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Kurzfassung

Die vorliegende Arbeit leistet einen Beitrag zu der Herausforderung
einen geeigneten Ansatz fiir die Grobstruktursimulation (Large Eddy
Simulation) von polydispersen Spraystromungen mit und ohne che-
mische Reaktion zu finden und zu etablieren. Hierbei wird zunéchst ein
stochastischer Ansatz verwendet, der die Partikelpopulation mit Hilfe
einer Anzahldichtefunktion (NDF) tiber dem Eigenschaftsraum der Par-
tikel (Grosse, Geschwindigkeit, Temperatur) beschreibt. Diese basiert auf
einer theoretisch unendlichen Anzahl von Stromungsrealisierungen der
Partikel fiir eine gegebene Realisierung der Gasphasenstromung. Die
Transportgleichung der NDF wird zunéchst rdaumlich gefiltert um der
numerischen Methode Rechnung zu tragen sowie anschliessend tiber
den Eigenschaftsraum integriert.

Zur Schliessung der unbekannten Terme, die sowohl die Partikeldy-
namik selbst als auch die Wechselwirkung mit der Gasphase betreffen,
wird eine Momentenmethode basierend auf einer angenommenen Form
der NDF angewendet. Hierbei werden drei bis vier Momente der NDF
mit individuellen Geschwindigkeiten transportiert, welche wiederum
durch einen Relaxationszeitansatz bestimmt werden. Die Verbrennung
wird mit einer fiir Zweiphasenstromungen angepassten Variante des
Thickend-Flame Model sowie einem einfachen Arrheniusansatz fiir die
Chemie beschrieben. Zusatzlich wird ein fiir die Momentenmethode for-
mulierter Ansatz der Einzeltropfenverbrennung vorgeschlagen.

Die mit OpenFOAM realisierten Simulationen zeigen fiir den polydis-
persen Ansatz bessere Ergebnisse fiir Spraydynamik und -verdampfung
im Vergleich zu monodispersen Ergebnissen. Hierbei wurde eine Drall-
stromung sowie ein Partikel-beladener Freistrahl untersucht. Die An-
wendbarkeit fiir polydisperse Sprayverbrennung wird nachgewiesen;
das vergleichsweise einfache Modell offenbart jedoch grossen Bedarf an
fortgeschritteneren Modellen und weiterer Forschungsarbeit. Dasselbe
gilt fiir die Thematik der Partikel-Turbulenzinteraktion.



Abstract

The present work contributes to the challenge of finding and establish-
ing an appropriate approach for the Large Eddy Simulation of polydis-
perse spray flows with and without chemical reaction. First, a stochas-
tic approach is adopted which describes the particle population with the
help of a number density function (NDF) spanned over the particle phase
space including particle size, velocity and temperature. It is gained from a
theoretical infinite number of particle phase realisations for a given flow
realisation of the gas phase. The transport equation of the NDF is then
spatially filtered due to the numerical method applied and subsequently
integrated over the particle phase space.

For closure of the unknown terms, which are related to the dynamics of
the particles itself but also their interaction with the gas phase, a mo-
ment method is applied, which presumes a certain type of the shape of
the NDF. The temporal and spatial development of the NDF is calculated
by transporting up to four moments of the NDF, each with its respective
moment transport velocity. The latter are determined from a relaxation
time approach. An adapted Thickened-Flame Model in conjunction with
a simple Arrhenius mechanism is used to model the combustion. Addi-
tionally a method is proposed for single droplet combustion, which is
adapted to be applicable in the framework of the moment model.

The numerical simulations are realised with OpenFOAM. A swirling
flow configuration and a particle-laden jet have been investigated. Re-
sults obtained from the polydisperse approach show improved spray dy-
namics and evaporation rates compared to those resulting from a mono-
disperse description. The applicability of the combustion model is ver-
itied, however, the simplicity of the model demonstrates the need for
more sophisticated approaches and further extensive research in this
tield. The same is true for the particle-turbulence interaction.
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Nomenclature

Some indices, which does occur only once in combination with a spe-
cific quantity are not listed here separately but explained then. Different
meanings for the same variable are separated with “;”. For quantities,
whose units depend on the associated index or superscript, the unit en-
try is noted as [var].

Latin Characters

B
0BB,
Cp

Cp, Cp
dds
D
Dab

e

ec

E

E F
f

F

Fr, Fum
g

G

h

Beta function

Particle velocity correlations, also éBC,, 6CC; [m?/s?%]
Specific heat capacity [J/ (kg K)]

Velocity coordinate vector (components) of Z [m/s]
Droplet-droplet spacing (quantity) [m]

(Particle) diameter; size coordinate of Z [m]

Mean diameter [m]

Specific inner energy [J/kg]; Euler number [-]

Unit vector (component) of spatial coordinates [m]
Specific total energy (without chemical energy) [J /kg]
Efficiency and thickening factor of the TFM [-]
Number density function (NDF) [var]

Forces acting on a particle [N]

Correction factor for By and By [-]

Gravity [m/s?]

Filter kernel [1/m?]

Specific sensible enthalpy [J/kg]
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Nomenclature

>
=
Q

\N N »'\.
~

2z 33
<

=z 3

p,4,Co

:w',%ﬁgzgm,&

=T n o

S<<IEFE
< o °=

=

Specific latent heat of vaporisation [J/kg]

Turbulent dispersion vector component [kg/(m?s)]
Volumetric kinetic energy [J/m?]

Coefficient for vaporisation laws: D?(t) = D% — Kt [m?/s]
Length; length scale [m]

Mass [kg]

Mass flow rate [kg/s]

Moment about zero [var]

Vector (component) of volumetric forces between phases
[N/m?]

Number density (only in definition for Kn) [1/m?]
Total number of particles (in a volume) [-]

Static pressure; vapour pressure [N/m?]

Parameters of the Gamma distribution [m,-,1/m?3]/Beta
distribution [-,-,1/m?]

Specific heat [J/kg]

Heat transfer rate; heat release (of combustion) [W]
Standard enthalpy of formation of species [J /kg]

Net heat of combustion [J/kg]

Radius [m]

Universal gas constant [J/ (kg K)]

Random Uncorrelated Velocity tensor [m?/s?]

Flame speed [m/s]

Surface; general source term [m?,var]

SDC on/off switch [-]

Time coordinate [s]

Time interval; temperature [s,K]

Velocity vector (component) [m/s]

Transport velocity vector of moment M) [m/s]
Velocity vector (component) of a particle/droplet [m/s]
Volume [m?]

Vector (component) of species diffusion velocity [m/s]
Molar mass; phase space density [kg/mol,var]

Vector of space coordinates; position vector [m]

Xiv



Nomenclature

X, Y,z Space coordinates [m]

X Phase indicator function [-]

Y Mass fraction of species [-]

Greek Characters

o Volume fraction (of particles) [-]

r Mass exchange rate (volumetric mass flow rate or mass
flow rate density) [kg/(m?®s)]; Gamma function

Iy Phase space average of I of order k [var]

) Residual component [var]; flame thickness [m]

5() Dirac delta

dij Kronecker delta

A Cut-off length scale [m]; interval indicator. See also other
definitions in Operators

€ Scalar dissipation rate [m?/s?]; fraction of total mass flux to
species m [-]

Cp Temperature coordinate of Z [K]

n Length scale [m]; dynamic viscosity [kg/(m>s)]

00,4 Random Uncorrelated Energy [m?/s?]

6 Volume fraction of the gas phase (void fraction) [-]

® Volume occupied by a phase [m?]

K RUM quantity [m?/s]

A Thermal conductivity [W/(mK)]; mean free path of a
molecule [m]

U Central moment, moment about the mean [var]

% Kinetic viscosity [m?/s]; stoichiometric coefficient [-]

¢ Spatial coordinate (notation in phase space integrals to dis-
tinguish between ¢ and x) [m]

T 3.1415...

o Mass density [kg/m?]

o Collision cross section [m?]

o2 Variance [var]

T Time scale [s]; stress tensor component [N/m?]
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Nomenclature

&% A

Stress tensor [N/m?]

General quantity; equivalence ratio [-]
General quantity

Chemical source term for species [1/s]; weighting factor

Indices, indicating...

0
1,2,3
I, 11
ab

L]

k

m

.. a reference value; integral scale
.. coordinates

.. different source terms S

.. different mean diameters D,,, i.e. D9, D3», etc.
.. a spatial coordinate
.. a specific particle

.. a specific species

Subscripts refer to variables or quantities related to...

AIR

.. the air “species”

.. the continuous phase; the critical point
... averaged quantities of the dispersed phase
.. a fluid (phase); the flame

.. the fuel species

.. gaseous phase/state

.. liquid phase/state

.. mass transfer

... OXygen

.. a particle/droplet (phase)

.. a value at the surface

... the Stokes/non-Stokes flow regime

.. a turbulent state

.. heat transfer

.. vapour

1

!Even constant properties can change the subscript. For example, the mass density of the particle
matter is named p;, before averaging procedures and p, after, although it is the same constant.

Xvi



Nomenclature

Superscripts

X, kxk

/4
/
/1!

@x,(gn)
(k,1,m)

(m)
(n)
SnS
SDC

Indicates an existing variable but based on a second or for-
mally different definition.

Residual component between mean and actual value
Residual component between the Favre averaged mean
and the actual value

Value of a quantity at the particle position.

Order of [3-dimensional] phase space averaged quantities,

i.e. moments
Index for individual species

Index for individual particles/droplets
Referring to the Stokes/non-Stokes flow regime
Referring to Single droplet combustion
Turbulent quantity

Dimensionless Numbers

Bum Mass transfer number
Bt Heat transfer number
Da Damkohler number
Kn Knudsen number

Nu Nusselt number

Pr Prandtl number

Re Reynolds number

Sc Schmidt number

Sh Sherwood number

St Stokes number
Abbreviations

Small typed abbreviations act as subscripts.

BML

Brass-Moss-Libby [combustion model]
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Nomenclature

boil

CFD
CMC
comb
dds
DIA
DNS
DPM,S
(D)QMOM
E/S QMOM
DSMC
EbNDF
EBU

EE

eff

EL
ESDCM
FEbNDF
FGM
FNDF
heatup
IEM

ign

LDI
LES
LHDI
LODI
LPP

LS

max
MEF
MF

mix

MOM

Boiling

Computational Fluid Dynamics

Conditional Moment Closure

Combustion

Droplet-droplet spacing

[Kraichnan’s] Direct Interaction Approximation
Direct Numerical Simulation

Discrete Particle Method /Simulation

(Direct) Quadrature Method of Moments

Extended /Sectional Quadrature Method of Moments
Direct Simulation Monte Carlo [method]

Ensemble [average] based NDF

Eddy-Break-Up [combustion model]

Euler-Euler

Effective

Euler-Lagrange

Eulerian Single Droplet Combustion Model
Filtered, ensemble [average] based NDF

Flamelet Generated Manifolds [based combustion model]
Filtered NDF

Heat-up

Inter-Exchange [with the] Mean

Ignition

Lean Direct Injection

Large Eddy Simulation

[Kraichnan’s] Lagrangian History Direct Interaction
Local One-Dimensional Inviscid [boundary conditions]
Lean Premixed Prevaporised [combustion]

Level Set [method]

Maximum

Mesoscopic Eulerian Formalism

Multi-Fluid [method]

Mixture

Method of Moments
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Nomenclature

MOMIC
NDF
PaSR
PD
PDF
PDPA
PMOM
PTC
QbMM
rad
RANS
ref

RMS
RR
RUM
RUV
SDC
SF

SPH
TFEM
TH
VAbM
VOF

Operators

Method of Moments with Interpolative Closure
Number density function

Partially Stirred Reactor [model]
Product-Difference [algorithm]
Probability density function

Phase Doppler Particle Analyser
Presumed [shape] Method of Moments
Particle Trajectory Crossing
Quadrature based Moment Methods
Radiation

Reynolds Averaged Navier Stokes
Reference [state]

Root-Mean-Square [values]
Rosin-Rammler [distribution]

Random Uncorrelated Motion
Random Uncorrelated Velocity

Single droplet combustion

Stochastic Fields [method]

Smoothed Particle Hydrodynamics [method]
Thickened Flame Model

Top hat [filter]

Volume Average based Models
Volume of Fluid [method]

Placeholder; inner product

Double inner product of two tensors

General notation for an averaging operation

Ensemble average, ~ conditioned on phase space
Combined ensemble average and spatial filtering operation
conditioned on phase space

Spatial filtering, ~ conditioned on phase space

Temporal average
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Nomenclature

()
()

Volume average for single phase flows
Volume average for two-phase flows

ANVE (| Z)Y7 Combined volume average and spatial filtering operation,
8 P g op

Q\Z\HN:E@ clc - ¢

22 A

7

~ conditioned on phase space

Laplace operator A = V2

Gradient operator

Divergence operator

Partial derivative in coordinate ¢, Total derivative
Sum/Product over index i

Conditioned on ¢

Phase space average of order k to be applied to quantities -
Signum function

... abbreviated /defined as...

Phase space averaged quantity of order k

Favre averaged quantity

Volume averaged quantity; spatially filtered quantity (i.e.
weighted volume average)

Ensemble averaged quantity

Ensemble averaged, filtered quantity

Diffusion coefficient [m?/s]

(Flow) realisation

Abbreviation for the particle phase space D, ¢, {,
Turbulent diffusion flux vector component [kg/(m?s)]
Number of (flow) realisations

Terms of higher order

dds to D ratio [-]

Infinity

A11,Ar; Hankel-Hadamard determinants [var]
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Nomenclature

min
mol
Pa

Calorie [4.185 kg m? /s?]
Degree (geometrical)
Degree Celsius/Fahrenheit
Gram

Joule [kg m?/s?]

Kelvin

Kilogram

Pound [453.6 g]

Metre

Milli metre

Micro metre

Minute

Mole

Pascal [kg/(ms?)]
Second

Chemical Species

CioHps
Ci3Has
CO,
H>,O
N,
NOx
O

Surrogate species for kerosene
Surrogate species for kerosene

Carbon dioxide
Water

Nitrogen
Nitrogen oxides
Oxygen

XXi
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1 Introduction

Multiphase flows consist of at least two different phases, i.e. matter be-
ing in different thermodynamic state, which are solid, liquid or gaseous.
Multiphase flows are encountered daily in any field of everyday oc-
curences and environmental, technological and industrial application.
As examples may be mentioned weather forecast (rain, snow, hail, fog,
cloud physics), ocean waves, floods, volcano eruptions, avalanches, as-
trophysics, liquid fuelled combustion applications (diesel engines, coal
furnaces, aero engine gas turbines), process industry (fluidised beds,
bubble columns, sprays), oil and gas industry, nutrition industry (food
production, drying, conditioning), spray applications (painting, varnish-
ing, arts), interface/surface tension applications (lubrication, wave-ship
interaction, rain-vehicle interaction), sprinklers, air conditioning, show-
ers, movie industry (animated scenes or movies), etc. Besides the scien-
tific observation and experimentation, nowadays the numerical simula-
tion establishes as a powerful tool to understand the physics, to improve
industrial processes and technology or to forecast nature phenomena in-
cluding those having potentially harmful effect on the environment, ei-
ther mankind, creature or nature.

1.1 Modelling of Multiphase Flows

The states of appearance of continuous single phase flows are numerous
(i.a. laminar, turbulent, incompressible, compressible, subsonic, super-
sonic) and a variety of theoretical and numerical methods have been de-
veloped to meet the requirements given by the specific characteristics of
these types of flow. Dealing with multiphase flows, numerous additional

1



Introduction

types of flow arise, not because of the additional phases itself (since they
can be considered usually to be continuous phases with previous men-
tioned states) but rather their interaction. On the one hand, the interface
between two phases, i.e. the microscopic transition of the phase proper-
ties, and the interaction between two phases, i.e. the exchange of mass,
momentum and energy, in general add new levels of scales to be con-
sidered, often smaller than those of the single phase flow. On the other
hand, the macroscopic composition and dynamic of the phases strongly
depend on the number of phases or fluids, their material properties and
their interaction at the interface (surface tension, reaction), the flow con-
ditions as well as inlet and boundary conditions.

While in single phase flows significant differences in the flow characteris-
tic can be categorised mainly into sub- and supersonic states, multiphase
flows require a more differentiated classification to do justice the multi-
tude of flow types and phenomena. Accordingly, a large number of dif-
ferent numerical methods exists, where each of them is able to describe
a specific choice for one of those flow types. Within the next two para-
graphs, a rough classification of the most common types of multiphase
flow and their numerical realisation is given, followed by an attribution
of the class of multiphase flow that this thesis is concerned with.

1.1.1 Classification of Multiphase Flows

Multiphase flows can be classified into two main categories, namely dis-
persed and separated flows, where the former may be further split into two
sub-classes, which are homogeneous and heterogeneous mixtures (Brennen,
2005). These three categories can be characterised as:

e homogeneous mixtures: all phases are uniformly!' distributed
throughout the mixture. Uniformly distributed means, that the aver-
age distance between disconnected regions of a phase as well as their

1. on a scale far above the molecular level (in order to avoid a confusion with the definition in chem-

istry science)
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individual spatial extent are orders of magnitude smaller than the in-
tegral length scale of the geometry, but not necessarily similar com-
pared to each other. In other words, averaged values of the mixture
quantities taken from averaging volumes much smaller than the in-
tegral length scales are statistically converged, locally isotropic and
homogeneous. Examples are fog, mist, snowfall, bubble columns,
etc.

* heterogeneous mixtures: the phases are actually similarly arranged
as in homogeneous mixtures, however, the particle size or the length
scale of connected regions/individual phase fragments becomes
closer or even similar to that of the flow structures and the inte-
gral length scales of the geometry, e.g. splashing waves, disintegrat-
ing liquid jets, etc. In other words, averaged values of the mixture
taken from averaging volumes much smaller than the integral length
scales can vary significantly between neighbouring volumes.

» separated flows: phases are clearly separated at the integral length
scale, and the resolution of the interface dynamics is of important
significance, e.g. oceans, rivers, lubrication oil-air assembly in bear-
ings, slug flows in pipes, etc.

Dilute, polydisperse sprays can be typically categorised as homogeneous
mixtures, i.e. the focus of the thesis is on dispersed two-phase flows.
Hence, the two-phase flow consists of a clearly defined dispersed phase,
with a volume fraction small compared to that of the continuous phase
in which it is dispersed in. Homogeneous, however, does not necessarily
mean that all particles have the same size, velocity or temperature (mono-
disperse), but rather a wide spread of properties (polydisperse, polydis-

persity).

1.1.2 Simulation Methods for Multiphase Flows

Classification of the numerical methods applied to multiphase flows is
not trivial, since too many aspects come into play. First, methods can be
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classified by their specific application to one of the types of multiphase
flows mentioned above, which is, however, not unique, since some meth-
ods can be applied to any of these types. Second, methods can be classi-
tied by the level of scales considered they have been developed for. Here
again, some methods can be applied to any level of resolved or reduced
modelling of scales. Furthermore, mathematical criteria can be used to
characterise these methods, for example methods written in a Lagrangian
frame, i.e. in coordinates connected to the particle, or an Eulerian frame,
i.e. coordinates fixed in physical space. Both ways of describing the dy-
namics of the multiphase system are used due to their advantages for
specific applications, but these are in turn not necessarily connected with
any scales or flow types. Later on in Chapter 2, after having defined the
temporal and spatial scales present in multiphase flows and the different
averaging types, a comprehensive evaluation of the specific numerical
methods with corresponding literature related to the development and
the application is given. Furthermore, they are discussed additionally in a
more mathematical background throughout the thesis, where additional
details and references can be found. Although only a specific choice is
finally made out of all those methods to produce the results shown in
Chapter 7, it is helpful to mention these methods and to evaluate the
specific characteristics at the different steps of the derivation of the two-
phase equation system in order to enlarge the understanding and ability
to clearly differentiate between all the methods.

1.1.3 Challenges in Multiphase Flow

Due to its additional complexity compared to single phase flows, practi-
cal application of multiphase flow simulation is a rather young discipline,
which has not obtained the same sophisticated level of accuracy and user-
optimised application as single phase flow simulation. Although theoret-
ical effort has been undertaken for many decades and various methods
and ideas can be used or adopted from single phase CFD, the specific
characeristics of the multitude of multiphase flow modes, often require
new concepts to find appropriate closure for the equation systems and
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proper numerical algorithms. Especially the level of sophisticated closure
models needed for the derivation of equation systems, which allow feasi-
ble implementation and efficient simulation, lags behind those of single
phase flows. Hence, numerous methods and models have been devel-
oped for a wide range of multiphase flows during the last decades. A
clear trend, however, which kind of methods seems to establish in each
class of multiphase flows, can not be observed. There are several reasons.
First, comprehensive methods, which satisfactorily capture the physics,
are often way too costly for practical application and product develop-
ment. Second, methods simplified in terms of the amount of physical
phenomena considered, usually inherit similar closure problems as sin-
gle phase flows do, but the differences in the underlying physics most
often do not allow the adaption of single phase closure approaches or
complicate them. Especially those methods, which are based on a com-
prehensive concept and formulation (for example PDF methods for dis-
persed two-phase flows), still require much effort to find appropriate
closure. Third, some rather efficient methods, e.g. the two-fluid method,
show shortcomings when coming to capture accurately complex flows in
industrial configurations.

Simulation of multiphase flows also takes an important role to deepen the
understanding of the physics itself as an alternative to theoretical and ex-
perimental investigations. On the one hand, the theoretical approach is
even more complicated by the complexity of the mathematical descrip-
tion compared to single phase flows, which makes finding analytical so-
lutions and theoretical predictions very challenging. On the other hand,
experimental measurement and quantification of multiphase flows is of-
ten difficult regarding the separation of different effects and the accurate
and explicit measurement of the quantity of interest. Therefore, the eval-
uation of the results of a direct simulation of the full physics, although
only practicable for strongly reduced physical domains and rather simple
flow conditions, can provide a better understanding of the processes. For
practical applications, however, significant simplification of the physics
considered has to be made to be able to simulate the phenomenon of in-
terest with acceptable computational and temporal effort.
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Beside the general challenges directly concerned with the description
and numerical realisation of multiphase flows, related issues require in-
creased attention. As example, spray combustion applications may be
mentioned. Along with the development of methods descibing the spray
dynamics, additional attention must be paid on the development of mod-
els to describe the adjacent physics, e.g. the different spray combustion
modes, vaporisation, radiation, etc. Depending on the numerical method,
closure must be found for terms which describe, e.g., the unresolved in-
teraction of droplet motion, vaporisation and combustion. Embedded in
this picture, the present work tries to contribute another piece to the puz-
zle as sketched next.

1.2 Scope and Structure of the Thesis

The objectives of this thesis were initiated as subsequent work of that
done by Carneiro et al. (2008, 2009), which in turn remodelled and ex-
tended the work of Gharaibah and Polifke (2004), Gharaibah (2008). All
these contributions were based on RANS equations derived with the help
of the volume average. The initial concept of using mean and variance
for the description of the particle size distribution as done in Gharabaih’s
work was discarded and replaced by using moments about zero? in or-
der to avoid theoretical problems in the formulation of the correspond-
ing moment transport equations. Additionally, Carneiro formulated the
phase interaction source terms for spray application, i.e. drag and va-
porisation, as well as the transcription of the relaxation time approach
(Bollweg et al., 2007) to an integrated form to be used with the moment
model.

Based on that work, the aim of this work has been the rigorous derivation
of the moment model for the use with Large Eddy Simulation (LES) and
its application to spray combustion test cases. To evaluate the influence
of assumptions and simplifications made in order to obtain a closed and

2Definition in Section 4.1.1
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numerically rather efficient model concerning implementation and com-
putation effort, the equation system proposed had to be tested against
experimental findings of non-vaporising, evaporating and combustion
spray test cases.

In order to lay the foundation of the derivation of the aforementioned
equation system, in Chapter 2 the multitude of multiphase flows is cate-
gorised using appropriate time and spatial scales, followed by an evalua-
tion of the fundamental methods to derive dispersed two-phase flows
with a detailed discussion of specific methods proposed in literature.
With the knowledge of the characteristics, challenges, advantages and
disadvantages of the options, two specific methods, which deliver a high
level of generality and which can be customised properly to our needs,
are used in Chapter 3 to comprehensively derive the gas phase and dis-
persed phase equations. These methods are based on a unified “volume
average - spatially filtering” approach for the continuous phase, i.e. the
gas phase, and an ensemble averaged, filtered number density fuction
approach for the dispersed phase. The gas phase equation system is writ-
ten in an Eulerian frame and can be solved with common finite volume
techniques. To solve the transport equation of the number density func-
tion describing the statistics of the dispersed phase, the solution strategy
remains optional until the end of that chapter, i.e. it is still possible to
choose between Lagrangian and Eulerian methods.

Therefore, Chapter 4 presents the solution strategy of the transport equa-
tion of the number density function in an Eulerian frame, which is a
method of moments in this work. Besides the closure of unknown cor-
relations of the gas phase quantities discussed already in Chapter 3, the
comprehensive discussion of closures for unknown terms due to the dis-
persed phase is given in Chapter 4, for both, those proposed in litera-
ture and the specific simplifications used in this work. At the end of the
chapter, a closed two-phase equation system including particle transport,
thermal dynamics and heat and mass exchange with the gas phase is ob-
tained.

To describe the combustion of the fuel vapour, i.e. the gaseous state of
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the dispersed liquid, Chapter 5 presents physical, experimental and nu-
merical aspects of liquid spray combustion, with the detailed discussion
of the specific methods used in this work. Although, the equation system
is mathematically closed, the numerical implementation and solution re-
quire additional preparation, which is briefly given in Chapter 6.

Finally, numerical results obtained for different, mostly academically mo-
tivated experimental data sets for pure, polydisperse particle motion in
a swirling flow field, for an evaporating gas-particle jet and a reacting
spray are presented in Chapter 7. Keeping in mind the simplifications
and assumptions made in the derivation of the underlying equation sys-
tem, strengths and shortcomings of the numerical results compared to
the experimental data are evaluated. The thesis closes with a summaris-
ing annotation of the capabilities of the methodology and the numerical
results, and with a comprehensive proposal of aspects and issues which
are significantly important to be dedicated to future research.



2 Modelling Dispersed Particle
Two-Phase Flows

Many terms, definitions and modelling concepts have been qualitatively
introduced in Chapter 1. The aim of this chapter is to deepen those (and
some additional) in a more comprehensive and sophisticated manner.
Reminding that we consider dispersed two-phase flows only, i.e. small
portions of one phase are arbitrarily distributed in another, continuous
phase, separated flows and corresponding numerical methods are not
of any further interest and upcoming statements made do not refer to
those unless directly mentioned. With that, this chapter is split into the
definition of multiphase specific terms, scales and physical phenomena,
followed by the basic operations and assumptions made to derive the
system of governing equations. It is closed by the discussion of the state
of the art in methods and simulation techniques.

2.1 Definitions and Terminology

In multiphase flows, the term phase refers to the thermodynamic state
of matter, i.e. solid, liquid or gaseous. That means, that multiphase flows
consist of at least two different phases (two-phase flow, multiphase flow),
e.g. solid or liquid particles dispersed in a gas, bubbles in liquid, etc. Not
to be mistaken with the term multiphase is the term multi-fluid, which
refers to flows consisting of two different fluids, which are, per defini-
tion, in the same phase state, e.g. oil in water.

The term particles refers in general to small portions of matter dispersed
in a continuous phase independent of the thermodynamic state, although
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this thesis concentrates on liquid fuel droplets dispersed in air. The terms
continuous phase, fluid phase and gaseous phase are used interchangeable.
The former two are used to remind that parts of the equations shown
are not valid only for droplet-air flows, the latter refers to that specific
combination, but the actual usage does not imply strict indication of a
certain classification.

The term polydisperse usually refers to the local variation of the size of the
dispersed particles (rather than only in a global or temporal sense), i.e.
the size of the particles is considered with its specific impact on motion,
heat and mass exchange between phases and particle-particle collisions.
Monodisperse in turn, assumes particles to have identical size, at least
locally but usually also globally (except some hybrid applications, e.g.
vaporising droplets originating from a mono-sized injection). Although
usually referring to the particle size only, the term polydispersity might be
used in general for other particle properties in a similar way.

Furthermore, we consider dispersed phase flows with a particle-
continuous phase volume ratio ranging from ~5 x 107¢ up to ~5 x 1074,
which classifies the dispersed flow as dilute (Elghobashi, 1994). If, addi-
tionally, the mass loading is small compared to unity as well, the impact
of the dispersed phase on the continuous phase can be neglected (one-way
coupling). Otherwise, a two-way coupling is necessary to properly consider
the physics, which is the case throughout this thesis. Particle-particle col-
lisions (sometimes called four-way coupling) as well as particle-wall colli-
sions are not considered.

2.2 Temporal and Spatial Scales

2.2.1 Levels of Scales

In general, single phase flow structures span over several orders of length
and time scales. Often, this aspect complicates even more when consid-
ering two-phase or multiphase flows. The range of scales can be enlarged
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by the presence of the dispersed phase (usually towards smaller scales)
or remains nearly unchanged, depending on the characteristic length
scales of the dispersed phase, the interface between the phases and the
turbulence scales of the fluid phase. The following example illustrates
this issue. Consider a small (fixed) particle in a laminar flow (from left).
The characteristic length scale of the particle, e.g. the diameter, shall be
smaller than the smallest scales occurring within the undisturbed fluid
phase, i.e. in absence of the particle. Consider the relative velocity be-
tween the particle and the fluid as such, that the flow behind the particle
is within the turbulent regime. Thus, the presence of the particle causes
fluid phase flow scales much smaller than in the absence of the parti-
cle, as sketched in Fig. 2.1 on the left. Even the fact, that the presence of

@@@@ ® @@

Figure 2.1: Particle with high relative velocity in Left laminar flow and in
Right turbulent flow.

a particle can induce turbulent flow in an otherwise laminar fluid phase,
emphasises the added complexity. On the other hand, if the smallest fluid
phase scales of turbulence, i.e. the Kolmogorov scales (see Section 2.2.2),
are smaller than the particle diameter and considering the flow regime
around the particle as Stokes flow, the presence of the particle practi-
cally does not change the level of scales present in the fluid flow (Fig. 2.1,
right).

In order to classify and describe these different aspects of the two-phase
flow regimes, it has been proven to be practical to define the following
three levels of scales in dispersed two-phase flows (see also Fox (2012)).
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Microscale

In continuous single phase flows, the smallest eddies are considered
as the microscale (Fig. 2.2, left), with a continuous transition to the
macroscales, i.e. the largest eddies occurring in the given case, which
are usually of the order of the geometric length scales. When introduc-
ing a second phase, the geometrical shape of the interface between the
phases can generates fluid flow structures much smaller than the small-
est scales of the undisturbed single phase flow (Fig. 2.2, right). These may
arise either in the fluid flow or internal to the second phase and should
be considered as the new microscale. Hence, in order to account for the
discrepancy between undisturbed fluid flow microscales and microscales
induced due to the presence of the second phase, an intermediate scale
(termed as mesoscale) can be introduced as described below.

Microscale of the Fluid Phase New Microscale of the Fluid Phase
\ Solely due to the Particle

\

© ele Ner

@OE ¢ @oE ©

Figure 2.2: Left Microscale in undisturbed single phase flows. Right New
microscale introduced by the presence of a particle. Fluid flow
from left to right.

On the microscale level, particle forces such as drag, lift, etc. are calcu-
lated from the given flow field as an integral over the particle surface as a
post-processing step. There is no need for a drag model (drag coefficient,
etc.) since every scale is resolved.

12
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Mesoscale

The so-called mesoscale is defined as a scale between the micro- and the
macroscale, accounting for the differentiation of microscales in a dis-
turbed and an undisturbed fluid phase and mainly bred by numerical
requirements. Since it is rather unfeasible to resolve the microscales of a
two-phase flow for a large number of particles!, the idea is to reduce the
description of the particle state to mean quantities (mesoscopic quanti-
ties), e.g. a single particle velocity, temperature, etc. Accordingly, the in-
teraction with the continuous phase is described by 0-dimensional laws
for the integral exchange of mass, momentum and heat between phases
with the help of the mesoscopic quantities and the fluid properties at the
mesoscale. Hence, the drag force, for example, is not computed from the
flowfield around the particle a posteriori, but determined by an a priori
calculable expression based on analytical or experimental results depend-
ing on the mesoscopic quantities.

The mesoscopic quantities of the continuous phase can be defined as the
values of the undisturbed field at the particle centre or as mean values
gained from an average of the flow field over a length scale comparable
to the particle characteristic length scale, especially if the smallest scales
of the continuous phase are smaller than the particle length scale. Hence,
the particles are still distinguished each by its mesoscopic variables, but
the phase interaction is reduced to a point-source approximation. Reduc-
ing the fully resolved particle physics to a point source represents the
reduction step of the microscopic model to the mesoscopic model (Fox,
2012). Boivin et al. (1998) have shown that the point-mass source is an
appropriate approach if the particle characteristic length scale is smaller
than the Kolmogorov length scale. Sirignano (2010) stated that current
DNS/LES methods are actually inadequate for practical situations, i.e.
in combustion chambers and other industrial applications, particle scales
are usually comparable to the Kolmogorov scales. Nevertheless this as-

IThe definition of this scale level has its background in dispersed two-phase flows and is rather dif-
ficult to apply in other types of multiphase flow. Hence, the mesoscale is defined here with the help of
dispersed particle flows to reflect that issue.
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sumption is used very often.

Macroscale

Quantities at a macroscale represent the averaged behaviour of an ensem-
ble of particles, i.e. integral mean values of the mesoscopic phase space
or the resulting quantities of volume averages (see Section 2.5). In some
cases, those macroscales can be resolved by the numerical mesh depend-
ing on the definition of the underlying NDF/PDF or the size of the aver-
aging volume, e.g. a filtered PDF with the filter size being at least as large
as the mesh resolution. In general, this is not automatically the case.

The phase interaction forces are described by macroscopic models, which
are either gained by integration of mesoscale models over phase space or
expressed in terms of mean quantities gained from the volume or other
averages. Hence, the “mean drag”, for example, may be expressed in
terms of the local mean velocity of the particle cloud and an averaged
mean diameter representative for the particle size spectrum.

2.2.2 Typical Multiphase Scales in Comparison

With having characterised the three levels of scales in multiphase flows,
we are able to sort out the typical length and time scales of dispersed two-
phase flows. The characteristic scales of the fluid phase are categorised
tirst, afterwards those of the dispersed phase, which are the particle re-
laxation time, the Stokes and Knudsen number, and finally those which
are related to the numerics of the simulation, e.g. the mesh resolution.

* In turbulent fluid phases, the Kolmogorov scales describe the small-
est scales of the fluid motion, which are characterised and can be
calculated by

— Length scale of smallest eddies 7 = (V3/s)1/ *and 7/l ~ Re i
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— Velocity of smallest eddies u,, = (ve)”* and wy /uy ~ Re i

1

— Time scale of smallest eddies 7, = (v/e)"* and 7 /7 ~ Re ™2

— Length scale where isotropic turbulence starts: I. = 1/61y (Pope,
1985)

Considering particles dispersed in a continuous phase, the follow-
ing cases may occur: If the Kolmogorov length scale is smaller than
the particle size, the smallest scales of the continuous phase can be
in fact considered as microscale. However, if the Kolmogorov scale of
the undisturbed fluid motion, i.e. the same configuration and flow
regime but without particles, is larger than the particle length scale,
the Kolmogorov scale must be rather termed mesoscale, because the
flow structures around and /or within the particle which can become
much smaller than the Kolmogorov scale. The latter is the case, e.g.,
when small particles are injected with high velocity in a weakly tur-
bulent or laminar flow field. The actual regime is strongly depending
on the configuration and the local situation.

In typical multiphase applications, the continuous phase is assumed
to be statistically continuous - as the name suggests. That means
molecular dynamics are not of interest but their averaged charac-
teristics. In dilute dispersed two-phase flows, however, the parti-
cle number density can become very low, which result in particle-
particle distances comparable to the length scale of the numeri-
cal mesh. Furthermore, direct particle-particle interaction reduces to
marginal rates and only a weak interaction happens via the contin-
uous phase. Hence, the question arises, whether dispersed particle
flows can be described as a continuous phase. The so-called Knudsen
number Kn = A/L is a good measure whether a continuum or a statis-
tical mechanics formulation should be used. In continuum phases,
i.e. gases and liquids, A is the mean free path of the molecule and
L is a representative physical length scale, e.g. the mesh size or the
geometrical dimensions of the given geometry.

In particle flows, de Chaisemartin et al. (2008) define the Knudsen
number as Kn = h/L where [j is expressed as Iy = 1/nyep with ny is
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the number density and oy is a typical collision cross-section. If the
particle phase is dilute and the particles are small, then the Knud-
sen number is large compared to unity and the effect of collisions
becomes small. In this case, treating the dispersed phase as a con-
tinuum is questionable and trivially implies problems in defining
quantities as pressure or viscosity, as well as speaking of “interpene-
trating continua” as often done. Actually, the dispersed phase must
be described in a different way using a stochastic description. The re-
sulting equations may describe the development of quantities (e.g.
moments), whose fields are indeed “continuous” in space. In con-
trast, Knudsen numbers small compared to unity are characteristic
for granular flows, which are, however, not of further interest at this
point.

* The particle relaxation time of particle motion, defined as

- PPD2

= 187,

(2.1)
is a measure of how fast a particle adapts to changes in the continu-
ous phase velocity. It can adopt any scale depending on the particle
inertia and the fluid phase viscosity. To quantify these regimes, the
Stokes number St can be used, which is defined as

St =7 /x; (2.2)

where Ty is a fluid phase characteristic time scale. The choice of ¢
depends on the scales the particle motion shall be compared with.
When compared to the smallest scales, i.e. 7 = T, 7 becomes
T(Ax) = ((ax)%/e)'*. When compared to the mesh resolution Ax or
the macroscales with length scale [, T(I) = (1/¢)'".

If the particles adapt their velocity immediately to that of the contin-
uous phase (tracer particles), the Stokes number is small compared
to unity, St < 1, whereas the Stokes number is large compared to
unity, St > 1, for very inert particles. The latter are nearly non-
reactive to changes in the continuous phase velocity. Particles with
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Stokes numbers around unity, however, can show several phenom-
ena concerning the phase interaction, which are briefly discussed in
Section 2.2.3.

In practical numerical simulations of a large number of particles, it
is usually not possible even to resolve the mesoscale, i.e. the particle
size is much smaller than the mesh resolution. Therefore, in order to
describe the sub-grid scales, one must distinguish between sub-grid
scales considering very small scales (the actual microscale), i.e. inter-
nal droplet circulation or gas-vapour-film physics, and scales larger
than those but still smaller than the mesh resolution, e.g. sub-grid
scale gas phase turbulence. The particle-particle distance, however,
need not to be smaller than the sub-grid scale gas scales but usually
smaller than the mesh resolution. Otherwise, even in a statistical de-
scription, one must take care to have proper statistics, due to the very
low particle number density.

2.2.3 Phase Interaction Phenomena and Particle Phase “Turbulence”

Effects

Dependent on the particle and continuous phase scales, interaction be-
tween both can adopt several characteristic phenomena, namely continu-
ous phase turbulence modulation by the particles, dispersion of particles
by the turbulent continuous phase flow field, preferential concentration
effects and “particle phase turbulence”. The term “particle phase turbu-
lence” is used with caution, because chaotic behaviour of particle motion
differs from continuous phase turbulence in several aspects.

A recent, detailed review on these topics is given by Balachandar and
Eaton (2010). Here, we summarise only some important aspects.

17



Modelling Dispersed Particle Two-Phase Flows

Turbulence Modulation by Particles

The presence of particles can impact the surrounding continuous phase
in two ways depending on the particle inertia and the Stokes number.
Small particles tend to attenuate turbulence, while large particles aug-
ment the fluid phase turbulence (Crowe, 2000, and references therein).
This means that small particles act as turbulence dampers, since fluid
turbulent energy must be spent to shake these particles crossing the
eddy, whereas large particles at large particle Reynolds numbers?® pro-
duce small scale turbulence in their wake. Both cases refer to a certain
turbulence scale, for which the characteristic length scale of the “small
particles” is actually smaller and that of the “large particles” is larger. In
turn, those “large particles” can act in reverse as dampers for even larger
turbulence scales as well. Therefore, the terms “small” and “large” are to
be compared to the turbulence scale under consideration.

Turbulent Particle-Fluid Interaction/Turbulent Dispersion

Turbulent particle-fluid interaction or turbulent dispersion is the interac-
tion of dispersed particles with a turbulent fluid flow. Turbulent disper-
sion inherits its chaotic nature solely from the fluid phase turbulence, i.e.
different particles injected with exactly the same conditions into a tur-
bulent flow field are most likely to have different trajectories due to the
indefinite nature of the fluid phase turbulence. It is not to be mistaken
with effects being part of the header “particle phase turbulence” (see the
second paragraph below).

Regarding CFD simulations, two cases apply. First, if the particles are
smaller than the Kolmogorov length scale, i.e. the fluid flow field is seen
by the particles only as shear flow, and the gas phase scales are fully re-
solved (Direct Numerical Simulation (DNS)), then particle turbulent dis-
persion is fully resolved even using the point-mass approximation for the
particles. Second, if the fluid phase is not fully resolved, i.e. a time or spa-

2Defined in Section 3.2.1, Eqn. 3.43
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tial average must be applied for proper simulation, the non-resolved part
of the interaction between particles and the turbulent flow field must be
modelled, independent of the scale comparison between particle size and
Kolmogorov length scale. Hence, in Lagrangian particle tracking meth-
ods, the immediate fluid velocity at the particle centre is evaluated from
the resolved mean and a stochastic component determined by a model.
In Eulerian simulations, a model must be found for the sub-grid scale
particle-fluid interaction, which is usually more difficult.

The wide spectrum of turbulent dispersion effects can be framed by two
cases. On the one hand, if particles are perfect tracers, the resulting parti-
cle phase behaviour is similar to that of the fluid phase. Only in this case,
the particle dispersion may be unified with the particle phase turbulence
and modelled with a turbulent viscosity approach similar to or based on
that of the continuous phase. On the other hand, if particles are largely
inert to the sub-grid scales of fluid motion, the particle motion can be ac-
curately determined using the resolved component of the fluid velocity.

Preferential Concentration

As turbulent dispersion of particles, preferential concentration is an effect
based on the interaction of particles with a turbulent flow field. Other
than the turbulent dispersion, which describes the displacement of the
actual particle trajectory from its equivalent based on the mean field, the
preferential concentration refers to the cloud of the particles, which are
sorted and structured in a certain way by the turbulent flow field. Shown
in experimental and numerical investigations, particles tend to accumu-
late in regions of the turbulent field of low vorticity and high strain, re-
spectively (see, e.g., Squires and Eaton, 1991a). This effect depends on the
particle Stokes number, where the particles with Stokes numbers around
unity are those affected the most. Relaxation times of larger particles are
too large to allow a significant reaction on those flow scales which actu-
ate preferential concentration. Tracer particle, on the other hand, follow
the fluid phase structure perfectly, which again gives no reason to accu-
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mulate the way described before.

Particle Phase “Turbulence”

Effects sometimes termed as “particle phase turbulence” are of different
nature®. Actually, in dispersed two-phase flow equation systems, a vari-
ety of particle velocity correlations can appear depending on the underly-
ing averaging procedures. These correlations, resulting from the convec-
tive term (one-point, second order), have a similar appearance as those
arising in averaged, turbulent single phase equations. They imply, how-
ever, naturally totally different physics as detailed next.

On the one hand, such a correlation may arise due to particle trajectory
crossing (PTC) effects, which can occur either due to ensemble average
over a large number of particle phase realisations or due to a spatial aver-
age, where particle trajectories do not necessarily cross at the given point,
but at least within the same volume over which the average is taken from.
Even if the curvature of each particle trajectory is resolvable with the
given mesh, the difference of the particle velocity between neighbouring
trajectories can be large - not to say huge - especially for large particles,
e.g. two particles pass nearby each other with high relative velocity as il-
lustrated in Fig. 2.3. When imagine this scenario from an Eulerian view of
point, i.e. the particles cross the computational volume (marked as V in
Fig. 2.3) at the same time, sub-volume scale structures of the particle ve-
locity field (red vectors) occur. Such effects are of totally different nature
as continuous phase turbulence, and need to be modelled correspond-

ingly.

