, whih is apparent from equation (2.20), it an be agreed

upon the neessity of de�ning sharp and �at diretors.

2.2.3 Material to Spatial: From Referene Curves to Spatial Curves

A tangential mapping with hypergradient terms and its arbitrariness makes it mandotary

that the kinematis oexists in between two geometrial manifolds of dimension, where

both possess �nite radius of urvatures. This notion of �nite radius of urvature of

two on�gurations, i.e.spatial and material, is quanti�ed with respet to some referene

on�guration of in�nitely large radius of urvature. Having de�ned a tangential referene

diretors and parameter α as in equation (2.8), the existene of some intermediate

on�guration is implied. With respet to to this on�guration, an allowable parametri

representation of referene and material urves in the setions of Ch.[2.2.1℄ and Ch.[2.2.2℄

are de�ned. This is ruial for the progression of the kinematis towards to the balane

equations, sine the arbitrariness of the motion denies that any stress-free on�guration is

stritly idential to the straight referene one.

In the following, both referene and material oordinates are represented by apital letters.

For the mapping tensors and material, referene and spatial oordinate vetors, the subsript

letters m,r, and s are used respetively.

The omplement of sharp material diretor relative to the �at material diretor, whih is

illustrated on the left side of Figure 4.1, aording to the equation (2.9) is,

dX♯
m\dX

♭
m =

1

2

(
dX♯

m − dX♭
m

)
= F−1

mr · dX
♯
r (2.22)

Finally, the tangent mapping from the urved material into the urved spatial have the

form,

dx♯s = F rs ·
(
Fmr ·

(
dX♯

m\dX
♭
m

))

+
1

2
Grs

r
:
[(
Fmr ·

(
dX♯

m\dX
♭
m

))
⊗
(
Fmr ·

(
dX♯

m\dX
♭
m

))] (2.23)

As stated above, the double subsripts of tensors do not de�ne the omponents, but the

diretions. Aordingly, the subsript of the forward hypergradient of motion an be omitted,

sine it's reverse is not to be interpreted as it's inverse (inverse of the hypermatrix form). As

stated in equation (2.15), the hypergradient of the reverse motion (from straight referene to

urved spatial or material) is depending on the inverse of integral potential of hypergradient

of forward motion. In this sense, the forward deformation gradient (from referene to spatial

or material) an be interpreted as the integral potential of the hypergradient of forward point

mapping.

A good question as a onsequene of the remarks done above would be, why the
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hypergradient of the motion of -from material to referene- is not seen in equation (2.23)?

The answer would be that, -it is in fat impliitly plaed in equation (2.23)- otherwise

the material on�guration would not earn the abbreviation of being urved. In fat, the

omplement of sharp material diretor relative to the �at material diretor, and similarly

the omplement of �at material diretor relative to the sharp material diretor an be

alternatively written as beneath.

dX♯
m\dX

♭
m = dX♯

m −
1

2
Grm

r
:
(
dX♯

r ⊗ dX♯
r

)

dX♭
m\dX

♯
m = dX♭

m −
1

2
Grm

r
:
(
dX♭

r ⊗ dX♭
r

) (2.24)

Thus, the urvature of the material on�guration with respet to the referene

on�guration is involved in the omplete shema. Figure 2.5

6

shows illustratively the

dX♯
m\dX

♭
m

dX♯
m ∩ dX♭

m

dX♭
m\dX

♯
m

d
X

♯m
⊗
d
X

♯m

dx♯s\dx
♭
s

dx♯
s ∩ dx

♭
s

dx♭s\dx
♯
s

(Frs · Fmr·)

(Frs · Fmr·)

(
Grs

· F
2
mr
:
)

(
Grs · F2

mr :
)

Figure 2.5: Kinematis of material tangents to urrent tangents

mapping in between arbitrarily urved material and spatial spaes. Even though the motion

does not really visit the �titious referene state, this state is onsidered as the ommon

origin of the motion of di�erent pseudo-times. From the material to referene, and from

referene to spatial iruits of kinematis, additive splits are applied in the parallel elements

of the iruit, and multipliative splits in the serial elements of the iruit.

6

In the �gure, the replaement below is done with a similar argument whih is used to simplify(2.19).

(

dX♯
m\dX♭

m

)

⊗
(

dX♯
m\dX♭

m

)

=
(

dX♯
m

)

⊗
(

dX♯
m

)

(2.25)
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2.3 Veri�ation: Numerial Examples

The given strain gradient kinematis will be veri�ed and ompared in this setion with the

lassial one by means of a nonlinear smooth funtion

7

. The postulated mapping has been

hosen to be alled as the spiral beam and has mainly two parts, namely mid surfae and

the thikness ontribution. The mid surfae equation with respet to the time parameter

α is written as,

xm1 =

[
2α

π
cos
(
(1−X1)

π

2

)
+

(
1−

2α

π

)
X1

]
cos (α+ αX1)

xm2 =

[
2α

π
cos
(
(1−X1)

π

2

)
+

(
1−

2α

π

)
X1

]
sin (α+ αX1)

(2.26)

For the thikness ontribution, the Piola transformation of the derivatives of the mid urve

is taken into aount. These mid-urve-o� ontributions are alled to be deviatori, and

depending on the derivatives of the mid-urve.

xd1 =
∂x2
∂X1

∣∣∣∣
m

X2

((
∂x1
∂X1

∣∣∣∣
m

)2

+

(
∂x2
∂X1

∣∣∣∣
m

)2
)−1/2

xd2 = −
∂x1
∂X1

∣∣∣∣
m

X2

((
∂x1
∂X1

∣∣∣∣
m

)2

+

(
∂x2
∂X1

∣∣∣∣
m

)2
)−1/2

(2.27)

These ontributions result a nonlinear Bernoulli kinematis, sine the urvature through the

thikness is punished (penalty) by the onstant oe�ient of X2. In the next, the diret

e�et of the strain gradients through the thikness is negleted. The total mapping is then,

x1 = xm1 + xd1

x2 = xm2 + xd2

(2.28)

For the orresponding deformation gradient and deformation hypergradient terms, please

refer to Appendix-A.

2.3.1 Push Forward: From straight Referene to the urved Spiral

In this subsetion, the performanes of the bakbone identity of lassial nonlinear

kinematis (2.5) and the bakbone identity of the strain-gradient kinematis (2.6) are

ompared with eah other numerially. The omparison depends mainly on the disretization

and the exession of the spiral beam from the forth and towards to bak. The pseudo time

parameter α has also an in�uene on the total drifting error, sine it is the main parameter

driving the urvature of the deformation.

As apparent from Figure 2.6, for rough disretization and beginning time inrements,

the strain-gradient kinematis represents the deformation better then lassial tangential

mapping, however the di�erene is not signi�ant. With enough number of sampling

7

The details of derivatives of this smooth funtion an be found in Appendix -A
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Figure 2.6: From straight referene to the urved spiral beam.α = π/6, n = 2
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Figure 2.7: From straight referene to the urved spiral beam.α = π/2, n = 5

points as illustrated in Figure 2.7, the deformation gradient propagates some drifting

error. The erroneous landing of the tip point of the deformation gradient representation

and meanwhile the suessive apture of the deformation hypergradient representation are

omparibly obvious. As an be noted from the α = 3π/2 parametrization of Figure 2.8, the
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Figure 2.8: From straight referene to the urved spiral beam.α = 3π/2, n = 15

drifting error of deformation gradient representation of the tip displaement an be redued

if one inreases the spae parametrization with the time parametrization simultaneously.

However, the deformation behavior through the thikness diretion still remains arbitrary,

and thus might be agreed upon the insu�ient representation apaity of lassial �rst order

kinematis.

2.3.2 Pull Bak: From urved Spiral to the straight Referene

Analogous to the previous subsetion, the reverse tangent of the bakbone equation (2.5)

and the reverse strain gradient kinematis (2.12) are ompared with eah other either. The

results are supporting the expetations signi�antly stronger as the previous example. The

expetation has reasons, mainly the fat that the onnetion of the two suessor lous

of the urved struture is not neessarily tangent to the path. Suh a problem may be



74 Chapter 2. Hyperkinematis

enountered in the ase that the physial inrement is drastially large in omparison with

the idealization, in other words, the mathematial assumption of oupying in�nitely small

spae. In other words, if the sale e�ets are present, the strain gradient kinematis performs

far beyond better then the lassial kinematis. For the reverse motion, the straightness of
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Figure 2.9: From urved spiral beam referene to the straight rod.α = π/6, n = 2

the urrent on�guration is a measure of quality. For the ase of α = π/6 parametrization,

the deformation gradient exess the limits of aeptane, reahes to be a ompromise as

an be stated by Figure 2.9. As the pseudo time parameter and the disretization are
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Figure 2.10: From urved spiral beam referene to the straight rod .α = π/2, n = 10

kept to be inreased, as in Figure 2.10, one an only talk about a slight betterment of both

tangent mappings, however, the deformation gradient mapping is still far beyond of limits of

orretness. As one inreases the parameters on more time as in Figure 2.11, analogously to
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Figure 2.11: From urved spiral beam referene to the straight rod.α = 3π/2, n = 20

the straight referene to the urved spatial tangent mapping ase, the deformation gradient

mapping is dissapointing with propagative drifting, whereby the reverse kinematis of the

deformation hypergradient tangent mapping shows only slight betterment of the previous

ase, whih might be already onsidered to be in the radius of qualitative aeptane. Yet

the measure of this aeptane is of subjetive nature.
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2.4 Conlusion

Biophysially, it may or may not be true or weakly stating evident that the �bers do exist

as spae urves in their initial, or reoriented state. Independent of any laim, evidene or

statement regarding to the existene of initially urved �bers, for the sake of onvergene

towards ompleteness of the kinematis, and sine this kinemati ontains additional

information whih might be essential for a better understanding of some phenomena, it

is presented here in detail. Most probably

8

the �rst time de�nition of the strain gradient

kinematis has been shown to apture and model exessive deformations preesively.

However, the main advantage of the theory is not limited here, and �rst attempt of de�ning

inextensible anisotropi materials is ahieved in this sope, whih are the subjets of the

remaining parts (see Ch.[3℄) of the work.
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Figure 2.12: An example of Cauhy Tetrehedron, whih demonstrates the di�erene in between �rst

and seond order kinematis

8

The writer of the treatise ould not loate during the literature survey any attempt of de�ning the

strain gradient kinematis as a omrehensive treatise as presented in this thesis. . There are works

de�ning the balane equations in the presene of strain gradient e�ets, however, those also omit the

initial step, namely the Strain Gradient Kinematis.
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3.1 Introdution

In the previous hapter, the bakbone identity of the strain gradient kinematis is introdued.

Any experimental solid proof of existene of those e�ets are omitted, the strain gradient

kinematis is assummed to present, and even higher kinematis are behold as natural as the

very strains and deformation �eld itself. The immediately following disussion is the impat

of those kinemati e�ets on the mehanial behavior, in other words the further existene

of those presumably existing kinemati e�ets on the balane state of a ontrol volume.

In order to solidify the arguments, an example is stated here, namely the e�etive density

of the energy depending on bending and streth sti�ness of a unit length pro�le per unit

kinemati quantities (unit invariants). Consider the frational pro�le given in Figure 3.1.

Assuming that the kinematis is negligibly varying on the plane of thikness, and thus a

single quantity for urvature ' ' is valid for all points in the plane, the e�etive energy

density per square of invariant

1

is,

1

The invariant is analogously de�ned to the onept of streth in the �ber diretion, known as the

fourth invariant in the study of �ber reinfored biologial tissue. The proof that the urvature an be

analogously represented in terms of invariants, is omitted in this step.
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ψeffbending =

∫
r,t ρEI

oc2drdt

Aac2
(3.1a)

Ae =

∫

r,t
sign (ρ) drdt 6=

∫

r,t
drdt = Aa (3.1b)

The density represents the density of the imaginary primitive substruture with no vauum

at all, and thus is valid as an abstrat assumption. The seond equation (3.1b) lari�es

the evaluation ondition of the quantities. This type of homogenization, even though with

almost no appliable physial notion, might be still appliable in some abstrat frational

strutures as shown in the left piture of Figure 3.1

2

.

Figure 3.1: Left: An abstrat pro�le with frational harateristis; Right(Ref.[

OpenStax 2016

℄)

:Illustration of the reality of partially frational Musle-Hierarhy

The soft biologial strutures are known to be assembled in a frational hierarhial struture

Ref.[

C.L.Stan�eld 2012

℄ . In this struture, ollagen �brils, whih represent the fundamental

but not neessarily the most primitive omponent of the ollagenous tissues, determine the

rigidity and anisotropy of the solid omponent by means of energy-onverting deformation

modes and orientations. That the ollagen network determines the rigidity of the struture,

is many times agreed upon by many researhers (Ref.[

R.Shirazi 2008

℄), the onsequenes of the

absene of healthy miro-struture of the ollagen network, -again as taking artilage as an

example-, is addressed (Ref.[

R.A.Bank 2000

℄) as a hot-topi as well. The idea that the ollagen

network is not the most primitive omponent whih determines the rigidity of the struture

(or the origin of rigidity is not ahieved in the �bril level) was gaining more attration and

support by early experimental works (Ref.[

N.Sasaki 1996

℄), and reent moleular dynamis

numerial studies (Ref.[

M.J.Buehler 2006

℄) quantifying the entropi elastiity of tropoollagen

2

The right piture is taken from online soures Ref.[

OpenStax 2016

℄
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hains. All these works and similar -independent of eah other- insist of existene of

hierarhy of the tissue struture, and try to de�ne and quantify the main fundamental

ators of the phenomenon.

The radially paked struture of �brils may aount signi�ant thikness and jointly resist

against bending modes. In the presene of sale e�ets, those energy modes of the

�bers whih enable the struture to arry and undergo bending and under irumstanes

ompression types of loadings, are driven by the higher order kinematis and governed by

the orresponding extended balane laws.

For a straightforward numerial demonstration of the evolution of material parameters with

Figure 3.2: Left: An abstrat frational pro�le hain with depth of 5

respet to the seletion of the size of ontinuum, an abstrat frational hain of depth 5 is

hosen. As evident from Figure 3.1 and equation (3.1b), the e�etive quantities of 'Area'

whih drives the streth type energy, and 'Moment of Area' about the main axis, whih

drives the bending type of energy, would vary from one sale into another. Therefore, as

apparent, the material objetivity

3

will be lost in this sense. The dilemma is, if the derease

(or inrease) of bending and streth type of quantities do develop ompensable with eah

other or not. Otherwise ignoring one while keeping other would be a logial violation and

philosophially inonsistent.

In Diagram 3.3, the values of e�etive area and the seond moment of inertia around the

mid axis with respet to the levels of hierarhy are demonstrated. Quite lear is that, both

values do tendentiously ondense towards smaller quantities. Apart from the initial deline,

one an even state that the delination rate is almost equal for the ase of Area and seond

moment of inertia. The quantities however, might be preserved in quite di�erent sales,

this however would not be onsistent measure, sine the elements of kinematis is quite

arbitrary. For instane, by only onsidering streth, or a mapping whih results only in

streth type of formation, one may fallaiously onlude on the absene of bending e�ets.

To avoid this type of misleading interpretation, one should fous on the rate of delination

if one enlarges the frame of the ontinuum as shown in the example above. The result is not

as obvious as one expets, sine for any irular and fully �lled vauum-free ross setion,

one awaits that the e�etive seond moment of inertia delines quadratially faster as the

e�etive area. As shown in the illustration above, this expetation may disappoint one, if

3

This material objetivity is onsidered under the subjet of the size of the lous. In other words,

the strain energy density and the e�etive parameters, stritly depend on the sale hosen.
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Figure 3.3: Development of the e�etive Area and Seond Moment of Area values with respet to

the seletion of hierarhy levels of Figure 3.2

.

the matter of onern has a frational harateristi. Despite this onlusion, this example

should not be esteemed generially and used in ommonplae, the rate of deline may show

a totally di�erent pro�le, if one hooses another type of frational expansion and shrinkage.

Quite familiarly, in engineering appliations, bending e�ets are introdued into numeris

by using theories of Bernoulli, Euler, Timoshenko, or relatively newer geometrially exat or

higher order formulations. As the above argument states, any attempt of onsidering the

impat of urvature in the balane equations in maro-sale is as valid as onsidering the

urvature e�ets in smaller sales. Sine these urvature e�ets may gain or loose as the

e�ets of streth do. In the next parts, the inlusion and implementation of those e�ets

into strain gradient and strain energy funtions will be disussed and lari�ed.

3.2 Hyper-Cauhy Equation-OM: The Governing Loal

Form

In this setion the loal form of the balane equation on the kinematis given in Ch.[2.2.1℄ is

presented. The method applied by Steinmann et. all. Ref.[

P.Fisher 2010

℄ is traed mainly, but

with some diversities. In opposite to Steinmann et. all. (Ref.[

P.Fisher 2010

℄), the derivations

of normal gradient and surfae divergene operators are de�ned. By doing so, it is possible

to show the geometrial extensions and the dimensions of those geometrial manifolds in

the integral weak form of the governing equation. Additionally, the priniple geometrial

manifold(s), where hyperstess as the internal energy onjugate of hyperstrain is ating on

-aording to the writer- are interesting topis to visit. Subsequently, the volume and shell

ontra-internal fores and the surfae and edge ontra-internal trations are to be exposed

as well.
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Sine the time rates at the stage of hyper-kinematis were not de�ned (they were visited

in the �rst hapter of biphasi media C.[1℄), hereby, the virtual work form instead of

virtual power form is prefered. Analogous to lassial linear momentum balane, those

two equations should have idential outome, as soon as one states and argues on the

assumptions done, for example no rate dependent damping or no inertial e�ets.

To start with, as Steinmann and Fisher (Ref.[

P.Fisher 2010

℄) stated reently that, sine

internal energy depends on deformation gradient and hyper-deformation gradient, additive

partition as a result of hain rule is obtained.

δΠint =

∫

Ω

[
δΨ

δF
: δF +

δΨ

δG
∴ δG

]
dV =

∫

Ω
[P : δF +Q ∴ δG] dV = δΠPFint + δΠQGint

(3.2)

In addition to Gauss' Divergene Theorem and Green's theorem, additional tensor equalities

to resolve and sunder the virtual work equation into smaller dimensions of integrations, are

required. For arbitrary tensors of order three and two, (abbreviated here with T , D) and

tensors of order one,(abbreviated here with u and N), it is trivial to show that the following

tensor identities hold;

Div
(
DT · δu

)
= (DivD) · δu+D : Grad (δu) (3.3a)

Div
(
T
r
: δD

)
= (DivlT ) : δD + T ∴ Grad (δD) (3.3b)

Div
[
(DivlT )

T · δu
]
= [Div(DivlT )] · δu+ (DivlT ) : Grad (δu) (3.3)

Div

[(
T

l
·N

)T
· δu

]
=

[
Div

(
T

l
·N

)]
· δu+

(
T

l
·N

)
: Grad (δu) (3.3d)

Applying (3.3a) and Gauss' divergene theorem after eah other on the deformation gradient

and �rst Piola-Kirhho� driven virtual internal energy term, i.e. the �rst addend of equation

(3.2), one gets the lassial virtual energy form,

δΠPFint =

∫

S

(
P T · n

)
· δudA−

∫

Ω
(∇X · P ) · δudV (3.4)

In the following, the divergene and gradient operator notations(∇X
∗
·,∇X) are replaed

with literal type notations (Div∗, Grad). This is done for sake of learness. Inserting (3.3b)

and applying Gauss' divergene theorem after eah other on the hyper-deformation gradient

and hyperstress driven virtual internal energy partition, i.e. the seond addend of equation

(3.2), one gets the extensions aused by the higher order kinemati,

δΠQGint =

∫

Ω
[Q ∴ δG] dV

=

∫

Ω
Div

(
Q

r
: δF

)
dV −

∫

Ω
(DivlQ) : δF dV

=

∫

S

(
Q

l
· n

)
: δF dA−

∫

Ω
(DivlQ) : δF dV

(3.5)
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In whih n denotes the outer surfae normal in referene oordinates of the ontrol volume.

The last term on the right hand side of equation (3.5), after inserting the identity of (3.3)

and gauss diverging one more time with surfae normal n, leads into,

−

∫

Ω
(DivlQ) : δF dV = −

∫

Ω
Div

[
(DivlQ)T · δu

]
dV +

∫

Ω
[Div(DivlQ)] · δudV

= −

∫

S
[(DivlQ) · n] · δudA+

∫

Ω
[Div(DivlQ)] · δudV

(3.6)

The �rst addend of equation (3.5) an be transformed into the form beneath, by using the

identity (3.3d), where Green's theorem an be applied next,

∫

S

(
Q

l
· n

)
: δF dA =

∫

S
Div

[(
Q

l
· n

)T
· δu

]
dA−

∫

S

[
Div

(
Q

l
· n

)]
· δudA (3.7)

Applying the Green's theorem on to the �rst addend of equation (3.7) with the surfae

frontier normal m,

∫

S
Div

[(
Q

l
· n

)T
· δu

]
dA =

∫

Γ

[(
Q

l
· n

)T
· δu

]
·mdL =

∫

Γ

[
Q
m
: (n⊗m)

]
· δudL

(3.8)

The surfae frontier here represents the edge as a loation, where the C1
ontinuity of

the surfae manifolds is not valid anymore. This is not a violation, in fat it is essential

for �lling the disontinuity gaps in between higher dimensional manifolds with lower ones.

Sine -for the loal form-, the in�nite ontrol volume is taken to be arbitrary, it may be

surrounded by pathes of surfaes, and thus inlude edges. At the end, the total virtual

work equation is formulated as below;

δΠint = δΠPFint + δΠQGint =

∫

S

(
P T · n

)
· δudA−

∫

Ω
(DivP ) · δudV

−

∫

S
[(DivlQ) · n] · δudA+

∫

Ω
[Div(DivlQ)] · δudV

+

∫

Γ

[
Q
m
: (n⊗m)

]
· δudL−

∫

S

[
Div

(
Q

l
· n

)]
· δudA

(3.9)

Rearranging the terms of equation (3.9) in the spei� way, results into the �nal version

of the variation of the internal work as below;

δΠint =

∫

Ω
[Div ((DivlQ)− P )] · δudV +

∫

Su

[(
P T −DivlQ

)
· n
]
· δudA

+

∫

Sh

[
−Div

(
Q

l
· n

)]
· δudA+

∫

Γ

[
Q
m
: (n⊗m)

]
· δudL

(3.10)

In this �nal form, one obtains four integration domains two of whih is dimensionally

overlapping with eah other. Respeting the di�erent natures of the integration kernels,
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(a) Div(DivQT2)−P on Ω (b) (P T −DivQT2) · n on Su

Figure 3.4: Integration domains on whih �rst and seond order e�ets are ating

those two are kept apart. The �rst two domains (volume and surfae) are the ones driven

by the gradient e�ets, and thus familiar and well known ones. The hypergradient e�ets

do at also on the �rst two manifolds and those e�ets generate remaining integral domains

(shell and urve). The fat that, without any integrand, the integral an neither be de�ned

nor exist, onstrues that the integral domain under disussion is a nonentity. In other

words, the absene of ator, designates the absene of spae. By keeping this logi in

mind, from the integration kernel of the third domain, one an onlude that there are not

only �rst order stress trations, but also divergenes of seond order tensors (trations of

hyperstresses) ating on the surfaes. By respeting the two properties of the third integral,

the �rst one being that the integrand ats ontra to some body fores, and the seond one

being that the integral domain is a surfae, this domain is alled as shell domain. In fat,

(a) −Div(QT2 ·n) on Sh (b) QT3 : (n⊗m) on Γ

Figure 3.5: Integration domains on whih �rst and seond order e�ets are ating
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in onjuntion with the notion of shell, a surfae frontier (not only normal) and thikness of

it are de�ned. This an be viewed as a further division of interfae surfaes (of previously

divided volumes) into pathes. And the path frontiers and interfaes as a result of the

seond division do generate in�nite urves whih onstitute mainly the last integral domain

of equation (3.10).

For the translational equilibrium, the omplement e�et applied by the remaining part of

the system on the ontrol volume has to be taken into aount. The external virtual work

should balane the internal one,

δΠext =

∫

Ω
bΩ · δudV +

∫

Su
tSu · δudA+

∫

Sh
bSh · δudA+

∫

Γ
tΓ · δudA

(3.11)

Figure 3.4 represents illustratively the onepts of volume(Ω) and surfae(Su), whereby

Figure 3.5 demonstrates the onepts of shell(Sh) and edge(Γ), whih were delared as a

result of equation (3.10).

3.3 Curved Anisotropy

In this setion, the bakbone invariant of the kinematis for building bending type of internal

energy formulation is postulated �rst. In the next, the energy funtion and its onsisteny

with the tangent tensor is demonstrated depending on a given mapping. The setion is

followed by problems and suggestions whih will enable a �nite element implementation of

all-together. First, the novel onept of urvature is to be de�ned as an invariant.

3.3.1 Curvature Invariant with Euler Bernoulli Ansatz

Even though it is onurrently pointless and di�ult to desribe the onept of material

point urvature, it will be tried here to emphasize the approah on a sript, formally and

visually. Apprehension of the Figure C.2 during reading the next is strongly suggested by

the writer of the treatise.

