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Preclusion of this Treatise

Before starting, | would like to emphasize that this preface stands not only for the brief
explanation of the scientific content of the treatise, but also proposed to be a summary of the
motivation of working on it, and exploding the philosophy of best practice of constructing
the survey and its content. This foreword is partially written to impose the conception of
the line of action up on the reader. The abstract of the scientific elements of the work,
which mainly represents the backbone of the work, will be presented thereafter.

The subject of this dissertation is a subfield of the Biomechanics, namely the Continuum
Biomechanics, more specifically with focus on living fibrous soft-tissue. The initial definition
of the subject will be more precisely revised after introducing initial arguments. Before
starting to network the ideas behind the principle of line of action, one has to start with
the formal definitions of the subject.

Biomechanics is defined as to be "the study of the structure and function of biological
systems such as humans, animals, plants, organs, and cells by means of the methods of
mechanics" Ref.[121z¢ 1974 This definition is generally accepted to be very comprehensible,
and thus a redifinition is avoided and had not seen to be necessary. There are certainly similar
definitions, however, older or novel, all these do neither contribute additional message, nor
narrow the points of significance. However, since then, there is though some differences
developed. These are mainly as a result of discrete jumps in the state of the art of disciplines
contributing the field of biomechanics, namely in engineering and medical science. Many
Pioneers considered the field of Mechanics as a tool which is used to understand the function
of biological structure. For instance Ref.["8 1993] states that " the interest in continuum
biomechanics is spurred by the need for realism in the development of medical simulation".
Which more explicitly than implicitly indicates that, in the absence of this interdisciplinary
interest, the field of biomechanics would never been born at all, or would not be the same
which is now. This observation is well accepted and appreciated by the writer of this treatise.

Moving on, more up-to date publications about mechanobiology, state the expected realism
above clearly enough. For instance, Ref.[HumPhrey 2003] forewords his opinion on this subject
by writing that, "biomechanics has yet to reach its full potential as a consistent contributor
to the improvement of health-care delivery." This pragmatic manifest was certainly not a
secret, but the achievements are spoken out now confidently as before. As background
message, it is also emphasized not to forget consistent contribution. According to the
subjective opinion of the writer, behind this emphasis, there is presumably the apprehension
of loosing the attention on continuum mechanics, by failing to hit the point of objective, or
landing far beyond of the diameter of interest. If this apprehension tends to move towards
anxiety or should soldier on to keep the stress level high enough for improvement, to find
the answer more experience is required. However, this discussion leads to the clarification
of the best practice and line of action of this treatise.

There is an implicative question to be answered. The fact is, during the development



of interdisciplinary fields, one field served and supplied logistics to another (where the
practical interest focuses). The question is, does it take place without evolving its own
structure, or vendor branch has gained also power and self-interest by involving in the
proposed interdisciplinary field?

The arguments can be put on the table simultaneously, or sequentially. The latter is
preferred by the writer here. Considering one single property of matter of concern here,
that is anisotropy. Please recall that several fibrous soft tissue types are mechanically
anisotropic, such as skin, cardio-vascular system, cartilage, tendons, ligaments and more.
However, the term is in fact visited several times by the leading engineers of the field, even
before the discussion of existence of a field named biomechanics. For instance S.Timoshenko
and J.N.Goodier in their master piece of Ref.[>-Timoshenko 19511 mention about anisotropy,
" ..,a certain orientation of the crystals in metals prevails, the elastic properties of the metal
become different in different directions and the condition of anisotropy must be considered.".
They obviously mention about the anisotropy caused by engineering process, precisely metal
forming. Frankly writing, it would be quite an arrogant action to claim that, the founders
of the Theory of Elasticity were unaware of the existence of naturally anisotropic material,
because they were ridiculously unable to observe the fibrous structure of redwood. It is thus
an obvious fact that, terms like anisotropy was certainly postulated earlier in the borderlines
of continuum mechanics, and found another field of application; Biomechanics.

Keeping this example in mind, the first postulations of the hyperelastic anisotropic energy
functions date not as back as foundational elements of elasticity. Fung, being accepted
as one of the fathers of continuum biomechanics, mentioned about the residual stresses
in arterial walls in Ref.[¢)- Chuong 19861 " however first postulated the famous exponential
formula for the anisotropic materials, quite later, in Ref.[U"& 1993]. Similarly, nearly before
Fung, another hyperelastic anisotropic formula postulated in Ref.[}:M: Guccione 19917 | the
second work, Guiccionne JM et al. reached one of the first quantitative statements; "...the
stiffness of passive myocardium (defined for a 20 percent equibiaxial extension) would be
2.4 to 6.6 times greater in the fiber direction than in the transverse plane...". Later works
of Ogden and Holzapfel, such as in Ref.[O8den 2003] and Ref.[Holzapfel 2008] jnclyde more
specific and reliable material models based on emprical techniques and validation methods
based on recent publications of themselves. Among all the contributions done until now,
one is common that, the researchers and pioneers of the field of biomechanics applied the
fundamental postulates of classical continuum mechanics, such as the definitions done by
Green, Ref.[Creen 1970],
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2 Chapter 1. Soft Tissue as Biphase Mixture

1.1 Introduction

This chapter of the thesis is dedicated to introduce the first order kinematics and
thermodynamics of biphasic media using theory of mixtures as a floor requirement for
investigating the soft biological tissue. This base requirement is either directly stated, or is
imposed by the pioneers of the continuum Biomechanics.

Several elements of this general statement requires clarification. The initial one is the so
called "First order Kinematics". The keyword brings out the possibility of postulations of
higher order kinematics. This specification excludes the so called strain gradient effects,
which is visited in the remaining chapters of the thesis. Additionally, it should be emphasized
that the difference of first order and higher order kinematics are not analogous definitions of
German study concepts of Theorie Erster und Zweiter Ordnung clarified in Ref.[Bletzinger 2009]
clearly. The latter one deals with the statics and dynamics of structures with and without
of the effects of geometrical, loading and material types of nonlinearities. The prior one,
which is the subject of this thesis, imposes the nonlinear kinematics, in another novel way.
Keeping this in mind, the first order and the second order Kinematics used in this work, both
consider nonlinear geometrical effects, and thus applicable for large deformational studies.

The second keyword of the statement is the fundamental necessity of consideration of
multyphasic nature of the soft tissue. As stated above, the base requirement is imposed by
the pioneers of the continuum Biomechanics. For instance, Fung in Ref.[U"& 1993] calls the
soft tissue (irrespective of the type of the tissue) as being pseudoelastic, by pointing out
the phenomenological cause of viscoelasticity. As can be seen by this chapter, the sources
of the hysteresis, which is consistently the main difference in between the assumption of
pseudoelasticity and true elasticity (which is in fact the true idealization, and does probably
not exist at all), can be well linked to the second law of thermodynamics, in terms of
the micromechanical interaction of different phases of the tissue. At this stage it would
be appropriate to mention that the comprehensive mechanics of the causality of hysteresis
is not an trivial task to determine. Implicitly, the reformulation of the phenomenon with
the definition of viscoelastcity points out that the viscous effects are responsible for the
pseudo-characteristics of the solid.

According to the writer of this chapter, to link the phenomenon and causality in terms
of physical quantities, is still a more comprehensible approach then estimating coefficients
for the rheological material models. No doubt that the latter has certainly some practical
engineering advantages. However, in short, the writer had chosen the way of researcher,
not the way of engineer.

The chapter is divided into seven sections. In the beginning, the properties of the
biphasic mixture is summarized. In the follower sections, the kinematics, the assumptions
under consideration of soft-tissue in focus is presented. The weak form, and discretized
equations is visited in the remaining sections. Accordingly, several different numerical
examples is shown to prove applicability and completeness of the approach. The pioneering
formulations can be found under the study of the theory of the mixtures by Truesdell and
Toupin in Ref.[C-Truesdell 19601 "3nd by Atkin and Craine in Ref.[R-)-Atkin 1976] " Eollowing this
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initial works, one of the first applications of the study can be found in Mow et al. in
Ref.[V:C-Mow 1980] - The historical development and basics of the theory of porous media
can be found in the notes of de Boer in Ref.[d¢ Boer 1996] "\who is another founder of the
macroscopic theories of the multiphase mixtures. The state of the art of the Theory of
porous media and various numerical and experimental applications can be found in the
recent editorial publication of Ehlers and Bluhm in Ref.["V:Ehlers 2002]

The writer of the thesis had used many of these works and it is stated specifically if a
novel self-contribution is present or another reference is used for the source of information.
Otherwise, this inctroductory chapter is a short and piecewise summary of the fundamental
scientific works in the aforementioned references above.

1.2 Partial and Total Properties of the Mixture

The main aim of this section is to provide fundamental definitions. The kinematics of the
mixture is developed according to these basic definitions in hand. Accordingly, the governing
equations are formulated on the basis of theory of mixture, namely a thermodynamic balance
and unbalance governing equations, as well as inequalities are presented.

The total material domain of the problem is a composition of a binary mixture.

a=[Jo'=a%uar (1.1)
r

Another spatial domain, which is not (necessarily) kinematically conjugated with the
material domain defined above, is also a composition. The principle of kinematical
inconjugation of the theory presented here is abbreviated with the subscript '*’ beneath.

Q.= =9uqf (1.2)
il
The theory of porous media assumes that the total infinite and finite volumes in the material

as well as in the spatial configurations do obey the principle of additive split. In this case,
as indicated previously in section Ch.[1.1], a two-phase material is under consideration.

V:ZVF:Z/QFCZVF:/QZCZVF:/QdV (1.3)
r r r

The same series of fundamental definitions can be also made for the spatial infinite and
finite volumes.

v*:Zv:Z:Z/ de:/ Zde:/ dv, (1.4)
g y T =y 2

The volume fraction of a material constituent I" in the material coordinates is depending
on the material location of that constituent.

n =l (XT) (15)
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As well, the volume fraction in the spatial coordinates depending on the the spatial
coordinates of that constituent.

n =n7 (X", 1) =n7 (a7) (1.6)

The volume fraction determines the partial volume of that constituent in the saturated
mixture.

V:ZVF:ZnFV:/ZdVF:/ZanV:/dV

T T Q Q' Q

v*:ZvZ:Zn;’v*:/ Zdvz:/ andv*:/ dv,
S A 0.7 Q.

Y

(1.7)

The in-conjugated quantities referred here again with an asterisk. To make it clear,
considering the volume fractions are not necessarily equal,

W (X, ) # 1 (X, ) (L8)

To repeat it again, in general, the material domain Q is not the kinematic origin of the
spatial domain 2,. Besides, the last two equation set of equation (1.7), comprises the
saturation condition.

/QZanV:/QdV / Zrﬂdu:/ﬂ dv (1.9a)
T * oy *

anzns—i-nF:l Zn“’:ns—knf:l (1.9b)
T v
The partial and realistic true densities are defined as,
'R _ dm" P dm"
= = T
dv dVv (1.10)
~r _ dm’” 5 dm?
dv e = dv?
The total mass in reference and current configurations are,
m = dm! = / ptavt = / prRAV = / ntpt Bavt
(1.11)

S S -
Qs 5 Qs y Q. ~ Q. "

This concludes the relationship between the partial and true densities in material and
another kinematically in-conjugated spatial coordinates,

ph=n"p" o] =nlol" (1.12)

This basic definitions can be found in any state of the art texts, such as Ateshian
Ref.[6-A-Ateshian 20081 makes a very brief definition of these backbone identities of mixture
continuum.
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1.3 Kinematics of the Mixture

In the theory of mixtures, it is assumed that each individual constituent has its own
Lagrangian mapping. Alternatively, the way of expression of motion is that, each individual
component of the mixture originates from different reference coordinates, but ends and
thus composes the final unique spatial current state of mixture. Specifically, the current
coordinate is a result of a two-to-one mapping. For the case of solid and fluid (fiber and
surrounding fluid) mixture,

r=z|;=z|f=x(X|s,t)=x(X|r,?) (1.13)

Since the coordinates are neither a state nor a process variable, the appropriate
mathematical notation of such that:(|) is used instead of super or subscript. Since the
evaluation of the current coordinates are appriorily are known (defined) to be the same! ,
one single current coordinate is used next, instead of two separate. However, the "matter"
of the coordinate is indicated. Being considered as an gradient operator only (independent
of any violation indications of material penetration), the same notation of evaluated at

(such that) can be applied for the deformation gradient too.

_ O g Ol Oely
ToxX | T oxy TV T oX |k

Flp (1.14)

The deformation gradient of the solid constituent (the gradient of the current mixture
evaluated at the solid reference coordinates) is similarly,

ox oz | ox |f
F = = = F s = = =
s = 5x E Iss = gx s s = 5x E

(1.15)

Since there are two mappings and two deformation gradients, there will be necessarily
another two spatial gradients of the reverse motions. The spatial gradients are -as tensor
operators- inverse of the forward material gradients. The spatial gradients for the reverse
fluid motion reads,

X |r

—1’ :aX’F —1‘ _aX‘F

F'p = Fs = 5 o Ff =5 T (1.16)
The spatial gradients for the reverse solid motion are,
s = 2l pe <Gl p Ol )
In short notation, the material and the spatial (G)gradients of each constituent are,
F|r =F|,r =Grad|r x|y =Grad|r x (1.18a)
Flr=F ', =grad|, X |r = gradX |r (1.18b)

'The "coordinates" are quantitatively the same, yet the "matter" as quality of course are not
the same. This implies the well known "smeared" model postulated by many writers, see Ehlers

5 rs 2002 .
Ref.[W-Fhiers 2002] for instance.
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As the current mixture components originates from different reference locations, the
statement of constutients do keep the same smeared comfigurations in another state, is
still arbitrary. By specifying this another state as the state of infinite next? , one can
state that the velocity vectors of the current components are arbitrary and thus different,
even though the time derivative is evaluated at the common current coordinates. This
indicates that even though there are two deformation gradients, there are in total four rates
of deformation gradients. Next, only the rates which are relevant for the formulation are
presented in this content. This relevancy is determined by the chemical composition. The
rates of deformation gradients for chemically identical components of the mixture are,

Fls = ;;H‘; =Grad|s & |s (1.19a)
& )
Flip = aX”}; = Grad|p & |f (1.19b)

The spatial velocity gradient of the solid component can be deduced from the previous
equations as follows,

8ZC|3_6$|S a |S:F’35'F71‘S

Ls:Lss:Ls = =

L|; =gradi|s = (Grad|s &|s -) (gradX |g)

The spatial velocity gradient of the fluid component is kinematically identical,

oz o€ 0X . _

L|; =grad |y = (Grad|p & |f -) (9gradX |F)

Lastly, for the kinematics of the mixture, the spatial velocity gradients can be further
additively splitted into symmetric and skew symmetric tensors.

L‘v :D‘v +W‘v
T
D|, =5 (Ll +L"|,) (1.22)

Wi,

N = N

(L], - L"],)

This split is for the balance equations absolutely necessary, since the true stress tensor is
symmetric (for the sake of balance of angular momentum), and thus energetically orthogonal
to the skew symmetric part of the spatial velocity gradient. In general, for the components

“continuum neighborhood of the smeared configuration
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which are chemically identical, the following correlation can be written;

chemically identical : v=s |
y=/f |I'=F

, 1 (1.23)
<~ L|y=F|r-F'Ir

L|, =gradi|, = (Grad|r |, -) (gradX |r)

The writer of the treatise, strongly suggests to follow the identities and correlations
introduced in the section of Kinematics of the Mixture Ch.[1.3], in the very well written
textbooks of Holzapfel Ref.["o/z2Pfel 2006] '3nd Bonet&Wood Ref.[!-Bonet 2008]  Even though
these books do not mention about the nature of biomaterials composed of multiple physical
phases explicitly, they are still the best among many others to verify the validity of the
proposed first order kinematics.

1.4 Governing Relations

In this section the balance equalities of the conservation of mass, the conservation of linear
momentum, the conservation of internal and kinetic energy are introduced initially. After
that, the introduction of the inequality of entropy for the biphase material can be found.

1.4.1 Conservation of Mass

In this section, the conservation of mass for a control volume is introduced briefly. The
control volume is taken as the current volume occupied by the current mixture components,
and thus defines a thermodynamically open system. This indicates, that there might be a
mass input into the system. At this stage of formulation, the system can be further assumed
to be isolated, and accordingly the mass supply term can be neglected for the time being.

To start with, the current mass and the current rate of mass supply in terms of the current
apparent (partial) density and current rate of apparent (partial) density supply can be written

m“’:/ dm’Y:/ o"dv m’Y:/ de:/ 0"dv (1.24)
Q Q Q Q

v v v v

as,

Obviously, the statement of conservation of mass requires the equality of rate of change of
mass to the rate of mass supply into the volume.

W |, =m? (1.25)

Recalling the equations of rates of deformation gradients (1.19) makes it clear, why the
evaluation location of the rate of current mass should be considered.

m |, = </Q Q“fdv> (1.26)

o
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The local form of this equation can be obtained stepwise. Firstly, by pulling back the spatial
total volume to the material partial volume with the determinant of the corresponding
deformation gradient, one gets,

mw:(/ﬂ dev> :(/Q Q’Ydet(F|p)dVF> :/Q m(vdvf

(1.27)

This rate derivative® can be further partitioned to reach the local form,

/ 4gvdet'(pyr)( dvF:/ (gmdet(mrwm det(F\r)‘ )dVF
Q, gl Q, gl

- d(det (Fr)) . r
= Y Y .
/Q<Q et (F|p) + o0 S Pl ) av

~

:/ <@7|7det(F|F)—|—97det(F|F)F—T Ir pm)dvp
Y

(1.28)

Where the derivative of the third invariant of a tensor with respect to the tensor itself is
omitted here, and can be found elsewhere, the writer had followed the notation used by
Bonet&Wood Ref.[!-Bonet 2008] - Besides the simplification of the constituent mapping of
the infinite volume, the double contraction term can be further simplified by using the index
notation,

dv = det (F |p)dV" (1.29a)

_ . 0X |r oz |
FTlp:Flyr = 1
I hr < Oz >Ji <3X Ir )iJ

(1.29b)
oz | . .
il G H:tr(grad;c lv) =tr(L|,) =div(&|,)
The final global form becomes;
w7 :/ (67, det (F |e) + @det (F ) F|p : Elr ) dv™
Q
! (1.30)
:/ (], + @div (&],)) V"
Q"/
and the local inhomogeneous form is then;
o', +o'div(z|y) = 0" (1.31)

3Please note that the integrand is time dependent, the integration variable as the reference real
volume of the constituent is predetermined, and this time-invariant.
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Considering that the component under consideration is intrinsically incompressible, by
getting it together with equation (1.12) the following alternative inhomogeneous form is
achieved,

&' = W]+ div (@],) = 0], 0%+ w0l 4w i ) (132

The final form of the balance of mass equation in terms of volume fractions is as follows;

IR=0 = |, +ndiv(d]| ):ﬂ (1.33)
Y v Q'yR :

The first identity of the final form of the equation of conservation of mass in equation (1.33),
implies the concept of intrinsic incompressibility. Concerning the numerics of the continuum
solid mechanics, the conservation of mass is usually omitted. The main reason of this is
that, the focus of the classical continuum solid mechanics is usually based on single-phase
materials, or on thermodynamically closed systems. The writer suggests Zienkiewicz& Taylor
Ref.[O-C Zienkiewicz 2000¢] “\yhich cover also numerical applications of the subject. Since the
topic covers two-phase mixture, the equation of conservation of mass (1.33) will be used
in the following chapters and sections.

1.4.2 Conservation of Translational Momentum

Verbally, the conservation of momentum requires that the total sum of external, (body
and traction) forces should be balanced by the rate of change of momentum. For a
thermodynamically open system, the rate of change of momentum has a further supply
term. In global form,

Pl Fy A f R =0
with,

p7 |y : rate of change of momentum of a spatial control volume
(1.34)
f : body forces acting on control volume

fi : traction forces acting on control surface

p?:  flux of momentum supply

Each of which is investigated and finally summed individually. Starting with the rate of
change of momentum of the body in global form, which results in;

9 <f97 Qx| d”)
ot

fﬂ’v -
~

:/ @“’]vabhdv—i-/ g'yfé]vdv—k/ x|, F T |r: Flyr dv
Q Q

v v vy

[ o [ gulavs [ @aldio@l)d
Q Q

v vy v

(1.35)
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The rate of change of momentum term can be further reduced by taking the conservation
of mass equation into consideration. The compressible form of the conservation of
mass equation (1.33) multiplied by the velocity of the current constituent at the spatial
coordinates gives;

o'div(z|y) x|y =0'& |, — Q”Vi |y (1.36)

Inserting this expression back into equation (1.35) gives;

il =:/Q (&), + 87|, ) do (1.37)

~

The body forces with the consideration of the apparent density-specific body forces?, in
global form;

7 :/ o fldv (1.38)
y

Where the apparent density specific quantities are abbreviated with a breve symbol. The
surface traction (on the system, not by the system) is, -according to the definition of
Cauchy Ref.[CTruesdell 19601 s the surface integral of the true stress projected on the surface
outward normals. These bunch of statements are in fact covering the definition of stress
in continuum mechanics, and can be found anywhere else then the reference given in the
paragraph itself.

fz:/ tvda:/ JV-nBWda:/ div (o) dv (1.39)
B B Q

Y 2l vy

The last point, namely the conversion of surface integral into the volume integral is due
to the very well-known Gauss divergence Ref.[Mueller 20097 theorem. Combining all together,
one gets the final local form of the balance of translational momentum equation evaluated
in the spatial coordinates.

div (07) + 0" (f] — @), ) = 0@, +§7 =0 (1.40)

It should be noted that the third term which is related to the mass source of the system
is a natural conclusion of the enforcement of the conservation of mass into the rate of
momentum part of the conservation of translational momentum equation as done in identity
(1.36). The mass source has in this context no momentum contribution as long as stated
otherwise. The reason of this assumption is that, the time integral of the apparent density
flux does not coexist (yet) with the spatial velocity of the constituent. There is a balance
of rate as stated in the equation of conservation of mass, but this does not indicate that,
in the current time the source term is already gathered into the existing mass.

“The apparent density specific forces in this context refer dimensionally to forces per matter, thus
has the same units of body acceleration
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1.4.3 Conservation of Internal and Kinetic energy: An extended first
law of Thermodynamics

The first law of thermodynamics verbally states that, no matter what process occur, there
exist a property of the universe, called energy, which can not change, neither can be
destroyed nor can be produced. This statement can be found in many early works, the
writer had followed the definitions done in more recent publications and books, such as
Sonntag et. all. Ref [R-E-Sonntag 1998] and deHoff Ref.[d¢Hoff 2006]  Especially the latter one

is more appropriate for the study of Thermodynamics in material science.

This verbal statement in terms of different types of energy terms can be formulated. For a
given interval of time,

U -U@*—A)=AU=Q+W+W
AU : Change of internal energy in the time interval of At
@ : Heat supplied by the surroundings towards to the system in the time interval of At

W : Mechanical work done onto the system in the time interval of At

W : Other types of work done onto the system in the time interval of At
(1.41)

According to this statement, any change in the internal energy of the system should be (is)
balanced by the thermal, mechanical or any means of energy influx (outflux) into (outside
to) the system. The differential form of equation (1.41) for infinite changes is,

dU = 6Q + 6W + oW (1.42)

Quite purposely, a differential operator is usually used for the infinite change in the internal
energy, whereby a variation operator is used for the energy supplies to the system. The
reason beyond this notation is the fact that, the internal energy is a state function, but
the heat supplied, the mechanical work done onto the system and other types of energy
inputs are process variables®. The underlying meaning of a state function in the current
context is implicitly given in the definition of first law of thermodynamics. A change of
state function depends only on the initial and the final states of a system, not on the path.
Since the internal energy has to be conserved, no matter how, if many different systems
are supplied with the same amount of thermal and mechanical energies, the change in their
internal energy has to be the same, being independent of the path. However, otherwise
is not necessarily true, i.e. the pressure (as pressure of a fluid at a time instant or as the
volumetric part of the true stress tensor) of a system in equilibrium (say in the absence of
pressure gradients), is also a state function but not conserved. There is of course a variation
of differential equations which govern the spatial and temporal change of pressure, and
thus indicate a type of conservation of pressure, but it is not a generic law, which can be

SRefer to Dehoff Ref.[deH"ﬂr 20961 for an elaborate survey of state functions and process variables
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compared with the first law of thermodynamics. The law can be extended for a spatially
inhomogeneous system by considering the infinite changes in the kinetic energy as well.

dU + dK = 6Q + 6W (1.43)

Where the kinetic energy of the system is also taken as a state function. In this context,
the internal energy is driven by the mechanical stress-strain contractions (Helmholtz type
free energy), and the relative thermal fluctuations. The kinetic energy is driven by the
averaged spatial rates of the system inertia. Any other magnetic, electrical or chemical
potentials which can be considered additionally as conserved quantities are omitted here.
The temporal integral form of the equation of conservation of energy is,

t+At t+AL t+AL t+At
/ Udt+/ Kdt:/ th+/ Wdt (1.44)
t t t t

The notation of differential and variational forms of corresponding state functions and
process variables are kept for the equation above. The state functions undergo rate type of
change, where the process variables enter the equation system in terms of fluxes, as done in
the previous sections. They all change temporally. The temporal local form, which include
the spatial integrations and are all evaluated at the current spatial configuration. Those
become then;

U’ |7 + K |7 :Qv |7 + W |’y (1.45)

Next, each term is introduced after each other. Like previously, the apparent density specific
internal energy of a constituent is abbreviated with breve symbol, see U” beneath.

Ul = / U7 dv (1.46)
Q"/
The rate is then,
. 0 (wi Q'ﬂ?“’dv)
Uurl, =
o o
gl
:/ o7 |y U dv +/ QV(;]'Y | dv _|_/ Q“/U’YF*T - FHF dv (1.47)
Qy Qy Q,

= / 07 |y U7 dv +/ 97(&]7 |y dv +/ UV div (& |y ) dv

¥ Qy Qy
The third term can be reduced by using the compressible form of the equation of
conservation of mass (1.36),

o'div (&|,)UT = U — ¢, U (1.48)

Inserting this expression back into equation (1.47), gives the final local form of the rate
of change of internal energy in terms of the apparent density specific internal energy and
other partial quantities.

U], = / (mfﬂ + U |7) dv (1.49)

v
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Moving forward, the kinetic energy caused by the average rate of change of coordinate of
the constituent can be defined as;

1
K = —/ &, -, dv (1.50)

2 Jo,
The rate of kinetic energy can be obtained by following similar steps of getting the rate of
internal energy.

. 18(f9 Q%b|w‘5b|'ydv> 1 e 9 ) .
e e 5 | lel Pavs [ gal, gl

Y Q”/

(1.51)

The first term of the right hand side of equation (1.51) as being the mechanical energy, is
nothing but the rate of work done by the external surface tractions and body forces.

W = Zwlv“‘fzwlv (1.52)

By neglecting the body forces at this stage, the mechanical work done by the singular action
of surface tractions is;

fl-al, :/ fﬂ-;bhda:/ aV-nB«chda:/ (6" z|,) nPrda (1.53)
B”/ Bﬂ/ Ba,
and by applying the divergence theorem at this stage one gets;
il :/ (67T &|,) -nPrda :/ div (o7 - & |, ) dv (1.54)
B, Q,

The spatial divergence can be further simplified by turning into the index notation. For the
equation below, the symmetry property® of Cauchy stress tensor is taken into account,

9 907, 8(21,),
. T . _ . o 1] . J
div (o7 - & 1,) = 92, <J;’j ( |7)j> = o (@l]y); + U;YiT:r:i (1.55)

Back, in terms of tensorial notation,
div (U'YT ci&|y) =div(a?)-&|y +07: gradd |,
=div(e”)- x|y +07: L|, (1.56)
=div(e") x|y +07: D],

Where the second equation results as a conclusion of the definition of spatial velocity
gradient, and the last equation is due to the orthogonality of Cauchy stress tensor (as being
symmetric) to a skew symmetric tensor. This pure algebraic fact is written to state formally
that the spin tensor does not contribute into the first law of thermodynamics.

oW, =0 (1.57)

®The conservation of angular momentum is implied here
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Recalling the equation of conservation of (translational) momentum (1.40)7 is multiplied
with the spatial velocity,

div (07) |, = —g" (f =& |,) - @|y + 8@y @l — B ), (1.58)
Inserting this back into equation (1.56),
11dly ==0" (f] ~&ly) @l + 0@l il —p @l +07: Dl (159)

Together with the previously neglected power caused by the body forces, the total global
form of the mechanical energy supplied into the system by one constituent becomes;

Wr=fy-&l+ -2

VT (1.60)
— [ @@l ), + @8], ) -+ D)do
:

The final contribution of energy is due to the thermal source and heat input from the
surroundings towards to the system,

Q“’:/ Q’Yrdv—/ q'y-nB”da:/ Q’Yrdv—/ div (q") dv (1.61)
Q B, Q Q

Y Y Y
The integral form of all contributions inserted back into the master equation of first law
of thermodynamics (1.45) leads into,

0 :/Q (@7(77 + QVUQ'7 |,Y) dv

~

1 U . N
by [ ol Pas [ gal,al
Q, Q,

(1.62)
+/ (@@ |y -&ly — 0|y &y +p7-E|y —07: D)

2y

—/ erdv—k/ div (¢7) dv
Q, )

v

The homogeneous integrand results in the local form, which was searched.
. o 1. fry s ;
PTGy = 50| P47 @l — 07 DL - @ div(a?) =0 (1.63)

For this final form, any source for internal energy is omitted for the sake of simplicity.
Before moving into the next section, a last but necessary comment is let here about the

notation. With the time derivatives for example in U |y it is not the intent to mean the
material time derivative. The motion, -as expressed previously- is taken to be Lagrangian,
and time derivatives indicate only, that the quantities associated with one component
undergo a change of rate, which is depending on a single coordinate, which is shared
by two constituents. Since this single coordinate has two different time derivatives (again
not the material or spatial meant here), it should be expressed which time derivative is
taken.

"This back-insertion of this multiplication is necessary for further derivations
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1.4.4 The Entropy Inequality-Dissipation of Mixed Field

Until this point, the Balance equations of the Governing relations are introduced. In
this sub-section, entropy inequality is introduced shortly. Initially, continuum mechanical
definition of entropy is going to be done briefly. Shortly after, the dissipation inequality,
namely the second law of thermodynamics is going to be made both verbally and formally.
Immediately after, Helmholtz free energy as a state function is going to be defined. This
results in the so-called strain energy density function, which defines the main constitutive
relation® of thermoelasticity. The other types of state functions, like Entalpy and Gibbs free
energies are omitted in this scope.

1.4.4.1 Change of Entropy as a State Function

The micromechanical definition of entropy, defined as the system in equilibrium has the
configuration of the most probable macrostate, is omitted here, and can be find elsewhere
Ref.[D-F-Styer 20071 The continuum mechanical macroscopic definition of entropy follows
rather initial postulates and supporting theoretical statements. The definition starts with
the relation of entropy with the heat supply into the system. For any process, which is not
necessarily a cyclic one, the integral on the left hand side and the fraction on the right hand
side are state functions, and the differentials of those state functions respectively.

B 6Qen 5Qren

AS,ep [A — B] = / dSyey = 1.64
[ ] T T (1.64)

With the subscript it is not meant that the heat transfer has reversible properties, rather
it is meant that the process from state A to state B has took place reversibly, i.e. without
dissipation or loss of energy. Energy is globally not lost, first law of thermodynamics
holds, but it can be still dissipated to the surroundings, or converted in another form.
The situation in correlation (1.64) can be partially achieved for slow enough, aka almost
reversible processes.

Remembering the definition of a state function, it is not only a declaration that the
temperature specific variation of heat absorbtion of equation (1.64) is a state function.
It can be shown Ref [R-E-Sonntag 19981 j e for Carnot cycle that the cyclic integral of the
aforementioned quantity for reversible process has zero value. Again, the reversible process
should fulfill the following criteria for a cycle;

ASye [A = B] + ASyey [B = C] + ASyey [C — D] + ASyen [D — A =0 (1.65)

Since the integral is a state function, for two different processes one being reversible, if
the amount of heat exchange and operation temperature is same the other irreversible, the
change of entropy should be the same.

ASiry [A - B] = ASyey [A - B] (1'66)

The second law states that, for any irreversible process, there is a transfer and production of
entropy, where the production is always greater then zero. The notion of positive production

8potential function of the elastic part of pseudo-elasticity; material law
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is interpreted in statistical physics as most probable tends to happen, and thus indicates a
direction of the real processes. For continuum mechanical definition the differential local
form, the infinite change of entropy of a system Ref.[deHoff 2006],
SYys __ t prod prod

ds;.’ =dS; " +dS;,, as;..” >0 (1.67)
The verbal definition of second law states that, " There is a property of the universe, called
its entropy, which always changes in the same direction no matter what process occur
Ref.[deHoff 200611 © The main agreement which can be also phenomenologically proven is
that, the irreversible process has an entropy transfer and production term. On the other
side, the system undergoing a reversible process can only, absorb the entropy.

ASi [A = B] = ASI® [A —~ B] + ASP™*4[A — B

wrr mrr

= ASpep [A = B] = AST™S [A —~ B] + ASPr%[A — B (1.68)

Tev Tev

— AStrans [A N B]

Tev

Equation (1.67) together with equation (1.68) leads into the following conclusion,

AStrans A Astrans A ASpTOd A

wrr rev wrr

(1.69)
= ASIIS [A — B] < ASTIS [A —~ B
Which results into the following integral and differential forms,
B 5Q; Bs5Q 0Q; 0Q
wrr rev wrr rev — d 1‘
/A T < /A T T < S (1.70)

First and second inequalities show that, for isothermal processes, the reversible heat transfer
takes the maximum. For cyclic processes, the change in state function entropy is zero. This
gives the well known Clausius Inequality in integral form,

A 5@
%A <0 (1.71)

The strictness of the inequality is removed, since there is no information about the
reversibility of the heat transfer made. The time integral form of equations (1.70) and

(1.71) are,
AL t+AL Yy
/ th g/ Sdt = &
t t T

- <57, (1.72)

o

Where the composition and corresponding time derivatives are considered in the last form of
the equation. This rate form is taken to be consistent with the previous balance equations,
namely, conservation of mass, translational momentum and the internal and kinetic energy
sum.
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1.4.4.2 Combined Statement and Helmholtz Free Energy

From the definition of entropy, for as reversible process, the process variation of total heat
transfer and production of the system can be expressed in terms of temperature and entropy
differential as follows,

0Qreny = TdS (1.73)

Inserting this back into the first law of thermodynamics, equation (1.42), one gets,
dU = TdS + §W (1.74)

This equation, where the alternative energy sources are omitted, is known as the combined
statement of first and second laws of thermodynamics. The state function of Helmholtz
free energy and its differential are defined as?,

A=U-TS — dA = dU — SdT — TdS (1.75)
Inserting the combined statement into the Helmholtz free energy;
dA =TdS + 6W — SdT — TdS = 6W — SdT (1.76)

Which indicates that the differential of Helmholtz free energy for isothermal and reversible
processes is balanced by the variations of mechanical work (A:Arbeit) done on to the system.
This is most probably the main reason that in the theory of elasticity, the so called strain
energy density function is abbreviated as the Helmholtz free energy density state function.

