
TECHNISCHEN UNIVERSITÄT MÜNCHEN

Lehrstuhl für Informatik XX

From Adversarial Learning to Reliable and
Scalable Learning

Han Xiao

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen

Universität München zur Erlangungdes akademischen Grades eines

Doktors der Naturwissenscha�en (Dr. rer. nat)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Seidl

Prüfer der Dissertation: 1. Univ.-Prof. Dr. Claudia Eckert

2. Univ.-Prof. Dr. Daniel Cremers

Die Dissertationwurde am . . . . . . . . . . . .14.08.2014 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am . . . . . . . . . . . .02.03.2015 angenom-

men.





Abstract

Nowadays machine learning is considered as a vital tool for data analysis and automatic de-

cision making in many modern enterprise systems. However, there is an emerging threat that

adversaries can mislead the decision of the learning algorithm by introducing security faults into

the system. Previous security research did not closely examined the vulnerabilities of the learning

algorithms to adversarial manipulations. Understanding these threats is the only way to build ro-

bust learning algorithms for security-sensitive applications. �is dissertation is organized in three

parts. Each part contributes the new results in adversarial, reliable and scalable machine learning,

respectively.

�e �rst part of this dissertation studies howmachine learning algorithms behave in the pres-

ence of the adversary. In particular, I provide analyses for the exploratory a�ack on convex-

inducing classi�ers and causative a�ack on support vector machines. Under the analyses are the

tools from convex geometry and optimization theory. Using real-world data, I demonstrate the

devastating impact of the a�ack algorithms on a newsle�er classi�er and a face recognition sys-

tem.

�e second part focuses on developing reliable learning algorithm that is resilient to the ad-

versarial noise. I consider the problem of learning frommultiple observers, in which each instance

is associated with multiple but unreliable labels. To solve this problem, I develop a hierarchical

Gaussian process model and consider the groundtruth label as a latent variable. �e parameters

of the model can be e�ciently estimated by maximizing a posterior. �e successful application of

my method on the task of aesthetics score assessment would raise practitioners a great interest.

�e third part concentrates on developing scalable online learning algorithms for security

applications. I propose three systematic approaches for learning from large-scale data stream. �e

�rst method employs a set of Gaussian process models to perform real-time online regression. �e

second method is based on a variant of second-order perceptron to predict the upcoming label in

a sequence. �e last method provides a novel distributed learning framework for the client-server

se�ings. It can learn from partially labeled data while minimizing the communication-cost over

the network.

iii





Zusammenfassung

Machinelles Lernen stellt heutzutage ein essentielles Tool für die Datenanlyse und automa-

tische Entscheidungs�ndung in vielen modernen Enterprisesystemen dar. Dadurch ergeben sich

jedoch auch neuartige Angri�svektoren. Besonders kritisch ist dabei, dass Angreifer durch das

Ausnützen von Sicherheitslückenden Lernalgorithmus gezielt in die Irre führen können. Überraschen-

derweise werden solche Angri�e in der bestehenden Forschung jedoch kaum untersucht. Um

sichere Lernalgorithmen entwickeln zu können ist aber ein eingehendes Verständnis dieser An-

gri�sformen nötig.

Die vorliegende Doktorarbeit ist in drei Teile gegliedert. Im ersten Teil wird untersucht wie

sich Lernalgorithmen bei gezielter Manipulation durch den Angreifer verhalten. Basierend auf

dem erworbenen Wissen werden dann im zweiten Teil der Arbeit zuverlässige Lernalgorithmen

entwickelt, die immun gegenüber der Manipulationen durch den Angreifer sind. Schließlich wer-

den im dri�en Teil der Arbeit skalierbare Onlinelernalgorithmen für Sicherheitsanwendungen

vorgestellt.

v





Acknowledgments

First and foremost I would like to thank my advisor, Professor Claudia Eckert, whose encour-

agement, guidance and support she has o�ered me throughout my graduate career. Moreover, the

freedom given by Claudia allowed me to purse my own research interests. She shared the excite-

ment when I had accomplishment and o�ered me encouragement when I was frustrated. Claudia

made innumerable contributions to my development as a researcher and my ambitions to be a data

scientist.

I would like to thank Professor Shou-De Lin for his invitation of a six-month research visit at

National Taiwan University. Shou-De with his kindness and invaluable experience guided me to

�nish Chapter 11. I would also like to thank Phillip B. Gibbons for his suggestions, insights and

revisions on Chapter 11. It is Shou-De and Phillip’s dedication that made this chapter possible.

I would particularly like to thank Huang Xiao for his hard work and critical contributions

to Chapter 6, Chapter 7 and Chapter 8. He is an extraordinary collaborator and friend. For his

critical suggestions on Chapter 4, I would like to thank �omas Stibor. I would also like to thank

Professor Ping Luo for his useful feedback on Chapter 9 and Chapter 11. I would like to thank

Professor Takehisa Yairi for the inspiring discussion on Chapter 7, and Nan Li for her feedback on

Chapter 9. I thank Ruei-Bin Wang for his comments on Chapter 11. I thank Yu-Rong Tao for her

collaboration and persistent hard work on some experiments in Chapter 9 and Chapter 10.

Many others have helped me over my graduate career. I cannot thank all these individuals

enough for their support, but I would like to call a�ention to a few. I would like to thank Xin-

Chang Liu and Cheetah Lin for being good friends who were always willing to listen and provided

useful advices. In addition, I would like to thank Petra Lorenz and Alexander Lüdtke for their help

and assistance of all kinds to my life and research career in Germany.

Finally, I o�er my regards and blessings to all of those, especially my parents, who supported

me in any respect during the completion of my dissertation. Without them, this work would not

have been possible.

I gratefully acknowledge the support of my sponsors. Part of this work was supported in

part by the HIVE (Hypervisorbasierte Innovative VErfahren zur Anomalieerkennung mit Hard-

wareunterstützung), which receives support from the German Federal Ministry of Education and

Research under grants FKZ16BY1200D; and in part by National Science Council, National Taiwan

University and Intel Corporation under grants NSC102-2911-I-002-001 and NTU103R7501. I would

also like to thank China Scholarship Council for recognizingme the award of outstanding students

abroad.

vii





Publications

[1]Han Xiao and Claudia Eckert. E�cient Online Sequence Predictionwith Side Information. IEEE

International Conference on Data Mining, 2013.

[2]Han Xiao and Claudia Eckert. Lazy Gaussian Process Commi�ee for Real-Time Online Regres-

sion. AAAI Conference on Arti�cial Intelligence, 2013.

[3]Han Xiao, Huang Xiao and Claudia Eckert. Learning from Multiple Observers with Unknown

Expertise. Paci�c-Asia Conference on Knowledge Discovery and Data Mining, 2013.

[4]Han Xiao, Huang Xiao and Claudia Eckert. Adversarial Label Flips A�ack on Support Vector

Machines. European Conference on Arti�cial Intelligence, 2012.

[5]Han Xiao and �omas Stibor. Evasion A�ack on Multi-Class Linear Classi�er. Paci�c-Asia

Conference on Knowledge Discovery and Data Mining, 2012.

[6]Han Xiao and �omas Stibor. Supervised Topic Transition Model for Detecting Malicious Sys-

temCall Sequences. SIGKDDworkshop: Knowledge Discovery, Modeling and Simulation, 2011. (Best

paper award)

[7]Han Xiao and �omas Stibor. Toward Arti�cial Synesthesia: Linking Pictures and Sounds via

Words. NIPS workshop: Next Generation Computer Vision Challenges, 2010.

[8]Han Xiao and �omas Stibor. E�cient Collapsed Gibbs Sampling For Latent Dirichlet Alloca-

tion. Asia Conference on Machine Learning, 2010.

ix



x



Contents

Abstract iii

Acknowledgements vii

Publications ix

I Introduction 1

1 Introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Spam Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Social Recommendation Service . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Real-Time Anomaly Detection with Novel Input . . . . . . . . . . . . . . . 7

1.2 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

II Background 13

2 Preliminary Knowledge 15

2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Gaussian Process Regression . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Online Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Passive-Aggressive Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Adversarial Machine Learning 21

3.1 Problem De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 A Case Study: Evading a Linear Classi�er . . . . . . . . . . . . . . . . . . . . . . . 23

xi



Contents

3.2.1 IMAC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

III Venerability of Learning Algorithms 29

4 Exploratory Attack of Multi-Class Linear Classi�ers via Line Search 31

4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Multi-Class Linear Classi�er . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.2 A�ack of Adversary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.3 Adversarial Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.4 Disguised Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 �eory of Exploratory A�ack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Algorithm for Approximating ǫ-IMAC . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.1 Spam Disguising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.2 Face Camou�age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Exploratory Attack on Convex-Inducing Classi�ers via Random Walks 43

5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Geometric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4.2 Proof of �eorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4.3 Proof of �eorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.6.1 Synthetic Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6.2 On Real-World Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.7 Detecting Exploratory A�ack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Causative Label-Flip Attack on Support Vector Machines 59

6.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Label Flip A�ack Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 A�ack on SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4.1 Synthetic Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4.2 On Real-World Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

IV Reliable Learning Algorithms 71

7 Learning from Multiple Observers with Unknown Expertise 73

xii



Contents

7.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2.1 Probabilistic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2.2 Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2.3 Linear Observer Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2.4 Non-Linear Observer Model . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3.1 Synthetic Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3.2 On Real-World Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8 Learning Unbiased Rating from Crowds 87

8.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.2 Framework Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

V Scalable Online Learning Algorithms 91

9 Online Prediction of User Behavior with Lazy Gaussian Process Committee 93

9.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9.1.1 GP Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9.1.2 GP Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.2 LGPC for Online Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.2.1 Allocation of New Training Examples . . . . . . . . . . . . . . . . . . . . 97

9.2.2 Incremental Update of LGPC . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.2.3 Predictions of �ery Points . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.3.1 Comparison of Predictive Accuracy . . . . . . . . . . . . . . . . . . . . . . 102

9.3.2 Comparison of Computation Speed . . . . . . . . . . . . . . . . . . . . . . 103

9.3.3 Exploration of Model Parameters . . . . . . . . . . . . . . . . . . . . . . . 105

9.3.4 Mouse-Trajectory Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

10 Online Prediction of System Call Sequence with Side Information 109

10.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

10.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

10.3 Sequence Prediction as Linear Separation . . . . . . . . . . . . . . . . . . . . . . . 113

10.4 Online Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

10.4.1 Learning Weight Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

10.4.2 Memory-E�cient Update of Su�x Set . . . . . . . . . . . . . . . . . . . . 117

10.4.3 Incorporation of Side Information . . . . . . . . . . . . . . . . . . . . . . . 118

10.4.4 E�cient Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

10.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

10.5.1 Comparison of Predictive Performance . . . . . . . . . . . . . . . . . . . . 121

xiii



Contents

10.5.2 Comparison of E�ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

10.5.3 Exploration of Model Parameters . . . . . . . . . . . . . . . . . . . . . . . 123

10.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

11 Communication-E�cient Online Semi-Supervised Learning in Client-Server Set-

tings 129

11.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

11.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

11.3 General Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

11.3.1 Design Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

11.3.2 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

11.4 Online Semi-Supervised Learning on the Server . . . . . . . . . . . . . . . . . . . 135

11.4.1 So� Con�dence-Weighted Classi�er . . . . . . . . . . . . . . . . . . . . . 135

11.4.2 Harmonic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

11.4.3 E�cient Online Adaptation of HS . . . . . . . . . . . . . . . . . . . . . . . 137

11.4.4 Combining HS with SCW . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

11.4.5 Predicting New Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

11.5 Selective Sampling on Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

11.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

11.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

11.6.2 Comparison of Server’s Model . . . . . . . . . . . . . . . . . . . . . . . . . 142

11.6.3 Comparison of Selection Strategy . . . . . . . . . . . . . . . . . . . . . . . 144

11.6.4 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

11.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

12 Conclusion 153

12.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

12.1.1 Identifying Vulnerabilities of Algorithms and Adversarial Capabilities . . 153

12.1.2 Presenting Reliable Algorithms Resilient to Adversaries . . . . . . . . . . 154

12.1.3 Presenting Online Algorithms for Large-Scale Data Stream . . . . . . . . 155

12.1.4 Establishing Distributed Learning Framework for Client-Server Se�ings . 155

12.2 Discussion and Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

12.2.1 Faithful Evaluation with Scarce Groundtruth . . . . . . . . . . . . . . . . 156

12.2.2 Detecting Malicious Training As Pre-Processing . . . . . . . . . . . . . . . 157

12.2.3 Ensemble Methods for Secure Learning . . . . . . . . . . . . . . . . . . . . 157

12.2.4 Privacy-Preserving Learning in Distributed Se�ings . . . . . . . . . . . . 158

12.3 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Bibliography 159

xiv



List of Figures

1.1 General work�ow of a spam �lter. It is trained on a set of labeled email mes-

sages (containing both spam and non-spam) to construct a classi�cation boundary.

When it is deployed, the incoming message is �rst represented as a feature vector,

and then it is mapped to the instance space for determining its label. . . . . . . . 5

1.2 Two English spams. (top) �e intended title is “this convention in June sincerely

wants your a�ending”. �e spammer replaces some alphabets to unicode symbols

which look similar, or (bottom)�e intended title is “EIT 2014 ISTP Index”. . . . 5

1.3 A Chinese spam in which the spammer deliberately adds some alphabet between

Chinese characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Exploratory a�ack: introducing feature noise to the original spam. �e �rst two

dimensions of the feature vector (highlighted in red) aremodi�ed by the adversary.

As a consequence, the original spam (red cross) becomes a legit mail (green cross)

under the classi�cation boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Causative a�ack: introducing label noise to the training data. A�er introducing

the label noise, the training data is contaminated. �e classi�er now produces a

tainted decision boundary (in blue dashed line). Given this decision boundary, the

original spam is no longer classi�ed as a spam. . . . . . . . . . . . . . . . . . . . . 6

1.6 Rating problem in a photo sharing website. Each rating may come from a faithful

user or a social spammer who tries to manipulate the ranking in its favor. . . . . . 7

1.7 Mouse trajectory from three di�erent users while they are doing online transac-

tion. Each column represents a user. �e trajectory is illustrated by the color curve

with ⋆, whose head is blue and tail is red. . . . . . . . . . . . . . . . . . . . . . . . 8

1.8 �e outline of this dissertation. Chapters are driven by a series of questions. . . . 10

3.1 Di�erent types of adversarial a�ack on learning algorithms. . . . . . . . . . . . . 22

3.2 Contour plots of linear cost function a(x)with di�erent value of ai andxa = (0, 0)
(le�) an uniform linear cost function |x1| + |x2|, where both a1 and a2 are one.

(middle) 5|x1|+|x2|, where a1 = 5 and a2 = 1. (right) |x1|+5|x2|, where a1 = 1
and a2 = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Searching x∗ (represented by a star) in a 2-dimensional space with a linear deci-

sion boundary. �e shaded area represents the positive response of the classi�er.

�e arrow follows the optimal searching direction. (le�) �e optimal searching

direction is along x2. (right) �e optimal searching direction is along x1. . . . . 24

xv



List of Figures

3.4 Algorithm proposed in [107] for approximating w. (a) Assume the adversary has

a positive instance x+ (denoted by a triangle) and a negative instance (denoted

by a square) on hand, but has no idea about the linear decision boundary. �e

shaded area represents the positive response of a linear classi�er. (b)�e algorithm

starts with x+ and changes feature values one at a time to match those of x−.
At some point, the class of instance must change. �e previous value and the

current value of intermediate instance are set to s− and s+, respectively. �is step

requires at most n test queries. (c) As ∀j 6= i, s+
j = s−

j , a binary search along the

dimension iwill �nd a negative instance close to the decision boundary. Let ǫ be an
approximation threshold, this step requires O(log(1/ǫ+ |s+

i − s−
i |)) test queries.

�e do�ed line represents the line search operation. (d) �e algorithm sets wi to

1 or −1, and increases or decreases xi by 1 until a negative instance is found. (e)

�e algorithm proceeds by searching in every other directions j 6= i using a line

search. �is consists of increasing or decreasing each xj exponentially until the

class of x changes, and then bounding its exact value with a binary search. (f)

Finally, the approximated w can be computed with the tangent rule. �e dashed

line shows the learned weight, which is almost identical to the ground-truth. �e

adversary is now able to compute g by (3.1) and �nd optimal x∗ by using (3.2). . 25

3.5 Result of IMAC algorithm on a random generated linear classi�er. (a) Adversarial

cost measure the distance between x∗ and xa. Lower cost is be�er. (b)�e number

of queries used for determining the weights. Bars shaded with black indicates the

number of positive queries. In practice, it is important for an adversary to keep

not only the number of total queries down, but also the number of positive queries. 26

3.6 Examples of IMAC algorithm on classi�ers with nonlinear decision boundary. �e

shaded area denotes the positive response of classi�er. (a)When the positive class

is a convex, one can still �nd the optimal instance by changing one feature only.

For instance, changing x1 will lead to the optimum in this example. (b)When the

negative class is convex, IMAC algorithm is not able to search the optimal cost

instance. �e approximate weights suggest that the optimal searching direction is

along x2. Unfortunately, searching along x1 and x2 are not optimal in this example. 27

4.1 �ery algorithm for a�acking multi-class linear classi�ers . . . . . . . . . . . . . 38

4.2 Multi-dimensional search from ISMAC(k,ym) . . . . . . . . . . . . . . . . . . . . 38

4.3 Recursive binary search on dimension d . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Update ISMAC(k,ym) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Box plots for adversarial cost of disguised instance of each class. (Le�) On the

20-newsgroups data set, I considered “misc.forsale” as the adversarial class. Note,

that feature values of the instance are non-negative integers as they represent the

number of words in the document. �erefore, the adversarial cost can be inter-

preted as the number of modi�ed words in the disguised document comparing to

the original document from “misc.forsale”. �e value of ǫ̂ for 19 classes is 0.79.
(Right) On the 10-Japanese female faces data set, I randomly selected a subject as

the suspect. �e box plot shows that the adversarial cost of camou�age suspicious

faces as other subjects. �e value of ǫ̂ for 9 classes is 0.51. A more illustrative

result is depicted in Fig. 4.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xvi



List of Figures

4.6 Disguised faces given by the algorithm to defeat a multi-class face recognition

system. �e original faces (with neutral expression) of 10 females are depicted in

the �rst row, where the le� most one is the imaginary suspect and the remaining 9
people are innocents. From the second row to sixth row, faces of the suspect with

di�erent facial expressions are fed to the algorithm (see the �rst column). �e

output disguised faces from the algorithm are visualized in the right hand image

matrix. Each row corresponds to disguised faces of the input suspicious face on

the le�. Each column corresponds to an innocent. . . . . . . . . . . . . . . . . . . 41

5.1 Exploratory a�ack on convex X− by random walks . . . . . . . . . . . . . . . . . 46

5.2 An illustration of Algorithm 5.1 with g(x) := ‖x − ym‖ℓp
. (a) Random samples

are generated in P〈k〉 using random walks. (b) �e cut is performed with B〈k〉

through the sample with the minimum cost, which results in a smaller convex

set P〈k+1〉. (c) When the convex body P is not in the isotropic position, random

samples generated by standard hit-and-run will not be uniformly distributed in P . 47

5.3 (a) Finding two parallel hyperplanes that support K. (b) Rotating and translating

K and Pv until they are aligned with x1 axis. In this example, the cost function

g(x) := ‖x− ym‖ℓ2
. Gray area denotes Pv in both �gures. . . . . . . . . . . . . . 49

5.4 (a) Constructing convex setsK′ and Pt such that they have same volume asK and

Pv , respectively. Gray area denotes Pt. (b) Constructing a convex cone C that has
base area D

h
vol(K′) and height h. Gray area denotes C<t. . . . . . . . . . . . . . . 50

5.5 An inverted convex cone C′ has base area D
h

vol(K′) and height h. Gray area de-

notes C′
≥q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6 (a)�e starting point is close to the boundary. �e arc represents all feasible walk-

ing directions. In the high dimensional space, it is extremely di�cult to generate

a feasible walking direction. (b) �e convex set is not in the isotropic position.

Random samples are not uniformly distributed in the set. . . . . . . . . . . . . . . 53

5.7 ℓ1 and ℓ∞ cost as a function of iterations for 4 and 1, 024-dimensional problems.

From top to bo�om, each row represents X− with a special geometry structure.

�e experiment is repeated for 120 times and the average performance is reported. 54

5.8 Each column depicts the relative cost g(x〈k〉)/g(x〈0〉) for disguising a malicious

document as from the benign newsgroup labeled below. Smaller value is preferable

for the adversary. �e central mark is the median, the edges of the box are the

25th and 75th percentiles, For instance, the �rst box shows about 25% documents

from other newsgroups can be disguised as “alt.atheism” by only changing 27% of

their contents, and about 50% can be disguised by changing at most 60% of their

contents. �e experiment is repeated 100 times for each group. . . . . . . . . . . 56

5.9 A time series plot of an exploratory. �e benign set is the interior of the circle.

Although the plot is quite jogged, the convergent trend is evident on both dimensions. 57

6.1 Adversarial Label Flips A�ack on SVMs (ALFA) . . . . . . . . . . . . . . . . . . . 64

xvii



List of Figures

6.2 Decision boundaries of SVMs under di�erent �ip strategies. �e �rst and second

rows illustrate results on the linear pa�ern, the third and fourth rows illustrate

results on the parabolic pa�ern. For each strategy, the number of �ipped labels is

�xed to 20 (i.e. 20% of the training data). Each point represents an instance. Labels

are denoted in red and blue. In each plot, decision regions of SVMs are shaded in

di�erent colors. Only �ipped instances in the training set are highlighted. �e

percentage under each plot indicates the error rate of SVM measured on the test

set, respectively. (a)�e synthetic data generated for the experiment. (b) Decision

boundaries of SVMs trained on the original training set without label �ips. (c)

Decision boundaries of SVMs under random label �ips. (d) Decision boundaries

of SVMs under nearest-�rst �ip strategy. (e) Decision boundaries of SVMs under

furthest-�rst �ip strategy. (f) Decision boundaries of SVMs under ALFA. . . . . . 66

6.3 Error rate of SVMs as a function of the number �ipped labels. Within each ex-

periment, the training set consists of 200 instances (100 for each class) selected

randomly. �e adversary can �ip at most 60 labels (i.e. 30% of the training data).

�e classi�cation error is measured on 800 test instances with balanced labels. Re-

sults are averaged over 60 repetitions. Note that 50% error rate corresponds to the

random guess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1 Graphical model of instances X, unknown ground truth Z and responses Y from

M di�erent observers. Only the shaded variables are observed. . . . . . . . . . . . 75

7.2 Samples drawn from a Gaussian process prior de�ned by the covariance function

Eq. (7.5). �e title above each plot denotes the value of (κ1,d, κ2,d, κ3,d, κ4,d, κ5,d).
�e samples are obtained using a discretization of thex-axis of 1000 equally spaced
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.3 Penalty functions ofwm,d induced by di�erent prior models. �e “general” penalty

function corresponds to Eq. (7.18). Similar penalty functions can be added to µm,d

and σm,d as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.4 (a) Synthetic data generated for the experiment. Responses from observers are

represented by markers with di�erent colors. �e right panel illustrates randomly

generated {gm} used for simulating four observers. Shaded area represents the

pointwise variance. Note that the 4th observer is adversarial, as his response tends

to be the opposite of the ground truth. (b, c, d) Predicted ground truth on the

test set by applying SVR-AVG, GPR-AVG and LOB, respectively. (e) Predicted

ground truth and learned observer functions given by NLOB. . . . . . . . . . . . . 83

8.1 Generative process of subjective aesthetics scores. Notations are followed from

Chapter 7. Two photos of the city of Munich map to the similar place into the

instance space, whereas the photo of cat is mapped to a place far away from the

�rst two. Intuitively, if two instances are close to each other inX , then their corre-
sponding ground truth should be close in Z through the mapping of {fd}, which
in turn restricts the searching space of {gm,d} when Y is known. . . . . . . . . . 88

8.2 Prediction on the test set with 2733 images. Each row shows top-5 (le�) and

bo�om-5 (right) images for each model. �e predicted objective aesthetics score

is labeled above each image, respectively. . . . . . . . . . . . . . . . . . . . . . . . 89

xviii



List of Figures

8.3 Sca�er plots of predicted objective aesthetics scores of 2733 test images, where

the colors encode the density of the points. �e title above represents the Pearson

correlation (PCC) and Spearman correlation (ρ), respectively. . . . . . . . . . . . . 89

8.4 Sca�er plots of predicted observers’ response of 2733 test images, where x-axis
represents the predicted objective aesthetics scores. . . . . . . . . . . . . . . . . . 90

9.1 Samples drawn from a Gaussian process prior de�ned by the covariance function

(9.1). �e samples are obtained using a discretization of the x-axis of 1000 equally

spaced points. �e text above each plot denotes the value of κ2, σ2, {W}, respec-
tively. In this example, the input x is one-dimensional. Hence, the parameter {W}
is in fact a scalar value, which can be absorbed into κ. . . . . . . . . . . . . . . . 95

9.2 �e basic idea of LGPC: decomposing a large training data set into small sets. One

each small data set, an individual GP is trained, and together they form a GP com-

mi�ee. (Top): original GP regression model. (Bottom): data partition in the pro-

posed LGPC model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.3 Allocating new data point to the GP members. �e selection problem tries to an-

swer which GP should be selected in order to maximize the commi�ee’s perfor-

mance in the long-run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.4 Greedy subset selection for LGPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.5 Time cost in second (averaged over 10 runs) required for training and predicting,

respectively. In each run, a training set and a test set were randomly sampled

from houses data set and the time cost was measured respectively. �e training

and prediction time of 8, 000 data points required for GPR was 1100s and 15s,
respectively. Note that prediction time of LGPC can be reduced to 0.02s if only the
nearest GP is invoked for predicting a test point. . . . . . . . . . . . . . . . . . . . 104

9.6 �e predictions of mouse-trajectories when users are inpu�ing the transaction in-

formation. Each column represents a user. �e gray curve with� denotes a user’s

trajectory in the third trial. �e model’s prediction is illustrated by the color curve

with ⋆, whose head is blue and tail is red. . . . . . . . . . . . . . . . . . . . . . . . 106

9.7 �e predictions of mouse-trajectories when users are inpu�ing the security code.

Each column represents a user. �e gray curve with � denotes a user’s trajectory

in the third trial. �e model’s prediction is illustrated by the color curve with ⋆,
whose head is blue and tail is red. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10.1 A circular plot of a system call trace when running ls on Linux, which was col-

lected using strace. System calls are plo�ed clockwise, starting with execve

and ending with exit on top. A time stamp is labeled in front of each system

call. A curve connects two system calls if the return value of the former was used

as an argument of the la�er. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xix



List of Figures

10.2 An example of a multi-class context tree, where K = 3 and V = {ǫ,a,ba,b,
ab,cb,c,bc,abc,bbc}. �e label on each node represents the index. Notice

how the index matches the element in V . �e context associated with each node is

indicated on the edges of the tree along the path from the root ǫ to that node. �e

vector associated with each node is provided above each node. �is context tree

can be parameterized as a 10 × 3 matrix, with the �rst column (0, 0, 0)⊤ corre-

sponds to the empty sequence ǫ. Considering the context tree as a function, given
an input sequence “aabbc”, the output from this context tree is (0.1, 0.6,−0.2),
whose path is plo�ed with double lines. . . . . . . . . . . . . . . . . . . . . . . . 115

10.3 E�cient online sequence prediction (EOSP). . . . . . . . . . . . . . . . . . . . . . 119

10.4 Time cost in second (averaged over 10 runs) of di�erent algorithms. Both axes are

in logarithmic scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

10.5 Memory consumption (averaged over 10 runs) of di�erent algorithms. Both axes

are in logarithmic scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.1 An illustration of the proposed framework. �e server contains two learners: a

graph-based semi-supervised model and a linear classi�er. �ey collaborate to-

gether to learn from a partially labeled data stream. At any point in time, the linear

classi�er can be used as a standalone component for predicting labels for new test

data. �e communication �ow between each client and the server is represented

by red arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

11.2 Adapted doubling algorithm in our framework. © is labeled point, × is centroid

and � is the current point on the tth round. Color indicates the partition of the

space according to the centroids. For this example, we set l = 2, k = 5 and

R = 0.1. (a) Initially, the centroid set V0 contains only two labeled points. (b) In

the �rst three rounds, each new point is directly added to the centroid set. (c) On

the 4th round, as Vt−1 is already full, we have to remove a centroid from it. we

We doubleR to 0.2, remove the centroid corresponding to the red region from the

3rd round, and add the current point to the centroid set. (d) We double R again,

remove the centroid of the green region from the 4th round, and add the new point.

(e) �e centroid set a�er 20 rounds. centroid set. . . . . . . . . . . . . . . . . . . 138

11.3 Test accuracy of di�erent models on the server. �e x-axis represents the number

of unlabeled instances on the client. �e origin corresponds to the point where the

initial 2% of the data has been labeled and learned and the �rst unlabeled instance

comes in. �e client randomly selected 10 instances from every 50 instances.

full is an idealized approach in which an oracle labels all selected instances.

none does not upload any unlabeled instance to the server, so the corresponding

test accuracy is constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

11.4 Test accuracy of di�erent selection strategies for a �xed communication budget.

�e client selected 10 instances from every 50 instances, except for all, which

selected all instances and hence incurs 5x the communication costs. �e server

used hs+scw+cut. �e labeling rate was 2%, except for full, which labeled

all selected instances using an oracle. . . . . . . . . . . . . . . . . . . . . . . . . . 148

xx



List of Figures

11.5 Sensitivity analysis of the labeling rate (amount of human e�ort) and sampling rate

(amount of communication) on di�erent data sets. �e value of the matrix repre-

sents the mean test accuracy of the last hypothesis constructed byhs+scw+cut.

Darker color represents higher value. �e column represents the labeling rate,

varying from 1%, 2%, 4% to 8%. �e row represents the sampling rate on the

client, varying from 5%, 10%, 20% to 40%. �e size of the candidate pool is 100.
�e selection strategy is submod. �e result is averaged over 100 trials. �e

marginal boxplots are depicted along the corresponding axes. �e values outside

the range of [Q3 − 1.5(Q3 −Q1), Q3 + 1.5(Q3 −Q1)] are considered as outliers,
where Q1 and Q3 are the 25th and 75th percentiles, respectively. All outliers are

removed from the boxplot for the sake of clarity. . . . . . . . . . . . . . . . . . . . 150

xxi



List of Figures

xxii



List of Tables

6.1 �e percentage of �ipped labels when a SVM reaches 50% error rate. Experiment is

conducted on ten data sets with 100, 200 and 300 training instances, respectively.

�e classi�cation error is measured on the randomly selected test set with 800
instances. From the adversary’s viewpoint, smaller percentage value indicates a

more cost-e�ective �ip strategy as it requires lower budget. For each data set, the

most e�ective strategy is highlighted with the boldface. Results are averaged over

60 repetitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.1 Penalty terms added to Eq. (7.6) under di�erent prior models, whereKα(x) is the
modi�ed Bessel function of the second kind with order α and evaluated at x. . . . 80

7.2 Prediction of the ground truth and observers’ responses. In each cell, the upper

value is MANE, while PCC is at the bo�om. For the ground truth and the average

baselines we only report the best performance, where a superscript S denotes that

the performance is achieved by SVR or SVR-AVG; for GPR and GPR-AVG we

use the superscript G. �e best model on each data set is highlighted by bold font.

Note that only LOB and NLOB can predict observers’ responses. . . . . . . . . . . 84

9.1 LGPC versus baseline methods. �e root mean square error on di�erent test sets

were measured. Results were averaged over ten runs. Smaller value indicates bet-

ter performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.2 �e root mean square error of LGPC on di�erent test sets. Results were averaged

over ten runs. Smaller value indicates be�er performance. . . . . . . . . . . . . . 104

10.1 A sample segment of this sequence is detailed, with argument de�ned within the

parentheses. For the sake of clarity, some long arguments (e.g. string) are omi�ed.

�e dependencies between the return value and argument are highlighted with

arrow lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

10.2 Side information used in our algorithm for system call prediction. . . . . . . . . . 120

10.3 Characteristics of data sets used in the experiment. . . . . . . . . . . . . . . . . . 121

10.4 Experimental results on di�erent data sets. Smaller value indicates be�er perfor-

mance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

10.5 Performance of EOSP w.r.t. di�erent se�ings of con�dence parameter η. Smaller

value indicates be�er performance. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

10.6 Performance of EOSP w.r.t. di�erent maximum length of context. . . . . . . . . . 125

xxiii



List of Tables

10.7 Performance of EOSP w.r.t. di�erent maximum size (×103) of V . . . . . . . . . . . 126

xxiv



If you know your enemies and know
yourself, you can win a hundred ba�les
without a single loss.
If you only know yourself, but not your
opponent, you may win or may lose.
If you know neither yourself nor your
enemy, you will always endanger yourself.

知彼知己，百戰不殆；

不知彼而知己，一勝一負；

不知彼，不知己，每戰必殆。

Sun Tzu —�e Art of War

Part I.

Introduction

1





Chapter 1
Introduction

Building intelligent systems that can adapt to their environments and learn from their past expe-

rience has a�racted many researchers from di�erent domains, such as computer science, statis-

tic, mathematics, physics, neuroscience and cognitive science. In recent decades, the research in

developing learning algorithms has come a wide variety of industrial applications. People have

witnessedmany successful stories about howmodern enterprises relied on machine learning algo-

rithms enjoy great bene�ts from them. Nowadays, in many large-scale systems, machine learning

is considered as a vital tool for data analysis and automatic decision making.

In the community of information security, researchers and engineers of have successfully

deployed systems using machine learning and data mining for detecting suspicious activities, �l-

tering spam, recognizing threats, etc. [6, 109]. �ese systems typically contain a classi�er that

separates instances into two classes, i.e. malicious and benign. Unfortunately, malicious instances

that fail to be detected are inevitable for any known classi�er. Also, there is an emerging threat

that the adversary tries to mislead the decision of the classi�er by manipulating instances [92, 7].

For example, spammers can add unrelated words, sentences or even paragraphs to the junk mail to

avoid the detection of a spam �lter [108]. �ey can also embed the text message in an image. �en,

by adding varied background and distorting the image, the generated junk message can be di�cult

for OCR systems to identify but easy for humans to interpret [68]. Similarly for the host-based

intrusion detection, an intruder can obfuscate an a�ack by inserting No Operation instructions or

using synonymous system calls to avoid detection [150, 151, 162].

As a reaction to adversarial a�empts, previous research has employed a cost-sensitive game

theoretic approach to preemptively adapt the decision boundary of a learner by computing the

adversary’s optimal strategy [43]. Moreover, several improved spam �lters that are more e�ective

in adversarial environments have been proposed [68, 16].

Adversary and learner are Yin and Yang of information security. �e car-and-mouse game

between them pressures the machine learning researchers to investigate the vulnerability of the

current learning algorithms in adversarial environments, which will be the �rst yet a signi�cant

step to improve them in the future. In addition, the improved learning algorithms should be reli-

able, in the sense that it should be resilient to the adversarial noise in the real-world environment.

For instance, a spam �lter should learn the correct decision even though the training data is noisily

labeled. A recommendation system should be able to re�ect the fair rating of a product without

being subverted by the biased rating. Furthermore, the learning algorithms should be scalable

3



1. Introduction

enough to handle real-time data. As an example, an intrusion detection system should be able to

handle the large volume of data in today’s network.

In this dissertation, I investigate both practical and theoretical aspect of adversarial, reliable

and scalable machine learning algorithms for security applications and beyond. I summarize the

following research problems that are covered in my dissertation.

Adversarial machine learning.

• What are the vulnerabilities of current learning algorithms?

• How can adversaries take advantage of them to design a�ack algorithm?

Reliable machine learning.

• How does unfaithful training data a�ects the learning algorithm?

• How can a learner learn from unfaithful training data?

• What are existing and emerging non-security applications where learning techniques

can be used to against adversarial data?

Scalable machine learning.

• How to learn from users’ behavioral data in real-time?

• How to learn from large-scale of system event log�le?

• How to learn in a client-server se�ing while minimizing the communication cost?

�e answers to the above questions are presented in three parts of this dissertations. In each

part, I �rst give a formulation of the problem, review related work, and propose the theory and

methods. Proposedmethods are evaluated on di�erent data sets to demonstrate their e�ectiveness.

In the remainder of this chapter, I further motivate the need for developing reliable and scalable

machine learning algorithms by providing several high-level examples.

1.1. Motivation

Machine learning owes to its success to the enormous amount of data and to novel decision mak-

ing algorithms. Spam �lter, online advertisement, recommendation systems, consumer pro�ling,

and many other Internet-related businesses crucially depend on machine learning algorithms. Un-

fortunately, the ubiquity of the Internet has also stimulated its abuse and the rise of sophisticated

malicious adversaries. In this section, I will present three examples to show that data-driven tech-

nologies are exposed to the adversarial threats.

1.1.1. Spam Filter

Spam �ltering is the most popular and successful example of machine learning application. It deals

with the adversarial inputs directly. Typically, the automatic spam �ltering function consists of an

algorithm used to analyze the textual content of email messages. Figure 1.1 illustrates the general

work�ow of a spam �lter.

4



1.1. Motivation

Figure 1.1.: General work�ow of a spam �lter. It is trained on a set of labeled email messages

(containing both spam and non-spam) to construct a classi�cation boundary. When it

is deployed, the incoming message is �rst represented as a feature vector, and then it

is mapped to the instance space for determining its label.

During the past ��een years, spam �ltering received much a�ention in the scienti�c commu-

nity. But, as spam �lters improved, spammers have also evolved. In the early days, the message

body of spam consisted mostly of plain text without any explicit or malicious a�empts to evade

from detection. Nowadays, spams are carefully disguised to bypass these �lters and specialized

mimicry a�acks are developed. All these e�orts make it di�cult for the �lter to distinguish spam

from legitimate emails. Figure 1.3 and Fig. 1.3 show two examples of the real-world spam.

Figure 1.2.: Two English spams. (top)�e intended title is “this convention in June sincerely wants

your a�ending”. �e spammer replaces some alphabets to unicode symbols which look

similar, or (bottom)�e intended title is “EIT 2014 ISTP Index”.

Figure 1.3.: A Chinese spam in which the spammer deliberately adds some alphabet between Chi-

nese characters.

It can be observed from these two examples, that the spammer was trying to evade detec-

5

figures/spam1-cut.eps
figures/emalsp1.eps
figures/emalsp2.eps
figures/emalsp3.eps


1. Introduction

tion by adding some “noise” to the messages. Using more technical words, the adversary tries to

introduce the feature noise to bypass the �lter. �is type of a�ack is called exploratory a�ack.

Alternatively, the spammer could also imprint the decision by manipulating the training data of

the spam �lter, such as by randomly reporting spam as not-spam, or vice versa. By doing that,

the adversary introduces the label noise to the training data. �is a�ack is called causative a�ack.

Illustrations of these two types of a�ack are depicted in Fig. 1.4 and Fig. 1.5.

One can clearly see that the assumption of faithful data that traditional machine learning

methods based on is no longer valid, which raises the question of whether machine learningmeth-

ods can be deployed at all in adversarial environments.

Figure 1.4.: Exploratory a�ack: introducing feature noise to the original spam. �e �rst two di-

mensions of the feature vector (highlighted in red) are modi�ed by the adversary. As

a consequence, the original spam (red cross) becomes a legit mail (green cross) under

the classi�cation boundary.

Figure 1.5.: Causative a�ack: introducing label noise to the training data. A�er introducing the

label noise, the training data is contaminated. �e classi�er now produces a tainted

decision boundary (in blue dashed line). Given this decision boundary, the original

spam is no longer classi�ed as a spam.

1.1.2. Social Recommendation Service

With recent developments in social networks, social media websites such as Facebook, Google+,

Twi�er, YouTube, Amazon use machine learning methods to recommend products, news, photos

to meet users’ speci�ed interests. To do so, these services usually provide a feedback interface to

allow users to submit ratings, post reviews or comments, favor items. �is interactive interface

is the major target for spammers. Unlike distributing email spams, social spammers try to create

fake reviews, ratings and thus manipulate recommendations and rankings.

6

figures/spam3-cut.eps
figures/spam2-cut.eps


1.1. Motivation

As an example, on a photo sharing website, each photo is rated by several users. �e web-

master can collect those highly ranked photos and display them on the front page of the website.

However, adversaries may give unfaithful ratings, either by deliberately “overestimating” or “un-

derestimating” a photo. Adversaries may also target on the photos from a speci�c photographer

to degrade his/her reputation. �e problem is how to learn a faithful rating (or groundtruth) for

each photo using a set of unfaithful ratings. Figure 1.6 illustrates this problem.

Faithful rating (groundtruth)?

Figure 1.6.: Rating problem in a photo sharing website. Each rating may come from a faithful user

or a social spammer who tries to manipulate the ranking in its favor.

�e naive approaches such as “take the average” and “majority vote” completely ignore the

di�erence on faithfulness between individuals, makes them inappropriate for solving this prob-

lem. Note that, the problem here is more di�cult than detecting spams since the adversaries can

blur their abuse behavior by giving random ratings. Sometimes it is even di�cult for human to

distinguish social spammers from normal users. Consequently, groundtruth data is scarce, making

it an even more challenging problem.

1.1.3. Real-Time Anomaly Detection with Novel Input

�e vast majority of security related applications can be constructed using simple rule-based de-

tection methods. �e advantages of using rule-based methods include the high-e�ciency and

low-cost. �ey are also intuitive for the domain experts to understand and maintain.

However, rules are not powerful enough to handle novel input samples or performnovel tasks.

An example is system call prediction for anomaly detection. A snippet of system call sequence

when running evince (a PDF viewer on Linux) is given below.

11:10:03 fcntl(13, FGETFL) = 0x8002 (flags ORDWR—OLARGEFILE)
11:10:03 fstat(13, –stmode=SIFREG—0644, stsize=0, ...) = 0

11:10:03 mmap(NULL, 4096, PROTREAD—PROTWRITE, MAPPRIVATE
—MAPANONYMOUS,-1,0) = 0x7f2ffa4f7000
11:10:03 lseek(13, 0, SEEKCUR) = 0

7

figures/img-photo.eps
figures/img-users1.eps
figures/img-users1.eps
figures/img-users1.eps


1. Introduction

11:10:03 write(13, ”¡?xml version=“”1.0“” encoding=“”UT”...,

159744) = 159744
11:10:03 write(13, ”/bookmark:group¿“n ¡/bookm”..., 2772) = 2772
11:10:03 fstatfs(13, –ftype=”EXT2SUPERMAGIC”, fbsize=4096,

fblocks=118094150, fbfree=95253262, fbavail=89252750,
ffiles=30007296, fffree=29036163, ffsid=–-298540496,

-77351758, fnamelen=255, ffrsize=4096) = 0

11:10:03 lstat(”/root/.local/share/recently-used.xbel”, –
stmode=SIFREG — 0600,stsize=162516, ...) = 0

11:10:03 fsync(13) = 0

11:10:04 close(13) = 0
11:10:04 munmap(0x7f2ffa4f7000, 4096) = 0
11:10:04 rename(”/root/.local/share/recently-used.xbel.GM3CEX”,

”/root/.local/share /recently-used.xbel”) = 0
11:10:04 chmod(”/root/.local/share/recently-used.xbel”, 0600) = 0
11:10:04 write(10, ”“1“0“0“0“0“0“0“0”, 8) = 8

In the system call prediction task, the goal is to do real-time prediction of the next system

call given all history information. Due to rich but huge amount of information the system events

contained, manually inspecting the sequence and summarizing rules are very time-consuming

and require profound expertise. �us, the data-driven method can play a pivotal role here. By

modeling previous information, machine learning algorithms can provide con�dence intervals for

their predictions.

Another example is user behavior prediction. Figure 1.7 depicts three users’ mouse trajectory

during online banking. �e input data can be seen as a real-time two-dimensional datawith in�nite

length. �e goal is to learn from users’ behavior in order to predict the next mouse movement.

As di�erent users tend to behave di�erently, it may help the security experts to recognize identity

the�. Apparently, rule-based approaches are inappropriate in this problem.

U1 U2 U3

Figure 1.7.: Mouse trajectory from three di�erent users while they are doing online transaction.

Each column represents a user. �e trajectory is illustrated by the color curve with ⋆,
whose head is blue and tail is red.

An important lesson to be learned from these two examples is the necessity for a precise focus

on the scalability of the learning algorithm. In the �rst example, a program could generate thou-

sands of system calls per second. In the second example, an event monitor can capture hundreds of

coordinates of the mouse in a second. �erefore, robust and scalable machine learning algorithms

are required for e�ciently handling large-scale of data in real-time.

8

figures/userbehav.eps


1.2. Dissertation Organization

1.2. Dissertation Organization

�e outline of this dissertation is illustrated in Fig. 1.8. �e remainder of this dissertation is or-

ganized into four parts. In the �rst part, I present the background and fundamental materials for

this work. In Chapter 2, I brie�y introduce preliminary knowledge required for understanding the

dissertation. �en in Chapter 3, I introduce the adversarial learning problem. Two types of a�ack

are highlighted, namely the exploratory and causative a�ack. I will give an simple example of

cheating an linear classi�er using the exploratory a�ack. �e reader will get the basic idea of how

the vulnerability of a machine learning algorithm can be exploited by the adversary.

In the second part, the focus is on analyzing the vulnerabilities of current learning algorithms.

Chapter 4 and Chapter 3 study the exploratory a�ack where an adversary disguises malicious

instances as benign by querying the classi�er. Speci�cally, Chapter 4 elaborates the algorithm

described in Chapter 3 and shows the e�ectiveness of the a�ack algorithm on the multi-class

linear classi�er. Chapter 5 further studies the exploratory a�ack algorithm on a broader family of

convex-inducing classi�ers. Unlike the idea used in Chapter 3 and Chapter 4, I develop a novel

a�ack algorithm based on random walk. Chapter 6 focuses the a�ention on the causative a�ack,

which aims to degrade the performance of the classi�er by manipulating the training data.

In the third part, I investigate the problem of designing reliable machine learning algorithms

against adversarial noise. Chapter 7 describes a probabilistic model for regression when there are

multiple yet some unreliable observers providing continuous responses. �e approach simultane-

ously learns the regression function and the expertise of each observer, allowing one to predict

the ground truth and observers’ responses on the new data. In Chapter 8, I focus on an important

open problem in the content based image retrieval called aesthetics assessment. As image ratings

from online communities have the substantial amount of disagreement among users, learning from

those biased rating is challenge by its nature. I show that this problem can be solved by using the

algorithm described in Chapter 7.

In the fourth part, I explore the large-scale learning problem and its application in security-

sensitive domain. Chapter 9 and Chapter 10 focus on reducing the time-cost of the current learning

algorithms. In Chapter 9, I present an online Gaussian process model for performing real-time re-

gression tasks. �e applicability of the proposed method is demonstrated by the mouse-trajectory

prediction in an Internet banking scenario. Chapter 10 describes an e�cient algorithm for se-

quence prediction. �e algorithm allows one to incorporate the domain knowledge as side infor-

mation to improve prediction, which is shown to be bene�cial in tracing system call sequences.

In Chapter 11, I pose a novel learning problem in client-server se�ings. Unlike the previous chap-

ters, the goal is to reduce the communication-cost. �e problem abstracts a scenario where a

server receives potentially unlimited data from clients in a sequential manner, but only a small

initial fraction of these data are labeled. Because communication bandwidth is restricted, each

client is limited to sending the server only a small (high-priority) fraction of the unlabeled data it

generates, and the server is limited in the amount of prioritization hints it sends back to the client.

�e goal is for the server to learn a good model of all the client data from the labeled and unlabeled

data it receives.

In the �nal chapter, I conclude with a summary of the contributions of this dissertation and

discuss important themes and open questions for the �eld of reliable and scalable learning in

security-sensitive domains. Below, I outline the primary contributions I make in this dissertation.

9



1. Introduction

Figure 1.8.: �e outline of this dissertation. Chapters are driven by a series of questions.

10

figures/outline-cut.eps


1.3. Contributions

1.3. Contributions

In this dissertation, I examine a number of machine learning algorithms, assess their vulnerabili-

ties, demonstrate real-world a�acks against their learning mechanisms, and purpose several novel

algorithms that can perform reliable and scalable learning in the real-world scenarios. Moreover,

I provide the machine learning practitioners with a systematic methodology for developing ro-

bust and e�cient machine learning systems for the security-sensitive applications. Furthermore,

I also examine and answer theoretical questions about the adversarial strategies. �is disserta-

tion aims to bring together the interests from both the computer security and machine learning

communities. �e contributions of this thesis are summarized in the following paragraphs.

Identifying Vulnerabilities of Algorithms and Adversarial Capabilities �e �rst major

contribution of this dissertation is the theoretical analysis of the vulnerabilities. Traditional ma-

chine learning research were originally conceived under the assumption of faithful data and did

not explicitly account for potential data manipulation by adversaries. I raise the a�ention of re-

searcher about the vulnerabilities of some learning algorithms. I identify two types of adversaries’

strategies, namely the exploratory a�ack and causative a�ack. For each type of a�ack, I pro-

vide a theoretical analysis using the knowledge of geometry analysis, optimization theory and

probabilistic theory, and design a�ack algorithms that can be easily implemented in practice. By

demonstrating the devastating impact of the a�ack algorithms on a newsle�er classi�er and a face

recognition system, I underline the importance of reliable learning for the machine learning re-

searchers and security analysts, which plays an essential role in motivating my next contribution.

Presenting Reliable Algorithm Resilient to Adversaries �e second principal contribution

I make in this dissertation is developing novel reliable learning algorithm for the security-sensitive

environment. I formulate the problem of learning from multiple observers, where each instance

is associated with multiple but unreliable labels. �e designed algorithm is resilient to adversarial

contamination in the data. �e application of this method has a wide range of domains, from

crowdsourcing platforms, photo rating websites to sensor networks. �e successful application

of my method on the task of aesthetics score assessment may raise practitioners great interest.

�e message sent from my dissertation is that, instead of using simple heuristics such as “take

the average” and “majority vote”, one can still learn from unreliable sources provided that the

adversarial noise is appropriately modeled.

Presenting Online Algorithms for Large-Scale Data Stream My third contribution is the

design e�cient online learning algorithms for handling large-scale data. My online algorithms

cover both the regression and classi�cation task. Speci�cally, I point out the low e�ciency of the

original Gaussian processmodel and theMarkov sequence predictor. �en, I provide approximated

learning algorithms for improving the e�ciency. I apply these algorithms in real-world security

applications where the speed of prediction is the primary concern, such as Internet banking and

system call tracing.

Establishing Distributed Learning Framework for Client-Server Settings My fourth con-

tribution is proposing a novel learning problem for the client-server design. In particular, I consider

a scenario where a distributed system consists of clients, a server, and a communication network.