The bending energy formulations -irrespetive of whih theory will be used- require

the estimation of the radius of urvature. The theory of kinemati assumptions of

Euler-Bernoulli postulations will be applied here, namely the tangent of the pro�le will

remain perpendiular to the pro�le at spae and in pseudo time of deformation. Where the

"geometrially exat" approah would require the ofator of pro�le planes to determine

the real urvature. For the urvature formulation this additional e�et will be ignored. In

short, for the next, the following assumptions hold,

F♯ ·M♯ ‖ cof
(
F♯
)
·M♯ F♭ ·M♭ ‖ cof

(
F♭
)
·M♭

(3.12)

The radius of urvature is estimated aording to the angles of urvatures, where there is

no reason that those to be equal. The radius of urvature is taken to be ommon in sharp

and �at length hanges, formally;

sin
(
α♯
)
=

∣∣m♯
∣∣

r
sin

(
α♭
)
=

∣∣m♭
∣∣

r
(3.13)
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Figure 3.6: Kinematis of a single �ber with onveting and moving oordinates at the �at, natural

and sharp setions

In order to take both e�ets into aount, the following trigonometri identity and

estimation an be done,

c = r−1 =
sin

(
α♯
)
+ sin

(
α♭
)

|m♯|+
∣∣m♭

∣∣

=
2sin

((
α♯ + α♭

)
/2
)
cos
((
α♯ − α♭

)
/2
)

|m♯|+
∣∣m♭

∣∣

≈
2sin

((
α♯ + α♭

)
/2
)

|m♯|+
∣∣m♭

∣∣

(3.14)

The osine of the rotation an be omputed by at best with the dot produt of �at and

sharp deformed vetors. Alternatively, the ross produt might be used, however it may

ause some singularities in the initial stress and hyperstress terms, whih have to be dealt

with repulsive terms. In order to avoid dealing with numerial work-arounds, the dot produt

version of the estimation is used;

cos
(
α♯ + α♭

)
=

(
−m♯ ·m♭

)

|m♯|
∣∣m♭

∣∣ (3.15)

The minus sign indiates that the sharp tangent to be rotated, sine some positive notation

for the dot projetion is desired. The members whih are used to ompute the invariants



86 Chapter 3. Nonlinear Strain-gradient Balane

then,

−m♯ = F ·M−
1

2
G : M⊗2

m♭ = F ·M+
1

2
G : M⊗2

(3.16)

Even tough the determined invariants are also streth related, as indiated above, they

have an impat in the bending energy either. The three invariants

4

required for de�ning

Euler-Bernoulli type of radius of urvature are then;

Iκ4 =
(
FT · F

)
: M⊗2 = FklFkmMlMm

Iκ5 =
(
FT · (G ·M)

)
: M⊗2 =

(
(G ·M)T · F

)
: M⊗2 = Fkl (G ·M)kmMlMm

Iκ6 =
(
(G ·M)T · (G ·M)

)
: M⊗2 = (G ·M)kl (G ·M)kmMlMm

(3.17)

The seond and third ontrations above are idential sine the ontrated tensors are

transpose of eah other,

FT · (G ·M) =
(
(G ·M)T · F

)T
(3.18)

Analogous to the full length in the urrent urved oordinates as the sum of sharp and �at

lengths, the values of the urvature of equation (3.15) an also be formulated. The full

length for instane;

|m| =
∣∣∣m♯

∣∣∣+
∣∣∣m♭

∣∣∣ =
√
(Iκ4 + Iκ5 + 0.25Iκ6 ) +

√
(Iκ4 − Iκ5 + 0.25Iκ6 ) (3.19)

Together with the de�nitions above and the introdued invariants, the following invariant

formulation for the urvature an be ahieved;

cos
(
α♯ + α♭

)
=

(Iκ4 − 0.25Iκ6 )

(Iκ4 − Iκ5 + 0.25Iκ6 )
1/2 (Iκ4 + Iκ5 + 0.25Iκ6 )

1/2
(3.20)

Aordingly, a salar value for the urvature is determined and formulated with respet

to some novel invariants. The independene of these invariants with respet to the

post-deformation rotations an be proved smoothly, whih is omitted here.

The obligatory question is, if this urvature de�nition an apture the whole evolute of a

given mapping or not. In order to seek and provide an answer to this question, the analytial

example of the spiral beam, whih was introdued in the previous hapter (Ch.[2.3℄) is

revisited here. As shown previously, using the strain gradient kinematis, the forward

mapping of straight to urved spatial on�guration and the bakward mapping of urved to

straight referene on�guration works far better then by only onsidering the deformation

4

The invariane of the postulated variables is self evident, the parameters are independent of the

pre-rotations of the referene �ber diretions
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Figure 3.7: The deformation and the evolute of the spiral beam, α = 3π/2, n = 60

gradient e�ets. As seen in the Figure 3.7, not only the mapping is almost with high

auray aptured, but also the onneting urve of the enter of urvatures, namely the

evolute is estimated quite nearby to the semi-analytial solution. It should be noted here

that, the evaluation of an evolute in this ase, is not possible to be extrated from the

deformation gradient approah, sine the neighborhood of the neighborhood information

is missing and thus obsolete in the latter ase. In the example of Figure 3.7, apart from

the fat that there is a slight drifting, one an onlude that urvature approximations

suh as equation (3.15) or similar variations, an apture the form of di�erential geometry

satisfatorily, and therefore an be used for the formulation of novel formulations of material

internal energy.

3.3.2 Anisotropi Strain and Strain-gradient Energy Funtion - EB

Ansatz

In the next, the formulation of the Euler-Bernoulli based strain and strain gradient energy

density funtion are presented (EB Ansatz). Having the approximation for the radius of

urvature in hand, the energy density funtion is depending on the elasti modulus, and the
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e�etive seond moment of inertia an be introdued.

ψκ = EI

(
2− 2cos

(
α♯ + α♭

))
(
|m♯|+

∣∣m♭
∣∣)2 = EI

2− 2a

|m|2

a = cos
(
α♯ + α♭

)
=
b

d

b = (Iκ4 − 0.25Iκ6 )

d = (Iκ4 − Iκ5 + 0.25Iκ6 )
1/2 (Iκ4 + Iκ5 + 0.25Iκ6 )

1/2

|m| =
(∣∣∣m♯

∣∣∣+
∣∣∣m♭

∣∣∣
)

(3.21)

The replaements are done for simpliity, and further trigonometri identities are used for

the sake of evaluation of derivatives for �nite element or natural element implementation.

This energy funtion is tested on a simple representative abstrat material point mapping.

Quite purposely, some exessive mapping is hosen here, to omment on the onvexity of

the energy funtion without seeking any further mathematial proof. The hosen mapping

enfores an exponential vertial displaement of initially straight horizontal line element,

�xed at its origin (see Figure 3.8). The urrent oordinates of the mapping with respet to

the referene oordinates and the pseudo time parameter reads;

x (X,Y,Z, t) = X y (X,Y,Z, t) = Y + exp(Xt)− 1 z (X,Y,Z, t) = Z

(3.22)

The deformation in pseudo time is illustrated in the left part of Figure 3.8. In the right
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Figure 3.8: Left: The exponantial material formation in 10 time steps; Right: The normalized

urvature and normalized EB bending energy of the exponential mapping

diagram, the normalized (wrt. the �nal urvature) urvature and the normalized bending

energy (wrt. to the �nal bending energy) based on equation (3.21) are shown. The urvature

is to be dereasing after a degree of formation, whih is required ompletely based upon the

nature of the given kinematis, and may ause some non-onvexity of the density funtion.

This is a quite natural fat, and tendentious monolithi inrease is quested for the purpose
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of numerial onvergene. Aording to the writer, the formulation should not be altered

fallaiously, rather the numerial senario for solving this type of softening shall be improved,

than the result of a trail of arguments listed above are manipulated. Another issue whih

should not be forgotten is the existene of third order remainder of this approximation. This

means that, the evaluated urvature and streth deviates from the analytial one. However,

it is the self-onsisteny what is intended here, for omparison of the power of kinematis,

please refer to the arguments of hyperkinematis (Ch.[2℄).

Before moving ahead, the de�nitions of the �rst Piola Kirho� stress tensor, and hyperstress

tensor should be introdued here. By taking the �rst derivatives of the energy funtion of

equation (3.21), with respet to the deformation gradient and deformation hypergradient

results into;

Pκ =
∂ψκ

∂F
= −2EI

∂a

∂F
|m|−2 − 2EI |m|−3 ∂ |m|

∂F
(2− 2a)

Qκ =
∂ψκ

∂G
= −2EI

∂a

∂G
|m|−2 − 2EI |m|−3 ∂ |m|

∂G
(2− 2a)

(3.23)

The neessary three tangent terms have to be also evaluated and the onsistene of

the integration with the stress and hyperstress should be heked. This is performed

to demonstrate the softening behavior primarily, and seond, it is done to ensure the

orretness. The detailed extration of the derivatives an be found in the list of

Appendix-B. The tangent tensors an be evaluated as beneath;

DPκ

F =
∂Pκ

∂F
= −2EI

∂2a

∂F2
|m|−2 + 4EI |m|−3 ∂ |m|

∂F
⊗
∂a

∂F

+ 6EI |m|−4 ∂ |m|

∂F
⊗
∂ |m|

∂F
(2− 2a)− 2EI |m|−3 ∂

2 |m|

∂F2
(2− 2a)

+ 4EI |m|−3 ∂a

∂F
⊗
∂ |m|

∂F

(3.24)

DPκ

G =
∂Pκ

∂G
= −2EI

∂2a

∂G∂F
|m|−2 + 4EI |m|−3 ∂ |m|

∂G
⊗
∂a

∂F

+ 6EI |m|−4 ∂ |m|

∂G
⊗
∂ |m|

∂F
(2− 2a)− 2EI |m|−3 ∂

2 |m|

∂G∂F
(2− 2a)

+ 4EI |m|−3 ∂a

∂G
⊗
∂ |m|

∂F

(3.25)

DQκ

G =
∂Qκ

∂G
= −2EI

∂2a

∂G2
|m|−2 + 4EI |m|−3 ∂ |m|

∂G
⊗
∂a

∂G

+ 6EI |m|−4 ∂ |m|

∂G
⊗
∂ |m|

∂G
(2− 2a)− 2EI |m|−3 ∂

2 |m|

∂G2
(2− 2a)

+ 4EI |m|−3 ∂a

∂G
⊗
∂ |m|

∂G

(3.26)

Two omments an be done about the onsisteny of the material points result, �rst one
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Figure 3.9: Left: First Piola Kirho� Stress tensor tration on the referene X plane and urrent x

diretion. Right: First Piola Kirho� Stress tensor tration on the referene X plane and urrent y

diretion

is the onformity of the tangent values with the diret derived trations, seond one is the

expeted apture of the non-zero trations for the given deformation. Sine there is no

dependeny of the referene Y oordinate was given in the mapping, no thikness hange

may be evaluated, by realling the fat that the kinematis is only applied around the �xed

origin. Another interesting but foreseen phenomena is that the tration on the referene

X-normal plane in the urrent x-parallel diretion oexist with the shear tration, indiating

that bending energy may enfore also axial fores on straight lines of referene. As an be
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Figure 3.10: Left: First Piola Kirho� Hypertress tensor tration on the referene X plane and xX

First Piola Stress-Spae. Right: First Piola Kirho� Hypertress tensor tration on the referene X

plane and xY First Piola Stress-Spae

seen in Figure 3.10, the onsistene of the tangent and the diretly derived terms are also

well satis�ed. The details of the derivation an be found in Appendix-B. It an be now

moved on with the problems onerning any possible �nite element implementation.

3.4 FEM Implementation with Strain-gradient E�ets

The previously in this setion de�ned material model with bending internal energy an be

well embedded into a �nite element implementation. As will be seen, there is no speial
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element type for this purpose is suggested, nor the onsequenes are disussed. There might

be several problems arising quite analogous to the strain element library of total aumulated

knowledge of �nite element method, but these all are taken out of the onern of the thesis.

In this setion, the disrete form, and one shema of ahieving the destination are presented.

3.4.1 Disrete Form for Finite Element Formulation

The energy split proposed before is repeated here, and shape funtion interpolation on the

virtual energy integrals is applied. In order to be onsistent with the ongoing hapters,

the general gradient notation whih is similar to mainstream interpolation shemes is used,

suh as natural element shape value interpolation, whih is visited in the next hapters (see

Ch.[5.3.2℄). At the end, the notation is onverted to the generally aepted matrix-voigt

form, to keep the well known standards of �nite element jargon. To start with, the nonlinear

internal virtual energy divisions are,

δΠPFint =

∫

Ω
[P : ∇Xδu] dV ≈

∫

Ω

[
P · ∇X

(∑
N I
)]

· δũdV = fPFint · δũ

δΠQGint =

∫

Ω

[
Q ∴ ∇⊗2

X δu
]
dV ≈

∫

Ω

[
Q

r
: ∇⊗2

X

(∑
N I
)]

· δũdV = fQGint · δũ

(3.27)

Where the �rst one an be interpreted as pure virtual strain energy of internals, the seond

one is the pure virtual strain gradient energy of internals. It should be kept in mind that,

the virtual energy of bending is not straightly or ideally equal to the virtual strain gradient

energy of internals. As shown previously, the bending energy an only be formulated at the

lous of material if one has the hyperstrain information in hand, and this aounts to the

strain energy as well. Correspondingly, the tangent matries of the non-mixed residuum

internal fores an be repeated here to be,

KIJ
P (F ) =

∫

Ω

[
∇XN

I ·
∂P T

∂F
· ∇XN

J

]
dV (3.28a)

KIJ
Q(G) =

∫

Ω

[
∇⊗2

X N I l:
∂QT2

∂G

r
: ∇⊗2

X NJ

]
dV (3.28b)

And the mixed-residuals of the internal fores ause the following ontributions in the

tangent sti�ness matries,

KIJ
P (G) =

∫

Ω

[
∇XN

J ·
∂QT2

∂G

r
: ∇⊗2

X NJ

]
dV (3.29a)

KIJ
Q(F ) =

∫

Ω

[
∇⊗2

X N I l:
∂QT2

∂F
· ∇XN

J

]
dV (3.29b)

The assumed strain displaement, and assumed hyperstrain displaement matries as

onsistent de�nitions to �nite element method are,

B̃
I
=

1

V

∫

Ω

[
∇XN

I
]
dV

B̃
I
∇ =

1

V

∫

Ω

[
∇⊗2

X N I
]
dV

(3.30)
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Before moving ahead with the promised strain gradient �nite element formulation, one

laim has to be leared here numerially. In general, irrespetive of total Lagrange or

Euler formulations, or any inremental formulation, the �nite element solution at the level

of omputer numeris is always taken to be based on symmetri tensors. The very well

understood reason of it is the oherene and appliability of the symmetri tensors to Voigt

notation or similar. In this way, the major and minor symmetries for instane, does allow

one to represent fourth order tensors in plane matrix format. Considering the nonsymmetri

harateristis of the deformation gradient and the �rst Piola Kirho� stress tensor, the

notation an not bring any value, sine signi�ant symmetry properties are lost. Beside,

there might be still a bene�t of formulation (3.28a), sine it involves both the geometrial

and the material tangent values in one, thus is programmer-friendly. However the orretness

is to be tested, if the onjugay of energy works well or not. The start is the representation

of the First Piola-Kirho� stress to deformation gradient tangent with respet to the seond

Piola-Kirho� stress to Cauhy-Green strain tensor as formulated beneath.

Pij = FimSmj

C
PF
ijkl =

∂Pij
∂Fkl

=
∂Fim
∂Fkl

Smj + Fim
∂Smj
∂Fkl

= δikδmlSmj + Fim
∂Smj
∂Cno

∂Cno
∂Fkl

= δikδmlSmj +
1

2
FimC

SE
mjno (δnlFko + Fknδol)

(3.31)

Where the last identity omes from the derivation of the Cauhy-Green strain tensor with

respet to the deformation gradient as shown below,

∂Cno
∂Fkl

=
∂

∂Fkl
(FpnFpo) = δpkδnlFpo + Fpnδpkδol (3.32)

In index notation, the onversion of two tangents in index notation is well developed and

tested as an be seen next. For this purpose, a spring-like sinusoidal geometry is hosen,

lamped at the left edge in elongation diretion, pulled on the right edge in the elongation

diretion. The main purpose is to unbend the geometry, and prove the onjugay ondition

is well satis�ed with equation (3.31) The onstruted model has 5604 nodes with two

degrees of freedom eah, 1143 quadrati quadrilaterals with 8 nodes and 9 integration

points eah. The senario is tested by St. Venant-Kirho� material, results an be found

below. As obvious from the results shown in Figures 3.11 and 3.12, two formulations result

the same deformation �eld. Thus, further onsideration an be disussed next.

3.4.2 Strain-gradient Displaement Matrix

The evaluation of strain gradient displaement matrix an be generalized, however the

formulation presented here is based on one element type, namely 8-noded quadrilateral

element with 9-integration points. The shape funtions, the derivatives of the shape

funtions an be found elsewhere, writer reommends Zienkiewiz (Ref.[

O.C.Zienkiewiz 2000a

℄)

for this purpose. In this stage, the �rst Piola-Kirho�/Deformation-gradient onsistent
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Figure 3.11: Extending the sinusoidal spiral, undeformed Grey, deformed olor plot, Legend:

Deformation magnitude

Figure 3.12: Extending the sinusoidal spiral, Left: PF formulation, Right:SE formulation

Strain-Displaement matrix and Strain gradient-Displaement matrix are presented. The

arising problems and the solution suggestions of those are presented here. Given 8 Shape

funtions in this ase, to ompute a derivative matrix with respet to the loal oordinates

(evaluated at integration points) an be written as;

(4×16)[
N,ξ

]
∣∣∣∣∣
(ξ=ξ∗)

=




N1
,ξ 0 N2

,ξ 0 N3
,ξ 0 N4

,ξ 0 ..

N1
,η 0 N2

,η 0 N3
,η 0 N4

,η 0 ..

0 N1
,ξ 0 N2

,ξ 0 N3
,ξ 0 N4

,ξ ..

0 N1
,η 0 N2

,η 0 N3
,η 0 N4

,η ..




∣∣∣∣∣∣∣∣
(ξ=ξ∗)

(3.33)

Besides of this, a modi�ed jaobian inverse matrix an be formulated,

[
J−1

]∣∣
(ξ=ξ∗)

=




ξ,X η,X 0 0

ξ,Y η,Y 0 0

0 0 ξ,X η,X
0 0 ξ,Y η,Y




∣∣∣∣∣∣∣∣
(ξ=ξ∗)

(3.34)
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These both result in the strain-displaement matrix at a loation,

(4×16)[
BPF

]
∣∣∣∣∣
(ξ=ξ∗)

=
[
J−1

]∣∣
(ξ=ξ∗)

·
(4×16)[
N,ξ

]
∣∣∣∣∣
(ξ=ξ∗)

=




N1
,X 0 N2

,X 0 N3
,X 0 N4

,X 0 ..

N1
,Y 0 N2

,Y 0 N3
,Y 0 N4

,Y 0 ..

0 N1
,X 0 N2

,X 0 N3
,X 0 N4

,X ..

0 N1
,Y 0 N2

,Y 0 N3
,Y 0 N4

,Y ..




∣∣∣∣∣∣∣∣
(ξ=ξ∗)

(3.35)

As a very well known fat, this matrix is used to obtain strains at the integration points

from nodal displaements. In short, the following relation holds;

4×1

(u,X)

∣∣∣∣
(ξ∗)

=
(4×16)[
BPF

]
∣∣∣∣∣
(ξ=ξ∗)

·
16×1

(ũ) (3.36)

One may think in the �rst step, quite analogous to this method, a seond derivative matrix

format of the shape funtions with respet to the global oordinates an be realized. This

is however, not as trivial as it sounds at �rst glane. To show the laim, the index notation

an be taken under onsideration. Consider the derivative of one degree of freedom with

respet to one global referene oordinate,

(u,X)|(ξ=ξ∗) =
∑

i

∂N i

∂X

∣∣∣∣
(ξ=ξ∗)

ũi =
∑

i

(
∂N i

∂ξ

∂ξ

∂X
+
∂N i

∂η

∂η

∂X

)∣∣∣∣
(ξ=ξ∗)

ũi (3.37)

The omputation of the seond derivatives results into,

(u,XX) =
∑

i

∂

∂X

(
∂N i

∂ξ

∂ξ

∂X
+
∂N i

∂η

∂η

∂X

)
ũi

=
∑

i

[(
∂2N i

∂ξ2
∂ξ

∂X
+
∂2N i

∂ξ∂η

∂η

∂X

)
∂ξ

∂X

+

(
∂2N i

∂η∂ξ

∂ξ

∂X
+
∂2N i

∂η2
∂η

∂X

)
∂η

∂X

+
∂N i

∂ξ

∂2ξ

∂X2
+
∂N i

∂η

∂2η

∂X2

]

(3.38)

The �rst two addends are easy to obtain, however the third omponent is simply elements of

inverse of the third order Jaobian matrix. Sine suh an inverse is not found to be de�ned

in the literature, this version of de�ning strain gradient-displaement matrix is omitted. For

this purpose, a element-wise global strain displaement matrix is de�ned, whih inludes

the strain-displaement matries evaluated at all nodes,

(32×16)[
BPF

]
∣∣∣∣∣
nodal

=




(4×16)[
BPF

]
∣∣∣∣∣
(−1,−1)

,
(4×16)[
BPF

]
∣∣∣∣∣
(1,−1)

,
(4×16)[
BPF

]
∣∣∣∣∣
(1,1)

,
(4×16)[
BPF

]
∣∣∣∣∣
(−1,1)

, ..



T

(3.39)
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The purpose of the matrix above is to get assumed nodal deformation gradients, in order

to evaluate integration point deformation-hypergradients onjuntively. For that purpose,

a larger shape funtion derivative matrix is to be de�ned, whih is to be evaluated again at

the integration loations.

(8×32)[
GBPF

]
∣∣∣∣∣
(ξ=ξ∗)

=




N1
,X 0 0 0 N2

,X 0 0 0 ...

N1
,Y 0 0 0 N2

,Y 0 0 0 ...

0 N1
,X 0 0 0 N2

,X 0 0 ...

0 N1
,Y 0 0 0 N2

,Y 0 0 ...

0 0 N1
,X 0 0 0 N2

,X 0 ...

0 0 N1
,Y 0 0 0 N2

,Y 0 ...

0 0 0 N1
,X 0 0 0 N2

,X ...

0 0 0 N1
,Y 0 0 0 N2

,Y ...




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(ξ=ξ∗)

(3.40)

Finally the strain gradient-displaement matrix, whih an be evaluated in any loation of

the element an be obtained by multiplying the last two de�ned matries,

(8×16)[
GPF

]
∣∣∣∣∣
(ξ=ξ∗)

=
(8×32)[
GBPF

]
∣∣∣∣∣
(ξ=ξ∗)

·
(32×16)[
BPF

]
∣∣∣∣∣
nodal

(3.41)

Therefore, the desired relationship is obtained and an be further used for the onstrution

of �nite element strain-gradient sti�ness matrix.

8×1

(u,XX)

∣∣∣∣
(ξ∗)

=
(8×16)[
GPF

]
∣∣∣∣∣
(ξ=ξ∗)

·
16×1

(ũ) (3.42)

Aording to the writers opinion, the plane strain formulation given here whih suits for

8-node quadrilateral with 9 integration points, is de�nitely appliable for the 3 dimensional

ase trivially. One hallenge might be here to show the performane in the ase of elements

with bi- or tri-linear shape funtions are used. For instane the seond method whih is

omitted here, namely the equation (3.38), would lak of the �rst two terms in suh an

attempt. On the other hand, the suggested method here would be �ne adapted to any type

of element, however the performane is another topi whih was not regarded as the main

fous of this work. In the priory step, one has to show the impat of the bending energy

on the solution path, and if this is onvining, one may look for improving the other issues,

inluding a diversity of elements and way of integrating the �eld equations.
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3.4.3 Numerial Examples

In this setion a simple aademi example is hosen. The model onsist of 88 quadrilateral

elements and 317 nodes. The beam is modeled with four layers of elements, eah of them

onsisting of 9 integration points. Therefore, 12 layers of �brous struture are modeled.

In the undeformed referene on�guration, the �bers are taken to be straight and aligned

in the horizontal diretion. The beam is left lamped and a unit fore is applied on the

right tip. The solution is fore ontrolled. There are in total 3 numerial senarios shown

Figure 3.13: Case1; Bending a simple beam, undeformed Grey, deformed olor plot,

Legend:Deformation Magnitude

here, for all of them the boundary onditions are kept to be the same. The only parameter

regarded here is the type and inlusion of the material models. In the �rst ase only a

Sn-Venant-Kirho� material model is hosen. For the seond ase, additional to the �rst

isotropi energy funtion, the streth energy is onsidered (see Appendix-B). For the �nal

ase, additional to the streth energy and isotropi energy, the bending energy is also

onsidered. The streth and bending energy funtions are shown beneath,

ψs =
1

2
EA

(∣∣∣m♯
∣∣∣
2
− 1

)2

+
1

2
EA

(∣∣∣m♭
∣∣∣
2
− 1

)2

ψκ = EI

(
2− 2cos

(
α♯ + α♭

))
(
|m♯|+

∣∣m♭
∣∣)2 (3.43)

The expetation is that the overall deformation dereases from ase one to ase three, sine

the struture is supported with more soures of elasti energy. The amount of in�uene is

another question to be answered. A lear onlusion of the result states that as expeted,

Figure 3.14: Deformation plots of beam bending, Left: Case2; Isotropi strain energy density

funtion and Streth energy density funtion, Right: Case3; Istropi strain energy density, Streth

energy density and Bending energy density funtions

the deformation gets smaller if one onsiders more energy terms. The deformation under

the ation of the same fore for the ase of isotropi, streth and bending e�ets is smaller
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and thus sti�er then the remaining two senarios. The amount or the diretion of the

di�erene is another disussion topi, but more interesting is the observation of impat on

the result, and the onvergent behaviour of the numerial implamentation itself.