1.4.4.3 Second law of Thermodynamics for the two phase mixture

In this part, another form of the combined statement of second and first law is done. This
statement is performed by considering the second law of Thermodynamics as the master
relation, and thus results in an inequality. The strain energy density function is enforced
into this inequality in order to quantify admissible ranges for positive dissipation. Recalling
the temporal and spatial differential form of the second law (1.72),

Q7 i

77 SO (1.77)
The temperature specific total heat gain, consisting of a heat source and heat transfer
becomes then,

Q’Y o 1 ~ q’Y B _ 1 Y ; q'Y
=) el rdv — . T -n>vda = ; T rdv — A div T dv  (1.78)
ol vy vy vy

The symbol of evaluated at:| is not anymore used for process variables of heat and work,
since they are anyway given in rate form. The apparent, or partial density specific entropy
has the form,
ST = / 078" dv (1.79)
Q

~

9By means of differentiation by parts
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The rate of this quantity can be obtained by using the conservation of mass,
S|, = / (@w + 0757 |,Y> dv (1.80)
Q’Y

Previously, the constituents of the mixtures were assumed to obey the balance laws
independent of each other. Each constituent had its own conservation of mass equation,
translational momentum balance equation and finally, combined internal and kinetic energy
conservation equation. Some of the interactions in between the constituents are donated by
momentum or energy input to the system, bu their origin were not addressed. In opposite,
for the case of entropy inequality, the mixture is considered as a whole.

Z ST, = Z/ = 0 Trdv — Z/ div < > dv (1.81)
v:fss v:fys v:fss
The local form together with equation (1.80) becomes,
Z 05+ 0787 |, — LQ Tr + div a7 >0 (1.82)
e T T

The Helmholtz free energy in the integral form, together with spatial mass free energy,
internal energy and entropy, rewritten again,

AT =07 -T1757

AY = / 0" dv
Q

v

U = / o"U7dv
Q

~

57:/ 0787dv
Q

~

(1.83)

The strain energy density function'®, and the rate of change of it are given then in local
form,

G =07 — T8 (1.84a)
V|, = U]y =17 ], 87 — 57|, T7 (1.84b)

The second term in equation (1.82) can be deduced from equation (1.84b)

078" |y = _Qvfy_’V + QVUW v _ , 17 |y 3
T ™ T (1.85)

= (1) (—QW\T” b+ Uy =T |, 5‘”)

0The strain energy functions is defined as the apparent density (in spatial domain) specific
Helmholtz free energy of the constituent
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The second term of equation (1.85) can be replaced by the rate of change of internal energy
from the equation of conservation of energy;

o . 1
-1 -1 A U Ay e
(T’Y) U ’7 — (TV) (—QVUV + 597‘@ ‘v H2 —p -z ’v
(1.86)
+07: D |, +0'r —div(q"))

After successful replacement, the following form for the rate of partial density specific
entropy rate is obtained,;

5 - o U L. L
G, = @)~ - DU g P -8,

(1.87)
+07: D, +o'r —div(q") — oT7 |, gv)
Inserting this expression into the final dissipation inequality (1.82) yields;
S Qv — TN L TY 5787 ’Y\iﬂ YUY L Y| A4 2 _ 4674
S8k %) = @t es - i), - a0 L P8
) 2l
+07:D|,+0'r—div(q") — o"T7 |, 87 — o'r + T div (%)] >0
(1.88)
Further insertion of equation (1.84b), gives one the internal energy-free version of the
inequality;
- Qﬁ/ -1 Ay F g 1. POV
> (SV b= | = 20 @)= = 0 |y gy (P B
v:f,s v:fss

. g
+07: D|, —div(q") — 0T |, 57 +T"div (%)] >0
(1.89)

Heat flux related quantities can be further reduced by spreading the divergence of
temperature specific heat flux term as follows;

5 d(q) (1)
T div (%) = Tv(q;fi)) = div(q") — (T7) "' grad (T") - " (1.90)

Replacing this result of this term;

. Qv ~ e M 1., . JOV
> (S” b= | =2 @)= = W+ gL P -
grad (T7)

+07: D}y, —¢"T7 |, 8 R

-q"| =20



20 Chapter 1. Soft Tissue as Biphase Mixture

In common parenthesis of partial density and partial density input;

. Q“f B 1 < . . N o 1. . 5
Z(sw—ﬁ =@y o (g - 5) e (<8 Sl
grad (T7)

—p7-@), +o7: D, - L0

. q’Y] >0
(1.92)

The equation above is known as a special version of Clausius-Duhem inequality. Stress
tensors, spatial rate of the deformation gradients and strain energy functions are involved
in this version of the governing relation. The main assumptions can be applied on this
combined version of second and first laws, and lead into a weak form, which can be merged
into the numerical methods for solving partial differential equations.

1.5 Assumptions, Narrowed Relations and Constitutive
Restrictions

In this section, the previously given governing relations are simplified according to the
assumptions, which will be postulated in this section. Immediately after, the consistency of
number of field variables with the number of equations are compared. Since the number
of equations in hand are strictly depending on the assumptions done (under assumptions
done, energy equation can be reduced to the balance of momentum), the impact on the
determinability of the system is discussed.

1.5.1 Assumptions

The list of assumptions done are,

Assumptionl: The solid phase of the mixture is taken to be fully incompressible. The
realistic density of the solid phase does not undergo temporal changes.

o*Fls =0 (1.93)

Assumption2: Similarly, the fluid phase of the mixture is taken to be fully incompressible.
The realistic density of the fluid phase does not undergo temporal changes either.

o =0 (1.94)

Assumption3: The temporal differential of the temperature field is neglected. The
processes are assumed to find place isothermally, for both phases, the rate of change
of the temperature is ignored.

T, =0 (1.95)
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Assumptiond: The process is assumed to take place in equal temperatures for the solid and
fluid phases. The temperature gradients are not only neglected in between phases,
but also in the phases.

T°=T/ =T grad(T7) =0 (1.96)

Assumption5: The process is quasi-static for both phases.

#1=0 (1.97)

Assumption6: No mass supply into any phase.

07 =0 (1.98)

Assumption7: No body forces applied on the system for any constituent.

fi=fi=o0 (1.99)
1.5.2 Narrowed Governing Relations

In this subsection the simplifications according to the assumptions introduced above are
presented.

Simplification 1: Saturation condition and partial density equations

Zn“’ =n*+nf =1 o =nfp°ft of =nfo/E (1.100)
S

Simplification 2: Generic equations for conservation of mass for incompressible materials

NS

4

FR=0 = A, +nidiv(El|s) = R (1.101a)
=0 = nf(f+nfdw (&|f) = ﬁ—; (1.101b)
With the further assumption of no mass source;
0°=0 = 7n°|,+ndiv(E|s)=0 (1.102a)
=0 = hf‘f+nfdiv (@]7) =0 (1.102b)
Simplification 3: The generic balance of translational momentum equations,
div (0*) + o (F;— 1, ) = 0°@ s +§° =0 (1.103a)

div <0'f>+gf <fgj—5e|f> ~olelp+pf =0 (1.103b)
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With the assumptions of quasi-static process, lack of body forces and lack of mass
source the translational balance of momentum equation set reduce to;

0°=0, f;=0, &[,=0 = div(e®)+p*=0 (1.104a)

=0, fl=0 il;=0 = dz‘v(af)—l—faf:O (1.104b)

Simplification 4: The generic inequality of the Clausius-Duhem,

. QW B 1 M . N N v 1. . 9
Z(Sm—ﬁ =S @) o (8 - T ) (8 Sl |
v:fis v:f,8

grad (T7)

—ﬁﬁ/'fch +U’Y:D|'Y— T

(1.105)

The lack of mass input, lack of temperature gradients, and the assumption of
isothermal process reduces the dissipation inequality as,

07 =0, grad (T7) =0, el ly =0 T=T5=T7 =
. < . 1.106
ZD”“/:ZTil[UW:DH—QW‘I’WH*'_N'Q?’H]20 ( )

Simplification 5:  The simple agreement of fluid solid interaction, requires the momentum
inputs to be balanced by each other.

pP+pl =0 (1.107)

1.5.3 Constitutive Restrictions

The equations in hand for solving initial/boundary value problem -which is not explicitly
stated yet- are 3 equations from the saturation and partial density relations, 2 conservation
of mass equations, 3 of each in total 6 conservation of translational momentum equations,
and finally 3 equations from the momentum interaction balance of constituents. According
to the sum, in total 14 equations in local form are present. Additionally, the real densities in
material coordinates of the constituents are known, namely 2 equalities for o°, o/ are in hand.
Those 2 equalities from the assumption of full incompressibility!! , are not counted on the
side of knowns. At final stage, one has 16 equations. The balance of angular momentum
requires the true stress tensors o° and o/ to be symmetric. Instead of considering the
balance of angular momentum equation, one can admit that the number of field variables
of each stress tensor to be 6, instead of 9. Furthermore, it should be stated here that, the
balance of energy is not considered in this context, because in the absence of electrical,
thermal and chemical effects, it does not supply more information then the conservation of

"since these are enforced completely into the other balance/unbalance equations/inequalities
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translational momentum equation does.

The number of field variables are, 6 from the fluid and solid mappings (x|; and x|¢),
12 from the fluid and solid stresses (o* and o/), 6 from the fluid and solid momentum
inputs (p* and /), 2 from the fluid and solid spatial partial densities (n/ and n/), 2 spatial
(yet material) fluid and solid real densities (p/® and p°®) and lastly 2 variables from the
apparent densities of fluid and solid phases (of and ¢°). At the end, according to the total
sum, one has 30 field variables.

In  mechanics, the equations which are closing the aforementioned significantly
underestimated system (16-30=-14), are known to be the constitutive relations. To enclose
the system, there are stress to gradients of mappings relationship postulates to be made.
The nature of the constitutive law, is usually determined by the Helmholtz free energy
function for the solids, and follows empirical statements for the case of fluids. The free
energies are to be found in the entropy inequality and balance of energy equation, which
are not counted to be one of the field equations, and thus not considered as a field variable
here. Therefore, the resulting fact is, there are in total 12 (each 6) postulates made defining
those constitutive relationships.

o’ =0°(Gradl|s x,...) ol =0/ (Grad|p x,...) (1.108)

However, this function might be depending on further internal parameters, or field variables
as already indicated. The same postulate can be also made for one of the momentum
inputs, fore instance to the fluid constituent only, (p/ = pf (...)). The sort of dependency
is consistently postulated in the following sections. A similar postulate is not done here
for the case of solid phase, not to cause a conflict with the interaction equation, namely
Narrowed Governing Relations number 6.

At the end, 12 true stress relations and 3 Ansatz relationships for the momentum input
to the fluid (in total 15) are present. The final sum as the number of knowns minus the
number of unknowns is, (16+15-30=-1), indicates that the system is singular. To close
this redundancy, an additional unknown will be introduced in the next sections, which will
enforce the saturation, and close the constitutive dependency in equation (1.108) and the
fluid momentum input.

1.5.4 Darcy Velocity, Saturation Rate and Pore Pressure

The definitions which are done in this subsection are necessary for constitutive modeling,
building the weak form, and the finite element formulation. The natural element formulation
are taken under consideration in a separate chapter (Ch.[5]).
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1.5.4.1 Darcy Velocity

Darcy velocity'? in soil mechanics has been known as the velocity of the fluid molecules in
the pores. In the context of theory of mixtures, Darcy velocity is defined as the relative and
thus objective spatial velocity of fluid constituent observed by the solid constituent.

w/ =i — il (1.109)

It (equation (1.109)) is spatially and temporally objective, independent of the rate of the
global coordinate observer.

1.5.4.2 Rate Form of the Saturation Condition

Rate form of the following condition is necessary to move on;
n® +nf = (1.110)
It is self-evident that the solid spatial rate form is homogeneous.
il +nf s =0 (1.111)
The rates of solid and volume fractions with respect to the solid fluid velocities are,

on'

ons
on’ on'
0’y = 87;: ‘& |p = grad(n’)- 2|y hf\SZ%-iblszgmd@f)-aﬁ\s

(1.112)
The relative rate of fluid volume fraction can be represented in terms of the Darcy velocity,

ond ond ont
e —pf . = 2 gl — . = — (@, — — Y ow (111
n'|p—nt s o T|f o T | o (] —a|s) grad(n ) w’® ( 3)

Inserting the solid rate of the fluid volume fraction back into the equation (1.111),
0w |s +nf |p — grad <nf) cwl* =0 (1.114)
The solid rate of the solid volume fraction, and the fluid rate of the fluid volume fraction

can be well recalled from the reduced version of conservation of mass equations.

n’|l, = —n’div (& |s) = —n’tr (grad (& |s)) = —n’tr (L |s) = —n’tr (D|s) (1.115a)

S

nf ;T —nfdiv (&) = —nftr (grad (2 |;)) = —nltr (L|;) = —nltr (D) (1.115b)

Where, the second equality is a tensorial identity, the third is the definition of spatial velocity
gradient which is defined previously, and final equality is another basic tensorial identity,

23ome writers Ref.[S™*" 2013] prefer the term seepage, some Ref.[7-W-Pelleur 2007 profer pore velocity.
Here the very initial Ref.["-P7 18%6] definition Darcy velocity is taken.
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which states that the skew symmetric tensors are trace-free. Inserting the last form of the
volume fraction rates into the equation (1.114),

nsD]S:I—anD\f:I—i—grad(nf)-wfs:O (1.116)

gives the final form of the rate form of the saturation equation in terms of the stretch
tensors, gradient of the fluid volume fraction and the relative fluid velocity. This equation
(1.116) is used to define permeability and enables to move on with the weak form of the
equation system.

1.5.4.3 Effective Stress and Pore Pressure

Closure of the system of equations should not violate the second law of thermodynamics,
which is not considered in the set of field (in)equalities. Recalling the narrowed version of
the Clausius-Duhem inequality after considering the assumptions,

0°:D|, — 0* 0|+ —p*-d|s +of: Dy — oSV | p 4 —p i@y >0 (1.117)
Rearranging the terms and imposing the first replacement below,

—p*als —p @y = b (@ —2lp) = bWl (1.118a)
— 0V |, = /U |y +o*: D+l D —p w20 (1.118b)

The rate of strain energy density function W* |, is defined per spatial density, recall equation
(1.83). The spatial volume specific Helmholtz free energy is donated by grave hat notation.

Vs |, = 0" 0% |, (1.119)

This assumption is a conclusion of the fact that, the rate of the Helmholtz energy is free,
not the energy, which is arbitrarily integrated in time. Defining the Helmholtz free energy
flux, similar to equation (1.83) one gets;

AS:/ gv\iﬁdv:/ e, dv:/ b, dvs (1.120)
s s QS’

The above statement of (1.120) is conform with (1.84a) and (1.84b). In many context,
the Helmholtz free energy is meant to be material volume specific one, as shown in the last
integral of equation (1.120). Together with the last comments, equation (1.118b) can be
represented by the spatial volume specific free energies as follows,

—fi'sls—\iff|f+03:D|s+af:D|f—;3f-wa>0 (1.121)

Recalling the rate form of the saturation equation (1.116), over-scaling it with an arbitrary
parameter \, and adding it to the last form of the entropy inequality leads into;

— 0, - W
+(o*+°I): D|s + (af +Aan) : Dy (1.122)

+ <)\gmd(nf> —faf) cw® >0
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Remembering that the fluid part is fully incompressible and postulating another intermediate
assumption that the flow is inviscid, there is only the rate of current volume specific
Helmholtz free energy is remaining!?,

Vs |y = (det (F|g)) ' 0|, = (det (Flg)) ' =—=—: (F'|g-F
s = (et (F|3)) 0, = (det (Fls)) ™ 5= (FTIs Fls)|,
B L0V g oo
= (det (Fls)) ™" 5er=s (B lss - Fls + FTls - Fls )
-1 ov T T T
= (det (Fs))" sz (F' s - L' |s - Fls + F|s - L|s - Fs)
o (1.123)
., Ov
o
=2(det (Flg)) ' |F|g-=—=— FT|s|: D],
(det (F'|s)) s aC s s |

:(J71|SF|S-S§-FT|S):D|S :U::D|s

The initial replacement of the determinant of solid deformation gradient results from
equation (1.120). After this conversion, the time derivative can be taken with respect
to the strain tensors with material coordinate base vectors. The part of the stress tensor
depending on the material-specific free energy function is the so called effective stress tensor.
Back substitution of effective stress into the last version of dissipation inequality results in;

(P +°I —0o}): D|s + (O'f—i—)\an> Dy + <)\grad(nf> —ﬁf> cwf* >0
(1.124)

According to the definition of effective stress and pore pressure, the first two terms in the
equation above are free of dissipation. The true total stresses of solid and fluid constituents
are then,

o’ =0, —\n’l ol = -x'I (1.125)

The meaning of parameter lambda, introduced for closing the slightly overestimated system
of equations gets clearness now. The parameter acts as a penalty parameter of pressure,
reducing the effective stress, which is proportional to the volume fraction of each component.
The initial expectation of that the volume fraction is proportional with the pore pressure
and inversely proportional with the total stress of the solid phase is in fact a deception. One
can not expect high pore pressures from almost (densely) filled void-free continuum solid.
The opposite of this can be explained by means of the intrinsic dependence of parameter
lambda to the other field parameters and roleplayers, volume fraction being among them.
Returning back, the dissipation can be summarized as;

()\gmd (nf> — ﬁf> cwl* >0 (1.126)

13The intermediate steps of the equation (1.123) can be verified by any tensor algebra reference,
such as Ref_[J'BO“Et 2008]
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1.5.4.4 Momentum input constitutive law

For the postulate of constitutive law for the momentum input to the fluid constituent,
one should consider the thermodynamic consistency, i.e. no violation of Darcy velocity
dependent dissipation inequality. One postulate!® can be done accordingly,

p/ = \grad <nf) — fw/®

, (1.127)
(Agrad(nf)—ﬁf)-wfszﬂ‘wfs >0 <« (=0
Recalling the momentum equation for fluid with body forces,
div <af) +olfl 49 =0 (1.128)

According to this equation, by replacing the fluid true stress with fluid pore pressure the
momentum input becomes,

pl = div <)\nf I) — o f (1.129)
In indicial notation,
0 ()\nféij) f f f f
~om n’ grad (X\); 0;; + Agrad (n >Z dij = n' grad (X); + Agrad (n >j (1.130)
Inserting this expression back into the constitutive law for the momentum input to the fluid
gives the final expression for the determination of the Darcy velocity,

n' grad (A) + Agrad (nf> — fog = Agrad (nf> — Bw’®
y (1.131)
— w5 (] - graa )

1.6 Weak Forms

In this section, the weak forms of conservations of balance, translational momentum and
mass differential equations are introduced after each other. The weak forms in spatial
coordinates are pulled back into solid material coordinates, and the cumulative weak forms
are presented in terms of the solid material coordinates.

1.6.1 Weak Form of Balance of Translational Momentum in Solid
Material Coordinates

For a quasi-static process, the balance of momentum equations in the absence of mass
input and in the presence of body forces become,

div (6°) + 0°f; +p°=0 (1.132a)

div <af) +olfl 49/ =0 (1.132h)

Y The parameter 8 postulated here can be seen as the Impermeability and depends on the current
morphology of the continuum neighborhood.
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The virtual power principle gives the variational power of each balance equation under
variational changes of spatial velocities.

5W8:/ (div () + 0*F5 +5°) -0 |o dv = 0

’ ] (1.133)
5Wf:/ <div(o-f>+gff{:+ﬁf>-6sb|fdv:0

Qy

Since the stresses are functions of deformation gradients, this weak form includes second
gradients of the displacements and can be further weakened by integration by parts. The
virtual power supplied by the divergence of true stress is,

div (07) - & |, = div (67T - 6&|,) —o7: 6D |, (1.134)

The more weakened version of virtual power equation set becomes;

/ (08:5D|s)dv:/ div(UST.ésb|s)dv+/
/ (Uf:(SD]f)dv:/ div(afT-éa':]f>dv+/
Q; Q Q

f f

stg-5:'c|sdv+/ p* - S|, du
Qs

S

gff{j-éa':\fdv—k/ pl oz |y dv
Qy
(1.135)

By the application of Gauss divergence theorem, the first integrals on the right hand side
of the equations can be represented by means of the surface tractions,

/(JS:6D|s)dv:/ ts-éa'c|sda+/ sti-éa'c|sdv—|—/ p* - b |, dv

s

/ (O'fzéD]f>dv:/ tf-éa':]fda—i-/ fog-&i:\fdv—i—/ pl ok | do
Qf Qf Qf Qf
(1.136)

The rate form of the saturation condition combined with the balance of conservation of
mass can be formulated as follows,

1
I:n*D|s+I:n'D|; —l—g(I: I) <gmd (nf> -wfs> =0 (1.137)
With the dot product of fluid true stress tensor,
t f
nsaf:Dls—i—nfaf:D\f—l—#(gmd(nf)-wa) =0 (1.138)

The virtual power caused by the fluid stress can be represented in terms of the virtual rate
of solid spin tensor as,

ol 6D lf = —%Uf: oD | + An’ <grad <nf) -5wf8)
1
=ol:6D]|, — —fO'fZ 6D |, + A n’ <g7’ad (nf> -5'wfs> (1.139)
n

=0l 6D|, + A\I: 6D |, + Anf <gmd <nf) .5wf8)
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Replacing the left hand side of equation (1.136) with equation (1.139) leads a complicated
cumulative weak form. It is in general not suggested'® to punish the strong form, namely
the original balance of equation of mass and translational momentum with the variations of
the realistic test functions. Instead, both strong forms (fluid and solid) are projected onto
the test functions of variations of the solid velocity, to get more weaker, however in a more
simplified manner. The accumulated virtual power equation becomes thereafter,

SW = 6W* + oW/
] . (1.140)
:/ <div(o-s)+gsfg+ﬁs—|—div (O'f> +fo£+ﬁf> 0 |s dv=0

E]

Imposing the fact that the momentum input should be canceled by each other, assuming
that the body forces are equal, and spreading the divergence operator into the total sum of
true stresses with effective stresses and pore pressures,

oW = div (o5 —n* AL —nfAT) + f, (0° + o)) - 0 |5
. (e )+1i (e + o)) o]
(1.141)
:/ <div(ag—)\1)+fb(gs+gf>>-5&'3]5dv:0
Qs
Following the same procedure,
/((ag—)\I):éD\s)dv:/ is-éa'zlsda—k/ (0 + &) Fy-dilodv (1142)

Where the traction vector is not corresponding to the real true stress traction. Similarly,
although there is no direct physical correspondence (or not straightly expressible if there is
any), it is assumed that there is a mapping exists in between the material fluid and solid

coordinates 6. Accordingly, there is a tangent mapping in between those two material
tangents,
0X |g x|, \ ' x|y 1
o= (o) amls=F s Fle (L

Since the pull-back operation is kinematically multiplicative, first pulling back the current

fluid tensors to the fluid material tensors, and then pulling back to those fluid material
tensors into the solid material coordinates is identical to pulling back all the tensors from
current coordinates to the solid material coordinates. By doing so, the virtual internal power
becomes;

5W@'“t:/ ((s:=C): 0B, ) avs
s ) (1.144)
:/ 5 ((s:=ac™):aC))ave
Qs

'Sthe writer did not observe references, which performs the action other way around

6The physical existence of this mapping would indicate that one reference phase turns into other
reference phase, which indicates in fact a very fast chemical phase transition. This type of processes
are neglected, as stated in the section of Ch.[1.5]. Nevertheless, a mathematical tangent mapping is
definable and necessary, and thus defined.
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1.6.2 Weak Form of Conservation of Mass

As done for the conservation of translational momentum, for the conservation of mass, the
integral form of the cumulative sum of the mixture is considered.

/ <7’”LS\S + hf‘f + nidiv (&) + nf div (& ]f)> dv=0 (1.145)

S

Replacing the first two components with equation (1.114),
/ (gmd (nf> ~w!® 4 nidiv (&) +n'div (& \f)> dv=0 (1.146)
Qs

Applying further modification on the last two terms to eliminate solid volume fraction and
fluid velocity,

/ [gmd (nf> cw!® 4 (1 - nf> div (@ s) +nf <div (@ |s) + div <wfs>>] dv=0
Qs

(1.147)
Recalling the following divergence to gradient tensor identity,

div <nfwf5> = grad <nf) ~w!® +nf div (wfs) (1.148)

Replacing the first and the fourth terms with this identity, and adding the second and the
third terms gives the final expression for the cumulative conservation of mass equation in
integral form, free of fluid velocity and solid fraction.

/ <div (@ |s) + div (nf'wfs>> dv (1.149)
Qs
The weak form is then,

/ (div (@ |s) + div (nfwfs)) dAdv (1.150)

S

Applying integration by parts to the second term,

/ div <nf 'wf5> SAdv = / div (nf wa(S)\) dv — / nfw!® . grad (5)) dv
Qs Qs

S

(1.151)
:/ <nfwf35)\) -nda —/ nfw’® . grad (6)\) dv
The internal weak form becomes,
SM™ = / div (&) SAdv — / nfw’* - grad (6)\) dv (1.152)
QS S

Recalling the Ansatz for the relative fluid velocity including the pore impermeability
coefficient;

it = [ (Dl [ 57 (nT) grad(3) - grad @M dv (1153
Qs

s
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For the material frame formulation the gradients of the second term should be puled back
to the solid material gradients as follows,

grad (\)-grad (6X) = F~T |, .Grad (\)-F~T |;-Grad (6)) = Grad (\)-C ™! | -Grad (6))

(1.154)
Additionally, from the long expression of equation (1.123) one gets;
1 .
D|, = §F*T ls -Cls - F7Y, (1.155)
Using these identities, the final form in the solid material coordinates ends up;
Mt = / I: D|;0\dv —|—/ [C_l ls : (Grad (X\) ® Grad (6)))] dv
:/ [J*l s C7L, Cys] SAIVS (1.156)

s

N / | {5—1 (nf)2J_1 s C7 s 1 (Grad(\) ® Grad (6\))| dvS

1.7 Discretized balance equations

The linearized field equations are to be solved for final verification. For this purpose,
finite element method, as well as natural element method(see Ch.[5]) are used. Higher
order tensorial qualities are represented in terms of matrix algebra, if necessary Voigt-type
notations are applied. Following this, the total Lagrangian approximations are presented.
The necessary material time derivations based on Newmark's method are presented briefly.
Finally, the matrix-vector algebraic form are linearized for preparing the system of equations
for an iterative solution.

1.7.1 Matrix-Vector Form on Total Lagrangian Configuration

For the matrix-vector notations of the tensors, calligraphy symbols'” are used. The tensors
which are converted into Voigt notation are namely, the second Piola-Kirchoff stress tensor,
the Cauchy strain tensor and the inverse of it, and the dyad of material gradient of pore
pressure variable A with the variation of material gradient of it.

T

Sls = [S)S(X7Sls/Yangas}g(YaséZ7S§X]

T
Cls = [C)S(X,Céy,ng,QCﬁy,QCéz,Qng]
(1.157)

¢ s = [0 3 (O35 (O3, (@75, (03]

6Cls = [0CTx, 80Ty, 005 4,200y, 2005 51,2505 x|

'"Throughout the treatise, other forms of symbols are also used. If the notation changes, the
information will follow. Please refer to the front-page of List of Abbreviations.
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The missing coefficients in the off-diagonal terms of the inverse Cauchy strain tensor are

dropped on purpose, because this tensor acts as a pulled back stress tensor in the weak
form. The total variational weak form is;

5Wint +5M@nt :/

% ((s:-Ac7):6C, ) avs
Qs

+/ [J*l l, C7L, C\S} SAIVS
Qs

+/s [5—1 <nf>2j_1 s C1, : (Grad (X) @ Grad (5))) | dVS
(1.158)

Using the symmetry property of the inverse Cauchy strain tensor, the last double
contraction can be reformulated,

C s : (Grad(\) @ Grad (6)\)) = C ™|, : % (Grad (\) ® Grad (6A) + Grad (0A) @ Grad (N)]

=C!,: g(Gmd(A) ® Grad (\))

= (') 6Qs
(1.159)

Now the right hand side of the contraction can be also represented in 6 to 1 Voigt notation.

L Y i2 S ) Y N /Y SN VN /N
21%ax2 7 “avz > “9z2 0 “axay ' ‘ovoz ' 0ZoX
_ 1,801 01 007 OA X OA
270X 09X oy oy YA YA
90A OA | OX 96) 00 OX | OA DA @Q+3_A@T~5Q|
X 0Y 09X oYy ' oy oz oy oz = 0Zox ozox| =8
(1.160)

The matrix-vector notation is certainly nonlinear, and is visited in the next chapters in
detail. The total variational weak form in matrix-vector notation is then,

: rint 'mt_}/ T (S yp-l s
s ot =3 | (6¢"1s - (85— ac)) av
+/ (J‘l N \s>5AdVS (1.161)

_|_/ <51 (nf)jSl |s (SQT |S .Cfl |s> dvs
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1.7.2 Newmark-Method-Consistent Material Time Derivatives

The Newmark method and the algorithm of it are usually used for conditionally stable time
integration of rate dependent discrete forms of weak differential equations. Since the inertial
effects are neglected, only the time derivatives are presented here. Newmark postulated
in his original work Ref.[Newmark 1959] fourth order and third order series expansions for
displacement and the velocity (not necessarily spatial) respectively. With the notation
which is adapted to finite deformation theory,

w(X,t) = u(X,t— At) + Ata (X, ¢ — At)

(At)?
2

3
+ ﬁ(X,t—At)%—%ﬂ(Xat—AtH—... (1.162)

At)? ..
(X, t)=u(X,t— At)+ At (X, t — At) + ( 2) u (X, t—At)+ ...
The effect of the remainders can be manipulated by applying a variable coefficient to the last
terms of the expansions. The newmark type deformation and the rate (spatial or material

material) of deformation are given as;

2
uw(X,t)=u(X,t— At) + Ata (X, t — At) + (A;) @ (X, t— At + B (At (X, t — At)

(X, t) =a(X,t — At) + Atii (X, t — At) + B (A1) % (X, t — At)
(1.163)

Assuming there is (was)-at least backward-linear acceleration field, one gets the following

expression.

(X, t)—u(X,t— At)
At

Inserting the rate of acceleration term into equation (1.163), one gets deformation, velocity

and acceleration dependent Newmark series,

W(X,t— At) = (1.164)

w(X ) = u(X,t— Ab) + Ati (Xt — At)
+ <% _ 51> (AD2 i (X, — Ab) + B (AD? i (X, 1) (1.165)

(X, t) =0 (Xt — At) + (1 — B2) Atii (X, t — At) + B2 At (X, 1)

The current velocity and the current acceleration are considered to be unknowns. The
current acceleration from the first equation above yields into;

(X ) = (X ) -

5 (D) su (X, — At)

B (At) (1.166)

W (X, t— AL — <% —1> i (Xt — Ab)

Br1At 1
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Inserting this expression into the second equation gives;

(X, t) =0 (X,t— At) + (1 — Bo) Atii (X, t — At)

Be Ba
+ﬁ1Atu(X’t)_ﬂlAtu(X’t_At) (1.167)
_ %d(X,t _ A - (2%2 _ ﬁ2> Atii (Xt — AL)

1 1

Neglecting at this stage the terms causing inertial effects, namely acceleration,

(X, t) = ﬁlﬂztu(X,t)

P
B1At

w(X,t— At) + <1 . %) a(X,t—At)  (1.168)

Taking that the series is expanded around the initial time, in the material configuration,
leaves one with the following identities;

t—At=ty = u(X,t-At)=x(X,to))—X=0, a(X,t—At)=0 (1.169)

The Newmark consistent material time derivative becomes;

a(X,8) = P (x,1) (1.170)

Bt

This material time derivative can be applied for each variable with homogeneous initial
conditions.

1.7.3 Discrete Form of the Translational Momentum Part

Apart from the pore pressure term, the discrete form of the first addend of equation
(1.161), can be found elsewhere. However, for the sake of completeness and adaptedness
to the following sections, the derivation proposed by Zienkiewicz Ref.[©-C-Zienkiewicz 200007 jg
re-introduced here. For this purpose, the vector form of the variation of the Cauchy strain
tensor is given again;
T
5C|s = [6C5 x,0CYy,20C5 ,, 2605y, 26C% 5,260 x| (1.171)
The rate form is dropped on purpose. Instead of variation of rate, the rate of variation
is taken and this rate is evaluated numerically, which is going to be presented in the next
sections. The variation in tensor notation becomes;

1 1
50C s 25(6FT|5 “Fls+FT|g-6F|g) (1.172)



1.7. Discretized balance equations 35

In indicial notation,

5 0C 1)1 = 5 (0F" 1), (Fls)is + (F7 1s) 1, 6OF ls),)

N~ N~ N

((5F |S)il (F|S)iJ + (F|S)u (5F|S)U)

(1.173)
55'3|S)1‘>

N |

Back substitution into equation (1.172) gives with the summation convention over index i;

[ 50151 (F'[s);1 (0u ’5)1,1 |
50252 (F'[s )2 (0u ’5)2,2
Lics = L[99 | _ (Fls)is (Buls); .
2 2 250152 (F']s);1 (0u ’S)i,Q + (F's);2 (duls);4
250593 (F'[5 )0 (0u |S)i,3 + (F'|s);3 (du |S)i,2
26C3) | |(F']8)i5 (Ouls);q + (Fls) (duls); s

Applying the natural element shape value interpolation, on the deformations, variation of
deformations and their material gradients leads into the following representations;

# shape neigh. # shape neigh.
(uls);= Y Nals)y  (buls);~ Y NF(als);
L L
# shape neigh. # shape neigh. (1‘175)
(U|S)i7j ~ Z Nf] (a|S)ZL (5U|S)¢7J ~ Z Nf] (5a|S)ZL
L L

The approximate vector form of the variation of the half Cauchy strain tensor is then,

[ (Fls)a N (3t ]s); |
h (Fls)io N5 (3t |5)7 \
n ~ L n
%50’5 %#Zg L(FJS)i:sLN,% (6t |s); I :#Zg B s - (5i|s)"
| (Fls)i N3 (6tls); + (Fls)y N (0t ]s); 7
(Fls);n N5 (01]5); + (Fs)is N5 (9t |5);
L(F|s)s N5 (61 |s)f + (Fls); N5 (i |s)f

(1.176)
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The nonlinear strain displacement matrix is in full form is;

(F|S)11NL1 (F|S)21NL (F|S)31N€
(F|5)12N§ (Fls ) N L (F|S)32Né
BL|S _ (F|S)13N§ (F|S)23 L (F|S)33Né
(F|S)11N + (Fls), (F|S)21N +(F|S) (Fls) 31N +(F|S
(F'ls)a N5+ (Fls), (Fls5)9o N5+ (F[5)a3 (Fls)sa N5+ (Fls)ss N
L(F[s)3 N+ (Fls), (F[s)og NT + (Fls)as (Fls)s N+ (Fls) 31NL
(1.177)

The discrete form of the internal energy as a sum of neighboring nonlinear strain
displacement interpolators becomes;

#£ngh

S = S (5 |s)* / ((BH1s)" - (85 -ach)) avs (1.178)
Qg

L

The first order truncation gives the residuum in between two subsequent iterations,
SR 41 (a]s ) = oW 4 (a],3) W (a5 ,3)
##ngh #ngh #ngh #ngh " (1.179)

_ Z Z (6a|s)t - KWWY - (da|g)M + Z Z (0@ |s)" - K75} <d5‘)
L M

The component of the tangent stiffness caused by neighbor nodes L and M,and supplied
by the translational momentum equation depending on only deformation can be shown as;

9 LA\ (@S _ o1 s
Ky = (ﬁ/‘s)M/QS ((B s) - (8¢ —AC ))dV
_ a(BL‘S)T. S yp-1 S L T‘a(sf—)‘cfl) S
‘/gs<a<ms>”’ (8c -3¢ )>dv +/as<(3 TS )dv

(1.180)

The second addend known as the material tangent stiffness can be formulated by chain

rule,
S yp-1
KWuMat / <(BL‘S)T X 8(Se~ )\?w )) dVS
d(uls)

(8% - ¢!
B s)" (Se ). 8(C|S])M>dVS

T a(sf—)‘cil) M S
R DI ’S)>dv

A
.
((

(B |s)
/ BL‘S DS(BM’S)> dvs
Qg




1.7. Discretized balance equations 37

The coefficient 2 at the third equation of (1.181) is a result of equation (1.176). The matrix
form of the total tangent moduli can be decomposed into effective and pore pressure tangent
moduli.