11



1. Introduction

�e clients submit partially labeled training data to the server. �e server learns a model from in-

coming data. I call this new se�ing as communication-e�cient learning, which aims to reduce the

communication cost over the network. �is problem abstracts a common scenario where training

data is too big to be stored locally and labeled completely. I show that some particular combination

of techniques outperforms other approaches, and in particular, o�en outperforms (communication

expensive) approaches that send all the data to the server.

12



I confess that I’ve been blind as a mole. But
it’s be�er to learn wisdom late than never
know it at all.

Sherlock Holmes

Part II.

Background

13





Chapter 2
Preliminary Knowledge

I brie�y introduce preliminary knowledge required for understanding this dissertation. Most of

the content in this chapter are basicmachine learning techniques that this dissertation builds upon.

For a more thorough literature of machine learning, the reader should refer to a book such as [13].

2.1. Machine Learning

�e problem of searching for pa�erns in data is a fundamental one and has a long and successful

history. Machine learning is concerned with a vast �eld of techniques that automatically discover

regularities in data. With the use of these regularities, people can take actions such as classifying

the data into di�erent categories for recognizing face or �ltering spam.

For most practical applications, applying a learning algorithm directly to real-world objects is

di�cult because the learner cannot understand the structure of the object. �us, the original input

objects are processed to transform them into some new space of representative observations. �is

processing step is called feature extraction. �e feature of an object represents the learner’s view

of the real world.

Typical application of machine learning is to predict unobserved state of the world based on

its observed state. For example, given an email determine whether it is a spam or not. In this

dissertation, I refer to the identity of the corresponding object as label. Note that the label can

be either discrete or continuous, depending on the context of the application. In face recognition,

the label could be the name of a face, or the gender of a face. It could also be the age of a face. In

particular, if the label is discrete, the task is called classi�cation. If the desired label consists of one

or more continuous variables, then the task is called regression.

When the training data contains feature representations along with their corresponding la-

bels, the problem is known as supervised learning. When the training data does not consist of any

label, the problem is o�en known as unsupervised learning. For example, in the domain of text

mining, the goal is to cluster those web pages that have similar topics. In other problem, the train-

ing data can be partially labeled. �e learner is expected to learn from both labeled and unlabeled

data simultaneously. �is task is known as semi-supervised learning.

Each of the above tasks needs its own analyses and techniques, however, many of the key ideas

are shared among all such problems. In the remaining of this chapter, I will provide a self-contained

introduction to the important topics related to this dissertation, namely supervised learning, semi-

15



2. Preliminary Knowledge

supervised learning, classi�cation, regression, online learning and active learning. I will also cover

some popular techniques in di�erent learning se�ings, such as support vector machines and Gaus-

sian process regression.

2.2. Supervised Learning

Supervised learning is a machine learning task of inferring a function from labeled training data.

�e name invokes the idea of a “supervisor” that instructs the learning system on the labels to

associate with training examples.

Given a set of n training examples of the form {(x1, y1), . . . , (xn, yn)}, where xi is the feature

vector of the ith example and yi is its label. �e supervised learning task is to �nd a function

g : X → Y , where X is the input space and Y is the output space. �e function g is also called a

hypothesis from a hypothesis space H. Given an instance x ∈ X , the classi�cation decision can

thus be made according to the sign of g(x).

In order to measure how well a function �ts the training data, a loss function V : Y ×Y → R

is de�ned. For a training example (xi, yi), the loss of predicting the value ŷ is V (yi, ŷ). Formally,

the goal to �nd a classi�cation hypothesis g ∈ H can be solved by the following optimization

problem

g∗ := arg min
g
γ

n∑

i=1

V (yi, g(xi)) + ‖g‖2H, (2.1)

where γ is a �xed positive parameter for quantifying the trade o�. Remark that the �rst term

in Eq. (2.1) re�ects the empirical loss of g on the training set, and the second term re�ects the

generalization ability of g.

2.2.1. Support Vector Machine

Support vector machine (SVM) is a supervised learningmodel for classi�cation and regression anal-

ysis. SVM has a nonparametric nature, due to the fact that the model is represented by a set of

training examples. �e examples of the separate categories are divided by a clear gap that is as

wide as possible. New examples are then mapped into that same space and predicted to belong to

a category based on which side of the gap they fall on.

Formally, SVM projects the original training instances from the input space X to the feature

space F by Φ : X → F . In general, SVM trained on a data set S has the form

fS(x) :=
n∑

i=1

αiK(x,xi) + b,

where K is a Mercer Kernel which satis�es the property K(x,xi) = Φ(x)⊤Φ(xi) and b ∈ R

denotes the bias. �e classi�er can be also rewri�en as

fS(x) := w⊤x + b,

wherew :=
∑n

i=1 αiΦ(xi) andw ∈ F . �us, the classi�cation boundary of a SVM is a hyperplane

in F with normal vector w. Given the hinge loss function V (y, f(x)) := max(0, 1 − yf(x)),

16



2.2. Supervised Learning

Tikhonov regularization for a SVM is a constrained quadratic programming (QP) problem

min
w,ξ,b

γ
n∑

i=1

ξi +
1

2
‖w‖2 (2.2)

s.t. yi(w
⊤xi + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , n,

where ξi represents the hinge loss of (xi, yi) resulting from the classi�er fS .

2.2.2. Gaussian Process Regression

While SVMs are frequently used in classi�cation tasks, the Gaussian Process is o�en preferable

in regression tasks. As in the supervised learning se�ing, the problem of regression aims to �nd

a function estimation from the given labeled data. It is usually formulated as follows: given a

training set D := {(xn, yn)}Nn=1 of N pairs of input vectors xn and noisy scalar outputs yn, the

goal is to learn a function f transforming an input into the output given by

yn = f(xn) + ǫn,

where ǫn ∼ N (0, σ2) and σ2 is the variance of the noise. A Gaussian process is a collection of

random variables, any �nite number of which have consistent joint Gaussian distribution. Gaus-

sian process regression (GPR) is a Bayesian approach which assumes a GP prior over functions. As

a result the observed outputs behave according to

p(y |x1, . . . ,xN ) = N (0,K),

where y := [y1, . . . , yN ]⊤ is a vector of output values, and K is an N × N covariance matrix;

the entries are given by a covariance function, i.e. Kij := k(xi,xj). In this work, I consider a

frequently used covariance function given by

k(xi,xj) := κ2 exp

(
−1

2
(xi − xj)⊤W(xi − xj)

)
+ σ2δij , (2.3)

where κ denotes the signal variance and W are the widths of the Gaussian kernel. �e last term

represents an additive Gaussian noise, i.e. δij := 1 if i = j, otherwise δij := 0.

In the se�ing of probabilistic regression, the goal is to �nd a predictive distribution of the

output y∗ at a test pointx∗. Under GPR, the predictive distribution of y∗ conditional on the training
set D is also Gaussian

p(y∗ | D,x∗) = N
(
k⊤

∗ K−1y, k∗ − k⊤
∗ K−1k∗

)
, (2.4)

where k∗ := [k(x∗,x1), . . . , k(x∗,xN )]⊤ and k∗ := k(x∗,x∗). One can observe that the training

data is explicitly required at the test time in order to construct the predictive distribution, which

makes GP a non-parametric method. �e hyperparameters are [κ2, σ2, {W}]⊤ , where {W} de-
notes parameters in the width matrix W. �e optimal hyperparameters for a particular data set

can be derived by maximizing the marginal likelihood function using a gradient based optimizer.

For a more detailed background on GP, readers are referred to a textbook [129].

17



2. Preliminary Knowledge

2.3. Online Learning

One of the extensions of traditional supervised learning is online learning. Online learning takes

place in a sequence of consecutive rounds. On each round, the learner is given a question and is

required to provide an answer to this question. �e performance of an online learning algorithm

is measured by the cumulative loss su�ered by the prediction along the run on a sequence of

question-answer pairs. Formally, let (x〈t〉, y〈t〉) be the tth example in a sequence. On round t, the
algorithm �rst predicts the label of x〈t〉 according to its current prediction rule. A�er that, the

true symbol y〈t〉 is revealed and the algorithm su�ers a loss, which re�ects the degree to which its

prediction was wrong. �e algorithm then has the option to modify its prediction rule, with the

explicit goal of improving the accuracy of its predictions for the rounds to come.

2.3.1. Passive-Aggressive Algorithm

Passive-Aggressive algorithm is a family of margin based online learning algorithm for various

prediction tasks. �e algorithm keeps updating the weight vector w and changes the classi�cation

hypothesis over time. Consider the binary classi�cation problem as an example. �eweight vector

w〈1〉 is initialized to (0, . . . , 0). On round t, the algorithm sets the new weight vector w〈t+1〉 to be
the solution to the following constrained optimization problem,

wt+1 = arg min
w∈Rn

1

2
‖w−wt‖2,

s.t. V (w; (x〈t〉, y〈t〉)) = 0,

where the loss V is de�ned by the following hinge-loss function,

V (y〈t〉,w⊤x〈t〉) := max(0, 1 − y〈t〉w⊤x〈t〉).

�e resulting algorithm is passive whenever the hinge-loss is zero. In contrast, on those rounds

where the loss is positive, the algorithm aggressively forces w〈t+1〉 to satisfy the zero-loss con-

straint.

2.4. Semi-Supervised Learning

Semi-supervised learning studies learning from both labeled and unlabeled examples. �is learn-

ing se�ing focuses the real-world problems, where data is abundant the cost to label them is ex-

pensive. Because semi-supervised learning requires less human e�ort, it is of great interest both

in theory and in practice. Some o�en-used methods include: EM with generative mixture models,

self-training, co-training, transductive support vector machines and graph-based methods.

2.5. Active Learning

Active learning is a special case of semi-supervisedmachine learning inwhich a learning algorithm

is able to interactively query an oracle to obtain the desired outputs at new data points. �ere

are situations in which unlabeled data is abundant but manually labeling is expensive. In such a

scenario, learning algorithms can actively query the oracle for labels. By carefully choosing the

18



2.5. Active Learning

examples, the number of examples to learn a concept can o�en be much lower than the number

required in traditional supervised learning.

Formally, let T be the total set of all data under consideration. During each iteration i, the set
T is broken up into three subsets:

• T
〈i〉
k : Data points where the label is known.

• T
〈i〉
u : Data points where the label is unknown.

• T
〈i〉
c : A subset of T

〈i〉
u that is chosen to be labeled.

Most of the research in active learning involves the method to choose the optimal data points for

T
〈i〉
c .

I have thus far brie�y reviewed the basic concepts of machine learning. �ese concepts will

be mentioned, used, extended and combined in my dissertation. For instance, in Chapter 7 I study

the supervised learning framework and design an a�ack algorithm against SVM. In Chapter 9,

Gaussian process regression is extended to the online se�ing for predicting users’ behavior in real-

time. In Chapter 11, online learning, active learning and semi-supervised learning are combined

together for solving a novel distributed learning problem.

19



2. Preliminary Knowledge

20



Chapter 3
Adversarial Machine Learning

Having reviewed some basic concepts of machine learning, I now introduce the problem of adver-

sarial learning in this chapter. �e problem of adversarial learning focuses on the vulnerability of

machine learning algorithms in adversarial environments.

In general, the a�ack of a learning algorithm can be categorized into the following types by

the adversarial purpose.

Exploratory a�ack �e adversary discovers blind spots for malicious instances by querying the

classi�er.

Causative a�ack �e adversary subverts the learning process of the classi�er by manipulating

the training data.

Figure 3.1 illustrates these two types of a�ack. For example, in an exploratory a�ack, a spam-

mer can disguise a spam by adding unrelated words to evade the detection [107, 108, 173]. In a

causative a�ack, the adversary �ags every legitimate mail as spam to pollute the training data.

Consequently, the spam �lter trained on such data is likely to cause a false alarm and block all

legitimate mails [120, 116]. Chapter 1 already showed some examples of adversarial a�acks in

real-world.

As a start, I will describe a simple exploratory a�ack problem on a linear classi�er. �e idea

is to show the reader the idea of adversarial learning, and how the vulnerability (or “blind spots”)

of a learning algorithm can be used to a�ack itself. A more comprehensive study of the causative

a�ack is presented in Chapter 6.

3.1. Problem De�nition

De�ne x ∈ X as an instance, where X is the instance space. x is represented by a vector variable

with n dimensions, namely x = (x1, . . . , xn). Denote xi the i
th feature of the instance x. Each

instance can belong to one of two classes: positive (malicious) and negative (innocent), which are

denoted by X+ and X− respectively. Let the training set S ⊂ X and the test set T ⊂ X consist

of both positive and negative instances.

I call a function f : X → {−1, 1} as a Boolean classi�er, or a classi�er for short. I refer to X+

for which f(x) = 1 and X− for which f(x) = −1. �e goal of a classi�er is to learn from S a

21



3. Adversarial Machine Learning

Figure 3.1.: Di�erent types of adversarial a�ack on learning algorithms.

function f(x) that can correctly predict new instances from T . Many successful security-sensitive

applications rely on a well-performed classi�er.

An adversary a�empts to sendmalicious instances to the systemwhile bypassing the classi�er.

For instance, a spammer can add “good” words or sentences to cheat the spam �lter by decreasing

the likelihood of detection. For adversary, some modi�cations to the spam are more cost-e�ective

than others. I explain such di�erences on utility by an adversarial cost function a(x) → R
+. It

is assumed that adversaries have a base instance xa for which f(xa) = 1 on hand. To evade

detection, the adversary is interested in �nding an instance x∗ that most similar to xa but will be

classi�ed as X−. To measure the similarity between two instances, I de�ne the adversarial cost

function as

a(x) =
n∑

i=1

ai|xi − xa
i |.

Note that, a(x) is domain-dependent function. �e positive scalars ai represent the relative cost

of changing each feature, allowing that some features may be more important than others (from

adversaries’ perspective of view)1. An illustrative example is depicted in Figure 3.2.

Finally, the task of �nding x∗ is formulated as

x∗ = arg min
x:f(x)=−1

a(x).

In other words, the adversary searches for x∗ by repetitively sending instances to the classi�er f .
For each instance, the adversary can observe its classi�cation label.

1�e positive scalar ai is under an assumption that x
a is the best instance as far as the adversary knows. �at is, any

changes to x
a costs an utility loss.

22

figures/intro-attack-cut.eps


3.2. A Case Study: Evading a Linear Classi�er

x1

x
2

x
a

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

x1
x

2

x
a

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

x1

x
2

x
a

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

Figure 3.2.: Contour plots of linear cost function a(x) with di�erent value of ai and xa = (0, 0)
(le�) an uniform linear cost function |x1|+ |x2|, where both a1 and a2 are one. (mid-

dle) 5|x1| + |x2|, where a1 = 5 and a2 = 1. (right) |x1| + 5|x2|, where a1 = 1 and

a2 = 5.

3.2. A Case Study: Evading a Linear Classi�er

Linear classi�cation has become one of the most promising learning techniques for large sparse

data with a huge number of instances and features. A linear classi�er generates a weight vector

w as the model. �e decision function is

f(x) = sgn(wT x).

In this section, I shall demonstrate an algorithm for evading a linear classi�er using the adversarial

cost function described in Section 3.1.

Considering the case in which all features are continuous. Intuitively, the adversary would

like to search x∗ in a direction such that he/she can quickly reach the boundary (large |wi|) with
minimum cost (small ai). �us, de�ne a feature g with highest weight-to-cost ratio as

g = arg max
i∈{1,··· ,n}

|wi|
ai

. (3.1)

It can be shown that, for a linear classi�er with continuous feature space , x∗ can be found by

changing only feature g in xa. Let ĝ be the unit vector along dimension g, the instance of minimal

adversarial cost is given by

x∗ = xa + tĝ, (3.2)

where t is the step length. Figure 3.3 shows two illustrative examples.

3.2.1. IMAC Algorithm

I have shown that x∗ can be easily found by changing the value of xg . However, in order to

determine g one needs to �rst approximate the value of w. Authors in [107] proposed an e�cient

algorithm for determining g and �nding Instance with Minimum Adversarial Cost (IMAC) x∗.
Speci�cally, given a positive instance x+ and a negative instance x−, the complete process is

stated as follows:

23

figures/linearcost1.eps
figures/linearcost2.eps
figures/linearcost3.eps


3. Adversarial Machine Learning

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

x1

x
2

x
a

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

x1
x

2

x
a

Figure 3.3.: Searching x∗ (represented by a star) in a 2-dimensional space with a linear decision

boundary. �e shaded area represents the positive response of the classi�er. �e arrow

follows the optimal searching direction. (le�)�e optimal searching direction is along

x2. (right)�e optimal searching direction is along x1.

1. Finding a pair of instances s+, s− such that ∃i ∀j 6= i, s+
j = s−

j using x+ and x−.

2. Assessing the sign of wi and le�ing wi = sgn(wi).

3. Searching a negative instance close to the linear decision boundary.

4. Searching in every other dimensions j 6= i and computing the relative value of weight wj .

5. Computing g by (3.1) and �nding x∗ by (3.2).

To intuitively demonstrate each step of the algorithm, an illustrative example on a 2-dimensional

space is depicted in Fig. 3.4. For a linear classi�er with continuous features and a linear cost func-

tion, this algorithm requires atmost polynomiallymany queries for each step [107]. With a learned

weight on hand, the adversary is now able to compute g by (3.1) and �nd optimal x∗ by (3.2) using
simple line search techniques.

Note that the algorithm can be easily scale on high-dimensional data.

Alternatively, one may consider to train an approximated linear classi�er with queried in-

stances and their corresponding returned labels. However, this approach does not consider the

fact that, the data space is biased in practice. �at is, if one just pick random points in the space,

then all of them might end up being positive, or all of them might end up being negative. In this

case, the resulting queried instances would be fairly uninformative.

3.2.2. Experiments

I implemented IMAC algorithm and evaluated its performance on a) the number of queries for

approximating the weight; b) the adversarial cost of x∗ given xa. �e number of queries for �nding

24

figures/searchdir1.eps
figures/searchdir2.eps


3.2. A Case Study: Evading a Linear Classi�er

-5 0 5
-5
-4
-3
-2
-1

0
1
2
3
4
5

x1

x
2

x
+

x
−

(a) Initializing x
+ and x

−.

-5 0 5
-5
-4
-3
-2
-1

0
1
2
3
4
5

x1
x

2

x
−

s
+

s
−

(b) Searching s
+, s

− to assess the sign

of w1.

-5 0 5
-5
-4
-3
-2
-1

0
1
2
3
4
5

x1

x
2

x
−

s
+

s
−

(c) Searching a negative instance close

to the boundary.

Figure 3.4.: Algorithm proposed in [107] for approximating w. (a) Assume the adversary has a

positive instance x+ (denoted by a triangle) and a negative instance (denoted by a

square) on hand, but has no idea about the linear decision boundary. �e shaded area

represents the positive response of a linear classi�er. (b) �e algorithm starts with

x+ and changes feature values one at a time to match those of x−. At some point, the

class of instancemust change. �e previous value and the current value of intermediate

instance are set to s− and s+, respectively. �is step requires at most n test queries.

(c) As ∀j 6= i, s+
j = s−

j , a binary search along the dimension i will �nd a negative

instance close to the decision boundary. Let ǫ be an approximation threshold, this

step requiresO(log(1/ǫ+ |s+
i − s−

i |)) test queries. �e do�ed line represents the line

search operation. (d) �e algorithm sets wi to 1 or −1, and increases or decreases

xi by 1 until a negative instance is found. (e) �e algorithm proceeds by searching

in every other directions j 6= i using a line search. �is consists of increasing or

decreasing each xj exponentially until the class of x changes, and then bounding its

exact valuewith a binary search. (f) Finally, the approximatedw can be computedwith

the tangent rule. �e dashed line shows the learned weight, which is almost identical

to the ground-truth. �e adversary is now able to compute g by (3.1) and �nd optimal

x∗ by using (3.2).

xa was not in the evaluation as it depends on the data. �e target was a linear classi�er with the

form of f(x) = wx− T , where w and T is randomly generated. Note that the adversary did not

have access to the original training data, but must come up with all of the queries itself. �us, only

a positive and a negative instance were used as the input of IMAC. To keep the setup as realistic

as possible, I set the initial guess of feature set for adversary 10 times larger than the classi�er

virtually used. �e size of feature set varied from 1000 to 10000. Each experiment was repeated

for 10 times. Figure 3.5 shows the experimental result.

It can be observed from Fig. 3.5 that the performance of IMAC algorithm is stable as the num-

ber of features increasing. �e algorithm can e�ciently �nd low cost instances. Not surprisingly,

fewer queries were required to sort through a smaller feature sets. Note, that in practice the ad-

versary needs to keep down not only the number of total queries but also the number of positive

queries. A salient rising of positive queries increases the likelihood of being detected.

To compare with the naive “reverse engineering” approach, I also train a perceptron linear

25

figures/alglinear1.eps
figures/alglinear2.eps
figures/alglinear3.eps


3. Adversarial Machine Learning

-5 0 5
-5
-4
-3
-2
-1

0
1
2
3
4
5

x1

x
2

x
−

s
+

s
−

(a) Moving one unit away from the

boundary.

-5 0 5
-5
-4
-3
-2
-1

0
1
2
3
4
5

x1

x
2

x
−

s
+

s
−

(b) Searching in another dimension.

-5 0 5
-5
-4
-3
-2
-1

0
1
2
3
4
5

x1

x
2

x
−

s
+

s
−

(c) Approximating w via tangent rule.

Figure 3.4. (cont.)

1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80

A
dv

er
sa

ria
l c

os
t

Number of features (× 103)
(d) Adversarial cost of x

a.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Number of features (× 103)

N
um

be
r 

of
 q

ue
rie

s 
(×

 1
04 )

 

 
Positive
Negative

(e) Number of queries used for �nding x
a.

Figure 3.5.: Result of IMAC algorithm on a random generated linear classi�er. (a) Adversarial cost

measure the distance between x∗ and xa. Lower cost is be�er. (b) �e number of

queries used for determining theweights. Bars shadedwith black indicates the number

of positive queries. In practice, it is important for an adversary to keep not only the

number of total queries down, but also the number of positive queries.

classi�er by randomly picking data points in space. �e corresponding class labels are determined

by querying f(x). �e training data also includes at least one positive instance: xa. Unfortu-

nately, as the dimension of feature space increasing, it become more di�cult for the perceptron to

approximate the target classi�er. In fact, when the dimension of the feature space is greater than

500, the perceptron is unable to �nd any optimal instance, due to the fact that most of training

instances fall into the negative class.

26

figures/alglinear4.eps
figures/alglinear5.eps
figures/alglinear6.eps
figures/resultadcost.eps
figures/resultadnumq.eps


3.2. A Case Study: Evading a Linear Classi�er

�ough IMAC algorithm performs well on evading the linear classi�er, it is not applicable to

classi�ers with a nonlinear decision boundary. An illustrative example of a common failure with

nonlinear decision boundary is illustrated in Figure 3.6.

-5 0 5
-5
-4
-3
-2
-1

0
1
2
3
4
5

x1

x
2

x
−

s
+

s
−

(a) Positive convexity.

-5 0 5
-5
-4
-3
-2
-1

0
1
2
3
4
5

x1

x
2

x
+

s
+

s
−

(b) Negative convexity.

Figure 3.6.: Examples of IMAC algorithm on classi�ers with nonlinear decision boundary. �e

shaded area denotes the positive response of classi�er. (a) When the positive class is

a convex, one can still �nd the optimal instance by changing one feature only. For

instance, changing x1 will lead to the optimum in this example. (b)When the negative

class is convex, IMAC algorithm is not able to search the optimal cost instance. �e

approximate weights suggest that the optimal searching direction is along x2. Unfor-

tunately, searching along x1 and x2 are not optimal in this example.

In this chapter, readers have seen an example of adversarial learning. In particular, I explained

a simple algorithm for conducting exploratory a�ack on linear classi�ers. �e following two chap-

ters will provide a more comprehensive analysis of the exploratory a�ack problems. In particular,

I will �rst extend the IMAC algorithm to a�ack multi-class classi�ers in Chapter 4, and then study

the a�acking algorithm for more general convex-inducing classi�ers in Chapter 5.

27

figures/linearfailconvex1.eps
figures/linearfailconvex.eps


3. Adversarial Machine Learning

28



In the practice of tolerance, one’s enemy is
the best teacher.

Dalai Lama

Part III.

Venerability of Learning Algorithms

29





Chapter 4
Exploratory A�ack of Multi-Class Linear
Classi�ers via Line Search

In this chapter, I continue the investigation of the exploratory a�ack. Speci�cally, I generalize

the IMAC algorithm in Chapter 3 to the family of multi-class linear classi�ers; e.g. linear support

vector machines [35, 58, 94]. Multi-class linear classi�ers have become one of the most promising

learning techniques for large sparse data with a huge number of instances and features. I propose

an adversarial query algorithm for searching minimal-cost disguised instances. I believe that re-

vealing a scar on the multi-class classi�er is the only way to �x it in the future. �e contributions

of this chapter are:

1. I generalize the problem of exploratory a�ack to the multi-class linear classi�er, where the

instance space is divided into multiple convex sets.

2. I prove that e�ective exploratory a�ack based on the linear probing is feasible under certain

assumption of the adversarial cost. A description of the vulnerability of multi-class linear

classi�ers is presented.

3. I propose a query algorithm for disguising an adversarial instance as any other classes with

minimal cost. �e experiment on two real-world data set shows the e�ectiveness of the

proposed algorithm.

�is chapter is organized as follows. I pose the near-optimal exploratory problem for the

multi-class linear classi�er in Section 4.1. �en I describe theorems and algorithm for e�ectively

searching evaded instances in Section 4.2 and Section 4.3, respectively. �e experiment results on

two real-world data sets are presented in Section 4.4. Section 4.5 concludes.

4.1. Problem Formulation

Let X = {(x1, . . . , xD) ∈ R
D |L ≤ xd ≤ U for all d} be the feature space. Each component of an

instance x ∈ X is a feature bounded by L and U which I denote as xd. A basis vector of the form

(0, . . . , 0, 1, 0, . . . , 0) with a 1 only at the dth feature terms δd. I assume that the feature space

representation is known to the adversary, thus the adversary can query any point in X .

31



4. Exploratory A�ack of Multi-Class Linear Classi�ers via Line Search

4.1.1. Multi-Class Linear Classi�er

�e target classi�er f is a mapping from feature space X to its response space K; i.e. f : X → K.
I restrict the a�ention to multi-class linear classi�ers and use K = {1, . . . ,K},K ≥ 2 so that

f(x) = argmax
k

wkxT + bk, (4.1)

where k = 1, . . . ,K and wk ∈ R
D, bk ∈ R. Decision boundaries between class k and other

classes are characterized by wk and bk . I assume that w1, . . . ,wK are linearly independent. �e

classi�er f partitions X intoK sets; i.e. Xk = {x ∈ X | f(x) = k}.

4.1.2. Attack of Adversary

As a motivating example, consider a text classi�er that categorizes incoming emails into di�erent

topics; e.g. sports, politics, lifestyle, spam, etc. An advertiser of pharmacological products is more

likely to disguise the spam as lifestyle rather than politics in order to a�ract potential consumers

while remaining inconspicuous.

I assume the adversary’s a�ack will be against a �xed f so the learning method of decision

boundaries and the training data used to establish the classi�er are irrelevant. �e adversary does

not know any parameter of f but can observe f(x) for any x by issuing a membership query. In

fact, there are a variety of domain speci�c mechanisms that an adversary can employ to observe

the classi�er’s response to a query. Moreover, the adversary is only aware of an adversarial in-

stance ym in some class, and has no information about instances in other classes. �is di�ers

from previous work which require at least one instance in each binary class [107, 117]. In practice,

ym can be seen as the most desired instance of adversary; e.g. the original spam. �e adversary

a�empts to disguise ym so that it can be recognized as other classes.

4.1.3. Adversarial Cost

I assume that the adversary has the access to an adversarial cost function a(x,y) : X ×X → R0+.

An adversarial cost function measures the distance between two instances x,y in X from the

adversary’s prospective. I focus on a linear cost function which measures the weighted ℓ1 distance
so that

a(x,y) =
D∑

d=1

ed|xd − yd|, (4.2)

where 0 < ed <∞ represents the cost coe�cient of the adversary associates with the dth feature,

allowing that some features may be more important than others. In particular, given the adversar-

ial instance ym, function a(x,ym) measures di�erent costs of using some instances as compared

to others. Moreover, I use B(y, C) = {x ∈ X | a(x,y) ≤ C} to denote the cost ball centered at y

with cost no more than C .

In generalizing work [107], I alter the de�nition of minimal adversarial cost (MAC). Given a

�xed classi�er f and an adversarial cost function a I de�ne the MAC of class k with respect to an

instance y to be the value

MAC(k,y) = min
x:x∈Xk

a(x,y), k 6= f(y).

32



4.2. �eory of Exploratory A�ack

4.1.4. Disguised Instances

I now introduce some instances with special adversarial cost that the adversary is interested in.

First of all, instances with cost of MAC(k,y) are termed instances of minimal adversarial cost

(IMAC), which is formally de�ned as

IMAC(k,y) = {x ∈ Xk | a(x,y) = MAC(k,y), k 6= f(y)} .

Ideally, the adversary a�empts to �nd IMAC(k,xA) for all k 6= f(ym). �e most naive way for an

adversary to �nd the IMAC is performing a brute-force search. �at is, the adversary randomly

samples points in X and updates the best found instance repetitively. To formulate this idea, I

further extend the de�nition of IMAC. Assume X̃ is the set of adversary’s sampled or observed

instances so far and X̃ ⊂ X , I de�ne instance of sample minimal adversarial cost (ISMAC) of class

k with respect to an instance y to be the value

ISMAC(k,y) = argmin
x:x∈X̃ ∩Xk

a(x,y), k 6= f(y).

Note, that in practice the exact decision boundary is unknown to the adversary, thus �nding

exact value of IMAC becomes an infeasible task. Nonetheless, it is still tractable to approximate

IMAC by �nding ǫ-IMAC, which is de�ned as follows

ǫ-IMAC(k,y) = {x ∈ Xk | a(x,y) ≤ (1 + ǫ) ·MAC(k,y), k 6= f(y), ǫ > 0} .

�at is, every instance in ǫ-IMAC(k,y) has the adversarial cost no more than a factor of (1 + ǫ)
of the MAC(k,y). �e goal of the adversary now becomes �nding ǫ-IMAC(k,ym) for all classes
k 6= f(ym) while keeping ǫ as small as possible.

4.2. �eory of Exploratory Attack

I describe the exploratory a�ack from a theoretical point of view. Speci�cally, by describing the

feature space as a set of convex polytopes, I show that IMAC must be a�ained on the convex sur-

face. Under a reasonable assumption of adversarial cost function, e�ective exploratory a�ack can

be performed by linear probing. Finally, I derive bounds for quantitatively studying the vulnera-

bility of multi-class linear classi�ers to linear probing.

Lemma 1. Let Xk = {x ∈ X | f(x) = k}, where the classi�er f is de�ned in Eq. (4.1). �en Xk is

a closed convex polytope.

Proof. Let x be a point in Xk. As x ∈ X it follows that

xT ≥ L · 1D and − xT ≥ U · 1D, (4.3)

where 1D is aD-dimensional unit vector (1, . . . , 1). Moreover, since f(x) = k, it follows that




wk −w1
...

wk −wK


xT ≥



b1 − bk

...

bK − bk


 . (4.4)

33



4. Exploratory A�ack of Multi-Class Linear Classi�ers via Line Search

�us, the foregoing linear inequalities de�ne an intersection of at most (K+ 2D−1) half-spaces.
Denote H+

i = {x ∈ X | w̃ix
T ≥ b̃i}, where 1 ≤ i ≤ (K + 2D − 1). I have Xk =

⋂
iH

+
i , which

establishes a half-space representation of convex polytope [76, 133].

Lemma 1 indicates that the classi�er f decomposes RD into K convex polytopes. Following

the notations and formulations introduced in [76], I represent a hyperplane Hi as the boundary

of a half-space ∂H+
i ; i.e. Hi = ∂H+

i = {x ∈ X | w̃ix
T = b̃i}. Let Xk =

⋂Pk

p=1H
+
p , where

{H+
1 , . . . ,H

+
Pk
} is irredundant1 to Xk. Let Hk = {H+

1 , . . . ,H
+
Pk
} be an irredundant set that

de�nesXk, thenXk ⊂ intX provided that none half-space inHk is de�ned by Eq. (4.3). Moreover,

I de�ne the pth facet of Xk as Fkp = Hp ∩ Xk, and the convex surface of Xk as ∂Xk =
⋃Pk

p=1 Fkp.

�eorem 4.1. Let y be an instance in X and k ∈ K \ f(y). Let x be an instance in IMAC(k,y) as
de�ned in Section 4.1.3. �en x must be a�ained on the convex surface ∂Xk .

Proof. I �rst show the existence of IMAC(k,y). By Lemma 1, Xk de�nes a feasible region. �us

minimizing a(x,y) on Xk is a solvable problem. Secondly, Xk is bounded in each direction of the

gradient of a(x,y), which implies that IMAC(k,y) exists.
I now prove that x must lie on ∂Xk by contrapositive. Assume that x is not on ∂Xk thus is an

interior point; i.e. x ∈ intXk. Let B(y, C) denote the ball centered at y with cost no more than

a(x,y). Due to the convexity of Xk and B(y, C), yielding intXk ∩ intB(y, C) 6= ∅. �erefore,

there exists at least one instance in Xk with cost less than a(x,y), which implies that x is not

IMAC(k,y).

�eorem 4.1 restricts the searching of IMAC to the convex surface. In particular, when cost

coe�cients are equal, e.g. e1 = · · · = eD , I can show that searching in all axis-aligned directions

gives at least one IMAC.

�eorem 4.2. Let y be an instance in X such that Xf(y) ⊂ intX . Let P be the number of facets

of Xf(y) and Fp be the pth facet, where p = {1, . . . , P}. Let Gd = {y + θδd | θ ∈ R}, where
d ∈ {1, . . . ,D}. Let Q = {Gd ∩ Fp | d = 1, . . . ,D, p = 1, . . . , P}, in which each element di�ers

from y on only one dimension. If the adversarial cost function de�ned in Eq. (4.2) has equal cost

coe�cients, then there exists at least one x ∈ Q such that x is IMAC(f(x),y).

Proof. Let Hp be the hyperplane de�ning the pth facet Fp. Consider all the points of intersection

of the lines Gd with the hyperplanes Hp; i.e. I = {Gd ∩Hp | d = 1, . . . ,D, p = 1, . . . , P}. Let
x = argminx∈I a(x,y). �en x is the desired instance.

I prove that x ∈ Q by contrapositive. Suppose x /∈ Q , due to the convexity of Xf(y), the line

segment [x,y] intersects ∂Xf(y) at a point on another facet. Denote this point as z, then z di�ers

from y on only one dimension and a(z,y) < a(x,y).
Next, I prove x is IMAC(f(x),y) by contrapositive. Let B(y, C) denote the regular cost ball

centered at y with cost no more than a(x,y). �at is, each vertex of the cost ball has the same

distance of C with y. Suppose x is not IMAC(f(x),y), then there exists z ∈ Xf(x) ∩ intB(y, C).
By �eorem 4.1, z and x must lie on the same facet, which is de�ned by a hyperplaneH∗. LetQ∗

be intersection points of H∗ with lines G1, . . . , GD ; i.e. Q∗ = {Gd ∩ H∗ | d = 1, . . . ,D}. �en

there exists at least one point v ∈ Q∗ such that v ∈ intB(y, C). Due to the regularity of B(y, C),
I have a(v,y) < a(x,y).

1Let C be a convex polytope such that C =
⋂n

i=1
H+

i . �e family {H+

1 , . . . , H+
n } is called irredundant to C provided

that
⋂

1≤j≤n,j 6=i
H+

j 6= C for each j = 1, . . . , n.

34



4.2. �eory of Exploratory A�ack

I now de�ne special convex sets for approximating ǫ-IMAC near the convex surface. Given

ǫ > 0, the interior parallel body ofXk isP−ǫ(k) = {x ∈ Xk | B(x, ǫ) ⊆ Xk} and the corresponding
exterior parallel body is de�ned as P+ǫ(k) =

⋃
x∈Xk

B(x, ǫ). Moreover, the interior margin of Xk

isM−ǫ(k) = Xk \ P−ǫ(k) and the corresponding exterior margin isM+ǫ(k) = P+ǫ(k) \ Xk. By

relaxing the searching scope from the convex surface to a margin in the distance ǫ, �eorem 4.1

and �eorem 4.2 immediately imply the following results.

Corollary 1. Let y be an instance in X and k ∈ K \ f(y). For all ǫ > 0 such thatM−ǫ(k) 6= ∅,
ǫ-IMAC(k,y) ⊆M−ǫ(k).

Corollary 2. Let y be an instance in X and ǫ be a positive number such that P+ǫ(f(y)) ⊂ intX .
Let P be the number of facets of P+ǫ(f(y)) and Fp be the pth facet, where p = {1, . . . , P}. Let
Gd = {y + θδd | θ ∈ R}, where d ∈ {1, . . . ,D}. Let Q = {Gd ∩ Fp | d = 1, . . . ,D, p =
1, . . . , P}, in which each element di�ers from y on only one dimension. If adversarial cost function

de�ned in Eq. (4.2) has equal cost coe�cients, then there exists at least one x ∈ Q such that x is in

ǫ-IMAC(f(x),y).

Corollary 1 and Corollary 2 point out an e�cient way of approximating ǫ-IMAC with linear

probing, which forms the backbone of our proposed algorithm in Section 4.3.

Finally, I consider the vulnerability of a multi-class linear classi�er to linear probing. �e

problem arises of detecting convex polytopes inX with a random line. As one can easily scale any

hypercube to a unit hypercube with edge length 1, the proof is restricted to the unit hypercube in
R

D .

De�nition 1 (Vulnerability to Linear Probing). Let X = [0, 1]D , and X1, . . . ,XK be the sets that

tile X according to the classi�er f : X → {1, . . . ,K}, with K ≥ 2. Let G be a random line in RD

that intersects X . Denote Z the number of sets intersect G, the vulnerability of classi�er f to linear

probing is measured by the expectation of Z .

When EZ is small, a random line intersects small number of decision regions and not much

information is leaked to the adversary. �us, a robust multi-class classi�er that resists linear prob-

ing should have a small value of EZ .

�eorem 4.3. Let f be the multi-class linear classi�er de�ned in Eq. (4.1), then the expectation of Z

is bounded by 1 < EZ < 1 +
√

2(K−1)
2D

.

Proof. By Lemma 1, I have K convex polytopes X1, . . . ,XK . Let F be the union of all facets of

polytopes. Observe that each time the line touches a convex polytope, it only touches its surface

twice. �e exit point is the entrance point for a new polytope, except at the end-point. �us, the

variable that we are interested in can be represented as

Z = |F ∩G|,

where | · | represents the cardinality of a set. Obviously, EZ is bounded by 1 < EZ < K . I will

give a tighter bound in the sequel.

Let G be the class of all lines of RD , and µ be the measure of G. Following the notation

introduced in [135], I denote the measure of G that meet a �xed bounded convex set C as µ(G;G ∩
C 6= ∅). Considering an independent Poisson point process on G intensity measure µ, let N be the

number of lines intersecting X . I emphasize that N is a �nite number, so that one can label them

35



4. Exploratory A�ack of Multi-Class Linear Classi�ers via Line Search

independently G1, . . . , GN . It follows that Gn, n = 1, . . . , N are i.i.d.. Given a �xed classi�er f ,
yielding

E

N∑

n=1

|F ∩Gn| = E

N∑

n=1

[
P (N = n)

n∑

i=1

|F ∩Gi|
]

=
N∑

n=1

[P (N = n) · n · E|F ∩G1|]

= EN · (EZ). (4.5)

Remark that G1, . . . , GN follow the Possion point process, yielding EN = µ(G;G ∩ X 6= ∅).
�erefore I can rewrite Eq. (4.5) as,

EZ =
E
∑N

n=1 |F ∩Gn|
µ(G;G ∩ X 6= ∅) . (4.6)

Next, I compute E
∑N

n=1 |F ∩Gn|. LetM = |F|. Due to the convexity of Xk, any given line

can hit a facet no more than once. �erefore, I have

E

N∑

n=1

|F ∩Gn| = E

N∑

n=1

M∑

m=1

|Fm ∩Gn|

=
M∑

m=1

E

∣∣∣
{
n ∈ {1, . . . , N}|Fm ∩Gn 6= ∅

}∣∣∣

=
M∑

m=1

µ(G;G ∩ Fm 6= ∅). (4.7)

By substituting Eq. (4.7) into Eq. (4.6), it obtains

EZ =

∑M
m=1 µ(G;G ∩ Fm 6= ∅)
µ(G;G ∩ X 6= ∅) . (4.8)

Assume that µ is translation invariant, by Cauchy-Cro�on formula I can rewrite Eq. (4.8) as

EZ =

∑M
m=1 A(Fm)

A(X )
, (4.9)

where A(·) denotes the surface area2. Note, that the numerator of Eq. (4.9) depends on the shape

of each polytope and relates to the training method of classi�er. �us, it is di�cult to compute

the exact value of EZ . Nonetheless, I can bound the expectation by using the fact A(X ) <∑M
m=1 A(Fm) < A(X ) +

√
2(K − 1) (see [5] for the upper bound). Remark that the surface

area A(X ) of a unit hypercube is 2D. I yield

1 < EZ < 1 +

√
2(K − 1)

2D
,

2�e surface area in R
D is the (D − 1)-dimensional Lebesgue measure.

36



4.3. Algorithm for Approximating ǫ-IMAC

which concludes the proof.

I remark that�eorem 4.3 implies a way to construct a robust classi�er that resists exploratory

algorithm based on linear probing, e.g. by jointly minimizing Eq. (4.9) and the error function in

the training procedure.

4.3. Algorithm for Approximating ǫ-IMAC

Based on theoretical results, I present an algorithm for deceiving the multi-class linear classi�er

by disguising the adversarial instance ym as other classes with approximately minimal cost, while

issuing polynomially many queries in: the number of features, the range of feature, the number

of classes and the number of iterations.

An outline of the searching approach is presented in Figs. 4.1 to 4.3. I use a K × D matrix

ǫ for storing ISMAC of K classes and an array C of length K for the corresponding adversarial

cost of these instances. �e scalar valueW represents the maximal cost of all optimum instances.

Additionally, it is required aK×I matrixT for storing the searching path of optimum instances in

each iteration. �e kth row of matrix ǫ is denoted as ǫ[k, :]. I consider ǫ, T,C,W as global variables

so they are accessible in every scope. A�er initializing variables, the main routine MLCEvading

(Fig. 4.1 line 4) �rst invokes MDSearch (Fig. 4.2) to search instances that is close to the starting

point ym in all classes and saves them to ǫ. �en it repetitively selects instances from ǫ as new
starting points and searches instances with lower adversarial cost (Fig. 4.3 line 6–7). �e whole

procedure iterates I times. Finally, it obtains ǫ[k, :] as the approximation of ǫ-IMAC(k,ym) .

I begin by describing RBSearch in Fig. 4.3, a subroutine for searching instances near de-

cision boundaries along dimension d. Essentially, given an instance x, an upper bound u and a

lower bound l, I perform a recursive binary search on the line segment {x + θδd | l ≤ θ ≤ u}
through x. �e e�ectiveness of this recursive algorithm relies on the fact that it is impossible to

have xu and xl in the same class while xm is in another class. In particular, if the line segment

meets an exterior marginM+ǫ(k) and ǫ-IMAC(k,x) is the intersection, then RBSearch �nds

an ǫ-IMAC. Otherwise, when the found instance y yields lower adversarial cost than instance in ǫ
does, Figure 4.4 is invoked to update ǫ. �e time complexity of RBSearch isO(u−l

ǫ
).

I next describe Fig. 4.2. Given x which is known as ISMAC(k,ym) and the current maximum

costW , the algorithm iterates (D− 1) times on P+ǫ(Xf(x)) for �nding instances with cost lower

thanW . Additionally, I introduce two heuristics to prune unnecessary queries. First, the searched

dimension in the previous iteration of x is omi�ed. Second, I restrict the upper and lower bound of

the searching scope on each dimension. Speci�cally, knowingW and a(x,ym) = c, I only allow

RBSearch to �nd instance in [xd − W −c
ed

, xd + W −c
ed

] since any instance lying out of this scope

gives adversarial cost higher than W . �is pruning is signi�cant when I have obtained ISMAC

for every class. Special a�ention must be paid to searched dimensions of x (see Fig. 4.2 line 5–7).

Namely, if d is a searched dimension before the (i−1)th iteration, then I relax the searching scope

to [xA
d − W −c

ed
, xA

d + W −c
ed

] so that no low-cost instances will be missed.

�eorem 4.4. �e asymptotic time complexity of the algorithm is O(U−L
ǫ
DKI).

Proof. Follows from the correctness of the algorithm and the fact that the time complexity of

RBSearch is O(u−l
ǫ

).

37



4. Exploratory A�ack of Multi-Class Linear Classi�ers via Line Search

(ǫ, C)←MLCEvading(ym, e,D,L,U,K, I, ǫ):

1 for k ← 1 toK do

2 ǫ[k, :]← 0, T [k, :]← 0, C[k]← +∞;

3 C[1]← 0;
4 MDSearch(xA,xA, e, 1, 0,D,L,U, 1, ǫ);
5 for i← 2 to I do
6 for k ← 2 toK do

7 MDSearch(ǫ[k, :],xA, e, k, C[k],D,L,U, i, ǫ);

Figure 4.1.: �ery algorithm for a�acking multi-class linear classi�ers

MDSearch(x,xA, e, k, c,D,L,U, i, ǫ):

1 for d← 1 toD do

2 if d 6= T [k, i− 1] then

3 δ ← W −c
ed

;

4 u = min{U, xd + δ}, l = max{L, xd − δ};
5 if d ∈ {T [k, 1], . . . , T [k, i − 2]} then
6 if xd > xA

d then l = max{L, xA
d − δ};

7 ;

8 else u = min{U, xA
d + δ};

9 ;

10 xu ← x, xl ← x;

11 xu
d ← u, xl

d ← l;
12 if f(xu) 6= k then RBSearch(xd, u,x, d, i, ǫ);
13 ;

14 if f(xl) 6= k then RBSearch(l, xd,x, d, i, ǫ);
15 ;

Figure 4.2.: Multi-dimensional search from ISMAC(k,ym)

In particular, if the adversarial cost function has equal cost coe�cient, then there exists at

least one innocent class k ∈ {2, . . . ,K} such that I can �nd instance in ǫ-IMAC(k,ym) with

O(U−L
ǫ
DKI) queries.

4.4. Experiments

I demonstrate the algorithm3 on two real-world data sets, the 20-newsgroups4 and the 10-Japanese
female face5. On the newsgroups data set, the task of the adversary was to evade a text classi�er

by disguising a commercial spam as a message in other topics. On the face data set, the task of

3A Matlab implementation is available at http://home.in.tum.de/∼xiaoh/pakdd2012-code.zip
4http://people.csail.mit.edu/jrennie/20Newsgroups/
5 http://www.kasrl.org/jaffe.html

38

http://home.in.tum.de/~xiaoh/pakdd2012-code.zip
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://www.kasrl.org/jaffe.html


4.4. Experiments

RBSearch(l, u,x, d, i, ǫ):

1 x∗ ← x;

2 if u− l < ǫ then
3 x∗

d ← u;
4 k ← f(x∗), c← a(x∗);
5 if c < C[k] then Update(x∗, k, c, d, i);
6 ;

7 xu ← x, xl ← x, xm ← x;

8 xu
d ← u, xl

d ← l, xm
d ← u+l

2 ;

9 if f(xm) = f(xl) then
10 RBSearch(m,u,x, d, i, ǫ);
11 else if f(xm) = f(xu) then
12 RBSearch(l,m,x, d, i, ǫ);
13 else

14 RBSearch(l,m,x, d, i, ǫ);
15 RBSearch(m,u,x, d, i, ǫ);

Figure 4.3.: Recursive binary search on dimension d

(ǫ, C, T,W )←Update(x∗, k, c, d, i):

1 ǫ[k, :]← x∗;
2 C[k]← c;
3 T [k, i]← d;
4 W ← max{C[1], . . . , C[K]};

Figure 4.4.: Update ISMAC(k,ym)

adversary was to deceive the classi�er by disguising a suspect’s face as an innocent. I employed

LIBLINEAR [58] package to build targetmulti-class linear classi�ers, which return labels of queried

instances. �e cost coe�cients were set to e1 = · · · = eD = 1 for both tasks. For the groundtruth

solution, I directly solved the optimization problem with linear constraints Eq. (4.3) and Eq. (4.4)

by using the models’ parameters. I then measured the average empirical ǫ for (K − 1) classes,

which is de�ned as ǫ̂ = 1
K−1

∑
k 6=f(ym)

[
C[k]

MAC(k,ym)
− 1

]
, where C[k] is the adversarial cost of

disguised instance of class k. Evidently, small ǫ̂ indicates be�er approximation of IMAC.

4.4.1. Spam Disguising

�e training data used to con�gure the newsle�er classi�er consisted of 7, 505 documents, which

were partitioned evenly across 20 di�erent newsgroups. Each document is represented as a vec-

tor with 61, 188 dimensions, where each dimension represents the number of occurrences of a

word. �e accuracy of the classi�er on training data was 100% for every class. I set the cate-

gory “misc.forsale” as the adversarial class. �at is, given a random document in “misc.forsale”,

the adversary a�empts to disguise this document as from other category; e.g. “rec.sport.baseball”.

Parameters of the algorithm were K = 20, L = 0, U = 100, I = 10, ǫ = 1. �e adversary was

39



4. Exploratory A�ack of Multi-Class Linear Classi�ers via Line Search

restricted to query at most 10, 000 times. �e adversarial cost of each class is depicted in Fig. 4.5

(le�).

0

10

20

30

40

50

al
t.a

th
ei

sm

co
m

p.
gr

ap
h

co
m

p.
m

sw
in

co
m

p.
ib

m
pc

co
m

p.
m

ac

co
m

p.
xw

in

re
c.

au
to

s

re
c.

m
ot

or

sp
o.

bb
al

l

sp
o.

ho
ck

ey

sc
i.c

ry
pt

sc
i.e

le
c

sc
i.m

ed

sc
i.s

pa
ce

so
c.

re
lg

po
l.g

un
s

po
l.m

ea
st

po
l.m

is
c

re
lg

.m
is

c

A
dv

er
sa

ria
l c

os
t

1

 

2

 

3

 ×103

Figure 4.5.: Box plots for adversarial cost of disguised instance of each class. (Le�) On the 20-
newsgroups data set, I considered “misc.forsale” as the adversarial class. Note, that

feature values of the instance are non-negative integers as they represent the num-

ber of words in the document. �erefore, the adversarial cost can be interpreted as

the number of modi�ed words in the disguised document comparing to the original

document from “misc.forsale”. �e value of ǫ̂ for 19 classes is 0.79. (Right) On the 10-
Japanese female faces data set, I randomly selected a subject as the suspect. �e box

plot shows that the adversarial cost of camou�age suspicious faces as other subjects.