Figure 3.15: Energy distribution plots of beam bending, Left: Streth energy distribution, Right:

Case3; Bending energy distribution
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4.1 Introdution

The marosopi mehanial funtion of the soft tissue depends on anisotropy and loal

homogenized orientations of load bearing �brous network. The indiations of early wear

damage (Ref.[

W.Wilson 2003

℄) of AC have been assoiated with the loal network damage

of ollagen mesh. The depth dependent loal anisotropy and �ber orientation of AC have

been studied reently under theoretial, numerial and experimental frameworks (see Wilson

Ref.[

W.Wilson 2005

℄ , Quinn Ref.[

T.M.Quinn 2005

℄). Mehanial and material funtionality

of AC are investigated frequently by taking the ompliated mirosopi behavior into

aount also, refer to the works for instane by; (Federio Ref.[

Federio 2008

℄ , Shinagl

Ref.[

Shinagl 1997

℄ , and Bukley Ref.[

Bukley 2008

℄). The marosopi mehanial funtion

of the soft tissue depends on anisotropy and loal homogenized orientations of load

bearing �brous network. The indiations of early wear damage (Ref.[

W.Wilson 2003

℄) of

AC have been assoiated with the loal network damage of ollagen mesh. The depth

dependent loal anisotropy and �ber orientation of AC have been studied reently under

theoretial, numerial and experimental frameworks (see Wilson Ref.[

W.Wilson 2005

℄ , Quinn

Ref.[

T.M.Quinn 2005

℄). Mehanial and material funtionality of AC are investigated frequently
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by taking the ompliated mirosopi behavior into aount also, refer to the works

for instane by; (Federio Ref.[

Federio 2008

℄ , Shinagl Ref.[

Shinagl 1997

℄ , and Bukley

Ref.[

Bukley 2008

℄).

Remodeling by Menzel (Ref.[

A.Menzel 2004

℄) is de�ned as the evolution of mirostruture

or variations in the on�guration of the underlying manifold. Many novel and reent

reognitions of remodeling de�nitions with various appliations are present. The urrent

loal mirostruture of soft tissues like tendons, ligaments, AC, arterial walls, or ell tration

experiments, engineered soft tissues and even abstrat-type materials are investigated

with the present remodeling strategies ited here. Without proof, in these works, it is

assumed that the soft tissue takes its evaluated miroform with the postulated biomehanial

ontinuum setting.

Menzel (Ref.[

A.Menzel 2004

℄) has postulated a general theoretial and numerial framework

of remodeling and growth of �ber reinfored material. Garikipati (Ref.[

K.Garikipati 2005

℄),

has disussed stationary strain energy and thermodynami aspets of remodeling with

the realization of ell-tration experiments. Kuhl (Ref.[

E.Kuhl 2008

℄) and Holzapfel

(Ref.[

G.Holzapfel 2006

℄) have showed that gradual alignment of unit-ell an represent ollagen

network orientation of an engineered tendon-like tissue. Holzapfel (Ref.[

I.Hariton 2007

℄) and

Driessen (Ref.[

N.J.Driessen 2003

℄) have reently used stress-driven reorientation of ollagen

�bers of arterial walls and porine aorti valve lea�et. Wilson (Ref.[

W.Wilson 2006

℄) has

predited the depth dependent ollagen orientation of AC with remodeling.

In this work, the omprehensive formulation of orthotropi hyperelastiity of eight-hain

network model with the full set of strutural invariants are presented �rst. The strain

energy density funtion of the unit-ell, with orthonormal referene bases depending on

irreduible set of invariants are introdued. The reorientation of unit ell depending on

the strain energy density funtion are presented thereafter. Small aademi examples and

illustrations of quasi-stati yli remodeling using nonlinear �nite element method are

presented. Finally, omments on the spatial loal arhiteture of AC are left.

Analogous to the strain dependent reorientation, two types of strain gradient dependent

reorientation methods are postulated here too. Comments are left, and the omparison

of the strain and strain gradient reorientations and their e�ets on AC-alike geometry are

investigated in next setions.

4.2 Orthotropi Hyperelastiity

4.2.1 Worm-like Chain Model

The hyperelasti strain energy density funtion developed here, is appliable to any kind

of given fore-displaement relationship. For the sake of relevany, the wormlike hain

model is reintrodued. It is a simple but generally aepted one for the remodeling of

biologial tissue (Garikipati Ref.[

K.Garikipati 2005

℄ , Kuhl Ref.[

E.Kuhl 2008

℄Ref.[

G.Holzapfel 2006

℄).

The wormlike hain model onsiders the persistene length of the hain (whih an be

measured experimentally) as a measure of unbending sti�ness.
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ψ (|r|) =
γkT l

4A

(
2
|r|2

L2
+

1

(1− |r| /L)
−

|r|

L

)
(4.1)

For missing fundamental knowledge, please refer to the referenes in the given order. For

the statistial approah of basi thermodynamis refer to Baierlein (Ref.[

R.Baierlein 2010

℄),

for gathering undergraduate knowledge about physis of polymer hains to Boal

(Ref.[

David Boal 2010

℄), and for a lean derivation of wormlike hain fore-displaement

behavior to MaKintosh (Ref.[

F.C.MaKintosh 2009

℄).

4.2.2 Mehanis of the Chain Network

4.2.2.1 Essential Kinematis

The nonlinear deformation map x = ϕ (X, t) de�nes the quasi-stati

(Ogden-Ref.[

R.W.Ogden 2008

℄) (kinemati) motion of material oordinates of a partile

with oordinates X ∈ Ω0 at t = 0 to the spatial oordinates of that partile x ∈ Ω at a

subsequent time t > 0. The two point tensor deformation gradient F maps the material

tangent spae dX ∈ TΩ0 to the spatial tangent spae dx ∈ TΩ subsequent time t > 0.

In this �rst order kinematis

1

, the oordinates θi are assumed to onvet with the linear

θ2,G2

θ3,G3

θ1,G1 θ2, g2

θ3, g3

θ1, g1

x2, X2, e2

x3, X3, e3

x1, X1, e1

Ω0,X Ω,xϕ

Figure 4.1: Nonlinear deformation map with onvetive oordinates

1

For the seond order kinematis, please refer to the hapter of Hyperkinematis(Ch.[2℄)
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tangent map F .

X = Xiêi = θiGi

x = xiêi = θigi

(4.2)

Where the following well known relations between the material and spatial bases and the

tangent map are valid here.

Gj =
∂Xm

∂θj
êm (4.3a)

êj =
∂Xj

∂θm
Gm

(4.3b)

gj =
∂xi

∂θj
êi (4.3)

êi =
∂θm

∂xi
gm (4.3d)

Besides, the two point tensor deformation gradient in terms of the base vetors of onveting

oordinates an be evaluated as the following. These onveted oordinates and metries

will be used next for the derivation of the orthotropi hyperelasti 8-hain unit-ell model.

F =
∂xi
∂Xj

(êi ⊗ êj) =
∂xi
∂Xj

(
∂θm

∂xi
gm ⊗

∂Xj

∂θm
Gm

)
= gm ⊗Gm

(4.4)

4.2.3 Strutural Tensors

To de�ne the orthotropi free energy funtion, the strutural invariants

2

are used. The

strutural tensors are de�ned by material or spatial ovariant bases given as;

Gij = Gi ⊗Gj (4.5a)

gij = gi ⊗ gj = F ·Gi ⊗ F ·Gj (4.5b)

With the indexes no summation is implied. It is taken suh that the unit salars are

onveted with the deformation, thus the material and spatial base vetors are not

neessarily de�ned as unit vetors. The traes of these dyadi produts an be interpreted

as the lengths of the basis vetors in the referene and deformed on�gurations if the

indexes are equal, otwerhise; the salar projetions on eah other should be taken as the

interpretation. By onsidering that the lengths and salar projetions being una�eted

under any kind of post or pre-rotations

3

(the length or projetion of a onveting frame

is unhanged if rotated), the trae operators generate so alled strutural invariants. The

2

For a better understanding of the strutural tensors please refer to the beautiful treatise written

by Boehler (Ref.[

Boehler 1979

℄) almost a half a deade ago

3

post/pre rotation: orthogonal type of deformation ating after and before motion aordingly
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invariants as entries of ovariant spatial metri have the following relations;



g1
g2
g3


 =



g1 · g1 g1 · g2 g1 · g3
g2 · g1 g2 · g2 g2 · g3
g3 · g1 g3 · g2 g3 · g3


 ·



g1

g2

g3




=



tr (g11) tr (g12) tr (g13)

tr (g21) tr (g22) tr (g23)

tr (g31) tr (g32) tr (g33)


 ·



g1

g2

g3




=



tr (G11 ·C) tr (G12 ·C) tr (G13 ·C)

tr (G21 ·C) tr (G22 ·C) tr (G23 ·C)

tr (G31 ·C) tr (G32 ·C) tr (G33 ·C)


 ·



g1

g2

g3




(4.6)

Where C = F T · F is the right Cauhy-Green deformation tensor.

There an be nine dependent strutural tensors present, whereas six of them being transpose

of eah other. The set of ovariant material base vetors are hosen to be orthonormal.

Therefore, the matrix form of the ovariant material metri is a diagonal square. Beause

the deformation is arbitrary, the ovariant spatial metri has not neessarily zero o�-diagonal

terms. However, the ovariant material strutural tensors are trae-wise dependent on eah

other.

For an orthotropi hyperelasti material formulation, the strain energy funtion is established

based on the basi invariants of Cauhy-Green deformation tensor and the six strutural

invariants with unit bases given beneath. For other examples please refer to Boehler

Ref.[

Boehler 1979

℄ , Park Ref.[

H.C.Prk 1997

℄ and Sansour Ref.[

C.Sansour 2007

℄.

J1 = G11 : C (4.7a)

J2 = G22 : C (4.7b)

J3 = G33 : C (4.7)

J4 = G11 : C
2

(4.7d)

J5 = G22 : C
2

(4.7e)

J6 = G33 : C
2

(4.7f)

The onepts of objetivity

4

(invariane of strain energy for post rotations, observations),

material symmetry

5

(invariane of strain energy for pre rotations) and onvexity of strain

energy funtion are out of sope of this work. With all of the assumptions, the strain energy

density takes the following form;

ψ = ψ (I1, I2, I3, J1, J2, J3, J4, J5, J6) (4.8)

There are many phenomenologial models �tting with the theoretial form given above.

The intent is to �nd the relation between the invariants, network struture, deformed hain

4

A post-rotation an be interpreted as the rotation of the observer of the deformed body. This type

of observer motion an not manipulate the strain energy, sine the ation has already taken plae,

indiating the term objetive material depending on invariants

5

An isotropi material would be insensitive to the pre-rotations and thus symmetri
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length and strain energy density funtion for the unit ell. The geometrial approah

given by Kuhl (Ref.[

E.Kuhl 2008

℄) (transversely isotropi 8-hain model) will be followed and

extended here. The lengths of the hains in the undeformed on�guration beome;

G1

G2

G3

g2

g3

g1

R1

R2

ψ,F

Figure 4.2: undeformed and deformed oordinates of the unit ell

|R0| =
∣∣R0‖

∣∣ = |R1| =
∣∣R1‖

∣∣ = |R2| =
∣∣R2‖

∣∣ = |R3| =
∣∣R3‖

∣∣ =

|R| =
√
G11 : I +G22 : I +G33 : I

(4.9)

The lengths of hains in the deformed on�guration are;

|r0| =
∣∣r0‖

∣∣ =
√(
GT

1 · F T +GT
2 · F T +GT

3 · F T
)
· (F ·G1 + F ·G2 + F ·G3)

=

√√√√
(
GT

1 · F T · F ·G1

)
+
(
GT

2 · F T · F ·G2

)
+
(
GT

3 · F T · F ·G3

)
+

2
(
GT

1 · F T · F ·G2

)
+ 2

(
GT

3 · F T · F ·G1

)
+ 2

(
GT

2 · F T · F ·G3

)

=
√
G11 : C +G22 : C +G33 : C + 2G12 : C + 2G31 : C + 2G23 : C

(4.10)

Similarly, the other deformed lengths beome,

|r1| =
∣∣r1‖

∣∣ =
√
G11 : C +G22 : C +G33 : C − 2G12 : C + 2G31 : C − 2G23 : C

|r2| =
∣∣r2‖

∣∣ =
√
G11 : C +G22 : C +G33 : C + 2G12 : C − 2G31 : C − 2G23 : C

|r3| =
∣∣r3‖

∣∣ =
√
G11 : C +G22 : C +G33 : C − 2G12 : C − 2G31 : C + 2G23 : C

(4.11)

These simple derivations are supported by the statement of Boehler (Ref.[

Boehler 1979

℄); "All

the invariants of general anisotropy an be expressed as single valued funtions of the six

independent invariants". The invariants that Boehler mentioned are nothing but the ones

given in the deformed hain lengths formulas above, whih is hosen on purpose in this way,
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to be onsistent with the historial terminology of the invariant algebra.

The remaining part of the work is, reformulation of strutural tensors. The aim is, to ath

onsisteny with the ommon orthotropi hyperelasti energy funtions in the literature,

whih are usually given in terms of the invariants above. Another reason beyond the seek

of onsistany is to establish a strain energy density funtions using the given derivatives of

standard strutural invariants with respet to the Right Cauhy-Green deformation tensor.

Gij : C = Gij : C = (J1, J2, J3, J4, J5, J6) (4.12)

For further redutions, the next equalities whih are valid for non-unit

6

orthonormal bases

are used.

I : I =
G11 : I

G11 : I
+
G22 : I

G22 : I
+
G33 : I

G33 : I
(4.13a)

I : C =
G11 : C

G11 : I
+
G22 : C

G22 : I
+
G33 : C

G33 : I
(4.13b)

I : C2 =
G11 : C

2

G11 : I
+
G22 : C

2

G22 : I
+
G33 : C

2

G33 : I
(4.13)

tr
(
G11 ·C

2
)
=

(G11 : C)2

G11 : I
+

(G12 : C)2

G22 : I
+

(G13 : C)2

G33 : I
(4.13d)

tr
(
G22 ·C

2
)
=

(G21 : C)2

G11 : I
+

(G22 : C)2

G22 : I
+

(G23 : C)2

G33 : I
(4.13e)

tr
(
G33 ·C

2
)
=

(G31 : C)2

G11 : I
+

(G32 : C)2

G22 : I
+

(G33 : C)2

G33 : I
(4.13f)

The �rst three equations an be seen or found by simple tensor alulus. For the derivation

of the last three equations, please refer to Appendix-D. By using these six equations the

mixed invariants an be represented as;

2 (G12 : C)2 = (G11 : I) (G22 : I)

[
I : C2 − 2

(G33 : C)2

G33 : I

]

+

[
−
G22 : I

G11 : I
(G11 : C)2 −

G11 : I

G22 : I
(G22 : C)2 +

(G11 : I) (G22 : I)

(G33 : I)
2 (G33 : C)2

]

= (G11 : I) (G22 : I)

[(
I : C2 − 2

(G33 : C)2

G33 : I

)

+

(
−
(G11 : C)2

(G11 : I)
2 −

(G22 : C)2

(G22 : I)
2 +

(G33 : C)2

(G33 : I)
2

)]

(4.14a)

6

The base vetors do not have to be neessarily of unit size, so that the undeformed invariants may

represent the �nite spae oupied by a fundamental biologial unit -and the mehanial orrespondent

of it-.
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Similarly, the seond mixed invariant beomes,

2 (G13 : C)2 = (G11 : I) (G33 : I)

[
I : C2 − 2

(G22 : C)2

G22 : I

]

+

[
−
G33 : I

G11 : I
(G11 : C)2 +

(G11 : I) (G33 : I)

(G22 : I)
2 (G22 : C)2 −

G11 : I

G33 : I
(G33 : C)2

]

= (G11 : I) (G33 : I)

[(
I : C2 − 2

(G22 : C)2

G22 : I

)

+

(
−
(G11 : C)2

(G11 : I)
2 +

(G22 : C)2

(G22 : I)
2 −

(G33 : C)2

(G33 : I)
2

)]

(4.15a)

And the last mixed invariant for learane,

2 (G23 : C)2 = (G22 : I) (G33 : I)

[
I : C2 − 2

(G11 : C)2

G11 : I

]

+

[
+
(G22 : I) (G33 : I)

(G11 : I)
2 (G11 : C)2 −

G33 : I

G22 : I
(G22 : C)2 −

G22 : I

G33 : I
(G33 : C)2

]

= (G22 : I) (G33 : I)

[(
I : C2 − 2

(G11 : C)2

G11 : I

)

+

(
+
(G11 : C)2

(G11 : I)
2 −

(G22 : C)2

(G22 : I)
2 −

(G33 : C)2

(G33 : I)
2

)]

(4.16a)
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To hek or ensure the orretness of these redutions please refer to Appendix-D. Aording

to the alulations, the omplete set of new invariants are to be rede�ned;

I2 = I : C
2

(4.17a)

J1 =
G11 : C

G11 : I
(4.17b)

J2 =
G22 : C

G22 : I
(4.17)

J3 =
G33 : C

G33 : I
(4.17d)

J4 =
G11 : C

2

G11 : I
(4.17e)

J5 =
G22 : C

2

G22 : I
(4.17f)

J6 =
G33 : C

2

G33 : I
(4.17g)

The new set of strutural invariants an be onsidered as the normalizations of the standard

ones. The mixed invariants in terms of the new integrity basis;

(G12 : C)2 = (G11 : I) (G22 : I)
[
(I2 − 2J6)

(
− (J1)

2 − (J2)
2 + (J3)

2
)]

(4.18a)

(G13 : C)2 = (G11 : I) (G33 : I)
[
(I2 − 2J5)

(
− (J1)

2 + (J2)
2 − (J3)

2
)]

(4.18b)

(G23 : C)2 = (G22 : I) (G33 : I)
[
(I2 − 2J4)

(
(J1)

2 − (J2)
2 − (J3)

2
)]

(4.18)

And the deformed hain length of one of the hains in terms of the new integrity basis;

|r| =

√√√√ tr (G11 : C) + tr (G22 : C) + tr (G33 : C)

+tr (G12 : C) + tr (G31 : C) + tr (G23 : C)

=

√√√√√√√√√√√√√√√

(G11 : I) J1 + (G22 : I)J1 + (G33 : I) J1

+

√
2 (G11 : I) (G22 : I)

[
(I2 − 2J6)

(
− (J1)

2 − (J2)
2 + (J3)

2
)]

+

√
2 (G11 : I) (G33 : I)

[
(I2 − 2J5)

(
− (J1)

2 + (J2)
2 − (J3)

2
)]

+

√
2 (G22 : I) (G33 : I)

[
(I2 − 2J4)

(
(J1)

2 − (J2)
2 − (J3)

2
)]

=

√√√√ (G11 : I) J1 + (G22 : I)J1 + (G33 : I) J1

+
√

2I12 +
√

2I31 +
√

2I23

(4.19)
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Where, to redue the omplexity, the mixed invariants an be formulated as;

I12 = (G11 : I) (G22 : I)
[
(I2 − 2J6)

(
− (J1)

2 − (J2)
2 + (J3)

2
)]

(4.20a)

I31 = (G11 : I) (G33 : I)
[
(I2 − 2J5)

(
− (J1)

2 + (J2)
2 − (J3)

2
)]

(4.20b)

I23 = (G22 : I) (G33 : I)
[
(I2 − 2J4)

(
(J1)

2 − (J2)
2 − (J3)

2
)]

(4.20)

Finally, with this explained frame, the hain strain energy density funtion is de�ned

depending on six strutural and one basi invariant of the �rst order kinematis unit-ell

based on worm-like hains.

ψchain = ψchain (I2, J1, J2, J3, J4, J5, J6) (4.21)

The invariants of the transverse isotropy I2, J1 and J4 aount for the streth of the �ber

oinidently parallel to the �rst ovariant material base vetor (a physial interpretation),

and J5 and J6 aount indiretly to the strain energy of shear modes. It is ommented

by Ogden (Ref.[

R.W.Ogden 2008

℄) that there is no straightforward interpretation of the last

two invariants, however the relation in between �nite strain and the dependeny on J5
and J6 holds. Among the mirostruture based models in the literature, the kinematis

de�ned by Kuhl (Ref.[

E.Kuhl 2008

℄) and Holzapfel (Ref.[

G.Holzapfel 2006

℄) represent the hain

strain energy density funtion for transverse isotropy depending on streth invariant J4 by

negleting J5 and J6. Bisho� (Ref.[

J.E.Bisho� 2002

℄) on the other side, formulated the

orthotropi hyperelastiity of eight-hain model by priniple strethes along the material

axes. There are several other similar approahes in the literature. By admitting that, �nite

shear strains exist in biologial tissue with arbitrary geometry and boundary onditions

(inluding AC), their ontribution into the strain energy density funtion should be involved

either. Otherwise, one an speak about an imompleteness in between the given unit-ell

morphology and strain energy density funtion formulation.

4.2.4 Energy Split, Stress at Integration Point and Tangent Modulus

For the �nite element or natural element implementation of remodeling and orthotropi

hyperelastiity, the tangent modulus has to be evaluated. There are generally

aepted proedures of iterative solution methods for �nding tangent moduli (by

Miehe Ref.[

C.Miehe 1996

℄ for instane). Here, it is preferred to alulate the

tangent moduli analytially by following the urrent state formulation of Zienkiewiz

(Ref.[

O.C.Zienkiewiz 2000b

℄). The physially motivated split of strain energy density funtion

into the bulk energy and hain energy parts is applied. For the hain energy, the strain energy

density funtion de�ned in the previous setion is used. Following the other researhers in

the �eld, Menzel (Ref.[

A.Menzel 2004

℄) for example, an additional term on the hain energy

is de�ned, to prevent the shrinkage of the hains into the stable end-to end length, whih

is being zero. This repulsive term is de�ned so that, the hain strain energy has stress-free

referene on�guration for a given Cauhy-Green deformation tensor.

ψ = ψchain (I2, J1, J2, J3, J4, J5, J6) + ψrep + ψbulk (4.22)



4.2. Orthotropi Hyperelastiity 109

This formulation with the bulk strain energy density aounting for the surrounding

ompressible �uid in the biologial tissue inludes the omplete set of integrity bases. This

set inludes 9 parameters de�ning the orthotropy, orresponding one Young's modulus and

two Poisson's ratio in eah diretion in analogy with the linear elastiity. In nonlinear

elastiity, the underlying physial interpretation of invariants is not so straightforward. Next,

the hain and repulsive terms of seond Piola-Kirho� stresses and urrent state tangent

moduli are shown. The energetially onjugate stress measure of Cauhy-Green deformation

tensor is the symmetri Piola-Kirho� stress tensor. The hain seond Piola-Kirho� stress

tensor is evaluated by taking the derivative of energy funtion one. In tensor-index mixed

notation;

SchainIJ = 2

(
∂ψchain

∂C

)

IJ

= 2
∂ψchain

|r|

[
∂ |r|

∂I2

(
∂I2
∂C

)

IJ

+

6∑

k=1

∂ |r|

∂Jk

(
∂Jk
∂C

)

IJ

]
(4.23)

In indiial-matrix-tensor mixed notation proposed by Zienkiewiz (Ref.[

O.C.Zienkiewiz 2000b

℄);

SchainIJ = 2
[
2Cij

(G11)IJ
tr(G11)

(G22)IJ
tr(G22)

(G33)IJ
tr(G33)

]

·
[
∂ψ
∂|r|

∂|r|
∂I2

∂ψ
∂|r|

∂|r|
∂J1

∂ψ
∂|r|

∂|r|
∂J2

∂ψ
∂|r|

∂|r|
∂J3

]T

+ 2
[

(G11·C+C·G11)IJ
tr(G11)

(G22·C+C·G22)IJ
tr(G22)

(G33·C+C·G33)IJ
tr(G33)

]

·
[
∂ψ
∂|r|

∂|r|
∂J4

∂ψ
∂|r|

∂|r|
∂J5

∂ψ
∂|r|

∂|r|
∂J6

]T

(4.24)

And the repulsive hain term of the seond Piola-Kirho� stress tensor is;

SrepIJ = −
∂ψ

∂ |r|

∣∣∣∣
|R|

[
(G11)IJ
tr(G11)J1

(G22)IJ
tr(G22)J2

(G33)IJ
tr(G33)J3

]
·
[
∂|r|
∂J1

∣∣∣
R

∂|r|
∂J2

∣∣∣
R

∂|r|
∂J3

∣∣∣
R

]T
(4.25)

The material tangent matrix term in referene oordinates is,

C
chain
IJKL =

4
[
2CIJ

(G11)IJ
tr(G11)

(G22)IJ
tr(G22)

(G33)IJ
tr(G33)

(G11·C+C·G11)IJ
tr(G11)

(G22·C+C·G22)IJ
tr(G22)

(G33·C+C·G33)IJ
tr(G33)

]
·

H·
[
2CKL

(G11)KL

tr(G11)
(G22)KL

tr(G22)
(G33)KL

tr(G33)
(G11·C+C·G11)KL

tr(G11)
(G22·C+C·G22)KL

tr(G22)
(G33·C+C·G33)KL

tr(G33)

]T

+ 4
[
2 (I ⊗ I)IJKL 0 0 0

[G11⊗C+C⊗G11)KL
tr(G11]IJKL

[G22⊗C+C⊗G22)KL
tr(G22]IJKL

[G33⊗C+C⊗G33)KL
tr(G33]IJKL

]
·

[
∂ψ
∂|r|

∂|r|
∂I2

∂ψ
∂|r|

∂|r|
∂J1

∂ψ
∂|r|

∂|r|
∂J2

∂ψ
∂|r|

∂|r|
∂J3

∂ψ
∂|r|

∂|r|
∂J4

∂ψ
∂|r|

∂|r|
∂J5

∂ψ
∂|r|

∂|r|
∂J6

]T

(4.26)

Where the dyadi produts of the seond order tensors and the Hessian matries are de�ned

as;

[A⊗B]IJKL = 0.5 ([A]IK [B]JL + [A]IL [B]JK) (4.27a)

Hij =
∂

∂Ji

(
∂ψ

∂ |r|

∂ |r|

∂Ji

)
=

∂2ψ

∂ |r|2
∂ |r|

∂Ji

∂ |r|

∂Ji
+

∂ψ

∂ |r|

∂

∂Ji

∂ |r|

∂Ji
(4.27b)
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The derivatives of the strain gradient energy of the worm-like hain given in equation (4.1)

with respet to the deformed length is straightforward and is omitted in this stage. The

repulsive tangent material tensor in referene oordinates is following the same proedure

beomes,

C
rep
IJKL = −4

∂ψ

∂ |r|

∣∣∣∣
|R|

[
−

(G11)IJ (G11)KL

(tr(G11)J1)
2 −

(G22)IJ (G22)KL

(tr(G22)J2)
2 −

(G33)IJ (G33)KL

(tr(G33)J3)
2

]
·

[
∂|r|
∂J1

∣∣∣
R

∂|r|
∂J2

∣∣∣
R

∂|r|
∂J3

∣∣∣
R

]T (4.28)

As indiated in the formulations, some derivatives should be evaluated at the referene tip

to tail length of the worm-like hains. For demonstration, two di�erent examples with two

di�erent deformation gradient-histories are developed and plotted. Comparisons of the six

independent entries of seond Piola-Kirho� stresses alulated with the �rst derivatives,

with the ones alulated with the tangent maps are done. The �rst example is simple

unonstrained tension test to one integration point, the seond one is simple unonstrained

shear test to on integration point. For eah test, 50 time steps are applied, and the ovariant

material base vetors are hosen to be oinident with Cartesian bases and have equal size.

