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Pre
lusion of this Treatise

Before starting, I would like to emphasize that this prefa
e stands not only for the brief

explanation of the s
ienti�
 
ontent of the treatise, but also proposed to be a summary of the

motivation of working on it, and exploding the philosophy of best pra
ti
e of 
onstru
ting

the survey and its 
ontent. This foreword is partially written to impose the 
on
eption of

the line of a
tion up on the reader. The abstra
t of the s
ienti�
 elements of the work,

whi
h mainly represents the ba
kbone of the work, will be presented thereafter.

The subje
t of this dissertation is a sub�eld of the Biome
hani
s, namely the Continuum

Biome
hani
s, more spe
i�
ally with fo
us on living �brous soft-tissue. The initial de�nition

of the subje
t will be more pre
isely revised after introdu
ing initial arguments. Before

starting to network the ideas behind the prin
iple of line of a
tion, one has to start with

the formal de�nitions of the subje
t.

Biome
hani
s is de�ned as to be "the study of the stru
ture and fun
tion of biologi
al

systems su
h as humans, animals, plants, organs, and 
ells by means of the methods of

me
hani
s" Ref.[

Hatze 1974

℄ .This de�nition is generally a

epted to be very 
omprehensible,

and thus a redi�nition is avoided and had not seen to be ne
essary. There are 
ertainly similar

de�nitions, however, older or novel, all these do neither 
ontribute additional message, nor

narrow the points of signi�
an
e. However, sin
e then, there is though some di�eren
es

developed. These are mainly as a result of dis
rete jumps in the state of the art of dis
iplines


ontributing the �eld of biome
hani
s, namely in engineering and medi
al s
ien
e. Many

Pioneers 
onsidered the �eld of Me
hani
s as a tool whi
h is used to understand the fun
tion

of biologi
al stru
ture. For instan
e Ref.[

Fung 1993

℄ states that " the interest in 
ontinuum

biome
hani
s is spurred by the need for realism in the development of medi
al simulation".

Whi
h more expli
itly than impli
itly indi
ates that, in the absen
e of this interdis
iplinary

interest, the �eld of biome
hani
s would never been born at all, or would not be the same

whi
h is now. This observation is well a

epted and appre
iated by the writer of this treatise.

Moving on, more up-to date publi
ations about me
hanobiology, state the expe
ted realism

above 
learly enough. For instan
e, Ref.[

Humphrey 2003

℄ forewords his opinion on this subje
t

by writing that, "biome
hani
s has yet to rea
h its full potential as a 
onsistent 
ontributor

to the improvement of health-
are delivery." This pragmati
 manifest was 
ertainly not a

se
ret, but the a
hievements are spoken out now 
on�dently as before. As ba
kground

message, it is also emphasized not to forget 
onsistent 
ontribution. A

ording to the

subje
tive opinion of the writer, behind this emphasis, there is presumably the apprehension

of loosing the attention on 
ontinuum me
hani
s, by failing to hit the point of obje
tive, or

landing far beyond of the diameter of interest. If this apprehension tends to move towards

anxiety or should soldier on to keep the stress level high enough for improvement, to �nd

the answer more experien
e is required. However, this dis
ussion leads to the 
lari�
ation

of the best pra
ti
e and line of a
tion of this treatise.

There is an impli
ative question to be answered. The fa
t is, during the development



iv

of interdis
iplinary �elds, one �eld served and supplied logisti
s to another (where the

pra
ti
al interest fo
uses). The question is, does it take pla
e without evolving its own

stru
ture, or vendor bran
h has gained also power and self-interest by involving in the

proposed interdis
iplinary �eld?

The arguments 
an be put on the table simultaneously, or sequentially. The latter is

preferred by the writer here. Considering one single property of matter of 
on
ern here,

that is anisotropy. Please re
all that several �brous soft tissue types are me
hani
ally

anisotropi
, su
h as skin, 
ardio-vas
ular system, 
artilage, tendons, ligaments and more.

However, the term is in fa
t visited several times by the leading engineers of the �eld, even

before the dis
ussion of existen
e of a �eld named biome
hani
s. For instan
e S.Timoshenko

and J.N.Goodier in their master pie
e of Ref.[

S.Timoshenko 1951

℄ mention about anisotropy,

"...,a 
ertain orientation of the 
rystals in metals prevails, the elasti
 properties of the metal

be
ome di�erent in di�erent dire
tions and the 
ondition of anisotropy must be 
onsidered.".

They obviously mention about the anisotropy 
aused by engineering pro
ess, pre
isely metal

forming. Frankly writing, it would be quite an arrogant a
tion to 
laim that, the founders

of the Theory of Elasti
ity were unaware of the existen
e of naturally anisotropi
 material,

be
ause they were ridi
ulously unable to observe the �brous stru
ture of redwood. It is thus

an obvious fa
t that, terms like anisotropy was 
ertainly postulated earlier in the borderlines

of 
ontinuum me
hani
s, and found another �eld of appli
ation; Biome
hani
s.

Keeping this example in mind, the �rst postulations of the hyperelasti
 anisotropi
 energy

fun
tions date not as ba
k as foundational elements of elasti
ity. Fung, being a

epted

as one of the fathers of 
ontinuum biome
hani
s, mentioned about the residual stresses

in arterial walls in Ref.[

C.J. Chuong 1986

℄, however �rst postulated the famous exponential

formula for the anisotropi
 materials, quite later, in Ref.[

Fung 1993

℄. Similarly, nearly before

Fung, another hyperelasti
 anisotropi
 formula postulated in Ref.[

J.M. Gu

ione 1991

℄. In the

se
ond work, Gui

ionne JM et al. rea
hed one of the �rst quantitative statements; "...the

sti�ness of passive myo
ardium (de�ned for a 20 per
ent equibiaxial extension) would be

2.4 to 6.6 times greater in the �ber dire
tion than in the transverse plane...". Later works

of Ogden and Holzapfel, su
h as in Ref.[

Ogden 2003

℄ and Ref.[

Holzapfel 2008

℄ in
lude more

spe
i�
 and reliable material models based on empri
al te
hniques and validation methods

based on re
ent publi
ations of themselves. Among all the 
ontributions done until now,

one is 
ommon that, the resear
hers and pioneers of the �eld of biome
hani
s applied the

fundamental postulates of 
lassi
al 
ontinuum me
hani
s, su
h as the de�nitions done by

Green, Ref.[

Green 1970

℄.
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2 Chapter 1. Soft Tissue as Biphase Mixture

1.1 Introdu
tion

This 
hapter of the thesis is dedi
ated to introdu
e the �rst order kinemati
s and

thermodynami
s of biphasi
 media using theory of mixtures as a �oor requirement for

investigating the soft biologi
al tissue. This base requirement is either dire
tly stated, or is

imposed by the pioneers of the 
ontinuum Biome
hani
s.

Several elements of this general statement requires 
lari�
ation. The initial one is the so


alled "First order Kinemati
s". The keyword brings out the possibility of postulations of

higher order kinemati
s. This spe
i�
ation ex
ludes the so 
alled strain gradient e�e
ts,

whi
h is visited in the remaining 
hapters of the thesis. Additionally, it should be emphasized

that the di�eren
e of �rst order and higher order kinemati
s are not analogous de�nitions of

German study 
on
epts of Theorie Erster und Zweiter Ordnung 
lari�ed in Ref.[

Bletzinger 2009

℄


learly. The latter one deals with the stati
s and dynami
s of stru
tures with and without

of the e�e
ts of geometri
al, loading and material types of nonlinearities. The prior one,

whi
h is the subje
t of this thesis, imposes the nonlinear kinemati
s, in another novel way.

Keeping this in mind, the �rst order and the se
ond order Kinemati
s used in this work, both


onsider nonlinear geometri
al e�e
ts, and thus appli
able for large deformational studies.

The se
ond keyword of the statement is the fundamental ne
essity of 
onsideration of

multyphasi
 nature of the soft tissue. As stated above, the base requirement is imposed by

the pioneers of the 
ontinuum Biome
hani
s. For instan
e, Fung in Ref.[

Fung 1993

℄ 
alls the

soft tissue (irrespe
tive of the type of the tissue) as being pseudoelasti
, by pointing out

the phenomenologi
al 
ause of vis
oelasti
ity. As 
an be seen by this 
hapter, the sour
es

of the hysteresis, whi
h is 
onsistently the main di�eren
e in between the assumption of

pseudoelasti
ity and true elasti
ity (whi
h is in fa
t the true idealization, and does probably

not exist at all), 
an be well linked to the se
ond law of thermodynami
s, in terms of

the mi
rome
hani
al intera
tion of di�erent phases of the tissue. At this stage it would

be appropriate to mention that the 
omprehensive me
hani
s of the 
ausality of hysteresis

is not an trivial task to determine. Impli
itly, the reformulation of the phenomenon with

the de�nition of vis
oelast
ity points out that the vis
ous e�e
ts are responsible for the

pseudo-
hara
teristi
s of the solid.

A

ording to the writer of this 
hapter, to link the phenomenon and 
ausality in terms

of physi
al quantities, is still a more 
omprehensible approa
h then estimating 
oe�
ients

for the rheologi
al material models. No doubt that the latter has 
ertainly some pra
ti
al

engineering advantages. However, in short, the writer had 
hosen the way of resear
her,

not the way of engineer.

The 
hapter is divided into seven se
tions. In the beginning, the properties of the

biphasi
 mixture is summarized. In the follower se
tions, the kinemati
s, the assumptions

under 
onsideration of soft-tissue in fo
us is presented. The weak form, and dis
retized

equations is visited in the remaining se
tions. A

ordingly, several di�erent numeri
al

examples is shown to prove appli
ability and 
ompleteness of the approa
h. The pioneering

formulations 
an be found under the study of the theory of the mixtures by Truesdell and

Toupin in Ref.[

C.Truesdell 1960

℄, and by Atkin and Craine in Ref.[

R.J.Atkin 1976

℄. Following this
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initial works, one of the �rst appli
ations of the study 
an be found in Mow et al. in

Ref.[

V.C.Mow 1980

℄. The histori
al development and basi
s of the theory of porous media


an be found in the notes of de Boer in Ref.[

de Boer 1996

℄, who is another founder of the

ma
ros
opi
 theories of the multiphase mixtures. The state of the art of the Theory of

porous media and various numeri
al and experimental appli
ations 
an be found in the

re
ent editorial publi
ation of Ehlers and Bluhm in Ref.[

W.Ehlers 2002

℄.

The writer of the thesis had used many of these works and it is stated spe
i�
ally if a

novel self-
ontribution is present or another referen
e is used for the sour
e of information.

Otherwise, this in
trodu
tory 
hapter is a short and pie
ewise summary of the fundamental

s
ienti�
 works in the aforementioned referen
es above.

1.2 Partial and Total Properties of the Mixture

The main aim of this se
tion is to provide fundamental de�nitions. The kinemati
s of the

mixture is developed a

ording to these basi
 de�nitions in hand. A

ordingly, the governing

equations are formulated on the basis of theory of mixture, namely a thermodynami
 balan
e

and unbalan
e governing equations, as well as inequalities are presented.

The total material domain of the problem is a 
omposition of a binary mixture.

Ω =
⋃

Γ

ΩΓ = ΩS ∪ ΩF (1.1)

Another spatial domain, whi
h is not (ne
essarily) kinemati
ally 
onjugated with the

material domain de�ned above, is also a 
omposition. The prin
iple of kinemati
al

in
onjugation of the theory presented here is abbreviated with the subs
ript '*' beneath.

Ω∗ =
⋃

γ

Ωγ∗ = Ωs∗ ∪ Ωf∗ (1.2)

The theory of porous media assumes that the total in�nite and �nite volumes in the material

as well as in the spatial 
on�gurations do obey the prin
iple of additive split. In this 
ase,

as indi
ated previously in se
tion Ch.[1.1℄, a two-phase material is under 
onsideration.

V =
∑

Γ

V Γ =
∑

Γ

∫

ΩΓ

dV Γ =

∫

Ω

∑

Γ

dV Γ =

∫

Ω
dV (1.3)

The same series of fundamental de�nitions 
an be also made for the spatial in�nite and

�nite volumes.

v∗ =
∑

γ

vγ∗ =
∑

γ

∫

Ωγ
∗

dvγ∗ =

∫

Ω∗

∑

γ

dvγ∗ =

∫

Ω∗

dv∗ (1.4)

The volume fra
tion of a material 
onstituent Γ in the material 
oordinates is depending

on the material lo
ation of that 
onstituent.

nΓ = nΓ
(
XΓ
)

(1.5)
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As well, the volume fra
tion in the spatial 
oordinates depending on the the spatial


oordinates of that 
onstituent.

nγ = nγ
(
XΓ, t

)
= nγ (xγ) (1.6)

The volume fra
tion determines the partial volume of that 
onstituent in the saturated

mixture.

V =
∑

Γ

V Γ =
∑

Γ

nΓV =

∫

Ω

∑

Γ

dV Γ =

∫

Ω

∑

Γ

nΓdV =

∫

Ω
dV

v∗ =
∑

γ

vγ∗ =
∑

γ

nγ∗v∗ =

∫

Ω∗

∑

γ

dvγ∗ =

∫

Ω∗

∑

γ

nγ∗dv∗ =

∫

Ω∗

dv∗

(1.7)

The in-
onjugated quantities referred here again with an asterisk. To make it 
lear,


onsidering the volume fra
tions are not ne
essarily equal,

nγ (X, t) 6= nγ∗ (X∗, t) (1.8)

To repeat it again, in general, the material domain Ω is not the kinemati
 origin of the

spatial domain Ω∗. Besides, the last two equation set of equation (1.7), 
omprises the

saturation 
ondition.

∫

Ω

∑

Γ

nΓdV =

∫

Ω
dV

∫

Ω∗

∑

γ

nγdv =

∫

Ω∗

dv (1.9a)

∑

Γ

nΓ = nS + nF = 1
∑

γ

nγ = ns + nf = 1 (1.9b)

The partial and realisti
 true densities are de�ned as,

ρΓR =
dmΓ

dV
ρΓ =

dmΓ

dV Γ

̺γR =
dmγ

dv
̺γ =

dmγ

dvγ

(1.10)

The total mass in referen
e and 
urrent 
on�gurations are,

m =

∫

Ω

∑

Γ

dmΓ =

∫

Ω

∑

Γ

ρΓdV Γ =

∫

Ω

∑

Γ

ρΓRdV =

∫

Ω

∑

Γ

nΓρΓRdV Γ

m∗ =

∫

Ω∗

∑

γ

dmγ
∗ =

∫

Ω∗

∑

γ

̺γ∗dV
γ
∗ =

∫

Ω∗

∑

γ

̺γR∗ dV∗ =

∫

Ω∗

∑

γ

nγ∗̺
γR
∗ dV Γ

∗

(1.11)

This 
on
ludes the relationship between the partial and true densities in material and

another kinemati
ally in-
onjugated spatial 
oordinates,

ρΓ = nΓρΓR ̺γ∗ = nγ∗̺
γR
∗ (1.12)

This basi
 de�nitions 
an be found in any state of the art texts, su
h as Ateshian

Ref.[

G.A.Ateshian 2008

℄ makes a very brief de�nition of these ba
kbone identities of mixture


ontinuum.
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1.3 Kinemati
s of the Mixture

In the theory of mixtures, it is assumed that ea
h individual 
onstituent has its own

Lagrangian mapping. Alternatively, the way of expression of motion is that, ea
h individual


omponent of the mixture originates from di�erent referen
e 
oordinates, but ends and

thus 
omposes the �nal unique spatial 
urrent state of mixture. Spe
i�
ally, the 
urrent


oordinate is a result of a two-to-one mapping. For the 
ase of solid and �uid (�ber and

surrounding �uid) mixture,

x = x |s = x |f = x (X |S , t) = x (X |F , t) (1.13)

Sin
e the 
oordinates are neither a state nor a pro
ess variable, the appropriate

mathemati
al notation of su
h that:(|) is used instead of super or subs
ript. Sin
e the

evaluation of the 
urrent 
oordinates are appriorily are known (de�ned) to be the same

1

,

one single 
urrent 
oordinate is used next, instead of two separate. However, the "matter"

of the 
oordinate is indi
ated. Being 
onsidered as an gradient operator only (independent

of any violation indi
ations of material penetration), the same notation of evaluated at

(su
h that) 
an be applied for the deformation gradient too.

F |F =
∂x

∂X |F
= F |sF =

∂x |s
∂X |F

= F |fF =
∂x |f
∂X |F

(1.14)

The deformation gradient of the solid 
onstituent (the gradient of the 
urrent mixture

evaluated at the solid referen
e 
oordinates) is similarly,

F |S =
∂x

∂X |S
= F |sS =

∂x |s
∂X |S

= F |fS =
∂x |f
∂X |S

(1.15)

Sin
e there are two mappings and two deformation gradients, there will be ne
essarily

another two spatial gradients of the reverse motions. The spatial gradients are -as tensor

operators- inverse of the forward material gradients. The spatial gradients for the reverse

�uid motion reads,

F−1 |F =
∂X |F
∂x

= F−1 |Fs =
∂X |F
∂x |s

= F−1 |Ff =
∂X |F
∂x |f

(1.16)

The spatial gradients for the reverse solid motion are,

F−1 |S =
∂X |S
∂x

= F−1 |Ss =
∂X |S
∂x |s

= F−1 |Sf =
∂X |S
∂x |f

(1.17)

In short notation, the material and the spatial (G)gradients of ea
h 
onstituent are,

F |Γ = F |γΓ = Grad |Γ x |γ = Grad |Γ x (1.18a)

F−1 |Γ = F−1 |Γγ = grad |γ X |Γ = gradX |Γ (1.18b)

1

The "
oordinates" are quantitatively the same, yet the "matter" as quality of 
ourse are not

the same. This implies the well known "smeared" model postulated by many writers, see Ehlers

Ref.[

W.Ehlers 2002

℄ for instan
e.
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As the 
urrent mixture 
omponents originates from di�erent referen
e lo
ations, the

statement of 
onstutients do keep the same smeared 
om�gurations in another state, is

still arbitrary. By spe
ifying this another state as the state of in�nite next

2

, one 
an

state that the velo
ity ve
tors of the 
urrent 
omponents are arbitrary and thus di�erent,

even though the time derivative is evaluated at the 
ommon 
urrent 
oordinates. This

indi
ates that even though there are two deformation gradients, there are in total four rates

of deformation gradients. Next, only the rates whi
h are relevant for the formulation are

presented in this 
ontent. This relevan
y is determined by the 
hemi
al 
omposition. The

rates of deformation gradients for 
hemi
ally identi
al 
omponents of the mixture are,

Ḟ |sS =
∂ẋ |s
∂X |S

= Grad |S ẋ |s (1.19a)

Ḟ |fF =
∂ẋ |f
∂X |F

= Grad |F ẋ |f (1.19b)

The spatial velo
ity gradient of the solid 
omponent 
an be dedu
ed from the previous

equations as follows,

L |s = L |ss = L |sf =
∂ẋ |s
∂x

=
∂ẋ |s
∂X |S

·
∂X |S
∂x

= Ḟ |sS · F−1 |S

L |s = gradẋ |s = (Grad |S ẋ |s ·) (gradX |S )

(1.20)

The spatial velo
ity gradient of the �uid 
omponent is kinemati
ally identi
al,

L |f = L |fs = L |ff =
∂ẋ |f
∂x

=
∂ẋ |f
∂X |F

·
∂X |F
∂x

= Ḟ |fF · F−1 |F

L |f = gradẋ |f = (Grad |F ẋ |f ·) (gradX |F )

(1.21)

Lastly, for the kinemati
s of the mixture, the spatial velo
ity gradients 
an be further

additively splitted into symmetri
 and skew symmetri
 tensors.

L |γ =D |γ +W |γ

D |γ =
1

2

(
L |γ +LT |γ

)

W |γ =
1

2

(
L |γ −LT |γ

)
(1.22)

This split is for the balan
e equations absolutely ne
essary, sin
e the true stress tensor is

symmetri
 (for the sake of balan
e of angular momentum), and thus energeti
ally orthogonal

to the skew symmetri
 part of the spatial velo
ity gradient. In general, for the 
omponents

2


ontinuum neighborhood of the smeared 
on�guration
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whi
h are 
hemi
ally identi
al, the following 
orrelation 
an be written;


hemi
ally identi
al :

{
γ = s, | Γ = S

γ = f, | Γ = F
⇐⇒

⇐⇒ L |γ = Ḟ |γΓ · F−1 |Γ

L |γ = gradẋ |γ = (Grad |Γ ẋ |γ ·) (gradX |Γ )

(1.23)

The writer of the treatise, strongly suggests to follow the identities and 
orrelations

introdu
ed in the se
tion of Kinemati
s of the Mixture Ch.[1.3℄, in the very well written

textbooks of Holzapfel Ref.[

Holzapfel 2006

℄, and Bonet&Wood Ref.[

J.Bonet 2008

℄. Even though

these books do not mention about the nature of biomaterials 
omposed of multiple physi
al

phases expli
itly, they are still the best among many others to verify the validity of the

proposed �rst order kinemati
s.

1.4 Governing Relations

In this se
tion the balan
e equalities of the 
onservation of mass, the 
onservation of linear

momentum, the 
onservation of internal and kineti
 energy are introdu
ed initially. After

that, the introdu
tion of the inequality of entropy for the biphase material 
an be found.

1.4.1 Conservation of Mass

In this se
tion, the 
onservation of mass for a 
ontrol volume is introdu
ed brie�y. The


ontrol volume is taken as the 
urrent volume o

upied by the 
urrent mixture 
omponents,

and thus de�nes a thermodynami
ally open system. This indi
ates, that there might be a

mass input into the system. At this stage of formulation, the system 
an be further assumed

to be isolated, and a

ordingly the mass supply term 
an be negle
ted for the time being.

To start with, the 
urrent mass and the 
urrent rate of mass supply in terms of the 
urrent

apparent (partial) density and 
urrent rate of apparent (partial) density supply 
an be written

as,

mγ =

∫

Ωγ

dmγ =

∫

Ωγ

̺γdv m̂γ =

∫

Ωγ

dm̂γ =

∫

Ωγ

ˆ̺γdv (1.24)

Obviously, the statement of 
onservation of mass requires the equality of rate of 
hange of

mass to the rate of mass supply into the volume.

ṁγ |γ = m̂γ
(1.25)

Re
alling the equations of rates of deformation gradients (1.19) makes it 
lear, why the

evaluation lo
ation of the rate of 
urrent mass should be 
onsidered.

ṁγ |γ =

˙(∫

Ωγ

̺γdv

)∣∣∣∣∣∣
γ

(1.26)
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The lo
al form of this equation 
an be obtained stepwise. Firstly, by pulling ba
k the spatial

total volume to the material partial volume with the determinant of the 
orresponding

deformation gradient, one gets,

ṁγ |γ =

˙(∫

Ωγ

̺γdv

)∣∣∣∣∣∣
γ

. =

˙(∫

Ωγ

̺γdet (F |Γ ) dV Γ

)∣∣∣∣∣∣
γ

=

∫

Ωγ

˙
̺γdet (F |Γ )

∣∣∣
γ
dV Γ

(1.27)

This rate derivative

3


an be further partitioned to rea
h the lo
al form,

∫

Ωγ

˙
̺γdet (F |Γ )

∣∣∣
γ
dV Γ =

∫

Ωγ

(
˙̺γ |γ det (F |Γ ) + ̺γ

˙
det (F |Γ )

∣∣∣
γ

)
dV Γ

=

∫

Ωγ

(
˙̺γ |γ det (F |Γ ) + ̺γ

∂ (det (F |Γ ))

∂F |Γ
: Ḟ |γΓ

)
dV Γ

=

∫

Ωγ

(
˙̺γ |γ det (F |Γ ) + ̺γdet (F |Γ )F

−T |Γ : Ḟ |γΓ
)
dV Γ

(1.28)

Where the derivative of the third invariant of a tensor with respe
t to the tensor itself is

omitted here, and 
an be found elsewhere, the writer had followed the notation used by

Bonet&Wood Ref.[

J.Bonet 2008

℄. Besides the simpli�
ation of the 
onstituent mapping of

the in�nite volume, the double 
ontra
tion term 
an be further simpli�ed by using the index

notation,

dv = det (F |Γ ) dV
Γ

(1.29a)

F−T |Γ : Ḟ |γΓ =

(
∂X |Γ
∂x

)

Ji

(
∂ẋ |γ
∂X |Γ

)

iJ

=

(
∂ẋ |γ
∂x

)

ii

= tr (gradẋ |γ ) = tr (L |γ ) = div (ẋ |γ )

(1.29b)

The �nal global form be
omes;

ṁγ =

∫

Ωγ

(
˙̺γ |γ det (F |Γ ) + ̺γdet (F |Γ )F

−T |Γ : Ḟ |γΓ
)
dV Γ

=

∫

Ωγ

(
˙̺γ |γ + ̺γdiv (ẋ |γ )

)
dV Γ

(1.30)

and the lo
al inhomogeneous form is then;

˙̺γ |γ + ̺γdiv (ẋ |γ ) = ˆ̺γ (1.31)

3

Please note that the integrand is time dependent, the integration variable as the referen
e real

volume of the 
onstituent is predetermined, and this time-invariant.
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Considering that the 
omponent under 
onsideration is intrinsi
ally in
ompressible, by

getting it together with equation (1.12) the following alternative inhomogeneous form is

a
hieved,

ˆ̺γ =
˙

(nγ̺γR)
∣∣∣
γ
+ nγ̺γRdiv (ẋ |γ ) = ṅγ |γ ̺

γR + nγ |γ ˙̺γR + nγ̺γRdiv (ẋ |γ ) (1.32)

The �nal form of the balan
e of mass equation in terms of volume fra
tions is as follows;

˙̺γR = 0 ⇒ ṅγ |γ + nγdiv (ẋ |γ ) =
ˆ̺γ

̺γR
(1.33)

The �rst identity of the �nal form of the equation of 
onservation of mass in equation (1.33),

implies the 
on
ept of intrinsi
 in
ompressibility. Con
erning the numeri
s of the 
ontinuum

solid me
hani
s, the 
onservation of mass is usually omitted. The main reason of this is

that, the fo
us of the 
lassi
al 
ontinuum solid me
hani
s is usually based on single-phase

materials, or on thermodynami
ally 
losed systems. The writer suggests Zienkiewi
z&Taylor

Ref.[

O.C.Zienkiewi
z 2000


℄, whi
h 
over also numeri
al appli
ations of the subje
t. Sin
e the

topi
 
overs two-phase mixture, the equation of 
onservation of mass (1.33) will be used

in the following 
hapters and se
tions.

1.4.2 Conservation of Translational Momentum

Verbally, the 
onservation of momentum requires that the total sum of external, (body

and tra
tion) for
es should be balan
ed by the rate of 
hange of momentum. For a

thermodynami
ally open system, the rate of 
hange of momentum has a further supply

term. In global form,

− ṗγ |γ + fγb + f
γ
t + p̂γ = 0

with,

ṗγ |γ : rate of 
hange of momentum of a spatial 
ontrol volume

f
γ
b : body for
es a
ting on 
ontrol volume

f
γ
t : tra
tion for
es a
ting on 
ontrol surfa
e

p̂γ : �ux of momentum supply

(1.34)

Ea
h of whi
h is investigated and �nally summed individually. Starting with the rate of


hange of momentum of the body in global form, whi
h results in;

ṗγ |γ =
∂
(∫

Ωγ
̺γẋ |γ dv

)

∂t

∣∣∣∣∣∣
γ

=

∫

Ωγ

˙̺γ |γ ẋ |γ dv +

∫

Ωγ

̺γẍ |γ dv +

∫

Ωγ

̺γẋ |γ F
−T |Γ : Ḟ |γΓ dv

=

∫

Ωγ

˙̺γ |γ ẋ |γ dv +

∫

Ωγ

̺γẍ |γ dv +

∫

Ωγ

̺γẋ |γ div (ẋ |γ ) dv

(1.35)
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The rate of 
hange of momentum term 
an be further redu
ed by taking the 
onservation

of mass equation into 
onsideration. The 
ompressible form of the 
onservation of

mass equation (1.33) multiplied by the velo
ity of the 
urrent 
onstituent at the spatial


oordinates gives;

̺γdiv (ẋ |γ ) ẋ |γ = ˆ̺γẋ |γ − ˙̺γ |γ ẋ |γ (1.36)

Inserting this expression ba
k into equation (1.35) gives;

ṗγ |γ =

∫

Ωγ

( ˆ̺γẋ |γ + ̺γẍγ |γ ) dv (1.37)

The body for
es with the 
onsideration of the apparent density-spe
i�
 body for
es

4

, in

global form;

f
γ
b =

∫

Ωγ

̺γ f̆γb dv (1.38)

Where the apparent density spe
i�
 quantities are abbreviated with a breve symbol. The

surfa
e tra
tion (on the system, not by the system) is, -a

ording to the de�nition of

Cau
hy Ref.[

C.Truesdell 1960

℄-is the surfa
e integral of the true stress proje
ted on the surfa
e

outward normals. These bun
h of statements are in fa
t 
overing the de�nition of stress

in 
ontinuum me
hani
s, and 
an be found anywhere else then the referen
e given in the

paragraph itself.

f
γ
t =

∫

Bγ

tγda =

∫

Bγ

σγ · nBγda =

∫

Ωγ

div (σγ) dv (1.39)

The last point, namely the 
onversion of surfa
e integral into the volume integral is due

to the very well-known Gauss divergen
e Ref.[

Mueller 2009

℄ theorem. Combining all together,

one gets the �nal lo
al form of the balan
e of translational momentum equation evaluated

in the spatial 
oordinates.

div (σγ) + ̺γ
(
f̆
γ
b − ẍ |γ

)
− ˆ̺γẋ |γ + p̂γ = 0 (1.40)

It should be noted that the third term whi
h is related to the mass sour
e of the system

is a natural 
on
lusion of the enfor
ement of the 
onservation of mass into the rate of

momentum part of the 
onservation of translational momentum equation as done in identity

(1.36). The mass sour
e has in this 
ontext no momentum 
ontribution as long as stated

otherwise. The reason of this assumption is that, the time integral of the apparent density

�ux does not 
oexist (yet) with the spatial velo
ity of the 
onstituent. There is a balan
e

of rate as stated in the equation of 
onservation of mass, but this does not indi
ate that,

in the 
urrent time the sour
e term is already gathered into the existing mass.

4

The apparent density spe
i�
 for
es in this 
ontext refer dimensionally to for
es per matter, thus

has the same units of body a

eleration
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1.4.3 Conservation of Internal and Kineti
 energy: An extended �rst

law of Thermodynami
s

The �rst law of thermodynami
s verbally states that, no matter what pro
ess o

ur, there

exist a property of the universe, 
alled energy, whi
h 
an not 
hange, neither 
an be

destroyed nor 
an be produ
ed. This statement 
an be found in many early works, the

writer had followed the de�nitions done in more re
ent publi
ations and books, su
h as

Sonntag et. all. Ref.[

R.E.Sonntag 1998

℄ and deHo� Ref.[

deHo� 2006

℄. Espe
ially the latter one

is more appropriate for the study of Thermodynami
s in material s
ien
e.

This verbal statement in terms of di�erent types of energy terms 
an be formulated. For a

given interval of time,

U (t∗)− U (t∗ −∆t) = ∆U = Q+W + Ẃ

∆U : Change of internal energy in the time interval of ∆t

Q : Heat supplied by the surroundings towards to the system in the time interval of ∆t

W : Me
hani
al work done onto the system in the time interval of ∆t

Ẃ : Other types of work done onto the system in the time interval of ∆t

(1.41)

A

ording to this statement, any 
hange in the internal energy of the system should be (is)

balan
ed by the thermal, me
hani
al or any means of energy in�ux (out�ux) into (outside

to) the system. The di�erential form of equation (1.41) for in�nite 
hanges is,

dU = δQ+ δW + δẂ (1.42)

Quite purposely, a di�erential operator is usually used for the in�nite 
hange in the internal

energy, whereby a variation operator is used for the energy supplies to the system. The

reason beyond this notation is the fa
t that, the internal energy is a state fun
tion, but

the heat supplied, the me
hani
al work done onto the system and other types of energy

inputs are pro
ess variables

5

. The underlying meaning of a state fun
tion in the 
urrent


ontext is impli
itly given in the de�nition of �rst law of thermodynami
s. A 
hange of

state fun
tion depends only on the initial and the �nal states of a system, not on the path.

Sin
e the internal energy has to be 
onserved, no matter how, if many di�erent systems

are supplied with the same amount of thermal and me
hani
al energies, the 
hange in their

internal energy has to be the same, being independent of the path. However, otherwise

is not ne
essarily true, i.e. the pressure (as pressure of a �uid at a time instant or as the

volumetri
 part of the true stress tensor) of a system in equilibrium (say in the absen
e of

pressure gradients), is also a state fun
tion but not 
onserved. There is of 
ourse a variation

of di�erential equations whi
h govern the spatial and temporal 
hange of pressure, and

thus indi
ate a type of 
onservation of pressure, but it is not a generi
 law, whi
h 
an be

5

Refer to Deho� Ref.[

deHo� 2006

℄ for an elaborate survey of state fun
tions and pro
ess variables
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ompared with the �rst law of thermodynami
s. The law 
an be extended for a spatially

inhomogeneous system by 
onsidering the in�nite 
hanges in the kineti
 energy as well.

dU + dK = δQ+ δW (1.43)

Where the kineti
 energy of the system is also taken as a state fun
tion. In this 
ontext,

the internal energy is driven by the me
hani
al stress-strain 
ontra
tions (Helmholtz type

free energy), and the relative thermal �u
tuations. The kineti
 energy is driven by the

averaged spatial rates of the system inertia. Any other magneti
, ele
tri
al or 
hemi
al

potentials whi
h 
an be 
onsidered additionally as 
onserved quantities are omitted here.

The temporal integral form of the equation of 
onservation of energy is,

∫ t+∆t

t
U̇dt+

∫ t+∆t

t
K̇dt =

∫ t+∆t

t
Q̂dt+

∫ t+∆t

t
Ŵdt (1.44)

The notation of di�erential and variational forms of 
orresponding state fun
tions and

pro
ess variables are kept for the equation above. The state fun
tions undergo rate type of


hange, where the pro
ess variables enter the equation system in terms of �uxes, as done in

the previous se
tions. They all 
hange temporally. The temporal lo
al form, whi
h in
lude

the spatial integrations and are all evaluated at the 
urrent spatial 
on�guration. Those

be
ome then;

U̇γ |γ + K̇γ |γ = Q̂γ |γ + Ŵ γ |γ (1.45)

Next, ea
h term is introdu
ed after ea
h other. Like previously, the apparent density spe
i�


internal energy of a 
onstituent is abbreviated with breve symbol, see Ŭγ beneath.

Uγ =

∫

Ωγ

̺γŬγdv (1.46)

The rate is then,

U̇γ |γ =
∂
(∫

Ωγ
̺γŬγdv

)

∂t

∣∣∣∣∣∣
γ

=

∫

Ωγ

˙̺γ |γ Ŭ
γdv +

∫

Ωγ

̺γ
˙̆
Uγ |γ dv +

∫

Ωγ

̺γŬγF−T |Γ : Ḟ |γΓ dv

=

∫

Ωγ

˙̺γ |γ Ŭ
γdv +

∫

Ωγ

̺γ
˙̆
Uγ |γ dv +

∫

Ωγ

̺γŬγdiv (ẋ |γ ) dv

(1.47)

The third term 
an be redu
ed by using the 
ompressible form of the equation of


onservation of mass (1.36),

̺γdiv (ẋ |γ ) Ŭ
γ = ˆ̺γŬγ − ˙̺γ |γ Ŭ

γ
(1.48)

Inserting this expression ba
k into equation (1.47), gives the �nal lo
al form of the rate

of 
hange of internal energy in terms of the apparent density spe
i�
 internal energy and

other partial quantities.

U̇γ |γ =

∫

Ωγ

(
ˆ̺γŬγ + ̺γ

˙̆
Uγ |γ

)
dv (1.49)
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Moving forward, the kineti
 energy 
aused by the average rate of 
hange of 
oordinate of

the 
onstituent 
an be de�ned as;

Kγ =
1

2

∫

Ωγ

̺γẋ |γ · ẋ |γ dv (1.50)

The rate of kineti
 energy 
an be obtained by following similar steps of getting the rate of

internal energy.

K̇γ |γ =
1

2

∂
(∫

Ωγ
̺γẋ |γ · ẋ |γ dv

)

∂t

∣∣∣∣∣∣
γ

=
1

2

∫

Ωγ

ˆ̺γ‖ẋ |γ ‖2dv +

∫

Ωγ

̺γẋ |γ · ẍ |γ dv

(1.51)

The �rst term of the right hand side of equation (1.51) as being the me
hani
al energy, is

nothing but the rate of work done by the external surfa
e tra
tions and body for
es.

Ŵ γ = fγb · ẋ |γ + fγt · ẋ |γ (1.52)

By negle
ting the body for
es at this stage, the me
hani
al work done by the singular a
tion

of surfa
e tra
tions is;

f
γ
t · ẋ |γ =

∫

Bγ

tγ · ẋ |γ da =

∫

Bγ

σγ · nBγ · ẋ |γ da =

∫

Bγ

(
σγT · ẋ |γ

)
· nBγda (1.53)

and by applying the divergen
e theorem at this stage one gets;

f
γ
t · ẋ |γ =

∫

Bγ

(
σγT · ẋ |γ

)
· nBγda =

∫

Ωγ

div
(
σγT · ẋ |γ

)
dv (1.54)

The spatial divergen
e 
an be further simpli�ed by turning into the index notation. For the

equation below, the symmetry property

6

of Cau
hy stress tensor is taken into a

ount,

div
(
σγT · ẋ |γ

)
=

∂

∂xi

(
σγij (ẋ |γ )j

)
=
∂σγij
∂xi

(ẋ |γ )j + σγji
∂ (ẋ |γ )j
∂xi

(1.55)

Ba
k, in terms of tensorial notation,

div
(
σγT · ẋ |γ

)
= div (σγ) · ẋ |γ + σγ : gradẋ |γ

= div (σγ) · ẋ |γ + σγ : L |γ

= div (σγ) · ẋ |γ + σγ : D |γ

(1.56)

Where the se
ond equation results as a 
on
lusion of the de�nition of spatial velo
ity

gradient, and the last equation is due to the orthogonality of Cau
hy stress tensor (as being

symmetri
) to a skew symmetri
 tensor. This pure algebrai
 fa
t is written to state formally

that the spin tensor does not 
ontribute into the �rst law of thermodynami
s.

σγ : W |γ = 0 (1.57)

6

The 
onservation of angular momentum is implied here
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Re
alling the equation of 
onservation of (translational) momentum (1.40)

7

is multiplied

with the spatial velo
ity,

div (σγ) · ẋ |γ = −̺γ
(
f̆
γ
b − ẍ |γ

)
· ẋ |γ + ˆ̺γẋ |γ · ẋ |γ − p̂γ · ẋ |γ (1.58)

Inserting this ba
k into equation (1.56),

f
γ
t · ẋ |γ = −̺γ

(
f̆
γ
b − ẍ |γ

)
· ẋ |γ + ˆ̺γẋ |γ · ẋ |γ − p̂γ · ẋ |γ + σγ : D |γ (1.59)

Together with the previously negle
ted power 
aused by the body for
es, the total global

form of the me
hani
al energy supplied into the system by one 
onstituent be
omes;

Ŵ γ = fγb · ẋ |γ + fγt · ẋ |γ

=

∫

Ωγ

(̺γẍ |γ · ẋ |γ + ˆ̺γẋ |γ · ẋ |γ − p̂γ · ẋ |γ + σγ : D |γ ) dv
(1.60)

The �nal 
ontribution of energy is due to the thermal sour
e and heat input from the

surroundings towards to the system,

Q̂γ =

∫

Ωγ

̺γrdv −

∫

Bγ

qγ · nBγda =

∫

Ωγ

̺γrdv −

∫

Ωγ

div (qγ) dv (1.61)

The integral form of all 
ontributions inserted ba
k into the master equation of �rst law

of thermodynami
s (1.45) leads into,

0 =

∫

Ωγ

(
ˆ̺γŬγ + ̺γ

˙̆
Uγ |γ

)
dv

+
1

2

∫

Ωγ

ˆ̺γ‖ẋ |γ ‖2dv +

∫

Ωγ

̺γẋ |γ · ẍ |γ dv

+

∫

Ωγ

(−̺γẍ |γ · ẋ |γ − ˆ̺γẋ |γ · ẋ |γ + p̂γ · ẋ |γ − σγ : D |γ )

−

∫

Ωγ

̺γrdv +

∫

Ωγ

div (qγ) dv

(1.62)

The homogeneous integrand results in the lo
al form, whi
h was sear
hed.

ˆ̺γŬγ + ̺γ
˙̆
Uγ |γ −

1

2
ˆ̺γ‖ẋ |γ ‖2 + p̂γ · ẋ |γ − σγ : D |γ − ̺γr + div (qγ) = 0 (1.63)

For this �nal form, any sour
e for internal energy is omitted for the sake of simpli
ity.

Before moving into the next se
tion, a last but ne
essary 
omment is let here about the

notation. With the time derivatives for example in

˙̆
Uγ |γ it is not the intent to mean the

material time derivative. The motion, -as expressed previously- is taken to be Lagrangian,

and time derivatives indi
ate only, that the quantities asso
iated with one 
omponent

undergo a 
hange of rate, whi
h is depending on a single 
oordinate, whi
h is shared

by two 
onstituents. Sin
e this single 
oordinate has two di�erent time derivatives (again

not the material or spatial meant here), it should be expressed whi
h time derivative is

taken.

7

This ba
k-insertion of this multipli
ation is ne
essary for further derivations
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1.4.4 The Entropy Inequality-Dissipation of Mixed Field

Until this point, the Balan
e equations of the Governing relations are introdu
ed. In

this sub-se
tion, entropy inequality is introdu
ed shortly. Initially, 
ontinuum me
hani
al

de�nition of entropy is going to be done brie�y. Shortly after, the dissipation inequality,

namely the se
ond law of thermodynami
s is going to be made both verbally and formally.

Immediately after, Helmholtz free energy as a state fun
tion is going to be de�ned. This

results in the so-
alled strain energy density fun
tion, whi
h de�nes the main 
onstitutive

relation

8

of thermoelasti
ity. The other types of state fun
tions, like Entalpy and Gibbs free

energies are omitted in this s
ope.

1.4.4.1 Change of Entropy as a State Fun
tion

The mi
rome
hani
al de�nition of entropy, de�ned as the system in equilibrium has the


on�guration of the most probable ma
rostate, is omitted here, and 
an be �nd elsewhere

Ref.[

D.F.Styer 2007

℄ . The 
ontinuum me
hani
al ma
ros
opi
 de�nition of entropy follows

rather initial postulates and supporting theoreti
al statements. The de�nition starts with

the relation of entropy with the heat supply into the system. For any pro
ess, whi
h is not

ne
essarily a 
y
li
 one, the integral on the left hand side and the fra
tion on the right hand

side are state fun
tions, and the di�erentials of those state fun
tions respe
tively.

∆Srev [A ⇀ B] =

∫ B

A

δQrev
T

dSrev =
δQrev
T

(1.64)

With the subs
ript it is not meant that the heat transfer has reversible properties, rather

it is meant that the pro
ess from state A to state B has took pla
e reversibly, i.e. without

dissipation or loss of energy. Energy is globally not lost, �rst law of thermodynami
s

holds, but it 
an be still dissipated to the surroundings, or 
onverted in another form.

The situation in 
orrelation (1.64) 
an be partially a
hieved for slow enough, aka almost

reversible pro
esses.

Remembering the de�nition of a state fun
tion, it is not only a de
laration that the

temperature spe
i�
 variation of heat absorbtion of equation (1.64) is a state fun
tion.

It 
an be shown Ref.[

R.E.Sonntag 1998

℄ i.e. for Carnot 
y
le that the 
y
li
 integral of the

aforementioned quantity for reversible pro
ess has zero value. Again, the reversible pro
ess

should ful�ll the following 
riteria for a 
y
le;

∆Srev [A ⇀ B] + ∆Srev [B ⇀ C] + ∆Srev [C ⇀ D] + ∆Srev [D ⇀ A] = 0 (1.65)

Sin
e the integral is a state fun
tion, for two di�erent pro
esses one being reversible, if

the amount of heat ex
hange and operation temperature is same the other irreversible, the


hange of entropy should be the same.

∆Sirr [A ⇀ B] = ∆Srev [A ⇀ B] (1.66)

The se
ond law states that, for any irreversible pro
ess, there is a transfer and produ
tion of

entropy, where the produ
tion is always greater then zero. The notion of positive produ
tion

8

potential fun
tion of the elasti
 part of pseudo-elasti
ity; material law
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is interpreted in statisti
al physi
s as most probable tends to happen, and thus indi
ates a

dire
tion of the real pro
esses. For 
ontinuum me
hani
al de�nition the di�erential lo
al

form, the in�nite 
hange of entropy of a system Ref.[

deHo� 2006

℄,

dSsysirr = dStransirr + dSprodirr dSprodirr > 0 (1.67)

The verbal de�nition of se
ond law states that, "There is a property of the universe, 
alled

its entropy, whi
h always 
hanges in the same dire
tion no matter what pro
ess o

ur

Ref.[

deHo� 2006

℄". The main agreement whi
h 
an be also phenomenologi
ally proven is

that, the irreversible pro
ess has an entropy transfer and produ
tion term. On the other

side, the system undergoing a reversible pro
ess 
an only, absorb the entropy.

∆Sirr [A ⇀ B] = ∆Stransirr [A ⇀ B] + ∆Sprodirr [A ⇀ B]

= ∆Srev [A ⇀ B] = ∆Stransrev [A ⇀ B] + ∆Sprodrev [A ⇀ B]

= ∆Stransrev [A ⇀ B]

(1.68)

Equation (1.67) together with equation (1.68) leads into the following 
on
lusion,

∆Stransirr [A ⇀ B] = ∆Stransrev [A ⇀ B]−∆Sprodirr [A ⇀ B]

=⇒ ∆Stransirr [A ⇀ B] < ∆Stransrev [A ⇀ B]
(1.69)

Whi
h results into the following integral and di�erential forms,

∫ B

A

δQirr
T

<

∫ B

A

δQrev
T

δQirr
T

<
δQrev
T

= dS (1.70)

First and se
ond inequalities show that, for isothermal pro
esses, the reversible heat transfer

takes the maximum. For 
y
li
 pro
esses, the 
hange in state fun
tion entropy is zero. This

gives the well known Clausius Inequality in integral form,

∮ A

A

δQ

T
6 0 (1.71)

The stri
tness of the inequality is removed, sin
e there is no information about the

reversibility of the heat transfer made. The time integral form of equations (1.70) and

(1.71) are,

∫ t+∆t

t

Q̂

T
dt 6

∫ t+∆t

t
Ṡdt =⇒

Q̂γ

T

∣∣∣∣∣
γ

6 Ṡγ |γ (1.72)

Where the 
omposition and 
orresponding time derivatives are 
onsidered in the last form of

the equation. This rate form is taken to be 
onsistent with the previous balan
e equations,

namely, 
onservation of mass, translational momentum and the internal and kineti
 energy

sum.
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1.4.4.2 Combined Statement and Helmholtz Free Energy

From the de�nition of entropy, for as reversible pro
ess, the pro
ess variation of total heat

transfer and produ
tion of the system 
an be expressed in terms of temperature and entropy

di�erential as follows,

δQrev = TdS (1.73)

Inserting this ba
k into the �rst law of thermodynami
s, equation (1.42), one gets,

dU = TdS + δW (1.74)

This equation, where the alternative energy sour
es are omitted, is known as the 
ombined

statement of �rst and se
ond laws of thermodynami
s. The state fun
tion of Helmholtz

free energy and its di�erential are de�ned as

9

,

A = U − TS =⇒ dA = dU − SdT − TdS (1.75)

Inserting the 
ombined statement into the Helmholtz free energy;

dA = TdS + δW − SdT − TdS = δW − SdT (1.76)

Whi
h indi
ates that the di�erential of Helmholtz free energy for isothermal and reversible

pro
esses is balan
ed by the variations of me
hani
al work (A:Arbeit) done on to the system.

This is most probably the main reason that in the theory of elasti
ity, the so 
alled strain

energy density fun
tion is abbreviated as the Helmholtz free energy density state fun
tion.

1.4.4.3 Se
ond law of Thermodynami
s for the two phase mixture

In this part, another form of the 
ombined statement of se
ond and �rst law is done. This

statement is performed by 
onsidering the se
ond law of Thermodynami
s as the master

relation, and thus results in an inequality. The strain energy density fun
tion is enfor
ed

into this inequality in order to quantify admissible ranges for positive dissipation. Re
alling

the temporal and spatial di�erential form of the se
ond law (1.72),

Q̂γ

T γ
6 Ṡγ |γ (1.77)

The temperature spe
i�
 total heat gain, 
onsisting of a heat sour
e and heat transfer

be
omes then,

Q̂γ

T γ
=

∫

Ωγ

1

T γ
̺γrdv −

∫

Bγ

qγ

T γ
· nBγda =

∫

Ωγ

1

T γ
̺γrdv −

∫

Ωγ

div

(
qγ

T γ

)
dv (1.78)

The symbol of evaluated at:| is not anymore used for pro
ess variables of heat and work,

sin
e they are anyway given in rate form. The apparent, or partial density spe
i�
 entropy

has the form,

Sγ =

∫

Ωγ

̺γ s̆γdv (1.79)

9

By means of di�erentiation by parts
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The rate of this quantity 
an be obtained by using the 
onservation of mass,

Ṡγ |γ =

∫

Ωγ

(
ˆ̺γ s̆γ + ̺γ ˙̆sγ |γ

)
dv (1.80)

Previously, the 
onstituents of the mixtures were assumed to obey the balan
e laws

independent of ea
h other. Ea
h 
onstituent had its own 
onservation of mass equation,

translational momentum balan
e equation and �nally, 
ombined internal and kineti
 energy


onservation equation. Some of the intera
tions in between the 
onstituents are donated by

momentum or energy input to the system, bu their origin were not addressed. In opposite,

for the 
ase of entropy inequality, the mixture is 
onsidered as a whole.

∑

γ:f,s

Ṡγ |γ >
∑

γ:f,s

∫

Ωγ

1

T γ
̺γrdv −

∑

γ:f,s

∫

Ωγ

div

(
qγ

T γ

)
dv (1.81)

The lo
al form together with equation (1.80) be
omes,

∑

γ:f,s

(
ˆ̺γ s̆γ + ̺γ ˙̆sγ |γ −

1

T γ
̺γr + div

(
qγ

T γ

))
> 0 (1.82)

The Helmholtz free energy in the integral form, together with spatial mass free energy,

internal energy and entropy, rewritten again,

Aγ = Uγ − T γSγ

Aγ =

∫

Ωγ

̺γΨ̆γdv

Uγ =

∫

Ωγ

̺γŬγdv

Sγ =

∫

Ωγ

̺γ s̆γdv

(1.83)

The strain energy density fun
tion

10

, and the rate of 
hange of it are given then in lo
al

form,

Ψ̆γ = Ŭγ − T γ s̆γ (1.84a)

˙̆
Ψγ |γ =

˙̆
Uγ |γ − Ṫ γ |γ s̆

γ − ˙̆
s
γ |γ T

γ
(1.84b)

The se
ond term in equation (1.82) 
an be dedu
ed from equation (1.84b)

̺γ ˙̆sγ |γ = −̺γ
˙̆
Ψγ |γ
T γ

+ ̺γ
˙̆
Uγ |γ
T γ

− ̺γ
Ṫ γ |γ s̆

γ

T γ

= (T γ)−1
(
−̺γ

˙̆
Ψγ |γ + ̺γ

˙̆
Uγ |γ − ̺γṪ γ |γ s̆

γ
) (1.85)

10

The strain energy fun
tions is de�ned as the apparent density (in spatial domain) spe
i�


Helmholtz free energy of the 
onstituent
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The se
ond term of equation (1.85) 
an be repla
ed by the rate of 
hange of internal energy

from the equation of 
onservation of energy;

(T γ)−1 ̺γ
˙̆
Uγ |γ = (T γ)−1

(
− ˆ̺γŬγ +

1

2
ˆ̺γ‖ẋ |γ ‖2 − p̂γ · ẋ |γ

+σγ : D |γ + ̺γr − div (qγ))

(1.86)

After su

essful repla
ement, the following form for the rate of partial density spe
i�


entropy rate is obtained;

̺γ ˙̆sγ |γ = (T γ)−1

(
−̺γ

˙̆
Ψγ |γ − ˆ̺γŬγ +

1

2
ˆ̺γ‖ẋ |γ ‖2 − p̂γ · ẋ |γ

+σγ : D |γ + ̺γr − div (qγ)− ̺γṪ γ |γ s̆
γ
) (1.87)

Inserting this expression into the �nal dissipation inequality (1.82) yields;

∑

γ:f,s

(
Ṡγ |γ −

Q̂γ

T γ

)
=
∑

γ:f,s

(T γ)−1

[
T γ ˆ̺γ s̆γ − ̺γ

˙̆
Ψγ |γ − ˆ̺γŬγ +

1

2
ˆ̺γ‖ẋ |γ ‖2 − p̂γ · ẋ |γ

+σγ : D |γ + ̺γr − div (qγ)− ̺γ Ṫ γ |γ s̆
γ − ̺γr + T γdiv

(
qγ

T γ

)]
> 0

(1.88)

Further insertion of equation (1.84b), gives one the internal energy-free version of the

inequality;

∑

γ:f,s

(
Ṡγ |γ −

Q̂γ

T γ

)
=
∑

γ:f,s

(T γ)−1

[
− ˆ̺γΨ̆γ − ̺γ

˙̆
Ψγ |γ +

1

2
ˆ̺γ‖ẋ |γ ‖2 − p̂γ · ẋ |γ

+σγ : D |γ − div (qγ)− ̺γṪ γ |γ s̆
γ + T γdiv

(
qγ

T γ

)]
> 0

(1.89)

Heat �ux related quantities 
an be further redu
ed by spreading the divergen
e of

temperature spe
i�
 heat �ux term as follows;

T γdiv

(
qγ

T γ

)
= T γ

∂
(
qγi (T

γ)−1
)

∂xi
= div (qγ)− (T γ)−1 grad (T γ) · qγ (1.90)

Repla
ing this result of this term;

∑

γ:f,s

(
Ṡγ |γ −

Q̂γ

T γ

)
=
∑

γ:f,s

(T γ)−1

[
− ˆ̺γΨ̆γ − ̺γ

˙̆
Ψγ |γ +

1

2
ˆ̺γ‖ẋ |γ ‖2 − p̂γ · ẋ |γ

+σγ : D |γ − ̺γṪ γ |γ s̆
γ −

grad (T γ)

T γ
· qγ
]
> 0

(1.91)
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In 
ommon parenthesis of partial density and partial density input;

∑

γ:f,s

(
Ṡγ |γ −

Q̂γ

T γ

)
=
∑

γ:f,s

(T γ)−1

[
̺γ
(
−

˙̆
Ψγ |γ − Ṫ γ |γ s̆

γ
)
+ ˆ̺γ

(
−Ψ̆γ +

1

2
‖ẋ |γ ‖2

)

−p̂γ · ẋ |γ +σγ : D |γ −
grad (T γ)

T γ
· qγ
]
> 0

(1.92)

The equation above is known as a spe
ial version of Clausius-Duhem inequality. Stress

tensors, spatial rate of the deformation gradients and strain energy fun
tions are involved

in this version of the governing relation. The main assumptions 
an be applied on this


ombined version of se
ond and �rst laws, and lead into a weak form, whi
h 
an be merged

into the numeri
al methods for solving partial di�erential equations.