�e value of ǫ̂ for 9 classes is 0.51. A more illustrative result is depicted in Fig. 4.6.

4.4.2. Face Camou�age

�e training data contained 210 gray-scaled images of 7 facial expressions (each with 3 images)

posed by 10 Japanese female subjects. Each image is represented by a 100-dimensional vector

using principal components. �e accuracy of the classi�er on training data was 100% for every

class. I randomly picked a subject as an imaginary suspect. Given a face image of the suspect, the

adversary camou�age this face to make it be classi�ed as other subjects. Parameters of the algo-

rithm were K = 10, L = −105, U = 105, I = 10, ǫ = 1. �e adversary was restricted to query

at most 10, 000 times. �e adversarial cost of each class is depicted in Fig. 4.5 (right). Moreover, I

visualize disguised faces in Fig. 4.6. Observe that many disguised faces are similar to the suspect’s

face by humans interpretation, yet they are deceptive for the classi�er. �is visualization directly

demonstrates the e�ectiveness of our algorithm.

It has not escaped the notice that an experienced adversary with certain domain knowledge

can reduce the number of queries by careful selecting cost function and employing heuristics.

Nonetheless, the goal of this chapter is not to design real a�acks but rather examine the correctness

and e�ectiveness of our algorithm so as to understand vulnerabilities of classi�ers.

4.5. Conclusion

Understanding the vulnerability of classi�ers is the only way to develop resistant classi�ers in the

future. In this chapter, I showed that multi-class linear classi�ers are vulnerable to the exploratory

40

figures/result_spam.eps


4.5. Conclusion

InnocentSuspect

O
rig

in
al

D
is

gu
is

ed
 fa

ce
s

Figure 4.6.: Disguised faces given by the algorithm to defeat a multi-class face recognition sys-

tem. �e original faces (with neutral expression) of 10 females are depicted in the �rst

row, where the le� most one is the imaginary suspect and the remaining 9 people are

innocents. From the second row to sixth row, faces of the suspect with di�erent fa-

cial expressions are fed to the algorithm (see the �rst column). �e output disguised

faces from the algorithm are visualized in the right hand image matrix. Each row

corresponds to disguised faces of the input suspicious face on the le�. Each column

corresponds to an innocent.

a�ack and presented an algorithm for disguising the adversarial instance. In Chapter 5, I will

generalize the exploratory a�ack problem to the family of classi�er with convex-inducing decision

boundaries.

41

figures/result_face.eps


4. Exploratory A�ack of Multi-Class Linear Classi�ers via Line Search

42



Chapter 5
Exploratory A�ack on Convex-Inducing
Classi�ers via Random Walks

In this chapter, I extend the exploratory a�ack problem to a more general family of classi�ers,

namely the convex-inducing classi�er. A convex-inducing classi�er partitions the input space into

two sets and at least one of them is convex. Unlike the line search algorithms used in Chapter 3

and Chapter 4, this chapter formalizes the exploratory a�ack on convex-inducing classi�ers as a

ℓp-norm minimization problem. To solve this problem, I develop an algorithm based on random

walks in the convex body. Underlying the algorithm is a sophisticated analysis, which combines

tools from convex geometry, geometric tomography and probability theory.

�is chapter is organized as follows. �e problem of exploratory a�ack is formulated in Sec-

tion 5.1. Previous work and methods are brie�y recapitulated in Section 5.2. �e proposed a�ack

algorithm for �nding the optimal disguised solution in the convex benign set is described in 5.3.

Section 5.4 provides an theoretical study of the algorithm from a geometric perspective, which

clearly elucidates the convergence rate, the upper bound of expected iterations and the required

number of samples per iteration. Some heuristics and implementation issues are remarked in Sec-

tion 5.5. Section 5.6 reports the experimental results on both synthetic data and real-world data.

Discussions on detecting the exploratory a�ack are made in Section 5.7. Finally, conclusions are

drawn in Section 5.8.

5.1. Problem Formulation

Let X ⊆ R
D be the input space, and Y := {−1, 1} be the response space. Each instance x ∈ X

is represented as a D-dimensional vector. A classi�er f : X → Y partitions X into two sets, the

benign set X− := {x ∈ X | f(x) = −1} and the malicious set X+ := {x ∈ X | f(x) = 1}.
�e adversary does not know the decision boundary of f , but can observe the response f(x) via
a membership oracle, that is, a procedure that reports whether x is malicious or not, but provides

no other information. �e adversary can query any instance in X .
Letym ∈ X+ be amalicious instance blocked by the classi�er. �e cost function g : X → R0+

measures the adversary’s e�ort of modifying ym as x. In this chapter I focus on g(x) := ‖x −
ym‖ℓp

, where p ∈ [1,∞]. As a motivating example, the ℓ1-norm represents a cost measurement

based on the edit distance for the email spam. Given ym, the goal of the adversary is to �nd an

43



5. Exploratory A�ack on Convex-Inducing Classi�ers via Random Walks

instance in X− that gives the minimum cost. Formally, this problem can be formulated as

min
x
‖x− ym‖ℓp

subject to x ∈ X−, (5.1)

where X− is speci�ed by the membership oracle f .
Let x∗ be a solution of (5.1), the goal of the adversary is to approximate x∗ within a constant

factor ǫ > 0. More exactly, an a�ack algorithm accomplishing this should �nd an instance x that

approximates x∗ either with absolute error, i.e. g(x)− g(x∗) ≤ ǫ), or with relative error ǫ > 0, i.e.
g(x) ≤ (1 + ǫ)g(x∗), using �nite number of queries. An algorithm requiring less queries is more

desirable for the adversary. I hereina�er say that a solution is an ǫ-optimal provided that it has

the absolute error ǫ. Given some input, an algorithm is called a polynomial algorithm if it �nds an

ǫ-optimal solution using polynomial number of queries with respect to 1
ǫ
and the dimensions of

the input space D.

I present a new evasion a�ack algorithm against convex-inducing classi�ers whose X− is

convex and X+ is non-convex1. �e main ingredient of the proposed algorithm is sampling by

randomwalks in a sequence of progressively smaller convex bodies. Given an absolute error ǫ > 0,
the algorithm guarantees �nding the ǫ-optimal solution (i.e., such that g(x)−g∗ ≤ ǫ) in polynomial

time.

5.2. Related Work

Note that without any convexity assumption on X+ and X−, problem (5.1) is hard and no poly-

nomial algorithm exists. Previous work relax this problem based on di�erent assumptions, which

can be summarized as follows.

• When both X+,X− are convex, the decision boundary must be a hyperplane. Authors

in [107] present a line search algorithm that approximates the normal of the decision hy-

perplane using membership queries. Once the hyperplane is determined, problem (5.1) is

immediately solved by linear programming.

• When only X+ is convex and p = 1, an ǫ-optimal solution can be found by repetitively

querying the vertices of ℓp-norm balls co-centered atym till one vertex belongs to the benign

set [117]. �e algorithm can be implemented using line search techniques.

• When only X− is convex and p ∈ [1,∞], the problem becomes minimizing a convex func-

tion over a convex set inRD. Authors in [117] present a centroid cu�ing plane (CCP)method

that iteratively eliminates a halfspace through the approximated centroid of X−, which is

inspired by the randomized cu�ing plane scheme proposed in [10].

• When only X+ is convex and p ∈ (1,∞], problem (5.1) can not be solved in polynomial

time [117].

Learning with membership queries has been studied in many literature [3, 4], especially in

the active learning scenarios [111, 156]. While active learning and exploratory a�ack are similar

in their exploration of querying strategies, there are signi�cant di�erences between these two

1When the adversary is unaware of which set is convex, they can combine the results from the proposed algorithm

and theMulti-line search algorithm [117].

44



5.3. Algorithm

se�ings. First of all, in many active learning scenarios, queries are selectively drawn from a �nite

pool of instances. In the exploratory a�ack, however, the adversary can query any instance in the

input space. Moreover, the objective of the adversary is not to approximate the decision function of

the classi�er. In other word, the classi�er will still be largely unspeci�ed to the adversary a�er the

exploratory a�ack. Although active learning methods can be adopted for the solution of problem

(5.1), the query complexity is much higher for general convex classes [128].

Inspired by the Grünbaum theorem [77], the cu�ing plane scheme is �rst proposed in [95]

for solving convex programming problem and has been extensively studied in [104, 119]. In-

stead of using the centroid as the cu�ing point, di�erent approximate centers have been stud-

ied in [141, 98], which are known as ellipsoid methods. In recent years, both cu�ing plane and

ellipsoid methods have gained new interest motivated by the randomized algorithms [89, 88]. In

particular, randomized cu�ing plane schemes based on randomwalks have been studied by several

authors [10, 126, 41].

5.3. Algorithm

I focus on the non-trivial case in which X− is convex and p ∈ [1,∞]. In the spirit of randomized

cu�ing plane scheme [10, 126, 41], the proposed algorithm alternates between cu�ing the con-

vex body and performing random walks. As a consequence, the feasible region becomes smaller

and smaller from iteration to iteration until an ǫ-optimal solution is found. �e major di�erence

between the proposed method and CCP method [117] is twofold. First, I do not approximate the

centroid of the feasible region. �e cu�ing point is the random sample with the minimum cost.

Second, the cut is performed by intersecting the feasible region with ℓp-norm balls.

�e main steps of the proposed method are summarized in Algorithm 5.1. Let the superscript
〈k〉 denote the iteration number. Given an initial benign instance x〈0〉 ∈ X−, the algorithm starts

with the set P〈0〉 := X− and generates N random samples S〈0〉 in P〈0〉. Denote the sample with

the minimum cost as x〈0〉 (see line 4). �en consider a new set P〈1〉 ⊂ P〈0〉 , which is obtained by

cu�ing o� a portion of P〈0〉 with a cost ball B〈0〉 centered at ym with radius g(x〈0〉) (see line 6).
�e algorithm proceeds by walking randomly in P〈1〉 until S〈1〉 contains N random samples (see

lines 9 to 17). In the next iteration, the algorithm selects the minimum cost sample x〈1〉 and cuts

P〈1〉 with B〈1〉, which gives a smaller set P〈2〉 ⊂ P〈1〉, and so forth. Remark that the intersection

of two convex sets is convex, one obtain a sequence of convex sets

P〈k〉 ⊂ P〈k−1〉 ⊂ · · · ⊂ P〈1〉 ⊂ P〈0〉 := X−,

and a sequence of points x〈k〉 having the property

g(x∗) ≤ g(x〈k〉) ≤ g(x〈k−1〉) ≤ · · · ≤ g(x〈1〉) ≤ g(x〈0〉).

Finally, the algorithm terminateswhen either all probing opportunities have been used up, or xk is

an ǫ-optimal solution; e.g. g(x〈k−1〉)−g(x〈k〉) < 10−3 ǫ. Figure 5.2(a,b) illustrates the kth iteration

of the algorithm.

�e idea of using random walks to generate samples in the convex set has been studied

in [55, 143]. Here, we employ a similar strategy used in the hit-and-run algorithm [143]. Roughly

speaking, each random sample is generated in two steps. First, it selects a line L with a random

direction through a starting point x in the convex bodyP . �en the starting point moves to a new

45



5. Exploratory A�ack on Convex-Inducing Classi�ers via Random Walks

Input : dimensionsD, cost function g, initial instance x〈0〉 ∈ X−, number of samples N ,

maximum step length Ω, absolute error ǫ.
Output: disguised instance x〈k〉

1 k ← 0,P〈0〉 ← X−;
2 S〈0〉 ← Randomly generateN samples x1, . . . ,xN in P〈0〉;
3 repeat

4 x〈k〉 ← argmin
xi∈S〈k〉

g(xi); /* select the sample with minimum cost */

5 B〈k〉 ← {x ∈ R
D | g(x) ≤ g(x〈k〉)};

6 P〈k+1〉 ← P〈k〉 ∩ B〈k〉; /* cut the feasible region */

7 x0 ← x〈k〉;
8 S〈k+1〉 ← ∅;
9 for i← 1 to N do

10 for j ← 1 to N do αj ∼ N (0, 1);
11 ;

12 u← ∑
vj∈S〈k〉

αj vj ; /* generate a random direction */

13 ω ← Ω;

14 repeat ω ∼ Uniform(0, ω) until xi−1 + ω u ∈ P〈k+1〉;
15 ;

16 xi ← xi−1 + ω u; /* move to the new point */

17 S〈k+1〉 ← S〈k+1〉 ∪ xi;

18 k ← k + 1;

19 until stopping rule;

20 return x〈k〉;

Figure 5.1.: Exploratory a�ack on convex X− by random walks

point chosen randomly from P∩L. However, ifP is severely elongated, then the uniform random

directions will rarely align with the long axis of P . As a consequence, random samples may not

be generated uniformly in P , as shown in Figure 5.2(c). To address this problem, I use S〈k〉 to gen-
erate walking directions for S〈k+1〉. Intuitively, if S〈k〉 is uniformly distributed in P〈k〉, a direction
vector given by the linear combination of S〈k〉 is more likely aligned with the long axis of P〈k〉.
Since the shape ofP〈k+1〉 is similar toP〈k〉, the direction vector aligns with the long axis ofP〈k+1〉

as well, which makes S〈k+1〉 uniformly distributed in P〈k+1〉. With a stronger analysis, one can

show that this strategy always maintain the convex body in the near-isotropic position [89, 10].

5.4. Geometric Analysis

In this section, I analyzeAlgorithm 5.1 from a geometric perspective and establish some theoretical

advances. Before explaining these results, the notations and assumptions need to be clari�ed. First,

the input space hasD ≥ 2 as the problem is trivial for the case of one dimension. For any convex

body K ∈ R
D , the shorthand notation vol(K) denotes the volume (i.e. the Lebesgue measure) of

K. Moreover, I assume that the set X− is circumscribed in an Euclidean ball and contains a small

46



5.4. Geometric Analysis

b b

b

b

b

b
b

X−
P 〈k〉

(a)

ym

⊕

b

x〈k〉X−
P 〈k+1〉

B〈k〉

(b)

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

bbb

b

b

P

(c)

Figure 5.2.: An illustration of Algorithm 5.1 with g(x) := ‖x − ym‖ℓp
. (a) Random samples are

generated in P〈k〉 using random walks. (b) �e cut is performed with B〈k〉 through
the sample with the minimum cost, which results in a smaller convex set P〈k+1〉. (c)
When the convex body P is not in the isotropic position, random samples generated

by standard hit-and-run will not be uniformly distributed in P .

Euclidean ball, otherwise no solutions of the problem may exist and the problem could not even

theoretically be solved. Finally, the optimal solution is denoted as x∗, which gives the minimum

cost g∗ := ‖x∗ − ym‖ℓp
.

5.4.1. Main Results

First of all, I show that the algorithm produces a smaller and smaller convex body from iteration

to iteration.

�eorem 5.1. In the kth iteration of Algorithm 5.1, the expected volume of P〈k〉 is at most

E[vol(P〈k〉)] ≤
(

D

D +N

)k

vol(X−).

�e proof is given in Section 5.4.2. �eorem 5.1 suggests that the random walks is performed

in a shrinking convex body, which guarantees the e�ciency of the proposed algorithm. Observe

that whenN goes to in�nity, nearly all volume is cut out and the remaining set is close to empty.

�is is perfectly consistent with the intuition. Comparing to CCP method that reduces volume by

vol(P〈k〉) ≤ 2
3vol(P〈k−1〉), the proposed method yields a deeper cut when the number of random

samples N > D
2 . �e following corollary establishes the minimal number of samples required

in each iteration to guarantee that the proposed method cuts deeper than the central-cut method

with arbitrarily high probability.

Corollary 3. Given a probability level ξ > 0, set

N ≥ 2.2 ln
1

ξ
.

�en, in each iteration Algorithm 5.1 cuts o� more volume than the central-cut method with proba-

bility at least 1− ξ.

47



5. Exploratory A�ack on Convex-Inducing Classi�ers via Random Walks

Proof. Due to �eorem 1 in [77], the probability that the proposed algorithm cuts o� less volume

than the central-cut method is (1− 1
e
)N . By solving (1− 1

e
)N ≤ ξ, one obtainN ≥ ln 1

ξ
/ ln 1

1− 1

e

≥
2.2 ln 1

ξ
.

�e next theorem shows that the absolute error of x〈k〉 is reduced iteratively, which allows

one to bound the expected number of iterations for �nding an ǫ-optimal solution.

�eorem 5.2. Given an initial instance x〈0〉 ∈ X−, the expected absolute error in the kth iteration

is at most

E[g(x〈k〉)− g∗] ≤
(

1

N + 1

) k
D

E[g(x〈0〉)− g∗].

�e expected number of iterations to �nd an ǫ-optimal solution is at most

k =

⌈
D

ln(N + 1)
ln
g(x〈0〉)− g∗

ǫ

⌉
.

�e proof is given in Section 5.4.3. It is now clear that Algorithm 5.1 is a polynomial algorithm

and the total number of iterations is linearly bounded by the dimensions of the input space. �is

bound is an important yet missing piece in previous work [117]. As an immediate implication, one

can show that the optimal solution with relative error can be found in polynomial time as well.

Corollary 4. Given ǫ > 0, Algorithm 5.1 can compute an instance x such that g(x)− g∗ ≤ ǫ g∗ in

polynomial time.

Proof. Let b be a positive lower bound on g∗, i.e. 0 < b ≤ g∗. Due to �eorem 6 in [10], one can

compute b in polynomial time. �en invoke Algorithm 5.1 with absolute error δ := ǫ b and obtain
an instance x satisfying g(x) − g∗ ≤ ǫ b ≤ ǫ g∗.

5.4.2. Proof of �eorem 5.1

I begin by establishing a lemma concerning the volume ratio in one iteration. �e proof relies on

the techniques from convex geometry and geometric tomography.

Lemma 2. Let K ⊂ R
D be a convex body. Let x1, . . . ,xN beN uniform random points inK. Given

a point y ∈ R
D \ K, denote P := {x ∈ K | ‖x − y‖ℓp

< min
1≤i≤N

‖xi − y‖ℓp
}, where p ∈ [1,∞].

�en

E

[
vol(P)

vol(K)

]
≤ D

D +N
.

�e corresponding second moment about zero is bounded by

E

[(
vol(P)

vol(K)

)2
]
≤ 2D2

2D2 + 3DN +N2
.

Proof. First consider the quotient of the volumes ofK and Pv := {x ∈ K | ‖x−y‖ℓp
< v}, where

v is some positive real value such that Pv is nonempty. Let Hmin be the separating hyperplane

of K and a ℓp ball Bmin := {x ∈ R
D | ‖x − y‖ℓp

≤ min
x∈K
‖x − y‖ℓp

} and supports both of them.

Denote byHmax the hyperplane supportsK and parallels toHmin, as depicted in Figure 5.3(a). Let

48



5.4. Geometric Analysis

w be their normal and h be the w-breadth of K. By rotating K and Pv and translating them to y,

one can assume without loss of generality that w = (1, 0, . . . , 0)⊤, i.e. w⊤x = x1; and that y is

the origin and x∗ := argmin
x∈K

‖x − y‖ℓp
:= 0, as shown in Figure 5.3(b).

y
⊕

h

K
Pv

Bmin

Hmin

Hmax

w

w

Pv
K

x1O

Hmin Hmax

h

(a) (b)

Figure 5.3.: (a) Finding two parallel hyperplanes that support K. (b) Rotating and translating K
and Pv until they are aligned with x1 axis. In this example, the cost function g(x) :=
‖x− ym‖ℓ2

. Gray area denotes Pv in both �gures.

Next, construct a convex bodyK′ that has the same volume asK and is symmetricwith respect

to x1 axis. De�ne the function

ψK(s) :=
1

vol(K)

∫

x∈K, w⊤x=s
ds.

�at is, ψK(s) represents the (D − 1) dimensional volume of K intersected with the hyperplane

Hs := {x ∈ R
D |x1 = s}, as a fraction of the volume of K.

Consider the set K′ obtained by replacing the cross-section K ∩Hs for every s ∈ [0, h] by a

(D−1) dimensional ball of volume ψK(s) and centered at the point (s, 0, . . . , 0)⊤ . Consequently,
the new set K′ has the same volume as K, and it is symmetric with respect to the x1 axis. To

show that K′ is a convex set, let S1 and S2 be the cross-sections of K′ at (s1, 0, . . . , 0)⊤ and

(s2, 0, . . . , 0)⊤, respectively. By the Brunn-Minkowski inequality [136], for any α ∈ [0, 1] it holds
that

vol (αS1 + (1− α)S2)
1

D−1 ≥ α vol(S1)
1

D−1 + (1− α) vol(S2)
1

D−1 .

Denote rK′(s) the radius ofK′∩Hs, then the above inequality implies that rK′(α s1+(1−α) s2) ≥
α rK′(s1)+(1−α) rK′ (s2). �at is, function rK′ is concave with respect to s. HenceK′ is convex.
I employ the same technique to construct a convex set Pt that has the same volume as Pv and is

symmetric about x1 axis. Observe that the surface of Pt intersects x1 axis at the origin and some

point (t, 0, . . . , 0)⊤, where t ∈ (0, h], as shown in Figure 5.4(a).

De�ne the set K′
<t := {x ∈ K′ |x1 < t}. We immediately have

vol(Pv)

vol(K)
=

vol(Pt)

vol(K′)
≤ vol(K′

<t)

vol(K′)
(5.2)

49



5. Exploratory A�ack on Convex-Inducing Classi�ers via Random Walks

Pt

x1O t h

K′

q

C

C<t

t h

D h
vo

l(
K

)

x1O

(a) (b)

Figure 5.4.: (a) Constructing convex setsK′ and Pt such that they have same volume asK and Pv ,

respectively. Gray area denotes Pt. (b) Constructing a convex cone C that has base

area D
h

vol(K′) and height h. Gray area denotes C<t.

De�ne a cone C with the base area D
h

vol(K′) and the height h as illustrated in Figure 5.4(b). Using

the cone volume formula, it yields vol(C) = vol(K′) = vol(K). De�ne the set C<t := {x ∈
C |x1 < t}, C≥t := {x ∈ C |x1 ≥ t} and K′

≥t := {x ∈ K′ |x1 ≥ t}. Let q be the coordinate at
which K′

<q ⊆ C<q and C≥q ⊆ K′
≥q . Observe that for t ≤ q one has

vol(K′
<t) ≤ vol(C<t),

and for t > q,

vol(K′
<t) = vol(K′)− vol(K′

≥t) ≤ vol(C)− vol(C≥t) = vol(C<t).

�us, for any t ∈ (0, h] it holds that

vol(K′
<t) ≤ vol(C<t).

By using this fact, one can now rewrite (5.2) as

vol(Pv)

vol(K)
≤ vol(K′

<t)

vol(K′)
≤ vol(C<t)

vol(K′)
=

vol(C<t)

vol(C) = 1− (h− t)D

hD
.

Consequently, for any u ∈ [0, 1] it holds that

Pr

(
vol(Pv)

vol(K)
≥ u

)
≤ Pr

(
1− (h− t)D

hD
≥ u

)
= Pr

(
t ≥ h− h (1− u)

1

D

)

= (1− u)
1

D . (5.3)

50



5.4. Geometric Analysis

One can bound the expected quotient of volumes of P and K using (5.3)

E

[
vol(P)

vol(K)

]
=

∫ 1

0
Pr

(
vol(P)

vol(K)
≥ u

)
du =

∫ 1

0

[
Pr

(
vol(Pv)

vol(K)
≥ u

)]N

du

≤
∫ 1

0
(1− u)

N
D du =

D

D +N
.

Similarly, the second moment is bounded as

E

[(
vol(P)

vol(K)

)2
]

=

∫ 1

0
Pr

((
vol(P)

vol(K)

)2

≥ u
)

du =

∫ 1

0

[
Pr

(
vol(Pv)

vol(K)
≥ √u

)]N

du

≤
∫ 1

0
(1−√u)

N
D du

=
2D2

2D2 + 3DN +N2
,

which concludes the proof.

Consider in kth iteration where samples in previous (k − 1)th iterations are given, then

vol(P〈k−1〉) is uniquely determined. It follows from Lemma 2 that

E[vol(P〈k〉) | vol(P〈k−1〉)] ≤ D

D +N
vol(P〈k−1〉).

Taking expectation on both sides and applying the law of iterated expectations on the right-hand

side, it yields

E[vol(P〈k〉)] ≤ D

D +N
E[vol(P〈k−1〉)].

�us, �eorem 5.1 is proved by recursively applying the above relation for k times.

5.4.3. Proof of �eorem 5.2

I employ similar techniques used in Section 5.4.2 to show the error reduction in one iteration.

De�nitions of K, y, x1, . . . ,xN are followed from Lemma 2.

Lemma 3. Let g′ := min
1≤i≤N

‖xi −y‖ℓp
, g∗ := min

x∈K
‖x−y‖ℓp

and h := max
x∈K
‖x−y‖ℓp

− g∗. �en

E[g′ − g∗] ≤ h

D
B

(
N + 1,

1

D

)
≤ h

(
1

N + 1

) 1

D

,

with the corresponding second moment about zero

E[(g′ − g∗)2] ≤ 2h2

D
B

(
N + 1,

2

D

)
≤ h2

(
1

N + 1

) 2

D

,

where B(·, ·) is the Euler Beta function.
Proof. Construct K′ and Pt as in Lemma 2. Consider the inverted cone C′ with the base area
D
h

vol(K′) and the height h, as shown in Figure 5.5. Given t ∈ (0, h], let q be the coordinate at

51



5. Exploratory A�ack on Convex-Inducing Classi�ers via Random Walks

x1O htq

C ′

C ′≥qPt

D h
vo

l(
K

)

Figure 5.5.: An inverted convex cone C′ has base area D
h

vol(K′) and height h. Gray area denotes

C′
≥q .

which C′
<q ⊆ P<q and P≥q ⊆ C′

≥q , where P<q := {x ∈ Pt |x1 < q}, P≥q := {x ∈ Pt |x1 ≥ q},
C′

<q := {x ∈ C′ |x1 < q} and C′
≥q := {x ∈ C′ |x1 ≥ q}. Let s be a random variable in [0, h], it

holds that

Pr(s ≥ t) = 1− vol(Pt)

vol(K′)
≤ 1− vol(C′

<q)

vol(K′)
=

vol(C′
≥q)

vol(C′)
=
hD − qD

hD
.

�us, the expected value can be bounded as

E[g′] =

∫ h

0
Pr(g′ ≥ t)dt ≤

∫ h

0

(
hD − qD

hD

)N

dq =
h

D
B

(
N + 1,

1

D

)

≤ h
(

1

N + 1

) 1

D

,

where the last inequality holds due to [2]. Similarly, the second moment about zero is given by

E[(g′)2] =

∫ h

0
Pr(g′ ≥

√
t)dt ≤

∫ h

0

(
hD − qD

2

hD

)N

dq =
2h2

D
B

(
N + 1,

2

D

)

≤ h2
(

1

N + 1

) 2

D

,

which concludes the proof.

Consider in kth iterationwhere samples at 1, . . . , (k−1)th iterations are given, then g(x〈k−1〉)
is uniquely determined. It follows from Lemma 3 that

E[g(x〈k〉)− g∗ | g(x〈k−1〉)] ≤
(

1

N + 1

) 1

D

[g(x〈k−1〉)− g∗].

Taking the expectation on both sides and applying the law of iterated expectations, it obtains

E[g(x〈k〉)− g∗] ≤
(

1

N + 1

) 1

D

E[g(x〈k−1〉)− g∗].

52



5.5. Implementation Issues

A recursive application of the above inequality gives

E[g(x〈k〉)− g∗] ≤
(

1

N + 1

) k
D

E[g(x〈0〉)− g∗].

Remark that the goal is to �nd x such that E[g(x) − g∗] ≤ ǫ. �us, �eorem 5.2 is proved by

substituting the le� hand side as ǫ and then solving k.

5.5. Implementation Issues

I highlight some practical considerations for an e�cient implementation. First of all, note that if

the random walk starts from a point on the surface of the convex body (line 7 of Algorithm 5.1),

then it is di�cult to generate a feasible walking direction for the �rst step (see Figure 5.6). �is

problem becomes more severer in the high dimensional space. As a workaround, in each iteration

the cut is performed through the sample with the second smallest cost. �e smallest cost sample

is thus in the interior of the convex body, which can be used as a good starting point. Second, I

gradually reduce the maximum step length of random walks by se�ing Ω := 2 g(x〈k〉) to avoid

unnecessary queries. Finally, a membership query should only be sent to the defender’s classi�er

if it can not be asserted by the adversary itself. Readers that interested in technical details are

referred to my MATLAB implementation2.

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

bbb

b

b

starting point P

(b)

b
feasible directionstarting point

P

(a)

Figure 5.6.: (a)�e starting point is close to the boundary. �e arc represents all feasible walking

directions. In the high dimensional space, it is extremely di�cult to generate a feasible

walking direction. (b)�e convex set is not in the isotropic position. Random samples

are not uniformly distributed in the set.

5.6. Experiments

�e experiment section contains two parts. First, the a�ack algorithms were tested on synthetic

classi�ers. �e goal was to compare the e�ectiveness and the e�ciency of the proposed algo-

rithm with CCP method under di�erent dimensions, cost functions and convex sets. �e second

set of experiments was conducted on the newsgroups data, where I employed the algorithm for

disguising a document to deceive a multi-class linear classi�er.

2h�p://home.in.tum.de/∼xiaoh/convexa�ackmatlab.zip

53



5. Exploratory A�ack on Convex-Inducing Classi�ers via Random Walks

5.6.1. Synthetic Examples

  CCP-50 CCP-100 CCP-200 Our-50 Our-100 Our-200

1 10 100

1

1e2

1e4

H
al

fs
pa

ce

D = 4, p = 1

1 10

1

1e2

1e4

S
ph

er
e

1 10

1

1e2

1e4

C
ub

e

1 10

1

1e2

1e4

In
v.

 C
on

e

1 10

1

1e2

1e4

C
on

e

1 10 100

1

1e2

1e4

D = 4, p =∞

1 10

1

1e2

1e4

1 10

1

1e2

1e4

1 10

1

1e2

1e4

1 10

1

1e2

1e4

1 10 100

1

1e2

1e4

1e6

D = 1024, p = 1

1 10 100

1

1e2

1e4

1 10 100

1

1e2

1e4

1 10 100

1

1e2

1e4

1 10

1

1e2

1e4

1 10

1

1e2

1e4

D = 1024, p =∞

1 10 100

1

1e2

1e4

1 10

1

1e2

1e4

1 10 100

1

1e2

1e4

1 10

1

1e2

1e4

 

 

Figure 5.7.: ℓ1 and ℓ∞ cost as a function of iterations for 4 and 1, 024-dimensional problems. From

top to bo�om, each row represents X− with a special geometry structure. �e exper-

iment is repeated for 120 times and the average performance is reported.

54

figures/exp1-legend.eps
figures/newexp1.eps


5.6. Experiments

I constructed �ve convex-inducing classi�ers by se�ing the benign set of each classi�er as

follows:

Halfspace X− := {x ∈ R
D |x1 ≥ 0};

Sphere X− := {x ∈ R
D | ‖x − (R, 0, . . . , 0)⊤‖ℓ2

≤ R};

Cube X− := {x ∈ R
D | ‖x− (R, 0, . . . , 0)⊤‖ℓ∞ ≤ R};

Cone X− := {x ∈ R
D | 0 ≤ x1 ≤ 2R,

∑D
d=2 x

2
d ≤ x1};

Inverted cone X− := {x ∈ R
D | 0 ≤ x1 ≤ 2R,

∑D
d=2 x

2
d ≤ 2R− x1},

where R := 10, 000 in all se�ings. Le�ing the original malicious instance ym := (−1, 0, . . . ,
0)⊤ and the initial benign instance x〈0〉 := (2R, 0, . . . , 0)⊤. Hence, I had x∗ = (0, 0, . . . , 0)⊤

by construction. �e absolute error ǫ := 1. I implemented CCP method with the same heuristics

mentioned in Section 5.5. �e number of samples generated in each iteration was set to 50, 100
and 200, respectively.

Figure 5.7 illustrates ℓ1 and ℓ∞ cost for problems in 4 and 1, 024-dimensional spaces. Observe

that the proposed method converges considerably faster than CCP in all se�ings. Typically, the

proposedmethod reproduced 7 to 8 exact decimal digits for the cost value a�er 20 iterations, which
is about 30 times faster than CCP. In addition, the total number of queries is signi�cantly less than

CCP.�ese advantages are more apparent in high dimensional space. Furthermore, whenX− is an

unbounded convex set (e.g. “halfspace”), CCP shows a poor start and even increases the cost in the

�rst ten iterations. �is is due to the fact that CCP bounds the feasible region by the intersection

of halfspaces. When the feasible region is not completely bounded, random walks can run away

from the cost ball very easily. By contrast, the proposed algorithm shows a robust convergence

rate by bounding the feasible region with norm balls.

5.6.2. On Real-World Data

�is experiment was conducted on the 20-newsgroups data set3, which contains 20, 000 docu-

ments partitioned evenly across 20 di�erent newsgroups. Each document was represented as a

61, 188-dimensional vector. Each dimension denoted the number of occurrences of a word. A

multi-class linear classi�er was trained using LIBLINEAR package [58], which partitioned the in-

put space into 20 convex sets. By considering one set as X− and all other sets as X+, I obtained

a binary classi�er with the convex benign set. �e adversarial cost function g(x) := ‖x − ym‖ℓ1

was de�ned to represent the edit distance (in terms of word) between two documents. From all

training instances, I randomly selected a document ym ∈ X+ and applied the algorithm to �nd

the disguised document in X−. �e algorithm was terminated if no signi�cant cost reduction is

observed on x〈k〉. �is simulated an exploratory targeted a�ack. For instance, a Viagra seller will

disguise the spam as lifestyle tips rather than IT news in order to a�ract potential consumers while

remaining inconspicuous.

Figure 5.8 depicts the relative cost g(x〈k〉)/g(x〈0〉) for each newsgroup, where x〈0〉 is the

initial benign instance. Generally, the cost depends on the location of ym and the shape of X−.
On the one hand, we observe a document from “sci.electronics” can be disguised as “comp.os.ms-

windows.misc” by only modifying 1.5% of its content, which corresponds to 14 words in the

3h�p://people.csail.mit.edu/jrennie/20Newsgroups/

55



5. Exploratory A�ack on Convex-Inducing Classi�ers via Random Walks

0

0.2

0.4

0.6

0.8

1

al
t.a

th
ei

sm

co
m

p.
gr

ap
h

co
m

p.
m

sw
in

co
m

p.
ib

m
pc

co
m

p.
m

ac

co
m

p.
xw

in

m
is

c.
sa

le

re
c.

au
to

s

re
c.

m
ot

or

sp
o.

bb
al

l

sp
o.

ho
ck

ey

sc
i.c

ry
pt

sc
i.e

le
c

sc
i.m

ed

sc
i.s

pa
ce

so
c.

re
lg

po
l.g

un
s

po
l.m

ea
st

po
l.m

is
c

re
lg

.m
is

c

R
e
la

ti
v
e

c
o
st
:

g
(x

〈
k
〉
)

g
(x

〈
0
〉
)

Figure 5.8.: Each column depicts the relative cost g(x〈k〉)/g(x〈0〉) for disguising a malicious doc-

ument as from the benign newsgroup labeled below. Smaller value is preferable for

the adversary. �e central mark is the median, the edges of the box are the 25th and

75th percentiles, For instance, the �rst box shows about 25% documents from other

newsgroups can be disguised as “alt.atheism” by only changing 27% of their contents,

and about 50% can be disguised by changing at most 60% of their contents. �e ex-

periment is repeated 100 times for each group.

document. On the other hand, some documents are so di�cult to be disguised unless their contents

are completely changed. �e average number of queries is 606.8 for one exploratory a�ack.

5.7. Detecting Exploratory Attack

Finally, I discuss a possible defense mechanism against the proposed a�ack algorithm. �e pre-

requisite is that the defender can identify the sender of each query (e.g. via IP address), then he

can simply ignore all malicious probings from the a�acker (e.g. using a blacklist) without shu�ing

down the service completely.

Recall that random samples were generated in a smaller and smaller convex body. As a con-

sequence, the queries from an adversary demonstrated a convergent trend on every dimension.

Figure 5.9 displays a time series plot of an exploratory a�ack on 2-dimensional space. By contrast,

queries from a regular user have no general tendencies. �erefore, the defender need to concern

only the changes over time on one dimension. If a convergent trend is observed, then the classi�er

is under a�ack with a high probability. Note that the monitored dimension should be aligned with

a long axis of the convex body in order to obtain salient observation. �is can be done by select-

ing the feature with the largest range in benign training instances. Moreover, if the classi�er is

under series of exploratory a�acks, then the monitored dimension will exhibit repeating conver-

gent pa�erns. In this case, techniques such as autocorrelation and spectrum analysis from signal

processing can be adopted for a�ack detection.

56

figures/newexp3-cut.eps


5.8. Conclusion

50
100

150
200

250
300

350
400

450
500

550

Original

Disguised

Initial

Time

Start

Dim 1

D
im

 2

 

 

malcious

benign

Figure 5.9.: A time series plot of an exploratory. �e benign set is the interior of the circle. Al-

though the plot is quite jogged, the convergent trend is evident on both dimensions.

5.8. Conclusion

In this chapter, I proposed an exploratory a�ack algorithm on the classi�er with the convex benign

set. �e main ingredient of the algorithm is walking randomly in a shrinking convex body. �e

convergence property is thoroughly studied from a geometric perspective. Experimental results

show that the proposed approach converges signi�cantly faster than the previous centroid cu�ing

plane method. A defense mechanism is also discussed.

�e proposed algorithm works in much boarder situations. �e cost function can has the

form g(x) := ‖Ax− ym‖ℓp
, where A is aD×D matrix. �is allows some features may be more

important than others. In this case the convergence rate depends on A. Moreover, if the adversary

is unaware of which set is convex, then he can simply run the proposed algorithm and previous

methods and selects the best solution. For general classi�ers without any convexity property, the

proposed algorithm can be applied for searching local optimal solutions.

�e e�ciency of the proposed algorithm can be further improved if the adversary has prior

knowledge about the geometry of the convex body. For instance, the adversary can exploit queried

samples to train a local classi�er. �en the geometry structure of the that classi�er can be used to

guide random walks in the most improving direction.

57

figures/newexp2-cut.eps


5. Exploratory A�ack on Convex-Inducing Classi�ers via Random Walks

58



Chapter 6
Causative Label-Flip A�ack on Support
Vector Machines

As it is mentioned in Chapter 3, two types of a�ack that are interesting for my research, i.e. the

exploratory and causative a�ack. In Chapter 4 and Chapter 5, I have presented a comprehensive

analysis of the exploratory a�ack. In this chapter, I address the problem of causative a�ack. Recall

that a causative a�ack aims to subvert the learning process of a model by controlling the training

data [7]. For example, the adversary �ags every legitimate mail as spam while the defender is

gathering the training data. Consequently, the spam �lter trained on such data is likely to cause a

false alarm and may block all legitimate mails [120, 116].

�e causative a�ack has recently a�racted growing interest from the scienti�c community

due to its long-lasting impact on learning algorithms. In general, if one a�empt to harness human

resources for training models, then the training data is in danger of contamination. Speci�cally,

the adversary can carry out the causative a�ack either by introducing feature noise or label noise

to the training data. Di�erent types of feature noise have been extensively studied in several

literature [48, 71, 107, 116]. However, li�le is known on how adversarial label noise is induced.

Most of previous work either assume that labels are erased at random [22], or they restrict the

underlying distribution of label noise to certain families without considering the a�ack strategy

from the adversary’s perspective [49, 97]. Recently, a label �ips strategy based on heuristics is

proposed to a�ack support vector machines (SVMs) [12].

�is chapter focuses on a special causative a�ack called adversarial label �ips a�ack. It ab-

stracts a scenario where the adversary contaminates the training data through �ipping labels in

the supervised learning se�ing. More exactly, the adversary aims to �nd a combination of label

�ips under a given budget so that a classi�er trained on such data will have maximal classi�ca-

tion error. Motivated by Tikhonov regularization, I present an optimization framework for solving

this problem. I then devise an algorithm for a�acking support vector machine, which can be e�-

ciently solved as two minimization problems. Experiments demonstrate that the a�ack maximally

degrades the accuracy of SVMs with di�erent kernels.

�e rest of this chapter is organized as follows. �e problem of adversarial label �ips is de-

scribed in Section 6.1. A framework for �nding the near-optimal label �ips is presented in Sec-

tion 6.2. �e algorithm for a�acking SVMs is derived in Section 6.3, followed by experimental

results on both synthetic and real-world data in Section 6.4. Section 6.5 provides conclusions and

59



6. Causative Label-Flip A�ack on Support Vector Machines

discussions.

6.1. Problem Formulation

In the supervised classi�cation problem, the training set of n instances is denoted asS := {(xi, yi)
|xi ∈ X , yi ∈ Y}ni=1, with the input space X and the label space Y := {−1, 1}. Given a hypothesis
space H and a loss function V , the goal is to �nd a classi�cation hypothesis fS ∈ H by solving

Tikhonov regularization problem

fS := arg min
f
γ

n∑

i=1

V (yi, f(xi)) + ‖f‖2H, (6.1)

where fS denotes the classi�er trained on S, and γ is a �xed positive parameter for quantifying

the trade o�. Remark that the �rst term in Eq. (6.1) re�ects the empirical loss of f on S, and the

second term re�ects the generalization ability of f . Given an instance x ∈ X , the classi�cation
decision is made according to the sign of fS(x).

To express the label �ips, I �rst introduce a set of variables zi ∈ {0, 1}, i = 1, . . . , n. �en

replace yi with y
′
i := yi(1 − 2zi) so that if zi = 1 then the label is �ipped y′

i = −yi, otherwise

y′
i = yi. Denote S

′ := {(xi, y
′
i)}ni=1 the tainted training set, which shares the same instances as

S but with some �ipped labels. �e adversary constructs S′ in such a way that the resulting fS′

yields maximal loss on some test set T . �us, the problem of �nding the near-optimal label �ips

can be formulated as

max
z

∑

(x,y)∈T

V (y, fS′(x)) , (6.2)

s.t. fS′ ∈ arg min
f
γ

n∑

i=1

V
(
y′

i, f(xi)
)

+ ‖f‖2H, (6.3)

n∑

i=1

cizi ≤ C, zi ∈ {0, 1}, (6.4)

where ci ∈ R0+ is the cost (or risk) of �ipping label yi from the adversary’s viewpoint. Constraint

Eq. (6.4) limits the total adversarial cost of label �ips to C . Unfortunately, the above bilevel op-

timization problem is intrinsically hard due to the con�ict and the interaction between Eq. (6.2)

and Eq. (6.3). �e con�ict arises from the fact that for a given training set the defender learns a

classi�er with minimal empirical loss and good generalization ability, whereas the adversary ex-

pects that the classi�er has maximal loss and poor generalization ability. �at is, the bene�cial

outcome in one of them is associated with a detrimental outcome in another. Moreover, since

any single �ipped label may lead to a change to the classi�er, the greedy strategy that �ips labels

based merely on the current classi�er is ine�ective. Essentially, the adversary has to evaluate each

combination of label �ips and selects the one that deteriorates the classi�er the most.

As solving even the simplest linear bilevel problem is strong NP-hard [161] and an exhaus-

tive search on all combinations of �ips is prohibitive, I resort to a relaxed formulation of �nding

the near-optimal label �ips. In particular, I assume that the adversary only maximizes the empir-

ical loss of the classi�er on the original training set, yet indulges the defender in maximizing the

generalization ability of the classi�er. To obtain a set of label �ips that jointly deteriorates the clas-

60



6.2. Label Flip A�ack Framework

si�er’s performance to the greatest extent, the adversary must foresee the reaction of the defender

to the �ipped labels. With these considerations in mind, I relax the original bilevel problem and

present a loss minimization framework in the next section.

6.2. Label Flip Attack Framework

Let A and B be two sets of labeled instances, I �rst de�ne an auxiliary loss function

g(B, fA) := γ
∑

(x,y)∈B

V (y, fA(x)) + ‖fA‖2H, (6.5)

where fA denotes the classi�er trained on A. Note that the �rst term in Eq. (6.5) re�ects the

empirical loss incurred by fA over the set B, which di�ers from Eq. (6.1).

To maximally degrade the classi�er’s performance, S′ is selected in a way such that it has

maximal loss under the original classi�er fS but yields minimal loss under the tainted classi�er

fS′ . �e intuition is as follows: the adversary shi�s the classi�cation hypothesis so that the “terri-

bly” mislabeled instances in S′ asserted by the original classi�er are now identi�ed as “perfectly”

labeled instances by the tainted classi�er. With this strategy, the adversary can proactively cause

the defender to produce a classi�er whose loss is low on S′ but high on S, which in turn has high

loss on the test set. Formally, this idea can be represented as

min
z

g(S′, fS′)− g(S′, fS), (6.6)

s.t.
n∑

i=1

cizi ≤ C, zi ∈ {0, 1}.

Remark that given any training set the defender always �nds the optimal classi�er by solving

Tikhonov regularization problem. �us, the �rst term in Eq. (6.6) re�ects the defender’s destined

action on the training setS′. �e second term quanti�es the empirical loss onS′ using the classi�er
fS trained on the original set S, which represents the adversary’s strategy of selecting instances

with high loss.

I further re�ne the objective function and constraints of Eq. (6.6) for the algorithmic conve-

nience. Denote U the expanded representation of S so that each instance in S is duplicated with

a �ipped label. Formally, the set U := {(xi, yi)}2n
i=1 is constructed as follows

(xi, yi) ∈ S, i = 1, . . . , n,

xi := xi−n, i = n+ 1, . . . , 2n,

yi := −yi−n i = n+ 1, . . . , 2n.

I introduce an indicator variable qi ∈ {0, 1}, i = 1, . . . , 2n for each element in U , where

qi = 1 denotes that (xi, yi) ∈ S′, and qi = 0 denotes that it is not. Replace S′ by U and substitute

61



6. Causative Label-Flip A�ack on Support Vector Machines

Eq. (6.5) into Eq. (6.6), one can rewrite the near-optimal label �ips problem as

min
q,f

γ
2n∑

i=1

qi [V (yi, f(xi))− V (yi, fS(xi))] + ‖f‖2H, (6.7)

s.t.
2n∑

i=n+1

ciqi ≤ C,

qi + qi+n = 1, i = 1, . . . , n,

qi ∈ {0, 1}, i = 1, . . . , 2n.

�e term ‖fS‖2H can be ignored as it is a constant with respect to the optimization variables.

Indicator variables qn+1, . . . , q2n correspond to z1, . . . , zn in the previous bilevel formulations,

respectively. �e constraint qi + qi+n = 1 re�ects that only one label can be chosen for the in-

stance xi. Due to the acquiescence on the defender’s behavior of maximizing the generalization

ability of the tainted classi�er, the con�icting objectives of the defender and the adversary are

now incorporated into one minimization problem. Given a training set one can employ the above

framework to compute the set of label �ips that will jointly degrade the classi�er’s accuracy with-

out exceeding a speci�ed budget. Recall that SVMs can be considered as a special case of Tikhonov

regularization, it is straightforward to develop an a�ack on SVMs subject to this framework, as

the reader will see in the next section.

6.3. Attack on SVM

SVMs project the original training instances from the input space X to the feature space F by

Φ : X → F . In general, SVMs trained on S has the form

fS(x) :=
n∑

i=1

αiK(x,xi) + b,

where K is a Mercer Kernel which satis�es the property K(x,xi) = Φ(x)⊤Φ(xi) and b ∈ R

denotes the bias. �e classi�er can be also rewri�en as

fS(x) := w⊤x + b,

wherew :=
∑n

i=1 αiΦ(xi) andw ∈ F . �us, the classi�cation boundary of a SVM is a hyperplane

in F with normal vector w. Given the hinge loss function V (y, f(x)) := max(0, 1 − yf(x)),
Tikhonov regularization for SVMs is a constrained quadratic programming (QP) problem

min
w,ξ,b

γ
n∑

i=1

ξi +
1

2
‖w‖2 (6.8)

s.t. yi(w
⊤xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n,

where ξi represents the hinge loss of (xi, yi) resulting from the classi�er fS . Denote ǫi :=
max(0, 1−yifS′(xi)) the hinge loss of (xi, yi) resulting from the tainted classi�er fS′ . By plugging

62



6.4. Experiments

Eq. (6.8) into Eq. (6.7), yields

min
q,w,ǫ,b

γ
2n∑

i=1

qi(ǫi − ξi) +
1

2
‖w‖2 (6.9)

s.t. yi(w
⊤xi + b) ≥ 1− ǫi, ǫi ≥ 0, i = 1, . . . , 2n,

2n∑

i=n+1

ciqi ≤ C,

qi + qi+n = 1, i = 1, . . . , n,

qi ∈ {0, 1}, i = 1, . . . , 2n.

Observe that Eq. (6.9) involves an integer programming problem which is in general NP-
hard. �erefore, I �rst relax it into a continuous optimization problem by allowing all qi to take

values between [0, 1]. �en I decompose Eq. (6.9) into two sub-problems and devise an iterative

approach to minimize them alternatively. On the one hand, by �xing q, the minimization over

w, ǫ, b is reduced to the following QP problem

min
w,ǫ,b

γ
2n∑

i=1

qiǫi +
1

2
‖w‖2 (6.10)

s.t. yi(w
⊤xi + b) ≥ 1− ǫi, ǫi ≥ 0, i = 1, . . . , 2n.

On the other hand, by �xing w, b and using the computed ǫ the minimization over q can be

described as a linear programming (LP) as follows

min
q

γ
2n∑

i=1

qi(ǫi − ξi) (6.11)

s.t.
2n∑

i=n+1

ciqi ≤ C,

qi + qi+n = 1, i = 1, . . . , n,

0 ≤ qi ≤ 1, i = 1, . . . , 2n.

It is easy to see that byminimizing Eq. (6.10) and Eq. (6.11) the objective function Eq. (6.9) decreases

monotonically. Note that ξi can be computed beforehand, the algorithm can be implemented e�-

ciently with o�-the-shelf QP and LP solvers. A�er the algorithm converges, I greedily select the

largest subset of {qn+1, . . . , q2n}meeting the given budget and �ip the corresponding labels. �e

complete procedure is summarized in Fig. 6.1, which I denote as ALFA.