The applied deformation gradients are given priorily. The same tests an be ompared with

publiations of similar demonstrations; suh as in Ref.[

J.E.Bisho� 2002

℄.

4.2.5 Simple Tension and Shear on the Orthotropi 8-hain Model

After eah other, two examples are presented here. The �rst one is a given deformation

gradient of a pure streth without potential mapping. Time time parameter of Figure 4.6

is hosen in a way that the maximum streth of the unit-ell reahes around �fty perent.
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(b) Deformation gradient of the streth

Figure 4.3: Form and the formula of the streth on 8-hain model

As expeted, for this type of �rst order kinematis, the shear stresses all vanish. In Figure 4.4

two of the three non-zero omponents of the streth tensor are plotted against the streth

parameter. Those two are learly equal to eah other. Additionally, the orrelation of the

seond Piola-Kirho� tensor omputation with the tangent moduli is veri�ed to be orret.

This had to be performed to show the reliability of the lengthy expressions presented in the

previous setion of Ch.[4.2.4℄.

The stress values along the loading diretion an be seen in Figure 4.5. The exponential
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Figure 4.4: Seond Piola Kirho� Stress tensor omponents

behavior of the true stress omponent an be observed to be asending with the streth

value.
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Figure 4.5: Comparison of seond Piola Kirho� and Cauhy stress omponent in streth diretion

This is expeted either, sine the surfae with the normal of diretion of streth is getting

signi�antly smaller. On the other side, the other normal stresses are observed to be

staying with the same order of quantity, sine those surfaes undergo area-preserving type

of deformation. After being onvined about the onsisteny of the formulation based on

the streth type of deformation, the pure-shear type of deformation an be investigated as

well.
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(b) Deformation gradient of the shear

Figure 4.6: Form and the formula of the shear on 8-hain model

The given deformation gradient and the mapping on the eight hain model is given in

Figure 4.6. All three normal stress values are expeted to be quantitatively �nite.
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Figure 4.7: Seond Piola Kirho� Stress tensor omponents

As predited, one normal omponent is equal to another one, and the third one is

signi�antly smaller then the other two, as an be seen in Figure 4.7. The largest omponent

on the other side, is notied to be the single shear omponent, again as expeted, the other

two shear omponents are the only non-zero values for the example of pure-shear.

After showing the reliability and ompleteness of the proposed material model, one an

give a look to the main topi of the hapter, namely the reorientation with strain and

strain gradient e�ets. For the ase of reorientation with strain e�ets, the aforementioned

orthotropi material model is used.
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Figure 4.8: Comparison of seond Piola Kirho� and Cauhy stress omponent in streth diretion

4.3 Material Point Reorientation

4.3.1 Strain based Reorientation

A �ber reorientation sheme an be de�ned as the evolution of referene on�guration

(Ref.[

K.Garikipati 2005

℄). This suessive updating proedure suggests pre-rotations and

translations on the material point. Therefore, the multipliative split of the deformation

gradient into the rotation and elasti part is appliable. In this work, the rotation tensor in

Figure 4.9 is introdued as an internal variable as investigated in other works, for instane in

Ref.[

Himpel 2007

℄. Similarly, it is preferred to modify previous on�guration in the quasi-stati

iterative proedure gradually. Even though the given kinematis is of type �rst order, it is

still valid and an be applied to gradient reorientation.

The steering ausality of remodeling is ertainly not a trivial question with a simple

answer. Some works suggest strain driven reorientation

7

whereas some prefer stress driven

8

one.There is ertainly a di�erene, sine the strain and stress tensors for anisotropi media is

arbitrarily non-oaxial. However, the strain driven reorientation is ertainly motivated with

the stationary strain energy riteria, for mathematial proof, please refer to the Appendix-D.

This proof is fully motivated by the works of Norris (Ref.[

Norris 2005

℄) and Vianello

(Ref.[

Vianello 1996a

℄), who have proved that for anisotropi linear materials the optimal

orientation of the material is ahieved if stress and orresponding strain measures are

oaxial. This oaxiality requirement is only ful�lled if the material axes are parallel with the

eigenvetors of strains. Again Vianello had showed in two separate works ( Ref.[

Vianello 1995

℄ ,

7

strain driven works: Ref.[

K.Garikipati 2005

℄ , Ref.[

A.Menzel 2004

℄ , Ref.[

E.Kuhl 2008

℄ , Ref.[

W.Wilson 2006

℄

, Ref.[

A.Menzel 2006

℄

8

stress driven works: Ref.[

I.Hariton 2007

℄ , Ref.[

N.J.Driessen 2003

℄ , Ref.[

Hariton 2007

℄
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Figure 4.9: Kinematis of updating the referene on�guration with rotation tensor

Ref.[

Vianello 1996b

℄) that the same argument holds also for the �nite elastiity. The proedure

in appendix setion uses the same line of ation whih were previously proposed, but applies

another terminology, whih �ts better to the form of this treatise.
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)3()3(: SkwSO
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d T
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3
��� � p0.0Rp

Evolution Criteria as optimization problem: 

Figure 4.10: The de�nition of the evolution as an optimization set problem

The given Figure 4.10 desribes the evolution riteria in terms of an optimization problem

set, and gives a set-up for the numerial validation. The left illustration of Figure 4.10

inludes two sets of vetors, as the �rst one being the vetor set of all possible target

referene on�gurations Rc
t. The �rst set is separated from the initial �ber diretion R

with an angle of 'β', and thus forms a onial shape. The seond set is determined aording

to the referene �ber diretion and the set of target �ber diretion. Consequently, the seond

set de�nes the set of rotation axis.
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Figure 4.11: Numerial veri�ation of maximizing the streth in one step

As an be seen from the Figure 4.11, by seleting the suessive loation of target in terms

of the eigenvetor of Cauhy-Green strain tensor with the maximum positive eigenvalue,

one reeives the maximum streth at the loation.
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Figure 4.12: Numerial veri�ation of maximizing the streth stepwise

As stated, the situation is numerially shown to be holding for a one-step, sudden adaptation,

namely losing the angle 'β' all of a sudden. Additional remark to that an be made

aordingly, by admitting that the number of ritial loations is not neessarily unique, as

an be seen from this single example. Comments around this observation will be made in

the next setions. In Figure 4.12, it is lear that the stepwise approahing to the target is

also well established and preserves the maximum streth and thus maximum strain energy

riteria. However, for some lower angle of rotations of 'β', another stable energy loation

for 'α' an be preferably seleted by the ator of adaptivity.

Further omments on this subjet an be done by stating the oaxiality requirement as the
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Figure 4.13: Comparison of streth maximizing and oaxiality optimization manifolds

optimization manifest, as done in Figure 4.13 . As an be seen from the diagrams on the left,

at the maximum loation the oaxiality requirement is omprehensively ful�lled, however,

for the alternative loal maximum of streth at the half angle of rotation of 'α = 0.5π'

for the initial attempts of reorientation (for small β) the same onlusion an not be done.

Even though the oaxiality funtion is not as smooth as the fourth invariant

9

, it is still

a better andidate for searhing the optimum referene �ber diretions. One drawbak is,

as one an observe from the Figure 4.13, the fat that the oaxiality has a loal minimum

value for the minimum loations of the strain energy funtion, for instane the loation of

α = 0.5π. If one has the intent of using numerial optimization algorithms for solving the

problem in hand, should onsider this phenomenon. This point will not be visited again,

sine the treatise preferably follows in fat the semi-analytial methods, thus searhing the

perfet loation for a given manifest.

To ompare the strain driven reorientation with the strain gradient driven one, a more

realisti example is taken as basis, namely an abstrat ross-setion, whih represents

artiular artilage. The geometry is generated by hand-free methods, mainly by mimiking

the sanning eletron mirosopy pitures of artilage ross setions. This gives one also

the opportunity of omparing the reorientation results with the reality.

Some spei�ations of the model should be leared here as well. The model is simply

based on three rows of 8-noded hexahedral elements. The geometry is �xed only from

the bottom, the nodal onsistent fore step is applied until reahing a ertain level of

deformation. There is no ontat algorithm applied, as done previously in the hapter of

mixed �eld theory (Ch.[1℄). As an be seen from the Figure 4.15, the reently presented

eight-hain model is used for the simulations.

9

aording to the given numerial examples
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Figure 4.14: Pressing the Cartilage-alike pro�le with uniform fore

The self-onsisteny and orretness of the

results are interpreted based on the oaxiality

requirement, as obvious from the previous

omments done in this setion. As one an

see, the stress, strain and the �titious target

spaes all overlap with eah other. However,

turning bak to the onsisteny of the results with

omparison of reality, one an obviously see that

the expetation in some regions are not satisfying.

The super�ial zone is onsistent with the reality,

onsist of �bers along the surfae. In the depth

zone rather perpendiular �bers are antiipated

being onsistent with experimental observations.

Chain Network

Cauchy Deformation base

PK2 Stress base

Figure 4.15: The oaxiality requirement

However, the mid and depth zones in the middle region are antiipated to be perpendiular

to the surfae, where the opposite is observed here.

Furthermore, the side-faets of the system are not onstrained at all, therefore the problem

is in 3D sale in fat a plane stress problem, rather then plane strain. This senario would

represent rather a quasi-stati type of vertial loading. On the other side, an impat type of

loading would most probably ause the �uid onstituent smear away from the solid abruptly,

and thus inrease the e�et of loality. Suh a ase, is aording to the opinion of the writer

of the treatise is rather a ase for plane strain. The fous in this ase is for normal loading

onditions, thus plane strain.

Hereby, the strain gradient reorientation suggestions will be presented next. A �nalizing

onlusion will be done in the next hapters.
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4.3.2 Curvature Reorientation

Claiming that any proposed energy funtion is an inreasing funtion of hyperstrains is not

neessarily true. The strain gradient e�ets an be ating along the streth, and thus may

have a umulative e�et. However, a simple assumption of presupposing that the urvature

e�ets are proportional with hyperstrains, an failitate a use of simple energy funtion for

de�nition and usage of semi-analytial methods similar to strain-driven reorientation.

ψκ ≃ exp
(
M̂ ♮⊗2

: K : M̂ ♮⊗2
)

(4.29)

Where the fourth order Cauh-Green orrespondene of Hypergradient is de�ned as,

K = G
ll
· G Kijkl = GnijGnkl (4.30)

Aording to the Shwarz integrability ondition, the hypergradient tensor possess one-plane

symmetry. As a result of this, the Cauhy-Green Hypergradient has major and minor

symmetry properties. The fourth order ontration stays under the following ations

invariant

10

;

MiMjKijklMkMl =MiMjKjiklMkMl =MiMjKijklMlMk =MiMjKklijMkMl

(4.31)

The �rst two equalities indiate minor symmetries, where the last one represents major

symmetry. To move on, a so alled scatter transformation is de�ned, whih transforms the

fourth order tensors with major and minor symmetries by reduing the order of the tensor

and inreasing the dimension of the vetor spae with no loss of information.

K
34 ∈ R

3×3×3×3 Scatter
−−−−→ K

92 ∈ R
9×9

(4.32)

Beause of the major symmetry, the transformed form of K is symmetri in tensor order

diretions. The eigen-deomposition of the transformed form generates therefore 9 linearly

independent eigenvetors.

K
92 =

9∑

i

λKi

(
N 91

i ⊗N 91

i

)
(4.33)

Referring to the omments done about the oaxiality and stable energy on�gurations, the

eigenvetor with the maximum orresponding eigenvalue an be gathered into a lower order

vetor spae dimension with higher tensor order. Again this transformation does not ause

any information loss.

N 91

max ∈ R
9 Gather
−−−−→ N32

max ∈ R
3×3

(4.34)

The Gathered matrix of eigenvetor of sattered Cauhy-Green strain tensor an be further

deomposed into linearly independent eigenvetors.

N 32
max =

3∑

i

λNi

(
n31
i ⊗ n31

i

)
(4.35)

10

The invariany is not trivial to prove, to be onsistent with the previous de�nitions of the strain

energy density funtions, the term is aepted to be valid
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The Sattered matrix an be in fat further redued into K
62 ∈ R

6×6
by imposing the

minor symmetries. By doing so, it beomes evident that the eigenvetors of nonzero

eigenvalues N91
i are linearly independent. The eigenvetor of the eigenvalue with the

maximum absolute value is hosen to be the reorientation target. It is straightforward to

build a spin-free inremental orthonormal tensor for the evolution towards to the desired

diretion. In opposite to the usual (strain driven-only) reorientation manifolds, where only

the eigenvetors with positive eigenvalues are onsidered, in this ase the one with the

absolutely largest eigenvalue is taken to be the ideal orientation of that instant.

To prove the validity of the proposed semi-analytial analogy, the following strain-gradient

ontribution is tested;

G = Gx ⊗Gy ⊗Gz

=




1.3 0.2 −2.8

0.2 0.9 −2.1

−2.8 −2.1 1.3


⊗



0.2 1 1.8

1 0.6 2.7

1.8 2.7 −2.1


⊗



−1.6 −2.4 −0.5

−2.4 0.9 −1.45

−0.5 −1.45 2.3




(4.36)

For the onstrution of this hyperstrain tensor, no speial investigation is performed

onerning the potential of the tensor. There is neither a mapping or deformation gradient,

thus there is no warranty of any property of the potential is provided. But, the minor

symmetry is preserved. In order to show that the veri�ation done above is not a oinidene,

(a) One view of the energy surfae (b) Another view of the energy surfae

Figure 4.16: Maximizing of equation (4.29) under the ation of hypergradient of equation (4.36).

The maximum loation is found orretly and marked with a line.

more examples are presented in �gures 4.16 and 4.17. The given reorientation postulate

based on a simple material invariant, namely the urvature orrespondent of the fourth

invariant of �rst order kinematis anisotropy, is well established and veri�ed with numerial

examples. In order to investigate the omplete e�et of bending/streth relationships, one

additional reorientation manifest will be introdued next.

4.3.3 Reorientation based on the EB Material Model

Sine the previous reorientation manifest is aepted to be a pratial alternative, and

enables one to allow semi-analytial type of solution methods, a more realisti approah will

be introdued here. The di�erene is mainly based on the used energy funtion. Namely, the
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Figure 4.17: Arbitrary surfaes of

(

M̂ ♮⊗2

: K : M̂ ♮⊗2
)

and the loation of reorientation target. The

maximum overlaps with sattered-gathered eigenvetor result.

Euler-Bernoulli type of material model, introdued in the hapter of Hyperbalane (Ch.[3℄).

ψ =
EA

4

(
|m|2 − 1

)2
+ EIc2 (4.37)

Any split whih divides the terms driven only by strain and only by strain-gradient

e�ets is not trivial to apply here. This is a onsequene of additive nature of the

strain-gradient trunation of the spatial/referene mapping of the seond order ontinuum

loations. Aordingly, this makes it umbersome to �nd basi invariants to apply eigenvalue

deomposition methods, prove the stability of the energy funtion around those diretions

and implement numeris for it.

It had been mentioned in the previous setions that the strain energy funtion and the

reorientation manifests have non-onvex nature. By onsidering that any searh andidate

R∗
in the referene on�guration should preserve unit vetor property, the problem an

not be onsidered as a ase of unonstrained optimization. Therefore, any solution of

non-onvex onstrained optimization problem had been onsidered (relatively) to be not

only non-trivial and also quite exessive for the main intent of this treatise. As a result of

this argumentation, for �nding ritial loations of the energy funtion of equation (4.37),

diret numerial methods are applied.

The following mapping, deformation gradient and hyperdeformation gradient omponents

are used for demonstration;

y = 0.5tX2 FyX = tX GyXX = t (4.38)

For this example, the values (ratios) for the area and seond moment of inertia are taken

from the example of frational pro�les introdued in the previous hapter of Hyperbalane

equations. The ratio is I/A is aordingly taken to be 12. In equation (4.38), only the

non-zero terms are given.

In the right piture of Figure 4.18 the unde�ned bending/streth energy ratio is simply

marked by zero. On the left piture it is quite evident that the trivial diret numeri searh

is working well around the given disrete set of rays generated by spherial oordinates. In

the right piture it is quite evident that there is another stable region, where the bending
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(a) Energy topology (b) Bending/Streth energy ratio

Figure 4.18: Maximizing of equation (4.37) under the ation of hypergradient of equation (4.38).

The maximum loation is found orretly and marked with a line.

energy dominates the total energy. As a regard of that, for the �ber network it is logial to

onsider other bene�ts, suh as permeability and wear resistane, then trying to reah the

ultimate maximum. This is of ourse only a omment, not an absolute onlusive statement

of this study.

The omparison on a spei� model of artiular artilage is let to be a topi of the following

setions, and omitted here.
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5.1 Introdution

Natural element method falls into the ategory of partile-based methods for solving

PDE's. Partile based methods are diversi�ed in many signi�ant topis, inluding

disretization, interpolation, problem type, and solution method. Among many di�erent

examples, meshless �nite element method Ref.[

S.R.Idelsohn 2002

℄ (MFEM), partile �nite

element method Ref.[

E.Onate 2004

℄ (PFEM), disrete element method Ref.[

N.Biani 2004

℄

(DEM), smoothed partile hydrodynamis Ref.[

Monoghan 1992

℄ (SPH) and natural element

method Ref.[

N.Sukumar 1998

℄ (NEM) are widely revisited genuine examples of partile based

methods.

1

NEM ,as the method under onsideration, requires a dual mesh similar to MFEM and

PFEM. These methods are ertainly not free of mesh, but free of any other mesh dependent

de�nitions, i.e. loal oordinates, jaobians or onservative element onnetivities. Through

NEM, the ontinuum neighborhood of a in�nite point and the integration of the di�erentials

are naturally-i.e.geometrially approximated.

As indiated presently, the method inludes meshes, whih needs to be lari�ed from

the point of view of the writer of this treatise. In fat, many researhers notied this,

and introdued deviations from the list of above, namely "truly meshless methods"

(Ref.[

M.Du�ot 2002

℄), intending to put the emphasis on the ourrene or absene of a mesh.

1

the itations do not neessarily indiate the �rst founders of the individual methods, but widely

aepted writers of the topis of interest
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However, the primary di�erene outlined by means of many meshless methods is sometimes

the line of ation through the mesh, espeially, in between lassial �nite element method

and the postulated one. The best pratie of the meshless methods fous not only to

the geometry, but also to the ation. Meshless methods often used to simulate rak

openings and propagations (Ref.[

Y.Chen 2006

℄) , without requiring a re-meshing proedure.

Or, it was used in quite early times, to simulate Eulerian motion on Lagrangian mesh

(Ref.[

J.Braun 2006

℄), where the main advantage is stressed to be; "highly irregular evolving

grids". Appliations in statistial physis, for instane to de�ne �uid motion using Voronoi

ells (Ref.[

M.Serrano 2005

℄), or to quantify entropi elastiity of worm-like hains using

moleular dynamis based partile simulations (Ref.[

M.J.Buehler 2006

℄), are strengthening

the idea ,that the motivation of meshless methods are rather to simulate ompliated

ations, then represent a geometry. Further readings suh as Ref.[

S.R.Idelshon 2006

℄ and more

examples on the notion of meshless, an be too exessive for this treatise.

The fous of ation as a motivation of using NEM for the thesis is however none of

the layouts pointed

2

above. The main attempt was to generate a proedure to realize

networks whih an be extrated from linial data (usually a point loud), and to be able

to onsider the strain-gradient e�ets in three dimensions in an e�ient way.

The ontent of this hapter has three main divisions. The �rst one (Ch.[5.2℄) overs

onstraining the Delaunay-Voronoi dual of arbitrary geometries . The onstrain is driven

by frequeny sampling of alpha-shapes (Ref.[

Edelsbrunner 1983

℄), and eliminating unfeasible

Delaunay volumes. In the �rst setion, a method for enforing the Voronoi region to overlap

with the integration domain is presented. This method bases on boundary detetion and

sharp featuring of the point loud. The onstrained Delaunay triangulation and sharp

featuring algorithms are going to be shown to aomplish robust results for densely paked,

or homogeneously distributed point louds.

In the seond setion (Ch.[5.3℄), a novel extension to stabilized onforming nodal

integration will be presented. In opposite to the earlier interpolation shemata, whih

suggest loal- 2

nd
order Voronoi regions around gauss points, the de�ned method detets

the nodal-quadrature interpolaters non-sequentially. The non-sequential interpolation

shema does not only improves the speed, but also produes denser, and thus smoother

interpolating matries.

In the third part (Ch.[5.4℄), numerial aademi tests will be presented. Convergene of

the method by seeking for the fundamental solution of the Laplae's equation are shown in

this hapter. In adjaent to that, examples of �nite deformation and �ber reorientation are

overed too. Espeially the last, is onsidered by the writer of the doument an appliation

of biomehanis. In order to preserve the main objetive of the work, relevant examples

are hosen and presented.

2

neither raks and moleular dynamis, nor Eulerian motions
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5.2 Clustered and Constrained Delaunay-Voronoi Dual

Delaunay triangulation and Voronoi tessellation are in general usage of many weakly

related �elds, suh as image proessing, omputational geometry, terrain modeling and

omputational mehanis. Depending on the appliation and orresponding distintive

geometry in hand, onstrained triangulation or tessellation may di�er

3

in meaning. The

onstrained meshing is de�ned here as "the post-elimination of unfeasible disrete domains

from the raw outome". By this de�nition of mesh onstraining, betterment of the

bad-onditioned mesh sub-domains is not esteemed to be notable. The quality of mesh,

onerning the onvergene harateristis, is left to be an issue of formulation and solution.

The main intent is to unover non-onvex properties of the shapes with domain disretization

and post-lustering.

5.2.1 Clustering the Delaunay Triangulation

It is possible to eliminate undesired triangles or tetrahedrons or disregard from the

integration domain by de�ning threshold values or feasibility intervals for Delaunay primitives

(alpha-shape method in Ref.[

Edelsbrunner 1983

)℄. However, a Delaunay triangle or tetrahedron

owns several size and shape dependent properties, whih are adherent on geometry and

number of sites representing this geometry. Thus, alpha-shape thresholds would be as

arbitrary as geometrial variations. Besides, in ase an intermediate meshing is neessary

(PFEM-Laplae mesh �uid dynamis), one has to onsider that the threshold anon may

alter during the runtime drastially. The i�y seletion of proper parameters, as well as their

unertain intervals (even the parameters are normalized), are aording to the writer valid

exuses to seek systemati and pragmati post-�ltering methods.

5.2.1.1 De�nition of Clustered Delaunay Triangulation, CDT

Let 'P' be a �nite point set with ardinality 'm' in 'n' dimensions.

P = {p1, p2, p3, ...., pm : ∀pi ∈ R
n} (5.1)

In 3d, the olletion of 4 apart members of P is the union of 4-ombinations of

tetrahedrons in P with ardinality of;

c =

(
n

k

)
(5.2a)

Ci = {pi1, pi2, pi3, pi4 : (∀pij ∈ P) ∧ (pij = pik ⇐⇒ j = k)} (5.2b)

c⋃

i=1

Ci = {{p11, p12, p13, p14}, {p21, p22, p23, p24}, .... : ∀pij ∈ P} (5.2)

A primitive 'C ' in the union(5.2b) is say, Delaunay feasible and thus a Delaunay simplex,

if there is an equidistant point 'o' to the verties of the primitive (5.2), if no points in

3

therefore, any itation of the initial statement is purposely avoided, not to ause any onfusion of

the de�nitions. Here, the appliation is obviously ontinuum mehanis.
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the relative omplement set of 'C' in 'P' our in the hemisphere around 'o' (5.3d), and if

the point set of the primitive ombination is not oplanar (5.3d). The union of simplies

following these lauses is alled here the Delaunay triangulation 'DT' (5.3a).

DT =

idl<c⋃

idf≥1

Ci (5.3a)

Ci = DTi ⇐⇒ ∃!o ∈ R
3 : (5.3b)

(
r = d(o, pi1) = d(o, pi2) = d(o, pi3) = d(o, pi4) ∧ (5.3)

∀p∗ ∈ (P \ Ci) r < d(o, p∗) ∧ (5.3d)

((pi1 − pi2)× (pi1 − pi3)) · (pi1 − pi4) 6= 0
)

(5.3e)

A simplex might be Delaunay, but any other point in that simplex may not be desired in

the domain representation. Inreasing the number of points for the domain representation

does not assist in to lay o� simplies, whih are �lling semi or exat exlusions.

