Paravalvuläre Insuffizienz nach Katheterklappenimplantation

Benedikt Maximilian Mayr

Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Medizin genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. E. J. Rummeny

Prüfer der Dissertation:

1. Priv.-Doz. Dr. S.-M. Bleiziffer
2. Univ.-Prof. Dr. R. Lange

Die Dissertation wurde am 26.08.2014 bei der Technischen Universität München eingereicht und durch die Fakultät für Medizin am 14.10.2015 angenommen.
In Dankbarkeit meinen Eltern gewidmet
INHALTSVERZEICHNIS

1. ABKÜRZUNGSVERZEICHNIS .. 3

2. EINLEITUNG ... 6
 2.1 Epidemiologie und Ätiologie ... 6
 2.2 Pathophysiologie und Symptomatik ... 7
 2.3 Klassifikation und Prognose ... 8
 2.4 Therapiemöglichkeiten .. 9
 2.4.1 Konventioneller Aortenkappenersatz .. 9
 2.4.1.1 Indikation und Kontraindikation ... 9
 2.4.1.2 Technik .. 10
 2.4.1.3 Komplikationen ... 12
 2.4.2 Interventioneller Aortenkappenersatz .. 13
 2.4.2.1 Entwicklung ... 13
 2.4.2.2 Indikation und Kontraindikation ... 14
 2.4.2.3 Technik und Zugangswege der Medtronic-CoreValve-Prothese 16
 2.4.2.4 Komplikationen .. 18

3. PROBLEMSTELLUNG .. 19

4. MATERIAL UND METHODIK .. 20
 4.1 Patientenkollektiv und Implantationswege .. 20
 4.2 Patientenselektion und Risikostratifizierung durch Scoringsysteme 21
 4.3 Präoperative computertomographische Evaluation der Aortenklappe 23
 4.4 Operative Daten .. 24
 4.5 Echokardiographische Untersuchungen ... 24
 4.5.1 Aortenklappenstenose ... 25
 4.5.2 Aortenklappeninsuffizienz ... 26
 4.6 Angiographische Untersuchungen .. 27
 4.7 Definition der Protheseninsuffizienz ... 28
 4.8 Klinische Nachsorgeuntersuchungen .. 28
 4.9 Statistische Auswertung ... 30

5. ERGEBNISSE ... 32
 5.1 Auswertung der Follow-up-Daten .. 32
 5.1.1 Prävalenz der paravalvulären Aortenklappeninsuffizienz .. 32
 5.1.2 Verlauf der Aortenklappeninsuffizienz nach TAKI .. 39
 5.1.3 Einfluss der klinisch relevanten Aortenklappeninsuffizienz auf den postoperativen
 allgemeinen Gesundheitszustand ... 43
 5.1.4 Einfluss der klinisch relevanten Aortenklappeninsuffizienz auf den postoperativen
 NYHA-Status ... 45
 5.1.5 Einfluss der Aortenklappeninsuffizienz nach TAKI auf die Überlebenszeit 48
 5.1.6 Auswirkung der klinisch relevanten Aortenklappeninsuffizienz und ausgewählter
 kardiovaskulärer Comorbiditäten auf die Letalität .. 51
 5.2 Vorhersagekraft von präoperativen CT- und UKG-Messungen auf die Entstehung einer
 postoperativen klinisch relevanten Aortenklappeninsuffizienz 53

6. DISKUSSION ... 55
7. ZUSAMMENFASSUNG ... 73
8. LITERATURVERZEICHNIS .. 75
9. ABBILDUNGSVERZEICHNIS .. 82
10. TABELLENVERZEICHNIS ... 84
11. ANHANGSVERZEICHNIS ... 85
12. DANKSAGUNG ... 86
13. LEBENSLAUF ... 87
1. ABKÜRZUNGSVERZEICHNIS