6.4. Experiments

I demonstrate the label �ips a�ack on SVMs with linear kernel and radial basis function (RBF)

kernel using two sets of experiments. First, I employed some two-dimensional synthetic data to

visualize the decision boundaries of SVMs under the label �ips. �e second set of experiments was

conducted on ten real-world data sets, where I concentrated the in�uence of label �ips on SVMs

63



6. Causative Label-Flip A�ack on Support Vector Machines

Input : original training set S, adversarial cost c1, . . . , cn, budget C , parameter γ
Output: tainted training set S′ with �ipped labels

1 Find fS by solving Eq. (6.8) on S; /* QP */

2 foreach (xi, yi) ∈ U do

3 ξi ← max(0, 1 − yifS(xi));
4 ǫi ← 0;

5 repeat

6 Find q1, . . . , q2n by solving Eq. (6.11); /* LP */

7 Find ǫ1, . . . , ǫ2n by solving Eq. (6.10); /* QP */

8 until convergence;

9 L←Sort([qn+1, . . . , q2n], “desc”);
/* L is an array of sorted indices */

10 for i← 1 to n do y′
i ← yi;

11 ;

12 j ← 1;

13 while
∑j

i=1 qL[i] ≤ C do

14 y′
L[j]−n ← −yL[j]−n; /* Flip label */

15 j ← j + 1;

16 return S′ ← {(xi, y
′
i)}ni=1;

Figure 6.1.: Adversarial Label Flips A�ack on SVMs (ALFA)

with respect to di�erent budgets. In all experiments, the proposed ALFA was compared with the

following three label �ip strategies

• Uniform random �ip: instances are uniformly chosen at random from the training set and

their labels are �ipped. �is can be regarded as introducing label noise to the training set

from the non-adversarial perspective.

• Nearest-�rst �ip: instances that have small distances to the decision hyperplane in the fea-

ture space are �rst �ipped. �is corresponds to a thoughtless labeler who erroneously labels

instances that are di�cult to be distinguished.

• Furthest-�rst �ip: instances that have large distances to the decision hyperplane in the fea-

ture space are �rst �ipped. In this way, I can simulate a malicious labeler who deliberately

gives wrong labels on instances that are easy to be distinguished.

�e adversarial cost was set as ci := 1 for i = 1, . . . , n. �us, given a budget C one can �ip

at most min(⌊C⌋, n) labels. Experiments were conducted as follows. First, I randomly selected

the same number of instances from two classes and construct the training set and the test set,

respectively. Second, the training set was tainted by performing di�erent �ip strategies. �ird,

I trained SVMs (with γ := 1) on the original training set and four tainted training sets. Finally,

the classi�cation error of each SVM was measured on the test set, respectively. As the test set is

balanced, the worst performance of a classi�er is with 50% error rate, which corresponds to the

random guess. Hence, an error rate around 50% indicates an e�ective a�ack strategy on SVMs.

64



6.4. Experiments

In the experiments, the convergence of ALFA typically occurred in 5 ∼ 10 iterations. On a

training set with 300 instances, the MATLAB implementation1 without special code-level opti-

mization takes about 3 seconds for computing the near-optimal label �ips2.

6.4.1. Synthetic Examples

I generated linear and parabolic pa�erns in two dimensional space for this experiment. From each

pa�ern, I selected 100 instances as the training set and 800 instances as the test set. Let C := 20,
decision boundaries of SVMs under di�erent �ip strategies are illustrated in Fig. 6.2.

By comparing Fig. 6.2(b) with Fig. 6.2(f), one can clearly observe the dramatic changes on

decision boundaries of SVMs under ALFA. For instance, the original decision plane of linear SVM

on the parabolic pa�ern is almost tilted by 90 degrees under ALFA (see the 3rd row of Fig. 6.2).

Moreover, when ALFA is applied to SVMs with RBF kernel, the error rate increases from 3.2%
to 32.4% on the linear pa�ern and 5.1% to 40.8% on the parabolic pa�ern. Not surprisingly, the

nearest-�rst strategy is least e�ective due to the tolerance nature of so�-margin SVMs. While the

furthest-�rst strategy increases the classi�cation error as well, it is less compelling than ALFA.

Further note that the performance of SVMs is quite stable under the uniform random label noise

and the error rate hardly changes with 20 �ipped labels, as shown in Fig. 6.2(c). �is implies that

previous robust learning algorithms based on the assumption of random label noise may be too

optimistic as they underestimate the adversary’s impact on the classi�er’s performance.

6.4.2. On Real-World Data

I continue the investigation of di�erent �ip strategies using 10 real-world data sets, which were

downloaded from LIBSVM website. For each data set, I randomly selected 200 instances as the

training set and 800 instances as the test set. As in practice the adversary usually controls only

a small portion of the training data, I demonstrated the e�ectiveness of label �ips with respect to

di�erent budgets, especially with low budget.

Figure 6.3 depicts the error rate of SVMs up to 60 label �ips (i.e. C := 1, . . . , 60). As expected,
the error rate of SVMs increases with the growth of label �ips. While SVMs sometimes show the

resilience to the random label noise, the error rate signi�cantly increases under ALFA and the

furthest-�rst strategy due to their adversarial nature. �e advantage of ALFA is most signi�cant

when SVMs are trained with RBF kernel. On many data sets, by �ipping only 20 labels (i.e. 10%
of training data) with ALFA the error rate of RBF-SVM rises to 50%, which is turned into the

random guess. Moreover, I remark that ALFA is more cost-e�ective than the furthest-�rst strategy

especially with small �ips. When the number of �ipped labels is large, ALFA keeps trapping SVMs

with worst performance at 50% error rate. On the contrary, the furthest-�rst strategy increases

the error rate over 50% (see Fig. 6.3(b) a9a,connect-4,letter), which in fact regains the

predictive power of SVMs. �is behavior is due to the fact that the proposed framework captures

the classi�er’s reaction to �ipped labels, whereas the furthest-�rst strategy merely considers the

information about the current classi�er.

1MATLAB implementation andmore experimental results are available athttp://home.in.tum.de/∼xiaoh
2I tried an exhaustive search to �nd the groundtruth optimal label �ips. For example, To obtain the optimal 20 label

�ips out of 300 training instances, the program has to check over 7 × 1030 combinations. Due to the extremely

slow progress, I terminated the program a�er one month running on a 12-cores workstation.

65



6. Causative Label-Flip A�ack on Support Vector Machines

(a) Synthetic data
Li

ne
ar

 p
at

te
rn

(b) No Flips

1.8%
Li

ne
ar

 S
V

M

(c) Random

1.9%

(d) Nearst

6.9%

(e) Furthest

9.5%

(f) ALFA

21.8%

3.2%

R
B

F
-S

V
M

4.0% 3.5% 26.5% 32.4%

P
ar

ab
ol

ic
 p

at
te

rn

23.5%

Li
ne

ar
 S

V
M

28.8% 29.2% 40.5% 48.0%

5.1%

R
B

F
-S

V
M

9.4% 10.1% 12.9% 40.8%

Figure 6.2.: Decision boundaries of SVMs under di�erent �ip strategies. �e �rst and second rows

illustrate results on the linear pa�ern, the third and fourth rows illustrate results on the

parabolic pa�ern. For each strategy, the number of �ipped labels is �xed to 20 (i.e. 20%
of the training data). Each point represents an instance. Labels are denoted in red and

blue. In each plot, decision regions of SVMs are shaded in di�erent colors. Only �ipped

instances in the training set are highlighted. �e percentage under each plot indicates

the error rate of SVM measured on the test set, respectively. (a) �e synthetic data

generated for the experiment. (b) Decision boundaries of SVMs trained on the original

training set without label �ips. (c) Decision boundaries of SVMs under random label

�ips. (d) Decision boundaries of SVMs under nearest-�rst �ip strategy. (e) Decision

boundaries of SVMs under furthest-�rst �ip strategy. (f)Decision boundaries of SVMs

under ALFA.

From the perspective of a cost-averse adversary, it is also interesting to know the required

budget for turning a SVM into a random guess. Table 6.1 shows the required percentage of label

�ips when the tainted SVM reaches 50% error rate on the test set. First of all, observe that the

required percentage of label �ips greatly depends on data sets, or how training instances are dis-

tributed in the feature space. Moreover, comparing with the linear kernel it is easier to taint SVMs

with RBF kernel. �is is because by mapping instances to the in�nite dimensional feature space,

instances are more sparsely distributed. Hence, �ipping a label will result a signi�cant change on

the separating hyperplane. Furthermore, in both cases ALFA �ips less labels than other strategies.

66

figures/decsamp-cut.eps


6.4. Experiments

0 20 40 60
20

30

40

50

60

# label flips

er
ro

r 
ra

te
 %

a9a

0 20 40 60
20

30

40

50

60

# label flips

er
ro

r 
ra

te
 %

acoustic

0 20 40 60
30

35

40

45

50

55

# label flips

er
ro

r 
ra

te
 %

connect-4

0 20 40 60
30

35

40

45

50

55

# label flips

er
ro

r 
ra

te
 %

covtype

0 20 40 60
10

15

20

25

30

35

40

# label flips

er
ro

r 
ra

te
 %

dna

0 20 40 60
0

10

20

30

40

50

# label flips

er
ro

r 
ra

te
 %

gisette

0 20 40 60
20

30

40

50

60

# label flips

er
ro

r 
ra

te
 %

ijcnn1

0 20 40 60
30

40

50

60

70

# label flips

er
ro

r 
ra

te
 %

letter

0 20 40 60
20

30

40

50

60

# label flips

er
ro

r 
ra

te
 %

seismic

0 20 40 60
0

10

20

30

40

50

60

# label flips

er
ro

r 
ra

te
 %

satimage

 

 

Rand Nearest Furthest ALFA

(a) Error rate of SVMs with linear kernel under di�erent �ip strategies.

0 20 40 60
20

30

40

50

60

70

# label flips

er
ro

r 
ra

te
 %

a9a

0 20 40 60
20

30

40

50

60

# label flips

er
ro

r 
ra

te
 %

acoustic

0 20 40 60
35

40

45

50

55

# label flips

er
ro

r 
ra

te
 %

connect-4

0 20 40 60
35

40

45

50

55

# label flips

er
ro

r 
ra

te
 %

covtype

0 20 40 60
0

10

20

30

40

50

# label flips

er
ro

r 
ra

te
 %

dna

0 20 40 60
10

20

30

40

50

60

# label flips

er
ro

r 
ra

te
 %

gisette

0 20 40 60
35

40

45

50

# label flips

er
ro

r 
ra

te
 %

ijcnn1

0 20 40 60
30

40

50

60

70

# label flips

er
ro

r 
ra

te
 %

letter

0 20 40 60
20

30

40

50

60

# label flips

er
ro

r 
ra

te
 %

seismic

0 20 40 60
0

10

20

30

40

50

60

# label flips

er
ro

r 
ra

te
 %

satimage

(b) Error rate of SVMs with RBF kernel under di�erent �ip strategies.

Figure 6.3.: Error rate of SVMs as a function of the number �ipped labels. Within each experiment,

the training set consists of 200 instances (100 for each class) selected randomly. �e

adversary can �ip at most 60 labels (i.e. 30% of the training data). �e classi�cation

error is measured on 800 test instances with balanced labels. Results are averaged over

60 repetitions. Note that 50% error rate corresponds to the random guess.

For the linear kernel the required percentage of label �ips is roughly stable with respect to the size

of the training set. �at is, the required �ips rises linearly when the size of training set increases.

On the contrary, for RBF kernel the required percentage increases as the training set becomes

larger.

Finally, I adapted ALFA to a�ack the label noise robust SVM (LN-SVM) based on a simple

kernel matrix correction [12]. �e experiment indicates that, although LN-SVM shows resilience

to the random noisy labels, it still greatly su�ers from ALFA.

67

figures/exp1_linear.eps
figures/exp1_rbf.eps


6. Causative Label-Flip A�ack on Support Vector Machines

Table 6.1.: �e percentage of �ipped labels when a SVM reaches 50% error rate. Experiment is con-

ducted on ten data sets with 100, 200 and 300 training instances, respectively. �e clas-

si�cation error is measured on the randomly selected test set with 800 instances. From

the adversary’s viewpoint, smaller percentage value indicates a more cost-e�ective �ip

strategy as it requires lower budget. For each data set, the most e�ective strategy is

highlighted with the boldface. Results are averaged over 60 repetitions.
100 200 300

Data sets Rand. Near. Furt. ALFA Rand. Near. Furt. ALFA Rand. Near. Furt. ALFA

SVM with linear kernel

a9a 41.9 70.4 29.5 31.5 43.7 72.2 27.1 29.8 44.5 72.9 26.7 29.9
acou. 38.5 77.6 19.2 17.1 41.5 77.4 18.8 17.3 42.5 76.6 18.8 17.4

conn. 38.2 67.7 27.7 29.1 40.1 73.7 24.4 27.5 42.2 77.3 21.4 25.2
covt. 32.1 73.7 25.0 23.8 37.0 74.4 24.6 22.6 36.9 75.1 23.9 21.7

dna 43.4 47.6 50.7 47.8 42.5 51.6 45.8 44.2 43.5 54.6 42.6 43.2
gise. 47.7 56.6 43.7 43.6 47.0 61.8 37.9 37.9 47.6 63.8 35.6 35.6
ijcn. 33.9 62.6 26.5 25.4 37.9 72.7 21.5 20.8 38.2 76.4 19.7 17.6

le�. 36.7 80.6 18.2 19.0 40.2 82.6 17.1 18.6 41.5 82.1 17.4 19.1
seis. 38.7 73.8 26.3 25.5 40.7 71.3 28.3 28.7 41.3 70.7 28.8 28.1

sati. 44.5 70.5 30.0 32.2 45.4 70.3 29.8 25.5 46.4 69.2 30.6 22.3

SVM with RBF kernel

a9a 21.6 65.3 12.8 7.7 31.5 74.9 18.8 12.0 36.1 76.1 20.4 14.1

acou. 6.3 14.7 4.1 2.9 16.3 36.8 10.2 7.1 22.6 52.7 13.7 7.8

conn. 7.2 33.8 3.7 2.8 18.5 68.8 8.7 5.3 25.2 76.2 12.3 6.8

covt. 2.5 13.2 1.8 1.4 6.6 55.8 4.3 2.2 11.6 71.2 7.3 3.9

dna 27.6 53.6 20.8 11.6 40.9 63.7 31.6 17.0 46.7 66.5 32.6 19.2

gise. 29.4 68.9 23.4 14.1 38.7 70.8 28.4 17.8 43.4 69.2 29.0 19.3

ijcn. 8.1 27.2 4.2 3.5 19.4 41.0 13.6 8.4 25.0 40.3 20.4 10.4

le�. 22.6 78.0 11.7 8.0 31.0 84.4 14.1 10.9 35.3 84.5 14.2 11.9

seis. 11.0 33.4 6.4 4.3 24.0 64.4 13.5 7.4 29.3 69.0 16.4 9.6

sati. 39.1 69.2 25.5 23.7 41.8 68.8 28.7 22.3 43.4 67.8 30.3 23.3

6.5. Conclusion

When the hope is to develop a robust learning algorithm under adversarial conditions, it is incum-

bent on the researchers to understand the adversary’s strategy. �roughout this chapter, I have

investigated the problem of adversarial label �ips in the supervised learning se�ing, where an

a�acker contaminates the training data through �ipping labels. I present an optimization frame-

work for the adversary to �nd the near-optimal label �ips that maximally degrades the classi�er’s

performance. �e framework simultaneously models the adversary’s a�empt and the defender’s

reaction in a loss minimization problem. Based on this framework, I develop an algorithm for

a�acking SVMs. Experimental results demonstrate the e�ectiveness of the proposed a�ack on

both synthetic and real-world data set. While solving problems for adversaries may seem coun-

terproductive, I believe that investigating the strategy of the adversary and the vulnerability of

the defender is the only way to develop a robust learning algorithm in the future.

Comparing with the random label noise, the adversarial label noise has been shown to be

more in�uential to the classi�er’s performance. �us, the proposed framework can be used as

a baseline for evaluating the robustness of a learning algorithm under the noisy condition. �e

framework can be also extended to the active learning and online learning se�ings, where labels

68



6.5. Conclusion

are usually commi�ed by massive annotators with various motivations. Another relevant sce-

nario is the crowdsourcing platform (e.g. Amazon’s Mechanical Turk), where the labeled data

can be obtained quickly from crowds of human workers. In such se�ings, the adversarial label

noise is inevitable due to the limitation of quality control mechanisms. It would be interesting

to formulate this learning problem as a n-player hybrid game, which contains both cooperative

and non-cooperative players. By categorizing players into coalitions and modeling the worst-case

behavior of each coalition, one may develop an algorithm that learns from good labelers yet shows

resilience to malicious labelers. �e algorithm in the next chapter, which is motivated by this idea,

can e�ectively solve the problem of learning from multiple annotators/users/teachers, or more

generally, “observers”. In Chapter 7 and Chapter 8, the reader will reconsider adversarial learning

from the defender’s point of view. From now on, the focus of the dissertation will be shi�ed from

examining the vulnerabilities to building reliable learning algorithms.

69



6. Causative Label-Flip A�ack on Support Vector Machines

70



One person’s data is another person’s noise.

K.C. Cole

Part IV.

Reliable Learning Algorithms

71





Chapter 7
Learning from Multiple Observers with
Unknown Expertise

In Chapter 6, I have demonstrated the label noise in the training data can signi�cantly subvert

the learning process of a model, thereby degrade its accuracy. As a consequence, it is natural for

researchers to seek for more robust learning algorithms that are resilient to the adversarial noise.

An intuitive solution is to harness not only a single label, but multiple labels for each instance to

train the model. In this chapter, I realize this idea by proposing a hierarchical Gaussian process

model that can e�ectively learn from multiple, but unreliable labels.

�e motivation of building such model is also inspired by the recent advent of social web ser-

vices. Nowadays, data can be shared and processed by a large number of users. As a consequence,

researchers are faced with data sets that are labeled by multiple users. For example, Wikipedia

provides a feedback tool to engage readers in the assessment of article quality based on four cri-

teria, i.e. “trustworthy”, “objective”, “complete” and “well-wri�en”. �e Amazon Mechanical Turk

is an online system that allows the requesters to hire users from all over the world to perform

crowdsourcing tasks. Galaxy Zoo is a website where visitors label astronomical images. While

providing large amounts of cheap labeled data in a short time, these platforms usually have li�le

quality control over users. �us, the response of each user can vary widely, and in some cases may

even be adversarial. A natural question to ask is how to integrate opinions from multiple users for

obtaining an objective opinion. �e commonly used “majority vote” and “take the average” heuris-

tics completely ignore the individual expertise and may fail in the se�ings with non-Gaussian or

adversarial noise. �is casts a challenge of learning from multiple sources for the machine learning

and data mining researchers [34].

Despite these web applications, one can �nd this problem in wide range of domains. Recently,

sensor networks have been deployed for the scienti�c monitoring of remote and hostile environ-

ments. For example, researchers deployed a 16-node sensor network on a tree to study its elevation
under di�erent weather fronts [158]. Each node samples climate data at regular time intervals and

the statistics are collected. Using sensor data in this manner presents many novel challenges, such

as fusing noisy readings from several sensors, detecting faulty and aging sensors. Importantly, it

is necessary to use the trends and correlations observed in previous data to predict the value of

environmental parameters into the future, or to predict the reading of a sensor that is temporarily

unavailable (e.g. due to network outages). However, these tasks may have to be performed with

73



7. Learning from Multiple Observers with Unknown Expertise

only limited knowledge of the location, reliability, and accuracy of each sensor.

In this chapter, the labeler (including user, annotator and sensor) mentioned above is referred

to as the observer. Given an instance, the label (e.g. annotation, reading) provided by an observer is

called the response. Unlike the conventional supervised learning scenario, in the proposed se�ing

each instance is associated with a set of responses, yet the ground truth is unknown as some

responses may be subjective or come from unreliable observers. I concentrate on the regression

problem with continuous responses from multiple observers. Speci�cally, the proposed method

provides a principled way to answer the following questions:

1. How to learn a regression function to predict the ground truth precluding the prior knowl-

edge of observers?

2. How to estimate the expertise of each observer without knowing the ground truth?

7.1. Related Work

�ere is a number of studies dealing with the se�ing involving multiple labelers, yet most of them

focus on the classi�cation problem. Early work such as [47, 85, 148] focus on estimating the error

rates of observers. In the machine learning community, the problem of estimating the ground

truth from multiple noisy labels is addressed in [145]. Instead of estimating the ground truth and

learning the classi�er separately, recent interest has shi�ed towards on learning classi�ers directly

from such data. Authors of [34] provide a general theory of selecting the most informative samples

from each source for model training. Later, a probabilistic framework is presented by [130, 131]

to address the classi�cation, regression and ordinal regression problem with multiple annotators.

�e framework is based on a simple assumption that the expertise of each annotator does not

depend on the given data. �is assumption is infringed in [167, 176] and later is extended to the

active learning scenario [175]. �ere are some other related work that focus on di�erent se�ings

[26, 172].

�e above studies paid li�le a�ention to the regression problem under multiple observers,

which is the main core of this chapter. Moreover, the proposed work di�ers from the related work

in various aspects. First, I employ a less-parametric method, i.e. the Gaussian process (GP), to

model the observers and the regression function. �is allows one to associate the observer’s ex-

pertise with both ground truth and input instance. Moreover, the proposed model is presented in

an extensible probabilistic framework. �e missing data and prior knowledge can be straightfor-

wardly incorporated into the model.

�e rest of this chapter is organized as follows. Section 7.2 formulates the problem and in-

troduces a probabilistic framework. �e framework consists of two parts. �e regression model is

introduced in Section 7.2.2. A linear and a non-linear observer model is proposed in Section 7.2.3

and Section 7.2.4, respectively. Section 7.3 reports the experimental results on both synthetic and

real-world data sets. Conclusions are drawn in Section 7.4.

7.2. Problem Formulation

Denote the instance space X ⊆ R
L and the response space Y ⊆ R

D and the ground truth space

Z ⊆ R
D. Given N instances x1, . . . ,xN where xn ∈ X , denote the objective ground truth for

xn as zn ∈ Z . In the proposed se�ing, the ground truth is unknown. Instead, consider multiple

74



7.2. Problem Formulation

responses yn,1, . . . ,yn,M ∈ Y for xn provided by M di�erent observers. For compactness, the

N × L matrix of instance xn,l is represented as X := [x1, . . . ,xN ]⊤. �e N ×M ×D tensor of

observers’ responses yn,m,d is denoted by Y := [y1,1, . . . ,y1,M ; . . . ; yN,1, . . . ,yN,M ]. �eN ×D
matrix of ground truth zn,d is denoted by Z := [z1, . . . , zN ]⊤.

Given the training data X and Y, the goal is threefold. First, it is of interest to get an estimate

of the unknown ground truth Z. �e second goal is to learn a regression function f : X → Z
which generalizes well on unseen instances. Finally, for each observer the goal is to model its

expertise as a function of the input instance and the ground truth, i.e. g : X × Z → Y .

7.2.1. Probabilistic Framework

To formulate this problem from the probabilistic perspective, I consider the training data X and

Y as random variables. �e ground truth Z is unknown and hence is a latent variable. In general,

the observed response Y depends both on the unknown ground truth and the instance. �at

is, observers may exhibit varying levels of expertise on di�erent instances. On Wikipedia the

assumption is particularly true for the novice readers, whereas the rating from an expert reader

is consistent across di�erent types of articles. Figure 7.1 illustrates the conditional dependence

between X,Y and Z with a graphical model. As a consequence, the joint conditional distribution

can be expressed as

p(Y,Z,X) = p(Z |X)p(Y |Z,X)p(X)

∝
N∏

n=1

D∏

d=1

p(zn,d |xn)
M∏

m=1

p(yn,m,d |xn, zn,d), (7.1)

where the term p(X) is dropped as the other two conditional distributions are more interesting.

�ere are two underlying assumptions in this model. First, each dimension of the ground truth is

independent, but is not identically distributed. Second, all observers respond independently.

xn yn,mzn

M
N

Figure 7.1.: Graphical model of instances X, unknown ground truth Z and responses Y fromM
di�erent observers. Only the shaded variables are observed.

1

Note that the �rst term in (7.1) indicates the probabilistic dependence between the ground

truth and the input instance, whereas the second term characterizes the observers’ expertise. Pre-

vious work have explored di�erent parametric methods to model these two conditional distribu-

tions [167, 176, 130, 175, 131]. A distinguishing factor in this chapter is that, I employ the Gaussian

process as the backbone to construct the model. Speci�cally, the generative process of Y can be

1While these are reasonable assumptions, theymay not entirely true. For instance, in the article feedback ofWikipedia,

an article scores high on “well-wri�en” is o�en more “trustworthy”. Moreover, readers share the same education

background are more likely to produce similar ratings.

75



7. Learning from Multiple Observers with Unknown Expertise

interpreted as follows

zn,d = fd(xn) + ǫn, (7.2)

yn,m,d = gm,d(xn, zn,d) + ξm,d, (7.3)

where ǫ and ξ is independent identically distributed Gaussian noise, respectively. Note that the

choice of {fd} and {gm,d} characterizes the regression function and the observers, respectively.

In particular, an ideal observer would have gm,d(zn,d) = zn,d on every d. �erefore, the goal can

be understood as searching {fd} and {gm,d} given the training data. Intuitively, if two instances

are close to each other in X , then their corresponding ground truth should be close in Z through

the mapping of {fd}, which in turn restricts the searching space of {gm,d} when Y is known.

7.2.2. Regression Model

I �rst concentrate on Eq. (7.2) and represent functions {fd} by the Gaussian process with some

non-linear kernel. Speci�cally, the conditional distribution of the ground truth given the training

instances is assumed to be

p(Z |X) =
D∏

d=1

N (z:,d |0,Kd) , (7.4)

where the dth dimension of the ground truth is denoted as z:,d. I introduce a N × N kernel

matrixKd that depends on X, where each element is given by the value of a composite covariance

function kd : X × X → R0+, made up of several contributions as follows

kd(xi,xj) := κ2
1,d exp

(
−
κ2

2,d

2
‖xi − xj‖2

)
+ κ2

3,d + κ2
4,dx⊤

i xj + κ2
5,dδ(xi,xj). (7.5)

�e noise term ǫ in Eq. (7.2) is folded into the Kronecker delta function δ(xi,xj). �e covariance

function involves an exponential of a quadratic term, with the addition of a constant bias, a linear

and a noise terms. For each dimension, the parameters need to be learned from the data are

κ1,d, . . . , κ5,d. Samples from this prior are plo�ed for various values of the parameters in Fig. 7.2.

-10 0 10
-3

-2

-1

0

1
(1, 2, 1, 0, 0)

-10 0 10

-2

0

2

(1, 0, 1, 0, 0)

-10 0 10

-10

0

10

(1, 0, 1, 1, 0)

-10 0 10

-10

0

10

(1, 2, 1, 1, 1)

Figure 7.2.: Samples drawn from a Gaussian process prior de�ned by the covariance function

Eq. (7.5). �e title above each plot denotes the value of (κ1,d, κ2,d, κ3,d, κ4,d, κ5,d).
�e samples are obtained using a discretization of the x-axis of 1000 equally spaced

points.

76

figures/priors.eps


7.2. Problem Formulation

7.2.3. Linear Observer Model

To model the observer’s expertise, I now concentrate on (7.3) and assume that {gm,d} is a linear
mapping from Z to Y , which does not depend on the instance at all. Denote y:,m,d the dth di-

mension response of all training instances provided by themth observer. �e second conditional

distribution in (7.1) is assumed to be

p(Y |Z,X) = p(Y |Z) =
M∏

m=1

D∏

d=1

N
(
y:,m,d

∣∣wm,dz:,d + µm,d1, σ2
m,dI

)
, (7.6)

where 1 is an all-ones vector with length N and I is a N × N identity matrix. Each observer is

characterized by 3×D parameters, i.e. wm,d, µm,d, σm,d ∈ R.

Parameter Estimation

Now I can combine Eq. (7.6) with Eq. (7.4) and estimate the set of all parameters, i.e. Θ :=
{{κ1,d, . . . , κ5,d}, {wm,d}, {µm,d}, {σm,d}}, by maximizing the likelihood function p(Y |X,Θ).
In the linear observer model, the latent variable Z can be marginalized out, which yields

p(Y |X,Θ) =
M∏

m=1

D∏

d=1

N
(
µm,d1, w2

m,dKd + σ2
m,dI

)
.

�e maximum likelihood estimator of µm,d is given by µ̃m,d = 1
N

∑N
n=1 yn,m,d. I hereina�er use

the short-hand y:,m,d := y:,m,d − µ̃m,d1. As a consequence, the log-likelihood function is given

by

FLOB := log p(Y |X,Θ) =
M∑

m=1

D∑

d=1

log p(y:,m,d |X,Θ)

=
M∑

m=1

D∑

d=1

−N
2

log(2π)− 1

2
log |C| − 1

2
tr
(
y⊤

:,m,dC−1y:,m,d

)
,

(7.7)

where C := w2
m,dKd + σ2

m,dI. To �nd the parameters by maximizing Eq. (7.7), I take the partial

derivatives of FLOB with respect to the parameters and obtain

∂FLOB

∂wm,d

= wm,dtr
(
BC−1Kd

)
, (7.8)

∂FLOB

∂σm,d

= σm,dtr
(
BC−1

)
, (7.9)

∂FLOB

∂κi,d
=

M∑

m=1

1

2
w2

m,dtr

(
BC−1 ∂Kd

∂κi,d

)
, (7.10)

whereB := C−1y:,m,dy⊤
:,m,d−I and ∂Kd

∂κi,d
is amatrix of element-wise partial derivatives of Eq. (7.5)

with respect to κ1,d, . . . , κ5,d. As there exists no closed-form solution, I resort to L-BFGS quasi-

Newton method to maximize FLOB. Essentially, in each iteration the gradients are computed by

Eqs. (7.8) to (7.10) and the parameters are updated accordingly.

77



7. Learning from Multiple Observers with Unknown Expertise

Estimate of Ground Truth

Note that the ground truth Z is marginalized out from Eq. (7.7) and still remains unknown. To esti-

mate the ground truth of all training instances, I need to �nd the posterior of Z, i.e. p(Z |Y,X) =
p(Y |Z,X)p(Z |X)/p(Y |X). By using the property of Gaussian distribution, one can show that

the posterior of z:,d follows N (u,V), which is unfortunately intractable. �erefore, I aim to seek

an approximate distribution close to the true posterior in the KL divergence sense. Take the dth

dimension of ground truth as example, the problem is equivalent to minimizing the KL divergence

between the true posterior and an arbitrary function q(z:,d), namely

KL[q(z:,d) ‖ p(z:,d |y:,:,d, . . . ,y:,M,d,X)] = −Q+ log
M∏

m=1

p(y:,m,d |X),

where Q :=
∫ (

q(z:,d) log
p(y:,1,d,...,y:,M,d | z:,d,X)p(z:,d | X)

q(z:,d)

)
dz:,d. One can see immediately that KL

divergence will be minimized when Q is maximized. Substituting Eq. (7.6) and Eq. (7.4) into Q
gives

Q =

∫
q(z:,d)

(
M∑

m=1

log p(y:,m,d | z:,d) + log p(z:,d |X)− log q(z:,d)

)
dz:,d

=

∫
q(z:,d)

( M∑

m=1

1

2σ2
m,d

(
2(1 + wm,d)y⊤

:,m,dz:,d − (1 + wm,d)2z⊤
:,dz:,d

)

− 1

2
z⊤

:,dK−1
d z:,d − log q(z:,d)

)
dz:,d + constant. (7.11)

I now parameterize q(z:,d) := N (z:,d |u,A) as a Gaussian density function, which gives

∫
z:,dq(z:,d)dz:,d = E[z:,d] = u

∫
q(z:,d) log q(z:,d)dz:,d = −1

2
log

(
(2πe)N |A|

)
.

Substituting these back into (7.11) gives

Q =
M∑

m=1

1

σ2
m,d

(
2(1 + wm,d)y⊤

:,m,du− (1 + wm,d)2(tr(A) + u⊤u)
)

− tr(K−1
d A)− u⊤K−1

d u + log |A|+ constant. (7.12)

Finally by taking the partial derivative of (7.12) with respect to u and A and set them to zero

respectively, which ends up with

u = V

(
M∑

m=1

wm,d

σ2
m,d

y:,m,d

)
, V =

(
M∑

m=1

w2
m,d

σ2
m,d

I + K−1
d

)−1

. (7.13)

�e above computation is repeatedD times on every dimension to obtain the estimate of ground

truth Z̃.

78



7.2. Problem Formulation

Prediction on New Instance

Given a new instance x∗, the goal is predicting the ground truth z∗ by using the learned regression
function. �is can be derived from the joint distribution

[
z̃:,d

z∗,d

]
∼ N

(
0,

[
Kd k⊤

∗
k∗ kd(x∗,x∗)

])
, (7.14)

where k∗ := [kd(x∗,x1), . . . , kd(x∗,xN )]. It turns out that p(z∗,f |X, z̃:,d,x∗) follows a Gaussian
distribution. Hence, the best estimate for the ground truth is

z̃∗,d = k∗K−1
d z̃:,d, (7.15)

and the uncertainty is captured in its variance

var(z̃∗,d) = kd(x∗,x∗)− k∗K−1
d k⊤

∗ . (7.16)

As a consequence, the response from an observer can be also predicted by

ỹ∗,m,d = (1 + w̃m,d)z̃∗,d + µ̃m,d, (7.17)

with variance σ̃m,d.

Priors on Parameters

Note that wm,d is an important indicator of the observer’s expertise. On the one hand, a genuine

observer would have wm,d close to 1, whereas an adversarial observer gives wm,d close to−1. On
the other hand, we encourage wm,d to be a small value unless supported by the data. Without any

knowledge on observers, one can only expect that wm,d takes value either around 1 or −1, which
inspires the following penalty function

penalty(wm,d) :=





η(wm,d − 1)2 if wm,d > 1;
0 if −1 ≤ wm,d ≤ 1;
η(wm,d + 1)2 if wm,d < −1,

(7.18)

where η controls the value of penalty as shown in Fig. 7.3 (see “general”). When wm,d takes value

between [−1, 1], there is no penalty and the gradient is given by Eq. (7.8) directly. When |wm,d| > 1
we penalize wm,d and keep it from being too large. �is allows the model to search a reasonable

solution for wm,d without over-��ing on the training data.

In the case that observers are highly reliable, the learned wm,d should be close to 1 and

µm,d, σm,d close to 0. One can add a Laplacian prior for observers’ parameters, which leads to

an L1 regularization. �e penalty term induced by the Laplacian prior for wm,d is −(1
2 log λ +√

2
λ
|wm,d − 1|), where a smaller value of λ suggests that the observer is more reliable. �e max-

imization of FLOB can be carried out by computing the sub-gradient of wm,d, µm,d and σm,d, re-

spectively.

�e relationship between observers can be incorporated into the model as well. For example,

the demographic information of users or the geographic location of sensors can be represented

as a M ×M proximity matrix P. In particular, one can expect two observers have similar pa-

79



7. Learning from Multiple Observers with Unknown Expertise

-3 -2 -1 0 1 2 3
0

2

4

6

8

 

 
General η=0.5

General η=2

Laplace λ=1

Laplace λ=2

Gaussian

Figure 7.3.: Penalty functions of wm,d induced by di�erent prior models. �e “general” penalty

function corresponds to Eq. (7.18). Similar penalty functions can be added to µm,d and

σm,d as well.

rameters if they are highly correlated in P. Assuming P is a positive de�nite matrix, we can

set the prior distribution of w:,d set as N (w:,d |1,P). As a consequence, I add a penalty term

−∑D
d=1 tr(w⊤

:,dPw:,d) to Eq. (7.6). �e gradient of wm,d is computed by Eq. (7.8) with an addi-

tional term −2Pm,:w:,d. Figure 7.3 illustrates di�erent penalty functions of wm,d.

Table 7.1.: Penalty terms added to Eq. (7.6) under di�erent prior models, whereKα(x) is the mod-

i�ed Bessel function of the second kind with order α and evaluated at x.

Prior Parameters Penalty Term

Gaussian P
∑

d tr(w⊤
:,dPw:,d)

Laplace λ −∑m

∑
d(1

2 log λ+
√

2
λ
|wm,d|)

Inverse Gaussian λ, η −1
2

∑
m

∑
d log(w2

m,d + λ) + log

(
K1

(√
λ
√

w2
m,d

+λ

η

))

Missing Responses

�e model can be extended to handle the training data with missing responses. First of all, I

partition the responses Y = (Yo,Yu), where Yo represents the observed part and Yu is the

missing part of the responses. Consequently, the latent variables in the model consists of Z and

Yu. �e expectation maximization (EM) algorithm can be developed for estimating the model

parameters. In the E-step, I �x the model parameter Θ and compute the su�cient statistics of Z̃

by Eq. (7.13) and then update Ỹu by its prediction using Eq. (7.17). In the M-step, I use L-BFGS

to maximize log p(Ỹ, Z̃ |X,Θ) and update Θ. �e two steps are repeated until the likelihood

reaches a local maximum.

7.2.4. Non-Linear Observer Model

�e assumptions behind the linear observer model may not be appropriate in some scenarios. For

instance, if the thermistor is being used to measure the temperature of the environment, due to

the self-heating e�ect the electrical heating may introduce a signi�cant error, which is known as

a nonlinear function of the actual environment temperature. Moreover, the observers’ responses

80

figures/penalty.eps


7.2. Problem Formulation

may depend on the input instance. With these considerations in mind, I propose a more sophisti-

cated model which assumes that {gm,d} is a nonlinear mapping fromX ×Z toY . By representing
{gm,d} as the Gaussian process, the second conditional distribution in (7.1) has the form of

p(Y |Z,X) =
M∏

m=1

D∏

d=1

N (y:,m,d |0,Sm,d) , (7.19)

where Y is connected with X and Z by aN ×N kernel matrix Sm,d. �e (i, j)th element in Sm,d

is given by

sm,d ({zi,xi}, {zj ,xj}) :=φ2
m,1,d exp

[
−
φ2

m,2,d

2
(zi,d − zj,d)2

]

+ φ2
m,3,d + φ2

m,4,dzi,dzj,d + φ2
m,5,dδ(zi,d, zj,d)

+ φ2
m,6,d exp

[
−1

2

L∑

l=1

η2
m,l,d(xi,l − xj,l)

2

]
,

where xi,l is the l
th dimension of the instance xi. �is covariance function has a similar form as

Eq. (7.5), but with the addition of an automatic relevance determination kernel on X. By incorpo-

rating a separate parameter ηm,l,d for each input dimension l, one can optimize these parameters

to infer the relative importance of di�erent dimensions of an instance from the data. One can

see that, as ηm,l,d becomes small, the response yn,m,d becomes relatively insensitive to xn,l. �is

allows one to detect the dimensions of X that substantially a�ect the observer’s response.

Parameter Estimation

�e observer model in Eq. (7.19) can be combined with Eq. (7.4) to form the new model,

p(Y |X,Θ) =

∫
p(Y |Z,X,Θ)p(Z |X,Θ)dZ,

where Θ := {{κ1,d, . . . , κ5,d}, {φm,1,d, . . . , φm,6,d}, {ηm,l,d}} is the set of model parameters to be

inferred from the data. Unfortunately, such marginalization of Z intractable as the latent variable

z appears nonlinear in the kernel matrix. Instead, I seek a maximum a posterior (MAP) solution

by maximizing

log p(Z,Θ |Y,X) = log p(Y |Z,X,Θ) + log p(Z |X,Θ) + constant, (7.20)

with respect to Z and Θ. Substituting Eq. (7.19) and Eq. (7.4) into Eq. (7.20) gives

FNLOB := log p(Z,Θ |Y,X) =− 1

2

( D∑

d=1

M∑

m=1

(
ln |Sm,d|+ tr(S−1

m,dy:,m,dy⊤
:,m,d)

)

+
D∑

d=1

(
ln |Kd|+ tr(K−1

d z:,dz⊤
:,d)
))

+ constant.

81



7. Learning from Multiple Observers with Unknown Expertise

�e partial derivative of FNLOB with respect to the latent variable is given by

∂FNLOB

∂z:,d
= tr

((
S−1

m,dy⊤
:,m,dy:,m,dS−1

m,d − S−1
m,d

) ∂Sm,d

∂z:,d

)
−K−1

d z:,d. (7.21)

�e gradients with respect to the parameters of kernel matrix can be likewise derived as in the

linear observer model. Finally, these gradients are used in the L-BFGS algorithm for maximizing

FNLOB.

When the algorithm converges, the estimate of ground truth is directly given by the stationary

point of FNLOB. Predicting the response of a new instance can be carried out in the same way as

in Eq. (7.13). Moreover, the estimation of themth observer’s response is given by

ỹ∗,m,d = s∗S−1
m,dỹ:,m,d,

where s∗ := [sm,d(z̃∗, z̃1,x∗,x1), . . . , sm,d(z̃∗, z̃N ,x∗,xN )].

Initialization

Note that seeking the MAP solution of Z and Θ simultaneously may lead to a bad local optimum.

Speci�cally, the model may stuck in a solution where {fd} is too trivial (e.g. close to a constant)

and {gm,d} is too complicated (e.g. highly non-linear), which contradicts the intuition. To mitigate

this problem, I �rst �t the training data with the linear observer model. �e idea is to �nd an

initial approximation of {fd} by restricting {gm,d} as linear. �en, I take Z̃ estimated by the linear

observer model as the initialization of the ground truth, and train the nonlinear observer model

to further re�ne {fd} and {gm,d}.

7.3. Experiments

To evaluate the performance of the proposed algorithm on predicting the ground truth and the

observers’ responses, I set up two experiments. First, the e�ectiveness of the proposed models

was demonstrated on the synthetic data. �e second experiment was conducted on the real-world

data. In both experiments, the ground truth was known and observers’ responses were simulated

by mapping the ground truth with some random nonlinear functions. As a consequence, the per-

formance could be evaluated straightforwardly. Two metrics were considered here, i.e. the mean

absolute normalized error (MANE) and the Pearson correlation coe�cient (PCC). In MANE, I �rst

re-scaled the actual value and its predicted value into [0, 1] respectively, and then measured the

mean absolute error. MANE value close to 0 or PCC value close to 1 indicates that the algorithm

performs well. In particular, the expected MANE of a random predictor is 0.5.

�e proposed linear observer model (LOB) and nonlinear observer model (NLOB) were com-

pared with several baselines. Refer SVR and GPR as the Support Vector Regression and Gaussian

Process Regression trained with the ground truth, respectively. I combined responses from mul-

tiple observers by taking the average and then used it as training labels. �ese two models were

denoted as SVR-AVG and GPR-AVG, respectively. For a fair comparison, the covariance func-

tion of x of GPR and GPR-AVG was in the same composite form as in Eq. (7.5). In addition to

these non-parametric methods, Raykar refers to the model in which both p(Z |X) and p(Y |Z)
are Gaussian in the spirit of [131].

82



7.3. Experiments

0 1 2 3 4 5 6

0

0.5

1

 

 
a 0 0.5 1

0

0.5

1

O
b.

1 
re

sp
.

(a
) 0 0.5 1

0

0.5

1

O
b.

2 
re

sp
.

0 0.5 1
0

0.5

1

O
b.

3 
re

sp
.

Ground truth
0 0.5 1

0

0.5

1

Ground truth

O
b.

4 
re

sp
.

Ground truth Ob.1 Ob.2 Ob.3 Ob.4

0 2 4 6

MANE:0.38, PCC:0.00

0 2 4 6
0

0.5

1
MANE:0.29, PCC:0.50

0 2 4 6
0

0.5

1
MANE:0.13, PCC:0.73

(d) LOB(b) SVR-AVG (c) GPR-AVG 

0 1 2 3 4 5 6
0

0.5

1
MANE:0.09, PCC:0.89

(e
) 0 0.5 1

0

0.5

1

O
b.

1 
re

sp
.

0 0.5 1
0

0.5

1

O
b.

2 
re

sp
.

0 0.5 1
0

0.5

1

Ground truth

O
b.

4 
re

sp
.

0 0.5 1
0

0.5

1

Ground truth

O
b.

3 
re

sp
.

NLOB

Figure 7.4.: (a) Synthetic data generated for the experiment. Responses from observers are repre-

sented by markers with di�erent colors. �e right panel illustrates randomly gener-

ated {gm} used for simulating four observers. Shaded area represents the pointwise

variance. Note that the 4th observer is adversarial, as his response tends to be the op-

posite of the ground truth. (b, c, d) Predicted ground truth on the test set by applying

SVR-AVG, GPR-AVG and LOB, respectively. (e) Predicted ground truth and learned

observer functions given by NLOB.

83

figures/syn1n.eps
figures/syn2n.eps
figures/syn3n.eps


7. Learning from Multiple Observers with Unknown Expertise

7.3.1. Synthetic Examples

To create one-dimensional synthetic data (i.e. L := 1 and D := 1), I set f(x) := sin(6x) sin(x
2 ).

�e training instances X were generated by randomly sampling 30 points in [0, 2π] from the uni-

form distribution. �e test instances were obtained using a discretization of [0, 2π] with equal

space of 0.05, which results in 126 points. Four simulated observers were obtained by se�ing the

corresponding {gm} as a random nonlinear monotonic function. For a training instance x, the
mth observer provides its response by gm(f(x)) plus some Gaussian noise. An illustration of the

synthetic data is depicted in Section 7.3. Figure 7.4(b, c, d, e) shows the results given by the base-

lines and the proposed method. Not surprisingly, taking the average of observers’ responses is not

an e�ective solution. In contrast, the proposed LOB and NLOBmodels outperform baseline meth-

ods signi�cantly, which yield lower MANE and higher PCC. Moreover, the observers’ functions

learned by NLOB are very close to those prede�ned {gm} in Section 7.3.

7.3.2. On Real-World Data

I downloaded four real-world data sets from UCI Machine Learning Repository, i.e. auto, com-

munity, concrete and wine. On each data set, I randomly selected 500 instances and generated

20 observers in the same manner as in Section 7.3.1. �e number of adversarial observers was

�xed to 6. �e experiment was conducted with 10-fold cross-validation. �e prediction result of

the ground truth and observers’ responses was summarized in Table 7.2. It is notable that the pro-

posed LOB and NLOB signi�cantly outperform SVR/GPR-AVG and Raykar on inferring the

ground truth. In general, additional improvements are observed when NLOB is used. Comparing

it with the SVR/GPR column, one can see that the regression function learned by NLOB is almost

as good as the one trained using the ground truth. I remark that the promising performance of

NLOB is achieved by merely learning from a set of observers without any prior knowledge of their

expertise and the ground truth. Furthermore,LOB andNLOB also show encouraging performance

on predicting responses of observers, which can be proved useful in many applications such as the

recommendation system.

Table 7.2.: Prediction of the ground truth and observers’ responses. In each cell, the upper value is

MANE, while PCC is at the bo�om. For the ground truth and the average baselines we

only report the best performance, where a superscript S denotes that the performance

is achieved by SVR or SVR-AVG; for GPR and GPR-AVG we use the superscript G.

�e best model on each data set is highlighted by bold font. Note that only LOB and

NLOB can predict observers’ responses.

Data set
Ground truth

SVR/GPR SVR/GPR-AVG Raykar LOB NLOB

auto
0.19± 0.05G 0.21± 0.07G 0.25± 0.08 0.26± 0.05 0.20± 0.04

0.84± 0.07G 0.63± 0.43G 0.50± 0.22 0.84± 0.05 0.82± 0.08

community
0.15± 0.03G 0.27± 0.08S 0.22± 0.10 0.17± 0.03 0.16± 0.03

0.80± 0.08G 0.44± 0.38S 0.70± 0.13 0.76± 0.04 0.77± 0.04

concrete
0.15± 0.02G 0.22± 0.08G 0.20± 0.08 0.18± 0.07 0.17± 0.06

0.76± 0.08G 0.60± 0.46G 0.66± 0.21 0.78± 0.11 0.79± 0.09

wine
0.20± 0.06G 0.30± 0.05S 0.29± 0.06 0.27± 0.09 0.25± 0.07

0.67± 0.12G 0.52± 0.30G 0.38± 0.19 0.58± 0.20 0.61± 0.17

84



7.4. Conclusion

Table 7.2. (cont.)

Data set
Observers’ responses

LOB NLOB

auto
0.26 ± 0.04 0.25 ± 0.09

0.75± 0.05 0.70 ± 0.11

community
0.26 ± 0.04 0.25 ± 0.09

0.62± 0.09 0.55 ± 0.15

concrete
0.26 ± 0.04 0.15 ± 0.06

0.66 ± 0.18 0.72 ± 0.15

wine
0.32 ± 0.07 0.24 ± 0.07

0.47 ± 0.18 0.48 ± 0.15

7.4. Conclusion

Motivated by the research problem raised at the end of Chapter 6, this chapter has investigated

the regression problem under multiple observers providing responses that are not absolutely ac-

curate. �e problem involves learning a regression function and observers’ expertise from such

data without any prior information of the observers. Based on the Gaussian process, we propose

a probabilistic framework and develop two models. �e proposed approach provides an estimate

of the ground truth and also predicts the responses of each observer given new instances. Experi-

ments showed that the proposedmethod outperforms several baselines and leads to a performance

close to the model trained with the ground truth.

�ere are many opportunities for further extending the model. One possible direction is to

extend the model with multiple kernel learning. �e idea is to let the algorithm pick or composite

di�erent covariance functions instead of �xing the combination in advance. As a consequence,

the algorithm may learn complex �ts for the observers by selecting multiple kernels in a data-

dependent way. Moreover, it would be highly bene�cial to design active sampling methods for

selecting which instance and whose response should be learned next.

85



7. Learning from Multiple Observers with Unknown Expertise

86



Chapter 8
Learning Unbiased Rating from Crowds

In this chapter, I apply the method described in Chapter 7 to solve a real-world problem. �e task

is to predict the aesthetics score of a given image. �e aesthetics of a natural image is a measure

of the perceived beauty of a visual stimulus.

In order to train such a model, a naive way is to acquire a set of images where each of them is

labeled with an objective aesthetics score. However, the perception of beauty is subjective across

individuals, thus such data set of score-image pairs is infeasible to obtain in practice. Fortunately,

subjective aesthetics score can be easily collected with the help of photo sharing websites (e.g.

Flickr, Photobucket, Photo.net), where each image is rated by a large number of users. Assuming

that each image has a universal aesthetics value, which is an objective and consensus measure over

all, or almost all, people. Having subjective scores from multiple users creates the possibility of

learning the objective score.

�e problem is that, scores provided by di�erent users can vary widely due to their di�er-

ent educational backgrounds, personal tastes, psychological states, and so on. Furthermore, some

users may even be adversarial by deliberately providing deceitful scores. �ese characteristics

perfectly suit the method proposed in Chapter 7. I shall show that the proposed algorithm can

quantitatively predict the universal aesthetics value in terms of score. �e reader will see an in-

teresting result on the real-world image data.