(a) Domain Ωp (b) Boundary of Delaunay

simplies union 'DT' and point

set 'P' of Ωp

() The most ongested

Delaunay irum-luster 'CDT'

Figure 5.1: An example where 'DT' ondition set does not represent hallenging geometries

Therefore, a further partitioning term through k-means lustering is suggested. The

�nal redued form of the Delaunay triangulation through lustering is designated as

Clustered Delaunay Triangulation 'CDT'. For initiation, a property representation for

eah 'DTi' is founded. Any ommon property of the primitives whih an lead a ertain

disrepany between desired luster and undesired luster(s) should enter this list. In brief,

volume, smallest fae angle, distane between Delaunay hemisphere enter and Delaunay

geometri-enter, summation of longest two edges, an be andidates for the attribute list.

The attribute list parametri representation is not a unique representation of the primitive

itself. With respet to the attribute oordinates, two or more primitives might appear to

be same.
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DTi = {atti1, atti2, atti3, · · · , attik : (∀attij ∈ R)} (5.4)

It is assumed that the set of Delaunay simplies of a non-onvex geometry an be lustered

into �nite number of 'K' disjoint subsets-(5.5a).

DT =
K⋃

C=0

DT
ClC =

K⋃

C=0

#ClC⋃

i=0

DT
ClC
i (5.5a)

DT
ClM

⋂
DT

ClN = ∅ ⇐⇒ M 6= N (5.5b)

A Cluster union is de�ned as the olletion of Delaunay primitives with a mean attribute

value-(5.6a), where the distane of the eah member attributes to the mean attribute is

smaller then to any other luster mean attribute (5.6b).

DT
ClM =

∑#ClM
i=0 DTi

#ClM
(5.6a)

DT
ClM = {DTi : ‖DTi − DT

ClM‖ < ‖DTi − DT
ClN ‖ ∀N 6=M} (5.6b)

This partition is not a violation of the onservation of simplex ardinality-(5.7a), beause the

subsets do not have intersetions. In other words, there is no gain or loss of tetrahedrons.

Additionally, for arbitrary point distributions representing non-onvex geometries, the

number of lusters an be at least 2, at most 'm' in (5.7b) , i.e. the ardinality of initial

point set P in equation-(5.1).

idl =

K∑

C=0

#ClC (5.7a)

2 ≤ K ≤ m (5.7b)

The luster with the largest ardinality, i.e. with the largest Delaunay primitive population

is alled lustered Delaunay triangulation, 'CDT'.

DT
ClM = CDT ⇐⇒ #ClM > #ClN : ∀N ∈

(
DT \ DTClM

)
(5.8)

5.2.1.2 K-means Property Clustering for Delauanay Simplies

In k-means lustering breaks apart 'k' numbers of observations from a single global dataset.

The hierarhial struture between the individual subsets is not of interest. The main

onern is the lean-ut division of the global. Therefore, it is onsidered as a partitioned

type lustering. In this frame, a division for a single feasible set (CDT) and a union of

unfeasible subsets (DT \ CDT) are searhed. The details of the algorithm an be found

elsewhere (Ref.[

G.Bradski 2008

℄), however the individual steps will be repeated here for �uent

reading.
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1. State preisely an attribute list for eah Delaunay primitive. Normalize eah attribute

aording to the global maximum and minimum values of DT and orient/reverse them

towards to the feasible or ill-onditioned diretion. De�ne norms for luster build.

2. Designate a k≥ 2. Make an shrewd estimation in the feasible diretion for the initial feasible

luster origin, and predit remaining (k-1) origins randomly in the unfeasible diretions.

3. Construt lusters aording to the norms de�ned.

4. Compute new luster enters by a mean norm.

5. Repeat steps (3) and (4) until onvergene is satis�ed, e.g. via the hange of luster enters,

or via the hange of set element list, or their ardinality.

(a) Insu�ient number of lusters (b) Inadequate attribute list

() Con�iting attribute list

Figure 5.2: Plausible ases of erroneous CDT
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(a) Domain Ωp (b) Poor representation of Ωp with

DT

() CDT representation

Figure 5.3: 3-means lustering of an objet

5.2.2 Constrained Voronoi Tesselation

The integration shema of a bunh of partile based methods is based on Voronoi tesselation

motivated interpolation methods. It is of fundamental importane to ful�ll the interpolation

requirements. The primary enlisted demand is the orret representation of the disrete

domain whih determines the interpolators.

In fat, the lustering was an initial attempt of ful�lling this requirement. The perseuting

proess an be de�ned as onstraining Voronoi tesselation aording to the lustered

Delaunay triangulation, CDT. This proedure has been proven to be able to deal with

ompliated geometries as given in Figure 5.4

4

.

At this stage,�rst some dissonant harateristis of Voronoi diagram will be delineated,

whih appear to be trivial to deal with, and probably therefore, rarely mentioned in the texts.

Immediately after, the way of dealing with this problem will be proposed, and exempli�ed.

4

The modeldata was downloaded from the projet AIM Shape-Visonair Ref.[

P.Alliez 2006

℄, the point

loud only is used for the demonstration of lustering



130 Chapter 5. Natural Element Method

The Voronoi diagram of a number of points representing a domain (and domain boundaries)

in a point-wise disrete manner, is a perfet andidate for fousing �eld parameters at an

in�nite lous, and meanwhile de�ne gradients and �uxes around this lous. Voronoi Diagram

is the union of disjoint loations, eah of is them de�ned as given as in equation-(5.9a).

(a) Skull P (b) Skull dt

() Skull dt

Figure 5.4: Clustering of ompliated Skull geometry - Node Set is taken from AIM Shape-Visonair

Ref.[

P.Alliez 2006

℄

V
Pi = {r : ‖ x− pi‖ < ‖ x− pj‖ ∀i 6= j ∧ x ∈ R ∧ pi, pj ∈ P} (5.9a)

V =
m⋃

p=1

V
Pi

(5.9b)

One of the artifats of Voronoi tesselation regarding to the interpolation shema is

the existene of semi-in�nite Lebesgue measures of the ells. Irrespetive of the type of
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geometry, there might be verties present at in�nity or far regions. Similarly, Voronoi

ells with over or underestimated Lebesgue measures may be present, and thus shall be

onsidered as artifats disrupting the integration method.

(a) 2d objet with unbounded

ridges

(b) Unonstrained Voronoi

Tesselation of a Sphere with

over and underestimated

voronoi ell volumes

() Unonstrained Voronoi Tesselation

of a nononvex geometry with some

semi-in�nite voronoi regions

Figure 5.5: Unonstrained Voronoi Tesselations

Method of eliminating suh artifats is based on initially determining the boundary

properties of the geometry, and then grading these properties quantitatively. Boundary

detetion for stritly onave geometries is trivial and intrinsially given by the unonstrained

Voronoi tesselation. For instane, eah boundary node -whih is to be determined- in

�gures 5.5 have an in�nite Voronoi Lebesgue measure, whereby, bulk nodes have �nite

volumes or areas. Therefore, those ones an be stated to be boundary nodes immediately

after unonstrained Voronoi tesselation. On the other hand, Voronoi tesselation -stand

alone-, would not be enough to determine eah and very boundary nodes for a non-onvex

geometry, as for example in Figure 5.5. In suh a ase, the onnetivity nodes of the

omplement 'DT \ CDT' ompletes the missing list of boundary nodes.

In the sope of this thesis, for further grading of the boundary properties is neessary.

To do it so, the surfae nodes into its gradual details for a more stable Voronoi diagram

onstraining, are highlighted. A subdivision of the depition of a boundary into a group of
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surfaes, edges, and orners is suggested. This split is performed by the usual alulation

and assembly of boundary normals, whih is trivial if one has the boundary nodes in hand.

Assembling of normals refers to grouping node normals gained from di�erent primitives

together.

(a) (b) l

Figure 5.6: Bulk, Surfae, Edge and Corner detetion

As a result of assembling, bulk, surfae, edge and orner nodes regain node normal sets

with the ardinalities, 0,1,2 and 3 respetively, see Figure 5.6. This generalization would be

violated in the absene of onforming delaunay triangulation is present, whih is the ase

even for the latest and fastest onvex hull algorithms suh as qhull (Ref.[

B.Barber 1996

℄).

The onforming disretization is a neessity for Delaunay based interpolation methods.

Sine NEM interpolation and thereupon onluded integration outline is driven by Voronoi

polyhedras, non-onforming Delaunay triangulation is a very passable problem for this

ontent.

A ertain Lebesgue measure onsisteny in between Delaunay tetrahedralization and

Voronoi polyhedralization of a spei� domain is inquired. To larify, the disretization

Lebesgue measure should lose with inreasing number of data points asymptotially

towards to the desired Lebesgue measure of the original, i.e. of the domain. The Voronoi

tesselation ful�lling this argument is alled as onstrained Voronoi tesselation, CV.

lim
m→∞

vol (CDT) = lim
m→∞

vol (CV) (5.10)

Following this fundamental property of the onstrained Voronoi tesselation, the featured

frontier (featured boundary) set of the domain is de�ned. It is the intersetion of domain

set with the absolute omplement set, and an be obtained by the extension of the
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boundary set towards their normal diretion. The boundary an be de�ned as,

∂P = P \ Po (5.11)

Whereby the featured frontier has the following properties;

F (P) ∪ P
′ = P

′
(5.12a)

F (P) ∩ ∂P = 0 (5.12b)

Aordingly, the featured frontier an be de�ned as a sequene as follows,

F (P) = {pi + εni} ∧ (pi ∈ ∂P) ∧ (0 < ε≪ 1) (5.13)

Where, ni is denoting the normal vetor at boundary point pi. Epsilon (ε) is a presribed

�nite sale of the normal, whih should be determined aording to the size of the geometry,

and the preision limits of the Voronoi onstrutor. Aording to the de�nitions above, the

(a) Featuring Diretions (b) Featuring Variations

Figure 5.7: Sharp Featuring of the Skull geometry - Node Set is taken from AIM Shape-Visonair

Ref.[

P.Alliez 2006

℄

onstrained Voronoi diagram is build on the following union of sets.

Pv = P
o ∪ ∂P ∪ F (P) = P ∪ F (P) (5.14)

The Voronoi ell de�nition is done by means of the following membership restritions.
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CV
Pi = {r : ‖ x− pi‖ < ‖ x− pj‖ (∀i 6= j) ∧ (x ∈ R) ∧

(
pi ∈ P

)
∧
(
pj ∈ Pv

)
}

(5.15a)

CV =
m⋃

p=1

CV
Pi

(5.15b)

The onstrains of Voronoi diagram are supplied in equation-(5.15a) based on the split given

in eq(14). Similar to the raw Voronoi de�nition given in equation-(5.14), only the Voronoi

regions of point set P are of interest. The signi�ant hange is the allowed and forbidden

neighboring regions. The hyperplanes whih divide two featuring frontier sequene points

are stritly forbidden. The hyperplanes lying in between a boundary point (pi ∈ ∂P)

and a featured frontier point (pj ∈ F (P)) is allowed and de�ne the boundary faets

(ridges in 2d). The union of Voronoi polyhedras onforming these onditions is alled here

onstrained voronoi tesselation, CV. The suess of the suggested methodology an be

(a) Constrained 2d tesselation(b) Constrained Voronoi Tesselation of

a sphere

() Constrained Voronoi

Tesselation of a nononvex

geometry

Figure 5.8: Constrained Voronoi Tesselations

well observed for shape featuring in Figure 5.7 and for onstrained Voronoi tesselation in

Figure 5.8.

As stated before, the problems whih are faed with, related to the dual onstrution,

are onsidered to be general and fundamental, and exist in many in-use algorithms in

publi and ommerial softwares. However, any solution suggestion for the orresponding

problem of interest is unfortunately not spotted during the literature survey. In this stage,

the issues onerning meshing are �nalized, and into next step of natural element method

an be entered.
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5.3 Non-sequential Nodal Integration

Interpolators are mandatory for numerial tehniques of solving PDE's. In general, algebrai

funtions whih ful�ll ertain onditions are of fundamental importane for traditional

FEM. Spei�ally, oe�ients whih are used to approximate �eld values at a ertain

loation do not exist in NEM in means of algebrai funtions with onstant oe�ients,

i.e. polynomials. The interpolators of a loations are values, whih depend subjetively on

the distribution topology of the point set around this loation. Additionally, Zienkiewiz

Ref.[

O.C.Zienkiewiz 2000a

℄ states the general onvergene riteria for shape funtions used in

Finite Element method as follows,

1. "The ontinuity of the unknown only had to our between elements (i.e., slope

ontinuity is not required), or, in mathematial notation C0 ontinuity was needed;

2. The funtion has to allow any arbitrary linear form to be taken so that the onstant

strain (onstant �rst derivative) riterian should be observed in eah element

For NEM, the orrespondent of the element in FEM would be at best the Voronoi ell.

Sine a node is representing the enter of that Voronoi ell, the ideas listed above for

the onvergee riteria are self-veri�ed. In non-Sibsonian interpolation, the values of the

interfae of elements are diretly evaluated by using the enter values of the Voronoi ells,

thus �rst ondition is well satis�ed. Sine a loal Voronoi onstrution

5

is neessary for the

veri�ation of seond ondition, and if done so, sine it will be seen that another strain

value be evaluated in the new loation, the minimum requirement of point two is satis�ed

as well. These arguments let the de�nition of meshless to overlap with the onept of

interpolating element-free (onnetivity-free) domains.

For the sake of ompleteness, the non-Sibsonian (Ref.[

J.S.Chen 2001

℄) form of the numerial

interpolation summation will be repeated here. Some riteria suh as, gradient-free

(strain-free) onstant �eld (rigid body) ondition known as partition of unity and self

(linear) reproduibility onditions should be ful�lled. These requirements, in opposite to

the previously listed pre-requests, is of quantitative nature to be satis�ed.

To start with, a vetor �eld at a lous x an be approximated in terms of the nodal values

5

i.e., inserting another point in the Voronoi ell of interest and investigating the value
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of that vetor �eld as shown next.

u(x) ≈ û(x) =

#support∑

I∈N

ϕI(x)ũI (5.16a)

ϕI(x) =
L (Vx,xI

) /‖x,xI‖∑#
J L (Vx,xJ

) /‖x,xJ‖
(5.16b)

#support∑

I∈N

ϕI(x) = 1 (5.16)

x =

#support∑

I∈N

ϕI(x)xI (5.16d)

The support size is given as a priori in terms

of element onnetivities for FEM, or bounded

by saling parameters in meshfree methods

with reproduing kernel partile

a

and element

free Galerkin interpolators. For the ase of

nodal integration, based on the non-Sibsonian

interpolation, the size of the support is assumed

to be pre-determined by means of the primary

Voronoi neighborhood. The underlying manifold

allows partial inlusion of nearly equidistant points

in the interpolation support of the lous of interest

as an be seen in Figure 5.9.

a

for more reading, refer Ref.[

Y.Chen 2006

℄

Figure 5.9: Non-sibsonian interpolation

around a point. The right-most node is

not inluded in the integration but the

uppermost is.

The logial on�it lari�ed above is explored and signi�antly retrenhed by the researhers

of the �eld. Dolbow and Belytshko (Ref.[

Dolbow 1998

℄) state that the misalignment of the

spatial oordinates and loal supports is the (more) signi�ant soure of error in meshfree

methods. Chen et.all. (Ref.[

J.W.Yoo 2004

℄) are onsent to former developers of the method

and all the result pertinent to the ambiguous determination of support size as spatially

instable and under-integrated. Again Chen et all. (Ref.[

J.W.Yoo 2004

℄) show that a signi�ant

betterment is possible if seondary Voronoi tesselations are done around the Voronoi ell

of the lous of interest. The idea of interpolation summation around a point proposed by

these writers is tangible if one onsiders it with the divergene of a di�erential around the

point of interest. In fat, the method is named as stabilized onforming nodal integration,

but not interpolation.

Considering a di�erential, for instane the gradient of a salar �eld around a point x,

without referring to any homogeneous or in-homogeneous relationship. The integration of

the mentioned gradient an be redued in spae by using the Gauss-divergene theorem as

follows: ∫

Ω
∇u (x)dV =

∫

Γ
u (x)ndS (5.17)
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If the aforementioned integration domain is taken to be a Voronoi polyhedra, the ounter

surfae would onsist of the set of polygon faets de�ning that Voronoi ell. Consequently,

the integration of a gradient (or a di�erential) requires spei� evaluation points on the

ounter polygons. The Dirihlet ells around the integration points are alled in this thesis

as seondary voronoi ells. The divergened integral an be approximated on a Voronoi ell

as the following;

∫

Γ
(un)dS ≈

∫

Γ
(ûn)dS =

#PrimSupp∑

I

(
L (Vx,xI

)nI

#SecSupp∑

J

ϕJ(xI)ũJ

)
(5.18)

The preeding method is postulated as stabilized onforming nodal integration. The

(a) primary Voronoi/Delaunay dual (b) seondary Voronoi regions around

integration points

Figure 5.10: Primary and seondary Voronoi tesselation for the sequential integration of the

di�erantials

method of integration developed for the urrent work di�ers from the former one in terms

of the antagonism of forming and outome. The previous method is established on a

suessive onstrution of seondary Voronoi ells. The ontribution is done on the order

of the tandem, whih is ine�etual for the result. The posterior one is therefore renamed as

non-sequential nodal integration, due to the unordered and sudden onstrution attribution

of individual omponents of integration.
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5.3.1 Evaluation of Shape Value Matrix

The method is founded on the idea

of meshing nodal point set together

with the evaluation, i.e. integration

point set. The integration points

are priorly known, or alternatively

determinant (perfetly preditable),

as long as initial onstrained Voronoi

tesselation is performed. For the

Voronoi-based integration methods, it

is di�ult or inoherent to argue

on the loation as well as the

number of (neessary or su�ient)

integration points, beause shape

values are not resultants of funtions.

One di�erene stated as forming is

obvious in omparing Figure 5.10 with

Figure 5.11. In non-sequential forming,

the nodal and gaussian (integrating)

points are ombined into a single

nodal/gaussian Delaunay/Voronoi dual.

As a onsequene of non-sequential

forming, an expliit dependene

of an arbitrary integrator point to

another one is present. Whereby in

sequential forming, seondary ells are

non-overlapping and thus an expliit

dependene (almost) of an arbitrary

integrator point to only nodal points is

present.

Figure 5.11: Left:Nodal Delaunay-Voronoi dual

inluding only nodes. Right :Nodal/Gaussian

Voronoi tesselation. Nodes in red, integrators (gauss

points) in blue.

On the basis of the fast onvex hull onstrution algorithms, non-sequential forming is is

observed to be faster

6

then sequential one. The seond di�erene is the outome of the

postulated method. For this purpose, the sets of nodal and gaussian point oordinates N

and G are de�ned, and their union with the disjoint nodal oordinate set NG.

N = {xN1 ,xN2 ,xN3 , ....,xNm : ∀xNi ∈ R
3} (5.19a)

G = {xG1 ,xG2 ,xG3 , ....,xGk : ∀xGi ∈ R
3} (5.19b)

NG = N ∪G ∧ N ∩G = ∅ (5.19)

6

The P or NP omplexity of the problem, as well as any omparison is omitted in this treatise. The

intent is a postulation of an alternative method without refering pragmati arguments, yet the speed

advantage is still a qualitative objetive and advantage whih is to be brie�y mentioned.
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The ondition-(5.16d) written in matrix-vetor form de�ned in the set of nodal oordinates

and set of union of nodal∨gaussian oordinates are;

xN = ΨNxN
(5.20a)

xNG = ΨNGxNG
(5.20b)

Where, ΨN
and ΨNG

are shape value matries settled on the nodal on�guration

Figure 5.11(Left) and nodal∨gaussian on�guration Figure 5.11(Right) respetively. ΨG
is

not of interest and therefore not given here.

Some properties of shape value matries are important to follow on. ΨN
(m×m) is

a zero-diagonal square matrix, beause self-inlusion is adverse to the de�nition of the

non-Sibsonian interpolation sheme. ΨNG
is a (k+m)×(k+m) zero-diagonal square matrix

whih inludes at least 9 times (6 times in 2d) more zero or non-zero entries as ΨN
does.

The ardinality of G determines the size of the ΨNG
shape value matrix. The simple reason

for this lower limit is that, eah Voronoi ell should have support neighbors of 4 (3in 2d)

suh that the simplest enlosed primitive ould be represented.

k =
1

2

m∑

I=1

#SupportI ≥
m∑

I=1

2 (5.21)

It is not immediately lear that one searhes for the shape value matrix whih re-produes

gaussian oordinate vetor from the nodal oordinate vetor.

xG = ΨxN
(5.22)

If one extends the size of the vetors to (k+m),

xN =

m︷ ︸︸ ︷
[xN1 ,xN2 , . . . ,xNm,

k︷ ︸︸ ︷
0,0, . . . ,0] (5.23a)

xG =

m︷ ︸︸ ︷
[0,0, . . . ,0,

k︷ ︸︸ ︷
xG1 ,xG2 , . . . ,xGk ] (5.23b)

xNG =

m︷ ︸︸ ︷
[xN1 ,xN2 , . . . ,xNm ,

k︷ ︸︸ ︷
xG1 ,xG2 , . . . ,xGk ] (5.23)

And similarly, if one extends the size of matries to (k+m),

ΨN =




m×m︷︸︸︷
ψN

nw

m×k︷︸︸︷
ψN

ne

ψN

sw︸︷︷︸
k×m

ψN

se︸︷︷︸
k×k


 ΨNG =

[m×m︷︸︸︷
ψNG

nw

m×k︷︸︸︷
ψNG

ne

ψNG

sw︸︷︷︸
k×m

ψNG

se︸︷︷︸
k×k

]
(5.24)

The northeast, southwest and southeast sub-matries of the nodal shape value matrix are

zero-matries, whereby the northwest is a zero-diagonal sparse matrix. Preisely, it is a
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hollow row-stohasti matrix.

ψN

nw =




0 · · · ψN

0m
.

.

. 0
.

.

.

ψN

m0 · · · 0


 ; ψN

ne = ψ
N

sw = ψN

se = (0) (5.25)

Similarly, the southeast sub-matrix of nodal/gaussian shape value matrix is also a hollow

row-stohasti matrix. The remaining sub-matries are sparsely populated. Among them

the northwest sub-matrix is almost zero matrix, beause the nodal Voronoi regions are

mostly surrounded by the gaussian regions.

ψNG

se =




0 · · · ψNG

(m)(m+k)
.

.

. 0
.

.

.

ψNG

(m+k)(m) · · · 0


 ; ψNG

nw ≈ (0); ψNG

ne 6= (0); ψNG

sw 6= (0)

(5.26)

A row stohasti matrix may have eigenvalues with absolute values smaller or equal then

one. The row stohasti matries of equations (5.25) & (5.26), have at least one eigenvalue

reahing their maximum of unity, whih is self evident from self reproduibility onditions of

equations (5.20a) & (5.20b). In any ways of getting the shape vale matrix in equation (5.22)

inlude in�nite powers of these stohasti matries, whih diverge. Therefore, the existene

of expliit inversion operations to reah a form of equation (5.22) should be disussed

arefully. To start with, the gaussian vetor an be written using the self reproduibility

onditions of the shape value matries,

xG = IxG = xNG − xN

= ΨNGxNG −ΨNxN = ΨNGxNG −ΨNxNG

=
(
ΨNG −ΨN

)
xNG =

(
ΨNG −ΨN

)(
xN + xG

) (5.27)

Reformulated in matrix-vetor form for the sake of learene,

xG =

[
Inw 0

0 Ise

][
0

xG

s

]
=

[
−ψN

nw 0

ψNG

sw 0

][
xN

n

0

]
+

[
0 ψNG

ne

0 ψNG

se

][
0

xG

s

]

=

[
Inw −ψNG

ne

0 Ise −ψ
NG

se

]−1[
−ψN

nw 0

ψNG

sw 0

][
xN

n

0

]

=

([
Inw 0

0 Ise

]
−

[
0 ψNG

ne

0 ψNG

se

])−1[
−ψN

nwx
N

n

ψNG

swx
N

n

]

(5.28)

The existene of this form depends on the invertibility of identity minus eastern

nodal/gaussian shape value matrix. In fat, only a loal existene of the inverse is neessary.

By onsidering that gaussian oordinate vetor in equation (5.23b) has only southern values
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of interest, we require �nite values only in the southern part of the inverse matrix as

subsribed in the inverse term of the equation beneath;

xG =
(
I −ΨNG

e

)−1 (
ΨNG

w −ΨN

w

)
xN

(5.29a)

⇒ Ψ =
[(
I −ΨNG

e

)−1
]
s

(
ΨNG

w −ΨN

w

)
(5.29b)

The existene of �nite southern part of the inverse given in equation (5.29b) an be

investigated if one writes the in�nite Neumann series of the inverse.