08¢ 9 (=xc™h)
2(Cls) 2(Cls)
The coefficient 2 can be eliminated by considering the definition of the material modulus,

which is based on Green-Lagrange strain function.Both in tensor and voigt notations, the
following holds

D° =D + D) =2 (1.182)

2Q 1 5 2P 1 9*v 1 5
CEZLQ?_ fz ase -9 0 2:_872:>_©§:856
0(Els)” 2 9Cls 9(Cls)” 20(Els)” 2 aC|s
Les _ d(=AC71s) Los_ d(-xch)
5P aC s 277~ T9(Cls)
(1.183)
The tangent moduli of pore pressure term can be evaluated as,
oI 3(0_1 ’S C‘S) 3(—)\0_1 ’5) 1 60|5
5CTs 3C]s octs  Cls Tl g
(1.184)
In indicial notation then,
1 -1 005
- (65) C]%M = (CS) OM
2 P/INKL 10 3C[S(L
L/ s syt 1 s L s
5 (@) rwvicr Cnar (C7) ypy = ) (&) rvier INT = 2 (&) ks
_ o —10CS 1 on—1 (1.185)
- )‘(C )IO 305 (C )MJ
KL

(Q:E)IJKL =A (CS)I_(; (bordmr + doLoMK) (CS)JT/[lJ
=2 ((€%) 1 (€)1, + (€)1 (%) 1)

At the last equation, the symmetry property of the inverse Cauchy strain tensor is used.
The fourth order identity tensor which is used above is not a definition, but the result of
the derivative of a second order tensor with itself as shown beneath;

QAU _la(A]J—f-AJ[) 1

oAr, 2 Ry = 3 (Orxdsr + 05K01L) (1.186)

IrjkrL =

For practical purposes, the element (or Voronoi-Nodal) stiffness matrices are splitted into
material, geometric and if necessary also in volumetric parts. The names of the additive
splitting originates from the classical Finite-element context, and named after the same
analogy. As stated, the reason is to catch simplicity in the complicated derivations of the
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necessary matrix-vector system of equations. The geometric stiffness matrix component
can be obtained by the linearization!® of the geometric residual scalar,

SRWuGeo i+l — (5 |g)" - KW uce . (da|s)™

L A\T
= (o |s)" - /QS <% (87 - )‘C_l)> (da|s)™ dv®

(1.187)

The directional derivative can be considered in the total variational weak form, where the
strain displacement matrix is not introduced yet,

L
(M”SV'KYﬁGw'WﬂB)MZi/ <Qﬁ§lﬂ%%ﬂ(Sz—AC‘W>-uam>Mdvs

Qg 8(’&|5)
— w S5 —\C! ) di dve
/QS< 6(&\5);‘4 (e ) ( |S) Vv
(1.188)

Recalling equation (1.173),

1 1 .
560190 = 5 (51

= % [(Z N (60 |S)iL> <5U + ZNy@j (@ |S)§w>
L

M

- <5i1+ZNf}”5U )(ZN (0iils ) )]

(1.189)

8The types of notation and terminology for the linearizations applied in this context belong
originally to Bonet Ref.[’-Ponet 2008]
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The focus is however a derivative of a specific variation;

10(6C|s)y, 1 0
§a(a|S)§‘§J_§a(@|S)§w [( (61 ]s); )<1J+ZNJ i ( )
- <5¢1+%:N,1}46zj (zﬂs)j”) (Nf, (5a|s)f)] (L.190)

[(Ng (6ii]s)] ) NMs; + NY o, (Nf, (5@ | S)f)}

Inserting this expression back into the equation (1.188) gives the tensorial form of the
geometric stiffness matrix.

KWuceo _ /Q (Grad (N*) ® Grad (NM) : §|5) IdV*S (1.191)
S

The tangent stiffness matrix depending on the pore pressure lagrangean parameter is,

) )
KWA}:@X—M/Q <(BL|S)T- (85— acC 1)>dVS
S

BAM/ ( (BL]5)" (SE—ZNMXMC‘1>>CZVS (1.192)
M
:_/ NM (B )" ¢ lavs
Qs

Which is in fact a vector value (a redundant matrix), coupling the pore pressure to
the deformations. In this section, the geometric, material and pore pressure dependent
nonlinearities considering the weak form of the translational momentum equation are
presented. In the next section the discrete form based on the weak formulation of the
conservation of mass are presented.

1.7.4 Discrete Form of the Conservation of Mass

The tangent stiffness matrices of the following matrix-vector form is to be found.

5Mi"t:/ (J‘l\SC'T\S e ]8)5)\dVS
Qs

+/ (ﬁl <’I’Lf>2J71 |s 6QT|S ‘cfl |S> dvs
Qs

There will be several tangent components produced from the identity above. Therefore, a
careful subdivision of the equation above, and the corresponding tangent operations are to

(1.193)



40 Chapter 1. Soft Tissue as Biphase Mixture

be performed.

SRM1 |+ (a E ,x) = NI [+ (a\s ,x) — Snrint | (a\s ,x)

ngh #n ngh #n (1.194)
:gg:h%g:h <5)\) KM (dii |g) +§h§h <5)\) KM <d5\)M o
L M

Despite of the fact that, the first component of the stiffness matrix is a vector, and the
second one is a scalar, for the consistency of the assembly of individual addends, those all
will be presented as matrices as done previously. The first derivative is,

K = S M/ I €N et ) NEsav 1o
1.195
— Ké\lﬁuJ +K%4]€4UGGO+K]LMA1/IUMM

The individual components are, firstly the tangents originated by the determinant of the
solid deformation gradient 'J’,

o3

(J7"1s) avs
o (ils)™

T d(detC|s)"?  aC|g
NE(C |,-¢c )@ : = | dv®
/QS (€ ‘) ( oC s o(als)"

K = [ NE(E et ) e

:ASNL(CT|5 ®< (@iCls) 372 (gect‘?sb):afssM)dvs
:/QSNL(C.TL ®< % ) sa%eéim_ ?;SM)WS
/QSNL (c’T|s ®< % detC|5)(C|S)T:%> avs
/QSNL(CTIS ®< % 1|s)T~%>de
[enenye (o M)
A ey e s

+ ((a |S)M)T I (Grad (NM) ® Grad (N™) : C™* |3)} avs
(1.196)
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The material parts,

KJLMAl/IuMat:/QSNL (J_l\s (C']S)T. - )dVS
Ly (g \EooeT ) o)t
:/QSNL<J N (Cl) e ST )de (1.197)

- [ (70 (@n)" (~55m5) B ) ave

and finally geometric part(s),

Q. s)
o B 2B @lM)
7/9 N (J o 5e (€ ) Tk v

= [ v B e )T (8 ) ave

M T
+/QS NE (Jl |s % (({LIS)M)T . % e, | avs

+ /Q N* (Jl |s P ((ms)M)T I (Grad (NM) ® Grad (N™) : C™* |S)) avs

(1.198)

Where the last addend of the material parts is not written because of a simple reason
which is visited here immediately. This could be pointed out before evaluating the material
stiffness part of the weak form of translational momentum equation (1.181). The neighbor
sum of the integrals with the integrand under discussion multiplied with the increment of
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the direction of the directional derivative has the form!?

#£ngh
Z / I (Grad (NM) @ Grad (NM): C7's) - (di]s)™ dv®

#ngh
/ Flg - cu_!«“ys):C*1 \5>dVS:
(1.199)

Additionally, the first residuum of the discretized version of the conservation of mass is
linear in pore pressure Lagrangian multiplier. Secondly, the material rate of the vector form
of the Cauchy can be evaluated by using the Newmark-consistent time derivative.

KA =0 (1.200a)
. #ngh o #ngh N #ngh
&l =&l 3w (é1) =25 e (el) - ZNOB! (als)°
O
(1.200b)

Using this additional numerical approximation and considering the neglected term, the final
stiffness addends of the first part of the mass balance weak form becomes;

MiuJ MiuGeo MiuMat __
Ky + Koy 5+ Ky =

Ao ) wna
+/SNL< -1, §2t( c )" (BM’S)> o

+/QS N <J1 s (07|3)T- (——A©S> -BY |s> av®

t20

(1.201)

For the linearization of the second par
residuum parts should be introduced;

of the weak mass balance equation, the following

SRMz |71 (a|5 ,X) — SN | <a|5 ,X) —SMgt | <a|S ,X)

) #nzgh #nzgh (55\>L KM (g )M + #nzgh #nzgh <5)\> KA (dX)M
L M

(1.202)

9The proof could not be found by the writer of the treatise, after long literature survey of most
frequently cited finite element method texts

20Remember that the weak form of the conservation of mass was divided into two parts for the sake
of simplicity
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Before taking the directional derivative, the exact (approximated) form of the Lagrangian
multiplier gradient should be introduced.

~ \L oA . OX . OA o))
<5Q|S) ) [QNlaX o Nagy o 2Nagz o
oN O\ oN O\ O O\
L L L L L L
1oy aXN ’ N28Z aYN ’ N3aX aZN
= oA (T[s)"
(1.203)

The tangent stiffness of the second part of the conservation of mass with the tangent
depending on only the deformation is,

- - 2
et [ (o (0 e Yo
d(uls) .

_ MouJ MouMat
- KL + KLM

(1.204)

Using the first narrowed assumption (see chapter Ch.[1.5.2]), namely the saturation
condition, one can express the fluid volume fraction in terms of the determinant of the
solid deformation gradient and true densities.

0° 0° dm/dv dV5 gdV

=1 1—

1S =1— T 1= —
" " p°R dm/dV s dv "

—1-nSJ1! ’S

(1.205)
The total derivative of the jacobian dependent terms with respect to jacobian itself is,

o) Ms)

7 =—mS(1—nST " g) T s+ (1-nT s)®  (1.206)
S

Applying the same analogy of equation (1.196),

KLMJQMUJ:/ _%(J—l |s)2 <<nf>2J_1 |S>
Qs J s
(1.207)
(1) e @ ((es)" - B ) avs
The material part, with the same analogy to equation (1.197),

2
Kﬁ/[]@uMat :/Q g1 <nf) J s (I\L !s)T- (_ﬁ©s> BM |, avs (1.208)

And the last term, in a straightforward way,

2 o (TL)s)"
KJLMJ\Q/I)\_/ <5_1 (nf) I s 7(&5) -C‘1\5>dvs (1.209)
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The derivative of Lagrangian multiplier gradient vector with respect to the nodal increment
of Lagrangian multiplier is,

L
8(1‘ |S) _ l [QfoNﬁ/[

S 5 2NENY

L atM
, , 2NENY

T
NINY +NYN5 . N3N3 +NYN§ . NSNY + N3N
(1.210)

Finally, the total nodal tangent stiffness matrix with individual components can be summed
up together as;

WuMat WuGeo WX MiuJ MjiuGeo
K:KLI\/I +KL1\/I +KL]\J+KLJ¢I +KL]€I

MiuMat MouJ MyuMat Mo
+ Koy + Koy + Koy + K

_ /QS ((BL |S)T .DS. (BM |S)> avs
+/QS (Gmd (NL) ® Grad (NM) : S|S) 1av*

_/Q NM (BL |S)T e lavs

+/ L) (éT ls .c-1|s> ® <(C‘1|S)T.BM|S)dVS
0 2

(1.211)
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The individual components in terms of matrix format;
K1 Kio K13 Kig K{/I{uk{at K{/gulwat K{/gulwat 0 K{/I{uGeo 0 0 0
Ko1 Koo K23 Koy K;/I{u]%at K;/IQ/uAIat K;/gulwat 0 N 0 KXQVuGeo 0 0
K31 Kao Kas Kay Ké/il/ukfat Ké/gukfat K:;/Yg/ukfat 0 0 0 K:;/Yg/uGeo 0
Ka1 Kao Kuz Kuaa 0 0 0 0 0 0 0 0
0 o 0o KM 0 0 0 0
0 0 0 KV 0 0 0 0
+ wal T
00 0 K 0 0 0 0
_0 0 0 0 K{VIIUJ Kébhu] K?I)Vllu‘] 0
[ 0 0 0 0 0 0 0 0
n 0 0 0 n 0 0 0 0
0 0 0 0 0 0 0
_K{thGeo KéVh“GeO K?I)\/IIUGeO 0 KiMluJMat Ké\/llul\/lat Kébhu]%at 0
0 0 0 0 0 0 0 0 0 0 O 0
0 0 0 0 0 0 0 0 0 0 O 0
+ + +
0 0 0 0 0 0 0 0 0 0 O 0
MouJ MoulJ MouJ MouMat MouMat MouMat MouA
|k Mzud g Maud - gMaud g KMzuMat - geMpuMat - peMyulMat 0 0 0 KMu

(1.212)
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1.8 Numerical Examples

In this section there are in total 3 different numerical examples are presented. The first one
represents the growth of an initially spherical biological structure, as a result of excessive
fluid feeding at some prescribed arterial locations. The effect of growing volume on some
surrounding tube-like primary tissue is investigated in the second example. The third
example is related to vertical contact of the articular cartilage with the meniscus tissue.
All the models generated here consist of Hexahedral elements only, with tri-linear shape
functions. There is a single difference of the element formulation of the typical 8-Node
Hexahedral framework, which is the number of integration points. The elements contain
layers, and therefore has at least 8 integration points, or more are assigned depending on
the number of layers. . For each layer there are 4 integration points taken, and on the
plane Gauss quadrature rule is applied. In the thickness direction Simpson’s rule finishes
the complete integration. Before giving the examples, the details of the written code is
presented next.

1.8.1 Finite Element Implementation: Software Specifications

The discretized form of the equations evaluated in section Ch.[1.7] were successfully
implemented via Finite Element Method (FEM), as well as the Natural Element Method
(NEM - see Ch.[5]). In this subsection, only the FEM code is presented with details,
instructions and limitations.

The code is compatible with Linux-Environment?’. Some user defined & embedded
noncommercial (public and free) software libraries together with self-written makefiles
provide compilation and execution of the presented software solution. Since moderate
to large systems of equations aimed to be solved by the writer of the treatise, sparse
matrix storage methods and solvers which are capable of dealing with sparse matrix-vector
algebra are implemented and used. The sparse matrix-vector library contains basic yet
efficient linear-algebra operators, such as multiplication and addition of arbitrary sparse
matrices, and explicit inversions of large sparse matrices. The programming has been
chosen to be C++, and compilers with the general public license Ref.[*NV 2009] agreements
are used. Object oriented features such as class inheritence, polymorphism, encapsulation
and function overloading (virtual functions) are fully benefited from. The writer prefered
to be guided by the referend Ref.[Y2"6 199€] since the special focus of the treatise on
engineering applications. For solving the large system of equations, mainly the Pardiso®©
sparse solver developed by the Pardiso© Solver Project Team Ref.[P2rdiso 2009] s ysed.
One of the very initial versions of the solver was embedded into Intel-math kernel
library© project Ref.[LiPrary-MKL 2008] ‘the sparse solver Pardiso© is accessed indirectly from
Intel-MKL® library. In addition to these, optionally another makefile procedure is applied
to generate Abaqus© software Ref.[>mulia 20117 output database (.odb) binary types of
outputs. The Application Programming Interface (API) library of software Abaqus®© is
intensively used for this purpose as well. The code written would be also sufficient without

?1CentOS release 5.11 (final)
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these aforementioned add-ons, nevertheless, issues such as performance and visual aids
supplied by those commercial and public license software products convinced the writer
to do it so. Additional to those listed above, the personal pre- and postprocessor GiD©
Ref. [Personal post processor GiD 2009] 3nd Metapost© of Beta Systems Ref.[B¢t 2099] are used

for figures generated in the next section of examples.

#!/bin/csh -f

echo Deleting the old data...

rm TPM_CAN_RTM BIG.cpp TPM CAN RTM BIG.exe TPM_CAN_RTM BIG.o

echo Combining the cpp-s...

cat tpm_main.cpp allocaters.cpp gauss.cpp global_functions.cpp linear_algebra.cpp readers.cpp writers.cpp odb_writers.cpp>>TPM_CAN_RTM BIG.cpp

if ( $#argv > 0 ) then
set source = "
else
set source =
endif
13 #echo Setting the library path..
1 #LD_LIBRARY_ PATH=$LD_LIBRARY_ PATH:"YOURPATH/tpm_can_rtm/tpm/1lib"
#setenv LD_LIBRARY PATH ./lib
echo Compiling...
icpc -c -cxxlib -Kct+eh -fPIC -Krtti -Kc++ -pc6é4 -restrict -DABQ LINUX -DABQ LNX86_64 -DFOR_TRAIL -DHAS_BOOL -DASSERT ENABLED -D_BSD_TYPES

—D_BSD_SOURCE -D_GNU_SOURCE -D_POSIX SOURCE -D_XOPEN_SOURCE_EXTENDED -D_XOPEN_SOURCE —-DHAVE OPENGL -DHKS_ OPEN_GL -DTYPENAME=typename -DGL_GLEXT PROTOTYPES
-D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64 -welOl -wel20 -well7 -we556 -wel4d -we268 -wel224 -wel67 -we880 -00 -I./include ./$source.cpp

echo Linking...
icpc -cxxlib -fPIC -Wl,-Bdynamic -i-dynamic -o ./ urce.exe ./ rce.o0 =-L./lib *lAEQDDB*Odb -1ABQSMAOdbApi -1ABQSMAOdbCore -1ABQSMAOdbCoreGeom
-1ABQSMAOdbAt trEO -1ABQSMARbuBasicUtils -1ABQSMABasShared -1ABQSMABasCoreUtils *lAEQCAE_StablETLme -1ABQSMABasMem -1ABQSMARbuGeom -1ABQSMARomDiagEx
-1ABQSMASspUmaCore -1ABQSMASimInterface -1ABQSMAMtxCoreModule -lpthread

Figure 1.1: The shell script used for compiling and linking the external libraries using Intel® compiler

il #!/bin/csh -£
echo Deleting the old data...
rm TPM CAN RTM BIG.cpp TPM CAN RTM BIG.exe TPM CAN RTM BIG.o
echo Combining the cpp-s...
cat tpm main.cpp csr_Matrix.cpp solver.cpp allocaters.cpp contact.cpp master surface.cpp gauss.cpp tpm stiff.cpp
tpm_internal.cpp global functions.cpp linear_algebra.cpp readers.cpp
writers.cpp odb writers.cpp layup.cpp>>TPM CAN RTM BIG.cpp
if ( $#argv > 0 ) then
set source = "$argv(l
else
12 set source = "TPM CAN RTM BIG"
13 endif
#echo Setting the library path...
#LD_LIBRARY PATH=$LD LIBRARY PATH:"YOURPATH/tpm can rtm/tpm/lib"
#setenv LD _LIBRARY PATH ./lib

echo Compiling and Linking...

'3 abg6111l make job=TPM CAN RTM BIG.cpp

Figure 1.2: The shell script used for compiling and linking the external libraries using Abaqus®©
compiler

After this short information about the environment of the software, the contents of
the individual files of the code of biphasic media can be summarized next. The files in
alphabetical order;

e Abg TPM_MASTER MAKEFILE.csh: Makefile compiling and generating the
master file and executable using API library

e allocaters.cpp: includes local and global allocations
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e csr_Matrix.h & csr_Matrix.cpp: compressed sparse row matrix library declarations
and definitions

e gauss.cpp: integration point specific functions

e global functions.cpp: functions relevant to the global matrix parameters

e headers.h: main header file including the class declarations

e input.inp: any input file in Abaqus®© format, this file is parsed by readers

o Intel TPM_MASTER MAKEFILE.csh: Intel makefile compiling and generating the
master file and executable

e linear algebra.cpp: some functions of linear algebra used for small matrix-vector
operations

e natural _bc.inp: the nodal natural boundary conditions

e neumann__bc.inp: the nodal essential boundary conditions

e odb_writers.cpp: functions generating the output database

e readers.cpp: readers and parsers of the input files, model and boundary conditions

e TPM_MASTER.cpp & TPM_MASTER.exe: the master file and the executable of
the master file

e tpm_internal.cpp: functions of internal residuals of conservation of mass and
translational momentum

e tpm_main.cpp: the main function

e tpm_stiff.cpp: functions of element stiffnesses of conservation of mass and
translational momentum

e writers.cpp: any type of writers for post-processing or manual debugging purposes

After any change or modification done in a specific file, one of the makefiles should be used
to generate new master file and the executable. As indicated, the file?? the model, and
accordingly the boundary conditions can be changed and run under Linux-environment. In
the next, some examples will be presented.

1.8.2 A Numerical Scenario: Growth of Uterine Fibroids

The first example stands only for the growth of an initially spherical-shaped abstract tissue.
The abstract scenario together with the next one, can be analogously linked to some real

220nly nodes, coordinates, elements, solid sections materials and laminar lay-up informations are
parsed. Caution, the complete list of parameters or header that follows the well known Abaqus®
format. Abaqus® is not used as finite element analysis software, only the necessary part (compiler,
API) is used used as an aid for the implementation.
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(a) This study mimics likely (b) The spherical layer-wise structured initial
the variation a,c:subserosal fibroid geometry taken for this study
or submucosal fibroid

growthllic.et.nunc 2012

Figure 1.3: Schematic Drawing of various types of uterine fibroids and initial fibroid geometry

biomechanical phenomena, for instance fibroid growth as shown in the left side of the
Figure 1.3%3. In this case, some artificial hot points, or fluid supply network is preassigned,
namely the pore-pressure is to be predefined. The tracing paths of the pressure supply
nodes can be seen in the results of next pages, for instance fourth picture of Figure 1.5.

The scenario of growth is however a novel one, and not based on any other phenomenological
or theoretical postulates done by pioneers of the field. It should be noted here that,
the theory and numerics of the growth in the field of biomechanics is already postulated
and significant amount of very valuable work is delivered to the science and engineering
publicity. Among many of them, Menzel Ref.[A-Menzel 2004] hostylated a general theoretical
and numerical framework of remodeling and growth of fiber reinforced material. Garikipati
Ref.[K-Garikipati 2005] " has discussed stationary strain energy and thermodynamic aspects
of remodeling with the realization of cell-traction experiments. Kuhl Ref.[F-Kuhl 2008]
and Holzapfel Ref.[CHolzapfel 20061 haye showed that gradual alignment of unit-cell can
represent collagen network orientation of an engineered tendon-like tissue. Hariton
& Holzapfel Ref ['Hariton 2007 3nd Driessen Ref.[N-J-Driessen 2003]  have recently used
stress-driven reorientation of collagen fibers of arterial walls and porcine aortic valve
leaflet. Wilson Ref.[V-Wilson 2006] hag predicted the collagen orientation of depth dependent
collagen orientation of AC with remodeling. These are all examples of modeling of
growth, some of which will be re-visited in this treatise. In this stage, growth is assumed
to be strictly depending on the selected pressure (or Darcy velocity) supply of fluid, or blood.

Zpicture:By Hic et nunc Own work CC-BY-SA-3.0, via Wikimedia Commons
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Figure 1.4: The development of the pore pressure distribution on the xy plane; time steps 1-20
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Figure 1.5: The development of the pore pressure distribution on the xz plane; time steps 1-20
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Figure 1.6: The development of the pore pressure distribution on the yz plane; time steps 1-20
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Figure 1.7: The development of the fluid fraction distribution in layered structure; time steps 12-15
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(a) time step: 15 (b) time step: 16 (c) time step: 17 (d) time step: 18

Figure 1.8: The development of the fluid fraction distribution in layered structure; time steps 15-19

(e) time step: 19
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The model has in total 2190 nodes, and 1143 elements. The model has been built to
consist of two hexahedral rows, and the fiber direction is to be assigned randomly, but lying
on the ground of the element row layers. Each element is assummed to contain 4 layers,
thus 16 integration points each, means that the functions of element stiffness matrix and
computing of internal forces are called 18288 times for each iteration, if one implements
the typical Newton-Rhapson algorithm for the solution. As stated before, the pore-pressure
is given as input, and the internal-most layer of the structure is assigned with very low
permeability values, such that the tissue does not dehydrates from inside, and thus one
can not observe the deterministic form of the growth over the pseudo time. According to
the formulation given in the previous pages, the pore-pressure driven analysis corresponds
to a natural boundary condition type of analysis, and thus shows better convergence
characteristics.

The results of pore pressure with the deformed (or grown) tissue can be seen in figures
of 1.4 to 1.6. The results of fluid fraction distribution can be seen in the figures of 1.7
and 1.8. Initially forty percent of the tissue is assumed to contain fluid. The maximum
fluid fraction gains around twenty percent of fluid for the given example. Before showing
the results of this scenario of tissue growth on the surrounding primary tissue, the steady
state streamlines of the growth on one layer (where the fiber directions are determined to
be random), visualized as beneath,

(a) streamlines on xy plane (b) streamlines on xz plane (c) streamlines on yz plane

Figure 1.9: Steady state streamlines, color plot of fluid fraction, diameter scale of fluid velocity

1.8.3 A Numerical Scenario: Impact on the Surrounding Tissue

For modeling the impact of the tissue growth on the primary tissue, which is placed
anatomically right next to the growing one, penalty type of contact is formulated, modeled
and implemented. Besides, for the proper definition of the permeability, the anisotropic
permeability behavior is implemented also, which is visited in this section. In this case,
along-fiber permeability coefficient is taken to be significantly high, whereby the inter-fiber
permeability is taken to be considerably small, but finite. Beneath in Figure 1.10, the
12-layer structure of the surrounding tissue and the placement of the healthy tissue inside
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of it before the start of inflation is shown.

(a) 12-Layer substructure of the (b) Replacement of the two-body
surrounding tube-like tissue configuration for the contact preparation

Figure 1.10: Model for the scenario of growth of secondary tissue on the primary one

In the next page in figures 1.11 to 1.13, the quasi-isotropic layer-up structure are shown
illustratively. This type of layup fiber orientation is not only quite frequently exist in
soft living tissues, but also has very common industrial applications, such as carbon fiber
reinforced thermoplast composites or similar. But this type of industrial applications are
kept to be completely out of the scope of this thesis. Returning and recalling back the final
definition of the seepage velocity in terms of the impermability coefficient, fluid fraction,
pore-pressure and more,

w'® =71 <gfj:{: — nfgrad()\)> (1.213)

The effect of permeability on the seepage velocity can be divided into fiber-parallel and
fiber-perpendicular components as follows,

wf* :5”_1 (M ® M) <ij:{; — nfgrad()\)>
(1.214)

+ 81T - Mo M) <gff{f —nfgrad (A))

Even though quantitative information about the permeability values are missing, one can
state that the along-fiber resistance against flow is significantly less then perpendicular to
the plane of fiber, or layup.

B < B (1.215)



(a) layer 1: 90° wrt. Axis

(b) layer 2: 45° wrt. Axis c) layer 3: -45° wrt. Axis

Figure 1.11: Fiber lay-up layers 1-4
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d) layer 4: 0° along Axis

(a) layer 5: 90° wrt. Axis

= @

b) layer 6: 45° wrt. Axis c) layer 7: -45° wrt. Axis

Figure 1.12: Fiber lay-up layers 5-8

(d) layer 8: 0° along Axis

(a) layer 9: 90° wrt Axis

(b) layer 10: 45° wrt. Axis (c) layer 11: -45° wrt. Axis

Figure 1.13: Fiber lay-up layers 9-12

(d) layer 12: 0° along Axis
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(a) on axial layer (b) on 45° layer

(c) on -45° layer (d) on 90° layer

Figure 1.14: The steady state streamlines on 4 layers of 12

The model consists of three rows of hexahedral element, each of which contains 4
layers. The layup structure is illustrated in figures 1.11 to 1.13. According to the defined
anisotropic permeability condition, for each individual layup, as long as the permeability
ratio is given to be quite dominantly different in along and perpendicular directions, one
expects to see streamlines following the pattern of layup fiber directions. As shown in
Figure 1.14, the expectation is completely fulfilled, at least qualitatively quite satisfactory.

Concluding with some quantitative information about the model, is that the model consists
of 2190 nodes, 4 degree of freedom at each node, 1456 elements, with 16 integration points
at each. The case is loaded only at three kinematic degrees of freedoms per Node by means
of contact displacements, which was supplied from the numerical scenario of deterministic
tumor growth. At the free edges, the pore-pressure is forced to stay zero, considered as
natural boundary condition. The initial fluid fraction is given to be only twenty percent,
representing a dry thus an extraordinary case, as shown in the figures of 1.15 to 1.16.



EEEEE¥ ey yBEERD

Y kp kg My

(a) legend (b) time step: 1 (c) time step: 3 (d) time step: 5 (e) time step: 7

Figure 1.15: The development of the fluid fraction distribution in layered structure time steps 1-7
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(a) time step: 9 (b) time step: 11 (c) time step: 15 (d) time step: 17 (e) time step: 19

Figure 1.16: The development of the fluid fraction distribution in layered structure time steps 9-19
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(a) ) time step:1 ) time step:6 ) time step:20
legend

Figure 1.17: Pore pressure distribution with deformation, states 1, 6, and 20

1.8.4 A Numerical Scenario: Cartilage under Compression

For the third scenario a rather realistic geometry and loading condition is taken. The finite
element mesh-tree was obtained from a very appreciated source of Ref.[Erdemir 20141 The
case consist of a porous media of cartilage with 25274 nodes and 18546 elements. There
are four element rows and 4 layups at each element considered, which results in 296736
integration points in total. In this scenario, the master surface with 1320 elements closures
to the slave cartilage surface linearly with the pseudo time. The master surface is taken to
be rigid, and the contact is of type kinematic. Realistic values are assummed for the fluid
fraction of the cartilage, the composition consists of 80% fluid and 20% fibrous ground
structure. As defined previously, the fiber orientation is modelled fo be quasi-isotropic and
is visited via illustration in this chapter.

Since it is difficult and meantime might be misleading to reach solid upshots on the
results, the conclusions based on these results are intrepreted cursorily. As can be seen
in Figure 1.19, for the given parameters and boundary conditions the deformation field
seems to effect only contact region of solid part and the very near neighborhood of it. The
same conclusion can be also done for the distribution of the fluid fraction as one can see
from Figure 1.21. As opposite to the previous example of surrounding tissue of the growing
spherical tumor, one can see here that, the contact region dehydrates significantly rapidly
then anywhere else. . This numerical phenomena might be explainable if one consideres
that the superficial zone permeability in the case of articular cartilage was given excessively
low as in reality, therefore, the fluid is forced to flow apart from the contact region to
the other regions of the tissue, whereby in the previous example the surrounding fluid was
allowed to enter the superficial layers from outside. The pore pressure in Figure 1.23 is more
smoothly distributed, and significant difference in medial and lateral surfaces is observable.
This observation draws the attention of importance of loading boundary conditions as well,
it may be the wrong approximation to steer the simulation with vertical displacement only
and for reliable solutions of finite element simulation some macro-scale musculoskeletal
analysis and the output of it might be necessary.
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(b) time step: 2 (c) time step: 3 (d) time step: 4 (e) time step: 5

Figure 1.18: The development of the deformation of articular cartilage in between time steps 1-5

(a) time step: 6

ke

(b) time step: 7 (c) time step: 8 (d) time step: 9 (e) time step: 10

Figure 1.19: The development of the deformation of articular cartilage in between time steps 6-10
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(a) legend (b) time step: 2 (c) time step: 3 (d) time step: 4 (e) time step: 5

Figure 1.20: The development of the fluid fraction of a layer of articular cartilage; time steps 1-5

(a) time step: 6 (b) time step: 7 (c) time step: 8 (d) time step: 9

Figure 1.21: The development of the fluid fraction of a layer of articular cartilage; time steps 6-10

(e) time step: 10
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(a) legend (b) time step: 2 (c) time step: 3 (d) time step: 4 (e) time step: 5

Figure 1.22: The development of the pore pressure of a layer of articular cartilage; time steps 1-5

(a) time step: 6

(b) time step: 7 (c) time step: 8 (d) time step: 9 (e) time step: 10

Figure 1.23: The development of the pore pressure of a layer of articular cartilage; time steps 6-10
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Hyperkinematics
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2.1 Introduction

Kinematics is the initial building block of continuum solid mechanics in matter and
manner. Kinematics, which define the spatial and pseudo-temporal change of 'motion’
of a continuum, is historical and essential prologue. Therefore, any placement of
postulates, extensions, suffix, annex, corrections or redefinitions, which deepens the subject
of continuum mechanics, should be initiated at the stage of Kinematics.

The neccesary reasoning of consideration of strain-gradient effects is in fact very crucial
and a matter of scale problem. Irrespective of scale of interest, in many cases, the notion
of material point and the size of its neighborhood might be quite comparable of the scale
of interest itself. In other words, one may find itself quite on a border line, at the scale of
grain, where unique material parameters can not be accepted to be generally valid. These
parameters would be even not valid for the near next of point of interest, as obvious from
Figure 2.1 in Ref [?-M-Clark 1990] = Considering the focus of interest of this thesis, namely
fibrous biological soft-tissues, the previously mentioned scale-phenomenon is so clear that
one can not deny the presence of it.

The scale problem forces the observer to stack in a borderline, where parametrization of
significant quantities having an impact on energy density function, is no longer negligibly
sensitive to little changes of the size of focus, and thus loses robustness. Reconsidering
the example given in Figure 2.1, the selection of the material size as on the left hand
size would indicate of inclusion of voids or porosity filler matrix excessively (or other way
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around). Meanwhile, it may also indicate of ignoring some forms of kinematics (for instance
bending an twisting of space curves), if the matter of concern, that one deals with, consists
of significantly "long fibers" as in the case of Figure 2.1. The deviation of the material
standard can be reduced, and some objectivity can be gained by moving towards to the
middle form of Figure 2.1, however the second problem stated above would still persist to
exist. The full fiber length can (for instance) be achieved by the selection of the size as
suggested in the rightmost picture, however this would throw one out of to the stability limit
and consistency radius of the method of solution for the partial differential equations. The
least closing door is obviously defining a borderline from top, therefore one reaches back
to the initial problem statement, namely the scale problem, if the characteristic material
dimension is comparably near to the dimension of geometry. One improvement that is
suggested here in this thesis is considering the strain gradient effects which enables one to
get smaller in the size of the material and meanwhile preserving to stay in the consistency
radius of solution method of PDE.!

Figure 2.1: Material size subjectivity illustrated on real Human biological specimen (SEM Image
taken from Ref.[-M-Clark 1991] " The original image does not contain the blue triangle. Bar=1mm)

The scanning electron microscopy result of Figure 2.1 is not a single evidence,
which is selected specifically.  Several other can be given here such as; Hughes
et. all. Ref.[--CHughes 20051 " Clark Ref [/-M-Clark 1990] 3gain, and Kurogouchi et. all.