8.1. Related Work

Computational image aesthetics evaluation can be useful in various applications, such as content-

based image retrieval and quality-based image management. In the recent past, there has been

interest in this line of research [44, 91, 105, 113]. As the problem lends itself naturally to a regres-

sion se�ing once the training set is available, nearly all work concentrate on aesthetics features

engineering. Another important yet o�en glossed over aspect is the training label of each image.

Previous work used the average score of multiple users as a surrogate for the objective aesthetics

score to train the regression model. However, this is fraught with danger as the expertise of each

user is overlooked. Even though several aesthetics predictors trained in such manner have found

appreciable success [106, 153], To the best of my knowledge, no previous work clearly considers

the inherent subjectivity of this task.

87



8. Learning Unbiased Rating from Crowds

8.2. Framework Illustration

I employ the same notations and the model formulation described in Chapter 7. Figure 8.1 illus-

trates the conditional dependence between X,Y and Z under the framwork.

Instance space X

q l

u

x2x1

x3

f(x1)

f(x2)

f(x3)

Groundtruth space Z

z1 z2q lu
z3

(Latent) g1(z3)

g1(z2)

gM(z3)

gM(z1)

gM(z2)

y1,1 y2,1

q lu
y3,1

Response space Y
1st Observer

y1,M y2,M

q lu
y3,M

Response space Y
M th Observer

Figure 8.1.: Generative process of subjective aesthetics scores. Notations are followed from Chap-

ter 7. Two photos of the city of Munich map to the similar place into the instance

space, whereas the photo of cat is mapped to a place far away from the �rst two. Intu-

itively, if two instances are close to each other in X , then their corresponding ground

truth should be close in Z through the mapping of {fd}, which in turn restricts the

searching space of {gm,d} when Y is known.

8.3. Experiments

�e experiment was conducted on the Photo.net data set [45]. As the original data set did not

contain ratings from individual users, my colleague Huang implemented a Web interface that

allows users to rate images by clicking on a continuous score bar (from 0 to 5). He collected

ratings of 201 images from 10 di�erent users, which results in a 201× 10(×1) response matrix Y

without any missing value. Each image is represented as a 59-dimensional vector, which includes

low-level perceptual information (e.g. exposure, contrast, sharpness, color saturation), some rules

of thumb in photography as described in [44]. I trained GPR-AVG, Raykar, LOB, NLOB with

10-fold cross-validation, and then selected the best model to predict the objective aesthetics scores

on the test set of 2733 unrated images.

Figure 8.2 illustrates �ve images with highest scores and �ve images with lowest scores pre-

dicted by di�erent models. One can immediately see that there are some agreements on predict-

ing high-score images among di�erent models. Generally, panoramas of landscape win a�ection,

88

figures/img-photo.eps
figures/img-photo2.eps
figures/cat.eps


8.3. Experiments

5.00

4.86 4.79
4.65 4.60

0.84 0.83 0.64 0.44 0.00

5.00

4.97

4.55 4.18

4.10
0.27 0.25 0.22

0.14
0.00

5.00 3.77 3.66 3.55 3.48
0.29 0.29 0.29 0.12 0.00

5.00
4.45 3.75 3.75 3.56

0.21 0.19 0.18 0.07 0.00

G
P

R
-A

V
G

R
ay

ka
r

LO
B

N
LO

B

Top-5 Bottom-5

Figure 8.2.: Prediction on the test set with 2733 images. Each row shows top-5 (le�) and bo�om-5
(right) images for each model. �e predicted objective aesthetics score is labeled above

each image, respectively.

whereas portraits with drab and gray color are unpleasant and less a�ractive. Comparing toGPR-

AVG and Raykar, the proposed LOB and NLOB li�ed up panorama images, which makes their

predicted high-score images more homogeneous.

To highlight the di�erence between four methods, I depict �ve sca�er plots in Fig. 8.3. As

both LOB and NLOB are based on the Gaussian process, it is not surprising that predictions of

LOB and NLOB are more correlated with GPR-AVG than Raykar. Also, it is worth highlighting

that scores predicted by LOB and NLOB are generally lower than those given by GPR-AVG. �is

can be concluded from the �rst and third plot of Fig. 8.3, where nearly all points lie in the upper

triangle.

0 5
0

5

G
P

R
-A

V
G

LOB

PCC: 0.59, ρ: 0.49

 

 

0 5
0

5

R
ay

ka
r

LOB

PCC: 0.40, ρ: 0.35

 

 

0 5
0

5

G
P

R
-A

V
G

NLOB

PCC: 0.77, ρ: 0.68

 

 

0 5
0

5

R
ay

ka
r

NLOB

PCC: 0.59, ρ: 0.54

 

 

0 5
0

5

LO
B

NLOB

PCC: 0.72, ρ: 0.64

 

 

Figure 8.3.: Sca�er plots of predicted objective aesthetics scores of 2733 test images, where the col-

ors encode the density of the points. �e title above represents the Pearson correlation

(PCC) and Spearman correlation (ρ), respectively.

Finally, Fig. 8.4 shows sca�er plots of predicted responses of 10 observers versus predicted ob-
jective aesthetics scores. Note that some users may exhibit varying levels of expertise on di�erent

images (e.g. the 3rd and 10th observer), whereas others produce rating that are highly correlated

with the objective aesthetics scores (e.g. the 5th and 9th observer).

89

figures/real-3.eps
figures/real-2.eps


8. Learning Unbiased Rating from Crowds

0 5
0

5

O
bs

. 1
PCC: 0.44, ρ: 0.34

 

 

0 5
0

5

O
bs

. 2

PCC: -0.03, ρ: -0.26

 

 

0 5
0

5

O
bs

. 3

PCC: 0.67, ρ: 0.64

 

 

0 5
0

5

O
bs

. 4

PCC: 0.52, ρ: 0.63

 

 

0 5
0

5

O
bs

. 5

PCC: 0.63, ρ: 0.64

 

 

0 5
0

5

O
bs

. 6

PCC: 0.61, ρ: 0.64

 

 

0 5
0

5

O
bs

. 7

PCC: 0.65, ρ: 0.64

 

 

0 5
0

5

O
bs

. 8

PCC: 0.62, ρ: 0.63

 

 

0 5
0

5

O
bs

. 9

PCC: 0.42, ρ: 0.33

 

 

0 5
0

5

O
bs

. 1
0

PCC: 0.53, ρ: 0.54

 

 

Figure 8.4.: Sca�er plots of predicted observers’ response of 2733 test images, where x-axis repre-
sents the predicted objective aesthetics scores.

Due to the lack of agreed upon standard evaluationmetrics for this task, it is hard to say which

model gives the best prediction. Nonetheless, I �nd the experimental results are interesting and

consistent with the intuition.

8.4. Conclusion

Learning to evaluate the aesthetics score of an image can be bene�cial in the content based im-

age retrieval system. For instance, the learned aesthetics model can be incorporated into a content

based image retrieval system to discriminate between visually similar images, giving higher prior-

ity to more pleasing query results. Unfortunately, the subjectivity of this task makes it extremely

challenging for objective aesthetics assessment. Naively, one might take the average. But in fact

this heuristic overlooks the di�erence between users hence it may fail in the se�ings with non-

Gaussian or adversarial noise. In this chapter, I have demonstrated that the algorithm in Chapter 7

can be easily applied to solve this problem.

Even though social network services have been around for a long time, the interest in inte-

grating unreliable opinions from anonymous users has just caught on until recently. �is work

reiterates the signi�cance and usefulness of the the algorithm in Chapter 7 in learning unreliable

information from multiple users. While very limited work has been published so far, this work is

hoped to encourage more contributions in this �eld.

From the next chapter, the focus of the dissertation will be moved to improving the scalability

of learning algorithms. �e reader will see how current learning algorithms can be approximated

to e�ciently handle large-scale data.

90

figures/real-4.eps


Hofstadter’s Law: It always takes longer
than you expect, even when you take into
account Hofstadter’s Law

Douglas R. Hofstadter

Part V.

Scalable Online Learning Algorithms

91





Chapter 9
Online Prediction of User Behavior with
Lazy Gaussian Process Commi�ee

In this chapter, I present a novel Gaussian process approximation scheme for improving its scal-

ability on large-scale real-time data. As it is introduced in Chapter 2, Gaussian process (GP) is a

promising Bayesian method for non-linear regression and classi�cation [129]. It has been demon-

strated to be applicable to a wide variety of real-world statistical learning problems. An important

advantage of GP over other non-Bayesian models is the explicit probabilistic formulation of the

model, allowing one to assess the uncertainty of predictions as I showed in Chapter 7. In addition,

since GP has a simple parameterization and the hyperparameters can be adjusted by maximizing

the marginal likelihood, it is easy to implement and �exible to use.

However, GP is not always the method of choice especially for large date sets. GP has in-

herently dense representations in the sense that all training data is required for the prediction.

�e training procedure requires computation, storage and inversion of the full covariance ma-

trix, which can be time-consuming. Furthermore, the Bayesian posterior update to incorporate

data is also computationally cumbersome. �ese drawbacks prevent GP from applications with

large amounts of training data that require fast computation, such as learning motor dynamics in

real-time.

Much research in recent years has focused on reducing the computational requirements of GP

on large data sets. Many of these methods are based on a small set of training inputs, which sum-

marizes the bulk of information provided by all training data [144, 137, 146, 127]. Other methods

make structural assumptions about the covariance matrix so that a GP can be decomposed into a

number of smaller GPs [157, 121, 28].

In this chapter I present a novel approximationmethod called lazy Gaussian process commi�ee

(LGPC) for learning from a continuous data stream. As its name suggests, LGPC is based on a

combination of multiple GPs, which is closely related to several previous work [157, 121, 28].

Unlike previous work, LGPC is updated in a “lazy” fashion in the sense that new training examples

are directly allocated to a subset of GPs without adapting their hyperparameters. �e problem of

selecting a near-optimal subset is formulated as submodular optimization, allowing the training

procedure to be carried out e�ciently. Experiments showed that LGPC has comparable accuracy

to the standard GP regression and outperforms several GP online alternatives. �e simplicity and

the e�ciency of LGPC make it more appealing in real-time online applications.

93



9. Online Prediction of User Behavior with Lazy Gaussian Process Commi�ee

As a direct application in information security, I applied LGPC to predict mouse-trajectory of

a user in an Internet banking scenario. �e intention was to predict user’s hand movements in

real-time, so as to o�er support to security applications, such as recognizing identity the� or an

abnormal funds transfer. �us, the model’s learning and prediction should be su�ciently fast. In

the �eld of psychology and cognitive science, there has been abundant evidence that a motor dy-

namic of the hand can reveal the time course of mental process [1, 147]. Moreover, several studies

have showed that computer mouse-trajectory can a�ord valuable information about the temporal

dynamics of a variety of psychological process [149, 64, 63]. For instance, whenmoving their hand

while making a decision, people may deviate more from a straight trajectory if there is a tempting

alternative, making viable such measures as maximum deviation, curvature area, and switches

in direction. Moreover, unintentional stress might manifest less smooth, more complex and �uc-

tuating trajectories [42]. An online learning technique is necessary as it allows the adaption to

changes in the trajectories. �e e�ectiveness of the online mouse-trajectory learning con�rms the

applicability of LGPC.

�e rest of the chapter is organized as follows. Section 9.1 brie�y reviews the Gaussian pro-

cess and previous work on sparse approximations. Section 9.2 introduces the proposed method.

Experimental results are presented in Section 9.3. Section 9.4 concludes the chapter and points out

some future directions.

9.1. Related Work

�is section brie�y reviews Gaussian process and previous a�empts on reducing its computational

complexity. �e underlying problems that motivate this work are highlighted.

9.1.1. GP Regression

�e problem of regression aims to �nd a function estimation from the given data, which is usually

formulated as follows: given a training setD := {(xn, yn)}Nn=1 ofN pairs of input vectors xn and

noisy scalar outputs yn, the goal is to learn a function f transforming an input into the output

given by

yn = f(xn) + ǫn,

where ǫn ∼ N (0, σ2) and σ2 is the variance of the noise. A Gaussian process is a collection of

random variables, any �nite number of which have consistent joint Gaussian distribution. Gaus-

sian process regression (GPR) is a Bayesian approach which assumes a GP prior over functions. As

a result the observed outputs behave according to

p(y |x1, . . . ,xN ) = N (0,K),

where y := [y1, . . . , yN ]⊤ is a vector of output values, and K is an N × N covariance matrix;

the entries are given by a covariance function, i.e. Kij := k(xi,xj). In this work, I consider a

frequently used covariance function given by

k(xi,xj) := κ2 exp

(
−1

2
(xi − xj)

⊤W(xi − xj)

)
+ σ2δij , (9.1)

94



9.1. Related Work

where κ denotes the signal variance and W are the widths of the Gaussian kernel. �e last term

represents an additive Gaussian noise, i.e. δij := 1 if i = j, otherwise δij := 0. Samples from this

prior are plo�ed for various values of the parameters in Fig. 9.1.

-10 0 10
-4

-2

0

2

(1, 3, 1)

-10 0 10
-4

-2

0

2

(1, 1, 1)

-10 0 10
-4

-2

0

2

4

6

(1, 3, 3)

-10 0 10

-2

0

2

4

6
(3, 3, 1)

Figure 9.1.: Samples drawn from a Gaussian process prior de�ned by the covariance function (9.1).

�e samples are obtained using a discretization of the x-axis of 1000 equally spaced

points. �e text above each plot denotes the value of κ2, σ2, {W}, respectively. In this

example, the input x is one-dimensional. Hence, the parameter {W} is in fact a scalar

value, which can be absorbed into κ.

In the se�ing of probabilistic regression, the goal is to �nd a predictive distribution of the

output y∗ at a test pointx∗. Under GPR, the predictive distribution of y∗ conditional on the training
set D is also Gaussian

p(y∗ | D,x∗) = N
(
k⊤

∗ K−1y, k∗ − k⊤
∗ K−1k∗

)
, (9.2)

where k∗ := [k(x∗,x1), . . . , k(x∗,xN )]⊤ and k∗ := k(x∗,x∗). One can observe that the training

data is explicitly required at the test time in order to construct the predictive distribution, which

makes GP a non-parametric method. �e hyperparameters are [κ2, σ2, {W}]⊤ , where {W} de-
notes parameters in the width matrix W. �e optimal hyperparameters for a particular data set

can be derived by maximizing the marginal likelihood function using a gradient based optimizer.

For a more detailed background on GP, readers are referred to the textbook [129].

It should be noted that in each iteration the computation of the likelihood and the derivatives

involves inversion of a matrix of size N × N , which requires time O(N3). Once the inversion

is done, inference on a new test point requires O(N) for the predictive mean and O(N2) for the
predictive variance. �us, a simple implementation of GPR can handle problems with at most a

few thousands training examples, which prevents it from real-time applications dealing with large

amounts of data.

9.1.2. GP Approximations

�e sparse representation of data has been studied exhaustively [96]. It has been shown that the

bulk of information provided by all training inputs can be summarized by a small set of inputs,

which is o�en known as inducing inputs or support vectors. By assuming additional dependency

about the training data given the inducing inputs, various sparse GP approximations were derived,

such as the subset of regressors [144], projected latent variables [137] and sparse GP with pseudo-

inputs [146]. A unifying view of these sparse GP methods was presented in [127].

95

figures/gppriors.eps


9. Online Prediction of User Behavior with Lazy Gaussian Process Commi�ee

It should be noted that the selection of inducing inputs does leave an imprint on the �nal

solution. Loosely speaking, the selection can be carried out either in a passive (e.g. random) or

active fashion. An extensive range of proposals were suggested to �nd a near-optimal choice for

inducing inputs, such as posterior maximization [144], maximum information gain [137], match-

ing pursuit [93] and pseudo-input via continuous optimization [146]. In particular, sparse online

GP [40] was developed by combining the idea of a sparse representation with an online algorithm,

allowing the inducing inputs (basis vectors) to be constructed in a sequential fashion.

An alternative approach for speeding up GPR is Bayesian commi�ee machine (BCM) intro-

duced by [157]. Loosely speaking, the original training data is partitioned into parts, where each

part is maintained by a GP. �e computational cost is thus signi�cantly reduced due to much

smaller number of training examples within each GP. BCM provides a principled approach to

combining Bayesian estimators trained on di�erent data sets for the prediction. Inspired by this

idea, some other work have been focused on combining multiple GPs for regression [121, 28].

In the online se�ing, a straightforward application of the approaches mentioned above is

impeded by two obstacles. First, it is ine�cient to optimize hyperparameters every time a new

training example is presented. Second, adding new training examples to the model may cause non-

smooth �uctuations in the marginal likelihood function and its gradients, meaning that a smooth

convergence is not guaranteed [137]. Although several heuristics can be adapted to alleviate this

problem, there is no reliable way of learning hyperparameters. Moreover, as training examples

are presented sequentially rather than in batch, selecting inducing inputs from a data stream in

a far-sighted fashion becomes extremely challenging. Furthermore, the inducing inputs selection

and the hyperparameters estimation are somewhat undermined by each other [146], which may

adversely a�ect the quality and the e�ciency of online regression.

9.2. LGPC for Online Regression

�ebasic idea of LGPC is straightforward. Instead of training a single GP using all the training data,

I partition the data and allocate it to a commi�ee consisted of Q independent GPs with di�erent

hyperparameters. �at is, each GP maintains a subset of the training data, which is denoted as

D1, . . . ,DQ respectively, where Dq := {(xt, yt)}Tt=1 and T is the maximum number of training

examples of each GP, which can be set in accordance with the available computational power. �is

idea is illustrated in Fig. 9.2

Intuitively, each GP in the commi�ee corresponds to an interpretation of the relationship

between input and output. For predicting the output y∗ of a query point x∗, the outputs from all

GPs are combined together. Under the independence assumption, it obtains p(y1, . . . ,yQ | D) =∏Q
q=1 p(yq | Dq). �us, the predictive distribution can be approximated as

p̂(y∗ | D,x∗) = c×
∏Q

q=1 p(y∗ | Dq,x∗)

[p(y∗)]Q−1
, (9.3)

where c is a normalization constant. �e posterior predictive probability densities are simply

multiplied. Note that since the posterior probability densities is multiplied, one has to divide by

the priorsQ− 1 times. Readers may �nd out that LGPC has a similar predictive distribution as in

BCM. However, as the reader will see in the next section, their training procedures are completely

di�erent.

96



9.2. LGPC for Online Regression

Covariance matrix of a full GP

KD := {(xn, yn)}Nn=1

N

N

All data

D := {(xn, yn)}Nn=1

Data partition

D1

D2

DQ

b

b

b

GP member

K1

b

b

b

GP member

K2

GP member

KQ

Lazy Gaussian process committee

T

O(N3)

O(QT 3)

Figure 9.2.: �e basic idea of LGPC: decomposing a large training data set into small sets. One each

small data set, an individual GP is trained, and together they form a GP commi�ee.

(Top): original GP regression model. (Bottom): data partition in the proposed LGPC

model.

�is section describes LGPC in three parts, namely the allocation of new training examples,

the incremental update and the predictions of query points. Note that all hyperparameters of

LGPC are constants during online learning.

9.2.1. Allocation of New Training Examples

Denote all GPs in the commi�ee asQ := {1, . . . , Q}. Given a new training example (xN+1, yN+1),
I select a subsetA ⊆ Q and allocate the new example to their data collection, respectively. Denote

97



9. Online Prediction of User Behavior with Lazy Gaussian Process Commi�ee

D〈N〉
q as the training examples allocated to the qth GP at timeN , the update rule is formalized as

D〈N+1 | A〉
q :=

{
D〈N〉

q ∪ {(xN+1, yN+1)} if q ∈ A;

D〈N〉
q otherwise.

On the one hand, if A contains only one element, meaning that only one GP is updated each

time, then the information provided by the new training example may not be well utilized. On the

other hand, if one letA := Q, then all GPsmust update their correspondingGrammatrix to include

the new training example (no ma�er whether such inclusion will contribute to the prediction of

the commi�ee or not), which can degrade the e�ciency and the quality of the prediction. �us, it

needs an active selection policy to choose at most S GPs from the commi�ee, such that their data

inclusion can yield the maximal improvement for prediction. Fig. 9.3 illustrates this idea.

GP member

K1

b b b

GP member

K2

GP member

KQ

Lazy Gaussian process committee

D1 D2 DQ

. . . (xN−1, yN−1), (xN+1, yN+1), (xN+2, yN+2), (xN+3, yN+3) . . .
b b b

?
? ?

Time

A∗ = {?}

Figure 9.3.: Allocating new data point to the GP members. �e selection problem tries to answer

which GP should be selected in order to maximize the commi�ee’s performance in the

long-run.

Clearly it can make sense to select which GPs are taken intoA by optimizing some criterion.

�e idea here is to maximize the likelihood of LGPC on a small subset of training examples. To see

this I introduce a reference set R, in which both inputs XR and outputs yR are observed. �e ref-

erence set can be constructed, for instance, by subsampling all previous training data {D〈N〉
q }Qq=1

with the addition of the current training example (xN+1, yN+1). Note that the terms in the nu-

merator and the denomination of (9.3) are all Gaussian distributions over y∗. �us, the predictive

distribution for yR at time N can be approximated by a Gaussian distribution with mean and

98



9.2. LGPC for Online Regression

covariance as follows

E
〈N〉
p̂

(yR) = C
〈N〉
p̂

(yR)
∑

q∈Q

(
C(yR | D〈N〉

q ,XR)−1
E(yR | D〈N〉

q ,XR)
)
, (9.4)

C
〈N〉
p̂

(yR) =
(
− (Q− 1)Σ−1

RR +
∑

q∈Q
C(yR | D〈N〉

q ,XR)−1
)−1

, (9.5)

where ΣRR is the covariance matrix evaluated at XR. �e predictive mean and covariance of

each GP, i.e. E(yR | D〈N〉
q ,XR) and C(yR | D〈N〉

q ,XR), can be obtained from (9.2). Note that as

yR is known, the log probability of yR under the current model can be evaluated by substituting

(9.4) and (9.5) into the following

L
〈N〉
R :=− |R|

2
log(2π) +

1

2
log

∣∣∣C〈N〉
p̂

(yR)−1
∣∣∣

− 1

2

(
yR − E

〈N〉
p̂

(yR)
)⊤

C
〈N〉
p̂

(yR)−1
(
yR − E

〈N〉
p̂

(yR)
)
,

where |R| represents the number of references points in R. When R is arbitrarily selected and

su�ciently large, one can consider L
〈N〉
R as a proxy for the likelihood of training examples for

LGPC. Hence, I hereina�er call LR the log pseudo-likelihood.

As a consequence, the problem of the optimal selection A∗ at time N + 1 can be formulated

as

A∗ := arg max
A⊆Q

L
〈N+1 | A〉
R − L〈N〉

R , subject to |A| ≤ S,

which is unfortunately a combinatorial problem and cannot be solved e�ciently. However, it is

worth to highlight that the increment of pseudo-likelihoodL
〈N+1 | A〉
R −L〈N〉

R satis�es the diminish-

ing returns behavior. �at is, adding a new GP to the selectionA increases the pseudo-likelihood

more, if one has selected few GPs; and less, if one has already selected many GPs. �is formal-

ism can be formalized using the combinatorial concept of submodularity [118]. Speci�cally, let

F (A) := L
〈N+1 | A〉
R − L〈N〉

R , the submodular characteristic of F indicates that for all A ⊆ B ⊆ Q
and q ∈ Q \ B it holds that F (A ∪ {q})− F (A) ≥ F (B ∪ {q}) − F (B).

Interest of optimizing a submodular function has grown in the machine learning community

recently [99, 101, 100]. In practice, heuristics such as greedy selection are o�en used. �e greedy

algorithm starts with the empty set, and iteratively adds the element q∗ := arg maxq∈Q\A F (A∪
{q}), until S elements have been selected. A fundamental result by [118] stated that for submodu-

lar functions, the greedy algorithm achieves at least a constant fraction (1− 1/e) of the objective
value obtained by the optimal solution. Moreover, no polynomial time algorithm can provide a

be�er approximation guarantee unless P = NP [60].

Note that evaluatingF (A∪{q}) can be expensive as it is required to re-compute (9.4) and (9.5)

for all q ∈ Q in each iteration. In fact, such computation is unnecessary due to the submodularity

of F [112]. De�ne the marginal bene�t of q as ∆q := F (A ∪ {q}) − F (A), the submodularity

indicates that ∆q never increases over iterations. Based on this observation, the greedy selection

scheme is given in Fig. 9.4. �e algorithm starts with the setA being empty, and J containing the

indices of all GPs. In the �rst iteration, the GP with maximal ∆ is selected from J and added to

A. �is is achieved by evaluating the marginal bene�t for all GPs in the commi�ee. An ordered

list of {∆j}j∈J is maintained. From the second iteration, only the top GP in this ordered list will

99



9. Online Prediction of User Behavior with Lazy Gaussian Process Commi�ee

Input : desired size of selection S (≥ 2)
Output: greedy selectionA

1 InitializationA ← ∅, J ← {1, . . . , Q};
2 ∀j ∈ J : ∆j ← F (A ∪ {j}) − F (A);
3 j∗ ← arg maxj∈J ∆j ;

4 A ← A∪ {j∗}, J ← J \ {j∗};
5 for s← 2 to S do

6 repeat

7 j∗ ← arg maxj∈J ∆j ;

8 ∆j∗ ← F (A ∪ {j∗})− F (A);
9 if ∀j ∈ J \ {j∗} : ∆j∗ > ∆j then

10 A← A∪ {j∗}, J ← J \ {j∗};
11 until |A| = s;

Figure 9.4.: Greedy subset selection for LGPC.

be evaluated. If the new marginal bene�t of that GP stays on top, then it is added toA. Otherwise,
the list of marginal bene�ts is re-sorted and, subsequently, the new top GP is evaluated.

In addition to Algorithm 1, it is also possible to solve this problem using hybrid genetic al-

gorithms and, in particular, random permutation generators [52]. �ese methods may be con�g-

ured to search for a single subset A, or an ensemble of subsets Ai which all keep the value of

F (A ∪ {q}) − F (A) at a reasonable level, and on other hand, they are minimal in size and have

minimal pairwise intersections. Although the mathematical background of those methods seems

to be di�erent, it would be interesting to look at them for more general comparison as a future

work.

9.2.2. Incremental Update of LGPC

Once a set of GPs is selected by Fig. 9.4, the problem turns to updating these GPs for the data

inclusion in an incremental fashion. Although the update of inputs X and outputs y can be done

straightforwardly, the update of a covariance matrix K and its inverse J := K−1 is more compli-

cated. Speci�cally, the e�ect of a new point xN+1 on K and J can be expressed as

K〈N+1〉 :=

[
K〈N〉 u⊤

u v

]
, J〈N+1〉 :=

[
J〈N〉 + 1

µ
gg⊤ g

g⊤ µ

]
,

with u := [k(xN+1,x1), . . . , k(xN+1,xN )]⊤ and v := k(xN+1,xN+1). Following the partitioned
inversion matrix equations, it yields

g := −µJ〈N〉u, µ :=
(
v − u⊤J〈N〉u

)−1
.

In practice, Cholesky factorization is o�en used so that L⊤L := K, which leads to a more

e�cient and accurate solution for frequently occuring terms such as x⊤K−1x = ‖L−1x‖2 and

log |K| = 2
(
1⊤ log(diag (L))

)
. �e lower triangular matrixL can be also updated incrementally

100



9.2. LGPC for Online Regression

such that

L〈N+1〉 :=

[
L〈N〉 0

l⊤ η

]
,

where l can be solved by L〈N〉l = u, and subuently, η :=
√
v − ‖l‖2.

Further notice that the model may deal with an endless stream of data during online learning.

�us, it is necessary to limit the number of training examples maintained by each GP and delete

old training examples when necessary. Let m be the index of training example being deleted.

Construct P := I − (δm − δT +1)(δm − δT +1)⊤, as a (T + 1)-dimensional permutation matrix,

where δm is a (T +1)-dimensional zero vector with one on themth dimension. When a new point

comes in, it is �rst appended to K〈N+1〉. �en, the deletion of themth example can be performed

e�ciently using
[
PK〈N+1〉P

]
⇑
, where [·]⇑ represents shrinking a (T + 1)-dimensional matrix or

vector to a T -dimensional one by removing the last row and column of it. �us, the non-increasing

update equation of J is given by

J〈N+1〉 :=
[
PJ〈N+1〉P

]
⇑
− 1

r
s⊤s,

where s := [[k(xm,x1), . . . , k(xm,xN+1)]P]⇑ and r := k(xm,xm).

So far I have not said which training example should be deleted. One simple method is to

choose it randomly or to remove the oldest training example over time. Alternatively, one can

remove the point that yields maximal mutual information with the new point. In this work, I

follow the score measure introduced by [40]. Speci�cally, for each point i in set Dq the score

is given by ξt := αt

J
〈N+1〉
tt

, where αt is the tth element of J〈N+1〉y. If a deletion is needed for

the qth GP, then the training example with minimal ξ will be removed from Dq . �e scores are

computationally cheap as they can be calculated in linear time. Although there may exist more

sophisticated selection schemes, they usually consume more computational time and hence are

not considered in this work.

9.2.3. Predictions of �ery Points

Given a query point x∗, the predictive mean and variance can be calculated by evaluating (9.4) and

(9.5) straightforwardly. One can observe that the way of combining predictions in (9.4) automati-

cally assigns less weight (through the inverse predictive variance) to those GPs that are uncertain

about their predictions. �e time complexity is O(QT ) for predicting the mean and variance of a

test point.

For the sake of e�ciency and accuracy, it is reasonable to only invoke nearby GPs in a neigh-

borhood of x∗ for the prediction. �e key observation is that k(x∗,x) depends merely on the

constant σ if x∗ is far away from x. As σ is randomly initialized in LGPC, a poor prediction could

be given by the qth GP when x∗ is far away from all points in the set Dq . �e search of neighbor-

ing GPs can be performed by evaluating 1
|Dq|

∑
x∈Dq

k(x∗,x) for all {Dq}Qq=1 and, subsequently,

selecting those having largest values.

101



9. Online Prediction of User Behavior with Lazy Gaussian Process Commi�ee

9.3. Experiments

Two sets of experiments were carried out to validate LGPC. First, we compared the accuracy and

the e�ciency of LGPC with the standard GPR and state-of-the-art online regression methods.

Second, I investigated several factors that a�ect the performance of LGPC in order to gain more

insights of it. An application to the mouse-trajectory prediction is demonstrated at the end.

�e experiments were conducted on six large data sets downloaded from the Internet 1. On

each data set, we linearly rescaled into the range of [0, 1] and randomly held out half of the data

for training; the remaining was used as a test set. Each experiment was repeated 10 times.

Five baseline methods were employed for comparison. �ey were standard GP regression

(GPR), sparse GP using pseudo-inputs (SGPP) [146]2, local GP regression (LoGP) [121]3, Bayesian

commi�ee machine (BCM) [157] and sparse online GP regression (SOGP) [40]4. Note that GPR

and SGPP are o�ine algorithms, they are presented here to show the performancewhen the whole

training data is given beforehand. A Gaussian kernel function with white noise was used as the

covariance function for all methods, which was obtained by se�ing W in (9.1) as the identity

matrix. �e maximum number of inducing inputs in SGPP and SOGP was 50. �e threshold for

creating a new local model in LoGP was 0.5. �e size of the commi�ee was 20 for BCM and

LGPC, in which each GP maintained at most 100 training examples. For BCM and LGPC, the �rst

20 training examples were sequentially assigned to each member for initialization. �e reference

set of LGPC had a size of 3, which consisted of the current training example and two examples

randomly sampled from the aforetime data. �e number of selectedGPs in LGPC for data inclusion

was 5 (i.e. S := 5 in Fig. 9.4). Moreover, three variations of BCMwere employed in the experiment.

BCMo denotes that each time only one GP is randomly selected for data inclusion; BCMs represents

randomly selecting a subset with a size of 5, which corresponds to a randomized counterpart of

LGPC; and BCMa represents selecting all GPs. For predicting test inputs, all GPs in the commi�ee

of BCM and LGPC were invoked. �e hyperparameters were randomly initialized for all methods.

�e conjugate gradient method was employed to optimize the hyperparameters for GPR, SGPP,

SOGP and LoGP. For SOGP, an EM algorithm with 10 cycles was built for jointly optimizing the

posterior process and the hyperparameters.

9.3.1. Comparison of Predictive Accuracy

�e comparison of predictive accuracy between di�erent GP methods is summarized in Table 9.1,

where the root mean square error was used as the evaluation metric. It is evident from the results

that, LGPC gave a considerably lower test error than LoGP, BCM and SGPP. In particular, LGPC

showed a signi�cant improvement over all BCM variants on the majority data sets, which indi-

cates the e�ectiveness of the proposed subset selection strategy. Empirically, I found that good

performance could have been achieved a�er learning from �rst few thousands examples. A�er

1delta: 7, 129 × 6, http://www.dcc.fc.up.pt/∼ltorgo/Regression/;
bank: 8, 192 × 8, http://www.cs.toronto.edu/∼delve/;

cpuact: 8, 192 × 12, http://www.cs.toronto.edu/∼delve/;
elevator: 8, 752 × 17, http://www.dcc.fc.up.pt/∼ltorgo/Regression/;
houses: 20, 640 × 8, http://lib.stat.cmu.edu/datasets/;
sarcos: 44, 484 × 21, http://www.gaussianprocess.org/gpml/data/.

2http://www.cs.man.ac.uk/∼neill/gp/
3http://www.ias.informatik.tu-darmstadt.de/Member/DuyNguyen-Tuong
4http://www.cs.ubbcluj.ro/∼csatol/

102

http://www.dcc.fc.up.pt/~ltorgo/Regression/
http://www.cs.toronto.edu/~delve/
http://www.cs.toronto.edu/~delve/
http://www.dcc.fc.up.pt/~ltorgo/Regression/
http://lib.stat.cmu.edu/datasets/
http://www.gaussianprocess.org/gpml/data/
http://www.cs.man.ac.uk/~neill/gp/
http://www.ias.informatik.tu-darmstadt.de/Member/DuyNguyen-Tuong
http://www.cs.ubbcluj.ro/~csatol/


9.3. Experiments

that, the accuracy of LGPC did not change signi�cantly. On delta, cpuact and houses, the

performance of LGPC was comparable to SOGP. In fact, the performance of LGPC can be further

improved by allowing each GP to maintain more training examples, as it is shown in the third

experiment.

Table 9.1.: LGPC versus baseline methods. �e root mean square error on di�erent test sets were

measured. Results were averaged over ten runs. Smaller value indicates be�er perfor-

mance.

Model delt bank cpua elev hous sarc

LGPC 0.041 0.084 0.072 0.053 0.157 0.032
LoGP 0.065 0.188 0.219 0.107 0.232 0.089
BCMo 0.044 0.113 0.115 0.066 0.164 0.070
BCMs 0.043 0.108 0.114 0.069 0.180 0.073
BCMa 0.045 0.122 0.119 0.083 0.203 0.077
SOGP 0.040 0.047 0.074 0.038 0.143 0.023

GPR 0.039 0.041 0.030 0.031 0.115 0.016
SGPP 0.045 0.061 0.079 0.065 0.161 0.095

9.3.2. Comparison of Computation Speed

�e comparison of training and prediction speed is shown in Fig. 9.5. Di�erent online methods

were trained (tested) on houses data set with increasing training (testing) examples, i.e. 500,
1, 000, 2, 000, 4, 000 and 8, 000 data points, respectively. �e setup of each methodwas same as in

the last experiment. For the sake of fair comparison, the update of kernel matrix for LGPC, LoGP

and BCM was implemented in the same manner as described in Section 9.2.2.

As can be seen in Fig. 9.5, in both training and prediction phrases, LGPC showed a substantial

reduction of time comparing to GPR and LoGP. In particular, LGPC took less time for learning

8, 000 points (210s) than SGPP (240s) and SOGP (340s). On the other hand, SGPP and SOGP were

found to be extremely e�cient in the prediction, as their time cost only increased at a very low

pace with respect to the number of test points. �is is due to the fact that the prediction of SGPP

and SOGP involves only a small covariance matrix based on 50 inducing inputs, whereas LGPC

invokes all GPs in the commi�ee for prediction. Nonetheless, it is possible to speed up LGPC

by invoking only the nearest GP for the prediction as aforementioned. In short, LGPC is a more

appropriate choice than SOGP in a real-time application which requires fast training.

One may notice that LGPC took more training time than BCMs and its speed advantages over

BCMa was not dramatic, which is slightly disappointing. �is is a�ributed to the fact that, al-

though LGPC saves the computational resources by limiting the number of GPs for data inclusion,

it spends extra computational time on selecting a near-optimal subset with Fig. 9.4. �e predic-

tion complexity of LGPC, BCMo, BCMs and BCMa was virtually same. Nonetheless, it should be

noted that LGPC outperformed all BCM variants signi�cantly on houses in terms of predictive

accuracy as detailed in Table 9.1, which makes LGPC overall more preferable than BCM.

103



9. Online Prediction of User Behavior with Lazy Gaussian Process Commi�ee

0.5 1 2 4 8
0

100

200

300

400

500

# Training points (× 103)

T
ra

in
in

g 
tim

e 
[s

]

 

 
GPR
SGPP
LoGP
LGPC
BCMo
BCMs
BCMa
SOGP

0.5 1 2 4 8
0

1

2

3

4

# Test points (× 103)

P
re

di
ct

io
n 

tim
e 

[s
]

 

 
GPR
SGPP
LoGP
LGPC
BCMo
BCMs
BCMa
SOGP

Figure 9.5.: Time cost in second (averaged over 10 runs) required for training and predicting, re-

spectively. In each run, a training set and a test set were randomly sampled from

houses data set and the time cost was measured respectively. �e training and pre-

diction time of 8, 000 data points required for GPR was 1100s and 15s, respectively.
Note that prediction time of LGPC can be reduced to 0.02s if only the nearest GP is

invoked for predicting a test point.

Table 9.2.: �e root mean square error of LGPC on di�erent test sets. Results were averaged over

ten runs. Smaller value indicates be�er performance.

(a) Predictive error w.r.t. the size of the commi�ee of LGPC.

Q delt bank cpua elev hous sarc

5 0.043 0.093 0.087 0.065 0.171 0.034
10 0.042 0.102 0.079 0.056 0.167 0.033
15 0.041 0.085 0.075 0.057 0.161 0.034
20 0.041 0.084 0.072 0.053 0.157 0.033
25 0.041 0.076 0.080 0.053 0.156 0.032

30 0.041 0.085 0.095 0.052 0.155 0.032

(b) Predictive error w.r.t. maximum number of examples maintained by each

GP member.

T delt bank cpua elev hous sarc

50 0.042 0.114 0.098 0.072 0.172 0.040
100 0.041 0.084 0.072 0.053 0.157 0.032
150 0.040 0.068 0.057 0.040 0.152 0.028
200 0.040 0.054 0.050 0.039 0.146 0.022

104

figures/speed1.eps
figures/speed2.eps


9.3. Experiments

9.3.3. Exploration of Model Parameters

In order for LGPC to be a practical tool in real-world applications, it is necessary to make decisions

about the details of its speci�cation. Fortunately, there are not many free parameters in LGPC,

as all hyperparameters are randomly initialized and are �xed during the learning process5. �e

exploration focused on three parameters that mainly govern the performance of LGPC. Namely,

the commi�ee sizeQ, the maximum number of maintained training points T and the size S of the

selected subset for data inclusion.

�e performance of LGPC with respect to di�erent sizes of the commi�ee is summarized in

Table 9.2(a), whereS := 5 and T := 100. Ondelta, bank andcpuact, the predictive accuracy

reached its peak when the size of the commi�ee was around 20. A�er that, the performance

dropped slightly. On larger data sets such as houses and sarcos the test error had a steady

decline as Q increasing. �is indicates that it su�ces to employ a small commi�ee for learning

a small amount of data. For a large data set increasing the size of the commi�ee provides more

capability to account for the complex pa�ern, which generally leads to higher predictive accuracy.

Table 9.2(b) summarizes the test results of LGPC with respect to di�erent se�ings of T , where
S := 5 and Q := 20. As expected, one can improve the predictive accuracy signi�cantly by

allowing each GP to maintain more training examples. Moreover, when T := 200 it was observed

that the high accuracy was achieved much earlier than T := 50; and the performance was o�en

more robust a�erwards.

Finally, to study the performance with respect to di�erent sizes of the selected subset, I �xed

T := 100, Q := 20 and trained LGPC with S := 2, 4, 6, 8 and 10, respectively. It was found

that on delta and sarcos the predictive accuracy was not sensitive to the size of selected

subset. On cpuact, elevator and houses, selecting more than two GPs slightly degraded

the performance. �e optimal size for bank was 6. In short, it seems that the optimal value of S
varies with data sets.

9.3.4. Mouse-Trajectory Prediction

�e mouse-trajectories of continuous motor movements provide a way of measuring the ongoing

cognitive processes that lead to the participant’s �nal choice. Amain advantage ofmodeling trajec-

tories with Gaussian process regression over the various summary statistics used previously [65]

(e.g. maximum deviation, area under curve) is that less information is thrown away. �e posterior

density of a GP shows a normatively correct summary of the data.

I applied LGPC for learning mouse-trajectory of di�erent users in an Internet banking sce-

nario. To collect the data, I developed a website for simulating an environment, in which partic-

ipants were asked to transfer funds to a dummy account. A complete procedure was composed

of �ve interfaces, i.e. login, account overview, transaction details, TAN authentication and con-

�rmation. Ten participants were involved and each with three trials; the input information was

same for all trials. A Javascript code was developed for tracking mouse coordinates on every on-

mousemove event. �e trajectories of the �rst two trials (ca. 2700 points/user) were used for

training models. �e goal was to predict the trajectory of the last trial (ca. 1000 points/user).

�e predicted trajectories of three users using LGPC, SOGP and o�ine GPR are visualized in

5I did try few heuristics for initializing the hyperparameters, such as initializing 20 Gaussian kernels with di�erent

widths (e.g. 2−9, . . . , 29, 210) and the same noise level; or se�ing W in (9.1) for each GP as a random block matrix.

However, such a�empts did not yield be�er predictive accuracy than the random initialization.

105



9. Online Prediction of User Behavior with Lazy Gaussian Process Commi�ee

Fig. 9.6 and Fig. 9.7. It was observed that users behaved di�erently even when they were perform-

ing the same task. For instance, the �rst user used the tab key moves the cursor and entered the

TAN code with the numpad, resulting a short and simple mouse-trajectory. On the other hand,

the third user entered the TAN code using a virtual keyboard on the web page, which made the

trajectory sway horizontally. By learning from the �rst two trials, reasonable predictions of the

third trial were obtained from all methods. However, when the interface containedmany elements

and the trajectory became more complicated, the o�ine GPR gave noisy predictions as depicted

in Fig. 9.6. It can be seen that LGPC performed as good as the state-of-the-art SOGP in learning

users’ trajectories.

With a new training point arriving about every 10ms (less than one minute of running time

will result in thousands of data points), LGPC is a more preferable method due to its fast learning

speed. E�cient trajectory prediction would be bene�cial in security applications, such as distin-

guishing between individuals and early warning of identity the�.
U1

LGPC

U2

LGPC

U3

LGPC
U1

SOGP

U2

SOGP

U3

SOGP
U1

GPR

U2

GPR

U3

GPR

Figure 9.6.: �e predictions of mouse-trajectories when users are inpu�ing the transaction infor-

mation. Each column represents a user. �e gray curve with� denotes a user’s trajec-

tory in the third trial. �e model’s prediction is illustrated by the color curve with ⋆,
whose head is blue and tail is red.

9.4. Conclusion

GP faces a low-e�ciency problemwhen it is applied to real-time online applications. �is work has

proposed a novel method for reducing the computational demand of GP regression. It consists of

multiple GPs where eachmaintains only a small set of training examples. Each time a subset of GPs

106

figures/mouse-step3-1.eps
figures/mouse-step3-2.eps
figures/mouse-step3-3.eps


9.4. Conclusion

U1

LGPC

U2

LGPC

U3

LGPC
U1

SOGP

U2

SOGP

U3

SOGP
U1

GPR

U2

GPR

U3

GPR

Figure 9.7.: �e predictions of mouse-trajectorieswhen users are inpu�ing the security code. Each

column represents a user. �e gray curve with� denotes a user’s trajectory in the third

trial. �e model’s prediction is illustrated by the color curve with ⋆, whose head is blue
and tail is red.

is selected for including newly arrived training examples. �e selection is performed by optimizing

a submodular function. Unlike previous work, LGPC removes the need for parameter-��ing and

requires li�le tuning e�orts. An improvement of accuracy and e�ciency over existing online GP

methods has been demonstrated in the experiment. In particular, as a modi�ed version of Bayesian

commi�ee machine, I have showed that updating a chosen subset of GPs is more e�ective than

updating the whole commi�ee, which leads to be�er predictive accuracy. As demonstrated in the

task of mouse-trajectory prediction, LGPC can be applied to a wide range of real-time applications,

such as learning motor dynamics and inferring temporal dynamics of mental phenomena.

An important question for future studies is to determine the optimal size of the commi�ee.

One possible way is to expand or shrink the commi�ee size during the online learning. In addition,

more e�ective strategies for initializing the hyperparameters remain to be determined. Further-

more, it should be interesting to infringe the independence between GP members for a further

improvement on the accuracy.

107

figures/mouse-step4-1.eps
figures/mouse-step4-2.eps
figures/mouse-step4-3.eps


9. Online Prediction of User Behavior with Lazy Gaussian Process Commi�ee

108



Chapter 10
Online Prediction of System Call Sequence
with Side Information

In this chapter, I will focus a�ention on the sequence prediction problem and introduce a method

for e�ciently online learning and predicting the system call sequence. Sequence prediction is a

key task in machine learning and data mining. It involves observing a sequence of symbols one at

a time and predicting the next symbol before it is revealed. �is technique has been successfully

applied in a large variety of disciplines, such as stock market analysis, natural language processing

and DNA sequencing. �e problem of sequence prediction has received considerable a�ention

throughout the years in information theory, machine learning and data mining. Typically, the

Markov property is assumed when modeling a sequence. �at is, a �nite history of the past, i.e.

the context, can be useful in predicting the future. �e length of the context is called the order of

Markov models. Previous work shows ample evidence of the fact that making such an assumption

is o�en reasonable in a practical sense [183, 18]. For instance in natural language processing, it is

o�en well-enough to describe text by a �xed order Markov models (e.g. bigram, trigram), though

the next word is not necessarily related to its previous words.

From the information security perspective, a related application is modeling the execution

path of a process on a desktop/mobile system in real-time. Each process produces an ordered

sequence of system calls which request di�erent services from the operating system. In this case,

each symbol in the sequence represents a system call accompanied with arguments and a return

value. An illustrative example is depicted in Fig. 10.1.

�ree remarks are in order. First, some system calls have a long range dependency. For in-

stance, a�er creating a �le the process may produce hundreds of system calls before it �nally

closes the �le. In this case, the dependency between creat and close can not be observed

from a short context of close. Although one can increase the order of Markov models to cap-

ture information from a long distant context, it is o�en di�cult in practice due to the requirement

of vast amounts of training data and more sophisticated smoothing algorithms [27]. In general,

the length of context needed to make an accurate prediction is not constant, but rather depends

on the recently executed system calls. Second, the information from the arguments and return

values (e.g. �le descriptor, memory address and signal) may be also indicative in predicting the

next system call. Considering a process repetitively reads data from the �le 1 and writes data to

the �le 2. A resulting system call sequence may look like

109



10. Online Prediction of System Call Sequence with Side Information

<
0
.
0
0
0
0
0
0
s
:
 
e
x
e
c
v
e

0
.
0
0
0
5
1
2
s
:
 
b
r
k

0
.
0
0
0
7
5
7
s
:
 
m
m
a
p

0
.
0
0
1
7
0
7
s
:
 
s
t
a
t

0
.
0
0
2
2
7
5
s
:
 
s
t
a
t

0
.
0
0
2
6
7
9
s
:
 
s
t
a
t

0
.
0
0
3
0
7
7
s
:
 
s
t
a
t

0
.
0
0
3
4
9
8
s
:
 
s
t
a
t

0
.
0
0
3
8
1
1
s
:
 
s
t
a
t

0
.
0
0
3
9
9
9
s
:
 
s
t
a
t

0.
00
40
30
s:
 o
pe
n

0.
00
40
53
s:
 f
st
at

0.
00
40
77
s:
 m
ma
p

0.
00
41
00
s:
 c
lo
se

0.
00
41
47
s:
 o
pe
n

0.
00
41
70
s:
 r
ea
d

0.
00
41
98
s:
 f
st
at

0.
00
42
24
s:
 m
ma
p

0.
00
42
45
s:
 m
pr
ot
ec
t

0.
00
42
68
s:
 m
ma
p

0.
00
42
98
s:
 m
ma
p

0.
00
43
22
s:
 c
lo
se

0.
00
45
31
s:
 o
pe
n

0.0
045

55s
: r

ead

0.0
045

79s
: f

sta
t

0.0
046

05s
: m

map

0.00
4628

s: m
map

0.00
4648

s: m
prot

ect

0.004
670s:

 mmap

0.00469
6s: clo

se

0.004908s: 
open

0.004932s: read
0.004956s: fstat
0.004982s: mmap
0.005002s: mprotect0.005024s: mmap0.005050s: close
0.005258s: open
0.005282s: read

0.005305s: fstat

0.005330s: mmap

0.005351s: mprotect

0.005372s: mmap

0.005397s: mmap

0.005421s: close

0.006004s: open

0.006052s: read

0.006102s: fstat

0.006153s: mmap

0.006203s: mmap

0.006244s: mprotect

0.006292s: mmap

0.006344s: close

0.006756s: open

0
.
0
0
6
8
0
1
s
:
 
r
e
a
d

0
.
0
0
6
8
4
7
s
:
 
f
s
t
a
t

0
.
0
0
6
9
1
9
s
:
 
m
m
a
p

0
.
0
0
6
9
6
8
s
:
 
m
p
r
o
t
e
c
t

0
.
0
0
7
0
1
8
s
:
 
m
m
a
p

0
.
0
0
7
0
7
3
s
:
 
m
m
a
p

0
.
0
0
7
1
2
5
s
:
 
c
l
o
s
e

0
.
0
0
7
5
8
4
s
:
 
o
p
e
n

0
.
0
0
7
6
3
5
s
:
 
r
e
a
d

0
.
0
0
7
6
8
6
s
:
 
f
s
t
a
t

0
.
0
0
7
7
4
3
s
:
 
m
m
a
p

0
.
0
0
7
7
8
6
s
:
 
m
p
r
o
t
e
c
t

0
.
0
0
7
8
3
4
s
:
 
m
m
a
p

0
.
0
0
7
8
9
0
s
:
 
c
l
o
s
e

0
.
0
0
7
9
4
0
s
:
 
m
m
a
p

0
.
0
0
8
0
1
3
s
:
 
m
m
a
p

0
.
0
0
8
0
6
3
s
:
 
a
r
c
h
_
p
r
c
t
l

0
.
0
0
8
2
0
9
s
:
 
m
p
r
o
t
e
c
t

0
.
0
0
8
2
6
2
s
:
 
m
p
r
o
t
e
c
t

0
.
0
0
8
3
1
9
s
:
 
m
p
r
o
t
e
c
t

0.008371s: mprotect

0.008420s: mprotect

0.008467s: mprotect

0.008522s: mprotect

0.008573s: mprotect

0.008622s: mprotect

0.008665s: munmap

0.008719s: set_tid_address

0.008760s: set_robust_list

0.008857s: rt_sigaction

0.008920s: rt_sigaction

0.008973s: rt_sigprocmask

0.009023s: getrlimit

0.009179s: statfs

0.009301s: brk

0.009342s: brk

0.009396s: open

0.009463s: fstat

0.009586s: mmap

0.009669s: read

0.009775s: read

0.009847s: close
0.009903s: munmap
0.009993s: open
0.010039s

: fstat 0.0100
91s: m

map 0.010
134s:

 clos
e

0.01
0222

s: i
octl

0.01
0301

s: i
octl

0.0
103

88s
: o

pen
at

0.0
104

50s
: g

etd
ent

s

0.0
108

22s
: g

etd
ent

s

0.
01
08
71
s:
 c
lo
se

0.
01
11
14
s:
 f
st
at

0.
01
11
79
s:
 m
ma
p

0.
01
12
41
s:
 w
ri
te

0.
01
13
08
s:
 w
ri
te

0.
01
13
66
s:
 w
ri
te

0.
01

14
23

s:
 w

ri
te

0.
01
14
79
s:
 w
ri
te

0.
01
15
37
s:
 w
ri
te

0.
01
15
95
s:
 w
ri
te

0.
01
16
54
s:
 w
ri
te

0.
01
17
10
s:
 w
ri
te

0
.
0
1
1
7
6
5
s
:
 
w
r
i
t
e

0
.
0
1
1
8
2
1
s
:
 
w
r
i
t
e

0
.
0
1
1
8
7
7
s
:
 
w
r
i
t
e

0
.
0
1
1
9
3
3
s
:
 
w
r
i
t
e

0
.
0
1
1
9
8
9
s
:
 
w
r
i
t
e

0
.
0
1
2
0
4
4
s
:
 
w
r
i
t
e

0
.
0
1
2
1
1
2
s
:
 
c
l
o
s
e

0
.
0
1
2
1
5
1
s
:
 
m
u
n
m
a
p

0
.
0
1
2
2
0
3
s
:
 
c
l
o
s
e

>
0
.
0
1
2
2
6
9
s
:
 
e
x
i
t
_
g
r
o
u
p

Figure 10.1.: A circular plot of a system call trace when running ls on Linux, which was collected

using strace. System calls are plo�ed clockwise, starting with execve and end-

ing with exit on top. A time stamp is labeled in front of each system call. A curve

connects two system calls if the return value of the former was used as an argument

of the la�er.