On the other hand, correlations of fluctuating particle velocity compo-
nents may arise due to the spatial average of a particle velocity field,
where the curvature of the particle trajectories is not fully resolved by the
numerical mesh. This yields “classical sub-grid stresses” of the particle
phase velocity field. However, in dilute dispersed flows, where particle-

3Turbulent dispersion of particles is not part of this but stands for another effect as described above.
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\Y

Figure 2.3: Particle phase sub-volume velocity field structures not due to
sub-volume scale trajectory curvature.

particle interaction plays only a marginal role, the term “stress” has no
evidence, since it is not possible to define a physically motivated viscos-
ity for the dispersed phase. In this case, the use of the general term “par-
ticle phase velocity correlation” is more accurate. When the term “parti-
cle phase turbulence” or “a turbulence model for the particle phase” is
used in the context of volume average based two-phase flow equations,
it refers most often to this correlation, since its derivation and its posi-
tion and notation in the equations is similar to turbulent sub-grid scale
stresses or the Reynolds stresses in single phase turbulent flows.

Those and other correlations of particle velocity components appear
for each conducted average, i.e. ensemble averages, spatial averages or
phase space averages. They will be discussed later on when appearing in
the derivation of the two-phase flow equations.

2.3 Types of Average

A fully resolved simulation of a two-phase flow, i.e. considering all scales
of the continuous phase flow, all details of the shape of the interface and
the internal flow of the particles, is only feasible for a system of a few
particles and modest Reynolds number. In any other case, the complex-
ity of the physical scales has to be reduced by a kind of averaging or by
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filtering out the smallest scales up to a certain cut-off scale. The numer-
ical method is then able to resolve the remaining scales*. Depending on
the application and the numerical method used, several types of averag-
ing can be conducted to gain equations for the averaged flow variables
of interest, for whose all remaining scales of transport and physical pro-
cesses can be fully resolved by the given computational mesh, spatially
and temporally.

Since we are dealing with two-phase flows where the particle size is
fundamentally smaller than the spatial resolution that is possible with
present-day computational power, we need several averaging proce-
dures to derive the equations of interest. At this point, the most common
averaging procedures will be presented, first, however, without referring
to specific two-phase flow applications or numerical methods. The def-
initions are not given in a rigorous mathematical way, but rather in a
phenomenological way of description in the context of fluid dynamics,
helping to understand their application to the different two-phase mod-
els and their derivation later on.

2.3.1 Time Average

The time average is a pointwise average of the quantity of interest i(x, t)
over a certain time period T, which reads

)" = (p0)" = 7 [ poxndt . 23)

In CFD, it is applied to obtain Reynolds Averaged Navier-Stokes equa-
tions, either for steady state simulations (RANS), i.e. T — oo, or tran-
sient/unsteady simulations (URANS).

4 Actually, the more quantitative Nyquist theorem must be applied, which says that the smallest re-
solved scale is two times the mesh wide (e.g. in Sagaut, 1998, p. 10)
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2.3.2 Volume Average

A volume average can be used to reduce the complexity of spatial scales,
i.e. it removes all scales which are smaller than the length scale of a cer-
tain physical volume V, but approximately® preserves the full transient
behaviour of the system. Usually it produces the arithmetic (i.e. non-
weighted) mean value of all values of a quantity ¢(x,t) present in the
averaging volume for a given flow realisation. It can be written as

W) = w0 = [[[w@ndz, 2.4)

where the integration is applied in physical space

dg = d¢1déodds (2.5)
over the averaging volume

V = AX1AX2AX3 . (26)

2.3.3 Filtering

Usually applied to formulate equations for Large Eddy Simulation, filter-
ing is an operation which removes all scales smaller than a cut-off length
scale A and time scale 7, in physical space or, equivalently, in Fourier
space corresponding to a cut-off wave number and frequency, respec-
tively. The temporal dimension is not considered here explicitly, although
spatial filtering implies usually automatically temporal filtering (Garnier
et al., 2009).

Spatial filtering is actually similar to volume averaging in terms of pro-
ducing a mean value of all samples within a certain volume, however,
with the possibility of weighting the contribution of each sample differ-
ently. This can be described by a convolution kernel G, which mathemat-
ically provides the information about the weighting. G and the spatial

SWith every spatial average, a time average is implied over a time period corresponding to the largest
scales, which are removed by the volume average.
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cut-off length scale, or, more colloquially, the filter size/width, are char-
acteristic for the filter used. The convolution or filter kernel G determines
with which weight the sample values of a quantity {(x, ¢) in the neigh-

bourhood of point x are included in the average (¢(x,t))". Mathemati-
cally this operation can be written as the convolution product

b= =@ = [[[vencx-ga, @7

where integration takes place over physical space

d¢ = dg1dg.dés (2.8)
G must have the following characteristics:

e Consistency [[[ G(x—¢)d¢ =1

e Linearity (¢ + o) =P+

e Commutation with differentiation

Furthermore, we restrict ourselves to those cases where G has the follow-
ing characteristics:

* G is homogeneous (spatially and temporally invariant), isotropic
(centred) and localised, i.e. G has always the same shape relative
to x, since x and ¢ have the same origin, therefore x — ¢ is a relative
position around the given point x.

* In our notation of the sub-grid scale correlation tensors, we make,
for the sake of simplicity, but without loss of generality, implicitly

the assumption of G being a Reynolds-operator, i.e. ¢¢p/ = 0 and

P = Pip (Sagaut, 1998). For example, the top-hat filter is a Reynolds
operator. On the other hand the Gauss filter i not: multiple filtering

smears out the solution more and more, i.e. P = PP is not fulfilled,
since it reaches from —oo to co.
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* The support of G can be infinite, i.e. G takes in general non-zero
values for all x up to —oo to oo (e.g. Gauss) or compact, i.e. G is zero
outside a certain closed interval (e.g. the top-hat filter). Other types
of supports are not discussed here.

Calculus rules for gradients and other mathematical operations do not
contribute to the matter and will not be presented here, but can be found
in Sagaut (1998) and Garnier et al. (2009).

To simplify closure in variable density flows, a density weighted or so-
called Favre average can be introduced, which reads

(o) = p§ = pix, DI = [[[p@ 9@ nGx-2dz. @9

Actually, the volume average as described above can be classified as a
special case of spatial filtering. Comparing both definitions, volume av-
erage can be interpreted as spatial filtering using a top-hat filter and re-
quiring that the length scale of the averaging volume V is of similar size
as the filter length. We will use this interpretation later on for a specific
approach to derive two-continua LES equations for dispersed two-phase
tlows.

2.3.4 Ensemble Average

Ensemble average distinguishes itself from the other types described be-
fore in being not associated with any time or spatial scale. In fact, the
local and instantaneous average is taken from a large number of differ-
ent realisations or “virtual copies” of the flow, which deviate from each
other in the non-deterministic (chaotic) part of the underlying physics.
Hence, the ensemble mean is the mean of all chaotic states that have the
same statistics or, in other words, the mean is the expectation value of
the quantity considered at the given point in time and space. It can be
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defined mathematically as

N — o0

¥)F = lim [%;q)(x,t,”ﬂ)] , (2.10)

where §(x,t,’H) is the local and instantaneous value of the property ¢
present in realisation # and N is the total number of realisations consid-
ered.

2.4 Microscale Methods

There are methods developed to resolve every scale occurring in multi-
phase flows. That means that on a microscale level the interfacial curva-
ture (but not the interfacial transition between phases, i.e. the interface
is treated as a jump in phase properties) and all flow structures within
each phase are fully resolved. These methods can be seen and referred
to as the (Real) Direct Numerical Simulation for multiphase flows, where
the interface jump condition is the only simplification made, or, per def-
inition, declared as a necessary and legitimate step® to separate this kind
of method from molecular based simulation techniques. When dealing
with those methods, the accurate description of the interface between
phases is the main issue. A sub-classification of these methods can be un-
dertaken depending on the mathematical framework. There exist mesh-
based methods, usually referred to as Eulerian methods and mesh-less
methods, usually indicated as of the Lagrangian type of framework.

In Eulerian methods, the fluid phases itself are often treated each as a
continuous fluid using the Navier-Stokes equations, as done, i.a., in the
Volume of Fluid method (VOF) (see Hirt and Nichols, 1981, Youngs, 1982,
van Sint Annaland et al., 2005). Even at the smallest scales of continuum
mechanics, the interface is a sharp jump of properties, which, however,
contributes significantly to the dynamics of the mixture due to the sur-
face tension. Accurate description of the curvature and position of the

®and therefore not of simplifying but direct nature in the sense of Direct Numerical Simulation
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interface contributes essentially to the correct prediction of the surface
tension. For many decades, numerical methods have been developed to
describe the interface, e.g., the front tracking method (Unverdi and Tryg-
gvason, 1992, Tryggvason et al., 2001) or the Level Set method (LS) (Osher
and Sethian, 1988, Sussman et al., 1994, Osher and Fedkiw, 2001). Com-
bination of both, the VOF and one of the front tracking methods, gives
a method to simulate multiphase flows fully resolved on the microscale
(e.g. Sussman and Puckett, 2000, Sussman, 2003).

Originating from astrophysics (Gingold and Monaghan, 1977, Lucy,
1977), the Smoothed Particle Hydrodynamics method (SPH) is a La-
grangian particle tracking method, which describes continuous fluids us-
ing a “particle fluid”. It has been extended to multiphase applications
with the challenge of incorporating the surface tension correctly, see, e.g.,
Monaghan (1994), Monaghan and Kocharyan (1995), Morris (2000), Co-
lagrossi and Landrini (2003), Hu and Adams (2006, 2009), Hofler et al.
(2013), Braun et al. (2013) and comprehensive reviews by Monaghan
(2005), Liu and Liu (2010).

Although these methods can be used to resolve all scales of the curva-
ture of the interface, the decisive disadvantage is, that they are only fea-
sible for a few particles or a small physical extend of interfacial curvature
with still enormous computational costs. In order to consider more than
a very few particles or small details of a separated flow in larger sys-
tems of practical applications, the computational costs usually increase
tremendously. Therefore, these methods are of restricted use only in aca-
demic test cases so far. Moreover, from an engineering point of view, not
all scales of the interface are of interest. Simulations of industrial appli-
cations using the VOF method for example, are likely conducted for an
equation system with a reduced level of scales considered. These can be
derived by averaging the two-phase flow, resulting in equations which
consider only the large scale curvature and model the non-resolved sub-
grid scale curvature of the interface. From this point of view, the surface
tracking methods mentioned above can be actually of macroscopic type
as well.
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2.5 Direct Micro- to Macroscale Models

Since microscale methods are notoriously too costly to simulate indus-
trial scale applications, numerous methods have been developed based
on the reduction of the flow scales to a level much larger than the char-
acteristic length scale of the particle or even the average particle-particle
distance, but which are in general still too small to be resolved with nu-
merical meshes used in industrial-scale applications. This macroscale is
not to be mistaken as the integral geometric length scale of a given config-
uration, i.e. the largest scales of the flow. Two possibilities exist to obtain
macroscale models, either directly from the microscale, which represent
the rather “classical” class of two-fluid or interpenetrating continua mod-
els, or from a mesoscale description of the two-phase flow, which is of
stochastic nature and is often used in dispersed two-phase flows. To the
latter, all kind of methods belong to which consider integral properties of
the phases, e.g. moments of the NDF /PDF, or Multi-Fluid methods based
on the description of the NDF/PDF with classes, e.g. Quadrature based
Method of Moments (QbMM) or methods based on a presumed func-
tional shape of the NDF/PDEF. These will be presented in Section 2.6.2,
whereas in this section methods derived directly from the microscale are
presented and discussed.

2.5.1 Classical Volume Average in Two-Phase Flows

The class of multi-continua methods is constructed such, that at each
point in space both, gas phase and dispersed phase quantities, are de-
fined regardless of which phase is actually present at the given time in-
stance. These interpenetrating, continuous phases can be obtained by ap-
plying the volume average operation, as defined in Section 2.3.2. To for-
mally derive these equations, the Navier-Stokes equations are multiplied
tirst by a so-called (phase) indicator function or phase function (Mashayek
and Pandya, 2003), X(x,t), and averaged with help of Eqn. 2.4 after-
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wards. This operation can be written as
()7 = (X(t)-)" (2.11)

where ( -}V is the two-phase volume average operator. Note the notation
of the single-phase volume average operator (-)" and that of the two-
phase volume average operator (-)Y. The latter is introduced to omit
writing the multiplication with X(x, t) for simplicity. For dispersed two-
phase flows, the phase indicator function can be defined twofold, either
associated to the continuous or the dispersed phase as follows

1 ifxeV,
Xc,d(x,t)z{ HXE Ved (2.12)

0 otherwise
This means, it adopts unity if the associated phase is present at location
x and is zero elsewhere. When X (x, t) is written without index, the corre-
sponding relation is equivalently valid for both phases. A phase averaged
quantity is obtained by

W) = W) =3 [[[X@oe@na. @

By applying the two-phase volume average, equations are obtained for
each phase, formally similar to the original Navier-Stokes equations but
containing a new quantity «, or a4, the so-called volume fraction of the con-
tinuous and dispersed phase, respectively. These are formally obtained

by
(1YY, = (Xea(x, 1))V = —///Xcd ENAE=a..  (214)

Hence, if only two phases’ are present, &, = 1 — a,. If the dispersed phase
is gaseous, . is also called void fraction. The two-fluid equations itself ob-
tained from this procedure are not of interest at this point, although this
concept is part of the methodology used below to derive the gas phase
equations used in this work (Section 3.1).

7In case that one want to distinguish between different fluids per phase, additional fluid volume frac-
tions might be defined.
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Normalising the averaged value with the volume occupied only by one
phase yields®

Vcd

W) = ) = - bUXmét Ende,  @15)

with the relations
% Vc d

<lp>c,d - “C/d<ll)>c,ci : (216)

In contrast to single phase flows, where the integration over the convo-
lution product is commutative with the spatial derivative, this does not
hold in two-phase flows containing the interface described by X(x,t),
which is neither homogeneous in time and space nor isotropic or lo-
calised (in contrast to G, see Section 2.3.3). Additional calculation rules
must be applied. For time derivatives Leibniz’ theorem applies, i.e.

I (Y
<§>V— at //u & DP(E,, 1) dE, , (2.17)

where S is the interface, us(¢,, t) the velocity of the interface relative to
the velocity of the gas phase at the interface, ¢, the subset of x located
at the surface and d¢, = dd,1d¢s»d¢,3. For spatial derivatives, Gauss’
theorem applies, which reads

(Vo) = V) + 5 [[ @ nde.. @.18)

If one aims for averaged quantities of the particle properties when ap-
plying the volume average to a dispersed two-phase flow, the average
volume must be much larger than the particle size and even the aver-
age particle-particle distance to ensure proper continuum statistics for
the dispersed phase, but much smaller than the scale of spatial change

8Formally, it is possible to write ﬁ [[ Xea(E t)p(E t)dE = ﬁ J[[ ¥(& t)dZ, however, this nota-
v " Ved

tion implies inaccuracies related to the correct treatment of the interface jump condition and should be
therefore avoided.
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of the mixture properties’. This issue can become challenging and must
be verified for each specific case. Discussion on the relation between the
size of the averaging volume and the discretised volumes of the com-
putational mesh as well as treatment of the lost information about the
sub-volume scales is discussed in Section 2.5.4.

2.5.2 A Variation of the Classical Volume Average Using Point Parti-
cles

Actually implying more characteristics of the ensemble average than the
volume average, the averaging procedure shown by Crowe et al. (1998)
uses elements of both types, but can be applied only to the dispersed
phase. Simply said, the ensemble consists of all particles present in the
averaging volume V. In contrast to the “classical” volume average as de-
scribed before, here the particles are treated as 0-dimensional, i.e. having
constant properties throughout the volume of each particle. The descrip-
tion, however, keeps the particle volume in order to consider their vol-
ume fraction in the continuous phase equations. The ensemble average
of the quantity i of all particles k present in the averaging volume V
reads

N
(P(x1)F = %, Y k(xit), (2.19)
k=1

where N is the number of particles in the volume and k is the index of
the particles,i.e. 1 < k < N. Transport equations of the particle cloud, i.e.
all particles present within the averaging volume, result from applying
this average on the particle transport equations 3.36 to 3.39 as given in
Section 3.2.1 later on. For example, considering only drag and gravity,
the application of this volume average to the particle equation of motion

reads
1 N

Z de _ Z uc‘xk — Vg 4+ Zg ) (220)

%In general, the applicability and validity of the volume average is not limited to a certain range of
particle size/averaging volume ratios.
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which, written in Eulerian framework, yields after some manipulation
(see Crowe et al., 1998, Carneiro, 2012):

aocdud
ot

u. — uy

1
+ V- (aguguy) = a4 + 48 + p_rud , (2.21)
d

N
where &, is the volume fraction of the particles, u. = (uc|x )t = % Y. Uy,
is the mean of the continuous phase velocity at the position of the p_article
N
centre x;, uy = (vy)t = % Y. viis the mean of all particle velocities v and
k=1

I' is the mass exchange rate between the phases, e.g. due to evaporation
or condensation.

2.5.3 Unified Volume Average/LES Filtering

In two-phase flows, two-continua equations can be derived by volume
average, as described before. This operation yields spatial averaged equa-
tions for a given instant in time. In RANS, these equations have to be time
averaged subsequently to obtain equations of the time-invariant two-
phase flow field. With that, the mesh resolution must be chosen such that
this steady state flow field is fully resolved. In LES, two spatial averag-
ing procedures have to be conducted formally: first the volume average
to obtain two-continua equations describing both phases, i.e. (- >V, and
subsequently the filtering operation ( - ) separately for each phase to re-
move the flow scales which cannot be resolved by the chosen mesh. In
case, that the averaging volume of the phase-average operation is smaller
than the filter size, this fact holds. However, when choosing the averag-
ing volume to be of the same size as the filter width, the idea has been
expressed to unify both operations, i.e. applying the volume average to
the original two-phase flow field but using directly a variable weighting
(Kaufmann, 2004, Sirignano, 2005, Carrara and DesJardin, 2006). A for-
malism to describe this idea mathematically has been proposed simulta-
neously by Sirignano (2005) and Carrara and DesJardin (2006).
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In order to formulate this idea, we start with the definition of the volume
average (Eqn. 2.13)

Wity =3 [[[x@nw@nd, 22)

which, interpreted as filtering with a top hat filter G (x — &) having the
compact support V, reads

WD) = [[[ mix—Dx@ 9@z, @)

(2.24)
with
L ifxev

G — & =XV 2.25
m(x—¢) {0 otherwise ( )

implying that
/ / Gr(x — &)dé =1. (2.26)

1%

With that, Gy can be replaced by any filter kernel G with compact sup-
port supp(G) = V and fulfilling Eqn. 2.26. Including general filters with
an infinite support, the combined operation can be finally written as

WD) = [[[cx-ox@Enpende. @)

Equation 2.23 results from the fact that the kernel function G is nor-
malised, here consequently with V, wheres the indicator function X is
not. Normalisation is achieved in the latter case (classical volume aver-
age) by dividing the integral by the average volume, which is not neces-
sary when multiplying with a normalised filter.

Formally, the integration domain can be constrained to the domain oc-
cupied by only one of the two phases, i.e. ®, or ®;, where the explicit
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notation of the indicator function can be avoided (e.g. Carrara and Des-
Jardin, 2006). With help of that notation, the following relations can be
obtained, here written for the continuous phase!®

07 = [[[cx-ox@nas = [[[cx-pd

=1 =9, (2.28)

where Q. is the space occupied by the continuous phase, 6 is the volume
fraction of the continuous phase (void fraction) and

(W(x 1) // G(x — &)X (& ) p(x, 1) dE = ///Gx— x, 1) dé

= <¢(x,t)> F — 0p(x,t) . (2.29)

Using this notation (the integration over ©. or ®;) helps to obtain the
relations above, however, this formulation requires utmost attention to
consider the interface jump conditions properly when deriving transport
equations for the phases as already mentioned in Section 2.5.1. Since this
can be achieved more naturally by keeping the indicator function and the
integration over the total volume, the notation for the integration over
only the partial volumes is not used from here on.

As in single phase flows, a density weighted average can be used, espe-
cially for the continuous phase (since we assume constant liquid /particle
density throughout this thesis), which can be written as

e ).7 = [[[ 0@ 06— 8X& Hp(E 1) g

=0(x,t)p(x, t)P(x,t) = 0p1p . (2.30)

The notation -~ is common in single phase, Favre-averaged fluid equa-
tions and is also used here to ease the reading of the equations. Keep in
mind, however, it is the continuous phase equation of a two-phase flow,

10Since this procedure is used in this work later on for deriving the gas phase equations, all following
relations within this section are given for the gas phase only (if not valid for both phases), for simplicity.
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where the averaged variables have the same physical behaviour but rep-
resent a slightly different average.

For a proper application of this averaging method, the following require-
ments have to be met (where the first two applies independently for sin-
gle phase flows as well):

* The size of the average/filter volumes should correspond to the size
of the discretised volumes of the computational mesh. Refinement
or coarsening of only one is not reasonable, since the resolution of
the finer one cannot be kept by the coarser.

e Furthermore, if the averaging volumes are not homogeneous and
isotropic (which is usually the case in praxis), averages of spatial
derivatives must be handled properly. The larger the change of the
volume from a cell to its adjacent cell, the larger the error becomes
(see, e.g., Sirignano, 2010).

¢ Asmentioned already in Section 2.5.1, the LES filter kernel is usually
time and space invariant. The indicator function X., however, is time
and space dependent (representing moving particles with different
sizes), which requires, in contrast to single-phase filtering, careful
treatment of the derivatives (Eqns. 2.17 and 2.18).

2.5.4 Challenges Using Micro- to Macroscale Models

Statistical Noise

A spatial average over a small volume of only a single realisation of the
two-phase flow is usually based on only a few particles (especially in di-
lute dispersed flows, which applies in this work). This means that the
convergence of the statistics can become very poor compared to those
gained from a large number of dispersed phase realisations implying the
same statistics for a given fluid flow realisation. The problem is, that in
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averaging volumes, where only a few particles are present, the large gra-
dients subsequently appearing in the particle mean fields may require
sophisticated numerical treatment to ensure a stable simulation.

As an example, we consider a particle number density of the order of
1 x 10 m~3, which corresponds to ten particles per mm?® and which is a
typical value of the spray inlet conditions of the experiments used to val-
idate the numerical model (see Chapter 7). For computational cells of the
size of around 1 mm?3, this value is already marginal. However, in regions
where the particle number density tends towards zero, the averaging vol-
umes must be unrealistic large to meet the criteria of sufficient statistics.
Significant improvement can be achieved when considering first an en-
semble average over a large number of particle phase realisations before
averaging over the volume (as discussed in Section 3.2.2).

For the physically continuous gas phase this issue relaxes, since a typi-
cal average volume contains a sufficient large number of fluid instances
to deliver reasonable statistics (see Section 3.2.2 for references to the
tiltered density function approach in turbulent and/or reacting single
phase flows).

Modelling of Sub-Volume Scales

Closure of the source terms which describe the sub-volume scale dynam-
ics and the interaction of the dispersed phase with the continuous phase
is a challenging task. Two-phase closure is a demanding task in general,
but becomes excessively difficult when related to macroscale methods
derived directly from microscale physics, due to the following reasons.
First, applying a direct-micro-to-macro average complicates the identifi-
cation and attribution of the numerous non-resolved phenomena origi-
nating from ensemble and spatial averages (Kaufmann, 2004, p. 50) as
well as the phase space average!!, since they hide behind only one or a
very few terms. Second, the closure of the sub-volume dispersed phase

!1je. the phase space integration over the NDF transport equation to obtain moment equations, see
Chapter 4
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velocity correlation tensor(s) is difficult anyway, because the (dilute) dis-
persed phase is governed by physics significantly different to those of
single phase turbulent stresses (see Section 2.2.3). Utmost differentiation
of the physics and careful evaluation must be undertaken when aim-
ing to use any kind of viscosity models as used in single-phase contin-
uum flows. Obviously, the liquid itself behaves like a continuum, but this
inner-particle flow is not of relevance when discussing the particle phase
“stress term”, which rather has characteristics of a pressure-less gas'. If
at all, “any spatial correlation in the dispersed-phase motion is induced
via particle interaction with the surrounding fluid motion” (from Février
et al., 2005), for which models have to be developed. Further discussion
on this topic has been given in Fox (2012) and will be undertaken later
on when coming to the derivation of the stochastic equations and the
moment closure.

Here again, these issues mainly apply to dispersed phases and relax
when coming to proper continuous phases, especially when filtering a
single continuous phase realisation only, as it is done here.

2.6 Stochastic Methods (Mesoscale)

As adumbrated in the previous section, physical and mathematical ap-
proximations cannot be distinguished in the volume average type models
based on only a single dispersed flow realisation. Hence, it is convenient
to introduce a mesoscale, which represents the intermediate step to sep-
arate the physical and the mathematical approximations. In dispersed
multiphase flows, these two steps comprise first, the simplifications of
the physics by reducing the full, microscopic flow structure around the
particle and the detailed heat and mass transfer to 0-dimensional models,
which describe the net effect as point sources for mass, momentum and
energy. With that, each particle is described by a set of mesoscopic vari-

12To be clear: granular flows are of different nature, which motivates and justifies viscosity models,
which have been established in this type of flow.
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ables, e.g. particle mass, velocity, temperature, etc. The exchange of mass,
momentum and heat is described globally (0-dimensional) for each parti-
cle and particle-particle interaction is considered using specific collision
models. Subsequently, particles are sorted in phase space and particles
with the same mesoscopic variables are counted, which yields a number
density function f. The ensemble of particles of which f is built from can
be based on at least three concepts:

1. At a given time instant, all particles within a certain volume are
taken into account (volume average).

2. All particles flying by a certain point" in physical space are taken

into account (time average). This is often what is measured in exper-
iments.

3. For a certain point in physical space and for a given time instant, all
particles with the same mesoscopic properties but different individ-
ual and chaotic residual components (ensemble average or average
over realisations of the flow) are considered. Usually this is seen as
the most comprehensive choice.

For f, a transport equation (“kinetic equation”) can be derived (see Sec-
tion 3.2.2, where a proper definition of f is given as well), which rep-
resents the mesoscopic equation of the particle dynamics. This equation
can be solved on a mesoscopic level both, in a Lagrangian manner as well
as in an Eulerian framework, or on a macroscopic level, when applying
some mathematical simplifications (i.e. the (finite) number of moments
considered). The multitude of methods for these approaches is described
next for Lagrangian methods in Section 2.6.1 and Eulerian methods in
Section 2.6.2.

13With typical measurement techniques, this “point” actually extends to a certain measurement vol-
ume, which in fact results in a kind of volume-time average.
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2.6 Stochastic Methods (Mesoscale)

2.6.1 Lagrangian and Eulerian Solution on the Mesoscopic Level

Lagrangian Methods

Two different Lagrangian methods must be distinguished: the Discrete
Particle Method/Simulation (DPM/DPS) and the Lagrangian-Monte-Carlo
Approach. First, the Discrete Particle Method/Simulation (DPM/DPS) tracks
all physical particles present in the given flow realisation, either each par-
ticle individually or by substitutes for particles with identical properties
(parcels, numerical particles). Each particle is described by its equations
for motion, heat and mass conservation. Second, the Lagrangian-Monte-
Carlo Approach (e.g. Massot, 2007, with reference to Dukowicz (1980)) or
Direct Simulation Monte Carlo (DSMC), is a Lagrangian solution method
(via statistical particles, i.e. samples) of the kinetic equation (transport
equation for f). In contrast to the DPM, the latter considers particles of
a large number of realisations. The “parcel” substitute for several simi-
lar stochastic particles can be applied here similarly (e.g. Bini and Jones,
2008). Some publications in literature are difficult to definitely relate to
one or the other method. Hylkema and Villedieu (1998) and Liu et al.
(2002) may be mentioned as examples for the Monte-Carlo approach, for
the Discrete Particle Method, e.g., Miller and Bellan (1999, 2000), Okong’o
and Bellan (2004), Almeida and Jaberi (2008).

Both methods have most of the notation in common for which the basics
will be illustrated here. Either discrete or stochastic particles are trans-
ported using the Lagrangian particle transport equations including dif-
ferent levels of physics depending on the specific application. The La-
grangian particle transport equations for dilute spray applications are
given later on in Section 3.2.1. To consider the particle dynamics in the
gas phase equations, the individual particle contributions to mass, mo-
mentum and energy exchange between phases Sy are summed up for all
particles Ny in each computational cell V and are introduced as source
terms S in the conservation equations of the gas phase (e.g. Okong’o and
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Modelling Dispersed Particle Two-Phase Flows

Bellan, 2004), here given for mass and momentum as

0
0
%+v (puu) = —-Vp+V - -1t+S, (2.32)

where the source terms are of the type

w
S = ):Vksk . (2.33)

Ny
k is the index of the particles. wy is a weighting factor to determine
the individual contribution of a particle to the different, neighbouring
cell centres dependent on the distance in-between (Particle-Source-In-Cell
method, i.a. in Evans and Harlow, 1957, Crowe et al., 1977, Bini and Jones,
2008).

Lagrangian particle tracking methods are widely used due to their ca-
pability to consider different mesoscopic variables, particle crossing and
collision naturally and their low artificial dispersion of the trajectories.
Research in this area has been started with particle tracking simulations
without considering the non-resolved phase interaction. The purpose of
these investigations was either to evaluate the physics a priory using Di-
rect Numerical Simulation for the gas phase (e.g. Squires and Eaton, 1990,
1991a,b, Boivin et al., 1998, Mashayek, 1998a,b, Fede and Simonin, 2006,
Réveillon et al., 2002, Reveillon and Demoulin, 2007) or to compare fully
resolved simulation results with those of an a posteriori filtered DNS
or those of a Large Eddy Simulation without considering sub-grid scale
interaction (Yeh and Lei, 1991, Simonin et al., 1995, Wang and Squires,
1996a,b, Armenio et al., 1999, Deutsch and Simonin, 1991, Squires and
Simonin, 2002, Yang and Lei, 1998, Armenio et al., 1999). Comparison of
the performance of several unmodified sub-grid scale models for the gas
phase has been carried out by Boivin et al. (2000). Subsequently, mod-
els based on modified sub-grid scale models for the gas phase have been
proposed (Pannala and Menon, 1999, Mashayek and Jaberi, 1999, Miller
and Bellan, 2000, Yuu et al., 2001, Sankaran and Menon, 2002). The state
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2.6 Stochastic Methods (Mesoscale)

of the art method, which are nowadays commonly used, is to incor-
porate a stochastic term in the Lagrangian particle transport equations,
which models the instantaneous fluid phase velocity at the location of
the individual particle, first proposed by Sommerfeld et al. (1993) and
Minier and Peirano (2001), modified, extended and used by Shotorban
and Mashayek (2005, 2006a,b), Peirano et al. (2006), Vinkovic et al. (2006),
Almeida and Jaberi (2008), Lain and Grillo (2007), Pai and Subramaniam
(2007), Bini and Jones (2008), Pozorski and Apte (2009), just to mention a
few. A comprehensive overview can be found in Mashayek and Pandya
(2003).

Challenges result from the numerical realisation of this method, i.e. load
balance between processors, localisation and sorting algorithms, insta-
bilities at high volume fractions, computational costs and statistical noise
(see, e.g., Massot, 2007, Bini and Jones, 2008). Minier and Peirano (2001)
give a critical discussion on the validity of comparing Lagrangian parti-
cle tracking methods with Eulerian macroscopic moment methods, espe-
cially concerning computational costs, since Lagrangian methods on the
mesoscopic level maintain more information on the underlying physics
than Eulerian methods on the macroscopic level (especially moment
methods).

Eulerian Methods

Eulerian methods are usually associated with macroscale methods. How-
ever, the kinetic equation for f can be solved also on a mesoscopic level
in Eulerian framework, although, to the authors knowledge, no applica-
tion of this kind has been published for two-phase flows. As a relevant
method, the stochastic fields approach (Valifio, 1998) can be mentioned,
which has been successfully applied, e.g., for solving the PDF transport
equation for mixture fraction and progress variable in single phase re-
acting flows (e.g. Garmory et al., 2006, Mustata et al., 2006, Jones and
Navarro-Martinez, 2008, Jones and Prasad, 2009). One could consider the
Multi-Fluid method (Laurent and Massot, 2001) as a mesoscopic solution

41



Modelling Dispersed Particle Two-Phase Flows

method of the kinetic equation, at least when using a large number of
classes, which, however, is usually not the case due to enormous com-
putational effort. Therefore, when using only a number of classes of the
order of 10, the Multi-Fluid method represents rather a piece-wise inte-
gration over phase space (directly formulated as such e.g. in Bove et al,,
2005). Hence we list this method under the macroscale methods in the
next section.

2.6.2 Eulerian Solution on the Macroscopic Level (Moment Methods)

Moment methods owe their name to the mathematical background of
“moments of a function”. Moments are statistical information about the
underlying function, the more moments are known, the more accurate
the function can be characterised. Hence, solving transport equations
for a certain number of moments of f, an approximate solution of the
kinetic equation can be determined. All moment methods distinguish
themselves basically by the order of moments considered and the num-
ber of mesoscopic variables (phase space).

The range of different types of moment methods is as wide as its mul-
titude of applications. Moment methods may be categorised in “mean
and variance” methods and moment methods using moments about zero
(see Section 4.1.1 for definitions). In multiphase flow applications the lat-
ter type of moments is used more often, due to the easier derivation of
transport equations and the characteristics of the moments itself (Sec-
tion 4.1.2). A large variety of methods is governed by the class of Quadra-
ture based Moment Methods (QbMM), e.g. the Quadrature Method of Mo-
ments (QMOM) and Direct Quadrature Method of Moments (DQMOM).

In order to define basic properties and to deepen this topic, types, struc-
ture and the connection between the various model variants are pre-
sented, with specific focus on their application in multiphase flows. Since
in this work only the particle size-velocity space is of interest, we restrict
ourselves on related publications. Therefore the discussion is divided

42



2.6 Stochastic Methods (Mesoscale)

into mono-variate models (either velocity or size) and multi-variate mod-
els (either both, velocity and size, or additionally the continuous phase
velocity). Specific moment methods are listed in the following without
a description. New-to-the-topic readers might be referred to Section 4.5
and the literature given below. Especially the Quadrature based Moment
Methods are discussed in that section in more detail, where some aspects
can be clarified better with the knowledge and terminology founded in
Chapter 4.

Considering Particle Size Space Only

In these methods, particles can have different sizes, which directly impact
motion, vaporisation, condensation, heat transfer rates and collision dy-
namics, among others. Particle trajectory crossing effects, however, can-
not be considered, since particles have the same velocity locally, which is,
however, still variable in time and space'*.

e Multi-Fluid: Laurent and Massot (2001), Laurent et al. (2004), Massot
(2007) and references therein.

e PMOM: Beck (2000), Beck and Watkins (2002, 2003), Watkins (2007);
closure is obtained assuming the shape of the NDF as Rosin Ramm-
ler or log-normal distributions. Gharaibah and Polifke (2004); trans-
port of mean and variance of the particle diameter.

* QMOM: McGraw (1997), McGraw and Wright (2003), Marchisio
et al. (2003a), Marchisio et al. (2003b), Petitti et al. (2010).

e DOMOM mono-variate: Marchisio and Fox (2005), Zucca et al.
(2006), Mazzei et al. (2010), Chan et al. (2010).

e DOMOM bi-variate in volume and surface: Wright Jr. et al. (2001),
Marchisio and Fox (2005), Fox (2006).

* Maximum Entropy: Kah et al. (2010), in Gumprich and Sadiki (2012)
as post-processing for QMOM.

41n contrast, multi-velocity models are often monodisperse in particle size globally.
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Considering Particle Velocity Space Only

Models considering the velocity space only, are naturally monodisperse
in size, i.e. particles can have different velocities locally but feature the
same size (in non-vaprorising flows usually even globally). With that, tra-
jectory crossing effects are possible to describe to an extent, that depends
on the number of moments considered.

Mean and variance: Mesoscopic Eulerian Formalism (MEF) Février
et al. (2005).

MOM: Zhang and Prosperetti (1994, 1997).

QMOM mono-variate: Le Lostec et al. (2008).

DOMOM mono-variate: Desjardins et al. (2008), two-node in veloc-
ity.

Considering Particle Velocity and Size Space

Considering both, size and velocity space, challenges some of the meth-
ods, since available mathematical reconstruction algorithms for the mo-
ments or the NDF are not suitable for two-dimensional phase spaces.
Therefore, many methods dealing with two property coordinates are ei-
ther hybrid methods, often Multi-Fluid methods combined with Quadra-
ture based Moment Methods, or make simplifications in order to be able
to use the reconstruction algorithms (e.g. the PD-algorithm in QMOM).

® Multi-Fluid in size space, mean and variance in velocity space: Mas-
sot (2007), Vié et al. (2010).

* Multi-Fluid in size space, QMOM in velocity space: de Chaisemartin
et al. (2008), Kah et al. (2010).

* QMOM in size, Multi-Fluid in velocity space: Fan et al. (2004).
* QMOM bi-variate in volume and velocity: Yoon and McGraw (2004).

44
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* DOMOM size-conditioned-velocity: Fox et al. (2008), DOMOM in
size and single node in velocity, i.e. u(D).

* PMOM size-conditioned-velocity: Bollweg et al. (2007), Carneiro
et al. (2010), Dems et al. (2012a,b).

Considering Particle/Fluid Velocity and Particle Size Space

The most comprehensive methods in terms of phase space consider also
fluid phase quantities as phase space variables in addition to the dis-
persed phase quantities.

* Joint particle-fluid-velocity-size-PDF: Minier and Peirano (2001),
Carrara and DesJardin (2006).

* Joint particle-fluid-velocity-PDF: Belt and Simonin (2009), Wunsch
et al. (2009).
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3 Gas and Dispersed Phase Equations

The different approaches to derive two-phase flow equations have been
detailed in the last chapter. In this chapter we make use of some of these
methods to derive the set of two-phase flow equations which have been
utilised in this work. The chapter is split into two parts, first the deriva-
tion of the gas phase equations is shown, which is followed by that of the
dispersed phase equations. In fact, when deriving the gas phase equa-
tions the source terms describing the interaction between both phases re-
main unclosed in the first instance, but will be closed afterwards from the
point of view of the dispersed phase. Furthermore, the actual mathemat-
ical treatment of the dispersed phase kinetic transport equation, which
will present the final result in this chapter, will be carried out in Chap-
ter 4, where it is integrated over phase space to obtain macroscopic mo-
ment equations.

3.1 Gas Phase Equations

Our aim is to derive a closed equation set which can be numerically
solved using Large Eddy Simulation. This means that any scale which
cannot be resolved by the numerical mesh has to be removed from the
equations and be replaced by terms which mimic their impact on the
dynamics of the resolved scales. To derive the gas phase equations, we
make use of the ideas and the formalism given by Carrara and DesJardin
(2006) and Sirignano (2005, 2010) to unify the volume average method
and the filtering operation. As discussed in Section 2.5, this approach is a
direct micro- to macroscopic model, which is appropriate for continuous
phases but shows significant disadvantages for (dilute) dispersed phases.
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Gas and Dispersed Phase Equations

Hence, we do not apply this method to the dispersed phase, although
this has been done accordingly by Sirignano (2010), due to the reasons
discussed in Section 2.5.4. An additional aspect to those mentioned there
comes into play when considering polydispersity, particle collisions, coa-
lescence and breakup. To include these effects a separate population bal-
ance equation must be solved anyway. Using the stochastic approach,
they can be included directly into the kinetic equation, which is done in
this work (Section 3.2).

In the following, the phase filtering of the instantaneous gas phase field
equations is shown, closely following Sirignano (2010). Throughout the
following chapters, gas/continuous/fluid phase quantities do not have
indices. They cannot be mistaken for phase averaged quantities', since
the latter do not occur. Applying the (- >wT operator, as defined in Sec-
tion 2.5.3, to the Navier-Stokes equations yields filtered gas phase equa-
tions for the conservation of mass, momentum and energy as follows.

3.1.1 Continuity

d d

GE+ G low)” =0, 31)
., . _ d
5 00) + 5 (0p) =T, (3.2)

with the unknown term on the rhs, I, given by

I def / G(x — Xs)p(Xs, ) [M](XS, t) — us,i(Xs, t)} ds; . (3.3)

The interface normal component of the difference between the gas phase
velocity at the interface u(x, t) and the velocity of the interface us(x, t) is
the so-called Stefan velocity. Therefore, the mass flow rate density I gives
the mass exchange between phases and can be modelled using, e.g., the

li.e. “mixture quantities” based on a weighted average of gas and dispersed phase quantities, but can

represent gas mixtures of different species (also including the vapour fraction as in Section 5.3.2)
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3.1 Gas Phase Equations

D? law for vaporising droplets. x; is the subset of the coordinate vectors
x and locates the points on the interfaces and dS; are the components of
the normal interfacial area vector pointing into the gas phase.

3.1.2 Momentum

+ (pgi)*”, (3.4)

+ 004, (3.5)

implying that

/ G (x — X )0 (Xe) E)1ti (X, ) [t (%6, £) — 115 (x5, )] dS; ~ T t1gj(x, 1)

(3.6)
and
Mdef//G Xs ) Tij (Xs, t dS—//Gx—xs)p(xs,)dS +p89 Tija_g
a ax]-
- / / Gx —x5) ([T(xs, 1) = Sip (%6 1)] — [Fj(xe, ) — 85 (x5, 1)] ) dS; .
S
(37)

The first term approximation can be argued (Sirignano, 2010, p. 211),
however, as discussed before, we abstain from a detailed evaluation at
this point, since phase interaction source terms are detailed from the par-
ticle phase side. The second term M; represents the aerodynamic force on
the particles, which consists of pressure and viscous forces. Finally, the
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unknown correlation of sub-grid scale gas phase velocity fluctuations,
i.e. the turbulent stresses

T; = Pilillj — pu;l; (3.8)

can be closed by using standard single phase turbulence closures when
neglecting turbulence modulation by the particles and assuming that par-
ticles are smaller than the Kolmogorov scale.

3.1.3 Species

(55 0Yn)7 4 (5 (PYt) ¥+ (- (Yo = (o), (39)

=—(mj + jmj) +T€m , (3.10)
j

with jin’]. and ]fn] being the turbulent dispersion and turbulent diffusion
flux vectors, respectively,

Jin] = Qmeﬁ]' - <PYm”j>Vf , (3.11)
jfn,]- = 00 Vinj — (0Y Vi j) ¥, (3.12)

and the fractional mass exchange for each individual species

def //G X — Xs)0(Xs, £) Yo (X5, )

[Ll]'(xs, t) — us,j(xs, t) + lej(xs, t)] dS] , (3.13)

where €, is the fraction of the total mass flow rate density to species
m. Clearly, if the droplet consists only of one species (single-component
tuel), €r4er = 1, i.e. the full mass flow rate density, I, transfers to the fuel
vapour species, and €,, = 0 for all other species.
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3.1 Gas Phase Equations

Usually, the diffusion flux j; = pY,,,V,, ; of species m is approximated with
the spatial gradient of the species mass fraction Y,, times a diffusion co-
efficient ©,, of species m into the mixture (Fickian diffusion) as

) Y,
Ji = meVm,]’ — 0D a—x] (3.14)

Often, to simplify the system even more, ©,, is set equal for all species
On = 9, as long as the given physical phenomenon does not strongly
depend on diffusion velocities of individual species significantly differ-
ent from the others?. With that, Eqn. 3.10 can be simplified to

9 . 0 oo v 8 o Wy Oy
5;(00Ym) ‘i‘a—xj(GPYm”J) a—xj(QP@a—xj) = (pwWm) " + 3%, +17€m -

(3.15)

In turbulent flows, the molecular diffusion term can be arguably ne-
glected entirely compared to the turbulent dispersion
d Y. O,

a—xj(ep D——) K< - (3.16)

and jin,]. can be modelled as

E)Ym or Vi BY

=V o : ~ ~
imj = 00T mil; — (pYu1tj) "™ = Opvi——= 0x;j e Sc; 0x;

(3.17)
where the turbulent dispersion of Y, is actually modelled as an increased
diffusion using the turbulent diffusion coefficient v; as known from tur-
bulence closure. This turbulent diffusion coefficient can be modified us-

ing a turbulent Schmidt number Sc; to better approximate the physics
(see, e.g., Poinsot and Veynante, 2005).