[(
I −ΨNG

e

)−1
]

s

= [Ie]s +
[(

ΨNG

e

)]
s
+

[(
ΨNG

e

)2]

s

+ · · · +

[(
ΨNG

e

)l]

s

+ · · ·

=
∞∑

n=0

[(
ΨNG

e

)n]
s
=

∞∑

n=0

[(
0 ψNG

ne

0 ψNG

se

)n ]

s

=

∞∑

n=0

(
ΨNG

se

)n

(5.30)

Eah and every member of this Neumann series, whih onsist of the powers of eastern part

of the hollow stohasti matrix of nodal/gaussian shape values, have zero western part. As

an be followed from equation (5.30), the zero-onvergene of the southeastern powers is

required for the equality of the form of equation (5.29b).

lim
n→∞

(
ΨNG

se

)n
= 0 ⇐⇒ det

(
I −ΨNG

se

)
6= 0 (5.31)

The nodal and gaussian oordinates are not self interpolated. Therefore, the southeastern

matrix of equation (5.31) is also hollow. Regardless of the ondition of partition of unity,

the absolute values of eah entry of this matrix is stritly smaller then unity. The supremum

norm of the absolute sums of the rows, i.e. in�nity norm is also smaller then unity as evident

in blok-wise representation of equation (5.31). The latter inequality is a result of the fat

that, nodal/gaussian shape value matrix is row stohasti

7

, and eah gauss point has at

least one node point as neighbor. Thus, eastern/western split of the southern part of the

nodal/gaussian matrix enfores the in�nity norm under interest to be stritly less then unity.

‖ΨNG

se‖max = sup
{∣∣∣
(
ψNG

se

)
rc

∣∣∣
}
< 1; (5.32a)

‖ΨNG

se‖∞ = sup
r

{
k∑

c

∣∣∣
(
ψNG

se

)
rc

∣∣∣
}
< 1 (5.32b)

The ondition (5.32a) alone is weak for the proof of onvergene of geometri series in

equation (5.30), beause the maximum norm is not a sub-multipliative norm. In order

7

As a result of partition of unity and the arbitrariness of the geometry and system under

onsideration
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to strengthen the arguments, �rst, the maximum norm of the square of the matrix and

sub-multipliative in�nity norm should be ompared with eah other.

‖
(
ΨNG

se

)2
‖max = sup

{∣∣∣∣∣
∑

l

(
ψNG

se

)
rl

(
ψNG

se

)
lc

∣∣∣∣∣

}

≤ sup

{
∑

l

∣∣∣
(
ψNG

se

)
rl

(
ψNG

se

)
lc

∣∣∣
}

≤ sup

{
‖ΨNG

se‖max
∑

l

∣∣∣
(
ψNG

se

)
rl

∣∣∣
}

= sup
r

{
∑

l

∣∣∣
(
ψNG

se

)
rl

∣∣∣
}
‖ΨNG

se‖max

= ‖ΨNG

se‖max‖Ψ
NG

se‖∞

(5.33)

Aordingly, the upper limit of the third power and any power of the matrix is preditable

in the same way.

‖
(
ΨNG

se

)3
‖max = ‖ΨNG

se

(
ΨNG

se

)2
‖max ≤ ‖

(
ΨNG

se

)2
‖max‖Ψ

NG

se‖∞

≤ ‖ΨNG

se‖max‖Ψ
NG

se‖
2
∞

(5.34a)

⇒ ‖
(
ΨNG

se

)n
‖max ≤ ‖ΨNG

se‖max‖Ψ
NG

se‖
n
∞ < ‖ΨNG

se‖
n
∞ (5.34b)

Whih says that the maximum norm of the powers are always smaller then the same powers

of the in�nity norm, for the matries satisfying the ondition set of (5.32a) & (5.32b).

Having this information in hand and using the sub-additivity of norms in de�nition, one an

argue on the upper border of the matrix to be inverted. The �nal equation below shows

that the maximum norm of the Neumann series is smaller then the Neumann series of the

in�nity norms. Knowing that the in�nity norm is �nite and stritly smaller then one, it an

be shown that the maximum entry of the inverse is �nite, thus a shape value matrix in the

form of (5.29b) does exist for arbitrary on�gurations.

‖
(
I −ΨNG

se

)−1
‖max = ‖

∞∑

n=0

(
ΨNG

se

)n
‖max ≤

∞∑

n=0

‖
(
ΨNG

se

)n
‖max

<

∞∑

n=0

‖ΨNG

se‖
n
∞ = (1− ‖ΨNG

se‖∞)−1

(5.35)

Finally, it an be onluded that �nding a shape value matrix whih maps nodal oordinates

to the gaussian ones is ahieved by a single expliit inversion and multipliation as below.

Pratially, there is no need of evaluation of nodal shape value matrix of (5.20a). However,

nodal CDT&CV on�gurations are neessary for the determination of integration loations.

Ψ =
(
Ise −ΨNG

se

)−1 (
ΨNG

sw

)
(5.36)
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5.3.2 Nature of Shape Value Matrix

In this setion, some important properties of the shape value matrix will be stated. Together

with the equations (5.20a), (5.24) and (5.26) one an onlude that the nodal oordinates

are representable in terms of the gaussian oordinates, by means of the northeastern part

of the nodal/gaussian shape value matrix.

xN

n = ψNG

nex
G

s (5.37)

By remembering the inequality (5.21), a omment on the ardinality of the gaussian and

nodal point sets an be done.

k ≥ 2m ⇒ #G ≥ 2#N (5.38)

Depending on the identi�ation of linear mapping diretion, the system of equations given

in equation (5.38) an be seen as an underestimated or an overestimated system. By

onsidering the gaussian oordinates as unknowns -whih is plausible onsidering that the

geometry is de�ned initially in terms of the nodal oordinates-, the system would have more

unknowns then equations, thus underestimated.

The matrix

(
ψNG

ne

)
is size of m×k with m<k as stated above. This type of matrix has

the so-alled pseudoinverse

(
ψNG

ne

)+
∈ R

k×m
, whih always (∀

(
ψNG

ne

)
∈ R

m×k
) uniquely

exists. Under the de�nition of Penrose onditions (Ref.[

A.Laub 2008

℄), the Moore-Penrose

pseudoinverse of a matrix (a row independent matrix) an be evaluated by the following

equality;

(
ψNG

ne

)+
=
(
ψNG

ne

)T [(
ψNG

ne

)(
ψNG

ne

)T]−1

(5.39)

Solving the system of equations of (5.38) is equivalent of searhing for a gaussian

oordinates vetor x̃G

s whih satis�es the equality onstraint (5.38). One an further take

on board an inequality ondition, whih an selet one of the solutions among many other

possibilities whih do exist aording to the underestimated nature of the statement. Linking

the additional inequality as the least half of the Eulidian norm of the possible solution

vetor, the problem statement results in terms of an optimization set;

minimize 0.5‖x‖22

: −ψNG

nex+ xN

n = 0
(5.40)

The minimization of the Lagrangian funtion belove with a proper seletion of Lagrangian

multiplier vetor λ (Ref.[

K.U.Bletzinger 2011

℄) is analogous to the problem set above.

minimize L (x,λ) = 0.5‖x‖22 + λ
(
−ψNG

nex+ xN

n

)
(5.41)

There are two sets of Kuhn-Tuker onditions (Ref.[

K.U.Bletzinger 2011

℄) of equation (5.42b)

& (5.42) of the given Lagrangian to be satis�ed at the optimum loation. Written in the
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indiial notation,

minimize L (xi, λj) = 0.5 (xi)
2 + λj

(
−
(
ψNG

ne

)
ji
xi +

(
xN

n

)
j

)
(5.42a)

∂L

∂xi

∣∣∣∣
xi=(x̃Gs )i

=
(
x̃G

s

)
i
− λj

(
ψNG

ne

)
ji
= 0 (5.42b)

∂L

∂λj

∣∣∣∣
xi=(x̃Gs )i

= −
(
ψNG

ne

)
ji

(
x̃G

s

)
i
+
(
xN

n

)
j
= 0 (5.42)

The KT onditions state that,

(
ψNG

ne

)T
λ = x̃G

s (5.43a)

(
ψNG

ne

)
x̃G

s = x
N

n (5.43b)

Left multipliation of equation (5.43a) with

(
ψNG

ne

)
and substituting into gives,

(
ψNG

ne

)(
ψNG

ne

)T
λ = xN

n ⇒ λ =

[(
ψNG

ne

)(
ψNG

ne

)T]−1

xN

n (5.44)

By bak-substituting of the expression (5.44) into equation (5.43a),it is lari�ed that the

optimization manifold given in (5.40) is satis�ed with the Moore-Penrose type pseudo inverse

given by the de�nition (5.39).

x̃G

s =
(
ψNG

ne

)T [(
ψNG

ne

)(
ψNG

ne

)T]−1

xN

n

=
(
ψNG

ne

)+
xN

n

(5.45)

By the de�nition, the gauss points do satisfy the equation (5.20b). The northeastern part

of the equation indiates that there are many possible gauss point vetors (by keeping the

number of gauss points onstant) whih satis�es the ondition of (5.20b) and there is no

strong argument that the orret one should have the least Eulidean norm.

It has been suggested to loate the integration points at the oordinates whih tender

geometrial symmetry, i.e. Voronoi faet entroids, and entroids of the triangles of Voronoi

faet divisions. Some other set of loation whih satis�es the minimization problem (5.40)

does not neessarily overlap with the geometrially symmetrial set of loation . As a result,

the least square Moore-Penrose inverse on�its geometrially with the disrete divergene

approximation (5.18), and thus it should stayed perfetly determinate way of evaluation

(5.36).

The di�erene in between the determinate and Moore-Penrose inversion is observable if

one bak-updates the oordinates aording to the shape-value matrix found, seen in

Figure 5.12. Therefore, the Moore-Penrose type of inversion in non-sequential stabilized

nodal integration should not be seen as an alternative, however, it should be noted here to
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draw attention about the possible bottleneks, one an possibly fae with.

Di�erenes in support sizes in between the lassial FEM shape funtion interpolation,

NFEM non-Sibsonian sequential interpolation spuoort, and the presented non-sequential

interpolation for NEM an be seen in Figure 5.13. As obvious, the support for the ontinuum

an be extended to large radius of in�uene. However, sine this may in�uene the sparsity

of the global matries, the writer of the treatise suggest to manipulate the density of the

support. This an be ahieved by determining threshold values for the minimum shape-value

quantity, and the normalize the sum, so that the ondition of partition of unity is satis�ed.

(a) Determinate inversion (b) Moore-Penrose Inversion

Figure 5.12: Loation of gauss points (in blue) and nodal points (in orange) interpolated with two

di�erent linear mappings

(a) FEM support (b) NEM-SNI support () NEM-NNI support

Figure 5.13: Support sizes of a surfae node of a plate model
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5.4 Implementation and Examples

In the implementations setion, initially a short introdution is done for the appliation

of Hyperauhy equation. Sine this equation is almost the most ompliated one, the

other formulations an be extrated from it aordingly. Based on this formulation some

demonstrative examples obtained by the exeution of the written ode are presented visually

through illustrations.

To begin with, the energy split proposed is repeated here, and natural element shape value

interpolation on the virtual energy integrals is applied. The nonlinear internal virtual energy

divisions beome,

δΠPFint =

∫

Ω
[P : ∇Xδu] dV ≈

∫

Ω

[
P · ∇X

(∑
N I
)]

· δũdV = fPFint · δũ

δΠQGint =

∫

Ω

[
Q ∴ ∇⊗2

X δu
]
dV ≈

∫

Ω

[
Q

r
: ∇⊗2

X

(∑
N I
)]

· δũdV = fQGint · δũ

(5.46)

Correspondingly, the tangent matries of the non-mixed residuum internal fores an be

repeated here to be,

KIJ
P (F ) =

∫

Ω

[
∇XN

I ·
∂P T

∂F
· ∇XN

J

]
dV KIJ

Q(G) =

∫

Ω

[
∇⊗2

X N I l:
∂QT2

∂G

r
: ∇⊗2

X NJ

]
dV

(5.47)

And the mixed-residuum's of the internal fores ause the following ontributions in the

tangent sti�ness matries,

KIJ
P (G) =

∫

Ω

[
∇XN

J ·
∂QT2

∂G

r
: ∇⊗2

X NJ

]
dV KIJ

Q(F ) =

∫

Ω

[
∇⊗2

X N I l:
∂QT2

∂F
· ∇XN

J

]
dV

(5.48)

The assumed strain displaement, and assumed hyperstrain displaement matries are,

B̃
I
=

1

V

∫

Ω

[
∇XN

I
]
dV =

1

V

∫

S
N IndA

B̃
I
∇ =

1

V

∫

Ω

[
∇⊗2

X N I
]
dV =

1

V

∫

S

[
n⊗∇XN

I
]
dA

(5.49)

The seond term is an extension of stabilized onforming nodal integration to the higher

order volume average derivatives of oordinate interpolaters. No analyti funtions or

pathes for integration is implemented here, in fat, the integration is performed on natural

neighbors of Voronoi polyhedrons, and therefore is truly natural element method.

This shema and simpler version of it an be applied to many di�erential equations. The

�rst example hosen is the fundamental solution of the Laplae equation;

▽
2ϕ = δ (x− xo) (5.50)

Sine the solution if fundamental, as indiated a Dira delta type exitation is used.

The phenomenologial analogue of Laplae equation is the steady state heat ondution

equation. The formulation is investigated on a quarter of 3D Mobius strip with retangular
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ross setion and elliptial path way geometry, and a point soure of heat �ux in the origin

of the ellipse. The result is satisfying and well overlapping with the analytial solution,

whih is omitted here.

(a) Nodal/Gaussian distribution of mobius strip (b) Counter�ll of soure

loated at the origin-solved

Figure 5.14: A piee from an in�nitely large imaginary volume with a heat soure loated at the

origin of the elliptial split pathway

This example represents also a ross-hek of all the previous steps, namely the lustered

triangulation, onstrained Voronoi onstrution and non-sequential integration. As next

example, one an move into solution of the linear momentum equation with �rst-order

�nite kinematis.

div(σ) + f = 0 (5.51)

Any other validation more then heking the visual smoothness and onvergene

(a) Beam with a ylindrial ross setion

under large rotations

(b) An abstrat bone-artilage Femur interfae

under ompression

Figure 5.15: Two solutions of linear momentum equation for large deformations, onsidering

geometrial nonlinear e�ets only

harateristis of examples similar to Figure 5.15 are not performed for this treatise. To

approah the �nal destination, an additional hek for the orret evaluation of the urvature

vetor an be performed as well. For this purpose, a beam struture lamped on both sides
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Figure 5.16: Bending diretions as urvature vortexes of a beam.

loaded in the middle is taken as a andidate. The vetor plot of Figure 5.16 is quite satisfying

and onsistent with the antiipation. After getting all the neessary kinemati quantities

ready, a more realisti example an be taken for omparison of di�erent reorientation

manifests. For the geometry a artilage-alike geometry in Figure 5.17, su�using a spherial

rigid grounding whih represents the bone-artilage interfae, is onstruted. For imposing

the essential boundary onditions, an analyti-plate against artilage model is taken for the

ontat implementation. As stated previously, partile based methods -NEM being one of

Figure 5.17: Constrained 3d Voronoi diagramm of the desribed artilage-like geometry

them- an be alternatively quite attrative if it omes to the point of simulating hallenging

ations, ontat being one of them. In the ase of NEM, the evaluation of the ontat

searh algorithms is signi�antly easier then FEM, as done in the �rst hapter of modeling

AC as biphasi media. The nodal normals an be very uniquely and easily determined by

summing up the polyhedral surfae normals and inverting it. Aordingly, the urrent normal

of the node an be very e�iently determined by applying Piola transformation or Nanson's
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formula at

8

that loation of interest. Aordingly, any omplex ontat formulation of

penalty methods or Lagrangian multiplier methods an be applied for onstraining the

penetration of the surfaes. As an be seen from the Figure 5.18, the ontat searh in

between an analytial surfae and the artilage-alike plane strain system performs notedly

well. From the bottom piture of the Figure 5.18 it an be onluded that the isotropi

Figure 5.18: Top: Displaement result of plate artilage ontat. Bottom: Distribution of Isotropi

strain gradient energy G ∴ G.

strain energy is dominated under the loading surfae, and propagating from middle to

ontat free zones. This monolithi inrease an be observed by giving a look to the

vortex development (Figure 5.19) through the history of the deformation. Based on this

Figure 5.19: Development of G : Ê1

⊗2

from the beginning, intermediate to the �nal stage of the

imposed boundary ondition.

8

For natural element methods, remember that the nodes and evaluation points are overlapping
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investigations and omments in hand, one an move into omparing the di�erent types of

reorientation manifests introdued in the previous hapter.

5.5 Comparison of Di�erent Reorientation Manifests

In this �nal setion a rough omparison in between the proposed reorientation manifests are

ompared on artilage-alike plane strain senario. The ompared reorientation manifests are

namely, the strain driven, urvature driven and the one whih maximizes the Euler-Bernoulli

type of material model, whih is introdued in the hapter of Hyperbalane equations. The

details about the manifests and their onsisteny an be heked by giving a look to the

hapter of reorientation with strain and gradient e�ets.

The �nal results are presented in Figure 5.20. The �rst one is the result of reorientation

with pure strain e�ets, seond one as the maximization of simple urvature, and the third

one as being maximizing ombined streth-bending e�ets.

The �rst result di�ers signi�antly from the one presented in the hapter of reorientation,

even though the manifest is kept to be same. The reason beyond is obviously the given

boundary onditions, in the previous one plane stress type of assumption is made, in the

latter one plane strain assumption is used. The previous one giving aordingly tangential

reorientations under the loading path through the depth, and perpendiular in the depth

zone and parallel to the super�ial zone away from the appliation of load. The urrent

one whih is presented here in the �rst Figure of 5.20 however, gives almost perpendiular

type of �bers in the overall struture, whih is ertainly not representing the reality.

The seond manifest with maximizing the urvature on the other side, suggests partially

tangential �ber orientations on the surfae, espeially at the loations of ontat release,

as ommented previously on Figure 5.19. This manifest was however suggested to be a

work-around, but served pratial advantages, like semi-analytial reorientation , developed

analogous to the strain driven reorientation.

The third one represents the �ber orientation at the depth zone of the ontat region niely.

The super�ial zone and the depth zone far away the loading are aptured the reality as

well, as being tangential on the surfae and perpendiular towards to the bone interfae.

The super�ial zone beneath the ontat interfae however leads perpendiular �ber to the

surfae, whih is the only drawbak of the bending and streth type ombined reorientation

manifest.

Based on these objetive interpretations, several omments an be done. First the modeling

artifats should be taken under onsideration. The �at punhing or pressing the surfae

follows the assumption of that the master and slave bodies have almost omparable sti�ness

values. The other approah applied for the ase of plane stress in the hapter of reorientation

with strain and strain gradient e�ets, did not follow this assumption, thus only onsistent

nodal type of fores are applied. On the other side, the ontat formulation presented in the

�rst hapter of artilage as biphasi media, took the geometry of the master surfae into

aount, but not the sti�ness. The modeling artifats, and variations around those artifats
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are a ommon problem in nonlinear mehanis, and leads in the absene of experimental

evidene mostly to speulations.

A �nal and quite ruial omment an be done around the fundamental philosophy of the

reorientation in this ontext. One an never assure that the tissue in the mirolevel tries hard

to improve the marosopi mehanial properties. Besides, those marosopi properties

an not be always redued to sti�ness, or ompliane. As experimentally evident, artiular

artilage has the priniple funtionality of minimizing the tangential surfae resistane in

between two load arriers. This might be ahieved by swelling, but in whih rate and under

whih irumstanes is still an unknown parameter. In short, the biologial struture is

extremely ompliated, and one an only aumulate information segmentally, as tried to

be done in this treatise. By learning this, the writer of the thesis has onsiously avoided

to reah solid statements, whih an lead the reader under doubt, disourage or ondut

generally wrong, spei�ally orret informations.

One lear statement is, that any improvement, novel formulation presented in this setion

had been shown to impat on the material properties and the remodeling manifests. Without

spei�ally laiming one is better then the other one, it is but lear that, strain gradient

e�ets do have an e�et on reorientation.
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(a) Strain based reorientation

(b) Curvature based reorientation

() Strain and strain gradient based reorientation

Figure 5.20: Comparisons of di�erent reorientation manifests
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6.1 Introdution

This onlusion refers to the German word to Zusammenfassung, rather then Fazit, where

the previous one represents a kind of summary, and the latter one refers to a solid upshot.

Sine the �eld of Biomehanis as a branh of ontinuum mehanis is atively developed,

any onrete statement is avoided on purpose. In the ongoing subsetions of this onlusion,

the outomes of the individual hapters of this work will be linked to eah other, and some

neessary brief interpretations will be summarized.

6.2 Least Requirements

One may �nd many reent PhD publiations, where a long repetition of the generially

aepted theory of ontinuum mehanis are presented as fundamental or as introdution.

As in many others, this work takes advantage of the tradition, however in a one-step-front

philosophy is still reonsidered.

The �rst hapter deals with the most simple formulation of bi-phasi media, presented by

means of ited publiations in the orresponding plaes of the hapter. Aording to the

results given, namely the representative senario of the tumor growth and the vertially

loaded Artiular artilage do demonstrate the power and di�erene of using multiphase

approah against the single-solid phase approah. To list it, the advantages may be listed

as follows.

• Mixed �eld approah gives the opportunity to determine the manifests for solid and

�uid phases of material, irrespetive and independent of eah other.

• Mixed �eld approah gives the opportunity to determine the respetive e�ets of

individual omponents, suh as permeability
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• The numerial e�ort for both programming and omputing are omparable with

one-phase approah

• Most of the Biologial omponents are of multi-phase omposites, thus the approah

is realisti per de�nition, and more rational then emprial models based on

visoelastiity.

There are many ways of ful�lling this least requirements, in this work the re-introdution

of bi-phase material formulation and numeris onsidered and shown to be su�ient.

6.3 Hyperelastiity

As stated above, the least requirement is onsidered to be neessary, however not su�ient

for improvement. In this onern, in between the fundamental neessity and the superior

limit, there are enough topis whih worth to investigate. Hyperelastiity is onsidered to

be one of them. As stated in the orresponding hapter, the Hyperelastiity should follow

a fully developed motion of the Mehani, namely Hyperkinematis. Aordingly, the work

about Hyperkinematis an lead into these onlusions;

• Higher order terms in Kinemati motion do present, or existentially as natural as lower

order terms (This is a bionditional statement)

• Higher order terms in Kinemati is taken into aount in relatively older theories (Shell

theory: Curvature dependent Energy terms Ref.[

Bisho� 2004

)℄

• Any objetive funtion of the natural minimization proesses may be triggered by

higher order e�ets

The last laim is hard to prove, and equally hard to disprove. For omprehensive disussion of

this argument, please visit the previous onlusion on this topi, namely Ch.[5.5℄. However

the di�erene in the presene and the absene of these higher order kinemati and thus

elasti e�ets an be demonstrated. But �rst, a mathematially onsistent framework for

the theory is to be developed. This is partially done during the preparation of this work.

The hapters Ch.[2℄ and Ch.[3℄ deal only with the spei� topis onerning the higher

order e�ets, and try to larify the arising questions in a novel way.

6.4 Funtional Adaptation, Abnormal Cell Growth

It is of ruial interest to understand the intermediate objetive funtion beyond funtional

adaptation and abnormal ell growth. The better understanding brings one to the next

pratial step, estimating the time, the volume and the ongoing onsequenes. For this

purpose, theoretially onsistent growth models are postulated, whih an be related to

empirial observations of phenomena. As usual in the phenomenologial theory, not enough

attention might be paid into the fundamental signi�ane Ref.[

Thewlis 1973

℄. For pratial

purposes again, the intermediate signi�ane might be of the main purpose. Any design of

experiment an be performed to feed new parameters to broaden and deepen the number

of signi�ant �gures into the list of parameters.
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In this work, it has been shown that,

• For the generated geometry and boundary onditions, the existing remodeling

algorithms do not always reveal the expeted �nal form of evolution (thus of funtional

adaptation)

• For the generated geometry and boundary onditions, funtional adaptation with

higher order Kinematis does an e�et on the solution, thus may play a role in

metamorphosis

Whih may mean that the generated geometry and boundary onditions do not represent

the reality, or represent the main trigger of evolution. However, as method of design of

experiments states, loking this disussion (geometry & BC) as unhanged, the e�ets

aused by the higher order kinematis are still undeniable.

Apart from this short onlusion, an emphasis has been made on the importane of providing

the abstrat system with lear boundary onditions. Therefore, there is the attempt of

deterministi way of growth is presented in the theory of porous media setion. In this model,

the hot points were predetermined (whih an be provided by means of experimentation),

and the empirial model and its onsisteny with the reality an be veri�ed from this

approah. This veri�ation is not overed in this work.

6.5 Methodial Development

The methodial developments are generally done,in order to generally improve omputation

power in saving physial spae and gaining speed. In the �eld of Biomehanis, if the

developed method is generally aepted to be revealing pragmati results, espeially for

patient spei� appliations, these types of developments are expeted to be done. In this

branh, one an give numerous works as examples.

Even though Finite Element Method has been the most widely used method of solving

partial di�erential equations, there are ountably many methods are still �nding their �elds

of appliation. The obvious reason beyond this is the fat that, eah individual method

has its own ore area, where no other an be as fast or as reliable. Among them, Natural

Element Method has the advantage of solving a domain of a problem, whih de�ned as a

point loud. This possibility enables one to omit the generation of the geometry, thus any

raw data an be prepared diretly ready for omputation. The primary reason of developing

Natural Element Solver is to serve this purpose. The indiret aim is to feedbak to the �eld

of omputational mehanis. This is also done in this thesis, for instane by developing

the non-sequential nodal integration tehnique, whih is not of primary importane for

Biomehanial appliations. Those kind of side-outomes shows a new perspetive for the

�eld of omputational mehanis.
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A.1 The derivatives of the spiral beam

Starting from this point, the derivatives for the spiral example will be given here in detail.