110

figures/ls.eps


Call Argument Return

open (”/lib/librt.so”, ORDONLY) = 3

read (3, ”“177ELF“2“1“1”) = 832

fstat (3, –stmode=SIFREG, stsize=317) = 0

mmap (NULL, 4096, PROTREAD—PROTWRITE) = 0x7f2f

mmap (NULL, 2129016, PROTREAD) = 0x7f2f

mprotect (0x7f2f7, 2093056, PROTNONE) = 0

mmap (0x7f2fa, 8192, PROTREAD) = 0x7f2f

close (3) = 0

Table 10.1.: A sample segment of this sequence is detailed, with argument de�ned within the

parentheses. For the sake of clarity, some long arguments (e.g. string) are omi�ed.

�e dependencies between the return value and argument are highlighted with arrow

lines.

open(1)

read(1)

close(1)

open(2)

write(2)

close(2)

open(1)

...

Assume that one has observed the above sequence with seven system calls; the goal is to

predict the next system call. Without using the knowledge of the arguments, a bigrammodel based

merely on the name of adjacent system call will predict read and write with even chance.

However, as the �le 2 has been closed, the correct prediction should be read. Although one

can solve this problem by extending Markov models with more sophisticated graphical models,

incorporating side information is in general not straightforward for probabilistic Markov models.

�ird, a process may exhibit di�erent behaviors at various points during its lifetime, depending on

user’s input and the status of the system. In other word, the sequence is usually not stationary and

no prior assumption on its distribution should be made. �is suggests the necessity of an online

model that can be continuously updated, preserving information from a long distant context while

giving more emphasis to recent data, so that the stationarity is not required.

I focus on the problem of predicting the next system call given an observed sequence. �e

solution of this problem can be extremely useful in a wide range of applications, such as anomaly

detection [166, 57], bu�er cache management in operating system [66], power management in

smartphones [124] and sandbox systems [123]. I leverage both context and side information of

each system call and model a sequence in an online fashion. �e proposed algorithm performs

prediction in real-time and can quickly update the model when a prediction error is made.

�e rest of the chapter is organized as follows. Section 10.1 brie�y reviews previous work on

sequence prediction. Subsequently, my novel contribution is highlighted. Section 10.2 describes

the problem formulation. I next cast sequence prediction as a linear separation problem in Sec-

tion 10.3. �e proposedmethod is presented in Section 10.4. Experimental results are demonstrated

in Section 10.5. Section 10.6 concludes the chapter and points out some future directions.

111



10. Online Prediction of System Call Sequence with Side Information

10.1. Related Work

�e problem of sequence prediction has a fairly long history and has received much a�ention

from the �eld of game theory [132, 14, 81], information theory [32, 33, 59, 168], and machine

learning [82, 125, 51, 170, 171, 56]. One of the most useful tools is context trees, which store

informative histories and the probability of the next symbol given these [168, 8]. Context trees

use only a few recently observed symbols for prediction. �e number of symbols that are used

depends on the speci�c context in which the prediction is made. �e motivation for exploring

context tree strategies stems from their simplicity and their success in lossless data compression

applications [110]. Another family of approach based on Bayesian nonparametric models has

generated considerable recent research interest [154, 170, 171]. It is assumed that the distribution

of the current symbol is determined by some random process (e.g. Dirichlet process, Pitman-

Yor process) governed by its context. �e hierarchy is de�ned recursively to the �rst symbol in

the sequence, on which a global base distribution is de�ned. �ese models give state-of-the-art

performance in language modeling, however, inference in such models is not straightforward. It

o�en relies on repeated random sampling (e.g. Markov chain Monte Carlo), which can be time-

consuming in practice.

Another related line of work is online learning, which takes place in a sequence of consecutive

rounds. On each round, the learner is given a question and is required to provide an answer to

this question. �e performance of an online learning algorithm is measured by the cumulative loss

su�ered by the prediction along the run on a sequence of question-answer pairs. �e Perceptron

algorithm [114, 134, 122] is perhaps the �rst and simplest online learning algorithm designed for

answering yes/no questions. Adaptations of the Perceptron for multiclass categorization tasks

include [54, 39]. As the Perceptron algorithm is essentially a gradient descent (�rst-order) method,

recent years have seen a surge of studies on the second-order online learning [20, 17, 53]. For

example, the con�dence-weighted algorithm [53] maintains a Gaussian distribtuion over some

linear classi�er hypotheses and employs it to control the online update of parameters. Several

work has followed this idea and showed that parameters’ con�dence information can signi�cantly

improve online learning performance [53, 37, 38, 163].

�e system call sequence was mainly studied by computer security researchers in the early

days [62, 103, 166]. �ey used pa�erns in the sequence to identify misuses and intrusions in sys-

tems. To contain the a�ack preemptively, plan recognition was developed, aiming at recognizing

and predicting goals based on observed system call sequences [70, 61]. Recently, the problem of

system call prediction a�racted much a�ention due to its importance in many applications. For

example, in a sandbox the amount of time that a process must suspend for a security check can be

eliminated when the current system call is correctly predicted, yielding a more e�cient sandbox

implementation [123]. Onmobile devices it has been demonstrated that system calls prediction can

be used to design user-oriented prefetching techniques [66] and reduce power consumption [124].

However, most of these studies are over-simplistic in the sense that they focused only on the names

of system calls and overlooked the arguments and return values. One possible reason is the dif-

�culty in representing this side information, which requires a di�erent modeling technique, such

as rule learning [25, 152]. Hence, it can not be incorporated into a sequence prediction model in a

straightforward manner.

In this chapter I introduce a novel online algorithm for predicting system calls in a sequence.

My algorithm combines the ideas from both context trees [51, 90] and second-order online learning

algorithms [53, 37, 38, 163]. Unlike previous work on system call prediction that only uses context

112



10.2. Problem Formulation

information, I also consider side information such as arguments, return values and structures

into learning and prediction. �e side information can be straightforwardly incorporated into

my model, giving a further boost to the accuracy of prediction. Furthermore, I propose several

techniques to improve the e�ciency (in terms of both time and memory) of my algorithm on long

sequences, yielding a good scalabilty on big data.

10.2. Problem Formulation

Denote the alphabet of the observed symbols as Σ := {1, . . . ,K}. Let Σ∗ be the set of all �nite

length sequences over the alphabet Σ. Speci�cally, the empty sequence ǫ is included in Σ∗. I focus
on the online learning framework, where learning is performed in rounds. Let x〈t〉 ∈ Σ be the tth

symbol in a sequence. Denote x〈1:t−1〉 ∈ Σ∗ be the context of x〈t〉, i.e. x〈1:t−1〉 := x〈1〉, . . . , x〈t−1〉.
For completeness, let x〈t:t−1〉 := ǫ. On round t, the algorithm �rst predicts x̂〈t〉 ∈ Σ according

to its current prediction rule and the context x〈t:t−1〉. A�er that, the true symbol x〈t〉 is revealed
and the algorithm su�ers a loss which re�ects the degree to which its prediction was wrong. �e

algorithm then has the option to modify its prediction rule, with the explicit goal of improving the

accuracy of its predictions for the rounds to come.

Assume that any symbol in the sequence is determined by its context, the problem of sequence

prediction can be formulated as �nding a function f : Σ∗ → Σ. To predict the tth symbol one

can simply set x̂〈t〉 := f(x〈1:t−1〉). I generalize this de�nition and allow the algorithm to output

predictions from a real-valued setY . Speci�cally, letY := R
K and f : Σ∗ → Y , where a prediction

y ∈ Y is interpreted as a degree of con�dence for each of the symbols in Σ. Consequently, the

mapping from a score vector y to an actual symbol in Σ is via x̂ := arg maxk∈Σ yk . On round t,

the loss of f is measured by a zero-one loss function ℓ1
(
f ; (x〈1:t−1〉, x〈t〉)

)
. �at is, ℓ1 is zero if

x̂〈t〉 = x〈t〉. �erefore, my ultimate goal is to incrementally learn a function f which minimizes

1

T

T∑

t=1

ℓ1
(
f ; (x〈1:t−1〉, x〈t〉)

)
,

where T is the length of the sequence.

10.3. Sequence Prediction as Linear Separation

Having described a general scheme for sequence prediction, I now focus on determining the form

of f to obtain a concrete algorithm. In what follows I cast the sequence prediction problem as

the problem of linear separation in a Hilbert space, which is a popular topic in machine learning.

�e reader will see that by doing so one can harness powerful machine learning tools such as the

Perceptron algorithm [134, 122] and online convex programming [139] to my purpose.

As it was suggested in the beginning of this chapter, the number of previous symbols needed

to make an accurate prediction is usually not constant, but rather depends on the identity of those

symbols. With this consideration in mind, de�ne a su�x-closed set V ⊂ Σ∗ such that for every

s ∈ V , every su�x of s (including ǫ) is also contained in V . To allow the algorithm to look as

far back as needed, the set V can be set large enough. Speci�cally, let H be the Hilbert space of

113



10. Online Prediction of System Call Sequence with Side Information

square integrable functions ψ : V → R endowed with the inner product

〈ζ, ψ〉 =
∑

s∈V

ζ(s)ψ(s),

and the induced norm ‖ζ‖ =
√
〈ζ, ζ〉. Note that if one can bound |V | by a constant, then the

Hilbert space H is isomorphic to the |V |-dimensional vector space, i.e. R|V |.

On round t the context x〈1:t−1〉 is observed, this sequence is mapped to the function ψ ∈ H
as follows

ψ(s〈1:i〉) :=





1 if s〈1:i〉 = ǫ

e−ρi if s〈1:i〉 ∈ suf(x〈1:t−1〉)
0 otherwise

, (10.1)

where suf(x〈1:t−1〉) denotes the set of all su�xes of x〈1:t−1〉. �e decay factor ρ > 0 is a prede-

�ned hyperparameter and mitigates the e�ect of long contexts on the functionψ. It is noticed from
Eq. (10.1) that all su�xes of x〈1:t−1〉 are mapped to non-zero values; the value tends to decrease as

the length of su�x increases. �is idea expresses the assumption that symbols appearing earlier

in a sequence have the least importance in modeling the current symbol. As the reader will see

in Section 10.4.3, this assumption can be infringed to some extent by incorporating side informa-

tion into my model.

Having mapped sequences to functions inH, the next step is to create separating hyperplanes
in H for prediction. I employ a multi-class context tree. A multi-class context tree is a K-ary

tree, each node of which represents one of the sequences in V . Speci�cally, the root of the tree

represents the empty sequence ǫ. �e node that represents the sequence x〈i:j〉 is the child of the

node representing the sequence x〈i+1:j〉. An observed sequence thus de�nes a path from the root

of the tree to one of its nodes. Note that this path can either terminate at an inner node or at a leaf.

I associate each node with aK-dimensional vector. In other words, a multiclass context tree can be

represented as a function τ : V → R
K . An illustrative example is given in Fig. 10.2. In particular,

if one only looks at the kth element of the vector on every node and denote the corresponding

context tree as τk : V → R, then it is easy to verify that τk is embedded inH.
To construct the context tree on rounds, I initialize τ 〈1〉 to be a tree of a single (the root) node

which assigns a weight of zero to the empty sequence, i.e. V 〈1〉 := {ǫ}. A�er receiving x〈1:t−1〉, a
trivial solution is adding all sequences in the set suf(x〈1:t−1〉) to V 〈t〉 and associate each of which

with an undetermined vector inRK . �e method for determining the value of these vectors will be

presented in Section 10.4.1. For a long sequence adding all su�xes to the tree can impose serious

computational problems, as the required memory for storing the tree grows quadratically with t.
�is issue will be resolved in Section 10.4.2.

Returning to the sequence prediction problem, let x〈1:t−1〉 be the sequence of observed sym-

bols on round t, and let ψ〈t〉 be its corresponding function inH de�ned by Eq. (10.1). Denote τ
〈t〉
k

as the current context tree subject to the class k. By following the description in Section 10.2, the

prediction problem can be formulated as

x̂〈t〉 := arg max
k∈Σ

〈
ψ〈t〉, τ 〈t〉

k

〉

︸ ︷︷ ︸
f(x〈1:t−1〉)

. (10.2)

Geometrically, one can consider H as a space partitioned by K hyperplanes, whose normal are

114



10.4. Online Learning Algorithm

ǫ

1

(−1, 0.4, 1)

“a”
2

(0, 0.2, 2)
“b”

3

(1, 0.2, 0)
“b”

4

(0.6, 0.5, −1)

“a”

5

(−0.3, 0.8, 0.1)
“c”

6

(0.2, 0.9, 0.2)

“c” 7

(−1, −1, 0.3)

“b”

8

(0.3, 0.5, −1)

“a”

9

(0.1, 0.6, −0.2)

“b”

Figure 10.2.: An example of a multi-class context tree, where K = 3 and V = {ǫ,a,ba,b,ab,
cb,c,bc,abc,bbc}. �e label on each node represents the index. Notice how the

indexmatches the element inV . �e context associatedwith each node is indicated on

the edges of the tree along the path from the root ǫ to that node. �e vector associated

with each node is provided above each node. �is context tree can be parameterized

as a 10×3 matrix, with the �rst column (0, 0, 0)⊤ corresponds to the empty sequence

ǫ. Considering the context tree as a function, given an input sequence “aabbc”, the

output from this context tree is (0.1, 0.6,−0.2), whose path is plo�ed with double

lines.

given by τ1, . . . , τk , respectively. �e tth symbol is then predicted by picking the hyperplane that

gives the maximum (signed) distance to the vector ψ〈t〉.

10.4. Online Learning Algorithm

It can be seen in Section 10.3, the predictor is fully speci�ed by a multi-class context tree τ , which
can be represented by τ1, . . . , τK . Given a �xed V , τk can be parameterized by a vectorwk ∈ R

|V |.
Denote W := [w1, . . . ,wK ], in which rows correspond to vectors associated with each node as

depicted in Fig. 10.2. �e size of W is thus |V |×K . Note that a context tree is now fully speci�ed

by its weight vector W and structure V . �at is, every {W, V } represents a unique τ and vice

versa. �erefore, the problem of learning an accurate predictor can be reduced to the problem of

determining W and V . Denote ψ〈t〉 ∈ R
|V | a vector corresponding to the sequence x〈1:t−1〉. To

construct ψ〈t〉 I simply follow Eq. (10.1) and only assign values to the sequences in x〈1:t−1〉 ∩ V .

Elements of ψ〈t〉 are indexed in the same order as w
〈t〉
k . �us, the score vector y described in

Section 10.2 amounts to (W〈t〉)⊤ψ〈t〉.
�is section describes the proposed online learning algorithm in four parts. I �rst describe the

method to learn W, subsequently, I present an approach for constructing V in a memory-e�cient

way. Extension for incorporating side information is described towards the end. Finally, several

implementation issues are highlighted.

115



10. Online Prediction of System Call Sequence with Side Information

10.4.1. Learning Weight Vectors

I �rst show how the update of W can be performed in rounds. My method is closely related to the

family of con�dence-weighted linear classi�ers [53, 37, 38, 163]. Following the idea of previous

work, I maintain a Gaussian distribution for every column of W with a mean vector µk ∈ R
|V |

and a diagonal covariance matrix Λk ∈ R
|V |×|V |, i.e. wk ∼ N (µk,Λk). Notice that by restricting

Λk to a diagonal matrix, the weights become independent 1. �is is not true in real-world, yet it is

necessary due to the large value of |V |. For the sake of e�ciency, the predicted symbol is simply

approximated by arg max
k∈Σ

µk · ψ〈t〉 instead of using weight vectors sampled from N (µk,Λk). In

other words, the information captured by Λk does not in�uence the decision. �is is analogous to

Bayes point machines [83].

On each round, I update the model by minimizing the Kullback-Leibler divergence between

new distribution and the old one while ensuring that the probability of correct prediction on tth

symbol is not smaller than the con�dence hyperparameter η ∈ [0, 1]. A�er revealing the true

symbol r := x〈t〉, I need to update (µk,Λk) to the solution of the following optimization problem

(
µ

〈t+1〉
k ,Λ

〈t+1〉
k

)
= arg min

µ,Λ
DKL

(
N (µ,Λ)

∥∥N
(
µ

〈t〉
k ,Λ

〈t〉
k

))
(10.3)

s.t. Prw∼N (µ,Λ)

[
wr · ψ〈t〉 ≥ w ·ψ〈t〉

]
≥ η. (10.4)

Notice that the optimization problem in Eq. (10.3) needs to be solved K − 1 times for every

k ∈ Σ \ r on each round, which can be computationally expensive. I therefore provide a simpli-

�ed algorithm, where only two updates is required on each round. �e intuition was to ensure

that the true symbol is more likely to be predicted than the symbol that is its closest competitor.

Speci�cally, let s be the highest ranked wrong symbol on round t. �at is,

s := arg max
k∈Σ\r

µ
〈t〉
k ·ψ〈t〉. (10.5)

In each round only (µr,Λr) and (µs,Λs) are updated as follows

(
µ〈t+1〉

r ,Λ〈t+1〉
r

)
= arg min

µ,Λ
DKL

(
N (µ,Λ)

∥∥N
(
µ〈t〉

r ,Λ〈t〉
r

))

s.t. Prw∼N (µ,Λ)

[
w ·ψ〈t〉 ≥ ws ·ψ〈t〉

]
≥ η. (10.6)

(
µ〈t+1〉

s ,Λ〈t+1〉
s

)
= arg min

µ,Λ
DKL

(
N (µ,Λ)

∥∥N
(
µ〈t〉

s ,Λ〈t〉
s

))

s.t. Prw∼N (µ,Λ)

[
wr · ψ〈t〉 ≥ w ·ψ〈t〉

]
≥ η. (10.7)

Notice how the constraint of Eq. (10.6) and Eq. (10.7) di�ers from each other. I follow the

1One may consider W as a random variable from a matrix normal distribution, i.e. W ∼ MN (M, U, V), where U

and V represents the correlation among-row and among-column, respectively. However, under the assumption of

independent weights and independent symbols, U and V are simply diagonal matrices. �is results an equivalent

formulation to my results.

116



10.4. Online Learning Algorithm

derivation in [37] and obtain the closed-form update as

µ〈t+1〉
r =µ〈t〉

r + αΛ〈t〉
r ψ

〈t〉 (10.8)

µ〈t+1〉
s =µ〈t〉

s − αΛ〈t〉
s ψ

〈t〉 (10.9)

Λ〈t+1〉
r =

((
Λ〈t〉

r

)−1
+ 2αφdiag2

(
ψ〈t〉

))−1

(10.10)

Λ〈t+1〉
s =

((
Λ〈t〉

s

)−1
+ 2αφdiag2

(
ψ〈t〉

))−1

, (10.11)

where diag2
(
ψ〈t〉

)
is a diagonal matrix made from the squares of the elements of ψ〈t〉 on the

diagonal. �e inverse of diagonal matrix can be computed element-wise. �e coe�cient α is

calculated as follows

α =
−(1 + 2φm) +

√
(1 + 2φm)2 − 8φ(m− φv)

4φv
,

where

m =
(
µ〈t〉

r − µ〈t〉
s

)
· ψ〈t〉 (10.12)

v =
(
µ〈t〉

r

)⊤
Λrµ

〈t〉
r −

(
µ〈t〉

s

)⊤
Λsµ

〈t〉
s (10.13)

φ =Φ−1(η), (10.14)

and Φ−1(·) is the inverse of the normal cumulative distribution function.

For initialization I set µ
〈1〉
k

:= 0 and Λ
〈1〉
k

:= I for all k, where I is the identity matrix. It is

noticed from Eq. (10.8) and Eq. (10.9) that during online learning themeanweight vector is updated

in a similar fashion as in the Perceptron. �e con�dence of all observed su�xes is increased by

shrinking the corresponding value on the diagonal of Λk (see Eq. (10.10) and Eq. (10.11)), which

leads to the update of weight vector in the next round more focusing on low con�dence features.

10.4.2. Memory-E�cient Update of Su�x Set

Having described the method for learning the weight vectors of the context tree, I now focus on

determining its structure, i.e. V . Instead of adding all su�xes of the context to V on each round,

I introduce three strategies for constructing V in a memory-e�cient way.

First of all, I only update V if the probability constraint

Prwr∼N (µr,Λr)
ws∼N (µs,Λs)

[
wr ·ψ〈t〉 ≥ ws ·ψ〈t〉

]
≥ η (10.15)

is violated. Note that Eq. (10.15) can be rewri�en as

(µr − µs) ·ψ〈t〉 ≥ φ
√(
ψ〈t〉

)⊤
(Λr + Λs)ψ〈t〉,

where φ = Φ−1(η). Further, I introduce a loss function as

117



10. Online Prediction of System Call Sequence with Side Information

ℓφ
(
{(µk,Λk)}Kk=1; (x〈1:t−1〉, x〈t〉)

)
:=

max

(
0, φ

√(
ψ〈t〉

)⊤
(Λr + Λs)ψ〈t〉 − (µr − µs) ·ψ〈t〉

)
. (10.16)

It is easy to verify that satisfying the probability constraint Eq. (10.15) is equivalent to satis-

fying ℓφ = 0. In this case, I simply set V 〈t+1〉 to be equal to V 〈t〉. Otherwise I add all sequences in
suf(x〈1:t−1〉) to V 〈t〉. Note that ρ and φ can be tuned as a trade-o� between the passiveness and

aggressiveness of the update.

Second, when a sequence is extremely long, adding all su�xes of a long context can impose

serious memory growth problem. Hence, it is not a practical solution. To limit the maximum depth

of the context tree, I prune the context x〈1:t−1〉 to a certain length κ〈t〉 before adding its su�xes

to V , where κ〈t〉 is given by

κ〈t〉 = min

(⌊
1

ρ
log ℓ1(t)

⌋
, t− 1

)
,

with ℓ1(t) denoting the number of predictionmistakes made by the algorithm so far. �e intuition

behind is to limit the depth of the context tree by the number of prediction mistakes, which is

inspired by [51]. As a consequence, one can straightforwardly translate the mistake bound of

con�dence weighted classi�er (�eorem 4 in [37]) into a bound on the growth-rate of the resulting

context tree [51, 90].

Finally, I limit the size of V by removing the elements giving smallest
∑

k µ
2
k,i when |V | ex-

ceeds the maximum allowed size Q, where µk,i is the i
th element of µk and i ∈ [1, Q]. �is

criterion has been shown e�ective in recursive feature elimination [79] and has a good theoretical

support [29, 23]. Alternatively, one can also use the
∑

k 1/λk,i or
∑

k |µk,i|/λk,i as the criterion,

where λk,v is the vth element on the diagonal of Λk . By employing the above three strategies the

context tree grows at a much slower pace and the algorithm can utilize memory more conserva-

tively. Finally, the pseudo-code of my algorithm is summarized in Fig. 10.3, which is called EOSP

in the sequel for short.

10.4.3. Incorporation of Side Information

�us far I augment only context information from the sequence. As I highlighted in the beginning

of this chapter, side information of system calls can support the prediction of the next symbol.

Apart from that, in language modeling grammars (e.g. part-of-speech tags), topics, styles are help-

ful to predict the next word [75, 164]. Comparing to the n-gram models and Bayesian nonpara-

metrics models [154, 170], a key advantage of the proposed approach is its simplicity of leveraging

side information. Speci�cally, if side information on round t can be given in the form of a vector

b〈t〉 ∈ R
B , one can directly incorporate it into the prediction via a linear combination as follows

x̂〈t〉 := arg max
k∈Σ

µ
〈t〉
k · ψ〈t〉 + γ

〈t〉
k · b〈t〉.

�is corresponds to replacing ψ〈t〉 in Fig. 10.3 as a (Q + B)-dimensional vector [ψ〈t〉,b〈t〉]. �e

dimension of the mean vector and con�dence matrix associated with each symbol is extended

118



10.4. Online Learning Algorithm

Input : Damping factor: ρ > 0; con�dence parameter: η ∈ [0, 1]; maximum allowed

size of V : Q > 0.
Output : Mean vectors and con�dences matrices: {(µk,Λk)}Kk=1; set: V .

Initialize: ∀k ∈ Σ, (µ
〈1〉
k ,Λ

〈1〉
k ) = (0, I), φ = Φ−1(η), V 〈1〉 = {ǫ};

1 for t = 1, 2, . . . do

2 Construct ψ〈t〉 from x〈1:t−1〉; /* Eq. (10.1) */

3 Rank all symbols by µ
〈t〉
k ·ψ〈t〉;

4 Receive the true symbol r;
5 Compute s; /* Eq. (10.5) */

6 Su�er loss ℓφ; /* Eq. (10.16) */

7 if ℓφ > 0 then

8 while |V 〈t〉| > Q− κ〈t〉 do
9 i = arg min

j=1,...,Q

∑
k∈Σ µ

2
k,j ;

10 ∀k ∈ Σ, µk,i = 0;

11 Remove the ith sequence from V 〈t〉;

12 V 〈t+1〉 = V 〈t〉 ∪ {x〈t−i:t−1〉 | 1 ≤ i ≤ κ〈t〉};
13 Set (µ

〈t+1〉
r ,Λ

〈t+1〉
r ) and (µ

〈t+1〉
s ,Λ

〈t+1〉
s ); /* Eqs. (10.8) to (10.11)

*/

Figure 10.3.: E�cient online sequence prediction (EOSP).

accordingly. Note that an ine�ective representation of side information can adversely a�ect the

prediction performance as well, hence there has to be some mechanism for selecting features

that really contribute to prediction. In the proposed algorithm, this can be done by constantly

se�ing µk,i+b to zero if
∑

k |µk,i+b|/λk,i+b is too small. In addition, one can also initialize Λk :=(
I|V |×|V |

γIB×B

)
with 0 < γ < 1 to balance the learning rate of the weights on the context

and side information. Speci�cally, when γ = 1 the side information shares the same learning rate

with context information; when γ = 0 the side information does not contribute the learning and

prediction at all.

�e side information used in this work is summarized in Table 10.2. �e idea of using these

a�ributes is mainly based on experiences and observations. For instance, I observed that system

calls with similar functionality tend to occur together, which could be due to some sub-task of the

process. �us, if a particular group of system calls is frequently observed in the recent context,

then the next system call is very likely from the same group. In present work, system calls are

grouped manually by their documentation, which is partially based on [142]. It is also possible

to automatically group system calls by using topic models [174]. Another observation is that a

block of system calls repeats themselves especially when some of them return an error. �is was

probably a�ributed to the exception handling (e.g. restart mechanism) of a process. �us, a simple

statistic of the error codes is maintained and considered as one of the evidences for predicting the

next system call. In practice, the side information listed in Table 10.2 can be easily extracted from

the context with negligible computational cost.

119



10. Online Prediction of System Call Sequence with Side Information

Table 10.2.: Side information used in our algorithm for system call prediction.

Fea-
ture
set

Size Description

File
de-
scrip-
tor

2 �e number of opened �les and the number of closed �les, respectively.

File
type

9 Each element represents the number of opened �les of a particular type, such as
RDONLY, WRONLY, APPEND, etc.

Func-
tional
group

9 Each element represents the number of occurrences of system calls associated with a
group given a context. �e groups were built in advance by categorizing similar system
calls together, resulting 9 groups in total. For instance, the “�le” group includes
creat, open, close, read, etc. �e “process” group includes fork, wait,
exec, etc. �e “signal” group includes signal, kill, alarm, etc.

Access
loca-
tion

12 Each element represents the number of accesses to a particular directory, such as
/usr/bin, /usr/lib, /usr/tmp, etc.

Error
code

124 Each element represents the number of caught errors of each code, such as ENOENT,
EAGAIN, EBGDF, etc.

POSIX
signal

28 Each element represents the number of sent signals of each type, such as SIGSEGV,
SIGABRT, SIGBUS etc.

String
char-
acter

256 Each element represents the frequency value of a string character. A char is
considered as an 8-bit value, resulting 256 possible characters. We only count
characters in the string that is not �le path.

10.4.4. E�cient Implementation

It can be observed from Eqs. (10.8) to (10.11) that most of the entries of ψ, µk and Λk are zero,

which implies a possibility to improve the e�ciency by storing them in a compact way. In the

implementation, I storeµk, Λk andψ in sparse vectors. �e algorithms of addition and dot product

for sparse vectors can be found in [46]. Moreover, as the updates of (µr,Λr) and (µs,Λs) are

independent to each other, line 13 Fig. 10.3 can be implemented in a parallel manner. Furthermore,

the operations on V can be implemented e�ciently using a data structure called su�x trie. Finally,

removing one element at a time (line 8 to 11 Fig. 10.3) is time consuming and in practice I remove

as much as half of Q when |V 〈t〉| > Q− κ〈t〉.

10.5. Experiments

Two sets of experiments were carried out to validate my algorithm. First, I compared the accuracy

and e�ciency of EOSP with state-of-the-art sequence prediction methods. Second, I investigated

several factors that a�ect the performance of EOSP in order to gain more insights of it.

�e experiments were conducted on three groups of data. �e �rst set of data is from BSM

120



10.5. Experiments

(Basic Security Module) data portion of 1998 DARPA intrusion detection evaluation data set cre-

ated by MIT Lincoln Labs2. I used a subset of training data, which contained four-hour BSM audit

data of all processes running on a Solaris machine. Each system call was recorded with its corre-

sponding arguments and return value. �e second group of data was obtained from University of

New Mexico [166], in which system call traces of several process were generated in either “syn-

thetic” or “live” manner3. �e experiment was conducted on their “live” normal data, where traces

of programs were collected during normal usage of real users. Unlike DARPA data set, a trace in

UNM data set is just a list of system call names; no arguments and return values are available.

�erefore, for UNM data set only the functional group in Table 10.2 was available as side informa-

tion. �e third data set was collected by me. By using strace and a prepared script, I collected

system call sequences with their corresponding arguments and return values from all executable

programs on an Ubuntu system. �e program options were chosen solely for the purpose of exer-

cising the program, and not to meet any real user’s requests. From these three sources I selected

a total of 8 data sets, and their characteristics are summarized in Table 10.3.

Table 10.3.: Characteristics of data sets used in the experiment.

Data set # calls # seq. Min. len. Max. len. Avg. len.

darpa 243 200 2 3, 074 57

lpr1 182 2, 766 82 59, 565 1, 080
lpr2 182 1, 232 74 39, 306 449
sendmail1 190 8, 000 8 173, 664 669
sendmail2 190 8, 000 8 149, 616 648
stide1 164 8, 000 225 146, 695 1, 055
stide2 164 8, 000 108 174, 401 1, 255

ubuntu 458 1, 218 2 53, 247 952

Four sequence prediction methods were employed in the experiment. �ey were interpolated

Kneser-Ney (IKN) [27], online prediction su�x tree (PST) [51], sequencememoizer (SM) [171], and

learning experts (LEX) [56]. I restricted the maximum length of context to 50 for all algorithms

except for SM, which was designed for modeling context with in�nite length. Speci�cally, I used

a 50-gram IKN in the experiment. For LEX the number of experts was set to one and d := 50,
resulting an individual sequence predictor trained with the log loss. �e maximum depth of the

context tree for PST was set to 50. �ese four methods were compared with the proposed EOSP,

and the algorithm with side information denoting as EOSPs . �e con�dence parameter η was 0.8;
the damping factor ρ was 0.1; the maximum length of the context was 50 and the maximum size

of V was 20, 000.

10.5.1. Comparison of Predictive Performance

�e comparison of predictive performance between di�erent methods is summarized in Table 10.4,

where the online error rate and perplexity were used as evaluation metrics. �e online error rate

of an algorithm on a given input sequence is de�ned to be the number of prediction mistakes

2http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/
data/

3http://www.cs.unm.edu/∼immsec/systemcalls

121

http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/
http://www.cs.unm.edu/~immsec/systemcalls


10. Online Prediction of System Call Sequence with Side Information

the algorithm makes on that sequence normalized by the length of the sequence. �e perplexity

re�ects an algorithm’s performance when taking its probabilistic output into account. For EOSP I

just normalized the score vector to obtain the prediction probability Pr[x̂〈t〉 |x1:t−1]. �e reported

results were averaged over all sequences in each data set respectively.

It is evident from the results that, EOSP and EOSPs gave a considerably be�er prediction than

other baseline algorithms. In particular, EOSPs achieved the best performance on the majority data

sets (seven out of eight in terms of perplexity), which indicates the e�ectiveness of incorporating

side information into the model. On �ve out of six UNM data sets, I observed an improvement by

just incorporating the functional group information. On darpa and ubuntu data sets where

side information are fully available, a striking improvement of EOSPs over EOSP was observed.

In general, I found SM is a strong competitor in terms of online error rate. However, EOSP and

EOSPs still outperformed SM with appreciable lower perplexity on all data sets. �is suggests a

potentially valuable property for my method, e.g. for combining it with other probabilistic model

in a big system. Moreover, SM is much slower than EOSP on long sequence, as the reader will see

in the next experiment.

Table 10.4.: Experimental results on di�erent data sets. Smaller value indicates be�er performance.

(a) Online error rate (%) of di�erent algorithms.

Data set EOSP EOSPs IKN PST SM LEX

darpa 50.11 48.17 52.14 49.25 49.75 51.11

lpr1 41.63 41.53 41.09 46.24 40.88 42.27
lpr2 47.44 47.03 47.61 48.52 47.24 51.15
sendmail1 33.47 34.26 35.62 33.65 33.06 36.81
sendmail2 33.11 33.91 33.52 34.17 32.19 38.96
stide1 8.34 8.29 8.54 8.59 8.41 9.06
stide2 7.75 7.75 8.09 7.95 7.78 8.51

ubuntu 40.90 36.13 38.90 39.23 75.26 52.72

(b) Online perplexity of di�erent algorithms.

Data set EOSP EOSPs IKN PST SM LEX

darpa 48.98 40.23 78.34 98.97 63.07 82.36

lpr1 9.82 9.23 16.14 17.05 14.75 11.71
lpr2 12.94 11.08 21.43 16.34 19.94 22.19
sendmail1 8.31 8.17 11.48 30.34 9.23 11.90
sendmail2 8.33 7.96 11.50 30.38 9.17 12.46
stide1 1.42 1.41 2.08 3.42 1.92 4.06
stide2 1.39 1.41 1.98 3.23 1.67 4.51

ubuntu 33.13 31.65 42.81 35.35 68.25 35.62

10.5.2. Comparison of E�ciency

�e comparison of computation speed and memory consumption for all algorithms is shown in

Fig. 10.4 and Fig. 10.5, respectively. I concatenated all traces in sendmail to obtain a long se-

quence, and tested di�erent methods on this sequence with increasing length. �e setup of each

122



10.5. Experiments

method was same as in the last experiment. For the sake of fair comparison, all algorithms were

implemented in C/C++. I only plo�ed the curve for EOSP as EOSPs took almost same amount

of time and memory in the experiment. As can be seen in Fig. 10.4, EOSP showed a substantial

reduction of time comparing to other baseline algorithms. Moreover, the time cost of EOSP only

increased at a very low pace with respect to the length of the sequence. As I expected, LEX and

SM were extremely slow especially on long sequences, since on each round they require gradi-

ent descent and Gibbs sampling, respectively. On contrary, in EOSP one only need to compute

dot products of sparse vectors on each round, which can be done e�ciently. On the other hand,

though the memory consumption of EOSP is higher than other baselines at the beginning, it re-

mained almost constant with increasing length of the sequence. Methods such as IKN and LEX,

however, consume more and more memory as the sequence becomes longer. �is demonstrates

the e�ectiveness of the update strategies described in Section 10.4.2.

2 4 8 16 20 40
10

0

10
1

10
2

10
3

10
4

Length of the sequence (× 104)

T
im

e 
co

st
 [s

]

 

 

EOSP

IKN

PST

SM

LEX

Figure 10.4.: Time cost in second (averaged over 10 runs) of di�erent algorithms. Both axes are in

logarithmic scale.

10.5.3. Exploration of Model Parameters

In order for EOSP to be a practical tool in real-world applications, it is necessary to make decisions

about the details of its speci�cation. �e exploration focused on three parameters that mainly

govern the performance of EOSP. Namely, the con�dence parameter η, the maximum length of

the context, and the maximum size of V . I focused only on EOSP and ignored all side information

in this set of experiments.

�e performance of EOSP with respect to di�erent se�ings of con�dence parameter η is sum-

marized in Table 10.5. I �xed the maximum length of the context to 50 and maximum size of V
to 20, 000. On the majority of data sets, the online error rate hit the bo�om when η is around

0.9. However, the lowest perplexity was o�en observed when η := 0.8; the perplexity slightly

increased a�er that. In general, bigger value of η allows the algorithm to perform a more con�-

dent update on each round, which generally leads to higher predictive accuracy when the data is

123

figures/timecost.eps


10. Online Prediction of System Call Sequence with Side Information

2 4 8 16 20 40
10

-1

10
0

10
1

10
2

Length of the sequence (× 104)

M
em

or
y 

us
ed

 [M
B

]

 

 

EOSP

IKN

PST

SM

LEX

Figure 10.5.: Memory consumption (averaged over 10 runs) of di�erent algorithms. Both axes are

in logarithmic scale.

noise-less.

Table 10.5.: Performance of EOSP w.r.t. di�erent se�ings of con�dence parameter η. Smaller value

indicates be�er performance.

(a) Online error rate (%) of EOSP

Data set 0.6 0.7 0.8 0.9

darpa 50.41 50.52 50.11 50.39

lpr1 41.61 41.55 41.63 41.43

lpr2 47.21 47.02 47.44 46.56

sendmail1 34.25 34.12 33.47 33.12

sendmail2 33.32 33.10 33.11 33.74
stide1 8.21 8.25 8.34 8.13

stide2 7.79 7.79 7.75 7.64

ubuntu 44.77 44.76 40.90 44.60

(b) Perplexity of EOSP

Data set 0.6 0.7 0.8 0.9

darpa 48.82 49.05 48.98 49.03

lpr1 9.74 9.73 9.82 9.72

lpr2 12.62 12.57 12.94 12.33

sendmail1 8.67 8.64 8.31 8.44
sendmail2 8.69 8.67 8.33 8.47
stide1 1.43 1.44 1.42 1.42
stide2 1.40 1.41 1.39 1.39

ubuntu 32.93 33.02 32.93 32.29

124

figures/memcost.eps


10.5. Experiments

Table 10.6 summarizes the results of EOSP with respect to di�erent maximum length of the

context, where η := 0.8 and Q := 20, 000. Although one may expect an improvement of the

predictive accuracy by allowing the algorithm to look back long distant context, I found that the

optimal length of the context varies with data sets. On darpa, lpr1 and stide1, for example,

the context length of 40was su�cient for a good prediction; increasing this length did not improve

the prediction. On ubuntu, the online error rate decreased with increasing context length up to

100. In general, I found that the prediction of EOSP is not adversely a�ected by the overlength

context, though its e�ciency can be degraded due to more memory consumption.

Table 10.6.: Performance of EOSP w.r.t. di�erent maximum length of context.

(a) Online error rate (%) of EOSP

Data set 20 40 60 80 100

darpa 50.21 50.10 50.10 50.10 50.10

lpr1 41.66 41.63 41.63 41.65 41.65
lpr2 47.45 47.45 47.45 47.45 47.45
sendmail1 35.70 33.48 33.47 33.47 33.47
sendmail2 33.67 33.60 33.11 33.11 33.11
stide1 8.45 8.27 8.27 8.27 8.27
stide2 8.02 7.75 7.75 7.75 7.75

ubuntu 41.84 41.23 40.90 40.75 40.69

(b) Perplexity of EOSP

Data set 20 40 60 80 100

darpa 48.97 48.97 48.98 48.98 48.98

lpr1 9.78 9.82 9.82 9.82 9.82
lpr2 12.94 12.93 12.94 12.94 12.94
sendmail1 8.36 8.31 8.31 8.31 8.31
sendmail2 8.38 8.32 8.32 8.33 8.33
stide1 1.43 1.42 1.42 1.42 1.42
stide2 1.40 1.39 1.40 1.40 1.40

ubuntu 33.15 33.13 33.12 33.11 33.10

Finally, to study the performance with respect to di�erent sizes of V , I �xed η := 0.8 and

the maximum length of context to 50. Results are summarized in Table 10.7. It was found that on

the majority of data sets predictive performance can be improved by allowing V to contain more

su�xes, which can be expected. However, on darpa data set having at most 4, 000 su�xes in V
was su�cient for obtaining a good result; increasing the upper bound of |V | did not improve the

performance but raised the memory consumption. �is is probably due to that most sequences

in darpa are short (with average length of 57) and hence there are not many combinations for

frequently occurred subsequences. In general, if the pa�erns in a sequence are simple (especially

with some periodicity), then one can set a small size for V .

125



10. Online Prediction of System Call Sequence with Side Information

Table 10.7.: Performance of EOSP w.r.t. di�erent maximum size (×103) of V .

(a) Online error rate (%) of EOSP.

Data set 1 2 4 8 16

darpa 50.39 50.21 50.13 50.13 50.13

lpr1 42.45 42.18 41.83 41.68 41.65

lpr2 48.21 48.00 47.56 47.45 47.45
sendmail1 38.01 36.57 35.92 35.24 34.63

sendmail2 34.98 33.55 32.88 32.60 32.43

stide1 9.23 8.99 8.62 8.32 8.27

stide2 8.74 8.57 8.28 7.90 7.85

ubuntu 42.73 42.20 41.97 41.51 41.21

(b) Perplexity of EOSP.

Data set 1 2 4 8 16

darpa 48.97 48.98 48.98 48.98 48.98

lpr1 10.37 10.15 9.93 9.82 9.82
lpr2 13.54 13.44 13.01 12.94 12.94
sendmail1 9.46 8.84 8.47 8.31 8.31
sendmail2 9.49 8.88 8.49 8.33 8.33
stide1 1.50 1.47 1.45 1.43 1.43
stide2 1.46 1.45 1.42 1.40 1.40

ubuntu 33.53 33.30 33.19 33.15 33.11

10.6. Conclusion

Motivated by the problem of system call prediction, this chapter has proposed a novel method

for predicting the next symbol in a sequence. �e sequence prediction problem can be seen as a

discrete counterpart of online regression Chapter 9. Unlike previousmethods in this �eld, my algo-

rithm does not rely on a �xed length context during learning and can be easily incorporated with

side information. �e algorithm maintains a set of distributions over parameters. On each round,

the distributions are updated to satisfy a probabilistic constraint. �e update can be computed

in closed-form and implemented using sparse vectors. Moreover, I proposed several strategies to

reduce the memory consumption, allowing a good scalability on long sequences. Experiments on

real-world data sets showed that my method outperforms state-of-the-art online sequence predic-

tion methods in both accuracy and e�ciency, and incorporation of side information does signif-

icantly improve the predictive accuracy. An important question for future studies is to explore

theoretical properties of the proposed algorithm, such as the convergence rate under di�erent

noise se�ings. In particular, it would be interesting to develop a robust algorithm for predicting

sequence with adversarial noise.

�e proposed method can serve as a backbone in a wide range of real-time applications, such

as intrusion detection and power consumption modeling on mobile devices. Comparing to previ-

ous methods in this area, my algorithm allows one to incorporate the domain knowledge as side

information to improve prediction. Besides, the proposed framework can be also adapted to per-

form other tasks, such as language modeling and structure prediction. In Chapter 11, the reader

126



10.6. Conclusion

will see how to extend this model to handle partially labeled data stream.

127



10. Online Prediction of System Call Sequence with Side Information

128



Chapter 11
Communication-E�cient Online
Semi-Supervised Learning in
Client-Server Se�ings

�e challenge of handling large-scale data can be interpreted in di�erent ways. In Chapter 9 and

Chapter 10, I have concentrated on the time-cost and aim to speed-up the learning algorithms.

�ough the time-cost is an important aspect, it is not the only one. In this chapter, I describe

a completely novel learning problem, where the goal is to reduce the communication-cost over

the network. Solving this problem is a signi�cant step towards learning large-scale data in the

distributed se�ings.

Distributed data acquisition is at the heart of the big data explosion. Smartphones, surveil-

lance videos, wearable sensors, and a variety of smart devices (Internet of �ings) generate data

at geographically distributed points, and the goal is to learn valuable insights from these massive

data streams. �is chapter considers such a se�ing where a set of distributed clients each generate

an ongoing stream of data and a server seeks to learn a model of the data. We impose two practical

limitations on the se�ing. First, because of the costs of having humans label large quantities of

data, it is assumed that only a small fraction of the data are labeled. In particular, we focus on a set-

ting where only the �rst, e.g., 2% of the training data are labeled. Second, because communication

bandwidth is o�en expensive and ba�ery-draining (e.g., a mobile device on a cellular network),

I seek communication-e�cient solutions such that each client is limited to sending to the server

only a small fraction of the unlabeled data it generates, and limited in how much information it

receives from the server.

As a motivating example, consider an intelligent tra�c management system comprised of a

set of surveillance cameras and a server. �e server analyzes images from cameras and provides

applications such as helmet violation, high-occupancy vehicle detection, and wrong-way vehicle

alarms. To develop such a system, the model on the server needs to be con�gured by teaching

it baseline images. Traditionally, it requires each camera to constantly upload images, and hu-

man annotators to manually label those uploads on the server. In practice, however, the network

bandwidth is restricted and the labeling e�ort is limited. �erefore, a workable solution would be

training an initial model with limited labels on the server, and selectively transmi�ing only the

most informative images from each camera.

129



11. Communication-E�cient Online Semi-Supervised Learning in Client-Server Se�ings

As another example, consider wearable devices (e.g., smartwatches) that measure sensory

data, which is increasing dramatically both temporally and in �delity. However, the device does

not o�er heavy computing power and may just serve as a front end for a remote system. To utilize

the sensory data for intelligent tasks (e.g., recognizing human activities), the collected data on the

device need to be transmi�ed wirelessly to a more powerful device (e.g., a smartphone or laptop).

However, due to the bandwidth and ba�ery limitations, it is unrealistic for the device to transmit

every measurement. O�en, the connection is only established at set intervals or manually by users,

at which time only a selective subset of the measurements may be transmi�ed.

An elegant solution to these problems will face many challenges. First, the amount of data

generated by clients can be huge, and even potentially unlimited. As a result, the vast majority of

data on the server are unlabeled. Typically, it is not su�cient to train a model with a good gen-

eralization ability based merely on limited labeled data. Second, when the volume and velocity of

data is high, it is very costly and impossible to store all data either on clients or the server. �us,

traditional approaches that �rst store data and then train on a static collection are not appropriate

in this case. �ird, transmi�ing massive data on the network is discouraged in practice, espe-

cially when the network bandwidth is restricted or the communication cost is expensive (e.g., on a

cellular network). It may also be mis-classi�ed as a denial-of-service a�ack, and dropped/blocked.

At �rst sight, this learning problem seems to share some characteristics of online, semi-

supervised, and active learning, which have been extensively studied in the machine learning

community. However, it should be noted that my se�ing di�ers from these traditional learning

se�ings and may require evolutionary changes to existing algorithms. Unlike online learning

problems where all training data are assumed to be labeled, there is only a limited amount of la-

beled data in my se�ing. It also di�ers from typical semi-supervised learning where all labeled

and unlabeled data is available ahead of time. Moreover, it di�ers from standard active learning in

that there is no oracle available for providing feedback. Although both se�ings involve selective

sampling, their intentions are di�erent: active learning aims to save labeling e�orts, whereas I

a�empt to reduce the bandwidth consumption between the server and clients (while also keeping

the labeling e�ort to only a small fraction of the data). By considering online, semi-supervised,

and active learning jointly, my goal is to develop a modular framework for learning from a remote

partially labeled data stream while reducing the bandwidth consumption.