1.5 Assumptions, Narrowed Relations and Constitutive

Restri
tions

In this se
tion, the previously given governing relations are simpli�ed a

ording to the

assumptions, whi
h will be postulated in this se
tion. Immediately after, the 
onsisten
y of

number of �eld variables with the number of equations are 
ompared. Sin
e the number

of equations in hand are stri
tly depending on the assumptions done (under assumptions

done, energy equation 
an be redu
ed to the balan
e of momentum), the impa
t on the

determinability of the system is dis
ussed.

1.5.1 Assumptions

The list of assumptions done are,

Assumption1: The solid phase of the mixture is taken to be fully in
ompressible. The

realisti
 density of the solid phase does not undergo temporal 
hanges.

˙̺sR |s = 0 (1.93)

Assumption2: Similarly, the �uid phase of the mixture is taken to be fully in
ompressible.

The realisti
 density of the �uid phase does not undergo temporal 
hanges either.

˙̺fR |f = 0 (1.94)

Assumption3: The temporal di�erential of the temperature �eld is negle
ted. The

pro
esses are assumed to �nd pla
e isothermally, for both phases, the rate of 
hange

of the temperature is ignored.

Ṫ γ |γ = 0 (1.95)
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Assumption4: The pro
ess is assumed to take pla
e in equal temperatures for the solid and

�uid phases. The temperature gradients are not only negle
ted in between phases,

but also in the phases.

T s = T f = T grad (T γ) = 0 (1.96)

Assumption5: The pro
ess is quasi-stati
 for both phases.

ẍγ = 0 (1.97)

Assumption6: No mass supply into any phase.

ˆ̺γ = 0 (1.98)

Assumption7: No body for
es applied on the system for any 
onstituent.

f̆ sb =
˘
f
f
b = 0 (1.99)

1.5.2 Narrowed Governing Relations

In this subse
tion the simpli�
ations a

ording to the assumptions introdu
ed above are

presented.

Simpli�
ation 1: Saturation 
ondition and partial density equations

∑

γ

nγ = ns + nf = 1 ̺s = ns̺sR ̺f = nf̺fR (1.100)

Simpli�
ation 2: Generi
 equations for 
onservation of mass for in
ompressible materials

˙̺sR = 0 ⇒ ṅs|s + nsdiv (ẋ |s ) =
ˆ̺s

̺sR
(1.101a)

˙̺fR = 0 ⇒ ṅf
∣∣∣
f
+ nfdiv (ẋ |f ) =

ˆ̺f

̺fR
(1.101b)

With the further assumption of no mass sour
e;

ˆ̺s = 0 ⇒ ṅs|s + nsdiv (ẋ |s ) = 0 (1.102a)

ˆ̺f = 0 ⇒ ṅf
∣∣∣
f
+ nfdiv (ẋ |f ) = 0 (1.102b)

Simpli�
ation 3: The generi
 balan
e of translational momentum equations,

div (σs) + ̺s
(
f̆ sb − ẍ |s

)
− ˆ̺sẋ |s + p̂s = 0 (1.103a)

div
(
σf
)
+ ̺f

(
˘
f
f
b − ẍ |f

)
− ˆ̺f ẋ |f + p̂f = 0 (1.103b)
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With the assumptions of quasi-stati
 pro
ess, la
k of body for
es and la
k of mass

sour
e the translational balan
e of momentum equation set redu
e to;

ˆ̺s = 0, f̆sb = 0, ẍ |s = 0 ⇒ div (σs) + p̂s = 0 (1.104a)

ˆ̺s = 0,
˘
f
f
b = 0, ẍ |f = 0 ⇒ div

(
σf
)
+ p̂f = 0 (1.104b)

Simpli�
ation 4: The generi
 inequality of the Clausius-Duhem,

∑

γ:f,s

(
Ṡγ |γ −

Q̂γ

T γ

)
=
∑

γ:f,s

(T γ)−1

[
̺γ
(
−

˙̆
Ψγ |γ − Ṫ γ |γ s̆

γ
)
+ ˆ̺γ

(
−Ψ̆γ +

1

2
‖ẋ |γ ‖2

)

−p̂γ · ẋ |γ +σγ : D |γ −
grad (T γ)

T γ
· qγ
]
> 0

(1.105)

The la
k of mass input, la
k of temperature gradients, and the assumption of

isothermal pro
ess redu
es the dissipation inequality as,

ˆ̺γ = 0, grad (T γ) = 0, Ṫ γ |γ = 0 T = T s = T f ⇒

∑

γ:f,s

Ḋγ |γ =
∑

γ:f,s

T−1
[
σγ : D |γ − ̺γ

˙̆
Ψγ |γ +−p̂γ · ẋ |γ ] > 0

(1.106)

Simpli�
ation 5: The simple agreement of �uid solid intera
tion, requires the momentum

inputs to be balan
ed by ea
h other.

p̂s + p̂f = 0 (1.107)

1.5.3 Constitutive Restri
tions

The equations in hand for solving initial/boundary value problem -whi
h is not expli
itly

stated yet- are 3 equations from the saturation and partial density relations, 2 
onservation

of mass equations, 3 of ea
h in total 6 
onservation of translational momentum equations,

and �nally 3 equations from the momentum intera
tion balan
e of 
onstituents. A

ording

to the sum, in total 14 equations in lo
al form are present. Additionally, the real densities in

material 
oordinates of the 
onstituents are known, namely 2 equalities for ̺s, ̺f are in hand.

Those 2 equalities from the assumption of full in
ompressibility

11

, are not 
ounted on the

side of knowns. At �nal stage, one has 16 equations. The balan
e of angular momentum

requires the true stress tensors σs and σf to be symmetri
. Instead of 
onsidering the

balan
e of angular momentum equation, one 
an admit that the number of �eld variables

of ea
h stress tensor to be 6, instead of 9. Furthermore, it should be stated here that, the

balan
e of energy is not 
onsidered in this 
ontext, be
ause in the absen
e of ele
tri
al,

thermal and 
hemi
al e�e
ts, it does not supply more information then the 
onservation of

11

sin
e these are enfor
ed 
ompletely into the other balan
e/unbalan
e equations/inequalities
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translational momentum equation does.

The number of �eld variables are, 6 from the �uid and solid mappings (x |f and x |f ),

12 from the �uid and solid stresses (σs and σf ), 6 from the �uid and solid momentum

inputs (p̂s and p̂f ), 2 from the �uid and solid spatial partial densities (nf and nf ), 2 spatial

(yet material) �uid and solid real densities (ρfR and ρsR) and lastly 2 variables from the

apparent densities of �uid and solid phases (̺f and ̺s). At the end, a

ording to the total

sum, one has 30 �eld variables.

In me
hani
s, the equations whi
h are 
losing the aforementioned signi�
antly

underestimated system (16-30=-14), are known to be the 
onstitutive relations. To en
lose

the system, there are stress to gradients of mappings relationship postulates to be made.

The nature of the 
onstitutive law, is usually determined by the Helmholtz free energy

fun
tion for the solids, and follows empiri
al statements for the 
ase of �uids. The free

energies are to be found in the entropy inequality and balan
e of energy equation, whi
h

are not 
ounted to be one of the �eld equations, and thus not 
onsidered as a �eld variable

here. Therefore, the resulting fa
t is, there are in total 12 (ea
h 6) postulates made de�ning

those 
onstitutive relationships.

σs = σs (Grad |S x, . . . ) σf = σf (Grad |F x, . . . ) (1.108)

However, this fun
tion might be depending on further internal parameters, or �eld variables

as already indi
ated. The same postulate 
an be also made for one of the momentum

inputs, fore instan
e to the �uid 
onstituent only, (p̂f = p̂f (. . . )). The sort of dependen
y

is 
onsistently postulated in the following se
tions. A similar postulate is not done here

for the 
ase of solid phase, not to 
ause a 
on�i
t with the intera
tion equation, namely

Narrowed Governing Relations number 6.

At the end, 12 true stress relations and 3 Ansatz relationships for the momentum input

to the �uid (in total 15) are present. The �nal sum as the number of knowns minus the

number of unknowns is, (16+15-30=-1), indi
ates that the system is singular. To 
lose

this redundan
y, an additional unknown will be introdu
ed in the next se
tions, whi
h will

enfor
e the saturation, and 
lose the 
onstitutive dependen
y in equation (1.108) and the

�uid momentum input.

1.5.4 Dar
y Velo
ity, Saturation Rate and Pore Pressure

The de�nitions whi
h are done in this subse
tion are ne
essary for 
onstitutive modeling,

building the weak form, and the �nite element formulation. The natural element formulation

are taken under 
onsideration in a separate 
hapter (Ch.[5℄).
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1.5.4.1 Dar
y Velo
ity

Dar
y velo
ity

12

in soil me
hani
s has been known as the velo
ity of the �uid mole
ules in

the pores. In the 
ontext of theory of mixtures, Dar
y velo
ity is de�ned as the relative and

thus obje
tive spatial velo
ity of �uid 
onstituent observed by the solid 
onstituent.

wfs = ẋ |f − ẋ |s (1.109)

It (equation (1.109)) is spatially and temporally obje
tive, independent of the rate of the

global 
oordinate observer.

1.5.4.2 Rate Form of the Saturation Condition

Rate form of the following 
ondition is ne
essary to move on;

ns + nf = 1 (1.110)

It is self-evident that the solid spatial rate form is homogeneous.

ṅs |s + ṅf |s = 0 (1.111)

The rates of solid and volume fra
tions with respe
t to the solid �uid velo
ities are,

ṅs |s =
∂ns

∂x
· ẋ |s = grad (ns) · ẋ |s ṅf |f =

∂nf

∂x
· ẋ |f = grad

(
nf
)
· ẋ |f

ṅs |f =
∂ns

∂x
· ẋ |f = grad (ns) · ẋ |f ṅf |s =

∂nf

∂x
· ẋ |s = grad

(
nf
)
· ẋ |s

(1.112)

The relative rate of �uid volume fra
tion 
an be represented in terms of the Dar
y velo
ity,

ṅf |f − ṅf |s =
∂nf

∂x
· ẋ |f −

∂nf

∂x
· ẋ |s =

∂nf

∂x
· (ẋ |f − ẋ |s ) = grad

(
nf
)
·wfs

(1.113)

Inserting the solid rate of the �uid volume fra
tion ba
k into the equation (1.111),

ṅs |s + ṅf |f − grad
(
nf
)
·wfs = 0 (1.114)

The solid rate of the solid volume fra
tion, and the �uid rate of the �uid volume fra
tion


an be well re
alled from the redu
ed version of 
onservation of mass equations.

ṅs|s = −nsdiv (ẋ |s ) = −nstr (grad (ẋ |s )) = −nstr (L |s ) = −nstr (D |s ) (1.115a)

ṅf
∣∣∣
f
= −nfdiv (ẋ |f ) = −nf tr (grad (ẋ |f )) = −nf tr (L |f ) = −nf tr (D |f ) (1.115b)

Where, the se
ond equality is a tensorial identity, the third is the de�nition of spatial velo
ity

gradient whi
h is de�ned previously, and �nal equality is another basi
 tensorial identity,

12

Some writers Ref.[

Smith 2013

℄ prefer the term seepage, some Ref.[

J.W.Delleur 2007

℄ prefer pore velo
ity.

Here the very initial Ref.[

H.Dar
y 1856

℄ de�nition Dar
y velo
ity is taken.



1.5. Assumptions, Narrowed Relations and Constitutive Restri
tions 25

whi
h states that the skew symmetri
 tensors are tra
e-free. Inserting the last form of the

volume fra
tion rates into the equation (1.114),

nsD |s : I + nfD |f : I + grad
(
nf
)
·wfs = 0 (1.116)

gives the �nal form of the rate form of the saturation equation in terms of the stret
h

tensors, gradient of the �uid volume fra
tion and the relative �uid velo
ity. This equation

(1.116) is used to de�ne permeability and enables to move on with the weak form of the

equation system.

1.5.4.3 E�e
tive Stress and Pore Pressure

Closure of the system of equations should not violate the se
ond law of thermodynami
s,

whi
h is not 
onsidered in the set of �eld (in)equalities. Re
alling the narrowed version of

the Clausius-Duhem inequality after 
onsidering the assumptions,

σs : D |s − ̺s
˙̆
Ψs |s +−p̂s · ẋ |s + σf : D |f − ̺f

˙̆
Ψf
∣∣∣f +−p̂f · ẋ |f > 0 (1.117)

Rearranging the terms and imposing the �rst repla
ement below,

−p̂s · ẋ |s − p̂f · ẋ |f = −p̂f · (ẋ |s − ẋ |f ) = −p̂f ·wfs
(1.118a)

−̺s
˙̆
Ψs |s − ̺f

˙̆
Ψf |f + σs : D |s + σ

f : D |f − p̂f ·wfs
> 0 (1.118b)

The rate of strain energy density fun
tion

˙̆
Ψs |s is de�ned per spatial density, re
all equation

(1.83). The spatial volume spe
i�
 Helmholtz free energy is donated by grave hat notation.

˙̀
Ψs |s = ̺s

˙̆
Ψs |s (1.119)

This assumption is a 
on
lusion of the fa
t that, the rate of the Helmholtz energy is free,

not the energy, whi
h is arbitrarily integrated in time. De�ning the Helmholtz free energy

�ux, similar to equation (1.83) one gets;

Ȧs =

∫

Ωs

̺γ
˙̆
Ψsdv =

∫

Ωs

˙̀
Ψs |s dv =

∫

ΩS

Ψ̇s |s dV
S

(1.120)

The above statement of (1.120) is 
onform with (1.84a) and (1.84b). In many 
ontext,

the Helmholtz free energy is meant to be material volume spe
i�
 one, as shown in the last

integral of equation (1.120). Together with the last 
omments, equation (1.118b) 
an be

represented by the spatial volume spe
i�
 free energies as follows,

−
˙̀
Ψs |s −

˙̀
Ψf |f + σs : D |s + σ

f : D |f − p̂f ·wfs
> 0 (1.121)

Re
alling the rate form of the saturation equation (1.116), over-s
aling it with an arbitrary

parameter λ, and adding it to the last form of the entropy inequality leads into;

−
˙̀
Ψs |s −

˙̀
Ψf |f

+ (σs + λnsI) : D |s +
(
σf + λnfI

)
: D |f

+
(
λgrad

(
nf
)
− p̂f

)
·wfs

> 0

(1.122)
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Remembering that the �uid part is fully in
ompressible and postulating another intermediate

assumption that the �ow is invis
id, there is only the rate of 
urrent volume spe
i�


Helmholtz free energy is remaining

13

,

˙̀
Ψs |s = (det (F |S ))

−1 Ψ̇s |s = (det (F |S ))
−1 ∂Ψ

∂C |S
:

˙(
F T |S · F |S

)∣∣∣
s

= (det (F |S ))
−1 ∂Ψ

∂C |S
:
(
Ḟ
T
|sS · F |S + F T |S · Ḟ |sS

)

= (det (F |S ))
−1 ∂Ψ

∂C |S
:
(
F T |S · LT |s · F |S + F T |S ·L |s · F |S

)

= (det (F |S ))
−1 ∂Ψ

∂C |S
:
(
F T |S · 2D |s · F |S

)

= 2 (det (F |S ))
−1

[
F |S ·

∂Ψ

∂C |S
· F T |S

]
: D |s

=
(
J−1 |S F |S · SSe · F T |S

)
: D |s = σse : D |s

(1.123)

The initial repla
ement of the determinant of solid deformation gradient results from

equation (1.120). After this 
onversion, the time derivative 
an be taken with respe
t

to the strain tensors with material 
oordinate base ve
tors. The part of the stress tensor

depending on the material-spe
i�
 free energy fun
tion is the so 
alled e�e
tive stress tensor.

Ba
k substitution of e�e
tive stress into the last version of dissipation inequality results in;

(σs + λnsI − σse) : D |s +
(
σf + λnfI

)
: D |f +

(
λgrad

(
nf
)
− p̂f

)
·wfs

> 0

(1.124)

A

ording to the de�nition of e�e
tive stress and pore pressure, the �rst two terms in the

equation above are free of dissipation. The true total stresses of solid and �uid 
onstituents

are then,

σs = σse − λnsI σf = −λnfI (1.125)

The meaning of parameter lambda, introdu
ed for 
losing the slightly overestimated system

of equations gets 
learness now. The parameter a
ts as a penalty parameter of pressure,

redu
ing the e�e
tive stress, whi
h is proportional to the volume fra
tion of ea
h 
omponent.

The initial expe
tation of that the volume fra
tion is proportional with the pore pressure

and inversely proportional with the total stress of the solid phase is in fa
t a de
eption. One


an not expe
t high pore pressures from almost (densely) �lled void-free 
ontinuum solid.

The opposite of this 
an be explained by means of the intrinsi
 dependen
e of parameter

lambda to the other �eld parameters and roleplayers, volume fra
tion being among them.

Returning ba
k, the dissipation 
an be summarized as;

(
λgrad

(
nf
)
− p̂f

)
·wfs

> 0 (1.126)

13

The intermediate steps of the equation (1.123) 
an be veri�ed by any tensor algebra referen
e,

su
h as Ref.[

J.Bonet 2008

℄
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1.5.4.4 Momentum input 
onstitutive law

For the postulate of 
onstitutive law for the momentum input to the �uid 
onstituent,

one should 
onsider the thermodynami
 
onsisten
y, i.e. no violation of Dar
y velo
ity

dependent dissipation inequality. One postulate

14


an be done a

ordingly,

p̂f = λgrad
(
nf
)
− βwfs

(
λgrad

(
nf
)
− p̂f

)
·wfs = β

∣∣∣wfs
∣∣∣
2
> 0 ⇐ β > 0

(1.127)

Re
alling the momentum equation for �uid with body for
es,

div
(
σf
)
+ ̺f

˘
f
f
b + p̂f = 0 (1.128)

A

ording to this equation, by repla
ing the �uid true stress with �uid pore pressure the

momentum input be
omes,

p̂f = div
(
λnfI

)
− ̺f

˘
f
f
b (1.129)

In indi
ial notation,

∂
(
λnfδij

)

∂xi
= nfgrad (λ)i δij + λgrad

(
nf
)
i
δij = nfgrad (λ)j + λgrad

(
nf
)
j
(1.130)

Inserting this expression ba
k into the 
onstitutive law for the momentum input to the �uid

gives the �nal expression for the determination of the Dar
y velo
ity,

nfgrad (λ) + λgrad
(
nf
)
− ̺f

˘
f
f
b = λgrad

(
nf
)
− βwfs

=⇒ wfs = β−1

(
̺f

˘
f
f
b − nfgrad (λ)

)
(1.131)

1.6 Weak Forms

In this se
tion, the weak forms of 
onservations of balan
e, translational momentum and

mass di�erential equations are introdu
ed after ea
h other. The weak forms in spatial


oordinates are pulled ba
k into solid material 
oordinates, and the 
umulative weak forms

are presented in terms of the solid material 
oordinates.

1.6.1 Weak Form of Balan
e of Translational Momentum in Solid

Material Coordinates

For a quasi-stati
 pro
ess, the balan
e of momentum equations in the absen
e of mass

input and in the presen
e of body for
es be
ome,

div (σs) + ̺sf̆ sb + p̂s = 0 (1.132a)

div
(
σf
)
+ ̺f

˘
f
f
b + p̂f = 0 (1.132b)

14

The parameter β postulated here 
an be seen as the Impermeability and depends on the 
urrent

morphology of the 
ontinuum neighborhood.
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The virtual power prin
iple gives the variational power of ea
h balan
e equation under

variational 
hanges of spatial velo
ities.

δẆ s =

∫

Ωs

(
div (σs) + ̺sf̆sb + p̂s

)
· δẋ |s dv = 0

δẆ f =

∫

Ωf

(
div
(
σf
)
+ ̺f

˘
f
f
b + p̂f

)
· δẋ |f dv = 0

(1.133)

Sin
e the stresses are fun
tions of deformation gradients, this weak form in
ludes se
ond

gradients of the displa
ements and 
an be further weakened by integration by parts. The

virtual power supplied by the divergen
e of true stress is,

div (σγ) · δẋ |γ = div
(
σγT · δẋ |γ

)
− σγ : δD |γ (1.134)

The more weakened version of virtual power equation set be
omes;

∫

Ωs

(σs : δD |s ) dv =

∫

Ωs

div
(
σsT · δẋ |s

)
dv +

∫

Ωs

̺sf̆sb · δẋ |s dv +

∫

Ωs

p̂s · δẋ |s dv

∫

Ωf

(
σf : δD |f

)
dv =

∫

Ωf

div
(
σfT · δẋ |f

)
dv +

∫

Ωf

̺f
˘
f
f
b · δẋ |f dv +

∫

Ωf

p̂f · δẋ |f dv

(1.135)

By the appli
ation of Gauss divergen
e theorem, the �rst integrals on the right hand side

of the equations 
an be represented by means of the surfa
e tra
tions,

∫

Ωs

(σs : δD |s ) dv =

∫

Ωs

ts · δẋ |s da+

∫

Ωs

̺sf̆ sb · δẋ |s dv +

∫

Ωs

p̂s · δẋ |s dv

∫

Ωf

(
σf : δD |f

)
dv =

∫

Ωf

tf · δẋ |f da+

∫

Ωf

̺f
˘
f
f
b · δẋ |f dv +

∫

Ωf

p̂f · δẋ |f dv

(1.136)

The rate form of the saturation 
ondition 
ombined with the balan
e of 
onservation of

mass 
an be formulated as follows,

I : nsD |s + I : n
fD |f +

1

3
(I : I)

(
grad

(
nf
)
·wfs

)
= 0 (1.137)

With the dot produ
t of �uid true stress tensor,

nsσf : D |s + nfσf : D |f +
tr
(
σf
)

3

(
grad

(
nf
)
·wfs

)
= 0 (1.138)

The virtual power 
aused by the �uid stress 
an be represented in terms of the virtual rate

of solid spin tensor as,

σf : δD |f = −
ns

nf
σf : δD |s + λnf

(
grad

(
nf
)
· δwfs

)

= σf : δD |s −
1

nf
σf : δD |s + λnf

(
grad

(
nf
)
· δwfs

)

= σf : δD |s + λI : δD |s + λnf
(
grad

(
nf
)
· δwfs

)
(1.139)
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Repla
ing the left hand side of equation (1.136) with equation (1.139) leads a 
ompli
ated


umulative weak form. It is in general not suggested

15

to punish the strong form, namely

the original balan
e of equation of mass and translational momentum with the variations of

the realisti
 test fun
tions. Instead, both strong forms (�uid and solid) are proje
ted onto

the test fun
tions of variations of the solid velo
ity, to get more weaker, however in a more

simpli�ed manner. The a

umulated virtual power equation be
omes thereafter,

δẆ = δẆ s + δẆ f

=

∫

Ωs

(
div (σs) + ̺sf̆ sb + p̂s + div

(
σf
)
+ ̺f

˘
f
f
b + p̂f

)
· δẋ |s dv = 0

(1.140)

Imposing the fa
t that the momentum input should be 
an
eled by ea
h other, assuming

that the body for
es are equal, and spreading the divergen
e operator into the total sum of

true stresses with e�e
tive stresses and pore pressures,

δẆ =

∫

Ωs

(
div
(
σse − nsλI − nfλI

)
+ f̆ b

(
̺s + ̺f

))
· δẋ |s

=

∫

Ωs

(
div (σse − λI) + f̆ b

(
̺s + ̺f

))
· δẋ |s dv = 0

(1.141)

Following the same pro
edure,

∫

Ωs

((σse − λI) : δD |s ) dv =

∫

Ωs

t̀
s
· δẋ |s da+

∫

Ωs

(
̺s + ̺f

)
f̆ b · δẋ |s dv (1.142)

Where the tra
tion ve
tor is not 
orresponding to the real true stress tra
tion. Similarly,

although there is no dire
t physi
al 
orresponden
e (or not straightly expressible if there is

any), it is assumed that there is a mapping exists in between the material �uid and solid


oordinates

16

. A

ordingly, there is a tangent mapping in between those two material

tangents,

F |SF =
∂X |S
∂X |F

=

(
∂x |s
∂X |S

)−1

·
∂x |f
∂X |F

= F−1 |S · F |F (1.143)

Sin
e the pull-ba
k operation is kinemati
ally multipli
ative, �rst pulling ba
k the 
urrent

�uid tensors to the �uid material tensors, and then pulling ba
k to those �uid material

tensors into the solid material 
oordinates is identi
al to pulling ba
k all the tensors from


urrent 
oordinates to the solid material 
oordinates. By doing so, the virtual internal power

be
omes;

δẆ int =

∫

ΩS

((
Sse − λC−1

)
: δĖ |s

)
dV S

=

∫

ΩS

1

2

((
Sse − λC−1

)
: δĊ |s

)
dV S

(1.144)

15

the writer did not observe referen
es, whi
h performs the a
tion other way around

16

The physi
al existen
e of this mapping would indi
ate that one referen
e phase turns into other

referen
e phase, whi
h indi
ates in fa
t a very fast 
hemi
al phase transition. This type of pro
esses

are negle
ted, as stated in the se
tion of Ch.[1.5℄. Nevertheless, a mathemati
al tangent mapping is

de�nable and ne
essary, and thus de�ned.
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1.6.2 Weak Form of Conservation of Mass

As done for the 
onservation of translational momentum, for the 
onservation of mass, the

integral form of the 
umulative sum of the mixture is 
onsidered.

∫

Ωs

(
ṅs|s + ṅf

∣∣∣
f
+ nsdiv (ẋ |s ) + nfdiv (ẋ |f )

)
dv = 0 (1.145)

Repla
ing the �rst two 
omponents with equation (1.114),

∫

Ωs

(
grad

(
nf
)
·wfs + nsdiv (ẋ |s ) + nfdiv (ẋ |f )

)
dv = 0 (1.146)

Applying further modi�
ation on the last two terms to eliminate solid volume fra
tion and

�uid velo
ity,

∫

Ωs

[
grad

(
nf
)
·wfs +

(
1− nf

)
div (ẋ |s ) + nf

(
div (ẋ |s ) + div

(
wfs

))]
dv = 0

(1.147)

Re
alling the following divergen
e to gradient tensor identity,

div
(
nfwfs

)
= grad

(
nf
)
·wfs + nfdiv

(
wfs

)
(1.148)

Repla
ing the �rst and the fourth terms with this identity, and adding the se
ond and the

third terms gives the �nal expression for the 
umulative 
onservation of mass equation in

integral form, free of �uid velo
ity and solid fra
tion.

∫

Ωs

(
div (ẋ |s ) + div

(
nfwfs

))
dv (1.149)

The weak form is then,

∫

Ωs

(
div (ẋ |s ) + div

(
nfwfs

))
δλdv (1.150)

Applying integration by parts to the se
ond term,

∫

Ωs

div
(
nfwfs

)
δλdv =

∫

Ωs

div
(
nfwfsδλ

)
dv −

∫

Ωs

nfwfs · grad (δλ) dv

=

∫

Ωs

(
nfwfsδλ

)
· nda−

∫

Ωs

nfwfs · grad (δλ) dv

(1.151)

The internal weak form be
omes,

δM̂ int =

∫

Ωs

div (ẋ |s ) δλdv −

∫

Ωs

nfwfs · grad (δλ) dv (1.152)

Re
alling the Ansatz for the relative �uid velo
ity in
luding the pore impermeability


oe�
ient;

δM̂ int =

∫

Ωs

tr (D |s ) δλdv +

∫

Ωs

β−1
(
nf
)2
grad (λ) · grad (δλ) dv (1.153)
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For the material frame formulation the gradients of the se
ond term should be puled ba
k

to the solid material gradients as follows,

grad (λ)·grad (δλ) = F−T |s ·Grad (λ)·F
−T |s ·Grad (δλ) = Grad (λ)·C−1 |s ·Grad (δλ)

(1.154)

Additionally, from the long expression of equation (1.123) one gets;

D |s =
1

2
F−T |s · Ċ |s · F

−1 |s (1.155)

Using these identities, the �nal form in the solid material 
oordinates ends up;

δṀ int =

∫

Ωs

I : D |s δλdv +

∫

Ωs

[
C−1 |s : (Grad (λ)⊗Grad (δλ))

]
dv

=

∫

Ωs

[
J−1 |s C

−1 |s : Ċ |s
]
δλdV S

+

∫

Ωs

[
β−1

(
nf
)2
J−1 |s C

−1 |s : (Grad (λ)⊗Grad (δλ))

]
dV S

(1.156)

1.7 Dis
retized balan
e equations

The linearized �eld equations are to be solved for �nal veri�
ation. For this purpose,

�nite element method, as well as natural element method(see Ch.[5℄) are used. Higher

order tensorial qualities are represented in terms of matrix algebra, if ne
essary Voigt-type

notations are applied. Following this, the total Lagrangian approximations are presented.

The ne
essary material time derivations based on Newmark's method are presented brie�y.

Finally, the matrix-ve
tor algebrai
 form are linearized for preparing the system of equations

for an iterative solution.

1.7.1 Matrix-Ve
tor Form on Total Lagrangian Con�guration

For the matrix-ve
tor notations of the tensors, 
alligraphy symbols

17

are used. The tensors

whi
h are 
onverted into Voigt notation are namely, the se
ond Piola-Kir
ho� stress tensor,

the Cau
hy strain tensor and the inverse of it, and the dyad of material gradient of pore

pressure variable λ with the variation of material gradient of it.

S |S =
[
SSXX , S

S
Y Y , S

S
ZZ , S

S
XY , S

S
Y Z , S

S
ZX

]T

C |S =
[
CSXX , C

S
Y Y , C

S
ZZ , 2C

S
XY , 2C

S
Y Z , 2C

S
ZX

]T

C−1 |S =
[(
C−1

)S
XX

,
(
C−1

)S
Y Y

,
(
C−1

)S
ZZ

,
(
C−1

)S
XY

,
(
C−1

)S
Y Z

,
(
C−1

)S
ZX

]T

δĊ |S =
[
δĊSXX , δĊ

S
Y Y , δĊ

S
ZZ , 2δĊ

S
XY , 2δĊ

S
Y Z , 2δĊ

S
ZX

]T

(1.157)

17

Throughout the treatise, other forms of symbols are also used. If the notation 
hanges, the

information will follow. Please refer to the front-page of List of Abbreviations.
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The missing 
oe�
ients in the o�-diagonal terms of the inverse Cau
hy strain tensor are

dropped on purpose, be
ause this tensor a
ts as a pulled ba
k stress tensor in the weak

form. The total variational weak form is;

δẆ int + δṀ int =

∫

ΩS

1

2

((
Sse − λC−1

)
: δĊ |s

)
dV S

+

∫

Ωs

[
J−1 |s C

−1 |s : Ċ |s
]
δλdV S

+

∫

Ωs

[
β−1

(
nf
)2
J−1 |s C

−1 |s : (Grad (λ)⊗Grad (δλ))

]
dV S

(1.158)

Using the symmetry property of the inverse Cau
hy strain tensor, the last double


ontra
tion 
an be reformulated,

C−1 |s : (Grad (λ)⊗Grad (δλ)) = C−1 |s :
1

2
[Grad (λ)⊗Grad (δλ) +Grad (δλ)⊗Grad (λ)]

= C−1 |s :
δ

2
(Grad (λ)⊗Grad (λ))

=
(
C−1 |s

)T
· δQ |S

(1.159)

Now the right hand side of the 
ontra
tion 
an be also represented in 6 to 1 Voigt notation.

1

2

[
δ
∂2λ

∂X2
, δ

∂2λ

∂Y 2
, δ

∂2λ

∂Z2
, δ

∂λ

∂X

∂λ

∂Y
, δ

∂λ

∂Y

∂λ

∂Z
, δ

∂λ

∂Z

∂λ

∂X

]T

=
1

2

[
2
∂δλ

∂X

∂λ

∂X
, 2

∂δλ

∂Y

∂λ

∂Y
, 2

∂δλ

∂Z

∂λ

∂Z
,

∂δλ

∂X

∂λ

∂Y
+
∂λ

∂X

∂δλ

∂Y
,

∂δλ

∂Y

∂λ

∂Z
+
∂λ

∂Y

∂δλ

∂Z
,

∂δλ

∂Z

∂λ

∂X
+
∂λ

∂Z

∂δλ

∂X

]T
≈ δQ |S

(1.160)

The matrix-ve
tor notation is 
ertainly nonlinear, and is visited in the next 
hapters in

detail. The total variational weak form in matrix-ve
tor notation is then,

δẆ int + δṀ int =
1

2

∫

ΩS

(
δĊ

T
|s ·
(
SS
e − λC−1

))
dV S

+

∫

Ωs

(
J−1 |s Ċ

T
|s · C

−1 |s
)
δλdV S

+

∫

Ωs

(
β−1

(
nf
)2
J−1 |s δQ

T |S · C−1 |s

)
dV S

(1.161)
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1.7.2 Newmark-Method-Consistent Material Time Derivatives

The Newmark method and the algorithm of it are usually used for 
onditionally stable time

integration of rate dependent dis
rete forms of weak di�erential equations. Sin
e the inertial

e�e
ts are negle
ted, only the time derivatives are presented here. Newmark postulated

in his original work Ref.[

Newmark 1959

℄, fourth order and third order series expansions for

displa
ement and the velo
ity (not ne
essarily spatial) respe
tively. With the notation

whi
h is adapted to �nite deformation theory,

u (X, t) = u (X , t−∆t) + ∆tu̇ (X, t−∆t)

+
(∆t)2

2
ü (X, t−∆t) +

(∆t)3

6

...

u (X, t−∆t) + . . .

u̇ (X, t) = u̇ (X , t−∆t) + ∆tü (X, t−∆t) +
(∆t)2

2

...

u (X, t−∆t) + . . .

(1.162)

The e�e
t of the remainders 
an be manipulated by applying a variable 
oe�
ient to the last

terms of the expansions. The newmark type deformation and the rate (spatial or material

material) of deformation are given as;

u (X , t) = u (X, t−∆t) + ∆tu̇ (X , t−∆t) +
(∆t)2

2
ü (X, t−∆t) + β1 (∆t)

3 ...u (X , t−∆t)

u̇ (X , t) = u̇ (X, t−∆t) + ∆tü (X , t−∆t) + β2 (∆t)
2 ...u (X, t−∆t)

(1.163)

Assuming there is (was)-at least ba
kward-linear a

eleration �eld, one gets the following

expression.

...

u (X , t−∆t) =
ü (X , t)− ü (X, t−∆t)

∆t
(1.164)

Inserting the rate of a

eleration term into equation (1.163), one gets deformation, velo
ity

and a

eleration dependent Newmark series,

u (X, t) = u (X, t−∆t) + ∆tu̇ (X, t−∆t)

+

(
1

2
− β1

)
(∆t)2 ü (X, t−∆t) + β1 (∆t)

2
ü (X, t)

u̇ (X, t) = u̇ (X, t−∆t) + (1− β2)∆tü (X , t−∆t) + β2∆tü (X, t)

(1.165)

The 
urrent velo
ity and the 
urrent a

eleration are 
onsidered to be unknowns. The


urrent a

eleration from the �rst equation above yields into;

ü (X, t) =
1

β1 (∆t)
2u (X, t)−

1

β1 (∆t)
2u (X, t−∆t)

−
1

β1∆t
u̇ (X, t−∆t)−

(
1

2β1
− 1

)
ü (X, t−∆t)

(1.166)
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Inserting this expression into the se
ond equation gives;

u̇ (X, t) = u̇ (X, t−∆t) + (1− β2)∆tü (X, t−∆t)

+
β2
β1∆t

u (X, t)−
β2
β1∆t

u (X, t−∆t)

−
β2
β1
u̇ (X , t−∆t)−

(
β2
2β1

− β2

)
∆tü (X, t−∆t)

(1.167)

Negle
ting at this stage the terms 
ausing inertial e�e
ts, namely a

eleration,

u̇ (X, t) =
β2
β1∆t

u (X, t)−
β2
β1∆t

u (X, t−∆t) +

(
1−

β2
β1

)
u̇ (X, t−∆t) (1.168)

Taking that the series is expanded around the initial time, in the material 
on�guration,

leaves one with the following identities;

t−∆t = t0 ⇒ u (X , t−∆t) = x (X , t0)−X = 0, u̇ (X, t−∆t) = 0 (1.169)

The Newmark 
onsistent material time derivative be
omes;

u̇ (X, t) =
β2
β1t
u (X, t) (1.170)

This material time derivative 
an be applied for ea
h variable with homogeneous initial


onditions.

1.7.3 Dis
rete Form of the Translational Momentum Part

Apart from the pore pressure term, the dis
rete form of the �rst addend of equation

(1.161), 
an be found elsewhere. However, for the sake of 
ompleteness and adaptedness

to the following se
tions, the derivation proposed by Zienkiewi
z Ref.[

O.C.Zienkiewi
z 2000b

℄ is

re-introdu
ed here. For this purpose, the ve
tor form of the variation of the Cau
hy strain

tensor is given again;

δC |S =
[
δCSXX , δC

S
Y Y , 2δC

S
ZZ , 2δC

S
XY , 2δC

S
Y Z , 2δC

S
ZX

]T
(1.171)

The rate form is dropped on purpose. Instead of variation of rate, the rate of variation

is taken and this rate is evaluated numeri
ally, whi
h is going to be presented in the next

se
tions. The variation in tensor notation be
omes;

1

2
δC |S =

1

2

(
δF T |S · F |S + F T |S · δF |S

)
(1.172)
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In indi
ial notation,

1

2
(δC |S )IJ =

1

2

((
δF T |S

)
Ii
(F |S )iJ +

(
F T |S

)
Ii
(δF |S )iJ

)

=
1

2
((δF |S )iI (F |S )iJ + (F |S )iI (δF |S )iJ)

=
1

2

(
∂ (δx |S )i
∂ (X |S )I

(F |S )iJ + (F |S )iI
∂ (δx |S )i
∂ (X |S )J

)

=
1

2

(
∂ (δu |S )i
∂ (X |S )I

(F |S )iJ + (F |S )iI
∂ (δu |S )i
∂ (X |S )J

)

(1.173)

Ba
k substitution into equation (1.172) gives with the summation 
onvention over index i;

1

2
δC |S =

1

2




δCS11

δCS22

δCS33

2δCS12

2δCS23

2δCS31




=




(F |S )i1 (δu |S )i,1
(F |S )i2 (δu |S )i,2
(F |S )i3 (δu |S )i,3

(F |S )i1 (δu |S )i,2 + (F |S )i2 (δu |S )i,1
(F |S )i2 (δu |S )i,3 + (F |S )i3 (δu |S )i,2
(F |S )i3 (δu |S )i,1 + (F |S )i1 (δu |S )i,3




(1.174)

Applying the natural element shape value interpolation, on the deformations, variation of

deformations and their material gradients leads into the following representations;

(u |S )i ≈

# shape neigh.∑

L

NL (ũ |S )
L
i (δu |S )i ≈

# shape neigh.∑

L

NL (δũ |S )
L
i

(u |S )i,J ≈

# shape neigh.∑

L

NL
,J (ũ |S )

L
i (δu |S )i,J ≈

# shape neigh.∑

L

NL
,J (δũ |S )

L
i

(1.175)

The approximate ve
tor form of the variation of the half Cau
hy strain tensor is then,

1

2
δC |S ≈

#ngh∑

L




(F |S )i1N
L
,1 (δũ |S )

L
i

(F |S )i2N
L
,2 (δũ |S )

L
i

(F |S )i3N
L
,3 (δũ |S )

L
i

(F |S )i1N
L
,2 (δũ |S )

L
i + (F |S )i2N

L
,1 (δũ |S )

L
i

(F |S )i2N
L
,3 (δũ |S )

L
i + (F |S )i3N

L
,2 (δũ |S )

L
i

(F |S )i3N
L
,1 (δũ |S )

L
i + (F |S )i1N

L
,3 (δũ |S )

L
i




=

#ngh∑

L

BL |S · (δũ |S )
L

(1.176)
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The nonlinear strain displa
ement matrix is in full form is;

B
L |S =




(F |S )11N
L
,1 (F |S )21N

L
,1 (F |S )31N

L
,1

(F |S )12N
L
,2 (F |S )22N

L
,2 (F |S )32N

L
,2

(F |S )13N
L
,3 (F |S )23N

L
,3 (F |S )33N

L
,3

(F |S )11N
L
,2 + (F |S )12N

L
,1 (F |S )21N

L
,2 + (F |S )22N

L
,1 (F |S )31N

L
,2 + (F |S )32N

L
,1

(F |S )12N
L
,3 + (F |S )13N

L
,2 (F |S )22N

L
,3 + (F |S )23N

L
,2 (F |S )32N

L
,3 + (F |S )33N

L
,2

(F |S )13N
L
,1 + (F |S )11N

L
,3 (F |S )23N

L
,1 + (F |S )21N

L
,3 (F |S )33N

L
,1 + (F |S )31N

L
,3




(1.177)

The dis
rete form of the internal energy as a sum of neighboring nonlinear strain

displa
ement interpolators be
omes;

δW̃ int =

#ngh∑

L

(δũ |S )
L ·

∫

ΩS

((
BL |S

)T
·
(
SS
e − λC−1

))
dV S

(1.178)

The �rst order trun
ation gives the residuum in between two subsequent iterations,

δR̃W
∣∣i+1

(
ũ |S , λ̃

)
= δW̃ int

∣∣i+1
(
ũ |S , λ̃

)
− δW̃ int

∣∣i
(
ũ |S , λ̃

)

=

#ngh∑

L

#ngh∑

M

(δũ |S )
L ·KWu

LM · (dũ |S )
M +

#ngh∑

L

#ngh∑

M

(δũ |S )
L ·KWλ

LM

(
dλ̃
)M (1.179)

The 
omponent of the tangent sti�ness 
aused by neighbor nodes L and M,and supplied

by the translational momentum equation depending on only deformation 
an be shown as;

KWu
LM =

∂

∂ (ũ |S )
M

∫

ΩS

((
BL |S

)T
·
(
SS
e − λC−1

))
dV S

=

∫

ΩS

(
∂
(
BL |S

)T

∂ (ũ |S )
M

·
(
SS
e − λC−1

)
)
dV S +

∫

ΩS

(
(
BL |S

)T
·
∂
(
SS
e − λC−1

)

∂ (ũ |S )
M

)
dV S

(1.180)

The se
ond addend known as the material tangent sti�ness 
an be formulated by 
hain

rule,

KWuMat
LM =

∫

ΩS

(
(
BL |S

)T
·
∂
(
SS
e − λC−1

)

∂ (ũ |S )
M

)
dV S

=

∫

ΩS

(
(
BL |S

)T
·
∂
(
SS
e − λC−1

)

∂ (C |S )
·
∂ (C |S )

∂ (ũ |S )
M

)
dV S

=

∫

ΩS

(
(
BL |S

)T
·
∂
(
SS
e − λC−1

)

∂ (C |S )
· 2
(
BM |S

)
)
dV S

=

∫

ΩS

((
BL |S

)T
·DS ·

(
BM |S

))
dV S

(1.181)
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The 
oe�
ient 2 at the third equation of(1.181) is a result of equation (1.176). The matrix

form of the total tangent moduli 
an be de
omposed into e�e
tive and pore pressure tangent

moduli.

DS = DS
e +DS

p = 2
∂SS

e

∂ (C |S )
+ 2

∂
(
−λC−1

)

∂ (C |S )
(1.182)

The 
oe�
ient 2 
an be eliminated by 
onsidering the de�nition of the material modulus,

whi
h is based on Green-Lagrange strain fun
tion.Both in tensor and voigt notations, the

following holds

C
S
e =

∂2Ψ

∂ (E |S )
2 ⇒

1

2
C
S
e =

∂SSe
∂C |S

= 2
∂2Ψ

∂ (C |S )
2 =

1

2

∂2Ψ

∂ (E |S )
2 ⇒

1

2
D
S
e =

∂SS
e

∂C |S

1

2
C
S
p =

∂
(
−λC−1 |S

)

∂C |S
⇒

1

2
D
S
p =

∂
(
−λC−1

)

∂ (C |S )
(1.183)

The tangent moduli of pore pressure term 
an be evaluated as,

0 = −λ
∂I

∂C |S
= −λ

∂
(
C−1 |S ·C |S

)

∂C |S
=
∂
(
−λC−1 |S

)

∂C |S
·C |S − λC−1 |S ·

∂C |S
∂C |S
(1.184)

In indi
ial notation then,

1

2

(
CSp
)
INKL

CSNM = λ
(
CS
)−1

IO

∂CSOM
∂CSKL

1

2

(
CSp
)
INKL

CSNM
(
CS
)−1

MJ
=

1

2

(
CSp
)
INKL

δNJ =
1

2

(
CSp
)
IJKL

= λ
(
CS
)−1

IO

∂CSOM
∂CSKL

(
CS
)−1

MJ

(
CSp
)
IJKL

= λ
(
CS
)−1

IO
(δOKδML + δOLδMK)

(
CS
)−1

MJ

= λ
((
CS
)−1

IK

(
CS
)−1

JL
+
(
CS
)−1

IL

(
CS
)−1

JK

)

(1.185)

At the last equation, the symmetry property of the inverse Cau
hy strain tensor is used.

The fourth order identity tensor whi
h is used above is not a de�nition, but the result of

the derivative of a se
ond order tensor with itself as shown beneath;

IIJKL =
∂AIJ
∂AKL

=
1

2

∂ (AIJ +AJI)

∂AKL
=

1

2
(δIKδJL + δJKδIL) (1.186)

For pra
ti
al purposes, the element (or Voronoi-Nodal) sti�ness matri
es are splitted into

material, geometri
 and if ne
essary also in volumetri
 parts. The names of the additive

splitting originates from the 
lassi
al Finite-element 
ontext, and named after the same

analogy. As stated, the reason is to 
at
h simpli
ity in the 
ompli
ated derivations of the
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ne
essary matrix-ve
tor system of equations. The geometri
 sti�ness matrix 
omponent


an be obtained by the linearization

18

of the geometri
 residual s
alar,

δR̃WuGeo
∣∣i+1 = (δũ |S )

L ·KWuGeo
LM · (dũ |S )

M

= (δũ |S )
L ·

∫

ΩS

(
∂
(
BL |S

)T

∂ (ũ |S )
M

·
(
SS
e − λC−1

)
)

· (dũ |S )
M dV S

(1.187)

The dire
tional derivative 
an be 
onsidered in the total variational weak form, where the

strain displa
ement matrix is not introdu
ed yet,

(δũ |S )
L ·KWuGeo

LM · (dũ |S )
M =

∫

ΩS

(
∂ (δC |s /2)

L

∂ (ũ |S )
M

:
(
Sse − λC−1

)
)

· (dũ |S )
M dV S

=

∫

ΩS

(
∂ (δC |s /2)

L
IJ

∂ (ũ |S )
M
j

(
Sse − λC−1

)
IJ

)
(dũ |S )

M
j dV S

(1.188)

Re
alling equation (1.173),

1

2
(δC |S )IJ =

1

2

(
∂ (δu |S )i
∂ (X |S )I

(F |S )iJ + (F |S )iI
∂ (δu |S )i
∂ (X |S )J

)

=
1

2

(
∂ (δu |S )i
∂ (X |S )I

(
δiJ +

∂ (u |S )i
∂XJ

)
+

(
δiI +

∂ (u |S )i
∂XI

)
∂ (δu |S )i
∂ (X |S )J

)

≈
1

2

[(
∑

L

NL
,I (δũ |S )

L
i

)(
δiJ +

∑

M

NM
,J (ũ |S )

M
i

)

+

(
δiI +

∑

M

NM
,I (ũ |S )

M
i

)(
∑

L

NL
,J (δũ |S )

L
i

)]

=
1

2

[(
∑

L

NL
,I (δũ |S )

L
i

)(
δiJ +

∑

M

NM
,J δij (ũ |S )

M
j

)

+

(
δiI +

∑

M

NM
,I δij (ũ |S )

M
j

)(
∑

L

NL
,J (δũ |S )

L
i

)]

(1.189)

18

The types of notation and terminology for the linearizations applied in this 
ontext belong

originally to Bonet Ref.[

J.Bonet 2008

℄
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The fo
us is however a derivative of a spe
i�
 variation;

1

2

∂ (δC |S )
L
IJ

∂ (ũ |S )
M
j

=
1

2

∂

∂ (ũ |S )
M
j

[(
NL
,I (δũ |S )

L
i

)(
δiJ +

∑

M

NM
,J δij (ũ |S )

M
j

)

+

(
δiI +

∑

M

NM
,I δij (ũ |S )

M
j

)(
NL
,J (δũ |S )

L
i

)]

=
1

2

[(
NL
,I (δũ |S )

L
i

)
NM
,J δij +NM

,I δij

(
NL
,J (δũ |S )

L
i

)]

= δũ |S
L
i N

L
,IN

M
,J δij

(1.190)

Inserting this expression ba
k into the equation (1.188) gives the tensorial form of the

geometri
 sti�ness matrix.

KWuGeo
LM =

∫

ΩS

(
Grad

(
NL
)
⊗Grad

(
NM

)
: S |S

)
IdV S

(1.191)

The tangent sti�ness matrix depending on the pore pressure lagrangean parameter is,

KWλ
LM =

∂

∂λ̃M

∫

ΩS

((
BL |S

)T
·
(
SS
e − λC−1

))
dV S

=
∂

∂λ̃M

∫

ΩS

(
(
BL |S

)T
·

(
SS
e −

∑

M

NM λ̃MC−1

))
dV S

= −

∫

ΩS

NM
(
BL |S

)T
· C−1dV S

(1.192)

Whi
h is in fa
t a ve
tor value (a redundant matrix), 
oupling the pore pressure to

the deformations. In this se
tion, the geometri
, material and pore pressure dependent

nonlinearities 
onsidering the weak form of the translational momentum equation are

presented. In the next se
tion the dis
rete form based on the weak formulation of the


onservation of mass are presented.

1.7.4 Dis
rete Form of the Conservation of Mass

The tangent sti�ness matri
es of the following matrix-ve
tor form is to be found.

δṀ int =

∫

Ωs

(
J−1 |s Ċ

T
|s · C

−1 |s
)
δλdV S

+

∫

Ωs

(
β−1

(
nf
)2
J−1 |s δQ

T |S · C−1 |s

)
dV S

(1.193)

There will be several tangent 
omponents produ
ed from the identity above. Therefore, a


areful subdivision of the equation above, and the 
orresponding tangent operations are to
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be performed.