The spiral beam has mainly two parts, namely mid surfae and the thikness ontribution,
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π
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(A.1)

For the thikness ontribution, the Piola transformation of the derivatives of the mid urve

is taken into aount. These mid-urve-o� ontributions are alled to be deviatori, and

depending on the derivatives of the mid-urve.
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(A.2)

These ontributions will ause nonlinear Bernoulli kinematis, sine the urvature through

the thikness is punished by the onstant oe�ient of X2. Additionally the strain gradient

e�ets through the thikness are negleted. The total mapping is then,

x1 = xm1 + xd1

x2 = xm2 + xd2

(A.3)

The following derivatives are required,
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First the �rst four set of derivatives will be given,
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2

)
+

(
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)
X1

]
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(A.5a)
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∂X1

=

[
α sin

(
(1−X1)

π

2

)
+

(
1−

2α

π

)]
sin (α+ αX1)
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+
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(A.5b)

The seond derivatives of the �rst set,

∂2xm1
(∂X1)
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π

2
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+
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+
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(A.6a)
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+
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+
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(A.6b)

The seond set requires a little more operations,
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(A.7)
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∣∣∣∣
m

)2

+

(
∂x2
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∣∣∣∣
m

)2

+

(
∂x2
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From time being the following replaement holds,

(
∂x1
∂X1

∣∣∣∣
m

)2

+

(
∂x2
∂X1

∣∣∣∣
m

)2

= r (A.9)

The derivatives of this replaement are,

∂r

∂X1
= 2

∂x1
∂X1
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∂
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(A.10a)
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∣∣∣∣
m

) (A.10b)

with this replaement the �rst derivatives of the seond set beome,
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(A.11a)
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∣∣∣∣
m
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(A.11)
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(A.11d)
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The seond derivatives are,
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∂X1

−
1

2

∂

∂X1

(
∂x2
∂X1

∣∣∣∣
m

)
X2r

−3/2 ∂r

∂X1
+

3

4

∂x2
∂X1

∣∣∣∣
m

X2r
−5/2

(
∂r

∂X1

)2

−
1

2

∂x2
∂X1

∣∣∣∣
m

X2r
−3/2 ∂2r

(∂X1)
2
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And the mixed seond derivatives of the last set are,
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The mid-urve orrelation and the �rst derivative of the mid-urve was in fat given

before,
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The �rst derivatives of this orrelation are
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And �nally the seond derivatives of this expression is,
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B.1 Bending Strain and Strain Gradient energy density

Funtion

The bending energy formulation aording to the bernoulli beam beam theory, requires the

estimation of the radius of urvature as the other theories, The radius of urvature is taken

to be ommon in sharp and �at length hanges,

sin
(
α♯
)
=

∣∣m♯
∣∣

r
sin

(
α♭
)
=

∣∣m♭
∣∣

r
(B.1)

In order to take both e�ets into aount, the following estimation an be done,

c = r−1 =
sin

(
α♯
)
+ sin

(
α♭
)

|m♯|+
∣∣m♭

∣∣

=
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((
α♯ + α♭

)
/2
)
cos
((
α♯ − α♭

)
/2
)

|m♯|+
∣∣m♭

∣∣

≈
2sin

((
α♯ + α♭

)
/2
)

|m♯|+
∣∣m♭

∣∣

(B.2)

With the following formulae for the bending energy,

ψκ = EIc2 = EI
4sin2

((
α♯ + α♭

)
/2
)

(
|m♯|+

∣∣m♭
∣∣)2 ≈ EI

(
2− 2cos

(
α♯ + α♭

))
(
|m♯|+

∣∣m♭
∣∣)2 (B.3)

The osine of the rotation an be omputed by,

cos
(
α♯ + α♭

)
=

(
−m♯ ·m♭

)

|m♯|
∣∣m♭

∣∣ (B.4)
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The minus sign indiates that the sharp tangent to be rotated. The members whih are

used to ompute the invariants then,

−m♯ = F ·M−
1

2
G : M⊗2

m♭ = F ·M+
1

2
G : M⊗2

(B.5)

Together with the de�nitions above and the introdued invariants, the following invariant

formulation an be ahieved,

cos
(
α♯ + α♭

)
=

(Iκ4 − 0.25Iκ6 )

(Iκ4 − Iκ5 + 0.25Iκ6 )
1/2 (Iκ4 + Iκ5 + 0.25Iκ6 )

1/2
(B.6)

For simpliity the following replaements are done,

ψκ = xEI

(
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(
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∣∣m♭
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=
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1/2

|m| =
(∣∣∣m♯

∣∣∣+
∣∣∣m♭

∣∣∣
)

(B.7)

The �rst Piola Kirho� Stress and Hyperstress depends on,

Pκ =
∂ψκ

∂F
= −2EI

∂a

∂F
|m|−2 − 2EI |m|−3 ∂ |m|

∂F
(2− 2a)

Qκ =
∂ψκ

∂G
= −2EI

∂a

∂G
|m|−2 − 2EI |m|−3 ∂ |m|

∂G
(2− 2a)

(B.8)
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The neessary three tangent terms are then,

DPκ

F =
∂Pκ

∂F
= −2EI

∂2a
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(B.9a)

DPκ

G =
∂Pκ

∂G
= −2EI

∂2a

∂G∂F
|m|−2 + 4EI |m|−3 ∂ |m|

∂G
⊗
∂a

∂F

+ 6EI |m|−4 ∂ |m|

∂G
⊗
∂ |m|

∂F
(2− 2a)− 2EI |m|−3 ∂

2 |m|

∂G∂F
(2− 2a)

+ 4EI |m|−3 ∂a

∂G
⊗
∂ |m|

∂F

(B.9b)
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The neessary derivations should be introdued one by one,

a =
b

d

∂a

∂F

∂a

∂G

∂2a

∂F2

∂2a

∂G∂F
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(B.10)
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The derivatives in terms of the other values then,

∂a

∂F
=

∂b

∂F
d−1 − d−2b

∂d

∂F

∂a

∂G
=

∂b

∂G
d−1 − d−2b

∂d

∂G

∂2a
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Aordingly the derivatives of the diretly invariant dependent quantities should be evaluated

either

b = (Iκ4 − 0.25Iκ6 )
∂b

∂F

∂b

∂G
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(B.12)

The individual derivatives in terms of the invariant derivatives beome,
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(B.13)

The multipliative hange growth is neessary either
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The derivatives then,
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∣∣m♭

∣∣
∂F2

∂2d

∂G∂F
=
∂2
∣∣m♯

∣∣
∂G∂F

∣∣∣m♭
∣∣∣+

∂
∣∣m♭

∣∣
∂G

⊗
∂
∣∣m♯

∣∣
∂F

+
∂
∣∣m♯

∣∣
∂G

⊗
∂
∣∣m♭

∣∣
∂F

+
∣∣∣m♯

∣∣∣
∂2
∣∣m♭

∣∣
∂G∂F

∂2d

∂G2
=
∂2
∣∣m♯

∣∣
∂G2

∣∣∣m♭
∣∣∣+

∂
∣∣m♭

∣∣
∂G

⊗
∂
∣∣m♯

∣∣
∂G

+
∂
∣∣m♯

∣∣
∂G

⊗
∂
∣∣m♭

∣∣
∂G

+
∣∣∣m♯

∣∣∣
∂2
∣∣m♭

∣∣
∂G2

(B.15)

The total length hange,

|m| =
∣∣∣m♯

∣∣∣+
∣∣∣m♭

∣∣∣ ∂ |m|

∂F

∂ |m|

∂G

∂2 |m|

∂F2

∂2 |m|

∂G∂F

∂2 |m|

∂G2
(B.16)

The derivatives of the total length hange,

∂ |m|

∂F
=
∂
∣∣m♯

∣∣
∂F

+
∂
∣∣m♭

∣∣
∂F

∂ |m|

∂G
=
∂
∣∣m♯

∣∣
∂G

+
∂
∣∣m♭

∣∣
∂G

∂2 |m|

∂F2
=
∂2
∣∣m♯

∣∣
∂F2

+
∂2
∣∣m♭

∣∣
∂F2

∂2 |m|

∂G∂F
=
∂2
∣∣m♯

∣∣
∂G∂F

+
∂2
∣∣m♭

∣∣
∂G∂F

∂2 |m|

∂G2
=
∂2
∣∣m♯

∣∣
∂G2

+
∂2
∣∣m♭

∣∣
∂G2

(B.17)

The �rst derivatives of the sharp �ber length hange,

∂
∣∣m♯

∣∣
∂F

=
1

2
[
IEI4 − IEI5 + 0.25IEI6

]1/2
(
∂IEI4

∂F
−
∂IEI5

∂F
+ 0.25

∂IEI6

∂F

)

=
1

2

∣∣∣m♯
∣∣∣
−1
(
∂IEI4

∂F
−
∂IEI5

∂F
+ 0.25

∂IEI6

∂F

) (B.18a)

∂
∣∣m♯

∣∣
∂G

=
1

2

∣∣∣m♯
∣∣∣
−1
(
∂IEI4

∂G
−
∂IEI5

∂G
+ 0.25

∂IEI6

∂G

)
(B.18b)



168 Appendix B. Appendix B

The seond derivatives of the sharp �ber length hange is then,

∂2
∣∣m♯

∣∣
∂F2

= −
1

2

∣∣∣m♯
∣∣∣
−2 ∂ |m|

F
⊗

(
∂IEI4

∂F
−
∂IEI5

∂F
+ 0.25

∂IEI6

∂F

)

+
1

2

∣∣∣m♯
∣∣∣
−1
(
∂2IEI4

∂F2
−
∂2IEI5

∂F2
+ 0.25

∂2IEI6

∂F2

) (B.19a)

∂2
∣∣m♯

∣∣
∂G2

= −
1

2

∣∣∣m♯
∣∣∣
−2 ∂ |m|

G
⊗

(
∂IEI4

∂G
−
∂IEI5

∂G
+ 0.25

∂IEI6

∂G

)

+
1

2

∣∣∣m♯
∣∣∣
−1
(
∂2IEI4

∂G2
−
∂2IEI5

∂G2
+ 0.25

∂2IEI6

∂G2

) (B.19b)

∂2
∣∣m♯

∣∣
∂G∂F

=
∂2
∣∣m♯

∣∣
∂F∂G

= −
1

2

∣∣∣m♯
∣∣∣
−2 ∂ |m|

G
⊗

(
∂IEI4

∂F
−
∂IEI5

∂F
+ 0.25

∂IEI6

∂F

)

+
1

2

∣∣∣m♯
∣∣∣
−1
(
∂2IEI4

∂G∂F
−
∂2IEI5

∂G∂F
+ 0.25

∂2IEI6

∂G∂F

) (B.19)

The �rst derivatives of the �at �ber length hange,

∂
∣∣m♭

∣∣
∂F

=
1

2
[
IEI4 − IEI5 + 0.25IEI6

]1/2
(
∂IEI4

∂F
+
∂IEI5

∂F
+ 0.25

∂IEI6

∂F

)

=
1

2

∣∣∣m♭
∣∣∣
−1
(
∂IEI4

∂F
+
∂IEI5

∂F
+ 0.25

∂IEI6

∂F

) (B.20a)

∂
∣∣m♭

∣∣
∂G

=
1

2

∣∣∣m♭
∣∣∣
−1
(
∂IEI4

∂G
+
∂IEI5

∂G
+ 0.25

∂IEI6

∂G

)
(B.20b)

The seond derivatives of the �at �ber length hange is then,

∂2
∣∣m♭

∣∣
∂F2

= −
1

2

∣∣∣m♭
∣∣∣
−2 ∂ |m|

F
⊗

(
∂IEI4

∂F
+
∂IEI5

∂F
+ 0.25

∂IEI6

∂F

)

+
1

2

∣∣∣m♭
∣∣∣
−1
(
∂2IEI4

∂F2
+
∂2IEI5

∂F2
+ 0.25

∂2IEI6

∂F2

) (B.21a)

∂2
∣∣m♭

∣∣
∂G2

= −
1

2

∣∣∣m♭
∣∣∣
−2 ∂ |m|

G
⊗

(
∂IEI4

∂G
+
∂IEI5

∂G
+ 0.25

∂IEI6

∂G

)

+
1

2

∣∣∣m♭
∣∣∣
−1
(
∂2IEI4

∂G2
+
∂2IEI5

∂G2
+ 0.25

∂2IEI6

∂G2

) (B.21b)

∂2
∣∣m♭

∣∣
∂G∂F

=
∂2
∣∣m♭

∣∣
∂F∂G

= −
1

2

∣∣∣m♭
∣∣∣
−2 ∂ |m|

G
⊗

(
∂IEI4

∂F
+
∂IEI5

∂F
+ 0.25

∂IEI6

∂F

)

+
1

2

∣∣∣m♭
∣∣∣
−1
(
∂2IEI4

∂G∂F
+
∂2IEI5

∂G∂F
+ 0.25

∂2IEI6

∂G∂F

) (B.21)
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However, the sharp length hange ontributes new invariants,

|m| =

[(
F ·M+

1

2
G : M⊗2

)
·

(
F ·M+

1

2
G : M⊗2

)]1/2

+

[(
−F ·M+

1

2
G : M⊗2

)
·

(
−F ·M+

1

2
G : M⊗2

)]1/2

=

[(
FT · F

)
: M⊗2 +

1

2

(
FT · (G ·M)

)
: M⊗2

+
1

2

(
(G ·M)T · F

)
: M⊗2 +

1

4

(
(G ·M)T · (G ·M)

)
: M⊗2

]1/2

+

[(
FT · F

)
: M⊗2 −

1

2

(
FT · (G ·M)

)
: M⊗2

−
1

2

(
(G ·M)T · F

)
: M⊗2 +

1

4

(
(G ·M)T · (G ·M)

)
: M⊗2

]1/2

(B.22)

Eventough the found invariants are streth related, and already de�ned, they are going to

be alled as bending invariants to preserve onsisteny,

Iκ4 =
(
FT · F

)
: M⊗2 = FklFkmMlMm

Iκ5 =
(
FT · (G ·M)

)
: M⊗2 =

(
(G ·M)T · F

)
: M⊗2 = Fkl (G ·M)kmMlMm

Iκ6 =
(
(G ·M)T · (G ·M)

)
: M⊗2 = (G ·M)kl (G ·M)kmMlMm

(B.23)

The seond and third ontrations are idential sine the ontrated tensors are transpose

of eah other,

FT · (G ·M) =
(
(G ·M)T · F

)T
(B.24)

The full length in the urrent urved oordinates is the sum of sharp and �at lengths, in

terms of the invariants introdued above,

|m| =
∣∣∣m♯

∣∣∣+
∣∣∣m♭

∣∣∣ =
√

(Iκ4 + Iκ5 + 0.25Iκ6 ) +
√

(Iκ4 − Iκ5 + 0.25Iκ6 ) (B.25)

The derivatives of the last three bending invariants are with respet to the deformation

gradient are,

∂IEI4

∂Fij
= δkiδljFkmMlMm + FklδkiδmjMlMm = FimMjMm + FilMlMj (B.26a)

∂IEI5

∂Fij
= δkiδlj (G ·M)kmMlMm = (G ·M)imMjMm (B.26b)

∂IEI6

∂Fij
= 0ij (B.26)
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The derivatives of the last three bending invariants are with respet to the deformation

hypergradient are,

∂IEI4

∂ (G ·M)ij
= 0ij (B.27a)

∂IEI5

∂ (G ·M)ij
= FklδkiδmjMlMm = FilMlMj (B.27b)

∂IEI6

∂ (G ·M)ij
=δkiδlj (G ·M)kmMlMm + (G ·M)kl δkiδmjMlMm

=(G ·M)imMjMm + (G ·M)ilMlMj

(B.27)

The seond derivatives of the last three bending invariants are with respet to the

deformation gradient are,

∂2Iκ4
∂Fkl∂Fij

=
1

∂Fkl
(FimMjMm + FimMmMj) = 2δikδmlMjMm = 2δikMjMl (B.28a)

∂2Iκ5
∂Fkl∂Fij

= 0ijkl
∂2Iκ6

∂Fkl∂Fij
= 0ijkl (B.28b)

The mixed seond derivatives of the last three bending invariants with respet to the

hypergradients lastly ,

∂2Iκ4
∂ (GM )kl ∂Fij

= 0ijkl (B.29a)

∂2Iκ5
∂ (GM )kl ∂Fij

=
∂ (GM )imMjMm

∂(GM )kl
= δikMlMj (B.29b)

∂2Iκ6
∂ (GM )kl ∂Fij

= 0ijkl (B.29)

The seond derivatives of the last three bending invariants with respet to the deformation

hypergradient are,

∂2IEI4

∂ (GM )kl ∂ (GM )ij
= 0ijkl (B.30a)

∂2IEI5

∂ (GM )kl ∂ (GM )ij
= 0ijkl (B.30b)

∂2IEI6

∂ (GM )kl ∂ (GM )ij
= 2δikMjMl (B.30)
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B.2 Strething Strain and Strain Gradient energy density

Funtion

The strething behavior an be represented as, The strain energy density funtion reads:

ψ =
EA

4

(
|m|2 − 1

)2
(B.31)

The �rst Piola Kirho� Stress,

P =
∂ψ

∂F
= ψ = EA

(
|m|2 − 1

)
|m|

∂ |m|

∂F
(B.32)

The Piola Hyperstress is then,

Q =
∂ψ

∂G
= ψ = EA

(
|m|2 − 1

)
|m|

∂ |m|

∂G
(B.33)

The material tangent tensors

DP
F =

∂P

∂F
= 2EA |m|2

∂ |m|

∂F

∂ |m|

∂F

+ EA
(
|m|2 − 1

) ∂ |m|

∂F

∂ |m|

∂F

+ EA
(
|m|2 − 1

)
|m|

∂2 |m|

∂F 2

DP
G =

∂P

∂G
= 2EA |m|2

∂ |m|

∂G

∂ |m|

∂F

+ EA
(
|m|2 − 1

) ∂ |m|

∂G

∂ |m|

∂F

+ EA
(
|m|2 − 1

)
|m|

∂ |m|

∂G

∂ |m|

∂F

D
Q
G =

∂Q

∂G
= 2EA |m|2

∂ |m|

∂G

∂ |m|

∂G

+ EA
(
|m|2 − 1

) ∂ |m|

∂G

∂ |m|

∂G

+ EA
(
|m|2 − 1

)
|m|

∂2 |m|

∂G2

(B.34)
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C.1 Simo-Type geometrially exat anisotropy in

hyperelasti form

Next, we are going to postulate a nonlinear material model onsistent with the kinematis

given in the �rst setion. The model is motivated prinipally by the geometrially exat

beam formulations overed by the work of Simo, Antman, Reissner and Kirhho�&Love.

We will onsider the approah of Simo, and partially adapt the formulation thought to

model 3D beams into our material model formulation.

Before starting with the assumptions, we initially de�ne moving and onveted

oordinates of a urrently urved, and initially straight �ber. The oordinates of the

referene moving frame aording to the reverse mapping are funtions of the urrent

oordinates.

X (x) =M1 (x) M̂ +M2 (x) M̂⊥1 +M3 (x)M̂⊥2

=
(
XT · M̂

)
M̂ +

(
I − M̂ ⊗ M̂

)
·X

(C.1)

The kinematially signi�ant vetor omponent of the moving frame an be de�ned as a

family of level planes. Sine inverse mapping is funtion of urrent oordinates, the level

surfae set is in urrent system and has a ofator type steepest asent orthonormal to the

level plane, apparent from the gradient of it.Tangent median of the level plane is ertainly

de�ned by the deformation gradient along the referene �ber.

Sc
M̂

=
{
x|XT · M̂ = c

}

F−T · M̂ ⊥ Sc
M̂

F · M̂ ‖ Sc
M̂

(C.2)

The same analogy an be extended to the ofator of hypergradient as the steepest asent

of level heypersurfaes of deformation gradient. This relevant but ontently not neessary
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extension is let to be out of the sope. The priniple moving and onveting urrent

oordinates around a natural ross setion at the �at domain of the �ber,

S0
M̂♭

⊥
(
F ♭−T · M̂ ♭

)
=
(
F ♮ +G · M̂ ♭

)−T
· M̂ ♭ = −

(
F ♮ −G · M̂ ♮

)−T
· M̂ ♮

S0
M̂♭

‖
(
F ♭ · M̂ ♭

)
=
(
F ♮ +G · M̂ ♭

)
· M̂ ♭ =

(
−F ♮ +G · M̂ ♮

)
· M̂ ♮

(C.3)

Similarly, the priniple moving and onveting urrent oordinates around a natural ross

setion at the sharp domain of the �ber,

S0
M̂♯

⊥
(
F ♯−T · M̂ ♯

)
=
(
F ♮ +G · M̂ ♯

)−T
· M̂ ♯ =

(
F ♮ +G · M̂ ♮

)−T
· M̂ ♮

S0
M̂♯

‖
(
F ♯ · M̂ ♯

)
=
(
F ♮ +G · M̂ ♯

)
· M̂ ♯ =

(
F ♮ +G · M̂ ♮

)
· M̂ ♮

(C.4)

In this single �ber kinematis, as stated before, we take the natural and sharp diretions

Ω♭
m

Ω♮
m

Ω♯
m

cof
(

F♭
)

·M♭

F♭ ·M♭

F♯ ·M♯

cof
(

F♯
)

·M♯

(

F
♮

+ G · dM
♮
)−T

· M
♮

(

F
♮

+ G · dM
♮
)

· M
♮

dM
♮

Ω♭
m

Ω♮
m

Ω♯
m

F♮ ·M♯

1

2
G:

(

M♯
)⊗2

1

2
G:

(

M♯
)⊗2

F
♯ ·M

♯

m
♯

F♮ ·M♭

1

2
G:

(

M♭
)⊗2

1

2
G:

(

M♭
)⊗2

F
♭
·M

♭

m ♭

Figure C.1: Kinematis of a single �ber with onveting and moving oordinates at the �at, natural

and sharp setions, Change the omega into small one

as idential. We assume an additive orthogonal kinematis for axis apart material points of

the �ber exist. The linear momentum material vetor �eld Γ for the �at and sharp setions



C.1. Simo-Type geometrially exat anisotropy in hyperelasti form 175

beome,

Γ♭ = ΛT ·




(
−F ♮ +G · M̂ ♮

)
· M̂ ♮

‖
(
−F ♮ +G · M̂ ♮

)
· M̂ ♮‖

−

(
−F ♮ +G · M̂ ♮

)−T
· M̂ ♮

‖
(
−F ♮ +G · M̂ ♮

)−T
· M̂ ♮‖




= ΛT ·

(
−F ♮ · M̂ ♮ +G : M̂ ♮ ⊗ M̂ ♮

)

‖
(
−F ♮ +G · M̂ ♮

)
· M̂ ♮‖

+ M̂ ♮

(C.5)

Γ♯ = ΛT ·




(
F ♮ +G · M̂ ♮

)
· M̂ ♮

‖
(
F ♮ +G · M̂ ♮

)
· M̂ ♮‖

−

(
F ♮ +G · M̂ ♮

)−T
· M̂ ♮

‖
(
F ♮ −G · M̂ ♮

)−T
· M̂ ♮‖




= ΛT ·

(
F ♮ · M̂ ♮ +G : M̂ ♮ ⊗ M̂ ♮

)

‖
(
F ♮ +G · M̂ ♮

)
· M̂ ♮‖

− M̂ ♮

(C.6)

The strain energy density funtion (per unit length) balaned by only linear momentum

e�ets is the parametri integral result in referene volume,

ψ
Γ♭ =D♭ :

(
Γ♭ ⊗ Γ♭

)

=E♭A
((
M̂ ♮ ⊗ ·M̂ ♮

)
· Γ♭ ·

(
M̂ ♮ ⊗ ·M̂ ♮

)
· Γ♭

)

+G♭A
((
I − M̂ ♮ ⊗ ·M̂ ♮

)
· Γ♭ ·

(
I − M̂ ♮ ⊗ ·M̂ ♮

)
· Γ♭

)
(C.7)

Linear momentum equation given in this form has the following material tensor,

D♭ = E♭A
(
M⊗2 ·M⊗2

)
+G♭A

(
I −M⊗2

)
·
(
I −M⊗2

)
(C.8)

By alling the purpose of the additional orthogonal kinematis, the vetor of tensile linear

momentum part is,

(
−M̂ ♮ ⊗−M̂ ♮

)
· Γ♭ =

(
−M̂ ♮ ⊗−M̂ ♮

)
·ΛT ·

(
−F ♮ · M̂ ♮ +G : M̂ ♮ ⊗ ·M̂ ♮

)

‖
(
−F ♮ +G · M̂ ♮

)
· M̂ ♮‖

+ M̂ ♮

=
−M̂ ♮ ⊗

(
−M̂ ♮ ·

(
−F ♮ +G

)−1
·
(
−F ♮ +G

)
· M̂ ♮

)

‖
(
−F ♮ +G · M̂ ♮

)−1
· M̂ ♮‖‖

(
−F ♮ +G · M̂ ♮

)
· M̂ ♮‖

+ M̂ ♮

= −‖ − F ♭−1
· M̂ ♮‖−1‖ − F ♭ · M̂ ♮‖−1M̂ ♮ + M̂ ♮

(
M̂ ♮ ⊗ M̂ ♮

)
· Γ♯ = ‖F ♯−1

· M̂ ♮‖−1‖F ♯ · M̂ ♮‖−1M̂ ♮ − M̂ ♮

(C.9)
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Together with the �at ontribution, the total tensile momentum free energy beomes,

ψEAΓ = ψEA
Γ♭ + ψEA

Γ♯

= E♭A
(
‖F ♭−1

· M̂ ♮‖−2‖F ♭ · M̂ ♮‖−2 − 2‖F ♭−1
· M̂ ♮‖−1‖F ♭ · M̂ ♮‖−1 + 1

)

+ E♭A
(
‖F ♯−1

· M̂ ♮‖−2‖F ♯ · M̂ ♮‖−2 − 2‖F ♯−1
· M̂ ♮‖−1‖F ♯ · M̂ ♮‖−1 + 1

)

(C.10)

Whih is learly zero for absolutely no deformation ases.