In this chapter, I present a novel framework for solving this learning problem in an e�ective

and communication-e�cient manner (see Figure 11.1). On the server side, my solution combines

two diverse learners working collaboratively, yet in distinct roles, on the partially labeled data

stream. A compact, online graph-based semi-supervised learner is used to predict labels for the

unlabeled data arriving from the clients. Speci�cally, I adapt the Harmonic Solution learner to

online use via an incremental k-center clustering approach that maintains the graph structure

solely on a set of k centroid nodes. Random samples are then repeatedly drawn from the model

according to the con�dence of its prediction, and used to train a second learner on the server, a

linear classi�er (speci�cally, a so� con�dence-weighted classi�er). �e second learner updates its

hypothesis based on these samples and their predicted labels. I show how these two learners can

be combined in an optimization problem. On the client side, my solution prioritizes data based

on an active-learning metric that favors instances that are more uncertain (i.e., close to the clas-

si�er’s decision hyperplane) and yet far from each other (as measured by covariance). To reduce

communication, the server sends the classi�er’s weight-vector to the client only periodically. At

any point in time, the classi�er can be used as a standalone model for predicting labels for new

test data.

130



11.1. Related Work

bc
bc

bc

⊕
⊗

⊗⊕

Graph-based SSL

⊕

⊗

⊕
⊗

Linear classifier

⊕Teach most

certain instance

Provide second

clue

C
L

IE
N

T
S

S
E

R
V

E
R

⊕

Online semi-supervised learning

Candidate pool

bc bc bc bc

S
el

ec
t

d
at

a

Update selection criterionbcUnlabeled

data

bc bc

Figure 11.1.: An illustration of the proposed framework. �e server contains two learners: a graph-

based semi-supervisedmodel and a linear classi�er. �ey collaborate together to learn

from a partially labeled data stream. At any point in time, the linear classi�er can be

used as a standalone component for predicting labels for new test data. �e commu-

nication �ow between each client and the server is represented by red arrows.

�e main contributions of this chapter are:

• I introduce a novel learning se�ing motivated by many big data applications, and present

a general framework that surmounts the challenges inherent in this se�ing. �e proposed

framework is modular in design, �exible, and can be practically incorporated into a variety

of useful systems.

• I present a novel techniques at the clients and the server that are well-suited to providing

high classi�cation accuracy with reduced communication and labeling costs.

• �e experiment results on real-world data sets show that this particular combination of tech-

niques outperforms other approaches, and in particular, o�en outperforms (communication

expensive) approaches that send all the data to the server.

11.1. Related Work

Online learning, semi-supervised learning and active learning are three di�erent problem se�ings,

which have been studied both separately and jointly. Perhaps the earliest exploration in combining

semi-supervised learningwith active learning is byMcCallum et al. [111], where they combined an

expectation-maximizationalgorithmwith an active learning algorithm. Recently,many extensions

of semi-supervised methods (e.g., S3VM [9], harmonic solution [180] and co-training [15]) to the

active learning se�ing have been proposed (e.g., [115, 181, 165, 178]). In practice, active semi-

supervised learning has a wide range of applications, from spoken language understanding [159]

131



11. Communication-E�cient Online Semi-Supervised Learning in Client-Server Se�ings

to document clustering [84] to content-based image retrieval [86, 177, 179]. Unfortunately, these

methods do not meet the requirements of my problem se�ing, in which data items arrive in an

online fashion, not in batch.

Another line of research is combining online learning with semi-supervised learning, which

is extremely useful for adaptive systems with partially labeled input. Most of the algorithms in

this line rely on indirect forms of feedback, such as a model’s own prediction and the structure of

data, to incrementally improve itself. Grabner et al. [74] used a heuristic method to greedily label

unlabeled examples in an object tracking application. Goldberg et al. [72] extended the online

SVM [19] to the semi-supervised se�ing by adding a regularization term to the objective function

of SVM. Valko et al. [160] extended the graph-based semi-supervised learning method [180] to

the online se�ing, by computing the harmonic solution on an approximate similarity graph in

an incremental fashion. In my se�ing, this family of methods can be adapted for the server’s

use. However, it does not reduce communication costs because no selection is performed prior to

transmission to the server.

�e intention of online active learning was to extend the traditional active learning from the

pool-based se�ing to the stream-based se�ing [31]. Zhu et al. [182] introduced a minimal variance

principle to guide instance selection from a data stream. Bifet et al. [11] presented a weighted

ensemble classi�er and cluster model to handle large data stream volumes. Chu et al. [30] designed

optimal instrumental distributions for allowing unbiased sampling in data streams. However, such

methods are not applicable to my se�ing, as they cannot learn from unlabeled instances.

Finally, the idea of integrating online learning, semi-supervised learning, and active learning

into one framework can be traced back to Shen et al. [140]. �ey extended the self-organizing in-

cremental neural network [69] with semi-supervised learning and active learning. On each round,

the algorithm selects some “teacher” nodes from each cluster and uses them to label all unlabeled

nodes in the corresponding cluster. Later, Goldberg et al. [73] provided a Bayesian model for this

learning se�ing. �e model maintains a posterior distribution of weights through particle �lter-

ing and sequential Monte Carlo techniques. Instances that are highly disagreed according to the

current particles are queried for labeling.

Unlike these prior works [140, 73], which intended to reduce the labeling e�ort for adaptive

systems, my goal is to reduce the communication and labeling costs in a distributed client-server

system. Moreover, the following three obstacles limit the possibility of adapting previous methods

to my problem se�ing. First, the priormethods are not applicable to the client-servermodel, where

the concerns of client and servermust bewell-separated. Most previousmethods are developed in a

bo�om-upmanner, by gradually extending the availability of original supervised learningmethods

to give rise to more complex se�ings. �us, they are not modular in design. For example, Shen

et al. [140] used the self-organizing incremental neural network [69] as the “seed” model. �eir

active learning and semi-supervised learning extensions work exclusively with the seed model,

making it di�cult to isolate each component. In a distributed se�ing, it is important to elucidate

each subsystem for addressing a separate concern, as they may be deployed in di�erent physical

locations with di�erent con�gurations.

Second, prior methods are not communication-e�cient. More precisely, there is no e�cient

way to transmit the selection criterion to the clients. For example, Zhu et al. [181] selected in-

stances based on their estimated risk on a graph, which would require each client to maintain a

graph locally. Similar di�culty can be found in Goldberg et al. [73], where the uncertainty score

is computed based on a set of particles (parameterized by a set of vectors), thereby requiring each

client to maintain a set of vectors. High communication costs are incurred in keeping a cient’s set

132



11.2. Notations

up-to-date.

�ird, prior methods are computationally demanding. For example, Goldberg et al. [73] used

a sequential Monte Carlo technique to update the model, requiring a number of iterations for

learning a new datum. In the distributed se�ing, algorithms on both client and server should be

lightweight and avoid time-consuming computations. �is is because clients usually have few

resources other than essential input and output functions. �e server, though, o�ers more re-

sources, and must respond agilely so that the new selection criterion can be quickly generated and

distributed without forcing clients to wait.

11.2. Notations

Denote by X an instance domain and by Y a set of labels. LetH be a hypothesis class, where each

h ∈ H is a mapping from X to Y . In this chapter, I concentrate on the con�dence-rated binary

classi�cation problem, where H is the class of linear separators. In this case, X is a subset of the

Euclidean spaceRd, Y = {+1,−1}, and each hypothesis inH is a linear function parametrized by

a weight vector w ∈ R
d. For each x ∈ X , de�ne h(x) = x⊤w. In practice, one can handle a bias

term by adding a dummy feature to all x and set d = d+1. �e reader can interpret sign(h(x)) as
the actual binary label predicted by h, and |h(x)| is a degree of con�dence in this prediction. �e

quality of a prediction is measured by a loss function ℓ(h; (x, y)), which represents the penalty of

predicting sign(h(x)) when the correct label is y ∈ Y . Two common choices of loss function are

zero-one loss and hinge loss.

For the sake of simplicity, I will present the techniques in this chapter assuming there is

only a single client. �e framework can be readily generalized to multiple clients, as discussed

in Section 11.7. Denote the set of unlabeled instances on the client by V = {xt}vt=1, where each

xt ∈ X . �e client selects instances for uploading. On the server side, only a small set of la-

beled data L = {(xt, yt)}lt=1 is available at the beginning, followed with a set of unlabeled data

U = {xt}nt=l+1 uploaded from the client. I assume the server receives incoming data one-by-one.

�e total number of instances received by the server is n, and in the se�ing l ≪ n, and n ≪ v.
Starting from an initial hypothesis h0, the server incrementally constructs a sequence of hypothe-

ses h1, h2 . . . , hn according to L and U . Ultimately, the goal of the server is to �nd a hypothesis

that will exhibit high classi�cation accuracy (e.g., under zero-one loss) on some unseen test set.

11.3. General Framework

I present a general framework for communication-e�cient online semi-supervised learning in the

client-server se�ing. �e framework will be described in a way that the modules can be eas-

ily understood in isolation, and changes or extensions to functionality would be easily localized.

Speci�cally, I start in this section with a big picture by describing the philosophy behind the sys-

tem design, and a high-level overview of the framework. Later, Section 11.4 and Section 11.5 will

drill down on the techniques on the server and client, respectively.

11.3.1. Design Philosophy

When it comes to a practical framework, several pressing concerns have to be kept in mind. First,

it requires careful coordination and control of data being passed between the server and clients.

133



11. Communication-E�cient Online Semi-Supervised Learning in Client-Server Se�ings

In particular, the server sends a criterion to guide the client to select instances. �e client sends

selected instances to the server, which may a�ect the selection criterion of next rounds. In both

directions, the transmission must be e�cient. I use a windowed pool-based method wherein each

client maintains a small bounded-size bu�er of its most recent data. When the bu�er �lls, a subset

of the data is chosen for uploading to the server. A�er that, the bu�er is emptied so that new data

can be accommodated. �e selection criterion is only updated every time the bu�er is emptied.

�is enables a �ne-grained control over the communication bandwidth by simply changing the

bu�er size and the size of the uploaded subset.

On the server side, the employed learning algorithm should be e�cient enough to perform

(near) real-time online learning, and be �exible enough to be a standalone module for predicting

labels on a new set of test data. Moreover, the selection criterion should be represented in a way

that the server can transmit it to the client with a low communication cost. Fortunately, existing

state-of-art machine learning algorithms already have many lightweight and �exible aspects that

can serve as a good start.

In the context of online semi-supervised learning, it is natural to train a model using labels ob-

tained by the model’s own predictions [179, 80]. However, this approach may su�er signi�cantly

from the accumulation of wrongly predicted labels over many rounds, resulting in an inaccurate

hypothesis. For this reason, it is preferable to update a hypothesis conservatively, thereby allevi-

ating the �uctuations in the performance of the hypothesis.

11.3.2. Proposed Framework

�e framework (Figure 11.1) is designed based on the above considerations. It can be decomposed

into several components that drive di�erent functionalities. On the client side, I perform data

triage by selecting instances from a candidate pool, where the selection criterion is controlled by

the server. On the server side, an online semi-supervised learning algorithm is employed to handle

unlabeled submissions. �e key is tomaintain two learners—a graph-based semi-supervisedmodel

and a linear classi�er—and let them collaborate to exploit unlabeled data. Speci�cally, incoming

instances are added to the training set of the �rst learner, which is represented by a graph. �e

nodes of the graph are instances, and the edges between nodes re�ect the similarity between the

corresponding instances. �en, the �rst learner predicts labels for all unlabeled instances in the

graph, and randomly samples an instance according to the con�dence of its predictions in order to

teach the second learner. �e second learner updates its hypothesis, and delivers a new selection

criterion to the client. At any time, the second learner can be used as a standalone model for

predicting new test data.

While di�erent machine learning algorithms can be used as a part of this framework, some

techniques lend themselves to my problem se�ing be�er than others. In this work, I employ

the harmonic solution (HS) [180] as the �rst learner and the so� con�dence-weighted classi�er

(SCW) [163] as the second leaner. My choice o�ers several advantages. First, SCW is simple, fast

and enjoys state-of-the-art performance on classi�cation. Second, SCW performs a conservative

update especially with noisy labels. �ird, SCW can be parameterized by a weight vector and a

covariance matrix, allowing the server to deliver the selection criterion to the client with a low

communication cost. In this work, I simply transmit the weight vector of SCW to the client. On the

other hand, HS nicely complements SCW by providing feedback using the data manifold. It can

leverage the similarities between instances, which is something that SCW overlooks, to determine

labels of unlabeled data. By peering these two models together, my method enjoy the best of

134



11.4. Online Semi-Supervised Learning on the Server

both worlds, e�cient learning and simple parameterization due to SCW, and the ability to exploit

manifold information disclosed by unlabeled examples due to HS. Moreover, SCW and HS can be

incorporated into a single optimization problem.

One may �nd it is debatable whether a two-learner structure is really a preferable choice

comparing to a single learner. For example, one of the alternatives is to train a linear classi�er

using its own predicted labels without leveraging data manifold information [80]. Unfortunately,

such an idea is not e�ective according to my experiments. Sometimes, the results are even worse

than not using any unlabeled data. �e reason is twofold. First, a single unlabeled instance can

hardly provide any useful information. Second, most of the online linear classi�ers only return a

single hypothesis on each round, precluding any other possible hypotheses. Hence, some previous

work employed Bayesian methods to update a (posterior) distribution over the hypothesis [87, 73].

Unfortunately, the posterior is o�en complicated. It is not known how to perform the update

analytically. �erefore, the learning process can be easily misled and stuck in a wrong direction.

Another alternative is to use a graph-based method solely. However, due to the nonparametric

nature of graph-based methods, it is not straightforward to deliver the server’s model to clients

with a low communication cost (for the same reason, nonparametric methods are not favorable

in my problem se�ing). Moreover, graph-based methods are also less e�cient for predicting new

data, as they usually involves matrix inversion. A two-learner structure, in contrast, surmounts

the above problems by complementing each other’s drawbacks. �e choice of two learners with

di�erent underlying mechanisms is a key for good performance.

If the communication cost is de�ned as the total number of vectors in R
d transmi�ed over

the network, then a straightforward implementation of the proposed framework incurs a cost of

at most

l + ⌊v − l
q
⌋ω + min ((v − l) mod q, ω)

︸ ︷︷ ︸
client to server

+ ⌊v − l
q
⌋

︸ ︷︷ ︸
server to client

, (11.1)

where l is the number of labeled instances on the server; v is the total length of the unlabeled

sequence on the client; q is the size of the pool on the client; and ω is the number of uploaded

instances every time the pool gets full. By ignoring rounding issues, this can be approximated as

l + v−l
q

(ω + 1).

In the rest of the chapter, I shall elaborate each component of the proposed framework, pre-

senting their technical details and describing how they cooperate with each other to meet the

global goal.

11.4. Online Semi-Supervised Learning on the Server

In this section, I describe the server’s two learners. First, I review the two standard learners adapted

to the proposed se�ing, and then I show how to adapt and combine them to handle a partially

labeled data stream.

11.4.1. So� Con�dence-Weighted Classi�er

I �rst describe the so� con�dence-weighted (SCW) classi�er for constructing hypotheses h1, h2,
. . . , hl in an incremental fashion. In a nutshell, the SCW algorithm maintains a Gaussian distri-

bution parameterized by a mean w ∈ R
d and a full covariance matrix Σ ∈ R

d×d. �e mean

135



11. Communication-E�cient Online Semi-Supervised Learning in Client-Server Se�ings

w corresponds to the current linear function as described in Section 11.2. �e covariance matrix

Σ captures the uncertainty and correlation of each feature in w. Given a new labeled instance

(xt, yt) ∈ L, SCW sets the new distribution to be the solution of the following optimization prob-

lem,

(wt,Σt) :=arg min
w,Σ
{DKL (N (w,Σ) ‖N (wt−1,Σt−1))

+C max(0, φ
√

x⊤
t Σxt − ytx

⊤
t w)}, (11.2)

where the hyperparameter φ controls the con�dence of each update, and C balances between

passiveness and aggressiveness. Intuitively, the optimization problem trades o� between two re-

quirements. �e �rst term forces the Kullback-Leibler divergence DKL between the new weight

distribution and the old one to be small, so that the parameters do not change dramatically per

instance. �e second term requires that the new vector wt should perform well on (xt, yt).

�is optimization problem has a closed-form solution:

wt = wt−1 + αtytΣt−1xt, Σt = Σt−1 − βΣt−1xtx
⊤
t Σt−1. (11.3)

�e updating coe�cients are calculated as follows:

α = min{C,max{0, 1

υζ
(−mψ +

√
1

4
m2φ4 + υφ2ζ)}}, (11.4)

β =
αφ√

u+ υαφ
, (11.5)

where u = 1
4(−αυφ +

√
α2υ2φ2 + 4υ)2, υ = x⊤

t Σt−1xt, m = ytx
⊤
t wt−1, ψ = 1 + φ2

2 and

ζ = 1 + φ2.

Compared to other online linear algorithms such as passive-aggressive [36], con�dence-w-

eighted [37] and adaptive regularization of weights [38], SCW enjoys the adaptivemargin property

and reduces the total number of updates over rounds. Most importantly, SCW performs a more

conservative update when dealing with a mislabeled instance [163]. In fact, in my experiments

SCW outperformed other alternatives on many real-world data sets with noise. For this reason,

we later use SCW to learn the instances with “noisy” labels predicted by the �rst learner.

11.4.2. Harmonic Solution

Harmonic solution (HS) is a graph-based semi-supervised learning method, which assumes that

labeled data and unlabeled data are available in advance. Speci�cally, let ỹ =

[
yL

ỹU

]
where yL =

[y1, y2, . . . , yl]
⊤ and ỹU denote the estimated values on unlabeled data instances. �e goal of HS

is to minimize the quadratic objective function,

ỹ∗ = min
ỹ

ỹ⊤∆ỹ, (11.6)

where ∆ = D−S is the graph Laplacian of the similarity graph, which is represented by a matrix

S of weights si,j that encode pairwise similarities, and D is a diagonal matrix whose entries are

136



11.4. Online Semi-Supervised Learning on the Server

given by
∑

j si,j . HS can be computed in a closed form, which has three representations as follows:

ỹ∗
U = (DUU − SUU )−1SULyL (11.7)

= −∆−1
UU ∆ULyL (11.8)

= (I−PUU )−1PULyL, (11.9)

where P = D−1S is the transition matrix on the graph.

In HS, the con�dence of using labeled instances to predict unlabeled instances can be achieved

in two ways. One way is to regularize ∆ in Eq. (11.8) as ∆ + λI where λ is a scalar and I is the

identity matrix. When λ = 0, the solution turns into the ordinary harmonic solution. When

λ = ∞, the con�dence of labeling unlabeled instances decreases to zero. Alternatively, one can

incorporate the knowledge given by hl = {wl,Σl}, i.e. the hypothesis constructed by SCW on

labeled instances alone, back into HS.�is is illustrated by the dashed line in Fig. 11.1. Speci�cally,

denote by gU the so� labels in [0, 1] on unlabeled data produced by hl, each element of which

is computed by Φ( |x⊤wl|√
x⊤Σlx+1

), where Φ is the cumulative function of the normal distribution.

Similar to Eq. (11.9), the harmonic solution a�er incorporated hl is given by

ỹ∗
U = (I− (1− η)PUU )−1((1− η)PULyL + ηgU ), (11.10)

where η is a scalar in [0, 1]. Se�ing η = 0 would reduce the solution to the ordinary harmonic

solution. At another extreme, se�ing η = 1 would ignore the data manifold and completely rely

on the predictions of hl to train SCW.

11.4.3. E�cient Online Adaptation of HS

Note that one need an e�cient online version of HS to �t it into the framework. I assume the

server receives instances one-by-one. An obvious method is taking each new unlabeled instance,

connecting it to its neighbors, and recomputing the harmonic solution. However, the matrix in-

version involved has the computational complexityO(n3)when the graph contains n nodes. Con-

sequently, this naive solution quickly becomes impractical as more and more instances are added

to the graph.

To address this problem, I restrict the size of the graph by substituting the vertices with a

smaller set of k distinct centroids. Speci�cally, I make use of a doubling algorithm for incremental

k-center clustering, which assigns points to centroids in a near optimal way [24]. �e original

algorithm maintains a set of centroids such that the distance between any two centroids in is at

least R.

In my framework, the algorithm is adapted as follows. For initialization, we set R to a small

positive number, k to be larger than l, and V0 = {x1, . . . ,xl}. On round t, a new instance xt

is directly added to the set of centroids if |Vt−1| < k. If |Vt−1| = k, then the algorithm �rst

tries to greedily remove a centroid from Vt−1 \ {x1, . . . ,xl} such that every two centroids in the

remained set are no close than R. If such a�empt is not successful, then the algorithm doubles R
and does the removal again. Finally, Vt is obtained by adding xt to the modi�ed Vt−1. Figure 11.2

illustrates this procedure. Note that on each round t, Vt ⊆ {x1, . . . ,xt} and xt ∈ Vt. Moreover,

unlike the original version, the modi�ed algorithm only guarantees that every two centroids in

Vt \ {x1, . . . ,xl,xt} are no closer than R.

137



11. Communication-E�cient Online Semi-Supervised Learning in Client-Server Se�ings

(a) Round: 0  R=0.1

-2 0 2

-2

-1

0

1

2

(b) Round: 3  R=0.1

-2 0 2

-2

-1

0

1

2

Figure 11.2.: Adapted doubling algorithm in our framework.© is labeled point, × is centroid and

� is the current point on the tth round. Color indicates the partition of the space

according to the centroids. For this example, we set l = 2, k = 5 and R = 0.1. (a)
Initially, the centroid set V0 contains only two labeled points. (b) In the �rst three

rounds, each new point is directly added to the centroid set. (c) On the 4th round, as

Vt−1 is already full, we have to remove a centroid from it. we We double R to 0.2,
remove the centroid corresponding to the red region from the 3rd round, and add the

current point to the centroid set. (d) We double R again, remove the centroid of the

green region from the 4th round, and add the new point. (e) �e centroid set a�er 20
rounds. centroid set.

A�er restricting the size of the graph, the remaining bo�leneck of HS includes updating S

and inverting a k × k matrix. While the incremental update of S can be easily done with a block

matrix, speeding up thematrix inversion is less straightforward [169]. In this work, I use conjugate

gradient descent to solve an equivalent linear system and therefore avoid the expensive inversion.

Note that the solution of ỹU in Eq. (11.8) is equivalent to the solution of the following linear system,

∆UU ỹU = −∆ULyL. (11.11)

�e hope is that each iteration isO(k) and convergence can be reached in relatively few iterations,

in contrast to the naive inversion that costs O(k3). To ensure fast convergence, I use the Jacobi

preconditioner, which is simply the diagonal of ∆UU ; and set the initial guess of ỹU to be the

solution of the last round.

11.4.4. Combining HS with SCW

I now show the construction of hypotheses hl+1, . . . , hn from unlabeled data U by combining

HS with SCW. Intuitively, let HS teach its most con�dent predictions to SCW. To see that, I �rst

138

figures/clusterexp-0.eps
figures/clusterexp-1.eps


11.4. Online Semi-Supervised Learning on the Server

(c) Round: 4  R=0.2

-2 0 2

-2

-1

0

1

2

(d) Round: 5  R=0.4

-2 0 2

-2

-1

0

1

2

(e) Round: 20  R=1.6

-2 0 2

-2

-1

0

1

2

Figure 11.2. (cont.)

rewrite Eq. (11.9) so that each element of ỹU is given by

ỹi =
∑

j:yj=1

(I−PUi)
−1PUj −

∑

j:yj=−1

(I−PUi)
−1PUj

= p1
i − p−1

i , (11.12)

where p1
i and p−1

i can be interpreted as the probability of instance xi belongs to the positive and

negative class, respectively. �erefore, one can use |ỹi| ∈ [0, 1] to represent the con�dence of

predicting the label sign(ỹi) to the instance xi.

�ough SCW and HS are conceptually separated, they can now be combined in an optimiza-

139

figures/clusterexp-2.eps
figures/clusterexp-3.eps
figures/clusterexp-5.eps


11. Communication-E�cient Online Semi-Supervised Learning in Client-Server Se�ings

tion problem as follows,

(wt,Σt) := arg min
w,Σ
{DKL (N (w,Σ) ‖N (wt−1,Σt−1)) (11.13)

+ C max(0, φ
√

x⊤
j Σxj − ỹjx

⊤
j w)}

s.t. j ∼ categorical(p̄l+1, p̄l+2, . . . , p̄k)

p̄i =
|ỹi|∑
i |ỹi|

, where ỹi is given by Eq. (11.12).

�e combined algorithmworks as follows. On round t, the new unlabeled instance xt is added

to Vt−1 to construct Vt. �e training instances fed to SCW are sampled according to HS con�dence

into labels of Vt. �e highly uncertain predictions are likely to be excluded from learning.

Note that on round t the current instance xt is always learned by HS (because xt is added to

Vt−1 for constructing Vt), but it is not necessarily learned by SCW. Depending on the con�dence

of HS, SCW may be fed with any instance in Vt. More precisely, there are three outcomes of an

unlabeled instance: (i) it is taught to SCW by random sampling; (ii) it is retained in the centroids

set V ; or (iii) it is removed from V by the clustering algorithm in Section 11.4.3.

One can observe some similarity between Eq. (11.13) and the objective function of online man-

ifold regularization [72]. �e la�er used the manifold constraint as a regularization term in the

objective function. While both methods a�empt to learn a large margin separator using manifold

information, the major di�erence is in the search space. In particular, online manifold regular-

ization searches on a class of hypotheses to �nd one that is smooth on the graph. But when the

hypothesis space is severely restricted, such as linear functions, the manifold regularization term

simply turns into a penalty on the weight-vector, preventing the algorithm from harnessing any

useful information about the manifold. My method, in contrast, learns a linear function condi-

tioned on labels induced by the manifold, providing be�er performance and �exibility.

11.4.5. Predicting New Data

At any point in time, the learned SCW on the server can be used as a standalone component for

predicting the labels for new (test) data. An obvious way is to use the last hypothesis directly

returned by SCW as the output classi�er. However, the training set could happen to be such that

it ends up with a bad last hypothesis. To promote robustness and stability, I employ the cuto�

averaging technique to build an ensemble as the output classi�er [50], rather than commi�ing to

a single online hypothesis.

In cuto� averaging, each distinct online hypothesis is associatedwith a survival time, which is

de�ned as the number of consecutive rounds the corresponding hypothesis survives before SCW

replaces it with a new hypothesis. On the last round n, one has observed a sequence of online

hypothesis {ht}n−1
t=0 . Let Θν ⊆ {ht}n−1

t=0 be the set of distinct hypotheses whose survival time is

greater than ν . �e cuto� averaging technique de�nes the output hypothesis h∗ as a weighted

average over the hypothesis in Θν , where the weight of a hypothesis with survival time r is pro-
portional to r − ν . �e cuto� parameter ν sets the bar for acceptance into the ensemble. De�ne

the sequence of binary variables {Bt}n−1
t=0 as follows

Bt =

{
1 if t = 0 or if t ≥ ν and ht−ν = . . . = ht

0 otherwise
(11.14)

140



11.5. Selective Sampling on Clients

�e optimal ν∗ can be determined by solving the following optimization problem:

ν∗ = arg min
ν:Θν 6=∅



ℓ̄+

√
γℓ̄∑
Bt

+
7γ

2
∑
Bt



 (11.15)

s.t. ℓ̄ = (
n∑

t=0

Bt)
−1

n∑

t=0

Bt−1ℓ(ht−1; xt, ỹt),

where γ is a constant with respect to ν . �is solution ensures a large ν and a sparse ensemble if a

few online hypotheses stand out with signi�cantly long survival times. If most of the hypotheses

have short survival times, then a small ν is preferred and the output ensemble is dense. Note that

the maximal number of distinct survival times in a sequence of n hypotheses isO(
√
n). �us, the

search space of ν∗ is small enough for e�cient computation.

11.5. Selective Sampling on Clients

Given a communication budget, the client needs to select instances from an unlabeled candidate

pool such that the model on the server might be improved by learning these instances. Random

selection is a simple approach, but a be�er selection criterion should meet the current demands

of the server’s model. To design such a criterion, the client needs (full/partial) information about

the model currently on the server. Although there are two learners on the server, I transmit only

the weight-vector of SCW from the server to the client because SCW directly determines the

performance interested in (while HS serves to reduce the uncertainty of SCW) and transmi�ing

only the weight-vector is communication-e�cient.

Two important aspects of a good criterion are the utility and redundancy. �e utilitymeasures

the potential improvement of SCW associated with each instance. �e redundancy measures the

degree of information sharing by the selected instances. For a candidate pool Q = {x1, . . . ,xq},
let the utility score be the sum of their individual utilities, i.e., fu(Q) =

∑q
i=1 fu(xq). �e redun-

dancy is denoted by fr(Q). �e desired selections should be optimal in terms of both utility and

redundancy. Formally, given a communication budget ω for processing the pool Q, the goal is to

select a subset T from Q such that

T = arg max
T ⊆Q:|T |=ω

fu(T )− fr(T ). (11.16)

Previous research on active learning has proposed several choices for fu and fr [138, 67]. I use

function value based scores, namely 1
1+|x⊤w| , as fu [21], and the sample covariance of instances

as fr [78]. As fu is linear and −fr is submodular, Eq. (11.16) turns into a submodular function,

which satis�es a diminishing returns property. A near-optimal solution of Eq. (11.16) can be found

e�ciently using a greedy algorithm [118]. Intuitively, this favors the instances that are close to the

decision hyperplane of the current SCW and far away from each other. Note that the submi�ed

instances are of low con�dence according to SCW, and by querying HS for their labels, they may

o�er some supervision to SCW.

141



11. Communication-E�cient Online Semi-Supervised Learning in Client-Server Se�ings

11.6. Experiments

I conducted a series of experiments to verify the e�ectiveness of the proposed framework in the

context of communication-e�cient online semi-supervised distributed learning. �e �rst experi-

ment focuses on the server’smodel and compares the proposed two-learnermethod against several

baselines including its one-learner counterparts. �e second experiment focuses on the client’s se-

lection criterion. Finally, a sensitivity analysis for the framework is presented to gainmore insights

into its performance.

11.6.1. Experimental Setup

Experiments were conducted on seven data sets downloaded from either the UCI ML repository

(wearable, skin) or the LIBSVM website (mushroom,mnist, webspam, gise�e, ijcnn1). �e motion

recognition data set wearable and digit recognition data set mnist were converted into a set of

binary problems, respectively, where each class is discriminated against every other class. Totally,

I produced 20 problems fromwearable and 45 frommnist. For each data set, I balanced the number

of instances of each class and linearly rescaled the feature values into the range [−1, 1].

I evaluated the algorithms using a set of trials with di�erent partitions of the training and

test data. In each trial, I randomly held out half of the data for testing; all instances in the test

set were labeled by the algorithms. �e remaining data was used for training, of which only a

small amount was labeled. Both training and test sets were class-balanced. Next, I randomly

permuted the training data and kept labeleddata always at the beginning. All algorithmswere then

incrementally trainedwith the same permutation in each trial. For evaluation, I paused the training

at regular intervals, computed the output hypothesis so far, and calculated its test accuracy. I used

the �rst trial to tune the hyperparameters (e.g., C , φ in Eq. (11.13)), and the best choice for its

hyperparameter is then �xed in the remaining trials. I used η = 0 in Eq. (11.10). �e reported

results were averaged over 100 trials.

In all experiments, I used a 5-nearest neighbor graph as the similarity graph of HS on the

server. �e edges were weighted as si,j = exp(−‖xi−xj‖2

2dσ2 ), where d is the number of features and

σ denotes the mean of their standard deviations. �e maximum number of centroids in the graph

was 300. In Sections 11.6.2 and 11.6.3, the initial 2% of the training instances are labeled. �e size

of the candidate pool on the client was 50, from which 10 instances were submi�ed to the server

(a 20% sampling rate). Section 11.6.4 presents a sensitivity analysis to the labeling and sampling

rates. My implementations and experiments code are public available1.

11.6.2. Comparison of Server’s Model

I �rst compare di�erent models on the server and show the e�ectiveness of the proposed method.

To focus on the server side, I let the client randomly select instances to upload. In particular, the

following methods were evaluated in this experiment.

none No unlabeled instances are uploaded to the server. �e server stops learning right a�er

labeled instances. Assuming that unlabeled instances can provide useful information, then

this approach should give the worst performance.

1http://home.in.tum.de/∼xiaoh/kdd2014/kdd2014code

142

http://home.in.tum.de/~xiaoh/kdd2014/kdd2014code


11.6. Experiments

  none full knn knn+scw scw hs+scw hs+scw+cut

1000 2000 3000
0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

mushroom

# Instance

A
cc

ur
ac

y

500 1000 1500 2000 2500

0.82

0.84

0.86

0.88

0.9

gisette

# Instance
A

cc
ur

ac
y

1000 2000 3000

0.65

0.7

0.75

0.8

0.85

webspam

# Instance

A
cc

ur
ac

y

1000 2000 3000

0.7

0.75

0.8

0.85

ijcnn1

# Instance

A
cc

ur
ac

y

Figure 11.3.: Test accuracy of di�erent models on the server. �e x-axis represents the number

of unlabeled instances on the client. �e origin corresponds to the point where the

initial 2% of the data has been labeled and learned and the �rst unlabeled instance

comes in. �e client randomly selected 10 instances from every 50 instances. full

is an idealized approach in which an oracle labels all selected instances. none does

not upload any unlabeled instance to the server, so the corresponding test accuracy

is constant.

full All uploaded instances are labeled by an oracle. Intuitively, this approach should give the

best result due to the availability of full information. �is is an idealized case with 10x (20%

vs. 2%) more labeled data.

knn �e server employs k-nearest neighbors algorithm, where k = 5. �e training set is built

by �rst including all labeled instances, and then adding unlabeled instances with its corre-

143

figures/p1-legend.eps
figures/p1-mushroom.eps
figures/p1-gisette.eps
figures/p1-webspam.eps
figures/p1-ijcnn1.eps


11. Communication-E�cient Online Semi-Supervised Learning in Client-Server Se�ings

sponding predicted labels. �e maximum number of allowed training examples is 300.

knn+scw �e server consists of a two-learner model: knn followed by scw. �e prediction

of knn is used for training scw.

scw �e server consists of an SCW model only, which “learns” each unlabeled instance using

its own prediction.

hs+scw Proposed two-learner model on the server.

hs+scw+cut Proposed hs+scw model with cuto� averaging for predicting test data.

Note that, none and full are essentially standard online learning, in which models are trained

with labeled data. I also implemented a baseline containing HS only on the server. However, I had

to terminate it due to its poor e�ciency. A comparison of the above methods is shown in Fig. 11.3.

It can be observed that proposed hs+scw and hs+scw+cut enjoy superior performance

on 8 out of 10 problems comparing to other partial label competitors. On 45 mnist problems,

hs+scw and hs+scw+cut yielded on average 0.966 and 0.971 accuracy, respectively. On 20
wearable problems, hs+scw and hs+scw+cut gave 0.699 and 0.714 accuracy, respectively.

�ey are consistently be�er than the single-learner counterpartscw on all data sets. �is indicates

the e�ectiveness of leveraging manifold information of the graph. In fact, on webspam, ijcnn1

and wearable, scw is even worse than none. On webspam, its test accuracy starts with 0.658,
decreasing over time and �nally yielded 0.637. �is is due to the fact thatscw completely relies on

its own prediction for learning. When the labeling rate is small, the initial hypothesis constructed

by labeled data may not be accurate enough. As a consequence, the prediction of scw on the

new instance is likely to be wrong, which in turn might mislead the learning procedure. �e

knn-based approaches, which employ majority voting based on local information, did not show

consistent performance. On gise�e, webspam, and ijcnn1, the test accuracy of knn decreases

until the maximum number of training instances is reached, whereas on mnist it increases. �is

indicates that a simple bootstrapping forknn is not robust. Also note that, it is not straightforward

to formulate a communication-e�cient selection policy for knn due to its nonparametric nature.

�e idea of using the prediction of knn to teach scw is not e�ective, o�en resulting in degraded

performance of scw over time. One may note that knn enjoys superior performance on skin.

�is is probably due to the characteristics of this data set. Each instance in skin has only three

features, representing red, green, and blue color, respectively. �e task of distinguishing skin from

non-skin on such data is particularly suitable for knn.

11.6.3. Comparison of Selection Strategy

Fixing the model on the server as hs+scw, I study the following strategies on the client side.

all All unlabeled instances are uploaded without selection. �is incurs 5x the communication

costs versus other approaches.

rand Randomly selects instances for uploading.

certain �e most certain instances according to the current server model w are uploaded.

�e score is de�ned as |x⊤w| . �is method is similar in spirit to [80].

144



11.7. Conclusion

uncertain �e most uncertain instances are uploaded. �e score is de�ned as 1
1+|x⊤w| .

submod Selection is done by optimizing the submodular function described in Section 11.5. It

simultaneously considers the uncertainty and redundancy.

Note that there are many ways to wrap |x⊤w| into a selection criterion, such as transforming

it into a probability value [73, 30]. However, despite introducing extra hyperparameters into the

model, they are not signi�cantly di�erent in essence. For the sake of clarity, I concentrate on the

above �ve strategies. �e result is shown in Fig. 11.4, in which none and full are as de�ned in

Section 11.6.2.

It is interesting to see that all, which transmits all unlabeled data, does not lead to be�er

performance. In fact, onmnist,mushroom, and gise�e, all yields worse test accuracy compared

to selective transmission. �is con�rms the intuition that not all unlabeled instances are useful.

It also suggests the necessity of using a selective sampling strategy on the client. Not only the

communication costs can be saved, but also a be�er model might be learned. Moreover, it can

be observed that uncertain and submod show signi�cant improvements over rand. �ey

o�en converge faster thanrand and lead to be�er optimal hypotheses. On the contrary, selecting

most certain instances is not bene�cial. On ijcnn1 and skin, the accuracy decreases over time (the

accuracy of certain on skin drops to under 80% at 4000 instances, and is not shown to be�er

see the other results), showing that a bad client selection strategy can have negative impact on

the performance of the server’s model. Onmnist andmushroom, submod further improves over

uncertain, while uncertain is be�er for gise�e and ijcnn1.

11.6.4. Sensitivity Analysis

�e goal of this experiment was to investigate how the labeling and sampling rates impact the

test accuracy of the server’s model. I used hs+scw+cut on the server and submod on the

client because this combination enjoyed the best results according to the previous experiments.

Figure 11.5 shows the result.

It can be easily identi�ed that the brightest and darkest areas of each matrix are o�en located

in the bo�om-le� and top-right corners, respectively. �is suggests that be�er test accuracy can

be achieved by increasing the sampling rate or labeling rate, which is consistent with the intu-

ition. Unlike the sampling rate, changing the labeling rate o�en does not signi�cantly a�ect the

performance. For example, onmushroom the accuracy is quite insensitive to the labeling rate but

improves signi�cantly with increasing sampling rate. Across all data sets, a more promising way

to improve the performance on the server’s model is to incur increased communication costs by

sending more data, rather than increased human costs by manually labeling more instances.

11.7. Conclusion

�is chapter poses a new learning problem on the client-server design, which is motivated by real-

world applications such as intelligent tra�c systems andwearable devices. To solve this problem, I

have presented a framework that provides communication-e�cient online semi-supervised learn-

ing in the client-server se�ing. �e framework consists of two parts. On the server side, two

learners work collaboratively to learn from a partially labeled data stream. �e two-learner struc-

ture can e�ectively exploit the data manifold to determine labels for unlabeled data. It is also

145



11. Communication-E�cient Online Semi-Supervised Learning in Client-Server Se�ings

e�cient in the sense that it does not require storing all the data. �e proposed method enjoys

superior and stable performance on several real-world data sets. On the client side, I investigated

several selection criteria and showed how the server communicates with the client. I showed that

a selection criterion based on uncertainty and redundancy is e�ective. It is worth highlighting that

intelligent sampling on the client not only saves communication costs, but, perhaps surprisingly,

also may result in a be�er model on the server compared to uploading all instances.

�e promising results in this chapter raise a few important questions. First, I have not studied

how to adapt the sampling rate over time. Intuitively, the model on the server requires more data

to learn in the beginning. As the learning procedure goes on, the potential hypothesis space on the

server shrinks and thus requires less data to learn. Hence, it makes sense to compute the optimal

number of selected instances on each round for further reducing the communication cost. Second,

I have assumed the incoming data on the server is stationary. In many real-world applications,

the true hypothesis is not �xed but slowly changing over time. Assuming a small number of

additional labels are available during the dri� (e.g., with the help of human annotators), it would

be straightforward for my framework to handle such dri�s. Speci�cally, I �rst adapt HS to include

newly labeled data in the set of centroids V . �en, we reset the learning rate of SCW, which is

controlled by Σ. �ird, it is interesting to employ other combinations of learners in the proposed

framework. Because my framework is modular in design, it o�ers �exibility for incorporating

additional algorithms.

While for simplicity I considered the case of a single client, my framework can be readily

extended to learn a model across multiple clients. Because a client’s candidate pool is discarded

once its selection has been made (i.e., there is no per-client history), processing a full pool of

data is the same regardless of which client processes it (assuming iid data streams). �us, as long

as the server sends the current weight-vector to the client who is about to send data next, the

processing and hence the accuracy is e�ectively the same as in the single client case, with the same

overall sampling rate. If the data generation rate (data instances per second) increases linearlywith

the number of clients, though, two issues arise. First, the aggregate weight-vectors per second

that the server sends increases linearly. �is can be mitigated by having the server operate in

rounds such that instances from multiple clients are processed in each round, and an updated

weight-vector is sent only at the end of the round. �is implies that clients select instances based

on a less-frequently-updated uncertainty measure. Note also that in this case, one would like to

apply the redundancy measure across the clients, which would require additional communication

and coordination. Alternatively, one can use the simpler uncertain selection criterion, which

performed nearly as well as submod (i.e., as uncertainty + redundancy). Second, the aggregate

data sent by clients increases linearly. �is can be mitigated by sticking to a �xed aggregate data

instances sent per second, using some combination of subselecting which clients send instances

at each round and reducing the sampling rate of those clients that do.

Finally, another interesting area for future work is to adapt the framework and integrate the

concepts of Internet of�ings, where sensors and actuators embedded in physical objects are linked

through wired andwireless networks. In this se�ing, the widely deployed smart things can be seen

as clients in my framework. �e proposed framework enables (near) instantaneous responses from

a server for planning and decision making, and saves communication cost through the selection

procedure on the clients.

146



11.7. Conclusion

1000 2000 3000

0.952

0.954

0.956

0.958

0.96

0.962

0.964

0.966

0.968

mnist5vs6

# Instance

A
cc

ur
ac

y

1000 2000 3000

0.96

0.965

0.97

0.975

0.98

mnist2vs9

# Instance

A
cc

ur
ac

y

1000 2000 3000

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

wearable1vs5

# Instance

A
cc

ur
ac

y

1000 2000 3000

0.65

0.7

0.75

0.8

0.85
wearable2vs4

# Instance

A
cc

ur
ac

y

1000 2000 3000

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

skin

# Instance

A
cc

ur
ac

y

1000 2000 3000

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

mnist1vs2

# Instance

A
cc

ur
ac

y

Figure 11.3. (cont.)

147

figures/p1-mnist5vs6.eps
figures/p1-mnist2vs9.eps
figures/p1-wearable1vs5.eps
figures/p1-wearable2vs4.eps
figures/p1-skin.eps
figures/p1-mnist1vs2.eps


11. Communication-E�cient Online Semi-Supervised Learning in Client-Server Se�ings

  none full all rand certain uncertain submod

1000 2000 3000

0.955

0.96

0.965

0.97

mushroom

# Instance

A
cc

ur
ac

y

500 1000 1500 2000 2500

0.86

0.87

0.88

0.89

0.9

0.91

gisette

# Instance

A
cc

ur
ac

y

1000 2000 3000

0.7

0.75

0.8

0.85

webspam

# Instance

A
cc

ur
ac

y

1000 2000 3000

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

ijcnn1

# Instance

A
cc

ur
ac

y

Figure 11.4.: Test accuracy of di�erent selection strategies for a �xed communication budget. �e

client selected 10 instances from every 50 instances, except for all, which se-

lected all instances and hence incurs 5x the communication costs. �e server used

hs+scw+cut. �e labeling rate was 2%, except for full, which labeled all se-

lected instances using an oracle.

148

figures/p2-legend.eps
figures/p2-mushroom.eps
figures/p2-gisette.eps
figures/p2-webspam.eps
figures/p2-ijcnn1.eps


11.7. Conclusion

1000 2000 3000

0.924

0.926

0.928

0.93

0.932

0.934

0.936

0.938

0.94

skin

# Instance

A
cc

ur
ac

y

1000 2000 3000

0.978

0.98

0.982

0.984

0.986

0.988

mnist1vs2

# Instance

A
cc

ur
ac

y

1000 2000 3000
0.952

0.954

0.956

0.958

0.96

0.962

0.964

0.966

0.968

mnist5vs6

# Instance

A
cc

ur
ac

y

1000 2000 3000

0.97

0.972

0.974

0.976

0.978

0.98

0.982

mnist2vs9

# Instance

A
cc

ur
ac

y

1000 2000 3000

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

wearable1vs5

# Instance

A
cc

ur
ac

y

1000 2000 3000
0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

wearable2vs4

# Instance

A
cc

ur
ac

y

Figure 11.4. (cont.)

149

figures/p2-skin.eps
figures/p2-mnist1vs2.eps
figures/p2-mnist5vs6.eps
figures/p2-mnist2vs9.eps
figures/p2-wearable1vs5.eps
figures/p2-wearable2vs4.eps


11. Communication-E�cient Online Semi-Supervised Learning in Client-Server Se�ings

1% 2% 4% 8%

5%

10%

20%

40%

93.37

95.68

96.75

97.15

93.51

95.78

96.74

97.20

93.09

95.65

96.49

97.16

93.30

95.51

96.30

97.17

Labeling rate

S
am

pl
in

g 
ra

te

mushroom

0.90.951

0.95

1

1% 2% 4% 8%

5%

10%

20%

40%

81.42

86.54

89.53

90.64

81.39

86.79

89.50

90.81

80.85

86.45

89.58

90.97

80.84

85.84

89.25

91.09

Labeling rate

S
am

pl
in

g 
ra

te

gisette

0.70.80.9

0.75
0.8

0.85
0.9

0.95

1% 2% 4% 8%

5%

10%

20%

40%

71.79

77.27

80.65

84.48

73.44

78.07

81.36

85.63

74.54

78.85

81.76

86.55

74.25

79.02

81.92

87.05

Labeling rate

S
am

pl
in

g 
ra

te

webspam

0.60.8

0.65
0.7

0.75
0.8

0.85

1% 2% 4% 8%

5%

10%

20%

40%

65.62

72.02

78.44

83.38

66.22

73.34

78.83

83.40

67.11

74.70

78.60

83.72

68.25

74.22

78.49

83.92

Labeling rate

S
am

pl
in

g 
ra

te

ijcnn1

0.60.8

0.6

0.8

Figure 11.5.: Sensitivity analysis of the labeling rate (amount of human e�ort) and sampling rate

(amount of communication) on di�erent data sets. �e value of the matrix represents

the mean test accuracy of the last hypothesis constructed by hs+scw+cut. Darker

color represents higher value. �e column represents the labeling rate, varying from

1%, 2%, 4% to 8%. �e row represents the sampling rate on the client, varying

from 5%, 10%, 20% to 40%. �e size of the candidate pool is 100. �e selection

strategy is submod. �e result is averaged over 100 trials. �e marginal boxplots

are depicted along the corresponding axes. �e values outside the range of [Q3 −
1.5(Q3 −Q1), Q3 + 1.5(Q3 −Q1)] are considered as outliers, whereQ1 and Q3 are

the 25th and 75th percentiles, respectively. All outliers are removed from the boxplot

for the sake of clarity.

150

figures/p4-mushroom.eps
figures/p4-gisette.eps
figures/p4-webspam.eps
figures/p4-ijcnn1.eps


11.7. Conclusion

1% 2% 4% 8%

5%

10%

20%

40%

92.36

93.86

94.19

94.19

93.08

93.88

94.19

94.21

93.76

94.07

94.22

94.20

93.66

94.07

94.22

94.24

Labeling rate

S
am

pl
in

g 
ra

te

skin

0.9350.940.945

0.94

0.945

1% 2% 4% 8%

5%

10%

20%

40%

97.58

98.41

98.75

98.87

98.09

98.56

98.75

98.89

98.21

98.61

98.72

98.91

98.34

98.62

98.70

98.90

Labeling rate

S
am

pl
in

g 
ra

te

mnist1vs2

0.960.981

0.975
0.98

0.985
0.99

0.995

1% 2% 4% 8%

5%

10%

20%

40%

94.79

96.13

96.60

96.94

95.21

96.30

96.70

97.05

95.26

96.33

96.71

97.16

95.48

96.23

96.66

97.18

Labeling rate

S
am

pl
in

g 
ra

te

mnist5vs6

0.920.940.960.98

0.94

0.96

1% 2% 4% 8%

5%

10%

20%

40%

96.98

97.73

98.11

98.26

97.04

97.81

98.10

98.33

97.30

97.81

98.05

98.33

97.36

97.77

97.94

98.33

Labeling rate

S
am

pl
in

g 
ra

te

mnist2vs9

0.960.98

0.96

0.98

1% 2% 4% 8%

5%

10%

20%

40%

69.70

75.82

80.27

86.23

69.94

76.26

80.96

87.22

70.63

76.84

80.84

88.23

70.33

76.92

80.72

89.23

Labeling rate

S
am

pl
in

g 
ra

te

wearable1vs5

0.70.80.9

0.6

0.8

1% 2% 4% 8%

5%

10%

20%

40%

61.73

68.85

75.57

82.49

62.11

69.70

75.67

83.34

62.21

70.34

75.81

84.24

63.10

70.72

76.33

85.30

Labeling rate

S
am

pl
in

g 
ra

te

wearable2vs4

0.60.8

0.6

0.8

Figure 11.5. (cont.)

151

figures/p4-skin.eps
figures/p4-mnist1vs2.eps
figures/p4-mnist5vs6.eps
figures/p4-mnist2vs9.eps
figures/p4-wearable1vs5.eps
figures/p4-wearable2vs4.eps


11. Communication-E�cient Online Semi-Supervised Learning in Client-Server Se�ings

152



Chapter 12
Conclusion

Due to the ability to quickly adapt and to �nd pa�erns in large diverse data sources, machine

learning algorithms become a great potential asset to application developers in security domains.

�ey have become a valuable tool for detecting and preventingmalicious activity. In many of these

systems, human participants may exploit the adaptive component to gain some advantage. �ere-

fore, it is important for practitioners quantify the vulnerabilities presented in existing learning

techniques, and design robust and scalable learning mechanisms for security-sensitive applica-

tions. �e work I have presented in this dissertation signi�cantly advanced the state-of-the-art

in this �eld of study with four primary contributions: a vulnerability analysis of linear clas-

si�er and convex-inducing classi�er, a reliable algorithm for learning from multiple observers,

scalable online algorithms for security-sensitive applications, and �nally, a novel framework for

communication-e�cient distributed learning. However, research in this �eld has many challenges

remain. �ese challenges suggest several new directions for research within both �elds of machine

learning and computer security.