δR̃M1

∣∣i+1
(
ũ |S , λ̃

)
= δM̃ int

1

∣∣i+1
(
ũ |S , λ̃

)
− δM̃ int

1

∣∣i
(
ũ |S , λ̃

)

=

#ngh∑

L

#ngh∑

M

(
δλ̃
)L
KM1u

LM · (dũ |S )
M +

#ngh∑

L

#ngh∑

M

(
δλ̃
)L
KM1λ

LM

(
dλ̃
)M (1.194)

Despite of the fa
t that, the �rst 
omponent of the sti�ness matrix is a ve
tor, and the

se
ond one is a s
alar, for the 
onsisten
y of the assembly of individual addends, those all

will be presented as matri
es as done previously. The �rst derivative is,

δλ̃LKM1u
LM =

∂

∂ (ũ |S )
M

∫

Ωs

(
J−1 |s Ċ

T
|s · C

−1 |s
)
NLδλ̃dV S

=KM1uJ
LM +KM1uGeo

LM +KM1uMat
LM

(1.195)

The individual 
omponents are, �rstly the tangents originated by the determinant of the

solid deformation gradient 'J',

KM1uJ
LM =

∫

Ωs

NL
(
Ċ
T
|s · C−1 |s

)
⊗
∂
(
J−1 |s

)

∂ (ũ |S )
M
dV S

=

∫

Ωs

NL
(
Ċ
T
|s · C−1 |s

)
⊗

(
∂ (detC |S )

−1/2

∂C |S
:

∂C |S

∂ (ũ |S )
M

)
dV S

=

∫

Ωs

NL
(
Ċ
T
|s · C−1 |s

)
⊗

(
− (detC |S )

−3/2

2

∂ (detC |S )

∂C |S
:

∂C |S

∂ (ũ |S )
M

)
dV S

=

∫

Ωs

NL
(
Ċ
T
|s · C−1 |s

)
⊗

(
−
1

2

(
J−1 |s

)3 ∂ (detC |S )

∂C |S
:

∂C |S

∂ (ũ |S )
M

)
dV S

=

∫

Ωs

NL
(
Ċ
T
|s · C−1 |s

)
⊗

(
−
1

2

(
J−1 |s

)3
(detC |S ) (C |S )

−T
:

∂C |S

∂ (ũ |S )
M

)
dV S

=

∫

Ωs

NL
(
Ċ
T
|s · C−1 |s

)
⊗

(
−
1

2

(
J−1 |s

)2 (
C−1 |S

)T
·
∂ (C |s )

M

∂ (ũ |S )
M

)
dV S

=

∫

Ωs

NL
(
Ċ
T
|s · C−1 |s

)
⊗


−

1

2

(
J−1 |s

)2 (
C−1 |S

)T
·
∂
(
B

M |s · (ũ |S )
M
)

∂ (ũ |S )
M


 dV S

=

∫

Ωs

−
1

2

(
J−1 |s

)2
NL

(
Ċ
T
|s · C−1 |s

)
⊗
[(
C−1 |S

)T
· BM |s

+
(
(ũ |S )

M
)T

· I
(
Grad

(
NM

)
⊗Grad

(
NM

)
: C−1 |S

)]
dV S

(1.196)
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The material parts,

KM1uMat
LM =

∫

Ωs

NL

(
J−1 |s

(
Ċ |s

)T
·
∂
(
C−1 |s

)M

∂ (ũ |S )
M

)
dV S

=

∫

Ωs

NL

(
J−1 |s

(
Ċ |s

)T
·
∂
(
C−1 |s

)

∂ (C |s )
·
∂ (C |s )

M

∂ (ũ |S )
M

)
dV S

=

∫

Ωs

NL

(
J−1 |s

(
Ċ |s

)T
·

(
−

1

2λ
D
S
p

)
·BM |s

)
dV S

(1.197)

and �nally geometri
 part(s),

KM1uGeo
LM =

∫

Ωs

NL


J−1 |s

(
C
−1 |s

)T
·
∂
(
Ċ |s

)M

∂ (ũ |S )
M


 dV S

=

∫

Ωs

NL

(
J−1 |s

β2
β1t

(
C
−1 |s

)T
·
∂ (C |s )

M

∂ (ũ |S )
M

)
dV S

=

∫

Ωs

NL


J−1 |s

β2
β1t

(
C
−1 |s

)T
·
∂
(
B

M |s · (ũ |S )
M
)

∂ (ũ |S )
M


 dV S

=

∫

Ωs

NL

(
J−1 |s

β2
β1t

(
C
−1 |s

)T
·
(
B

M |s
))

dV S

+

∫

Ωs

NL


J−1 |s

β2
β1t

(
(ũ |S )

M
)T

·
∂
(
B

M |s
)T

∂ (ũ |S )
M

· C−1 |s


 dV S

=

∫

Ωs

NL

(
J−1 |s

β2
β1t

(
C
−1 |s

)T
·
(
B

M |s
))

dV S

+

∫

Ωs

NL

(
J−1 |s

β2
β1t

(
(ũ |S )

M
)T

· I
(
Grad

(
NM

)
⊗Grad

(
NM

)
: C−1 |S

))
dV S

(1.198)

Where the last addend of the material parts is not written be
ause of a simple reason

whi
h is visited here immediately. This 
ould be pointed out before evaluating the material

sti�ness part of the weak form of translational momentum equation (1.181). The neighbor

sum of the integrals with the integrand under dis
ussion multiplied with the in
rement of
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the dire
tion of the dire
tional derivative has the form

19

,

#ngh∑

M

∫

Ωs

(
(ũ |S )

M
)T

· I
(
Grad

(
NM

)
⊗Grad

(
NM

)
: C−1 |S

)
· (dũ |S )

M dV S

=

#ngh∑

M

∫

Ωs

((
F̃ |S · dF̃ |S

)
: C−1 |S

)
dV S = 0

(1.199)

Additionally, the �rst residuum of the dis
retized version of the 
onservation of mass is

linear in pore pressure Lagrangian multiplier. Se
ondly, the material rate of the ve
tor form

of the Cau
hy 
an be evaluated by using the Newmark-
onsistent time derivative.

KM1λ
LM = 0 (1.200a)

˜̇
C |s = ˙̃

C |s

#ngh∑

O

NO
(
˙̃
C |s

)O
=

β2
β1t

#ngh∑

O

NO
(
C̃ |s

)O
=

β2
β1t

#ngh∑

O

NO (B |s )
O · (ũ |S )

O

(1.200b)

Using this additional numeri
al approximation and 
onsidering the negle
ted term, the �nal

sti�ness addends of the �rst part of the mass balan
e weak form be
omes;

KM1uJ
LM +KM1uGeo

LM +KM1uMat
LM =

∫

Ωs

−
1

2

(
J−1 |s

)2
NL

(
˜̇
C
T
|s · C

−1 |s

)
⊗
((

C−1 |S
)T

· BM |s
)
dV S

+

∫

Ωs

NL

(
J−1 |s

β2
β1t

(
C−1 |s

)T
·
(
BM |s

))
dV S

+

∫

Ωs

NL

(
J−1 |s

(
˜̇
C |s

)T
·

(
−

1

2λ
D
S
p

)
·BM |s

)
dV S

(1.201)

For the linearization of the se
ond part

20

of the weak mass balan
e equation, the following

residuum parts should be introdu
ed;

δR̃M2

∣∣i+1
(
ũ |S , λ̃

)
= δM̃ int

2

∣∣i+1
(
ũ |S , λ̃

)
− δM̃ int

2

∣∣i
(
ũ |S , λ̃

)

=

#ngh∑

L

#ngh∑

M

(
δλ̃
)L
KM2u

LM · (dũ |S )
M +

#ngh∑

L

#ngh∑

M

(
δλ̃
)L
KM2λ

LM

(
dλ̃
)M

(1.202)

19

The proof 
ould not be found by the writer of the treatise, after long literature survey of most

frequently 
ited �nite element method texts

20

Remember that the weak form of the 
onservation of mass was divided into two parts for the sake

of simpli
ity
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Before taking the dire
tional derivative, the exa
t (approximated) form of the Lagrangian

multiplier gradient should be introdu
ed.

(
δQ̃ |S

)L
=
δλ̃

2

[
2NL

,1

∂λ

∂X
, 2NL

,2

∂λ

∂Y
, 2NL

,3

∂λ

∂Z
,

NL
,1

∂λ

∂Y
+
∂λ

∂X
NL
,2 , NL

,2

∂λ

∂Z
+
∂λ

∂Y
NL
,3 , NL

,3

∂λ

∂X
+
∂λ

∂Z
NL
,1

]T

= δλ̃ (Γ |S )
L

(1.203)

The tangent sti�ness of the se
ond part of the 
onservation of mass with the tangent

depending on only the deformation is,

δλ̃LKM2u
LM =

∂

∂ (ũ |S )
M

∫

Ωs

(
δλ̃Lβ−1

(
nf
)2
J−1 |S

(
ΓL |S

)T
· C−1 |s

)
dV S

=KM2uJ
LM +KM2uMat

LM

(1.204)

Using the �rst narrowed assumption (see 
hapter Ch.[1.5.2℄), namely the saturation


ondition, one 
an express the �uid volume fra
tion in terms of the determinant of the

solid deformation gradient and true densities.

nf = 1−ns = 1−
̺s

̺sR
= 1−

̺s

ρSR
= 1−

dm/dv

dm/dV S
= 1−

dV S

dv
= 1−nS

dV

dv
= 1−nSJ−1 |S

(1.205)

The total derivative of the ja
obian dependent terms with respe
t to ja
obian itself is,

∂
((
nf
)2
J−1 |S

)

J−1 |S
= −2nS

(
1− nSJ−1 |S

)
J−1 |S +

(
1− nSJ−1 |S

)2
(1.206)

Applying the same analogy of equation (1.196),

KM2uJ
LM =

∫

Ωs

−
1

2

(
J−1 |s

)2
((

nf
)2
J−1 |S

)

,J−1|S

((
ΓL |S

)T
· C−1 |s

)
⊗
((

C−1 |S
)T

·BM |s
)
dV S

(1.207)

The material part, with the same analogy to equation (1.197),

KM2uMat
LM =

∫

Ωs

β−1
(
nf
)2
J−1 |S

(
ΓL |S

)T
·

(
−

1

2λ
D
S
p

)
·BM |s dV

S
(1.208)

And the last term, in a straightforward way,

KM2λ
LM =

∫

Ωs

(
β−1

(
nf
)2
J−1 |S

∂
(
ΓL |S

)T

dλ̃M
· C−1 |s

)
dV S

(1.209)
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The derivative of Lagrangian multiplier gradient ve
tor with respe
t to the nodal in
rement

of Lagrangian multiplier is,

∂
(
ΓL |S

)

dλ̃M
=

1

2

[
2NL

,1N
M
,1 , 2NL

,2N
M
,2 , 2NL

,3N
M
,3 ,

NL
,1N

M
,2 +NM

,1 N
L
,2 , NL

,2N
M
,3 +NM

,2 N
L
,3 , NL

,3N
M
,1 +NM

,3 N
L
,1

]T

(1.210)

Finally, the total nodal tangent sti�ness matrix with individual 
omponents 
an be summed

up together as;

K = K
WuMat
LM +K

WuGeo
LM +K

Wλ
LM +K

M1uJ
LM +K

M1uGeo
LM

+K
M1uMat
LM +K

M2uJ
LM +K
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LM +K
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=

∫
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B
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B
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)
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B
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(1.211)
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The individual 
omponents in terms of matrix format;













K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34
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


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
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(1.212)
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1.8 Numeri
al Examples

In this se
tion there are in total 3 di�erent numeri
al examples are presented. The �rst one

represents the growth of an initially spheri
al biologi
al stru
ture, as a result of ex
essive

�uid feeding at some pres
ribed arterial lo
ations. The e�e
t of growing volume on some

surrounding tube-like primary tissue is investigated in the se
ond example. The third

example is related to verti
al 
onta
t of the arti
ular 
artilage with the menis
us tissue.

All the models generated here 
onsist of Hexahedral elements only, with tri-linear shape

fun
tions. There is a single di�eren
e of the element formulation of the typi
al 8-Node

Hexahedral framework, whi
h is the number of integration points. The elements 
ontain

layers, and therefore has at least 8 integration points, or more are assigned depending on

the number of layers. . For ea
h layer there are 4 integration points taken, and on the

plane Gauss quadrature rule is applied. In the thi
kness dire
tion Simpson's rule �nishes

the 
omplete integration. Before giving the examples, the details of the written 
ode is

presented next.

1.8.1 Finite Element Implementation: Software Spe
i�
ations

The dis
retized form of the equations evaluated in se
tion Ch.[1.7℄ were su

essfully

implemented via Finite Element Method (FEM), as well as the Natural Element Method

(NEM - see Ch.[5℄). In this subse
tion, only the FEM 
ode is presented with details,

instru
tions and limitations.

The 
ode is 
ompatible with Linux-Environment

21

. Some user de�ned & embedded

non
ommer
ial (publi
 and free) software libraries together with self-written make�les

provide 
ompilation and exe
ution of the presented software solution. Sin
e moderate

to large systems of equations aimed to be solved by the writer of the treatise, sparse

matrix storage methods and solvers whi
h are 
apable of dealing with sparse matrix-ve
tor

algebra are implemented and used. The sparse matrix-ve
tor library 
ontains basi
 yet

e�
ient linear-algebra operators, su
h as multipli
ation and addition of arbitrary sparse

matri
es, and expli
it inversions of large sparse matri
es. The programming has been


hosen to be C++, and 
ompilers with the general publi
 li
ense Ref.[

GNU 2009

℄ agreements

are used. Obje
t oriented features su
h as 
lass inheriten
e, polymorphism, en
apsulation

and fun
tion overloading (virtual fun
tions) are fully bene�ted from. The writer prefered

to be guided by the referend Ref.[

Yang 1996

℄, sin
e the spe
ial fo
us of the treatise on

engineering appli
ations. For solving the large system of equations, mainly the Pardiso


©

sparse solver developed by the Pardiso


©
Solver Proje
t Team Ref.[

Pardiso 2009

℄ is used.

One of the very initial versions of the solver was embedded into Intel-math kernel

library


©
proje
t Ref.[

Library-MKL 2008

℄, the sparse solver Pardiso


©
is a

essed indire
tly from

Intel-MKL


©
library. In addition to these, optionally another make�le pro
edure is applied

to generate Abaqus


©
software Ref.[

Simulia 2011

℄ output database (.odb) binary types of

outputs. The Appli
ation Programming Interfa
e (API) library of software Abaqus


©
is

intensively used for this purpose as well. The 
ode written would be also su�
ient without

21

CentOS release 5.11 (�nal)
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these aforementioned add-ons, nevertheless, issues su
h as performan
e and visual aids

supplied by those 
ommer
ial and publi
 li
ense software produ
ts 
onvin
ed the writer

to do it so. Additional to those listed above, the personal pre- and postpro
essor GiD


©

Ref.[

personal post pro
essor GiD 2009

℄ and Metapost


©
of Beta Systems Ref.[

Beta 2009

℄ are used

for �gures generated in the next se
tion of examples.

Figure 1.1: The shell s
ript used for 
ompiling and linking the external libraries using Intel


©

ompiler

Figure 1.2: The shell s
ript used for 
ompiling and linking the external libraries using Abaqus


©


ompiler

After this short information about the environment of the software, the 
ontents of

the individual �les of the 
ode of biphasi
 media 
an be summarized next. The �les in

alphabeti
al order;

• Abq_TPM_MASTER_MAKEFILE.
sh: Make�le 
ompiling and generating the

master �le and exe
utable using API library

• allo
aters.
pp: in
ludes lo
al and global allo
ations
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• 
sr_Matrix.h & 
sr_Matrix.
pp: 
ompressed sparse row matrix library de
larations

and de�nitions

• gauss.
pp: integration point spe
i�
 fun
tions

• global_fun
tions.
pp: fun
tions relevant to the global matrix parameters

• headers.h: main header �le in
luding the 
lass de
larations

• input.inp: any input �le in Abaqus


©
format, this �le is parsed by readers

• Intel_TPM_MASTER_MAKEFILE.
sh: Intel make�le 
ompiling and generating the

master �le and exe
utable

• linear_algebra.
pp: some fun
tions of linear algebra used for small matrix-ve
tor

operations

• natural_b
.inp: the nodal natural boundary 
onditions

• neumann_b
.inp: the nodal essential boundary 
onditions

• odb_writers.
pp: fun
tions generating the output database

• readers.
pp: readers and parsers of the input �les, model and boundary 
onditions

• TPM_MASTER.
pp & TPM_MASTER.exe: the master �le and the exe
utable of

the master �le

• tpm_internal.
pp: fun
tions of internal residuals of 
onservation of mass and

translational momentum

• tpm_main.
pp: the main fun
tion

• tpm_sti�.
pp: fun
tions of element sti�nesses of 
onservation of mass and

translational momentum

• writers.
pp: any type of writers for post-pro
essing or manual debugging purposes

After any 
hange or modi�
ation done in a spe
i�
 �le, one of the make�les should be used

to generate new master �le and the exe
utable. As indi
ated, the �le

22

the model, and

a

ordingly the boundary 
onditions 
an be 
hanged and run under Linux-environment. In

the next, some examples will be presented.

1.8.2 A Numeri
al S
enario: Growth of Uterine Fibroids

The �rst example stands only for the growth of an initially spheri
al-shaped abstra
t tissue.

The abstra
t s
enario together with the next one, 
an be analogously linked to some real

22

Only nodes, 
oordinates, elements, solid se
tions materials and laminar lay-up informations are

parsed. Caution, the 
omplete list of parameters or header that follows the well known Abaqus


©

format. Abaqus


©
is not used as �nite element analysis software, only the ne
essary part (
ompiler,

API) is used used as an aid for the implementation.
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(a) This study mimi
s likely

the variation a,
:subserosal

or submu
osal �broid

growth

Hi
.et.nun
 2012

(b) The spheri
al layer-wise stru
tured initial

�broid geometry taken for this study

Figure 1.3: S
hemati
 Drawing of various types of uterine �broids and initial �broid geometry

biome
hani
al phenomena, for instan
e �broid growth as shown in the left side of the

Figure 1.3

23

. In this 
ase, some arti�
ial hot points, or �uid supply network is preassigned,

namely the pore-pressure is to be prede�ned. The tra
ing paths of the pressure supply

nodes 
an be seen in the results of next pages, for instan
e fourth pi
ture of Figure 1.5.

The s
enario of growth is however a novel one, and not based on any other phenomenologi
al

or theoreti
al postulates done by pioneers of the �eld. It should be noted here that,

the theory and numeri
s of the growth in the �eld of biome
hani
s is already postulated

and signi�
ant amount of very valuable work is delivered to the s
ien
e and engineering

publi
ity. Among many of them, Menzel Ref.[

A.Menzel 2004

℄ postulated a general theoreti
al

and numeri
al framework of remodeling and growth of �ber reinfor
ed material. Garikipati

Ref.[

K.Garikipati 2005

℄, has dis
ussed stationary strain energy and thermodynami
 aspe
ts

of remodeling with the realization of 
ell-tra
tion experiments. Kuhl Ref.[

E.Kuhl 2008

℄

and Holzapfel Ref.[

G.Holzapfel 2006

℄ have showed that gradual alignment of unit-
ell 
an

represent 
ollagen network orientation of an engineered tendon-like tissue. Hariton

& Holzapfel Ref.[

I.Hariton 2007

℄ and Driessen Ref.[

N.J.Driessen 2003

℄ have re
ently used

stress-driven reorientation of 
ollagen �bers of arterial walls and por
ine aorti
 valve

lea�et. Wilson Ref.[

W.Wilson 2006

℄ has predi
ted the 
ollagen orientation of depth dependent


ollagen orientation of AC with remodeling. These are all examples of modeling of

growth, some of whi
h will be re-visited in this treatise. In this stage, growth is assumed

to be stri
tly depending on the sele
ted pressure (or Dar
y velo
ity) supply of �uid, or blood.

23

pi
ture:By Hi
 et nun
 Own work CC-BY-SA-3.0, via Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Uterine_fibroids.png
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Figure 1.4: The development of the pore pressure distribution on the xy plane; time steps 1-20

Figure 1.5: The development of the pore pressure distribution on the xz plane; time steps 1-20

(a) time step: 1 (b) time step: 7 (
) time step: 10 (d) time step: 11 (e) time step: 20

Figure 1.6: The development of the pore pressure distribution on the yz plane; time steps 1-20
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(a) legend (b) time step: 12 (
) time step: 13 (d) time step: 14 (e) time step: 15

Figure 1.7: The development of the �uid fra
tion distribution in layered stru
ture; time steps 12-15

(a) time step: 15 (b) time step: 16 (
) time step: 17 (d) time step: 18 (e) time step: 19

Figure 1.8: The development of the �uid fra
tion distribution in layered stru
ture; time steps 15-19
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The model has in total 2190 nodes, and 1143 elements. The model has been built to


onsist of two hexahedral rows, and the �ber dire
tion is to be assigned randomly, but lying

on the ground of the element row layers. Ea
h element is assummed to 
ontain 4 layers,

thus 16 integration points ea
h, means that the fun
tions of element sti�ness matrix and


omputing of internal for
es are 
alled 18288 times for ea
h iteration, if one implements

the typi
al Newton-Rhapson algorithm for the solution. As stated before, the pore-pressure

is given as input, and the internal-most layer of the stru
ture is assigned with very low

permeability values, su
h that the tissue does not dehydrates from inside, and thus one


an not observe the deterministi
 form of the growth over the pseudo time. A

ording to

the formulation given in the previous pages, the pore-pressure driven analysis 
orresponds

to a natural boundary 
ondition type of analysis, and thus shows better 
onvergen
e


hara
teristi
s.

The results of pore pressure with the deformed (or grown) tissue 
an be seen in �gures

of 1.4 to 1.6. The results of �uid fra
tion distribution 
an be seen in the �gures of 1.7

and 1.8. Initially forty per
ent of the tissue is assumed to 
ontain �uid. The maximum

�uid fra
tion gains around twenty per
ent of �uid for the given example. Before showing

the results of this s
enario of tissue growth on the surrounding primary tissue, the steady

state streamlines of the growth on one layer (where the �ber dire
tions are determined to

be random), visualized as beneath,

(a) streamlines on xy plane (b) streamlines on xz plane (
) streamlines on yz plane

Figure 1.9: Steady state streamlines, 
olor plot of �uid fra
tion, diameter s
ale of �uid velo
ity

1.8.3 A Numeri
al S
enario: Impa
t on the Surrounding Tissue

For modeling the impa
t of the tissue growth on the primary tissue, whi
h is pla
ed

anatomi
ally right next to the growing one, penalty type of 
onta
t is formulated, modeled

and implemented. Besides, for the proper de�nition of the permeability, the anisotropi


permeability behavior is implemented also, whi
h is visited in this se
tion. In this 
ase,

along-�ber permeability 
oe�
ient is taken to be signi�
antly high, whereby the inter-�ber

permeability is taken to be 
onsiderably small, but �nite. Beneath in Figure 1.10, the

12-layer stru
ture of the surrounding tissue and the pla
ement of the healthy tissue inside
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of it before the start of in�ation is shown.

(a) 12-Layer substru
ture of the

surrounding tube-like tissue

(b) Repla
ement of the two-body


on�guration for the 
onta
t preparation

Figure 1.10: Model for the s
enario of growth of se
ondary tissue on the primary one

In the next page in �gures 1.11 to 1.13, the quasi-isotropi
 layer-up stru
ture are shown

illustratively. This type of layup �ber orientation is not only quite frequently exist in

soft living tissues, but also has very 
ommon industrial appli
ations, su
h as 
arbon �ber

reinfor
ed thermoplast 
omposites or similar. But this type of industrial appli
ations are

kept to be 
ompletely out of the s
ope of this thesis. Returning and re
alling ba
k the �nal

de�nition of the seepage velo
ity in terms of the impermability 
oe�
ient, �uid fra
tion,

pore-pressure and more,

wfs = β−1

(
̺f

˘
f
f
b − nfgrad (λ)

)
(1.213)

The e�e
t of permeability on the seepage velo
ity 
an be divided into �ber-parallel and

�ber-perpendi
ular 
omponents as follows,

wfs =β−1
‖ (M ⊗M)

(
̺f

˘
f
f
b − nfgrad (λ)

)

+ β−1
⊥ (I −M ⊗M)

(
̺f

˘
f
f
b − nfgrad (λ)

) (1.214)

Even though quantitative information about the permeability values are missing, one 
an

state that the along-�ber resistan
e against �ow is signi�
antly less then perpendi
ular to

the plane of �ber, or layup.

β‖ ≤ β⊥ (1.215)
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(a) layer 1: 90

◦

wrt. Axis (b) layer 2: 45

◦

wrt. Axis (
) layer 3: -45

◦

wrt. Axis (d) layer 4: 0

◦

along Axis

Figure 1.11: Fiber lay-up layers 1-4

(a) layer 5: 90

◦

wrt. Axis (b) layer 6: 45

◦

wrt. Axis (
) layer 7: -45

◦
wrt. Axis (d) layer 8: 0

◦

along Axis

Figure 1.12: Fiber lay-up layers 5-8

(a) layer 9: 90

◦

wrt Axis (b) layer 10: 45

◦
wrt. Axis (
) layer 11: -45

◦

wrt. Axis (d) layer 12: 0

◦

along Axis

Figure 1.13: Fiber lay-up layers 9-12
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(a) on axial layer (b) on 45

◦
layer

(
) on -45

◦
layer (d) on 90

◦
layer

Figure 1.14: The steady state streamlines on 4 layers of 12

The model 
onsists of three rows of hexahedral element, ea
h of whi
h 
ontains 4

layers. The layup stru
ture is illustrated in �gures 1.11 to 1.13. A

ording to the de�ned

anisotropi
 permeability 
ondition, for ea
h individual layup, as long as the permeability

ratio is given to be quite dominantly di�erent in along and perpendi
ular dire
tions, one

expe
ts to see streamlines following the pattern of layup �ber dire
tions. As shown in

Figure 1.14, the expe
tation is 
ompletely ful�lled, at least qualitatively quite satisfa
tory.

Con
luding with some quantitative information about the model, is that the model 
onsists

of 2190 nodes, 4 degree of freedom at ea
h node, 1456 elements, with 16 integration points

at ea
h. The 
ase is loaded only at three kinemati
 degrees of freedoms per Node by means

of 
onta
t displa
ements, whi
h was supplied from the numeri
al s
enario of deterministi


tumor growth. At the free edges, the pore-pressure is for
ed to stay zero, 
onsidered as

natural boundary 
ondition. The initial �uid fra
tion is given to be only twenty per
ent,

representing a dry thus an extraordinary 
ase, as shown in the �gures of 1.15 to 1.16.
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(a) legend (b) time step: 1 (
) time step: 3 (d) time step: 5 (e) time step: 7

Figure 1.15: The development of the �uid fra
tion distribution in layered stru
ture time steps 1-7

(a) time step: 9 (b) time step: 11 (
) time step: 15 (d) time step: 17 (e) time step: 19

Figure 1.16: The development of the �uid fra
tion distribution in layered stru
ture time steps 9-19
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(a)

legend

(b) time step:1 (
) time step:6 (d) time step:20

Figure 1.17: Pore pressure distribution with deformation, states 1, 6, and 20

1.8.4 A Numeri
al S
enario: Cartilage under Compression

For the third s
enario a rather realisti
 geometry and loading 
ondition is taken. The �nite

element mesh-tree was obtained from a very appre
iated sour
e of Ref.[

Erdemir 2014

℄. The


ase 
onsist of a porous media of 
artilage with 25274 nodes and 18546 elements. There

are four element rows and 4 layups at ea
h element 
onsidered, whi
h results in 296736

integration points in total. In this s
enario, the master surfa
e with 1320 elements 
losures

to the slave 
artilage surfa
e linearly with the pseudo time. The master surfa
e is taken to

be rigid, and the 
onta
t is of type kinemati
. Realisti
 values are assummed for the �uid

fra
tion of the 
artilage, the 
omposition 
onsists of 80% �uid and 20% �brous ground

stru
ture. As de�ned previously, the �ber orientation is modelled fo be quasi-isotropi
 and

is visited via illustration in this 
hapter.

Sin
e it is di�
ult and meantime might be misleading to rea
h solid upshots on the

results, the 
on
lusions based on these results are intrepreted 
ursorily. As 
an be seen

in Figure 1.19, for the given parameters and boundary 
onditions the deformation �eld

seems to e�e
t only 
onta
t region of solid part and the very near neighborhood of it. The

same 
on
lusion 
an be also done for the distribution of the �uid fra
tion as one 
an see

from Figure 1.21. As opposite to the previous example of surrounding tissue of the growing

spheri
al tumor, one 
an see here that, the 
onta
t region dehydrates signi�
antly rapidly

then anywhere else. . This numeri
al phenomena might be explainable if one 
onsideres

that the super�
ial zone permeability in the 
ase of arti
ular 
artilage was given ex
essively

low as in reality, therefore, the �uid is for
ed to �ow apart from the 
onta
t region to

the other regions of the tissue, whereby in the previous example the surrounding �uid was

allowed to enter the super�
ial layers from outside. The pore pressure in Figure 1.23 is more

smoothly distributed, and signi�
ant di�eren
e in medial and lateral surfa
es is observable.

This observation draws the attention of importan
e of loading boundary 
onditions as well,

it may be the wrong approximation to steer the simulation with verti
al displa
ement only

and for reliable solutions of �nite element simulation some ma
ro-s
ale mus
uloskeletal

analysis and the output of it might be ne
essary.
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(a) legend (b) time step: 2 (
) time step: 3 (d) time step: 4 (e) time step: 5

Figure 1.18: The development of the deformation of arti
ular 
artilage in between time steps 1-5

(a) time step: 6 (b) time step: 7 (
) time step: 8 (d) time step: 9 (e) time step: 10

Figure 1.19: The development of the deformation of arti
ular 
artilage in between time steps 6-10
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(a) legend (b) time step: 2 (
) time step: 3 (d) time step: 4 (e) time step: 5

Figure 1.20: The development of the �uid fra
tion of a layer of arti
ular 
artilage; time steps 1-5

(a) time step: 6 (b) time step: 7 (
) time step: 8 (d) time step: 9 (e) time step: 10

Figure 1.21: The development of the �uid fra
tion of a layer of arti
ular 
artilage; time steps 6-10
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(a) legend (b) time step: 2 (
) time step: 3 (d) time step: 4 (e) time step: 5

Figure 1.22: The development of the pore pressure of a layer of arti
ular 
artilage; time steps 1-5

(a) time step: 6 (b) time step: 7 (
) time step: 8 (d) time step: 9 (e) time step: 10

Figure 1.23: The development of the pore pressure of a layer of arti
ular 
artilage; time steps 6-10
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2.1 Introdu
tion

Kinemati
s is the initial building blo
k of 
ontinuum solid me
hani
s in matter and

manner. Kinemati
s, whi
h de�ne the spatial and pseudo-temporal 
hange of 'motion'

of a 
ontinuum, is histori
al and essential prologue. Therefore, any pla
ement of

postulates, extensions, su�x, annex, 
orre
tions or rede�nitions, whi
h deepens the subje
t

of 
ontinuum me
hani
s, should be initiated at the stage of Kinemati
s.

The ne

esary reasoning of 
onsideration of strain-gradient e�e
ts is in fa
t very 
ru
ial

and a matter of s
ale problem. Irrespe
tive of s
ale of interest, in many 
ases, the notion

of material point and the size of its neighborhood might be quite 
omparable of the s
ale

of interest itself. In other words, one may �nd itself quite on a border line, at the s
ale of

grain, where unique material parameters 
an not be a

epted to be generally valid. These

parameters would be even not valid for the near next of point of interest, as obvious from

Figure 2.1 in Ref.[

J.M.Clark 1990

℄. Considering the fo
us of interest of this thesis, namely

�brous biologi
al soft-tissues, the previously mentioned s
ale-phenomenon is so 
lear that

one 
an not deny the presen
e of it.

The s
ale problem for
es the observer to sta
k in a borderline, where parametrization of

signi�
ant quantities having an impa
t on energy density fun
tion, is no longer negligibly

sensitive to little 
hanges of the size of fo
us, and thus loses robustness. Re
onsidering

the example given in Figure 2.1, the sele
tion of the material size as on the left hand

size would indi
ate of in
lusion of voids or porosity �ller matrix ex
essively (or other way
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around). Meanwhile, it may also indi
ate of ignoring some forms of kinemati
s (for instan
e

bending an twisting of spa
e 
urves), if the matter of 
on
ern, that one deals with, 
onsists

of signi�
antly "long �bers" as in the 
ase of Figure 2.1. The deviation of the material

standard 
an be redu
ed, and some obje
tivity 
an be gained by moving towards to the

middle form of Figure 2.1, however the se
ond problem stated above would still persist to

exist. The full �ber length 
an (for instan
e) be a
hieved by the sele
tion of the size as

suggested in the rightmost pi
ture, however this would throw one out of to the stability limit

and 
onsisten
y radius of the method of solution for the partial di�erential equations. The

least 
losing door is obviously de�ning a borderline from top, therefore one rea
hes ba
k

to the initial problem statement, namely the s
ale problem, if the 
hara
teristi
 material

dimension is 
omparably near to the dimension of geometry. One improvement that is

suggested here in this thesis is 
onsidering the strain gradient e�e
ts whi
h enables one to

get smaller in the size of the material and meanwhile preserving to stay in the 
onsisten
y

radius of solution method of PDE.

1

Figure 2.1: Material size subje
tivity illustrated on real Human biologi
al spe
imen (SEM Image

taken from Ref.[

J.M.Clark 1991

℄. The original image does not 
ontain the blue triangle. Bar=1mm)

The s
anning ele
tron mi
ros
opy result of Figure 2.1 is not a single eviden
e,

whi
h is sele
ted spe
i�
ally. Several other 
an be given here su
h as; Hughes

et. all. Ref.[

L.C.Hughes 2005

℄, Clark Ref.[

J.M.Clark 1990

℄ again, and Kurogou
hi et. all.

Ref.[

S.Kobayashiv 1995

℄ present similar pi
tures, where similar 
on
lusions 
an be driven from.

Keeping the introdu
tory statement given above in mind, whi
h is assembled in the following

se
tion, the ne
essary non-linear strain gradient kinemati
s is de�ned here. It is shown in

a novel way that, quite unusual to 
lassi
al kinemati
s, strain gradient kinemati
s for
es

the tangent maps of di�erent 
on�gurations both additively and multipli
atively. Following,

the straight referen
e to 
urved spatial tangent mappings and the inverse, as well as the

tangent mappings in between two arbitrary 
urved 
on�gurations are numeri
ally shown to

be fully 
onsistent with ea
h other along the theory presented here. As mentioned above,

the impa
t of the predi
tions on the balan
e is visited and assembled then in the subse
tion

of numeri
al examples (see Ch.[2.3℄).

Hereby, initially the kinemati
s of 
ontinua with hypergradient e�e
ts, present in their

motion, is de�ned. The parametri
 referen
e to 
urved system tangential mapping, as

well as the 
urved 
urrent to straight referen
e tangential mapping are de�ned. In order to

1

Please refer to Zienkiewi
z Ref.[

O.C.Zienkiewi
z 2000a

℄ for the relationship of element size to stability,


onsisten
y and 
onvergen
e of FEM as a method of solving PDE's
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support and show the reversibility of tangential motion, the tangential mapping of arbitrarily


urved 
on�guration into another arbitrarily 
urved 
on�guration is mentioned shortly.

The validity of the presented kinemati
al relationships are shown to be 
onsistent with

the given numeri
al examples. The drifting errors of 
lassi
al kinema
s and strain-gradient

kinemati
s are 
ompared with ea
h other by 
onsidering a smooth motion.

2.2 Theory: Kinemati
s

In this se
tion, the ne
essary kinemati
s and its 
omponents are introdu
ed. In the next


ontext, the referen
e 
on�guration is taken to be as an a

umulation of in�nitely many,

in�nitely small straight line in
rements. Whereby the spatial and material 
on�gurations are

de�ned to be the forward and reverse mappings of that referen
e 
on�guration respe
tively.

With these de�nitions in hand

2

, in three main subse
tions, referen
e to spatial, material

to referen
e and �nally material to spatial point and tangent mappings are introdu
ed.

2.2.1 Referen
e to Spatial: From Referen
e Lines to Spatial Curves

The referen
e to spatial mapping of the '
ontinuous motion', and the inverse spatial to

referen
e 'reverse 
ontinuous motion' are assumed to exist and be bije
tive, and thus


ontinuum preserving and penetration averting.

ψ : ΩX ⊂ R
3 7→ Ωx ⊂ R

3, x = ψ (X) (2.1a)

ψ−1 : Ωx ⊂ R
3 7→ ΩX ⊂ R

3, X = ψ−1 (x) (2.1b)

The material 
oordinatesX and spatial 
oordinates x are assumed to be Cr di�eomorphi
.

Thus ,the bije
tive mapping ψ and it's inverse ψ−1
are r times di�erentiable, but not

ne
essarily smooth. Besides, it is assumed that, at least in the neighborhood of the in�nite

domain, the mapping and it's inverse are analyti
.

With the assumptions above, the material to spatial mapping at lo
usX∗+dX∗

onverges

to the Taylor series expansion of the mapping ψ around X∗
with an in�nite neighborhood

dire
tor of dX∗
. In general, for r > 2 for a Cr di�eomorphi
 analyti
 mapping the following

2

In short, in this se
tion and in the followings, if not otherwise stated, the referen
e and material


on�gurations would not 
ollide anymore, those will be taken to be di�erent.
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an be written,

x+ dx = ψ (X + dX) =
1

0!

(
∂0ψ

∂Υ0

∣∣∣∣
Υ=X

)
(X + dX −X)⊗0

+
1

1!

(
∂1ψ

∂Υ1

∣∣∣∣
Υ=X

)
· (X + dX −X)⊗1

+
1

2!

(
∂2ψ

∂Υ2

∣∣∣∣
Υ=X

)
: (X + dX −X)⊗2

+ · · ·

+
1

r!

(
∂rψ

∂Υr

∣∣∣∣
Υ=X

)
·r (X + dX −X)⊗r

(2.2)

As shown subsequently, even though it is not stated expli
itly in many textbooks, the series

expansion given in equation (2.2) is fully 
onsistent with the 
lassi
al deformation gradient

kinemati
s. Before moving on, the �rst three powers of the �rst order tensor dire
tors in

terms of binary tensor operator (A)⊗i is de�ned. For i ∈ N0 being a nonnegative integer

and A ∈ R
3
being a �rst order tensor, dyad power operator 
an be de�ned with i=1 being

the identity operator. The power of zero is not the absorbing element, sin
e it has to be

s
alar unity to be 
onsistent with the equation (2.2). The remaining powers are i times

dyadi
 foldings of the ve
tor A. The �rst three powers read;

[A]⊗i :
(
A ∈ R

3×1, i ∈ N0

)
7→ B ∈ R

3×i

(A)⊗0 = 1

(A)⊗1 = A

(A)⊗2 = A⊗A

(2.3)
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Using the de�nitions above,for instan
e, the trun
ated series expansion of s
alar valued

ve
tor fun
tion x2 = x2 (X1,X2,X3) at an instant is written in tensor-o� form as follows,

x2 + dx2 = x2 (X + dX)

= x2 (X1 + dX1, Y + dY,Z + dZ)

≈

(
∂0x2
∂α0

∣∣∣∣
α=X

)
+

(
∂1x2
∂α1

∣∣∣∣
α=X

)
· (dX) +

(
1

2

∂2x2
∂α2

∣∣∣∣
α=X

)
: (dX)⊗2

=x2 (X) +
∂x2
∂X1

dX1 +
∂x2
∂Y

dY +
∂x2
∂Z

dZ

+
1

2

(
∂2x2

(∂X1)
2 (dX1)

2 +
∂2x2

(∂X2)
2 (dX2)

2 +
∂2x2

(∂X3)
2 (dX3)

2+

)

+
1

2

(
2

∂2x2
∂X1∂X2

dX1dX2 + 2
∂2x2

∂X3∂X1
dX3dX1 + 2

∂2x2
∂X2∂X3

dX2dX3

)

(2.4)

Of 
ourse, similar tensor-o� form 
an be written for other s
alar valued 
omponents of

mapping (2.1). Having trun
ated the series one term earlier, one gets the dire
tional

derivative of the point mapping, towards the dire
tion of dX. This spe
i�
 type of

linearization gives the ba
kbone identity of the 
lassi
al kinemati
s.

dx = F · dX dX = F−1 · dx (2.5)

As obvious, the forward tangent mapping of linearization F in equation (2.5) preserves

�nite line segments as rotated and stret
hed line segments. De�ning the gradient of the

deformation gradient in tensor and indi
ial notations;

G = ∇XF Gijk =
∂xi

∂Xj∂Xk
(2.6)

With this de�nition of (2.6), equations (2.2) & (2.4) are shown in tensor notations

3

beneath.

dx = F · dX +
1

2
∇XF

r
: (dX ⊗ dX) (2.7)

The illustrative hypermatrix-matrix-ve
tor notation shown in Figure 2.2 gives a better

understanding of the equation above. The linearized tangent mapping (2.5) is homogeneous

of order 1, whereby equation (2.7) is not, and thus nonlinear. To show this, parameter α

is introdu
ed and s
ale the in�nite referen
e dire
tor in the parametri
 interval of alpha.

[−1, 1] = {α ∈ R | −1 ≤ α ≤ 1}

F · αdX = αF · dX ⇒ αdx = (∇Xψ)|X,αdX

(2.8)

3

Left, Right and Mid double 
ontra
tions

(

l
:
)

, beneath
(

r
:
)

,
(

m
:
)

are named a

ording to the

repeated indi
es, i.e. for the

(

l
:
)


ontra
tion the leftmost two indi
es are repeated.
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This statement obviously does not hold for equation (2.7). To move on, the sharp, �at and

neutral referen
e dire
tors (dX♯, dX♭, dX♮
)

4

are de�ned by 
hoosing alpha extremities as 1,

-1 and again 1 respe
tively. As 
an be noted, sharp and neutral referen
e dire
tors indi
ate

the same and depending on the 
ontext, will be used from this point on inter
hangeably.

The spatial sharp and �at dire
tors are de�ned via mapping, not via parametrization.

Using (2.8) and the obvious identity of the equality of sharp and �at dyadi
 squares, i.e.(
dX♯ ⊗ dX♯

)
=
(
dX♭ ⊗ dX♭

)
, one obtains the following tensor-algebrai
 equalities;

dx♯ = F · dX♯ +
1

2
G

r
:
(
dX♯ ⊗ dX♯

)
= −F · dX♭ +

1

2
G

r
:
(
dX♭ ⊗ dX♭

)

dx♭ = F · dX♭ +
1

2
G

r
:
(
dX♭ ⊗ dX♭

)
= −F · dX♯ +

1

2
G

r
:
(
dX♯ ⊗ dX♯

) (2.9)

∇X

x,X,∇X

x,X,∇X

dx
♯

dy
♯

dz
♯

x,Z

y,Z

z,Z

x,Y

y,Y

z,Y

x,X

y,X

z,X

=

dX

dY

dZ

.

dXdX
dXdY

dXdZ

dY dZ

dZdZ

dY dY:

z,XX

z,Y Y

z,ZZ

y,XX

y,Y Y

y,ZZ

x,XX

x,Y Y

x,ZZ

x,ZX x,ZY

x,YX

+0.5

Figure 2.2: Hypermatrix-matrix-ve
tor form of mapping of the sharp spatial tangent with the neutral

referen
e tangent and its metri
.

In the absen
e of 
ontra
tion of gradient of deformation gradient with the dyadi
 square,

equation (2.9) is homogeneous of order 1. Thus, it was essential to have sharp, neutral and

�at de�nitions of the dire
tors.

dx♯ = −dx♭ ⇐⇒ G
r
:
(
dX♭ ⊗ dX♭

)
= 0 (2.10)

Sin
e the sharp and �at referen
e dire
tors are linearly dependent, it is implied that the

referen
e 
on�guration is an only straight 
on�guration. Correspondingly, sin
e the sharp

and �at spatial dire
tors are not ne
essarily linearly dependent, it should be admitted that

the 
urrent 
on�guration is 
urved & straight.

4

Instead of algebrai
 symbols, symbols of musi
al harmony is 
hosen, inter
hangable usage of

algebrai
 symbols may 
ause 
onfusion in this 
ontext.
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dx♭\dx♯

dx♯\dx♭

dx♯ ∩ dx♭dX♯ ⊗ dX♯

dX♯

dX♭

−
I·(−I·)

(F·)

(F·)

(∇F: )

Figure 2.3: Kinemati
s of referen
e tangents to spatial tangents

2.2.2 Spatial to Referen
e: From Spatial Curves to Referen
e Lines

The di�erential behavior of the reverse kinemati
s is to be analyzed in this subse
tion.

To do it so, it will not be tried to reverse the tangential mappings from the trun
ated

approximations. Similar to the previous subse
tion, the (are) referen
e 
oordinates around

the neighborhood of (were) 
urrent 
oordinates will be expanded, however this time via

inverse motion.

X + dX = ψ−1 (x+ dx) ≈
1

0!

(
∂0ψ−1

∂υ0

∣∣∣∣
υ=x

)
(dx)⊗0

+
1

1!

(
∂1ψ−1

∂υ1

∣∣∣∣
υ=x

)
· (dx)⊗1

+
1

2!

(
∂2ψ−1

∂υ2

∣∣∣∣
υ=x

)
: (dx)⊗2

(2.11)

The reverse tangent mapping in the form of (2.7), without using sharp and �at dire
tor

de�nitions.

dX = F−1 · dx+
1

2
∇xF

−1 r: (dx⊗ dx) (2.12)

The �rst term in equation (2.12) is well-known. For further evaluation of the higher order

part, remember the fa
t that, the spatial gradient of the spatial deformation gradient is

the spatial gradient of the inverse referen
e deformation gradient. Denoting this as H and

following the derivation in indi
ial notation leads into;

Hijk =
∂F−1

ij

∂xk
=
∂F−1

ij

∂Xl

∂Xl

∂xk
=
∂F−1

ij

∂Xl
F−1
lk

(2.13)
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As obvious of equation (2.13) the reverse higher order gradient H (from spatial to

referen
e) is not the inverse

5

of the forward higher order gradient G. For reformulation of

the referen
e gradient of the inverse referen
e deformation gradient appearing in equation

(2.13), the following identities are used;

0mjl =
∂

∂Xl

(
FmiF

−1
ij

)
=
∂Fmn
∂Xl

F−1
nj + Fmi

∂F−1
ij

∂Xl
⇐⇒

F−1
kmFmi

∂F−1
ij

∂Xl
= −F−1

km

∂Fmn
∂Xl

F−1
nj ⇐⇒

δki
∂F−1

ij

∂Xl
= −F−1

km

∂Fmn
∂Xl

F−1
nj ⇐⇒

∂F−1
ij

∂Xl
= −F−1

im

∂Fmn
∂Xl

F−1
nj

(2.14)

Inserting it ba
k into the equation (2.13) the reverse higher order gradient in indi
ial and

tensor notations, one gets;

Hijk = −GmnlF
−1
im F

−1
nj F

−1
lk H = −

[
F−1 l·

(
G

m
· F−1

)]
r
· F−1

(2.15)

Sin
e this identity is obtained from the point motion only, it should be shown that it holds

for the tangential reverse mappings too. To show it, the push forwarded tangents are pulled

ba
k. In the following, the index notation is used. Be
ause the proof is straightforward but

lengthy, not to squander the indi
es, and hinder index 
rash, index and in�x notations are

applied together.

dXi = F−1
ij dxj +

1

2
Hijkdxjdxk = F−1

ij dxj −
1

2
GmnlF

−1
im F

−1
nj F

−1
lk dxjdxk (2.16)

The push forward 
omponents at the rhs of equation (2.16) are,

dxj = FjodXo +
1

2
GjopdXodXp (2.17a)

dxk = FkrdXr +
1

2
GkrsdXrdXs (2.17b)

The �rst addend of the rhs in�x of equation (2.16) reads then,

F−1
ij dxj = F−1

ij FjodXo +
1

2
GjopF

−1
ij dXodXp = δiodXo +

1

2
GjopF

−1
ij dXodXp

= dXi +
1

2
GjopF

−1
ij dXodXp

(2.18)

5

So far, the writer 
ould not �nd in the literature general de�nitions for hyperdeterminants and

hyperinverses in R
3×3×3
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Dyadi
 square dxjdxk in the se
ond addend in equation (2.16)in index and in�x notations

are shown below,

dxjdxk = FjoFkrdXodXr +
1

2
GkrsFjodXrdXsdXo

+
1

2
GjopFkrdXodXpdXr +

1

4
GjopGkrsdXodXpdXrdXs

(2.19)

The se
ond and third terms are the dyads of gradient push-forwards, with the hypergradient

push-forwards. The last addend is the dyad square of the hypergradient push-forward.

Dropping the last three addends of equation (2.19) is 
onform with the se
ond order

trun
ation of the mappings and reverse mappings. Inserting the �rst addend push-forwarded

dyadi
 square of equation (2.19) into the se
ond addend of equation (2.16), one gets,

−
1

2
GmnlF

−1
im F

−1
nj F

−1
lk FjoFkrdXodXr = −

1

2
δnoδlrGmnlF

−1
im dXodXr

= −
1

2
GmnlF

−1
im dXndXl

(2.20)

In the �nal version of equation (2.16) it 
an be seen that the reverse hypergradient of

(2.15) together with the inverse of deformation gradient, maps push-forwarded sharp and

�at dire
tors into the referen
e sharp and �at dire
tors.

dXi =

(
dXi +

1

2
GjopF

−1
ij dXodXp

)
−

1

2
GmnlF

−1
im dXndXl = dXi (2.21)

dx♭\dx♯

dx♯\dx♭

dx♯ ∩ dx♭

dX♯

dX♭

−
I·(−I·)

(
F−1·

)

(
F
−1 ·
)

(
-F

−1 ·
)

(
F−1·

)

(
-F−1·

)
(
F−1·

)

Figure 2.4: Kinemati
s of spatial tangents to referen
e tangents

In Figure (2.4) as well as in Figure 4.1 the parallel tensor operators are additively a
ting.

Deformation gradients are the same, standing for the referen
e to spatial mapping in those



70 Chapter 2. Hyperkinemati
s

two illustrations. As 
an be seen from the Figure 2.4, sin
e the straight referen
e tangents

are mapped only by inverse deformation gradient a
ting on the 
omplements of 
urved

spatial tangents from ea
h other, whi
h is apparent from equation (2.20), it 
an be agreed

upon the ne
essity of de�ning sharp and �at dire
tors.

2.2.3 Material to Spatial: From Referen
e Curves to Spatial Curves

A tangential mapping with hypergradient terms and its arbitrariness makes it mandotary

that the kinemati
s 
oexists in between two geometri
al manifolds of dimension, where

both possess �nite radius of 
urvatures. This notion of �nite radius of 
urvature of

two 
on�gurations, i.e.spatial and material, is quanti�ed with respe
t to some referen
e


on�guration of in�nitely large radius of 
urvature. Having de�ned a tangential referen
e

dire
tors and parameter α as in equation (2.8), the existen
e of some intermediate


on�guration is implied. With respe
t to to this 
on�guration, an allowable parametri


representation of referen
e and material 
urves in the se
tions of Ch.[2.2.1℄ and Ch.[2.2.2℄

are de�ned. This is 
ru
ial for the progression of the kinemati
s towards to the balan
e

equations, sin
e the arbitrariness of the motion denies that any stress-free 
on�guration is

stri
tly identi
al to the straight referen
e one.

In the following, both referen
e and material 
oordinates are represented by 
apital letters.

For the mapping tensors and material, referen
e and spatial 
oordinate ve
tors, the subs
ript

letters m,r, and s are used respe
tively.

The 
omplement of sharp material dire
tor relative to the �at material dire
tor, whi
h is

illustrated on the left side of Figure 4.1, a

ording to the equation (2.9) is,

dX♯
m\dX

♭
m =

1

2

(
dX♯

m − dX♭
m

)
= F−1

mr · dX
♯
r (2.22)

Finally, the tangent mapping from the 
urved material into the 
urved spatial have the

form,

dx♯s = F rs ·
(
Fmr ·

(
dX♯

m\dX
♭
m

))

+
1

2
Grs

r
:
[(
Fmr ·

(
dX♯

m\dX
♭
m

))
⊗
(
Fmr ·

(
dX♯

m\dX
♭
m

))] (2.23)

As stated above, the double subs
ripts of tensors do not de�ne the 
omponents, but the

dire
tions. A

ordingly, the subs
ript of the forward hypergradient of motion 
an be omitted,

sin
e it's reverse is not to be interpreted as it's inverse (inverse of the hypermatrix form). As

stated in equation (2.15), the hypergradient of the reverse motion (from straight referen
e to


urved spatial or material) is depending on the inverse of integral potential of hypergradient

of forward motion. In this sense, the forward deformation gradient (from referen
e to spatial

or material) 
an be interpreted as the integral potential of the hypergradient of forward point

mapping.

A good question as a 
onsequen
e of the remarks done above would be, why the
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hypergradient of the motion of -from material to referen
e- is not seen in equation (2.23)?

The answer would be that, -it is in fa
t impli
itly pla
ed in equation (2.23)- otherwise

the material 
on�guration would not earn the abbreviation of being 
urved. In fa
t, the


omplement of sharp material dire
tor relative to the �at material dire
tor, and similarly

the 
omplement of �at material dire
tor relative to the sharp material dire
tor 
an be

alternatively written as beneath.

dX♯
m\dX

♭
m = dX♯

m −
1

2
Grm

r
:
(
dX♯

r ⊗ dX♯
r

)

dX♭
m\dX

♯
m = dX♭

m −
1

2
Grm

r
:
(
dX♭

r ⊗ dX♭
r

) (2.24)

Thus, the 
urvature of the material 
on�guration with respe
t to the referen
e


on�guration is involved in the 
omplete s
hema. Figure 2.5

6

shows illustratively the

dX♯
m\dX

♭
m

dX♯
m ∩ dX♭

m

dX♭
m\dX

♯
m

d
X

♯m
⊗
d
X

♯m

dx♯s\dx
♭
s

dx♯
s ∩ dx

♭
s

dx♭s\dx
♯
s

(Frs · Fmr·)

(Frs · Fmr·)

(
Grs

· F
2
mr
:
)

(
Grs · F2

mr :
)

Figure 2.5: Kinemati
s of material tangents to 
urrent tangents

mapping in between arbitrarily 
urved material and spatial spa
es. Even though the motion

does not really visit the �
titious referen
e state, this state is 
onsidered as the 
ommon

origin of the motion of di�erent pseudo-times. From the material to referen
e, and from

referen
e to spatial 
ir
uits of kinemati
s, additive splits are applied in the parallel elements

of the 
ir
uit, and multipli
ative splits in the serial elements of the 
ir
uit.