I'* is formally different from I' and reads using the Fickian diffusion ap-

2A typical example, where this assumption is not valid, is the case of laminar hydrogen diffusion
flames.
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proximation

/ / G (X — x:)0 (X6, £)Yon (X6, 1)

VY (xs,t)

[u]-(xs, £) = 1s(xs, ) = D=

dS; ~I"e, . (3.18)

Finally the species transport equation reads

0, o J . _ N N S
il D+ Sct)axj)_<pwm> +Tey .
(3.19)

Summarising the unknowns so far yields the two phase interaction terms
I' and M, whose closure is shown along with the derivation of the dis-
persed phase equations, and the filtered reaction rate (o, )" of species
m, which closure is detailed in Chapter 5. In this work we consider single
component fuels only, so €,, = 1 given that m is the fuel vapour species.

3.1.4 Energy

The gas phase energy equation will be developed for the sensible en-
thalpy® h. Its connection with the inner energy e and the total energy
(without chemical energy) E = e + k/p, where k is the kinetic energy, can
be found in Appendix A.1.1. The balance equation for the sensible en-
thalpy of the gas phase reads

d d a‘71*.31d d

dp 0 oT ou; :
S TN ) g i mQOm . (3.2
T + 5%, (/\ax]) —|—T]axj +;pw Qn - (3.20)

3This choice has been made due to the fact, that the relevant packages of the CFD software Open-
FOAM, which has been used for the simulations, are based on the sensible enthalpy.
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Simplifying by using Fickian diffusion and neglecting radiation yields
after applying the phase filtering

(557 + (5 () - (Z o, >>”
dp 9 [ oT du, |
-+ o (Aa—) P4 (S <;pwQO>”, .21)

where the result will be dealt with term by term:

Temporal Derivative

(2 (ph)¥7 = 2 (0ph) + // Glx — B)p(&, DA(E sy (0 dS; (322

The unknown surface integral will be dealt with later on, along with fur-
ther surface integrals stemming from the other terms.

Convective Term

_ a%wpza]) - / [ Glx= 2@, Hh(E, (@b
+ aixj(<phuj>v}- — prlﬁ]) , (3.23)
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where the divergence of the turbulent energy flux a%((phuﬁ"f — Ophil))
is a purely single phase correlation, which can be modelled as

a ’ V.F _z ~ —~ a pl/t a od o // )
ax]'(<phu]> Qphu]) - ax]' Prt (89(?]' (Gh) Gh dS] !
S

assumed to be =0

(3.24)
where 7; is the turbulent viscosity provided by the turbulence model and
the turbulent Prandtl number Pr; is a model constant, usually with a
value close to Pr.

Species Diffusion

The heat transport due to molecular diffusion (Dufour effect) would yield

9 Nowyy Yyvr _ 9 Noyy yvr
_ // Gx-OY (@M%)hm) ds;,

(3.25)

but can be usually neglected (Gerlinger, 2005, p. 23), which is done here
for simplicity, i.e.

Iae. <Z<p©m<%)hm>v}—> ~0. (3-26)
]
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Pressure Term

The phase space average of the pressure term has been developed by
Sirignano (2010) as

dp\vr Jp op \yr
AT +u]8x]>

_ (9P 9P - 9p op \yF
__9<8t+-Q%> <&“&g P

+pat+/7k;x_' p(& Hus;(¢,t)dS; , (327

&Mgc w@>mmw¢wms

where the first term on the rhs is the total derivative of the filtered pres-

sure a a d ~
p p dp
9(8t+ %%> o (3.28)

S. is the pressure work done by the particle on the gas or vice versa in
case of mass exchange, i.e. a regressing or advancing interface. Otherwise
S, = 0 either. Following the argumentation of Sirignano (2010), A, is
proportional to the Mach number up to the power of 2 and S, to the
square of the Mach number as well, hence both can be neglected for low
Mach number flow.

Heat Transfer

The energy transfer due to conduction can be simplified to (Gerlinger,
2005, Poinsot and Veynante, 2005):

d ,, 0T yr 0 pvoh o [ pv /
0x; <A8x]-> 8x1<Pr ax]> ax] ( (ax] GhdS; ’
(3.29)
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where the surface integral is approximately zero and the sub-grid scale
fluctuation of the viscosity is neglected.

Viscous Dissipation

The viscous work is neglected (Gerlinger, 2005, Sirignano, 2010), i.e.

i\ vr

Chemical Heat Source

The standard enthalpy of formation Q,, is a constant, which yields

<Zpd)QO>W: = Z<PwM>W_—Qm : (3.31)

m

Finally the surface integrals are added and modelled as

oT oY -
// G (Ph (7/!]' - ”s,j) - /\a_x]- - Z (Pgma—x]hm>> ~ r<hs - le) 7
S

(3.32)
where T, is the filtered specific gas enthalpy at the droplet surface and
qq is the total specific heat transferred to the droplet, from which a part
is used for droplet heat up and the remaining for vaporising liquid, i.e.
Gg1 = Ahy + Gheatup- ANy is the latent heat of vaporisation.

The molecular heat conduction term and the turbulent heat diffusion
term can be combined using % = 1 + 17; and Pregg = Pr + Pr; (or ne-
glecting the molecular term entirely in turbulent flows), which gives the
equation for the sensible enthalpy of the gas phase as

0 ~ 0, _-_ 0 [QVet O , .=
31608 + - (0ph) — 5o (572 (o)

0D 0P _
=0 (—’9 | a]-a—@ + (s — Ggr) + Y {00u) Y Qi . (3.33)




3.2 Dispersed Phase Equations

In order to calculate the filtered gas phase density, the ideal gas law has
to be phase filtered, which is trivial for a single component flow, but be-
comes the opposite when dealing with gas mixtures:

Y
(p)"” = <0R;WmT>W,

—

Y, T

m

Y, T
p=pRY —, 3.34
P=RLy (3.34)
which becomes for mono-molecular gases

__R.
prpT, (3.35)

but must be closed (or trivially approximated) for multi-component
gases.

3.2 Dispersed Phase Equations

As a short reminder, within this work we exclusively deal with dispersed,
dilute two-phase flows, with mass loadings large enough to make two-
way coupling mandatory. Furthermore, we make the assumption that the
particle size is smaller than the Kolmogorov scale of the fluid, i.e. parti-
cles can be treated as point sources without major loss of accuracy, which
is widely done in this kind of two-phase flows, although the fulfilment of
this condition is often questionable in highly turbulent industrial flows.
These point source particles are often described in a Lagrangian frame of
reference, which we describe in the next section and which we use as a
starting point to derive a statistical model in the following section.
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3.2.1 Lagrangian Particle Transport Equations

The (theoretically) easiest and at the same time most accurate way to de-
scribe particle motion including thermal physics is the Lagrangian frame-
work, provided that the point source approximation applies. Assuming
spherical particles, i.e. no particle orientation must be considered, the

equations describing the individual particle position x\”, velocity v,

temperature Tr@ and change of particle mass m,ﬁ’” read

dxén) (t) (n)

=Y, (3.36)
d (”) t " " @x ")
Vp ( ) _ 1 )F(n) _l(vp>@x§,) _|_l(v,r)@x§,) + 1_p i g,
dt my! Pp Pp Pp
(3.37)

n 5 (1)

dT;S )(t) _ Q) eff (3.38)
dt m;")cpl

dm" (t)

Zr N a(n)
L ™ (3.39)

where the superscript (1) is the individual particle marker, p, the parti-
cle mass density, p and T the continuous phase pressure and shear stress
tensor, respectively, g the gravitational acceleration, cp; the heat capac-
ity of the particle material, here with index [ for “liquid”, and Ah, is
the latent heat. Pressure forces (pressure gradient and buoyancy force)
will be neglected, since the ratio of densities is small (<1 x 1073). Al-
ready neglected are the Saffman and extended lift forces (slip-shear lift
force, slip-rotation lift force (Magnus force)), torque (resulting from the
continuous-phase stress tensor), added mass and external body forces
other than gravity, near-wall effects concerning the drag force, compress-
ibility effects and rarefaction effects.

Properties with the superscript @x;”) represent gas phase properties in

the immediate (but hypothetically undisturbed) vicinity of the particle.
Those are relevant for the integral (mesoscopic or macroscopic) models
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of drag, heat and mass transfer, when dropping the full resolution of the
droplet and using the point source approximation instead. F(") represents

such an integral law for the drag force acting on a particle, which depends

. . . . . ()
on the particle relaxation time Tém, the relative velocity u®» — V;(gn) be-

tween the particle and the continuous phase at the particle location:
()

T;”)

fi(u®” — vy, (3.40)

where f; is a function of various properties and parameters depending
on the flow regime. f; = 1 for Stokes flow around rigid spheres and

fi=(1+0.15Re}*) (3.41)

including non-Stokes flow, here using the law of Schiller and Nauman
(1935)*. The particle relaxation time

pDm)?
o = P (3.42)

1817@x§7n)

describes how fast the particle adapts its motion on changes in the con-
tinuous phase velocity. The particle Reynolds number

(u@xg,n) . V;n))D(n)

Re, = (3.43)
P n 4
1/@x; )
(n) . . . . .
where v®% " is the continuous phase kinematic viscosity and D" the

particle diameter, is primarily used as a classification measure for the
different flow regimes around a particle, i.e. creeping flow, laminar
(un)steady/(non)symmetric flow, turbulent flow, etc. It appears in many
drag laws, since the drag force depends significantly on the flow regime
in most cases.

Q'Z("e)ff is the net heat transfer rate to or from the droplet due to convec-
tion, mass transfer or radiation, which is effectly used to heat up or cool

*Vaporisation can significantly influence the drag, e.g. Fendell et al. (1966), but is not considered here
and must be left for future work.
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down the droplet. As already seen for the momentum exchange between
phases, heat exchange is described with the help of integral laws as well,
which distinguish between cases for heat transfer only and coupled heat
and mass transfer (i.a. vaporisation and condensation). Considering heat
transfer only, the total heat convectively transferred from the continuous
phase to the droplet is

O = NugD®A®” (124" — (") , (3.44)
with Nu = 2 for Stokes flow.

The heat loss/gain due to vaporisation/condensation could be incorpo-
rated just by adding the product of the mass transfer rate and the latent

heat, i.e. Qz off = QZ — 1M1 M)Ah( ). This approach, however, does neither
consider the coupled behaviour of both processes nor the impacts of the
presence of vapour in the vicinity of the droplet. A more comprehensive
model of coupled heat and mass exchange in droplet vaporisation is the
well known law given for spherical, liquid droplets by Abramzon and
Sirignano (1989), which basic equations for heat and mass exchange rate
read

ax” ax)  m(n)
Crp ™ —T,") .
Ql off — ( LT o P _ mfﬁ)Ahé”) , (3.45)
@x( ") (n)
i) = Nu'm™ " D In(14+BY7 ), (3.46)
Po
] )
i = Sh*7p® DD™ In(1 +BL ), (3.47)

where the mass exchange rate 11" is defined to be positive when point-
ing from the liquid state towards the vapour state and can be derived
either from heat conduction physics (Eqn. 3.46) or from species diffu-
sion physics (Eqn. 3.47). Both must be the same in a real, coupled heat

and mass transfer problem, i.e. m%”) = mg’;). The logarithmic terms

) )
In(1 + Bf/[ P} and In(1 + Bl@? ) indicate that Stefan flux is considered

(n) (n)
(instead of Bs[xp and B?x” solely in case of neglecting Stefan flux).
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By is the Spalding mass transfer number

(n)
@x

o Yrs — F,of
M 1 - YF S

and B; the Spalding heat transfer number

(m) (n)
CPSDXP (T —Ty,)

T+ G
where the surface fuel fraction can be calculated with the help of
-1

BT:

(n)
Warr [ p®

Wre PFEs

YF,SZ 1+ -1

and the surface vapour pressure using the Clausius Clapeyron law

e[ ()
PF,s Pref €Xp R Tp,s The f ’

which states, that the vapour pressure of a liquid at a given temperature
can be related to the known vapour pressure at a reference temperature.

Again, setting Nu* = 2 and Sh® = 2 is valid only for Stokes’ flow
(S). For non-Stokes flow (nS) the iterative procedure of Abramzon and
Sirignano (1989) using the Frossling correlations has been applied in this
work, which consists of modifying the Nusselt and Sherwood number,
Nu* and Sh*, respectively, as
Nuo -2

@x\"
p
FT

Shy — 2

(n)
@xp
PM

Nu* =2+ with Nug = 2+ 0.552Re,*Pr'”, (3.48)

Sh* =2+ with Shg =2+ 0.552Re,”Sc"” . (3.49)

> Throughout the thesis, the splitting of source terms into two terms corresponding to Stokes flow,
termed Stokes part (S), and flow with higher particle Reynolds numbers, termed non-Stokes part (nS), does
not strictly refer to the actual Stokes flow or creeping flow around a sphere, i.e. Re < 1, but more generally
for a splitting around particle Reynolds numbers of the order of unity. In many correlations, however, the
additional term compared to that given for pure Stokes flow does contribute asymtotically most often.
Hence, a clear separational Reynolds number cannot be given anyway. Contributions due to free convec-
tion are not considered.
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Besides the Frossling correlation
Shg = 2+ 0.552Re'?Sc'”?, (3.50)
the Ranz-Marshall correlation is widely used, which reads
Shy =2 + 0.6Re'?Sc'”* . (3.51)

Other correlations exist, but they are not of further interest here. A sum-
mary can be found in Kolaitis and Founti (2006). For completeness the
Prandtl and Schmidt number are given by
vocy @x" v
Pr = T ~ const. and Sc = D
respectively, assuming temperature independence of both®. Simplifying
yields

(n
@xp )

= const. , (3.52)

1
Nu* = 2 + 0.552 Re'/?Pr'/*——

NE)
F
/2
ax®  _(n) 1
_oqoss [ S s )M pps -, (3.53)
1/@xp FT@xp
1
Sh* =24 0.552Re"*Sc"*—
@x
E’
ax™ (n) () /2
X n n
_oioss | —w )D et (3.54)
' ax\ ax\”’ '
v &%p Fo
where Fr\ are the correction factors for the film thickness
(n)
ax(" ax o, n(1 +B(T@/’1§Z )
Fry = (1+ Brum ) 0 (3.55)
Brm

®That does not mean, that the gas phase quantities v, p, cp and A are considered as temperature inde-
pendent. In fact, however, this will be the case as shown later on, except the density and heat capacity
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(n) (n)
: @ ax,” . . . : .
For a given By,” , By " is iteratively corrected with help of Nu* and

Sh™ until the desired accuracy is reached in terms of equality of mass

flow rate densities, m(T”) = mg’? (see Abramzon and Sirignano, 1989, for

()
further details). With the help of the corrected heat transfer number B? P

and Eqn. 3.45, the part of the heat transfer rate into the droplet which is
completely used for heating the droplet, i.e. Ql(l"e)ff, can be calculated.

Finally, the Lagrangian particle equations for particle velocity and tem-
perature development read

d (n) 1 "
‘a,ll; =W (1+0.15 Re0'687)(u@x§’) — Vi,")) +g
p
) RO 0.687
1 @x @y’ _ D(n) " ;
St s W™ i) g
pp D v
(3.56)
AT @x," Tex) _ )
po_ 1w 2 () — I A
dt () cp; M ax" v Bt
mp BT p
(3.57)

Discussion of non-equilibrium vaporisation rate models, e.g. based on
the Langmuir-Knudsen law (Bellan and Summerfield, 1978, Bellan and
Harstad, 1987), which might give better results in certain circumstances is
given in Miller et al. (1998). Further literature on droplet vaporisation as-
pects can be found, e.g., in Hubbard et al. (1975), Sirignano (1983), Sazhin
(2006), Birouk and Gokalp (2006).

3.2.2 (Filtered) Number Density Function and its Transport Equation

Dispersed two-phase flows using point-source particles could be directly
simulated by solving the Lagrangian particle equations shown above in-
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dividually for each physical particle present in the configuration con-
sidered. This would represent a complete description of the dispersed
phase, however, only of a single realisation. Since the interest is usually
not on the individual particle motion of one realisation, but on the sta-
tistically most probable” flow field, effort has been undertaken to find a
formalism and method to describe particle motion and development in a
statistical sense. On the one hand, a statistical description improves the
statistical noise, on the other hand it can reduce the computational cost
significantly, since for practical simulations, physical particle numbers of
1 x 10° - 1 x 10” and higher have to be handled, which can become quite
expensive if not impracticable otherwise.

To derive a statistical formalism, a kind of indicator function must be
defined first, which indicates - spoken in terms of two-phase flows - par-
ticles depending on their location and physical properties (the so-called
phase space in multiphase flows and sample space in single phase flows).
In case of the point-source particle formulation, this indicator function
can be formulated with help of delta functions and is usually called fine-
grained density (see Pope, 1985, p. 127), O’Brian (1980), Hyland et al. (1999)
or (fine grained) phase space density especially in two-phase flow applica-
tions (Hyland et al., 1999, Mashayek and Pandya, 2003).

Considering the mesoscopic quantities, size (diameter) D, velocity ¢, and
temperature {, of particles, that is the phase space Z = D, ¢, {, the fine-
grained density function, including the obvious variation in physical and
time space x, t, reads

Wé’”(D, Cp, CpiX, t) =
5(x=x" (£)3(D = Dy (1)d(cp — v (1)5(¢ — T (1)), (3.58)

"Here, “most probable” still refers to an instantaneous and local state. Obviously, the interest goes
further into (spatially and /or temporally) averaged statistics/fields.
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with

5(x; — x (1), (3.59)

n
5(cpi—oV)(H) - (3.60)
This fine grained density function is a summarising formulation for all
particles, which, still distinguishes each particle, i.e. there has been no
averaging process or statistical simplification done so far.

To obtain a kind of probability density function, one has to gather a
large number of particles described by the fine-grained PDEF, sort them
by the phase space coordinates and count identical particles in terms of
the phase space. Two methods basically exist to conduct this procedure.

First, commonly applied in single phase flows (O’Brian, 1980, Pope, 1981,
Zhou and Pereira, 2000, Gicquel et al., 2002, Sheikhi et al., 2003), single
phase reacting flows (Pope, 1985, Gao, 1993, Colucci et al., 1998, Jaberi
et al., 1999) and two-phase flows (Hyland et al., 1999, Mashayek and
Pandya, 2003, Carrara and DesJardin, 2005, 2006, 2008), a spatial sum-
mation (or counting) process of phase space points (concrete particles)
yields a probability density function on the phase space considered, the
so-called filtered density function (FDF).

Second, in dispersed particle flows, a pointwise, phase space conditioned
summation over a large number of two-phase flow realisations H g is
usually conducted, mainly to overcome the issue, that the statistics may
become very poor for dilute dispersed phase flows when using a spa-
tial summation only. In single phase flows, this might be statistically
sufficient, since in a typical LES cell there are enough different samples
present for each sample space coordinate. In two-phase flows, especially
in dilute dispersed flows, spatially based statistics from a single particle
phase realisation H, might become very poor, since the particle number
can become very low for a volume of the size order of a computational
cell. Therefore, it is meaningful to perform a collection over a large num-
ber of particle phase flow realisations for a given single phase realisation

65



Gas and Dispersed Phase Equations

H ¢ or, most general, for a large number of two-phase flow realisations
Hrgep-

Both approaches, for single and two phase flows, are briefly sketched
using two concrete examples. First, using the notation of Colucci et al.
(1998), who considered turbulent reacting single phase flows, the filtered
density function Pr(¥;x,f) for a species mass fraction array ® can be
defined, which is a spatial average over the fine grained PDF, therein
named o(Y, ®(x,t)) = 6(Y — ®(x,1)).

P(Ex ) = [[[ Gix=Detizndz, (3.61)

with ¥ is the mass fraction sample space, i.e. all possible values of ®. As
a second example, now given for dispersed phase flows with the nota-
tion of Février et al. (2005), an ensemble average over a very large num-
ber Ny¢p of two-phase realisations H s, is conducted, which gives the

one-particle, ensemble based number density function® (EbNDF) f;§1> (cp;x, t)
“defining the local probable number of particle centres at the position x,
with a given translation velocity v, = ¢, at time t” (formulation taken
from Février et al., 2005):

Np
Y Y W epxt Hiy)| - (362)
Hf&p n=1

(1) : 1
c,;x,t) = lim
fp ( P ) Nigep = o Nf&P

frgl)(cp ; X, t) is constructed pointwise, this means that for Eulerian com-
putations the corresponding (meso- or macroscopic) equations have to
be averaged or filtered to be resolved by the computational mesh, i.e. ei-

ther fé” is filtered before taking phase space averages (FDF approach)
and hence the moment fields are smooth at the filter scale level (Bini and
Jones, 2008, Pandya and Mashayek, 2002) or the macroscopic moment
equations obtained from the phase space integration are filtered after-
wards. The latter has been done, e.g., by Riber et al. (2005, 2006).

8We use this term to distinguish the different NDFs properly. Usually, solely the term NDF is used for
ensemble average based density functions.
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In this work, we follow the approach by filtering first the ensemble of fine
grained density functions and afterwards integrating over phase space
(as Fox (2012) suggests as the more rigorous option). Details on filtering
of a PDF can be found in Bini and Jones (2008) for example.

The fine-grained density function conditioned on a single continuous
phase realisation H ¢ (Février et al., 2005, Sec. 3.1) reads

W,gn)(D, Cp, CpiX, t, Hp|Hy)
= 5(x—x"(1))6(D — DY (£))6(c, — v (£)6(Z, — T (1)) . (3.63)

Applying a sample accumulation” over a large number of particle phase
realisations and a spatial filtering on the fine-grained density function
yields

F(D, ¢y, Tpix, HHy)

Np
- /// G(X B g) lim LZ Z Wzgn)(D/ Cp/Cp;é‘, t,Hp|Hf) dg ,
00 Np H

Np ™ p n=1

(3.64)
where we refer to f (D, ¢y, Cp;x, t|Hy) as a filtered, ensemble based number
density function (FEbNDF). The notation f we use here instead of f(!)
is the more used in publications after Février et al. (2005) but refers to
the same quantity. Since the dispersed phase density is usually approx-
imately constant for single-component liquid fuels, no Favre average
is needed. f (D, ¢y, Cp;x, t|Hy) is a one-point NDF, which is, as shown
by Février et al. (2005), completely sufficient at least for cases without

particle-particle collisions, since particle motion is only correlated via the
fluid flow field.

This operation may be defined as an operator consisting of sample accu-

9We use the term sample accumulation instead of “ensemble average” when concerned with creating the
NDF to account for the fact, that actually no average is conducted but only a summarising description for
a large number of samples is used.
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mulation

N,
limps, - o ! 5 ; (D Cp, Cpi X, t, Hp|Hy)

f( /CPICP/'X/t‘IHf>

<' ‘Drcpfgplef)g =

and phase space conditioned, spatial filtering (Eqn. 2.27) 02
(-ID, ¢y, T,V // G(x—¢) - dz, (3.66)

which yields
(1D, ey, 8o Hp)™" = (1D, ey, 0p Hp) D, €, G )T (3.67)

where - can be any variable or function. A value obtained from this oper-
ation is noted with ~ as

P(D, ¢y, Tpix t, Hy) = (W(D, ¢, 3pi &t Hy) D, €y, Lixo b, Hp)EF . (3.68)

With help of this operation a transport equation for f (D, ¢y, Cpsx, t|Hy)
can be derived (see Appendix A.1.3), where the Lagrangian derivatives 4

are to be replaced using the Lagrangian particle transport equations 3.36
to 3.39. It reads

0 = 0 ¥
atf(D Cp, Cpr X, t‘%ﬂ 3 j(Cp,jf(D,Cp,Cp;X,ﬂHf))

(n)
0 dv
=— 3, (<< dt LD, ¢p, 0, Hy) F(D, cp, Cpix, t|Hs) D, €, Tp M) )

) drs .
N an << |D CP’CP'Hf> f(D Cpr Gpr X, t|Hf)|D Cp,gp,’Hf
o (,dD™
3D (<< D, ¢y, o MY F(D, €y, Cpix, tHf) D, €p, Opy Hy) )
(3.69)

68



3.2 Dispersed Phase Equations

Finally by simplifying the notation using D, c,,(, = Z, i.e. I is the set
of phase space variables (or internal variables), dropping the explicit no-
tation of the dependence on (;x,t) and neglecting the notation for the
conditioning on H ¢, Eqn. 3.69 becomes

O J f o (,.dD"
o (I)Jra—%(cp,jf(I))@((ﬂ = I>5|I>]-‘>

(n)
2 (<f<d%z>f|z>f> Y )

where Einstein summation applies for index ;.

To keep things clear, we explicitly remind that

1. V;") = V;(?”) (x,t) is the individual, physical particle velocity. In gen-

eral, variables with superscript (") represent properties of individual
particle, whereas

2. ¢y is the internal variable or phase space coordinate of the particle

velocity, i.e. V;") are concrete values (samples) of the phase space c,,.

The same applies to D™ and D, T;g") and (, as well as xé”) and x,

although the latter is only a “pseudo” phase space variable.

ax (3.36)
3. Actually, (%2-|D, ¢, 5,67 "= (v\V|D, ¢, ()67 = cp.

3.2.3 Solution Methods and Closure of the RHS Terms

In order to solve Eqn. 3.70, two different types of methods are usually ap-
plied. First, the NDF can be represented and transported by a sufficiently
large number of stochastic particles in a Lagrangian way (which must not
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be mistaken with the real physical particles), or second, by solving trans-
port equations for the moments of the NDF up to a certain order usually
implying further closure assumptions (i.e. the different kind of moment
methods). Dependent on the type of solution method applied, several ap-
proaches have been proposed for the closure of unknown terms due to
the ensemble average or the LES filtering, which will be dealt with in the
following sorted by Lagrangian and Eulerian methods.

Lagrangian Simulations

In the Lagrangian particle tracking methods, the phase space considered
remains fully resolved, i.e. the full NDF is kept and represented by a suftfi-
cient large number of stochastic particles, as such that the actual shape of
the NDF can be reconstructed appropriately throughout the phase space
from the ensemble of particles at any physical location in the given do-
main. The only closure needed is that due to particle-fluid interaction ei-
ther on sub-grid scale level when using Large Eddy Simulation or on the
non-resolved spatial and temporal interaction in RANS-type simulations.
The closure in Lagrangian two-phase LES reduces actually to the deter-
mination of the sub-grid scale fluid phase velocity at the physical posi-
tion of the particle (the particle trajectory is then fully resolved by using
sufficient small time steps for solving the Lagrangian particle transport
equations and simultaneously updated fluid phase velocity). Further de-
tails and examples have been given in Section 2.6.1.

Eulerian Simulations

Eulerian solution of the NDF transport equation is usually based on the
moments of the NDF. This is however not yet the topic here, but will be
discussed in detail in Chapter 4. In this paragraph, a precurser step is
shown, which is necessary to be able to integrate over the phase space
to obtain moment transport equations. This step focuses on the eval-

o do")
uation of the right hand side terms of Eqn. 3.70, i.e. <f(%\1'>5|1>f,
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<f<%\l’>5]l'>f and (f{’ﬂzli L|Z)¢€|Z)”. They consist of the combined op-
eration of phase space conditioned sample accumulation and spatially
tiltering acting on the Lagrangian derivatives, i.e. the derivative follow-
ing the particle (Balachandar and Eaton, 2010). To handle this operation
correctly, we evaluate the different aspects in detail.

It must be first emphasised, that we still keep the full phase space, i.e. we
do not undertake any averaging procedure on particle velocity, size or
temperature at this point, since we sum up only particles with identical
phase space position, but from different realisations or spatial locations.
This means that the phase space variables are invariant to both opera-
tions, because both are conditioned on phase space. However, that does
not necessarily mean that the derivatives of the phase space variables are
invariant for identical particles in phase space as well. Fortunately, when
replacing the Lagrangian derivatives with help of the Lagrangian particle
transport equations 3.37 to 3.39, only phase space variables and gas phase
quantities remain, which in turn implies that both operations affect only
the gas phase quantities being implicitely contained in the derivatives.

Let us consider now the gas phase quantities. As mentioned before, we
consider the case of an ensemble of a large number of particle phase re-
alisation for a given gas phase realisation. This means that the gas phase
properties are locally invariant to the sample accumulation operation, i.e.
there is no variation to be considered locally. Undergoing the spatial fil-

tering, however, gas phase quantities (with superscript @Xg’n)), although
conditioned on the same phase space point, are gathered from different
locations in physical space, i.e. identical particles in terms of phase space
can be surrounded by different gas phase conditions. This means that the
gas phase sub-grid scale fluctuations must be incorporated at this point.

With that, the source terms can be generally split into an averaged deriva-
tive and a residual component referring to each particle:

D), @71

Q..|Q_A

)41 T) — f{

S

FEITE D) = FLEND)™ + (4

71



Gas and Dispersed Phase Equations

or using a “prime component” notation, here the fluctuation of the
derivative, which is known as phase space diffusion current

FEITENT = e + (DY IT) 372)

The prime refers to the gas phase quantities varying within the support
of the filter kernel, i.e. the physical space.

Development of closure for these type of terms has a long history. Orig-
inally concerned with ensemble averages over two-phase flow realisa-
tions (actually only the gas phase realisations, since phase space condi-
tioned ensemble average over particle phase realisations does not con-
tribute any randomness), and without any further average or filtering
operation, sophisticated closure methods for the phase space diffusion
current are

* Kraichnan'’s Direct Interaction Approximation (DIA) (Kraichnan, 1958,
1959). Applied by Reeks (1980) to Stokes drag and higher particle
Reynolds numbers based on a correlation by Serafini (1954).

* Kraichnan'’s Lagrangian History Direct Interaction (LHDI) (Kraichnan,
1965, 1977). Applied by Reeks (1983) to Stokes drag and other meso-
scopic particle-fluid interaction forces (Reeks, 1992). Pandya and
Mashayek (2003b) proposed an extension to non-isothermal flows,
i.e. adding the droplet temperature to the phase space and corre-
spondingly a closure for heat transfer between the droplet and the
fluid phase.

e the Novikov-Furutsu-Donsker formula (Novikov, 1965, Furutsu,
1963, Donsker, 1964). Applied by Derevich (2000) and Hyland et al.
(1999) to Stokes drag, by Zaichik (1999) for general drag and heat
transfer and by Pandya and Mashayek (2003a) to non-isothermal
flows as described in the previous item.

* Van Kampen’s method (van Kampen, 1997). Applied by Pandya and
Mashayek (2001, 2003a,b) to non-isothermal flows.
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When considering an ensemble average over a large number of particle
phase and(!) continuous phase realisations as well as an additionally av-
erage or filtering needed due to the numerical method, as a result the gas
phase properties would have to be split into three components, a mean
and two residual components, first the pointwise deviation of the indi-
vidual gas phase realisation value to that of the mean of all gas phase
realisations and the deviation of the local realisation mean values to their
spatial mean counterparts. To the author’s knowledge, this has not been
attempted so far. However, if one considers only a large number of parti-
cle phase realisations conditioned on a single fluid phase realisation, LES
filtering remains (in our case) the only operation producing unknown
residual component correlations. Using the idea of a certain similarity be-
tween ensemble average over realisations and ensemble average over a
spatial volume, Pandya and Mashayek (2002) took Reeks” ensemble clo-
sure (Reeks, 1992) and developed a similar closure for the phase space
diffusion current based on an “ensemble of spatial distributed samples”.
This closure, however, is for a single two-phase flow realisation only.

When using a large number of particle phase realisations for a given
fluid phase realisation, which is our case, the same closure as proposed
by Pandya and Mashayek (2002) could be adapted. All of these closure
methods, however, are neither straightforward to integrate over phase
space, nor to implement in CFD codes (due to the time integrals in the clo-
sure). Details on the former issue are given, e.g., in Mashayek and Pandya
(2003) and references therein (Zaichik, 1999, Derevich, 2000). Considering
one of these closures was out of the scope of the current work. Therefore,
we follow the strategy to validate the implemented models without con-
sidering the phase space diffusion current!’. This means that, instead of
a particle number weighted mean of the individual gas phase contribu-
tions, an arithmetic mean of the gas phase quantities is used. As we will
see in the following, the term (4 |Z)¢” itself, implies challenging difficul-
ties of proper closure, nevertheless.

1OFollowing the strategy to integrate first over phase space (for a given fluid phase realisation) and
filtering afterwards the moment equations (e.g. done by Riber et al., 2006, Boileau et al., 2008, Masi et al.,
2008, Riber et al., 2009), the phase space diffusion current does not appear in the previously presented
form but other unknown correlations appear, which needs closure. The problem just relocates.
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Hence, for the remaining term (£|Z)¢*, non-filtered quantities can be de-
composed into a spatial mean and a residual component, as usually done
in single phase LES simulations, and using the Favre average when ap-
plicable. Some macroscopic closures have been proposed for some of the
unknowns, but since we are at the mesoscopic level, appropriate closures
must be found. Tenneti et al. (2010), for example, proposed a mesoscopic
drag model. A brief discussion on mesoscopic models for collision can be
found in Fox (2012).

The source terms will be dealt with one by one starting with the source
()
do'"!

term (%\I )¢%, in our case representing the drag between phases and

the gravity. When starting with the Stokes part only
(n)

do, " 187" gy
piS | \eF _ 1100 @xp” () EF N TVEF
S = LS oD ()
18 (m, @xi n
= S W = DID g,

we directly see that it is evident to drop correlations containing the gas
phase viscosity (and all other gas phase quantities except the velocity),
otherwise the chance to be able to close the term vanishes rapidly. Thus,
this term becomes

_189p
~ oD

(@ = cpj) + &/ (3.73)

where Favre average applies to the velocity, i.e.

™ (T = o oD g G
Note that the averaged gas phase quantities are still conditioned on phase
space o(Z). In line with neglecting the residual component due to spa-
tial filtering conditioned on phase space, we neglect also the dependence
on phase space. That means we assume the gas phase quantities to be the
same for all droplet classes (i.e. invariant to the phase space integration):

(n)
(W |T)¢7 ~ a(Z;x,t) =~ a(x,t). The same applies to Favre averaged
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quantities. Hence, the notation using , and ¢, respectively, implies this
simplification.

The non-Stokes extension for the drag force (Schiller and Nauman, 1935)
is a non-linear term in gas phase velocity

(n) 0.687
do™ 5 18 @i ‘u@xp —_ oD (n)
7]r ;7 P 7 @x n
< Z;n ‘I>5]: = <Ol5p D(n)Z J - (f)] (uj P Z);/j))|l'>5]-'
p v
180067 o (1 o) - ax ()
_ @x,’ ] P Xp ' (n EF
= 015W< 4 V@X;n) (u] vp,] ) ‘I> 7

where we replace non-filtered with filtered quantities”, yielding

1895 /i — e D\ 67
~ 0158 (‘”f il ) (@ — ) - (3.75)

pdDz 1%

Keeping the full decomposition of the fluid velocity is outlined in Ap-
pendix Eqn. A.28.

The combination of both parts yields the filtered expression for the drag
term

do'") 187p 7 — ¢p)|D\ "

When dealing with the drag term, we have seen that keeping each lo-
cal variation of the gas phase quantities is virtually impossible. Thus, we
do not make any further attempt to keep and model gas phase quantity
correlations in the subsequent source terms for heat and mass transfer.
Non-filtered quantities are replaced simply by filtered quantities. The few

Considering that we will solve an equation for the M) flux only, which represents the momentum
of the particles, i.e. mainly that of the large, inert particles, this assumption relaxes to a certain amount
since the inertia of large particles effectively filters out the small scale fluid eddies.
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intermediate steps from (f(‘ﬂt;—’gt)|l'>‘€|l'>JT and (f (0" T)¢|Z)F to the fi-
nal terms shown below are given in Appendix A.1.4. The approximated
source terms, with considering higher particle Reynolds numbers, read
for the heat transfer

arts’ .. 124 - In(1 + Br)
~—— (T — _—
GG DT~ e (T =g
APr” /(@ —c,) 2 1
552 - P T—0,)———
1209
_ oD% — T~ Ah (Cp) In(1+ BM)
~ 1/2 ~
—0.552 - 6 Ah, -
D /zpdcpl v (6) (1+ Bm)%7
(3.77)
and the mass transfer
dD(
(1T e — In(1 + By)
Pd
1/3 ~ 1/2 5
o . Sc” ((a— cp)> Bum
—0.552.-2—® = . (3.78
pd D1/2 ( i (1 +BM>O'7 ( )

If at all, despite the complex models mentioned above, only global mod-
els might be practical in the form of, e.g., i’ = ..., where the author is not
aware of a proposal for such a model.

To summarise, in this chapter the derivation and closure of the gas phase
equations has been shown, where the closure of the phase interaction
terms was skipped. Their closure will be achieved based on the dispersed
phase equations. The latter were derived from a stochastic approach up
to the point of formulating the transport equation of the particle number
densitiy function. Its integration and further treatment is shown in the
next chapter.
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4 Moments Model

Solving a partial differential equation for a function, as Eqn. 3.70, is not
a trivial task for which various methods have been developed. Besides
direct (mathematical) solvers, evaluating the NDF transport equations in
practical CFD is either done by solving for several discrete realisations
in Lagrangian or Eulerian framework, both on the mesoscopic level of
modelling, as described in Section 2.6.1, or on the macroscopic level by
transporting certain information about the NDF (see Section 2.6.2). To be
clear, the term Eulerian refers only to a mathematical framework indepen-
dent of any model or scale. That means, there exist mesoscopic models
whose equations are written and solved in an Eulerian frame of refer-
ence and there are macroscopic models, e.g. the moment methods, where
the quantities are treated as Eulerian fields and are solved for in Eulerian
framework. In this chapter, the macroscopic Eulerian moment methods
are the object of further interest.

4.1 Introduction to the Moment Formalism

First, we give the basic definitions, concepts and operations to derive
a macroscopic model from the mesoscopic kinetic equation of the NDF
(Eqn. 3.70). This is done by integrating this equation over phase space,
which yields quantities commonly referred to as moments. The macro-
scopic model consists of transport equations for these moments, describ-
ing their evolution in time, physical and phase space, and closures for
several (mathematical) closure problems. As stated before, the step from
the mesoscopic to the macroscopic model does (theoretically) not require
physical modelling, but is a mathematical closure problem. To overcome
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this closure problem, however, further physical simplifications in addi-
tion to those made in the step from the microscopic to the mesoscopic
model are required, which, mathematically formulated, allow the clo-
sure of the unknown terms. These connections between the mathemat-
ical closure problem and corresponding physical simplifications will be
highlighted in the following derivations.

4.1.1 General Moment Definitions

Moments are characteristic properties of a distribution function, which
in turn is entirely specified in case that an infinite number of moments of
the distribution is known. Reconstruction of a distribution from a given
(finite) set of moments is called the moment problem. In the literature three
types of the moment problem are distinguished, depending on the un-
derlying support of the distribution. The moment problem in its most
general version with an infinite support of the distribution is called Ham-
burger moment problem, when constrained to a non-negative support
only, Stieltjes moment problem (in Stieltjes, 1894, p. 48), and in case of
a certain interval, Hausdorff moment problem. For our purposes this clas-
sification is not of importance, although a classification would be inter-
esting since in multiphase flows, the underlying variables would require
all three types of support due to their physical correspondence, i.e. par-
ticle sizes are always non-negative, velocities both positive and negative,
etc.

A more relevant classification can be conducted concerning the mo-
ments itself. Of common concern are moments about zero or about the
origin (sometimes also called raw or crude moments or Stieltjes moments
(Wright Jr., 2007)) and central moments or moments about the mean. Since
there is no established agreement how to refer to the former one, the gen-
eral expression “moments about zero/the origin” (as used, e.g., in Ken-
ney, 1939) will be used from here on in conjunction with the term “central
moments” for the latter type.
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Mono-variate moments about zero, i.e. based on a single sample property
x, are defined as

M® = /xkf(x)dx, (4.1)

with the first order moment (k = 1) is the so-called mean or expectation
value usually noted u with y = u() = MU, given that f(x) is a prob-

(o]

ability density function, i.e. it has the characteristic that [ f(x)dx = 1.

Commonly known moments about the mean are the variance (k = 2),
skewness (k = 3) and kurtosis (k = 4), etc., defined by

p = [ (x=wfldx. @2

The different moment definitions are associated with certain advantages
and disadvantages. Central moments are widely used in all kind of sta-
tistical description, whereas especially in multi-phase flows, the use of
central moments can be advantageous as it will be discussed in the next
section. Both types of moments are equivalent in terms of information
about the distribution and can be related to each other, e.g. the variance
02 can be expressed in terms of moments about zero by

2_ () _ _ M
v =H MO

MOM® — (MO)2 MO (MO
(M()2 MO (4.3)

Joint moments or multivariate moments, i.e. moments of multi-
dimensional functions f(x), feature a weighting with powers of each co-
ordinate x = (x1, x, x3,...) ' :

M) — / > -/x’fxlzxg”...f(x)dx. (4.4)

The term co-variance commonly used usually refers to the bi-variate mo-
ment of first order M1,
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4.1.2 Moments in Multiphase Flow Framework

Central moments are widely used in PDF methods for combustion mod-
elling, turbulence modelling and multiphase modelling. The mean and
variance of a sample of values are moments commonly known, since
they are often applied when considering statistics of a given problem.
Especially in two-phase flows, however, the use of moments about zero
is significantly advantageous, mainly due to two reasons. First, moments
based on a phase space which does not include the particle velocity must
be naturally transported with different velocities. It is much easier to
define these velocities and to derive moment transport equations ana-
lytically using moments about zero. In continuous, single phase flows,
this problem does not occur. The often used mean and variance of mix-
ture fraction or progress variable in PDF-based combustion models can
be naturally convected with the gas phase velocity, since the underlying
distribution refers to gas phase properties. In two-phase flows this holds
only for perfect tracers (St < 1), i.e. particles which follow perfectly the
continuous phase. As soon as the distribution is based on particles hav-
ing a non-vanishing, locally non-uniform slip velocity to the continuous
phase (mainly due to their size dependent inertia), each moment must
be convected with its own so-called moment transport velocity. Second,
considerably advantageous is the fact that in dispersed phase flows the
one-dimensional low order moments about zero based on the particles
diameter! only,

M®) = / D*f*(D)dD, (4.5)

0

can be assigned to physical properties of the particle population:

M: total number of particles per unit volume
or the total particle number density

MW: sum of particle diameter

'Here it is implicitely assumed that the particles are spherical.
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M®: total surface area per unit volume
or the total particle surface density

Tt : :
EM ®): total particle volume per unit volume

or the local volume fraction of particles

This allows a direct assessment of the plausibility of the experimental or
numerical data and often a straightforward comparison. In definition 4.5,
the support can be constrained to non-negative values, i.e. the lower in-
tegration boundary can be set to zero, since particles with negative diam-
eter have no physical correspondence. Hence it makes no sense to define
a function f*(D) for negative values of D. The same applies for other
so-called internal variables (i.e. physical properties which vary from par-
ticle to particle), e.g. velocity, temperature, shape, etc., where the support
of the distribution should be adjusted to the interval physically possible,
e.g. temperatures must be larger than 0 K. The explicit notation of these
limits are omitted from here on. Other internal variables describing the
size of a particle are in general equally usable, e.g. particle surface or par-
ticle volume.