�e remainder of the chapter summarizes themain contributions of this dissertation in greater

detail, and lists several open problems in the intersection of machine learning and security and

my outlook on the future of this �eld.

12.1. Summary of Contributions

�e contributions of this dissertation span the spectrumof practical a�acks on learning algorithms,

new robust and scalable learning algorithms, and thorough experimental evaluation. We detail

these contributions below.

12.1.1. Identifying Vulnerabilities of Algorithms and Adversarial Capabilities

�e �rst major contribution of this dissertation is the theoretical analysis for the vulnerabilities

of machine learning algorithms. Traditional machine learning research were originally conceived

under the assumption of faithful data and did not explicitly account for potential datamanipulation

by adversaries. In Chapter 4 and Chapter 3, I studied the exploratory a�ack where an adversary

disguises the malicious instance as benign by querying the classi�er. In Chapter 4, I presented

the de�nition of the vulnerability of a multiclass classi�er to linear probing. I showed that the

153



12. Conclusion

e�ective exploratory a�ack based on the linear probing is feasible under some assumption on the

adversarial cost. �e theoretical establishment in �eorem 4.3 not only reveals the vulnerability

of the classi�er, but also implies a way to construct a robust classi�er that resists exploratory

algorithm based on linear probing, e.g. by jointly minimizing Eq. (4.9) and the error function in the

training procedure. Based on theoretical results, I presented an algorithm for deceiving the multi-

class linear classi�er by disguising the adversarial instance as other classes with approximately

minimal cost, while issuing polynomially many queries in: the number of features, the range

of feature value, the number of classes and the number of iterations. Chapter 5 continued the

study of the exploratory a�ack problem and generalized it to the family of classi�er with convex-

inducing decision boundaries. I formalized the exploratory a�ack on convex-inducing classi�ers

as a ℓp-norm minimization problem. To solve this problem, I developed an algorithm based on

random walks in a sequence of progressively smaller convex bodies. Underlying the algorithm

is a sophisticated analysis, which clearly elucidates the convergence rate, the upper bound of

expected iterations and the required number of samples per iteration. In the experiment, I showed

that the proposed algorithm yields a robust convergence rate by bounding the feasible region

with norm balls. In Chapter 6 I focused a di�erent type of a�ack called causative label �ips a�ack.

�e problem studies the best a combination of label �ips under a given budget so that a classi�er

trained on such data will have maximal classi�cation error. I presented an optimization framework

based on Tikhonov regularization for solving this problem. I then proposed ALFA algorithm for

a�acking support vector machines, which can be e�ciently solved by alternating between a LP

and a QP solver. A lesson learned from Chapter 6 is that previous robust learning algorithms

based on the assumption of random label noise may be too optimistic as they underestimate the

adversary’s impact on the classi�er’s performance. I also demonstrated the devastating impact

of the a�ack algorithms on a newsle�er classi�er and a face recognition system. Hopefully, I

have raised enough a�ention about the vulnerabilities of the machine learning algorithms, and

underlined the importance of reliable learning for the machine learning researchers and security

analysts.

12.1.2. Presenting Reliable Algorithms Resilient to Adversaries

�e second principal contribution I make in this dissertation is developing a novel reliable learning

algorithm that is less prone to adversarial data. In Chapter 7, I considered the problem of super-

vised learning from multiple observers, where each instance in X is associated with multiple but

unreliable labels in Y . Given the training data X and Y, the goals were threefold: (a) estimate

the unknown ground truth Z; (b) learn a regression function f : X → Z generalized well on

unseen instances; (c) for each observer model its expertise as a function of the input instance and

the ground truth. Unlike previous work that used probabilistic parametric model to address the

classi�cation problem [130, 131], I focused on the regression problem and designed a nonparamet-

ric model using Gaussian process. �e underlying assumption is that, if two instances are close

to each other in the input space X , then their corresponding groundtruth should be close in the

latent space Z , which results in the similar position in Y . �e parameters of the model can be

estimated by maximizing the posterior of the latent variables with L-BFGS solver. From a prac-

tical perspective, I highlighted a wide range of domains that my method can be applied on, from

crowdsourcing platform, photo rating website to sensor network. In Chapter 8, I demonstrated an

application of aesthetics score assessment for the online photo sharing service. In this example,

for each photo only the subjective ratings from multiple users are observed, whereas the objective

154



12.1. Summary of Contributions

aesthetics score is a latent variable. Comparing to the simple heuristics such as “take the average”,

“majority vote”, and “�lter out anomalies”, my method suggests a new way to leverage informa-

tion from multiple sources. From the technical perspective, I found the underlying connection

between the proposed model and other hierarchical models such as, hierarchical GP-LVM [102]

and the hierarchical probabilistic PCA [155]. A similar training approach could be taken with the

proposed model. Moreover, I highlighted the potential risk of over��ing when the number of

latent variables is large or when the hierarchy becomes too deep. My work suggests that the over-

��ing problem can be alleviated when using proper initialization on each layer. Other methods

such as adding prior distribution or regularization on each node may also be e�ective.

12.1.3. Presenting Online Algorithms for Large-Scale Data Stream

Robust learning algorithms are otherwise useless if they are not e�cient enough in real-world

problems. �us, my third contribution is the design and analysis of e�cient online learning al-

gorithms for handling large-scale data. In Chapter 9, I focused on speeding up Gaussian process

regression for online learning, which can be used to improve the training e�ciency of the model

in Chapter 7. In particular, I pointed out the the heavy computation of the likelihood and the

derivatives involved in the ordinary Gaussian process model. To solve this problem, the proposed

LGPC algorithm partitions the data and allocates it to a commi�ee consisted of a number of inde-

pendent GPs with di�erent hyperparameters. �us the main problem turned into the allocation of

new training examples, which was solved using submodular optimization. Experiments showed

that LGPC is a more appropriate choice than SOGP in real-time applications which require fast

training. Moreover, its predictive accuracy makes it overall more preferable than BCM.�e size of

the commi�ee determines the capability to account for the complex pa�ern. Larger size generally

leads to higher predictive accuracy. I applied LGPC to mouse-trajectory prediction in an Internet

banking scenario and used it to predict user’s hand movements in real-time.

In Chapter 10 I studied the sequence prediction problem. I formulated it as an online multi-

class classi�cation problem, which can be seen as a complement to the online regression problem

in Chapter 9. �e problem is motivated by the system call prediction. Previous work that rely

on high-order Markov models [27] were o�en di�cult in practice due to the requirement of vast

amounts of training data and more sophisticated smoothing algorithms. My method was based on

the multi-class con�dence-weighted algorithm [53]. I described the method to learn the weight

matrix W by minimizing the Kullback-Leibler divergence. For storing previously observed se-

quence, I used a memory-e�cient context tree, which grows the context tree at a much slower

pace so that the algorithm can utilize memory more conservatively. A distinguished factor of my

work is incorporating the side information into the model. Its e�ectiveness had been shown in

the experiments. �e solution of this problem can be extremely useful in computer security appli-

cations, such as anomaly detection [166, 57], sandbox systems [123], bu�er cache management in

operating system [66] and power management in smartphones [124].

12.1.4. Establishing Distributed Learning Framework for Client-Server Settings

To meet the challenge of big data, my fourth contribution is posing a novel learning problem and

establishing a �exible framework for the client-server design. In particular, I considered a scenario

where a distributed system consists of clients, a server, and a communication network. �e clients

submit partially labeled training data to the server. �e server learns a model from incoming data.

155



12. Conclusion

�is new se�ing is called communication-e�cient learning, which aims to keep the performance

of the model while reducing the communication cost over the network. �is problem abstracts

a common scenario where training data is too big to be stored locally and labeled completely.

In my proposed framework, the server performs online semi-supervised learning. I employed

the harmonic solution (HS) [180] as the �rst learner and the so� con�dence-weighted classi�er

(SCW) [163], which is an extension of the algorithm in Chapter 9, as the second leaner. My choice

o�ered several advantages. First, SCW is simple, fast and enjoys state-of-the-art performance on

classi�cation. Second, SCW performs a conservative update especially with noisy labels. �ird,

SCW can be parameterized by a weight vector and a covariance matrix, allowing the server to

deliver the selection criterion to the client with a low communication cost. To determine the labels

for unlabeled data, I proposed an e�cient online version of HS, which can be integrated into SCW

in an optimization problem. Given a communication budget, the client selects instances from

an unlabeled candidate pool such that the model on the server might be improved by learning

these instances. �is was done by using the similar technique as in Chapter 9. �e proposed

method enjoys superior and stable performance on several real-world data sets. On the client

side, I investigated several selection criteria and showed how the server communicates with the

client. I showed that a selection criterion based on uncertainty and redundancy is e�ective. It is

worth highlighting that intelligent sampling on the client not only saves communication costs,

but, perhaps surprisingly, also may result in a be�er model on the server compared to uploading

all instances.

12.2. Discussion and Open Problems

To develop a reliable and scalable system in the real world, one has to take relevant security threats

into the consideration. While previous chapters marked several contributions to the �eld of ma-

chine learning in security-sensitive domains, a number of open issues and future directions arise.

In the remainder of this section, I identify promising directions for designing reliable and scalable

machine learning algorithms.

12.2.1. Faithful Evaluation with Scarce Groundtruth

Unlike many other machine learning applications, groundtruth data is hard to obtain in adver-

sarial environments. Moreover, de�ning groundtruth for adversarial learning is di�cult since the

concept of malicious behavior is vague and o�en depends on the context. Furthermore, it is also

di�cult to leverage crowdsourcing platforms (e.g. Amazon Mechanical Turk) to label adversarial

data, as a�ackers may hide their activities so that even humans are not able to identify them. It

potentially requires domain-expert knowledge to correctly identify adversarial events. �is chal-

lenge poses several open problems.

In addition, current evaluation techniques for performance measurement of machine learning

algorithms do not take into account adversarial noise. �us, such techniques can not provide

information about the security level of a classi�cation system under a�acks. As experiments in

Chapter 7 showed, they are likely to provide over-optimistic estimates of their performance. It is

necessary to develop evaluation methods to measure the security level of classi�ers on a given set

of data.

Open Problem 1. How to collect labeled data sets with adversarial events?

156



12.2. Discussion and Open Problems

Open Problem 2. How to numerically evaluate the security level of a learning algorithm?

12.2.2. Detecting Malicious Training As Pre-Processing

A straightforward way to reduce the adversarial noise is to remove the malicious instances before

the training phase starts. In other word, one simply �lters the data before training any learner to

allow the learner to be more secure. �e primary challenge is how to accurately identify malicious

data that should a�ect the learner in adverse ways.

Traditional anomaly detection methods look appropriate at the �rst glance. However, they

generally require a clean data set for the initial training of the detector itself. In practice, it could

be di�cult to obtain a clean data set. Even if there is such data set, the size is usually limited.

Furthermore, as there will be less data to train on a�er removing suspect data, the learner may

requiremore input to learn the target function. �us, the problems here are summarized as follows.

Open Problem 3. How to e�ciently detect malicious instances from training data?

Open Problem 4. If training data is not given in batch but given in a sequence form, how to detect

malicious instances in an online fashion?

Open Problem 5. How does the removal of malicious instances a�ect the learning rate of the algo-

rithm?

Open Problem 6. Is the detector itself vulnerable to adversaries?

12.2.3. Ensemble Methods for Secure Learning

In Chapter 9, the proposed LGPC model consisted several learners. Intuitively, even if a single

learner may be individually vulnerable, it is more di�cult for adversaries to a�ack all learners

simultaneously. �is suggests an ensemble may have several advantages in a security-sensitive

environment. First, an ensemble can be shown to have more �exibility in the functions they can

represent. Second, it allows one to combine learners designed to capture di�erent aspects of the

task. For instance, one can build an ensemble based on di�erent feature sets to reduce common

vulnerabilities under feature noise. �ird, as the hypothesis produced by an ensemble is not neces-

sarily containedwithin the hypothesis space of the learner fromwhich it is built, it is more di�cult

for the adversary to reverse engineer the system.

To properly develop an ensemble method for secure learning, one must �rst assess the vul-

nerability of several candidate learners. �en, one should choose a base set of models and sets of

features for them to learn on. If an ensemble is �exible enough, one can also improve the existing

ensemble by adding a new learner according to the security threats. Remaining open problems in

this line of research include:

Open Problem 7. Do more learners always suggest more security?

Open Problem 8. How to assess the vulnerability of a group of learners?

Open Problem 9. When a new security threat is identi�ed, how to patch an ensemble without

training all learners from the scratch?

Open Problem 10. In the online learning scenario, how to train multiple learners asynchronously?

157



12. Conclusion

12.2.4. Privacy-Preserving Learning in Distributed Settings

Chapter 11 introduced a new learning problem for the distributed se�ing. In practice, di�erent

clients may require di�erent selection policies in order to reduce the redundancy between their

submissions. To personalize the selection strategy, each client needs to be aware of what others

submit. �erefore, the goal turns into designing an aggregate statistics on a data set without

disclosing local information about individual elements of the data. It is o�en the case that the

goals of utility and privacy are inherently discordant. For a mechanism to be useful, its responses

must closely resemble some target statistic of the data entries. However to protect privacy, it is

o�en necessary for the mechanism be “smoothed” to reduce the individual entries’ in�uence on

this distribution. �is trade-o� poses some interesting research problems.

Open Problem 11. If one of the client is controlled by the adversary, how does it a�ect the learning

algorithm on the server? Is this equivalent to the problem in Chapter 6?

Open Problem 12. Can we design a communication protocol for clients, so that the goal of utility

and privacy can be achieved simultaneously?

Open Problem 13. Can we design a communication protocol for both server and clients, so that the

goal of maximizing utility and privacy and reducing the network overall bandwidth can be achieved

simultaneously?

12.3. Final Words

�is work began as a keen interest in machine learning and its application in security sensitive

domains. It has raised a broad variety of research questions. Some of these questions stem from

machine learning methodologies, others stem from the real-world security applications. Although

traditions and practices (e.g. model analysis, experimental work) of machine learning and com-

puter security diverge in many aspects, this dissertation has identi�ed several interesting and

important problems in this emerging discipline. �ese problems o�en require a thorough reca-

pitulation of its theoretical foundations. Understanding these issues represents a signi�cant step

toward real-world secure learning. I expect that the demand for secure machine learning is not

limited to the traditional computer security domain, but will grow and expand to other application

domains such as online advertisement, social networks, and recommendation system.

158



Bibliography

[1] R.A. Abrams and D.A. Balota. Mental chronometry: Beyond reaction time. Psychological

Science, 2(3):153–157, 1991.

[2] H. Alzer. Some beta-function inequalities. Proc. of Royal Society of Edinburgh: Section A

Mathematics, 133(04):731–745, 2003.

[3] D. Angluin. �eries and concept learning. Machine learning, 2(4):319–342, 1988.

[4] D. Angluin. �eries revisited. �eoretical Computer Science, 313(2):175–194, 2004.

[5] Keith Ball. Cube slicing in R
n. Proc. of American Mathematical Society, 97(3):pp. 465–473,

1986.

[6] D. Barbara and S. Jajodia. Applications of data mining in computer security. Springer, 2002.

[7] M. Barreno, B. Nelson, A.D. Joseph, and JD Tygar. �e security ofmachine learning.Machine

Learning, 81(2):121–148, 2010.

[8] Ron Begleiter, Ran El-Yaniv, and Golan Yona. On prediction using variable order markov

models. J. Artif. Intell. Res. (JAIR), 22:385–421, 2004.

[9] Kristin Benne�, Ayhan Demiriz, et al. Semi-supervised support vector machines. In Pro-

ceedings of NIPS, 1999.

[10] D. Bertsimas and S. Vempala. Solving convex programs by random walks. JACM, 51(4):540–

556, 2004.

[11] Albert Bifet, Geo� Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard Gavaldà. New

ensemble methods for evolving data streams. In Proceedings of SIGKDD. ACM, 2009.

[12] B. Biggio, B. Nelson, and B. Laskov. Support vector machines under adversarial label noise.

In Proc. of 3rd ACML, pages 97–112, 2011.

[13] C.M. Bishop. Pa�ern recognition and machine learning. Springer, 2006.

[14] David Blackwell. An analog of the minimax theorem for vector payo�s. Paci�c Journal of

Mathematics, 6(1):1–8, 1956.

159



Bibliography

[15] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In

Proceedings of COLT. ACM, 1998.

[16] A. Bratko, B. Filipič, G.V. Cormack, T.R. Lynam, and B. Zupan. Spam�ltering using statistical

data compression models. JMLR, 7:2673–2698, 2006.

[17] Cristian Bro�o, Claudio Gentile, and Fabio Vitale. On higher-order perceptron algorithms.

Advances in Neural Information Processing Systems, 19, 2007.

[18] Peter F Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra, and Jenifer C Lai.

Class-based n-gram models of natural language. Computational linguistics, 18(4):467–479,

1992.

[19] Gert Cauwenberghs and Tomaso Poggio. Incremental and decremental support vector ma-

chine learning. Proceedings of NIPS, 2001.

[20] Nicolò Cesa-Bianchi, Alex Conconi, and Claudio Gentile. A second-order perceptron algo-

rithm. SIAM Journal on Computing, 34(3):640–668, 2005.

[21] Nicolo Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. Worst-case analysis of selective

sampling for linear classi�cation. JMLR, 7, 2006.

[22] O. Chapelle, B. Schölkopf, A. Zien, et al. Semi-supervised learning. MIT Press, 2006.

[23] Olivier Chapelle and S Sathiya Keerthi. Multi-class feature selection with support vector

machines. In Proceedings of the American statistical association, 2008.

[24] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental cluster-

ing and dynamic information retrieval. In STOC. ACM, 1997.

[25] Abhishek Chaturvedi, Sandeep Bhatkar, and R Sekar. Improving a�ack detection in host-

based ids by learning properties of system call arguments. In In Proceedings of the IEEE

Symposium on Security and Privacy. Citeseer, 2005.

[26] S. Chen, J. Zhang, G. Chen, andC. Zhang. What if the irresponsible teachers are dominating?

In Proc. 24th AAAI, 2010.

[27] Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques for lan-

guage modeling. In Proceedings of the 34th annual meeting on Association for Computational

Linguistics, pages 310–318. Association for Computational Linguistics, 1996.

[28] T. Chen and J. Ren. Bagging for gaussian process regression. Neurocomputing, 72(7):1605–

1610, 2009.

[29] Xue-wen Chen, Xiangyan Zeng, and Deborah van Alphen. Multi-class feature selection for

texture classi�cation. Pa�ern Recognition Le�ers, 27(14):1685–1691, 2006.

[30] Wei Chu, Martin Zinkevich, Lihong Li, Achint �omas, and Belle Tseng. Unbiased online

active learning in data streams. In Proceedings of SIGKDD. ACM, 2011.

[31] David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active learning.

Machine Learning, 15(2), 1994.

160



Bibliography

[32] �omas Cover and Peter Hart. Nearest neighbor pa�ern classi�cation. Information �eory,

IEEE Transactions on, 13(1):21–27, 1967.

[33] �omas M Cover and Aaron Shenhar. Compound bayes predictors for sequences with ap-

parent markov structure. Systems, Man and Cybernetics, IEEE Transactions on, 7(6):421–424,

1977.

[34] K. Crammer, M. Kearns, and J. Wortman. Learning from multiple sources. JMLR, 9:1757–

1774, 2008.

[35] K. Crammer and Y. Singer. On the learnability and design of output codes for multiclass

problems. Machine Learning, 47(2):201–233, 2002.

[36] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. Online

passive-aggressive algorithms. �e Journal of Machine Learning Research, 7:551–585, 2006.

[37] Koby Crammer,Mark Dredze Fern, and O Pereira. Exact convex con�dence-weighted learn-

ing. In In Advances in Neural Information Processing Systems 22. Citeseer, 2008.

[38] Koby Crammer, Alex Kulesza, Mark Dredze, et al. Adaptive regularization of weight vectors.

Advances in Neural Information Processing Systems, 22:414–422, 2009.

[39] Koby Crammer and Yoram Singer. Ultraconservative online algorithms for multiclass prob-

lems. �e Journal of Machine Learning Research, 3:951–991, 2003.

[40] L. Csató and M. Opper. Sparse on-line gaussian processes. Neural Computation, 14(3):641–

668, 2002.

[41] F. Dabbene, PS Shcherbakov, and BT Polyak. A randomized cu�ing plane method with

probabilistic geometric convergence. SIAM Journal on Optimization, 20:3185, 2010.

[42] R. Dale, C. Kehoe, and M.J. Spivey. Graded motor responses in the time course of categoriz-

ing atypical exemplars. Memory & Cognition, 35(1):15–28, 2007.

[43] N. Dalvi, P. Domingos, et al. Adversarial classi�cation. In Proc. of 10th SIGKDD, pages

99–108. ACM, 2004.

[44] R. Da�a, D. Joshi, J. Li, and J. Wang. Studying aesthetics in photographic images using a

computational approach. Proc. ECCV, pages 288–301, 2006.

[45] R. Da�a, J. Li, and J.Z. Wang. Algorithmic inferencing of aesthetics and emotion in natural

images: An exposition. In Proc. 15th ICIP, pages 105–108. IEEE, 2008.

[46] Timothy A Davis. Direct methods for sparse linear systems, volume 2. Society for Industrial

and Applied Mathematics, 2006.

[47] A.P. Dawid and A.M. Skene. Maximum likelihood estimation of observer error-rates using

the em algorithm. Applied Statistics, pages 20–28, 1979.

[48] O. Dekel and O. Shamir. Learning to classify with missing and corrupted features. In Proc.

of 25th ICML, pages 216–223, 2008.

161



Bibliography

[49] O. Dekel andO. Shamir. Good learners for evil teachers. In Proc. of 26th ICML, pages 233–240.

ACM, 2009.

[50] Ofer Dekel. From online to batch learning with cuto�-averaging. In Proceedings of NIPS,

2008.

[51] Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer. Individual sequence prediction using

memory-e�cient context trees. Information �eory, IEEE Transactions on, 55(11):5251–5262,

2009.

[52] ŚlezakDominik. Rough sets and functional dependencies in data: Foundations of association

reducts. In Transactions on Computational Science V, pages 182–205. Springer, 2009.

[53] Mark Dredze, Koby Crammer, and Fernando Pereira. Con�dence-weighted linear classi�ca-

tion. In Proceedings of the 25th international conference on Machine learning, pages 264–271.

ACM, 2008.

[54] Richard ODuda, Peter E Hart, et al. Pa�ern classi�cation and scene analysis, volume 3. Wiley

New York, 1973.

[55] M. Dyer, A. Frieze, and R. Kannan. A random polynomial-time algorithm for approximating

the volume of convex bodies. JACM, 38(1):1–17, 1991.

[56] Elad Eban, Aharon Birnbaum, Shai Shalev-Shwartz, and Amir Globerson. Learning the

experts for online sequence prediction. In ICML, 2012.

[57] Eleazar Eskin, Wenke Lee, and Salvatore J Stolfo. Modeling system calls for intrusion de-

tection with dynamic window sizes. In DARPA Information Survivability Conference & Ex-

position II, 2001. DISCEX’01. Proceedings, volume 1, pages 165–175. IEEE, 2001.

[58] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLIN-

EAR: A library for large linear classi�cation. JMLR, 9:1871–1874, 2008.

[59] Meir Feder, Neri Merhav, and Michael Gutman. Universal prediction of individual se-

quences. Information �eory, IEEE Transactions on, 38(4):1258–1270, 1992.

[60] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634–652,

1998.

[61] Li Feng, Xiaohong Guan, Sangang Guo, Yan Gao, and Peini Liu. Predicting the intrusion

intentions by observing system call sequences. Computers & Security, 23(3):241–252, 2004.

[62] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and �omas A. Longsta�. A sense of

self for unix processes. In In Proceedings of the 1996 IEEE Symposium on Security and Privacy,

pages 120–128. IEEE Computer Society Press, 1996.

[63] J.B. Freeman and N. Ambady. Motions of the hand expose the partial and parallel activation

of stereotypes. Psychological Science, 20(10):1183–1188, 2009.

[64] J.B. Freeman, K. Pauker, E.P. Apfelbaum, and N. Ambady. Continuous dynamics in the real-

time perception of race. Journal of Experimental Social Psychology, 46(1):179–185, 2010.

162



Bibliography

[65] Jonathan B Freeman and Nalini Ambady. Mousetracker: So�ware for studying real-time

mental processing using a computer mouse-tracking method. Behavior Research Methods,

42(1):226–241, 2010.

[66] Peter Fricke, Felix Jungermann, Katharina Morik, Nico Piatkowski, Olaf Spinczyk, Marco

Stolpe, and Jochen Streicher. Towards adjusting mobile devices to user’s behaviour. In

Analysis of Social Media and Ubiquitous Data, pages 99–118. Springer, 2011.

[67] Yifan Fu, Xingquan Zhu, and Bin Li. A survey on instance selection for active learning.

Knowledge and information systems, 2013.

[68] G. Fumera, I. Pillai, and F. Roli. Spam �ltering based on the analysis of text information

embedded into images. JMLR, 7:2699–2720, 2006.

[69] Shen Furao and Osamu Hasegawa. An incremental network for on-line unsupervised clas-

si�cation and topology learning. Neural Networks, 19(1), 2006.

[70] ChristopherWGeib and Robert P Goldman. Plan recognition in intrusion detection systems.

InDARPA Information Survivability Conference & Exposition II, 2001. DISCEX’01. Proceedings,

volume 1, pages 46–55. IEEE, 2001.

[71] A. Globerson and S. Roweis. Nightmare at test time: robust learning by feature deletion. In

Proc. of 23rd ICML, pages 353–360. ACM, 2006.

[72] AndrewBGoldberg, Ming Li, andXiaojinZhu. Onlinemanifold regularization: A new learn-

ing se�ing and empirical study. InMachine Learning and Knowledge Discovery in Databases.

Springer, 2008.

[73] Andrew B Goldberg, Xiaojin Zhu, Alex Furger, and Jun-Ming Xu. Oasis: Online active

semi-supervised learning. In Proceedings of AAAI, 2011.

[74] Helmut Grabner, Christian Leistner, and Horst Bischof. Semi-supervised on-line boosting

for robust tracking. In ECCV. Springer, 2008.

[75] �omas L Gri�ths, Mark Steyvers, David M Blei, and Joshua B Tenenbaum. Integrating

topics and syntax. Advances in neural information processing systems, 17:537–544, 2005.

[76] B. Grünbaum. Convex polytopes, volume 221. Springer, 2003.

[77] Branko Grünbaum. Partitions of mass-distributions and of convex bodies by hyperplanes.

Pac. J. Math., 10:1257–1261, 1960.

[78] Carlos Guestrin, Andreas Krause, and Ajit Paul Singh. Near-optimal sensor placements in

gaussian processes. In Proceedings of ICML. ACM, 2005.

[79] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for

cancer classi�cation using support vector machines. Machine learning, 46(1-3):389–422,

2002.

[80] Yoav Haimovitch, Koby Crammer, and Shie Mannor. More is be�er: Large scale partially-

supervised sentiment classi�cation. In Proceedings of ACML, 2012.

163



Bibliography

[81] James Hannan. Approximation to bayes risk in repeated play. Contributions to the �eory

of Games, 3:97–139, 1957.

[82] David P Helmbold and Robert E Schapire. Predicting nearly as well as the best pruning of

a decision tree. Machine Learning, 27(1):51–68, 1997.

[83] Ralf Herbrich, �ore Graepel, and Colin Campbell. Bayes point machines. �e Journal of

Machine Learning Research, 1:245–279, 2001.

[84] Ruizhang Huang and Wai Lam. An active learning framework for semi-supervised docu-

ment clustering with language modeling. Data & Knowledge Engineering, 68(1), 2009.

[85] S.L. Hui and S.D. Walter. Estimating the error rates of diagnostic tests. Biometrics, pages

167–171, 1980.

[86] Vijay S Iyengar, Chidanand Apte, and Tong Zhang. Active learning using adaptive resam-

pling. In Proceedings of SIGKDD. ACM, 2000.

[87] T Jaakkola and M Jordan. A variational approach to bayesian logistic regression models and

their extensions. In AISTATS. Citeseer, 1997.

[88] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for the

permanent of a matrix with nonnegative entries. JACM, 51(4):671–697, 2004.

[89] R. Kannan, L. Lovász, and M. Simonovits. Random walks and an o*(n5) volume algorithm

for convex bodies. Random structures and algorithms, 11(1):1–50, 1997.

[90] Nikos Karampatziakis and Dexter Kozen. Learning prediction su�x trees with winnow. In

Proceedings of the 26th Annual International Conference on Machine Learning, pages 489–496.

ACM, 2009.

[91] Y. Ke, X. Tang, and F. Jing. �e design of high-level features for photo quality assessment.

In Proc. CVPR, volume 1, pages 419–426. IEEE, 2006.

[92] M. Kearns and M. Li. Learning in the presence of malicious errors. In Proc. of 20th STOC,

pages 267–280. ACM, 1988.

[93] S. Keerthi and W. Chu. A matching pursuit approach to sparse gaussian process regression.

In Advances in Neural Information Processing Systems, volume 18, page 643. MIT Press, 2006.

[94] S.S. Keerthi, S. Sundararajan, K.W. Chang, C.J. Hsieh, and C.J. Lin. A sequential dual method

for large scale multi-class linear svms. In Proc. of 14th SIGKDD, pages 408–416. ACM, 2008.

[95] J.E. Kelley. �e cu�ing-plane method for solving convex programs. SIAM Journal on Applied

Mathematics, 8(4):703–712, 1960.

[96] G. Kimeldorf and G. Wahba. Some results on tchebyche�an spline functions. Journal of

Mathematical Analysis and Applications, 33(1):82–95, 1971.

[97] A.R. Klivans, P.M. Long, and R.A. Servedio. Learning halfspaceswith malicious noise. JMLR,

10:2715–2740, 2009.

164



Bibliography

[98] M.K. Kozlov, S.P. Tarasov, and L.G. Khachiyan. �e polynomial solvability of convex

quadratic programming. USSR Comput. Math. and Math. Phys., 20(5):223–228, 1980.

[99] A. Krause and C. Guestrin. Near-optimal observation selection using submodular functions.

In Proceedings of the National Conference on Arti�cial Intelligence, volume 22, page 1650.

Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2007.

[100] A. Krause, H.B. Mcmahan, C. Guestrin, and A. Gupta. Selecting observations against adver-

sarial objectives. In Advances in Neural Information Processing Systems. MIT Press, 2007.

[101] A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in gaussian processes:

�eory, e�cient algorithms and empirical studies. Journal of Machine Learning Research,

9:235–284, 2008.

[102] Neil D Lawrence and Andrew JMoore. Hierarchical gaussian process latent variable models.

In Proceedings of the 24th international conference on Machine learning, pages 481–488. ACM,

2007.

[103] Wenke Lee, Salvatore J Stolfo, and Philip K Chan. Learning pa�erns from unix process exe-

cution traces for intrusion detection. In AAAIWorkshop on AI Approaches to Fraud Detection

and Risk Management, pages 50–56, 1997.

[104] A.Y. Levin. On an algorithm for the minimization of convex functions. Soviet Mathematics

Doklady, 160:1244–1247, 1965.

[105] C. Li and T. Chen. Aesthetic visual quality assessment of paintings. Selected Topics in Signal

Processing, IEEE Journal of, 3(2):236–252, 2009.

[106] C. Li, A. Gallagher, A.C. Loui, and T. Chen. Aesthetic quality assessment of consumer photos

with faces. In Proc. ICIP, pages 3221–3224, 2010.

[107] D. Lowd and C. Meek. Adversarial learning. In Proc. of 11th SIGKDD, pages 641–647. ACM,

2005.

[108] D. Lowd andC.Meek. Goodword a�acks on statistical spam�lters. In Proc. of 2nd Conference

on Email and Anti-Spam, pages 125–132, 2005.

[109] M.A. Maloof. Machine learning and data mining for computer security: methods and applica-

tions. Springer, 2006.

[110] Alvaro Martin, Gadiel Seroussi, and Marcelo J. Weinberger. Linear time universal coding

and time reversal of tree sources via fsm closure. Information �eory, IEEE Transactions on,

50(7):1442–1468, 2004.

[111] Andrew McCallum, Kamal Nigam, et al. Employing EM and pool-based active learning for

text classi�cation. In Proceedings of ICML, 1998.

[112] M. Minoux. Accelerated greedy algorithms for maximizing submodular set functions. Op-

timization Techniques, pages 234–243, 1978.

[113] A. Moorthy, P. Obrador, andN. Oliver. Towards computationalmodels of the visual aesthetic

appeal of consumer videos. Proc. ECCV, pages 1–14, 2010.

165



Bibliography

[114] TS Motzkin and IJ Schoenberg. �e relaxation method for linear inequalities. Canadian

Journal of Mathematics, 6(3):393–404, 1954.

[115] Ion Muslea, Steven Minton, and Craig A Knoblock. Active+ semi-supervised learning=

robust multi-view learning. In Proceedings of ICML, 2002.

[116] B. Nelson, M. Barreno, F.J. Chi, A.D. Joseph, B.I.P. Rubinstein, U. Saini, C. Su�on, JD Tygar,

and K. Xia. Exploiting machine learning to subvert your spam �lter. In Proc. of the 1st Usenix

Workshop on Large-Scale Exploits and Emergent �reats, page 7, 2008.

[117] Blaine Nelson, Benjamin I. P. Rubinstein, Ling Huang, Anthony D. Joseph, Shing hon Lau,

Steven Lee, Satish Rao, Anthony Tran, and J. D. Tygar. Near-optimal evasion of convex-

inducing classi�ers. In Proc. of 13th AISTATS, 2010.

[118] G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of approximations for maximiz-

ing submodular set functions—i. Mathematical Programming, 14(1):265–294, 1978.

[119] D.J. Newman. Location of the maximum on unimodal surfaces. JACM, 12(3):395–398, 1965.

[120] J. Newsome, B. Karp, and D. Song. Paragraph: �warting signature learning by training

maliciously. In Recent Advances in Intrusion Detection, pages 81–105. Springer, 2006.

[121] Duy Nguyen-Tuong, Jan R Peters, and Ma�hias Seeger. Local gaussian process regression

for real time online model learning. In Advances in Neural Information Processing Systems,

pages 1193–1200, 2008.

[122] Albert BJ Noviko�. On convergence proofs for perceptrons. Technical report, DTIC Docu-

ment, 1963.

[123] Yoshihiro Oyama, Koichi Onoue, and Akinori Yonezawa. Speculative security checks in

sandboxing systems. In Parallel and Distributed Processing Symposium, 2005. Proceedings.

19th IEEE International, pages 8–pp. IEEE, 2005.

[124] Abhinav Pathak, Y Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-MinWang. Fine-grained

power modeling for smartphones using system call tracing. In Proceedings of the sixth con-

ference on Computer systems, pages 153–168. ACM, 2011.

[125] Fernando C Pereira and Yoram Singer. An e�cient extension to mixture techniques for

prediction and decision trees. Machine Learning, 36(3):183–199, 1999.

[126] BT Polyak and PS Shcherbakov. A randomized method for solving semide�nite programs.

In Adaptation and Learning in Control and Signal Processing, volume 9, pages 227–231, 2007.

[127] J.�iñonero-Candela and C.E. Rasmussen. A unifying view of sparse approximate gaussian

process regression. Journal of Machine Learning Research, 6:1939–1959, 2005.

[128] L. Rademacher and N. Goyal. Learning convex bodies is hard. In Proc. of 22nd COLT, pages

303–308, 2009.

[129] C.E. Rasmussen and C.K.I. Williams. Gaussian processes for machine learning, volume 1. MIT

press Cambridge, MA, 2006.

166



Bibliography

[130] V.C. Raykar, S. Yu, L.H. Zhao, A. Jerebko, C. Florin, G.H. Valadez, L. Bogoni, and L. Moy.

Supervised learning from multiple experts: Whom to trust when everyone lies a bit. In

Proc. 26th ICML, pages 889–896. ACM, 2009.

[131] V.C. Raykar, S. Yu, L.H. Zhao, G.H. Valadez, C. Florin, L. Bogoni, and L. Moy. Learning from

crowds. JMLR, 11:1297–1322, 2010.

[132] Herbert Robbins. Asymptotically subminimax solutions of compound statistical decision

problems. In Herbert Robbins Selected Papers, pages 7–24. Springer, 1985.

[133] R.T. Rockafellar. Convex analysis, volume 28. Princeton Univ Pr, 1997.

[134] F Ronsenbla�. �e perceptron: a probabilistic model for information storage and organiza-

tion in the brain. Psychological review, 65:386–408, 1958.

[135] L.A. Santaló. Integral geometry and geometric probability. Cambridge Univ Pr, 2004.

[136] R. Schneider. Convex bodies: the Brunn-Minkowski theory. Cambridge Univ Pr, 1993.

[137] M. Seeger, C.K.I. Williams, and N.D. Lawrence. Fast forward selection to speed up sparse

gaussian process regression. InWorkshop on AI and Statistics, volume 9, page 2003, 2003.

[138] Burr Se�les. Active learning literature survey. University of Wisconsin, Madison, 2010.

[139] Shai Shalev-shwartz and Yoram Singer. Convex repeated games and fenchel duality. In

Advances in Neural Information Processing Systems 19. MIT Press, 2006.

[140] Furao Shen, Hui Yu, Keisuke Sakurai, and Osamu Hasegawa. An incremental online semi-

supervised active learning algorithm based on self-organizing incremental neural network.

Neural Computing and Applications, 20(7), 2011.

[141] N.Z. Shor. Cut-o� method with space extension in convex programming problems. Cyber-

netics and Systems Analysis, 13(1):94–96, 1977.

[142] Abraham Silberschatz, Peter B Galvin, and Greg Gagne. Operating system concepts. J. Wiley

& Sons, 2009.

[143] R.L. Smith. E�cient monte carlo procedures for generating points uniformly distributed

over bounded regions. Operations Research, pages 1296–1308, 1984.

[144] Alex J. Smola and Peter Bartle�. Sparse greedy gaussian process regression. In Advances in

Neural Information Processing Systems, pages 619–625. MIT Press, 2001.

[145] P. Smyth, U. Fayyad, M. Burl, P. Perona, and P. Baldi. Inferring ground truth from subjective

labelling of venus images. In Proc. 9th NIPS, pages 1085–1092, 1995.

[146] Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs.

In Advances in Neural Information Processing Systems, pages 1257–1264. MIT press, 2006.

[147] J.H. Song and K. Nakayama. Target selection in visual search as revealed by movement

trajectories. Vision research, 48(7):853–861, 2008.

167



Bibliography

[148] DJ Spiegelhalter and PGI Stovin. An analysis of repeated biopsies following cardiac trans-

plantation. Statistics in Medicine, 2(1):33–40, 1983.

[149] M.J. Spivey, M. Grosjean, and G. Knoblich. Continuous a�raction toward phonological com-

petitors. Proceedings of the National Academy of Sciences of the United States of America,

102(29):10393–10398, 2005.

[150] K. Tan, K.S. Killourhy, and R.A. Maxion. Undermining an anomaly-based intrusion detection

system using common exploits. In Proc. 5th RAID, pages 54–73. Springer-Verlag, 2002.

[151] K. Tan, J. McHugh, and K. Killourhy. Hiding intrusions: From the abnormal to the normal

and beyond. In Information Hiding, pages 1–17. Springer, 2003.

[152] Gaurav Tandon and Philip Chan. Learning rules from system call arguments and sequences

for anomaly detection. In ICDM Workshop on Data Mining for Computer Security (DMSEC),

pages 20–29, 2003.

[153] H. Tang, N. Joshi, and A. Kapoor. Learning a blind measure of perceptual image quality. In

Proc. CVPR, pages 305–312. IEEE, 2011.

[154] Yee Whye Teh. A hierarchical bayesian language model based on pitman-yor processes.

In Proceedings of the 21st International Conference on Computational Linguistics and the 44th

annual meeting of the Association for Computational Linguistics, pages 985–992. Association

for Computational Linguistics, 2006.

[155] Michael E Tipping and ChristopherMBishop. Mixtures of probabilistic principal component

analyzers. Neural computation, 11(2):443–482, 1999.

[156] S. Tong and D. Koller. Support vector machine active learning with applications to text

classi�cation. JMLR, 2:45–66, 2002.

[157] V. Tresp. A bayesian commi�ee machine. Neural Computation, 12(11):2719–2741, 2000.

[158] M. Tubaishat and S. Madria. Sensor networks: an overview. Potentials, IEEE, 22(2):20–23,

2003.

[159] Gokhan Tur, Dilek Hakkani-Tür, and Robert E Schapire. Combining active and semi-

supervised learning for spoken language understanding. Speech Communication, 45(2), 2005.

[160] Michal Valko, Branislav Kveton, Huang Ling, Ting Daniel, et al. Online semi-supervised

learning on quantized graphs. In Proceedings of UAI, 2010.

[161] L. Vicente, G. Savard, and J. Júdice. Descent approaches for quadratic bilevel programming.

Journal of Optimization �eory and Applications, 81(2):379–399, 1994.

[162] D. Wagner and P. Soto. Mimicry a�acks on host-based intrusion detection systems. In Proc.

9th CCS, pages 255–264. ACM, 2002.

[163] JialeiWang, Peilin Zhao, and Steven CHHoi. Exact so� con�dence-weighted learning. arXiv

preprint arXiv:1206.4612, 2012.

168



Bibliography

[164] Xuerui Wang, Andrew McCallum, and XingWei. Topical n-grams: Phrase and topic discov-

ery, with an application to information retrieval. In Data Mining, 2007. ICDM 2007. Seventh

IEEE International Conference on, pages 697–702. IEEE, 2007.

[165] ZhengWang, Yangqiu Song, and Changshui Zha. E�cient active learning with boosting. In

SDM, 2009.

[166] Christina Warrender, Stephanie Forrest, and Barak Pearlmu�er. Detecting intrusions using

system calls: Alternative data models. In Security and Privacy, 1999. Proceedings of the 1999

IEEE Symposium on, pages 133–145. IEEE, 1999.

[167] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. Movellan. Whose vote should count more:

Optimal integration of labels from labelers of unknown expertise. In Proc. 23rd NIPS, vol-

ume 22, pages 2035–2043, 2009.

[168] Frans M. J. Willems, Yuri M. Shtarkov, and Tjalling J. Tjalkens. �e context-tree weighting

method: Basic properties. Information �eory, IEEE Transactions on, 41(3):653–664, 1995.

[169] Virginia Vassilevska Williams. Breaking the Coppersmith-Winograd barrier, 2011.

[170] Frank Wood, Cédric Archambeau, Jan Gasthaus, Lancelot James, and Yee Whye Teh. A

stochastic memoizer for sequence data. In Proceedings of the 26th Annual International Con-

ference on Machine Learning, pages 1129–1136. ACM, 2009.

[171] Frank Wood, Jan Gasthaus, Cédric Archambeau, Lancelot James, and Yee Whye Teh. �e

sequence memoizer. Communications of the ACM, 54(2):91–98, 2011.

[172] O. Wu, W. Hu, and J. Gao. Learning to rank under multiple annotators. In Proc. 22nd IJCAI,

2011.

[173] Han Xiao, T. Stibor, and C. Eckert. Evasion a�ack of multi-class linear classi�ers. In Proc.

of 16th PAKDD, pages 207–218, 2012.

[174] Han Xiao and �omas Stibor. A supervised topic transition model for detecting malicious

system call sequences. In Proceedings of the 2011 workshop on Knowledge discovery, modeling

and simulation, pages 23–30. ACM, 2011.

[175] Y. Yan, R. Rosales, G. Fung, and J. Dy. Active learning from crowds. In Proc. 28th ICML, 2011.

[176] Y. Yan, R. Rosales, G. Fung, M. Schmidt, G. Hermosillo, L. Bogoni, L. Moy, J. Dy, and

PAMalvern. Modeling annotator expertise: Learning when everybody knows a bit of some-

thing. In Proc. AISTATS, 2010.

[177] Zhi-Hua Zhou, Ke-Jia Chen, and Yuan Jiang. Exploiting unlabeled data in content-based

image retrieval. In Proceedings of ECML. Springer, 2004.

[178] Zhi-Hua Zhou and Ming Li. Semi-supervised learning by disagreement. Knowledge and

Information Systems, 24(3), 2010.

[179] Zhi-Hua Zhou, De-Chuan Zhan, and Qiang Yang. Semi-supervised learning with very few

labeled training examples. In Proceedings of AAAI, 2007.

169



Bibliography

[180] Xiaojin Zhu, Zoubin Ghahramani, John La�erty, et al. Semi-supervised learning using gaus-

sian �elds and harmonic functions. In Proceedings of ICML, 2003.

[181] Xiaojin Zhu, John La�erty, and Zoubin Ghahramani. Combining active learning and semi-

supervised learning using gaussian �elds and harmonic functions. In ICML workshop on the

continuum from labeled to unlabeled data in machine learning and data mining, 2003.

[182] Xingquan Zhu, Peng Zhang, Xiaodong Lin, and Yong Shi. Active learning from data streams.

In Proceedings of ICDM. IEEE, 2007.

[183] Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate

coding. Information �eory, IEEE Transactions on, 24(5):530–536, 1978.

170


	Abstract
	Acknowledgements
	Publications
	I Introduction
	1 Introduction
	1.1 Motivation
	1.1.1 Spam Filter
	1.1.2 Social Recommendation Service
	1.1.3 Real-Time Anomaly Detection with Novel Input

	1.2 Dissertation Organization
	1.3 Contributions


	II Background
	2 Preliminary Knowledge
	2.1 Machine Learning
	2.2 Supervised Learning
	2.2.1 Support Vector Machine
	2.2.2 Gaussian Process Regression

	2.3 Online Learning
	2.3.1 Passive-Aggressive Algorithm

	2.4 Semi-Supervised Learning
	2.5 Active Learning

	3 Adversarial Machine Learning
	3.1 Problem Definition
	3.2 A Case Study: Evading a Linear Classifier
	3.2.1 IMAC Algorithm
	3.2.2 Experiments



	III Venerability of Learning Algorithms
	4 Exploratory Attack of Multi-Class Linear Classifiers via Line Search
	4.1 Problem Formulation
	4.1.1 Multi-Class Linear Classifier
	4.1.2 Attack of Adversary
	4.1.3 Adversarial Cost
	4.1.4 Disguised Instances

	4.2 Theory of Exploratory Attack 
	4.3 Algorithm for Approximating eIMAC
	4.4 Experiments
	4.4.1 Spam Disguising
	4.4.2 Face Camouflage

	4.5 Conclusion

	5 Exploratory Attack on Convex-Inducing Classifiers via Random Walks
	5.1 Problem Formulation
	5.2 Related Work
	5.3 Algorithm
	5.4 Geometric Analysis
	5.4.1 Main Results
	5.4.2 Proof of Theorem 5.1
	5.4.3 Proof of Theorem 5.2

	5.5 Implementation Issues
	5.6 Experiments
	5.6.1 Synthetic Examples
	5.6.2 On Real-World Data

	5.7 Detecting Exploratory Attack
	5.8 Conclusion

	6 Causative Label-Flip Attack on Support Vector Machines
	6.1 Problem Formulation
	6.2 Label Flip Attack Framework
	6.3 Attack on SVM
	6.4 Experiments
	6.4.1 Synthetic Examples
	6.4.2 On Real-World Data

	6.5 Conclusion


	IV Reliable Learning Algorithms
	7 Learning from Multiple Observers with Unknown Expertise
	7.1 Related Work
	7.2 Problem Formulation
	7.2.1 Probabilistic Framework
	7.2.2 Regression Model
	7.2.3 Linear Observer Model
	7.2.4 Non-Linear Observer Model

	7.3 Experiments
	7.3.1 Synthetic Examples
	7.3.2 On Real-World Data

	7.4 Conclusion

	8 Learning Unbiased Rating from Crowds
	8.1 Related Work
	8.2 Framework Illustration
	8.3 Experiments
	8.4 Conclusion


	V Scalable Online Learning Algorithms
	9 Online Prediction of User Behavior with Lazy Gaussian Process Committee
	9.1 Related Work
	9.1.1 GP Regression
	9.1.2 GP Approximations

	9.2 LGPC for Online Regression
	9.2.1 Allocation of New Training Examples
	9.2.2 Incremental Update of LGPC
	9.2.3 Predictions of Query Points

	9.3 Experiments
	9.3.1 Comparison of Predictive Accuracy
	9.3.2 Comparison of Computation Speed
	9.3.3 Exploration of Model Parameters
	9.3.4 Mouse-Trajectory Prediction

	9.4 Conclusion

	10 Online Prediction of System Call Sequence with Side Information
	10.1 Related Work
	10.2 Problem Formulation
	10.3 Sequence Prediction as Linear Separation
	10.4 Online Learning Algorithm
	10.4.1 Learning Weight Vectors
	10.4.2 Memory-Efficient Update of Suffix Set
	10.4.3 Incorporation of Side Information
	10.4.4 Efficient Implementation

	10.5 Experiments
	10.5.1 Comparison of Predictive Performance
	10.5.2 Comparison of Efficiency
	10.5.3 Exploration of Model Parameters

	10.6 Conclusion

	11 Communication-Efficient Online Semi-Supervised Learning in Client-Server Settings
	11.1 Related Work
	11.2 Notations
	11.3 General Framework
	11.3.1 Design Philosophy
	11.3.2 Proposed Framework

	11.4 Online Semi-Supervised Learning on the Server
	11.4.1 Soft Confidence-Weighted Classifier
	11.4.2 Harmonic Solution
	11.4.3 Efficient Online Adaptation of HS
	11.4.4 Combining HS with SCW
	11.4.5 Predicting New Data

	11.5 Selective Sampling on Clients
	11.6 Experiments
	11.6.1 Experimental Setup
	11.6.2 Comparison of Server's Model
	11.6.3 Comparison of Selection Strategy
	11.6.4 Sensitivity Analysis

	11.7 Conclusion

	12 Conclusion
	12.1 Summary of Contributions
	12.1.1 Identifying Vulnerabilities of Algorithms and Adversarial Capabilities
	12.1.2 Presenting Reliable Algorithms Resilient to Adversaries
	12.1.3 Presenting Online Algorithms for Large-Scale Data Stream
	12.1.4 Establishing Distributed Learning Framework for Client-Server Settings

	12.2 Discussion and Open Problems
	12.2.1 Faithful Evaluation with Scarce Groundtruth
	12.2.2 Detecting Malicious Training As Pre-Processing
	12.2.3 Ensemble Methods for Secure Learning
	12.2.4 Privacy-Preserving Learning in Distributed Settings

	12.3 Final Words

	Bibliography