6

In the �gure, the repla
ement below is done with a similar argument whi
h is used to simplify(2.19).

(

dX♯
m\dX♭

m

)

⊗
(

dX♯
m\dX♭

m

)

=
(

dX♯
m

)

⊗
(

dX♯
m

)

(2.25)
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2.3 Veri�
ation: Numeri
al Examples

The given strain gradient kinemati
s will be veri�ed and 
ompared in this se
tion with the


lassi
al one by means of a nonlinear smooth fun
tion

7

. The postulated mapping has been


hosen to be 
alled as the spiral beam and has mainly two parts, namely mid surfa
e and

the thi
kness 
ontribution. The mid surfa
e equation with respe
t to the time parameter

α is written as,

xm1 =

[
2α

π
cos
(
(1−X1)

π

2

)
+

(
1−

2α

π

)
X1

]
cos (α+ αX1)

xm2 =

[
2α

π
cos
(
(1−X1)

π

2

)
+

(
1−

2α

π

)
X1

]
sin (α+ αX1)

(2.26)

For the thi
kness 
ontribution, the Piola transformation of the derivatives of the mid 
urve

is taken into a

ount. These mid-
urve-o� 
ontributions are 
alled to be deviatori
, and

depending on the derivatives of the mid-
urve.

xd1 =
∂x2
∂X1

∣∣∣∣
m

X2

((
∂x1
∂X1

∣∣∣∣
m

)2

+

(
∂x2
∂X1

∣∣∣∣
m

)2
)−1/2

xd2 = −
∂x1
∂X1

∣∣∣∣
m

X2

((
∂x1
∂X1

∣∣∣∣
m

)2

+

(
∂x2
∂X1

∣∣∣∣
m

)2
)−1/2

(2.27)

These 
ontributions result a nonlinear Bernoulli kinemati
s, sin
e the 
urvature through the

thi
kness is punished (penalty) by the 
onstant 
oe�
ient of X2. In the next, the dire
t

e�e
t of the strain gradients through the thi
kness is negle
ted. The total mapping is then,

x1 = xm1 + xd1

x2 = xm2 + xd2

(2.28)

For the 
orresponding deformation gradient and deformation hypergradient terms, please

refer to Appendix-A.

2.3.1 Push Forward: From straight Referen
e to the 
urved Spiral

In this subse
tion, the performan
es of the ba
kbone identity of 
lassi
al nonlinear

kinemati
s (2.5) and the ba
kbone identity of the strain-gradient kinemati
s (2.6) are


ompared with ea
h other numeri
ally. The 
omparison depends mainly on the dis
retization

and the ex
ession of the spiral beam from the forth and towards to ba
k. The pseudo time

parameter α has also an in�uen
e on the total drifting error, sin
e it is the main parameter

driving the 
urvature of the deformation.

As apparent from Figure 2.6, for rough dis
retization and beginning time in
rements,

the strain-gradient kinemati
s represents the deformation better then 
lassi
al tangential

mapping, however the di�eren
e is not signi�
ant. With enough number of sampling

7

The details of derivatives of this smooth fun
tion 
an be found in Appendix -A
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Figure 2.6: From straight referen
e to the 
urved spiral beam.α = π/6, n = 2
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Figure 2.7: From straight referen
e to the 
urved spiral beam.α = π/2, n = 5

points as illustrated in Figure 2.7, the deformation gradient propagates some drifting

error. The erroneous landing of the tip point of the deformation gradient representation

and meanwhile the su

essive 
apture of the deformation hypergradient representation are


omparibly obvious. As 
an be noted from the α = 3π/2 parametrization of Figure 2.8, the
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Figure 2.8: From straight referen
e to the 
urved spiral beam.α = 3π/2, n = 15

drifting error of deformation gradient representation of the tip displa
ement 
an be redu
ed

if one in
reases the spa
e parametrization with the time parametrization simultaneously.

However, the deformation behavior through the thi
kness dire
tion still remains arbitrary,

and thus might be agreed upon the insu�
ient representation 
apa
ity of 
lassi
al �rst order

kinemati
s.

2.3.2 Pull Ba
k: From 
urved Spiral to the straight Referen
e

Analogous to the previous subse
tion, the reverse tangent of the ba
kbone equation (2.5)

and the reverse strain gradient kinemati
s (2.12) are 
ompared with ea
h other either. The

results are supporting the expe
tations signi�
antly stronger as the previous example. The

expe
tation has reasons, mainly the fa
t that the 
onne
tion of the two su

essor lo
us

of the 
urved stru
ture is not ne
essarily tangent to the path. Su
h a problem may be
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en
ountered in the 
ase that the physi
al in
rement is drasti
ally large in 
omparison with

the idealization, in other words, the mathemati
al assumption of o

upying in�nitely small

spa
e. In other words, if the s
ale e�e
ts are present, the strain gradient kinemati
s performs

far beyond better then the 
lassi
al kinemati
s. For the reverse motion, the straightness of
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Figure 2.9: From 
urved spiral beam referen
e to the straight rod.α = π/6, n = 2

the 
urrent 
on�guration is a measure of quality. For the 
ase of α = π/6 parametrization,

the deformation gradient ex
ess the limits of a

eptan
e, rea
hes to be a 
ompromise as


an be stated by Figure 2.9. As the pseudo time parameter and the dis
retization are
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Figure 2.10: From 
urved spiral beam referen
e to the straight rod .α = π/2, n = 10

kept to be in
reased, as in Figure 2.10, one 
an only talk about a slight betterment of both

tangent mappings, however, the deformation gradient mapping is still far beyond of limits of


orre
tness. As one in
reases the parameters on more time as in Figure 2.11, analogously to
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Figure 2.11: From 
urved spiral beam referen
e to the straight rod.α = 3π/2, n = 20

the straight referen
e to the 
urved spatial tangent mapping 
ase, the deformation gradient

mapping is dissapointing with propagative drifting, whereby the reverse kinemati
s of the

deformation hypergradient tangent mapping shows only slight betterment of the previous


ase, whi
h might be already 
onsidered to be in the radius of qualitative a

eptan
e. Yet

the measure of this a

eptan
e is of subje
tive nature.
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2.4 Con
lusion

Biophysi
ally, it may or may not be true or weakly stating evident that the �bers do exist

as spa
e 
urves in their initial, or reoriented state. Independent of any 
laim, eviden
e or

statement regarding to the existen
e of initially 
urved �bers, for the sake of 
onvergen
e

towards 
ompleteness of the kinemati
s, and sin
e this kinemati
 
ontains additional

information whi
h might be essential for a better understanding of some phenomena, it

is presented here in detail. Most probably

8

the �rst time de�nition of the strain gradient

kinemati
s has been shown to 
apture and model ex
essive deformations pre
esively.

However, the main advantage of the theory is not limited here, and �rst attempt of de�ning

inextensible anisotropi
 materials is a
hieved in this s
ope, whi
h are the subje
ts of the

remaining parts (see Ch.[3℄) of the work.
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Figure 2.12: An example of Cau
hy Tetrehedron, whi
h demonstrates the di�eren
e in between �rst

and se
ond order kinemati
s

8

The writer of the treatise 
ould not lo
ate during the literature survey any attempt of de�ning the

strain gradient kinemati
s as a 
omrehensive treatise as presented in this thesis. . There are works

de�ning the balan
e equations in the presen
e of strain gradient e�e
ts, however, those also omit the

initial step, namely the Strain Gradient Kinemati
s.
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3.1 Introdu
tion

In the previous 
hapter, the ba
kbone identity of the strain gradient kinemati
s is introdu
ed.

Any experimental solid proof of existen
e of those e�e
ts are omitted, the strain gradient

kinemati
s is assummed to present, and even higher kinemati
s are behold as natural as the

very strains and deformation �eld itself. The immediately following dis
ussion is the impa
t

of those kinemati
 e�e
ts on the me
hani
al behavior, in other words the further existen
e

of those presumably existing kinemati
 e�e
ts on the balan
e state of a 
ontrol volume.

In order to solidify the arguments, an example is stated here, namely the e�e
tive density

of the energy depending on bending and stret
h sti�ness of a unit length pro�le per unit

kinemati
 quantities (unit invariants). Consider the fra
tional pro�le given in Figure 3.1.

Assuming that the kinemati
s is negligibly varying on the plane of thi
kness, and thus a

single quantity for 
urvature '
 ' is valid for all points in the plane, the e�e
tive energy

density per square of invariant

1

is,

1

The invariant is analogously de�ned to the 
on
ept of stret
h in the �ber dire
tion, known as the

fourth invariant in the study of �ber reinfor
ed biologi
al tissue. The proof that the 
urvature 
an be

analogously represented in terms of invariants, is omitted in this step.
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ψeffbending =

∫
r,t ρEI

oc2drdt

Aac2
(3.1a)

Ae =

∫

r,t
sign (ρ) drdt 6=

∫

r,t
drdt = Aa (3.1b)

The density represents the density of the imaginary primitive substru
ture with no va
uum

at all, and thus is valid as an abstra
t assumption. The se
ond equation (3.1b) 
lari�es

the evaluation 
ondition of the quantities. This type of homogenization, even though with

almost no appli
able physi
al notion, might be still appli
able in some abstra
t fra
tional

stru
tures as shown in the left pi
ture of Figure 3.1

2

.

Figure 3.1: Left: An abstra
t pro�le with fra
tional 
hara
teristi
s; Right(Ref.[

OpenStax 2016

℄)

:Illustration of the reality of partially fra
tional Mus
le-Hierar
hy

The soft biologi
al stru
tures are known to be assembled in a fra
tional hierar
hi
al stru
ture

Ref.[

C.L.Stan�eld 2012

℄ . In this stru
ture, 
ollagen �brils, whi
h represent the fundamental

but not ne
essarily the most primitive 
omponent of the 
ollagenous tissues, determine the

rigidity and anisotropy of the solid 
omponent by means of energy-
onverting deformation

modes and orientations. That the 
ollagen network determines the rigidity of the stru
ture,

is many times agreed upon by many resear
hers (Ref.[

R.Shirazi 2008

℄), the 
onsequen
es of the

absen
e of healthy mi
ro-stru
ture of the 
ollagen network, -again as taking 
artilage as an

example-, is addressed (Ref.[

R.A.Bank 2000

℄) as a hot-topi
 as well. The idea that the 
ollagen

network is not the most primitive 
omponent whi
h determines the rigidity of the stru
ture

(or the origin of rigidity is not a
hieved in the �bril level) was gaining more attra
tion and

support by early experimental works (Ref.[

N.Sasaki 1996

℄), and re
ent mole
ular dynami
s

numeri
al studies (Ref.[

M.J.Buehler 2006

℄) quantifying the entropi
 elasti
ity of tropo
ollagen

2

The right pi
ture is taken from online sour
es Ref.[

OpenStax 2016

℄
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hains. All these works and similar -independent of ea
h other- insist of existen
e of

hierar
hy of the tissue stru
ture, and try to de�ne and quantify the main fundamental

a
tors of the phenomenon.

The radially pa
ked stru
ture of �brils may a

ount signi�
ant thi
kness and jointly resist

against bending modes. In the presen
e of s
ale e�e
ts, those energy modes of the

�bers whi
h enable the stru
ture to 
arry and undergo bending and under 
ir
umstan
es


ompression types of loadings, are driven by the higher order kinemati
s and governed by

the 
orresponding extended balan
e laws.

For a straightforward numeri
al demonstration of the evolution of material parameters with

Figure 3.2: Left: An abstra
t fra
tional pro�le 
hain with depth of 5

respe
t to the sele
tion of the size of 
ontinuum, an abstra
t fra
tional 
hain of depth 5 is


hosen. As evident from Figure 3.1 and equation (3.1b), the e�e
tive quantities of 'Area'

whi
h drives the stret
h type energy, and 'Moment of Area' about the main axis, whi
h

drives the bending type of energy, would vary from one s
ale into another. Therefore, as

apparent, the material obje
tivity

3

will be lost in this sense. The dilemma is, if the de
rease

(or in
rease) of bending and stret
h type of quantities do develop 
ompensable with ea
h

other or not. Otherwise ignoring one while keeping other would be a logi
al violation and

philosophi
ally in
onsistent.

In Diagram 3.3, the values of e�e
tive area and the se
ond moment of inertia around the

mid axis with respe
t to the levels of hierar
hy are demonstrated. Quite 
lear is that, both

values do tendentiously 
ondense towards smaller quantities. Apart from the initial de
line,

one 
an even state that the de
lination rate is almost equal for the 
ase of Area and se
ond

moment of inertia. The quantities however, might be preserved in quite di�erent s
ales,

this however would not be 
onsistent measure, sin
e the elements of kinemati
s is quite

arbitrary. For instan
e, by only 
onsidering stret
h, or a mapping whi
h results only in

stret
h type of formation, one may falla
iously 
on
lude on the absen
e of bending e�e
ts.

To avoid this type of misleading interpretation, one should fo
us on the rate of de
lination

if one enlarges the frame of the 
ontinuum as shown in the example above. The result is not

as obvious as one expe
ts, sin
e for any 
ir
ular and fully �lled va
uum-free 
ross se
tion,

one awaits that the e�e
tive se
ond moment of inertia de
lines quadrati
ally faster as the

e�e
tive area. As shown in the illustration above, this expe
tation may disappoint one, if

3

This material obje
tivity is 
onsidered under the subje
t of the size of the lo
us. In other words,

the strain energy density and the e�e
tive parameters, stri
tly depend on the s
ale 
hosen.
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Figure 3.3: Development of the e�e
tive Area and Se
ond Moment of Area values with respe
t to

the sele
tion of hierar
hy levels of Figure 3.2

.

the matter of 
on
ern has a fra
tional 
hara
teristi
. Despite this 
on
lusion, this example

should not be esteemed generi
ally and used in 
ommonpla
e, the rate of de
line may show

a totally di�erent pro�le, if one 
hooses another type of fra
tional expansion and shrinkage.

Quite familiarly, in engineering appli
ations, bending e�e
ts are introdu
ed into numeri
s

by using theories of Bernoulli, Euler, Timoshenko, or relatively newer geometri
ally exa
t or

higher order formulations. As the above argument states, any attempt of 
onsidering the

impa
t of 
urvature in the balan
e equations in ma
ro-s
ale is as valid as 
onsidering the


urvature e�e
ts in smaller s
ales. Sin
e these 
urvature e�e
ts may gain or loose as the

e�e
ts of stret
h do. In the next parts, the in
lusion and implementation of those e�e
ts

into strain gradient and strain energy fun
tions will be dis
ussed and 
lari�ed.

3.2 Hyper-Cau
hy Equation-OM: The Governing Lo
al

Form

In this se
tion the lo
al form of the balan
e equation on the kinemati
s given in Ch.[2.2.1℄ is

presented. The method applied by Steinmann et. all. Ref.[

P.Fis
her 2010

℄ is tra
ed mainly, but

with some diversities. In opposite to Steinmann et. all. (Ref.[

P.Fis
her 2010

℄), the derivations

of normal gradient and surfa
e divergen
e operators are de�ned. By doing so, it is possible

to show the geometri
al extensions and the dimensions of those geometri
al manifolds in

the integral weak form of the governing equation. Additionally, the prin
iple geometri
al

manifold(s), where hyperstess as the internal energy 
onjugate of hyperstrain is a
ting on

-a

ording to the writer- are interesting topi
s to visit. Subsequently, the volume and shell


ontra-internal for
es and the surfa
e and edge 
ontra-internal tra
tions are to be exposed

as well.
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Sin
e the time rates at the stage of hyper-kinemati
s were not de�ned (they were visited

in the �rst 
hapter of biphasi
 media C.[1℄), hereby, the virtual work form instead of

virtual power form is prefered. Analogous to 
lassi
al linear momentum balan
e, those

two equations should have identi
al out
ome, as soon as one states and argues on the

assumptions done, for example no rate dependent damping or no inertial e�e
ts.

To start with, as Steinmann and Fis
her (Ref.[

P.Fis
her 2010

℄) stated re
ently that, sin
e

internal energy depends on deformation gradient and hyper-deformation gradient, additive

partition as a result of 
hain rule is obtained.

δΠint =

∫

Ω

[
δΨ

δF
: δF +

δΨ

δG
∴ δG

]
dV =

∫

Ω
[P : δF +Q ∴ δG] dV = δΠPFint + δΠQGint

(3.2)

In addition to Gauss' Divergen
e Theorem and Green's theorem, additional tensor equalities

to resolve and sunder the virtual work equation into smaller dimensions of integrations, are

required. For arbitrary tensors of order three and two, (abbreviated here with T , D) and

tensors of order one,(abbreviated here with u and N), it is trivial to show that the following

tensor identities hold;

Div
(
DT · δu

)
= (DivD) · δu+D : Grad (δu) (3.3a)

Div
(
T
r
: δD

)
= (DivlT ) : δD + T ∴ Grad (δD) (3.3b)

Div
[
(DivlT )

T · δu
]
= [Div(DivlT )] · δu+ (DivlT ) : Grad (δu) (3.3
)

Div

[(
T

l
·N

)T
· δu

]
=

[
Div

(
T

l
·N

)]
· δu+

(
T

l
·N

)
: Grad (δu) (3.3d)

Applying (3.3a) and Gauss' divergen
e theorem after ea
h other on the deformation gradient

and �rst Piola-Kir
hho� driven virtual internal energy term, i.e. the �rst addend of equation

(3.2), one gets the 
lassi
al virtual energy form,

δΠPFint =

∫

S

(
P T · n

)
· δudA−

∫

Ω
(∇X · P ) · δudV (3.4)

In the following, the divergen
e and gradient operator notations(∇X
∗
·,∇X) are repla
ed

with literal type notations (Div∗, Grad). This is done for sake of 
learness. Inserting (3.3b)

and applying Gauss' divergen
e theorem after ea
h other on the hyper-deformation gradient

and hyperstress driven virtual internal energy partition, i.e. the se
ond addend of equation

(3.2), one gets the extensions 
aused by the higher order kinemati
,

δΠQGint =

∫

Ω
[Q ∴ δG] dV

=

∫

Ω
Div

(
Q

r
: δF

)
dV −

∫

Ω
(DivlQ) : δF dV

=

∫

S

(
Q

l
· n

)
: δF dA−

∫

Ω
(DivlQ) : δF dV

(3.5)
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In whi
h n denotes the outer surfa
e normal in referen
e 
oordinates of the 
ontrol volume.

The last term on the right hand side of equation (3.5), after inserting the identity of (3.3
)

and gauss diverging on
e more time with surfa
e normal n, leads into,

−

∫

Ω
(DivlQ) : δF dV = −

∫

Ω
Div

[
(DivlQ)T · δu

]
dV +

∫

Ω
[Div(DivlQ)] · δudV

= −

∫

S
[(DivlQ) · n] · δudA+

∫

Ω
[Div(DivlQ)] · δudV

(3.6)

The �rst addend of equation (3.5) 
an be transformed into the form beneath, by using the

identity (3.3d), where Green's theorem 
an be applied next,

∫

S

(
Q

l
· n

)
: δF dA =

∫

S
Div

[(
Q

l
· n

)T
· δu

]
dA−

∫

S

[
Div

(
Q

l
· n

)]
· δudA (3.7)

Applying the Green's theorem on to the �rst addend of equation (3.7) with the surfa
e

frontier normal m,

∫

S
Div

[(
Q

l
· n

)T
· δu

]
dA =

∫

Γ

[(
Q

l
· n

)T
· δu

]
·mdL =

∫

Γ

[
Q
m
: (n⊗m)

]
· δudL

(3.8)

The surfa
e frontier here represents the edge as a lo
ation, where the C1

ontinuity of

the surfa
e manifolds is not valid anymore. This is not a violation, in fa
t it is essential

for �lling the dis
ontinuity gaps in between higher dimensional manifolds with lower ones.

Sin
e -for the lo
al form-, the in�nite 
ontrol volume is taken to be arbitrary, it may be

surrounded by pat
hes of surfa
es, and thus in
lude edges. At the end, the total virtual

work equation is formulated as below;

δΠint = δΠPFint + δΠQGint =

∫

S

(
P T · n

)
· δudA−

∫

Ω
(DivP ) · δudV

−

∫

S
[(DivlQ) · n] · δudA+

∫

Ω
[Div(DivlQ)] · δudV

+

∫

Γ

[
Q
m
: (n⊗m)

]
· δudL−

∫

S

[
Div

(
Q

l
· n

)]
· δudA

(3.9)

Rearranging the terms of equation (3.9) in the spe
i�
 way, results into the �nal version

of the variation of the internal work as below;

δΠint =

∫

Ω
[Div ((DivlQ)− P )] · δudV +

∫

Su

[(
P T −DivlQ

)
· n
]
· δudA

+

∫

Sh

[
−Div

(
Q

l
· n

)]
· δudA+

∫

Γ

[
Q
m
: (n⊗m)

]
· δudL

(3.10)

In this �nal form, one obtains four integration domains two of whi
h is dimensionally

overlapping with ea
h other. Respe
ting the di�erent natures of the integration kernels,
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(a) Div(DivQT2)−P on Ω (b) (P T −DivQT2) · n on Su

Figure 3.4: Integration domains on whi
h �rst and se
ond order e�e
ts are a
ting

those two are kept apart. The �rst two domains (volume and surfa
e) are the ones driven

by the gradient e�e
ts, and thus familiar and well known ones. The hypergradient e�e
ts

do a
t also on the �rst two manifolds and those e�e
ts generate remaining integral domains

(shell and 
urve). The fa
t that, without any integrand, the integral 
an neither be de�ned

nor exist, 
onstrues that the integral domain under dis
ussion is a nonentity. In other

words, the absen
e of a
tor, designates the absen
e of spa
e. By keeping this logi
 in

mind, from the integration kernel of the third domain, one 
an 
on
lude that there are not

only �rst order stress tra
tions, but also divergen
es of se
ond order tensors (tra
tions of

hyperstresses) a
ting on the surfa
es. By respe
ting the two properties of the third integral,

the �rst one being that the integrand a
ts 
ontra to some body for
es, and the se
ond one

being that the integral domain is a surfa
e, this domain is 
alled as shell domain. In fa
t,

(a) −Div(QT2 ·n) on Sh (b) QT3 : (n⊗m) on Γ

Figure 3.5: Integration domains on whi
h �rst and se
ond order e�e
ts are a
ting
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in 
onjun
tion with the notion of shell, a surfa
e frontier (not only normal) and thi
kness of

it are de�ned. This 
an be viewed as a further division of interfa
e surfa
es (of previously

divided volumes) into pat
hes. And the pat
h frontiers and interfa
es as a result of the

se
ond division do generate in�nite 
urves whi
h 
onstitute mainly the last integral domain

of equation (3.10).

For the translational equilibrium, the 
omplement e�e
t applied by the remaining part of

the system on the 
ontrol volume has to be taken into a

ount. The external virtual work

should balan
e the internal one,

δΠext =

∫

Ω
bΩ · δudV +

∫

Su
tSu · δudA+

∫

Sh
bSh · δudA+

∫

Γ
tΓ · δudA

(3.11)

Figure 3.4 represents illustratively the 
on
epts of volume(Ω) and surfa
e(Su), whereby

Figure 3.5 demonstrates the 
on
epts of shell(Sh) and edge(Γ), whi
h were de
lared as a

result of equation (3.10).

3.3 Curved Anisotropy

In this se
tion, the ba
kbone invariant of the kinemati
s for building bending type of internal

energy formulation is postulated �rst. In the next, the energy fun
tion and its 
onsisten
y

with the tangent tensor is demonstrated depending on a given mapping. The se
tion is

followed by problems and suggestions whi
h will enable a �nite element implementation of

all-together. First, the novel 
on
ept of 
urvature is to be de�ned as an invariant.

3.3.1 Curvature Invariant with Euler Bernoulli Ansatz

Even though it is 
on
urrently pointless and di�
ult to des
ribe the 
on
ept of material

point 
urvature, it will be tried here to emphasize the approa
h on a s
ript, formally and

visually. Apprehension of the Figure C.2 during reading the next is strongly suggested by

the writer of the treatise.

The bending energy formulations -irrespe
tive of whi
h theory will be used- require

the estimation of the radius of 
urvature. The theory of kinemati
 assumptions of

Euler-Bernoulli postulations will be applied here, namely the tangent of the pro�le will

remain perpendi
ular to the pro�le at spa
e and in pseudo time of deformation. Where the

"geometri
ally exa
t" approa
h would require the 
ofa
tor of pro�le planes to determine

the real 
urvature. For the 
urvature formulation this additional e�e
t will be ignored. In

short, for the next, the following assumptions hold,

F♯ ·M♯ ‖ cof
(
F♯
)
·M♯ F♭ ·M♭ ‖ cof

(
F♭
)
·M♭

(3.12)

The radius of 
urvature is estimated a

ording to the angles of 
urvatures, where there is

no reason that those to be equal. The radius of 
urvature is taken to be 
ommon in sharp

and �at length 
hanges, formally;

sin
(
α♯
)
=

∣∣m♯
∣∣

r
sin

(
α♭
)
=

∣∣m♭
∣∣

r
(3.13)
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Ω♭
m

Ω♮
m

Ω♯
m

cof
(

F♭
)

·M♭

F♭ ·M♭

F♯ ·M♯

cof
(

F♯
)

·M♯

(

F
♮

+ G · dM
♮
)−T

· M
♮

(

F
♮

+ G · dM
♮
)

· M
♮

dM
♮

Ω♭
m

Ω♮
m

Ω♯
m

F♮ ·M♯

1

2
G:

(

M♯
)⊗2

1

2
G:

(

M♯
)⊗2

F
♯ ·M

♯

m
♯

F♮ ·M♭

1

2
G:

(

M♭
)⊗2

1

2
G:

(

M♭
)⊗2

F
♭
·M

♭

m ♭

Figure 3.6: Kinemati
s of a single �ber with 
onve
ting and moving 
oordinates at the �at, natural

and sharp se
tions

In order to take both e�e
ts into a

ount, the following trigonometri
 identity and

estimation 
an be done,

c = r−1 =
sin

(
α♯
)
+ sin

(
α♭
)

|m♯|+
∣∣m♭

∣∣

=
2sin

((
α♯ + α♭

)
/2
)
cos
((
α♯ − α♭

)
/2
)

|m♯|+
∣∣m♭

∣∣

≈
2sin

((
α♯ + α♭

)
/2
)

|m♯|+
∣∣m♭

∣∣

(3.14)

The 
osine of the rotation 
an be 
omputed by at best with the dot produ
t of �at and

sharp deformed ve
tors. Alternatively, the 
ross produ
t might be used, however it may


ause some singularities in the initial stress and hyperstress terms, whi
h have to be dealt

with repulsive terms. In order to avoid dealing with numeri
al work-arounds, the dot produ
t

version of the estimation is used;

cos
(
α♯ + α♭

)
=

(
−m♯ ·m♭

)

|m♯|
∣∣m♭

∣∣ (3.15)

The minus sign indi
ates that the sharp tangent to be rotated, sin
e some positive notation

for the dot proje
tion is desired. The members whi
h are used to 
ompute the invariants
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then,

−m♯ = F ·M−
1

2
G : M⊗2

m♭ = F ·M+
1

2
G : M⊗2

(3.16)

Even tough the determined invariants are also stret
h related, as indi
ated above, they

have an impa
t in the bending energy either. The three invariants

4

required for de�ning

Euler-Bernoulli type of radius of 
urvature are then;

Iκ4 =
(
FT · F

)
: M⊗2 = FklFkmMlMm

Iκ5 =
(
FT · (G ·M)

)
: M⊗2 =

(
(G ·M)T · F

)
: M⊗2 = Fkl (G ·M)kmMlMm

Iκ6 =
(
(G ·M)T · (G ·M)

)
: M⊗2 = (G ·M)kl (G ·M)kmMlMm

(3.17)

The se
ond and third 
ontra
tions above are identi
al sin
e the 
ontra
ted tensors are

transpose of ea
h other,

FT · (G ·M) =
(
(G ·M)T · F

)T
(3.18)

Analogous to the full length in the 
urrent 
urved 
oordinates as the sum of sharp and �at

lengths, the values of the 
urvature of equation (3.15) 
an also be formulated. The full

length for instan
e;

|m| =
∣∣∣m♯

∣∣∣+
∣∣∣m♭

∣∣∣ =
√
(Iκ4 + Iκ5 + 0.25Iκ6 ) +

√
(Iκ4 − Iκ5 + 0.25Iκ6 ) (3.19)

Together with the de�nitions above and the introdu
ed invariants, the following invariant

formulation for the 
urvature 
an be a
hieved;

cos
(
α♯ + α♭

)
=

(Iκ4 − 0.25Iκ6 )

(Iκ4 − Iκ5 + 0.25Iκ6 )
1/2 (Iκ4 + Iκ5 + 0.25Iκ6 )

1/2
(3.20)

A

ordingly, a s
alar value for the 
urvature is determined and formulated with respe
t

to some novel invariants. The independen
e of these invariants with respe
t to the

post-deformation rotations 
an be proved smoothly, whi
h is omitted here.

The obligatory question is, if this 
urvature de�nition 
an 
apture the whole evolute of a

given mapping or not. In order to seek and provide an answer to this question, the analyti
al

example of the spiral beam, whi
h was introdu
ed in the previous 
hapter (Ch.[2.3℄) is

revisited here. As shown previously, using the strain gradient kinemati
s, the forward

mapping of straight to 
urved spatial 
on�guration and the ba
kward mapping of 
urved to

straight referen
e 
on�guration works far better then by only 
onsidering the deformation

4

The invarian
e of the postulated variables is self evident, the parameters are independent of the

pre-rotations of the referen
e �ber dire
tions
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Figure 3.7: The deformation and the evolute of the spiral beam, α = 3π/2, n = 60

gradient e�e
ts. As seen in the Figure 3.7, not only the mapping is almost with high

a

ura
y 
aptured, but also the 
onne
ting 
urve of the 
enter of 
urvatures, namely the

evolute is estimated quite nearby to the semi-analyti
al solution. It should be noted here

that, the evaluation of an evolute in this 
ase, is not possible to be extra
ted from the

deformation gradient approa
h, sin
e the neighborhood of the neighborhood information

is missing and thus obsolete in the latter 
ase. In the example of Figure 3.7, apart from

the fa
t that there is a slight drifting, one 
an 
on
lude that 
urvature approximations

su
h as equation (3.15) or similar variations, 
an 
apture the form of di�erential geometry

satisfa
torily, and therefore 
an be used for the formulation of novel formulations of material

internal energy.

3.3.2 Anisotropi
 Strain and Strain-gradient Energy Fun
tion - EB

Ansatz

In the next, the formulation of the Euler-Bernoulli based strain and strain gradient energy

density fun
tion are presented (EB Ansatz). Having the approximation for the radius of


urvature in hand, the energy density fun
tion is depending on the elasti
 modulus, and the
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e�e
tive se
ond moment of inertia 
an be introdu
ed.

ψκ = EI

(
2− 2cos

(
α♯ + α♭

))
(
|m♯|+

∣∣m♭
∣∣)2 = EI

2− 2a

|m|2

a = cos
(
α♯ + α♭

)
=
b

d

b = (Iκ4 − 0.25Iκ6 )

d = (Iκ4 − Iκ5 + 0.25Iκ6 )
1/2 (Iκ4 + Iκ5 + 0.25Iκ6 )

1/2

|m| =
(∣∣∣m♯

∣∣∣+
∣∣∣m♭

∣∣∣
)

(3.21)

The repla
ements are done for simpli
ity, and further trigonometri
 identities are used for

the sake of evaluation of derivatives for �nite element or natural element implementation.

This energy fun
tion is tested on a simple representative abstra
t material point mapping.

Quite purposely, some ex
essive mapping is 
hosen here, to 
omment on the 
onvexity of

the energy fun
tion without seeking any further mathemati
al proof. The 
hosen mapping

enfor
es an exponential verti
al displa
ement of initially straight horizontal line element,

�xed at its origin (see Figure 3.8). The 
urrent 
oordinates of the mapping with respe
t to

the referen
e 
oordinates and the pseudo time parameter reads;

x (X,Y,Z, t) = X y (X,Y,Z, t) = Y + exp(Xt)− 1 z (X,Y,Z, t) = Z

(3.22)

The deformation in pseudo time is illustrated in the left part of Figure 3.8. In the right
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Figure 3.8: Left: The exponantial material formation in 10 time steps; Right: The normalized


urvature and normalized EB bending energy of the exponential mapping

diagram, the normalized (wrt. the �nal 
urvature) 
urvature and the normalized bending

energy (wrt. to the �nal bending energy) based on equation (3.21) are shown. The 
urvature

is to be de
reasing after a degree of formation, whi
h is required 
ompletely based upon the

nature of the given kinemati
s, and may 
ause some non-
onvexity of the density fun
tion.

This is a quite natural fa
t, and tendentious monolithi
 in
rease is quested for the purpose
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of numeri
al 
onvergen
e. A

ording to the writer, the formulation should not be altered

falla
iously, rather the numeri
al s
enario for solving this type of softening shall be improved,

than the result of a trail of arguments listed above are manipulated. Another issue whi
h

should not be forgotten is the existen
e of third order remainder of this approximation. This

means that, the evaluated 
urvature and stret
h deviates from the analyti
al one. However,

it is the self-
onsisten
y what is intended here, for 
omparison of the power of kinemati
s,

please refer to the arguments of hyperkinemati
s (Ch.[2℄).

Before moving ahead, the de�nitions of the �rst Piola Kir
ho� stress tensor, and hyperstress

tensor should be introdu
ed here. By taking the �rst derivatives of the energy fun
tion of

equation (3.21), with respe
t to the deformation gradient and deformation hypergradient

results into;

Pκ =
∂ψκ

∂F
= −2EI

∂a

∂F
|m|−2 − 2EI |m|−3 ∂ |m|

∂F
(2− 2a)

Qκ =
∂ψκ

∂G
= −2EI

∂a

∂G
|m|−2 − 2EI |m|−3 ∂ |m|

∂G
(2− 2a)

(3.23)

The ne
essary three tangent terms have to be also evaluated and the 
onsisten
e of

the integration with the stress and hyperstress should be 
he
ked. This is performed

to demonstrate the softening behavior primarily, and se
ond, it is done to ensure the


orre
tness. The detailed extra
tion of the derivatives 
an be found in the list of

Appendix-B. The tangent tensors 
an be evaluated as beneath;

DPκ

F =
∂Pκ

∂F
= −2EI

∂2a

∂F2
|m|−2 + 4EI |m|−3 ∂ |m|

∂F
⊗
∂a

∂F

+ 6EI |m|−4 ∂ |m|

∂F
⊗
∂ |m|

∂F
(2− 2a)− 2EI |m|−3 ∂

2 |m|

∂F2
(2− 2a)

+ 4EI |m|−3 ∂a

∂F
⊗
∂ |m|

∂F

(3.24)

DPκ

G =
∂Pκ

∂G
= −2EI

∂2a

∂G∂F
|m|−2 + 4EI |m|−3 ∂ |m|

∂G
⊗
∂a

∂F

+ 6EI |m|−4 ∂ |m|

∂G
⊗
∂ |m|

∂F
(2− 2a)− 2EI |m|−3 ∂

2 |m|

∂G∂F
(2− 2a)

+ 4EI |m|−3 ∂a

∂G
⊗
∂ |m|

∂F

(3.25)

DQκ

G =
∂Qκ

∂G
= −2EI

∂2a

∂G2
|m|−2 + 4EI |m|−3 ∂ |m|

∂G
⊗
∂a

∂G

+ 6EI |m|−4 ∂ |m|

∂G
⊗
∂ |m|

∂G
(2− 2a)− 2EI |m|−3 ∂

2 |m|

∂G2
(2− 2a)

+ 4EI |m|−3 ∂a

∂G
⊗
∂ |m|

∂G

(3.26)

Two 
omments 
an be done about the 
onsisten
y of the material points result, �rst one
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Figure 3.9: Left: First Piola Kir
ho� Stress tensor tra
tion on the referen
e X plane and 
urrent x

dire
tion. Right: First Piola Kir
ho� Stress tensor tra
tion on the referen
e X plane and 
urrent y

dire
tion

is the 
onformity of the tangent values with the dire
t derived tra
tions, se
ond one is the

expe
ted 
apture of the non-zero tra
tions for the given deformation. Sin
e there is no

dependen
y of the referen
e Y 
oordinate was given in the mapping, no thi
kness 
hange

may be evaluated, by re
alling the fa
t that the kinemati
s is only applied around the �xed

origin. Another interesting but foreseen phenomena is that the tra
tion on the referen
e

X-normal plane in the 
urrent x-parallel dire
tion 
oexist with the shear tra
tion, indi
ating

that bending energy may enfor
e also axial for
es on straight lines of referen
e. As 
an be
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Figure 3.10: Left: First Piola Kir
ho� Hypertress tensor tra
tion on the referen
e X plane and xX

First Piola Stress-Spa
e. Right: First Piola Kir
ho� Hypertress tensor tra
tion on the referen
e X

plane and xY First Piola Stress-Spa
e

seen in Figure 3.10, the 
onsisten
e of the tangent and the dire
tly derived terms are also

well satis�ed. The details of the derivation 
an be found in Appendix-B. It 
an be now

moved on with the problems 
on
erning any possible �nite element implementation.

3.4 FEM Implementation with Strain-gradient E�e
ts

The previously in this se
tion de�ned material model with bending internal energy 
an be

well embedded into a �nite element implementation. As will be seen, there is no spe
ial
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element type for this purpose is suggested, nor the 
onsequen
es are dis
ussed. There might

be several problems arising quite analogous to the strain element library of total a

umulated

knowledge of �nite element method, but these all are taken out of the 
on
ern of the thesis.

In this se
tion, the dis
rete form, and one s
hema of a
hieving the destination are presented.

3.4.1 Dis
rete Form for Finite Element Formulation

The energy split proposed before is repeated here, and shape fun
tion interpolation on the

virtual energy integrals is applied. In order to be 
onsistent with the ongoing 
hapters,

the general gradient notation whi
h is similar to mainstream interpolation s
hemes is used,

su
h as natural element shape value interpolation, whi
h is visited in the next 
hapters (see

Ch.[5.3.2℄). At the end, the notation is 
onverted to the generally a

epted matrix-voigt

form, to keep the well known standards of �nite element jargon. To start with, the nonlinear

internal virtual energy divisions are,

δΠPFint =

∫

Ω
[P : ∇Xδu] dV ≈

∫

Ω

[
P · ∇X

(∑
N I
)]

· δũdV = fPFint · δũ

δΠQGint =

∫

Ω

[
Q ∴ ∇⊗2

X δu
]
dV ≈

∫

Ω

[
Q

r
: ∇⊗2

X

(∑
N I
)]

· δũdV = fQGint · δũ

(3.27)

Where the �rst one 
an be interpreted as pure virtual strain energy of internals, the se
ond

one is the pure virtual strain gradient energy of internals. It should be kept in mind that,

the virtual energy of bending is not straightly or ideally equal to the virtual strain gradient

energy of internals. As shown previously, the bending energy 
an only be formulated at the

lo
us of material if one has the hyperstrain information in hand, and this a

ounts to the

strain energy as well. Correspondingly, the tangent matri
es of the non-mixed residuum

internal for
es 
an be repeated here to be,

KIJ
P (F ) =

∫

Ω

[
∇XN

I ·
∂P T

∂F
· ∇XN

J

]
dV (3.28a)

KIJ
Q(G) =

∫

Ω

[
∇⊗2

X N I l:
∂QT2

∂G

r
: ∇⊗2

X NJ

]
dV (3.28b)

And the mixed-residuals of the internal for
es 
ause the following 
ontributions in the

tangent sti�ness matri
es,

KIJ
P (G) =

∫

Ω

[
∇XN

J ·
∂QT2

∂G

r
: ∇⊗2

X NJ

]
dV (3.29a)

KIJ
Q(F ) =

∫

Ω

[
∇⊗2

X N I l:
∂QT2

∂F
· ∇XN

J

]
dV (3.29b)

The assumed strain displa
ement, and assumed hyperstrain displa
ement matri
es as


onsistent de�nitions to �nite element method are,

B̃
I
=

1

V

∫

Ω

[
∇XN

I
]
dV

B̃
I
∇ =

1

V

∫

Ω

[
∇⊗2

X N I
]
dV

(3.30)
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Before moving ahead with the promised strain gradient �nite element formulation, one


laim has to be 
leared here numeri
ally. In general, irrespe
tive of total Lagrange or

Euler formulations, or any in
remental formulation, the �nite element solution at the level

of 
omputer numeri
s is always taken to be based on symmetri
 tensors. The very well

understood reason of it is the 
oheren
e and appli
ability of the symmetri
 tensors to Voigt

notation or similar. In this way, the major and minor symmetries for instan
e, does allow

one to represent fourth order tensors in plane matrix format. Considering the nonsymmetri



hara
teristi
s of the deformation gradient and the �rst Piola Kir
ho� stress tensor, the

notation 
an not bring any value, sin
e signi�
ant symmetry properties are lost. Beside,

there might be still a bene�t of formulation (3.28a), sin
e it involves both the geometri
al

and the material tangent values in one, thus is programmer-friendly. However the 
orre
tness

is to be tested, if the 
onjuga
y of energy works well or not. The start is the representation

of the First Piola-Kir
ho� stress to deformation gradient tangent with respe
t to the se
ond

Piola-Kir
ho� stress to Cau
hy-Green strain tensor as formulated beneath.

Pij = FimSmj

C
PF
ijkl =

∂Pij
∂Fkl

=
∂Fim
∂Fkl

Smj + Fim
∂Smj
∂Fkl

= δikδmlSmj + Fim
∂Smj
∂Cno

∂Cno
∂Fkl

= δikδmlSmj +
1

2
FimC

SE
mjno (δnlFko + Fknδol)

(3.31)

Where the last identity 
omes from the derivation of the Cau
hy-Green strain tensor with

respe
t to the deformation gradient as shown below,

∂Cno
∂Fkl

=
∂

∂Fkl
(FpnFpo) = δpkδnlFpo + Fpnδpkδol (3.32)

In index notation, the 
onversion of two tangents in index notation is well developed and

tested as 
an be seen next. For this purpose, a spring-like sinusoidal geometry is 
hosen,


lamped at the left edge in elongation dire
tion, pulled on the right edge in the elongation

dire
tion. The main purpose is to unbend the geometry, and prove the 
onjuga
y 
ondition

is well satis�ed with equation (3.31) The 
onstru
ted model has 5604 nodes with two

degrees of freedom ea
h, 1143 quadrati
 quadrilaterals with 8 nodes and 9 integration

points ea
h. The s
enario is tested by St. Venant-Kir
ho� material, results 
an be found

below. As obvious from the results shown in Figures 3.11 and 3.12, two formulations result

the same deformation �eld. Thus, further 
onsideration 
an be dis
ussed next.

3.4.2 Strain-gradient Displa
ement Matrix

The evaluation of strain gradient displa
ement matrix 
an be generalized, however the

formulation presented here is based on one element type, namely 8-noded quadrilateral

element with 9-integration points. The shape fun
tions, the derivatives of the shape

fun
tions 
an be found elsewhere, writer re
ommends Zienkiewi
z (Ref.[

O.C.Zienkiewi
z 2000a

℄)

for this purpose. In this stage, the �rst Piola-Kir
ho�/Deformation-gradient 
onsistent
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Figure 3.11: Extending the sinusoidal spiral, undeformed Grey, deformed 
olor plot, Legend:

Deformation magnitude

Figure 3.12: Extending the sinusoidal spiral, Left: PF formulation, Right:SE formulation

Strain-Displa
ement matrix and Strain gradient-Displa
ement matrix are presented. The

arising problems and the solution suggestions of those are presented here. Given 8 Shape

fun
tions in this 
ase, to 
ompute a derivative matrix with respe
t to the lo
al 
oordinates

(evaluated at integration points) 
an be written as;

(4×16)[
N,ξ

]
∣∣∣∣∣
(ξ=ξ∗)

=




N1
,ξ 0 N2

,ξ 0 N3
,ξ 0 N4

,ξ 0 ..

N1
,η 0 N2

,η 0 N3
,η 0 N4

,η 0 ..

0 N1
,ξ 0 N2

,ξ 0 N3
,ξ 0 N4

,ξ ..

0 N1
,η 0 N2

,η 0 N3
,η 0 N4

,η ..




∣∣∣∣∣∣∣∣
(ξ=ξ∗)

(3.33)

Besides of this, a modi�ed ja
obian inverse matrix 
an be formulated,

[
J−1

]∣∣
(ξ=ξ∗)

=




ξ,X η,X 0 0

ξ,Y η,Y 0 0

0 0 ξ,X η,X
0 0 ξ,Y η,Y




∣∣∣∣∣∣∣∣
(ξ=ξ∗)

(3.34)
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These both result in the strain-displa
ement matrix at a lo
ation,

(4×16)[
BPF

]
∣∣∣∣∣
(ξ=ξ∗)

=
[
J−1

]∣∣
(ξ=ξ∗)

·
(4×16)[
N,ξ

]
∣∣∣∣∣
(ξ=ξ∗)

=




N1
,X 0 N2

,X 0 N3
,X 0 N4

,X 0 ..

N1
,Y 0 N2

,Y 0 N3
,Y 0 N4

,Y 0 ..

0 N1
,X 0 N2

,X 0 N3
,X 0 N4

,X ..

0 N1
,Y 0 N2

,Y 0 N3
,Y 0 N4

,Y ..




∣∣∣∣∣∣∣∣
(ξ=ξ∗)

(3.35)

As a very well known fa
t, this matrix is used to obtain strains at the integration points

from nodal displa
ements. In short, the following relation holds;

4×1

(u,X)

∣∣∣∣
(ξ∗)

=
(4×16)[
BPF

]
∣∣∣∣∣
(ξ=ξ∗)

·
16×1

(ũ) (3.36)

One may think in the �rst step, quite analogous to this method, a se
ond derivative matrix

format of the shape fun
tions with respe
t to the global 
oordinates 
an be realized. This

is however, not as trivial as it sounds at �rst glan
e. To show the 
laim, the index notation


an be taken under 
onsideration. Consider the derivative of one degree of freedom with

respe
t to one global referen
e 
oordinate,

(u,X)|(ξ=ξ∗) =
∑

i

∂N i

∂X

∣∣∣∣
(ξ=ξ∗)

ũi =
∑

i

(
∂N i

∂ξ

∂ξ

∂X
+
∂N i

∂η

∂η

∂X

)∣∣∣∣
(ξ=ξ∗)

ũi (3.37)

The 
omputation of the se
ond derivatives results into,

(u,XX) =
∑

i

∂

∂X

(
∂N i

∂ξ

∂ξ

∂X
+
∂N i

∂η

∂η

∂X

)
ũi

=
∑

i

[(
∂2N i

∂ξ2
∂ξ

∂X
+
∂2N i

∂ξ∂η

∂η

∂X

)
∂ξ

∂X

+

(
∂2N i

∂η∂ξ

∂ξ

∂X
+
∂2N i

∂η2
∂η

∂X

)
∂η

∂X

+
∂N i

∂ξ

∂2ξ

∂X2
+
∂N i

∂η

∂2η

∂X2

]

(3.38)

The �rst two addends are easy to obtain, however the third 
omponent is simply elements of

inverse of the third order Ja
obian matrix. Sin
e su
h an inverse is not found to be de�ned

in the literature, this version of de�ning strain gradient-displa
ement matrix is omitted. For

this purpose, a element-wise global strain displa
ement matrix is de�ned, whi
h in
ludes

the strain-displa
ement matri
es evaluated at all nodes,

(32×16)[
BPF

]
∣∣∣∣∣
nodal

=




(4×16)[
BPF

]
∣∣∣∣∣
(−1,−1)

,
(4×16)[
BPF

]
∣∣∣∣∣
(1,−1)

,
(4×16)[
BPF

]
∣∣∣∣∣
(1,1)

,
(4×16)[
BPF

]
∣∣∣∣∣
(−1,1)

, ..



T

(3.39)
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The purpose of the matrix above is to get assumed nodal deformation gradients, in order

to evaluate integration point deformation-hypergradients 
onjun
tively. For that purpose,

a larger shape fun
tion derivative matrix is to be de�ned, whi
h is to be evaluated again at

the integration lo
ations.

(8×32)[
GBPF

]
∣∣∣∣∣
(ξ=ξ∗)

=




N1
,X 0 0 0 N2

,X 0 0 0 ...

N1
,Y 0 0 0 N2

,Y 0 0 0 ...

0 N1
,X 0 0 0 N2

,X 0 0 ...

0 N1
,Y 0 0 0 N2

,Y 0 0 ...

0 0 N1
,X 0 0 0 N2

,X 0 ...

0 0 N1
,Y 0 0 0 N2

,Y 0 ...

0 0 0 N1
,X 0 0 0 N2

,X ...

0 0 0 N1
,Y 0 0 0 N2

,Y ...




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(ξ=ξ∗)

(3.40)

Finally the strain gradient-displa
ement matrix, whi
h 
an be evaluated in any lo
ation of

the element 
an be obtained by multiplying the last two de�ned matri
es,

(8×16)[
GPF

]
∣∣∣∣∣
(ξ=ξ∗)

=
(8×32)[
GBPF

]
∣∣∣∣∣
(ξ=ξ∗)

·
(32×16)[
BPF

]
∣∣∣∣∣
nodal

(3.41)

Therefore, the desired relationship is obtained and 
an be further used for the 
onstru
tion

of �nite element strain-gradient sti�ness matrix.

8×1

(u,XX)

∣∣∣∣
(ξ∗)

=
(8×16)[
GPF

]
∣∣∣∣∣
(ξ=ξ∗)

·
16×1

(ũ) (3.42)

A

ording to the writers opinion, the plane strain formulation given here whi
h suits for

8-node quadrilateral with 9 integration points, is de�nitely appli
able for the 3 dimensional


ase trivially. One 
hallenge might be here to show the performan
e in the 
ase of elements

with bi- or tri-linear shape fun
tions are used. For instan
e the se
ond method whi
h is

omitted here, namely the equation (3.38), would la
k of the �rst two terms in su
h an

attempt. On the other hand, the suggested method here would be �ne adapted to any type

of element, however the performan
e is another topi
 whi
h was not regarded as the main

fo
us of this work. In the priory step, one has to show the impa
t of the bending energy

on the solution path, and if this is 
onvin
ing, one may look for improving the other issues,

in
luding a diversity of elements and way of integrating the �eld equations.



96 Chapter 3. Nonlinear Strain-gradient Balan
e

3.4.3 Numeri
al Examples

In this se
tion a simple a
ademi
 example is 
hosen. The model 
onsist of 88 quadrilateral

elements and 317 nodes. The beam is modeled with four layers of elements, ea
h of them


onsisting of 9 integration points. Therefore, 12 layers of �brous stru
ture are modeled.

In the undeformed referen
e 
on�guration, the �bers are taken to be straight and aligned

in the horizontal dire
tion. The beam is left 
lamped and a unit for
e is applied on the

right tip. The solution is for
e 
ontrolled. There are in total 3 numeri
al s
enarios shown

Figure 3.13: Case1; Bending a simple beam, undeformed Grey, deformed 
olor plot,

Legend:Deformation Magnitude

here, for all of them the boundary 
onditions are kept to be the same. The only parameter

regarded here is the type and in
lusion of the material models. In the �rst 
ase only a

Sn-Venant-Kir
ho� material model is 
hosen. For the se
ond 
ase, additional to the �rst

isotropi
 energy fun
tion, the stret
h energy is 
onsidered (see Appendix-B). For the �nal


ase, additional to the stret
h energy and isotropi
 energy, the bending energy is also


onsidered. The stret
h and bending energy fun
tions are shown beneath,

ψs =
1

2
EA

(∣∣∣m♯
∣∣∣
2
− 1

)2

+
1

2
EA

(∣∣∣m♭
∣∣∣
2
− 1

)2

ψκ = EI

(
2− 2cos

(
α♯ + α♭

))
(
|m♯|+

∣∣m♭
∣∣)2 (3.43)

The expe
tation is that the overall deformation de
reases from 
ase one to 
ase three, sin
e

the stru
ture is supported with more sour
es of elasti
 energy. The amount of in�uen
e is

another question to be answered. A 
lear 
on
lusion of the result states that as expe
ted,

Figure 3.14: Deformation plots of beam bending, Left: Case2; Isotropi
 strain energy density

fun
tion and Stret
h energy density fun
tion, Right: Case3; Istropi
 strain energy density, Stret
h

energy density and Bending energy density fun
tions

the deformation gets smaller if one 
onsiders more energy terms. The deformation under

the a
tion of the same for
e for the 
ase of isotropi
, stret
h and bending e�e
ts is smaller
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and thus sti�er then the remaining two s
enarios. The amount or the dire
tion of the

di�eren
e is another dis
ussion topi
, but more interesting is the observation of impa
t on

the result, and the 
onvergent behaviour of the numeri
al implamentation itself.