Ref.[>-Kobayashiv 19951 hresent similar pictures, where similar conclusions can be driven from.

Keeping the introductory statement given above in mind, which is assembled in the following
section, the necessary non-linear strain gradient kinematics is defined here. It is shown in
a novel way that, quite unusual to classical kinematics, strain gradient kinematics forces
the tangent maps of different configurations both additively and multiplicatively. Following,
the straight reference to curved spatial tangent mappings and the inverse, as well as the
tangent mappings in between two arbitrary curved configurations are numerically shown to
be fully consistent with each other along the theory presented here. As mentioned above,
the impact of the predictions on the balance is visited and assembled then in the subsection
of numerical examples (see Ch.[2.3]).

Hereby, initially the kinematics of continua with hypergradient effects, present in their
motion, is defined. The parametric reference to curved system tangential mapping, as
well as the curved current to straight reference tangential mapping are defined. In order to

'Please refer to Zienkiewicz Ref.[C-C-Zienkiewicz 2000a] o, the relationship of element size to stability,
consistency and convergence of FEM as a method of solving PDE’s
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support and show the reversibility of tangential motion, the tangential mapping of arbitrarily
curved configuration into another arbitrarily curved configuration is mentioned shortly.

The validity of the presented kinematical relationships are shown to be consistent with
the given numerical examples. The drifting errors of classical kinemacs and strain-gradient
kinematics are compared with each other by considering a smooth motion.

2.2 Theory: Kinematics

In this section, the necessary kinematics and its components are introduced. In the next
context, the reference configuration is taken to be as an accumulation of infinitely many,
infinitely small straight line increments. Whereby the spatial and material configurations are
defined to be the forward and reverse mappings of that reference configuration respectively.
With these definitions in hand? , in three main subsections, reference to spatial, material
to reference and finally material to spatial point and tangent mappings are introduced.

2.2.1 Reference to Spatial: From Reference Lines to Spatial Curves

The reference to spatial mapping of the ‘continuous motion’, and the inverse spatial to
reference ‘reverse continuous motion’ are assumed to exist and be bijective, and thus
continuum preserving and penetration averting.

P: Qx CR3 = Q, C R, x =1 (X) (2.1a)

YO CRP S Qx CRY X =9 (x) (2.1b)

The material coordinates X and spatial coordinates x are assumed to be C" diffeomorphic.
Thus ,the bijective mapping 1 and it’s inverse 9! are r times differentiable, but not
necessarily smooth. Besides, it is assumed that, at least in the neighborhood of the infinite
domain, the mapping and it's inverse are analytic.

With the assumptions above, the material to spatial mapping at locus X* +dX™ converges
to the Taylor series expansion of the mapping v around X ™* with an infinite neighborhood
director of d X *. In general, for r > 2 for a C" diffeomorphic analytic mapping the following

2In short, in this section and in the followings, if not otherwise stated, the reference and material
configurations would not collide anymore, those will be taken to be different.
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can be written,

1 [ 0% 20

: T=X

1 (0% ) 1
+—<— (X +dX - X)®

1\ oYt |y x

1 (0% ) 2 (2.2)
+—<— (X +dX - X)®

20\ 0% |v_x
_|_..

1 67"1/1 ) ®r
+ = (X +dX — X)

r! (8’1‘ roX

As shown subsequently, even though it is not stated explicitly in many textbooks, the series
expansion given in equation (2.2) is fully consistent with the classical deformation gradient
kinematics. Before moving on, the first three powers of the first order tensor directors in
terms of binary tensor operator (A)®" is defined. For i € Ny being a nonnegative integer
and A € R3 being a first order tensor, dyad power operator can be defined with i=1 being
the identity operator. The power of zero is not the absorbing element, since it has to be
scalar unity to be consistent with the equation (2.2). The remaining powers are i times
dyadic foldings of the vector A. The first three powers read;

[A]%": (A e R¥™ieNy) — BeR™
()% =1
(A)®1 — A

(A=A A
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Using the definitions above,for instance, the truncated series expansion of scalar valued
vector function xo = x5 (X7, X, X3) at an instant is written in tensor-off form as follows,

9+ dry = 29 (X +dX)

= X2 (X1 —|—dX1,Y—|—dY,Z—|—dZ)

80.%'2 811'2 1 621'2
~ -~ -~ . X _ =
< 3a0 aX) - < aal aX) (d )+ <2 8‘12

9 ) )
—1o (X) + 8;”(21 dX, + %dY + %dZ

82,172 2 62.’E2 2 82.’E2
dX)? + 22 ax,)? 4 L2
((6X1)2 (dX1) (0X5)? (dX2) (0X3)?

aX> . (dX)®2

+

(dX3)? +>

DO =

1 021y 021y 0%z
~ (222 dX1d Xy + 2= dX3d X, + 2———2—dX,d X
3 < OX,0X, 1 T e X, B T 2 xax, 3)

(2.4)

Of course, similar tensor-off form can be written for other scalar valued components of
mapping (2.1). Having truncated the series one term earlier, one gets the directional
derivative of the point mapping, towards the direction of dX. This specific type of
linearization gives the backbone identity of the classical kinematics.

de =F-dX dX = F7!. dx (2.5)

As obvious, the forward tangent mapping of linearization F' in equation (2.5) preserves
finite line segments as rotated and stretched line segments. Defining the gradient of the
deformation gradient in tensor and indicial notations;

ox;
8Xjan
With this definition of (2.6), equations (2.2) & (2.4) are shown in tensor notations?
beneath.

G =VxF Gy = (2.6)

1 "
dw=F-dX + 5VxF! (X © dX) (2.7)

The illustrative hypermatrix-matrix-vector notation shown in Figure 2.2 gives a better
understanding of the equation above. The linearized tangent mapping (2.5) is homogeneous
of order 1, whereby equation (2.7) is not, and thus nonlinear. To show this, parameter «
is introduced and scale the infinite reference director in the parametric interval of alpha.
[-1,]]={aeR|-1<a<1}
(2.8)
F.adX =aF -dX = adz=(VxY)lx,ax

3Left, Right and Mid double contractions (:l) , beneath (T) , (m> are named according to the

. . l . o1
repeated indices, i.e. for the (: ) contraction the leftmost two indices are repeated.
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This statement obviously does not hold for equation (2.7). To move on, the sharp, flat and
neutral reference directors (dX*, d X", dX)* are defined by choosing alpha extremities as 1,
-1 and again 1 respectively. As can be noted, sharp and neutral reference directors indicate
the same and depending on the context, will be used from this point on interchangeably.

The spatial sharp and flat directors are defined via mapping, not via parametrization.
Using (2.8) and the obvious identity of the equality of sharp and flat dyadic squares, i.e.

(dX* ®dX?) = <dX" ® de) , one obtains the following tensor-algebraic equalities;

1, 1 .
dat = F-dX! + 5 G (dXti ® dXﬁ) — _F.dX’+ 5 G <dX" ® de>
(2.9)

dmb:F.dXM%G?" (de®de) :—F-dXM%G?" (dXﬁ@adXﬁ)

X,X,VX

Figure 2.2: Hypermatrix-matrix-vector form of mapping of the sharp spatial tangent with the neutral
reference tangent and its metric.

In the absence of contraction of gradient of deformation gradient with the dyadic square,
equation (2.9) is homogeneous of order 1. Thus, it was essential to have sharp, neutral and
flat definitions of the directors.

dat = —de® — G (de ®de> —0 (2.10)

Since the sharp and flat reference directors are linearly dependent, it is implied that the
reference configuration is an only straight configuration. Correspondingly, since the sharp
and flat spatial directors are not necessarily linearly dependent, it should be admitted that
the current configuration is curved & straight.

*Instead of algebraic symbols, symbols of musical harmony is chosen, interchangable usage of
algebraic symbols may cause confusion in this context.
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dX: () > dxt\dx
dX* @ dX* >— (VF:) > dxt N dx’
dx’\ dx*

ax’ (F-) 7

Figure 2.3: Kinematics of reference tangents to spatial tangents

2.2.2 Spatial to Reference: From Spatial Curves to Reference Lines

The differential behavior of the reverse kinematics is to be analyzed in this subsection.
To do it so, it will not be tried to reverse the tangential mappings from the truncated
approximations. Similar to the previous subsection, the (are) reference coordinates around
the neighborhood of (were) current coordinates will be expanded, however this time via
inverse motion.

0,/,—1
X +dX =¢~ (z+da) ~ % (3;50 ) (dar)”
1 al —1
1 (%o, 2
1 (%!
5( 8’1{2 ) ) . (da)®?

The reverse tangent mapping in the form of (2.7), without using sharp and flat director
definitions. )
dX = F~ ' dx + §vwF*1? (dx ® dx) (2.12)

The first term in equation (2.12) is well-known. For further evaluation of the higher order
part, remember the fact that, the spatial gradient of the spatial deformation gradient is
the spatial gradient of the inverse reference deformation gradient. Denoting this as H and
following the derivation in indicial notation leads into;

oF;'  OF;'ax, aE;lF_1 (2.13)
axk N 8Xl 8£Ck N 8Xl Ik

ijk —
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As obvious of equation (2.13) the reverse higher order gradient H (from spatial to
reference) is not the inverse® of the forward higher order gradient G. For reformulation of
the reference gradient of the inverse reference deformation gradient appearing in equation
(2.13), the following identities are used;

—1
0mjl = a—le (FmZF@] > - 8Xl Fnj +Fmi 8Xl <~
e OF,
1 -1 -1
kasz aX = " Ykm a;nFnJ A
(2.14)
oF;" oF
5 = —F ot F
b, FmHX, —
—1
OF;' 0Fum, O o
0X, meooX

Inserting it back into the equation (2.13) the reverse higher order gradient in indicial and
tensor notations, one gets;

m T nj

Hiji = —GumFipl F Y H = — [F‘l ! <G7TLF_1)} TFl (2.15)

Since this identity is obtained from the point motion only, it should be shown that it holds
for the tangential reverse mappings too. To show it, the push forwarded tangents are pulled
back. In the following, the index notation is used. Because the proof is straightforward but
lengthy, not to squander the indices, and hinder index crash, index and infix notations are
applied together.

1 1
dX; = F;'dx; + iﬂijkdxjdxk = F;ldz; — 2Gman 'FOLE Yoy (2.16)

m T ng

The push forward components at the rhs of equation (2.16) are,

1
dzj = FjodXo + 5GjopdXodX, (2.17a)

1
Az, = FlpdX, + 5GhrsdX, X, (2.17b)
The first addend of the rhs infix of equation (2.16) reads then,

Flda = F' FjodX, + GJOpF 'dX,dXp = 6iod X, + GJOPF 'dX,dX,

(2.18)
=dX; + G]OpF YaX,dXx,

®So far, the writer could not find in the literature general definitions for hyperdeterminants and

hyperinverses in R3*3%3
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Dyadic square dxjdzxy, in the second addend in equation (2.16)in index and infix notations
are shown below,

1
d.%'jd.%'k = FjOFkrdXoer + §GkrstoerdXsto
(2.19)
1 1
+ 5Gion FerdXod Xy dX, + 7GopGirsdXod Xy dX, X,

The second and third terms are the dyads of gradient push-forwards, with the hypergradient
push-forwards. The last addend is the dyad square of the hypergradient push-forward.
Dropping the last three addends of equation (2.19) is conform with the second order
truncation of the mappings and reverse mappings. Inserting the first addend push-forwarded
dyadic square of equation (2.19) into the second addend of equation (2.16), one gets,

3 Gt P Fy i Fy Py X0 X, = = 0y Gt Fi A XX,

m T nj

(2.20)

1 _
= —§Gmanm}anXm
In the final version of equation (2.16) it can be seen that the reverse hypergradient of
(2.15) together with the inverse of deformation gradient, maps push-forwarded sharp and
flat directors into the reference sharp and flat directors.

dX; = <dXZ- + %GjOpFi;ldXOpr> - %Gmnlﬂgjdxndxl = dX; (2.21)
F ')
B\ Joch ( >
dx*\dx > IX

~—c e

Figure 2.4: Kinematics of spatial tangents to reference tangents

In Figure (2.4) as well as in Figure 4.1 the parallel tensor operators are additively acting.
Deformation gradients are the same, standing for the reference to spatial mapping in those
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two illustrations. As can be seen from the Figure 2.4, since the straight reference tangents
are mapped only by inverse deformation gradient acting on the complements of curved
spatial tangents from each other, which is apparent from equation (2.20), it can be agreed
upon the necessity of defining sharp and flat directors.

2.2.3 Material to Spatial: From Reference Curves to Spatial Curves

A tangential mapping with hypergradient terms and its arbitrariness makes it mandotary
that the kinematics coexists in between two geometrical manifolds of dimension, where
both possess finite radius of curvatures. This notion of finite radius of curvature of
two configurations, i.e.spatial and material, is quantified with respect to some reference
configuration of infinitely large radius of curvature. Having defined a tangential reference
directors and parameter « as in equation (2.8), the existence of some intermediate
configuration is implied. With respect to to this configuration, an allowable parametric
representation of reference and material curves in the sections of Ch.[2.2.1] and Ch.[2.2.2]
are defined. This is crucial for the progression of the kinematics towards to the balance
equations, since the arbitrariness of the motion denies that any stress-free configuration is
strictly identical to the straight reference one.

In the following, both reference and material coordinates are represented by capital letters.
For the mapping tensors and material, reference and spatial coordinate vectors, the subscript
letters m,r, and s are used respectively.

The complement of sharp material directorrelative to the flat material director, which is
illustrated on the left side of Figure 4.1, according to the equation (2.9) is,

dXE\dX? = % (dX?n . dX&,L) — Fl.gx?t (2.22)

Finally, the tangent mapping from the curved material into the curved spatial have the
form,

dat = F,, - (Fm : (dX?n\dxi,L))
(2.23)
v %Gm? [(Fm . (dX&n\dxin)) ® (FW - (ng{,L\dXEn))]

As stated above, the double subscripts of tensors do not define the components, but the
directions. Accordingly, the subscript of the forward hypergradient of motion can be omitted,
since it's reverse is not to be interpreted as it’s inverse (inverse of the hypermatrix form). As
stated in equation (2.15), the hypergradient of the reverse motion (from straight reference to
curved spatial or material) is depending on the inverse of integral potential of hypergradient
of forward motion. In this sense, the forward deformation gradient (from reference to spatial
or material) can be interpreted as the integral potential of the hypergradient of forward point

mapping.

A good question as a consequence of the remarks done above would be, why the
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hypergradient of the motion of -from material to reference- is not seen in equation (2.23)7
The answer would be that, -it is in fact implicitly placed in equation (2.23)- otherwise
the material configuration would not earn the abbreviation of being curved. In fact, the
complement of sharp material director relative to the flat material director, and similarly
the complement of flat material director relative to the sharp material director can be
alternatively written as beneath.

1.,
AX5,\dX, = dXE, = SGon! (dX£ ® dXﬁ)
(2.24)
1,
AX),\dXE, = dX), = 5 G (dXi ® dX';)

Thus, the curvature of the material configuration with respect to the reference
configuration is involved in the complete schema. Figure 2.55 shows illustratively the

il (Fr - Fry) —
> dxt\dx

S

B

(G, -F2 .
mr) > dx’\dx’

(Frs - Fropr) [

Figure 2.5: Kinematics of material tangents to current tangents

mapping in between arbitrarily curved material and spatial spaces. Even though the motion
does not really visit the fictitious reference state, this state is considered as the common
origin of the motion of different pseudo-times. From the material to reference, and from
reference to spatial circuits of kinematics, additive splits are applied in the parallel elements
of the circuit, and multiplicative splits in the serial elements of the circuit.

%In the figure, the replacement below is done with a similar argument which is used to simplify(2.19).

(dxfn\dxin) ® (dXBn\dXEn) - (dxﬁn) ® (dxﬁn) (2.25)
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2.3 Verification: Numerical Examples

The given strain gradient kinematics will be verified and compared in this section with the
classical one by means of a nonlinear smooth function” . The postulated mapping has been
chosen to be called as the spiral beam and has mainly two parts, namely mid surface and
the thickness contribution. The mid surface equation with respect to the time parameter
o Is written as,

' = {270[ Cos ((1 - X1) g) + (1 - 2%) Xl} cos (a + aXq)
2c 7r 2c (220)
xy = [— Cos ((1 - X1) 5) + <1 - ?> Xl} sin (o + aX1)

s

For the thickness contribution, the Piola transformation of the derivatives of the mid curve
is taken into account. These mid-curve-off contributions are called to be deviatoric, and
depending on the derivatives of the mid-curve.

2 2 —-1/2
L o (S I Y ()
o oox |, P\ \ax | 0X1|,
2.27
) 12 (2.27)
a__O9nl oy (D) N (9
2T ox, |, 2\ oxy |, 0X1 |,

These contributions result a nonlinear Bernoulli kinematics, since the curvature through the
thickness is punished (penalty) by the constant coefficient of X5. In the next, the direct
effect of the strain gradients through the thickness is neglected. The total mapping is then,

z =2 + 24

) (2.28)

x9 = Ty + x5
For the corresponding deformation gradient and deformation hypergradient terms, please
refer to Appendix-A.

2.3.1 Push Forward: From straight Reference to the curved Spiral

In this subsection, the performances of the backbone identity of classical nonlinear
kinematics (2.5) and the backbone identity of the strain-gradient kinematics (2.6) are
compared with each other numerically. The comparison depends mainly on the discretization
and the excession of the spiral beam from the forth and towards to back. The pseudo time
parameter « has also an influence on the total drifting error, since it is the main parameter
driving the curvature of the deformation.

As apparent from Figure 2.6, for rough discretization and beginning time increments,
the strain-gradient kinematics represents the deformation better then classical tangential
mapping, however the difference is not significant. With enough number of sampling

"The details of derivatives of this smooth function can be found in Appendiz-A
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Figure 2.6: From straight reference to the curved spiral beam.ac = 7/6,n = 2
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Figure 2.7: From straight reference to the curved spiral beam.ocv = 7/2,n =5

points as illustrated in Figure 2.7, the deformation gradient propagates some drifting
error. The erroneous landing of the tip point of the deformation gradient representation
and meanwhile the successive capture of the deformation hypergradient representation are
comparibly obvious. As can be noted from the o = 37/2 parametrization of Figure 2.8, the
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Figure 2.8: From straight reference to the curved spiral beam.ao = 37/2,n = 15

drifting error of deformation gradient representation of the tip displacement can be reduced
if one increases the space parametrization with the time parametrization simultaneously.
However, the deformation behavior through the thickness direction still remains arbitrary,
and thus might be agreed upon the insufficient representation capacity of classical first order
kinematics.

2.3.2 Pull Back: From curved Spiral to the straight Reference

Analogous to the previous subsection, the reverse tangent of the backbone equation (2.5)
and the reverse strain gradient kinematics (2.12) are compared with each other either. The
results are supporting the expectations significantly stronger as the previous example. The
expectation has reasons, mainly the fact that the connection of the two successor locus
of the curved structure is not necessarily tangent to the path. Such a problem may be
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encountered in the case that the physical increment is drastically large in comparison with
the idealization, in other words, the mathematical assumption of occupying infinitely small
space. In other words, if the scale effects are present, the strain gradient kinematics performs
far beyond better then the classical kinematics. For the reverse motion, the straightness of
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Figure 2.9: From curved spiral beam reference to the straight rod.ac = 7/6,n = 2

the current configuration is a measure of quality. For the case of & = 7/6 parametrization,
the deformation gradient excess the limits of acceptance, reaches to be a compromise as
can be stated by Figure 2.9. As the pseudo time parameter and the discretization are
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Figure 2.10: From curved spiral beam reference to the straight rod .o = 7/2,n = 10

kept to be increased, as in Figure 2.10, one can only talk about a slight betterment of both
tangent mappings, however, the deformation gradient mapping is still far beyond of limits of
correctness. As one increases the parameters on more time as in Figure 2.11, analogously to

15

0.5

-0.5

XXz

XXz

XXz

Deformed Exact ----e-

Straight undeformed exact

X1, Xq

-0.5

15

Deformed with Deformation Gradient -

Straight undeformed exact

15

Deformed with Deformation Hypergradient -
Straight undeformed exact

0.5

X1, Xq

-0.5

0.5

X1, Xq

-15

-1

-0.5

0 05 1

15 -15

-1

-0.5 0 05 1

15 -15

-1 -0.5 0 05 1

15

Figure 2.11: From curved spiral beam reference to the straight rod.a = 37/2,n = 20

the straight reference to the curved spatial tangent mapping case, the deformation gradient
mapping is dissapointing with propagative drifting, whereby the reverse kinematics of the
deformation hypergradient tangent mapping shows only slight betterment of the previous
case, which might be already considered to be in the radius of qualitative acceptance. Yet
the measure of this acceptance is of subjective nature.
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2.4 Conclusion

Biophysically, it may or may not be true or weakly stating evident that the fibers do exist
as space curves in their initial, or reoriented state. Independent of any claim, evidence or
statement regarding to the existence of initially curved fibers, for the sake of convergence
towards completeness of the kinematics, and since this kinematic contains additional
information which might be essential for a better understanding of some phenomena, it
is presented here in detail. Most probably® the first time definition of the strain gradient
kinematics has been shown to capture and model excessive deformations precesively.
However, the main advantage of the theory is not limited here, and first attempt of defining
inextensible anisotropic materials is achieved in this scope, which are the subjects of the
remaining parts (see Ch.[3]) of the work.

X+dX,

~ X+dx,

X+dX,

X+dX,

X+dX,
[]

X+0.5dX,+0.5dX,
o Q :
X+0.5dX,,
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14 X+0.5dX,
o [} ® X+dX,

X
X+0.5dX,
o e
X+0.54X+0.50X,

X+dX,

Figure 2.12: An example of Cauchy Tetrehedron, which demonstrates the difference in between first
and second order kinematics

8The writer of the treatise could not locate during the literature survey any attempt of defining the
strain gradient kinematics as a comrehensive treatise as presented in this thesis. . There are works
defining the balance equations in the presence of strain gradient effects, however, those also omit the
initial step, namely the Strain Gradient Kinematics.
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3.1 Introduction

In the previous chapter, the backbone identity of the strain gradient kinematics is introduced.
Any experimental solid proof of existence of those effects are omitted, the strain gradient
kinematics is assummed to present, and even higher kinematics are behold as natural as the
very strains and deformation field itself. The immediately following discussion is the impact
of those kinematic effects on the mechanical behavior, in other words the further existence
of those presumably existing kinematic effects on the balance state of a control volume.
In order to solidify the arguments, an example is stated here, namely the effective density
of the energy depending on bending and stretch stiffness of a unit length profile per unit
kinematic quantities (unit invariants). Consider the fractional profile given in Figure 3.1.
Assuming that the kinematics is negligibly varying on the plane of thickness, and thus a
single quantity for curvature "¢’ is valid for all points in the plane, the effective energy
density per square of invariant! is,

!The invariant is analogously defined to the concept of stretch in the fiber direction, known as the
fourth invariant in the study of fiber reinforced biological tissue. The proof that the curvature can be
analogously represented in terms of invariants, is omitted in this step.
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. fr pEI°cdrdt
¢bgr{ding = & Aac2 (31&)
c
A = / sign (p) drdt # / drdt = A* (3.1b)
rt Tt

)

The density represents the density of the imaginary primitive substructure with no vacuum
at all, and thus is valid as an abstract assumption. The second equation (3.1b) clarifies
the evaluation condition of the quantities. This type of homogenization, even though with
almost no applicable physical notion, might be still applicable in some abstract fractional
structures as shown in the left picture of Figure 3.12.

Skeletal muscle Epimysium Muscle fascicles

Perimysium
Endomysium
Muscle fibers

Sarcolemma

Figure 3.1: Left: An abstract profile with fractional characteristics; Right(Ref.[OPenStax 2016))
:Illustration of the reality of partially fractional Muscle-Hierarchy

The soft biological structures are known to be assembled in a fractional hierarchical structure
Ref.[C-L-Stanfield 20121 | this structure, collagen fibrils, which represent the fundamental
but not necessarily the most primitive component of the collagenous tissues, determine the
rigidity and anisotropy of the solid component by means of energy-converting deformation
modes and orientations. That the collagen network determines the rigidity of the structure,
is many times agreed upon by many researchers (Ref.[R-Shirazi 2008]) ‘the consequences of the
absence of healthy micro-structure of the collagen network, -again as taking cartilage as an
example-, is addressed (Ref.[R-A-Bank 2000]) a5 3 hot-topic as well. The idea that the collagen
network is not the most primitive component which determines the rigidity of the structure
(or the origin of rigidity is not achieved in the fibril level) was gaining more attraction and
Ref .[N-52saki 1996]) " and recent molecular dynamics
quantifying the entropic elasticity of tropocollagen

support by early experimental works (

numerical studies (Ref.[M-Buehler 2006])

2The right picture is taken from online sources Ref.[OPenStax 2016]
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chains. All these works and similar -independent of each other- insist of existence of
hierarchy of the tissue structure, and try to define and quantify the main fundamental
actors of the phenomenon.

The radially packed structure of fibrils may account significant thickness and jointly resist
against bending modes. In the presence of scale effects, those energy modes of the
fibers which enable the structure to carry and undergo bending and under circumstances
compression types of loadings, are driven by the higher order kinematics and governed by
the corresponding extended balance laws.

For a straightforward numerical demonstration of the evolution of material parameters with

Figure 3.2: Left: An abstract fractional profile chain with depth of 5

respect to the selection of the size of continuum, an abstract fractional chain of depth 5 is
chosen. As evident from Figure 3.1 and equation (3.1b), the effective quantities of "Area’
which drives the stretch type energy, and "Moment of Area’ about the main axis, which
drives the bending type of energy, would vary from one scale into another. Therefore, as
apparent, the material objectivity® will be lost in this sense. The dilemma is, if the decrease
(or increase) of bending and stretch type of quantities do develop compensable with each
other or not. Otherwise ignoring one while keeping other would be a logical violation and
philosophically inconsistent.

In Diagram 3.3, the values of effective area and the second moment of inertia around the
mid axis with respect to the levels of hierarchy are demonstrated. Quite clear is that, both
values do tendentiously condense towards smaller quantities. Apart from the initial decline,
one can even state that the declination rate is almost equal for the case of Area and second
moment of inertia. The quantities however, might be preserved in quite different scales,
this however would not be consistent measure, since the elements of kinematics is quite
arbitrary. For instance, by only considering stretch, or a mapping which results only in
stretch type of formation, one may fallaciously conclude on the absence of bending effects.
To avoid this type of misleading interpretation, one should focus on the rate of declination
if one enlarges the frame of the continuum as shown in the example above. The result is not
as obvious as one expects, since for any circular and fully filled vacuum-free cross section,
one awaits that the effective second moment of inertia declines quadratically faster as the
effective area. As shown in the illustration above, this expectation may disappoint one, if

3This material objectivity is considered under the subject of the size of the locus. In other words,
the strain energy density and the effective parameters, strictly depend on the scale chosen.
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Figure 3.3: Development of the effective Area and Second Moment of Area values with respect to
the selection of hierarchy levels of Figure 3.2

the matter of concern has a fractional characteristic. Despite this conclusion, this example
should not be esteemed generically and used in commonplace, the rate of decline may show
a totally different profile, if one chooses another type of fractional expansion and shrinkage.
Quite familiarly, in engineering applications, bending effects are introduced into numerics
by using theories of Bernoulli, Euler, Timoshenko, or relatively newer geometrically exact or
higher order formulations. As the above argument states, any attempt of considering the
impact of curvature in the balance equations in macro-scale is as valid as considering the
curvature effects in smaller scales. Since these curvature effects may gain or loose as the
effects of stretch do. In the next parts, the inclusion and implementation of those effects
into strain gradient and strain energy functions will be discussed and clarified.

3.2 Hyper-Cauchy Equation-OM: The Governing Local
Form

In this section the local form of the balance equation on the kinematics given in Ch.[2.2.1] is
presented. The method applied by Steinmann et. all. Ref.[P-Fischer 2010] is traced mainly, but
with some diversities. In opposite to Steinmann et. all. (Ref.[P-Fischer 2010]) "the derivations
of normal gradient and surface divergence operators are defined. By doing so, it is possible
to show the geometrical extensions and the dimensions of those geometrical manifolds in
the integral weak form of the governing equation. Additionally, the principle geometrical
manifold(s), where hyperstess as the internal energy conjugate of hyperstrain is acting on
-according to the writer- are interesting topics to visit. Subsequently, the volume and shell
contra-internal forces and the surface and edge contra-internal tractions are to be exposed
as well.
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Since the time rates at the stage of hyper-kinematics were not defined (they were visited
in the first chapter of biphasic media C.[1]), hereby, the virtual work form instead of
virtual power form is prefered. Analogous to classical linear momentum balance, those
two equations should have identical outcome, as soon as one states and argues on the
assumptions done, for example no rate dependent damping or no inertial effects.

To start with, as Steinmann and Fischer (Ref.[P-Fischer 20101) stated recently that, since
internal energy depends on deformation gradient and hyper-deformation gradient, additive
partition as a result of chain rule is obtained.

v v
6Hmt=/ [‘;F 6F+§—G 5G} dV:/[P:6F+Q OG)dV = subE 4 s1eY
Q
(3.2)

In addition to Gauss' Divergence Theorem and Green’s theorem, additional tensor equalities
to resolve and sunder the virtual work equation into smaller dimensions of integrations, are
required. For arbitrary tensors of order three and two, (abbreviated here with T', D) and
tensors of order one,(abbreviated here with w and IN), it is trivial to show that the following
tensor identities hold;

Div (D" - 6u) = (DivD) - u + D: Grad (Ju) (3.3a)
Div (T?(SD) = (Diy/T) : 6D + T . Grad (6D) (3.3b)
Div [(DivlT)T : 511,} = [Div(DivyT)] - du + (DivyT) : Grad (du) (3.3¢)

Div [<T{N>T-6u] - [Dw (T?Nﬂ u <T{N> . Grad (5u)  (3.3d)

Applying (3.3a) and Gauss’ divergence theorem after each other on the deformation gradient
and first Piola-Kirchhoff driven virtual internal energy term, i.e. the first addend of equation
(3.2), one gets the classical virtual energy form,

ol = / (PT-n) - SudA — / (Vx - P) - 6udV (3.4)
S Q

In the following, the divergence and gradient operator notations(Vx -, Vx) are replaced
with literal type notations (Div,, Grad). This is done for sake of clearness. Inserting (3.3b)
and applying Gauss’ divergence theorem after each other on the hyper-deformation gradient
and hyperstress driven virtual internal energy partition, i.e. the second addend of equation
(3.2), one gets the extensions caused by the higher order kinematic,

STIPC — / Q..6G|dV

int

/ Div (Q? 6F) dv - / (DinQ) : 6FdV (3.5)

_ /S (Ql > SFdA — / (DinQ) : SFdV
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In which n denotes the outer surface normal in reference coordinates of the control volume.
The last term on the right hand side of equation (3.5), after inserting the identity of (3.3c)
and gauss diverging once more time with surface normal n, leads into,

- /Q (DinQ) : 6FdV = — /Q Div [(leQ)T.au] v + /Q [Div(Din Q)] - SudV

= —/ [(Div;Q) - n] - dudA +/ [Div(Div Q)] - doudV
S

Q
(3.6)

The first addend of equation (3.5) can be transformed into the form beneath, by using the
identity (3.3d), where Green's theorem can be applied next,

/S<Q?n> :5FdA:/SDz‘u [<Q{n>T.5u dA—/S[DiU<Q{n>}5udA 37)

Applying the Green's theorem on to the first addend of equation (3.7) with the surface

frontier normal m,
1 T m
dA:/F[<Q-n> -5u]-mdL:/r[Q: (n®m)}-5udL

/SDw [(Q%)T.au
(3.8)

The surface frontier here represents the edge as a location, where the C'! continuity of
the surface manifolds is not valid anymore. This is not a violation, in fact it is essential
for filling the discontinuity gaps in between higher dimensional manifolds with lower ones.
Since -for the local form-, the infinite control volume is taken to be arbitrary, it may be
surrounded by patches of surfaces, and thus include edges. At the end, the total virtual
work equation is formulated as below;

int int

My = STILE + OTIT = / (PT - n) - dudA — / (DivP) - sudV
S Q

— / [(DivQ) - n] - dudA +/ [Div(DivQ)] - doudV (3.9)
S

Q

+/F [Qi”(n@om)] -5udL—/S [Dw (Q{nﬂ SudA

Rearranging the terms of equation (3.9) in the specific way, results into the final version
of the variation of the internal work as below;

ol = / [Div ((Div;Q) — P)] - dudV +/ [(PT — Dz’le) . n] - dudA
Q Su

+/5h {—Dw (Q?nﬂ -5udA+/F [Q’:” (n@m)} - SudL

In this final form, one obtains four integration domains two of which is dimensionally
overlapping with each other. Respecting the different natures of the integration kernels,

(3.10)
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(a) Div(DivQ™) — P on (b) (PT — DivQ™2) - m on Su

Figure 3.4: Integration domains on which first and second order effects are acting

those two are kept apart. The first two domains (volume and surface) are the ones driven
by the gradient effects, and thus familiar and well known ones. The hypergradient effects
do act also on the first two manifolds and those effects generate remaining integral domains
(shell and curve). The fact that, without any integrand, the integral can neither be defined
nor exist, construes that the integral domain under discussion is a nonentity. In other
words, the absence of actor, designates the absence of space. By keeping this logic in
mind, from the integration kernel of the third domain, one can conclude that there are not
only first order stress tractions, but also divergences of second order tensors (tractions of
hyperstresses) acting on the surfaces. By respecting the two properties of the third integral,
the first one being that the integrand acts contra to some body forces, and the second one
being that the integral domain is a surface, this domain is called as shell domain. In fact,

(a) —Div(Q™2-n) on Sh ) Q™: (mn®m)on T

Figure 3.5: Integration domains on which first and second order effects are acting
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in conjunction with the notion of shell, a surface frontier (not only normal) and thickness of
it are defined. This can be viewed as a further division of interface surfaces (of previously
divided volumes) into patches. And the patch frontiers and interfaces as a result of the
second division do generate infinite curves which constitute mainly the last integral domain
of equation (3.10).

For the translational equilibrium, the complement effect applied by the remaining part of
the system on the control volume has to be taken into account. The external virtual work
should balance the internal one,

5Hm:/b9.5udv+/ tS“-éudA+/ bSh-éudA+/tF-6udA (3.11)
Q Su Sh T

Figure 3.4 represents illustratively the concepts of volume(€)) and surface(Su), whereby
Figure 3.5 demonstrates the concepts of shell(Sh) and edge(T"), which were declared as a
result of equation (3.10).

3.3 Curved Anisotropy

In this section, the backbone invariant of the kinematics for building bending type of internal
energy formulation is postulated first. In the next, the energy function and its consistency
with the tangent tensor is demonstrated depending on a given mapping. The section is
followed by problems and suggestions which will enable a finite element implementation of
all-together. First, the novel concept of curvature is to be defined as an invariant.

3.3.1 Curvature Invariant with Euler Bernoulli Ansatz

Even though it is concurrently pointless and difficult to describe the concept of material
point curvature, it will be tried here to emphasize the approach on a script, formally and
visually. Apprehension of the Figure C.2 during reading the next is strongly suggested by
the writer of the treatise.