Using the diameter space as an example, the difference between moments
about zero and moments about the mean (central moments) is exempli-
tied next. The moments about zero are obtained from the basic integral
by definition, the central moments by a decomposition into a mean D
and a residual component D’, i.e. D = Djy + D’. For the first moment
about zero, which is the mean, the two different approaches read

(1) (0)
MU / Df(D)dD —  DyM (4.6)
First moment First central moment

about zero (Mean)

whereas for the second moment about zero, which corresponds to the
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variance, they become

2 D?*f(D)dD — DyyD /D’ )D'") £(D)YAD .
(—/ — Do 10M —|— f( )d

Second moment Mean Component ~~ -
about zero Second central moment
(variance)

(4.7)
Reformulating the variance using D’ = D — Dy, its nature as a central
moment becomes more clear:

/D’D’f(D)dD — / (D — Dy)* f(D)dD . (4.8)

In the previous relations, the quantity Dy is used, which is a specific mean
diameter of the particle size distribution. Mean diameters can be defined
in general using the moments about zero as

1
M@\ P
Dub — (W) . (49)

Dependent on the physical particle shape or the specific application, dif-
ferent variations of these mean diameters are used, e.g. the arithmetic
mean diameter Djj, which is equal to the expectation value u = Dy, or,
especially for non-spherical particles, the ratio between particle volume
and particle surface can be of interest, which is the so-called Sauter mean
diameter Dy, = M®) / M)

Besides the particle mass or size, other particle properties can have a sig-
nificant impact on the physical behaviour of the particles, e.g. the tem-
perature on vaporisation rates or the reflectivity on the droplet heat-up
via radiation. In these cases, considering several particle properties as in-
ternal variables simultaneously, can become inevitable to capture the de-
sired physics properly. Considering spray combustion as the background
of this work, we consider the particle size, here in terms of the diameter
D (valid for spherical droplets), the particle velocity ¢, and the particle
temperature ,. With this set of internal variables, the joint moments are
defined as:

MmbLm) — // D*¢, ' f(D, ¢p, p) dGpde,dD (4.10)
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If the NDFs in each phase space dimension are independent, this relation
simplifies to

My My M = / D*fp(D)dD / ¢} fe,(cp)dey / Gy for(Gp)dE, - (411)

4.2 The Ansatz for the Particle NDF

In the scope of this work, we consider moments of f(D, Cp, CP) up to an
order for each phase space coordinate as specified next. First, the particle
size space is described using moments about zero up to third order, i.e.
MM-M®) and M©-M® depending on the application (see Section 4.5.1).
Second, the phase space of the particle velocity is considered by the first
central moment, which is the size conditioned expectation value u(D),
i.e. it is assumed that particles with the same diameter have locally the
same velocity. Hence the particle velocity can vary only with diameter
(and time obviously) for a given position. Actually, velocity moments up
to second order are formally kept, but only for analytical purposes to
discuss the different proposals in the literature to close these. Finally, the
particle temperature is considered by its overall expectation value, which
means, that the temperature is locally uniform for all particles. These re-
strictions can be formulated a priori by choosing the following ansatz for
the NDF:

~

f(D, ¢y, 2p) = f(D)3(c, — &(D))5(Z, — Tp) (4.12)

where f *(D) is continuous over D, the first Dirac delta allows particles of
a certain diameter D to have locally the same (averaged) velocity u(D)
conditioned on size D only and the second Dirac delta implies that all
particles of any size or velocity have locally the same (time-varying) tem-
perature, i.e. the expectation value of f (D, ¢p, {p). A similar notation can
be found in de Chaisemartin et al. (2008) for a bi-variate case including
particle surface and velocity. Therein this ansatz for the NDF is accurately
referred to as “a single node quadrature method of moments in velocity
space conditioned by size” with the background of QbMMs in mind. The
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closure u(D) does not allow non-equilibrium velocity distribution effects
far from the Maxwellian distribution for the individual particle size (i.e.
particle trajectory crossing of equal sized particles is not possible, which
would be, in the simplest case a bi-modal distribution representing two
crossing, monodisperse particle jets).

4.3 Phase Space Integration - Where the Particle Velocity
Components Come Into Play

At this point some aspects of the integration of Eqn. 3.70 are described
and discussed, with emphasis on the information kept of the FEbNDF
and those which are not.

So far, the full phase space has been kept and the filtering operation has
affected only the gas phase quantities. Now, the phase space integration
will be carried out to obtain moment equations from the kinetic equa-
tion. At this point the particle velocity components® become important.
In order to evaluate the integrals properly, one must keep in mind on
which (conditioned) averages the phase space is actually based on. Here,
these are ensemble average and spatial filtering. Therefore, before for-
mally conducting the integration over the entire phase space, we describe
the components for each phase space dimension separately except the
particle temperature. Since it will be only considered by its overall ex-
pectation value, the temperature space is not considered in the following,
but again when deriving the actual equations.

4.3.1 Velocity Space Integration

Formally, the integration over velocity space gives first, the mean veloc-
ity for a specific diameter, i.e. the size conditioned expectation value of

%j.e. residual components between an averaged value and the actual value, not the components of the

velocity vector.
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the particle velocity, and second, higher order moments. As shown in
Eqn. 4.7, a decomposition of the particle velocity in a mean and residual
components is evident to explicitly separate the mean component from
the unknown residual component correlation. Hence, central moments
are used for the velocity space to be able to identify and model the cor-
relation terms of the residual components of the particle velocity. Since
the NDF over phase space is based on two averaging procedures, we
separately describe these two contributions before the combined decom-
position is given.

First Contribution: The Ensemble Average

With dropping the explicit notation of the conditioning of the ensemble
average on the gas phase realisation, |, the particle velocity can be ex-
pressed as

V;n) = Vé”)(t,Hp|D) = u(D;x, t) + " (D, Xt Hy) (4.13)

where u(D; x, t) is the pointwise (i.e. based on the non-filtered f) mean or
expectation value of the velocity distribution conditioned on particle size
D over particle phase realisations. Correspondingly, @’ (n) (D, Cp; X, t, HP)
is the residual component between the mean and the actual particle ve-
locity v\,

Modelling for correlations containing this residual component of the par-
ticle velocity due to ensemble average has been conducted, e.g., by Si-
monin et al. (2002), Kaufmann et al. (2004)> or Reeks (1992). Application
of the phase space integration when considering only this contribution,
i.e. an NDF solely based on the ensemble average (EbNDEF), is shown in
the Appendix A.2.2.

3Incorporation of the size conditioned first central moment of the velocity distribution, known under
the term Random Uncorrelated Velocity tensor (Riber et al., 2006), is governed by the term Random Uncorre-
lated Motion (Kaufmann et al., 2004).
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Second Contribution: The Spatial Filtering

Solely spatial filtering for a given two-phase flow realisation yields simi-
larly

Vi(?n> = V;n)(ﬂD) = l_l(D,' X, t) + l_ll(n)(D/ Cps X, t) ’ (4.14)

where @' (D, Cp; X, t) is the deviation of the actual particle velocity V;")

from the particle size conditioned spatial mean @ (D; x, t).

The co-variance of this component, often named particle stress tensor* has
been topic of closure research especially in volume average based macro-
scopic models , but rather less in macroscopic models based on the meso-
scopic kinetic equation of the NDF, e.g. Pandya and Mashayek (2002).
The result of phase space integration considering only the sub-filter par-
ticle velocity fluctuations is detailed in Appendix A.2.1.

Combined Decomposition of Velocity Space

As a result, the particle velocity can be decomposed into a mean and
two residual components due to ensemble average and spatial filtering,
respectively, as

v = 4(D;x, 1) + & (D, cpix, t) + & (D, cpix t, 1), (415)

where u/'(D, ¢,; x, t) is the residual component between the spatial aver-
age of the mean ensemble values u(D; x, t) and the individual, pointwise
ensemble mean values i(D;x, t), and @' (D, ¢,; X, t, H,) is the residual
component between an individual pointwise ensemble mean u(D;x, t)
and the individual particle velocity v;w. Despite the two residual com-
ponent correlations shown before, an additional unknown cross correla-
tion between the ensemble average residual component and the filtering
residual component appears. The derivation of that correlation is shown
in Appendix A.2.3, however, whether a closure has been proposed in lit-

erature so far eludes the authors knowledge.

“Discussion on this terminology is given in Section 2.2.3 and Section 2.5.4, second paragraph.
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4.3.2 Size Space Integration

Similarly, the particle diameter can vary locally between realisations and
in physical space. Since the size space is integrated using moments about
zero, no fluctuating component explicitly occurs. Hence with

_ /Dkf(D)dD , (4.16)

ensemble average and filtering residual components hide behind the
moments without being able to distinguish both contributions. Never-
theless, closure of higher order moments must be conducted, see Sec-
tion 4.5.1.

Third Contribution to the Particle Velocity

Along with the integration over size space, a further average is built from
the size conditioned mean velocities, which produces a third residual
component for the particle velocity due to its integration over the size
spectrum:

(1, H,|D) = &) (x,t) + &4 (D; x, )

+u'(D, cp; x, t)
+4'"(D,cp;x, t,Hy), (4.17)

where @X(D;x, t) is the deviation of @(D;x,t) from the size weighted
mean of order k, i) (x, t), i.e. ii(D; x, t) = ik )(x,t) + 0% (D;x, t)

Modelling of this component has been proposed, e.g., by Carneiro (2012)
in general or by Pandya and Mashayek (2002) for k = 0. Phase space
integration using this triple decomposition has already been discussed in
Appendix A.2.3.
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4.3.3 A few Notes on Dispersed Phase “Turbulence” Modelling

As we have seen in the previous two sections 4.3.1 and 4.3.2 and es-
pecially in the Appendix A.2.1 to A.2.4, several unknown correlations
appear in Eulerian mesoscopic-based models, which origin from differ-
ent physical aspects. Gas phase correlations can be closed on the meso-
scopic level (LHDI, etc.). Definition and some closures for the dispersed
phase correlations have been shown above. Summarising, three dis-
persed phase velocity correlations appear:

* the tensor of mesoscopic particle velocity correlations of second or-
der, resulting from the velocity space integration due to the ensem-
ble average,

* the tensor of mesoscopic particle velocity correlations of second or-
der, resulting from the velocity space integration due to spatial fil-
tering

* and the correlations of the residual component between size condi-
tioned mean velocities and moment transport velocities.

In volume average based models (VAbM), the unknown particle phase
stress due to RANS average or LES filtering corresponds to the sec-
ond point. Different two-phase flow realisations are usually not consid-
ered. VAbM closure for RANS has been reported for example by Issa
and Oliveira (1997) based on Wang and Stock (1993), Oliveira and Issa
(1998), Rizk and Elghobashi (1989), Elghobashi and Abou Arab (1989),
Elghobashi et al. (1984), Mostafa and Elghobashi (1985), Deutsch and Si-
monin (1991), Simonin et al. (1993), Simonin et al. (1995), Zhou (2009)
and for LES, e.g., by Zhou (2009), Liu et al. (2010), Mimouni et al. (2009).
However, Eulerian volume average based models are often of rather em-
pirical nature than rigorously derived from particle phase physics. This
issue must attract more attention in future research.
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4.4 Derivation of Moment Equations

4.4 Derivation of Moment Equations

This section is concerned with the derivation of the macroscopic equa-
tions for the transport of the moments, the particle momentum and the
particle energy by integration of Eqn. 3.70 over the particle phase space,

1.e.
/ / / ..dg,de,dD . (4.18)

4.4.1 Preliminary Steps

In order to derive the moment equations, we will evaluate the typical
integrals appearing for the specific choice of the NDF (4.12) beforehand.
For linear and non-linear terms in D only, the phase space integration
basically yields

/ / D*f(D, c,,Z,) dZ,dc,dD
_ / / / D¥f*(D)é(c, — &(D))8(Z, — T,) dZ,de,dD

— [D D) | [éle,— (D)) | [ (g, T,)de, | de, | dD

- / D*f*(D)dD
— (4.19)

Terms which are linear in particle velocity, do not give bi-variate mo-
ments of the type M*Y) in our case, but the already mentioned moment
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transport velocities for the size moments.
/ / D¥c,f(D, c,,,) d,de,dD
— [[] DF(D)s(e, ~ 6(D))s(E, ~ Ty)ep diyde,dD

:/Dkf*(D) /(5((: _&(D / ~%,)dg, | de, | dD
d - ’
\ (D) ')
= /Dkﬁ(D)f*(D)dD
def Mgk (4.20)

whereas for terms of second order in particle velocity, e.g. the moment
flux convection terms occurring in the moment flux transport equations,
read

/ / D¥c,c,f(D, ¢y, C,) dZ,dc,dD
— /// Dkf*(D)5(Cp _ ﬁ(D))5(Cp — Tp)cpcp d{,dc,dD

( )

— [DF(D) | [ o, —a(D)esey | [ 802, —T,)dg, | de, | dD

\ .

K\ —4(D)i(D) ")

4

() 55" +/Dk ( D)f*(D)dD . (4.21)
The last term on the rhs is the correlation of the “third” contribution
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of the particle velocity (Section 4.3.2) and requires closure. It cannot
be closed without any assumption for the particle velocities. These as-
sumptions imply (as discussed briefly before) a physical correspondence.
As done split the particle velocity into a weighted mean velocity )
and its deviation to the size conditioned velocity mean u(D), written
as @' (D) = 4% (D) = &(D) — a®. & is the “third contribution” men-
tioned before in Section 4.3.2. Modelling of [ D*u'd’ f *(D) dD is not triv-
ial and it is of different nature compared to the particle phase stress aris-
ing from the spatial filtering (Appendix A.2.1). With the background of
ansatz 4.12 and the relaxation approach closure (see Section 4.5.3) we re-
fer to Carneiro (2012, p.81) for a closure suggestion.

Summarising the relations outlined before gives (for notation supposes
the abbreviations Z and dZ are used from here on, which stand for Z =
(D,¢p,p)" and AT = d{,dc,dD, respectively):

MO — / / / AT:x t)dT, (4.22)

M = / / DF(T;x 1) dT, (4.23)
M® _ / / / DYf(T:x,1)dT , (4.24)
M0 g k) et / / / ¢,D*F(T;x, 1) dT (4.25)
MH g et /// (¢l¢p # ¢(D, ¢c,)) DF(T;x,t) dT . (4.26)

¢ is a general replacement for any property which might arise in the mo-
ment equations, but which is not a function of the internal variables, i.e.
filtered gas phase quantities ¢ = ¢, or constant dispersed phase quanti-
ties ¢ = ¢,. Hence it is not affected by the integration and can be treated
as a constant. Note, that the order of the superscript automatically im-
plies the type of weighting, e.g. volume weighted properties (or equiva-
lently mass weighted for constant particle density) comprise the super-
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script ). For the moment transport velocities this means that

1 v
3) — 3 .
==~ /// ¢,D°f(L;x,t)dT (4.27)

Cic

is the mass weighted particle mean velocity and

0 — % [[ ef@xnaz (4.28)

is the arithmetic particle mean velocity. In general, i.e. everything in-
between and beyond, the moment transport velocities are defined such

that
1 v
(k) — k :
= /// ¢,D*f(L;x,t)dT . (4.29)

clic

clic

Non-linear terms marked with the superscript *), e.g. expression like
(cpcp)®, are not meant as an already weighted property but a term for
which the weighting still has to be applied, i.e. it is an abbreviation for the
whole integration. This notation is used, however, only very few times in
the following, where its meaning remains clear.

Note that the notation - over macroscopic variables acts as a reminder to
distinguish between the moments shown in previous publications of the
authors group (Carneiro et al., 2008, 2009, 2010, Dems et al., 2012a,b) and
the ensemble averaged and LES-filtered type of moments defined in this
work. Up to this point this notation has been kept but will be omitted
from here on for simplicity. Gas phase properties, however, will be sub-
sequently still marked, either filtered - or Favre-filtered ~. The ensemble
average - does not apply as we use a single gas phase realisation only.

The derivation of the equations follows in its fundamental structure
Mossa (2005), except the difference, that we avoid, shortly said, notations

like [[[ %3 (Z)dT = ﬁ—ﬁ’;, which are transformed subsequently into

M@ in Mossa (2005). Instead, we directly formulate [[[ 2f(Z)dZ =
1] D2A(T) 4T = M)
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4.4.2 Mass-Averaged Equations, i.e. Equations for M)

Mass averaged equations can be obtained by multiplying Eqn. 3.70 with
pp,D?. Additionally, Eqn. 3.70 will be formally multiplied with ¢(Z),
which is a placeholder to be replaced subsequently by D,c, or {,, to obtain
the corresponding mass weighted transport equations for volume frac-
tion, momentum and energy, respectively. ¢(Z) is solely a placeholder
for the internal variables D, ¢,,(, (or combinations of them), but not a
function of spatial coordinates or time as well as another scalar s or vec-
tor v, i.e. P # (s, v; x, t). With that, it follows that

oY(T) B agb:D_Bl/J:cp_atp:Cp_
as,v;x,t_O and D - ac, = 3, =1. (4.30)

To keep the derivation clearly structured, it is done on a term by term ba-
sis. Using the placeholder ¢(Z), each term will be integrated in a general
manner and subsequently specified for the different types of conserva-
tion equations.

Time Derivative (Eqn. 3.70)

p,D*dZ
at///“b )0, D f(T) dT — ///f Btp Png
(430)0
_ % / / / $(T)p,D*f(T)dT . (4.31)

Setting ¢(Z) = 1 gives the time derivative for the third moment trans-
port equation

0 dpaM®
= / / / 1p,D*f(T) dT = pdat . (4.32)
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The temporal change of the particle phase momentum is obtained setting
P(Z) = ¢

%) 9o M u®
> / / / ¢pppD*f(T) dT = P E (4.33)

The change of particle phase temperature with time is given with ¢(Z) =
Cp by

d 9o, MG T
2 [ crsiaz = 2 @3

Convective Term (Eqn. 3.70)

][] V- @ f@)e@p,0’az
=V [[[v@e0, DT aT~ [[[ ¢,f( D)0, ¥ - (¢(T)D°) aT

(420)0

—v. / / / $(T)e,p,D*F(T) dT . (4.35)

Similar to the temporal derivative we get the three convective terms for
mass, momentum and energy as

v. / / / 1e,0,D*f(Z)dZ = V - (0aMPu) (4.36)
V- /// ¢,¢,0,D*f(Z)dZ = V - (0sM® (uu)®) (4.37)
V- [[] 6D T AT = V- (uMOTa®) . @39)
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4.4 Derivation of Moment Equations

Momentum Exchange Source Term Due to Drag (Eqn. 3.70)

///acp]< L)V AT >) p(Z)p,D’dZ
/// o, ( L)y )ppD3f<I)) dT

>4

=0 in line with Mossa (2005)

_|_/// |I VY F(T)p, Dsagpc(f)+lp< )ch; dZ

——
=0

_/// |I W7 51y, 0°0 0 E) 47 (4.39)

acp]

The mass conservation is not affected by momentum exchange between
phases (¢(Z) = 1), which is in line with the mathematical derivation:

_ /// \l’ W £ )ppD?’% dT =0. (4.40)

N~
=0

Considering the drag coefficient correlation by Schiller and Naumann we
develop the Stokes and non-Stokes part separately using Eqn. 3.73 and
Eqn. 3.75, respectively. With ¢(Z) = ¢, we obtain for Stokes drag and
the body force due to gravitation the closed® expression

/// |I WEE( ),OpD3 Jey dz
dCp,j

°In fact, in classical volume averaged based two-phase equations, a closure problem arises already for
Stokes drag at this point. This issue is detailed in Appendix A.2.5
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dc Jc 1 0 0
with LAl e and e = (0] ,ej=2 = [1] ,e=3 = (0],
9Cpj afﬁf, 0 0 1

where Einstein summation applies to obtain a vectorial source term

D] (k@) +8) FTpD AT
// (187pD (1t — ¢,) +gD%,) f(Z)dZ

“2185MD (6 — u®) + gM®)p, (4.41)

Similarly, using the empirical correction for particle Reynolds numbers
beyond Stokes flow,

R
acp]

~—~—

=see above

(3.75) 187p 4 —c,|D 0687 3
7 /// o0 () @6 ) [@pDdz

// 18700. 15( _C’”|)0687 (it — ¢,) D' f(T) dT,

with approximately closing |@ — ¢,| = |& — u'V|*, which yields

i — u(1)| o 1.687 1.687
~ 1870015 | ——— (it — u1087)) p(1:687) (4.42)

The approximation * is arbitrarily chosen in line with the transport ve-
locity u) valid for Stokes flow. It is not clear whether, e.g., u(%”) might
be closer to the correct solution. The combination of both contributions
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4.4 Derivation of Moment Equations

to the drag term (abbreviated as M) and the gravity force reads
— 187 <M<1>(ﬁ —uM)

0.687
i—ull| L (1.687) A4 (1.687) (3)
+015 [ —— (@ —u )M ) + gMPpy

L MO+ gMBp, . (4.43)

Momentum exchange acts only in a kinetic way and does not contribute
to temperature and sensible enthalpy, respectively, since the kinetic en-
ergy of the particle phase is not considered in the energy balance.

Setting ¢(Z) = (, yields

_ ///<%\I>fo(z)ppl)3 ;ﬁ dT =0. (4.44)

Mass Exchange Source Term Due to Vaporisation (Eqn. 3.70)

Here, each conservation equation comprises a source term, first the mass
transfer from liquid to vapour in the mass conservation equation, sec-
ond, the implied momentum transfer due to mass transfer and finally, the
transferred energy contained in the transferred mass. Since the vaporisa-
tion rate depends significantly on the slip velocity between the phases,
we split the vaporisation rate in the part for Stokes flow conditions and
the additional contribution due to higher relative velocities. Concerning
this separation and terminology, some comments are given in Footnote 5
on page 61. This separation holds for all three source terms as presented
below. Contributions due to free convection are not considered. Replace-
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ment of the placeholder (Z) in the general expression

/// 8D< it >fo<1>> Y(T)p,D°dT

= ... similarly to Eqn. 4.39 the first term becomes zero

n) 3
+/// D™ P g (T)p, 1/)(1)%% +D3a‘g(D) dT

E’)D2

:/// AP TvE H( T, ((I)3D2+D3a‘g§3)) dT (445

by ¢(Z) = 1, ¢(Z) = ¢, and ¢(Z) = , yields the expressions for the
mass, momentum and temperature equation, respectively.

First, setting ¢(Z) = 1,

dD” a1
/// )7 f(Z)p, 3D2+D38—D dZ,

~—~
=0

gives the Stokes part (S)

(a22) / / 4—ln1+BM)f(I)pp3D2dI

_ —// 12p@1n(1+BM)Df(I)dI
= —12091In(1 4 By) MY (4.46)
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4.4 Derivation of Moment Equations

and the additional part due to higher Reynolds numbers (nS)

5 /(6 — 1/2
(439 // 0552 2> @SC ((u C"’)) (B—Mf(I)Pp3D2dI

D'/ v 1+ By)07
— —0552-6 53 1/3 BM I)D*dT
(15) 1/2 i
— 0552609 S @—u)) o Bw s (4.47)
v (14 Bm)%”
= TM )

The sum of both is noted as

Second, setting Y(Z) = c,,

///dD TV £(T)p, cp3D2—|—D3% dz,

gives the Stokes part (S)

(A2 / / 4— In(1 + By) f(Z)cpp,3D*dT

- ///12p®ln 1+ By)De, f(Z) dZ
= —126® In(1 + By) MDuV
= —T5,u (4.49)
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and the additional part due to higher Reynolds numbers (nS)

~ 1/2 =
(A.39) Sc'/* [ (T — ¢p) Bum )
// 0.552- 2 @Dw ( _ (1+BM)O_7f(I)c,,pp3D dz

1%
1/3 )2 B — A __f(Z)c,D*dT
yi/2 P 1+BM)07 P

(~ _ (1.5)) 12 B
= —0552-6pD S | T M M15)y(15)
i (1 + BM)0.7

1%
s uls) (4.50)

= —0.552-6p ’D

The sum of both is approximated as

I8 eut +T7 0 u ~ T ul). (4.51)

Third, setting (Z) = {,

/// )V £(T)p, §p3D2+D3§% dz,

=0

gives the Stokes part (S)

(A3 / / 4— In(1 + By) f(Z)Z,0,3D*dT

— —// 12p®ln 1+ Bw)Dg,f(T)dT
= 1269 In(1 + Bu)MIT,
- T (4.52)
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4.4 Derivation of Moment Equations

and the additional part due to higher Reynolds numbers (nS)

~ 1/2 ~
(A3) Sc'* [ (@ —cp) Bu )
// 05522 @Dl/z ( _ i By (De3D" 4T

1/3 5
— 05526505 - /// ¢,)"— M £(T)7, D dT

(14 Bwm)07
— —0.552-6pD Sc'/? (“‘ - ?(1'5)) ) 1/2 Bu__ys7,
v (1+ Bm)%7
= I Ty. (4.53)
The sum of both yields
(rjw(g) + r;j@) Ty =TT (4.54)

Energy Exchange Source Term Due to Heat Conduction and Energy Transfer Through
Vaporisation (Eqn. 3.70)

The general expression reads

(n)
I+ (@; |I>"ff<z>) $(D)p,D* AT

= ... similarly to Eqn. 4.39 the first term becomes zero

+/// )" f(T)p, l/J(I)aignLDﬁlgép) dZ
=0
_ / / / TV F(T)p D3a‘§ép)dz. (4.55)

Mass continuity (¢y(Z) = 1) and momentum conservation (y(Z) = c,),
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1.e.
/// )Y f(T)ppD° aé_glp dZ =0, (4.56)
N
=0
/ / / )VF f(Z)p,D° gg’ dZ =0, (4.57)
N

=0

are not affected by heat conduction and the latent enthalpy consumption.
The source term for the temperature equation will be spit into two parts.
The first part considers only heat transfer for forced flow in the Stokes
regime, whereas the second part incorporates the increase of heat con-
duction due to forced convection at higher Reynolds numbers, i.e. par-
ticle and gas flow have different velocities. Here again, contributions of
free convection are not considered. The net heat transferred to the particle
is determined by first transferring all conductive heat to the droplet, as
it would be without vaporisation, and afterwards subtracting all the heat
which the particle looses due to the heat needed to transfer the liquid into
vapour. Setting ¢(Z) = (, yields

(1] 27 (20,00 T
Ny

=1

and with introducing the part for low Reynolds numbers (Stokes flow,
(5)), it becomes

(A0 ///[ AT—¢,) “B—":M_g_ngln(1+BM)Ahv(§p) Df(Z)dZ

Pd
B Ahy(T, _
= 12—(T T,) M1 pIn{+Br) 1269 (T2) In(1 + By) MW
Ced Br i Cpg
- 121(T — Td)M(l)ln(l_ﬂ —T5 Ao (Ta) , (4.58)
Cpgd Br M Cpd
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4.4 Derivation of Moment Equations

[

where Ah,(T;) is the expectation value of Ah,(,). Actually, since rii =
i1y, one can write using 124 /cp, In(1 + By) M) = I

1 (T - Ta)
= T AR (Ty) — cpy ) 4.
Iy de< (Ta) — cv Br ) (4.59)

The additional part due to higher Reynolds numbers (nS) develops as

/3 1/2
(A31) u—cqCy (T_gp) 3
///0552 6D/p - ( . ) 5,07 DeyD*dT

5 /1 1/2 »
09 Sc"/ ( cp> Ahy(,)Bu 5
- 0.552- 6 — P (T p, D3 AT
// D’p,co0 \ 7 (1+BM)0-7f (Zer

o (7
— 055262 /// 1/2 5”) (Z)D*2dZ

Cp|V /2 )07
p’D Sc s /// 1/2Ah (CP)BM 3/2
—0.552-6 Z)D7*dT .

Here, some simplification must be done in order to gain closed equa-
tions, i.e. the particle temperature and size dependent quantities Br and
B are replaced a priori by their expectation values concerning size (tem-
perature is mono-valued per definition, Eqn. 4.12), 1_3<T0) and ]_31(\9I>, but this
specific notation is forgotten in the following. Furthermore, for Ah,(Z,),
the same applies as mentioned before. Additionally the velocity term is
approximated as follows:

- 5 1/2
~ 0.552.6AP‘T1/3 (““(1'5)> ((T —T) 5405

o 7 15 Br)7
1/2 -
3 /3 [~  _(15)
0550 6PD5C (B U Ao(Ta)Bu y r1s) (4.60)
Cpy v (1 -+ BM)O'7

103



Moments Model

Combining both and using the abbreviation for the mass transfer rate
density I', the final source term reads

N 1 (T —Ty)
_ (r?\/l(g) + rAi(fs)) ;%i (Ahv(Td) — CpUB—T> . (461)

Third Moment M) Conservation Equations

Gathering all terms together results in the macroscopic equations of the
moment model, which read for the convection of M©®)

0
5 (PaM®) + V- (0aMPu) = =T, (4.62)
the conservation of the third moment flux M®u® (which is the momen-

tum equation of the dispersed phase)

2 (paMPu®) + - (0,MO () ¥) = MO 4+ gM O py Ty
(4.63)

where it is assumed that (uu)® ~ u®u® (Eqn. 4.21), and the transport
equation for the dispersed phase temperature T;

0

at(de 'Ty) + V- (oaMPTul®)

Ahy(Ty)  cpy (T —T.
(1801

Cpd Cpqg Bt

) . (4.64)

When the sensible enthalpy /1, is used instead of the temperature, one
obtains by setting h; = cp; T}

0

5 (de I’ld) + V- (de(3)u<3)hd)



4.4 Derivation of Moment Equations

Those set of equations can require a special solver due to its hyper-
bolic character, especially the momentum equation. This equation be-
haves similar to phenomena found in pressure-less gas dynamics, which
would collapse to the Burger’s equation without any source terms (no
drag, etc.). Even in its presented form it can produce shock like gradients
in the particle volume fraction, when not properly treated, which is not
physical. However, in practical simulations, the strong coupling to the
gas phase through drag impedes such structures and numerical dissipa-
tion contributes on its own. For further reading on this topic, see, e.g.,
LeVeque (2002) on hyperbolic problems and Bouchut (1994) or Bouchut
et al. (2003) on pressure-less gas dynamics and its numerical treatment
(Massot, 2007).

4.4.3 Equations for M®), M® and M®

If an infinite number of moments is known, the distribution is fully char-
acterised. Obviously, it is not even feasible to solve a huge number of
moment equations. Using quadrature based methods, presumed shape
methods or the maximum entropy formalism, it is possible to recon-
struct a distribution from only a few low order moments. In presumed
shape methods usually two (Gauss, Rosin-Rammler, i.a.), three (Gamma,
clipped Beta, i.a.) or four moments (e.g. Beta) are sufficient to fully re-
construct the distribution. In quadrature based methods, the number of
transported moments (prognostic moments) depends on the desired ac-
curacy of the reconstruction. In each case, additional moment transport
equations to the third moment transport equation are needed. All mo-
ment transport equations are similar in structure, which makes a general
derivation possible. Source terms can be expressed in a general manner
as well, however we will restrict ourselves to the formulations for the mo-
ments M®?), M) and M(©), since no other prognostic moments are used
throughout this work. To determine the moment transport velocities oc-
curring in these equations, additional moment flux transport equations
could be solved, which implies, however, a significant additional com-
putational effort. Instead, as presented in Section 4.5.3 in more detail, a
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relaxation time approach is used to determine the moment transport ve-
locities u'?, u") and u(%). Therefore only the moment transport equations
will be derived in the following.

The derivation of the equations is similar to the one for the mass
weighted equations. Hence, only the essential steps will be shown. The
derivation for the time derivative and the convection term can be han-
dled in a general manner using the moment order k = 0, 1,2, ..., yielding
for the

Time Derivative (Eqn. 3.70)

I)pyD"dZ = %///¢(I)PPDkf(I) dZ

9 9
D)=1 = / / / 10,Df(Z) 4T = = (paM™) (4.66)

and the

Convective Term (Eqn. 3.70)

[ V- @f@e@e,0 4T = V- [[[ 9(T)e,0,0"F(Z) oz

Ty ///1cpppDk dI—aat(de Du®) . (4.67)

Right Hand Side Source Terms (Eqn. 3.70)

Except the source term due to mass variation, which consequently af-
fects surface or diameter variation of the particles as well, all other source
terms becomes zero for any order of k as already shown in Eqn. 4.56 and
Eqgn. 4.40.

Since the mass transfer between phases affects the change of surface, di-
ameter and droplet number density differently, the source terms must be
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4.4 Derivation of Moment Equations

handled separately. First, for the second moment M?) the term reads in
general

/// 8D< dt >Wf(1)> W(T)p,D*dZT

e (v ) o

2D

_/// TV F(T)p, ((I)2D+Dza‘g§)>> dZ.  (4.68)

For ¢(Z) = 1 it follows for the low particle Reynolds number flow
(Stokes flow, (S))

4D, 21
/// I)VZ F(T)p, 2D+D28D dT

—0

(A2 // 4— In(1+ By)f(Z)p,2D dT

- —// 8p©1n1+1§M)f(I)dI
= —8M"YpDIn(1+ By) (4.69)
=T

and accordingly for higher Reynolds numbers (nS)

(A33) (@ — ul®?) & Bt
=" _0.552 - 49D S’ s MO (4.70)

1+ BM)OJ

A

v
=T

S
M2
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Similarly, the general term develops for the transport equation of MV as

/// aa( dt >fo(1)> P(T)p,DdT

-/l / )V f(Z)p, tp(zggwal’ggﬁ iz
_/// )Y £(T)p, ( (I)+Dalg—g)> dZ (4.71)
and by setting ¢(Z) =

5 10 5 )

(A32) /// 4— In(1 +BM)f(I);p dz

_ _///4@1n 1+ Bw)f(T)dZ

= —4M" p@ln(1+BM). (4.72)

=_r?\4<1>

and

(A.33) (6 — ul=1%) & Bum
—0.552 - 269 Sc'”? ATE =M (4.73)

N 7

The derivation of a source term for M®) is not a trivial task since the
framework presented above simply yields I o) = 0. This is clearly non-
physical, since vaporising droplets vanish at a certain point when becom-
ing small enough. This problem occurs also for QbMMs, and is discussed
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in detail by Fox et al. (2008). A solution to that problem is presented in
Massot et al. (2010) and used later on in Kah et al. (2010, 2012). It is, how-
ever, not directly applicable in our framework. We avoid this problem
by solving for the moments M) to M®) only in vaporising flow simula-
tions.

Transport Equations for M(?), M(1) and M(®)

Bringing all the different terms together yields the moment transport
equations including vaporisation for the moment order k = 0 — 2

d
= (0aM®) + V- (paMPu®) = —T7 ) = To) = —Tyey,  (474)

0
a(de(l)) 1V (de(l)u(l)) — _ri/m) — Ff]‘\j(l) =T, (4.75)

%(pd MO) £V - (oM@ = 0. (4.76)

4.4.4 Connection to the Gas Phase

The gas phase interacts with the dispersed phase via the mass averaged
equations for the moment of third order M®). To use the source terms
derived for the dispersed phase equations of M® in the corresponding
gas phase equations, they have to be multiplied with the factor 7/6 since
the gas phase equations are expressed in terms of the volume fraction.
Therefore, with &, = (1 — ay) and ay = 7/6 M® we have

7T

[ =TI*=
6

IBVER (4.77)
The same applies for the momentum and energy exchange rates. The to-
tal heat conducted from the gas phase to the droplet, g4, can be now
specified as

T—-T,
qgl — CPZJ< BT d) . (478)
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4,5 Moment Model Closures

Similar to the single phase turbulence close problem, moment equations
usually contain unknown correlations due to the particle velocity fluctu-
ations. Additionally, however, moment equations can feature, besides the
moments of higher order, also moments of lower, negative or non-integer
valued order. The derivation of equations for the unknown moments to
solve the problem is in neither case a final solution, since these equations
usually imply unknown moments of even higher or different order. Ac-
tually, this problem reflects the fact, that a distribution is not fully char-
acterised until an infinite number of moments is known. Hence, to solve
the problem with only a few moments known, e.g. where equations are
solved for (so-called prognostic moments), one assumes a functional form
of the distribution. As result, with help of the prognostic moments, the
distribution can be fully characterised and from that any associated mo-
ment (so-called diagnostic moments) can be calculated. A variety of meth-
ods are available to solve the moment problem with only a few prognos-
tic moments, which are detailed next.

In contrast to Section 2.6.2, here the classical moment methods are dis-
cussed. The range of different types of moment methods is as wide as
its multitude of applications. Most of these models can be categorised
in a rather qualitative manner by classifying them via the type of the
assumed shape for the NDFE. The main mechanism in moment methods
is the closure for terms, where moments of a certain order arise, which
are not solved for via a transport equation. To solve this issue, some as-
sumptions have to be made to calculate unknown moments from known
(transported) moments. This can be accomplished by

* presuming a mathematical functional form for the distribution, i.e.
a geometrical shape. Common functional shapes are, i.a., Gauss,
log-Normal, Rosin Rammler, Gamma/Beta. This method is usually
simply referred to as Method of Moments (MOM), sometimes as Pre-
sumed Method of Moments (PMOM). By assuming a functional form
of the NDF, only a few moments must be known to be able to recon-
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struct the NDF. If the NDF is determined from the set of known mo-
ments, any unknown moment can be calculated. Widely used in sin-
gle phase, (reacting) flows with central moments (i.a. mean and vari-
ance), it has been extensively used in multiphase flows with closures
of second order (Gauss, log-Normal, RR) and sometimes with higher
order closure (Beck, 2000, Beck and Watkins, 2002, 2003, Carneiro
et al., 2009, 2010).

approximating the NDF as a sum of Dirac deltas. This category
can be summarised under the term Quadrature based Moment Meth-
ods (QbMMs). Various variants extist, e.g. the two main methods
the Quadrature Method of Moments (QMOM) (McGraw, 1997)) and
the Direct Quadrature Method of Moments (DQMOM) (Marchisio and
Fox, 2005) as well as sub-variants as Sectional QMOM (SQMOM)
(Gumprich and Sadiki, 2012), Extended QMOM (EQMOM) (Yuan
et al., 2012), Method of Moments with Interpolative Closure (MOMIC)
(Frenklach and Harris, 1987, 1994, Frenklach, 2002) or hybrid meth-
ods combining for example DQMOM and MOMIC by Mueller et al.
(2009).

conducting the phase space integration only over very small inter-
vals. Within each interval the variation of the NDF is small and mo-
ments of higher order than the mean can be neglected. The accu-
racy of this approximation obviously depends on the size of the in-
tervals, i.e. the number of intervals used to approximate the NDFE.
This method is usually called Multi-Fluid method (MF) (Laurent and
Massot, 2001), which is actually similar to DQMOM but with fixed
classes. Care must be taken with the term “Multi-Fluid” since vol-
ume average based methods where the volume average is condi-
tioned on the given phase space (classes), are often named equally.
Both methods are obviously very similar, however, with subtle dif-
ferences. Variations have been proposed, e.g. the Parallel Parent and
Daughter Classes Method by Bove et al. (2005) and hybrid methods
incorporating the QbMMs especially for multi-dimensional phase
spaces, where the classical reconstruction methods are not devel-
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oped for.

* making no assumption of the shape at all. A very promising method
is the Maximum Entropy method based on the work of Shannon
(1948), Jaynes (1957), Mead and Papanicolaou (1984) and recently
applied, e.g., by Kah et al. (2010) or Gumprich and Sadiki (2012).
Actually, in this method, no shape is presumed but other assump-
tions must be made concerning the characteristics of the NDF, here
the property that the NDF is that with the maximum entropy for the
given moments.

In this work, we use the first approach assuming a certain mathemati-
cal functional form of the NDF to overcome the closure problem. Since
we consider the infinite Knudsen number regime only (collision between
particles can be neglected), the presumed function method of moments is
quite applicable in the sense of implementation and computational cost,
because the numerical integration of the collision kernels does not apply.
For finite Knudsen number regimes, QbMMs are much more applicable
since the numerical integration reduces to a summation of only a few val-
ues. Also bi- or multi-modal distributions are unlikely to occur in the test
cases considered in this work, for which presumed shape methods can
be difficult to use due to the lack of appropriate shape functions.

4.5.1 Moment Closure: Presumed Distribution Function

Presuming a functional form of the distribution is very common in a wide
range of applications. To match the requirements of the specific appli-
cation, a multitude of distributions have been developed to capture the
characteristics of the specific physical distribution present in the given
flow configuration. In this work we restrict ourselves to the Gamma and
Beta distribution. The Gamma distribution is usually appropriate to rep-
resent typical initial particle size spectra of polydispersed two-phase ex-
periments with the advantage of requiring only three moments. The Beta
distribution is more flexible, which is especially beneficial when particle
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populations develop to shapes far from the Gamma distribution shape.
Both distributions are based on the Gamma function, defined as

[(x) = / t*letdt . (4.79)
0

The basics of the Gamma and the Beta distribution are given next.

Gamma Distribution

Gamma (and Beta) distribution function formulations exist in a variety of
versions, either differing in the definition and arrangement of the param-
eters or their number. The latter depends on the assumptions made, e.g.,
about the support (compact, infinite, etc.). Furthermore, one must distin-
guish whether the specific distribution formulation refers to a number
density function or a probability density function. Equivalent formula-
tions for both distinguish themselves by the scaling parameter which the
NDF implies, whereas the PDF does not. Throughout this work, distribu-
tion functions refer to number density functions, therefore the definition
of f*(D) as Gamma distribution implies the scaling parameter Cy as

D
DI 1o~
" pT(g)

The gamma distribution can be reconstructed from three prognostic, con-
secutive moments, e.g. M ©-M®3), by

(D) =C (4.80)

MO pA(2) — (M(l))Z

P= MO MO : (4.81)
(MW

7= MOM® — (MDY’ (4.82)

Co =M. (4.83)
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where the scaling parameter is given directly as the total particle number
density M(©). Using the set M()-M®), the formulations read

MOpAB) — (M(2))2

P=—"MoMm@ (4.84)
2(M@)2 — MO MEG)
1= MOMB (M@)2 ’ (4.85)
(1)

o= qu ' (4.86)
In general (M®-M®*+2), the following formulas apply

B M0 ppkt2) _ (pgkt1))2 s

P M (1) / .

(k1) (MED)2 — M M k+2)

1= M® ME+2) — (M(K+1))2 , (4.88)

M)
Co = for k > 0. (4.89)

P (g +1)

In turn, diagnostic moments can be calculated with help of the parame-
ters p, g and Cy by

M® — e, L +hpt (4.90)

Beta Distribution

The Beta distribution is based on the Gamma function as well, but al-
lows more flexible shapes, e.g. both, positively and negatively skewed.
The increased flexibility, however, requires in case of the NDF version at
least four consecutive moments for its reconstruction including the con-
straints that the minimum value is set to zero and the maximum value is
fixed (but not nessecarily unity). Two moment PDF versions, commonly
known from, e.g., combustion modelling, additionally imply a maximum
value of unity (applicable e.g. for the mixture fraction, which always lies
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in the interval [0,1]) and the use as a probability density function, i.e.
the scaling parameter drops. Additionally, in conjunction with the ad-
ditional prognostic moment needed for the reconstruction compared to
the Gamma distribution, the validity of the moment set might be more
easily violated (see the next section for a discussion on that issue). In-
cluding M to the prognostic set of moments in order to have four mo-
ments available is often preferred to the fourth moment. In case of mass
exchange between phases, however, the transport equation for M(®) re-
quires a corresponding source term. Especially in the case of considering
vaporisation with help of the D?-law, this source term is not trivial to de-
rive, describe and to close. This issue is discussed in Section 4.4.3. Finally,
the beta distribution reads (in the form we used in this work)

civ Co DP ' (Dpax — D)
f (D>_B(P,q) prta-1 / (90

where B(p, q) is the Beta function and the parameters Cy, Dmax, p and g
can be determined using the first four moments by

A1,1M(1) _ Ao,1M(3)

Dmax - ’ 4.92
A MO — Aoy M) (&2
MO (DM — M)
= 4.
p DmaxAO,l ’ ( 93)
(DmaxM(O) — M(l))(DmaxM(l) — M(Z))
= , 4.94
q DmaxAO,l ( )
Co =M, (4.95)

where the so-called Hankel-Hadamard determinants Ay; and A1 are de-
fined in the next section. Diagnostic moments of the Beta distribution
can be calculated with help of

B(p+kq)
M%) = pt —L 1/
" B(p,q)
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4.5.2 Validity of Moment Sets

General Conditions

Independent of the specific choice of the moment closure, a set of mo-
ments must fulfil certain conditions to be valid. That means on the one
hand, that only from a valid set of moments a realisable distribution can
be reconstructed, and on the other hand, that moment sets calculated
from a given distribution are always valid moment sets. These conditions
qualifying a set of moments to be valid or not are given mathematically
by the so-called Hankel-Hadamard determinants (see Shohat and Tamarkin,
1943). For each moment set, the corresponding determinants, given by
the following condition, must be satisfied.