C.2 Trations and Hypertrations on gradient Cauhy

tetrahedra

In this setion we give an example of �ber anisotropy embedded by a Cauhy tetrahedron.

For this purpose we rewrite the strain energy density funtion in terms of the Cauhy and

Finger tensors,

ψEAΓ = E♭A

[(
b♭

−1
: M̂ ♮⊗2

)−1 (
C♭ : M̂ ♮⊗2

)−1
− 2

(
b♭

−1
: M̂ ♮⊗2

)−1/2 (
C♭ : M̂ ♮⊗2

)−1/2
+ 1

]

+ E♯A

[(
b♯

−1
: M̂ ♮⊗2

)−1 (
C♯ : M̂ ♮⊗2

)−1
− 2

(
b♯

−1
: M̂ ♮⊗2

)−1/2 (
C♯ : M̂ ♮⊗2

)−1/2
+ 1

]

(C.11)

Where the inverse �nger and the Cauhy strains are de�ned as;

b♯
−1

= F ♯−T · F ♯−1
b♭

−1
= F ♭−T · F ♭−1

C♯ = F ♯T · F ♯ C♭ = F ♭T · F ♭

(C.12)

Additional material nonlinearity in referene on�guration should be de�ned for more

rational approah and for the sake of arti�ial snap through. Sine the modulus is

equivalent to slope of inremental load displaement urve, we impose worm-like hain

similar exponential type reversible material hardening for the material type nonlinearities.
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Quite apparently, the �rst Piola Kirhho� stress and hyperstress tensors are,

P ♮ =
∂ψEAΓ

∂b♭
−1 :

∂b♭
−1

∂b♭
:
∂b♭

∂F ♭
:
∂F ♭

∂F ♮
+
∂ψEAΓ

∂b♯
−1 :

∂b♯
−1

∂b♯
:
∂b♯

∂F ♯
:
∂F ♯

∂F ♮

+
∂ψEAΓ

∂C♭
:
∂C♭

∂F ♭
:
∂F ♭

∂F ♮
+
∂ψEAΓ

∂C♯
:
∂C♯

∂F ♯
:
∂F ♯

∂F ♮

Q♮ =
∂ψEAΓ

∂b♭
−1 :

∂b♭
−1

∂b♭
:
∂b♭

∂F ♭
:
∂F ♭

∂G♮
+
∂ψEAΓ

∂b♯
−1 :

∂b♯
−1

∂b♯
:
∂b♯

∂F ♯
:
∂F ♯

∂G♮

+
∂ψEAΓ

∂C♭
:
∂C♭

∂F ♭
:
∂F ♭

∂G♮
+
∂ψEAΓ

∂C♯
:
∂C♯

∂F ♯
:
∂F ♯

∂G♮

(C.13)

Where, the intrinsi dependene of the inremental modulus to the Cauhy deformation

measures are taken to be,

E♯A = E0A0exp
(
C♯ : M̂ ♮⊗2

)
E♭A = E0A0exp

(
C♭ : M̂ ♮⊗2

)
(C.14)

As above, among the derivations, no pull bak transformation is applied on the area

elements, towards whih we impliitly imply that the balane of angular momentum is

quantitatively negligible besides of the linear momentum e�ets as a onsequene of small

enough area assumption. The following parts are to be put into the appendix, but I'll write

down for programming purposes,

∂ψEAΓ

∂b♭
−1 =− EA

(
b♭

−1
: M̂ ♮⊗2

)−2 (
C♭ : M̂ ♮⊗2

)−1
M̂ ♮⊗2

− EA
(
b♭

−1
: M̂ ♮⊗2

)−3/2 (
C♭ : M̂ ♮⊗2

)−1/2
M̂ ♮⊗2

∂ψEAΓ

∂b♯
−1 =− EA

(
b♯

−1
: M̂ ♮⊗2

)−2 (
C♯ : M̂ ♮⊗2

)−1
M̂ ♮⊗2

− EA
(
b♯

−1
: M̂ ♮⊗2

)−3/2 (
C♯ : M̂ ♮⊗2

)−1/2
M̂ ♮⊗2

(C.15)

Again for programming purposes, the derivatives of the strain energy density density funtion

with respet to the sharp and �at Cauhy strain measure,

∂ψEAΓ

∂C♭
=− EA

(
C♭ : M̂ ♮⊗2

)−2 (
b♭

−1
: M̂ ♮⊗2

)−1
M̂ ♮⊗2

− EA
(
C♭ : M̂ ♮⊗2

)−3/2 (
b♭

−1
: M̂ ♮⊗2

)−1/2
M̂ ♮⊗2

∂ψEAΓ

∂C♯
=− EA

(
C♯ : M̂ ♮⊗2

)−2 (
b♯

−1
: M̂ ♮⊗2

)−1
M̂ ♮⊗2

− EA
(
C♯ : M̂ ♮⊗2

)−3/2 (
b♯

−1
: M̂ ♮⊗2

)−1/2
M̂ ♮⊗2

(C.16)
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Additionally, the inverse derivatives of the �nger tensor and the derivatives of the Cauhy

and Finger tensors are given,

(
∂b−1

∂b

)

ijkl

=
1

2

(
b−1
ik b

−1
lj + b−1

il b
−1
kj

)

(
∂C

∂F

)

ijkl

= δilFkj + δkiFjl

(
∂b

∂F

)

ijkl

= δikFjl + δjkFil

(
∂F ♭

∂F ♮

)

ijkl

=
∂
(
−F ♮ +G♮ ·M ♮

)
ij

∂
(
F ♮
)
kl

= −δikδjl

(
∂F ♭

∂G♮

)

ijkln

= δikδjlMn

(C.17)

The last two equations is due to the fat that the referene oordinates are �xed and

divergene-free near to the material point.

Figure C.2: From left to right, undeformed straight Cauhy tetrahedron, tration fores on deformed

body hypertration fores on deformed body.

It does worth to omment further on the quantitative proportion of tration fores,

hypertration fores as well as tration stresses with eah other. For this purpose we

use the extended Cauhy Tetrahedron whih we all as Hyper-Cauhy tetrahedron. The

Hyper-Cauhy tetrahedron (for this ase) represents a volume division of a �ber reinfored

unit ell. Like in Cauhy-tetrahedron, it is assumed that the ell is balaned by volumetrially

divergene-free stress and volumetrially double divergene-free hyperstress, indiating the

absene of body fores. Analogously, the hyperstress is faially divergene-free and do at

on interfaes of the further divisions of surfae pathes and balane those surfae pathes.

Figure 9 on the left shows the tration and hypertration fores developing with the

deformation fator of an example ase. As an be seen the exponential hardening does not

undergo any arti�ial snap-through or arti�ial softening whih may be aused if only the

geometrial nonlinearities were onsidered in the material. At this stage, we state that the

exponential hardening of the elasti modulus of simo-type geometrially exat anisotropy

an be replaed by any type of material model. In ase, St. Venant-Kirhho� material

is used, some softening, even snap through in exeeding deformations an be observable,

beause the stress funtions of this model linear in isotropi material parameter ouples.
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Figure C.3: Left, tration and hypertration fore fators depending on the deformation fators.

Right The logarithmi ratio of tration to hypertration fores.

Instead, a Neo-Hookean material update an be used, however it would be quite di�ult to

argue on phenomenologial reasoning of dependene of inremental material properties of

�bers on the ofator update. In fat, the inrease of inremental e�etive values depending

on the tangential streth of radially paked �bers is stated many times in the literature.

Therefore, we took exponential inremental update driven by the deformation gradient and

deformation hypergradient.

Figure 9 on the right shows the proportional development of tration fores with respet

to hypertrations fores with inreasing displaement fator. In spite, this behavior an not

be taken as general, it is still evidential that the hypertrative e�ets may be quantitatively

equivalent to trative e�ets. Additionally, it is again evidential that this proportion may

asent with deformation.

For weighting those two e�ets, instead of an energy based omparison approah, we

ompared the trations and hypertrations. Beause the L:SA:V ratios of Hyper-Cauhy

geometries (in general geometries) are size dependent, the energy traked by the surfae

fores of di�erent sized surfaes does not allow an objetive omparison. Besides, the

energy funtion is not straightforwardly additively splittable into those piees. However

trations and surfae trations do allow an objetive omparison, due to the fat that L:SA

of surfaes is proportional with L, and L is proportional with ‖M‖ and ‖M‖ is proportional

with ‖Q : n‖ ⊗ n⊥‖/‖P
T · n‖‖.
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D.1 Stationary on�gural energy and kinematis

The strain energy of energetially equal on�gurations of gradient-only systems an be

represented by the following omposite funtion.

ψc = ψ ◦E∗ ◦Q∗
(D.1)

Where the �nite rotation tensor Q and the rotation angle saled skew rotation axis tensor

αA are mapped onto eah other by means of matrix exponential and matrix natural

logarithm funtions. Even though the matrix logarithm funtion has a radius of onvergene,

we write down to show the inversibility of the skew symetri and orthogonal matrix funtions.

Q = exp (αA) αA = loge (Q) (D.2)

Aording to this, we an express the omposite funtion as,

ψc = ψ ◦E∗ ◦ (αA)∗ ◦Q∗
(D.3)

E∗
being the on�gurational Green-Lagrange strain tensor where the on�guration is driven

by the Q∗
orthonormal tensor rotating the material frame. The oe�ient matries of

on�gurational Green-Lagrange strain tensor, the rotation axis a and the skew rotation axis

tensor A∗
are represented in the eigenvetor spae of Green lagrange strain.

E∗ =
1

2

(
λ∗2i − 1

)
N ∗

i ⊗N
∗
i

â∗ = â∗iN
∗
i

A∗ = A∗
ij

(
N ∗

i ⊗N
∗
j

)
= −εijka

∗
k

(
N ∗

i ⊗N
∗
j

)

(D.4)

Where, the axis is perpendiular to the plane of two di�erent on�gural �ber diretions. This

means, one of the on�gural �ber diretion given as unremodeled, the axis a∗ represents
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one of in�nitely many axis of remodeling rotations. As stated before, sine we onsider

energetially equal on�gurations, in this stage the remodeling assumes to hange the

kinematis. Thus, kinematis E∗
is on�gural either. The variation of the strain energy

funtion in the diretion of the rotations,

∂ψc

∂Q∗ : δQ
∗ =

∂ψ

∂E∗ :
∂E∗

∂â∗
·

∂â∗

∂ (α∗A∗)
:
∂ (α∗A∗)

∂Q∗ : δQ∗
(D.5)

In the indiial notation we have,

∂ψc

Q∗
ij

δQ∗
ij =

∂ψ

∂E∗
ij

∂E∗
ij

∂â∗k

∂â∗k
∂
(
α∗A∗

lm

) ∂ (α
∗A∗

lm)

Q∗
no

δQ∗
no (D.6)

De�ning the non-remodeled on�guration vetor by m and new on�guration vetor by q∗

in Green Lagrange eigenvetor bases,

m = miN
∗
i q∗ = q∗iN

∗
i (D.7)

The new on�guration is obtained by a k'th ontravariant unit base vetor as the axis a∗

of the j'th and i'th unit ovariant base vetors as non-remodeled on�guration vetor and

new on�guration vetor.

m = Gi‖Gj‖2‖Gi‖
−1
2 q∗ = Gj â∗ = Gk‖Gk‖−1

2 (D.8)

Following this, there is a unit ontravariant axis â∗ whih rotates i'th ovariant unit base

into j'th ovariant and similarly the axis −a∗ rotates j'th base into i'th base with the same

angle of rotation α∗
with positive sinus. Aording to this idea we an write down the

forward and bakward Euler-Rodrigues rotation formula,

Q∗ = â∗ ⊗ â∗ + cos (α∗) (IN − â∗ ⊗ â∗) + sin (α∗)A

Q∗T = â∗ ⊗ â∗ + cos (α∗) (IN − â∗ ⊗ â∗)− sin (α∗)A
(D.9)

The elements of the Rodrigues formulation are,

IN =N ∗
i ⊗N

∗
i

â⊗ â =âiâjN
∗
i ⊗N

∗
j = εiklεjmnqlqnmkmm‖a‖

−2N ∗
i ⊗N

∗
j

A =AijN
∗
i ⊗N

∗
j = −εijkâkN

∗
i ⊗N

∗
j = −εijkεklmqmml‖a‖

−1N ∗
i ⊗N

∗
j

cos (α∗) =qimi (‖q‖‖m‖)−1

sin (α∗) =‖a‖ (‖q‖‖m‖)−1 = (εiklεimnqlqnmkmm)
1/2 (‖q‖‖m‖)−1

(D.10)

It should be stated here that among the in�nitely many orthonormal tensors, the spin-free

one is presented here. Aording to the equation (D.9), the logarithm of the angle-saled

skew matrix and the derivative appearing in the equation (D.5) is given as,

loge (Q
∗) = α∗A∗ =

α∗

sin (α∗)

(
Q∗ −Q∗T

) ∂ (α∗A∗)

∂Q∗ =
α∗

sin (α∗)

(
Ì− Í

)

(D.11)
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Now we hose the new on�guration oaxial with the eigenvalue saled eigenvetor. With

this post statement, we will be looking for the variational stability of the energetially equal

on�gurations for the rotations steered by the axis of one eigenvetor diretion. Say,

q∗ = λ∗1N 1 (D.12)

If we redue the target into one eigenvetor the Rodrigues formula ompatible to equation

(D.10) is,

Q∗ =
(
εik1εjm1λ

∗
1λ

∗
1mkmm‖a‖

−2 +m1λ
∗−1
1

(
δij + εik1εjm1λ

∗
1λ

∗
1mkmm‖a‖

−1
))
N∗

i ⊗N
∗
j

−
(
εijkεklmqmml‖a‖

−1(εnp1εnr1λ
∗
1λ

∗
1mpmr)

1/2λ∗21

)
N ∗

i ⊗N
∗
j

(D.13)

The oe�ient matrix of the rotation tensor beomes,

[Q∗] =




(
m1λ

∗
1
−1
) (

m2λ
∗
1
−1
) (

m3λ
∗
1
−1
)

−
(
m2λ

∗
1
−1
)

(
m1λ

∗
1
−1 +m3

2
(
m2

2 +m3
2
)−1

−m1m3
2λ∗1

−1
(
m3

2 +m2
2
)−1

) (
−m3m2

(
m3

2 +m2
2
)−1

+m1m3m2λ
∗
1
−1
(
m3

2 +m2
2
)−1

)

−
(
m3λ

∗
1
−1
)
(

−m2m3

(
m3

2 +m2
2
)−1

+m1m2m3λ
∗
1
−1
(
m3

2 +m2
2
)−1

) (
m1λ

∗
1
−1 +m2

2
(
m3

2 +m2
2
)−1

−m1m2
2λ∗1

−1
(
m3

2 +m2
2
)−1

)




(D.14)

Equation (D.5) beomes,

∂ψc

∂Q∗ : δQ
∗ = S∗ :

∂E∗

∂â∗
·
−E

α∗
:

α∗

sin (α∗)

(
Ì− Í

)
: δQ∗ = S∗ :

(
−2

sinα∗

∂E∗

∂â∗
· E : δQ∗

)

(D.15)

Where, the symbol E stands for the isotropi permutation pseudotensor. Sine, the seond

Piola Kirhho� stress tensor is nondereasing for nondereasing Green-Lagrange Strain

tensor, we are going to expand the remaining produt. The variation of the Green-Lagrange

tensor in formula above in indiial notation,

∂E∗
ij

∂âk

(−εlnk)

sin (α∗)

(
∂Q∗

lm

∂Q∗
no

−
∂Q∗

ml

∂Q∗
no

)
δQno =

−2

sinα∗

(
∂Eij
∂â∗k

εnok

)
δQno =

−2

sinα∗

(
∂Eii
∂â∗k

εnok

)
δQno

(D.16)

The last kroneker insertion is due to the nonexistene of the non-diagonal terms of

the Green-Lagrange strain tensor oe�ients in the eigenvetor base system. Unfolding

the permutation pseudotensor and multiplying it with the diretional derivative of the

Green-Lagrange strain tensor in the diretion of the rotation axis, one would get the the

unfolded form of the third order result of the round brakets of last part of equation

(D.16). The permutation pseudotensor is independent of any oordinate system and an

be represented in terms of the foldings of eigenbases as,

E =(N ∗
2 ⊗N

∗
3 −N

∗
3 ⊗N

∗
2)⊗N

∗
1

+(N ∗
3 ⊗N

∗
1 −N

∗
1 ⊗N

∗
3)⊗N

∗
2 unfoldi (E) = E ·N∗

i

+(N ∗
1 ⊗N

∗
2 −N

∗
2 ⊗N

∗
1)⊗N

∗
3

(D.17)
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The tensor order of the Green Lagrange strain tensor is redued for pratial reasons. Even

though the tensor itself an not be extrated from the redued representation for arbitrary

oordinate system (from 3 parameter spae into 6 parameter spae), it is still valid to

vetorize the Green-Lagrange strain tensor. Sine we de�ne the oe�ients in eigenspae,

the onversion in this spae is self-veri�ed (from 3 parameter spae into 3 parameter spae).

The length of the vetor form is equal to the seond invariant of the seond order form.

Thus, this vetor form has an invariant and is a tensor.

Ê
∗
=

1

2

(
λ∗2i − 1

)
N ∗

i ‖Ê
∗
‖22 = IE

∗

2 (D.18)

So, the derivative in the round brakets of equation (D.16) and the unfolded seond order

tensorial omponents of it are given below,

∂Ê
∗

∂â∗
· E =

∂Ê
∗

∂
(
â∗ ·N ∗

j

) ⊗ unfoldj (E) (D.19)

The matrix oe�ients of the unfolding of equation (D.19) with the ombination of equation

(D.17) is given below,

unfoldi

(
∂Ê

∗

∂â∗
· E

)
=
∂Ê∗

i

∂â∗j
εjkl (N

∗
k ⊗N

∗
l ) (D.20)

Enforing the anisotropy in the diretion of the target on�guration,

∂Ê
∗

∂â∗
=

∂Ê
∗

∂ (E∗ : q∗ ⊗ q∗)
⊗
∂ (E∗ : q∗ ⊗ q∗)

∂q∗
·
∂q∗

∂â∗

= λ∗1 (N
∗
1 ⊗N

∗
1) ·
(
m−1

3 (N ∗
1 ⊗N

∗
2)−m−1

2 (N ∗
1 ⊗N

∗
3)
)

(D.21)

Inserting bak into equation (D.20) gives us the only nonzero omponent in matrix form,

[
unfold1

(
∂Ê

∗

∂â∗
· E

)]
=




0 −λ∗1m
−1

2
−λ∗1m

−1

3

λ∗1m
−1

2
0 0

λ∗1m
−1

3
0 0




(D.22)

The total derivative in the diretion of the orthonormal tensor variation vanishes as shown

below.

∂Ê
∗

∂â∗
· E : δQ∗ =

(
−λ∗1m3

−1 ∂Q
∗
13

∂λ∗1
+ λ∗1m3

−1 ∂Q
∗
31

∂λ∗1

)
δλ∗1N

∗

1

+

(
−λ∗1m2

−1 ∂Q
∗
12

∂λ∗1
+ λ∗1m2

−1 ∂Q
∗
21

∂λ∗1

)
δλ∗1N

∗

1

=2λ∗1m3
−1m3

λ∗1
2 δλ

∗
1N

∗

1 − 2λ∗1m2
−1m2

λ∗1
2 δλ

∗
1N

∗

1

=2λ∗−1
1 δλ∗1N

∗

1 − 2λ∗−1
1 δλ∗1N

∗

1 = 0

(D.23)

This indiates that the on�gural kinematis as well as on�gural energy is stationary for the

given type of rotations. Next, we will disuss about the onvexity of this type of rotations.
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D.2 Maximization of Con�gural Energy

In this setion the duality of the optimization manifolds will be shown and proven to be

holding at the loation of stationary point shown in the previous setion. The only nonzero

part of the oe�ient of the variation of Green Lagrange strain tensor in the diretion of

virtual rotation is,

unfold1

(
∂Ê

∗

∂â∗
· E

)
= −λ∗1m

−1
2 (N ∗

1 ⊗N
∗
2)− λ∗1m

−1
3 (N ∗

1 ⊗N
∗
3)

+λ∗1m
−1
2 (N ∗

2 ⊗N
∗
1) + λ∗1m

−1
3 (N ∗

3 ⊗N
∗
1)

(D.24)

The seond variation of the Green Lagrange Strain tensor with respet to the rotation tensor

gives us information about the onvexity of the Green Lagrange Strain tensor in terms of

the rotations.

−2

sinα∗

[
∂

∂Q∗

(
unfold1

(
∂Ê

∗

∂â∗
· E

))
: δQ∗

]
: δQ∗

(D.25)

The derivative with respet to the rotation tensor in the brakets right before the seond

variational double ontration is,

∂

∂Q∗

(
unfold1

(
∂Ê

∗

∂â∗
· E

))
=

−2

sinα∗

∂

∂a∗

(
unfold1

(
∂Ê

∗

∂â∗
r
· E

))
r
· E (D.26)

The derivative with respet to the rotation axis is,

∂

∂a∗

(
unfold1

(
∂Ê

∗

∂â∗
r
· E

))
=

−m−1
2 m−1

3 (N ∗
1 ⊗N

∗
2 ⊗N

∗
2)−m−2

3 (N ∗
1 ⊗N

∗
3 ⊗N

∗
2)

+m−1
2 m−1

3 (N ∗
2 ⊗N

∗
1 ⊗N

∗
2) +m−2

3 (N ∗
3 ⊗N

∗
1 ⊗N

∗
2)

+m−2
2 (N ∗

1 ⊗N
∗
2 ⊗N

∗
3) +m−1

2 m−1
3 (N ∗

1 ⊗N
∗
3 ⊗N

∗
3)

−m−2
2 (N ∗

2 ⊗N
∗
1 ⊗N

∗
3)−m−1

2 m−1
3 (N ∗

3 ⊗N
∗
1 ⊗N

∗
3)

(D.27)
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Dot produt with the permutation pseudotensor,

∂

∂a∗

(
unfold1

(
∂Ê

∗

∂â∗
r
· E

))
r
· E =

−m−1
2 m−1

3 (N∗
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The variation in the diretion of the seondary virtual rotations,

[
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(D.29)

The total variation is then,

−2

sinα∗

[
∂

∂Q∗

(
unfold1

(
∂Ê

∗

∂â∗
· E

))
: δQ∗

]
: δQ∗ = 64sin−2 (α∗)δλ∗1δλ

∗
1 (D.30)

Whih shows that the eigenvalue based rotation an be represented as a onvex optimization

problem. Streth and thus strain have their minimum value independent of the energy

onstraint and the initial position. Sine we have a stationary point at the lous of interest,

we an not omment (not straightforwardly) further on the onvexity of the strain energy

density funtion about the orthonormal tensor, using the tensor omposition higher order

derivatives. To show that there is the maximization perspetive of the same objetive

and subjetive we will use next the Lagrange duality. The problem above without the

inlusion of the omposition and energetially equal restrition, an be interpreted as the

minimization of the anisotropi ingredient of the Green-Lagrange Strain measure. As shown
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in the previous setion, the stated stationary point is minimum kinemati on�guration and

is the solution of the following primal objetive and subjetive set,

minimize I4 =m
T ·
(
QT ·E ·Q

)
·m = E : ((Q ·m)⊗ (Q ·m))

subject to (Q ·m) · (Q ·m) = 1

QT ·Q = I

(D.31)

Sine m is arbitrary, thus nor on�gural, neither a parameter of the optimization. Hene,

is not listed expliitly in the onstraints. Reformulating the problem,

minimize E : (q ⊗ q)

subject to q · q = 1
(D.32)

The Lagrangian of the minimization of the onvex quadrati funtion on the unit ball

onstraint is,

L (q, µ) = E : (q ⊗ q) + µ (q · q − 1)

= qT · (E − µI) · q + qT · µI · q + µ (q · q − 1)

= qT · (E − µI) · q − µ

(D.33)

The ost µ is set to be the Lagrange multiplier of the single equality onstraint. The dual

form is then,

g (µ) = inf
q

(L (q, µ)) = inf
q

(
qT · (E − µI) · q

)
− µ (D.34)

Sine the in�mum of the quadrati form is zero if the form is positive de�nite, else negatively

unbounded,

g (µ) =

{
−µ (E − µI) · q � 0

−∞ otherwise

(D.35)

Moving on with the assumption of strong duality (zero duality gap), the Lagrange multiplier

omponent of the Karush-Kuhn-Tuker point of the quadrati problem with quadrati

equality onstraint an be found. For zero duality gap, the gradient of the Lagrangian

(Lagrangian with the optimal dual parameter) evaluated at the optimal primary variable

should vanish.

∇qL (q, µ∗)|q∗ = ∇qE : (q ⊗ q)|q∗ + ∇qµ
∗ (q · q − 1)|q∗ = 2 (E + µ∗I) · q∗ = 0

(D.36)

Quite learly the solutions whih imposes redundany to the term in brakets and satis�es

the KKT ondition above is,

µ∗ =
{
−λ∗2 + 1 | λ∗2 ≥ 1

}
(D.37)
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Whih is feasible aording to the dual onstraint.The additional onstraint in equation (72)

is a reinterpretation of the dual onstraint of (70). In matrix vetor form the onstraint of

(70) for a stationary point,

λ∗21 ≥ 1 =⇒



2λ∗21 − 2 0 0

0 λ∗21 + λ∗22 − 2 0

0 0 λ∗21 + λ∗23 − 2


 ·



1

0

0


 �



0

0

0




(D.38)

The strain energy density funtion of the remodeled on�guration is a nondereasing

funtion of the given eigenvalues of the Green-Lagrange strain tensor. Aording to the dual

form, the remodeling searh an be interpreted as the maximization of the energy subjeted

to a kinemati inequality onstraint.
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