The bending energy formulations -irrespective of which theory will be used- require
the estimation of the radius of curvature. The theory of kinematic assumptions of
Euler-Bernoulli postulations will be applied here, namely the tangent of the profile will
remain perpendicular to the profile at space and in pseudo time of deformation. Where the
"geometrically exact" approach would require the cofactor of profile planes to determine
the real curvature. For the curvature formulation this additional effect will be ignored. In
short, for the next, the following assumptions hold,

Fi M || cof (Fﬁ) - MF F M || cof (Fb) M (3.12)

The radius of curvature is estimated according to the angles of curvatures, where there is
no reason that those to be equal. The radius of curvature is taken to be common in sharp
and flat length changes, formally;

sin <aﬁ> = M sin <ab> = ‘m (3.13)

r
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. (Ff+c leh)ir M. . ) /
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Figure 3.6: Kinematics of a single fiber with convecting and moving coordinates at the flat, natural
and sharp sections

In order to take both effects into account, the following trigonometric identity and
estimation can be done,
9 sin (aﬁ) + sin (a")
S i [
2sin ((of + o’) /2) cos ((af — o’) /2)
[+ [

(3.14)

_ 2sin ((of + oz") /2)

The cosine of the rotation can be computed by at best with the dot product of flat and
sharp deformed vectors. Alternatively, the cross product might be used, however it may
cause some singularities in the initial stress and hyperstress terms, which have to be dealt
with repulsive terms. In order to avoid dealing with numerical work-arounds, the dot product
version of the estimation is used;

Sy

m?| [m?|

cos <o¢ti + ab) = (3.15)

The minus sign indicates that the sharp tangent to be rotated, since some positive notation
for the dot projection is desired. The members which are used to compute the invariants
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then,

—mﬁ:F-M—%G:M@’Q

) (3.16)
mb:F-M+§G: M®?2

Even tough the determined invariants are also stretch related, as indicated above, they
have an impact in the bending energy either. The three invariants® required for defining
Euler-Bernoulli type of radius of curvature are then;

If = (FT-F) : M®? = Fyy Fpp MMy,
5= (F7 (G- M)) : M®2 = <(G M7 F) : M2 = Fyy (G - M)y, MiM,,

Ii = (G- M)+ (G- M)) : M*? = (G- M) (G - M), MMy,
(3.17)

The second and third contractions above are identical since the contracted tensors are
transpose of each other,

F7 . (G-M) = ((G M)T- F)T (3.18)

Analogous to the full length in the current curved coordinates as the sum of sharp and flat
lengths, the values of the curvature of equation (3.15) can also be formulated. The full
length for instance;

lm| = ‘mﬁ‘ + (mb‘ _ \/(L’f + 15 +0.2515) + \/(L’f — IF 4+ 0.25IF) (3.19)

Together with the definitions above and the introduced invariants, the following invariant
formulation for the curvature can be achieved;

If — 02517
cos <ozﬁ + oab) = th 7 ) 7 (3.20)
(IF — I5 +0.2515) "% (I + It + 0.2515)

Accordingly, a scalar value for the curvature is determined and formulated with respect
to some novel invariants. The independence of these invariants with respect to the
post-deformation rotations can be proved smoothly, which is omitted here.

The obligatory question is, if this curvature definition can capture the whole evolute of a
given mapping or not. In order to seek and provide an answer to this question, the analytical
example of the spiral beam, which was introduced in the previous chapter (Ch.[2.3]) is
revisited here. As shown previously, using the strain gradient kinematics, the forward
mapping of straight to curved spatial configuration and the backward mapping of curved to
straight reference configuration works far better then by only considering the deformation

*The invariance of the postulated variables is self evident, the parameters are independent of the
pre-rotations of the reference fiber directions



3.3. Curved Anisotropy 87

X5,Xp,x(evol)»

2
Deformed with Deformation Hypergradient -----e----
Deformed Exact ---e--

Straight undeformed exact

Evolute exact ---=--
Evolute with Deformation Hypergradient ---=--

1.5

-”‘
J'"’ /H
1 P

0.5

O /
I

PR \-\-\
o S

~—

et ST il

-1.5 x4,X1,x(evol),
-15 -1 -0.5 0 0.5 1 15

Figure 3.7: The deformation and the evolute of the spiral beam, o = 37/2,n = 60

gradient effects. As seen in the Figure 3.7, not only the mapping is almost with high
accuracy captured, but also the connecting curve of the center of curvatures, namely the
evolute is estimated quite nearby to the semi-analytical solution. It should be noted here
that, the evaluation of an evolute in this case, is not possible to be extracted from the
deformation gradient approach, since the neighborhood of the neighborhood information
is missing and thus obsolete in the latter case. In the example of Figure 3.7, apart from
the fact that there is a slight drifting, one can conclude that curvature approximations
such as equation (3.15) or similar variations, can capture the form of differential geometry
satisfactorily, and therefore can be used for the formulation of novel formulations of material
internal energy.

3.3.2 Anisotropic Strain and Strain-gradient Energy Function - EB
Ansatz

In the next, the formulation of the Euler-Bernoulli based strain and strain gradient energy
density function are presented (EB Ansatz). Having the approximation for the radius of
curvature in hand, the energy density function is depending on the elastic modulus, and the
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effective second moment of inertia can be introduced.

_ il b _
" :EI(2 2cos (o —|—o; ) :E12 22a
(|mf[ + [m?]) m|

b
a = cos (a + p

(3.21)
b= (If —0.25IF)

d=(If — If + 0.25I5)"/% (Iff + IF + 0.2515)/?
| = ([oot| + ')

The replacements are done for simplicity, and further trigonometric identities are used for
the sake of evaluation of derivatives for finite element or natural element implementation.
This energy function is tested on a simple representative abstract material point mapping.
Quite purposely, some excessive mapping is chosen here, to comment on the convexity of
the energy function without seeking any further mathematical proof. The chosen mapping
enforces an exponential vertical displacement of initially straight horizontal line element,
fixed at its origin (see Figure 3.8). The current coordinates of the mapping with respect to
the reference coordinates and the pseudo time parameter reads;

(XY, Z,t) =X y(X,Y,Zt) =Y +exp(Xt) — 1 (XY, Z,t)=Z
(3.22)
The deformation in pseudo time is illustrated in the left part of Figure 3.8. In the right
Yy curvature, energy
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Figure 3.8: Left: The exponantial material formation in 10 time steps; Right: The normalized
curvature and normalized EB bending energy of the exponential mapping

diagram, the normalized (wrt. the final curvature) curvature and the normalized bending
energy (wrt. to the final bending energy) based on equation (3.21) are shown. The curvature
is to be decreasing after a degree of formation, which is required completely based upon the
nature of the given kinematics, and may cause some non-convexity of the density function.
This is a quite natural fact, and tendentious monolithic increase is quested for the purpose
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of numerical convergence. According to the writer, the formulation should not be altered
fallaciously, rather the numerical scenario for solving this type of softening shall be improved,
than the result of a trail of arguments listed above are manipulated. Another issue which
should not be forgotten is the existence of third order remainder of this approximation. This
means that, the evaluated curvature and stretch deviates from the analytical one. However,
it is the self-consistency what is intended here, for comparison of the power of kinematics,
please refer to the arguments of hyperkinematics (Ch.[2]).

Before moving ahead, the definitions of the first Piola Kirchoff stress tensor, and hyperstress
tensor should be introduced here. By taking the first derivatives of the energy function of
equation (3.21), with respect to the deformation gradient and deformation hypergradient
results into;

o da 3 8|m|

K o_ _ -2 _ - —
P* = S = —2BI m[ — 261 jm|* (2 - 20) -
3.23
K _ aﬂ)m _ da 2 -3 9 |m|
Q" = S = —2BI |m|~* —2B1 m|* S22 (2 - 20)

The necessary three tangent terms have to be also evaluated and the consistence of
the integration with the stress and hyperstress should be checked. This is performed
to demonstrate the softening behavior primarily, and second, it is done to ensure the
correctness. The detailed extraction of the derivatives can be found in the list of
Appendix-B. The tangent tensors can be evaluated as beneath;

DE" = 8;; - —2El% im|~2 + 4E7 |m| aa“];" g;ﬁ
+65] |m| 6(9'1];" 06|r];1| (2 - 2a) — 2E1 |m|™® a;]|;;1| (2-2q)  (3.24)
et 2 2

Dg = (?3}(): —2E 0(21231? [m| ™ + 4B jm|™ aa@ © g_;
+ 6B jm|™ 88|2| ® %(2 ~24) — 2E1 |m|™® g;'g]‘?' (2-2q)  (3.25)
it 2 o 2

DY = %% - gc.?’ "% + 4T |m \—38|m| g—é
+ 651 |m| ™ %'g' agg' (2 - 2a) — 2E1 |m| aagr;' (2-2q)  (3.26)
ietng 2o 2

Two comments can be done about the consistency of the material points result, first one
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Figure 3.9: Left: First Piola Kirchoff Stress tensor traction on the reference X plane and current x
direction. Right: First Piola Kirchoff Stress tensor traction on the reference X plane and current y
direction

is the conformity of the tangent values with the direct derived tractions, second one is the
expected capture of the non-zero tractions for the given deformation. Since there is no
dependency of the reference Y coordinate was given in the mapping, no thickness change
may be evaluated, by recalling the fact that the kinematics is only applied around the fixed
origin. Another interesting but foreseen phenomena is that the traction on the reference
X-normal plane in the current x-parallel direction coexist with the shear traction, indicating
that bending energy may enforce also axial forces on straight lines of reference. As can be
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Figure 3.10: Left: First Piola Kirchoff Hypertress tensor traction on the reference X plane and xX
First Piola Stress-Space. Right: First Piola Kirchoff Hypertress tensor traction on the reference X
plane and xY First Piola Stress-Space

seen in Figure 3.10, the consistence of the tangent and the directly derived terms are also
well satisfied. The details of the derivation can be found in Appendix-B. It can be now
moved on with the problems concerning any possible finite element implementation.

3.4 FEM Implementation with Strain-gradient Effects

The previously in this section defined material model with bending internal energy can be
well embedded into a finite element implementation. As will be seen, there is no special
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element type for this purpose is suggested, nor the consequences are discussed. There might
be several problems arising quite analogous to the strain element library of total accumulated
knowledge of finite element method, but these all are taken out of the concern of the thesis.
In this section, the discrete form, and one schema of achieving the destination are presented.

3.4.1 Discrete Form for Finite Element Formulation

The energy split proposed before is repeated here, and shape function interpolation on the
virtual energy integrals is applied. In order to be consistent with the ongoing chapters,
the general gradient notation which is similar to mainstream interpolation schemes is used,
such as natural element shape value interpolation, which is visited in the next chapters (see
Ch.[5.3.2]). At the end, the notation is converted to the generally accepted matrix-voigt
form, to keep the well known standards of finite element jargon. To start with, the nonlinear
internal virtual energy divisions are,

STIPE — / [P: Vxdu]dV ~ /Q [P-Vx (ZNI)] 0adV = Fiut (3.27)

IS = /Q (Q .. V&26u] de/Q Qv (DoNT)| - oaav = 53¢ - oa

Where the first one can be interpreted as pure virtual strain energy of internals, the second
one is the pure virtual strain gradient energy of internals. It should be kept in mind that,
the virtual energy of bending is not straightly or ideally equal to the virtual strain gradient
energy of internals. As shown previously, the bending energy can only be formulated at the
locus of material if one has the hyperstrain information in hand, and this accounts to the
strain energy as well. Correspondingly, the tangent matrices of the non-mixed residuum
internal forces can be repeated here to be,

; oPT J
®2 a7l ! 3@ ®2 nrJ
KQ(G) /Q {V N*: Wl .VXN }dv (3.28b)

And the mixed-residuals of the internal forces cause the following contributions in the
tangent stiffness matrices,

8Q

IJj  _ J ®2 arJ

KP( G = / [VXN el V N }dv (3.29a)
®2 7T ! 3@ ? J

KQ(F) / {V N*: OF -VxN ]dV (3.29b)

The assumed strain displacement, and assumed hyperstrain displacement matrices as
consistent definitions to finite element method are,

B =L [ [vxNTav
V/Q B (3.30)
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Before moving ahead with the promised strain gradient finite element formulation, one
claim has to be cleared here numerically. In general, irrespective of total Lagrange or
Euler formulations, or any incremental formulation, the finite element solution at the level
of computer numerics is always taken to be based on symmetric tensors. The very well
understood reason of it is the coherence and applicability of the symmetric tensors to Voigt
notation or similar. In this way, the major and minor symmetries for instance, does allow
one to represent fourth order tensors in plane matrix format. Considering the nonsymmetric
characteristics of the deformation gradient and the first Piola Kirchoff stress tensor, the
notation can not bring any value, since significant symmetry properties are lost. Beside,
there might be still a benefit of formulation (3.28a), since it involves both the geometrical
and the material tangent values in one, thus is programmer-friendly. However the correctness
is to be tested, if the conjugacy of energy works well or not. The start is the representation
of the First Piola-Kirchoff stress to deformation gradient tangent with respect to the second
Piola-Kirchoff stress to Cauchy-Green strain tensor as formulated beneath.

Pij = EmSmj
oP;; OF;, OSmi
CPF — Y _ZSmA Fimﬂ
R 5hy  0Fy ™ T MR, .
3.31
0Sm; 0C,
= 0;10m1Smi + Fipp— ——19

1
= 0ikOmiSmj + §Fz’mC§5m (0n1Fio + Findol)

Where the last identity comes from the derivation of the Cauchy-Green strain tensor with
respect to the deformation gradient as shown below,

0Cno 0
= o (FpnFpo) = 6,100l Fyo 4 FynOpibor (3.32)

In index notation, the conversion of two tangents in index notation is well developed and
tested as can be seen next. For this purpose, a spring-like sinusoidal geometry is chosen,
clamped at the left edge in elongation direction, pulled on the right edge in the elongation
direction. The main purpose is to unbend the geometry, and prove the conjugacy condition
is well satisfied with equation (3.31) The constructed model has 5604 nodes with two
degrees of freedom each, 1143 quadratic quadrilaterals with 8 nodes and 9 integration
points each. The scenario is tested by St. Venant-Kirchoff material, results can be found
below. As obvious from the results shown in Figures 3.11 and 3.12, two formulations result
the same deformation field. Thus, further consideration can be discussed next.

3.4.2 Strain-gradient Displacement Matrix

The evaluation of strain gradient displacement matrix can be generalized, however the
formulation presented here is based on one element type, namely 8-noded quadrilateral
element with 9-integration points. The shape functions, the derivatives of the shape
functions can be found elsewhere, writer recommends Zienkiewicz (Ref.[©-C-Zienkiewicz 2000a7)

for this purpose. In this stage, the first Piola-Kirchoff/Deformation-gradient consistent
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Figure 3.11: Extending the sinusoidal spiral, undeformed Grey, deformed color plot, Legend:
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Figure 3.12: Extending the sinusoidal spiral, Left: PF formulation, Right:SE formulation

Strain-Displacement matrix and Strain gradient-Displacement matrix are presented. The
arising problems and the solution suggestions of those are presented here. Given 8 Shape
functions in this case, to compute a derivative matrix with respect to the local coordinates
(evaluated at integration points) can be written as;

(£x16) N', 0 N%, 0 N3 0 N', 0
N — )17 517 51 )1
Nl e 0 Nye 0 N 0 N 0 N
(3.33)
Besides of this, a modified jacobian inverse matrix can be formulated,
&x mx 000
0 0
Jfl = faY My (334)
[ ] |(E:£ ) 0 0 EaX M x
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These both result in the strain-displacement matrix at a location,

(4x16) (4x16)
PF -1
[B™] = [T ] (ezer)  [Noe]
(e=¢*) (e=¢")
N'x 0 N?’x 0 N3x 0 Nixy 0
Ny N2y 0 N3y 0 Nty 0

T (=€)
(3.35)
As a very well known fact, this matrix is used to obtain strains at the integration points
from nodal displacements. In short, the following relation holds;
(4x16)
(€")

4x1

(u,X)

16x1

- () (3.36)
(6=¢")
One may think in the first step, quite analogous to this method, a second derivative matrix
format of the shape functions with respect to the global coordinates can be realized. This
is however, not as trivial as it sounds at first glance. To show the claim, the index notation
can be taken under consideration. Consider the derivative of one degree of freedom with
respect to one global reference coordinate,

ONi ON' 9 AN’ an
(U7X)’(£:£*) = Z 8—X u = Z ( 8§ B—X + 877 8—X> ‘(Eé*) u (3.37)

(¢=¢)
The computation of the second derivatives results into,
ON' 9¢  ON' an\ _,
trxx) ZaX ( 85X T oy a_X>“
S| e o o
N 0€2 90X 8§8n 0X ) 0X
N 0¢  O°N' o\ On
ono&E 0X  on? 90X ) 90X
ON' 9%¢  ON' 9%p
¢ 90X?2  0On 0X?
The first two addends are easy to obtain, however the third component is simply elements of
inverse of the third order Jacobian matrix. Since such an inverse is not found to be defined
in the literature, this version of defining strain gradient-displacement matrix is omitted. For

this purpose, a element-wise global strain displacement matrix is defined, which includes
the strain-displacement matrices evaluated at all nodes,

(3.38)

T
(32x16)

[B"]

(4x16)
[B™]

(4x16)
, [BPF]
(_17_1)

(4x16)
, [BPF]
(17_1)

(4x16)
’ [BPF]

g .

(_171)

nodal

(1,1)
(3.39)
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The purpose of the matrix above is to get assumed nodal deformation gradients, in order
to evaluate integration point deformation-hypergradients conjunctively. For that purpose,
a larger shape function derivative matrix is to be defined, which is to be evaluated again at
the integration locations.

Ntx 0 0 0 N:x 0 0 0
Nty 0 0 0 N2y 0 0 0
0 Nx o0 0 0 N:x 0 0
[ ((;8;313?] o Ny o0 0 0 N2y 0 0
1o 0 N x o0 0 0 N’x O
(6=¢7 0 0 Ny 0 0 0 Ny 0
0 0 0 Nx 0 0 0 N2y

| 0 0 0 Ny 0 0 0 N2y ..

(3.40)

Finally the strain gradient-displacement matrix, which can be evaluated in any location of
the element can be obtained by multiplying the last two defined matrices,

(8x16)
[G™]

(8x32)
= [GB""]

(32x16)
(6=¢")

(3.41)

nodal

(§=€7)

Therefore, the desired relationship is obtained and can be further used for the construction
of finite element strain-gradient stiffness matrix.

(8x16)

8x1
- [6"1]

(U, x x)

16x1
(@) (3.42)

‘@*) (6=¢")

According to the writers opinion, the plane strain formulation given here which suits for
8-node quadrilateral with 9 integration points, is definitely applicable for the 3 dimensional
case trivially. One challenge might be here to show the performance in the case of elements
with bi- or tri-linear shape functions are used. For instance the second method which is
omitted here, namely the equation (3.38), would lack of the first two terms in such an
attempt. On the other hand, the suggested method here would be fine adapted to any type
of element, however the performance is another topic which was not regarded as the main
focus of this work. In the priory step, one has to show the impact of the bending energy
on the solution path, and if this is convincing, one may look for improving the other issues,
including a diversity of elements and way of integrating the field equations.

(§=¢7)
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3.4.3 Numerical Examples

In this section a simple academic example is chosen. The model consist of 88 quadrilateral
elements and 317 nodes. The beam is modeled with four layers of elements, each of them
consisting of 9 integration points. Therefore, 12 layers of fibrous structure are modeled.
In the undeformed reference configuration, the fibers are taken to be straight and aligned
in the horizontal direction. The beam is left clamped and a unit force is applied on the
right tip. The solution is force controlled. There are in total 3 numerical scenarios shown

49974
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2.4987
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0.99948
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0

Figure 3.13: Casel; Bending a simple beam, undeformed Grey, deformed color plot,
Legend:Deformation Magnitude

here, for all of them the boundary conditions are kept to be the same. The only parameter
regarded here is the type and inclusion of the material models. In the first case only a
Sn-Venant-Kirchoff material model is chosen. For the second case, additional to the first
isotropic energy function, the stretch energy is considered (see Appendix-B). For the final
case, additional to the stretch energy and isotropic energy, the bending energy is also
considered. The stretch and bending energy functions are shown beneath,

o= 35 (il 1) g (1) oo pr 22D

The expectation is that the overall deformation decreases from case one to case three, since
the structure is supported with more sources of elastic energy. The amount of influence is
another question to be answered. A clear conclusion of the result states that as expected,

Figure 3.14: Deformation plots of beam bending, Left: Case2; Isotropic strain energy density
function and Stretch energy density function, Right: Case3; Istropic strain energy density, Stretch
energy density and Bending energy density functions

the deformation gets smaller if one considers more energy terms. The deformation under
the action of the same force for the case of isotropic, stretch and bending effects is smaller
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and thus stiffer then the remaining two scenarios. The amount or the direction of the
difference is another discussion topic, but more interesting is the observation of impact on
the result, and the convergent behaviour of the numerical implamentation itself.

Figure 3.15: Energy distribution plots of beam bending, Left: Stretch energy distribution, Right:
Case3; Bending energy distribution
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4.1 Introduction

The macroscopic mechanical function of the soft tissue depends on anisotropy and local
homogenized orientations of load bearing fibrous network. The indications of early wear
damage (Ref.[V:Wilson 2003]) of AC have been associated with the local network damage
of collagen mesh. The depth dependent local anisotropy and fiber orientation of AC have
been studied recently under theoretical, numerical and experimental frameworks (see Wilson
Ref.[W:Wilson 20051 Quinn Ref.[T-M-Quinn 2005]) = Mechanical and material functionality
of AC are investigated frequently by taking the complicated microscopic behavior into
account also, refer to the works for instance by; (Federico Ref.[Federico 2008]  Schinagl|
Ref.[5chinagl 1997] " and Buckley Ref.[Buckley 2008]) " The macroscopic mechanical function
of the soft tissue depends on anisotropy and local homogenized orientations of load
bearing fibrous network. The indications of early wear damage (Ref.['V-Wilson 2003]) of
AC have been associated with the local network damage of collagen mesh. The depth
dependent local anisotropy and fiber orientation of AC have been studied recently under
theoretical, numerical and experimental frameworks (see Wilson Ref.[W'W“Son 2005] , Quinn
Ref.[T-M-Quinn 20051) " Mechanical and material functionality of AC are investigated frequently
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by taking the complicated microscopic behavior into account also, refer to the works

for instance by; (Federico Ref.[Federico 20081 = Schinagl Ref.[>chinael 19971 and Buckley
Re{:_[BuckIey 2008])_

Remodeling by Menzel (Ref.[A-Menzel 2004]) is defined as the evolution of microstructure

or variations in the configuration of the underlying manifold. Many novel and recent
recognitions of remodeling definitions with various applications are present. The current
local microstructure of soft tissues like tendons, ligaments, AC, arterial walls, or cell traction
experiments, engineered soft tissues and even abstract-type materials are investigated
with the present remodeling strategies cited here. Without proof, in these works, it is
assumed that the soft tissue takes its evaluated microform with the postulated biomechanical
continuum setting.

Menzel (Ref.[A-Menzel 20041) hag postulated a general theoretical and numerical framework
of remodeling and growth of fiber reinforced material. Garikipati (Ref.[K-Garikipati 2005])
has discussed stationary strain energy and thermodynamic aspects of remodeling with
the realization of cell-traction experiments.  Kuhl (Ref.[E-KuM2008]) and Holzapfel
(Ref.[G Holzapfel 2006]) haye showed that gradual alignment of unit-cell can represent collagen
network orientation of an engineered tendon-like tissue. Holzapfel (Ref.[!-Hariton 20077)
Driessen (Re{:_[N.J.Driessen 2003])
fibers of arterial walls and porcine aortic valve leaflet. Wilson (Ref.["V:Wilson 2006]) hag
predicted the depth dependent collagen orientation of AC with remodeling.

and
have recently used stress-driven reorientation of collagen

In this work, the comprehensive formulation of orthotropic hyperelasticity of eight-chain
network model with the full set of structural invariants are presented first. The strain
energy density function of the unit-cell, with orthonormal reference bases depending on
irreducible set of invariants are introduced. The reorientation of unit cell depending on
the strain energy density function are presented thereafter. Small academic examples and
illustrations of quasi-static cyclic remodeling using nonlinear finite element method are
presented. Finally, comments on the spatial local architecture of AC are left.

Analogous to the strain dependent reorientation, two types of strain gradient dependent
reorientation methods are postulated here too. Comments are left, and the comparison
of the strain and strain gradient reorientations and their effects on AC-alike geometry are
investigated in next sections.

4.2 Orthotropic Hyperelasticity

4.2.1 Worm-like Chain Model

The hyperelastic strain energy density function developed here, is applicable to any kind
of given force-displacement relationship. For the sake of relevancy, the wormlike chain
model is reintroduced. It is a simple but generally accepted one for the remodeling of
biological tissue (Garikipati Ref.[K-Garikipati 20051 K yh| Ref.[E-Kuhl 2008]Ref [G-Holzapfel 2006])
The wormlike chain model considers the persistence length of the chain (which can be
measured experimentally) as a measure of unbending stiffness.
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kTl r|? 1 r
v (r) = 220 (2% ey ’—L’> (1)

For missing fundamental knowledge, please refer to the references in the given order. For
the statistical approach of basic thermodynamics refer to Baierlein (Ref.[R-Baierlein 2010,
for gathering undergraduate knowledge about physics of polymer chains to Boal

(Ref [Pavid Boal 20101) * 3nd for a clean derivation of wormlike chain force-displacement

behavior to MacKintosh (Ref.[FC.MacKintosh 20091),

4.2.2 Mechanics of the Chain Network
4.2.2.1 Essential Kinematics

The nonlinear deformation map « =  ¢(X,t) defines the quasi-static
(Ogden-Ref.[R-W-Ogden 2008]y (kinematic) motion of material coordinates of a particle
with coordinates X € g at t = 0 to the spatial coordinates of that particle z € Q at a
subsequent time ¢ > 0. The two point tensor deformation gradient F' maps the material
tangent space dX € T()y to the spatial tangent space dx € T2 subsequent time t > 0.
In this first order kinematics! , the coordinates 6% are assumed to convect with the linear

03, G 0°, g
A 7
J-> 0% Gy <
s | N

el S
\
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0, X 0" © A0 x
x3, X3, €3
A
i
//I————)JJQ,XQ,QQ
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Figure 4.1: Nonlinear deformation map with convective coordinates

'For the second order kinematics, please refer to the chapter of Hyperkinematics(Ch.[2])



102 Chapter 4. Reorientation with Strain and Gradient Effects

tangent map F'.

(4.2)

Where the following well known relations between the material and spatial bases and the
tangent map are valid here.

G = 88XT;ném (4.3a)
é; = ZTX;G”L (4.3b)

g; = %éi (4.3¢c)
é; = %gm (4.3d)

Besides, the two point tensor deformation gradient in terms of the base vectors of convecting
coordinates can be evaluated as the following. These convected coordinates and metrices
will be used next for the derivation of the orthotropic hyperelastic 8-chain unit-cell model.

F= 61‘2 . 8.%'1 ((%m an

= ax; @2 %) = ox;  9ur9n © g @ > =9n®G (4.4)

4.2.3 Structural Tensors

To define the orthotropic free energy function, the structural invariants® are used. The
structural tensors are defined by material or spatial covariant bases given as;

Gij=G;®G, (4.5a)

With the indexes no summation is implied. It is taken such that the unit scalars are
convected with the deformation, thus the material and spatial base vectors are not
necessarily defined as unit vectors. The traces of these dyadic products can be interpreted
as the lengths of the basis vectors in the reference and deformed configurations if the
indexes are equal, otwerhise; the scalar projections on each other should be taken as the
interpretation. By considering that the lengths and scalar projections being unaffected
under any kind of post or pre-rotations® (the length or projection of a convecting frame
is unchanged if rotated), the trace operators generate so called structural invariants. The

2For a better understanding of the structural tensors please refer to the beautiful treatise written
by Boehler (Ref.[2°°"°" 197%]) almost a half a decade ago
3post/pre rotation: orthogonal type of deformation acting after and before motion accordingly
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invariants as entries of covariant spatial metric have the following relations;

g1 (91-91 9192 9% * g3 91
g | = (9291 9G2-92 92 93| - 92
g3 19391 93°-92 G333 93
[t (g11) tr(gi2) tr (913) 91
= |tr(ga1) tr(ga2) tr(gas) 92 (4.6)
[t (gs1) tr(gs2) tr(gss) g
_t’l“ (G11 . C) tr (G12 . C) tr (G13 . C) gl
= |tr (Ggl . C) tr (GQQ . C) tr (Ggg . C) g2
_t?“ (G31 . C) tr (G32 . C) tr (G33 . C) g3

Where C = FT . F is the right Cauchy-Green deformation tensor.

There can be nine dependent structural tensors present, whereas six of them being transpose
of each other. The set of covariant material base vectors are chosen to be orthonormal.
Therefore, the matrix form of the covariant material metric is a diagonal square. Because
the deformation is arbitrary, the covariant spatial metric has not necessarily zero off-diagonal
terms. However, the covariant material structural tensors are trace-wise dependent on each
other.

For an orthotropic hyperelastic material formulation, the strain energy function is established
based on the basic invariants of Cauchy-Green deformation tensor and the six structural
invariants with unit bases given beneath. For other examples please refer to Boehler
Ref_[BoehIer 1979] Park Ref_[H.C.Prk 1997] and Sansour Ref_[C.Sansour 2007]_

Jl = G111 C (4.7&)
J2 = GQQZ C (47b)
J3=Gs3: C (4.7¢)
Jy =Gy : C? (4.7d)
J5 = GQQI 02 (4.76)
Jﬁ = G332 02 (47f)

The concepts of objectivity* (invariance of strain energy for post rotations, observations),
material symmetry® (invariance of strain energy for pre rotations) and convexity of strain
energy function are out of scope of this work. With all of the assumptions, the strain energy
density takes the following form;

Y= (I1, Iy, I3, 1, J2, J3, s, J5, J6) (4.8)

There are many phenomenological models fitting with the theoretical form given above.
The intent is to find the relation between the invariants, network structure, deformed chain

*A post-rotation can be interpreted as the rotation of the observer of the deformed body. This type
of observer motion can not manipulate the strain energy, since the action has already taken place,
indicating the term objective material depending on invariants

5 An isotropic material would be insensitive to the pre-rotations and thus symmetric
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length and strain energy density function for the unit cell. The geometrical approach
given by Kuhl (Ref.[E-Xuhl 2008]) (transversely isotropic 8-chain model) will be followed and
extended here. The lengths of the chains in the undeformed configuration become;

RQ\ -

v, F

Figure 4.2: undeformed and deformed coordinates of the unit cell

|Ro| = |Ro| = |Ri| = |Ryy| = |R2| = |Ryy| = |Rs| = |Ry)| =
(4.9)

‘R’:\/G11:I+G2251—|—G33:I

The lengths of chains in the deformed configuration are;

’7’0’:“'0”‘:\/(G{'FT+G5'FT+G§'FT)'(F'G1+F'G2+F'G3)

(GI - FT" - F-Gi)+ (G} -F'-F-Gs) + (G} - F' - F-G5) +
2(G] - F" - F-G2)+2(G - F" . F-G)+2(G5 -F' - F-Gs)

=VG11:C+Ga: C+Gs3: C+2G12: C+2G31: C+2Gas: C
(4.10)

Similarly, the other deformed lengths become,

’7‘1’2 ‘TlH‘ = \/G11: C+Gyp:C+Gsz3: C—2G15: C+2G31: C —2Gy3: C

’7‘2’2 ‘TQH‘ = \/G11: C+Gyp:C+Gsz3: C+2G15: C —2G31: C —2Gy3: C

|T‘3| = ‘7“3H‘ = \/G112 C+Gyp:C+Gs3: C—2G19: C —2G31: C+2Gy3: C
(4.11)

These simple derivations are supported by the statement of Boehler (Ref.[Boehler 19797). 14
the invariants of general anisotropy can be expressed as single valued functions of the six
independent invariants". The invariants that Boehler mentioned are nothing but the ones
given in the deformed chain lengths formulas above, which is chosen on purpose in this way,
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to be consistent with the historical terminology of the invariant algebra.

The remaining part of the work is, reformulation of structural tensors. The aim is, to catch
consistency with the common orthotropic hyperelastic energy functions in the literature,
which are usually given in terms of the invariants above. Another reason beyond the seek
of consistancy is to establish a strain energy density functions using the given derivatives of
standard structural invariants with respect to the Right Cauchy-Green deformation tensor.

Gz‘j: C= Gij: C = (Jl,JQ,J37J4,J5,J6) (4.12)

For further reductions, the next equalities which are valid for non-unit® orthonormal bases
are used.