ME) M) gD
M(k—H) M(k—I—Z) L M(k+l+1)
Ay =1 . . : . >0, (4.97)
M(}c-i-l) M(k-.l—l—ﬁ—l) . M(IQ—I—ZZ)

for all combinations of k,I with the constraints | > 0 and k =
0,1,2, ..., kmax, With kmax = 2! for an even number of prognostic moments
and kpax = 2/ + 1 for an odd number. In our case, where the moment
sets M(?) to M?) and M) to M(®) are used as prognostic moments, these
conditions reduce for k = 0,1 and | = 1 to the following two conditions:

Agp = MOMP) — (MWY2 >0, (4.98)
A= MOMB) — (M@)2 >0, (4.99)

which are the Hankel-Hadamard determinant Ay; and A; 1, respectively.
They constitute a necessary and sufficient condition that a distribution
function exists for the given set of moments. In this case the given condi-
tions (and, more generally, all 2x2 determinants) equal the corresponding
convexity conditions (or Schwarz’s Inequalities). This condition can be for-
mulated also as non-negative curvature of In M*) (Feller, 1971, Chapter
8, p.155). Note that the convexity conditions are a necessary but not suf-
ficient condition for a valid set of moments, especially when it comes to
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higher order moment sets, where the Hankel-Hadamard determinants
present the more restrictive conditions (3x3 and higher determinants).
Equations 4.98 and 4.99 can be rearranged and generalised to (general
convexity condition):

Mk+1) - M®) - M®@) - M) 4100
ME = M2 = M1 — M(0) (4.100)

They can be reformulated in terms of mean diameters as typically used
in spray applications as

..> D3 > Dy > Dy . (4.101)

Another general conclusion from the Hankel-Hadamard determinants is,
that the moments have to be positive, which results from the Hankel-
Hadamard determinants of order 1x1, i.e. M*) > 0, which is in line with
their special physical meaning in the context of a particle size distribution
function.

Worth to note here is that, as mentioned for example in Kah et al. (2010),
so-called canonical moments (see e.g. Dette and Studden, 1997) are advan-
tageous in handling validity issues since - due to their definition - each
canonical moment of a valid moment set independently lies within the
interval ]0,1[ and vice verca. Hence it can be easily checked whether a
moment set is valid or not (see also Kah et al., 2012, p.398f). The applica-
bility of canonical moments with the presumed shape moment method
has not been tested within the scope of this work but can be considered
as a task for future investigations.

Additional Constraints due to Specific Distributions

With a specific choice of the functional form of the distribution function,
further conditions can arise due to the characteristics of the underlying
mathematical function or the reconstruction algorithm. We restrict our-
selves on the consideration of the Beta distribution, which has been in-
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vestigated in this regard due to its implicit® use in the present simula-
tions. When using the Beta distribution as given above, it is obvious that
both shape parameters, p and g consist of only known conditions, i.e. the
Hankel-Hadamard determinant A ; in the denominator and the convex-
ity conditions in the numerator. Therefore, these shape parameters imply
no additional restrictions. Considering, however, the formula for Dy,
two additional conditions can be derived, which might stricter than those
given by the Hankel-Hadamard determinants.

It can be shown, that both, enumerator and denominator of the D,,,x term
as formulated in Eqn. 4.92, have to be negative, which yields the follow-
ing restrictions:

MOA; > MYA;; and M®Ag > MOA, ;. (4.102)

Whether these conditions are more restrictive than the Hankel-
Hadamard determinants will be shown next.

Moment Space Validity Maps

For practical purposes and in order to be able to create algorithms to
handle non-valid moment sets, it is helpful to plot these conditions in
moment space maps. First, one can determine whether a condition is au-
tomatically fulfilled by another condition and which are the most restric-
tive ones framing the space of valid moment sets. Since the moment space
is multidimensional (the dimension of the moment space is obviously
the number of moments considered), it is reasonable to plot the map
for two moments only and keeping all other moments constant. With a
specific moment correction algorithm in mind (as described in the next
paragraph), we use M) — M plots for given M(® and M©®). We made

6 Actually, the Beta distribution was not used to determine diagnostic moments. In all cases presented,
the Gamma distribution was reconstructed from the moments M(1) to M(3). However, in each case, an
equation for M(%) was solved. As long as M(®) matched the other moments, i.e. built a valid set of four
moments, it was used in subsequent terms when needed. If M(?) did not match, it was corrected according
to the conditions due to the Beta distribution. This has no straightforward reasoning, but remained from
accompanying simulations using the Beta distribution. Since the conditions due to the Beta distribution
are slightly stricter than those of the Gamma distribution, it does not present a problem.
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this specific choice due to the chosen bounding procedure, where M)
and M®?) are modified - if necessary - and holding M) and M® con-
stant since they represent total particle number and volume (mass) per
unit volume. Both properties are conservative in non-vaporising sprays
without coalescence and break-up. Therefore, the conditions 4.102 are re-
casted to have M® as a function of the other moments, yielding

(0) Af(3) 02 p1(3)2
M® > M le \/% +2M@® MB) (4.103)
2M) AM)
and
@ > MD)? N M . MO ME) £104)

respectively. To be able to determine the final range of valid (M), M)
combinations for given M 0 and M®), all constraints are plottedina M (2)

over M) graph. The map shown in Fig. 4.1 is normalised with the coor-

dinates of the critical point (ME,}QX, MIQX). It marks the maximum valid

values of M) and M® for given M(®) and M®). It is characterised as the
intersection of several conditions, from which it can be derived that

MU = VMO’MO  and ME), =\ MOM®?. (4.105)

Correction Schemes and Moment Space Preserving Transport Schemes

In practical simulations, it is extremely difficult to guarantee the validity
of moment sets throughout the whole computational domain and time,
even if the initial and boundary moment sets fulfil these conditions (see
e.g. Watkins, 2005, Petitti et al., 2010). Valid moment sets for every cell at
every time is a crucial requirement for a stable simulation. Invalid mo-
ment sets occurring during the simulation must be corrected to guar-
antee a realisable reconstruction of the distribution throughout the do-
main. This can be accomplished either using correction schemes of more

8Using canonical moments, these plots comprise the characteristic that these zones are rectangular
(see e.g. Vié et al., 2013)
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Figure 4.1: Resulting zone® for valid M (1_-M®@ combinations (grey zone)
for given M(® and M®). Each line represents the individual
border between valid and invalid moment combination for a
certain condition.

or less good quality (ranging from mathematically elegant to crude work
around) or using moment space preserving discretisation schemes, where
the latter is much preferable. First we will discuss the former solution, af-
terwards a few words on the latter one.

Beck (2000) reported problems with invalid moment sets using three
prognostic moments. In this early work, this problem was bypassed by
using a log-normal distribution instead of applying a correction algo-
rithm or appropriate schemes. McGraw (2006) proposed an algorithm to
detect and correct individual moments deviating from a valid sequence
of moments. This algorithm is shown for the application on six trans-
ported moments, however, it cannot be applied to only four moments
directly. Throughout this work we use a rather crude correction algo-
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rithm based in the correction of M) and M%), as already adumbrated in
the paragraph before. For the practical implementation, conditions 4.103
and 4.104 were used to limit the moments in such a way that the condi-
tions are surely fulfilled with a minimal change in the moment values. As
resulting bounding algorithm the following procedure has been proven
to be a practical solution (concerning code stability and unconditioned
validity of moment sets). First M (1) is bounded due to the maximal valid
value according to Eqn. 4.105 and afterwards M®?) due to either the con-
dition for Dpay, i.e. Eqn. 4.104, or A; ;. However, the parameters p and
g as well as Dmax can still become very large, which results in abnormal
distribution shapes. This can be avoided by keeping an appropriate dis-
tance to the invalid moment phase space limits or with additional con-
straints, which are demonstrated e.g. by Watkins (2005). Throughout the
presented results’, the former has been applied by forcing 0.01 < g < 20
for iso-thermal and 1.01 < g < 20 for non-isothermal flows, respectively.
The parameter p needs no artificial limitation since it is covered by Ay ;.

Very recently, an effort has been made to avoid such procedures by fur-
ther developing and implementing moment advection schemes in practi-
cal simulations, which naturally preserve the valid moment space. Gen-
erally spoken, only first order schemes in space have this characteristic,
but not necessarily in any case. Wright Jr. (2007) provides a good start
to tackle this topic, with references therein pointing to related work with
other background and first attempts to apply these schemes in CFD. Fur-
ther discussion has been recently published by Desjardins et al. (2008),
Vikas et al. (2010, 2011) and Kah et al. (2012).

4.5.3 Moment Transport Velocity Closure: Relaxation Time Approach

When using the full bi-variate size-velocity phase space for integration,
one obtains combined size-velocity moments, which imply naturally
a moment transport velocity. However, when reducing the bi-variate
size-velocity phase space to a continuous size dependency and a size-

9For those, only the Gamma distribution has been used.
y
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conditioned mean particle velocity u(D), the size dependent moments
require to be transported with appropriate moment transport velocities,
which were defined as (see Eqn. 4.29)

u® = ﬁ/Dku(D)f*(D)dD. (4.106)

In practice, this means that, e.g. the third moment M) has to be trans-
ported with a mass weighted particle velocity or the zeroth moment
M with an arithmetic mean of the size-conditioned particle velocity.
To determine these moment transport velocities occurring in the mo-
ment transport equations 4.62 and 4.74 to 4.76, one could solve a moment
flux transport equation for each order k of the prognostic moments (see
e.g. Beck and Watkins, 2003). Solving for these additional transport equa-
tions can become costly even when considering only a few moments to
be transported, e.g. three or four. This clearly reduces the benefits of us-
ing Eulerian moment methods in terms of computational time reduction
(compared to e.g. Lagrangian methods). Only in two special cases, one
can use only a single moment transport equation without significant loss
of accuracy. First, when considering aerosol-like dispersed particle flows,
where the particles behave like tracers (almost) perfectly following the
gas phase, moments can be transported with the gas phase velocity. Sec-
ond, when the particle size distribution tends to be rather monodisperse
locally (but not necessarily temporally or globally), the moments can be
convected with a common particle phase velocity. Polydispersed sprays
usually do not behave as such, either. Another alternative is to model
these transport velocities. We use a so-called relaxation time approach out-
lined in detail by Carneiro (2012), Carneiro et al. (2010). We restrict our-
selves to a short summary of the main aspects.

The relaxation time approach is based on the idea of the “Equilibrium
Eulerian Method” by Ferry and Balachandar (2001, 2002) where parti-
cle velocities are determined by a linear expansion around the contin-
uous phase velocity in terms of the particle relaxation time. A similar
expression can be found in Shih and Lumley (1986). Bollweg et al. (2007)
extended this idea in terms of using a linear interpolation between the
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continuous phase velocity and a reference particle velocity to determine
intermediate particle velocities. Using the mass weighted particle veloc-
ity ul® as reference velocity, the intermediate moment transport veloci-
ties, i.e. velocities “between” the gas phase velocity and u'®), are covered
and can be determined using the integral version formulated by Carneiro

et al. (2010) as
(k)
) g+ (u® —
u u. + ) (u uc> . (4.107)
When considering Stokes flow only, the unknown integral relaxation time
7K} generally depends on a moment of the same order and one of two

orders higher,

(4.108)

which can be closed by the presumption of the functional form of the
distribution as outlined above. Eqn. 4.107 implies a dependency of u(D)
on D of u(D) & D?. For large particles this dependency becomes invalid.
This issue has been discussed, e.g. in Carneiro (2012) and Mossa (2005).
Another brief discussion can be found in Vié et al. (2013). For simplicity,
we formally keep the assumption of Stokes particles for all simulations
presented in this work, even when not being strictly valid.
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5 Combustion Closure

In liquid fuelled combustion, the fuel is fed into the combustion device in
liquid phase. Combustion, however, takes always place as a chemical re-
action between gases (exceptions may exist, e.g., some solid-gas reaction,
but these are not of interest here). Nevertheless, combustion of liquid fu-
els can be categorised into two main types, homogeneous and heterogeneous
combustion. To distinguish between those types, the intensity of the in-
teraction of the liquid fuel and the flame can be used as an adequate
measure. Hence, in homogeneous combustion the liquid fuel is neither
surrounded by the flame nor its vaporisation rate is determined by the
flame (at the most by radiation or hot products through recirculation). In
turn, if the liquid and flame dynamics directly rely on each other, or, in
other words, if the flame is in the direct vicinity of the liquid, the combus-
tion type is called heterogeneous. Actually most of the spray combustion
applications belong to the latter, nevertheless most of the spray combus-
tion models are based on the assumption of the former. This issue will be
discussed in more detail in the corresponding sections.

Characteristics and modelling of both types are considered separately in
Section 5.2 and Section 5.3, respectively. In practice, the clear classification
of a given flame into one of the two types is sometimes not possible. In
order to give an overview of academical investigations of spray flames
as provided in the next Section 5.1, it is more appropriate to categorise
the experimental work along different lines. Hence, it is sorted according
to its specific type of configuration, i.e. counterflow spray flames, cone
spray flames and spray jet flames. Additionally, only stationary flames
are considered, instationary diesel injection like configurations (i.e. with
relevant terms as penetration depth, ignition delay, etc.) are out of the scope
and not of further interest here. References leading into that topic can be
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found in the comprehensive review on spray flames given by Jenny et al.
(2012).

5.1 Configurations and Experimental Investigations of
Spray Flames

Investigations of liquid fuelled combustion range from fundamental ex-
periments of single droplets, patterned and unstructured droplet ar-
rangements and small and large droplet groups up to industrial scale
fuel atomiser nozzles and combustion devices. Of our interest are con-
tigurations for which comprehensive data of the particle population are
available, but which does not imply complicated geometries or the need
for large mesh sizes, for example. Hence, this overview focuses on fun-
damental research experiments, which are appropriate to validate the
solver, numerical schemes, reaction mechanisms, etc., either in a funda-
mental way and on more complex flow configurations. As an essential
feature, a sufficiently detailed database for validation and accurate deter-
mination of the boundary conditions must be available in either case.

Besides arrangements of individual droplets, counterflow spray flames
represent one of the basic configurations for model validation, i.e. the val-
idation of vaporisation rates, combustion models, chemical mechanisms,
etc. An overview of available experiments and simulations is given, e.g.,
in Greenberg and Sarig (1993, 1996) or Gutheil and Sirignano (1998).
Often referenced counter flow flame databases have been published by
Chen and Gomez (1992), Darabiha et al. (1992) and Gao et al. (1996). In
principle similar to counterflow flames are stagnation point flames, in-
vestigated, e.g. , by Chen et al. (1988), Li (1997) and Lin and Lin (2005).

Of wide interest is the investigation of spray flames where the spray is
generated by liquid atomisers. There exist a variety of techniques, which
are not of specific interest here. A classification of these configurations
can be undertaken into air-coflow assisted hollow cone spray flames as
reported, e.g., in Chen and Gomez (1997), Friedman and Renksizbulut
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(1999), Cabra et al. (2000), Marley et al. (2004a), Marley et al. (2004b) and
Dtiwel et al. (2007), or similarly with a swirling coflow. The latter is often
combined with an area expansion like geometry to achieve a recirculation
zone in order to ensure continuous flame ignition, e.g. in lean flames,
or aerodynamic flame stabilisation, e.g. in swirling flows. Some relevant
experiments have been conducted in the groups of

e Presser et al. (1992, 1994), Widmann and Presser (2002), which
features a simple geometry and provides comprehensive data on
methanol spray combustion.

e Cai et al. (2005), Fu et al. (2005a), who investigated the Lean Direct
Injection (LDI) combustion concept, and whose database is often
used for validation, e.g., by Kirtas et al. (2006), Patel and Menon
(2008), Iannetti et al. (2008), Knudsen and Pitsch (2010), Dewanji
et al. (2012) and is also used in this work, see Section 7.3.

o Allouis et al. (2008) applying Lean Premixed Prevaporised (LPP)
combustion for gas turbine burners.

e or the MERCATO experiment (Lecourt et al., 2011), for gas turbine
combustion as well, simulated, e.g., by Franzelli et al. (2013).

Spray jet flames are also often investigated, which usually feature homo-
geneously mixed droplet-air pipe flows injected into a quiescent environ-
ment or a slow coflow. Besides their industrial relevance, these configu-
rations facilitate the measurement of particle population quantities more
accurately than in the dense spray regions present at the exit of atomiser
nozzles. This is of significant benefit for numerical simulations, for which
accurate inlet conditions for the spray can be set based on the measured
data. Due to the upstream mixing, however, the droplets usually under-
lie a certain degree of prevaporisation, which might be of advantage or
not, depending of the aim of the investigation or application. If the spray
is fully prevaporised, homogeneous combustion clearly occurs, e.g., as in
Hwang et al. (2007), but most often, heterogeneous combustion modes
develop depending on the degree of prevaporisation, the vaporisation
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rate compared to the jet velocity, the particle loading, the size distribu-
tion, etc. Some relevant publications in this area are

* Karpetis and Gomez (1998, 1999), Mikami et al. (2005), where the
different flame types are explained, e.g. triple flames.

* configurations of the University of Sydney (Chen et al., 2002, Starner
et al., 2005, Gounder et al., 2007, Masri and Gounder, 2010), which
have been simulated, i.a. in Chrigui et al. (2013) and this work
for validation of the polydisperse vaporisation modelling (see Sec-
tion 7.2).

* several others, e.g., Pichard et al. (2002), Nomura et al. (2007),
Baessler et al. (2007) with simulations reported in Chrigui et al.
(2010a), or the experiments by Chrigui et al. (2009) and related sim-
ulations published in Chrigui et al. (2010b).

* An experimental confined jet configuration with separate fuel
vapour assistance is reported in Richards et al. (1988).

* Specific discussion of the triple flame type is given in Mufiz and
Mungal (1997), Marley et al. (2004a,b).

In the following two sections, both homogeneous and heterogeneous
combustion are described separately in more detail, each with a discus-
sion on modelling approaches and related numerical work. The combus-
tion modelling developed and used in this work is described and the
verification of its implementation is shown using simple 1D cases.

5.2 Homogeneous Combustion

To put it simply, homogeneous spray combustion is nothing but single
phase combustion based on a fuel-oxidiser mixture determined by the va-
porising spray. There does not take place any direct interaction between
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the spray and the flame. That means that the flame dynamics does not de-
pend on the vaporisation rate of the fuel droplets, but only on the same
quantities as single phase combustion does, e.g., mixture characteristics,
convective flow velocity vs. flame speed or chemical kinetics. However,
these quantities are usually influenced and modified significantly by the
spray, depending on the residence time and characteristics of the flow be-
tween the vaporised spray and the flame. Especially the degree of mixing
of fuel vapour and air is initially rather low within the spray due to the
large pointwise supply of pure fuel vapour, but improves downstream,
depending on the time before reaching the flame front. This means that
the mixture fraction PDF initially features a large variance, which be-
comes smaller with an increasing residence time of a given fluid volume
between the vaporisation of the droplets and the flame front. Hence, ho-
mogeneous combustion, i.e. prevaporised from the point of view of the
flame, ranges from premixed to nearly unmixed.

In consequence, practical application and experimental investigation
possess a large number of different flame types, configurations and phe-
nomena. In the following, some relevant experiments are listed, which
have been used to validate theoretical models and numerical simulation
results. The listing is far from complete, but primarily provides some
practical configurations which act as specific examples to demonstrate
the different approaches in modelling and simulation.

5.2.1 Models for Spray Combustion and Applications in Literature

In most numerical simulations, spray combustion is treated as homoge-
neous combustion. However, especially the spray flamelet models are
often applied to configurations where an envelope flame burns around
the entire spray. In this case, it can be difficult to distinguish clearly be-
tween heterogeneous combustion, i.e. external sheath /group combustion
already applies (case I in Fig. 5.1, see also Section 5.3), and homoge-
neous combustion, i.e. the flame does not directly interact with the outer
droplets of the spray (case II and III in Fig. 5.1). The spray combustion
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models can be basically classified into those which consider the specific
characteristics of the high variance of the mixture fraction field due to
the pointwise vaporisation of the fuel (case II) and those which directly
incorporate the droplets in the vicinity of the flame (spray flamelets,
case I). The latter should rather be classified as heterogeneous combus-
tion models, but to retain the discussion of the spray combustion mod-
els compact, even those are discussed here. In the section about hetero-
geneous combustion (Section 5.3), only models for single droplet com-
bustion and those explicitly modelling group combustion are discussed.
General overviews can be found in Faeth (1996), Gutheil (2011) and Jenny
et al. (2012). In the following, some of the available models are discussed.

Droplets Fuel Vapour Flame

Figure 5.1: (Indefinite) Transition between heterogeneous (I) and homo-
geneous (III) spray combustion.

Almost all spray combustion models refer to partially or non-premixed
combustion. This is consistent, when ignoring those special cases, where
a perfectly premixed mixture of fuel-vapour/air is burnt, but which still
carries droplets, which interact with the resulting premixed flame. In any
other “premixed spray combustion” case, the spray must be clearly sep-
arated from the flame zone to ensure a residence time between spray and
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flame long enough to allow perfect mixing of fuel vapour and oxidiser.
In this case, standard single phase models can be simply applied.

Spray combustion methods and models are sorted considering the aver-
aging method used for the equation system. Hence, the models are cat-
egorised into laminar flows (no averaging needed), RANS simulations,
tiltered equations (LES) and DNS, the latter including those conducted to
develop sub-grid scale submodels for LES. The work of specific research
groups is summarised and if applicable, the publications of experimental
data are referenced which have been used for validation.

Laminar

Most laminar cases are concerned with the investigation of spray coun-
terflow diffusion flames, with spray and carrier gas from one side and
the oxidiser (mixture) from the other side. Dependent on the vaporisa-
tion rate, droplets are either vaporised before reaching the flame front
(Fig. 5.2) or pass the flame front, eventually with a subsequent reversal
of the flow direction within the opposite stream (Fig. 5.3). In the former,
no direct droplet-flame interaction occurs, only the grade of mixing with
the inert carrier gas impacts the flame dynamics, whereas in the latter
case, heterogeneous combustion plays a role, depending on the remain-
ing liquid fuel mass. With these counterflow configurations, a whole set
of different states can be precalculated, tabulated and used for the sim-
ulation. This is done either to reduce the cost or to increase the accuracy
(by using a sophisticated external chemistry solver) in laminar cases, or
to incorporate the sub-grid PDF of the mixture and droplet quantities to
account for the non-resolved scales in turbulent flows.

Fundamental analytical work forms the basis of spray counterflow
tlames, which imply usually reduced physics. Equation systems includ-
ing more comprehensive physics, are typically solved numerically, where
related work can be found for a 1-dimensional description, e.g., in Se-
shadri et al. (1989), Continillo and Sirignano (1990), Chen et al. (1992),
Darabiha et al. (1992), Gao et al. (1996), Massot et al. (1998). In Gutheil and
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Flame Front

Fuel Vapour

Figure 5.2: Laminar, prevaporised, homogeneous spray counter flow
flame.

Diffuse Flame Front

Fuel Vapour Oxidiser

A

A

Figure 5.3: Laminar, partially

prevaporised, heterogeneous spray
counter flow flame.
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Sirignano (1998), a comprehensive overview and comparison with spray
counterflow experiments is given. Recent work considers two dimen-
sions, e.g., Schlotz and Gutheil (2000), Watanabe et al. (2007), Franzelli
et al. (2012).

RANS

Along with the popular and often applied RANS simulation for indus-
trial scale applications, numerous attempts have been made to modify
single phase combustion models or to develop specific two-phase models
for the use in two-phase combustion. A choice is listed in Tab. 5.1. Those

Table 5.1: Spray combustion models used in RANS

Model name

References

Gas flamelet (accounting for point-
wise fuel sources due to vaporisation)

Chang et al. (1996), Hollmann and
Gutheil (1996)

Spray flamelet (counterflow spray
flames)

Hollmann and Gutheil (1998), Gutheil
and Sirignano (1998), Demoulin and
Borghi (2000), Gutheil (2001)

Eddy Breakup model (EBU)

Guo et al. (2002), Dhuchakallaya and
Watkins (2010), Wang et al. (2011)

Conditional Moment Closure (CMC)

Wright et al. (2005)

Modified Bray-Moss-Libby (BML)

Chrigui et al. (2010a,b)

Flamelet Generated Manifolds (FGM)

Bekdemir et al. (2009, 2010, 2011),
Egtiz et al. (2012, 2013)

Partially Stirred Reactor (PaSR) (with
PDF transport of species and IEM
mixing)

Sabel’'nikov et al. (2006)

examples are only a few among many others. Hence, a clear trend of how
to model heterogeneous combustion in spray applications cannot be fig-
ured out. More or less, these methods give adequate agreement with the
experimental results, but still lack on a conclusive approach of consider-
ing spray combustion modes as discussed in Section 5.3. Although these
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refer to heterogeneous combustion modes whereas the given examples
have been listed under the key word homogeneous combustion, it is ac-
tually the fact, that many of these examples feature at least one of the
heterogeneous modes. As discussed before, clear homogeneous combus-
tion in two-phase flames is actually a very specific case, which does not
often occur and does not have much in common with spray combustion.
However, in most of the numerical simulations this assumption is used.

LES

The same is valid for LES simulations of two-phase flames. Here, single
phase combustion models are usually used unaltered or adapted, e.g.,
a single phase flamelet model in Moriai et al. (2013) and Franzelli et al.
(2013), FGM in Chrigui et al. (2012, 2013) and direct tabulated chemistry
in Tillou et al. (2014). A two-phase Thickened Flame model has been pro-
posed by Kaufmann (2004), which is strictly valid only for laminar or
DNS flows. For its use in RANS and LES, sub-grid scale models must be
incorporated as done for the single phase counterpart.

DNS and DNS for Developing SGS-Models

To investigate and to develop sophisticated two-phase combustion mod-
els for the different combustion modes, DNS can be a very helpful tool,
escpecially used with the Lagrangian description of the particles (Di-
rect Simulation Monte Carlo, DSMC). So far, these attempts have been
restricted to the droplet and vapour dynamics, e.g., the droplet sub-
grid scale model for mixture fraction and variance by Réveillon and
Vervisch (1998). Other DNS simulations focused on the applicability and
phenomenological investigation of a given problem. Examples are: Neo-
phytou and Mastorakos (2009) and Neophytou et al. (2011), which used
detailed chemistry for droplet mists and droplet clusters; laminar and
weakly turbulent spray jet flames in Réveillon and Vervisch (2005); a 2D
flamelet/progress variable approach in Baba and Kurose (2008), Fujita
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et al. (2013) and Kitano et al. (2013); or Smith et al. (2000) using a two-
phase CMC approach developed in Mortensen and Bilger (2009).

A brief conclusion can be made as follows. For homogeneous combus-
tion, single phase models may be used, which are modified to account for
the altered fuel vapour field due to the heterogeneous, pointwise vapori-
sation of the dispersed droplets. Considering that, especially for flamelet
models, this fact proves as a challenge, because the fuel vapour source
does not represent a simple change in mixture fraction (because only the
fuel species increases!), but represents a continuous change in the bound-
ary conditions, which should be accounted for as an additional dimen-
sion of the flamelet tabulation. The proposed two-phase flame models as
referred to before, does not account for that issue (to the author’s under-
standing). Dealing with that issue is the main problem for most of the
approaches, where a detailed and direct (tabulated) chemistry PDF ap-
proach seems to be not only the best approach (which is trivial) but rather
the only appropriate one, especially if the droplets interact directly with
the flame or the combustion products.

In this work, we make use of direct Arrhenius chemistry using the sin-
gle phase, standard PaSR and an adapted Thickened Flame Model (TFM).
This model, however, does not account for two-phase combustion modes,
but properly treats the interaction of the droplet dynamics with the thick-
ened gas phase zone, i.e. reduced vaporisation rates, drag coefficients,
residence times, etc. Both approaches are not sophisticated, but act as
a first step for developing and implementing a spray combustion CFD
solver. As mentioned before, the PaSR is used in its standard, single phase
version as implemented in OpenFOAM. Its formulation can be found
in the literature (Vulis, 1961, Nordin, 2001). Here we only present the
adapted Thickened Flame Model for dispersed flows, which is done in
the next section.
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5.2.2 A Two-Phase Thickened Flame Model (TFM)

In premixed combustion, the flame thickness 5? is about 0.1 to 1 mm.
With the resolution of a typical LES mesh for industrial scale and most
academical applications, the flame front cannot be resolved. Hence, the
intermediate species concentrations cannot be resolved and the accurate
description of the physics within the flame is not possible. To overcome
this issue, a method has been developed which artificially thickens the
flame. This happens in a way that the flame is thickened by a factor F but
keeping the laminar flame speed s? unchanged. Considering that ) is a
function of the molecular diffusion coefficient ® and the reaction rate w
and that the flame thickness J} is proportional to the ratio of © and s!
according to

s) < VOwW o) o f—o , (5.1)
l

multiplying © with the thickening factor F and dividing w by F does not
alter the flame speed but enlarges the flame thickness by the factor F. As
long as the smallest turbulent scales and the smallest wrinkling struc-
tures are resolved by the mesh (laminar flows, DNS), this constitutes an
accurate method to simulate the full flame physics on a mesh which is
not able to resolve the flame front. However, such a combination of mesh
and flow scales is almost never the case. Therefore, as soon as some struc-
tures of the flame wrinkling are lost due to the thickening, or when the
smallest turbulent eddies of the flow, which alter the flame front, cannot
be resolved by the mesh anymore (LES, RANS), the non-resolved effects
must be modelled.

Meneveau and Poinsot (1991) introduced an efficiency factor E, which
has been adapted to the Thickened Flame model by Angelberger et al.
(1998), Colin et al. (2000). The efficiency factor gives the ratio of the wrin-
kling of the physical flame and that of the thickened flame. The wrinkling
factor itself is the ratio between the sub-grid scale turbulent flame speed
and the laminar flame speed. With that the following transformations
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have to be conducted
Eu
@—>EF@,¢0—>%,5?—>E5?,5?%F5?. (5.2)

Additionally, the turbulence-flame interaction is altered in another way,
which can be expressed in terms of the Damkohler number Da, which be-
comes Da — Da/F (see Colin et al., 2000). That means that the thickened
flame becomes less sensitive to turbulence, but more sensitive to strain
(Poinsot et al., 1991).

In order to use the Thickened Flame model towards partially and non-
premixed combustion as well, Legier et al. (2000) introduced a local thick-
ening algorithm, which modifies only the flame and its vicinity, but pre-
serves mixing and diffusion dynamics everywhere else. Furthermore, in
LES of partially and non-premixed combustion, where the sub-grid scale
turbulence is not resolved, a sub-grid PDF of the mixture fraction must
be considered to correctly describe turbulence-chemistry interaction. The
influence of considering the PDF on the results depends on the configu-
ration and the grade of unmixedness. This issue relaxes for the temporal
variation of the sub-grid scales, since the flame is thickened, hence the
small temporal variations are slowed down to a time scale which is re-
solved.

Legier et al. (2000) stated, that the TFM is appropriate for cases where
premixed and non-premixed flames coexist, since it does not presume a
flame structure. In partially prevaporised spray flames as we will investi-
gate later on, the flame structure varies between those extremes, therefore
the TFM qualifies as a reasonable choice. In a first step, the sub-grid PDF
has not been incorporated.

So far, the description of the TFM has been concerned about single phase
flows only. In homogeneously combusting two-phase flows, the combus-
tion is not altered compared to single phase combustion, but the interac-
tion of the thickened flame with the droplets must be considered prop-
erly. Thickening the flame results in an enlarged hot zone the droplets
must travel through. Consequently, to preserve the amount of liquid,
which is vaporised during the time the droplet needs to pass the thick-
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ened flame, the vaporisation rate must be reduced by the factor F to en-
sure slower vaporisation, i.e. I' — %F.

With that, the gas phase and dispersed phase equations can be finally
given.

Gas Phase

The gas phase mass continuity reads

Jd ,_ 1
g(ep) + V- (6pu) = = (5.3)
and the species transport
%(epffm) + V- (0pY,i) — V- (0p(D + g—é)E FVY,)
t

E, . 1.,
= £ lo@n)" + 2w . (5.4)

The gas phase momentum conservation becomes

%(Gpﬁ) 4V (6pEE) = — 6V + 0V - T4V - (67
1
—M -+ il“ﬁd
+ 0og (5.5)
and the sensible enthalpy equation

—(0ph) + V - (8phii) + V - (%EFV(GE)>
d

=0 —ﬁ + ﬁVﬁ) + _r(hs o le) + %Z<pwm>v}—Qm . (5-6)

Particle Phase

As discussed before, the droplet phase equations must be modified ac-
cordingly. For the M®) transport equation, the modified vaporisation rate
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yields
1

0
&(PdM(k)) + V- (paM®Bu®) = —FLM® (5.7)

and for the dispersed phase momentum or u®® transport equation

%(pd MOu®) 4+ 7 - (0aM® (uu)®)

1
—FM(g,) u<1) . (58)

The droplet sensible enthalpy equation h; = cp;T; is given by

%(de“’)hd) + V- (0aMPuh,)
1

T—T,
= _ﬁrM(a) (hd + Ahy(Ty) — CPU%) . (5.9)
T

Verification

The implementation of the dynamic thickening into OpenFOAM has
been verified using a simple 1D non-prevaporised methanol flame in a
homogeneous droplet-air flow, with initially equal velocities of 0.4m/s
for both phases and temperatures for gas and droplets of 393 K and 273K,
respectively. The values of the droplet population are arbitrarily chosen,
with the droplet volume fraction being a; = 0.0023 and an initial mean
diameter Dyy = 1.97723 x 10> m. The boiling temperature of methanol
is set to 337.75K. The domain length of 0.02m is discretised into 300
points, i.e. each cell size is about Ax = 66.67 um, which is fine enough
to resolve the unthickened flame properly. The 3-step methanol mecha-
nism of Westbrook and Dryer (1981) has been used. Fig. 5.4 shows the
dynamic thickening factor over the domain length. Its maximum value
has been set to 8.

The graphs in Fig. 5.5 show several quantities of the gas and dispersed
phase plotted over the domain length as indicated in Fig. 5.4. Each plot
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0 1 2
Domain Length in cm

Figure 5.4: Profile of the dynamic thickening factor.

shows the results of the original, unchanged flame, the result of the thick-
ened flame calculation and its rescaled values accordingly to the local
thickening value. For this study, the absolute values are not of specific
interest. Hence, the values are normalised with the maximum value. In
general, the shape and slope of the original and rescaled flame front
agree very well for most of the variables. Considerable deviations can
be observed for the heat transfer rate between gas and droplets and the
methanol vapour mass fraction!. The latter might results from the fact
that the gas phase velocity is slightly lower in the thickened case at the
positions more downstream, which accordingly absorbs more vapour per
volume and time interval. The mechanism which is responsible for the
higher heat transfer rate from the air to the droplets is not clear.

To be clear, both quantities are shown in their full strength for the thickened case, but are reduced by
the thickening factor accordingly when acting as source terms in the corresponding equations. Otherwise
the overall balances would obviously not be fulfilled.
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original
thickend -
rescaled --------

Volume fraction of droplets

Second moment M2

Heat transfer rate gas-droplets

Mean diameter D10

First moment M1

Sauter mean diameter D32

Zeroth moment MO

Gas phase temperature

Droplet temperature

0 1 2

Gas phase velocity

1 2 o 1 2

Mass averaged droplet velocity

Vaporised mass flow rate

Mass fraction of methanol vapour

Mass fraction of CO2

Mass fraction of CO

Figure 5.5: Original, thickened and rescaled flame simulation results.
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5.3 Heterogeneous Combustion

The general term heterogeneous combustion stands for all types of flames
in multiphase combustion, which directly interact or depend on the dy-
namics of the fuel® droplets. That means, that the reaction occurs in the
immediate vicinity of the vaporising droplets and depends strongly on
the vaporisation rate, the mass diffusion velocity of fuel vapour to the
flame and the droplet Reynolds and Peclet number, which determine the
shape and position of the flame relative to the droplet(s). Chiu and Liu
(1977) and Chiu et al. (1996) investigated the different types of heteroge-
neous combustion and observed the following four modes. Each mode is
exemplified using a spray jet flame configuration consisting of an air jet
laden with fuel droplets.

* Single droplet combustion (SDC) is a mode, where an individual flame
establishes at each droplet. Fig. 5.6 shows a very dilute fuel spray
dispersed in an oxidising gas jet. Due to the partial prevaporisation,
a premixed flame establishes first. The droplets ignite when crossing
this flame and burn individually downstream.

Fuel
Vapour

Single Droplet Flame

RARE

Premixed Flame

Figure 5.6: Example for Single Droplet Combustion.

%In specific cases, the particles or droplets may provide the oxidiser, but we do not consider this case
in the further description.
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e [nternal group combustion describes a combustion mode where a sin-
gle flame surrounds a small cluster of droplets, which feed this flame
with fuel vapour and the outer droplets (or the droplets inbetween
the clusters) are burning in single droplet combustion mode.

Fuel
Vapour

Internal Group Combustion

SDC

Premixed Flame

Figure 5.7: Example for Internal Group Combustion.

¢ In the external group combustion mode, the flame surrounds the entire
group of droplets, i.e. the large structures of the spray. All droplets
are vaporising and contributing fuel vapour to the reaction.

Fuel

Vapour

Surrounding Flame

Figure 5.8: Example for External Group Combustion.
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 External sheath combustion is a special case of the external group com-
bustion mode, which implies the same structure and arrangement
of the droplets and the flame but contains a core region, where the
droplets are surrounded by cold gas, which suppresses vaporisation
of the droplets. Only the droplets closer to the flame are vaporising
and feeding the flame.

Cold Gas
Flow

Surrounding Flame

Non-Vaporising Core Region

Figure 5.9: Example for External Sheath Combustion.

The occurrence of those modes depend on the droplet number density,
droplet group size, droplet diameter, fuel volatility and the ambient con-
ditions. All these effects have been observed experimentally, although
a clear separation is sometimes difficult. Attempts to establish regime
maps and discussions on them have been given by Chiu and Liu (1977),
Chiu et al. (1996), Chigier (1983), Kuo (1986), Borghi (1995), Réveillon
and Vervisch (2005), Urzay (2011) and Kuo and Acharya (2012). A list-
ing of further relevant experimental work is not given here but can be
found, e.g., in Jenny et al. (2012) or Sirignano (2010). Theoretical and
numerical work has been focused strongly on the single droplet com-
bustion mode, which is given below in Section 5.3.1, but less on group
combustion modes. This results from the fact that even single droplet
combustion is quite difficult to handle mathematically and to find a solu-
tion for comprehensive physics, not to mention the complexity of droplet
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array and group combustion. With modern CFD methods and the avail-
able computational power, resolved simulations of combusting droplet
pairs, droplet arrays and droplet groups can be conducted to investigate
these modes in more detail. For realistic droplet numbers, however, re-
solving the individual droplets and flames is far from feasible. Therefore,
statistical and macroscopic models must be developed, which consider
those combustion modes in an effective way. Literature on both, single
droplet and group combustion simulation in realistic/large scale appli-
cations are rare due to the complexity and the lack of affordable models.
The nearby approach to simulate external group combustion and external
sheath combustion, is to use spray flamelets where the droplets consid-
erably approach the flame front or even cross it.

In this work a single droplet combustion model for polydispersed mo-
ment methods is proposed, which is based on net rates of vaporisation,
species reaction and heat release as shown in the next section. Besides
that, no further attempt has been made to consider any type of heteroge-
neous combustion mode and must be left for future work.

5.3.1 Single Droplet Combustion

To observe single droplet combustion, the following requirements must
be met. First, and most essential, the droplet-droplet spacing must be
large enough to avoid flame interaction of neighbouring droplets. Sec-
ond, a lean or purely oxidising/inert gas mixture must be present to
allow a sufficient transport of oxygen to the individual flames. If the
droplets are surrounded by a high amount of fuel vapour or reaction
products and too less oxygen, individual flames cannot establish, but
only a flame surrounding the droplet group at a position where enough
oxidiser is available. Furthermore, the position and shape of the individ-
ual flame around the droplet depends on the flow and the ambient con-
ditions of the gas phase. Starting from a quiescent surrounding, the fol-
lowing flame shapes can be observed with increasing droplet Reynolds
number: spherical flame, envelope flame, side (or boundary layer an-
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chored) flame and wake flame (Chiu and Huang, 1996). If the Reynolds
number becomes too large, the flame extinguishes and pure evaporation
remains. The dependence on the droplet Reynolds number, however, is
not unique, but depends on the history of the flow. That means, that
the switching point between flame types is not singular, but depends
on whether coming from high Reynolds numbers or from low Reynolds
numbers (hysteresis loop). In fact, there exists a certain “inertia” of the
current flame type regarding its change to another type. Details can be
found in (Chiu and Huang, 1996).

Literature

All SDC flame types additionally differ from each other in mass vaporisa-
tion rates and heat release. These quantities are of specific interest when
aiming for evaporation and single droplet combustion models describ-
ing the physics in a 0-dimensional but time dependent manner. Besides
these models, a large effort has been undertaken to find 1-dimensional
and 2-dimensional solutions for all single droplet combustion modes.
Early analytical work is reported, i.a., by Godsave (1954), Spalding (1954),
Goldsmith and Penner (1954), Fendell et al. (1966), Fendell (1968) and
Kassoy and Williams (1968), in which an increasing amount of physics
has been taken into account with time, i.e. steady state, spherical, tran-
sient, convective flows, etc. More recent work, e.g., Gogos et al. (1986),
Fachini Filho (1999), Dwyer (1989), Ackermann and Williams (2005) and
Ulzama and Specht (2007) still aims for accurate analytical solutions, but
due to the complexity of the equations, an increasing amount is solved
numerically. Reviews on the topic can be found in Williams (1973), Law
(1982), Faeth (1977, 1983), Sirignano (1983, 1993), Borghi (1996), King
(1996) and Chiu (2000).

With increasing complexity of the physics considered, the analytical solu-
tions become notoriously complex and the equation systems too costly to
include into numerical simulations. In order to be able to consider single
droplet combustion for a large number of droplets in CFD simulations of
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spray flames, we consider a 0-dimensional, spherically symmetric model
similarly to the vaporisation modelling. The chosen model and the mod-
ifications done to be used in the moment equations are shown next.

5.3.2 A Single Droplet Combustion Model for Moment Methods

In this section, an Eulerian Single Droplet Combustion model (ESDCM)
is proposed based on an available model for 0-dimensional, spherical,
time dependent droplet combustion. Many models exist that provide
time dependent mass vaporisation and heat transfer rates for combusting
droplets. Here we chose the one from Ulzama and Specht (2007), because
it is quite convenient to be used in the moment model framework. It pro-
vides the vaporisation rate and the heat release for a combusting droplet
under the following assumptions and simplifications:

* 1D spherical (micro-gravity, quiescent air)

* unity Lewis number in the gas phase

* spatially uniform but transient droplet temperature

* ¢p of gas and liquid are constant

* no temperature dependence of the gas phase properties

¢ combustion products do not affect the process

* 1-step, irreversible thin flame

* radiation is neglected

* the droplets persist at their initial temperature Tp; only the amount

of liquid which will be vaporised, 71, is heated up.

The mathematical details and equations of the model are given next and
prepared to be able to carry out the ensemble average, the filtering and
the phase space integration in order to obtain appropriate source terms
for the moment equations.
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Vaporisation Rate

The vaporisation rate will be developed similarly to Section 3.2.1 using

the effective or net heat transfer rate to the droplet Q'Z(Z};SDC. It is the dif-
ference between the total heat conducted from the flame to the droplet,
termed ¢ in line with the original article (Ulzama and Specht, 2007), and
the latent heat, which must be spent to vaporise the liquid, and is given

by

700 )

~(n (n) . "

QU = 4mA® L i AR (5.10)
pm r]((”)

\ . e

=q

where T}n) is the temperature of the flame around the droplet 7, TS(") is the

vapour temperature at the droplet surface, i.e. Ty, and 7 is the radius

of the spherical, thin flame. For the ease of reading, the notation @x;")
)

S TOr " : . (n
indicating the gas phase quantities at the droplet location, i.e. for A®% ",

) exi) g e L :
T, BT;Z , v, and the individual droplet identifier, the superscript

(n) j.e.for QZ(Z};SDC, T](("), TS(”), T;S”), DM, Ahg,"), are omitted in the following.
Rearrangement of g yields

Qe =2mAD(Ty = T,) ——  —titAhy. (5.11)
2r
—_ f

correction factor

The equivalent expression for pure evaporation, i.e. inserting Eqn. 3.46
into Eqn. 3.45 with considering Stokes flow only, Nu* = 2, reads

ln(l + BT)

Br

correction factor

Qlett = 2TAD(T — T},) —1itp Ahy (5.12)

Comparing both, it becomes clear that in the latter expression the cor-
rection factor accounts for the Stefan flux and that of the former for the
physics between the droplet surface and the flame, i.e. (1 — D/2r;) 1.