Figure 3.15: Energy distribution plots of beam bending, Left: Stret
h energy distribution, Right:

Case3; Bending energy distribution
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4.1 Introdu
tion

The ma
ros
opi
 me
hani
al fun
tion of the soft tissue depends on anisotropy and lo
al

homogenized orientations of load bearing �brous network. The indi
ations of early wear

damage (Ref.[

W.Wilson 2003

℄) of AC have been asso
iated with the lo
al network damage

of 
ollagen mesh. The depth dependent lo
al anisotropy and �ber orientation of AC have

been studied re
ently under theoreti
al, numeri
al and experimental frameworks (see Wilson

Ref.[

W.Wilson 2005

℄ , Quinn Ref.[

T.M.Quinn 2005

℄). Me
hani
al and material fun
tionality

of AC are investigated frequently by taking the 
ompli
ated mi
ros
opi
 behavior into

a

ount also, refer to the works for instan
e by; (Federi
o Ref.[

Federi
o 2008

℄ , S
hinagl

Ref.[

S
hinagl 1997

℄ , and Bu
kley Ref.[

Bu
kley 2008

℄). The ma
ros
opi
 me
hani
al fun
tion

of the soft tissue depends on anisotropy and lo
al homogenized orientations of load

bearing �brous network. The indi
ations of early wear damage (Ref.[

W.Wilson 2003

℄) of

AC have been asso
iated with the lo
al network damage of 
ollagen mesh. The depth

dependent lo
al anisotropy and �ber orientation of AC have been studied re
ently under

theoreti
al, numeri
al and experimental frameworks (see Wilson Ref.[

W.Wilson 2005

℄ , Quinn

Ref.[

T.M.Quinn 2005

℄). Me
hani
al and material fun
tionality of AC are investigated frequently
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by taking the 
ompli
ated mi
ros
opi
 behavior into a

ount also, refer to the works

for instan
e by; (Federi
o Ref.[

Federi
o 2008

℄ , S
hinagl Ref.[

S
hinagl 1997

℄ , and Bu
kley

Ref.[

Bu
kley 2008

℄).

Remodeling by Menzel (Ref.[

A.Menzel 2004

℄) is de�ned as the evolution of mi
rostru
ture

or variations in the 
on�guration of the underlying manifold. Many novel and re
ent

re
ognitions of remodeling de�nitions with various appli
ations are present. The 
urrent

lo
al mi
rostru
ture of soft tissues like tendons, ligaments, AC, arterial walls, or 
ell tra
tion

experiments, engineered soft tissues and even abstra
t-type materials are investigated

with the present remodeling strategies 
ited here. Without proof, in these works, it is

assumed that the soft tissue takes its evaluated mi
roform with the postulated biome
hani
al


ontinuum setting.

Menzel (Ref.[

A.Menzel 2004

℄) has postulated a general theoreti
al and numeri
al framework

of remodeling and growth of �ber reinfor
ed material. Garikipati (Ref.[

K.Garikipati 2005

℄),

has dis
ussed stationary strain energy and thermodynami
 aspe
ts of remodeling with

the realization of 
ell-tra
tion experiments. Kuhl (Ref.[

E.Kuhl 2008

℄) and Holzapfel

(Ref.[

G.Holzapfel 2006

℄) have showed that gradual alignment of unit-
ell 
an represent 
ollagen

network orientation of an engineered tendon-like tissue. Holzapfel (Ref.[

I.Hariton 2007

℄) and

Driessen (Ref.[

N.J.Driessen 2003

℄) have re
ently used stress-driven reorientation of 
ollagen

�bers of arterial walls and por
ine aorti
 valve lea�et. Wilson (Ref.[

W.Wilson 2006

℄) has

predi
ted the depth dependent 
ollagen orientation of AC with remodeling.

In this work, the 
omprehensive formulation of orthotropi
 hyperelasti
ity of eight-
hain

network model with the full set of stru
tural invariants are presented �rst. The strain

energy density fun
tion of the unit-
ell, with orthonormal referen
e bases depending on

irredu
ible set of invariants are introdu
ed. The reorientation of unit 
ell depending on

the strain energy density fun
tion are presented thereafter. Small a
ademi
 examples and

illustrations of quasi-stati
 
y
li
 remodeling using nonlinear �nite element method are

presented. Finally, 
omments on the spatial lo
al ar
hite
ture of AC are left.

Analogous to the strain dependent reorientation, two types of strain gradient dependent

reorientation methods are postulated here too. Comments are left, and the 
omparison

of the strain and strain gradient reorientations and their e�e
ts on AC-alike geometry are

investigated in next se
tions.

4.2 Orthotropi
 Hyperelasti
ity

4.2.1 Worm-like Chain Model

The hyperelasti
 strain energy density fun
tion developed here, is appli
able to any kind

of given for
e-displa
ement relationship. For the sake of relevan
y, the wormlike 
hain

model is reintrodu
ed. It is a simple but generally a

epted one for the remodeling of

biologi
al tissue (Garikipati Ref.[

K.Garikipati 2005

℄ , Kuhl Ref.[

E.Kuhl 2008

℄Ref.[

G.Holzapfel 2006

℄).

The wormlike 
hain model 
onsiders the persisten
e length of the 
hain (whi
h 
an be

measured experimentally) as a measure of unbending sti�ness.
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ψ (|r|) =
γkT l

4A

(
2
|r|2

L2
+

1

(1− |r| /L)
−

|r|

L

)
(4.1)

For missing fundamental knowledge, please refer to the referen
es in the given order. For

the statisti
al approa
h of basi
 thermodynami
s refer to Baierlein (Ref.[

R.Baierlein 2010

℄),

for gathering undergraduate knowledge about physi
s of polymer 
hains to Boal

(Ref.[

David Boal 2010

℄), and for a 
lean derivation of wormlike 
hain for
e-displa
ement

behavior to Ma
Kintosh (Ref.[

F.C.Ma
Kintosh 2009

℄).

4.2.2 Me
hani
s of the Chain Network

4.2.2.1 Essential Kinemati
s

The nonlinear deformation map x = ϕ (X, t) de�nes the quasi-stati


(Ogden-Ref.[

R.W.Ogden 2008

℄) (kinemati
) motion of material 
oordinates of a parti
le

with 
oordinates X ∈ Ω0 at t = 0 to the spatial 
oordinates of that parti
le x ∈ Ω at a

subsequent time t > 0. The two point tensor deformation gradient F maps the material

tangent spa
e dX ∈ TΩ0 to the spatial tangent spa
e dx ∈ TΩ subsequent time t > 0.

In this �rst order kinemati
s

1

, the 
oordinates θi are assumed to 
onve
t with the linear

θ2,G2

θ3,G3

θ1,G1 θ2, g2

θ3, g3

θ1, g1

x2, X2, e2

x3, X3, e3

x1, X1, e1

Ω0,X Ω,xϕ

Figure 4.1: Nonlinear deformation map with 
onve
tive 
oordinates

1

For the se
ond order kinemati
s, please refer to the 
hapter of Hyperkinemati
s(Ch.[2℄)
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tangent map F .

X = Xiêi = θiGi

x = xiêi = θigi

(4.2)

Where the following well known relations between the material and spatial bases and the

tangent map are valid here.

Gj =
∂Xm

∂θj
êm (4.3a)

êj =
∂Xj

∂θm
Gm

(4.3b)

gj =
∂xi

∂θj
êi (4.3
)

êi =
∂θm

∂xi
gm (4.3d)

Besides, the two point tensor deformation gradient in terms of the base ve
tors of 
onve
ting


oordinates 
an be evaluated as the following. These 
onve
ted 
oordinates and metri
es

will be used next for the derivation of the orthotropi
 hyperelasti
 8-
hain unit-
ell model.

F =
∂xi
∂Xj

(êi ⊗ êj) =
∂xi
∂Xj

(
∂θm

∂xi
gm ⊗

∂Xj

∂θm
Gm

)
= gm ⊗Gm

(4.4)

4.2.3 Stru
tural Tensors

To de�ne the orthotropi
 free energy fun
tion, the stru
tural invariants

2

are used. The

stru
tural tensors are de�ned by material or spatial 
ovariant bases given as;

Gij = Gi ⊗Gj (4.5a)

gij = gi ⊗ gj = F ·Gi ⊗ F ·Gj (4.5b)

With the indexes no summation is implied. It is taken su
h that the unit s
alars are


onve
ted with the deformation, thus the material and spatial base ve
tors are not

ne
essarily de�ned as unit ve
tors. The tra
es of these dyadi
 produ
ts 
an be interpreted

as the lengths of the basis ve
tors in the referen
e and deformed 
on�gurations if the

indexes are equal, otwerhise; the s
alar proje
tions on ea
h other should be taken as the

interpretation. By 
onsidering that the lengths and s
alar proje
tions being una�e
ted

under any kind of post or pre-rotations

3

(the length or proje
tion of a 
onve
ting frame

is un
hanged if rotated), the tra
e operators generate so 
alled stru
tural invariants. The

2

For a better understanding of the stru
tural tensors please refer to the beautiful treatise written

by Boehler (Ref.[

Boehler 1979

℄) almost a half a de
ade ago

3

post/pre rotation: orthogonal type of deformation a
ting after and before motion a

ordingly
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invariants as entries of 
ovariant spatial metri
 have the following relations;



g1
g2
g3


 =



g1 · g1 g1 · g2 g1 · g3
g2 · g1 g2 · g2 g2 · g3
g3 · g1 g3 · g2 g3 · g3


 ·



g1

g2

g3




=



tr (g11) tr (g12) tr (g13)

tr (g21) tr (g22) tr (g23)

tr (g31) tr (g32) tr (g33)


 ·



g1

g2

g3




=



tr (G11 ·C) tr (G12 ·C) tr (G13 ·C)

tr (G21 ·C) tr (G22 ·C) tr (G23 ·C)

tr (G31 ·C) tr (G32 ·C) tr (G33 ·C)


 ·



g1

g2

g3




(4.6)

Where C = F T · F is the right Cau
hy-Green deformation tensor.

There 
an be nine dependent stru
tural tensors present, whereas six of them being transpose

of ea
h other. The set of 
ovariant material base ve
tors are 
hosen to be orthonormal.

Therefore, the matrix form of the 
ovariant material metri
 is a diagonal square. Be
ause

the deformation is arbitrary, the 
ovariant spatial metri
 has not ne
essarily zero o�-diagonal

terms. However, the 
ovariant material stru
tural tensors are tra
e-wise dependent on ea
h

other.

For an orthotropi
 hyperelasti
 material formulation, the strain energy fun
tion is established

based on the basi
 invariants of Cau
hy-Green deformation tensor and the six stru
tural

invariants with unit bases given beneath. For other examples please refer to Boehler

Ref.[

Boehler 1979

℄ , Park Ref.[

H.C.Prk 1997

℄ and Sansour Ref.[

C.Sansour 2007

℄.

J1 = G11 : C (4.7a)

J2 = G22 : C (4.7b)

J3 = G33 : C (4.7
)

J4 = G11 : C
2

(4.7d)

J5 = G22 : C
2

(4.7e)

J6 = G33 : C
2

(4.7f)

The 
on
epts of obje
tivity

4

(invarian
e of strain energy for post rotations, observations),

material symmetry

5

(invarian
e of strain energy for pre rotations) and 
onvexity of strain

energy fun
tion are out of s
ope of this work. With all of the assumptions, the strain energy

density takes the following form;

ψ = ψ (I1, I2, I3, J1, J2, J3, J4, J5, J6) (4.8)

There are many phenomenologi
al models �tting with the theoreti
al form given above.

The intent is to �nd the relation between the invariants, network stru
ture, deformed 
hain

4

A post-rotation 
an be interpreted as the rotation of the observer of the deformed body. This type

of observer motion 
an not manipulate the strain energy, sin
e the a
tion has already taken pla
e,

indi
ating the term obje
tive material depending on invariants

5

An isotropi
 material would be insensitive to the pre-rotations and thus symmetri
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length and strain energy density fun
tion for the unit 
ell. The geometri
al approa
h

given by Kuhl (Ref.[

E.Kuhl 2008

℄) (transversely isotropi
 8-
hain model) will be followed and

extended here. The lengths of the 
hains in the undeformed 
on�guration be
ome;

G1

G2

G3

g2

g3

g1

R1

R2

ψ,F

Figure 4.2: undeformed and deformed 
oordinates of the unit 
ell

|R0| =
∣∣R0‖

∣∣ = |R1| =
∣∣R1‖

∣∣ = |R2| =
∣∣R2‖

∣∣ = |R3| =
∣∣R3‖

∣∣ =

|R| =
√
G11 : I +G22 : I +G33 : I

(4.9)

The lengths of 
hains in the deformed 
on�guration are;

|r0| =
∣∣r0‖

∣∣ =
√(
GT

1 · F T +GT
2 · F T +GT

3 · F T
)
· (F ·G1 + F ·G2 + F ·G3)

=

√√√√
(
GT

1 · F T · F ·G1

)
+
(
GT

2 · F T · F ·G2

)
+
(
GT

3 · F T · F ·G3

)
+

2
(
GT

1 · F T · F ·G2

)
+ 2

(
GT

3 · F T · F ·G1

)
+ 2

(
GT

2 · F T · F ·G3

)

=
√
G11 : C +G22 : C +G33 : C + 2G12 : C + 2G31 : C + 2G23 : C

(4.10)

Similarly, the other deformed lengths be
ome,

|r1| =
∣∣r1‖

∣∣ =
√
G11 : C +G22 : C +G33 : C − 2G12 : C + 2G31 : C − 2G23 : C

|r2| =
∣∣r2‖

∣∣ =
√
G11 : C +G22 : C +G33 : C + 2G12 : C − 2G31 : C − 2G23 : C

|r3| =
∣∣r3‖

∣∣ =
√
G11 : C +G22 : C +G33 : C − 2G12 : C − 2G31 : C + 2G23 : C

(4.11)

These simple derivations are supported by the statement of Boehler (Ref.[

Boehler 1979

℄); "All

the invariants of general anisotropy 
an be expressed as single valued fun
tions of the six

independent invariants". The invariants that Boehler mentioned are nothing but the ones

given in the deformed 
hain lengths formulas above, whi
h is 
hosen on purpose in this way,
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to be 
onsistent with the histori
al terminology of the invariant algebra.

The remaining part of the work is, reformulation of stru
tural tensors. The aim is, to 
at
h


onsisten
y with the 
ommon orthotropi
 hyperelasti
 energy fun
tions in the literature,

whi
h are usually given in terms of the invariants above. Another reason beyond the seek

of 
onsistan
y is to establish a strain energy density fun
tions using the given derivatives of

standard stru
tural invariants with respe
t to the Right Cau
hy-Green deformation tensor.

Gij : C = Gij : C = (J1, J2, J3, J4, J5, J6) (4.12)

For further redu
tions, the next equalities whi
h are valid for non-unit

6

orthonormal bases

are used.

I : I =
G11 : I

G11 : I
+
G22 : I

G22 : I
+
G33 : I

G33 : I
(4.13a)

I : C =
G11 : C

G11 : I
+
G22 : C

G22 : I
+
G33 : C

G33 : I
(4.13b)

I : C2 =
G11 : C

2

G11 : I
+
G22 : C

2

G22 : I
+
G33 : C

2

G33 : I
(4.13
)

tr
(
G11 ·C

2
)
=

(G11 : C)2

G11 : I
+

(G12 : C)2

G22 : I
+

(G13 : C)2

G33 : I
(4.13d)

tr
(
G22 ·C

2
)
=

(G21 : C)2

G11 : I
+

(G22 : C)2

G22 : I
+

(G23 : C)2

G33 : I
(4.13e)

tr
(
G33 ·C

2
)
=

(G31 : C)2

G11 : I
+

(G32 : C)2

G22 : I
+

(G33 : C)2

G33 : I
(4.13f)

The �rst three equations 
an be seen or found by simple tensor 
al
ulus. For the derivation

of the last three equations, please refer to Appendix-D. By using these six equations the

mixed invariants 
an be represented as;

2 (G12 : C)2 = (G11 : I) (G22 : I)

[
I : C2 − 2

(G33 : C)2

G33 : I

]

+

[
−
G22 : I

G11 : I
(G11 : C)2 −

G11 : I

G22 : I
(G22 : C)2 +

(G11 : I) (G22 : I)

(G33 : I)
2 (G33 : C)2

]

= (G11 : I) (G22 : I)

[(
I : C2 − 2

(G33 : C)2

G33 : I

)

+

(
−
(G11 : C)2

(G11 : I)
2 −

(G22 : C)2

(G22 : I)
2 +

(G33 : C)2

(G33 : I)
2

)]

(4.14a)

6

The base ve
tors do not have to be ne
essarily of unit size, so that the undeformed invariants may

represent the �nite spa
e o

upied by a fundamental biologi
al unit -and the me
hani
al 
orrespondent

of it-.
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Similarly, the se
ond mixed invariant be
omes,

2 (G13 : C)2 = (G11 : I) (G33 : I)

[
I : C2 − 2

(G22 : C)2

G22 : I

]

+

[
−
G33 : I

G11 : I
(G11 : C)2 +

(G11 : I) (G33 : I)

(G22 : I)
2 (G22 : C)2 −

G11 : I

G33 : I
(G33 : C)2

]

= (G11 : I) (G33 : I)

[(
I : C2 − 2

(G22 : C)2

G22 : I

)

+

(
−
(G11 : C)2

(G11 : I)
2 +

(G22 : C)2

(G22 : I)
2 −

(G33 : C)2

(G33 : I)
2

)]

(4.15a)

And the last mixed invariant for 
learan
e,

2 (G23 : C)2 = (G22 : I) (G33 : I)

[
I : C2 − 2

(G11 : C)2

G11 : I

]

+

[
+
(G22 : I) (G33 : I)

(G11 : I)
2 (G11 : C)2 −

G33 : I

G22 : I
(G22 : C)2 −

G22 : I

G33 : I
(G33 : C)2

]

= (G22 : I) (G33 : I)

[(
I : C2 − 2

(G11 : C)2

G11 : I

)

+

(
+
(G11 : C)2

(G11 : I)
2 −

(G22 : C)2

(G22 : I)
2 −

(G33 : C)2

(G33 : I)
2

)]

(4.16a)
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To 
he
k or ensure the 
orre
tness of these redu
tions please refer to Appendix-D. A

ording

to the 
al
ulations, the 
omplete set of new invariants are to be rede�ned;

I2 = I : C
2

(4.17a)

J1 =
G11 : C

G11 : I
(4.17b)

J2 =
G22 : C

G22 : I
(4.17
)

J3 =
G33 : C

G33 : I
(4.17d)

J4 =
G11 : C

2

G11 : I
(4.17e)

J5 =
G22 : C

2

G22 : I
(4.17f)

J6 =
G33 : C

2

G33 : I
(4.17g)

The new set of stru
tural invariants 
an be 
onsidered as the normalizations of the standard

ones. The mixed invariants in terms of the new integrity basis;

(G12 : C)2 = (G11 : I) (G22 : I)
[
(I2 − 2J6)

(
− (J1)

2 − (J2)
2 + (J3)

2
)]

(4.18a)

(G13 : C)2 = (G11 : I) (G33 : I)
[
(I2 − 2J5)

(
− (J1)

2 + (J2)
2 − (J3)

2
)]

(4.18b)

(G23 : C)2 = (G22 : I) (G33 : I)
[
(I2 − 2J4)

(
(J1)

2 − (J2)
2 − (J3)

2
)]

(4.18
)

And the deformed 
hain length of one of the 
hains in terms of the new integrity basis;

|r| =

√√√√ tr (G11 : C) + tr (G22 : C) + tr (G33 : C)

+tr (G12 : C) + tr (G31 : C) + tr (G23 : C)

=

√√√√√√√√√√√√√√√

(G11 : I) J1 + (G22 : I)J1 + (G33 : I) J1

+

√
2 (G11 : I) (G22 : I)

[
(I2 − 2J6)

(
− (J1)

2 − (J2)
2 + (J3)

2
)]

+

√
2 (G11 : I) (G33 : I)

[
(I2 − 2J5)

(
− (J1)

2 + (J2)
2 − (J3)

2
)]

+

√
2 (G22 : I) (G33 : I)

[
(I2 − 2J4)

(
(J1)

2 − (J2)
2 − (J3)

2
)]

=

√√√√ (G11 : I) J1 + (G22 : I)J1 + (G33 : I) J1

+
√

2I12 +
√

2I31 +
√

2I23

(4.19)
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Where, to redu
e the 
omplexity, the mixed invariants 
an be formulated as;

I12 = (G11 : I) (G22 : I)
[
(I2 − 2J6)

(
− (J1)

2 − (J2)
2 + (J3)

2
)]

(4.20a)

I31 = (G11 : I) (G33 : I)
[
(I2 − 2J5)

(
− (J1)

2 + (J2)
2 − (J3)

2
)]

(4.20b)

I23 = (G22 : I) (G33 : I)
[
(I2 − 2J4)

(
(J1)

2 − (J2)
2 − (J3)

2
)]

(4.20
)

Finally, with this explained frame, the 
hain strain energy density fun
tion is de�ned

depending on six stru
tural and one basi
 invariant of the �rst order kinemati
s unit-
ell

based on worm-like 
hains.

ψchain = ψchain (I2, J1, J2, J3, J4, J5, J6) (4.21)

The invariants of the transverse isotropy I2, J1 and J4 a

ount for the stret
h of the �ber


oin
idently parallel to the �rst 
ovariant material base ve
tor (a physi
al interpretation),

and J5 and J6 a

ount indire
tly to the strain energy of shear modes. It is 
ommented

by Ogden (Ref.[

R.W.Ogden 2008

℄) that there is no straightforward interpretation of the last

two invariants, however the relation in between �nite strain and the dependen
y on J5
and J6 holds. Among the mi
rostru
ture based models in the literature, the kinemati
s

de�ned by Kuhl (Ref.[

E.Kuhl 2008

℄) and Holzapfel (Ref.[

G.Holzapfel 2006

℄) represent the 
hain

strain energy density fun
tion for transverse isotropy depending on stret
h invariant J4 by

negle
ting J5 and J6. Bis
ho� (Ref.[

J.E.Bis
ho� 2002

℄) on the other side, formulated the

orthotropi
 hyperelasti
ity of eight-
hain model by prin
iple stret
hes along the material

axes. There are several other similar approa
hes in the literature. By admitting that, �nite

shear strains exist in biologi
al tissue with arbitrary geometry and boundary 
onditions

(in
luding AC), their 
ontribution into the strain energy density fun
tion should be involved

either. Otherwise, one 
an speak about an im
ompleteness in between the given unit-
ell

morphology and strain energy density fun
tion formulation.

4.2.4 Energy Split, Stress at Integration Point and Tangent Modulus

For the �nite element or natural element implementation of remodeling and orthotropi


hyperelasti
ity, the tangent modulus has to be evaluated. There are generally

a

epted pro
edures of iterative solution methods for �nding tangent moduli (by

Miehe Ref.[

C.Miehe 1996

℄ for instan
e). Here, it is preferred to 
al
ulate the

tangent moduli analyti
ally by following the 
urrent state formulation of Zienkiewi
z

(Ref.[

O.C.Zienkiewi
z 2000b

℄). The physi
ally motivated split of strain energy density fun
tion

into the bulk energy and 
hain energy parts is applied. For the 
hain energy, the strain energy

density fun
tion de�ned in the previous se
tion is used. Following the other resear
hers in

the �eld, Menzel (Ref.[

A.Menzel 2004

℄) for example, an additional term on the 
hain energy

is de�ned, to prevent the shrinkage of the 
hains into the stable end-to end length, whi
h

is being zero. This repulsive term is de�ned so that, the 
hain strain energy has stress-free

referen
e 
on�guration for a given Cau
hy-Green deformation tensor.

ψ = ψchain (I2, J1, J2, J3, J4, J5, J6) + ψrep + ψbulk (4.22)
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This formulation with the bulk strain energy density a

ounting for the surrounding


ompressible �uid in the biologi
al tissue in
ludes the 
omplete set of integrity bases. This

set in
ludes 9 parameters de�ning the orthotropy, 
orresponding one Young's modulus and

two Poisson's ratio in ea
h dire
tion in analogy with the linear elasti
ity. In nonlinear

elasti
ity, the underlying physi
al interpretation of invariants is not so straightforward. Next,

the 
hain and repulsive terms of se
ond Piola-Kir
ho� stresses and 
urrent state tangent

moduli are shown. The energeti
ally 
onjugate stress measure of Cau
hy-Green deformation

tensor is the symmetri
 Piola-Kir
ho� stress tensor. The 
hain se
ond Piola-Kir
ho� stress

tensor is evaluated by taking the derivative of energy fun
tion on
e. In tensor-index mixed

notation;

SchainIJ = 2

(
∂ψchain

∂C

)

IJ

= 2
∂ψchain

|r|

[
∂ |r|

∂I2

(
∂I2
∂C

)

IJ

+

6∑

k=1

∂ |r|

∂Jk

(
∂Jk
∂C

)

IJ

]
(4.23)

In indi
ial-matrix-tensor mixed notation proposed by Zienkiewi
z (Ref.[

O.C.Zienkiewi
z 2000b

℄);

SchainIJ = 2
[
2Cij

(G11)IJ
tr(G11)

(G22)IJ
tr(G22)

(G33)IJ
tr(G33)

]

·
[
∂ψ
∂|r|

∂|r|
∂I2

∂ψ
∂|r|

∂|r|
∂J1

∂ψ
∂|r|

∂|r|
∂J2

∂ψ
∂|r|

∂|r|
∂J3

]T

+ 2
[

(G11·C+C·G11)IJ
tr(G11)

(G22·C+C·G22)IJ
tr(G22)

(G33·C+C·G33)IJ
tr(G33)

]

·
[
∂ψ
∂|r|

∂|r|
∂J4

∂ψ
∂|r|

∂|r|
∂J5

∂ψ
∂|r|

∂|r|
∂J6

]T

(4.24)

And the repulsive 
hain term of the se
ond Piola-Kir
ho� stress tensor is;

SrepIJ = −
∂ψ

∂ |r|

∣∣∣∣
|R|

[
(G11)IJ
tr(G11)J1

(G22)IJ
tr(G22)J2

(G33)IJ
tr(G33)J3

]
·
[
∂|r|
∂J1

∣∣∣
R

∂|r|
∂J2

∣∣∣
R

∂|r|
∂J3

∣∣∣
R

]T
(4.25)

The material tangent matrix term in referen
e 
oordinates is,

C
chain
IJKL =

4
[
2CIJ

(G11)IJ
tr(G11)

(G22)IJ
tr(G22)

(G33)IJ
tr(G33)

(G11·C+C·G11)IJ
tr(G11)

(G22·C+C·G22)IJ
tr(G22)

(G33·C+C·G33)IJ
tr(G33)

]
·

H·
[
2CKL

(G11)KL

tr(G11)
(G22)KL

tr(G22)
(G33)KL

tr(G33)
(G11·C+C·G11)KL

tr(G11)
(G22·C+C·G22)KL

tr(G22)
(G33·C+C·G33)KL

tr(G33)

]T

+ 4
[
2 (I ⊗ I)IJKL 0 0 0

[G11⊗C+C⊗G11)KL
tr(G11]IJKL

[G22⊗C+C⊗G22)KL
tr(G22]IJKL

[G33⊗C+C⊗G33)KL
tr(G33]IJKL

]
·

[
∂ψ
∂|r|

∂|r|
∂I2

∂ψ
∂|r|

∂|r|
∂J1

∂ψ
∂|r|

∂|r|
∂J2

∂ψ
∂|r|

∂|r|
∂J3

∂ψ
∂|r|

∂|r|
∂J4

∂ψ
∂|r|

∂|r|
∂J5

∂ψ
∂|r|

∂|r|
∂J6

]T

(4.26)

Where the dyadi
 produ
ts of the se
ond order tensors and the Hessian matri
es are de�ned

as;

[A⊗B]IJKL = 0.5 ([A]IK [B]JL + [A]IL [B]JK) (4.27a)

Hij =
∂

∂Ji

(
∂ψ

∂ |r|

∂ |r|

∂Ji

)
=

∂2ψ

∂ |r|2
∂ |r|

∂Ji

∂ |r|

∂Ji
+

∂ψ

∂ |r|

∂

∂Ji

∂ |r|

∂Ji
(4.27b)
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The derivatives of the strain gradient energy of the worm-like 
hain given in equation (4.1)

with respe
t to the deformed length is straightforward and is omitted in this stage. The

repulsive tangent material tensor in referen
e 
oordinates is following the same pro
edure

be
omes,

C
rep
IJKL = −4

∂ψ

∂ |r|

∣∣∣∣
|R|

[
−

(G11)IJ (G11)KL

(tr(G11)J1)
2 −

(G22)IJ (G22)KL

(tr(G22)J2)
2 −

(G33)IJ (G33)KL

(tr(G33)J3)
2

]
·

[
∂|r|
∂J1

∣∣∣
R

∂|r|
∂J2

∣∣∣
R

∂|r|
∂J3

∣∣∣
R

]T (4.28)

As indi
ated in the formulations, some derivatives should be evaluated at the referen
e tip

to tail length of the worm-like 
hains. For demonstration, two di�erent examples with two

di�erent deformation gradient-histories are developed and plotted. Comparisons of the six

independent entries of se
ond Piola-Kir
ho� stresses 
al
ulated with the �rst derivatives,

with the ones 
al
ulated with the tangent maps are done. The �rst example is simple

un
onstrained tension test to one integration point, the se
ond one is simple un
onstrained

shear test to on integration point. For ea
h test, 50 time steps are applied, and the 
ovariant

material base ve
tors are 
hosen to be 
oin
ident with Cartesian bases and have equal size.

The applied deformation gradients are given priorily. The same tests 
an be 
ompared with

publi
ations of similar demonstrations; su
h as in Ref.[

J.E.Bis
ho� 2002

℄.

4.2.5 Simple Tension and Shear on the Orthotropi
 8-
hain Model

After ea
h other, two examples are presented here. The �rst one is a given deformation

gradient of a pure stret
h without potential mapping. Time time parameter of Figure 4.6

is 
hosen in a way that the maximum stret
h of the unit-
ell rea
hes around �fty per
ent.
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G

jj
G

kk
G

kk
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(b) Deformation gradient of the stret
h

Figure 4.3: Form and the formula of the stret
h on 8-
hain model

As expe
ted, for this type of �rst order kinemati
s, the shear stresses all vanish. In Figure 4.4

two of the three non-zero 
omponents of the stret
h tensor are plotted against the stret
h

parameter. Those two are 
learly equal to ea
h other. Additionally, the 
orrelation of the

se
ond Piola-Kir
ho� tensor 
omputation with the tangent moduli is veri�ed to be 
orre
t.

This had to be performed to show the reliability of the lengthy expressions presented in the

previous se
tion of Ch.[4.2.4℄.

The stress values along the loading dire
tion 
an be seen in Figure 4.5. The exponential
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Figure 4.4: Se
ond Piola Kir
ho� Stress tensor 
omponents

behavior of the true stress 
omponent 
an be observed to be as
ending with the stret
h

value.
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(b) Cau
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tion

Figure 4.5: Comparison of se
ond Piola Kir
ho� and Cau
hy stress 
omponent in stret
h dire
tion

This is expe
ted either, sin
e the surfa
e with the normal of dire
tion of stret
h is getting

signi�
antly smaller. On the other side, the other normal stresses are observed to be

staying with the same order of quantity, sin
e those surfa
es undergo area-preserving type

of deformation. After being 
onvin
ed about the 
onsisten
y of the formulation based on

the stret
h type of deformation, the pure-shear type of deformation 
an be investigated as

well.
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(b) Deformation gradient of the shear

Figure 4.6: Form and the formula of the shear on 8-
hain model

The given deformation gradient and the mapping on the eight 
hain model is given in

Figure 4.6. All three normal stress values are expe
ted to be quantitatively �nite.
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Figure 4.7: Se
ond Piola Kir
ho� Stress tensor 
omponents

As predi
ted, one normal 
omponent is equal to another one, and the third one is

signi�
antly smaller then the other two, as 
an be seen in Figure 4.7. The largest 
omponent

on the other side, is noti
ed to be the single shear 
omponent, again as expe
ted, the other

two shear 
omponents are the only non-zero values for the example of pure-shear.

After showing the reliability and 
ompleteness of the proposed material model, one 
an

give a look to the main topi
 of the 
hapter, namely the reorientation with strain and

strain gradient e�e
ts. For the 
ase of reorientation with strain e�e
ts, the aforementioned

orthotropi
 material model is used.
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(a) Cau
hy stress 
omponent in shear
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hy stress 
omponent in one normal
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Figure 4.8: Comparison of se
ond Piola Kir
ho� and Cau
hy stress 
omponent in stret
h dire
tion

4.3 Material Point Reorientation

4.3.1 Strain based Reorientation

A �ber reorientation s
heme 
an be de�ned as the evolution of referen
e 
on�guration

(Ref.[

K.Garikipati 2005

℄). This su

essive updating pro
edure suggests pre-rotations and

translations on the material point. Therefore, the multipli
ative split of the deformation

gradient into the rotation and elasti
 part is appli
able. In this work, the rotation tensor in

Figure 4.9 is introdu
ed as an internal variable as investigated in other works, for instan
e in

Ref.[

Himpel 2007

℄. Similarly, it is preferred to modify previous 
on�guration in the quasi-stati


iterative pro
edure gradually. Even though the given kinemati
s is of type �rst order, it is

still valid and 
an be applied to gradient reorientation.

The steering 
ausality of remodeling is 
ertainly not a trivial question with a simple

answer. Some works suggest strain driven reorientation

7

whereas some prefer stress driven

8

one.There is 
ertainly a di�eren
e, sin
e the strain and stress tensors for anisotropi
 media is

arbitrarily non-
oaxial. However, the strain driven reorientation is 
ertainly motivated with

the stationary strain energy 
riteria, for mathemati
al proof, please refer to the Appendix-D.

This proof is fully motivated by the works of Norris (Ref.[

Norris 2005

℄) and Vianello

(Ref.[

Vianello 1996a

℄), who have proved that for anisotropi
 linear materials the optimal

orientation of the material is a
hieved if stress and 
orresponding strain measures are


oaxial. This 
oaxiality requirement is only ful�lled if the material axes are parallel with the

eigenve
tors of strains. Again Vianello had showed in two separate works ( Ref.[

Vianello 1995

℄ ,

7

strain driven works: Ref.[

K.Garikipati 2005

℄ , Ref.[

A.Menzel 2004

℄ , Ref.[

E.Kuhl 2008

℄ , Ref.[

W.Wilson 2006

℄

, Ref.[

A.Menzel 2006

℄

8

stress driven works: Ref.[

I.Hariton 2007

℄ , Ref.[

N.J.Driessen 2003

℄ , Ref.[

Hariton 2007

℄
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Figure 4.9: Kinemati
s of updating the referen
e 
on�guration with rotation tensor

Ref.[

Vianello 1996b

℄) that the same argument holds also for the �nite elasti
ity. The pro
edure

in appendix se
tion uses the same line of a
tion whi
h were previously proposed, but applies

another terminology, whi
h �ts better to the form of this treatise.

RQR
i

i  
*

321 GGGR rrr 

i
p

*
cR

**
cc

RRp u 

Minimize    

)3()3(: SkwSO
d

d T
��� PQ;PQ

Q
\

Subject to  
3��� p1.0p

3
��� � p0.0Rp

Evolution Criteria as optimization problem: 

Figure 4.10: The de�nition of the evolution as an optimization set problem

The given Figure 4.10 des
ribes the evolution 
riteria in terms of an optimization problem

set, and gives a set-up for the numeri
al validation. The left illustration of Figure 4.10

in
ludes two sets of ve
tors, as the �rst one being the ve
tor set of all possible target

referen
e 
on�gurations Rc
t. The �rst set is separated from the initial �ber dire
tion R

with an angle of 'β', and thus forms a 
oni
al shape. The se
ond set is determined a

ording

to the referen
e �ber dire
tion and the set of target �ber dire
tion. Consequently, the se
ond

set de�nes the set of rotation axis.



4.3. Material Point Reorientation 115
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Figure 4.11: Numeri
al veri�
ation of maximizing the stret
h in one step

As 
an be seen from the Figure 4.11, by sele
ting the su

essive lo
ation of target in terms

of the eigenve
tor of Cau
hy-Green strain tensor with the maximum positive eigenvalue,

one re
eives the maximum stret
h at the lo
ation.
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Figure 4.12: Numeri
al veri�
ation of maximizing the stret
h stepwise

As stated, the situation is numeri
ally shown to be holding for a one-step, sudden adaptation,

namely 
losing the angle 'β' all of a sudden. Additional remark to that 
an be made

a

ordingly, by admitting that the number of 
riti
al lo
ations is not ne
essarily unique, as


an be seen from this single example. Comments around this observation will be made in

the next se
tions. In Figure 4.12, it is 
lear that the stepwise approa
hing to the target is

also well established and preserves the maximum stret
h and thus maximum strain energy


riteria. However, for some lower angle of rotations of 'β', another stable energy lo
ation

for 'α' 
an be preferably sele
ted by the a
tor of adaptivity.

Further 
omments on this subje
t 
an be done by stating the 
oaxiality requirement as the



116 Chapter 4. Reorientation with Strain and Gradient E�e
ts

1

1.5

2

2.5

3

3.5

4

0 60 120 180 240 300 360 420

0

1

2

3

4

5

6

0 60 120 180 240 300 360 420

Minimize    

QCQCQ;
CS

SCCS
TSO  �

�
*)3(

**

****

Subject to  

3��� p1.0p

3��� � p0.0Rp

Alternative Evolution Criteria

� � 2/1* RQFFQRr TTT
 

CS

SCCS

**

****
�

Figure 4.13: Comparison of stret
h maximizing and 
oaxiality optimization manifolds

optimization manifest, as done in Figure 4.13 . As 
an be seen from the diagrams on the left,

at the maximum lo
ation the 
oaxiality requirement is 
omprehensively ful�lled, however,

for the alternative lo
al maximum of stret
h at the half angle of rotation of 'α = 0.5π'

for the initial attempts of reorientation (for small β) the same 
on
lusion 
an not be done.

Even though the 
oaxiality fun
tion is not as smooth as the fourth invariant

9

, it is still

a better 
andidate for sear
hing the optimum referen
e �ber dire
tions. One drawba
k is,

as one 
an observe from the Figure 4.13, the fa
t that the 
oaxiality has a lo
al minimum

value for the minimum lo
ations of the strain energy fun
tion, for instan
e the lo
ation of

α = 0.5π. If one has the intent of using numeri
al optimization algorithms for solving the

problem in hand, should 
onsider this phenomenon. This point will not be visited again,

sin
e the treatise preferably follows in fa
t the semi-analyti
al methods, thus sear
hing the

perfe
t lo
ation for a given manifest.

To 
ompare the strain driven reorientation with the strain gradient driven one, a more

realisti
 example is taken as basis, namely an abstra
t 
ross-se
tion, whi
h represents

arti
ular 
artilage. The geometry is generated by hand-free methods, mainly by mimi
king

the s
anning ele
tron mi
ros
opy pi
tures of 
artilage 
ross se
tions. This gives one also

the opportunity of 
omparing the reorientation results with the reality.

Some spe
i�
ations of the model should be 
leared here as well. The model is simply

based on three rows of 8-noded hexahedral elements. The geometry is �xed only from

the bottom, the nodal 
onsistent for
e step is applied until rea
hing a 
ertain level of

deformation. There is no 
onta
t algorithm applied, as done previously in the 
hapter of

mixed �eld theory (Ch.[1℄). As 
an be seen from the Figure 4.15, the re
ently presented

eight-
hain model is used for the simulations.

9

a

ording to the given numeri
al examples
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Figure 4.14: Pressing the Cartilage-alike pro�le with uniform for
e

The self-
onsisten
y and 
orre
tness of the

results are interpreted based on the 
oaxiality

requirement, as obvious from the previous


omments done in this se
tion. As one 
an

see, the stress, strain and the �
titious target

spa
es all overlap with ea
h other. However,

turning ba
k to the 
onsisten
y of the results with


omparison of reality, one 
an obviously see that

the expe
tation in some regions are not satisfying.

The super�
ial zone is 
onsistent with the reality,


onsist of �bers along the surfa
e. In the depth

zone rather perpendi
ular �bers are anti
ipated

being 
onsistent with experimental observations.

Chain Network

Cauchy Deformation base

PK2 Stress base

Figure 4.15: The 
oaxiality requirement

However, the mid and depth zones in the middle region are anti
ipated to be perpendi
ular

to the surfa
e, where the opposite is observed here.

Furthermore, the side-fa
ets of the system are not 
onstrained at all, therefore the problem

is in 3D s
ale in fa
t a plane stress problem, rather then plane strain. This s
enario would

represent rather a quasi-stati
 type of verti
al loading. On the other side, an impa
t type of

loading would most probably 
ause the �uid 
onstituent smear away from the solid abruptly,

and thus in
rease the e�e
t of lo
ality. Su
h a 
ase, is a

ording to the opinion of the writer

of the treatise is rather a 
ase for plane strain. The fo
us in this 
ase is for normal loading


onditions, thus plane strain.

Hereby, the strain gradient reorientation suggestions will be presented next. A �nalizing


on
lusion will be done in the next 
hapters.
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4.3.2 Curvature Reorientation

Claiming that any proposed energy fun
tion is an in
reasing fun
tion of hyperstrains is not

ne
essarily true. The strain gradient e�e
ts 
an be a
ting along the stret
h, and thus may

have a 
umulative e�e
t. However, a simple assumption of presupposing that the 
urvature

e�e
ts are proportional with hyperstrains, 
an fa
ilitate a use of simple energy fun
tion for

de�nition and usage of semi-analyti
al methods similar to strain-driven reorientation.

ψκ ≃ exp
(
M̂ ♮⊗2

: K : M̂ ♮⊗2
)

(4.29)

Where the fourth order Cau
h-Green 
orresponden
e of Hypergradient is de�ned as,

K = G
ll
· G Kijkl = GnijGnkl (4.30)

A

ording to the S
hwarz integrability 
ondition, the hypergradient tensor possess one-plane

symmetry. As a result of this, the Cau
hy-Green Hypergradient has major and minor

symmetry properties. The fourth order 
ontra
tion stays under the following a
tions

invariant

10

;

MiMjKijklMkMl =MiMjKjiklMkMl =MiMjKijklMlMk =MiMjKklijMkMl

(4.31)

The �rst two equalities indi
ate minor symmetries, where the last one represents major

symmetry. To move on, a so 
alled scatter transformation is de�ned, whi
h transforms the

fourth order tensors with major and minor symmetries by redu
ing the order of the tensor

and in
reasing the dimension of the ve
tor spa
e with no loss of information.

K
34 ∈ R

3×3×3×3 Scatter
−−−−→ K

92 ∈ R
9×9

(4.32)

Be
ause of the major symmetry, the transformed form of K is symmetri
 in tensor order

dire
tions. The eigen-de
omposition of the transformed form generates therefore 9 linearly

independent eigenve
tors.

K
92 =

9∑

i

λKi

(
N 91

i ⊗N 91

i

)
(4.33)

Referring to the 
omments done about the 
oaxiality and stable energy 
on�gurations, the

eigenve
tor with the maximum 
orresponding eigenvalue 
an be gathered into a lower order

ve
tor spa
e dimension with higher tensor order. Again this transformation does not 
ause

any information loss.

N 91

max ∈ R
9 Gather
−−−−→ N32

max ∈ R
3×3

(4.34)

The Gathered matrix of eigenve
tor of s
attered Cau
hy-Green strain tensor 
an be further

de
omposed into linearly independent eigenve
tors.

N 32
max =

3∑

i

λNi

(
n31
i ⊗ n31

i

)
(4.35)

10

The invarian
y is not trivial to prove, to be 
onsistent with the previous de�nitions of the strain

energy density fun
tions, the term is a

epted to be valid
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The S
attered matrix 
an be in fa
t further redu
ed into K
62 ∈ R

6×6
by imposing the

minor symmetries. By doing so, it be
omes evident that the eigenve
tors of nonzero

eigenvalues N91
i are linearly independent. The eigenve
tor of the eigenvalue with the

maximum absolute value is 
hosen to be the reorientation target. It is straightforward to

build a spin-free in
remental orthonormal tensor for the evolution towards to the desired

dire
tion. In opposite to the usual (strain driven-only) reorientation manifolds, where only

the eigenve
tors with positive eigenvalues are 
onsidered, in this 
ase the one with the

absolutely largest eigenvalue is taken to be the ideal orientation of that instant.

To prove the validity of the proposed semi-analyti
al analogy, the following strain-gradient


ontribution is tested;

G = Gx ⊗Gy ⊗Gz

=




1.3 0.2 −2.8

0.2 0.9 −2.1

−2.8 −2.1 1.3


⊗



0.2 1 1.8

1 0.6 2.7

1.8 2.7 −2.1


⊗



−1.6 −2.4 −0.5

−2.4 0.9 −1.45

−0.5 −1.45 2.3




(4.36)

For the 
onstru
tion of this hyperstrain tensor, no spe
ial investigation is performed


on
erning the potential of the tensor. There is neither a mapping or deformation gradient,

thus there is no warranty of any property of the potential is provided. But, the minor

symmetry is preserved. In order to show that the veri�
ation done above is not a 
oin
iden
e,

(a) One view of the energy surfa
e (b) Another view of the energy surfa
e

Figure 4.16: Maximizing of equation (4.29) under the a
tion of hypergradient of equation (4.36).

The maximum lo
ation is found 
orre
tly and marked with a line.

more examples are presented in �gures 4.16 and 4.17. The given reorientation postulate

based on a simple material invariant, namely the 
urvature 
orrespondent of the fourth

invariant of �rst order kinemati
s anisotropy, is well established and veri�ed with numeri
al

examples. In order to investigate the 
omplete e�e
t of bending/stret
h relationships, one

additional reorientation manifest will be introdu
ed next.

4.3.3 Reorientation based on the EB Material Model

Sin
e the previous reorientation manifest is a

epted to be a pra
ti
al alternative, and

enables one to allow semi-analyti
al type of solution methods, a more realisti
 approa
h will

be introdu
ed here. The di�eren
e is mainly based on the used energy fun
tion. Namely, the
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Figure 4.17: Arbitrary surfa
es of

(

M̂ ♮⊗2

: K : M̂ ♮⊗2
)

and the lo
ation of reorientation target. The

maximum overlaps with s
attered-gathered eigenve
tor result.

Euler-Bernoulli type of material model, introdu
ed in the 
hapter of Hyperbalan
e (Ch.[3℄).

ψ =
EA

4

(
|m|2 − 1

)2
+ EIc2 (4.37)

Any split whi
h divides the terms driven only by strain and only by strain-gradient

e�e
ts is not trivial to apply here. This is a 
onsequen
e of additive nature of the

strain-gradient trun
ation of the spatial/referen
e mapping of the se
ond order 
ontinuum

lo
ations. A

ordingly, this makes it 
umbersome to �nd basi
 invariants to apply eigenvalue

de
omposition methods, prove the stability of the energy fun
tion around those dire
tions

and implement numeri
s for it.

It had been mentioned in the previous se
tions that the strain energy fun
tion and the

reorientation manifests have non-
onvex nature. By 
onsidering that any sear
h 
andidate

R∗
in the referen
e 
on�guration should preserve unit ve
tor property, the problem 
an

not be 
onsidered as a 
ase of un
onstrained optimization. Therefore, any solution of

non-
onvex 
onstrained optimization problem had been 
onsidered (relatively) to be not

only non-trivial and also quite ex
essive for the main intent of this treatise. As a result of

this argumentation, for �nding 
riti
al lo
ations of the energy fun
tion of equation (4.37),

dire
t numeri
al methods are applied.

The following mapping, deformation gradient and hyperdeformation gradient 
omponents

are used for demonstration;

y = 0.5tX2 FyX = tX GyXX = t (4.38)

For this example, the values (ratios) for the area and se
ond moment of inertia are taken

from the example of fra
tional pro�les introdu
ed in the previous 
hapter of Hyperbalan
e

equations. The ratio is I/A is a

ordingly taken to be 12. In equation (4.38), only the

non-zero terms are given.

In the right pi
ture of Figure 4.18 the unde�ned bending/stret
h energy ratio is simply

marked by zero. On the left pi
ture it is quite evident that the trivial dire
t numeri
 sear
h

is working well around the given dis
rete set of rays generated by spheri
al 
oordinates. In

the right pi
ture it is quite evident that there is another stable region, where the bending
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(a) Energy topology (b) Bending/Stret
h energy ratio

Figure 4.18: Maximizing of equation (4.37) under the a
tion of hypergradient of equation (4.38).

The maximum lo
ation is found 
orre
tly and marked with a line.

energy dominates the total energy. As a regard of that, for the �ber network it is logi
al to


onsider other bene�ts, su
h as permeability and wear resistan
e, then trying to rea
h the

ultimate maximum. This is of 
ourse only a 
omment, not an absolute 
on
lusive statement

of this study.

The 
omparison on a spe
i�
 model of arti
ular 
artilage is let to be a topi
 of the following

se
tions, and omitted here.
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5.1 Introdu
tion

Natural element method falls into the 
ategory of parti
le-based methods for solving

PDE's. Parti
le based methods are diversi�ed in many signi�
ant topi
s, in
luding

dis
retization, interpolation, problem type, and solution method. Among many di�erent

examples, meshless �nite element method Ref.[

S.R.Idelsohn 2002

℄ (MFEM), parti
le �nite

element method Ref.[

E.Onate 2004

℄ (PFEM), dis
rete element method Ref.[

N.Bi
ani
 2004

℄

(DEM), smoothed parti
le hydrodynami
s Ref.[

Monoghan 1992

℄ (SPH) and natural element

method Ref.[

N.Sukumar 1998

℄ (NEM) are widely revisited genuine examples of parti
le based

methods.

1

NEM ,as the method under 
onsideration, requires a dual mesh similar to MFEM and

PFEM. These methods are 
ertainly not free of mesh, but free of any other mesh dependent

de�nitions, i.e. lo
al 
oordinates, ja
obians or 
onservative element 
onne
tivities. Through

NEM, the 
ontinuum neighborhood of a in�nite point and the integration of the di�erentials

are naturally-i.e.geometri
ally approximated.

As indi
ated presently, the method in
ludes meshes, whi
h needs to be 
lari�ed from

the point of view of the writer of this treatise. In fa
t, many resear
hers noti
ed this,

and introdu
ed deviations from the list of above, namely "truly meshless methods"

(Ref.[

M.Du�ot 2002

℄), intending to put the emphasis on the o

urren
e or absen
e of a mesh.

1

the 
itations do not ne
essarily indi
ate the �rst founders of the individual methods, but widely

a

epted writers of the topi
s of interest
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However, the primary di�eren
e outlined by means of many meshless methods is sometimes

the line of a
tion through the mesh, espe
ially, in between 
lassi
al �nite element method

and the postulated one. The best pra
ti
e of the meshless methods fo
us not only to

the geometry, but also to the a
tion. Meshless methods often used to simulate 
ra
k

openings and propagations (Ref.[

Y.Chen 2006

℄) , without requiring a re-meshing pro
edure.

Or, it was used in quite early times, to simulate Eulerian motion on Lagrangian mesh

(Ref.[

J.Braun 2006

℄), where the main advantage is stressed to be; "highly irregular evolving

grids". Appli
ations in statisti
al physi
s, for instan
e to de�ne �uid motion using Voronoi


ells (Ref.[

M.Serrano 2005

℄), or to quantify entropi
 elasti
ity of worm-like 
hains using

mole
ular dynami
s based parti
le simulations (Ref.[

M.J.Buehler 2006

℄), are strengthening

the idea ,that the motivation of meshless methods are rather to simulate 
ompli
ated

a
tions, then represent a geometry. Further readings su
h as Ref.[

S.R.Idelshon 2006

℄ and more

examples on the notion of meshless, 
an be too ex
essive for this treatise.

The fo
us of a
tion as a motivation of using NEM for the thesis is however none of

the layouts pointed

2

above. The main attempt was to generate a pro
edure to realize

networks whi
h 
an be extra
ted from 
lini
al data (usually a point 
loud), and to be able

to 
onsider the strain-gradient e�e
ts in three dimensions in an e�
ient way.

The 
ontent of this 
hapter has three main divisions. The �rst one (Ch.[5.2℄) 
overs


onstraining the Delaunay-Voronoi dual of arbitrary geometries . The 
onstrain is driven

by frequen
y sampling of alpha-shapes (Ref.[

Edelsbrunner 1983

℄), and eliminating unfeasible

Delaunay volumes. In the �rst se
tion, a method for enfor
ing the Voronoi region to overlap

with the integration domain is presented. This method bases on boundary dete
tion and

sharp featuring of the point 
loud. The 
onstrained Delaunay triangulation and sharp

featuring algorithms are going to be shown to a

omplish robust results for densely pa
ked,

or homogeneously distributed point 
louds.

In the se
ond se
tion (Ch.[5.3℄), a novel extension to stabilized 
onforming nodal

integration will be presented. In opposite to the earlier interpolation s
hemata, whi
h

suggest lo
al- 2

nd
order Voronoi regions around gauss points, the de�ned method dete
ts

the nodal-quadrature interpolaters non-sequentially. The non-sequential interpolation

s
hema does not only improves the speed, but also produ
es denser, and thus smoother

interpolating matri
es.

In the third part (Ch.[5.4℄), numeri
al a
ademi
 tests will be presented. Convergen
e of

the method by seeking for the fundamental solution of the Lapla
e's equation are shown in

this 
hapter. In adja
ent to that, examples of �nite deformation and �ber reorientation are


overed too. Espe
ially the last, is 
onsidered by the writer of the do
ument an appli
ation

of biome
hani
s. In order to preserve the main obje
tive of the work, relevant examples

are 
hosen and presented.