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Arteria</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>AI</td>
<td>Aortenklappeninsuffizienz</td>
</tr>
<tr>
<td>AKÖF</td>
<td>effektive Aortenklappenöffnungsfläche</td>
</tr>
<tr>
<td>AOD</td>
<td>Aorta descendens</td>
</tr>
<tr>
<td>AS</td>
<td>Aortenklappenstenose</td>
</tr>
<tr>
<td>ASS</td>
<td>Acetylsalicylsäure</td>
</tr>
<tr>
<td>AV</td>
<td>aortic valve</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>cAVK</td>
<td>cerebrale arterielle Verschlusskrankheit</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>cm²</td>
<td>Quadratzentimeter</td>
</tr>
<tr>
<td>COPD</td>
<td>chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomographie</td>
</tr>
<tr>
<td>CW-Doppler</td>
<td>continous-wave-Doppler</td>
</tr>
<tr>
<td>d</td>
<td>Durchmesser</td>
</tr>
<tr>
<td>DAA</td>
<td>direct aortic access</td>
</tr>
<tr>
<td>DHM</td>
<td>Deutsches Herzzentrum München</td>
</tr>
<tr>
<td>EKG</td>
<td>Elektrokardiogramm</td>
</tr>
<tr>
<td>EROA</td>
<td>effective regurgitation orifice area</td>
</tr>
<tr>
<td>EuroSCORE</td>
<td>European System for Cardiac Operative Risk Evaluation</td>
</tr>
<tr>
<td>INR</td>
<td>international normalized ratio</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
</tbody>
</table>
KHK koronare Herzkrankheit
KOF Körperoberfläche
LDL low density lipoprotein
LVEF left ventricular ejection fraction
LVOT left ventricular outflow tract
m Meter
m² Quadratmeter
Max maximaler
mg Milligramm
Min minimaler
ml Milliliter
mmHg Millimeter-Quecksilbersäule
ms Millisekunde
NT-pro-BNP N-terminales pro brain natriuretic peptide
NYHA New York Heart Association
P pressure
PAP pulmonary arterial pressure
pAVK periphere arterielle Verschlusskrankheit
pg Pikogramm
PHT pressure half time
pHTN pulmonary hypertension
PW-Doppler pulsed-wave-Doppler
RAO right anterior oblique
s Sekunde
STS-Score Society of Thoracic Surgeons-Score
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TAKI</td>
<td>Transkatheter-Aortenklappenimplantation</td>
</tr>
<tr>
<td>TIA</td>
<td>transitorische ischämische Attacke</td>
</tr>
<tr>
<td>TEE</td>
<td>transösophageale Echokardiographie</td>
</tr>
<tr>
<td>TTE</td>
<td>transthorakale Echokardiographie</td>
</tr>
<tr>
<td>UKG</td>
<td>Ultraschallkardiographie</td>
</tr>
<tr>
<td>V</td>
<td>velocity</td>
</tr>
<tr>
<td>VARC</td>
<td>Valve Academic Research Consortium</td>
</tr>
<tr>
<td>vs.</td>
<td>versus</td>
</tr>
<tr>
<td>VTI</td>
<td>velocity time integral</td>
</tr>
<tr>
<td>Z.n.</td>
<td>Zustand nach</td>
</tr>
</tbody>
</table>
2. **Einleitung**

2. Aortenklappenstenose

2.1 Epidemiologie und Ätiologie

Eine der häufigsten erworbenen Klappenvitien stellt die Aortenklappenstenose dar. In einer immer älter werdenden Gesellschaft nimmt die Prävalenz der AS unabhängig vom Geschlecht exponentiell zu, mit einer Inzidenzrate von 4,9 % pro Jahr (Eveborn et al., 2013). Die häufigste Ätiologie ist die degenerativ kalzifizierende Form der AS. Aufgrund von mechanischer Belastung kommt es zu einer Schädigung des Klappenendothels, was eine monozytäre Infiltration und eine Einlagerung von LDL und Lipoprotein (a) zur Folge hat (Dweck et al., 2012). Nach Dweck et al. kommt es daraufhin durch den Einfluss von Matrix-Metalloproteasen und Gewebsinhibitoren der Metalloproteasen zu einer Fibrose, die zu einer Verdickung und erhöhten Rigidität der Klappe führt, wobei zum Schluß die Kalzifikation der Aortenklappe, begleitet von einer Neovaskularisation der Klappensegel, im Vordergrund steht. Abbildung 1 zeigt eine ausgeprägt stenosierte Aortenklappe.