148



5.3 Heterogeneous Combustion

In the evaporative case, Qe can be completely used to heat up the
droplet, since the heat up of the vapour from T, to T is not taken into
account at that point but in the energy equation Eqn. 3.33. In case of
the single droplet combustion model presented by Ulzama and Specht
(2007), the heat up of the vapour from T; to Ty is considered directly in
the heat balance of the model. This implies two reasonable points. First,
as pointed out by the authors, the heat up of the vapour consumes the
highest amount of the combustion heat compared to the liquid heat up
and the latent heat. Second, it occurs between the droplet surface and
the flame, independent of the state of the gas phase around the burning
droplet. Hence, in contrast to Eqn. 3.33, here the vapour heat up is consid-
ered directly in the model. This will have an impact on the corresponding
source terms in the gas and dispersed phase equations as shown later on.

Consequently, the remaining heat Q7% must be spent to heat up the lig-

uid® from Tp to T, and the vapour from T to Ty. The latent heat has al-
ready been considered in Eqn. 5.10. Hence,

Q5% = ity [en(Ts — To) + coo(Tr — To)] (5.13)

Setting Eqn. 5.10 equal to Eqn. 5.13 yields the amount of liquid mass ni,,
which can be vaporised with the given heat, as

ArtAg(Tf — Ty)
(% — %) [CPZ(TS - TP) + Ahv + CPU(Tf o TS)]

fity = (5.14)

The mass flow rate is defined to be positive when pointing from liquid to
vapour. Replacing 7, by the expression given by Sirignano (2010)

S 2 In(1 4 1Yoy e0)

(5.15)

3As stated before, the model of Ulzama and Specht (2007) implies, that the initial droplet temperature
Tp remains constant, and only the amount of liquid which will be vaporised at the given time instant 7,
is heated up from the initial droplet temperature T to Ts.
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yields
27tAg(Ty — To)D

In(14+vYox,00
(1 - l(n(l—i-BT) )> [CP1<TS - TP) + Ahy, + CPv(Tf - Ts)]

ity = (5.16)

g

~"

7T

Although a formulation of r £ 1s given in the original article, the one of
Sirignano (2010) is used instead, because the original formulation is more
complicated and requires an iterative solution procedure. It might be
more accurate, since it is the original term for the model. K is the SDC-
specific gasification rate as similarly defined in the D? law as (see Ap-
pendix A.3.1)

D*(t) = Dj — Kt . (5.17)

Source Terms for the Gas Phase and Moment Equations

In order to obtain source and sink terms for the gas and dispersed phase
equations, the ensemble average, spatial filtering and phase space inte-
gration is done accordingly to the evaporation source terms regarding
the treatment of unknown correlations.

The source term for the dispersed phase mass continuity equation (M®)
equation) is obtained by

6 _ 6 T 3

where K is assumed to be invariant to the filtering. For general moment
order it becomes

k
I = Edez\/ﬂk—z) . (5.19)

With Eqn. 4.77 the source term for the gas phase mass continuity equation
becomes
['SPC — T

7T
= T = gpaKMY (5.20)
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and the momentum sources for the dispersed and gas phase momentum
equations

rse ul) = g 0 KMMy) (5.21)
Sy () — %deM(l)u(l) _ (5.22)

The source terms for the droplet and gas phase enthalpy differ from those
given for the evaporation due to the different arrangement of the vapour
heat up term in both cases. Here, the heat balance is constructed such,
that the droplets persist at the temperature they actually had, when the
single droplet combustion mode started (i.e. switched on in the numeri-
cal simulation as T; = T;(t = SDC—on)). Consequently, the droplet tem-
perature is not changed as long the combustion remains in single droplet
combustion mode and only the enthalpy which is lost due to mass loss
must be considered, i.e. the source for the droplet enthalpy equation is

To evaluate the source term for the gas phase, a simple balance can be
made considering the chemical heat release from the droplet combus-
tion Qcomb and the heat needed for the droplet physics. As a result, the
amount of the chemical heat release, which contributes to the gas phase
temperature around the burning droplet, becomes

. Ahcom
Quomb =4 & 1ty =1, (5.24)
where h.omp, is the molar heat of reaction and W, is the molar mass of the
liquid.

In the numerical simulation, either the source terms due to pure evap-
oration or due to single droplet combustion are switched to be active.
A simultaneous consideration of both modes locally is not possible and
rather unlikely in reality. The switch is denoted as

{1 if SDC applies

S = S(x,t) = ) (5.25)

0 otherwise
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which simply activates single droplet combustion when multiplying the
corresponding terms by S and activates the pure evaporation with ho-
mogeneous combustion (thickened flame model) when multiplying the
source terms by 1 — S. With that the equations for the droplet and gas
phase can be given.

Particle Phase Equations
Moment transport

d 1
= (paM®) + V- (de(k)u(k)) = [(1 —S)=Tw +STPS [ (5.26)

ot F
Momentum
d
3)u® : OMEOME)
at(de ) +V (de ut’u )
1
= MO 4 gM®p, — (1 - S)er(s)u“) —STul) (5.27)
Sensible enthalpy
d
—(paM® ) + V - (paMPu®hy
ot
1 T—-T,
== (1=8)glye [hd + Ahy(Ty) — CPU%
T
Gas Phase Equations
The gas mass continuity equation reads
ap 7T 1 SDC
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Special attention must be paid to the species equations. Up to now, no
comment has been given of how the actual combustion will be taken into
account. As outlined in the introduction of this section (5.3.2), the reaction
is assumed to be infinitely fast compared to the diffusion of fuel vapour
and oxidiser and can be described by a one-step reaction mechanism.
That means that fuel vapour and oxidiser directly transform to the final
products. Here, we consider a reaction mechanism in the form of

VoF + 15,00 — 1v,,LCOs + 1,,.H O (5.30)

With that, the ansatz vaporised equals burnt can be made. Hence, the vapor-
ised mass flow rate is proportionally distributed to the product species
CO; and H,O directly and taken from the oxidiser species O, by the spe-
cific amount determined by the stoichiometric coefficients in Eqn. 5.30.
The fuel vapour species F remains unchanged. As the result, the gas
phase equations for the species read

Fuel species

0
E(PYv,oo) + V- (oY1) =V - (17eEF VYuoo)

E . 1

O, species

0
_(pYOX,OO) + V : (pYoz,oou) - V : (UeffE F vYoz,oo)

ot
E = 1 v, W,
=19 SSF W S OTSe(5.32)
CO, species
0
g(pycoz,oo) +V. (choz,oou) -V (ﬂeffE F vYcoz oo)
E T o1 VeWeor
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H,O species

0
_(pYH2O,OO) + V- (pYHzo,oou) - V- (ﬂeffE F vYH2o,oo)

ot
_ Ew n ﬂsl Vizo Wino
~ F 6 F v,W,

rshs, (5.34)

where W,,, W, and W,,,, are the molar masses of the oxygen, carbon diox-
ide and water, respectively.

The vapour momentum is transferred to the gas phase at the status after
vaporisation. The contribution of momentum due to the volume expan-
sion of the vapour and product species due to the heat up to the flame
temperature, respectively, is accounted for implicitly by the reaction heat
source term in the energy equation.

%,
T 1
5 (1= S)gTyou +

7T

* 6

ST6uM) . (5.35)

The gas phase sensible enthalpy equation finally becomes

0
g(ph) +V .- (puh) =V - (1egEFVT)
dp E

Tl

1
+(1-8) | = 5Tue i + 7 Nu kMY (T, — T)

Ahcomb . )
w, 1

+ S (i1, (5.36)

When Does Single Droplet Combustion Occur?

The following criteria must be met:
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5.3 Heterogeneous Combustion

1. The droplet must be ignited, i.e. pass a hot gas zone with a residence
time therein at least as long as the ignition delay time. Here, it is sim-
ply assumed that S = 1if T > Tj,, without considering the ignition
delay time.

2. The droplet must have appropriate conditions around it, i.e. oxidiser.

3. There must be enough space to the next droplet, otherwise SDC
switches to a kind of group combustion mode. Twardus and Brzus-
towski (1977) and Brzustowski et al. (1979) found that the droplet-
droplet spacing (dds) to diameter ratio R = dds/D must be at least
‘R > 8.5 for heptane, for less-volatile fuels Umemura and Takamori
(2005) give a value of around 10.

The last criterion can be formulated as follows. The mean droplet-droplet
spacing dds can be given in terms of the number density M(©) as dds =

1/v/ MO If the mean diameter D1y = M1 /M is used for D, R can be

written as
dds vV MO?
R = Dy, = M (5.37)

For practical simulations, we choose R > 10. SDC is switched off if R <
10 or when the oxidiser mass fraction becomes marginal.

Validation

The proposed Eulerian Single Droplet Combustion model (ESDCM) has
been implemented into the existing solver for homogeneous spray com-
bustion. Which of both combustion models locally applies during the
simulation has been discussed in the paragraph before. Here, a rough
comparison is shown between results obtained from the homogeneous
combustion and those from the ESDCM. The same 1D non-premixed
two-phase flame has been used as discussed in the last paragraph of Sec-
tion 5.2.2, where the two-phase thickened flame model has been verified
in a similar way. In the case of the ESDCM simulation, the model has been
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switch on from the very beginning (not considering an appropriate igni-
tion temperature) and switched of when no oxidiser is left, which is the
case after a certain length as indicated in Fig. 5.10. The value used for the
heat of combustion of methanol is Ahcomp, cmon = —735 kJ/mol. The PaSR
simulation has been conducted using the 1-step scheme for methanol of
Westbrook and Dryer (1981).

0 1 2
Domain Length in cm

Figure 5.10: Domain where the ESDCM applies.

As Fig. 5.11 shows, the overall behaviour of the ESDCM is in the same
range as that of the homogeneous combustion using the PaSR. The main
difference is the speed of reaction. As the gas phase temperature and
the species concentrations indicate by their maximum value at approx-
imately 4 mm, all the oxygen is consumed at that point and the remain-
ing liquid mass is still vaporising, which results in an increase of the fuel
vapour species and a decrease in the mass fraction of the other species. In
the ESDCM model results, oxygen is left up to 8 mm. Since the ESDCM
does not imply any mechanism to recognise the vanishing oxygen con-
centration, it must be switched off explicitly. Otherwise, the SDC would
continue as long as droplets exist. Although the reaction happens faster
in the PaSR simulation, the overall decrease in liquid volume fraction and
the moments is faster applying the ESDCM. However, the liquid velocity
is increasing faster as well at the very beginning, which contributes to an
increase of those values independent of the vaporisation rate.

Considering these first results, it is clear that a comprehensive verifica-
tion and validation of the model is needed, which could be undertaken
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PaSR ——
ESDCM e
Volume fraction of droplets Second moment M2
Mean diameter D10 First moment M1 Vaporised mass flow rate

L

Sauter mean diameter D32 Zeroth moment MO Mass fraction of methanol vapour

Gas phase temperature Droplet temperature Mass fraction of CO2

0 1 2 0 1 2 1 2
Gas phase velocity Mass averaged droplet velocity Mass fraction of H20

Figure 5.11: Simulation results for methanol combustion using PaSR
compared to ESDCM.

using a spectral or analytical solution for each droplet size class and ex-
periments where single droplet combustion explicitly occurs or domi-
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nates the combustion. Tests carried out on a 3D case are too preliminary
to be presented and discussed here, but must be left for future work.
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6 Numerical Issues

Discussing the fundamentals of CFD in general is out of the scope of this
work. Even the presentation of the specific characteristics of two-phase
equation systems or (pressure-less) dispersed phase equations including
their requirements on the solver exceeds the present framework. In fact,
the focus of this work does not coincide with developing, evaluating or
implementing sophisticated methods, which serve the characteristics of
the equations in a comprehensive way. Instead, rather standard solvers
and discretisation have been used as applied commonly in single phase,
(weakly) compressible flows. Nevertheless, some specific issues deviate
from these methods, which will be discussed here in order to clarify the
details of the solver and the numerical setup which has been used to ob-
tain the results presented in Chapter 7. The structure of the solvers, the
implementation of the equations and some other issues are discussed in
the next section, whereas details on the discretisation, the boundary con-
ditions, etc. are given in Section 6.3. Some remarks concerning dispersed
phase equation solution methods, pressure-less fluid equations or mo-
ment space preserving discretisation schemes have been already given in
the previous chapters.

6.1 Implementation in OpenFOAM

The derived equation system for the gas phase and the dispersed phase
have been implemented into the CFD software package OpenFOAM us-
ing different versions ranging from version 1.5 up to 2.1.x. The presented
results, however, are solely produced by solvers compiled with either
version 2.1.x or 2.1.1. OpenFOAM is a modularly built open-source code
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for various CFD applications and it is a convenient tool for the imple-
mentation and testing of new submodels and solvers. The original two-
phase formulation of the model (Carneiro et al., 2008, Dems et al., 2012a)
is based on the OpenFOAM solver twoPhaseEulerFoam, which provides
the framework for an Eulerian-Eulerian two-phase solver and features a
common pressure equation for both phases. The recent formulation of the
model as shown in the previous chapters implies a phase coupling solely
by the source terms for mass, momentum and energy exchange. Still, the
continuous phase momentum equation is not solved directly but with the
help of a pressure equation. In contrast, the dispersed phase momentum
equation is solved directly to obtain the dispersed phase velocity field.
This topic is detailed in Section 6.1.3. Besides the governing structure of
the solvers, many details contribute to the final versions used to produce
the results. Some of the most important features are described next.

6.1.1 Phase-Intensive Formulation of the Transport Equations

Solving the dispersed phase moment equations 4.62, 4.74 to 4.76 and es-
pecially equations 4.63 and 4.65 can become notoriously difficult, if the
moments tend towards zero. This happens in all regions where physically
no spray is present!. Actually, the same applies for the continuous phase
equations if 6 becomes very small, which is the case when the volume
fractions of the dispersed phase becomes large, e.g. in separated flow
simulations or when phase inversion occurs. Both does usually not hap-
pen in dispersed two-phase flows with a clearly distinguished dispersed
phase, except when combined with phenomena like free surfaces, e.g.
in bubble columns. Since the numerical results presented refer to clearly
dispersed two-phase flows with a small volume fraction of the dispersed
phase, this issue of vanishing volume fraction, respective moments, is rel-
evant only for the dispersed phase equations. Hence, only the dispersed
phase equations must be treated appropriately.

!Due to the Eulerian field constraint, spray quantities must be defined and the equations are solved
for nevertheless, which raises this problem.
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As reported in Weller (2005), solving Eqn. 4.63 directly and applying arti-
ficial modifications on vanishing &, is not productive, e.g. using limiters
or setting the dispersed phase velocity to a certain fixed value or even
equal to the continuous phase velocity? for vanishing a;. Neither of them
was satisfactory. Hence a more comprehensive way of tackling this prob-
lem has been discussed therein as briefly recapitulated and applied to our
set of equations.

In general, conservation equations of momentum and energy for both
phases can be formulated either in a conservative or a phase-intensive (or
non-conservative) way. In line with the work of Weller (2005) and Rusche
(2002), phase-intensive versions of the dispersed phase momentum and
enthalpy equation were derived. This was done by factoring out the time
and convective term on the left hand side and including the mass conser-
vation equation as detailed in Appendix A.4.1.

As a result, the phase intensive formulations of the momentum and en-
thalpy equation of the dispersed phase read

ou® M) 1
Ov.u® = — - 1) _ q®
oh 1 T—-T,
a_td + u(3)v1’ld - —‘[WFM(B) <Ahv(Td> - va(B—Td)> . (62)

The phase intensive formulation is more stable, especially concerning the
aforementioned problem of having marginal values for the volume frac-
tions and moments. However it may become less accurate since velocity
instead of momentum is transported. In two-phase flows this issue can
become much more important than in variable density single phase flows
(highly compressible or non-isothermal), since the phase-averaged mass
density (i.e. particle mass to the total volume) can vary more than the
density in the aforementioned types of single phase flow. In case of the

2The dispersed phase velocity u(®) represents a mass weighted particle velocity even if there is virtu-
ally no particle present. Although having a marginal number density, the NFD is defined nevertheless
and does not necessarily contain only tracer particles. Hence, the mass averaged particle velocity can be
still significantly different from the continuous phase velocity. Test simulations have shown that using
this approach dis-balances the velocity equations crudely.
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phase-intensive formulation, simply spoken, the velocities are arithmeti-
cally averaged, whereas in the conservative equation, a mass weighted
average is conducted, which is significantly more physical. A simple, 2-
dimensional example of this issue is given in Appendix Section A.4.2.

Due to the lack of alternative solutions, the phase intensive formulation
has been kept for the dispersed phase to solve the problem of vanishing
volume fraction values when solving the momentum and enthalpy equa-
tion. Especially the temperature equation is very unstable when using the
conservative equation, probably due to the less damping effect through
the continuous phase via heat exchange than compared to the momen-
tum exchange via drag. The continuous phase has been simulated using
the conservative formulation. Here, this issue relaxes, since the volume
fraction is always close to unity.

6.1.2 Treatment of Implicit and Explicit Source Terms

Besides the phase-intensive formulation of the dispersed phase equa-
tions, an additional step has been undertaken to stabilise the numeri-
cal solution of both, the gas and dispersed phase equations. The tool-
box of OpenFOAM provides a command fvm: :Sp(), which allows to
add specific terms into the main matrix, which are otherwise treated
as explicit sources. These are those terms which are a function of the
variable the equation is solved for, but which are not preceded by a
temporal or spatial derivative as for example fvm: :ddt (), fvm:div() or
fvm: :laplacian(). This procedure has been applied in all cases, i.e. those
parts of the phase interaction source terms on the right hand side of
the momentum and the enthalpy equations, which contain the variable
which is solved for. The explicit parts usually remain in their original no-
tation. An exception for that are the moment transport equations, where
T, has been additionally divided by the corresponding moment M®)
and directly multiplied again, which is noted in the code, e.g. for M) as

- fvm: :Sp(-Gamma_m2/m2,m2)
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This trick may improve the stability, since the otherwise explicit source
becomes a sort of implicit, i.e. I is divided by the old value, but multi-
plied by the one which is implicitly solved for in the current time step.
This procedure does not work, however, for the species equations due to
some unknown reason. fvm: :Sp () should be always preceded by a neg-
ative sign, hence, the double negative sign here.

To be able to make use of this tool for those source terms of the dispersed
phase equations, where the order of the moment transport velocity is
not equal to the order of those the moment flux transport equation is
solved for, the “foreign” moment transport velocities are replaced by the
“correct” transport velocity using the relaxation approach and the related
moments occurring in the relaxation times. This has been applied for the
drag source terms in Eqn. 4.63. For example u(!) has been replaced by

u = —_ul® (6.3)

With that, the drag force source term in the third moment flux equation
becomes implicit.

6.1.3 The Pressure Poisson Equation for Two-Phase Flows

In pressure-based CFD solvers for incompressible and weakly compress-
ible single phase flows, a pressure equation is typically solved instead
of the mass continuity and momentum equation. This so-called Poisson®
pressure equation takes the general form

—Ap=f(v,u), (6.4)

with the fluid pressure p is the unknown variable and f is a function
of the fluid viscosity v and the velocity u. That means f represents the
momentum equation without the pressure gradient and simplified by in-
serting the mass continuity.

3If f = 0, then it is called Laplace equation.
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This procedure has a number of advantages, which are not discussed
here, but can be found in any text book about numerical methods for
CFD. For two-phase flows, one has to consider three issues when deriv-
ing the corresponding pressure equation. They are related to the “new”
quantities occurring in the momentum equations of the different phases,
i.e. the volume fractions, the phase interaction source terms as for exam-
ple the drag and the mass exchange between the phases. Depending on
the underlying averaging method used to derive the equations, one must
distinguish between two types of pressure equations.

First, as the outcome of volume averaging, both the continuous and dis-
persed phase momentum equation contain the pressure gradient term.
Usually the pressure is assumed to be equal for both phases, which means
that the effect of the surface tension force acting as a pressure jump for
curved interfaces is neglected. Using this type of momentum equation,
a combined mass continuity equation including all phases can be con-
structed, from which, with the help of the momentum equations, a com-
mon pressure equation can be derived. This procedure has been shown
in Weller (2005) in detail for the OpenFOAM solver twoPhaseEulerFoam
for incompressible and compressible flows including the phase interac-
tion forces due to drag, lift and virtual mass. Mass exchange, however, is
not considered.

Second, if the dispersed phase equations are based on the kinetic ap-
proach, no pressure occurs in the momentum equation of the dispersed
phase. Hence, the former method cannot be applied. As in Lagrangian
simulations of dispersed two-phase flows, we choose to solve directly
the dispersed phase momentum equation and use a modified pressure
equation for the continuous phase separately. Compared to the pressure
equation for single-phase flows, this pressure equation must incorporate
the volume fractions, the drag force and the mass source due to evapora-
tion. Since we neglect the volume fraction of the droplets in the gas phase
equations, only the two source terms must be considered.

Let us discuss both terms separately. The drag force acts similar as a body
tforce, which occurs only at the right hand side of the momentum equa-
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tion. When creating the discretised form of the pressure equation, this
term is stored together with the left hand side in the main matrix and
treated correspondingly in the implementation of the solver as done in
OpenFOAM. The mass exchange source term, however, contributes to
the momentum equation and additionally occurs in the mass balance
equation. Hence, its appearance in the pressure equation is twofold. First,
it must be treated similar to the drag force in the momentum equation,
but must be included in the pressure equation a second time due to its ap-
pearance on the right hand side of the mass balance equation. As shown
here for the compressible case, it becomes an additional term in the pres-
sure equation compared to the single phase case (e.g. rhoPimpleFoam) as:

fvScalarMatrix pEqn

(
fvm::ddt(psi, p)
+ fvc::div(phi)
- fvm::laplacian(rhox*rAU, p)
- Gamma_alphaD
)

The drag is already included in the flux phi.

This modification* ensures that the impact of the introduced gas/vapour
mass per volume on the pressure and/or the velocities is considered
properly. This means that in case of an isochoric change of state the pres-
sure is raised and in case of an isobaric process the amount of the addi-
tionally introduced volume due to the expansion from liquid to gaseous
state is forced to leave the domain somewhere else. The latter results in a
fluid motion, even if the original state is quiescent.

The results® shown in Chapter 7 are based on the equation structure as
presented in the previous chapters, hence featuring a single phase pres-

4In the actual implementation, T is defined and coded throughout the solvers with opposite sign com-
pared to the notation in this thesis. Hence this term occurs in the actual code with positive sign.

5The results presented in Section 7.1 for the case of Sommerfeld and Qiu (1991) are also based on
the recent approach and differ therefore from those published in Dems et al. (2012a), which have been
calculated with a common, incompressible pressure equation.

165



Numerical Issues

sure equation for the continuous phase and a direct solution of the dis-
persed phase momentum equation, which is reformulated into a phase-
intensive form as shown in Section 6.1.1. The coupling of the dispersed
phase to the continuous phase only via the drag provides a sufficient sta-
bilisation to prevent problems with shock-like solutions for the dispersed
phase momentum equation. The numerical diffusion due to upwind dis-
cretisation obviously contribute to that fact on its own.

6.2 Monodisperse Solvers

For the numerical simulations of the experiment of Sommerfeld and Qiu
(1991) (see Section 7.1) and the Sydney spray burner (see Section 7.2),
monodispersed simulations have been carried out for comparison with
the polydispersed results. The simulations of the former experiment are
based on the arithmetic mean diameter Dj, since profiles of this quantity
are explicitly given in the database. Those of the latter are based on the
Sauter mean diameter Ds3;. In both cases, the corresponding moments are
transported instead of the mean diameter according to Dyg = M)/ M(©)
and D3, = M® /M@ All moments are convected with the same veloc-
ity ug, which is chosen to be equal to the mass averaged velocity u®®
from the polydispersed cases. This does not represent any specific con-
straint, since in both experiments all particles travel approximately with
the same velocity at the inlet. In the case of using D, &, is calculated via
ag = /6 MO D3, which is required for the dispersed phase momentum
equation. Corresponding to Eqn. 4.43, a formulation of the drag coeffi-
cient has been chosen using Djp and Ds;, respectively, as

» D |fj_u(3)‘ 0.687
= 187MY (@ —u®) [1+0.15 ( o ) (6.5)
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and

y 6, Dilii — u| 0.687
= 1872 "(a—u®) [ 1+0.15 ( = ) . (6:6)

The source terms for mass and heat exchange between the phases, which
are required for the simulation of the evaporation, are formulated similar
to the drag using the Sauter mean diameter (Eqn. 6.6). The case of Som-
merfeld and Qiu (1991) is an isothermal case using glass beads, hence
it does not require the consideration of mass or heat exchange. There-
fore, the presented drag term is the only subject of modification. Obvi-
ously, deriving these terms strictly from a corresponding formulation of
the NDF would probably yield formally different terms.

6.3 Numerical Setup

6.3.1 Boundary Conditions

Finding appropriate boundary conditions for the dispersed phase quan-
tities is not trivial. Many tests have been conducted, from which the fol-
lowing set has been proved to work adequately well with the current
solver. The overview of all the conditions is given in Tab. 6.1. The con-
ditions are quite standard. There are only a few specific choices to be
mentioned. The dispersed phase velocity u'® is set to a slip condition at
the walls due the physical fact, that droplets which travel parallel to the
wall does not recognise it independent of the distance until they touch
the wall. Clearly, when considering the presence of the gas phase, they
are obviously affected by its boundary layer. Such effects, however, are
not considered here. Additionally, this choice helps a bit to avoid accu-
mulation of droplet mass in the wall adjacent cells, due to the arising low
dispersed phase velocity when using a non-slip boundary condition.

The gas phase velocity is usually neither homogeneous nor stationary at
the inlets, due to the upstream development of the flow. Hence, some
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Table 6.1: Boundary conditions used in OpenFOAM.

inlets spray inlets air inlets
type value value
gas velocity fixedValue in-house bc
particle velocity | fixedValue same as gas phase
moments fixedValue | as given in the corres- | spray inlet values
ponding result section | times 1 x 1077
pressure zeroGradient - -
nuSgs zeroGradient - -
walls outlet
type value type value
gas velocity fixedValue 0Om/s | zeroGradient -
particle velocity slip - zeroGradient -
moments zeroGradient - zeroGradient -
pressure zeroGradient - fixedValue 101325Pa
nuSgs zeroGradient - zeroGradient -

specific boundary conditions have been implemented in OpenFOAM,
which allow to specify certain profiles for each velocity component in-
dependently and if desired with imposed turbulent fluctuations. When
necessary, the waveTransmissive boundary condition has been used at
the inlets and outlets to avoid the development of nonphysical acoustics,
which probably arise from the initial pressure field (often shock-like).

6.3.2 Discretisation and Solution Methods

Choosing appropriate discretisation schemes for the dispersed phase is
even more challenging. Fortunately, the choice for the moment trans-
port equations is rather limited naturally. This results from the specific
characteristics of the moment set, which must be valid throughout the
domain to ensure a meaningful reconstruction of the distribution (see
Section 4.5.2, last paragraph). Hence, upwind is used for moment trans-
port and the u® transport equation. Since upwind is strongly dissipative,
this contributes unintentionally to the dispersion of the particles, which
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might compensating the neglected dispersed velocity and cross correla-
tions to a certain amount (Section 3.2.3 and Chapter 4). The specific choice
made for the discretisation and the solution methods is given for each
presented case separately in Appendix A.5.
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7 Results

Three cases will be investigated comparing numerical and experimen-
tal results: an isothermal, non-evaporating, swirling, particle laden flow
(Sommerfeld and Qiu, 1991), a vaporising droplet-laden air jet (Chen
et al.,, 2002, 2006) and a combusting spray (Cai et al., 2005, Fu et al.,,
2005a,b). Each case implies polydisperse effects. The first focuses on the
kinematic dynamics of the particles depending on particle size, the sec-
ond is more concerned with the size dependent vaporisation rate and
the aim of the reacting spray is to show the applicability of the moments
model in such a configuration, but represents only the first step into this
direction.

7.1 Sommerfeld and Qiu (1991)

7.1.1 Description and Setup

Validation of polydisperse particle behaviour requires a flow configu-
ration which clearly features particle size dependent motion dynamics.
Hence, the simulations for polydisperse and monodisperse distributions
are expected to give different results. Furthermore, in order to validate
the moments model in combination with LES, the flow field should be
significantly better represented using LES than using RANS. The exper-
imental setup of Sommerfeld and Qiu (1991) meets these criteria. The
main geometry consists of a cylindrical confinement of 1m length and
approximately 200 mm of diameter. A sketch of the geometrical dimen-
sions and the positions of the measurement planes is given in Fig. 7.1
and Fig. 7.2. Two flow streams are injected, a non-swirling air jet laden
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Figure 7.1: Geometrical dimensions and arrangement of the numerical
domain.
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Figure 7.2: Details of the geometrical dimensions and position of the
measurement planes.

with small glass beads and a coaxial swirling air flow, which surrounds
the inner jet. Combined with an essential area expansion, this configura-
tion results in a vortex breakdown and a central recirculation zone. The
central particle laden jet and the recirculation zone form a counterflow
situation, which perfectly serves as a segregation of small and large par-
ticle dynamics. Depending on their inertia, the particles travel beyond
the stagnation point into the reverse air flow up to a certain distance un-
til they are entirely decelerated and follow the air flow outwards. Besides
these physical criteria, measurement data of particle quantities as parti-
cle sizes and velocities must be available to allow a detailed validation of
the numerical results. The published data provide a sufficient data base
for our purposes.

Validation of the polydisperse model implies two aspects. First, the gen-
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eral applicability of the presented LES formulation (including the nu-
merous simplifications) must be verified, both, regarding the gas flow
and the particle flow. This is done by comparison with experimental data
to evaluate the “absolut accuracy” and by comparison of numerical re-
sults which differ in certain sub-models or terms in the equations, i.e. a
simpler against a more sophisticated model. However, since closure for
many terms is yet not known or proposed models are rather complex
and difficult to implement, in the present work the simplified LES for-
mulation has been validated only by comparison with the experimental
data. With that, a conclusion can be drawn only in the sense, up to which
accuracy the model is able to predict the measured fields. It cannot be
concluded, which simplification is the most significant and which can be
made anyway because its impact is marginal. Additionally, the quality of
the results depends on the question, whether one is interested in mean
fields and averaged first order deviations, or in high order accuracy of
each specific correlation and particle-flow interaction. In the scope of this
work, the validation is restricted to the comparison of mean and rms val-
ues of gas phase and particle velocities as well as moment fields, mean
diameters and particle mass fluxes if available.

Second, the difference of the polydisperse model compared to a monodis-
perse simulation (see Section 6.2) is of specific interest, in order to show
whether the effort of considering size and velocity space is worth and
essential to represent the flow features, or if the monodisperse model re-
sults in rather similar predictions.

The case of Sommerfeld and Qiu (1991) has been used for validation by
numerous researchers, whose publications can be used to draw further
conclusions on the accuracy of present numerical methods for polydis-
persed two-phase flows. Apte et al. (2003) and Oefelein (2006), among
others, simulated this case using 3-dimensional LES and a Lagrangian
formulation for the particle motion, whereas an Eulerian formulation of
the dispersed phase has been used by Boileau et al. (2008) and Cuenot
et al. (2006). A 2-dimensional, Eulerian-Eulerian simulation has been con-
ducted by Zhou and Liu (2010), which used a standard turbulence model
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for the dispersed phase.

In Fig. 7.3, the experimentally measured size distribution of the glass
beads is shown, overlain by the mathematical approximation using a
Gamma distribution. Its parameters are p = 5.85 x 107°m, g = 2.39453
and Cy = 7.182467 x 108 m~3, which correspond to the moments M) =
10061.2m~2, M@ = 525831 x 10~ 'm~! and M® = 3.0557749 x 10~°.
To obtain the same injected mass flux for the monodispersed simulation,
the values for M) and M© become 15090.25m 2 and 3.353 388 x 108,
respectively. Hence, the arithmetic mean diameter Dy = MO /MO =
45 pm according to the value given in Sommerfeld and Qiu (1991).

f(D) (1/m*4)

=

0 20 40 60 80 100 120

Particle Diameter (10*-6m)

Figure 7.3: Experimental size distribution of the glass beads and its math-
ematical approximation using the Gamma distribution.

Initially, inlet pipes have been considered up to 200 mm upstream from
the area expansion, but omitted in the present results due to problems
with non-physically growing acoustics using the compressible solver.
The cubic stagnation chamber at the end of the cylindrical confinement
has been considered approximately by using a cylindrical geometry with
the same axial length and total volume and with a strongly narrowed,
coaxial outlet positioned at the largest diameter of the stagnation cham-
ber. In Fig. 7.4 the numerical mesh is shown for the interesting region of
the simulation domain. The block-structured, hexahedral mesh consists
of 1223922 computational volumes.
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Figure 7.4: The numerical mesh, consisting of 1223922 cells. Inlet and
downstream pipes are cut in this visualisation. The present
results are actually calculated without considering the inlet
pipes, but which are shown here to indicate their position.

The numerical boundary conditions correspond to those listed in the ta-
bles 6.1, with specified values as follows. Mean velocity profiles have
been imposed on the inlets, which are adapted on the experimental data
at the measurement plane z = 3mm. The peak value of the axial velocity
component at the air inlet is around 18 m/s, that of the azimuthal com-
ponent around 13m/s. The peak value of the gas phase velocity at the
mixture inlet is around 12 m/s in axial direction for the non-swirling pipe
flow. As discretisation schemes, those given in Appendix A.5.1 have been
used. The WALE model (Nicoud and Ducros, 1999) was used to close the
gas phase subgrid turbulent stresses (Eqn. 3.8). The same is true for all
other turbulent simulations presented in this work.
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7.1.2 Results

The history of the simulation results is as follows, both for the polydis-
perse and the monodisperse simulation. The first second in physical time,
only the single phase flow was simulated. The following two seconds,
the dispersed phase flow developed and the time average was evaluated
over another two seconds of physical time. The plots in Fig. 7.5 show
instantaneous contours of the gas and dispersed phase velocity magni-
tude, the arithmetic mean diameter Dy, as well as the moments M®,
MW and M©). Although the turbulent gas phase shows small flow struc-

Figure 7.5: Instantaneous contour plots of Left u (0 —25m/s), u® (0 —
22m/s) and Dy (0 — 70 pm) Right M©®), M), M), The max-
imum value of the moment plots is 1.5x the inlet value.
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7.1 Sommerfeld and Qiu (1991)

tures and turbulent eddies, the mass averaged dispersed phase velocity
implies only large flow scales due to the inert motion of the large parti-
cles, which characterise this quantity. The mass averaged particle velocity
follows the swirling air outwards, but effectively filters out small turbu-
lent structures. Furthermore, it becomes clear at this specific point (as
discussed in Section 6.1.1), that u® is in general different from the gas
phase velocity even for the case of vanishing particle number density,
which is the case in the coaxial air flow.

The mean diameter D, increases with increasing penetration depth into
the recirculation zone. This is physical, because smaller droplets are de-
celerated much faster than the large droplets and are not present anymore
in the size distribution downstream. Djy abruptly tends towards zero
after a certain distance downstream. This is where the largest droplets
are finally stopped and accumulated by the reversed gas flow. This fact
is confirmed by the moment fields shown on the right hand column in
Fig. 7.5. Additionally, they indicate that the very small droplets are able
to follow the swirling flow outwards around the recirculation zone much
better than the larger droplets. Hence, M%) is the moment which is dis-
persed the most in radial direction.

A quantitative comparison with the experimental data is given for the
gas and dispersed phase mean and rms velocity components in Fig. 7.6
and Fig. 7.7 (axial), Fig. 7.8 and Fig. 7.9 (radial) and Fig. 7.10 and Fig. 7.11
(azimuthal). All velocity components match with the experimental data
well, with only small differences between the mono- and the polydis-
perse simulation. These differences concentrate on the centre line jet into
the recirculation zone. In the polydisperse simulation, the axial velocity
of the particles remain higher for a longer time compared to the monodis-
perse simulation. This is due to the larger droplets considered in the poly-
disperse simulation, whose velocity is altered slower by the gas phase
due to their large relaxation times, whereas in the monodisperse simula-
tion only mid-sized particles of D;y = 45um are considered.
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Figure 7.6: Axial mean velocity component (m/s) of Upper Half gas
phase Lower Half dispersed phase.
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Figure 7.7: Axial RMS velocity component (m/s) of Upper Half gas
phase Lower Half dispersed phase.
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Figure 7.8: Radial mean velocity component (m/s) of Upper Half gas
phase Lower Half dispersed phase.
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Figure 7.9: Radial RMS velocity component (m/s) of Upper Half gas
phase Lower Half dispersed phase.
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Figure 7.10: Tangential mean velocity component (m/s) of Upper Half
gas phase Lower Half dispersed phase.
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Figure 7.11: Tangential RMS velocity component (m/s) of Upper Half
gas phase Lower Half dispersed phase.
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The same fact is confirmed by the particle mass flux as shown in Fig. 7.12,
which remains higher and is still present more downstream into the recir-
culation zone. Here, the larger amount of mass is imported by the large
particles. Comparing the axial velocity and the particle mass flux with the
experimental data, however, neither the monodisperse nor the polydis-
perse results match more exclusively to the experimental data. This might
be due to the approximation made for the moment transport velocity
within the term to the power of 0.687 in the drag formulation (Eqn. 4.42).
Beside that, it could be influenced by any other neglected sub-grid scale
velocity correlation as well, which is difficult to quantify as long as no
comparison is made with results considering those terms. Although pro-
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Figure 7.12: Dispersed phase mass flux (kg/(m?s)).

ducing very similar overall results, only the polydisperse model is able
to determine the spatial and temporal development of the mean diame-
ters. Figure 7.13 shows this development with a good agreement between
the polydisperse results and the experimental data. The increase of Dy
along the centre line is captured very well, although the sudden drop is
not captured by the mean values (in contrast to the instantaneous val-
ues, as visible in the instantaneous contour plot in Fig. 7.5, left column
at the bottom). The deviations at the outer radii up to 112 mm are of no
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Figure 7.13: Arithmetic mean diameter Djp (um).

importance, since in these regions only very few droplets are present.

Summarising, the small differences between the mono- and the polydis-
perse results suggest, that the effort using the moments model in this
specific test case would not be justified in a real application, but its appli-
cability is nicely verified from an academic point of view.

7.2 Sydney Spray Burner - Evaporation Only Case

Validation of the effects of size dependent vaporisation rates has differ-
ent requirements on the configuration. To decouple polydisperse motion
dynamics from polydisperse vaporisation, a configuration has been cho-
sen which does not explicitly feature significantly different behaviour of
monodisperse compared to polydisperse particle motion. With that, the
focus is solely on the size conditioned vaporisation rate. The spray jet
data base by the group of Prof. Masri at the University of Sydney (Chen
et al., 2002, 2006) meets this criterion inasmuch as the particle motion is
mainly along the jet axis with similar velocities as the gas phase. Polydis-
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7.2 Sydney Spray Burner - Evaporation Only Case

perse motion occurs mainly perpendicular to the axis through turbulent
dispersion, which is, however, of minor relevance in this case. Hence, the
vaporisation degree along the jet axis depends mainly on the particle size
but only marginally on the spatial distribution of the particles. A mono-
disperse particle population is expected to have a faster overall mass
loss along the jet axis compared to a polydisperse description, where the
droplets which are larger than the mean droplet size are expected to have
a longer lifetime. This results in a higher amount of liquid mass at posi-
tions downstream compared to the monodisperse case, where all liquid
is already vaporised. Hence, the droplet mass flux is expected to have a
significantly different development comparing mono- and polydisperse
simulation results. Besides that, the development of the moments and
mean diameters of the polydisperse vaporisation simulation are of spe-
cific interest in this case, on the one hand in order to validate the accurate
description of the decrease of those values due to the vaporisation, and
on the other hand, because they can be calculated from the measured
quantities and explicitely validated.

7.2.1 Setup

The experimental setup of this configuration is as follows. A droplet
laden air jet is surrounded by a slow air coflow. The droplets are injected
by a pressurised injector 200 mm upstream of the jet exit. This ensures a
homogeneous distribution of the droplets over the jet cross section but
implies prevaporisation automatically. In the case considered, SP3, the
mass fraction of the acetone vapour reaches a value of Y, = 0.017 at
the jet exit, which means, that 60 % of the droplet mass is vaporised at
this position. A sketch of the simulation domain considered is given in
Fig.7.14, where the measurement plane positions are indicated for which
the numerical results have been compared to the experimental data. For
detailed information about the arrangement of the spray nozzle and the
air flow supply which creates the jet, the reader is referred to the original
publications.
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Figure 7.14: Geometrical dimensions and arrangement of the numerical
domain representing the experimental configuration of Chen
et al. (2002, 2006).

For this case, the dependence of the moments model on the mesh resolu-
tion has been investigated. A first mesh has been created with a more or
less typical resolution compared to the other cases shown in this work
with 1015137 computational volumes. Based on this mesh, hereafter
called coarse mesh, a fine mesh has been created, not by homogeneous re-
finement but mainly local refinement of the jet region including the shear
layer. Nevertheless, the remaining domain experienced a moderate re-
finement as well. This fine mesh consists of 2515559 computational vol-
umes and is shown in Fig. 7.15. The comparison of the results of both
meshes and their agreement with the experimental data is given later on.
The flow properties and inlet values are listed in Tab. 7.1. The numerical
boundary conditions are similar to those given in Tab. 6.1.

Table 7.1: Particle phase and gas phase conditions at the jet exit plane x=0
(inlet of the simulation domain).

pp =785kg/m? | MO = 6790609 x 10°m~3 | Re =20700

it =150g/min | M) = 1.654046 x 10°m~2 | v, = 1.74m?/s
tit, =27.1g/min | M®) =5470325m! oc = 143kg/m?
i, =17.9g/min | M®) =226983 x 10~ T. =-55°C
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Figure 7.15: The numerical mesh created with ANSYS Icem CFD. Fine
mesh with 2515559 cells.

7.2.2 Results

The geometry of the configuration is particularly simple. The develop-
ment of the flow depends solely on the previously developed pipe tur-
bulence and the shear layer interaction with the coflow. Hence, it is ev-
ident to either capture the upstream development of the jet before its
exit or to apply an appropriate turbulent inlet condition. The former ap-
proach proved to be inapplicable with the current setup due to problems
with acoustic fields numerically developing, which could not properly
handled so far. The latter approach has been followed by using a tur-
bulence generator boundary condition (Klein et al., 2004, di Mare et al,,
2006) imposed onto the mean velocity profile of the pipe flow. The re-
sulting development of the jet is shown in Fig. 7.16, with the gaseous
velocity magnitude at the top and the dispersed phase velocity at the
bottom, i.e. the third moment transport velocity u®. No turbulent fluc-
tuations have been imposed on the mass weighted dispersed phase ve-
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locity. Particularly inert to the gas phase turbulent fluctuations, the dis-
persed phase velocity develops straight into the domain but is affected
by the large scale dispersion perpendicular to the jet axis. Comparing
numerical and experimental results, the velocity fields (Figures 7.17 to
7.20) do not represent correctly the turbulent dynamics of the jet. While
the axial mean component (Fig. 7.17) is slightly underestimated for the
gas phase and over-predicted for the dispersed phase velocity, the radial
mean and root-mean-square (rms) components reveal serious deficien-
cies in the pipe turbulence defined and imposed by the inlet condition
(Figures 7.19 and 7.20). Issues with the mesh resolution can be excluded,
because the results show effectively no difference between the coarse and
the fine mesh. Hence, the correct consideration of the pipe turbulence
and boundary layer development seems to be the most important issue
to achieve better agreement.

Figure 7.16: Instantaneous contour plots of Top u (0 —40m/s) and Bot-
tom u® (0 — 30m/s), fine mesh, polydisperse.

Besides this issue, a significant difference can be already seen between
the polydisperse and the monodisperse simulation results. The axial ve-
locity component of the monodispersed particles adapts much faster to
the gaseous one, since it is based on the drag force of droplets having
a uniform size locally, i.e. the mean diameter Ds;. Since the particle re-
laxation time of particles with diameter D3, is smaller than ), they are
decelerated faster. Additionally, the monodispersed droplets adapt faster
to the gas phase turbulent velocity fluctuations, which result in rms com-
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Figure 7.19: Radial mean velocity component (m/s) of Upper Half gas
phase Lower Half dispersed phase.
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Figure 7.20: Radial RMS velocity component (m/s) of Upper Half gas
phase Lower Half dispersed phase.
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ponents closer to the gas phase ones compared to those of the polydis-
perse description. Rather curious is the significantly different dynamic
of the radial velocity component, which is of reversed mean direction
throughout the jet penetration. It is not clear how it does correlate with
the different treatment of the particle size distribution.