2

neither 
ra
ks and mole
ular dynami
s, nor Eulerian motions
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5.2 Clustered and Constrained Delaunay-Voronoi Dual

Delaunay triangulation and Voronoi tessellation are in general usage of many weakly

related �elds, su
h as image pro
essing, 
omputational geometry, terrain modeling and


omputational me
hani
s. Depending on the appli
ation and 
orresponding distin
tive

geometry in hand, 
onstrained triangulation or tessellation may di�er

3

in meaning. The


onstrained meshing is de�ned here as "the post-elimination of unfeasible dis
rete domains

from the raw out
ome". By this de�nition of mesh 
onstraining, betterment of the

bad-
onditioned mesh sub-domains is not esteemed to be notable. The quality of mesh,


on
erning the 
onvergen
e 
hara
teristi
s, is left to be an issue of formulation and solution.

The main intent is to un
over non-
onvex properties of the shapes with domain dis
retization

and post-
lustering.

5.2.1 Clustering the Delaunay Triangulation

It is possible to eliminate undesired triangles or tetrahedrons or disregard from the

integration domain by de�ning threshold values or feasibility intervals for Delaunay primitives

(alpha-shape method in Ref.[

Edelsbrunner 1983

)℄. However, a Delaunay triangle or tetrahedron

owns several size and shape dependent properties, whi
h are adherent on geometry and

number of sites representing this geometry. Thus, alpha-shape thresholds would be as

arbitrary as geometri
al variations. Besides, in 
ase an intermediate meshing is ne
essary

(PFEM-Lapla
e mesh �uid dynami
s), one has to 
onsider that the threshold 
anon may

alter during the runtime drasti
ally. The i�y sele
tion of proper parameters, as well as their

un
ertain intervals (even the parameters are normalized), are a

ording to the writer valid

ex
uses to seek systemati
 and pragmati
 post-�ltering methods.

5.2.1.1 De�nition of Clustered Delaunay Triangulation, CDT

Let 'P' be a �nite point set with 
ardinality 'm' in 'n' dimensions.

P = {p1, p2, p3, ...., pm : ∀pi ∈ R
n} (5.1)

In 3d, the 
olle
tion of 4 apart members of P is the union of 4-
ombinations of

tetrahedrons in P with 
ardinality of;

c =

(
n

k

)
(5.2a)

Ci = {pi1, pi2, pi3, pi4 : (∀pij ∈ P) ∧ (pij = pik ⇐⇒ j = k)} (5.2b)

c⋃

i=1

Ci = {{p11, p12, p13, p14}, {p21, p22, p23, p24}, .... : ∀pij ∈ P} (5.2
)

A primitive 'C ' in the union(5.2b) is say, Delaunay feasible and thus a Delaunay simplex,

if there is an equidistant point 'o' to the verti
es of the primitive (5.2
), if no points in

3

therefore, any 
itation of the initial statement is purposely avoided, not to 
ause any 
onfusion of

the de�nitions. Here, the appli
ation is obviously 
ontinuum me
hani
s.
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the relative 
omplement set of 'C' in 'P' o

ur in the hemisphere around 'o' (5.3d), and if

the point set of the primitive 
ombination is not 
oplanar (5.3d). The union of simpli
es

following these 
lauses is 
alled here the Delaunay triangulation 'DT' (5.3a).

DT =

idl<c⋃

idf≥1

Ci (5.3a)

Ci = DTi ⇐⇒ ∃!o ∈ R
3 : (5.3b)

(
r = d(o, pi1) = d(o, pi2) = d(o, pi3) = d(o, pi4) ∧ (5.3
)

∀p∗ ∈ (P \ Ci) r < d(o, p∗) ∧ (5.3d)

((pi1 − pi2)× (pi1 − pi3)) · (pi1 − pi4) 6= 0
)

(5.3e)

A simplex might be Delaunay, but any other point in that simplex may not be desired in

the domain representation. In
reasing the number of points for the domain representation

does not assist in to lay o� simpli
es, whi
h are �lling semi or exa
t ex
lusions.

(a) Domain Ωp (b) Boundary of Delaunay

simpli
es union 'DT' and point

set 'P' of Ωp

(
) The most 
ongested

Delaunay 
ir
um-
luster 'CDT'

Figure 5.1: An example where 'DT' 
ondition set does not represent 
hallenging geometries

Therefore, a further partitioning term through k-means 
lustering is suggested. The

�nal redu
ed form of the Delaunay triangulation through 
lustering is designated as

Clustered Delaunay Triangulation 'CDT'. For initiation, a property representation for

ea
h 'DTi' is founded. Any 
ommon property of the primitives whi
h 
an lead a 
ertain

dis
repan
y between desired 
luster and undesired 
luster(s) should enter this list. In brief,

volume, smallest fa
e angle, distan
e between Delaunay hemisphere 
enter and Delaunay

geometri
-
enter, summation of longest two edges, 
an be 
andidates for the attribute list.

The attribute list parametri
 representation is not a unique representation of the primitive

itself. With respe
t to the attribute 
oordinates, two or more primitives might appear to

be same.
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DTi = {atti1, atti2, atti3, · · · , attik : (∀attij ∈ R)} (5.4)

It is assumed that the set of Delaunay simpli
es of a non-
onvex geometry 
an be 
lustered

into �nite number of 'K' disjoint subsets-(5.5a).

DT =
K⋃

C=0

DT
ClC =

K⋃

C=0

#ClC⋃

i=0

DT
ClC
i (5.5a)

DT
ClM

⋂
DT

ClN = ∅ ⇐⇒ M 6= N (5.5b)

A Cluster union is de�ned as the 
olle
tion of Delaunay primitives with a mean attribute

value-(5.6a), where the distan
e of the ea
h member attributes to the mean attribute is

smaller then to any other 
luster mean attribute (5.6b).

DT
ClM =

∑#ClM
i=0 DTi

#ClM
(5.6a)

DT
ClM = {DTi : ‖DTi − DT

ClM‖ < ‖DTi − DT
ClN ‖ ∀N 6=M} (5.6b)

This partition is not a violation of the 
onservation of simplex 
ardinality-(5.7a), be
ause the

subsets do not have interse
tions. In other words, there is no gain or loss of tetrahedrons.

Additionally, for arbitrary point distributions representing non-
onvex geometries, the

number of 
lusters 
an be at least 2, at most 'm' in (5.7b) , i.e. the 
ardinality of initial

point set P in equation-(5.1).

idl =

K∑

C=0

#ClC (5.7a)

2 ≤ K ≤ m (5.7b)

The 
luster with the largest 
ardinality, i.e. with the largest Delaunay primitive population

is 
alled 
lustered Delaunay triangulation, 'CDT'.

DT
ClM = CDT ⇐⇒ #ClM > #ClN : ∀N ∈

(
DT \ DTClM

)
(5.8)

5.2.1.2 K-means Property Clustering for Delauanay Simpli
es

In k-means 
lustering breaks apart 'k' numbers of observations from a single global dataset.

The hierar
hi
al stru
ture between the individual subsets is not of interest. The main


on
ern is the 
lean-
ut division of the global. Therefore, it is 
onsidered as a partitioned

type 
lustering. In this frame, a division for a single feasible set (CDT) and a union of

unfeasible subsets (DT \ CDT) are sear
hed. The details of the algorithm 
an be found

elsewhere (Ref.[

G.Bradski 2008

℄), however the individual steps will be repeated here for �uent

reading.
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1. State pre
isely an attribute list for ea
h Delaunay primitive. Normalize ea
h attribute

a

ording to the global maximum and minimum values of DT and orient/reverse them

towards to the feasible or ill-
onditioned dire
tion. De�ne norms for 
luster build.

2. Designate a k≥ 2. Make an shrewd estimation in the feasible dire
tion for the initial feasible


luster origin, and predi
t remaining (k-1) origins randomly in the unfeasible dire
tions.

3. Constru
t 
lusters a

ording to the norms de�ned.

4. Compute new 
luster 
enters by a mean norm.

5. Repeat steps (3) and (4) until 
onvergen
e is satis�ed, e.g. via the 
hange of 
luster 
enters,

or via the 
hange of set element list, or their 
ardinality.

(a) Insu�
ient number of 
lusters (b) Inadequate attribute list

(
) Con�i
ting attribute list

Figure 5.2: Plausible 
ases of erroneous CDT
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(a) Domain Ωp (b) Poor representation of Ωp with

DT

(
) CDT representation

Figure 5.3: 3-means 
lustering of an obje
t

5.2.2 Constrained Voronoi Tesselation

The integration s
hema of a bun
h of parti
le based methods is based on Voronoi tesselation

motivated interpolation methods. It is of fundamental importan
e to ful�ll the interpolation

requirements. The primary enlisted demand is the 
orre
t representation of the dis
rete

domain whi
h determines the interpolators.

In fa
t, the 
lustering was an initial attempt of ful�lling this requirement. The perse
uting

pro
ess 
an be de�ned as 
onstraining Voronoi tesselation a

ording to the 
lustered

Delaunay triangulation, CDT. This pro
edure has been proven to be able to deal with


ompli
ated geometries as given in Figure 5.4

4

.

At this stage,�rst some dissonant 
hara
teristi
s of Voronoi diagram will be delineated,

whi
h appear to be trivial to deal with, and probably therefore, rarely mentioned in the texts.

Immediately after, the way of dealing with this problem will be proposed, and exempli�ed.

4

The modeldata was downloaded from the proje
t AIM Shape-Visonair Ref.[

P.Alliez 2006

℄, the point


loud only is used for the demonstration of 
lustering
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The Voronoi diagram of a number of points representing a domain (and domain boundaries)

in a point-wise dis
rete manner, is a perfe
t 
andidate for fo
using �eld parameters at an

in�nite lo
us, and meanwhile de�ne gradients and �uxes around this lo
us. Voronoi Diagram

is the union of disjoint lo
ations, ea
h of is them de�ned as given as in equation-(5.9a).

(a) Skull P (b) Skull dt

(
) Skull 
dt

Figure 5.4: Clustering of 
ompli
ated Skull geometry - Node Set is taken from AIM Shape-Visonair

Ref.[

P.Alliez 2006

℄

V
Pi = {r : ‖ x− pi‖ < ‖ x− pj‖ ∀i 6= j ∧ x ∈ R ∧ pi, pj ∈ P} (5.9a)

V =
m⋃

p=1

V
Pi

(5.9b)

One of the artifa
ts of Voronoi tesselation regarding to the interpolation s
hema is

the existen
e of semi-in�nite Lebesgue measures of the 
ells. Irrespe
tive of the type of
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geometry, there might be verti
es present at in�nity or far regions. Similarly, Voronoi


ells with over or underestimated Lebesgue measures may be present, and thus shall be


onsidered as artifa
ts disrupting the integration method.

(a) 2d obje
t with unbounded

ridges

(b) Un
onstrained Voronoi

Tesselation of a Sphere with

over and underestimated

voronoi 
ell volumes

(
) Un
onstrained Voronoi Tesselation

of a non
onvex geometry with some

semi-in�nite voronoi regions

Figure 5.5: Un
onstrained Voronoi Tesselations

Method of eliminating su
h artifa
ts is based on initially determining the boundary

properties of the geometry, and then grading these properties quantitatively. Boundary

dete
tion for stri
tly 
on
ave geometries is trivial and intrinsi
ally given by the un
onstrained

Voronoi tesselation. For instan
e, ea
h boundary node -whi
h is to be determined- in

�gures 5.5 have an in�nite Voronoi Lebesgue measure, whereby, bulk nodes have �nite

volumes or areas. Therefore, those ones 
an be stated to be boundary nodes immediately

after un
onstrained Voronoi tesselation. On the other hand, Voronoi tesselation -stand

alone-, would not be enough to determine ea
h and very boundary nodes for a non-
onvex

geometry, as for example in Figure 5.5. In su
h a 
ase, the 
onne
tivity nodes of the


omplement 'DT \ CDT' 
ompletes the missing list of boundary nodes.

In the s
ope of this thesis, for further grading of the boundary properties is ne
essary.

To do it so, the surfa
e nodes into its gradual details for a more stable Voronoi diagram


onstraining, are highlighted. A subdivision of the depi
tion of a boundary into a group of
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surfa
es, edges, and 
orners is suggested. This split is performed by the usual 
al
ulation

and assembly of boundary normals, whi
h is trivial if one has the boundary nodes in hand.

Assembling of normals refers to grouping node normals gained from di�erent primitives

together.

(a) (b) l

Figure 5.6: Bulk, Surfa
e, Edge and Corner dete
tion

As a result of assembling, bulk, surfa
e, edge and 
orner nodes regain node normal sets

with the 
ardinalities, 0,1,2 and 3 respe
tively, see Figure 5.6. This generalization would be

violated in the absen
e of 
onforming delaunay triangulation is present, whi
h is the 
ase

even for the latest and fastest 
onvex hull algorithms su
h as qhull (Ref.[

B.Barber 1996

℄).

The 
onforming dis
retization is a ne
essity for Delaunay based interpolation methods.

Sin
e NEM interpolation and thereupon 
on
luded integration outline is driven by Voronoi

polyhedras, non-
onforming Delaunay triangulation is a very passable problem for this


ontent.

A 
ertain Lebesgue measure 
onsisten
y in between Delaunay tetrahedralization and

Voronoi polyhedralization of a spe
i�
 domain is inquired. To 
larify, the dis
retization

Lebesgue measure should 
lose with in
reasing number of data points asymptoti
ally

towards to the desired Lebesgue measure of the original, i.e. of the domain. The Voronoi

tesselation ful�lling this argument is 
alled as 
onstrained Voronoi tesselation, CV.

lim
m→∞

vol (CDT) = lim
m→∞

vol (CV) (5.10)

Following this fundamental property of the 
onstrained Voronoi tesselation, the featured

frontier (featured boundary) set of the domain is de�ned. It is the interse
tion of domain

set with the absolute 
omplement set, and 
an be obtained by the extension of the
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boundary set towards their normal dire
tion. The boundary 
an be de�ned as,

∂P = P \ Po (5.11)

Whereby the featured frontier has the following properties;

F (P) ∪ P
′ = P

′
(5.12a)

F (P) ∩ ∂P = 0 (5.12b)

A

ordingly, the featured frontier 
an be de�ned as a sequen
e as follows,

F (P) = {pi + εni} ∧ (pi ∈ ∂P) ∧ (0 < ε≪ 1) (5.13)

Where, ni is denoting the normal ve
tor at boundary point pi. Epsilon (ε) is a pres
ribed

�nite s
ale of the normal, whi
h should be determined a

ording to the size of the geometry,

and the pre
ision limits of the Voronoi 
onstru
tor. A

ording to the de�nitions above, the

(a) Featuring Dire
tions (b) Featuring Variations

Figure 5.7: Sharp Featuring of the Skull geometry - Node Set is taken from AIM Shape-Visonair

Ref.[

P.Alliez 2006

℄


onstrained Voronoi diagram is build on the following union of sets.

Pv = P
o ∪ ∂P ∪ F (P) = P ∪ F (P) (5.14)

The Voronoi 
ell de�nition is done by means of the following membership restri
tions.
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CV
Pi = {r : ‖ x− pi‖ < ‖ x− pj‖ (∀i 6= j) ∧ (x ∈ R) ∧

(
pi ∈ P

)
∧
(
pj ∈ Pv

)
}

(5.15a)

CV =
m⋃

p=1

CV
Pi

(5.15b)

The 
onstrains of Voronoi diagram are supplied in equation-(5.15a) based on the split given

in eq(14). Similar to the raw Voronoi de�nition given in equation-(5.14), only the Voronoi

regions of point set P are of interest. The signi�
ant 
hange is the allowed and forbidden

neighboring regions. The hyperplanes whi
h divide two featuring frontier sequen
e points

are stri
tly forbidden. The hyperplanes lying in between a boundary point (pi ∈ ∂P)

and a featured frontier point (pj ∈ F (P)) is allowed and de�ne the boundary fa
ets

(ridges in 2d). The union of Voronoi polyhedras 
onforming these 
onditions is 
alled here


onstrained voronoi tesselation, CV. The su

ess of the suggested methodology 
an be

(a) Constrained 2d tesselation(b) Constrained Voronoi Tesselation of

a sphere

(
) Constrained Voronoi

Tesselation of a non
onvex

geometry

Figure 5.8: Constrained Voronoi Tesselations

well observed for shape featuring in Figure 5.7 and for 
onstrained Voronoi tesselation in

Figure 5.8.

As stated before, the problems whi
h are fa
ed with, related to the dual 
onstru
tion,

are 
onsidered to be general and fundamental, and exist in many in-use algorithms in

publi
 and 
ommer
ial softwares. However, any solution suggestion for the 
orresponding

problem of interest is unfortunately not spotted during the literature survey. In this stage,

the issues 
on
erning meshing are �nalized, and into next step of natural element method


an be entered.



5.3. Non-sequential Nodal Integration 135

5.3 Non-sequential Nodal Integration

Interpolators are mandatory for numeri
al te
hniques of solving PDE's. In general, algebrai


fun
tions whi
h ful�ll 
ertain 
onditions are of fundamental importan
e for traditional

FEM. Spe
i�
ally, 
oe�
ients whi
h are used to approximate �eld values at a 
ertain

lo
ation do not exist in NEM in means of algebrai
 fun
tions with 
onstant 
oe�
ients,

i.e. polynomials. The interpolators of a lo
ations are values, whi
h depend subje
tively on

the distribution topology of the point set around this lo
ation. Additionally, Zienkiewi
z

Ref.[

O.C.Zienkiewi
z 2000a

℄ states the general 
onvergen
e 
riteria for shape fun
tions used in

Finite Element method as follows,

1. "The 
ontinuity of the unknown only had to o

ur between elements (i.e., slope


ontinuity is not required), or, in mathemati
al notation C0 
ontinuity was needed;

2. The fun
tion has to allow any arbitrary linear form to be taken so that the 
onstant

strain (
onstant �rst derivative) 
riterian should be observed in ea
h element

For NEM, the 
orrespondent of the element in FEM would be at best the Voronoi 
ell.

Sin
e a node is representing the 
enter of that Voronoi 
ell, the ideas listed above for

the 
onverge
e 
riteria are self-veri�ed. In non-Sibsonian interpolation, the values of the

interfa
e of elements are dire
tly evaluated by using the 
enter values of the Voronoi 
ells,

thus �rst 
ondition is well satis�ed. Sin
e a lo
al Voronoi 
onstru
tion

5

is ne
essary for the

veri�
ation of se
ond 
ondition, and if done so, sin
e it will be seen that another strain

value be evaluated in the new lo
ation, the minimum requirement of point two is satis�ed

as well. These arguments let the de�nition of meshless to overlap with the 
on
ept of

interpolating element-free (
onne
tivity-free) domains.

For the sake of 
ompleteness, the non-Sibsonian (Ref.[

J.S.Chen 2001

℄) form of the numeri
al

interpolation summation will be repeated here. Some 
riteria su
h as, gradient-free

(strain-free) 
onstant �eld (rigid body) 
ondition known as partition of unity and self

(linear) reprodu
ibility 
onditions should be ful�lled. These requirements, in opposite to

the previously listed pre-requests, is of quantitative nature to be satis�ed.

To start with, a ve
tor �eld at a lo
us x 
an be approximated in terms of the nodal values

5

i.e., inserting another point in the Voronoi 
ell of interest and investigating the value
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of that ve
tor �eld as shown next.

u(x) ≈ û(x) =

#support∑

I∈N

ϕI(x)ũI (5.16a)

ϕI(x) =
L (Vx,xI

) /‖x,xI‖∑#
J L (Vx,xJ

) /‖x,xJ‖
(5.16b)

#support∑

I∈N

ϕI(x) = 1 (5.16
)

x =

#support∑

I∈N

ϕI(x)xI (5.16d)

The support size is given as a priori in terms

of element 
onne
tivities for FEM, or bounded

by s
aling parameters in meshfree methods

with reprodu
ing kernel parti
le

a

and element

free Galerkin interpolators. For the 
ase of

nodal integration, based on the non-Sibsonian

interpolation, the size of the support is assumed

to be pre-determined by means of the primary

Voronoi neighborhood. The underlying manifold

allows partial in
lusion of nearly equidistant points

in the interpolation support of the lo
us of interest

as 
an be seen in Figure 5.9.

a

for more reading, refer Ref.[

Y.Chen 2006

℄

Figure 5.9: Non-sibsonian interpolation

around a point. The right-most node is

not in
luded in the integration but the

uppermost is.

The logi
al 
on�i
t 
lari�ed above is explored and signi�
antly retren
hed by the resear
hers

of the �eld. Dolbow and Belyts
hko (Ref.[

Dolbow 1998

℄) state that the misalignment of the

spatial 
oordinates and lo
al supports is the (more) signi�
ant sour
e of error in meshfree

methods. Chen et.all. (Ref.[

J.W.Yoo 2004

℄) are 
onsent to former developers of the method

and 
all the result pertinent to the ambiguous determination of support size as spatially

instable and under-integrated. Again Chen et all. (Ref.[

J.W.Yoo 2004

℄) show that a signi�
ant

betterment is possible if se
ondary Voronoi tesselations are done around the Voronoi 
ell

of the lo
us of interest. The idea of interpolation summation around a point proposed by

these writers is tangible if one 
onsiders it with the divergen
e of a di�erential around the

point of interest. In fa
t, the method is named as stabilized 
onforming nodal integration,

but not interpolation.

Considering a di�erential, for instan
e the gradient of a s
alar �eld around a point x,

without referring to any homogeneous or in-homogeneous relationship. The integration of

the mentioned gradient 
an be redu
ed in spa
e by using the Gauss-divergen
e theorem as

follows: ∫

Ω
∇u (x)dV =

∫

Γ
u (x)ndS (5.17)
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If the aforementioned integration domain is taken to be a Voronoi polyhedra, the 
ounter

surfa
e would 
onsist of the set of polygon fa
ets de�ning that Voronoi 
ell. Consequently,

the integration of a gradient (or a di�erential) requires spe
i�
 evaluation points on the


ounter polygons. The Diri
hlet 
ells around the integration points are 
alled in this thesis

as se
ondary voronoi 
ells. The divergen
ed integral 
an be approximated on a Voronoi 
ell

as the following;

∫

Γ
(un)dS ≈

∫

Γ
(ûn)dS =

#PrimSupp∑

I

(
L (Vx,xI

)nI

#SecSupp∑

J

ϕJ(xI)ũJ

)
(5.18)

The pre
eding method is postulated as stabilized 
onforming nodal integration. The

(a) primary Voronoi/Delaunay dual (b) se
ondary Voronoi regions around

integration points

Figure 5.10: Primary and se
ondary Voronoi tesselation for the sequential integration of the

di�erantials

method of integration developed for the 
urrent work di�ers from the former one in terms

of the antagonism of forming and out
ome. The previous method is established on a

su

essive 
onstru
tion of se
ondary Voronoi 
ells. The 
ontribution is done on the order

of the tandem, whi
h is ine�e
tual for the result. The posterior one is therefore renamed as

non-sequential nodal integration, due to the unordered and sudden 
onstru
tion attribution

of individual 
omponents of integration.
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5.3.1 Evaluation of Shape Value Matrix

The method is founded on the idea

of meshing nodal point set together

with the evaluation, i.e. integration

point set. The integration points

are priorly known, or alternatively

determinant (perfe
tly predi
table),

as long as initial 
onstrained Voronoi

tesselation is performed. For the

Voronoi-based integration methods, it

is di�
ult or in
oherent to argue

on the lo
ation as well as the

number of (ne
essary or su�
ient)

integration points, be
ause shape

values are not resultants of fun
tions.

One di�eren
e stated as forming is

obvious in 
omparing Figure 5.10 with

Figure 5.11. In non-sequential forming,

the nodal and gaussian (integrating)

points are 
ombined into a single

nodal/gaussian Delaunay/Voronoi dual.

As a 
onsequen
e of non-sequential

forming, an expli
it dependen
e

of an arbitrary integrator point to

another one is present. Whereby in

sequential forming, se
ondary 
ells are

non-overlapping and thus an expli
it

dependen
e (almost) of an arbitrary

integrator point to only nodal points is

present.

Figure 5.11: Left:Nodal Delaunay-Voronoi dual

in
luding only nodes. Right :Nodal/Gaussian

Voronoi tesselation. Nodes in red, integrators (gauss

points) in blue.

On the basis of the fast 
onvex hull 
onstru
tion algorithms, non-sequential forming is is

observed to be faster

6

then sequential one. The se
ond di�eren
e is the out
ome of the

postulated method. For this purpose, the sets of nodal and gaussian point 
oordinates N

and G are de�ned, and their union with the disjoint nodal 
oordinate set NG.

N = {xN1 ,xN2 ,xN3 , ....,xNm : ∀xNi ∈ R
3} (5.19a)

G = {xG1 ,xG2 ,xG3 , ....,xGk : ∀xGi ∈ R
3} (5.19b)

NG = N ∪G ∧ N ∩G = ∅ (5.19
)

6

The P or NP 
omplexity of the problem, as well as any 
omparison is omitted in this treatise. The

intent is a postulation of an alternative method without refering pragmati
 arguments, yet the speed

advantage is still a qualitative obje
tive and advantage whi
h is to be brie�y mentioned.
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The 
ondition-(5.16d) written in matrix-ve
tor form de�ned in the set of nodal 
oordinates

and set of union of nodal∨gaussian 
oordinates are;

xN = ΨNxN
(5.20a)

xNG = ΨNGxNG
(5.20b)

Where, ΨN
and ΨNG

are shape value matri
es settled on the nodal 
on�guration

Figure 5.11(Left) and nodal∨gaussian 
on�guration Figure 5.11(Right) respe
tively. ΨG
is

not of interest and therefore not given here.

Some properties of shape value matri
es are important to follow on. ΨN
(m×m) is

a zero-diagonal square matrix, be
ause self-in
lusion is adverse to the de�nition of the

non-Sibsonian interpolation s
heme. ΨNG
is a (k+m)×(k+m) zero-diagonal square matrix

whi
h in
ludes at least 9 times (6 times in 2d) more zero or non-zero entries as ΨN
does.

The 
ardinality of G determines the size of the ΨNG
shape value matrix. The simple reason

for this lower limit is that, ea
h Voronoi 
ell should have support neighbors of 4 (3in 2d)

su
h that the simplest en
losed primitive 
ould be represented.

k =
1

2

m∑

I=1

#SupportI ≥
m∑

I=1

2 (5.21)

It is not immediately 
lear that one sear
hes for the shape value matrix whi
h re-produ
es

gaussian 
oordinate ve
tor from the nodal 
oordinate ve
tor.

xG = ΨxN
(5.22)

If one extends the size of the ve
tors to (k+m),

xN =

m︷ ︸︸ ︷
[xN1 ,xN2 , . . . ,xNm,

k︷ ︸︸ ︷
0,0, . . . ,0] (5.23a)

xG =

m︷ ︸︸ ︷
[0,0, . . . ,0,

k︷ ︸︸ ︷
xG1 ,xG2 , . . . ,xGk ] (5.23b)

xNG =

m︷ ︸︸ ︷
[xN1 ,xN2 , . . . ,xNm ,

k︷ ︸︸ ︷
xG1 ,xG2 , . . . ,xGk ] (5.23
)

And similarly, if one extends the size of matri
es to (k+m),

ΨN =




m×m︷︸︸︷
ψN

nw

m×k︷︸︸︷
ψN

ne

ψN

sw︸︷︷︸
k×m

ψN

se︸︷︷︸
k×k


 ΨNG =

[m×m︷︸︸︷
ψNG

nw

m×k︷︸︸︷
ψNG

ne

ψNG

sw︸︷︷︸
k×m

ψNG

se︸︷︷︸
k×k

]
(5.24)

The northeast, southwest and southeast sub-matri
es of the nodal shape value matrix are

zero-matri
es, whereby the northwest is a zero-diagonal sparse matrix. Pre
isely, it is a
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hollow row-sto
hasti
 matrix.

ψN

nw =




0 · · · ψN

0m
.

.

. 0
.

.

.

ψN

m0 · · · 0


 ; ψN

ne = ψ
N

sw = ψN

se = (0) (5.25)

Similarly, the southeast sub-matrix of nodal/gaussian shape value matrix is also a hollow

row-sto
hasti
 matrix. The remaining sub-matri
es are sparsely populated. Among them

the northwest sub-matrix is almost zero matrix, be
ause the nodal Voronoi regions are

mostly surrounded by the gaussian regions.

ψNG

se =




0 · · · ψNG

(m)(m+k)
.

.

. 0
.

.

.

ψNG

(m+k)(m) · · · 0


 ; ψNG

nw ≈ (0); ψNG

ne 6= (0); ψNG

sw 6= (0)

(5.26)

A row sto
hasti
 matrix may have eigenvalues with absolute values smaller or equal then

one. The row sto
hasti
 matri
es of equations (5.25) & (5.26), have at least one eigenvalue

rea
hing their maximum of unity, whi
h is self evident from self reprodu
ibility 
onditions of

equations (5.20a) & (5.20b). In any ways of getting the shape vale matrix in equation (5.22)

in
lude in�nite powers of these sto
hasti
 matri
es, whi
h diverge. Therefore, the existen
e

of expli
it inversion operations to rea
h a form of equation (5.22) should be dis
ussed


arefully. To start with, the gaussian ve
tor 
an be written using the self reprodu
ibility


onditions of the shape value matri
es,

xG = IxG = xNG − xN

= ΨNGxNG −ΨNxN = ΨNGxNG −ΨNxNG

=
(
ΨNG −ΨN

)
xNG =

(
ΨNG −ΨN

)(
xN + xG

) (5.27)

Reformulated in matrix-ve
tor form for the sake of 
learen
e,

xG =

[
Inw 0

0 Ise

][
0

xG

s

]
=

[
−ψN

nw 0

ψNG

sw 0

][
xN

n

0

]
+

[
0 ψNG

ne

0 ψNG

se

][
0

xG

s

]

=

[
Inw −ψNG

ne

0 Ise −ψ
NG

se

]−1[
−ψN

nw 0

ψNG

sw 0

][
xN

n

0

]

=

([
Inw 0

0 Ise

]
−

[
0 ψNG

ne

0 ψNG

se

])−1[
−ψN

nwx
N

n

ψNG

swx
N

n

]

(5.28)

The existen
e of this form depends on the invertibility of identity minus eastern

nodal/gaussian shape value matrix. In fa
t, only a lo
al existen
e of the inverse is ne
essary.

By 
onsidering that gaussian 
oordinate ve
tor in equation (5.23b) has only southern values
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of interest, we require �nite values only in the southern part of the inverse matrix as

subs
ribed in the inverse term of the equation beneath;

xG =
(
I −ΨNG

e

)−1 (
ΨNG

w −ΨN

w

)
xN

(5.29a)

⇒ Ψ =
[(
I −ΨNG

e

)−1
]
s

(
ΨNG

w −ΨN

w

)
(5.29b)

The existen
e of �nite southern part of the inverse given in equation (5.29b) 
an be

investigated if one writes the in�nite Neumann series of the inverse.

[(
I −ΨNG

e

)−1
]

s

= [Ie]s +
[(

ΨNG

e

)]
s
+

[(
ΨNG

e

)2]

s

+ · · · +

[(
ΨNG

e

)l]

s

+ · · ·

=
∞∑

n=0

[(
ΨNG

e

)n]
s
=

∞∑

n=0

[(
0 ψNG

ne

0 ψNG

se

)n ]

s

=

∞∑

n=0

(
ΨNG

se

)n

(5.30)

Ea
h and every member of this Neumann series, whi
h 
onsist of the powers of eastern part

of the hollow sto
hasti
 matrix of nodal/gaussian shape values, have zero western part. As


an be followed from equation (5.30), the zero-
onvergen
e of the southeastern powers is

required for the equality of the form of equation (5.29b).

lim
n→∞

(
ΨNG

se

)n
= 0 ⇐⇒ det

(
I −ΨNG

se

)
6= 0 (5.31)

The nodal and gaussian 
oordinates are not self interpolated. Therefore, the southeastern

matrix of equation (5.31) is also hollow. Regardless of the 
ondition of partition of unity,

the absolute values of ea
h entry of this matrix is stri
tly smaller then unity. The supremum

norm of the absolute sums of the rows, i.e. in�nity norm is also smaller then unity as evident

in blo
k-wise representation of equation (5.31). The latter inequality is a result of the fa
t

that, nodal/gaussian shape value matrix is row sto
hasti


7

, and ea
h gauss point has at

least one node point as neighbor. Thus, eastern/western split of the southern part of the

nodal/gaussian matrix enfor
es the in�nity norm under interest to be stri
tly less then unity.

‖ΨNG

se‖max = sup
{∣∣∣
(
ψNG

se

)
rc

∣∣∣
}
< 1; (5.32a)

‖ΨNG

se‖∞ = sup
r

{
k∑

c

∣∣∣
(
ψNG

se

)
rc

∣∣∣
}
< 1 (5.32b)

The 
ondition (5.32a) alone is weak for the proof of 
onvergen
e of geometri
 series in

equation (5.30), be
ause the maximum norm is not a sub-multipli
ative norm. In order

7

As a result of partition of unity and the arbitrariness of the geometry and system under


onsideration
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to strengthen the arguments, �rst, the maximum norm of the square of the matrix and

sub-multipli
ative in�nity norm should be 
ompared with ea
h other.

‖
(
ΨNG

se

)2
‖max = sup

{∣∣∣∣∣
∑

l

(
ψNG

se

)
rl

(
ψNG

se

)
lc

∣∣∣∣∣

}

≤ sup

{
∑

l

∣∣∣
(
ψNG

se

)
rl

(
ψNG

se

)
lc

∣∣∣
}

≤ sup

{
‖ΨNG

se‖max
∑

l

∣∣∣
(
ψNG

se

)
rl

∣∣∣
}

= sup
r

{
∑

l

∣∣∣
(
ψNG

se

)
rl

∣∣∣
}
‖ΨNG

se‖max

= ‖ΨNG

se‖max‖Ψ
NG

se‖∞

(5.33)

A

ordingly, the upper limit of the third power and any power of the matrix is predi
table

in the same way.

‖
(
ΨNG

se

)3
‖max = ‖ΨNG

se

(
ΨNG

se

)2
‖max ≤ ‖

(
ΨNG

se

)2
‖max‖Ψ

NG

se‖∞

≤ ‖ΨNG

se‖max‖Ψ
NG

se‖
2
∞

(5.34a)

⇒ ‖
(
ΨNG

se

)n
‖max ≤ ‖ΨNG

se‖max‖Ψ
NG

se‖
n
∞ < ‖ΨNG

se‖
n
∞ (5.34b)

Whi
h says that the maximum norm of the powers are always smaller then the same powers

of the in�nity norm, for the matri
es satisfying the 
ondition set of (5.32a) & (5.32b).

Having this information in hand and using the sub-additivity of norms in de�nition, one 
an

argue on the upper border of the matrix to be inverted. The �nal equation below shows

that the maximum norm of the Neumann series is smaller then the Neumann series of the

in�nity norms. Knowing that the in�nity norm is �nite and stri
tly smaller then one, it 
an

be shown that the maximum entry of the inverse is �nite, thus a shape value matrix in the

form of (5.29b) does exist for arbitrary 
on�gurations.

‖
(
I −ΨNG

se

)−1
‖max = ‖

∞∑

n=0

(
ΨNG

se

)n
‖max ≤

∞∑

n=0

‖
(
ΨNG

se

)n
‖max

<

∞∑

n=0

‖ΨNG

se‖
n
∞ = (1− ‖ΨNG

se‖∞)−1

(5.35)

Finally, it 
an be 
on
luded that �nding a shape value matrix whi
h maps nodal 
oordinates

to the gaussian ones is a
hieved by a single expli
it inversion and multipli
ation as below.

Pra
ti
ally, there is no need of evaluation of nodal shape value matrix of (5.20a). However,

nodal CDT&CV 
on�gurations are ne
essary for the determination of integration lo
ations.

Ψ =
(
Ise −ΨNG

se

)−1 (
ΨNG

sw

)
(5.36)
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5.3.2 Nature of Shape Value Matrix

In this se
tion, some important properties of the shape value matrix will be stated. Together

with the equations (5.20a), (5.24) and (5.26) one 
an 
on
lude that the nodal 
oordinates

are representable in terms of the gaussian 
oordinates, by means of the northeastern part

of the nodal/gaussian shape value matrix.

xN

n = ψNG

nex
G

s (5.37)

By remembering the inequality (5.21), a 
omment on the 
ardinality of the gaussian and

nodal point sets 
an be done.

k ≥ 2m ⇒ #G ≥ 2#N (5.38)

Depending on the identi�
ation of linear mapping dire
tion, the system of equations given

in equation (5.38) 
an be seen as an underestimated or an overestimated system. By


onsidering the gaussian 
oordinates as unknowns -whi
h is plausible 
onsidering that the

geometry is de�ned initially in terms of the nodal 
oordinates-, the system would have more

unknowns then equations, thus underestimated.

The matrix

(
ψNG

ne

)
is size of m×k with m<k as stated above. This type of matrix has

the so-
alled pseudoinverse

(
ψNG

ne

)+
∈ R

k×m
, whi
h always (∀

(
ψNG

ne

)
∈ R

m×k
) uniquely

exists. Under the de�nition of Penrose 
onditions (Ref.[

A.Laub 2008

℄), the Moore-Penrose

pseudoinverse of a matrix (a row independent matrix) 
an be evaluated by the following

equality;

(
ψNG

ne

)+
=
(
ψNG

ne

)T [(
ψNG

ne

)(
ψNG

ne

)T]−1

(5.39)

Solving the system of equations of (5.38) is equivalent of sear
hing for a gaussian


oordinates ve
tor x̃G

s whi
h satis�es the equality 
onstraint (5.38). One 
an further take

on board an inequality 
ondition, whi
h 
an sele
t one of the solutions among many other

possibilities whi
h do exist a

ording to the underestimated nature of the statement. Linking

the additional inequality as the least half of the Eu
lidian norm of the possible solution

ve
tor, the problem statement results in terms of an optimization set;

minimize 0.5‖x‖22

: −ψNG

nex+ xN

n = 0
(5.40)

The minimization of the Lagrangian fun
tion belove with a proper sele
tion of Lagrangian

multiplier ve
tor λ (Ref.[

K.U.Bletzinger 2011

℄) is analogous to the problem set above.

minimize L (x,λ) = 0.5‖x‖22 + λ
(
−ψNG

nex+ xN

n

)
(5.41)

There are two sets of Kuhn-Tu
ker 
onditions (Ref.[

K.U.Bletzinger 2011

℄) of equation (5.42b)

& (5.42
) of the given Lagrangian to be satis�ed at the optimum lo
ation. Written in the
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indi
ial notation,

minimize L (xi, λj) = 0.5 (xi)
2 + λj

(
−
(
ψNG

ne

)
ji
xi +

(
xN

n

)
j

)
(5.42a)

∂L

∂xi

∣∣∣∣
xi=(x̃Gs )i

=
(
x̃G

s

)
i
− λj

(
ψNG

ne

)
ji
= 0 (5.42b)

∂L

∂λj

∣∣∣∣
xi=(x̃Gs )i

= −
(
ψNG

ne

)
ji

(
x̃G

s

)
i
+
(
xN

n

)
j
= 0 (5.42
)

The KT 
onditions state that,

(
ψNG

ne

)T
λ = x̃G

s (5.43a)

(
ψNG

ne

)
x̃G

s = x
N

n (5.43b)

Left multipli
ation of equation (5.43a) with

(
ψNG

ne

)
and substituting into gives,

(
ψNG

ne

)(
ψNG

ne

)T
λ = xN

n ⇒ λ =

[(
ψNG

ne

)(
ψNG

ne

)T]−1

xN

n (5.44)

By ba
k-substituting of the expression (5.44) into equation (5.43a),it is 
lari�ed that the

optimization manifold given in (5.40) is satis�ed with the Moore-Penrose type pseudo inverse

given by the de�nition (5.39).

x̃G

s =
(
ψNG

ne

)T [(
ψNG

ne

)(
ψNG

ne

)T]−1

xN

n

=
(
ψNG

ne

)+
xN

n

(5.45)

By the de�nition, the gauss points do satisfy the equation (5.20b). The northeastern part

of the equation indi
ates that there are many possible gauss point ve
tors (by keeping the

number of gauss points 
onstant) whi
h satis�es the 
ondition of (5.20b) and there is no

strong argument that the 
orre
t one should have the least Eu
lidean norm.

It has been suggested to lo
ate the integration points at the 
oordinates whi
h tender

geometri
al symmetry, i.e. Voronoi fa
et 
entroids, and 
entroids of the triangles of Voronoi

fa
et divisions. Some other set of lo
ation whi
h satis�es the minimization problem (5.40)

does not ne
essarily overlap with the geometri
ally symmetri
al set of lo
ation . As a result,

the least square Moore-Penrose inverse 
on�i
ts geometri
ally with the dis
rete divergen
e

approximation (5.18), and thus it should stayed perfe
tly determinate way of evaluation

(5.36).

The di�eren
e in between the determinate and Moore-Penrose inversion is observable if

one ba
k-updates the 
oordinates a

ording to the shape-value matrix found, seen in

Figure 5.12. Therefore, the Moore-Penrose type of inversion in non-sequential stabilized

nodal integration should not be seen as an alternative, however, it should be noted here to
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draw attention about the possible bottlene
ks, one 
an possibly fa
e with.

Di�eren
es in support sizes in between the 
lassi
al FEM shape fun
tion interpolation,

NFEM non-Sibsonian sequential interpolation spuoort, and the presented non-sequential

interpolation for NEM 
an be seen in Figure 5.13. As obvious, the support for the 
ontinuum


an be extended to large radius of in�uen
e. However, sin
e this may in�uen
e the sparsity

of the global matri
es, the writer of the treatise suggest to manipulate the density of the

support. This 
an be a
hieved by determining threshold values for the minimum shape-value

quantity, and the normalize the sum, so that the 
ondition of partition of unity is satis�ed.

(a) Determinate inversion (b) Moore-Penrose Inversion

Figure 5.12: Lo
ation of gauss points (in blue) and nodal points (in orange) interpolated with two

di�erent linear mappings

(a) FEM support (b) NEM-SNI support (
) NEM-NNI support

Figure 5.13: Support sizes of a surfa
e node of a plate model
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5.4 Implementation and Examples

In the implementations se
tion, initially a short introdu
tion is done for the appli
ation

of Hyper
au
hy equation. Sin
e this equation is almost the most 
ompli
ated one, the

other formulations 
an be extra
ted from it a

ordingly. Based on this formulation some

demonstrative examples obtained by the exe
ution of the written 
ode are presented visually

through illustrations.

To begin with, the energy split proposed is repeated here, and natural element shape value

interpolation on the virtual energy integrals is applied. The nonlinear internal virtual energy

divisions be
ome,

δΠPFint =

∫

Ω
[P : ∇Xδu] dV ≈

∫

Ω

[
P · ∇X

(∑
N I
)]

· δũdV = fPFint · δũ

δΠQGint =

∫

Ω

[
Q ∴ ∇⊗2

X δu
]
dV ≈

∫

Ω

[
Q

r
: ∇⊗2

X

(∑
N I
)]

· δũdV = fQGint · δũ

(5.46)

Correspondingly, the tangent matri
es of the non-mixed residuum internal for
es 
an be

repeated here to be,

KIJ
P (F ) =

∫

Ω

[
∇XN

I ·
∂P T

∂F
· ∇XN

J

]
dV KIJ

Q(G) =

∫

Ω

[
∇⊗2

X N I l:
∂QT2

∂G

r
: ∇⊗2

X NJ

]
dV

(5.47)

And the mixed-residuum's of the internal for
es 
ause the following 
ontributions in the

tangent sti�ness matri
es,

KIJ
P (G) =

∫

Ω

[
∇XN

J ·
∂QT2

∂G

r
: ∇⊗2

X NJ

]
dV KIJ

Q(F ) =

∫

Ω

[
∇⊗2

X N I l:
∂QT2

∂F
· ∇XN

J

]
dV

(5.48)

The assumed strain displa
ement, and assumed hyperstrain displa
ement matri
es are,

B̃
I
=

1

V

∫

Ω

[
∇XN

I
]
dV =

1

V

∫

S
N IndA

B̃
I
∇ =

1

V

∫

Ω

[
∇⊗2

X N I
]
dV =

1

V

∫

S

[
n⊗∇XN

I
]
dA

(5.49)

The se
ond term is an extension of stabilized 
onforming nodal integration to the higher

order volume average derivatives of 
oordinate interpolaters. No analyti
 fun
tions or

pat
hes for integration is implemented here, in fa
t, the integration is performed on natural

neighbors of Voronoi polyhedrons, and therefore is truly natural element method.

This s
hema and simpler version of it 
an be applied to many di�erential equations. The

�rst example 
hosen is the fundamental solution of the Lapla
e equation;

▽
2ϕ = δ (x− xo) (5.50)

Sin
e the solution if fundamental, as indi
ated a Dira
 delta type ex
itation is used.

The phenomenologi
al analogue of Lapla
e equation is the steady state heat 
ondu
tion

equation. The formulation is investigated on a quarter of 3D Mobius strip with re
tangular
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ross se
tion and ellipti
al path way geometry, and a point sour
e of heat �ux in the origin

of the ellipse. The result is satisfying and well overlapping with the analyti
al solution,

whi
h is omitted here.

(a) Nodal/Gaussian distribution of mobius strip (b) Counter�ll of sour
e

lo
ated at the origin-solved

Figure 5.14: A pie
e from an in�nitely large imaginary volume with a heat sour
e lo
ated at the

origin of the ellipti
al split pathway

This example represents also a 
ross-
he
k of all the previous steps, namely the 
lustered

triangulation, 
onstrained Voronoi 
onstru
tion and non-sequential integration. As next

example, one 
an move into solution of the linear momentum equation with �rst-order

�nite kinemati
s.

div(σ) + f = 0 (5.51)

Any other validation more then 
he
king the visual smoothness and 
onvergen
e

(a) Beam with a 
ylindri
al 
ross se
tion

under large rotations

(b) An abstra
t bone-
artilage Femur interfa
e

under 
ompression

Figure 5.15: Two solutions of linear momentum equation for large deformations, 
onsidering

geometri
al nonlinear e�e
ts only


hara
teristi
s of examples similar to Figure 5.15 are not performed for this treatise. To

approa
h the �nal destination, an additional 
he
k for the 
orre
t evaluation of the 
urvature

ve
tor 
an be performed as well. For this purpose, a beam stru
ture 
lamped on both sides
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Figure 5.16: Bending dire
tions as 
urvature vortexes of a beam.

loaded in the middle is taken as a 
andidate. The ve
tor plot of Figure 5.16 is quite satisfying

and 
onsistent with the anti
ipation. After getting all the ne
essary kinemati
 quantities

ready, a more realisti
 example 
an be taken for 
omparison of di�erent reorientation

manifests. For the geometry a 
artilage-alike geometry in Figure 5.17, su�using a spheri
al

rigid grounding whi
h represents the bone-
artilage interfa
e, is 
onstru
ted. For imposing

the essential boundary 
onditions, an analyti
-plate against 
artilage model is taken for the


onta
t implementation. As stated previously, parti
le based methods -NEM being one of

Figure 5.17: Constrained 3d Voronoi diagramm of the des
ribed 
artilage-like geometry

them- 
an be alternatively quite attra
tive if it 
omes to the point of simulating 
hallenging

a
tions, 
onta
t being one of them. In the 
ase of NEM, the evaluation of the 
onta
t

sear
h algorithms is signi�
antly easier then FEM, as done in the �rst 
hapter of modeling

AC as biphasi
 media. The nodal normals 
an be very uniquely and easily determined by

summing up the polyhedral surfa
e normals and inverting it. A

ordingly, the 
urrent normal

of the node 
an be very e�
iently determined by applying Piola transformation or Nanson's
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formula at

8

that lo
ation of interest. A

ordingly, any 
omplex 
onta
t formulation of

penalty methods or Lagrangian multiplier methods 
an be applied for 
onstraining the

penetration of the surfa
es. As 
an be seen from the Figure 5.18, the 
onta
t sear
h in

between an analyti
al surfa
e and the 
artilage-alike plane strain system performs notedly

well. From the bottom pi
ture of the Figure 5.18 it 
an be 
on
luded that the isotropi


Figure 5.18: Top: Displa
ement result of plate 
artilage 
onta
t. Bottom: Distribution of Isotropi


strain gradient energy G ∴ G.

strain energy is dominated under the loading surfa
e, and propagating from middle to


onta
t free zones. This monolithi
 in
rease 
an be observed by giving a look to the

vortex development (Figure 5.19) through the history of the deformation. Based on this

Figure 5.19: Development of G : Ê1

⊗2

from the beginning, intermediate to the �nal stage of the

imposed boundary 
ondition.

8

For natural element methods, remember that the nodes and evaluation points are overlapping
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investigations and 
omments in hand, one 
an move into 
omparing the di�erent types of

reorientation manifests introdu
ed in the previous 
hapter.

5.5 Comparison of Di�erent Reorientation Manifests

In this �nal se
tion a rough 
omparison in between the proposed reorientation manifests are


ompared on 
artilage-alike plane strain s
enario. The 
ompared reorientation manifests are

namely, the strain driven, 
urvature driven and the one whi
h maximizes the Euler-Bernoulli

type of material model, whi
h is introdu
ed in the 
hapter of Hyperbalan
e equations. The

details about the manifests and their 
onsisten
y 
an be 
he
ked by giving a look to the


hapter of reorientation with strain and gradient e�e
ts.

The �nal results are presented in Figure 5.20. The �rst one is the result of reorientation

with pure strain e�e
ts, se
ond one as the maximization of simple 
urvature, and the third

one as being maximizing 
ombined stret
h-bending e�e
ts.

The �rst result di�ers signi�
antly from the one presented in the 
hapter of reorientation,

even though the manifest is kept to be same. The reason beyond is obviously the given

boundary 
onditions, in the previous one plane stress type of assumption is made, in the

latter one plane strain assumption is used. The previous one giving a

ordingly tangential

reorientations under the loading path through the depth, and perpendi
ular in the depth

zone and parallel to the super�
ial zone away from the appli
ation of load. The 
urrent

one whi
h is presented here in the �rst Figure of 5.20 however, gives almost perpendi
ular

type of �bers in the overall stru
ture, whi
h is 
ertainly not representing the reality.

The se
ond manifest with maximizing the 
urvature on the other side, suggests partially

tangential �ber orientations on the surfa
e, espe
ially at the lo
ations of 
onta
t release,

as 
ommented previously on Figure 5.19. This manifest was however suggested to be a

work-around, but served pra
ti
al advantages, like semi-analyti
al reorientation , developed

analogous to the strain driven reorientation.

The third one represents the �ber orientation at the depth zone of the 
onta
t region ni
ely.

The super�
ial zone and the depth zone far away the loading are 
aptured the reality as

well, as being tangential on the surfa
e and perpendi
ular towards to the bone interfa
e.

The super�
ial zone beneath the 
onta
t interfa
e however leads perpendi
ular �ber to the

surfa
e, whi
h is the only drawba
k of the bending and stret
h type 
ombined reorientation

manifest.

Based on these obje
tive interpretations, several 
omments 
an be done. First the modeling

artifa
ts should be taken under 
onsideration. The �at pun
hing or pressing the surfa
e

follows the assumption of that the master and slave bodies have almost 
omparable sti�ness

values. The other approa
h applied for the 
ase of plane stress in the 
hapter of reorientation

with strain and strain gradient e�e
ts, did not follow this assumption, thus only 
onsistent

nodal type of for
es are applied. On the other side, the 
onta
t formulation presented in the

�rst 
hapter of 
artilage as biphasi
 media, took the geometry of the master surfa
e into

a

ount, but not the sti�ness. The modeling artifa
ts, and variations around those artifa
ts
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are a 
ommon problem in nonlinear me
hani
s, and leads in the absen
e of experimental

eviden
e mostly to spe
ulations.

A �nal and quite 
ru
ial 
omment 
an be done around the fundamental philosophy of the

reorientation in this 
ontext. One 
an never assure that the tissue in the mi
rolevel tries hard

to improve the ma
ros
opi
 me
hani
al properties. Besides, those ma
ros
opi
 properties


an not be always redu
ed to sti�ness, or 
omplian
e. As experimentally evident, arti
ular


artilage has the prin
iple fun
tionality of minimizing the tangential surfa
e resistan
e in

between two load 
arriers. This might be a
hieved by swelling, but in whi
h rate and under

whi
h 
ir
umstan
es is still an unknown parameter. In short, the biologi
al stru
ture is

extremely 
ompli
ated, and one 
an only a

umulate information segmentally, as tried to

be done in this treatise. By learning this, the writer of the thesis has 
ons
iously avoided

to rea
h solid statements, whi
h 
an lead the reader under doubt, dis
ourage or 
ondu
t

generally wrong, spe
i�
ally 
orre
t informations.

One 
lear statement is, that any improvement, novel formulation presented in this se
tion

had been shown to impa
t on the material properties and the remodeling manifests. Without

spe
i�
ally 
laiming one is better then the other one, it is but 
lear that, strain gradient

e�e
ts do have an e�e
t on reorientation.
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(a) Strain based reorientation

(b) Curvature based reorientation

(
) Strain and strain gradient based reorientation

Figure 5.20: Comparisons of di�erent reorientation manifests
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6.1 Introdu
tion

This 
on
lusion refers to the German word to Zusammenfassung, rather then Fazit, where

the previous one represents a kind of summary, and the latter one refers to a solid upshot.