_GH:I GQQZI G33:I

N S LS s A= (4.13a)

I:C= ((;;1111::(; + f;;? + Z?;’?;(Ij (4.13b)
I:C?= (ZLC; + (222012 (Z‘;C; (4.13¢)

tr (G, - C?) = ((211::(;)2 + ((2;:2)2 + ((223 3)2 (4.13d)
tr (Gay - C?) = ((21::(;)2 + (%Z:(’f + ((22’3 :CI)Q (4.13¢)
tr (Gas - C?) = (Gs1: C)° n (Gs2: C)° n (Gs3: C)° (4.13f)

GHZI GQQII G33:I

The first three equations can be seen or found by simple tensor calculus. For the derivation
of the last three equations, please refer to Appendix-D. By using these six equations the
mixed invariants can be represented as;

. 2
2(G122 0)2 = (GHZ I) (GQQI I) [I 02 —2%]
Go: I ‘ Gii: 1 ‘ (G11: I)(Gaa: I) ‘
_Gjii I (Gu: 0" - G;; I (Ga: O+ 11(G?,g: I)222 (Gaa: 0)2}
. 2
= (G11: I) (Gay: 1) [(I: Cc? - 2%)
4 <_(G11! 0)2 B (GQQI 0)2 4 (G33! C)2>]
(GHZ I)2 (ngl 1)2 (G332 I)2
(4.14a)

5The base vectors do not have to be necessarily of unit size, so that the undeformed invariants may
represent the finite space occupied by a fundamental biological unit -and the mechanical correspondent
of it-.
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Similarly, the second mixed invariant becomes,

2(G13: C)° = (Gu: I) (Gsz: 1) [Ii Cc? —QM]
GQQZ I
G emor G @ op - G G o]
. 2
= (Glli I) (G33: I) [(I: c?— 2%)

4 (_ (GHZ 0)2 + (GQQI 0)2 (G33! C)2>]
(GHZ I)2 (GQQZ 1)2 (G332 I)2

(4.15a)
And the last mixed invariant for clearance,
N2
2(G23: C)2 - (GQQ: I) (G33: I) I: C2 — QM
G11: I
I I I I
(G112 I) G22- I G33- I
G11! 0)2
= I I I:C?%- 2(7
(Go2: I)(Gs3: 1) [( C G 1

+ <+ (GHZ 0)2 (GQQI 0)2 (G33! C)2>]
(G11: I)2 (GQQ: I)2 (Ggg: 1)2
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To check or ensure the correctness of these reductions please refer to Appendix-D. According
to the calculations, the complete set of new invariants are to be redefined;

=1:C? (4.17a)
Ji = % (4.17D)
Ty — (22‘222 ‘; (4.17¢)
Jy = Z?;Z ::(Ij (4.17d)
Jy = %(;2 (4.17e)
J5 = % (4.17f)
Jg = %(;2 (4.17g)

The new set of structural invariants can be considered as the normalizations of the standard
ones. The mixed invariants in terms of the new integrity basis;

(Gra: ©) = (G 1) (Goa: 1) (2 = 2J) (= (1) = ()" + ()| (4.189)
(Gus: ©) = (Gur: 1) (G 1) [(Io = 2J5) (= (1) + (J2)* = ()] (4.18D)

(Gas: ) = (G 1) (Gag: 1) [(lo = 2J1) ((N)? = ()P = (p)?) | (4180)

And the deformed chain length of one of the chains in terms of the new integrity basis;

tr (Gll: C) +tr (GQQZ C) +tr (G33: C)

T =
’ ’ +ir (Glgi C) +tr (G312 C) + tr (G231 C)

(G11 I)J1+(G22 I)Jl-l- G33 I J;

—|—\/2(G1121)(G222I) IQ—2J6

o)

)

(-v
+\/2(G11:I)(G33: I [ (1 - 205) ( = (Js) )}

) (1)

- ’)]

(4.19)

—|—\/2(G2221)(G332I) IQ—2J4

(G11: I) J1 +(G22: I)J1 +(G33: I)J1
+ V20 + /2131 + /2123
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Where, to reduce the complexity, the mixed invariants can be formulated as;

Iy = (G11: I) (Ga2: 1) {(12 —2Jg) <— (J1)? = (Jo)? + (J3)2>] (4.20a)
Ir = (Guy: 1) (Gag: I) [ (I = 25) (= ()" + (1) = () (4:200)
I3 = (Ga2: I) (G33: I) [(1—2 —2Jy) ((J1)2 — (Jo)? — (J3)2>} (4.20c)

Finally, with this explained frame, the chain strain energy density function is defined
depending on six structural and one basic invariant of the first order kinematics unit-cell
based on worm-like chains.

gehain — qyyehain (1) 1y Iy, J3, Jay Js, Jo) (4.21)

The invariants of the transverse isotropy Io,J; and Jy account for the stretch of the fiber
coincidently parallel to the first covariant material base vector (a physical interpretation),
and J5 and Jg account indirectly to the strain energy of shear modes. It is commented
by Ogden (Ref.[R-W-Ogden 2008]) that there is no straightforward interpretation of the last
two invariants, however the relation in between finite strain and the dependency on Jjs
and Jg holds. Among the microstructure based models in the literature, the kinematics
defined by Kuhl (Ref.[F-KuP! 2008]) and Holzapfel (Ref.[C-Holzapfel 20061) represent the chain
strain energy density function for transverse isotropy depending on stretch invariant Jy by
neglecting J5 and Js. Bischoff (Ref.[}:E-Bischoff 20021) o the other side, formulated the
orthotropic hyperelasticity of eight-chain model by principle stretches along the material
axes. There are several other similar approaches in the literature. By admitting that, finite
shear strains exist in biological tissue with arbitrary geometry and boundary conditions
(including AC), their contribution into the strain energy density function should be involved
either. Otherwise, one can speak about an imcompleteness in between the given unit-cell
morphology and strain energy density function formulation.

4.2.4 Energy Split, Stress at Integration Point and Tangent Modulus

For the finite element or natural element implementation of remodeling and orthotropic
hyperelasticity, the tangent modulus has to be evaluated.  There are generally
accepted procedures of iterative solution methods for finding tangent moduli (by
Miehe Ref.[¢-Miehe 1996]  for instance). Here, it is preferred to calculate the
tangent moduli analytically by following the current state formulation of Zienkiewicz
(Ref [O-C-Zienkiewicz 2000b1) * The physically motivated split of strain energy density function
into the bulk energy and chain energy parts is applied. For the chain energy, the strain energy
density function defined in the previous section is used. Following the other researchers in
the field, Menzel (Ref.[A-Menzel 2004]) for example, an additional term on the chain energy
is defined, to prevent the shrinkage of the chains into the stable end-to end length, which
is being zero. This repulsive term is defined so that, the chain strain energy has stress-free
reference configuration for a given Cauchy-Green deformation tensor.

P = I Iy Ty, o, T3, Ju, Js, Jg) + TP 4 opPulk (4.22)
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This formulation with the bulk strain energy density accounting for the surrounding
compressible fluid in the biological tissue includes the complete set of integrity bases. This
set includes 9 parameters defining the orthotropy, corresponding one Young's modulus and
two Poisson’s ratio in each direction in analogy with the linear elasticity. In nonlinear
elasticity, the underlying physical interpretation of invariants is not so straightforward. Next,
the chain and repulsive terms of second Piola-Kirchoff stresses and current state tangent
moduli are shown. The energetically conjugate stress measure of Cauchy-Green deformation
tensor is the symmetric Piola-Kirchoff stress tensor. The chain second Piola-Kirchoff stress
tensor is evaluated by taking the derivative of energy function once. In tensor-index mixed
notation;

| Pypehain oyehain [alr| (1, dlr| (0T,
chain __
51 _2< oC )U T |on \ac +kzzl o \ac), | @)

[O.C.Zienkiewicz 2000b]);

In indicial-matrix-tensor mixed notation proposed by Zienkiewicz (Ref.

chain (Gll) (G22) (G33)
sihein =2 |20y Py Gy (Culy]

fovowl ov ol ovarl o or]”
Olr| 012 olr| 0J1 olr| 0J2 olr| 0J3 (4 24)
+2[ (G11:C+C-G11);, (G2 C+C-Gn),, (G33-C+C-G33)1.I] '
tr(Ghi1) tr(Ga2) ir(Gs3)
[ov ol ool ov ar]"
7| 0Js  O|r| OJs |r| 0J6
And the repulsive chain term of the second Piola-Kirchoff stress tensor is;
T
Srer — 31/1 (G11)y, (G22) 1, (Gs3)py |, |9l IIr| dlr| (4 25)
IJ 8’7" IR| tr(Gi1)J1  tr(Gaz2)J2  tr(Gss)Js o0J1 R 0J2 R 0Js R .
The material tangent matrix term in reference coordinates is,
hain __
CiikL =
20 (G11)r; (G22)1; (Gs3);; (G11:C+C-Gi1);; (G222 C+C-G22);; (G33:C+C-Gs3z);; |
1J tT‘(Gu) tT(GQQ) tT‘(Ggg) tT‘(Gu) tT(GQQ) tT‘(Ggg)
H-
20 (G11) g (G22)ip (G33)r (G11-:C+C-G11) e, (G22-C+C-G22) ;. (G33-C+C-G33) jep T
KL tT‘(Gu) tT‘(GQQ) tT(Ggg) tT‘(Gu) tT‘(GQQ) tT‘(Ggg)
[G118C+CRG11)i;  [G228C+CR®Ga2)r;  [G33®CHC®Gs3) K |
+4 [2 (I®I)IJKL 000 tr(GH}IJKL tT(G22]1JKL tT(GSS]IJKL
T
oy dlr| 9y Olr| Oy Olr| Oy Olr| oy Olr| 9y Olr| 9y Olr|
3[r| 9L, O[r| 07 Olr| 0 0| 0Js 0| 0Js 0|95 O] 9T

(4.26)

Where the dyadic products of the second order tensors and the Hessian matrices are defined
as;

[A® Bl =05 ([Alx Bl + [Al; [Bl k) (4.27a)

0 <81,Z) 8|r|> 0% Olr|d|r] oy O O|r|

= 4.2

Hij =
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The derivatives of the strain gradient energy of the worm-like chain given in equation (4.1)
with respect to the deformed length is straightforward and is omitted in this stage. The
repulsive tangent material tensor in reference coordinates is following the same procedure
becomes,

TPy 9 [_ (G11)1,(Gr)kr  _ (G22)1,(G22)cp, _(G33)1J(G33)KL] .
IJKL ar] (tr(G11)J1)? (tr(Gaz)J2)? (tr(Gs3)J3)*
| (4.28)
(ol gn) o }T
0J1 R 0J2 R 0Js3 R

As indicated in the formulations, some derivatives should be evaluated at the reference tip
to tail length of the worm-like chains. For demonstration, two different examples with two
different deformation gradient-histories are developed and plotted. Comparisons of the six
independent entries of second Piola-Kirchoff stresses calculated with the first derivatives,
with the ones calculated with the tangent maps are done. The first example is simple
unconstrained tension test to one integration point, the second one is simple unconstrained
shear test to on integration point. For each test, 50 time steps are applied, and the covariant
material base vectors are chosen to be coincident with Cartesian bases and have equal size.
The applied deformation gradients are given priorily. The same tests can be compared with
publications of similar demonstrations; such as in Ref.[J-E-Bischoff 2002]

4.2.5 Simple Tension and Shear on the Orthotropic 8-chain Model

After each other, two examples are presented here. The first one is a given deformation
gradient of a pure stretch without potential mapping. Time time parameter of Figure 4.6
is chosen in a way that the maximum stretch of the unit-cell reaches around fifty percent.

14 (Upgmax — G120t 00

i
\ '
9 El, =7(u“'ma*5;b”)'t+o'u = o 10| With Uy =25
| 0 01
(a) Form of the stretch (b) Deformation gradient of the stretch

Figure 4.3: Form and the formula of the stretch on 8-chain model

As expected, for this type of first order kinematics, the shear stresses all vanish. In Figure 4.4
two of the three non-zero components of the stretch tensor are plotted against the stretch
parameter. Those two are clearly equal to each other. Additionally, the correlation of the
second Piola-Kirchoff tensor computation with the tangent moduli is verified to be correct.
This had to be performed to show the reliability of the lengthy expressions presented in the
previous section of Ch.[4.2.4].

The stress values along the loading direction can be seen in Figure 4.5. The exponential
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Figure 4.4: Second Piola Kirchoff Stress tensor components

behavior of the true stress component can be observed to be ascending with the stretch

value.

(a) PK2 in stretch direction
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Figure 4.5: Comparison of second Piola Kirchoff and Cauchy stress component in stretch direction

This is expected either, since the surface with the normal of direction of stretch is getting

significantly smaller.

On the other side, the other normal stresses are observed to be

staying with the same order of quantity, since those surfaces undergo area-preserving type
of deformation. After being convinced about the consistency of the formulation based on
the stretch type of deformation, the pure-shear type of deformation can be investigated as

well.
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1 (Uyomax — 920t 0

], :w+§” =lo T 0| Withty 5y =15
s 0 0 1
(a) Form of the shear (b) Deformation gradient of the shear

Figure 4.6: Form and the formula of the shear on 8-chain model

The given deformation gradient and the mapping on the eight chain model is given in
Figure 4.6. All three normal stress values are expected to be quantitatively finite.

Figure 4.7: Second Piola Kirchoff Stress tensor components

As predicted, one normal component is equal to another one, and the third one is
significantly smaller then the other two, as can be seen in Figure 4.7. The largest component
on the other side, is noticed to be the single shear component, again as expected, the other
two shear components are the only non-zero values for the example of pure-shear.

After showing the reliability and completeness of the proposed material model, one can
give a look to the main topic of the chapter, namely the reorientation with strain and
strain gradient effects. For the case of reorientation with strain effects, the aforementioned
orthotropic material model is used.



4.3. Material Point Reorientation 113

| | I‘Cauch‘v XX O |
I IREE

20 = = o b b= o
! ! ! ! o
! ! ! ! 0

S I I N SN S = N
\ \ \ \ \

i i i \ og i
. . ©, .
! ! ! &

10 = e e O A ==
\ \ \ \
0 i
! ! !

S5Fr—-——r——r—z%—— [ i
\ \
\ \
0 1 1
1 105 11 115 12 125 13
(a) Cauchy stress component in shear (b) Cauchy stress component in one normal
direction direction

Figure 4.8: Comparison of second Piola Kirchoff and Cauchy stress component in stretch direction

4.3 Material Point Reorientation

4.3.1 Strain based Reorientation

A fiber reorientation scheme can be defined as the evolution of reference configuration
(Ref [K-Garikipati 20051y * This syccessive updating procedure suggests pre-rotations and
translations on the material point. Therefore, the multiplicative split of the deformation
gradient into the rotation and elastic part is applicable. In this work, the rotation tensor in
Figure 4.9 is introduced as an internal variable as investigated in other works, for instance in
Ref.[Himpel 20071~ Similarly, it is preferred to modify previous configuration in the quasi-static
iterative procedure gradually. Even though the given kinematics is of type first order, it is
still valid and can be applied to gradient reorientation.

The steering causality of remodeling is certainly not a trivial question with a simple
answer. Some works suggest strain driven reorientation” whereas some prefer stress driven®
one.There is certainly a difference, since the strain and stress tensors for anisotropic media is
arbitrarily non-coaxial. However, the strain driven reorientation is certainly motivated with
the stationary strain energy criteria, for mathematical proof, please refer to the Appendix-D.

This proof is fully motivated by the works of Norris (Ref.[N°"s2005]) and Vianello
(Ref [Vianello 1996a]) * \who have proved that for anisotropic linear materials the optimal
orientation of the material is achieved if stress and corresponding strain measures are
coaxial. This coaxiality requirement is only fulfilled if the material axes are parallel with the
eigenvectors of strains. Again Vianello had showed in two separate works ( Ref.[Vianello 1995]

H . rariki i2 . p . p Wi 2006
7stra1n driven works: Ref.[K'Ga‘”klpa‘“ 005] , Ref.[A Menzel 2004] , Ref.[F Kuhl 2008] , Ref-[VV Wilson 000]

, Ref. [A.N’[enzel 2006]

. ri 2! .J.Dri 200: 2!
8stress driven works: Ref-[I.Haanon 007] , Ref.[N J.Driessen 003] , Ref_[Ha”m“ 007]
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Figure 4.9: Kinematics of updating the reference configuration with rotation tensor

Ref.[Vianello 1996b]) that the same argument holds also for the finite elasticity. The procedure

in appendix section uses the same line of action which were previously proposed, but applies
another terminology, which fits better to the form of this treatise.

Evolution Criteria as optimization problem:
Minimize

v or.p

dg: ; 2 e 0(() VP e Sw(3)

Subject to
p|-10  vpew?

p-R=00  vpe®®

Figure 4.10: The definition of the evolution as an optimization set problem

The given Figure 4.10 describes the evolution criteria in terms of an optimization problem
set, and gives a set-up for the numerical validation. The left illustration of Figure 4.10
includes two sets of vectors, as the first one being the vector set of all possible target
reference configurations R . The first set is separated from the initial fiber direction R
with an angle of '3’, and thus forms a conical shape. The second set is determined according
to the reference fiber direction and the set of target fiber direction. Consequently, the second
set defines the set of rotation axis.
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Remodeled chain length:
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Figure 4.11: Numerical verification of maximizing the stretch in one step
As can be seen from the Figure 4.11, by selecting the successive location of target in terms

of the eigenvector of Cauchy-Green strain tensor with the maximum positive eigenvalue,
one receives the maximum stretch at the location.
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Figure 4.12: Numerical verification of maximizing the stretch stepwise

As stated, the situation is numerically shown to be holding for a one-step, sudden adaptation,
namely closing the angle '3’ all of a sudden. Additional remark to that can be made
accordingly, by admitting that the number of critical locations is not necessarily unique, as
can be seen from this single example. Comments around this observation will be made in
the next sections. In Figure 4.12, it is clear that the stepwise approaching to the target is
also well established and preserves the maximum stretch and thus maximum strain energy
criteria. However, for some lower angle of rotations of '3, another stable energy location
for "o’ can be preferably selected by the actor of adaptivity.

Further comments on this subject can be done by stating the coaxiality requirement as the
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Alternative Evolution Criteria
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Figure 4.13: Comparison of stretch maximizing and coaxiality optimization manifolds

optimization manifest, as done in Figure 4.13 . As can be seen from the diagrams on the left,
at the maximum location the coaxiality requirement is comprehensively fulfilled, however,
for the alternative local maximum of stretch at the half angle of rotation of 'a = 0.57
for the initial attempts of reorientation (for small ) the same conclusion can not be done.
Even though the coaxiality function is not as smooth as the fourth invariant? , it is still
a better candidate for searching the optimum reference fiber directions. One drawback is,
as one can observe from the Figure 4.13, the fact that the coaxiality has a local minimum
value for the minimum locations of the strain energy function, for instance the location of
a = 0.57. If one has the intent of using numerical optimization algorithms for solving the
problem in hand, should consider this phenomenon. This point will not be visited again,
since the treatise preferably follows in fact the semi-analytical methods, thus searching the
perfect location for a given manifest.

To compare the strain driven reorientation with the strain gradient driven one, a more
realistic example is taken as basis, namely an abstract cross-section, which represents
articular cartilage. The geometry is generated by hand-free methods, mainly by mimicking
the scanning electron microscopy pictures of cartilage cross sections. This gives one also
the opportunity of comparing the reorientation results with the reality.

Some specifications of the model should be cleared here as well. The model is simply
based on three rows of 8-noded hexahedral elements. The geometry is fixed only from
the bottom, the nodal consistent force step is applied until reaching a certain level of
deformation. There is no contact algorithm applied, as done previously in the chapter of
mixed field theory (Ch.[1]). As can be seen from the Figure 4.15, the recently presented
eight-chain model is used for the simulations.

%according to the given numerical examples
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Figure 4.14: Pressing the Cartilage-alike profile with uniform force

The self-consistency and correctness of the
results are interpreted based on the coaxiality
requirement, as obvious from the previous
comments done in this section. As one can
see, the stress, strain and the fictitious target
spaces all overlap with each other. However,
turning back to the consistency of the results with
comparison of reality, one can obviously see that
the expectation in some regions are not satisfying.
The superficial zone is consistent with the reality,
consist of fibers along the surface. In the depth
zone rather perpendicular fibers are anticipated
being consistent with experimental observations.

Chain Network

auchy Deformation base

PK2 Stress base

Figure 4.15: The coaxiality requirement

However, the mid and depth zones in the middle region are anticipated to be perpendicular

to the surface, where the opposite is observed here.

Furthermore, the side-facets of the system are not constrained at all, therefore the problem
is in 3D scale in fact a plane stress problem, rather then plane strain. This scenario would
represent rather a quasi-static type of vertical loading. On the other side, an impact type of
loading would most probably cause the fluid constituent smear away from the solid abruptly,
and thus increase the effect of locality. Such a case, is according to the opinion of the writer
of the treatise is rather a case for plane strain. The focus in this case is for normal loading

conditions, thus plane strain.

Hereby, the strain gradient reorientation suggestions will be presented next. A finalizing

conclusion will be done in the next chapters.
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4.3.2 Curvature Reorientation

Claiming that any proposed energy function is an increasing function of hyperstrains is not
necessarily true. The strain gradient effects can be acting along the stretch, and thus may
have a cumulative effect. However, a simple assumption of presupposing that the curvature
effects are proportional with hyperstrains, can facilitate a use of simple energy function for
definition and usage of semi-analytical methods similar to strain-driven reorientation.

Y~ exp <M

Where the fourth order Cauch-Green correspondence of Hypergradient is defined as,

9% K. M“®2) (4.29)

K=c"G Kijk = GnijGnk (4.30)

According to the Schwarz integrability condition, the hypergradient tensor possess one-plane
symmetry. As a result of this, the Cauchy-Green Hypergradient has major and minor
symmetry properties. The fourth order contraction stays under the following actions
invariant!? ;
M; M; K M My = M M K50 My My = M M K My My, = M M Ky My M,
(4.31)
The first two equalities indicate minor symmetries, where the last one represents major
symmetry. To move on, a so called scatter transformation is defined, which transforms the
fourth order tensors with major and minor symmetries by reducing the order of the tensor
and increasing the dimension of the vector space with no loss of information.

]K34 € R3x3x3x3 Scatter K92 c R9%9 (4.32)

Because of the major symmetry, the transformed form of K is symmetric in tensor order
directions. The eigen-decomposition of the transformed form generates therefore 9 linearly
independent eigenvectors.

9
K = 3N (Y @ Ny (4.33)

Referring to the comments done about the coaxiality and stable energy configurations, the
eigenvector with the maximum corresponding eigenvalue can be gathered into a lower order
vector space dimension with higher tensor order. Again this transformation does not cause
any information loss.

Ngl c Rg Gather N32

max max

€ R3x3 (4.34)

The Gathered matrix of eigenvector of scattered Cauchy-Green strain tensor can be further
decomposed into linearly independent eigenvectors.

3
N = 2N (' @n') (435)

0The invariancy is not trivial to prove, to be consistent with the previous definitions of the strain
energy density functions, the term is accepted to be valid
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The Scattered matrix can be in fact further reduced into K6 € R6*6 by imposing the
minor symmetries. By doing so, it becomes evident that the eigenvectors of nonzero
eigenvalues N?l are linearly independent. The eigenvector of the eigenvalue with the
maximum absolute value is chosen to be the reorientation target. It is straightforward to
build a spin-free incremental orthonormal tensor for the evolution towards to the desired
direction. In opposite to the usual (strain driven-only) reorientation manifolds, where only
the eigenvectors with positive eigenvalues are considered, in this case the one with the
absolutely largest eigenvalue is taken to be the ideal orientation of that instant.

To prove the validity of the proposed semi-analytical analogy, the following strain-gradient
contribution is tested;

1.3 02 =28 0.2 1 1.8 -1.6 —-24 05 (4.36)
=1 0.2 09 —-21]®|1 06 27 |®|(-24 09 -145
—-28 =21 13 1.8 2.7 =21 —-05 —-145 23

For the construction of this hyperstrain tensor, no special investigation is performed
concerning the potential of the tensor. There is neither a mapping or deformation gradient,
thus there is no warranty of any property of the potential is provided. But, the minor
symmetry is preserved. In order to show that the verification done above is not a coincidence,

(a) One view of the energy surface (b) Another view of the energy surface

Figure 4.16: Maximizing of equation (4.29) under the action of hypergradient of equation (4.36).
The maximum location is found correctly and marked with a line.

more examples are presented in figures 4.16 and 4.17. The given reorientation postulate
based on a simple material invariant, namely the curvature correspondent of the fourth
invariant of first order kinematics anisotropy, is well established and verified with numerical
examples. In order to investigate the complete effect of bending/stretch relationships, one
additional reorientation manifest will be introduced next.

4.3.3 Reorientation based on the EB Material Model

Since the previous reorientation manifest is accepted to be a practical alternative, and
enables one to allow semi-analytical type of solution methods, a more realistic approach will
be introduced here. The difference is mainly based on the used energy function. Namely, the
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Figure 4.17: Arbitrary surfaces of MK ]\;Ih®2) and the location of reorientation target. The
maximum overlaps with scattered-gathered eigenvector result.

Euler-Bernoulli type of material model, introduced in the chapter of Hyperbalance (Ch.[3]).

_EA

V=

(]m]Q - 1)2 + BIC (4.37)

Any split which divides the terms driven only by strain and only by strain-gradient
effects is not trivial to apply here. This is a consequence of additive nature of the
strain-gradient truncation of the spatial/reference mapping of the second order continuum
locations. Accordingly, this makes it cumbersome to find basic invariants to apply eigenvalue
decomposition methods, prove the stability of the energy function around those directions
and implement numerics for it.

It had been mentioned in the previous sections that the strain energy function and the
reorientation manifests have non-convex nature. By considering that any search candidate
R* in the reference configuration should preserve unit vector property, the problem can
not be considered as a case of unconstrained optimization. Therefore, any solution of
non-convex constrained optimization problem had been considered (relatively) to be not
only non-trivial and also quite excessive for the main intent of this treatise. As a result of
this argumentation, for finding critical locations of the energy function of equation (4.37),
direct numerical methods are applied.

The following mapping, deformation gradient and hyperdeformation gradient components
are used for demonstration;

y=05tX> FyX =tX GyXX=t (4.38)

For this example, the values (ratios) for the area and second moment of inertia are taken
from the example of fractional profiles introduced in the previous chapter of Hyperbalance
equations. The ratio is I/A is accordingly taken to be 12. In equation (4.38), only the
non-zero terms are given.

In the right picture of Figure 4.18 the undefined bending/stretch energy ratio is simply
marked by zero. On the left picture it is quite evident that the trivial direct numeric search
is working well around the given discrete set of rays generated by spherical coordinates. In
the right picture it is quite evident that there is another stable region, where the bending
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(a) Energy topology (b) Bending/Stretch energy ratio

Figure 4.18: Maximizing of equation (4.37) under the action of hypergradient of equation (4.38).
The maximum location is found correctly and marked with a line.

energy dominates the total energy. As a regard of that, for the fiber network it is logical to
consider other benefits, such as permeability and wear resistance, then trying to reach the
ultimate maximum. This is of course only a comment, not an absolute conclusive statement
of this study.

The comparison on a specific model of articular cartilage is let to be a topic of the following
sections, and omitted here.
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5.1 Introduction

Natural element method falls into the category of particle-based methods for solving
PDE’s. Particle based methods are diversified in many significant topics, including
discretization, interpolation, problem type, and solution method. Among many different
examples, meshless finite element method Ref.[>R:ldelsohn 20021 (MFEM), particle finite
element method Ref.[F-Onate 20041 (PFEM), discrete element method Ref.[N-Bicanic 2004]
(DEM), smoothed particle hydrodynamics Ref.[Vlonoghan 19921 (SPH) and natural element
method Ref.[N-Sukumar 1998] (NEM) are widely revisited genuine examples of particle based
methods. !

NEM ,as the method under consideration, requires a dual mesh similar to MFEM and
PFEM. These methods are certainly not free of mesh, but free of any other mesh dependent
definitions, i.e. local coordinates, jacobians or conservative element connectivities. Through
NEM, the continuum neighborhood of a infinite point and the integration of the differentials
are naturally-i.e.geometrically approximated.

As indicated presently, the method includes meshes, which needs to be clarified from
the point of view of the writer of this treatise. In fact, many researchers noticed this,
and introduced deviations from the list of above, namely "truly meshless methods"

(Ref [M Duflot 2002]) “intending to put the emphasis on the occurrence or absence of a mesh.

the citations do not necessarily indicate the first founders of the individual methods, but widely
accepted writers of the topics of interest
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However, the primary difference outlined by means of many meshless methods is sometimes
the line of action through the mesh, especially, in between classical finite element method
and the postulated one. The best practice of the meshless methods focus not only to
the geometry, but also to the action. Meshless methods often used to simulate crack
openings and propagations (Ref.[Y-Chen 2006]) " without requiring a re-meshing procedure.
Or, it was used in quite early times, to simulate Eulerian motion on Lagrangian mesh
(Ref [!-Braun 20061) "\yhere the main advantage is stressed to be; "highly irregular evolving
grids". Applications in statistical physics, for instance to define fluid motion using Voronoi
cells (Ref_[M.Serrano 2005]),
molecular dynamics based particle simulations (

the idea ,that the motivation of meshless methods are rather to simulate complicated
[S.R.Idelshon 2006] and more

or to quantify entropic elasticity of worm-like chains using

Ref [\-J-Buehler 2006])  3re strengthening

actions, then represent a geometry. Further readings such as Ref.
examples on the notion of meshless, can be too excessive for this treatise.

The focus of action as a motivation of using NEM for the thesis is however none of
the layouts pointed? above. The main attempt was to generate a procedure to realize
networks which can be extracted from clinical data (usually a point cloud), and to be able
to consider the strain-gradient effects in three dimensions in an efficient way.

The content of this chapter has three main divisions. The first one (Ch.[5.2]) covers
constraining the Delaunay-Voronoi dual of arbitrary geometries . The constrain is driven
by frequency sampling of alpha-shapes (Ref.[Edelsbrunner 19831)
Delaunay volumes. In the first section, a method for enforcing the Voronoi region to overlap
with the integration domain is presented. This method bases on boundary detection and
sharp featuring of the point cloud. The constrained Delaunay triangulation and sharp
featuring algorithms are going to be shown to accomplish robust results for densely packed,
or homogeneously distributed point clouds.

and eliminating unfeasible

In the second section (Ch.[5.3]), a novel extension to stabilized conforming nodal
integration will be presented. In opposite to the earlier interpolation schemata, which
suggest local- 2" order Voronoi regions around gauss points, the defined method detects
the nodal-quadrature interpolaters non-sequentially. The non-sequential interpolation
schema does not only improves the speed, but also produces denser, and thus smoother
interpolating matrices.

In the third part (Ch.[5.4]), numerical academic tests will be presented. Convergence of
the method by seeking for the fundamental solution of the Laplace’s equation are shown in
this chapter. In adjacent to that, examples of finite deformation and fiber reorientation are
covered too. Especially the last, is considered by the writer of the document an application
of biomechanics. In order to preserve the main objective of the work, relevant examples
are chosen and presented.

Zneither cracks and molecular dynamics, nor Eulerian motions
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5.2 Clustered and Constrained Delaunay-Voronoi Dual

Delaunay triangulation and Voronoi tessellation are in general usage of many weakly
related fields, such as image processing, computational geometry, terrain modeling and
computational mechanics. Depending on the application and corresponding distinctive
geometry in hand, constrained triangulation or tessellation may differ> in meaning. The
constrained meshing is defined here as "the post-elimination of unfeasible discrete domains
from the raw outcome”. By this definition of mesh constraining, betterment of the
bad-conditioned mesh sub-domains is not esteemed to be notable. The quality of mesh,
concerning the convergence characteristics, is left to be an issue of formulation and solution.
The main intent is to uncover non-convex properties of the shapes with domain discretization
and post-clustering.

5.2.1 Clustering the Delaunay Triangulation

It is possible to eliminate undesired triangles or tetrahedrons or disregard from the
integration domain by defining threshold values or feasibility intervals for Delaunay primitives
(alpha-shape method in Ref [Edelsbrunner 1983)] “However, a Delaunay triangle or tetrahedron
owns several size and shape dependent properties, which are adherent on geometry and
number of sites representing this geometry. Thus, alpha-shape thresholds would be as
arbitrary as geometrical variations. Besides, in case an intermediate meshing is necessary
(PFEM-Laplace mesh fluid dynamics), one has to consider that the threshold canon may
alter during the runtime drastically. The iffy selection of proper parameters, as well as their
uncertain intervals (even the parameters are normalized), are according to the writer valid
excuses to seek systematic and pragmatic post-filtering methods.

5.2.1.1 Definition of Clustered Delaunay Triangulation, CDT
Let 'P’ be a finite point set with cardinality 'm’ in 'n’ dimensions.

P = {p1,p2, D3, -, P : Vpi € R"} (5.1)

In 3d, the collection of 4 apart members of P is the union of 4-combinations of
tetrahedrons in P with cardinality of;
n
= 5.2
c <kz> (5.2a)

Ci = {pi1, pi2, Piz, pia = (Vpij EP) A (pij = pix <= Jj=Fk)} (5.2b)
U C; = {{p11,p12, P13, P14}, {P21, P22, P23, D24}, ... 2 Vpij € P} (5.2¢)
i=1

A primitive 'C " in the union(5.2b) is say, Delaunay feasible and thus a Delaunay simplex,
if there is an equidistant point "o’ to the vertices of the primitive (5.2¢), if no points in

3therefore, any citation of the initial statement is purposely avoided, not to cause any confusion of
the definitions. Here, the application is obviously continuum mechanics.
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the relative complement set of 'C’ in P’ occur in the hemisphere around "o’ (5.3d), and if
the point set of the primitive combination is not coplanar (5.3d). The union of simplices
following these clauses is called here the Delaunay triangulation ‘DT’ (5.3a).

DT = d(j C; (5.3a)
i1
C; =DT; < JloeR3: (5.3b)
(r = d(o,pin) = d(0,pi2) = d(0,pis) = d(0,pia) A (5.30)
Vp. € (P\C;) r<d(o,p.) A (5.3d)
((Pir — pi2) X (pin — pi3)) - (pin — pia) # 0) (5.3¢)

A simplex might be Delaunay, but any other point in that simplex may not be desired in
the domain representation. Increasing the number of points for the domain representation
does not assist in to lay off simplices, which are filling semi or exact exclusions.

\\‘.
\\\ . '.'://
\
\ /'/
(a) Domain €, (b) Boundary of Delaunay (¢) The most congested
simplices union 'DT’ and point Delaunay circum-cluster ‘CDT’
set 'P’ of

Figure 5.1: An example where ‘DT’ condition set does not represent challenging geometries

Therefore, a further partitioning term through k-means clustering is suggested. The
final reduced form of the Delaunay triangulation through clustering is designated as
Clustered Delaunay Triangulation 'CDT'. For initiation, a property representation for
each 'DT;’ is founded. Any common property of the primitives which can lead a certain
discrepancy between desired cluster and undesired cluster(s) should enter this list. In brief,
volume, smallest face angle, distance between Delaunay hemisphere center and Delaunay
geometric-center, summation of longest two edges, can be candidates for the attribute list.
The attribute list parametric representation is not a unique representation of the primitive
itself. With respect to the attribute coordinates, two or more primitives might appear to
be same.
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DT; = {attil, attio, attys, - ,att; : (Vattij € R)} (54)

It is assumed that the set of Delaunay simplices of a non-convex geometry can be clustered
into finite number of 'K’ disjoint subsets-(5.5a).

K #Cl¢o

DT = U DT = | ) |J prfte (5.5a)
C=0 =0

DT (DTN = <= M #N (5.5b)

A Cluster union is defined as the collection of Delaunay primitives with a mean attribute
value-(5.6a), where the distance of the each member attributes to the mean attribute is
smaller then to any other cluster mean attribute (5.6b).

#Clym
=mClm Z DT;
DT = 5.6
#czM (5.6a)

DT ™| < |DT; — DT

DTS = {DT; : |DT; — DT DT ™|

YN # M} (5.6b)
This partition is not a violation of the conservation of simplex cardinality-(5.7a), because the
subsets do not have intersections. In other words, there is no gain or loss of tetrahedrons.
Additionally, for arbitrary point distributions representing non-convex geometries, the
number of clusters can be at least 2, at most 'm’ in (5.7b) , i.e. the cardinality of initial
point set P in equation-(5.1).

K
iq =Y _ #Clo (5.7a)
C=

2<K<m (5.7b)

The cluster with the largest cardinality, i.e. with the largest Delaunay primitive population
is called clustered Delaunay triangulation, 'CDT".

DT = CDT <= #Cly > #Cly : VN € (DT\DTCW) (5.8)

5.2.1.2 K-means Property Clustering for Delauanay Simplices

In k-means clustering breaks apart 'k’ numbers of observations from a single global dataset.
The hierarchical structure between the individual subsets is not of interest. The main
concern is the clean-cut division of the global. Therefore, it is considered as a partitioned
type clustering. In this frame, a division for a single feasible set (CDT) and a union of
unfeasible subsets (DT \ CDT) are searched. The details of the algorithm can be found
elsewhere (Ref.[¢-Bradski 2008]) "however the individual steps will be repeated here for fluent
reading.
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State precisely an attribute list for each Delaunay primitive. Normalize each attribute
according to the global maximum and minimum values of DT and orient/reverse them
towards to the feasible or ill-conditioned direction. Define norms for cluster build.

Designate a k> 2. Make an shrewd estimation in the feasible direction for the initial feasible
cluster origin, and predict remaining (k-1) origins randomly in the unfeasible directions.

Construct clusters according to the norms defined.
Compute new cluster centers by a mean norm.

Repeat steps (3) and (4) until convergence is satisfied, e.g. via the change of cluster centers,
or via the change of set element list, or their cardinality.