As stated before, the droplets are prevaporised when entering the sim-
ulation domain, which results in an acetone vapour mass fraction of
Y, = 0.017 at the jet exit plane. Due to further vaporisation, Y, continues
to increase locally, but mixes with the air coflow. This results in a frayed
appearance of the vapour mass fraction field (Fig. 7.21). The mass vapori-
sation rate is the largest at the entrance and does decrease with increasing
penetration due to the decreasing droplet mass fraction, although some
warmer air of the coflow contributes to an increased heat transfer into the
droplets.

Figure 7.21: Instantaneous contour plots of Top Y, (0 — 0.032) and Bot-
tom mass exchange rate I' 5 (0 — 15kg/(m?s)), fine mesh,
polydisperse.

In Fig. 7.22 the qualitative development of the moments M® to M(¥) is
shown, where the field of M® is effectively identical with that of ay.
All moments decrease with increasing distance to the injection, how-
ever, each moment with a different relative rate, i.e. the smaller the or-
der of the moment the faster the descrease towards zero. This relies
mainly on the effect of the polydisperse evaporation. Since the diameter
of small droplets decreases faster than that of large droplets for a given
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Figure 7.22: Instantaneous contour plots of From top to bottom M®) to
M), fine mesh, polydisperse. Maximum values are 1.5x the
inlet values.

mass vaporisation rate, the droplet population looses the small droplets
faster than the large droplets. Hence, polydispersed vaporisation does
not mean that the NDF remains unchanged and moves only towards
smaller diameters, but is stretched in size space, the stronger the smaller
D is. Therefore, according to the characteristics of the moments, the mo-
ments of low order, which represent the dynamics of the small droplets,
decrease faster than the higher order moments. The M(? field is an a pos-
teriori calculated quantity, because of the problem of finding an adequate
sink term due to evaporation for this specific moment (see Section 4.4.3).
Hence, only the moments M) to M(®) are transported in the underly-
ing simulation. With that, the reduction of the number density can be
achieved, otherwise it would remain constant!, which is nonphysical.

ldespite rarefaction and turbulent dispersion effects
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Another effect contributes to the development of the moment fields,
which is due to the inertia of the droplets: the smaller the order of the
moment becomes, the stronger is the radial dispersion and the overall
adaption to the gas phase velocity field.

Qualitative comparison of the moment fields with those calculated from
the measured mean diameters are given in Figures 7.23 to 7.26. The “ex-
perimental” moments are calculated from the experimental mean diam-
eters via relation 4.9, whereas the “numerical” mean diameters are cal-
culated a posteriori from the averaged moment fields. Hence, the graphs
of the moments and those of the mean diameters in Figures 7.27, 7.28
and 7.29 contain the same data/information. In the monodisperse simu-
lation the local value of the particle diameter, i.e. D3;, can be calculated
by the ratio of the transported moments M) and M®?) with help of the
same relation 4.9. Transporting both moments with the same dispersed
phase velocity and using vaporisation rates based on Ds3,, this approach
is equivalent to considering a transport equation for D3, directly.

Oomm 50mm 100mm 150mm 200mm 250mm 300mm
1 -

0.5 ~

-0.5

Exp. = Coarse Mesh

Figure 7.23: Dispersed phase volume fraction a;, M® (-).

The vaporisation rate calculated on the fine mesh is in good agreement
with the experimental data. The results obtained from the coarse mesh
show larger deviations, which can be contributed to the discretisation

191



Results

Omm 50mm 100mm 150mm 200mm 250mm 300mm

—e
-

g

UYLt

~,

¥
&
'1 T T
0 1 0 1 0 1 1
Exp. = Coarse Mesh, Monodispers ------
Figure 7.24: Second moment M®? (1/m).
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Figure 7.25: First moment M() (1/m?).

scheme used for the moments, which is simple upwind discretisation.
Obviously, the mesh resolution of the coarse mesh is not fine enough
for the use of upwind discretisation. Nevertheless, no valid higher or-
der discretisation scheme has been implemented, making the use of the
fine mesh inevitable in this case (see also Section 6.3). Significantly differ-
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Figure 7.26: Zeroth moment M® (1/m?3).

ent are the moments M®) and M®? from the monodisperse calculation.
There, the liquid mass is almost vaporised at x = 200 mm and completely
vanished from x = 250 mm onwards. Since droplets larger than Ds; are
not considered, the characteristic of the D-square law yields a faster over-
all vaporisation of the liquid mass. The peaks at the inlet are not con-
sidered in the monodisperse simulation, but this does not contribute to
the matter as a comparison for the polydisperse simulation has revealed
(which is not presented here). Considering the graphs especially for M(®),
a deficit in radial dispersion of the liquid mass can be observed. This can
result from three reasons. First, the deviations in gas phase turbulence, es-
pecially the radial mean and rms component, second, droplet-turbulence
and droplet-wall interaction within the pipe, which result in particle ve-
locities not exclusively coaxial with the jet axis, and third, neither any
sub-grid scale droplet-turbulence interaction nor the random uncorre-
lated motion of the droplets has been considered. Keeping in mind these
simplifications, steps to improve the results must tackle these issues of
the modelling. For the small droplets (M(?), the mean dispersion is rep-
resented more accurate, which is rather the result of the diffusive numer-
ics than an evidence of the validity of neglecting corresponding sub-grid
scale closure.
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Figure 7.27: Mean diameters Dy, Dy, D39, D3, (um), coarse mesh.
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Figure 7.28: Mean diameters D1y, Do, D39, D3, (nm), fine mesh.
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The mean diameters Dig, Dyy, D3y and D3, confirm these issues very
well. The fine mesh delivers the better results as it is obvious comparing
Fig. 7.27 to Fig. 7.28. Furthermore, the vaporisation rate of the monodis-
perse calculation is much too fast compared to the one predicted by the
polydisperse description. The Sauter mean diameter D3, decreases much
faster in the monodisperse case (Fig. 7.29) than in the polydisperse coun-
terpart. The artificial increase at x = 250 mm and x = 300mm is due to
vanishing moments, which underlie bounding routines and is not physi-
cal.
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Figure 7.29: Mean diameter D3, (um) from the monodisperse simulation,
coarse mesh.

7.3 NASA LDI Spray Burner

As described in Section 5.1, various types of liquid fuelled flames exist
and are used in numerous technical applications. With the background
of this project being positioned in the field of tool development for dry
oil combustion in stationary gas turbines, an experimental setup has been
chosen, which features some relevant aspects of such a spray flame. First,
a typical configuration must be found, which injects swirled oxidising
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air into a combustion chamber such that a flame stabilising recirculation
zone is generated. Second, data must be available to be able to compre-
hensively validate the numerical results. The configuration finally used
is described next.

7.3.1 Experimental Setup

To investigate the Lean Direct Injection (LDI) combustor concept for gas
turbines operating at high temperatures and pressures, the group of Jeng
(Caietal., 2005, Fuetal., 2005a,b) developed a model combustor for spray
combustion. It consists of a simple coaxial swirler, a pressure swirl atom-
iser to generate the kerosene spray, a converging-diverging venturi and
a square cross section combustor housing, which is open to the atmo-
sphere. The spray nozzle is placed close to the narrowest cross section
of the venturi. Both the venturi and the hollow spray have a cone angle
of 90°. The venturi causes the swirling flow to be attached to the walls
when entering the chamber, which leads to a very large recirculation zone
extended almost across the whole cross section. The geometrical dimen-
sions and the arrangement are given in Fig. 7.30 and the location of the
measurement planes in Fig. 7.31. The blue lines mark the measurement
planes for the cold single phase data, the red lines have been addition-
ally or alternatively used for the reacting case. Not every quantity has
been measured, however, on each plane. The locations finally used are
given above every graph in the figures shown later on. Further details
on the detailed dimensions can be found in the original literature Cai
et al. (2005). The spray quantities have been measured using the Phase
Doppler Particle Analyser (PDPA) technique.

The simulation domain starts a short distance upstream of the swirler
and ends beyond the combustor within the open environment to enable
the interaction of the flow exiting the chamber with the quiescent sur-
rounding. The geometrical dimensions of the experimental setup are not
uniquely determined, i.e. the measures provided by the original authors
are partially inconsistent or incomplete, the geometrical dimensions used
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Figure 7.30: Geometrical dimensions of the LDI burner simulation do-
main.
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Figure 7.31: Measurement planes for cold case (blue) and addi-
tional/alternative ones for the reacting case (red).
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in subsequent reciting literature are not consistent either. Therefore, the
geometry used in the simulations is an individual compromise of what
has been given in literature. Furthermore, the thickness of the swirler
vanes has not been considered directly, but implicitly. In fact the vanes
have a constant angle of 60° at the outer radius, where they are attached
to the outer pipe, compared to the axial direction. For the simulation do-
main, the vane angle has been increased to an amount giving the same
cross section area, which is approximately 65° with zero thickness of the
vanes compared to 60° with thickness. The mesh arrangement and den-
sity can be seen in Fig. 7.32 for the interesting part of the domain. The red
cells indicate the crossing lines of the vanes.

This experimental configuration has been used for validation of spray
CFD solvers by several groups. Kirtas et al. (2006) used the Euler-
Lagrangian description for the spray with LES for the gas phase and a
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Figure 7.32: Part of the numerical mesh for the LDI burner. It consists of
734 187 computational cells.

sub-grid scale Eddy Break Up combustion model with three step chem-
istry. A similar modelling approach has been used by PPatel and Menon
(2008), however, using finite rate laminar chemistry. With a similar com-
bustion model, Iannetti et al. (2008) investigated this setup using different
turbulence models for the gas phase, i.e. RANS, Very Large Eddy Simula-
tion and LES. Simulation results using a multi-regime flamelet model for
the spray combustion and EL-LES have been presented also by Knudsen
and Pitsch (2010). All of these publications made use of the Lagrangian
description of the spray. Although varying in the grade of agreement be-
tween numerical and experimental data, these cases can be used as refer-
ence of what is possible using LES for that spray combustion setup.

7.3.2 Cold Gas Flow Validation

The purpose of the separate validation of the cold flow is two-fold. On the
one hand, the accuracy of the solver setup (discretisation, sub-grid scale
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models, mesh resolution) of calculating the isothermal flow field can be
estimated, excluding influences of the additional physics and its mod-
elling (spray interaction, combustion). On the other hand, the validity of
the approximation of modelling the thickness of the vanes and the uncer-
tainties in the geometrical dimensions can be verified. As shown in the
following, they are acceptable for our purposes, considering two reasons.
First, the aim of the presented results is to show in a first step the capa-
bility of the polydisperse spray model to simulate such a configuration
with a reasonable computational cost. Second, the current LES simula-
tion setup for the gas phase is rather basic compared to what is possible,
i.e. it lacks of advanced LES features as high order discretisation, appro-
priate wall treatment, refined and adjusted inlet conditions for gas phase
turbulence and spray, comprehensive mesh resolution study, etc.

Based on the available experimental data, the same operational point has
been used for cold and reacting flow simulations, whose conditions for
the gas phase are given in Tab. 7.2.

Table 7.2: Gas phase properties

Air mass flow | 0.01851b/s = 8.39146 x 103 kg/s
Air temperature | 70°F = 21.111°C
Static pressure at the outlet | 101 325 Pa

Figures 7.33 to 7.37 compare the numerical results for the mean and rms
velocity components taken from the measurement planes at axial posi-
tions z = 3,6,9,15, 36,60, 180 mm downstream of the coordinate origin.
The coordinate origin coincide with the plane where the venturi ends
and the squared housing starts, i.e. 6.35 mm downstream the nozzle. The
additional axial positions z = 12,24, 48,90, 120 mm does not provide fur-
ther details of the development of the flow and are not shown here. Fig-
ures 7.33, 7.35 and 7.37 show the mean axial, radial and azimuthal ve-
locity components, respectively, Figures 7.34, 7.36 and 7.38 the root mean
square of each component. Measurements have been taken in both the
x —z and y — z plane and are compared here to the corresponding values
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from the simulation results.
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Figure 7.33: Non-reacting, cold air flow. Mean axial component of gas
phase velocity (1/m?).
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Figure 7.34: Non-reacting, cold air flow. RMS axial component of gas
phase velocity (1/m?).
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Figure 7.35: Non-reacting, cold air flow. Mean radial component of gas
phase velocity (1/m?).
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Figure 7.36: Non-reacting, cold air flow. RMS radial component of gas
phase velocity (1/m?).
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Figure 7.37: Non-reacting, cold air flow. Mean azimuthal component of
gas phase velocity (1/m?).
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Figure 7.38: Non-reacting, cold air flow. RMS azimuthal component of
gas phase velocity (1/m?).
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As in the experiment, significant differences are not present, although the
y — z plane coincidents with the trailing edge of the vanes and the x — z
plane is placed between two vanes (the swirler consists of six vanes in to-
tal). Although the experimental data show some differences at z = 3mm
for all components and at few regions downstream, it must be consid-
ered, that the experimental data are not throughout symmetrical, which
leads to the fact that at one side (of the axis) the x — z and y — z data
differ, on the other side not. Hence, a final conclusion on the magnitude
of the circumferential heterogeneity of the experimental values cannot be
drawn. The numerical values are nearly identical in both planes, which
suggests that considering the thickness of the vanes might contribute to
the better separation of the x — z and y — z values (where applicable) in
that sense, that the trailing edge turbulence and the wider stagnation area
increase the circumferential heterogeneity.

In general, all components show sufficient agreement, with some defi-
ciencies in the radial mean and rms and the azimuthal rms values. The
shape and dynamic of the recirculation zone is captured well, whereas
the intensity of the turbulent fluctuations is predicted too low, espe-
cially the radial and circumferential component. This might stem from
the mesh resolution, the chosen sub-grid scale turbulent viscosity model,
underpredicted trailing edge turbulence intensity and the spatial and
temporal constant velocity at the domain inlet upstream the swirler or
other reasons as mentioned at the beginning of this paragraph. A study
on these parameters would be necessary to optimise the results, but for
our needs the performance of the gas phase solver is satisfactory regard-
ing the following two points. First, the approximated geometry of the
vanes provides the correct swirl and vortex breakup, and second, the
flow field is predicted very well in the sense that it will not contribute
considerably to potential deviations of numerical and experimental re-
sults in subsequent simulations originating from the spray or combustion
models.
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7.3.3 Cold Spray Flow Validation

Cai et al. (2005) provided measurements of the spray quantities for the
cold spray dynamics without any gaseous flow. This is very valuable
to adjust the boundary conditions of the spray quantities at the numeri-
cal spray inlet. The spray nozzle is positioned 6.35mm upstream of the
area expansion. Hence, if the nozzle is mounted into the experimental
setup, measurements are only possible from a relative position larger
than 7mm downstream of the nozzle. Spray data are only at our dis-
posal for z = 7mm and z = 11.6 mm, although measurements have been
reported in Cai et al. (2005) at four additional positions, the first being
at z = 5mm downstream of the nozzle. This value indicates, that the
spray has been measured without being mounted in the venturi to ob-
tain values closer to the nozzle. Obviously, spray data as close as possible
to the nozzle are of increasing value to be able to reconstruct proper inlet
conditions for the simulation, but the density of the spray might impede
meaningful measurements. Therefore, proper inlet conditions must be es-
timated by adjusting the values iteratively until satisfactory agreement is
obtained at the given measurement positions. This could become, how-
ever, a longsome process, which could not be undertaken for the present
results in a satisfactory manner.

The present spray inlet conditions for the simulations have been ob-
tained by a rough adaption of the spray velocity to the measured one
at z = 7mm. To realise the spray angle of 90° and the deviation around
that value due to dispersion, an artificial geometrical part has been intro-
duced whose surface is used as spray inlet in the simulations as sketched
in Fig. 7.39. The additional volume is marked dark grey. The upstream
circumference is correctly circular, but the downstream circumference
had to be adapted to the innermost block-structure of the mesh, which is
hexagonal due to the o-grid constraints (Fig. 7.40 and Fig. 7.41). Since the
hexagon has a diameter of 1.0 mm, any smaller structure to obtain a circu-
lar circumference is not practical. This approach, however, divides the cir-
cumferentially homogeneous spray into 6 sections separated by wedges
without spray, which increase with larger radii and when moving from
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8.8mm 7.8mm

Figure 7.39: Sketch of the additional geometrical part used as spray inlet.

the circular towards the hexagonal circumference of the inlet face. The
impact of the resulting circumferential heterogeneity of the spray on the
combustion dynamics has not been investigated so far. This issue relaxes
to a certain amount since the swirling air may reduce the heterogeneity
due to its significantly higher velocity. Numerical values are taken from
the x — z plane, which lies within the spray. Values should be decreased
when using a circumferential average.

Additionally, the default value of the spray angle being 90° is actu-
ally altered throughout the surface as well. Besides these objectionable
geometrical deviations, the spray patch is not straight but intention-
ally curved perpendicular to the circumference, as it can be seen in
Fig. 7.41 on the right. This ensures a spray spreading not only exactly
at 45° but to mimic a deviation and dispersion? of the mass flux accord-
ing to the experimental data. The curvature simplifies the definition of
the spray inlet velocity significantly, i.e. the OpenFOAM inlet condition
surfaceNormalFixedValue could be simply used for the spray velocity. Its
magnitude is uniform across the inlet, which is also an approximation.

2The use of upwind discretisation for the moment transport contributes a significant amount by nu-
merical dispersion anyway.
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Figure 7.40: Part of the numerical mesh at the spray nozzle. Upstream
view. The light green surface is the artificial spray inlet as
shown in Fig. 7.41.

Figure 7.41: Geometrical faces of the spray inlet Left front view Centre
rotated Right side view.
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With help of the estimated spray velocity at the inlet, the liquid mass flux
and the surface area of that inlet face, the volume fraction a; has been
determined. Considering the difference of the measured mean diameters
D3, and Dqp between z = 7mm and z = 11.6 mm, their values at the noz-
zle position have been estimated. These two values provide the informa-
tion to calculate the moments M to M(©) at the spray inlet. D3, allows
to calculate M@ from &y and Dy the value of M if M) is known. To
link M and M, an arbitrarily chosen value of 4 = 3 has been used
for the parameter g of the Gamma distribution, which is in the range of
typical initial spray distributions. The values obtained are summarised
in Tab. 7.3.

Table 7.3: Inlet conditions for the dispersed phase.

Liquid mass flow | 0.0249 kg/min = 4.150 x 10~ *kg/s

Air/spray temperature | 78°F = 25.556 °C = 298.7 K, used: 300K
Moments | a; = 3.205137 x 10~

MB) = 61213474 x 102
M® =8.1617965 x 10> m™?
MM =1.3602994 x 10" m 2
MO =509143453 x 10" m—3
Estimated mean diameters | D3; = 75um

The comparison of numerical and experimental profiles of the spray
quantities is shown in the following graphs in Fig. 7.42. Despite the same
mass flux at the inlet, the mass flux predicted downstream seems much
too high in the numerical results. The numerical peak values at the mea-
surement planes are a factor of 5-7 higher than the experimental ones,
but also at lower radii. Furthermore, a mean value averaged about the
circumference might match the given experimental data better. The spray
velocity at the inlet has been estimated to be 7m/s, its development, as
visible in Fig. 7.42, gives reason to be improved, especially the disper-
sion perpendicular to the cone is underestimated. Additionally, the spray
calculation has been conducted with a fixed quiescent gas phase flow
field, therefore drag and hence the deceleration of the droplets should be
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Figure 7.42: Non-reacting, cold spray flow. Left Axial and Centre radial

component of the mass averaged spray velocity u®). Right
Mass flux.

slightly overestimated.

Obviously, this first estimate of the spray values at the spray inlet is far
from satisfactory and a comprehensive adaption must be undertaken in
future steps. In this work, the correspondence of the mass flow, the spray
angle and the approximately correct velocity magnitude, have been taken
as sufficient to be used for the combustion simulation, as they should pro-
vide at least adequately conserved species mass fractions, temperatures
and velocities.

7.3.4 Reacting Flow Validation

The LDI spray burner operates without preheating, prevaporisation or
any kind of pilot flame to stabilise the spray flame. Hence, the flame
position and stabilisation depends on the spray formation, vaporisation
progress and the recirculation zone dynamic. The latter determines the
ignition and stabilisation of the flame by recirculation of hot products
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and by the low and reversed flow velocity, respectively. In such a situ-
ation the validity of the Thickened Flame Model is questionable since a
thickening in a counterflow configuration is rather impracticable. Hence,
the results are based on non-thickened flame calculations using the Open-
FOAM PaSR combustion model (Nordin, 2001) with default settings. Ra-
diation and droplet heat-up through radiation is not considered as well
as heat loss through the walls.

Operating Conditions

The gas and spray boundary conditions are equal to those given in Sec-
tion 7.3.2 and Section 7.3.3. Only the gas inlet temperature is higher in the
reacting case, i.e. 80°F = 26.667 °C = 299.8 K, where the value of 300K has
been used. The overall equivalence ratio becomes ¢ = 0.73.

Reaction Schemes

The most difficult task in order to obtain simulation results is to find a
chemical mechanism, which, on the one hand, includes the slow CO to
CO; reaction, but, on the other hand, is neither too costly nor too stiff.
First, an appropriate surrogate for kerosene must be found. There exist
many schemes using Ci3Hjs or CioHyy as surrogates for kerosene, how-
ever, the literature for the LDI burner consistently used CioHpys, i.e. the
work of lannetti et al. (2008), Kirtas et al. (2006), Patel and Menon (2008),
Knudsen and Pitsch (2010). Second, an appropriate mechanism must be
found and implemented. Last, a stable chemical solver must be evalu-
ated. Especially the chemical solvers of OpenFOAM are not very stable
regarding the choice of the Arrhenius parameters, especially the species
mass fraction exponents. OpenFOAM provides four options, i.e. the or-
dinary differential equation (ode) solvers SIBS (Semi-Implicit Bulirsh-
Stoer), RK which is based on a Runge-Kutta scheme and KRR4 (Kaps-
Rentrop), as well as an implicit solver named EulerImplicit, which gives
best stability but is tremendously more costly than the ode solvers (up to
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50 times and more dependent on the number of reactions) and cannot be
used for the present case. Hence a choice must be made between the ode
solvers. The SIBS is standard, but the most unstable, the KRR4 and RK are
more stable but the RK can become very costly as well.

In the following, the chosen schemes and the specific experience made
using them for the present case are outlined. Initially, the Arrhenius co-
efficients given in Gokulakrishnan et al. (2013) have been used for the
Ci2Hps to CO reaction, which are optimised for laminar flame speed and
the combined use with the forward and backward CO oxidation reac-
tions by Westbrook and Dryer (1981). Tab. 7.4 summarises the reactions
and the parameters.

Table 7.4: 3-step mechanism given in Gokulakrishnan et al. (2013).

A n Ea
C1oHo3%% +11.75 0523 — 12CO + 11.5 H,O | 6.0763 x 10 | 2.0 | 37893.5 cal/mol
CO + 0.5 0,%% + H,0%° — CO, + H,O 4x10"% | 0.0 40000cal/mol
CO;, — CO+0.50, 5 x 108 0.0 | 40000 cal/mol

The CiHys reaction given by Gokulakrishnan et al. (2013) worked fine
with the CO forward reaction only, but diverges when using the back-
ward reaction as given by Westbrook and Dryer (1981) and using the
OpenFOAM ode solver KRR4 (when using SIBS even faster). The coefti-
cients for the fuel reaction referred by Patel and Menon (2008) from West-
brook and Dryer (1981) (which are actually given for CioHj,) have been
tested as well but they behave similar. The problem can be attributed to
the OpenFOAM specific implementation by defining both equations as
two irreversible equations (instead of a reversible definition) rather than
the mechnism itself. When neglecting the backward reaction of CO, there
occurs only a considerable CO concentration at a thin line close to the
main reaction front, whereas the experimental data show high CO con-
centrations long time after. To improve the poor CO concentration pro-
files and the wrong flame dynamics (significant deviations in the flow
tield), a 10-step mechanism given by lannetti et al. (2008) has been tested.
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This one is also unstable with the original C;,Hjs reaction, but proved
more (but not unconditionally) stable with the one used by Patel and
Menon (2008) using either of the ode solvers. Therefore, the NOy reac-
tions have been removed, which result in a much less stiff system, but
lacks a proper equilibrium of the species O.

Furthermore, the 1-step scheme given in lannetti et al. (2008) has been
tested, which reads

Table 7.5: 1-step mechanism given in lannetti et al. (2008).
| A | n | Ea
CioHps®! +17.75 0,165 — 12C0, +11.5 H,0 | 8.6 x 101 | 0.0 | 30000 cal/mol

Using mechanisms with mass fraction exponents (much) less than unity,
however, are handled (to the author’s experience) somehow erroneous
in OpenFOAM. It has been observed in several test cases, that using such
values the mass conservation is corrupted. In the reacting simulation for
the Sydney spray burner (not shown herein) a 12 % mass loss of O, has
been observed.

To relax that issue a bit, the 2-step scheme for an artificial kerosene sur-
rogate given by Franzelli et al. (2010) has been tested, which features an
exponent of at least 0.55 for C,Hj3 and reads

Table 7.6: 2-step mechanism given in Franzelli et al. (2010).

| A | n | Ea
C1oHp3%° +17.75 0,99 — 12CO, +11.5 H,O | 8 x 101 | 0.0 | 41500 cal/mol
CO +0.5 0,%° — CO, 4.5 % 10 | 0.0 | 20000 cal/mol

With that choice, two additional problems that arise according to the
authors experience using Arrhenius computation in OpenFOAM are
avoided. First, this 2-step scheme is given without a backward reaction
for CO, which avoids the necessity of defining a forward and backward
reaction (as briefly mentioned before). Second, temperature exponents
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larger than zero often tend to be unstable and produce, in combination
with the ode solvers, non-physically rising temperatures. The result is
the crash of the simulation, since these locally extreme values can not be
smoothed anymore. Using this scheme, however, the flame could not be
stabilised in some initial tests. Either this scheme is too weak using F = 1
(no thickening) or the start conditions were not appropriate.

Numerical Ignition and Heat Release Limiter

Ignition of the flame can become a difficult task as well, depending on the
specific case. The following strategies have been tested. First, in order to
force ignition, a time dependent, direct modification of the Arrhenius pa-
rameters has been undertaken to increase the initial heat release. Second,
the reaction rate has been initially reduced, when using an artificially
area of high temperature. Both attempts failed, because they are much
too sensitive resulting either in distinction or “explosion” of the flame.
The only practicable process is to use a small region of high temperature
close to the fuel vapour in the recirculation zone, in combination with the
originally given Arrhenius parameters and naturally developed species
tields. Artificial modifications in the species fields, e.g. setting small re-
gion to burnt, etc., are often very contraproductive to ensure a stable so-
lution of the reaction mechanism. Nevertheless, a reaction rate limiter is
evident to avoid the nonphysical increase of the temperatures. The algo-
rithm, which has been applied is detailed in Appendix A.4.3.

Reacting Flow Results

The presented results are based on the scheme reported by Gokulakr-
ishnan et al. (2013) and given in Tab. 7.4. As described, the backward
CO reaction has not been considered and the reaction rate limiter was
applied as described in Appendix A.4.3. It acts significantly in the start-
up process but reduces later on to a few small regions with a vanish-
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ing amount of reaction®. As described in the section before, the proper
choice of a reaction scheme and the issues with the OpenFOAM chemical
solvers did not allow a satisfactory validation of the reacting LDI burner
so far. Hence, the results discussed below must be considered as work in
progress, reminding that also the inlet conditions for the spray are still
matter of future improvement and better adaption to the experimentally
observed values. Only the single phase flow is satisfactorily validated
and is not seen as a reason for the poor agreement of the reacting sim-
ulation results with the experimental data. Nevertheless, the results are
presented to show the capability to combine the moments spray model
with the chemical reaction. This is of specific importance, since the devel-
opment of the fuel vapour is solely depending on the moments model, i.e.
no prevaporised amount of fuel does contribute to the vapour field or the
stabilisation of the flame.

The simulations have been conducted for the case of an overall equiva-
lence ratio of ¢ = 0.75. The contour plots in Fig. 7.43 show the droplet
volume fraction (M(®), the heat release rate density and the gas phase
temperature (from left to right). Initially, the spray develops according to
the predetermined nozzle spray angle but is rapidly blown towards the
axial direction by the gas flow, which acts as a kind of crossflow in the

L a
i\

Figure 7.43: Instantaneous contour plots of Left droplet volume frac-
tion (0 — 0.002[-]) Centre heat release rate density (0 —
1 x10'°J/(m>®s)) Right gas phase temperature (286 —
2600 K).

31t applies there only, because the calculated reaction rate is higher than the physically possible.
ppP Y g phy: yp
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direct proximity of the nozzle. Further downstream, the spray is com-
pletely stopped by the reverse gas flow in the inner part of recirculation
zone. Due to the hot gases within the recirculation zone, which are trans-
ported upstream into the stagnation point situation near the nozzle, the
main region of combustion establishes there in the simulation. Also the
experimentally measured temperature profile has its maximum in this
region as represented by the values at 5mm in Fig. 7.49.

In comparison to the single phase flow field, the reacting flow develops
quite different. This is due to the significant volume expansion of the gas
due to the low density resulting from the high temperature and the ap-
proxiamately isobaric process. This volume expansion occurs mainly at
the outer radii within the first 10 to 20 mm downstream the venturi (be-
ginning of the housing). As a result, the flow is accelerated and keeps
its high axial velocity of approximately 20m s~ in the proximity of the
walls. At the same time, the transition between the outer downstream
flow and the recirculating upstream flow becomes much sharper than
compared to the single phase flow as it is clearly visible in the experi-
mental data of the axial gas phase velocity component in Fig. 7.44.
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Figure 7.44: Reacting two-phase flow. Axial component of the gas phase
velocity (m/s).
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Figure 7.45: Reacting two-phase flow. Radial component of the gas phase
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Figure 7.46: Reacting two-phase flow. Azimuthal component of the gas
phase velocity (m/s).
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The simulation is able to fit the magnitude of the recirculating air,
however, the overall flame dynamic and interaction with the recircu-
lation zone is quite different. This is additionally confirmed by the ra-
dial gas phase velocity component (Fig. 7.45). The azimuthal component
(Fig. 7.46) is rather independent of the development of the former com-
ponents and confirms the validity of the chosen setup for the swirler ge-
ometry. A detailed discussion on the flow effects due to the reaction can
be found in the original literature Cai et al. (2005).

The dispersed phase axial velocity profiles show a rather reason-
able agreement with the experiment at the first measurement position
(Fig. 7.47), but develop divergently. Obviously, the mismatch in the in-
ner recirculation zone is due to that of the single phase. As discussed in
Section 7.3.3, the spray development suffers from properly adjusted inlet
conditions as well. Hence, the computed particle mass flux profiles as
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Figure 7.47: Reacting two-phase flow. Axial component of the spray ve-
locity (m/s).

shown in Fig. 7.48, differ from the measured ones. Additionally to that,
the enforcement through the gas phase is not represented correct, which
would increase the axial magnitude of the particle velocity due to the
cross flow arrangement (the spray angle is larger than the gas phase ve-
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Figure 7.48: Reacting two-phase flow. Liquid volume flux (kg/ (m?s)).

locity vector in the region of the nozzle).

The experimentally measured temperature is more or less homogeneous
across the cross sections throughout the domain (Fig. 7.49). The simula-
tion predicts similar temperature levels. Towards the walls, the predicted
temperature increases, which results from continuous vaporisation and
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Figure 7.49: Reacting two-phase flow. Gas phase temperature (K).
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combustion of some liquid, which accumulates at the walls. Whether this
behaviour is physical or has been observed in the experiments is not clear.
The same issue applies for the species profiles for O, (Fig. 7.50) and CO,
(Fig. 7.51). Comparing particle size distribution quantities as, e.g., mo-
ments or mean diameters, does not make sense at this point. For that,
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Figure 7.50: Reacting two-phase flow. O, mass fraction (-).
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Figure 7.51: Reacting two-phase flow. CO, mass fraction (-).
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the fit of the main quantities (i.e. actually the reaction) must be improved
beforehand as well as the spray inlet conditions.

To summarise, the coupled simulation of the spray with help of the mo-
ments model and a reacting LES solver has been shown to be possible
in principle. A satisfactory validation failed so far due to difficulties in
finding an appropriate and meaningful setup for the combustion mod-
elling. This must be left for comprehensive future work. Furthermore,
considering the physical aspects, one must keep in mind, that the com-
bustion is clearly in the heterogeneous regime, probably implying differ-
ent modes (group combustion, single droplet combustion), but treated
here in the simulation as homogeneous with vaporising droplet within
the flame zone. Hence, the improvement of the modelling itself, is the
subsequent step.
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8 Conclusion

8.1 Summary

The present work aimed to develop, implement and validate a poly-
disperse, dilute droplet-air two-phase flow model for the application to
spray combustion using Large Eddy Simulation and OpenFOAM. It is a
following work of that done by Gharaibah and Polifke (2004), Gharaibah
(2008) and Carneiro et al. (2008, 2009, 2010), Carneiro (2012). In its basics,
it inherited Carneiro’s moment model to describe a spray polydispersed
in droplet size, especially the closures for the source terms due to motion
and vaporisation and the relaxation time approach to determine moment
transport velocities other than that of the third moment M®). The latter
closure, among others, distinguishes Carneiro’s work from the work of
Beck (2000), Beck and Watkins (2002, 2003), Watkins (2007), which is sim-
ilarly based on volume average based RANS equations with presumed
function closure.

The significant difference between the present and Carneiro’s work is the
reformulation of the whole moment model from RANS to LES and from
volume average based equations to ensemble average based equations
for the dispersed phase and to equations based on a combined opera-
tion of volume average and spatial filtering for the gas phase. The latter
idea has been adopted from the work of Carrara and DesJardin (2006)
and Sirignano (2005, 2010), where the present derivation follows closely
that outlined in Sirignano (2010). A kinetic description based on a fil-
tered number density function built from the ensemble of a large num-
ber of dispersed phase flow realisations for a given continuous phase
flow realisation was used to describe the spray dynamics. The deriva-
tion of the transport equation for this NDF was done in line with the
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common approach to define a fine grained phase space density function,
whose derivatives with respect to the phase space coordinates yields the
wanted equation. Its integration over the particle phase space implies
several imporant aspects. First, no subsequent filtering of the resulting
moment equations is necessary, because the NDF has been filtered before-
hand (filtered density function approach). At this point, this work differs
from the closely related work by Riber et al. (2005, 2006) and subsequent
work, where the ensemble based NDF is integrated first and the result-
ing moment equations are filtered afterwards. Besides that, the related
work of that group is polydisperse in velocity but not in particle size, ex-
cept that presented by Mossa (2005). The phase space integration carried
out therein acted as a reference for that done in the present work from a
mathematical point of view. Both theses differ in the specific closures for
the moment problem, the spray source terms and the closure of moment
transport velocities. Furthermore the work of Mossa (2005) was neither
concerned with the application of spatial filtering to the dispersed phase
equations and the specification of the arising terms nor the combustion
of the spray.

Along with the integration of the NDF over phase space, several corre-
lations of residual components of the particle velocity arise due to the
ensemble average, the spatial filtering and the phase space integration
itself. These unknown terms were identified and available closure sug-
gestions were presented and discussed. In this work, the extension of
the closure for the Random Uncorrelated Velocity tensor to a size depen-
dent formulation has been sketched but preliminary attempts to include
this closure in the simulations were not straighforward. Closure for the
other correlations was not attempted. Beside the dispersed phase quan-
tities, sub-filter fluctuations of the gas phase quantities arise as well as
unknown terms describing the unresolved interaction with the droplets.
For LES, Mashayek and Pandya (e.g. Mashayek and Pandya, 2003) de-
rived moment equations including a closure for the phase space diffu-
sion current. Due to the difficulties of handling the resulting equations
in 3D CFD (history integrals over time), it was not attempted to realise
their implementation into the present solver. To the authors knowledge,
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Mashayek and Pandya themselves have not presented related simulation
results for complex spray applications so far.

Closure for the moment equations was obtained using the presumed
function approach by adopting many of the closures given by Carneiro.
Hence, the NDF over particle size space is represented by the Gamma
and Beta distribution, whereas the particle velocity is uniquely linked
to the particle diameter and the temperature space adopts only a sin-
gle value locally. Each moment is transported by its respective moment
transport velocity, for which closure was obtained using the relaxation
time approach.

Spray combustion modelling and simulation is a field of recent research.
Here, a two-phase thickened flame model as skeched by Kaufmann
(2004) was applied and verified. Its usage in the combustion simulations,
however, did not deliver different results or flame dynamics. Addition-
ally, an Eulerian single droplet combustion model was proposed and its
implementation verified using a simple 1D, non-prevaporised two-phase
flame. This model, however, has not been tested in a 3D test case so far.

The numerical results were compared to experimental data of isother-
mal, vaporising and reacting polydispersed spray flows. The results in-
dicate that considering polydispersity in size space delivers superior re-
sults compared to a monodisperse description. The development of par-
ticle phase quantities as the particle mass flux and the mean diameters
is captured well and distinguished from the monodisperse formulation.
The results lack quantitative accuracy, however, especially in terms of
turbulent particle dispersion and the combustion modelling.

Summarising, the present work attempted to establish the consideration
of polydispersity in Eulerian two-phase LES for reacting sprays, where
recent work is still focused mainly on the Lagrangian description of the
particles.
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8.2 Outlook

Comprehensive modelling of polydispersed two-phase flows is still a
challenging task regarding theoretical modelling and closure as well as
numerical implementation and stable simulation. Many issues came into
focus during this work, but were mostly out of the scope to be investi-
gated. Some of them have been sketched in the appendix, which is noted
below if applicable. Some points are straightforward and rather close to
a solution, others represent long-term objectives. For the sake of clarity,
those issues are sorted into several subtopics.

Stochastic Modelling

Using the stochastic and kinetic approach, the formulation of dispersed
particle flows is a quite sophisticated framework, which is able to de-
scribe a wide range of physics and phenomena from the mesoscopic up
to the macroscopic level. As shown in chapters 3 and 4, the main con-
cern is on the closure of the numerous unknown correlations of gas and
dispersed phase quantities, especially the correlations of velocity fluctua-
tions due to the different averages, i.e. ensemble average, spatial filtering
and phase space average (moment models). Some of the correlations can
be assigned clearly to one or the other phase, some represent interaction
of both. The following points refer, first, to the dispersed phase, and sec-
ond to the gas phase and gas/dispersed phase interaction.

In many applications of sprays and spray combustion, the phase space
of particle size, velocity and temperature is the most relevant regarding
spray behaviour and system dynamics. These dimensions of the property
space have been adopted in this work. Hence we confined ourselves to
discuss only those aspects which are related to these quantities. Consid-
ering both simultaneously, the dispersed phase size and velocity space,
has been attempted at the most in a weakly coupled manner so far. In
most of the reported applications, only one of them is considered. Obvi-
ously preferable is a fully coupled size-velocity space formulation. Devel-

224



8.2 Outlook

opment of this aspect in Quadrature based Moment Methods is mainly
concerned with developing moment inversion algorithms which are able
to handle two or more phase space dimensions. For PMOM, an approach
might be the extension of the Random Uncorrelated Motion modelling to
include the size space dependency. Besides the work of Mossa (2005),
a diameter dependent RUM formulation as sketched in Appendix A.2.4
could the basis for further development. Other closures of the velocity
correlation terms might be considered, e.g. developing transport equa-
tions for the velocity correlations similar to the Reynolds stress model in
RANS. Finally, the temperature space is important to be considered for
vaporisation and other related physics. As a first step, a size conditioned
temperature T(D) could be adopted, similar to the velocity law used in
this work, in combination with a corresponding thermal relaxation ap-
proach (Watkins, 2005).

Besides dispersed phase quantities, the residual quantities of the con-
tinuous phase produce various unknown terms. Sub-grid scale velocity
fluctuations are source of the turbulent dispersion of particles, enhanced
vaporisation and others, for which models have to be included in the
present framework, i.e. methods like LHDI (e.g. the macroscopic moment
formulation by Pandya and Mashayek, 2003a,b). Along with that, com-
prehensive mesoscopic models for drag, vaporisation, etc. might result
in more accurate results. Some references are given in Section 3.2.3. Espe-
cially the non-Stokes formulations for drag and mass and heat exchange
rates have been closed using significant simplifications on both, the spa-
tial and the phase space averages. Hence, future work must be related
to that issue. Throughout this work, the dispersed phase averages are
conditioned on a single continuous phase realisation. Incorporation of
the ensemble average over a large number of gas phase realisations is the
next step to a comprehensive formulation, resulting in a joint particle-gas
phase NDF. Some work in literature has been already dedicated to such
an approach, but restricted to a Lagrangian way of solving the NDF.
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Moments Model

The moments model as used in this work might be improved tackling the
following aspects.

* Using a less restrained dependency of the size conditioned mean
particle velocity u(D), e.g. as proposed by Carneiro (2012) using
an incomplete Gamma distribution, quantitatively similar to Mossa
(2005) and discussed further by Vié et al. (2013).

* When following the presumed shape approach further, attempts
might be made to use 2-dimensional Gamma or Beta distributions
for considering the full size-velocity space.

* When considering other moment closures, the maximum entropy
reconstruction seems very promising besides the Quadrature based
Moment Methods.

e Beneficial would be a formulation of the vaporisation rate for M(®
other than that proposed by Massot et al. (2010), because of its com-
pulsorily use of the maximum entropy reconstruction in the pre-
sented form, which might become too restrictive.

* The current formulation of the relaxation approach is valid only for
Stokes drag. An extended formulation is required for liquid particles
similar to the one proposed by Acher (2013) for bubbles.

* The non-Stokes formulations for drag and heat and mass transfer
represent approximations. More exact formulations (e.g. Tayler ex-
pansions) might give better results.

e Stefan flow can influence the drag significantly. Corresponding cor-
relations could be incorporated.
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Combustion

Combustion modelling has been conducted in a rather simple approach
in this work, which gives reason to extensive future work on this topic.
Besides the incorporation of specific spray combustion models, both ho-
mogeneous and heterogeneous, the formulation of the vaporisation can
be refined using non-equilibrium evaporation models as the Langmuir-
Knudsen type or multi-component evaporation, which becomes relevant
for liquid fuels consisting of different species with significant different
boiling temperatures and vaporisation rates. Some concrete points are
the comprehensive validation of the Eulerian, polydisperse single droplet
combustion model as proposed in Section 5.3.2 and the investigation of
spray combustion dynamics with and without acoustic-spray interaction
for academical and realistic industrial liquid fuelled combustion devices.

Numerics

CFD theory, which is concerned with numerical mathematics, i.e. equa-
tion solvers, matrices handling, discretisation, i.a., is a specific topic and
not trivial even for typical single phase incompressible and compressible
applications. The characteristic of two-phase flow equations might be-
have even different from those, e.g. pressure less behaviour, and therefore
the equations require careful treatment. Here only some points are pro-
posed to be tackled in the future concerning problems with the present
implementation of the model. To be mentioned are

¢ the implementation of moment space preserving discretisation
schemes,

* the implementation of more sophisticated time advancing and
spatial discretisation schemes in OpenFOAM (Runge-Kutta, Lax-
Wendroff, etc.),

e the use of appropriate compressible boundary conditions (LODI),
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* the comparison with Lagrangian simulations,

* mesh resolution studies, especially to quantify the dependence of
the moment fields on the resolution,

* the applicability on unstructured meshes,

e a version for ANSYS Fluent via the User-Defined-Function (UDF)
functionality, which can be beneficial in order to have access to

a wider range of combustion models, acoustics, etc. compared to
OpenFOAM,

* the evaluation of the mass flux equation vs. the particle velocity
equation (Section 6.1.1),

* the evaluation of more sophisticated solvers, e.g. shock-handling
solvers as well as

* the potential use of a variable density solver instead of a compress-
ible solver to exclude related issues, which can be avoided when
dealing with low mach number, non-isothermal flows.