Sin
e the �eld of Biome
hani
s as a bran
h of 
ontinuum me
hani
s is a
tively developed,

any 
on
rete statement is avoided on purpose. In the ongoing subse
tions of this 
on
lusion,

the out
omes of the individual 
hapters of this work will be linked to ea
h other, and some

ne
essary brief interpretations will be summarized.

6.2 Least Requirements

One may �nd many re
ent PhD publi
ations, where a long repetition of the generi
ally

a

epted theory of 
ontinuum me
hani
s are presented as fundamental or as introdu
tion.

As in many others, this work takes advantage of the tradition, however in a one-step-front

philosophy is still re
onsidered.

The �rst 
hapter deals with the most simple formulation of bi-phasi
 media, presented by

means of 
ited publi
ations in the 
orresponding pla
es of the 
hapter. A

ording to the

results given, namely the representative s
enario of the tumor growth and the verti
ally

loaded Arti
ular 
artilage do demonstrate the power and di�eren
e of using multiphase

approa
h against the single-solid phase approa
h. To list it, the advantages may be listed

as follows.

• Mixed �eld approa
h gives the opportunity to determine the manifests for solid and

�uid phases of material, irrespe
tive and independent of ea
h other.

• Mixed �eld approa
h gives the opportunity to determine the respe
tive e�e
ts of

individual 
omponents, su
h as permeability
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• The numeri
al e�ort for both programming and 
omputing are 
omparable with

one-phase approa
h

• Most of the Biologi
al 
omponents are of multi-phase 
omposites, thus the approa
h

is realisti
 per de�nition, and more rational then empri
al models based on

vis
oelasti
ity.

There are many ways of ful�lling this least requirements, in this work the re-introdu
tion

of bi-phase material formulation and numeri
s 
onsidered and shown to be su�
ient.

6.3 Hyperelasti
ity

As stated above, the least requirement is 
onsidered to be ne
essary, however not su�
ient

for improvement. In this 
on
ern, in between the fundamental ne
essity and the superior

limit, there are enough topi
s whi
h worth to investigate. Hyperelasti
ity is 
onsidered to

be one of them. As stated in the 
orresponding 
hapter, the Hyperelasti
ity should follow

a fully developed motion of the Me
hani
, namely Hyperkinemati
s. A

ordingly, the work

about Hyperkinemati
s 
an lead into these 
on
lusions;

• Higher order terms in Kinemati
 motion do present, or existentially as natural as lower

order terms (This is a bi
onditional statement)

• Higher order terms in Kinemati
 is taken into a

ount in relatively older theories (Shell

theory: Curvature dependent Energy terms Ref.[

Bis
ho� 2004

)℄

• Any obje
tive fun
tion of the natural minimization pro
esses may be triggered by

higher order e�e
ts

The last 
laim is hard to prove, and equally hard to disprove. For 
omprehensive dis
ussion of

this argument, please visit the previous 
on
lusion on this topi
, namely Ch.[5.5℄. However

the di�eren
e in the presen
e and the absen
e of these higher order kinemati
 and thus

elasti
 e�e
ts 
an be demonstrated. But �rst, a mathemati
ally 
onsistent framework for

the theory is to be developed. This is partially done during the preparation of this work.

The 
hapters Ch.[2℄ and Ch.[3℄ deal only with the spe
i�
 topi
s 
on
erning the higher

order e�e
ts, and try to 
larify the arising questions in a novel way.

6.4 Fun
tional Adaptation, Abnormal Cell Growth

It is of 
ru
ial interest to understand the intermediate obje
tive fun
tion beyond fun
tional

adaptation and abnormal 
ell growth. The better understanding brings one to the next

pra
ti
al step, estimating the time, the volume and the ongoing 
onsequen
es. For this

purpose, theoreti
ally 
onsistent growth models are postulated, whi
h 
an be related to

empiri
al observations of phenomena. As usual in the phenomenologi
al theory, not enough

attention might be paid into the fundamental signi�
an
e Ref.[

Thewlis 1973

℄. For pra
ti
al

purposes again, the intermediate signi�
an
e might be of the main purpose. Any design of

experiment 
an be performed to feed new parameters to broaden and deepen the number

of signi�
ant �gures into the list of parameters.
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In this work, it has been shown that,

• For the generated geometry and boundary 
onditions, the existing remodeling

algorithms do not always reveal the expe
ted �nal form of evolution (thus of fun
tional

adaptation)

• For the generated geometry and boundary 
onditions, fun
tional adaptation with

higher order Kinemati
s does an e�e
t on the solution, thus may play a role in

metamorphosis

Whi
h may mean that the generated geometry and boundary 
onditions do not represent

the reality, or represent the main trigger of evolution. However, as method of design of

experiments states, lo
king this dis
ussion (geometry & BC) as un
hanged, the e�e
ts


aused by the higher order kinemati
s are still undeniable.

Apart from this short 
on
lusion, an emphasis has been made on the importan
e of providing

the abstra
t system with 
lear boundary 
onditions. Therefore, there is the attempt of

deterministi
 way of growth is presented in the theory of porous media se
tion. In this model,

the hot points were predetermined (whi
h 
an be provided by means of experimentation),

and the empiri
al model and its 
onsisten
y with the reality 
an be veri�ed from this

approa
h. This veri�
ation is not 
overed in this work.

6.5 Methodi
al Development

The methodi
al developments are generally done,in order to generally improve 
omputation

power in saving physi
al spa
e and gaining speed. In the �eld of Biome
hani
s, if the

developed method is generally a

epted to be revealing pragmati
 results, espe
ially for

patient spe
i�
 appli
ations, these types of developments are expe
ted to be done. In this

bran
h, one 
an give numerous works as examples.

Even though Finite Element Method has been the most widely used method of solving

partial di�erential equations, there are 
ountably many methods are still �nding their �elds

of appli
ation. The obvious reason beyond this is the fa
t that, ea
h individual method

has its own 
ore area, where no other 
an be as fast or as reliable. Among them, Natural

Element Method has the advantage of solving a domain of a problem, whi
h de�ned as a

point 
loud. This possibility enables one to omit the generation of the geometry, thus any

raw data 
an be prepared dire
tly ready for 
omputation. The primary reason of developing

Natural Element Solver is to serve this purpose. The indire
t aim is to feedba
k to the �eld

of 
omputational me
hani
s. This is also done in this thesis, for instan
e by developing

the non-sequential nodal integration te
hnique, whi
h is not of primary importan
e for

Biome
hani
al appli
ations. Those kind of side-out
omes shows a new perspe
tive for the

�eld of 
omputational me
hani
s.
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A.1 The derivatives of the spiral beam

Starting from this point, the derivatives for the spiral example will be given here in detail.

The spiral beam has mainly two parts, namely mid surfa
e and the thi
kness 
ontribution,

xm1 =

[
2α

π
cos
(
(1−X1)

π

2

)
+

(
1−

2α

π

)
X1

]
cos (α+ αX1)
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cos
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)
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π

)
X1

]
sin (α+ αX1)

(A.1)

For the thi
kness 
ontribution, the Piola transformation of the derivatives of the mid 
urve

is taken into a

ount. These mid-
urve-o� 
ontributions are 
alled to be deviatori
, and

depending on the derivatives of the mid-
urve.
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These 
ontributions will 
ause nonlinear Bernoulli kinemati
s, sin
e the 
urvature through

the thi
kness is punished by the 
onstant 
oe�
ient of X2. Additionally the strain gradient

e�e
ts through the thi
kness are negle
ted. The total mapping is then,

x1 = xm1 + xd1

x2 = xm2 + xd2

(A.3)

The following derivatives are required,
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First the �rst four set of derivatives will be given,
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The se
ond derivatives of the �rst set,
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The se
ond set requires a little more operations,

∂xd1
∂X1

=
∂

∂X1

(
∂x2
∂X1

∣∣∣∣
m

)
X2

((
∂x1
∂X1

∣∣∣∣
m

)2

+

(
∂x2
∂X1

∣∣∣∣
m

)2
)−1/2

−
∂x2
∂X1

∣∣∣∣
m

X2

((
∂x1
∂X1

∣∣∣∣
m

)2

+

(
∂x2
∂X1

∣∣∣∣
m

)2
)−3/2

∂x1
∂X1

∣∣∣∣
m

∂

∂X1

(
∂x1
∂X1

∣∣∣∣
m

)

−
∂x2
∂X1

∣∣∣∣
m

X2

((
∂x1
∂X1

∣∣∣∣
m

)2

+

(
∂x2
∂X1

∣∣∣∣
m

)2
)−3/2

∂x2
∂X1

∣∣∣∣
m

∂

∂X1

(
∂x2
∂X1

∣∣∣∣
m

)

(A.7)



A.1. The derivatives of the spiral beam 159

∂xd2
∂X1

= −
∂

∂X1

(
∂x1
∂X1

∣∣∣∣
m

)
X2

((
∂x1
∂X1

∣∣∣∣
m

)2

+

(
∂x2
∂X1

∣∣∣∣
m

)2
)−1/2

+
∂x1
∂X1

∣∣∣∣
m

X2

((
∂x1
∂X1

∣∣∣∣
m

)2

+

(
∂x2
∂X1

∣∣∣∣
m

)2
)−3/2

∂x1
∂X1

∣∣∣∣
m

∂

∂X1

(
∂x1
∂X1

∣∣∣∣
m

)

+
∂x1
∂X1

∣∣∣∣
m

X2

((
∂x1
∂X1

∣∣∣∣
m

)2

+

(
∂x2
∂X1

∣∣∣∣
m

)2
)−3/2

∂x2
∂X1

∣∣∣∣
m

∂

∂X1

(
∂x2
∂X1

∣∣∣∣
m

)

(A.8)

From time being the following repla
ement holds,
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The derivatives of this repla
ement are,
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with this repla
ement the �rst derivatives of the se
ond set be
ome,
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The se
ond derivatives are,

∂2xd1
(∂X1)

2 =
∂2

(∂X1)
2

(
∂x2
∂X1

∣∣∣∣
m

)
X2r

−1/2 −
1

2

∂

∂X1

(
∂x2
∂X1

∣∣∣∣
m

)
X2r

−3/2 ∂r

∂X1

−
1

2

∂

∂X1

(
∂x2
∂X1

∣∣∣∣
m

)
X2r

−3/2 ∂r

∂X1
+

3

4

∂x2
∂X1

∣∣∣∣
m

X2r
−5/2

(
∂r

∂X1

)2

−
1

2

∂x2
∂X1

∣∣∣∣
m

X2r
−3/2 ∂2r

(∂X1)
2

(A.12a)

∂2xd2
(∂X1)

2 =−
∂2

(∂X1)
2

(
∂x1
∂X1

∣∣∣∣
m

)
X2r

−1/2 +
1

2

∂

∂X1

(
∂x1
∂X1

∣∣∣∣
m

)
X2r

−3/2 ∂r

∂X1

+
1

2

∂

∂X1

(
∂x1
∂X1

∣∣∣∣
m

)
X2r

−3/2 ∂r

∂X1
−

3

4

∂x1
∂X1

∣∣∣∣
m

X2r
−5/2

(
∂r

∂X1

)2

+
1

2

∂x1
∂X1

∣∣∣∣
m

X2r
−3/2 ∂2r

(∂X1)
2

(A.12b)

And the mixed se
ond derivatives of the last set are,
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The mid-
urve 
orrelation and the �rst derivative of the mid-
urve was in fa
t given

before,
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The �rst derivatives of this 
orrelation are
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And �nally the se
ond derivatives of this expression is,
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− α2

[
α sin

(
(1−X1)

π

2

)
+

(
1−

2α

π

)]
cos (α+ αX1)

+ α3

[
2α

π
cos
(
(1−X1)

π

2

)
+

(
1−

2α

π

)
X1

]
sin (α+ αX1)

(A.16a)

∂2

(∂X1)
2

(
∂x2
∂X1

∣∣∣∣
m

)
= −α

π2

4
sin
(
(1−X1)

π

2

)
sin (α+ αX1)

− α2π

2
cos
(
(1−X1)

π

2

)
cos (α+ αX1)

− 2α2π

2
cos
(
(1−X1)

π

2

)
cos (α+ αX1)

− 2α2

[
α sin

(
(1−X1)

π

2

)
+

(
1−

2α

π

)]
sin (α+ αX1)

− α2

[
α sin

(
(1−X1)

π

2

)
+

(
1−

2α

π

)]
sin (α+ αX1)

− α3

[
2α

π
cos
(
(1−X1)

π

2

)
+

(
1−

2α

π

)
X1

]
cos (α+ αX1)

(A.16b)
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B.1 Bending Strain and Strain Gradient energy density

Fun
tion

The bending energy formulation a

ording to the bernoulli beam beam theory, requires the

estimation of the radius of 
urvature as the other theories, The radius of 
urvature is taken

to be 
ommon in sharp and �at length 
hanges,

sin
(
α♯
)
=

∣∣m♯
∣∣

r
sin

(
α♭
)
=

∣∣m♭
∣∣

r
(B.1)

In order to take both e�e
ts into a

ount, the following estimation 
an be done,

c = r−1 =
sin

(
α♯
)
+ sin

(
α♭
)

|m♯|+
∣∣m♭

∣∣

=
2sin

((
α♯ + α♭

)
/2
)
cos
((
α♯ − α♭

)
/2
)

|m♯|+
∣∣m♭

∣∣

≈
2sin

((
α♯ + α♭

)
/2
)

|m♯|+
∣∣m♭

∣∣

(B.2)

With the following formulae for the bending energy,

ψκ = EIc2 = EI
4sin2

((
α♯ + α♭

)
/2
)

(
|m♯|+

∣∣m♭
∣∣)2 ≈ EI

(
2− 2cos

(
α♯ + α♭

))
(
|m♯|+

∣∣m♭
∣∣)2 (B.3)

The 
osine of the rotation 
an be 
omputed by,

cos
(
α♯ + α♭

)
=

(
−m♯ ·m♭

)

|m♯|
∣∣m♭

∣∣ (B.4)
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The minus sign indi
ates that the sharp tangent to be rotated. The members whi
h are

used to 
ompute the invariants then,

−m♯ = F ·M−
1

2
G : M⊗2

m♭ = F ·M+
1

2
G : M⊗2

(B.5)

Together with the de�nitions above and the introdu
ed invariants, the following invariant

formulation 
an be a
hieved,

cos
(
α♯ + α♭

)
=

(Iκ4 − 0.25Iκ6 )

(Iκ4 − Iκ5 + 0.25Iκ6 )
1/2 (Iκ4 + Iκ5 + 0.25Iκ6 )

1/2
(B.6)

For simpli
ity the following repla
ements are done,

ψκ = xEI

(
2− 2cos

(
α♯ + α♭

))
(
|m♯|+

∣∣m♭
∣∣)2 = EI

2− 2a

|m|2

a = cos
(
α♯ + α♭

)
=
b

d

b = (Iκ4 − 0.25Iκ6 )

d = (Iκ4 − Iκ5 + 0.25Iκ6 )
1/2 (Iκ4 + Iκ5 + 0.25Iκ6 )

1/2

|m| =
(∣∣∣m♯

∣∣∣+
∣∣∣m♭

∣∣∣
)

(B.7)

The �rst Piola Kir
ho� Stress and Hyperstress depends on,

Pκ =
∂ψκ

∂F
= −2EI

∂a

∂F
|m|−2 − 2EI |m|−3 ∂ |m|

∂F
(2− 2a)

Qκ =
∂ψκ

∂G
= −2EI

∂a

∂G
|m|−2 − 2EI |m|−3 ∂ |m|

∂G
(2− 2a)

(B.8)
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The ne
essary three tangent terms are then,

DPκ

F =
∂Pκ

∂F
= −2EI

∂2a

∂F2
|m|−2 + 4EI |m|−3 ∂ |m|

∂F
⊗
∂a

∂F

+ 6EI |m|−4 ∂ |m|

∂F
⊗
∂ |m|

∂F
(2− 2a)− 2EI |m|−3 ∂

2 |m|

∂F2
(2− 2a)

+ 4EI |m|−3 ∂a

∂F
⊗
∂ |m|

∂F

(B.9a)

DPκ

G =
∂Pκ

∂G
= −2EI

∂2a

∂G∂F
|m|−2 + 4EI |m|−3 ∂ |m|

∂G
⊗
∂a

∂F

+ 6EI |m|−4 ∂ |m|

∂G
⊗
∂ |m|

∂F
(2− 2a)− 2EI |m|−3 ∂

2 |m|

∂G∂F
(2− 2a)

+ 4EI |m|−3 ∂a

∂G
⊗
∂ |m|

∂F

(B.9b)

DQκ

G =
∂Qκ

∂G
= −2EI

∂2a

∂G2
|m|−2 + 4EI |m|−3 ∂ |m|

∂G
⊗
∂a

∂G

+ 6EI |m|−4 ∂ |m|

∂G
⊗
∂ |m|

∂G
(2− 2a)− 2EI |m|−3 ∂

2 |m|

∂G2
(2− 2a)

+ 4EI |m|−3 ∂a

∂G
⊗
∂ |m|

∂G

(B.9
)

The ne
essary derivations should be introdu
ed one by one,

a =
b

d

∂a

∂F

∂a

∂G

∂2a

∂F2

∂2a

∂G∂F

∂2a

∂G2
(B.10)
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The derivatives in terms of the other values then,

∂a

∂F
=

∂b

∂F
d−1 − d−2b

∂d

∂F

∂a

∂G
=

∂b

∂G
d−1 − d−2b

∂d

∂G

∂2a

∂F2
=

∂2b

∂F2
d−1 − d−2 ∂d

∂F
⊗
∂b

∂F

+ 2d−3b
∂d

∂F
⊗
∂d

∂F
− d−2 ∂b

∂F
⊗
∂d

∂F
− d−2b

∂2d

∂F2

∂2a

∂G∂F
=

∂2b

∂G∂F
d−1 − d−2 ∂d

∂G
⊗
∂b

∂F

+ 2d−3b
∂d

∂G
⊗
∂d

∂F
− d−2 ∂b

∂G
⊗
∂d

∂F
− d−2b

∂d

∂G∂F

∂2a

∂G2
=

∂2b

∂G2
d−1 − d−2 ∂d

∂G
⊗

∂b

∂G

+ 2d−3b
∂d

∂G
⊗
∂d

∂G
− d−2 ∂b

∂G
⊗

∂d

∂G
− d−2b

∂2d

∂G2

(B.11)

A

ordingly the derivatives of the dire
tly invariant dependent quantities should be evaluated

either

b = (Iκ4 − 0.25Iκ6 )
∂b

∂F

∂b

∂G

∂2b

∂F2

∂2b

∂G∂F

∂2b

∂G2
(B.12)

The individual derivatives in terms of the invariant derivatives be
ome,

∂b

∂F
=

(
∂Iκ4
∂F

− 0.25
∂Iκ6
∂F

)
∂b

∂G
=

(
∂Iκ4
∂G

− 0.25
∂Iκ6
∂G

)

∂2b

∂F2
=

(
∂2Iκ4
∂F2

− 0.25
∂2Iκ6
∂F2

)

∂2b

∂G∂F
=

(
∂2Iκ4
∂G∂F

− 0.25
∂2Iκ6
∂G∂F

)

∂2b

∂G2
=

(
∂2Iκ4
∂G2

− 0.25
∂2Iκ6
∂G2

)

(B.13)

The multipli
ative 
hange growth is ne
essary either

d =
∣∣∣m♯

∣∣∣
∣∣∣m♭

∣∣∣ ∂d

∂F

∂d

∂G

∂2d

∂F2

∂2d

∂G∂F

∂2d

∂G2
(B.14)
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The derivatives then,

∂d

∂F
=
∂
∣∣m♯

∣∣
∂F

∣∣∣m♭
∣∣∣+
∣∣∣m♯

∣∣∣
∂
∣∣m♭

∣∣
∂F

∂d

∂G
=
∂
∣∣m♯

∣∣
∂G

∣∣∣m♭
∣∣∣+
∣∣∣m♯

∣∣∣
∂
∣∣m♭

∣∣
∂G

∂2d

∂F2
=
∂2
∣∣m♯

∣∣
∂F2

∣∣∣m♭
∣∣∣+

∂
∣∣m♭

∣∣
∂F

⊗
∂
∣∣m♯

∣∣
∂F

+
∂
∣∣m♯

∣∣
∂F

⊗
∂
∣∣m♭

∣∣
∂F

+
∣∣∣m♯

∣∣∣
∂2
∣∣m♭

∣∣
∂F2

∂2d

∂G∂F
=
∂2
∣∣m♯

∣∣
∂G∂F

∣∣∣m♭
∣∣∣+

∂
∣∣m♭

∣∣
∂G

⊗
∂
∣∣m♯

∣∣
∂F

+
∂
∣∣m♯

∣∣
∂G

⊗
∂
∣∣m♭

∣∣
∂F

+
∣∣∣m♯

∣∣∣
∂2
∣∣m♭

∣∣
∂G∂F

∂2d

∂G2
=
∂2
∣∣m♯

∣∣
∂G2

∣∣∣m♭
∣∣∣+

∂
∣∣m♭

∣∣
∂G

⊗
∂
∣∣m♯

∣∣
∂G

+
∂
∣∣m♯

∣∣
∂G

⊗
∂
∣∣m♭

∣∣
∂G

+
∣∣∣m♯

∣∣∣
∂2
∣∣m♭

∣∣
∂G2

(B.15)

The total length 
hange,

|m| =
∣∣∣m♯

∣∣∣+
∣∣∣m♭

∣∣∣ ∂ |m|

∂F

∂ |m|

∂G

∂2 |m|

∂F2

∂2 |m|

∂G∂F

∂2 |m|

∂G2
(B.16)

The derivatives of the total length 
hange,

∂ |m|

∂F
=
∂
∣∣m♯

∣∣
∂F

+
∂
∣∣m♭

∣∣
∂F

∂ |m|

∂G
=
∂
∣∣m♯

∣∣
∂G

+
∂
∣∣m♭

∣∣
∂G

∂2 |m|

∂F2
=
∂2
∣∣m♯

∣∣
∂F2

+
∂2
∣∣m♭

∣∣
∂F2

∂2 |m|

∂G∂F
=
∂2
∣∣m♯

∣∣
∂G∂F

+
∂2
∣∣m♭

∣∣
∂G∂F

∂2 |m|

∂G2
=
∂2
∣∣m♯

∣∣
∂G2

+
∂2
∣∣m♭

∣∣
∂G2

(B.17)

The �rst derivatives of the sharp �ber length 
hange,

∂
∣∣m♯

∣∣
∂F

=
1

2
[
IEI4 − IEI5 + 0.25IEI6

]1/2
(
∂IEI4

∂F
−
∂IEI5

∂F
+ 0.25

∂IEI6

∂F

)

=
1

2

∣∣∣m♯
∣∣∣
−1
(
∂IEI4

∂F
−
∂IEI5

∂F
+ 0.25

∂IEI6

∂F

) (B.18a)

∂
∣∣m♯

∣∣
∂G

=
1

2

∣∣∣m♯
∣∣∣
−1
(
∂IEI4

∂G
−
∂IEI5

∂G
+ 0.25

∂IEI6

∂G

)
(B.18b)
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The se
ond derivatives of the sharp �ber length 
hange is then,

∂2
∣∣m♯

∣∣
∂F2

= −
1

2

∣∣∣m♯
∣∣∣
−2 ∂ |m|

F
⊗

(
∂IEI4

∂F
−
∂IEI5

∂F
+ 0.25

∂IEI6

∂F

)

+
1

2

∣∣∣m♯
∣∣∣
−1
(
∂2IEI4

∂F2
−
∂2IEI5

∂F2
+ 0.25

∂2IEI6

∂F2

) (B.19a)

∂2
∣∣m♯

∣∣
∂G2

= −
1

2

∣∣∣m♯
∣∣∣
−2 ∂ |m|

G
⊗

(
∂IEI4

∂G
−
∂IEI5

∂G
+ 0.25

∂IEI6

∂G

)

+
1

2

∣∣∣m♯
∣∣∣
−1
(
∂2IEI4

∂G2
−
∂2IEI5

∂G2
+ 0.25

∂2IEI6

∂G2

) (B.19b)

∂2
∣∣m♯

∣∣
∂G∂F

=
∂2
∣∣m♯

∣∣
∂F∂G

= −
1

2

∣∣∣m♯
∣∣∣
−2 ∂ |m|

G
⊗

(
∂IEI4

∂F
−
∂IEI5

∂F
+ 0.25

∂IEI6

∂F

)

+
1

2

∣∣∣m♯
∣∣∣
−1
(
∂2IEI4

∂G∂F
−
∂2IEI5

∂G∂F
+ 0.25

∂2IEI6

∂G∂F

) (B.19
)

The �rst derivatives of the �at �ber length 
hange,

∂
∣∣m♭

∣∣
∂F

=
1

2
[
IEI4 − IEI5 + 0.25IEI6

]1/2
(
∂IEI4

∂F
+
∂IEI5

∂F
+ 0.25

∂IEI6

∂F

)

=
1

2

∣∣∣m♭
∣∣∣
−1
(
∂IEI4

∂F
+
∂IEI5

∂F
+ 0.25

∂IEI6

∂F

) (B.20a)

∂
∣∣m♭

∣∣
∂G

=
1

2

∣∣∣m♭
∣∣∣
−1
(
∂IEI4

∂G
+
∂IEI5

∂G
+ 0.25

∂IEI6

∂G

)
(B.20b)

The se
ond derivatives of the �at �ber length 
hange is then,

∂2
∣∣m♭

∣∣
∂F2

= −
1

2

∣∣∣m♭
∣∣∣
−2 ∂ |m|

F
⊗

(
∂IEI4

∂F
+
∂IEI5

∂F
+ 0.25

∂IEI6

∂F

)

+
1

2

∣∣∣m♭
∣∣∣
−1
(
∂2IEI4

∂F2
+
∂2IEI5

∂F2
+ 0.25

∂2IEI6

∂F2

) (B.21a)

∂2
∣∣m♭

∣∣
∂G2

= −
1

2

∣∣∣m♭
∣∣∣
−2 ∂ |m|

G
⊗

(
∂IEI4

∂G
+
∂IEI5

∂G
+ 0.25

∂IEI6

∂G

)

+
1

2

∣∣∣m♭
∣∣∣
−1
(
∂2IEI4

∂G2
+
∂2IEI5

∂G2
+ 0.25

∂2IEI6

∂G2

) (B.21b)

∂2
∣∣m♭

∣∣
∂G∂F

=
∂2
∣∣m♭

∣∣
∂F∂G

= −
1

2

∣∣∣m♭
∣∣∣
−2 ∂ |m|

G
⊗

(
∂IEI4

∂F
+
∂IEI5

∂F
+ 0.25

∂IEI6

∂F

)

+
1

2

∣∣∣m♭
∣∣∣
−1
(
∂2IEI4

∂G∂F
+
∂2IEI5

∂G∂F
+ 0.25

∂2IEI6

∂G∂F

) (B.21
)
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However, the sharp length 
hange 
ontributes new invariants,

|m| =

[(
F ·M+

1

2
G : M⊗2

)
·

(
F ·M+

1

2
G : M⊗2

)]1/2

+

[(
−F ·M+

1

2
G : M⊗2

)
·

(
−F ·M+

1

2
G : M⊗2

)]1/2

=

[(
FT · F

)
: M⊗2 +

1

2

(
FT · (G ·M)

)
: M⊗2

+
1

2

(
(G ·M)T · F

)
: M⊗2 +

1

4

(
(G ·M)T · (G ·M)

)
: M⊗2

]1/2

+

[(
FT · F

)
: M⊗2 −

1

2

(
FT · (G ·M)

)
: M⊗2

−
1

2

(
(G ·M)T · F

)
: M⊗2 +

1

4

(
(G ·M)T · (G ·M)

)
: M⊗2

]1/2

(B.22)

Eventough the found invariants are stret
h related, and already de�ned, they are going to

be 
alled as bending invariants to preserve 
onsisten
y,

Iκ4 =
(
FT · F

)
: M⊗2 = FklFkmMlMm

Iκ5 =
(
FT · (G ·M)

)
: M⊗2 =

(
(G ·M)T · F

)
: M⊗2 = Fkl (G ·M)kmMlMm

Iκ6 =
(
(G ·M)T · (G ·M)

)
: M⊗2 = (G ·M)kl (G ·M)kmMlMm

(B.23)

The se
ond and third 
ontra
tions are identi
al sin
e the 
ontra
ted tensors are transpose

of ea
h other,

FT · (G ·M) =
(
(G ·M)T · F

)T
(B.24)

The full length in the 
urrent 
urved 
oordinates is the sum of sharp and �at lengths, in

terms of the invariants introdu
ed above,

|m| =
∣∣∣m♯

∣∣∣+
∣∣∣m♭

∣∣∣ =
√

(Iκ4 + Iκ5 + 0.25Iκ6 ) +
√

(Iκ4 − Iκ5 + 0.25Iκ6 ) (B.25)

The derivatives of the last three bending invariants are with respe
t to the deformation

gradient are,

∂IEI4

∂Fij
= δkiδljFkmMlMm + FklδkiδmjMlMm = FimMjMm + FilMlMj (B.26a)

∂IEI5

∂Fij
= δkiδlj (G ·M)kmMlMm = (G ·M)imMjMm (B.26b)

∂IEI6

∂Fij
= 0ij (B.26
)
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The derivatives of the last three bending invariants are with respe
t to the deformation

hypergradient are,

∂IEI4

∂ (G ·M)ij
= 0ij (B.27a)

∂IEI5

∂ (G ·M)ij
= FklδkiδmjMlMm = FilMlMj (B.27b)

∂IEI6

∂ (G ·M)ij
=δkiδlj (G ·M)kmMlMm + (G ·M)kl δkiδmjMlMm

=(G ·M)imMjMm + (G ·M)ilMlMj

(B.27
)

The se
ond derivatives of the last three bending invariants are with respe
t to the

deformation gradient are,

∂2Iκ4
∂Fkl∂Fij

=
1

∂Fkl
(FimMjMm + FimMmMj) = 2δikδmlMjMm = 2δikMjMl (B.28a)

∂2Iκ5
∂Fkl∂Fij

= 0ijkl
∂2Iκ6

∂Fkl∂Fij
= 0ijkl (B.28b)

The mixed se
ond derivatives of the last three bending invariants with respe
t to the

hypergradients lastly ,

∂2Iκ4
∂ (GM )kl ∂Fij

= 0ijkl (B.29a)

∂2Iκ5
∂ (GM )kl ∂Fij

=
∂ (GM )imMjMm

∂(GM )kl
= δikMlMj (B.29b)

∂2Iκ6
∂ (GM )kl ∂Fij

= 0ijkl (B.29
)

The se
ond derivatives of the last three bending invariants with respe
t to the deformation

hypergradient are,

∂2IEI4

∂ (GM )kl ∂ (GM )ij
= 0ijkl (B.30a)

∂2IEI5

∂ (GM )kl ∂ (GM )ij
= 0ijkl (B.30b)

∂2IEI6

∂ (GM )kl ∂ (GM )ij
= 2δikMjMl (B.30
)
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B.2 Stret
hing Strain and Strain Gradient energy density

Fun
tion

The stret
hing behavior 
an be represented as, The strain energy density fun
tion reads:

ψ =
EA

4

(
|m|2 − 1

)2
(B.31)

The �rst Piola Kir
ho� Stress,

P =
∂ψ

∂F
= ψ = EA

(
|m|2 − 1

)
|m|

∂ |m|

∂F
(B.32)

The Piola Hyperstress is then,

Q =
∂ψ

∂G
= ψ = EA

(
|m|2 − 1

)
|m|

∂ |m|

∂G
(B.33)

The material tangent tensors

DP
F =

∂P

∂F
= 2EA |m|2

∂ |m|

∂F

∂ |m|

∂F

+ EA
(
|m|2 − 1

) ∂ |m|

∂F

∂ |m|

∂F

+ EA
(
|m|2 − 1

)
|m|

∂2 |m|

∂F 2

DP
G =

∂P

∂G
= 2EA |m|2

∂ |m|

∂G

∂ |m|

∂F

+ EA
(
|m|2 − 1

) ∂ |m|

∂G

∂ |m|

∂F

+ EA
(
|m|2 − 1

)
|m|

∂ |m|

∂G

∂ |m|

∂F

D
Q
G =

∂Q

∂G
= 2EA |m|2

∂ |m|

∂G

∂ |m|

∂G

+ EA
(
|m|2 − 1

) ∂ |m|

∂G

∂ |m|

∂G

+ EA
(
|m|2 − 1

)
|m|

∂2 |m|

∂G2

(B.34)
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C.1 Simo-Type geometri
ally exa
t anisotropy in

hyperelasti
 form

Next, we are going to postulate a nonlinear material model 
onsistent with the kinemati
s

given in the �rst se
tion. The model is motivated prin
ipally by the geometri
ally exa
t

beam formulations 
overed by the work of Simo, Antman, Reissner and Kir
hho�&Love.

We will 
onsider the approa
h of Simo, and partially adapt the formulation thought to

model 3D beams into our material model formulation.

Before starting with the assumptions, we initially de�ne moving and 
onve
ted


oordinates of a 
urrently 
urved, and initially straight �ber. The 
oordinates of the

referen
e moving frame a

ording to the reverse mapping are fun
tions of the 
urrent


oordinates.

X (x) =M1 (x) M̂ +M2 (x) M̂⊥1 +M3 (x)M̂⊥2

=
(
XT · M̂

)
M̂ +

(
I − M̂ ⊗ M̂

)
·X

(C.1)

The kinemati
ally signi�
ant ve
tor 
omponent of the moving frame 
an be de�ned as a

family of level planes. Sin
e inverse mapping is fun
tion of 
urrent 
oordinates, the level

surfa
e set is in 
urrent system and has a 
ofa
tor type steepest as
ent orthonormal to the

level plane, apparent from the gradient of it.Tangent median of the level plane is 
ertainly

de�ned by the deformation gradient along the referen
e �ber.

Sc
M̂

=
{
x|XT · M̂ = c

}

F−T · M̂ ⊥ Sc
M̂

F · M̂ ‖ Sc
M̂

(C.2)

The same analogy 
an be extended to the 
ofa
tor of hypergradient as the steepest as
ent

of level heypersurfa
es of deformation gradient. This relevant but 
ontently not ne
essary
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extension is let to be out of the s
ope. The prin
iple moving and 
onve
ting 
urrent


oordinates around a natural 
ross se
tion at the �at domain of the �ber,

S0
M̂♭

⊥
(
F ♭−T · M̂ ♭

)
=
(
F ♮ +G · M̂ ♭

)−T
· M̂ ♭ = −

(
F ♮ −G · M̂ ♮

)−T
· M̂ ♮

S0
M̂♭

‖
(
F ♭ · M̂ ♭

)
=
(
F ♮ +G · M̂ ♭

)
· M̂ ♭ =

(
−F ♮ +G · M̂ ♮

)
· M̂ ♮

(C.3)

Similarly, the prin
iple moving and 
onve
ting 
urrent 
oordinates around a natural 
ross

se
tion at the sharp domain of the �ber,

S0
M̂♯

⊥
(
F ♯−T · M̂ ♯

)
=
(
F ♮ +G · M̂ ♯

)−T
· M̂ ♯ =

(
F ♮ +G · M̂ ♮

)−T
· M̂ ♮

S0
M̂♯

‖
(
F ♯ · M̂ ♯

)
=
(
F ♮ +G · M̂ ♯

)
· M̂ ♯ =

(
F ♮ +G · M̂ ♮

)
· M̂ ♮

(C.4)

In this single �ber kinemati
s, as stated before, we take the natural and sharp dire
tions

Ω♭
m

Ω♮
m

Ω♯
m

cof
(

F♭
)

·M♭

F♭ ·M♭

F♯ ·M♯

cof
(

F♯
)

·M♯

(

F
♮

+ G · dM
♮
)−T

· M
♮

(

F
♮

+ G · dM
♮
)

· M
♮

dM
♮

Ω♭
m

Ω♮
m

Ω♯
m

F♮ ·M♯

1

2
G:

(

M♯
)⊗2

1

2
G:

(

M♯
)⊗2

F
♯ ·M

♯

m
♯

F♮ ·M♭

1

2
G:

(

M♭
)⊗2

1

2
G:

(

M♭
)⊗2

F
♭
·M

♭

m ♭

Figure C.1: Kinemati
s of a single �ber with 
onve
ting and moving 
oordinates at the �at, natural

and sharp se
tions, Change the omega into small one

as identi
al. We assume an additive orthogonal kinemati
s for axis apart material points of

the �ber exist. The linear momentum material ve
tor �eld Γ for the �at and sharp se
tions
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be
ome,

Γ♭ = ΛT ·




(
−F ♮ +G · M̂ ♮

)
· M̂ ♮

‖
(
−F ♮ +G · M̂ ♮

)
· M̂ ♮‖

−

(
−F ♮ +G · M̂ ♮

)−T
· M̂ ♮

‖
(
−F ♮ +G · M̂ ♮

)−T
· M̂ ♮‖




= ΛT ·

(
−F ♮ · M̂ ♮ +G : M̂ ♮ ⊗ M̂ ♮

)

‖
(
−F ♮ +G · M̂ ♮

)
· M̂ ♮‖

+ M̂ ♮

(C.5)

Γ♯ = ΛT ·




(
F ♮ +G · M̂ ♮

)
· M̂ ♮

‖
(
F ♮ +G · M̂ ♮

)
· M̂ ♮‖

−

(
F ♮ +G · M̂ ♮

)−T
· M̂ ♮

‖
(
F ♮ −G · M̂ ♮

)−T
· M̂ ♮‖




= ΛT ·

(
F ♮ · M̂ ♮ +G : M̂ ♮ ⊗ M̂ ♮

)

‖
(
F ♮ +G · M̂ ♮

)
· M̂ ♮‖

− M̂ ♮

(C.6)

The strain energy density fun
tion (per unit length) balan
ed by only linear momentum

e�e
ts is the parametri
 integral result in referen
e volume,

ψ
Γ♭ =D♭ :

(
Γ♭ ⊗ Γ♭

)

=E♭A
((
M̂ ♮ ⊗ ·M̂ ♮

)
· Γ♭ ·

(
M̂ ♮ ⊗ ·M̂ ♮

)
· Γ♭

)

+G♭A
((
I − M̂ ♮ ⊗ ·M̂ ♮

)
· Γ♭ ·

(
I − M̂ ♮ ⊗ ·M̂ ♮

)
· Γ♭

)
(C.7)

Linear momentum equation given in this form has the following material tensor,

D♭ = E♭A
(
M⊗2 ·M⊗2

)
+G♭A

(
I −M⊗2

)
·
(
I −M⊗2

)
(C.8)

By 
alling the purpose of the additional orthogonal kinemati
s, the ve
tor of tensile linear

momentum part is,

(
−M̂ ♮ ⊗−M̂ ♮

)
· Γ♭ =

(
−M̂ ♮ ⊗−M̂ ♮

)
·ΛT ·

(
−F ♮ · M̂ ♮ +G : M̂ ♮ ⊗ ·M̂ ♮

)

‖
(
−F ♮ +G · M̂ ♮

)
· M̂ ♮‖

+ M̂ ♮

=
−M̂ ♮ ⊗

(
−M̂ ♮ ·

(
−F ♮ +G

)−1
·
(
−F ♮ +G

)
· M̂ ♮

)

‖
(
−F ♮ +G · M̂ ♮

)−1
· M̂ ♮‖‖

(
−F ♮ +G · M̂ ♮

)
· M̂ ♮‖

+ M̂ ♮

= −‖ − F ♭−1
· M̂ ♮‖−1‖ − F ♭ · M̂ ♮‖−1M̂ ♮ + M̂ ♮

(
M̂ ♮ ⊗ M̂ ♮

)
· Γ♯ = ‖F ♯−1

· M̂ ♮‖−1‖F ♯ · M̂ ♮‖−1M̂ ♮ − M̂ ♮

(C.9)
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Together with the �at 
ontribution, the total tensile momentum free energy be
omes,

ψEAΓ = ψEA
Γ♭ + ψEA

Γ♯

= E♭A
(
‖F ♭−1

· M̂ ♮‖−2‖F ♭ · M̂ ♮‖−2 − 2‖F ♭−1
· M̂ ♮‖−1‖F ♭ · M̂ ♮‖−1 + 1

)

+ E♭A
(
‖F ♯−1

· M̂ ♮‖−2‖F ♯ · M̂ ♮‖−2 − 2‖F ♯−1
· M̂ ♮‖−1‖F ♯ · M̂ ♮‖−1 + 1

)

(C.10)

Whi
h is 
learly zero for absolutely no deformation 
ases.

C.2 Tra
tions and Hypertra
tions on gradient Cau
hy

tetrahedra

In this se
tion we give an example of �ber anisotropy embedded by a Cau
hy tetrahedron.

For this purpose we rewrite the strain energy density fun
tion in terms of the Cau
hy and

Finger tensors,

ψEAΓ = E♭A

[(
b♭

−1
: M̂ ♮⊗2

)−1 (
C♭ : M̂ ♮⊗2

)−1
− 2

(
b♭

−1
: M̂ ♮⊗2

)−1/2 (
C♭ : M̂ ♮⊗2

)−1/2
+ 1

]

+ E♯A

[(
b♯

−1
: M̂ ♮⊗2

)−1 (
C♯ : M̂ ♮⊗2

)−1
− 2

(
b♯

−1
: M̂ ♮⊗2

)−1/2 (
C♯ : M̂ ♮⊗2

)−1/2
+ 1

]

(C.11)

Where the inverse �nger and the Cau
hy strains are de�ned as;

b♯
−1

= F ♯−T · F ♯−1
b♭

−1
= F ♭−T · F ♭−1

C♯ = F ♯T · F ♯ C♭ = F ♭T · F ♭

(C.12)

Additional material nonlinearity in referen
e 
on�guration should be de�ned for more

rational approa
h and for the sake of arti�
ial snap through. Sin
e the modulus is

equivalent to slope of in
remental load displa
ement 
urve, we impose worm-like 
hain

similar exponential type reversible material hardening for the material type nonlinearities.
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Quite apparently, the �rst Piola Kir
hho� stress and hyperstress tensors are,

P ♮ =
∂ψEAΓ

∂b♭
−1 :

∂b♭
−1

∂b♭
:
∂b♭

∂F ♭
:
∂F ♭

∂F ♮
+
∂ψEAΓ

∂b♯
−1 :

∂b♯
−1

∂b♯
:
∂b♯

∂F ♯
:
∂F ♯

∂F ♮

+
∂ψEAΓ

∂C♭
:
∂C♭

∂F ♭
:
∂F ♭

∂F ♮
+
∂ψEAΓ

∂C♯
:
∂C♯

∂F ♯
:
∂F ♯

∂F ♮

Q♮ =
∂ψEAΓ

∂b♭
−1 :

∂b♭
−1

∂b♭
:
∂b♭

∂F ♭
:
∂F ♭

∂G♮
+
∂ψEAΓ

∂b♯
−1 :

∂b♯
−1

∂b♯
:
∂b♯

∂F ♯
:
∂F ♯

∂G♮

+
∂ψEAΓ

∂C♭
:
∂C♭

∂F ♭
:
∂F ♭

∂G♮
+
∂ψEAΓ

∂C♯
:
∂C♯

∂F ♯
:
∂F ♯

∂G♮

(C.13)

Where, the intrinsi
 dependen
e of the in
remental modulus to the Cau
hy deformation

measures are taken to be,

E♯A = E0A0exp
(
C♯ : M̂ ♮⊗2

)
E♭A = E0A0exp

(
C♭ : M̂ ♮⊗2

)
(C.14)

As above, among the derivations, no pull ba
k transformation is applied on the area

elements, towards whi
h we impli
itly imply that the balan
e of angular momentum is

quantitatively negligible besides of the linear momentum e�e
ts as a 
onsequen
e of small

enough area assumption. The following parts are to be put into the appendix, but I'll write

down for programming purposes,

∂ψEAΓ

∂b♭
−1 =− EA

(
b♭

−1
: M̂ ♮⊗2

)−2 (
C♭ : M̂ ♮⊗2

)−1
M̂ ♮⊗2

− EA
(
b♭

−1
: M̂ ♮⊗2

)−3/2 (
C♭ : M̂ ♮⊗2

)−1/2
M̂ ♮⊗2

∂ψEAΓ

∂b♯
−1 =− EA

(
b♯

−1
: M̂ ♮⊗2

)−2 (
C♯ : M̂ ♮⊗2

)−1
M̂ ♮⊗2

− EA
(
b♯

−1
: M̂ ♮⊗2

)−3/2 (
C♯ : M̂ ♮⊗2

)−1/2
M̂ ♮⊗2

(C.15)

Again for programming purposes, the derivatives of the strain energy density density fun
tion

with respe
t to the sharp and �at Cau
hy strain measure,

∂ψEAΓ

∂C♭
=− EA

(
C♭ : M̂ ♮⊗2

)−2 (
b♭

−1
: M̂ ♮⊗2

)−1
M̂ ♮⊗2

− EA
(
C♭ : M̂ ♮⊗2

)−3/2 (
b♭

−1
: M̂ ♮⊗2

)−1/2
M̂ ♮⊗2

∂ψEAΓ

∂C♯
=− EA

(
C♯ : M̂ ♮⊗2

)−2 (
b♯

−1
: M̂ ♮⊗2

)−1
M̂ ♮⊗2

− EA
(
C♯ : M̂ ♮⊗2

)−3/2 (
b♯

−1
: M̂ ♮⊗2

)−1/2
M̂ ♮⊗2

(C.16)
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Additionally, the inverse derivatives of the �nger tensor and the derivatives of the Cau
hy

and Finger tensors are given,

(
∂b−1

∂b

)

ijkl

=
1

2

(
b−1
ik b

−1
lj + b−1

il b
−1
kj

)

(
∂C

∂F

)

ijkl

= δilFkj + δkiFjl

(
∂b

∂F

)

ijkl

= δikFjl + δjkFil

(
∂F ♭

∂F ♮

)

ijkl

=
∂
(
−F ♮ +G♮ ·M ♮

)
ij

∂
(
F ♮
)
kl

= −δikδjl

(
∂F ♭

∂G♮

)

ijkln

= δikδjlMn

(C.17)

The last two equations is due to the fa
t that the referen
e 
oordinates are �xed and

divergen
e-free near to the material point.

Figure C.2: From left to right, undeformed straight Cau
hy tetrahedron, tra
tion for
es on deformed

body hypertra
tion for
es on deformed body.

It does worth to 
omment further on the quantitative proportion of tra
tion for
es,

hypertra
tion for
es as well as tra
tion stresses with ea
h other. For this purpose we

use the extended Cau
hy Tetrahedron whi
h we 
all as Hyper-Cau
hy tetrahedron. The

Hyper-Cau
hy tetrahedron (for this 
ase) represents a volume division of a �ber reinfor
ed

unit 
ell. Like in Cau
hy-tetrahedron, it is assumed that the 
ell is balan
ed by volumetri
ally

divergen
e-free stress and volumetri
ally double divergen
e-free hyperstress, indi
ating the

absen
e of body for
es. Analogously, the hyperstress is fa
ially divergen
e-free and do a
t

on interfa
es of the further divisions of surfa
e pat
hes and balan
e those surfa
e pat
hes.

Figure 9 on the left shows the tra
tion and hypertra
tion for
es developing with the

deformation fa
tor of an example 
ase. As 
an be seen the exponential hardening does not

undergo any arti�
ial snap-through or arti�
ial softening whi
h may be 
aused if only the

geometri
al nonlinearities were 
onsidered in the material. At this stage, we state that the

exponential hardening of the elasti
 modulus of simo-type geometri
ally exa
t anisotropy


an be repla
ed by any type of material model. In 
ase, St. Venant-Kir
hho� material

is used, some softening, even snap through in ex
eeding deformations 
an be observable,

be
ause the stress fun
tions of this model linear in isotropi
 material parameter 
ouples.
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Figure C.3: Left, tra
tion and hypertra
tion for
e fa
tors depending on the deformation fa
tors.

Right The logarithmi
 ratio of tra
tion to hypertra
tion for
es.

Instead, a Neo-Hookean material update 
an be used, however it would be quite di�
ult to

argue on phenomenologi
al reasoning of dependen
e of in
remental material properties of

�bers on the 
ofa
tor update. In fa
t, the in
rease of in
remental e�e
tive values depending

on the tangential stret
h of radially pa
ked �bers is stated many times in the literature.

Therefore, we took exponential in
remental update driven by the deformation gradient and

deformation hypergradient.

Figure 9 on the right shows the proportional development of tra
tion for
es with respe
t

to hypertra
tions for
es with in
reasing displa
ement fa
tor. In spite, this behavior 
an not

be taken as general, it is still evidential that the hypertra
tive e�e
ts may be quantitatively

equivalent to tra
tive e�e
ts. Additionally, it is again evidential that this proportion may

as
ent with deformation.

For weighting those two e�e
ts, instead of an energy based 
omparison approa
h, we


ompared the tra
tions and hypertra
tions. Be
ause the L:SA:V ratios of Hyper-Cau
hy

geometries (in general geometries) are size dependent, the energy tra
ked by the surfa
e

for
es of di�erent sized surfa
es does not allow an obje
tive 
omparison. Besides, the

energy fun
tion is not straightforwardly additively splittable into those pie
es. However

tra
tions and surfa
e tra
tions do allow an obje
tive 
omparison, due to the fa
t that L:SA

of surfa
es is proportional with L, and L is proportional with ‖M‖ and ‖M‖ is proportional

with ‖Q : n‖ ⊗ n⊥‖/‖P
T · n‖‖.
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D.1 Stationary 
on�gural energy and kinemati
s

The strain energy of energeti
ally equal 
on�gurations of gradient-only systems 
an be

represented by the following 
omposite fun
tion.

ψc = ψ ◦E∗ ◦Q∗
(D.1)

Where the �nite rotation tensor Q and the rotation angle s
aled skew rotation axis tensor

αA are mapped onto ea
h other by means of matrix exponential and matrix natural

logarithm fun
tions. Even though the matrix logarithm fun
tion has a radius of 
onvergen
e,

we write down to show the inversibility of the skew symetri
 and orthogonal matrix fun
tions.

Q = exp (αA) αA = loge (Q) (D.2)

A

ording to this, we 
an express the 
omposite fun
tion as,

ψc = ψ ◦E∗ ◦ (αA)∗ ◦Q∗
(D.3)

E∗
being the 
on�gurational Green-Lagrange strain tensor where the 
on�guration is driven

by the Q∗
orthonormal tensor rotating the material frame. The 
oe�
ient matri
es of


on�gurational Green-Lagrange strain tensor, the rotation axis a and the skew rotation axis

tensor A∗
are represented in the eigenve
tor spa
e of Green lagrange strain.