(c¢) Conflicting attribute list

Figure 5.2: Plausible cases of erroneous CDT
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(c) CDT representation

Figure 5.3: 3-means clustering of an object

5.2.2 Constrained Voronoi Tesselation

The integration schema of a bunch of particle based methods is based on Voronoi tesselation
motivated interpolation methods. It is of fundamental importance to fulfill the interpolation
requirements. The primary enlisted demand is the correct representation of the discrete
domain which determines the interpolators.

In fact, the clustering was an initial attempt of fulfilling this requirement. The persecuting
process can be defined as constraining Voronoi tesselation according to the clustered
Delaunay triangulation, CDT. This procedure has been proven to be able to deal with
complicated geometries as given in Figure 5.4 *.

At this stage,first some dissonant characteristics of Voronoi diagram will be delineated,
which appear to be trivial to deal with, and probably therefore, rarely mentioned in the texts.
Immediately after, the way of dealing with this problem will be proposed, and exemplified.

*The modeldata was downloaded from the project ATM Shape-Visonair Ref.["-*"""®* 2°06] "the point
cloud only is used for the demonstration of clustering
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The Voronoi diagram of a number of points representing a domain (and domain boundaries)
in a point-wise discrete manner, is a perfect candidate for focusing field parameters at an
infinite locus, and meanwhile define gradients and fluxes around this locus. Voronoi Diagram
is the union of disjoint locations, each of is them defined as given as in equation-(5.9a).

(a) Skull P (b) Skull dt

(c) Skull cdt

Figure 5.4: Clustering of complicated Skull geometry - Node Set is taken from AIM Shape-Visonair
Ref,[P-Alliez 2006]

A\ ={r:flz—pil <||xz—pjl| Vi#j AxeRAp;,p; P} (5.9a)
v=Jv~ (5.9hb)
p=1

One of the artifacts of Voronoi tesselation regarding to the interpolation schema is
the existence of semi-infinite Lebesgue measures of the cells. Irrespective of the type of
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geometry, there might be vertices present at infinity or far regions. Similarly, Voronoi
cells with over or underestimated Lebesgue measures may be present, and thus shall be
considered as artifacts disrupting the integration method.

(a) 2d object with unbounded (b)  Unconstrained  Voronoi
ridges Tesselation of a Sphere with
over and underestimated

voronoi cell volumes

(¢) Unconstrained Voronoi Tesselation
of a nonconvex geometry with some
semi-infinite voronoi regions

Figure 5.5: Unconstrained Voronoi Tesselations

Method of eliminating such artifacts is based on initially determining the boundary
properties of the geometry, and then grading these properties quantitatively. Boundary
detection for strictly concave geometries is trivial and intrinsically given by the unconstrained
Voronoi tesselation. For instance, each boundary node -which is to be determined- in
figures 5.5 have an infinite Voronoi Lebesgue measure, whereby, bulk nodes have finite
volumes or areas. Therefore, those ones can be stated to be boundary nodes immediately
after unconstrained Voronoi tesselation. On the other hand, Voronoi tesselation -stand
alone-, would not be enough to determine each and very boundary nodes for a non-convex
geometry, as for example in Figure 5.5. In such a case, the connectivity nodes of the
complement 'DT \ CDT" completes the missing list of boundary nodes.

In the scope of this thesis, for further grading of the boundary properties is necessary.
To do it so, the surface nodes into its gradual details for a more stable Voronoi diagram
constraining, are highlighted. A subdivision of the depiction of a boundary into a group of
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surfaces, edges, and corners is suggested. This split is performed by the usual calculation
and assembly of boundary normals, which is trivial if one has the boundary nodes in hand.
Assembling of normals refers to grouping node normals gained from different primitives
together.

‘\‘.\L

SEED

;
!

Comer/Edge/Surface/Bulk Y

Figure 5.6: Bulk, Surface, Edge and Corner detection

As a result of assembling, bulk, surface, edge and corner nodes regain node normal sets
with the cardinalities, 0,1,2 and 3 respectively, see Figure 5.6. This generalization would be
violated in the absence of conforming delaunay triangulation is present, which is the case
even for the latest and fastest convex hull algorithms such as ghull (Ref.[B-Barber 1996]),
The conforming discretization is a necessity for Delaunay based interpolation methods.
Since NEM interpolation and thereupon concluded integration outline is driven by Voronoi
polyhedras, non-conforming Delaunay triangulation is a very passable problem for this
content.

A certain Lebesgue measure consistency in between Delaunay tetrahedralization and
Voronoi polyhedralization of a specific domain is inquired. To clarify, the discretization
Lebesgue measure should close with increasing number of data points asymptotically
towards to the desired Lebesgue measure of the original, i.e. of the domain. The Voronoi
tesselation fulfilling this argument is called as constrained Voronoi tesselation, CV.

lim vol (CDT) = lim wvol (CV) (5.10)

m—r 00 m—r 00

Following this fundamental property of the constrained Voronoi tesselation, the featured
frontier (featured boundary) set of the domain is defined. It is the intersection of domain
set with the absolute complement set, and can be obtained by the extension of the
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boundary set towards their normal direction. The boundary can be defined as,

OP =P\ P° (5.11)

Whereby the featured frontier has the following properties;

F(P)UP =P (5.12a)
F(P)NOP =0 (5.12b)

Accordingly, the featured frontier can be defined as a sequence as follows,

FP)={pi+eni} AN(pi cP)N(0<e< 1) (5.13)

Where, n; is denoting the normal vector at boundary point p;. Epsilon (¢) is a prescribed
finite scale of the normal, which should be determined according to the size of the geometry,
and the precision limits of the Voronoi constructor. According to the definitions above, the

(a) Featuring Directions (b) Featuring Variations

Figure 5.7: Sharp Featuring of the Skull geometry - Node Set is taken from AIM Shape-Visonair
Ref.[P.Alliez 2006]

constrained Voronoi diagram is build on the following union of sets.
P, =P°UOPUF (P)=PUF (P) (5.14)

The Voronoi cell definition is done by means of the following membership restrictions.
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CVP ={r:|z—pll <|z—pjll (Vi£j)A(xeR)A (0 €P)A (p; €P,)}
(5.15a)

cv=Jcv” (5.15b)
p=1

The constrains of Voronoi diagram are supplied in equation-(5.15a) based on the split given
in eq(14). Similar to the raw Voronoi definition given in equation-(5.14), only the Voronoi
regions of point set IP are of interest. The significant change is the allowed and forbidden
neighboring regions. The hyperplanes which divide two featuring frontier sequence points
are strictly forbidden. The hyperplanes lying in between a boundary point (p; € OP)
and a featured frontier point (p; € F (P)) is allowed and define the boundary facets
(ridges in 2d). The union of Voronoi polyhedras conforming these conditions is called here
constrained voronoi tesselation, CV. The success of the suggested methodology can be

(a) Constrained 2d tesselation (b) Constrained Voronoi Tesselation of(c) Constrained Voronoi
a sphere Tesselation of a mnonconvex
geometry

Figure 5.8: Constrained Voronoi Tesselations

well observed for shape featuring in Figure 5.7 and for constrained Voronoi tesselation in
Figure 5.8.

As stated before, the problems which are faced with, related to the dual construction,
are considered to be general and fundamental, and exist in many in-use algorithms in
public and commercial softwares. However, any solution suggestion for the corresponding
problem of interest is unfortunately not spotted during the literature survey. In this stage,
the issues concerning meshing are finalized, and into next step of natural element method
can be entered.



5.3. Non-sequential Nodal Integration 135

5.3 Non-sequential Nodal Integration

Interpolators are mandatory for numerical techniques of solving PDE'’s. In general, algebraic
functions which fulfill certain conditions are of fundamental importance for traditional
FEM. Specifically, coefficients which are used to approximate field values at a certain
location do not exist in NEM in means of algebraic functions with constant coefficients,
i.e. polynomials. The interpolators of a locations are values, which depend subjectively on
the distribution topology of the point set around this location. Additionally, Zienkiewicz
Ref.[O-C Zienkiewicz 2000a] states the general convergence criteria for shape functions used in
Finite Element method as follows,

1. "The continuity of the unknown only had to occur between elements (i.e., slope
continuity is not required), or, in mathematical notation Cy continuity was needed;

2. The function has to allow any arbitrary linear form to be taken so that the constant
strain (constant first derivative) criterian should be observed in each element

For NEM, the correspondent of the element in FEM would be at best the Voronoi cell.
Since a node is representing the center of that Voronoi cell, the ideas listed above for
the convergece criteria are self-verified. In non-Sibsonian interpolation, the values of the
interface of elements are directly evaluated by using the center values of the Voronoi cells,
thus first condition is well satisfied. Since a local Voronoi construction® is necessary for the
verification of second condition, and if done so, since it will be seen that another strain
value be evaluated in the new location, the minimum requirement of point two is satisfied
as well. These arguments let the definition of meshless to overlap with the concept of
interpolating element-free (connectivity-free) domains.

For the sake of completeness, the non-Sibsonian (Ref.[’->-Chen 20011) form of the numerical

interpolation summation will be repeated here. Some criteria such as, gradient-free
(strain-free) constant field (rigid body) condition known as partition of unity and self
(linear) reproducibility conditions should be fulfilled. These requirements, in opposite to
the previously listed pre-requests, is of quantitative nature to be satisfied.

To start with, a vector field at a locus & can be approximated in terms of the nodal values

%i.e., inserting another point in the Voronoi cell of interest and investigating the value
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of that vector field as shown next.

F#support
u(e) @) = Y er(@)i (5.16a)
IeN
L Vg T, x
SDI( ) — #( s 1)/” IH (516b)
ZJ LVea,)/lz 2z
F#support
> i) =1 (5.16¢)
IeN
F#support
T = Z or(x)xr (5.16d)
IeN

The support size is given as a priori in terms

of element connectivities for FEM, or bounded

by scaling parameters in meshfree methods

with reproducing kernel particle® and element \
free Galerkin interpolators. For the case of
nodal integration, based on the non-Sibsonian /
interpolation, the size of the support is assumed %/\
to be pre-determined by means of the primary \
Voronoi neighborhood. The underlying manifold \
allows partial inclusion of nearly equidistant points

in the interpolation support of the locus of interest '1gure 5.9: Non-sibsonian interpolation
around a point. The right-most node is

not included in the integration but the
uppermost is.

as can be seen in Figure 5.9.

; ‘e 2006
“for more reading, refer Ref.[¥ e 2000]

The logical conflict clarified above is explored and significantly retrenched by the researchers
of the field. Dolbow and Belytschko (Ref.[Po!Pow 1998]) state that the misalignment of the
spatial coordinates and local supports is the (more) significant source of error in meshfree
methods. Chen et.all. (Ref.[}V:Yo2 2004]) are consent to former developers of the method
and call the result pertinent to the ambiguous determination of support size as spatially
instable and under-integrated. Again Chen et all. (Ref.[’"WV:Yo0 20041) show that a significant
betterment is possible if secondary Voronoi tesselations are done around the Voronoi cell
of the locus of interest. The idea of interpolation summation around a point proposed by
these writers is tangible if one considers it with the divergence of a differential around the
point of interest. In fact, the method is named as stabilized conforming nodal integration,
but not interpolation.

Considering a differential, for instance the gradient of a scalar field around a point =,
without referring to any homogeneous or in-homogeneous relationship. The integration of
the mentioned gradient can be reduced in space by using the Gauss-divergence theorem as
follows:

/QVu(a:)dV:/Fu(;c)ndS (5.17)
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If the aforementioned integration domain is taken to be a Voronoi polyhedra, the counter
surface would consist of the set of polygon facets defining that Voronoi cell. Consequently,
the integration of a gradient (or a differential) requires specific evaluation points on the
counter polygons. The Dirichlet cells around the integration points are called in this thesis
as secondary voronoi cells. The divergenced integral can be approximated on a Voronoi cell
as the following;

# PrimSupp #SecSupp
/ (un)dS ~ / (n)dS= > (E(wa,)n[ > el J> (5.18)
r r T 7

The preceding method is postulated as stabilized conforming nodal integration. The

>
(a) primary Voronoi/Delaunay dual (b) secondary Voronoi regions around
integration points

Figure 5.10: Primary and secondary Voronoi tesselation for the sequential integration of the
differantials

method of integration developed for the current work differs from the former one in terms
of the antagonism of forming and outcome. The previous method is established on a
successive construction of secondary Voronoi cells. The contribution is done on the order
of the tandem, which is ineffectual for the result. The posterior one is therefore renamed as
non-sequential nodal integration, due to the unordered and sudden construction attribution
of individual components of integration.
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5.3.1 Evaluation of Shape Value Matrix

The method is founded on the idea
of meshing nodal point set together

with the evaluation, i.e. integration NI LN IA

point set. The integration points | ]

are priorly known, or alternatively =~ ~

determinant  (perfectly predictable), L] ]

as long as initial constrained Voronoi g %

tesselation is performed. For the [ ] [

Voronoi-based integration methods, it ¥ ~

is difficult or incoherent to argue N %

on the location as well as the = %

number of (necessary or sufficient) 7] (]

integration points, because shape L N

values are not resultants of functions. N |

One difference stated as forming is /] N 00 uo

obvious in comparing Figure 5.10 with = ] {OOO

Figure 5.11. In non-sequential forming, L] % Eooggo

the nodal and gaussian (integrating) /] — ;auono

points are combined into a single ] [ ] %gogogbf

nodal/gaussian Delaunay/Voronoi dual. N N ;oooo@

As a consequence of non-sequential N B }ocgogeg%

forming, an explicit dependence o N ;QnOnona‘é

of an arbitrary integrator point to % ] %ggogoq

another one is present. Whereby in ROACIRCYC
I S iz P YO O

sequential forming, secondary cells are

non-overlapping and thus an explicit Figure 5.11: Left:Nodal Delaunay-Voronoi dual

dependence (almost) of an arbitrary  including only nodes. Right:Nodal /Gaussian
integrator point to only nodal points is Voronoi tesselation. Nodes in red, integrators (gauss
present. points) in blue.

On the basis of the fast convex hull construction algorithms, non-sequential forming is is
observed to be faster® then sequential one. The second difference is the outcome of the
postulated method. For this purpose, the sets of nodal and gaussian point coordinates N
and G are defined, and their union with the disjoint nodal coordinate set NG.

N = {a™ 2™ ™ .. " :ve'i ¢ R3} (5.19a)
G = {x®, 2%, 2% ... xf vz c R3} (5.19b)
NG=NuUG A NNnG=o (5.19¢)

5The P or NP complexity of the problem, as well as any comparison is omitted in this treatise. The
intent is a postulation of an alternative method without refering pragmatic arguments, yet the speed
advantage is still a qualitative objective and advantage which is to be briefly mentioned.
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The condition-(5.16d) written in matrix-vector form defined in the set of nodal coordinates
and set of union of nodalVvgaussian coordinates are;

= oz’ (5.20a)
x = P (5.20b)

Where, ¥ and ¥ are shape value matrices settled on the nodal configuration
Figure 5.11(Left) and nodalVgaussian configuration Figure 5.11( Right) respectively. W€ is
not of interest and therefore not given here.

Some properties of shape value matrices are important to follow on. ¥ (mxm) is
a zero-diagonal square matrix, because self-inclusion is adverse to the definition of the
non-Sibsonian interpolation scheme. W™ is a (k+m)x (k+m) zero-diagonal square matrix
which includes at least 9 times (6 times in 2d) more zero or non-zero entries as ¥ does.
The cardinality of G determines the size of the ¥'® shape value matrix. The simple reason
for this lower limit is that, each Voronoi cell should have support neighbors of 4 (3in 2d)
such that the simplest enclosed primitive could be represented.

1 m m
k= 3 ; #Support; > ; 2 (5.21)

It is not immediately clear that one searches for the shape value matrix which re-produces
gaussian coordinate vector from the nodal coordinate vector.

zf = T" (5.22)

If one extends the size of the vectors to (k+m),

_ — — — —
' = [z, 2",... 2" 0,0,...,0] (5.23a)
m k
_ —_——N— — —
¢ =100,0,...,0,2%, 2 ... x] (5.23b)
m k
2 = [sch,;cNQ, ,mNm,x@I,xEQ, . ,ar:@k] (5.23¢)

mxm mxk mxm mxk
/= /= =~
N N NG NG
gl = Vow Pne Qe — Vow Pne (5.24)
N N NG NG *
t/)sw ,lpse t/)sw wse

kxm kxk kxm kxk

The northeast, southwest and southeast sub-matrices of the nodal shape value matrix are
zero-matrices, whereby the northwest is a zero-diagonal sparse matrix. Precisely, it is a
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hollow row-stochastic matrix.

o --- wgm

= 0 |5 Wne =Y =¥ = (0) (5.25)
N o0
mO0

Similarly, the southeast sub-matrix of nodal/gaussian shape value matrix is also a hollow
row-stochastic matrix. The remaining sub-matrices are sparsely populated. Among them
the northwest sub-matrix is almost zero matrix, because the nodal Voronoi regions are
mostly surrounded by the gaussian regions.

¢W

o (m)(m+k) o - -

e = : 0 : i U = (0); e # (0); by, # (0)
w(erk )(m)

(5.26)

A row stochastic matrix may have eigenvalues with absolute values smaller or equal then
one. The row stochastic matrices of equations (5.25) & (5.26), have at least one eigenvalue
reaching their maximum of unity, which is self evident from self reproducibility conditions of
equations (5.20a) & (5.20b). In any ways of getting the shape vale matrix in equation (5.22)
include infinite powers of these stochastic matrices, which diverge. Therefore, the existence
of explicit inversion operations to reach a form of equation (5.22) should be discussed
carefully. To start with, the gaussian vector can be written using the self reproducibility
conditions of the shape value matrices,

G _ Jp® — M _ N

:\I,mxm \I,N N ‘I,NG NG ‘I,Nxm (5.27)

_ (‘I,m _ WN) £ — <‘I,m _ \I,N) <$N i x@)

Reformulated in matrix-vector form for the sake of clearence,

oo | T O 0_:—_§w0x§+0 ne| | O
0 I.||af T ol|0 0 ¥°||at

r __ -1 _ _
Inw —¢§g - Ew 0 mlfz
=T m] [ e (5.28)

se sSw

&l

_ -1 — _
_ Inw 0 - 0 i(g - ?waﬁ
[0 T.| |0 9T swn

The existence of this form depends on the invertibility of identity minus eastern
nodal/gaussian shape value matrix. In fact, only a local existence of the inverse is necessary.
By considering that gaussian coordinate vector in equation (5.23b) has only southern values
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of interest, we require finite values only in the southern part of the inverse matrix as
subscribed in the inverse term of the equation beneath;

a® = <I - \1157(1‘7)_1 (ij . \I:?U) " (5.292)
= w=[(I- \Iﬂgf)*l]s (ol - wl) (5.29b)

The existence of finite southern part of the inverse given in equation (5.29b) can be
investigated if one writes the infinite Neumann series of the inverse.

{(I—\Iﬂiﬂl} =[], + [(\I}m)}Jr [(qﬂ%ﬂJrJr [<¢N@>l]+
S-S0 )]

Each and every member of this Neumann series, which consist of the powers of eastern part
of the hollow stochastic matrix of nodal/gaussian shape values, have zero western part. As
can be followed from equation (5.30), the zero-convergence of the southeastern powers is
required for the equality of the form of equation (5.29b).

lim. (@Wy =0 = det (I- W) £0 (5.31)
The nodal and gaussian coordinates are not self interpolated. Therefore, the southeastern
matrix of equation (5.31) is also hollow. Regardless of the condition of partition of unity,
the absolute values of each entry of this matrix is strictly smaller then unity. The supremum
norm of the absolute sums of the rows, i.e. infinity norm is also smaller then unity as evident
in block-wise representation of equation (5.31). The latter inequality is a result of the fact
that, nodal/gaussian shape value matrix is row stochastic’ , and each gauss point has at
least one node point as neighbor. Thus, eastern/western split of the southern part of the
nodal/gaussian matrix enforces the infinity norm under interest to be strictly less then unity.

H‘Ilgumax = SUP{‘ ( g)
rc

k
195 oo :sup{z(( )
T c rc

The condition (5.32a) alone is weak for the proof of convergence of geometric series in

} <1 (5.32a)

} <1 (5.32b)

equation (5.30), because the maximum norm is not a sub-multiplicative norm. In order

TAs a result of partition of unity and the arbitrariness of the geometry and system under
consideration
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to strengthen the arguments, first, the maximum norm of the square of the matrix and
sub-multiplicative infinity norm should be compared with each other.

102 e =] [ 3202, ()
<o (5|2, (2), ]
{nwsumm;\( Ef)rl\} o)
2 [0), 19t

= H‘I’NGHmMH‘I’ Hoo

< sup

= sup
-

Accordingly, the upper limit of the third power and any power of the matrix is predictable
in the same way.

—\3 — —\ 2 —\ 2 —
1 (%) e = 195 () lnae < (%) e |2 o
NG NG .34
< L e [ (5.34)

—\n
= () e < 105 e [T < 12TE 1% (5.34b)

Which says that the maximum norm of the powers are always smaller then the same powers
of the infinity norm, for the matrices satisfying the condition set of (5.32a) & (5.32b).
Having this information in hand and using the sub-additivity of norms in definition, one can
argue on the upper border of the matrix to be inverted. The final equation below shows
that the maximum norm of the Neumann series is smaller then the Neumann series of the
infinity norms. Knowing that the infinity norm is finite and strictly smaller then one, it can
be shown that the maximum entry of the inverse is finite, thus a shape value matrix in the
form of (5.29b) does exist for arbitrary configurations.

N\ —1 e —\n > —_\n
(=) e = 1 (255) s < 21 (%) lmaa
n=0

<ZII‘I’NGH" = (1= 1) ™

(5.35)

Finally, it can be concluded that finding a shape value matrix which maps nodal coordinates
to the gaussian ones is achieved by a single explicit inversion and multiplication as below.
Practically, there is no need of evaluation of nodal shape value matrix of (5.20a). However,
nodal CDT&CYV configurations are necessary for the determination of integration locations.

—\ —1 —
v = <Ise - \I’IES> <‘Il§3) (536)
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5.3.2 Nature of Shape Value Matrix

In this section, some important properties of the shape value matrix will be stated. Together
with the equations (5.20a), (5.24) and (5.26) one can conclude that the nodal coordinates
are representable in terms of the gaussian coordinates, by means of the northeastern part
of the nodal/gaussian shape value matrix.

x) = P’ (5.37)

By remembering the inequality (5.21), a comment on the cardinality of the gaussian and
nodal point sets can be done.

k>2m = #G > 24N (5.38)

Depending on the identification of linear mapping direction, the system of equations given
in equation (5.38) can be seen as an underestimated or an overestimated system. By
considering the gaussian coordinates as unknowns -which is plausible considering that the
geometry is defined initially in terms of the nodal coordinates-, the system would have more
unknowns then equations, thus underestimated.

ne
the so-called pseudoinverse ( %)Jr € RF™ which always (V (¢12) € R™**) uniquely

exists. Under the definition of Penrose conditions (Ref.[A'-21>2008]) " the Moore-Penrose
pseudoinverse of a matrix (a row independent matrix) can be evaluated by the following

The matrix ( m) is size of mxk with m<k as stated above. This type of matrix has

equality;

(v = (o) [(o) ()] 5
ne ne ne ne °

Solving the system of equations of (5.38) is equivalent of searching for a gaussian
coordinates vector & which satisfies the equality constraint (5.38). One can further take
on board an inequality condition, which can select one of the solutions among many other
possibilities which do exist according to the underestimated nature of the statement. Linking

the additional inequality as the least half of the Euclidian norm of the possible solution
vector, the problem statement results in terms of an optimization set;

minimize  0.5||z||3 (5.40)

NG N _
Y+, =0

The minimization of the Lagrangian function belove with a proper selection of Lagrangian
multiplier vector A (Ref.[<-U-Bletzinger 20111) is analogous to the problem set above.

minimize L (z,\) = 0.5])z]2 + A (- W + xﬁ) (5.41)

There are two sets of Kuhn-Tucker conditions (Ref.[<U-Bletzinger 20111 of equation (5.42b)
& (5.42c) of the given Lagrangian to be satisfied at the optimum location. Written in the
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indicial notation,

minimize L (xi,A) = 0.5 (2:)" + A <_ < ﬁ)n i + <w§>]> (5.42a)
gai _eE), (%), = x ( ET)J =0 (5.42b)
g—)l‘; i=(%), T < %>]’i <£§)z + (xi)j =0 (5.42c)

( m)T A=t (5.43a)
( W) 7% =2 (5.43b)

Left multiplication of equation (5.43a) with ( m) and substituting into gives,

ne

] G e [N o BT

By back-substituting of the expression (5.44) into equation (5.43a),it is clarified that the
optimization manifold given in (5.40) is satisfied with the Moore-Penrose type pseudo inverse
given by the definition (5.39).

= (o) [(o) ()] =
= ()" =

By the definition, the gauss points do satisfy the equation (5.20b). The northeastern part

of the equation indicates that there are many possible gauss point vectors (by keeping the
number of gauss points constant) which satisfies the condition of (5.20b) and there is no

(5.45)

strong argument that the correct one should have the least Euclidean norm.

It has been suggested to locate the integration points at the coordinates which tender
geometrical symmetry, i.e. Voronoi facet centroids, and centroids of the triangles of Voronoi
facet divisions. Some other set of location which satisfies the minimization problem (5.40)
does not necessarily overlap with the geometrically symmetrical set of location . As a result,
the least square Moore-Penrose inverse conflicts geometrically with the discrete divergence
approximation (5.18), and thus it should stayed perfectly determinate way of evaluation
(5.36).

The difference in between the determinate and Moore-Penrose inversion is observable if
one back-updates the coordinates according to the shape-value matrix found, seen in
Figure 5.12. Therefore, the Moore-Penrose type of inversion in non-sequential stabilized
nodal integration should not be seen as an alternative, however, it should be noted here to
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draw attention about the possible bottlenecks, one can possibly face with.

Differences in support sizes in between the classical FEM shape function interpolation,
NFEM non-Sibsonian sequential interpolation spuoort, and the presented non-sequential
interpolation for NEM can be seen in Figure 5.13. As obvious, the support for the continuum
can be extended to large radius of influence. However, since this may influence the sparsity
of the global matrices, the writer of the treatise suggest to manipulate the density of the
support. This can be achieved by determining threshold values for the minimum shape-value
quantity, and the normalize the sum, so that the condition of partition of unity is satisfied.

(a) Determinate inversion (b) Moore-Penrose Inversion

Figure 5.12: Location of gauss points (in blue) and nodal points (in orange) interpolated with two
different linear mappings

(a) FEM support (b) NEM-SNI support (c) NEM-NNI support

Figure 5.13: Support sizes of a surface node of a plate model
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5.4 Implementation and Examples

In the implementations section, initially a short introduction is done for the application
of Hypercauchy equation. Since this equation is almost the most complicated one, the
other formulations can be extracted from it accordingly. Based on this formulation some
demonstrative examples obtained by the execution of the written code are presented visually
through illustrations.

To begin with, the energy split proposed is repeated here, and natural element shape value
interpolation on the virtual energy integrals is applied. The nonlinear internal virtual energy
divisions become,

6H5Lf_/Q[P:VX6u]de/Q[P-VX (ZNI)] L6adV = fLE - o

QG . 2 ~ r o2 N . sa QG (540
STIC —/Q[Q..Vxéu] de/Q Qv (DoNT)| - saav = 53¢ - oa

Correspondingly, the tangent matrices of the non-mixed residuum internal forces can be
repeated here to be,

KL / vxnt P Ll VxN’|av KL / v®2N”8QT V2N | dv
P(F) = OF QG) — oG X
(5.47)

And the mixed-residuum’s of the internal forces cause the following contributions in the
tangent stiffness matrices,

P
Klg = / [VXNJ 8;2(; V®2NJ] AV KYp = / [V®2NI lang v NJ] v
(5.48)

The assumed strain displacement, and assumed hyperstrain displacement matrices are,

5 _ 1 Nav = £ [ N7

B_V/Q[VXN]dV_V/SNndA

vazl/ (V2N dvzl/ [n® VxN']dA
vV Ja Vs

(5.49)

The second term is an extension of stabilized conforming nodal integration to the higher
order volume average derivatives of coordinate interpolaters. No analytic functions or
patches for integration is implemented here, in fact, the integration is performed on natural
neighbors of Voronoi polyhedrons, and therefore is truly natural element method.

This schema and simpler version of it can be applied to many differential equations. The
first example chosen is the fundamental solution of the Laplace equation;

Vip=6(x — x,) (5.50)

Since the solution if fundamental, as indicated a Dirac delta type excitation is used.
The phenomenological analogue of Laplace equation is the steady state heat conduction
equation. The formulation is investigated on a quarter of 3D Mobius strip with rectangular
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cross section and elliptical path way geometry, and a point source of heat flux in the origin
of the ellipse. The result is satisfying and well overlapping with the analytical solution,
which is omitted here.

(a) Nodal/Gaussian distribution of mobius strip (b) Counterfill of source
located at the origin-solved

Figure 5.14: A piece from an infinitely large imaginary volume with a heat source located at the
origin of the elliptical split pathway

This example represents also a cross-check of all the previous steps, namely the clustered
triangulation, constrained Voronoi construction and non-sequential integration. As next
example, one can move into solution of the linear momentum equation with first-order
finite kinematics.

divie)+ f=0 (5.51)

Any other validation more then checking the visual smoothness and convergence

(a) Beam with a cylindrical cross section (b) An abstract bone-cartilage Femur interface
under large rotations under compression

Figure 5.15: Two solutions of linear momentum equation for large deformations, considering
geometrical nonlinear effects only

characteristics of examples similar to Figure 5.15 are not performed for this treatise. To
approach the final destination, an additional check for the correct evaluation of the curvature
vector can be performed as well. For this purpose, a beam structure clamped on both sides
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Figure 5.16: Bending directions as curvature vortexes of a beam.

loaded in the middle is taken as a candidate. The vector plot of Figure 5.16 is quite satisfying
and consistent with the anticipation. After getting all the necessary kinematic quantities
ready, a more realistic example can be taken for comparison of different reorientation
manifests. For the geometry a cartilage-alike geometry in Figure 5.17, suffusing a spherical
rigid grounding which represents the bone-cartilage interface, is constructed. For imposing
the essential boundary conditions, an analytic-plate against cartilage model is taken for the
contact implementation. As stated previously, particle based methods -NEM being one of

Figure 5.17: Constrained 3d Voronoi diagramm of the described cartilage-like geometry

them- can be alternatively quite attractive if it comes to the point of simulating challenging
actions, contact being one of them. In the case of NEM, the evaluation of the contact
search algorithms is significantly easier then FEM, as done in the first chapter of modeling
AC as biphasic media. The nodal normals can be very uniquely and easily determined by
summing up the polyhedral surface normals and inverting it. Accordingly, the current normal
of the node can be very efficiently determined by applying Piola transformation or Nanson's
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formula at ® that location of interest. Accordingly, any complex contact formulation of
penalty methods or Lagrangian multiplier methods can be applied for constraining the
penetration of the surfaces. As can be seen from the Figure 5.18, the contact search in
between an analytical surface and the cartilage-alike plane strain system performs notedly
well. From the bottom picture of the Figure 5.18 it can be concluded that the isotropic

Figure 5.18: Top: Displacement result of plate cartilage contact. Bottom: Distribution of Isotropic
strain gradient energy G .. G.

strain energy is dominated under the loading surface, and propagating from middle to
contact free zones. This monolithic increase can be observed by giving a look to the
vortex development (Figure 5.19) through the history of the deformation. Based on this

Figure 5.19: Development of G: E1®? from the beginning, intermediate to the final stage of the
imposed boundary condition.

8For natural element methods, remember that the nodes and evaluation points are overlapping
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investigations and comments in hand, one can move into comparing the different types of
reorientation manifests introduced in the previous chapter.

5.5 Comparison of Different Reorientation Manifests

In this final section a rough comparison in between the proposed reorientation manifests are
compared on cartilage-alike plane strain scenario. The compared reorientation manifests are
namely, the strain driven, curvature driven and the one which maximizes the Euler-Bernoulli
type of material model, which is introduced in the chapter of Hyperbalance equations. The
details about the manifests and their consistency can be checked by giving a look to the
chapter of reorientation with strain and gradient effects.

The final results are presented in Figure 5.20. The first one is the result of reorientation
with pure strain effects, second one as the maximization of simple curvature, and the third
one as being maximizing combined stretch-bending effects.

The first result differs significantly from the one presented in the chapter of reorientation,
even though the manifest is kept to be same. The reason beyond is obviously the given
boundary conditions, in the previous one plane stress type of assumption is made, in the
latter one plane strain assumption is used. The previous one giving accordingly tangential
reorientations under the loading path through the depth, and perpendicular in the depth
zone and parallel to the superficial zone away from the application of load. The current
one which is presented here in the first Figure of 5.20 however, gives almost perpendicular
type of fibers in the overall structure, which is certainly not representing the reality.

The second manifest with maximizing the curvature on the other side, suggests partially
tangential fiber orientations on the surface, especially at the locations of contact release,
as commented previously on Figure 5.19. This manifest was however suggested to be a
work-around, but served practical advantages, like semi-analytical reorientation , developed
analogous to the strain driven reorientation.

The third one represents the fiber orientation at the depth zone of the contact region nicely.
The superficial zone and the depth zone far away the loading are captured the reality as
well, as being tangential on the surface and perpendicular towards to the bone interface.
The superficial zone beneath the contact interface however leads perpendicular fiber to the
surface, which is the only drawback of the bending and stretch type combined reorientation
manifest.

Based on these objective interpretations, several comments can be done. First the modeling
artifacts should be taken under consideration. The flat punching or pressing the surface
follows the assumption of that the master and slave bodies have almost comparable stiffness
values. The other approach applied for the case of plane stress in the chapter of reorientation
with strain and strain gradient effects, did not follow this assumption, thus only consistent
nodal type of forces are applied. On the other side, the contact formulation presented in the
first chapter of cartilage as biphasic media, took the geometry of the master surface into
account, but not the stiffness. The modeling artifacts, and variations around those artifacts
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are a common problem in nonlinear mechanics, and leads in the absence of experimental
evidence mostly to speculations.

A final and quite crucial comment can be done around the fundamental philosophy of the
reorientation in this context. One can never assure that the tissue in the microlevel tries hard
to improve the macroscopic mechanical properties. Besides, those macroscopic properties
can not be always reduced to stiffness, or compliance. As experimentally evident, articular
cartilage has the principle functionality of minimizing the tangential surface resistance in
between two load carriers. This might be achieved by swelling, but in which rate and under
which circumstances is still an unknown parameter. In short, the biological structure is
extremely complicated, and one can only accumulate information segmentally, as tried to
be done in this treatise. By learning this, the writer of the thesis has consciously avoided
to reach solid statements, which can lead the reader under doubt, discourage or conduct
generally wrong, specifically correct informations.

One clear statement is, that any improvement, novel formulation presented in this section
had been shown to impact on the material properties and the remodeling manifests. Without
specifically claiming one is better then the other one, it is but clear that, strain gradient
effects do have an effect on reorientation.
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(a) Strain based reorientation

(b) Curvature based reorientation

(c) Strain and strain gradient based reorientation

Figure 5.20: Comparisons of different reorientation manifests
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6.1 Introduction

This conclusion refers to the German word to Zusammenfassung, rather then Fazit, where
the previous one represents a kind of summary, and the latter one refers to a solid upshot.
Since the field of Biomechanics as a branch of continuum mechanics is actively developed,
any concrete statement is avoided on purpose. In the ongoing subsections of this conclusion,
the outcomes of the individual chapters of this work will be linked to each other, and some
necessary brief interpretations will be summarized.