The comprehensive derivation and formulation of the two-phase equa-
tion system to be used with Large Eddy Simulation indicates the multi-
tude of unanswered questions and non-solved issues, especially the clo-
sure of unknown terms and the challenges due to its numerical imple-
mentation as listed above. It illustrates the need for continued research
within this challenging and exciting branch of CFD.
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A Appendix

A.1 Appendix to Chapter 3

A.1.1 Connection Between Sensible Enthalpy, Inner and Total Energy
Equation

The equation of the total energy without chemical energy E = e + %,
where e is the inner energy and k the kinetic energy k = pu?, reads

3(oE
—(gt )iy (0Eu) + V - (pu) + Viag + V - (ZmehmYm>

=V-AVT)+ V- (t-u)+)_ p@uQu. (Al)

Subtracting the kinetic energy equation

% +V.(ku) = —uVp+uV-t (A.2)

gives the equation for only the inner energy e:

d
((,ie) + V- (peu) + pV -u+ Virg + V- (vamhmYm>

=V-AVT)+7:(Vu)+ Y p&uQn . (A3)

Adding the moving boundary work (or pressure-volume (pV-) work), i.e.

267



Appendix

e+ % = h, results in the equation for the enthalpy h

dph) op

o o +V - (phu) =V - (pu) +pV -u+Vhqa+ V- (ZmehmYm>

=V -(AVT)+7:(Vu)+ Y pinuQu (A4)

— P LG (pu)— pV w4V (AVT) + 7+ (V) + Y pinQu (A5)

d(ph
09+ i+ 7 (Dt

_ Z_f + V- (AVT) +7: (Vi) + Y pimQu . (A6)

A.1.2 Parts of Vaporisation Modelling (Section 3.2.1)

Diffusion Controlled Mass Rate

Reformulation of the mass change rate in terms of the temporal deriva-
tive of particle diameter. The contribution due to forced convection in the
Stokes flow regime (S) develops as

n x(”)
i) =270 DD In(1+ By )
(n)° ax!)
D ()
D _ " DD™ In(1+B5" )
dt Op
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(n)

(n) @x
D )
sp2A0s _ _pf o p In(1+ B4 )
dt Op
(n) ax\" (n)
D _ 4P o1 +B%) (A7)
dt Pp D)
and the part for higher Reynolds numbers (nS) as
1/2 (n)
ax\ (n)\ ~(n @x
m(”) — 0.552 (u P Vp )D( ) SC1/37TP@X§JH)©D(71) ln(l + BMP )
M,wc 1/@X}(qn) FM
172 (m)
@x\™ (n) @x
i) = 0ss2mp®'m [ V) gaspm2 Bul
1/@xp (1 + B@xp )
172 (n)
(n) ; @xg,”) () B@XP
prd%ts = —0.5527rp@"§7 'D (v (n)vp ) Scl/3pm*/? > ™
1/@xlg (1 4 Bf/{xp )0 7
1/2
(n) @x(n) @x(n) (n) @
danS — _0 552 . 6p i @ (u i (n)VP ) S 1/3D( )3/2 BM p(n)
t p V@Xp (1 + B@Xp
1/2
(n) ax\ ax\” (n)
3D(ﬂ)2d2;15 0.552 - 6p 4 D (u 3 (n)vp ) S 1/3D( )3/2 BM p(n)
pP 1/@x][J (1 i B@xp )
n (n) o\ V2 ()
Lo o Chiutt 10 TSI i
dt T ax\l pD(m1/2 ax\)
g v (14+By" )
(A.8)

Heat Conduction Controlled Mass Rate

Simplification of the mass change rate to be used for the derivation of
the temporal derivatives of the particle temperature is shown next. The
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Stokes part (S) develops accordingly as shown above as

" /\@X x(n)
iy = 2n5—-D™ In(1+ B )
, CP?XP
(n)
dD" @ )
e —— In(1+B7") (A.9)
PPCPZ@?XP D
and the non-Stokes part (nS) as
O (n 12 S @\
0 _gssy [T DO s AT Y In(1 4+ B )
o @X(”) @x(”) @x(”)
v Cop " FT p
1/2 ()
@x(n) @x}(g) o (n) B@ p
mg"rfzs - 05527TA in) (u (n)Vp ) Pr1/3D( )3/2 s (n)
CpZ@)@xP 1/@xp (1 4 B@xp )
(A.10)
1/2
dD(g ) A@x;”) (u@"zgn) V}(gn)) prl/3 B%xg’ |
dt —0:552-2 ax\" ax\" pDm1/2 ax\"
OpCro | v (1+B; " )07
(A.11)

A.1.3 Derivation of the W, Transport Equation

In two-phase context using Lagrangian particle equations, W, is
favourably written as “Lagrangian PDF” (see Minier and Peirano, 2001,
Sec. 6.4.2f), i.e. the physical location is included in the phase space as

d(x — x,(gn)). Therefore (in line with Février et al. (2005), Hyland et al.
(1999), etc., W, is written as

WS (D, ¢y, Cpix, t, H | Hy)
= 5(x —x;" (1))6(D — D" (1))é(c, — v (£))3(5, — T (1)) (A12)
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and the temporal derivative reads

(n)
oW, %) dx,, %) dD )
ot 0x; (Wf’ dt ) - 9D (WP dt

(n) (n)
d dv,, %) dT,

where the first term on the rhs can be reformulated with help of Eqn. 3.36

as ( )
0 dx,; d (n)
T ox; (Wp dt ) T o <WPUW> ‘ (A.14)

This yields the transport equation for W:

(n)
oW, N E)vapli
ot axi

(n) (n)
%) dD™) %) dv,, ) T,
S (w >_(W )2 () ans

(n)

Since v i is not a function of x, one can write
(n)
Wp0pi _ W (A.16)
axi P 8xi ’ .
however, applying an average/filter yields only a meaningful solution
MWyv, (1) W, |\ & .
for —, since <vp’i a—xi|l' )¢ must be recasted to the former version in
any case:
(n) (n) |\ & T OIE 2V
<U(nl)awp I>g _ <aWPvp,i ‘I>g _ a<WPvp,i ‘I> _ af<vp,i |I> (A 17)
pi axi E)xi axi axi ’ '

Now, this equation can be ensemble averaged over particle phase reali-
sations, or gas phase realisations, or both, and optionally filtered subse-
quently, or the latter without any ensemble average. We want to apply an
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ensemble average over particle phase realisations for a given gas phase
realisation and subsequent filtering. First, applying an ensemble average
over a large number of particle phase realisations H, for a given fluid
flow realisation H, only, Eqn. A.15 yields

(n) £
IW,|Z)¢  o(Wpv, /| T)* 3 D™ _ .
o 0x; Y5 Wy dt IZ)
(n)
d dvp,]’ &
"3, ((Wp T Z)
d ari” .
—5 | WD) (A.18)
p

and, since phase space is still distinguished, gas phase variables are in-
variant (i.e. conditioned on a single gas phase realisation) and all source
terms % are only a function of those and not, e.g., of their gradients
(which would make things more difficult), the ensemble average is rather
without effect but improves only the quality of the statistics of W, and

yields the ensemble average based NDF (EbNDF) f:
of Ofcy, o (. dD"
N =——<f< z)°

ot ox; oD dt
(n)
J ; dvp,]’ &
e (f( 21|y
9 [ .dTi .
o (FEe ) (A.19)
p
with ¢,; = (vS}? |Z)¢. One could omit writing the ensemble average no-

tation around the Lagrangian derivatives, i.e. (4|Z)¢, but we keep the
notation to indicate that the operation has been already applied.

Filtering becomes interesting, since gas phase variables are taken actu-
ally from different locations, i.e. they vary although conditioned on phase
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space. Applying spatial filtering yields
ofc, (n)
of , ofcy =—i(<W dD |I>f>

at ox; oD Podt

I PV T
an,]' p dt

) dTs
a_gp<< L |T) ) (A.20)

_ dT"
—a%p <f< o |I>f> : (A21)

where the result distinguishes itself from the ensemble averaged version
only by the definition of the density function and the Lagrangian deriva-
tives.

The combination of both using the operations from Section 3.2.2, i.e.

m%ﬁwwzz W (D, ¢, §pi &t Hy [ M)
(1D, ¢y, Ly ) o
: s Cp, ’ — ’
pror T F(D, ¢y, Cpix, tHy)
(A.22)

(-|D, ¢y )" ///G x— ¢ (A.23)

<° ‘chplglef>g}— — << ’ |D/CPICPIHf>S‘D/CPICPI>]: 7 (A'24)
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a<WP‘I>5]: 8<W v;?i)|I>gf - _ i <W dD') |I>E}'
ot oX; oD Podt
(n)
d de‘ EF
~ 3, ((prﬂ
O (w5 ) s
ag, \ 7 at '
and yields
If(T)  df(T)cy, 9 (,,dD" _ .
()
d 7 dvm £ F
e <<f<7|z> )
J 2 degn) E\\F
~ 3, <<f<7|7:> )" ] . (A.26)

A.1.4 Parts of LES Closure (Section 3.2.3)

The LES filtered Lagrangian derivatives imply only sgs-fluctuations of
the gas phase, i.e. since the conditioned filtering only counts particles
with identical phase space position actually, the gas phase properties at
the position of each individual particle vary from particle to particle only.
Therefore, we would have to apply the density weighted Favre splitting
to all gas phase quantities except the gas phase mass density itself. It
becomes obvious, that splitting all gas phase variables, i.e. the material
properties and the velocity, results in terms which are hardly to handle.
Therefore we restrict ourselves on splitting only the gas phase velocity
in a spatial, Favre-averaged mean velocity @ and a residual component
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(n) ) ] .
u’® (x,t), which represents the difference between the mean velocity
and the local gas phase velocity at the position of the individual particle:

n)

n)
" (x,t) = @i(x, ) + u'® (x, 1) . (A.27)

(
u ’r

Velocity Derivative (Drag Term)

Inserting this decomposition in the Stokes drag term yields a closed ex-
pression containing only filtered properties. The non-linear drag law ex-
tension by Schiller-Naumann reads

(n) 0.687
dz)(n.) 180687 (n) ’u@xp — z)(n.)| (n)
PimS | A\ EF _ @xV' j P @x (n) EF
(—EIT)*F =015 oD (@9 yeo (™ — o))
18p (7" (n) (n)
— 0'155 (5) <‘ﬁ]‘ + u;. — Up,j ‘0'687(11]' 4 u; B Up,j )’I>5’7:
- ., (A.28)

which directly shows the challenge in deriving distinguished expressions
for the different correlations. Actually, it becomes even more compli-
cated (at least to identify and model the terms), since the triple decom-
position of the particle velocity must be incorporated as well (see Ap-
pendix A.2.5), which gives a multitude of first order correlations between
gas/gas, gas/dispersed and dispersed/dispersed phase.

Temperature Derivative with Distinguished Mass Terms

Details for the temperature term

@X(”) X(n)
dTy" (1) _ 1 ) T —T") ) (A.29)
dt m;n) Cp] fo;”) !
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Stokes part (S):
(n)
dT(n) @X(n) . 1 1 B@Xp
( p,S |I>S}“ _ <12/\—p(T@x§,) . T( )) n(1+ )‘I>£}“
dt D)2 P ax™
:OP Cp; BT p
@x(”) (n)
_ <MA;1§] In(1+ Byt )|T)EF
2
ppD M ey
@x\™
n n In(1+B;"
_ 122 <)\@X£’)(T@X§’) . T}g )) 1’1( + >|I>S}'
pdD Cp; B@Xén)
T
12 )
D PG (o™ In(1 4 B )| T)

Even with setting the mass and heat transfer numbers to be constant,
a meaningful decomposition into the individual correlations is not pro-
ductive. Therefore, all quantities are assumed to be invariant to ensemble
average and filtering, which yields

N 12 - = 11’1(1 + BT)
-~ PdDZsz/\(T 2 Br
12 -
D POM(E,) In(1+ Bu)
12 - - In(1+B -
~ AT = ) m0EBY)  soah, (@) In(1+ B )
paD%cp; T

(A.30)

and higher Reynolds number forced convection (nS) (Frossling)
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dT(”)
pnS |\ EF
T
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. 2
A@XP u@ p
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D PpCPl CP?XP V@XP
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... as above...
APr? f(w—c,)\"? - 1
=0.552-6 P T—0)—=—
D3/2pgcp; ( v ) (T=6) (1+ Br)o7
- 1/2 ~
09 Sc!? [ (a—cp) Bum
—0.552-6 Ah —. A.31
0.5 D32 pacn > v(gp) (1 + By)07 (A.31)
Size Derivative with Distinguished Mass Terms
Stokes part (S):
(n)
dD( : * P @x; EF
< ) —(2Sh; PpD( )Dln(l—i—B )T
49D, @ @x!
=~ 5™ I+ Bz

Replacing unfiltered with filtered quantities yields

~ 2P S In(1 4 By) (A.32)
Pd
Non-Stokes part (nS):
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... as above...
1/3 1/2 B
~ —0552.225¢ <(“ _C”)> M
pa D172 v (1+ Bwm)
S 1/3 o 1/2 B
~—0552- 2092 ((“ _CP)) M (A.33)
ps DV 1% (1+ Bm)
The Latter Two with only one Mass Term ri1
Details for the temperature term
(n) : 02 (e _
a1 () _ g LI T ) ) (A.34)

Stokes part (S):

(n)
dT(”) @x @Xp @XP T@XP . T( n)
(o8 e <12)\ V In(1+BY? ) ( ) _an ) e
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and higher Reynolds number convection (nS) (Frossling)

AT\ )\@x;;") (u@xﬁ,”’ _ (”)) 1z
(PEIT)ET =~ (0552 6— B prl/?
sz@:?xp D( )3/2Cpl 1/@Xp
@xi @x ax\" (n)
BT p b (T P — T ) B Ahg)n) |I>5]_-
NG )
(1+By" )07 By
n n 1/2
0556 Pr1/3 <)L@x§j ) (u@xé ) . v;"))
ARV
ax" @x ax\" (n)
BT ’ Cpoy (T p - T ) B Ahz()n) |I>5}‘
NG NG
(1+ By )07 By’

Pr1/3 )_\ (ﬁ—C ) 1/2
~ —0.552 - P
0.55 6D3/20pl e ( - )
BT(CP) <5pv(T_€p) )
_ A — Ahy (T ) (A.36)
A+B:(g,))7 \ Br(Zy) (6)
Details for mass term:
Stokes flow (S):
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and for higher Reynolds numbers (nS)

(n) x(n) (T‘l) @X(H)
Ap™ A®X S — By
(s |1 yEF — 055220 (u LR -
dt o\ yex” po >0
pPCPzJ (1 T BT ) .
) ; 1/2 (n)
Pt a2 [ (u®” —vi) By
= —0552- 2 5 (o o ax)
Cpy : v (1 + BT ’ )0‘

Q

Pr'/? A [(i—c,)\"*  Br(g)
—0.552 - zple 77, ( - ) Rk
(A.38)

. : () . .
The approximation ®®%" = © = const. is usually done anyway (also in
gas phase equation derivation).

A.2 Appendix to Chapter 4

This section mainly deals with sketching the incorporation of the first
central moment of the dispersed phase velocity, i.e. the particle velocity
co-variance tensor, for two different cases. The first case is the spatial fil-
tering of a single particle phase realisation for a given continuous phase
realisation, where we refer to the co-variance as dispersed phase stress ten-
sor T4. The second case deals with deriving the so-called Random Uncor-
related Velocity (RUV) tensor dR; which is the pointwise first order central
moment of the particle phase velocity distribution gained from a sample
accumulation over a large number of particle phase realisations.

In any case, the particle temperature is set to be phase space indepen-
dent, that means that all particles of any size or velocity have the same
temperature T, locally, i.e. f(D,c,,{,) can be assumed as

f(D, Cp,s Cp) = (D, Cp)‘s(gP —Ty) . (A.39)

Furthermore, we have to distinguish between different versions of the
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number density function depending on its dimensionality due to partial
integration over sub-spaces of the phase space. Hence

(D) ¥ [ £(D ey, 8,)de, (A40)
f{(D) = /f**(D,cp)dcp, (A.41)
MO — / F4(D)dD, (A.42)

where the density functions, despite from its phase space dimension, dis-
tinguish themselves from each other by the particle number implied, i.e.
something like f*(D) = f**(D)N*(D) = f**(D, ¢;). The notation is only
for illustration and does not aim for mathematical correctness at this
point.

The next three section are ordered as, first, the spatial filtering solely, fol-
lowed by the sample accumulation correspondingly and finally the se-
quential application of both.

A.21 Including the Co-Variance of the SGS Particle Phase Velocity
FNDF

The filtered number density function (without underlying sample accu-
mulation) consists of a spatial summation of delta peaks indicating indi-
vidual particles. Hence, the individual particle velocity v;") (t,H,|D) can
be split in a spatially averaged velocity @(D; x, t) shared by all particles
being present within the spatial support of the filter and the deviation of
the individual particle @' (D, ¢y; X, t,H,) from this mean velocity, i.e.

v (1, H,|D) = a(D;x,t) + & (D, cpix, £, H,) - (A.43)

Replacing the phase space variable ¢, which is actually the sample space
of the individual particle velocities, by the this ansatz we obtain the fol-
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lowing expression for a linear term in Cp:
// D¥c,f(D,c,,{,)dZ,dc,dD
_ / / / Dke, f**(D, ¢,)8(Z, — Ty) d,de,dD

= // chpf** D, cp /gp de dedD

— //Dk ﬁD'x t)+ﬁ(n)(D Cp,’XfH )}f**(D/Cp)dedD

= //Dk (D, cp)dcpdDJr//Dk (D, ¢,)f**(D,¢,) dec,dD
~ [ Dra(p)f*(D)dD

def. Vg k) o

The first order term in @'(" (D, c,) becomes zero, since the velocity space
integration directly corresponds to the conditioned spatial averaging pro-
cedure.

Applying the same procedure to a non-linear term in ¢, yields (with skip-
ping the step of integration over temperature space):

// D¥c,c,f(D,cp,{p) dZ,dc,dD
_ / / / D¥c,c, f**(D, ¢,)3(Z, — Ty) dZpdc,dD

2

= // Dk a(D;x,t) —i—ﬁ’(”)(D,cp;x,t,HP)* f*(D,¢c,)dc,dD

:Cp

= // D a( )f*(D, c,) dec,dD
+ / / Dkf** D,c,)@"™(D,c,)a'"™(D,c,)dc,dD,
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which gives by rewriting the second term as

/ D* / F*(D,¢,)@"(D, c,)@'™ (D, c,)de, dD

4(D)F*(D)

and including the moment velocity splitting discussed in Section 4.3.2

2

_ // D [a®(x,t) + 8 (Dix t)| F(D,c,)de,dD + / D*z,(D)f*(D)dD

~"

a(Dxt)

— // Dra®a® f*(D,c,) de,dD
+/Dk /(D)@ (D)F*(D) dD+/D"~rd(D)f*(D)dD
- Mg /Dku’u/f )dDJr/Dde(D)f*(D)dD' (A.45)

T4(D) can be interpreted as a diameter dependent, spacial “particle
phase stress tensor”, which, however, does imply totally different be-
haviour than any kind of continuous phase turbulent stresses. Transport
equations for these particle phase stresses can be derived, for which the
closure problem is only transferred to higher order correlations. In this
case, closure is often gained by neglecting the third order correlations
(see, e.g. Pandya and Mashayek, 2002). Simply using turbulent viscosity
models as in single phase LES does often not justice to the character of
the particle phase physics.

A.2.2 Including the Co-Variance of the Particle Phase Velocity EbLNDF
(Random Uncorrelated Velocity Tensor)

In this section, we make a similar derivation for the size conditioned first
central moment of the velocity distribution, i.e. the Random Uncorrelated
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Velocity tensor (Riber et al., 2006), which is part of the Random Uncorre-
lated Motion concept (denotation introduced by Kaufmann et al. (2004),
formerly known as Quasi-Brownian motion). The formalism is very sim-
ilar to the one shown before for the spatial filtering, although the meaning
of operations and variables, especially the fluctuations and NDFs, is dif-
ferent. The ensemble-sampled number density function f(D, ¢y, (p), here
abbreviated as EbNDF, consists, similar to the FNDF, of a summation of
delta peaks indicating individual particles, but gained from a large num-
ber of particle phase realisations H, for a given continuous phase real-
isation H;. As in the section before, we aim to derive formally the size
conditioned co-variance of the particle phase velocity distribution.

The individual particle velocity V,(D”) can be divided into a mean veloc-

ity u(D; x, t), in the framework of the Random Uncorrelated Motion for-
malism usually called Mesoscopic Eulerian Velocity, and a residual velocity
component i’ (1) (D, ¢p;x,t,H,), which is the deviation of the velocity of
the individual particle to the ensemble mean velocity shared by all parti-
cles at physical space point x at time t. The decomposition reads

v = v{(t, H,|D) = a(D;x,t) + " (D, cpix, t, H,) . (A46)

Here again, the integration over phase space is equivalent to the sample
accumulation over particle phase realisations, which yields linear terms
in ¢, to be zero. Again, skipping the temperature space integration, this
reads

[[] Pepf(D,cp2y) dipde,dD

- /// D¥c,f*(D, ¢p)8(gp — Ta) dgpde,dD

_ //Dk a(Dix, t)—|—f1’(n)(D ¢ix b H )} f**(D,cp)dcpdD

_ // D*u (D) f**(D, cp)dcpdDJr// D*i'™) (D, ¢,) f** (D,¢,) de,dD

:0

285



Appendix

L MBa® (A.47)

Worth to clarify is that the term containing the fluctuation becomes al-
ready zero if integrating first over the subspace of velocity only. Hence,
the integration over the size spectrum becomes superfluous. The non-
linear term of second order develops accordingly to the one shown for
spatial filtering as

J[] Pesenf(D,cp2y) diyde,dD
et s
= // Dk u(D;x,t) —|—ﬁ/(”)(D,Cp;X,t/Hp)]zf**(Drcp)dCPdD
— [ DHac )f**(D,¢,) de,dD
+ / / D*F(D, ¢, )i ™ (D, ¢,)'" (D, ¢,) de,dD ,

where the second term is treated correspondingly as shown in the section
before. Using again the moment velocity decomposition (Section 4.3.2)
for the first term, we finally arrive at

“paa 4 [ D' f(D)dD + [ D'6Ry(D)F(D)dD . (A48)

OR;(D) is the so-called Random Uncorrelated Velocity tensor, here depen-
dent on particle size, since we are dealing with polydisperse flows. It
reads in terms of the actual and mean particle velocity

SRy(D) = — | DHep — (D)) (e, — &(D)) (D, )de . (A49)

Modelling of éR;(D) has been discussed in several publications (Si-
monin et al., 2002, Kaufmann, 2004, Moreau et al., 2005, Riber et al., 2005,
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Masi et al., 2008, Moreau et al., 2010, Masi et al., 2011), the closure of
[ D¥$R4(D) f*(D) dD has not been investigated in the context of the mo-
ment model presented in this work, Mossa (2005) examined this issue
within the Mesoscopic Eulerian Formalism.

A.23 Including the Co-Variances of the Particle Phase Velocity Fil-
tered Ensemble based NDF (FEbNDF)

Since the EbNDF is a pointwise NDF in terms of physical space, it
can vary significantly on the sub-grid scale. In order to use the sample
accumulation based mesoscopic equations in Large Eddy Simulations,
Moreau et al. (2005) and Riber et al. (2006) proposed to filter the mo-
ment equations, which result from the phase space integration. Another
way is to filter the EbNDF first and apply the phase space integration
subsequently. This approach yields moment transport equations which
are already filtered, i.e. which can be resolved by a numerical mesh be-
ing appropriate for the used filter size. In this section, we sketch this ap-
proach, combining the sample accumulation and the LES filtering before
conducting the integration over phase space.

Accordingly, the individual particle velocity can be expressed as a mean
u(D;x, t) and two residual contributions as

vy = @(D;x,t) + W(D,cpx, t) + W (D, cpix, t,Hy),  (AS50)

where u'(D, ¢,; x,t) is the residual component between the spatial av-
erage of the mean ensemble values u(D;x, t) and the individual, point-
wise ensemble mean values (here not explicitly given as a mathematical
expression), and o’ (n) (D, Cp; X, L, ”H,p) is the residual component between
an individual pointwise ensemble mean to the velocity of the individual
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particle. Using this decomposition yields for the linear term
// chpf(D, ¢y, {p)dl,de,dD
- / / / Dke,f*(D, ¢,)8(¢, — Ty) dZ,de,dD
_ // DX a D;x,t) + & (D, ¢pi x, t) +a'<">(D,cp;x,t,Hp)} f*(D,¢,) de,dD
= // D i ( *(D,¢p;x,t) de,dD
+// D'/ (D, Cp; x,t)f**(D, ¢y) de,dD

+ / / D*u'™(D, ¢p;x, t, H,) f*(D, ¢,) de,dD
— / D ( f
def

Both integrals containing a linear term in particle velocity fluctuation be-
come zero. In the first term, the fluctuation refers to a spacial average of
mean values, i.e. the fluctuation is constructed such that its integration
becomes zero when using the “mean values” as weighting. If we replace
the “mean values” by their individual multitude of sample values, i.e.

(A.51)

F(D, c,) instead of f**(D, ¢,), the weighting remains the same. The sec-
ond contribution becomes zero, because as soon as a each local sample of
residual components becomes zero (see Eqn. A.47) also the spacial “sam-
ple” of all local samples becomes zero by integration. With that we can
drop the first order contributions of fluctuations in the non-linear term as
well, and keeping only the (co)variances of the velocity fluctuations.

/// chpcpf(D, ¢p, ) dgpdc,dD
— [[[ Dfepenf™(D,c)o(2, — Ta) diyde,dD

2

= // D* [i(D;x, t) +i'(D, cp;x, t) +'"(D, cp;x, t, H,) f**(D,cp)dcpdD

-~

:Cp
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= // D*a(D)a(D f (D, cp)dc,dD
D,c

Vil

)" (D, ¢,)@"™(D,c,)dc,dD

7

= [ D'oBB,(D)F (D) dD
+ / / D*F*(D, ¢, )i (D, ¢,) '™ (D, ¢,) de,dD

g

= / D*6CCy(D)F (D) dD

+ [[ D (D, )0 (D, €)' ") (D, ;) deydD

7

"

= /DkéBCd(D)f*(D)dD
CVCRCHC / D*&"&" f*(D) dD
+ / D*(6BBy4(D) + 6CCy(D) + 6BC,4(D))f*(D) dD . (A52)

where the notation for the moment velocity splitting is u(D;x,t) =
%) (x, t) + 1" (D; x, t), which slightly differs from the two case shown be-
fore. §BB;(D) is the spatial co-variance tensor of the mesoscopic Eulerian
velocity field, §CC,;(D) can be interpreted as the filtered, size dependent
RUYV tensor and the co-variance BC;(D) eludes a proper interpretation
so far. The generic naming scheme prevent misleading or inaccurate com-
parison with variables presented elsewhere in literature. Actually, how-
ever, dCC;(D) can be compared by trace and deviatoric parts to 56, and
SR, given in Riber et al. (2006), respectively, where it is simply mod-
elled by replacing non-filtered quantities by filtered ones in the underly-
ing models by Kaufmann et al. (2004).

Application of these operations to the time derivative and convective
term of Eqn. 3.70 is straight forward since this is already shown above,
actually. The source terms are not examined here, since the unknown cor-
relations éBB;(D), 6CC4(D), §BC4(D) are not considered in the simula-
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tions shown in this work at all. The challenging closure for these must be
left to be accomplished in future work.

A.24 Polydisperse RUM Formalism

In most publications, the Random Uncorrelated Velocity tensor is condi-
tioned on size space (except Mossa, 2005). Here, we formulate the idea of
considering the size space and formulate a size space averaged version of
the tensor. The dependency of the Random Uncorrelated Velocity tensor
reads

. 2
where
0R,,ii(D) is the polydisperse RUV tensor ,
064(D) is the Random Uncorrelated Energy, i.e. half the trace of 6R,;;(D) ,
R}, (D) is the deviatoric part of R, ;(D) .

For 66,;(D) a transport equation is solved, in which the triple correlation
0Sy,ij(D) occurs. Closure could be obtained based on the proposed mod-
els as

6R;,;(D) = —vruy (D) (a”’giij) + 2oL D) a”g’;f{m%) , (AS54)

65p,ij(D) = —KRuv(D)a(Sead—ijm (A.55)
and

vruv(D) = Td(BD s0,(D), (A.56)

kruv(D) = §Td(p)(sed(n) | (A.57)

Integration over the diameter spectrum yields averaged terms for the cor-
responding moment flux transport equations implying the random un-
correlated motion of particles weighted by powers of the particle diame-
ter. Since the uncorrelated particle velocity increases with larger particles,
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this effect could be considered somehow in the relaxation approach to de-
termine the moment transport velocities u¥). These steps must be left for
future work.

A.2.5 Moment Integration Correlations for the Source Terms (The
Time and Convective Terms are shown in Chapter 4)

Stokes Drag Closure Problem in Volume Average Based Two-Phase Equations

Instead of using moments about zero, expressing the Stokes drag term
by a decomposition into mean and residual component (i.e. central mo-
ments) for both, particle size and velocity, one obtain (here again consid-
ering fluctuations in the gas phase to be in line with the general case)

// 187pD (1 + u” —¢p) f(T)dT
= [/ 189 (D1 + D) (5 4w~ (w(D) + /(D)) F(Z) 4T
)

— 187p Dy (i +///18va v’ —u'(D))f(Z)dZ
(A.58)

The last expression on the rhs is similar to those obtained from volume
average based two-phase equations. In RANS context, Burns et al. (2004)
give an overview of available models proposed for closure of the non-
resolved volume fraction/velocity correlations.

Non-Stokes Drag Closure Problem

Including both, ensemble average and spatial filtering, as well as the mo-
ment transport velocity splitting (@(D;x,t) = a®(x,t) + @'(D;x, t)) by
inserting the decomposition

¢, =u(D;x,t)+0'(D,cpx, 1) + ﬁ'(”)(D, X, t,Hy) (A.59)
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into

0.687
// 1817p015< _C”|> (it — ¢,) DY F(T)dT = ..,  (A.60)

directly shows the problem of such an attempt to derive and model all
components individually.

A.3 Appendix to Chapter 5

A.3.1 Parts of Section 5.3.2
Reformulation of SDC Mass Rate to the D?> Format (Eqn. 5.14)

2tA(Tf — T;)D
(1 — %) [CPZ(TS —T,) +AH, + va(Tf - TS)]
Formulated as a D?-like law (with neglecting D/ Daame < 1), it gives
dD* 8\ (Tf —Ts)
dt oy on(Ts = Tp) + Ahy + cpo(Tr — T)
8A va(Tf —Ty)

0pCpy Co1(Ts — Tpp) + Ahy + cpo (T — Ts)

cpy (Tr—Ts)
8A o (Ts—Tp)+Ahy

Cp cpo(Tr—Ts)

_ 8 Br _ (A.62)
PpCry 1+ BT

1 =

(A.61)

Comparison with a Typical Vaporisation Rate

In order to proof the similarity of the mass flow rate 71, with those of pure
vaporisation, we compare it with the vaporisation rate given by Abram-
zon and Sirignano (1989) and used in this work (Eqn. 3.46), which reads
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for Stokes flow

ity = 2712 DiIn(1 + By) (A.63)

Cpy
and reformulated as D?-law

dD? 8A
— = — In(1+ Bry) . A.64

The comparable formulation of the SDC model (Eqn. A.62) reads

dD> 8\ Br
At pper,1+Br’

(A.65)

where Br is the evaporative heat transfer number defined in Eqn. 3.48.
Approximating In(1 + Br) as

In(1+ Br) = - ETBT +0() (A.66)

2
shows the similarity of both expressions.

A4 Appendix to Chapter 6

A.4.1 Phase Intensive Equations

The mass balance equation for the gas phase reads (Eqn. 3.2):

2 (69) +V - (6pa) =T (A.67)

The gas phase momentum conservation (Eqn. 3.5) becomes

%(Gpﬁ) 4V (6pEE) = — 0V +0V - T4V - (07
—M+T1qy
+ 0pg (A.68)
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ﬁg(ep)+9p§+ﬁv-(9pﬁ)+9pﬁv i=—0Vp+0V -T+V-(07)
—M+Tuy
+ 0pg (A.69)
(0 . o,
il g(QpH—V (6pti) —|—9pg—|—9puv i=—-0Vp+0V-T+ V- (07
—M+Tay
+0pg (A.70)
oun
Gpg%—(?puv a=—0Vp+0V-T+ V.- (67T)
—M+F( d—u)
+0pg (A.71)
om . 1__ 1_ _ 1 t
o TV = EVp+EV r+9—pv (6T)

_ % (M + (@, — @)
+ 8 (A.72)

and the sensible enthalpy (Eqn. 3.33)

0

at(@ph) +V - (0phi) + V - (pVeffV(eh)>

Pregs

Q)
i

=05 + Vﬁ) + (ks —qg1) + Y (o) Qu (A73)

e o Vet
h<—(9p)+v-(9p )) +0p5; +0pavi+ V- (g:ffV(Gh)>
eff

—o(2 4 ﬁVﬁ)+r(ﬁs—qu>+2<pwm>”cgm (A.74)
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_oh o O Vef .
0ps; +0pavi+ V- (Preffvwh)>

—0 @f +qu) +T(hs —h—qg) + Y _{owm)” Qu . (A.75)

Similarly, one obtains with the help of the third moment transport equa-
tion (Eqn. 4.62),

d
= (0aMP) + V- (0aMPu®)), = =T (A.76)

the phase intensive formulation of the dispersed phase momentum equa-
tion (Eqn. 4.63)

J

(A.77)
u® (E?t (0aM®) +V - (de(3)u(3>)>
:_};/1(3)
(3)9u® ®) IS

+ paM o +de IV .-u® =M +gM pd (A.78)

(3) ou®® BB . 4@ — MG _ (1) _ )

paM o + oMV . u® = MO 4 gMBp; — T, (u u)
o ) (A.79)

Jou M
O .yqB® — 17— - (1) _ 3

5 Tu V-u YIS +g PRV e (u u”),  (A.80)

implying the simplification of (uu)® ~ u®u®, and the phase intensive

formulation of the dispersed phase enthalpy equation (Eqn. 4.65)

0

at(de ha) +V - (0aMPuhy)

= —Tye (hd + Ahy(Ty) — CPU@) (A.81)

T
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hy (-(de“)) +V- (de<3)u(3))) +0aMB aa}; + 0aMPuB®Vh,

T—T,
= —T,5 <hd + Ay (Ty) — cpv(B—d)> (A.82)
T

ah T—-T
4 0 MO Thy = Ty (A%(Td) - c(B—d)) (A.83)
T

paM® o

Ay 1 (T - Ty)
w + u Vhd = _WFM(3) <AhU(Td) — CPUB—T) . (A84)

A.4.2 A Simple Example of the Use of the Conservative vs. the Phase-
Intensive Formulation

With a simple but effective example, the difference between using the
dispersed phase momentum equation in a conservative and phase inten-
sive formulation will be demonstrated. A 2-dimensional jet in cross flow
is considered, where the jet is laden with particles having a mass density
ratio p/pg ~ 1000. The cross flow is physically free of particles, but with
marginal values in the numerical simulation. With that the momentum
of the jet particles is much larger than that of the cross flow “particles”.
Hence, to determine the resulting dispersed phase velocity within a com-
putational volume, the mass weighted average of the incoming veloci-
ties as resulting from the conservative formulation is expected to have
a significant different value and direction than that of the phase inten-
sive formulation. In the former, the jet is expected to penetrate the cross
flow physically correct, whereas using the phase intensive formulation,
the jet is expected to adapt its flow direction immediately towards the
cross flow streamlines with a speed determined by the arithmetic mean
of the incoming velocity values.

In the simple example shown, both the cross flow and the jet have a veloc-
ity of 1m/s for both phases, the former horizontally directed, the latter
vertically directed. In Fig. A.1 both cases are shown, on the left the result
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using the phase intensive or non-conservative formulation, on the right
that of the conservative formulation. Clearly, this is an issue to consider
when solving the dispersed phase momentum equation. Its impact de-
pends on the given case.

Figure A.1: Steady state contours of Left phase intensive based and
Right conservative based equation formulation. Top Dis-
persed phase vertical velocity component. Bottom Dispersed
phase volume fraction.

A.4.3 Reaction Rate Limiter

Arrhenius reaction rates are very stiff terms especially when considering
only a one step, global reaction or reaction mechanisms with only a few
reactions. Although the reaction rate expression provides several param-
eters to modify, control and adjust, the powers of the temperature and
the species mass fraction does not allow this option as a practical way
to ignite the flame. Especially the species mass fraction can vary very
fast between many size orders down to zero, which leads in combination
with the power coefficients, the time discretisation and eventually due
to the missing coupling with the temperature in the chemical solver to
notoriously critical values of the whole expression. In the case of the LDI
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burner (see Section 7.3), it was absolutely not possible to ignite the flame
without using a heat release and mass fraction change rate limiter. Hence
the following limiter has been implemented and used for the simulation
of the LDI burner.

Basically, the analytical, infinitely fast reaction is used when the calcu-
lated heat release is higher than the highest possible, i.e. proceed the
reaction until either the present fuel (lean), oxidiser (rich) or both (sto-
ichiometric) are zero. For those computational cells, where this criterion
applies, the species mass fraction change rates and the heat release rate
are artificially modified to have the whole reaction process within the
current time step. The algorithm divides into the following steps:

1. Determining the maximal possible species mass fraction change
rates, depending on the limiting educt species.

2. Determining the corresponding heat release via species mass frac-
tion change rates and heat of formation.

3. Comparing this analytical heat release with the one calculated by
the code. With that it can be specified for each computational cell
whether the calculated or the analytical expression for species and
enthalpy will be used.

4. Using, depending on this switch, the corresponding source terms for
species and enthalpy transport equation.

5. When using two-step reaction mechanisms including CO, all the CO
will be oxidised as long as oxidiser is available and subsequently
the actual fuel in case there is still oxidiser and fuel. This, however,
reduces the 2-step mechanism to a kind of 1-step mechanism in the
corresponding cells.

The following expressions have been implemented for the LDI burner us-
ing the one and two step schemes for kerosene by Gokulakrishnan et al.
(2013). With molar mass and mass based stoichiometric coefficients the
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reactions read, respectively,

CipHys +11.50, = 12CO + 11.5H,O (A.85)
2CO+ 0O, =COy (A.86)
and
167 C1oHps + 568 O, = 528 CO + 207 H,O (A.87)
56CO + 320, = 88C0O,, (A.88)

where the molar masses are slightly approximated for simplicity.

Referring to point 1, it will be first checked whether rich or lean condi-
tions are present in the computational cell considered. Knowing that, the
species mass fraction change rate may be expressed as

wo, = ZO; (A.89)
WCoHyy = %woz (A.90)
wco, = gzzwoz (A.91)
WH,0 = —%woz (A.92)
for lean conditions and as
WCyyHy = —% (A.93)
wo, = ?Z?CUCHHB (A.94)
wco, = fznguHm (A.95)
0=~ ~9%

for rich conditions. The heat release can be determined for the one step
scheme as (point 2)

prQO - p(wclezg + sz)AQc (A.97)
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with

AQ 167Qc 1, + 568Q0, + 528Qc0, +207Qm,0)  (A.98)

e = 735

and for the two step schemes including CO as (point 5)

prm Qm - p(wC12H23 + w02)AQC,C12H23—02 + ,O(WCO + wOZ)AQC,CO—OQ
m

(A.99)

. 568, . 32, .
prQO - (1 + ﬁ)prquaAQC/Clezsfoz + (1 + %)PWCOAQC,CO—OZ :
(A.100)

Since there is no mechanism included in the code to avoid extinction or
blow out of the flame, sufficiently strong ignition is still required and
must be taken care of.

A.4.4 Solver Structure

The main loop of the different solvers for isothermal, non-isothermal and
reacting flows is structured similarly, as

solve(fvm::ddt(rho) + fvc::div(phi)==-Gamma_alphaD/dynTF);

// --- Pressure-velocity PIMPLE corrector loop

while (pimple.loop())

{
#include "momsEqnGamma.H" // Eqn. 4.62, 4.74 - 4.76 (5.7)
#include "liftDragCoeffs.H" // Eqn. 4.43
#include "UdEqn.H" // Eqn. 4.63 (5.8)
#include "sourceHeatEvap.H" // Eqn. 4.51
#include "hdEqn.H" // Eqn. 4.65 (5.9)
#include "UEqn.H" // Eqn. 3.5 (5.5)
#include "thickening.H"
#include "YEqns.H" // Eqn. 3.19 (5.4)
#include "hsEqn.H" // Eqn. 3.33 (5.6)
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// --- PISO loop
while (pimple.correct())
{
#include "pEqn.H"
}
if (pimple.turbCorr())
{
turbulence->correct();
}

Obviously, for isothermal flows, no enthalpy, species and heat transfer
equations are needed, in purely vaporising flows, the reaction is not in-
cluded. The structure is naturally sequential, although a block-coupled
solver, at least for the moment transport equations would be interesting
to test, since the equation system of the dispersed phase is highly cou-
pled. First theoretical attempts to rewrite the moment equations in a form
which is appropriate to be used with OpenFOAM'’s block-coupled solver
tailed due to the strong (non-linear) coupling.

A.5 Appendix to Chapter 7

The discretisation used (fvSchemes) and the solver setup (fvSolution) is
given next for each case. Common to all cases is backward time discreti-

sation, which yielded significantly better results than Euler as observed
in the case of Sommerfeld and Qiu (1991).

A.5.1 Sommerfeld and Qiu 1991

Discretization

gradSchemes

{
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default

}

divSchemes

{
default
div(phi,U)
div(phi,h)
div(phiU,p)
div((muEff*dev2(T(grad(U)))))
div(phid,Ud)
div(phid,m0)
div(phid,ml)
div(phid,m2)
div(phi,alphaD)

}

laplacianSchemes

{
default

}

interpolationSchemes

{
default

}

The entries snGradSchemes and

Solver Setup

Gauss linear;

none;
Gauss filteredLinear2V 0.2 O;
Gauss filteredLinear2 0.2 O;
Gauss limitedLinear 1;

Gauss linear;

Gauss upwind;
Gauss upwind;
Gauss upwind;
Gauss upwind;
Gauss upwind;

linear corrected;

linear;

fluxRequired are standard in every case.

The solver setup is identical for all cases, with

"(plrho)"

{
solver PCG;
preconditioner DIC;
tolerance le-6;
relTol 0;

}
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"(plrho)Final"
{
$p;
relTol 0;

A1l other variables, with different tolerances:

solver PBiCG;
preconditioner DILU;
PIMPLE
{
momentumPredictor yes;
nOuterCorrectors 2;
nCorrectors 2;
nNonOrthogonalCorrectors  0;
nAlphaCorr 2;
correctAlpha yes;
rhoMin rhoMin [ 1 -3 000 ] 0.1;
rhoMax rhoMax [ 1 -3 000 ] 2.0;
}

A.5.2 Sydney Spray Burner/LDI Burner

The discretisation for the non-isothermal, vaporising and reacting cases
is practically equal. The discretisation of the dispersed phase shows
some “inconsistencies”, e.g. the particle enthalpy could/should be dis-
cretised with upwind as well, which might slightly affect the solution.
The harmonic interpolation was used sometime to try it for stabilising
the simulation. Whether it makes a difference at the final version of the
code has not been tested.
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Discretisation

gradSchemes

{
default
grad (Ud)

}

divSchemes

{
default
div(phi,U)
div(phi,h)

div(phiU,p)
div((muEff*dev2(T(grad(U)))))

div(phi,alphaD)
div(phid,m0)
div(phid,m1)
div(phid,m2)
div(phi,Yv)
div(phi,Yi_h)
div(phid,Ud)
div(phid,hd)

}

laplacianSchemes

{
default

}

interpolationSchemes

{
default
interpolate(alphaD)
interpolate (m0)
interpolate(ml)
interpolate(m2)
interpolate (m3)
interpolate(m4)
interpolate(m5)
interpolate(m1687)
interpolate (m3687)
interpolate(h)

}

Gauss linear;
celllimited leastSquares 1.0;

none;
Gauss filteredLinear2V 0.2 O;
Gauss filteredLinear2 0.2 0;
Gauss linear;
Gauss linear;

Gauss upwind;
Gauss upwind;
Gauss upwind;
Gauss upwind;

Gauss vanlLeer(Ql; // for vaporisation
limitedLinearO1 1.; // for combustion

Gauss
Gauss upwind;
Gauss filteredLinear2 0.2 0;

Gauss linear corrected;

linear;

harmonic;
harmonic;
harmonic;
harmonic;
harmonic;
harmonic;
harmonic;
harmonic;
harmonic;
harmonic;
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