E∗ =
1

2

(
λ∗2i − 1

)
N ∗

i ⊗N
∗
i

â∗ = â∗iN
∗
i

A∗ = A∗
ij

(
N ∗

i ⊗N
∗
j

)
= −εijka

∗
k

(
N ∗

i ⊗N
∗
j

)

(D.4)

Where, the axis is perpendi
ular to the plane of two di�erent 
on�gural �ber dire
tions. This

means, one of the 
on�gural �ber dire
tion given as unremodeled, the axis a∗ represents
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one of in�nitely many axis of remodeling rotations. As stated before, sin
e we 
onsider

energeti
ally equal 
on�gurations, in this stage the remodeling assumes to 
hange the

kinemati
s. Thus, kinemati
s E∗
is 
on�gural either. The variation of the strain energy

fun
tion in the dire
tion of the rotations,

∂ψc

∂Q∗ : δQ
∗ =

∂ψ

∂E∗ :
∂E∗

∂â∗
·

∂â∗

∂ (α∗A∗)
:
∂ (α∗A∗)

∂Q∗ : δQ∗
(D.5)

In the indi
ial notation we have,

∂ψc

Q∗
ij

δQ∗
ij =

∂ψ

∂E∗
ij

∂E∗
ij

∂â∗k

∂â∗k
∂
(
α∗A∗

lm

) ∂ (α
∗A∗

lm)

Q∗
no

δQ∗
no (D.6)

De�ning the non-remodeled 
on�guration ve
tor by m and new 
on�guration ve
tor by q∗

in Green Lagrange eigenve
tor bases,

m = miN
∗
i q∗ = q∗iN

∗
i (D.7)

The new 
on�guration is obtained by a k'th 
ontravariant unit base ve
tor as the axis a∗

of the j'th and i'th unit 
ovariant base ve
tors as non-remodeled 
on�guration ve
tor and

new 
on�guration ve
tor.

m = Gi‖Gj‖2‖Gi‖
−1
2 q∗ = Gj â∗ = Gk‖Gk‖−1

2 (D.8)

Following this, there is a unit 
ontravariant axis â∗ whi
h rotates i'th 
ovariant unit base

into j'th 
ovariant and similarly the axis −a∗ rotates j'th base into i'th base with the same

angle of rotation α∗
with positive sinus. A

ording to this idea we 
an write down the

forward and ba
kward Euler-Rodrigues rotation formula,

Q∗ = â∗ ⊗ â∗ + cos (α∗) (IN − â∗ ⊗ â∗) + sin (α∗)A

Q∗T = â∗ ⊗ â∗ + cos (α∗) (IN − â∗ ⊗ â∗)− sin (α∗)A
(D.9)

The elements of the Rodrigues formulation are,

IN =N ∗
i ⊗N

∗
i

â⊗ â =âiâjN
∗
i ⊗N

∗
j = εiklεjmnqlqnmkmm‖a‖

−2N ∗
i ⊗N

∗
j

A =AijN
∗
i ⊗N

∗
j = −εijkâkN

∗
i ⊗N

∗
j = −εijkεklmqmml‖a‖

−1N ∗
i ⊗N

∗
j

cos (α∗) =qimi (‖q‖‖m‖)−1

sin (α∗) =‖a‖ (‖q‖‖m‖)−1 = (εiklεimnqlqnmkmm)
1/2 (‖q‖‖m‖)−1

(D.10)

It should be stated here that among the in�nitely many orthonormal tensors, the spin-free

one is presented here. A

ording to the equation (D.9), the logarithm of the angle-s
aled

skew matrix and the derivative appearing in the equation (D.5) is given as,

loge (Q
∗) = α∗A∗ =

α∗

sin (α∗)

(
Q∗ −Q∗T

) ∂ (α∗A∗)

∂Q∗ =
α∗

sin (α∗)

(
Ì− Í

)

(D.11)
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Now we 
hose the new 
on�guration 
oaxial with the eigenvalue s
aled eigenve
tor. With

this post statement, we will be looking for the variational stability of the energeti
ally equal


on�gurations for the rotations steered by the axis of one eigenve
tor dire
tion. Say,

q∗ = λ∗1N 1 (D.12)

If we redu
e the target into one eigenve
tor the Rodrigues formula 
ompatible to equation

(D.10) is,

Q∗ =
(
εik1εjm1λ

∗
1λ

∗
1mkmm‖a‖

−2 +m1λ
∗−1
1

(
δij + εik1εjm1λ

∗
1λ

∗
1mkmm‖a‖

−1
))
N∗

i ⊗N
∗
j

−
(
εijkεklmqmml‖a‖

−1(εnp1εnr1λ
∗
1λ

∗
1mpmr)

1/2λ∗21

)
N ∗

i ⊗N
∗
j

(D.13)

The 
oe�
ient matrix of the rotation tensor be
omes,

[Q∗] =




(
m1λ

∗
1
−1
) (

m2λ
∗
1
−1
) (

m3λ
∗
1
−1
)

−
(
m2λ

∗
1
−1
)

(
m1λ

∗
1
−1 +m3

2
(
m2

2 +m3
2
)−1

−m1m3
2λ∗1

−1
(
m3

2 +m2
2
)−1

) (
−m3m2

(
m3

2 +m2
2
)−1

+m1m3m2λ
∗
1
−1
(
m3

2 +m2
2
)−1

)

−
(
m3λ

∗
1
−1
)
(

−m2m3

(
m3

2 +m2
2
)−1

+m1m2m3λ
∗
1
−1
(
m3

2 +m2
2
)−1

) (
m1λ

∗
1
−1 +m2

2
(
m3

2 +m2
2
)−1

−m1m2
2λ∗1

−1
(
m3

2 +m2
2
)−1

)




(D.14)

Equation (D.5) be
omes,

∂ψc

∂Q∗ : δQ
∗ = S∗ :

∂E∗

∂â∗
·
−E

α∗
:

α∗

sin (α∗)

(
Ì− Í

)
: δQ∗ = S∗ :

(
−2

sinα∗

∂E∗

∂â∗
· E : δQ∗

)

(D.15)

Where, the symbol E stands for the isotropi
 permutation pseudotensor. Sin
e, the se
ond

Piola Kir
hho� stress tensor is nonde
reasing for nonde
reasing Green-Lagrange Strain

tensor, we are going to expand the remaining produ
t. The variation of the Green-Lagrange

tensor in formula above in indi
ial notation,

∂E∗
ij

∂âk

(−εlnk)

sin (α∗)

(
∂Q∗

lm

∂Q∗
no

−
∂Q∗

ml

∂Q∗
no

)
δQno =

−2

sinα∗

(
∂Eij
∂â∗k

εnok

)
δQno =

−2

sinα∗

(
∂Eii
∂â∗k

εnok

)
δQno

(D.16)

The last krone
ker insertion is due to the nonexisten
e of the non-diagonal terms of

the Green-Lagrange strain tensor 
oe�
ients in the eigenve
tor base system. Unfolding

the permutation pseudotensor and multiplying it with the dire
tional derivative of the

Green-Lagrange strain tensor in the dire
tion of the rotation axis, one would get the the

unfolded form of the third order result of the round bra
kets of last part of equation

(D.16). The permutation pseudotensor is independent of any 
oordinate system and 
an

be represented in terms of the foldings of eigenbases as,

E =(N ∗
2 ⊗N

∗
3 −N

∗
3 ⊗N

∗
2)⊗N

∗
1

+(N ∗
3 ⊗N

∗
1 −N

∗
1 ⊗N

∗
3)⊗N

∗
2 unfoldi (E) = E ·N∗

i

+(N ∗
1 ⊗N

∗
2 −N

∗
2 ⊗N

∗
1)⊗N

∗
3

(D.17)
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The tensor order of the Green Lagrange strain tensor is redu
ed for pra
ti
al reasons. Even

though the tensor itself 
an not be extra
ted from the redu
ed representation for arbitrary


oordinate system (from 3 parameter spa
e into 6 parameter spa
e), it is still valid to

ve
torize the Green-Lagrange strain tensor. Sin
e we de�ne the 
oe�
ients in eigenspa
e,

the 
onversion in this spa
e is self-veri�ed (from 3 parameter spa
e into 3 parameter spa
e).

The length of the ve
tor form is equal to the se
ond invariant of the se
ond order form.

Thus, this ve
tor form has an invariant and is a tensor.

Ê
∗
=

1

2

(
λ∗2i − 1

)
N ∗

i ‖Ê
∗
‖22 = IE

∗

2 (D.18)

So, the derivative in the round bra
kets of equation (D.16) and the unfolded se
ond order

tensorial 
omponents of it are given below,

∂Ê
∗

∂â∗
· E =

∂Ê
∗

∂
(
â∗ ·N ∗

j

) ⊗ unfoldj (E) (D.19)

The matrix 
oe�
ients of the unfolding of equation (D.19) with the 
ombination of equation

(D.17) is given below,

unfoldi

(
∂Ê

∗

∂â∗
· E

)
=
∂Ê∗

i

∂â∗j
εjkl (N

∗
k ⊗N

∗
l ) (D.20)

Enfor
ing the anisotropy in the dire
tion of the target 
on�guration,

∂Ê
∗

∂â∗
=

∂Ê
∗

∂ (E∗ : q∗ ⊗ q∗)
⊗
∂ (E∗ : q∗ ⊗ q∗)

∂q∗
·
∂q∗

∂â∗

= λ∗1 (N
∗
1 ⊗N

∗
1) ·
(
m−1

3 (N ∗
1 ⊗N

∗
2)−m−1

2 (N ∗
1 ⊗N

∗
3)
)

(D.21)

Inserting ba
k into equation (D.20) gives us the only nonzero 
omponent in matrix form,

[
unfold1

(
∂Ê

∗

∂â∗
· E

)]
=




0 −λ∗1m
−1

2
−λ∗1m

−1

3

λ∗1m
−1

2
0 0

λ∗1m
−1

3
0 0




(D.22)

The total derivative in the dire
tion of the orthonormal tensor variation vanishes as shown

below.

∂Ê
∗

∂â∗
· E : δQ∗ =

(
−λ∗1m3

−1 ∂Q
∗
13

∂λ∗1
+ λ∗1m3

−1 ∂Q
∗
31

∂λ∗1

)
δλ∗1N

∗

1

+

(
−λ∗1m2

−1 ∂Q
∗
12

∂λ∗1
+ λ∗1m2

−1 ∂Q
∗
21

∂λ∗1

)
δλ∗1N

∗

1

=2λ∗1m3
−1m3

λ∗1
2 δλ

∗
1N

∗

1 − 2λ∗1m2
−1m2

λ∗1
2 δλ

∗
1N

∗

1

=2λ∗−1
1 δλ∗1N

∗

1 − 2λ∗−1
1 δλ∗1N

∗

1 = 0

(D.23)

This indi
ates that the 
on�gural kinemati
s as well as 
on�gural energy is stationary for the

given type of rotations. Next, we will dis
uss about the 
onvexity of this type of rotations.
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D.2 Maximization of Con�gural Energy

In this se
tion the duality of the optimization manifolds will be shown and proven to be

holding at the lo
ation of stationary point shown in the previous se
tion. The only nonzero

part of the 
oe�
ient of the variation of Green Lagrange strain tensor in the dire
tion of

virtual rotation is,

unfold1

(
∂Ê

∗

∂â∗
· E

)
= −λ∗1m

−1
2 (N ∗

1 ⊗N
∗
2)− λ∗1m

−1
3 (N ∗

1 ⊗N
∗
3)

+λ∗1m
−1
2 (N ∗

2 ⊗N
∗
1) + λ∗1m

−1
3 (N ∗

3 ⊗N
∗
1)

(D.24)

The se
ond variation of the Green Lagrange Strain tensor with respe
t to the rotation tensor

gives us information about the 
onvexity of the Green Lagrange Strain tensor in terms of

the rotations.

−2

sinα∗

[
∂

∂Q∗

(
unfold1

(
∂Ê

∗

∂â∗
· E

))
: δQ∗

]
: δQ∗

(D.25)

The derivative with respe
t to the rotation tensor in the bra
kets right before the se
ond

variational double 
ontra
tion is,

∂

∂Q∗

(
unfold1

(
∂Ê

∗

∂â∗
· E

))
=

−2

sinα∗

∂

∂a∗

(
unfold1

(
∂Ê

∗

∂â∗
r
· E

))
r
· E (D.26)

The derivative with respe
t to the rotation axis is,

∂

∂a∗

(
unfold1

(
∂Ê

∗

∂â∗
r
· E

))
=

−m−1
2 m−1

3 (N ∗
1 ⊗N

∗
2 ⊗N

∗
2)−m−2

3 (N ∗
1 ⊗N

∗
3 ⊗N

∗
2)

+m−1
2 m−1

3 (N ∗
2 ⊗N

∗
1 ⊗N

∗
2) +m−2

3 (N ∗
3 ⊗N

∗
1 ⊗N

∗
2)

+m−2
2 (N ∗

1 ⊗N
∗
2 ⊗N

∗
3) +m−1

2 m−1
3 (N ∗

1 ⊗N
∗
3 ⊗N

∗
3)

−m−2
2 (N ∗

2 ⊗N
∗
1 ⊗N

∗
3)−m−1

2 m−1
3 (N ∗

3 ⊗N
∗
1 ⊗N

∗
3)

(D.27)
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Dot produ
t with the permutation pseudotensor,

∂

∂a∗

(
unfold1

(
∂Ê

∗

∂â∗
r
· E

))
r
· E =

−m−1
2 m−1

3 (N∗
1 ⊗N

∗
2 ⊗ (N∗

3 ⊗N
∗
1 −N

∗
1 ⊗N

∗
3))

−m−2
3 (N∗

1 ⊗N
∗
3 ⊗ (N∗

3 ⊗N
∗
1 −N

∗
1 ⊗N

∗
3))

+m−1
2 m−1

3 (N∗
2 ⊗N

∗
1 ⊗ (N∗

3 ⊗N
∗
1 −N

∗
1 ⊗N

∗
3))

+m−2
3 (N∗

3 ⊗N
∗
1 ⊗ (N∗

3 ⊗N
∗
1 −N

∗
1 ⊗N

∗
3))

+m−2
2 (N∗

1 ⊗N
∗
2 ⊗ (N∗

1 ⊗N
∗
2 −N

∗
2 ⊗N

∗
1))

+m−1
2 m−1

3 (N∗
1 ⊗N

∗
3 ⊗ (N∗

1 ⊗N
∗
2 −N

∗
2 ⊗N

∗
1))

−m−2
2 (N∗

2 ⊗N
∗
1 ⊗ (N∗

1 ⊗N
∗
2 −N

∗
2 ⊗N

∗
1))

−m−1
2 m−1

3 (N∗
3 ⊗N

∗
1 ⊗ (N∗

1 ⊗N
∗
2 −N

∗
2 ⊗N

∗
1))

(D.28)

The variation in the dire
tion of the se
ondary virtual rotations,

[
∂

∂Q∗

(
unfold1

(
∂Ê

∗

∂â∗
· E

))
: δQ∗

]
=

− 2m−1
2 λ∗−2

1 δλ∗1 (N
∗
1 ⊗N

∗
2)− 2m−1

3 λ∗−2
1 δλ∗1 (N

∗
1 ⊗N

∗
3)

+ 2m−1
2 λ∗−2

1 δλ∗1 (N
∗
2 ⊗N

∗
1) + 2m−1

3 λ∗−2
1 δλ∗1 (N

∗
3 ⊗N

∗
1)

− 2m−1
2 λ∗−2

1 δλ∗1 (N
∗
1 ⊗N

∗
2)− 2m−1

3 λ∗−2
1 δλ∗1 (N

∗
1 ⊗N

∗
3)

+ 2m−1
2 λ∗−2

1 δλ∗1 (N
∗
2 ⊗N

∗
1) + 2m−1

3 λ∗−2
1 δλ∗1 (N

∗
3 ⊗N

∗
1)

(D.29)

The total variation is then,

−2

sinα∗

[
∂

∂Q∗

(
unfold1

(
∂Ê

∗

∂â∗
· E

))
: δQ∗

]
: δQ∗ = 64sin−2 (α∗)δλ∗1δλ

∗
1 (D.30)

Whi
h shows that the eigenvalue based rotation 
an be represented as a 
onvex optimization

problem. Stret
h and thus strain have their minimum value independent of the energy


onstraint and the initial position. Sin
e we have a stationary point at the lo
us of interest,

we 
an not 
omment (not straightforwardly) further on the 
onvexity of the strain energy

density fun
tion about the orthonormal tensor, using the tensor 
omposition higher order

derivatives. To show that there is the maximization perspe
tive of the same obje
tive

and subje
tive we will use next the Lagrange duality. The problem above without the

in
lusion of the 
omposition and energeti
ally equal restri
tion, 
an be interpreted as the

minimization of the anisotropi
 ingredient of the Green-Lagrange Strain measure. As shown



D.2. Maximization of Con�gural Energy 187

in the previous se
tion, the stated stationary point is minimum kinemati
 
on�guration and

is the solution of the following primal obje
tive and subje
tive set,

minimize I4 =m
T ·
(
QT ·E ·Q

)
·m = E : ((Q ·m)⊗ (Q ·m))

subject to (Q ·m) · (Q ·m) = 1

QT ·Q = I

(D.31)

Sin
e m is arbitrary, thus nor 
on�gural, neither a parameter of the optimization. Hen
e,

is not listed expli
itly in the 
onstraints. Reformulating the problem,

minimize E : (q ⊗ q)

subject to q · q = 1
(D.32)

The Lagrangian of the minimization of the 
onvex quadrati
 fun
tion on the unit ball


onstraint is,

L (q, µ) = E : (q ⊗ q) + µ (q · q − 1)

= qT · (E − µI) · q + qT · µI · q + µ (q · q − 1)

= qT · (E − µI) · q − µ

(D.33)

The 
ost µ is set to be the Lagrange multiplier of the single equality 
onstraint. The dual

form is then,

g (µ) = inf
q

(L (q, µ)) = inf
q

(
qT · (E − µI) · q

)
− µ (D.34)

Sin
e the in�mum of the quadrati
 form is zero if the form is positive de�nite, else negatively

unbounded,

g (µ) =

{
−µ (E − µI) · q � 0

−∞ otherwise

(D.35)

Moving on with the assumption of strong duality (zero duality gap), the Lagrange multiplier


omponent of the Karush-Kuhn-Tu
ker point of the quadrati
 problem with quadrati


equality 
onstraint 
an be found. For zero duality gap, the gradient of the Lagrangian

(Lagrangian with the optimal dual parameter) evaluated at the optimal primary variable

should vanish.

∇qL (q, µ∗)|q∗ = ∇qE : (q ⊗ q)|q∗ + ∇qµ
∗ (q · q − 1)|q∗ = 2 (E + µ∗I) · q∗ = 0

(D.36)

Quite 
learly the solutions whi
h imposes redundan
y to the term in bra
kets and satis�es

the KKT 
ondition above is,

µ∗ =
{
−λ∗2 + 1 | λ∗2 ≥ 1

}
(D.37)
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Whi
h is feasible a

ording to the dual 
onstraint.The additional 
onstraint in equation (72)

is a reinterpretation of the dual 
onstraint of (70). In matrix ve
tor form the 
onstraint of

(70) for a stationary point,

λ∗21 ≥ 1 =⇒



2λ∗21 − 2 0 0

0 λ∗21 + λ∗22 − 2 0

0 0 λ∗21 + λ∗23 − 2


 ·



1

0

0


 �



0

0

0




(D.38)

The strain energy density fun
tion of the remodeled 
on�guration is a nonde
reasing

fun
tion of the given eigenvalues of the Green-Lagrange strain tensor. A

ording to the dual

form, the remodeling sear
h 
an be interpreted as the maximization of the energy subje
ted

to a kinemati
 inequality 
onstraint.



Bibliography

[A.Laub 2008℄ UCLA Department of Mathemati
s A.Laub. Notes on Moore-Penrose

pseudoinverse. url:

http://www.math.u
la.edu/ laub/33a.2.12s/mppseudoinverse.pdf, 2008. (Cited on

page 143.)

[A.Menzel 2004℄ A.Menzel. Modelling of anisotropi
 growth in �brous tissue.

(3(3): 147 − 171). Biome
han. Model. Me
hanobiol., pages �, 2004. (Cited on

pages 49, 100, 108 and 113.)

[A.Menzel 2006℄ A.Menzel. A �bre reorientation model for orthotropi
 multipli
ative

growth. (DOI : 10.1007/s10237 − 006 − 0061 − y). Biome
han Model

Me
hanobiol, pages �, 2006. (Cited on page 113.)

[B.Barber 1996℄ H.Huhdanpaa B.Barber D.P. Dobkin. The Qui
khull algorithm for


onvex hulls. (22(4): 469− 483). ACM TRANSACTIONS ON MATHEMATICAL

SOFTWARE, url:http://www.qhull.org/, 1996. (Cited on page 132.)

[Beta 2009℄ Cae Systems SA Beta. Metapost postpro
essor. 2009. (Cited on page 47.)

[Bis
ho� 2004℄ W.A.Wall Bis
ho� Bletzinger and E.Ramm. Models and Finite Elements

for Thin-Walled Stru
tures (DOI : 10.1002/0470091355.ecm026). En
y
lopedia

of Computational Me
hani
s, 2004. (Cited on page 154.)

[Bletzinger 2009℄ K.U. Bletzinger. Ergaenzungskurs Statik

(url : https : //campus.tum.de/;Modul −Kennung : 240079716). TUM-online,

2009. (Cited on page 2.)

[Boehler 1979℄ Jean-Paul Boehler. A simple derivation of representations for

non-polynomial 
onstitutive equations in some 
ases of anisotropy.

(DOI : 10.1002/zamm.19790590403). Zeits
hrift fuer Angewandte Mathematik

und Me
hanik, V59, I4, pages 157�167, 1979. (Cited on pages 102, 103 and 104.)

[Bu
kley 2008℄ Bu
kley. Mapping the depth dependen
e of shear properties in arti
ular


artilage. (DOI : 10.1016/j.jbiomech.2008.05.021). Orthopedi
 resear
h so
iety,

2008. (Cited on pages 99 and 100.)

[C.J. Chuong 1986℄ Y.C. Fung C.J. Chuong. On Residual Stress in Arteries.

(DOI : 10.1007/978 − 1− 4612 − 4866 − 89). Journal of Biome
hani
s,

no. 108(2), pages 189�192, 1986. (Cited on page iv.)

[C.L.Stan�eld 2012℄ W.J.Germann C.L.Stan�eld. Prin
iples of Human Physiology.

(ISBN − 10 : 0321819349). Pearson, 2012. (Cited on page 78.)



190 Bibliography

[C.Miehe 1996℄ C.Miehe. Numeri
al 
omputation of algorithmi
 
onsistent tangent

moduli in large-strain 
omputational inelasti
ity.

(DOI : doi.org/10.1016/0045 − 7825(96)01019 − 5). Computer Methods in

Applied Me
hani
s and Engineering 134(3 − 4), pages 223�240, 1996. (Cited on

page 108.)

[C.Sansour 2007℄ C.Sansour. On the physi
al assumptions underlying the

volumetri
-iso
hori
 split and the 
ase of anisotropy.

(DOI : doi.org/10.1016/j.euromechsol.2007.04.001). European Journal of

Me
hani
s and Solids,V27,I1, pages 28�39, 2007. (Cited on page 103.)

[C.Truesdell 1960℄ R.A.Toupin C.Truesdell. The 
lassi
al �eld theories.

(DOI : 10.1007/978 − 3− 642− 45943 − 62). Handbu
h der Physik, Springer

Verlag, pages �, 1960. (Cited on pages 2 and 10.)

[David Boal 2010℄ Simon Fraser University David Boal. Le
ture notes on statisti
al

physi
s and biophysi
s, Simon Fraser University. url:

http://www.sfu.
a/ boal/tea
hing.html, pages �, 2010. (Cited on page 101.)

[de Boer 1996℄ R. de Boer. Highlights in the histori
al developement of the porous media

theor: Toward a 
onsistent ma
ros
opi
 theory (DOI : 10.1115/1.3101926).

Appl.Me
h.Rev., no. 49, pages 201�262, 1996. (Cited on page 3.)

[deHo� 2006℄ R. deHo�. Thermodynami
s in Material S
ien
e

(ISBN9780849340659 − CAT4065). Taylor and Fran
is, 2006. (Cited on

pages 11 and 16.)

[D.F.Styer 2007℄ D.F.Styer. Statisti
al Me
hani
s,

(http : //www.oberlin.edu/physics/dstyer/StatMech/book.pdf). Oberlin

Collage, Department of Physi
s and Astronomy, Class Matter, 2007. (Cited on

page 15.)

[Dolbow 1998℄ John Dolbow and Ted Belyts
hko. Numeri
al Integration of the Galerkin

Weak Form in Meshfree Methods. (DOI : 10.1007/s004660050403). Departmens

of Civil and Me
hani
al Engineering, Nortwestern University, 1998. (Cited on

page 136.)

[Edelsbrunner 1983℄ Seidel Edelsbrunner Kirkpatri
k. On the shape of a set of points in

the plane. (DOI : 10.1109/TIT.1983.1056714). IEEE Transa
tions on

Information Theory 29 (4), pages 551�559, 1983. (Cited on pages 124 and 125.)

[E.Kuhl 2008℄ E.Kuhl. Remodeling of biologi
al Tissue: Me
hani
ally indu
ed

reorientation of a transversely isotropi
 
hain network.

(DOI : doi.org/10.1016/j.jmps.2005.03.002). Biome
han. Model. Me
hanobiol.,

pages �, 2008. (Cited on pages 49, 100, 104, 108 and 113.)

[E.Onate 2004℄ F. D.Pin E.Onate S.R.Idelshon and R.Aubry. The parti
le �nite element

method - An Overview. DOI: (http : //dx.doi.org/10.1142/S0219876204000204).



Bibliography 191

International Journal of Cumputational Methods Vol1 No2, pages 167�307, 2004.

(Cited on page 123.)

[Erdemir 2014℄ Ahmet Erdemir. Open Knee(s): Virtual Biome
hani
al Representations of

the Knee Joint. url: https://simtk.org/proje
ts/openknee, 2014. (Cited on

page 57.)

[F.C.Ma
Kintosh 2009℄ F.C.Ma
Kintosh. Polymer-based models of 
ytoskeletal networks.

(url : http : //www.nat.vu.nl/ fcm/Papers/CytoMechChapter.pdf).

Cambridge University Press, pages 152�169, 2009. (Cited on page 101.)

[Federi
o 2008℄ Federi
o. Towards an analyti
al model of soft biologi
al tissues.

(DOI : 10.1016/j.jbiomech.2008.05.039). Journal of Biome
hani
s, 2008. (Cited

on pages 99 and 100.)

[Fung 1993℄ Y.-C. Fung. Biome
hani
s: Me
hani
al Properties of Living Tissues.

(DOI : 10.1007/978 − 1− 4757 − 2257 − 4). New York: Springer-Verlag, page

568, 1993. (Cited on pages iii, iv and 2.)

[G.A.Ateshian 2008℄ G.A.Ateshian. Mixture Theory for Biologi
al Tissues. Notes of

Summer S
hool on "Modeling and Computation in Biome
hani
s" in Graz, 2008.

(Cited on page 4.)

[G.Bradski 2008℄ A.Kaehler G.Bradski. Learning OpenCV Computer Vision with the

OpenCV Library. (ISBN − 10 : 0596516134). O'Reilly, pages 479�480, 2008.

(Cited on page 127.)

[G.Holzapfel 2006℄ E. Kuhl G.Holzapfel. A 
ontinuum model for remodeling in living

stru
tures. (DOI : 10.1007/s10853 − 007 − 1917 − y). Nano- and

mi
rome
hani
al properties of Hierar
hi
al biologi
al materials, pages �, 2006.

(Cited on pages 49, 100 and 108.)

[GNU 2009℄ The Proje
t GNU. http://g

.gnu.org/. 2009. (Cited on page 46.)

[Green 1970℄ A.E. Green. Large Elasti
 Deformations. (ISBN − 13 : 978− 0198533344).

Oxford University Press; 2nd Revised edition edition (Dec1970), 1970. (Cited on

page iv.)

[Hariton 2007℄ Holzapfel Hariton. Stress modulated 
ollagen �bre remodeling in a human


arotid bifur
ation. (DOI : doi.org/10.1016/j.jtbi.2007.05.037). Journal of

theoreti
al biology, pages �, 2007. (Cited on page 113.)

[Hatze 1974℄ Herbert Hatze. The meaning of the term

biome
hani
s.(DOI : http : //dx.doi.org/10.1016/0021 − 9290(74)90060 − 8).

Journal of Biome
hani
s, no. 7, pages 189�190, 1974. (Cited on page iii.)

[H.C.Prk 1997℄ S.K.Youn H.C.Prk. Finite element analysis and 
onstitutive modelling of

anisotropi
 nonlinear hyperelasti
 bodies with 
onve
ted frames.



192 Bibliography

(DOI : 10.1016/S0045 − 7825(97)00172 − 2). Computer methods in applied

me
hani
s and engineering. V151, I3-4, pages 605�618, 1997. (Cited on page 103.)

[H.Dar
y 1856℄ H.Dar
y. Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris,

1856. (Cited on page 24.)

[Hi
.et.nun
 2012℄ Hi
.et.nun
. Uterine �broids url:

(https : //commons.wikimedia.org/wiki/F ile : Uterinef ibroids.png).

Wikipedia Commons -

(https : //creativecommons.org/licenses/by − sa/3.0/legalcode), 2012. (Cited

on page 49.)

[Himpel 2007℄ Kuhl Himpel Menzel and Steinmann. Time dependent �bre reorientation of

transversely isotropi
 
ontinua- Finite element formulation and 
onsistent

linearization. (DOI : 10.1002/nme.2124). International journal for numeri
al

methods in engineering, pages �, 2007. (Cited on page 113.)

[Holzapfel 2006℄ G.A. Holzapfel. Nonlinear Solid Me
hani
s, A 
ontinuum Approa
h for

Engineering. (ISBN : 978− 0− 471− 82319 − 3). John Wiley and Sons Ltd.,

2006. (Cited on page 7.)

[Holzapfel 2008℄ G.A. Holzapfel. Collagen in Arterial Walls: Biome
hani
al Aspe
ts.

(DOI : 10.1007/978 − 0− 387− 73906 − 911). Collagen:Stru
ture and

Me
hani
s,Springer S
ien
e+Business Media, pages 285�324, 2008. (Cited on

page iv.)

[Humphrey 2003℄ D. Jay Humphrey. Continuum biome
hani
s of soft biologi
al tissues.

(DOI : 10.1098/rspa.2002.1060). In The Royal So
iety. Pro
eedings of the Royal

So
iety of London A 459 (2029), pages 3�46, 2003. (Cited on page iii.)

[I.Hariton 2007℄ G.Holzapfel I.Hariton. Stress-driven 
ollagen �ber remodeling in arterial

walls. (DOI : 10.1007/s10237 − 006 − 0049 − 7). Biome
han. Model.

Me
hanobiol., pages �, 2007. (Cited on pages 49, 100 and 113.)

[J.Bonet 2008℄ R.D.Wood J.Bonet. Nonlinear Continuum Me
hani
s for Finite Element

Analysis (ISBN − 13 : 978 − 0521838702). Combridge University Press, 2008.

(Cited on pages 7, 8, 26 and 38.)

[J.Braun 2006℄ M.Sambridge J.Braun. A numeri
al method for solving partial di�erential

equations on higly irregular evolving grids. (DOI : 10.1038/376655a0). Nature Vol

376, pages 655�660, 2006. (Cited on page 124.)

[J.E.Bis
ho� 2002℄ K.Grosh J.E.Bis
ho� E.Arruda. Finite element simulations of

orthotropi
 hyperelasti
ity.

(DOI : doi.org/10.1016/S0168 − 874X(02)00089 − 6). Finite Elements in

Analysis and Design, V38, I10, pages 983�998, 2002. (Cited on pages 108

and 110.)



Bibliography 193

[J.M. Gu

ione 1991℄ L.K. Waldman J.M. Gu

ione A.D. M
Cullo
h. Passive material

properties of inta
t ventri
ular myo
ardium determined from a 
ylindri
al model.

(PubMedID : 2020175). J. Biome
h Eng., no. 113(1), pages 42�55, 1991. (Cited

on page iv.)

[J.M.Clark 1990℄ J.M.Clark. The organisation of 
ollagen �brils in the super�
ial zones of

arti
ular 
artilage. (PMCID : PMC1257132). J.Anat., pages 117�130, 1990.

(Cited on pages 61 and 62.)

[J.M.Clark 1991℄ J.M.Clark. Variation of Collagen Fiber Alignment in a Joint Surfa
e:

S
anning Ele
tron Mi
ros
ope Study of the Tibia Plateau in Dog, Rabbit, and

Man. (DOI : 10.1002/jor.1100090213). Journal of Orthopaedi
 Resear
h, pages

246�257, 1991. (Cited on pages xvii and 62.)

[J.S.Chen 2001℄ S.Yoon J.S.Chen C.T.Wux and Y.You. A stabilized 
onforming nodal

integration for Galerkin mesh-free methods.

(DOI : 10.1002/1097 − 0207(20010120)50 : 2 < 435 :: AID −NME32 >

3.0.CO; 2 −A). International Journal for numeri
al methods in engineering 50,

pages 435�456, 2001. (Cited on page 135.)

[J.W.Delleur 2007℄ J.W.Delleur. The handbook of groundwater engineering.

(ISBN : 978 − 3− 540 − 64745 − 4). Taylor and Fran
is, 2007. (Cited on

page 24.)

[J.W.Yoo 2004℄ J.S.Chen J.W.Yoo B.Moran. Stabilized 
onforming nodal integration in

the natural-element method. (DOI : 10.1002/nme.972). International Journal for

numeri
al methods in engineering 60, pages 861�890, 2004. (Cited on page 136.)

[K.Garikipati 2005℄ K.Garikipati. Biologi
al remodelling: Stationary energy,

Con�gurational 
hange, internal variables and dissipation.

(DOI : //doi.org/10.1016/j.jmps.2005.11.011). Journal of the Me
hani
s and

Physi
s of Solids, pages �, 2005. (Cited on pages 49, 100 and 113.)

[K.U.Bletzinger 2011℄ Lehrstuhl fuer Statik TUMuen
hen K.U.Bletzinger.

Lehrveranstaltung - Stru
tural Optimization 1. url:

https://
ampus.tum.de/tumonline/LV.detail?
lvnr=950033069f, 2011. (Cited on

page 143.)

[L.C.Hughes 2005℄ I.Gwynn L.C.Hughes C.W.Ar
her. The Ultrastru
ture of Mouse

Arti
ular Cartilage: Collagen Orientation and Impli
ations for Tissue Fun
tionality.

A Polarized Light and S
anning Ele
tron Mi
ros
ope Study and Review.

(PMID : 15968593). European Cells and Materials, pages 68�84, 2005. (Cited on

page 62.)

[Library-MKL 2008℄ Intel Math Kernel Library-MKL.

http://software.intel.
om/en-us/intel-mkl. 2008. (Cited on page 46.)



194 Bibliography

[M.Du�ot 2002℄ H. N.Dang M.Du�ot. A truly meshless Galerkin method based on a

moving least squares quadrature. (DOI : 10.1002/cnm.503). Mar
 Du�ot,

Fra
ture me
hani
s department, University of Liege, 2002. (Cited on page 123.)

[M.J.Buehler 2006℄ M.J.Buehler. Atomisti
 and 
ontinuum modeling of me
hani
al

properties of 
ollagen: Elasti
ity, fra
ture and sel-fassembly.

(DOI : https : //doi.org/10.1557/jmr.2006.0236). J. Mater. Res., 2006. (Cited

on pages 78 and 124.)

[Monoghan 1992℄ JJ. Monoghan. Smoothed Parti
le Hydrodynami
s.

(DOI : 10.1146/annurev.aa.30.090192.002551). Annu. Rev. Astrophys., 1992.

(Cited on page 123.)

[M.Serrano 2005℄ I.Zuniga M.Serrano P.Espanol. Voronoi Fluid Parti
le Model for Euler

Equations. (DOI : 10.1007/s10955 − 005 − 8414 − y). Journal of Statisti
al

Physi
s, Vol. 121, 2005. (Cited on page 124.)

[Mueller 2009℄ G. Mueller. Kontinuumsme
hanik

(url : https : //campus.tum.de/;Modul −Kennung : BV 020001).

TUM-online, 2009. (Cited on page 10.)

[N.Bi
ani
 2004℄ N.Bi
ani
. Dis
rete Element Methods.

(DOI : 10.1002/0470091355.ecm006). Stein, de Borst, Hughes En
y
lopedia of

Computational Me
hani
s, Vol. 1. Wiley, 2004. (Cited on page 123.)

[Newmark 1959℄ N. M. Newmark. A method of 
omputation for stru
tural dynami
s.

Journal of Engineering Me
hani
s ASCE, pages 85 (EM3) 67�94, 1959. (Cited on

page 33.)

[N.J.Driessen 2003℄ N.J.Driessen. Remodeling of 
ontinuously distributed 
ollagen �bres

in soft 
onne
tive tissue. (PMID : 12831741). Journal of Biome
hani
s, pages �,

2003. (Cited on pages 49, 100 and 113.)

[Norris 2005℄ Norris. Optimal orientation of anisotropi
 solids.

(DOI : 10.1093/qjmam/hbi030). Me
h. Appl. Math., pages �, 2005. (Cited on

page 113.)

[N.Sasaki 1996℄ S.Odajimat N.Sasaki. Stress strain 
urve and youngs modulus of a


ollagen mole
ule as determined by the xray di�ra
tion te
hnique.

(PMID : 8707794). Journal of Biome
hani
s, pages 655�658, 1996. (Cited on

page 78.)

[N.Sukumar 1998℄ T.Belyts
hko N.Sukumar B.Moran. The Natural Element Method in

Solid Me
hani
s. (DOI : 10.1002/(SICI)1097 − 0207(19981115)43 : 5 < 839 ::

AID −NME423 > 3.0.CO; 2 −R). International Journal for Numeri
al Methdos

in Engineering,43, pages 839�887, 1998. (Cited on page 123.)



Bibliography 195

[O.C.Zienkiewi
z 2000a℄ J.Z.Zhu O.C.Zienkiewi
z R.L.Taylor. The Finite Element

Method, Volume 1:The Finite Element Method Its Basis and Fundamentals.

(ISBN − 13 : 978 − 0750663212). Elsevier,Butterworth and Heinemann, pages �,

2000. (Cited on pages 62, 92 and 135.)

[O.C.Zienkiewi
z 2000b℄ R.L.Taylor O.C.Zienkiewi
z. The Finite Element Method,

Volume 2:For Solid and Stru
tural Me
hani
s. (ISBN − 13 : 978 − 0750663212).

Butterworth and Heinemann, pages �, 2000. (Cited on pages 34, 108 and 109.)

[O.C.Zienkiewi
z 2000
℄ R.L.Taylor O.C.Zienkiewi
z. The Finite Element Method,

Volume 3:Fluid Dynami
s. (ISBN − 13 : 978 − 0750663229). Butterworth and

Heinemann, pages �, 2000. (Cited on page 9.)

[Ogden 2003℄ R.W. Ogden. Nonlinear Elasti
ity, Anisotropy, Material Stability and

Residual stresses in Soft Tissue (DOI : 10.1007/978 − 3− 7091 − 2736 − 03).

Biome
hani
s of Soft Tissue in Cardiovas
ular Systems CISM Courses and Le
tures

Series,Springer, Wien, no. 441, pages 65�108, 2003. (Cited on page iv.)

[OpenStax 2016℄ OpenStax. Mus
le Fibers, url:

(https : //commons.wikimedia.org/wiki/F ile : 1007MuscleF ibes(large).jpg).

Wikipedia Commons -

(https : //creativecommons.org/licenses/by/4.0/legalcode), 2016. (Cited on

pages xviii and 78.)

[P.Alliez 2006℄ P.Alliez.

http://visionair.ge.imati.
nr.it/ontologies/shapes/view.jsp?id=422-Skull. Visionair

- A world 
lass Infrastru
ture for Advan
ed 3D Visualization-based Resear
h.

Visualization Virtual Servi
es, AIM�SHAPE Digital Shape Workben
h v5.0, 2006.

(Cited on pages xix, 129, 130 and 133.)

[Pardiso 2009℄ Software Pardiso. http://www.pardiso-proje
t.org/. 2009. (Cited on

page 46.)

[personal post pro
essor GiD 2009℄ The personal post pro
essor GiD.

http://gid.
imne.up
.es/. 2009. (Cited on page 47.)

[P.Fis
her 2010℄ P.Steinmann P.Fis
her J.Mergheim. On the C1 
ontinuous dis
retization

of non-linear gradient elasti
ity: A 
omparison of NEM and FEM based on

Bernstein-Bezier pat
hes. (DOI : 10.1002/nme.2802). International Journal for

Numeri
al Methods in Engineering, 2010. (Cited on pages 80 and 81.)

[R.A.Bank 2000℄ J.M.TeKoppele R.A.Bank. The in
reased swelling and instantaneous

deformation of osteoarthriti
 
artilage is highly 
orrelated with 
ollagen

degradation (DOI : 10.1002/1529 − 0131(200010)43 : 10 < 2202 ::

AID −ANR7 > 3.0.CO; 2 − E). Arthritis and Rheumatism, pages 2202�2210,

2000. (Cited on page 78.)



196 Bibliography

[R.Baierlein 2010℄ R.Baierlein. Thermal physi
s. (ISBN − 10 : 0521658381). Cambridge

University Press, pages �, 2010. (Cited on page 101.)

[R.E.Sonntag 1998℄ G.J.Wylen R.E.Sonntag C.Borgnakke. Fundamentals of

Thermodynami
s. (ISBN : 978− 1− 119− 32145 − 3). John Wiley and Sons

In
., 1998. (Cited on pages 11 and 15.)

[R.J.Atkin 1976℄ R.E.Crain R.J.Atkin. Continuum theories of mixtures: Basi
 theory and

hixtori
al development (DOI : https : //doi.org/10.1093/qjmam/29.2.209). J.

Me
h. and Appl. Math., no. 29, pages 209�244, 1976. (Cited on page 2.)

[R.Shirazi 2008℄ M.Hurtig R.Shirazi A.S.Adl. Role of 
artilage 
ollagen �brils networks in

knee joint biome
hani
s under 
ompression.

(DOI : 10.1016/j.jbiomech.2008.09.033). Journal of Biome
hani
s, 2008. (Cited

on page 78.)

[R.W.Ogden 2008℄ R.W.Ogden. Nonlinear elasti
ity and �brous stru
ture in arterial wall

me
hani
s. Le
ture notes for summer s
hool on Modeling and Computation in

Biome
hani
s, Graz 2008, pages 152�169, 2008. (Cited on pages 101 and 108.)

[S
hinagl 1997℄ S
hinagl. Depth dependent 
on�ned 
ompression modulus of full

thi
kness bovine arti
ular 
artilage. (DOI : 10.1002/jor.1100150404). Orthopedi


resear
h so
iety, 1997. (Cited on pages 99 and 100.)

[Simulia 2011℄ Dassault Systems Simulia. Abaqus S
ripting Referen
e Manual. 2011.

(Cited on page 46.)

[S.Kobayashiv 1995℄ Y.Kurogou
hi S.Kobayashiv S.Yonekubo. Cryos
anning ele
tron

mi
ros
opi
 study of the surfa
e amorphous layer of arti
ular 
artilage.

(PMCID : PMC1167438). J.Anat., pages 117�130, 1995. (Cited on page 62.)

[Smith 2013℄ I. Smith. Smith's elements of solid me
hani
s.

(ISBN : 978 − 0− 470 − 67339 − 3). John Wiley and Sons In
., 2013. (Cited on

page 24.)

[S.R.Idelshon 2006℄ E.Onate S.R.Idelshon. To mesh or not to mesh. That is the question.

. . (DOI : https : //doi.org/10.1016/j.cma.2005.11.006). Comput. Methods

Appl. Me
h. Engrg. 195, pages 4681�4696, 2006. (Cited on page 124.)

[S.R.Idelsohn 2002℄ N.Calvo S.R.Idelsohn E.Onate and F.D.Pin. The meshless �nite

element method. (DOI : 10.1002/nme.798). International Center for

Computational Me
hani
s in Engineering (CIMEC) ,International Center for

Numeri
al Methods in Engineering (CIMNE), 2002. (Cited on page 123.)

[S.Timoshenko 1951℄ J.N.Goodier S.Timoshenko. Theory of Elasti
ity.

(ISBN − 13 : 978 − 0070647206). Engineering So
ieties Monographs,

M
Graw-Hill Book Company,In
, page 1, 1951. (Cited on page iv.)



Bibliography 197

[Thewlis 1973℄ J. Thewlis. Con
ise di
tionary of physi
s and related subje
ts.

(ISBN : 0080169007). Oxford: Pergamon Press., page 248, 1973. (Cited on

page 154.)

[T.M.Quinn 2005℄ T.M.Quinn. Mi
rostru
tural modelling of 
ollagen network me
hani
s

and intera
tions with the proteogly
an gel in arti
ular 
artilage.

(DOI : 10.1007/s10237 − 006− 0036− z). Biome
han Model Me
hanobiol, 2005.

(Cited on page 99.)

[V.C.Mow 1980℄ W.M.Lai V.C.Mow S.C.Kuei and C.G.Armstrong. Biphasi
 
reep and

stress relaxation of arti
ular 
artilage in
ompression:theory and experiments.

(PMID : 7382457). J.Biome
h.Engng., no. 102, pages 73�84, 1980. (Cited on

page 3.)

[Vianello 1995℄ Vianello. Optimization of the stored energy and 
oaxiality of strain and

stress in �nite elasti
ity. (DOI : 10.1007/BF00042131). Journal of Elasti
ity,

pages �, 1995. (Cited on page 113.)

[Vianello 1996a℄ Vianello. Coaxiality of strain and stress for anisotropi
 linear elasti
ity.

(DOI : 10.1007/BF00041794). Journal of Elasti
ity, pages �, 1996. (Cited on

page 113.)

[Vianello 1996b℄ Vianello. Rotations whi
h make strain and stress 
oaxial.

(DOI : 10.1023/A : 1007492301537). Journal of Elasti
ity, pages �, 1996. (Cited

on page 114.)

[W.Ehlers 2002℄ J.Bluhm W.Ehlers. Porous Media. Theory, Experiments and Numeri
al

Appli
ations. (DOI : 10.1007/978 − 3− 662 − 04999 − 0). Springer Verlag, 2002.

(Cited on pages 3 and 5.)

[W.Wilson 2003℄ W.Wilson. Stresses in the lo
al 
ollagen network of arti
ular 
artilage: A

porovis
oelasti
 �bril-reinfor
ed �nite element study. (PMID : 14757455). Journal

of Biome
hani
s, 2003. (Cited on page 99.)

[W.Wilson 2005℄ W.Wilson. Depth-dependent Compressive equilibrium properties of

arti
ular 
artilage explained by its 
omposition.

(DOI : 10.1007/s10237 − 006− 0044− z). Biome
han Model Me
hanobiol, 2005.

(Cited on page 99.)

[W.Wilson 2006℄ W.Wilson. Predi
tion of 
ollagen orientation in arti
ular 
artilage by a


ollagen remodeling algorithm.

(DOI : http : //dx.doi.org/10.1016/j.joca.2006.05.006). Osteoarthritis and

Cartilage, pages �, 2006. (Cited on pages 49, 100 and 113.)

[Yang 1996℄ Daoqi Yang. C++ and Obje
t-Oriented Numeri
 Computing for S
ientists

and Engineers. Springer S
ien
e+Business Media New York, no. ISBN:

978-1-4612-6566-5, pages 1�440, 1996. (Cited on page 46.)



198 Bibliography

[Y.Chen 2006℄ A.Eskandarian Y.Chen J.D.Lee. Meshless Methods in Solid Me
hani
s.

(DOI : 10.1007/0 − 387 − 33368 − 1). Springer S
ien
e Business Media In
.,

2006. (Cited on pages 124 and 136.)



Appendix E

Present Publi
ation Series



200 Appendix E. Present Publi
ation Series

Band Titel

1 Frank Kos
hni
k, Geometris
he Lo
kinge�ekte bei Finiten Elementen und ein

allgemeines Konzept zu ihrer Vermeidung, 2004.

2 Natalia Camprubi, Design and Analysis in Shape Optimization of Shells, 2004.

3 Bernhard Thomee, Physikalis
h ni
htlineare Bere
hnung von

Stahlfaserbetonkonstruktionen, 2005.

4 FernaÿDaoud, Formoptimierung von Freiforms
halen - Mathematis
he

Algorithmen und Filterte
hniken, 2005.

5 Manfred Bis
ho�, Models and Finite Elements for Thin-walled Stru
tures, 2005.

6 Alexander Hörmann, Ermittlung optimierter Stabwerkmodelle auf Basis des

Kraft�uÿes als Anwendung plattformunabhängiger Prozeÿkopplung, 2006.

7 Roland Wü
hner, Me
hanik und Numerik der Form�ndung und

Fluid-Struktur-Interaktion von Membrantragwerken, 2006.

8 Florian Jure
ka, Robust Design Optimization Based on Metamodeling

Te
hniques, 2007.

9 Johannes Linhard, Numeris
h-me
hanis
he Betra
htung des Entwurfsprozeÿes

von Membrantragwerken, 2009.

10 Alexander Kupzok, Modeling the Intera
tion of Wind and Membrane Stru
tures

by Numeri
al Simulation, 2009.

11 Bin Yang, Modi�ed Parti
le Swarm Optimizers and their Appli
ation to Robust

Design and Stru
tural Optimization, 2009.

12 Mi
hael Fleis
her, Absi
herung der virtuellen Prozeÿkette für Folgeoperationen

in der Umformte
hnik, 2009.

13 Amphon Jrusjrungkiat, Nonlinear Analysis of Pneumati
 Membranes - From

Subgrid to Interfa
e, 2009.

14 Alexander Mi
halski, Simulation lei
hter Flä
hentragwerke in einer numeris
h

generierten atmosphäris
hen Grenzs
hi
ht, 2010.

15 Matthias Firl, Optimal Shape Design of Shell Stru
tures, 2010.

16 Thomas Gallinger, E�ziente Algorithmen zur partitionierten Lösung stark

gekoppelter Probleme der Fluid-Struktur-We
hselwirkung, 2011.

17 Josef Kiendl, Isogeometri
 Analysis and Shape Optimal Design of Shell

Stru
tures, 2011.

18 Joseph Jordan, E�ziente Simulation groÿer Mauerwerkÿtrukturen mit diskreten

Riÿmodellen, 2011.

19 Albre
ht von Boetti
her, Flexible Hangmurenbarrieren: Eine numeris
he

Modellierung des Tragwerks, der Hangmure und der Fluid-Struktur-Interaktion,

2012.

20 Robert S
hmidt, Trimming, Mapping, and Optimization in Isogeometri
 Analysis

of Shell Stru
tures, 2013.



201

Band Titel

21 Mi
hael Fis
her, Finite Element Based Simulation, Design and Control of

Piezoele
tri
 and Lightweight Smart Stru
tures, 2013.

22 Falko Hartmut Dieringer, Numeri
al Methods for the Design and Analysis for

Tensile Stru
tures, 2014.

23 Rupert Fis
h, Code Veri�
ation of Partitioned FSI Environments for Lightweight

Stru
tures, 2014.

24 Stefan Si
klinger, Stabilized Co-Simulation of Coupled Problems In
luding Fields

and Signals, 2014.

25 Madjid Hojjat, Node-based parametrization for shape optimal design, 2015.

26 Ute Israel, Optimierung in der Fluid-Struktur-Interaktion - Sensitivitätsanalyse

fu ür die Formoptimierung auf Grundlage des partitionierten Verfahrens, 2015.

27 Ele
tra Stavropoulou, Sensitivity analysis and regularization for shape

optimization of 
oupled problems, 2015.

28 Daniel Markus, Numeri
al and Experimental Modeling for Shape Optimization

of O�shore Stru
tures, 2015.

29 Pablo Su�½rez, Design Pro
eÿfor the Shape Optimization of Preÿurized

Bulkheads as Components of Air
raft Stru
tures, 2015.

30 Armin Widhammer, Variation of Referen
e Strategy - Generation of Optimized

Cutting Patterns for Textile Fabri
s, 2015.

31 Helmut Mas
hing, Parameter Free Optimization of Shape Adaptive Shell

Stru
tures, 2016.

32 Hao Zhang, A General Approa
h for Solving Inverse Problems in Geophysi
al

Systems by Applying Finite Element Method and Metamodel Te
hniques, 2016.

33 Tianyang Wang, Development of Co-Simulation Environment and Mapping

Algorithms, 2016.

34 Mi
hael Breitenberger, CAD-integrated Design and Analysis of Shell Stru
tures,

2016.

35 Önay Can, Fun
tional Adaptation with Hyperkinemati
s using Natural Element

Method: Appli
ation for Arti
ular Cartilage, 2016.



202 Appendix E. Present Publi
ation Series


	Acknowledgement
	Preclusion
	List of Abbreviations
	Soft Tissue as Biphase Mixture
	Introduction
	Partial and Total Properties of the Mixture
	Kinematics of the Mixture
	Governing Relations
	Conservation of Mass
	Conservation of Translational Momentum
	Conservation of Internal and Kinetic energy: An extended first law of Thermodynamics
	The Entropy Inequality-Dissipation of Mixed Field

	Assumptions, Narrowed Relations and Constitutive Restrictions
	Assumptions
	Narrowed Governing Relations
	Constitutive Restrictions
	Darcy Velocity, Saturation Rate and Pore Pressure

	Weak Forms
	Weak Form of Balance of Translational Momentum in Solid Material Coordinates
	Weak Form of Conservation of Mass

	Discretized balance equations
	Matrix-Vector Form on Total Lagrangian Configuration
	Newmark-Method-Consistent Material Time Derivatives
	Discrete Form of the Translational Momentum Part
	Discrete Form of the Conservation of Mass

	Numerical Examples
	Finite Element Implementation: Software Specifications
	A Numerical Scenario: Growth of Uterine Fibroids
	A Numerical Scenario: Impact on the Surrounding Tissue
	A Numerical Scenario: Cartilage under Compression


	Hyperkinematics
	Introduction
	Theory: Kinematics
	Reference to Spatial: From Reference Lines to Spatial Curves
	Spatial to Reference: From Spatial Curves to Reference Lines
	Material to Spatial: From Reference Curves to Spatial Curves

	Verification: Numerical Examples
	Push Forward: From straight Reference to the curved Spiral
	Pull Back: From curved Spiral to the straight Reference

	Conclusion

	Nonlinear Strain-gradient Balance
	Introduction
	Hyper-Cauchy Equation-OM: The Governing Local Form
	Curved Anisotropy
	Curvature Invariant with Euler Bernoulli Ansatz
	Anisotropic Strain and Strain-gradient Energy Function - EB Ansatz

	FEM Implementation with Strain-gradient Effects
	Discrete Form for Finite Element Formulation
	Strain-gradient Displacement Matrix
	Numerical Examples


	Reorientation with Strain and Gradient Effects
	Introduction
	Orthotropic Hyperelasticity
	Worm-like Chain Model
	Mechanics of the Chain Network
	Structural Tensors
	Energy Split, Stress at Integration Point and Tangent Modulus
	Simple Tension and Shear on the Orthotropic 8-chain Model

	Material Point Reorientation
	Strain based Reorientation
	Curvature Reorientation
	Reorientation based on the EB Material Model


	Natural Element Method
	Introduction
	Clustered and Constrained Delaunay-Voronoi Dual
	Clustering the Delaunay Triangulation
	Constrained Voronoi Tesselation

	Non-sequential Nodal Integration
	Evaluation of Shape Value Matrix
	Nature of Shape Value Matrix

	Implementation and Examples
	Comparison of Different Reorientation Manifests

	Summary
	Introduction
	Least Requirements
	Hyperelasticity
	Functional Adaptation, Abnormal Cell Growth
	Methodical Development

	Appendix A
	The derivatives of the spiral beam

	Appendix B
	Bending Strain and Strain Gradient energy density Function
	Stretching Strain and Strain Gradient energy density Function

	Appendix C
	Simo-Type geometrically exact anisotropy in hyperelastic form
	Tractions and Hypertractions on gradient Cauchy tetrahedra

	Appendix D
	Stationary configural energy and kinematics
	Maximization of Configural Energy 

	Bibliography
	Present Publication Series