6.2 Least Requirements

One may find many recent PhD publications, where a long repetition of the generically
accepted theory of continuum mechanics are presented as fundamental or as introduction.
As in many others, this work takes advantage of the tradition, however in a one-step-front
philosophy is still reconsidered.

The first chapter deals with the most simple formulation of bi-phasic media, presented by
means of cited publications in the corresponding places of the chapter. According to the
results given, namely the representative scenario of the tumor growth and the vertically
loaded Articular cartilage do demonstrate the power and difference of using multiphase
approach against the single-solid phase approach. To list it, the advantages may be listed
as follows.

e Mixed field approach gives the opportunity to determine the manifests for solid and
fluid phases of material, irrespective and independent of each other.

e Mixed field approach gives the opportunity to determine the respective effects of
individual components, such as permeability
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e The numerical effort for both programming and computing are comparable with
one-phase approach

e Most of the Biological components are of multi-phase composites, thus the approach
is realistic per definition, and more rational then emprical models based on
viscoelasticity.

There are many ways of fulfilling this least requirements, in this work the re-introduction
of bi-phase material formulation and numerics considered and shown to be sufficient.

6.3 Hyperelasticity

As stated above, the least requirement is considered to be necessary, however not sufficient
for improvement. In this concern, in between the fundamental necessity and the superior
limit, there are enough topics which worth to investigate. Hyperelasticity is considered to
be one of them. As stated in the corresponding chapter, the Hyperelasticity should follow
a fully developed motion of the Mechanic, namely Hyperkinematics. Accordingly, the work
about Hyperkinematics can lead into these conclusions;

e Higher order terms in Kinematic motion do present, or existentially as natural as lower
order terms (This is a biconditional statement)

e Higher order terms in Kinematic is taken into account in relatively older theories (Shell

theory: Curvature dependent Energy terms Ref. [Bischoff 2004)]

e Any objective function of the natural minimization processes may be triggered by
higher order effects

The last claim is hard to prove, and equally hard to disprove. For comprehensive discussion of
this argument, please visit the previous conclusion on this topic, namely Ch.[5.5]. However
the difference in the presence and the absence of these higher order kinematic and thus
elastic effects can be demonstrated. But first, a mathematically consistent framework for
the theory is to be developed. This is partially done during the preparation of this work.
The chapters Ch.[2] and Ch.[3] deal only with the specific topics concerning the higher
order effects, and try to clarify the arising questions in a novel way.

6.4 Functional Adaptation, Abnormal Cell Growth

It is of crucial interest to understand the intermediate objective function beyond functional
adaptation and abnormal cell growth. The better understanding brings one to the next
practical step, estimating the time, the volume and the ongoing consequences. For this
purpose, theoretically consistent growth models are postulated, which can be related to
empirical observations of phenomena. As usual in the phenomenological theory, not enough
attention might be paid into the fundamental significance Ref.[T"e"!is 19731 For practical
purposes again, the intermediate significance might be of the main purpose. Any design of
experiment can be performed to feed new parameters to broaden and deepen the number
of significant figures into the list of parameters.
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In this work, it has been shown that,

e For the generated geometry and boundary conditions, the existing remodeling
algorithms do not always reveal the expected final form of evolution (thus of functional
adaptation)

e For the generated geometry and boundary conditions, functional adaptation with
higher order Kinematics does an effect on the solution, thus may play a role in
metamorphosis

Which may mean that the generated geometry and boundary conditions do not represent
the reality, or represent the main trigger of evolution. However, as method of design of
experiments states, locking this discussion (geometry & BC) as unchanged, the effects
caused by the higher order kinematics are still undeniable.

Apart from this short conclusion, an emphasis has been made on the importance of providing
the abstract system with clear boundary conditions. Therefore, there is the attempt of
deterministic way of growth is presented in the theory of porous media section. In this model,
the hot points were predetermined (which can be provided by means of experimentation),
and the empirical model and its consistency with the reality can be verified from this
approach. This verification is not covered in this work.

6.5 Methodical Development

The methodical developments are generally done,in order to generally improve computation
power in saving physical space and gaining speed. In the field of Biomechanics, if the
developed method is generally accepted to be revealing pragmatic results, especially for
patient specific applications, these types of developments are expected to be done. In this
branch, one can give numerous works as examples.

Even though Finite Element Method has been the most widely used method of solving
partial differential equations, there are countably many methods are still finding their fields
of application. The obvious reason beyond this is the fact that, each individual method
has its own core area, where no other can be as fast or as reliable. Among them, Natural
Element Method has the advantage of solving a domain of a problem, which defined as a
point cloud. This possibility enables one to omit the generation of the geometry, thus any
raw data can be prepared directly ready for computation. The primary reason of developing
Natural Element Solver is to serve this purpose. The indirect aim is to feedback to the field
of computational mechanics. This is also done in this thesis, for instance by developing
the non-sequential nodal integration technique, which is not of primary importance for
Biomechanical applications. Those kind of side-outcomes shows a new perspective for the
field of computational mechanics.
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A.1 The derivatives of the spiral beam

Starting from this point, the derivatives for the spiral example will be given here in detail.
The spiral beam has mainly two parts, namely mid surface and the thickness contribution,

2 = {2—0‘ cos ((1-x1) g) + <1 - 2%) Xl} cos (a + aX))

s

(A1)

2 2
xy = [_oz Cos ((1 - X1) E) + <1 - _a) Xl} sin (o + aX7)
T 2 T

For the thickness contribution, the Piola transformation of the derivatives of the mid curve
is taken into account. These mid-curve-off contributions are called to be deviatoric, and

depending on the derivatives of the mid-curve.
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These contributions will cause nonlinear Bernoulli kinematics, since the curvature through
the thickness is punished by the constant coefficient of X5. Additionally the strain gradient
effects through the thickness are neglected. The total mapping is then,

z; =2 + 24

(A.3)
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The following derivatives are required,
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First the first four set of derivatives will be given,
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—-1/2
X 8561 2 4 63:2 2 /
)2 \\ex|,, aX1 |,
2 2\ —3/2
X2 8.%'1 + (31‘2 8.%'1 0 8.%'1 (A?)
m 0X11,, 0X1|,, 0X1/|,, 0X1 \ 0X1|,,

X % n 0x9 O0x9 0 O0x9
2\ \oxy | X1 |, X, | 0x, \ox,|

oz 0 O0xa
0X, 0X; \ 90X,

_ (31‘2
0X




A.1. The derivatives of the spiral beam 159

~1/2
0rf 0 (Om| )y [(0m 2+ des | \2\
X, ox; \oxi|,,) *\\axi|,, 89X,
oz 01| \2 (0| \2\ P 0m| 0 [ox
g ool ((Qma] )y (D2 1 L) )
0X1|,, 0X1|,, X1, 0X1|,, 0X1 \ 0X1|,,
—3/2
O ((Bm | \F L (Bma |\ " om0 (0w
x| 2\ \axy| X1 | X, | 0x, \ax,|
From time being the following replacement holds,
8.%'1 2 8.%'2 2
2 = A.
<3X1 m> " <5X1 m> ' (A9)
The derivatives of this replacement are,
or 0x1 0 0x1 0x9 0 0x9
=2 2 Al
aX; 9Xi|, Xy <aX1 m) x|, 9x, <aX1 m) (A.102)
v =2 (am (55],)) 2%, o (a5,
(0X1)?  T\0X1 \ 0Xy|, X1 |, (0X1)? \ 0X1],,
, (A.10b)
0 0xo 0x9 0? O0xa
21 — | — 2
+ <6X1 <6X1 m)) + 0X, m (8X1)2 <6X1 m>
with this replacement the first derivatives of the second set become,
ox 0 0o 1 1 Oxa _3/9 OF
_ Xop— 12 2 2220 x .-3/2 20 A1l
X, 09X, <6X1 m> 2 2 0x.| 2 ax (A.la)
X, 0x (axl m) X T g x| K ok, (A.11b)
ax? an _1/2
—_— = — A1l
Xy 0X1|,, (A-1c)
axg 8.%'1 _1/2




160 Appendix A. Appendix A

The second derivatives are,
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The mid-curve correlation and the first derivative of the mid-curve was in fact given

before,
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The first derivatives of this correlation are
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And finally the second derivatives of this expression is,
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B.1 Bending Strain and Strain Gradient energy density
Function

The bending energy formulation according to the bernoulli beam beam theory, requires the
estimation of the radius of curvature as the other theories, The radius of curvature is taken
to be common in sharp and flat length changes,

i b
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In order to take both effects into account, the following estimation can be done,
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The cosine of the rotation can be computed by,
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The minus sign indicates that the sharp tangent to be rotated. The members which are

used to compute the invariants then,
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Together with the definitions above and the introduced invariants, the following invariant

formulation can be achieved,
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The necessary three tangent terms are then,
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The necessary derivations should be introduced one by one,
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The derivatives in terms of the other values then,
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Accordingly the derivatives of the directly invariant dependent quantities should be evaluated

either
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The individual derivatives in terms of the invariant derivatives become,
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The derivatives then,
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The second derivatives of the sharp fiber length change is then,
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However, the sharp length change contributes new invariants,

i L ®2 1 ®2 12
|lm| = F-M—|—§G:M . F-M—|—§G:M

r 1 1 1/2
+ (—F-M+ 5(;: M®2> . (—F-M+§G: M®2>]

= _(FT-F):M®2+%(FT-(G-M)):M®2

(B.22)

1 1/2
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Eventough the found invariants are stretch related, and already defined, they are going to
be called as bending invariants to preserve consistency,

If = (FT.F) : M®? = FyF,, M, M,,
I; = (FT-(G-M)) : M = ((G-M)"-F) : M®? = Fy (G - M), MiMyy, (B.23)

I = ((G M) (G- M)>  M®2 = (G- M),, (G- M), M;M,,

The second and third contractions are identical since the contracted tensors are transpose
of each other,

F7 . (G-M) = ((G -M)T- F)T (B.24)

The full length in the current curved coordinates is the sum of sharp and flat lengths, in
terms of the invariants introduced above,

| = (mﬁ‘ n ‘mb( = U + I3+ 0.2515) + /(15 — I§ +0.25IF) (B.25)

The derivatives of the last three bending invariants are with respect to the deformation
gradient are,

OIEI
5;4. = Ok;01 Florn MMy, + Fi0kiOmj My My, = Fiy MM + Fy MM (B.26a)
1
or¥!
ap = 0ki0j (G- M)y, MMy = (G - M), MMy, (B.26b)
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The derivatives of the last three bending invariants are with respect to the deformation
hypergradient are,

oIf!
S S B.27
2(G-M),, (B.27a)
oOIF!
—— 5 — F0kiOmi MM, = Fy M;M; B.27b
B(G-M)ij klOkiOmyj M| 1M VL5 ( )

oIt
— :5]“‘51]‘ (G . M)km MM, + (G . M)kl 6ki5ij1Mm
0(G - M)y (B.27¢)

= (G -M),,, MMy, + (G - M), M, M;

The second derivatives of the last three bending invariants are with respect to the
deformation gradient are,

oIy 1
OFu0F;; — 0Fy

(Fion M My, + Fpy My M) = 26330, M; My, = 26, M; M, (B.28a)
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The mixed second derivatives of the last three bending invariants with respect to the
hypergradients lastly ,

e (B.29a)
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The second derivatives of the last three bending invariants with respect to the deformation
hypergradient are,
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B.2 Stretching Strain and Strain Gradient energy density
Function

The stretching behavior can be represented as, The strain energy density function reads:

EA 9 2
The first Piola Kirchoff Stress,
_ oY o 2 d|m|
The Piola Hyperstress is then,
. oY o 2 d|m|
Q_aG_¢_EA(|m| ~1)m G (B.33)
The material tangent tensors
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C.1 Simo-Type geometrically exact anisotropy in
hyperelastic form

Next, we are going to postulate a nonlinear material model consistent with the kinematics
given in the first section. The model is motivated principally by the geometrically exact
beam formulations covered by the work of Simo, Antman, Reissner and Kirchhoff&Love.
We will consider the approach of Simo, and partially adapt the formulation thought to
model 3D beams into our material model formulation.

Before starting with the assumptions, we initially define moving and convected
coordinates of a currently curved, and initially straight fiber. The coordinates of the
reference moving frame according to the reverse mapping are functions of the current
coordinates.

X (x) = My (x) M + My (x) M1 + Ms (z) M4
(C.1)
— (XT-M>M+(I—M®J\7I) X

The kinematically significant vector component of the moving frame can be defined as a
family of level planes. Since inverse mapping is function of current coordinates, the level
surface set is in current system and has a cofactor type steepest ascent orthonormal to the
level plane, apparent from the gradient of it. Tangent median of the level plane is certainly
defined by the deformation gradient along the reference fiber.

S]CVI:{:B\XT-M:C}

(C.2)
-T v c v c
FT.ML1S, F M|S

The same analogy can be extended to the cofactor of hypergradient as the steepest ascent
of level heypersurfaces of deformation gradient. This relevant but contently not necessary
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extension is let to be out of the scope. The principle moving and convecting current
coordinates around a natural cross section at the flat domain of the fiber,

Sy L (P NP = (Fr G 8r) A= (FEocoNi)
(C.3)
S% | <Fb-]\7[l’) — (F”+G-M") NI = (—F”+G-Mh) . NI

Similarly, the principle moving and convecting current coordinates around a natural cross
section at the sharp domain of the fiber,

8%, L (Fﬁ*T-Mﬂ) - <F”+G-M”)_T-Mﬂ - <Fh+G-M”)_T-J\7I”
(C.4)
S?an I <Fn.Mu) _ <Fu+G.Mu) NI — <Fh+G.Mh) B

In this single fiber kinematics, as stated before, we take the natural and sharp directions

vt
. : cof (F:> - M*
(F*+a 'nvlh)*'l' M:.'.. '.. - /
A i (F“+G»dM”)»M:_f .'..
A . '_.

Figure C.1: Kinematics of a single fiber with convecting and moving coordinates at the flat, natural
and sharp sections, Change the omega into small one

as identical. We assume an additive orthogonal kinematics for axis apart material points of
the fiber exist. The linear momentum material vector field T" for the flat and sharp sections
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become,
. (~F%+G - N1%) - N1 <_Fh+G.Mu)*T.Mu
- | | <—Fb+G-Mh>-MbH N I (_FH_FG.Mh)iT.MhH
(C5)
(o)
I <_Fu+g.Mu>.MuH M
I <F”+G-Mh).Mh <Fu+G.Mu>*T.Mu
o [ (Fh—i-G-Mh).MbH - I (Fb_G.Mb>7T.MbH
(C.6)

<F”-M”+G:M”®Mh) )
— AT — M
I (Fh+g.Mb> - VY|

The strain energy density function (per unit length) balanced by only linear momentum
effects is the parametric integral result in reference volume,

U =D": (T* @ T")
—E’A ((Mb ® -M”) T (M” ® -M”) -rb> (C.7)

TGP A ((I _ M .Mh) . <I _ MY .Mb> .1“")
Linear momentum equation given in this form has the following material tensor,
D" =FE'A(M®* M%)+ G"A(I — M®?) . (I - M®?) (C.8)

By calling the purpose of the additional orthogonal kinematics, the vector of tensile linear
momentum part is,

-~

(~FF- M1" + G: NI NI L

S R A |(~F G ) |

—ME e (—NE (—FF+G) T (-FI 4 G) M)
= — + NIt
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= —|| = F* " N7 - B NI 4 B
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Together with the flat contribution, the total tensile momentum free energy becomes,
£ = oft + o
— B A (1PN N 2 P N N 1)

+ B A (| N R N 2 P N R N
(C.10)

Which is clearly zero for absolutely no deformation cases.

C.2 Tractions and Hypertractions on gradient Cauchy
tetrahedra

In this section we give an example of fiber anisotropy embedded by a Cauchy tetrahedron.
For this purpose we rewrite the strain energy density function in terms of the Cauchy and
Finger tensors,

EA—FEA [(bb—l; J\Zih@?)*l (C’": Mh®2>71 _9 (bb_li Mh®2>71/2 <C": Mb@)q/z N 1]

A e ) )

(C.11)
Where the inverse finger and the Cauchy strains are defined as;
bt =t ! AR LA 1
(C.12)
ct=rt" . Ft c*=F" . F°

Additional material nonlinearity in reference configuration should be defined for more
rational approach and for the sake of artificial snap through. Since the modulus is
equivalent to slope of incremental load displacement curve, we impose worm-like chain
similar exponential type reversible material hardening for the material type nonlinearities.
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Quite apparently, the first Piola Kirchhoff stress and hyperstress tensors are,

OUEA obtT OB OF*  ouEA bt opt oF!

Ph = : : : + : . :
o>l ov” T OFY OF%  gpt—! obt " OF! OF"
N opEr ac® oF° N OYpEr oCct oF*
oC® “OF® 9F%  9Ct T oFt OF" 13
on _ QUE ov ' ab OF*  ovEA obt! bt OF!
o>l op® T OFY oGE  gptTtT obt T OFt HGH
N opEA oc® oF"  oyEA oct oF®

: : + : :
oC" ~9F* 9G"  9C* T OF*  OGH
Where, the intrinsic dependence of the incremental modulus to the Cauchy deformation
measures are taken to be,

EYA = EyAgexp (Cﬁ: Mb®2> E'A = EyApexp (Cb: Mh®2> (C.14)

As above, among the derivations, no pull back transformation is applied on the area
elements, towards which we implicitly imply that the balance of angular momentum is
quantitatively negligible besides of the linear momentum effects as a consequence of small
enough area assumption. The following parts are to be put into the appendix, but I'll write
down for programming purposes,

EA
‘%b{l ——pA (o
ob

(Cb Mh®2> Mh®2

(C.15)

)
_BA (b"_lz Mh®2) —3/2 ( Mb®2>71/2 Mb®2
)

( h®2> ~ h®2

—pA(pt Mh@)*‘”’/ ? (c*: Mu@)*” 2 Vi

Again for programming purposes, the derivatives of the strain energy density density function
with respect to the sharp and flat Cauchy strain measure,

WEZ ——pa (v i) (w7 i)

EA
gﬁr_l ——paA (o
b

_ “ —-1/2 .
_ma(ch: npe (bb 1:M”®2) 2 pp®?

(C.16)
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Additionally, the inverse derivatives of the finger tensor and the derivatives of the Cauchy

and Finger tensors are given,
ob~! L1, p-1,-1
( b >ijkl T2 (bik b+ bu bkj)

80) ob
- = 0itFlj + OkiEy <—> = 0ik Fj1 + 0, Fi
<8F ijkl ’ ’ OF /i1 ro
OF" 0(-Ff+GH- M), OF®
SFt = 5 (F9) = —0i0j1 5GH = 0i 05 Mp
ijkl kl ijkin

(C.17)

The last two equations is due to the fact that the reference coordinates are fixed and
divergence-free near to the material point.

Figure C.2: From left to right, undeformed straight Cauchy tetrahedron, traction forces on deformed
body hypertraction forces on deformed body.

It does worth to comment further on the quantitative proportion of traction forces,
hypertraction forces as well as traction stresses with each other. For this purpose we
use the extended Cauchy Tetrahedron which we call as Hyper-Cauchy tetrahedron. The
Hyper-Cauchy tetrahedron (for this case) represents a volume division of a fiber reinforced
unit cell. Like in Cauchy-tetrahedron, it is assumed that the cell is balanced by volumetrically
divergence-free stress and volumetrically double divergence-free hyperstress, indicating the
absence of body forces. Analogously, the hyperstress is facially divergence-free and do act
on interfaces of the further divisions of surface patches and balance those surface patches.

Figure 9 on the left shows the traction and hypertraction forces developing with the
deformation factor of an example case. As can be seen the exponential hardening does not
undergo any artificial snap-through or artificial softening which may be caused if only the
geometrical nonlinearities were considered in the material. At this stage, we state that the
exponential hardening of the elastic modulus of simo-type geometrically exact anisotropy
can be replaced by any type of material model. In case, St. Venant-Kirchhoff material
is used, some softening, even snap through in exceeding deformations can be observable,
because the stress functions of this model linear in isotropic material parameter couples.
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Traction factor & Hypertraction factor vs Deformation factor Log Traction\Hypertraction ratio
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Figure C.3: Left, traction and hypertraction force factors depending on the deformation factors.
Right The logarithmic ratio of traction to hypertraction forces.

Instead, a Neo-Hookean material update can be used, however it would be quite difficult to
argue on phenomenological reasoning of dependence of incremental material properties of
fibers on the cofactor update. In fact, the increase of incremental effective values depending
on the tangential stretch of radially packed fibers is stated many times in the literature.

Therefore, we took exponential incremental update driven by the deformation gradient and
deformation hypergradient.

Figure 9 on the right shows the proportional development of traction forces with respect
to hypertractions forces with increasing displacement factor. In spite, this behavior can not
be taken as general, it is still evidential that the hypertractive effects may be quantitatively

equivalent to tractive effects. Additionally, it is again evidential that this proportion may
ascent with deformation.

For weighting those two effects, instead of an energy based comparison approach, we
compared the tractions and hypertractions. Because the L:SA:V ratios of Hyper-Cauchy
geometries (in general geometries) are size dependent, the energy tracked by the surface
forces of different sized surfaces does not allow an objective comparison. Besides, the
energy function is not straightforwardly additively splittable into those pieces. However
tractions and surface tractions do allow an objective comparison, due to the fact that L:SA

of surfaces is proportional with L, and L is proportional with || M || and || M || is proportional
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D.1 Stationary configural energy and kinematics

The strain energy of energetically equal configurations of gradient-only systems can be
represented by the following composite function.

W = o B 0 Q* (D.1)

Where the finite rotation tensor @ and the rotation angle scaled skew rotation axis tensor
aA are mapped onto each other by means of matrix exponential and matrix natural
logarithm functions. Even though the matrix logarithm function has a radius of convergence,
we write down to show the inversibility of the skew symetric and orthogonal matrix functions.

Q=cxp(ad) ad=log, (Q) (D.2)

According to this, we can express the composite function as,
¢ =1 o E*o(aA) oQ* (D.3)

E* being the configurational Green-Lagrange strain tensor where the configuration is driven
by the Q* orthonormal tensor rotating the material frame. The coefficient matrices of
configurational Green-Lagrange strain tensor, the rotation axis a and the skew rotation axis
tensor A* are represented in the eigenvector space of Green lagrange strain.

E*=-(\?-1)N;®N;

N |

A" = Aj; (N} ® Nj) = —ejpaj, (N7 @ NJ)

Where, the axis is perpendicular to the plane of two different configural fiber directions. This
means, one of the configural fiber direction given as unremodeled, the axis a* represents
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one of infinitely many axis of remodeling rotations. As stated before, since we consider
energetically equal configurations, in this stage the remodeling assumes to change the
kinematics. Thus, kinematics E* is configural either. The variation of the strain energy
function in the direction of the rotations,

oPe . oY OE* oa* 0 (a*A") .
20 = : . : 20 D.
oQ* Q OE* 9a* 0 (a*A") oQ* Q (D5)
In the indicial notation we have,
oY* o OE;‘J» oaj, 0 (a*Af )
SO = mZ5Q* D.6
;fj @i 8E§j day 0 (a*Afm) o @no (D-6)

Defining the non-remodeled configuration vector by m and new configuration vector by g*
in Green Lagrange eigenvector bases,

m=m;N; g =q¢N; (D.7)

The new configuration is obtained by a k'th contravariant unit base vector as the axis a*
of the j'th and i'th unit covariant base vectors as non-remodeled configuration vector and
new configuration vector.

m=Gi|Gjl,IGil;' ¢ =G; &' =G"G"|;! (D.8)

Following this, there is a unit contravariant axis @* which rotates i'th covariant unit base
* rotates j'th base into i'th base with the same
angle of rotation o* with positive sinus. According to this idea we can write down the
forward and backward Euler-Rodrigues rotation formula,

into j'th covariant and similarly the axis —a

Q"=a"®a"* +cos(a")(Iy—a*®a*)+sin(a”) A
(D.9)
QT =a*®a* +cos(a*) (Iy —a*®a*) —sin(a*) A
The elements of the Rodrigues formulation are,

IN=N;® N}
a®a=0;a;N; ® N} = i jmn@idnmiemm|lal| >N} © N
A :AijN;( & N;k = —82‘3‘]9&]9]\7;( (9 N;k = —eijksklmqmmlHaH_lN;‘ ® N;k

. -1
cos (o) =qim; (||q||[|m|])

)2 (

sin (o) =|all (lgllm]) ™" = (emgimn@gamemn)'? (lq||m]) ™"

(D.10)

It should be stated here that among the infinitely many orthonormal tensors, the spin-free
one is presented here. According to the equation (D.9), the logarithm of the angle-scaled
skew matrix and the derivative appearing in the equation (D.5) is given as,

KN kA% ar x T a(oz*A*)_ o s
log (@) =" A" = = (Q" - Q) ST = s (o) (t-1)
(D.11)
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Now we chose the new configuration coaxial with the eigenvalue scaled eigenvector. With
this post statement, we will be looking for the variational stability of the energetically equal
configurations for the rotations steered by the axis of one eigenvector direction. Say,

a = \N, (D.12)
If we reduce the target into one eigenvector the Rodrigues formula compatible to equation
(D.10) is,
Q" = (e’fiklz’fjml)\’f)\;{mkmmHO,HfQ + ml)\“{_l ((5@] + aiklajml)\’f)\’fmkmmHaHfl)) N’; ® N;k
- (Eijk:?":k:lnfLQMTnlHa'H_1(Enplffnrl)\1< Tmpmr)l/Q)\)iQ) N;k X N;k
(D.13)

The coefficient matrix of the rotation tensor becomes,

(mir;™h) (m2A;1) (maA;™!)

el miN L+ mg? (m22 + mg,Q)_1 —msmeo (m32 + m22)_
- (m2)\1 ) -1 —1 1
—mimg*A; (m3? + ma?) +mimamaXi " (ms® + my?)

el —maoms (m32 + m22)71 ml)\{_l + my? (m32 + m22)
- (m?’)‘l ) -1 -1 -1
+mimomsA; " (ms? + my?) —mamo* A (m3? + my?)
(D.14)

Equation (D.5) becomes,

0 sor—g OB ZE 0" N so g (22 9B o sor
Q" Q=5 da* o* " sin(a*) <H H) $0Q7 =57 (Sina* oa” £:0Q )
(D.15)

Where, the symbol £ stands for the isotropic permutation pseudotensor. Since, the second
Piola Kirchhoff stress tensor is nondecreasing for nondecreasing Green-Lagrange Strain
tensor, we are going to expand the remaining product. The variation of the Green-Lagrange
tensor in formula above in indicial notation,

)

-1
-1

oL (—El k) 8Q* OQ* —2 OFE;; -2 oE;;
Y n im ml _ J _ 11
< > 5Qno ( 8&;; 5nok> 5Qno <8d’,§ 5nok> 5Qno

day sin (a*) \ 0Qr, 0QF, sino* sino*

(D.16)
The last kronecker insertion is due to the nonexistence of the non-diagonal terms of
the Green-Lagrange strain tensor coefficients in the eigenvector base system. Unfolding
the permutation pseudotensor and multiplying it with the directional derivative of the
Green-Lagrange strain tensor in the direction of the rotation axis, one would get the the
unfolded form of the third order result of the round brackets of last part of equation
(D.16). The permutation pseudotensor is independent of any coordinate system and can

be represented in terms of the foldings of eigenbases as,
E=(N5® N5 — N3® N3)® N}
+(N3®@ N7 —N]®N3) @ Nj unfold; () =& - N} (D.17)
+ (N7 ® N5 — N5 Nj)® Nj
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The tensor order of the Green Lagrange strain tensor is reduced for practical reasons. Even
though the tensor itself can not be extracted from the reduced representation for arbitrary
coordinate system (from 3 parameter space into 6 parameter space), it is still valid to
vectorize the Green-Lagrange strain tensor. Since we define the coefficients in eigenspace,
the conversion in this space is self-verified (from 3 parameter space into 3 parameter space).
The length of the vector form is equal to the second invariant of the second order form.
Thus, this vector form has an invariant and is a tensor.

~ %

1., ) s .
E =o (W -1)N; IE"|5 = 157 (D.18)
So, the derivative in the round brackets of equation (D.16) and the unfolded second order
tensorial components of it are given below,

OE" OE"

55" €= o (@ N) ®@unfold; (£) (D.19)

The matrix coefficients of the unfolding of equation (D.19) with the combination of equation
(D.17) is given below,

OE" OE? .
Enforcing the anisotropy in the direction of the target configuration,
OE" B OE" - O(E*: q¢*®q*) 0q*
va"  0(E":q"©q) Og* o4’ (D.21)

* * * —1 * * —1 * *
= A (N7 ® Nj) - (mz ' (N7 ® N3) —my" (N]® N3))
Inserting back into equation (D.20) gives us the only nonzero component in matrix form,
SE" 0 “ANmyt = Ximy!
unfoldy | o= & || = Nimy ! 0 0 (D.22)
e Nimg ! 0 0

The total derivative in the direction of the orthonormal tensor variation vanishes as shown
below.

af € 6QF = <—Xfm316Q13 + A’{mglaQ?’l) SAIN}

04" ON: oN:
2Q} 9Q;
+ (— imy ! Q}E + Njmy ! Q%}) SN N
—ONimy S AN — 2\ g e AT N

1 1
=2\ T LONINT — 22X IAINT =0

This indicates that the configural kinematics as well as configural energy is stationary for the
given type of rotations. Next, we will discuss about the convexity of this type of rotations.
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D.2 Maximization of Configural Energy

In this section the duality of the optimization manifolds will be shown and proven to be
holding at the location of stationary point shown in the previous section. The only nonzero
part of the coefficient of the variation of Green Lagrange strain tensor in the direction of
virtual rotation is,

oE"
un fold; <W -5) = -\Nimy ' (N]® N35) — Ximz ' (N7 @ N%)

(D.24)
+Xmy (NG @ NT) + Aimy t (N @ N7)

The second variation of the Green Lagrange Strain tensor with respect to the rotation tensor
gives us information about the convexity of the Green Lagrange Strain tensor in terms of
the rotations.

sinac* [TQ* <unfold1 <W g)) 1 0Q ] 10Q (D.25)

The derivative with respect to the rotation tensor in the brackets right before the second
variational double contraction is,

9 OE" -2 9 OE + \\r

The derivative with respect to the rotation axis is,

0 OE"
o (unfoldl <—8d* 5)) =

—my'mz! (N]® N3 © N3) —m3*

(N1 ® N3 ® N3)
+mytmy !t (N5 ® NT® N3) +mz? (Nj® N ® N3)
+my 2 (N7 @ N5 ® N3) +my'mzt (N] @ Nj® N3)
—my* (N3 @ NT @ N3) —my 'my" (N3 © NT© N3)
(D.27)
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Dot product with the permutation pseudotensor,

d OE" » r
9 (unfolah (W 5)) - E =

—my'mz" (N]® N3 ® (N5 ® Ni — N ® N3))

—mz2(N; @ N3 ® (N5 ® Ni — N} ® N3))
+mytmy !t (N5 ®@ NT @ (N5 N7 — Nf @ N3))
+mz? (N3 @ Ni® (N5 ® Nj — N} ® N3))
+my? (N} @ N3 ® (Nj® N3 — N3 @ N3))
+mytmyt (Nt ®@ N3 @ (Nj® N5 — N3 @ N7))
—m;? (N5 ® Ni® (Nj@ N3 — N5 ® NY))

—my'my! (N3 Ni® (N] © N3 - N3 ® N7))
(D.28)

The variation in the direction of the secondary virtual rotations,

[a%)* (unfolah (%5)) : 5Q*] =

—2my 'ATT2ON] (N @ NB) — 2mz '\726)0] (N} @ N3)

T 2my AT 20N ( @N*>+2m3w 20} (V3 ® )

_2m2—1)\“{—25)\ (N7 ® N3) — 2mg1)\* 25)\ (N ® N3)

T 2my A20N (N3 © NT) + 2m5 ' AT 20X (N @ N)
(D.29)

The total variation is then,

Ak
SZ;z [a%* <un foldy (%-5)) :5Q*] : 6Q* = 64sin2 (a*)ONIONT (D.30)
Which shows that the eigenvalue based rotation can be represented as a convex optimization
problem. Stretch and thus strain have their minimum value independent of the energy
constraint and the initial position. Since we have a stationary point at the locus of interest,
we can not comment (not straightforwardly) further on the convexity of the strain energy
density function about the orthonormal tensor, using the tensor composition higher order
derivatives. To show that there is the maximization perspective of the same objective
and subjective we will use next the Lagrange duality. The problem above without the
inclusion of the composition and energetically equal restriction, can be interpreted as the
minimization of the anisotropic ingredient of the Green-Lagrange Strain measure. As shown
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in the previous section, the stated stationary point is minimum kinematic configuration and
is the solution of the following primal objective and subjective set,

minimize Li=m" (Q" - E-Q) - m=E: (Q - m)®(Q- -m))
subject to Q@ - m) - (Q-m)=1 (D.31)
Qr-Q=1

Since m is arbitrary, thus nor configural, neither a parameter of the optimization. Hence,
is not listed explicitly in the constraints. Reformulating the problem,

minimize E: (q®oq)
(D.32)
subject to qg-q=1

The Lagrangian of the minimization of the convex quadratic function on the unit ball
constraint is,

L(g,p)=E: (q®q)+pn(g-q—1)
=q" (E—pl)-q+q" -pul-q+p(qg-q—1) (D.33)
=q" (E—pl)-q—p

The cost p is set to be the Lagrange multiplier of the single equality constraint. The dual
form is then,

9(n) = inf (L (g, 1)) = inf (¢ - (B - pI) - q) —p (D.34)

Since the infimum of the quadratic form is zero if the form is positive definite, else negatively
unbounded,

(D.35)

- (E-pl)-q=0
g ()= .
—oo  otherwise

Moving on with the assumption of strong duality (zero duality gap), the Lagrange multiplier
component of the Karush-Kuhn-Tucker point of the quadratic problem with quadratic
equality constraint can be found. For zero duality gap, the gradient of the Lagrangian
(Lagrangian with the optimal dual parameter) evaluated at the optimal primary variable
should vanish.

Vel (q, /%)y = VgE: (a®a)|g + Vgu'(g-q—1)|. =2(E+p"I)-q" =0
(D.36)
Quite clearly the solutions which imposes redundancy to the term in brackets and satisfies
the KKT condition above is,

pr={-A?+1 | A?>1} (D.37)
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Which is feasible according to the dual constraint.The additional constraint in equation (72)
is a reinterpretation of the dual constraint of (70). In matrix vector form the constraint of
(70) for a stationary point,

N2 — 2 0 0 1 0
2> = 0 N2 N2 -2 0 10| = 1|0 (D.38)
0 0 M2 a2—2] [0 0

The strain energy density function of the remodeled configuration is a nondecreasing
function of the given eigenvalues of the Green-Lagrange strain tensor. According to the dual
form, the remodeling search can be interpreted as the maximization of the energy subjected
to a kinematic inequality constraint.
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