![Intraoperatives Bild einer stenosierten Aortenklappe (Quelle: DHM)](image)

Eine weitere Ätiologie der AS stellt die rheumatische Form dar, wobei diese jedoch aufgrund der antibiotischen Behandlung in der westlichen Welt zunehmend an Bedeutung verloren hat (Baumgartner, Kaemmerer, Herold, 2012). Eine weitere Form der AS ist die kongenitale Form,
meistens bedingt durch eine bikuspid e Aortenklappe, wobei diese nach Iung et al. vor allem bei Patienten unter 50 Jahren eine bedeutende Rolle spielt (Iung et al., 2007). Eine Stenose der Aortenklappe kann ebenfalls durch einen entzündlichen Prozess des Endokards ausgelöst werden.

2.2 Pathophysiologie und Symptomatik

Aufgrund der eingeschränkten Öffnungsfähigkeit einer stenosierten Aortenklappe mit einer resultierenden Öffnungsfläche < 1,0 cm² kommt es zu einer erhöhten Druckbelastung des linken Ventrikels, was vor allem durch eine erhöhte Belastung der Ventrikelwände über einen längeren Zeitraum hinweg zu einer linksventrikulären konzentrischen Hypertrophie führt (Dweck et al., 2012). Die pathologisch veränderten Bedingungen kann der linke Ventrikel über eine gewisse Zeit tolerieren, wobei es im Rahmen dessen zu einer verstärkten myozytären Apoptose und ventrikulären Fibrosierung kommt, was schlussendlich über eine zuerst diastolische und dann systolische Dysfunktion zur Herzinsuffizienz führt (Dweck et al., 2012). Nach Bonow et al. zeigt der hypertrophierte Ventrikel eine erhöhte Sensitivität gegenüber ischämisch bedingten Verletzungen z.B. im Rahmen eines veränderten koronaren Blutflusses, die eine Einschränkung der diastolischen und systolischen Funktion des Ventrikels begünstigt (Bonow et al., 2008). Treten nach einer gewissen Latenzzeit Symptome auf, so kann man von einer ausgeprägten ventrikulären Alteration und Schädigung ausgehen, die die Prognose der Erkrankung stark einschränken. Somit zeigen die Patienten aufgrund des beeinträchtigten subendokardialen Blutflusses durch die ventrikulären Modifikationsprozesse häufig pektanginöse Beschwerden und durch die eingeschränkte linksventrikuläre Ejektionsfraktion eine cerebrale Minderperfusion, welche das Auftreten von synkopalen Ereignissen oder Schwindel begünstigt (Baumgartner, Kaemmerer, Herold, 2012). Im Rahmen einer Herzinsuffizienz berichten die Patienten aufgrund der resultierenden Stauung der Lunge von einer ausgeprägten Dyspnoe und Leistungsminderung, wobei es durch auftretende Rhythmusstörungen zum plötzlichen Herztod kommen kann (Bonow

Tab. 1: NYHA-Klassifikation bei Herzinsuffizienz (nach Hoppe et al., 2005)

<table>
<thead>
<tr>
<th>NYHA-Stadium</th>
<th>Funktionelle Klassifizierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Herzerkrankung ohne körperliche Limitation. Alltägliche körperliche Belastung verursacht keine inadäquate Erschöpfung, Rhythmusstörungen, Luftnot oder Angina pectoris</td>
</tr>
<tr>
<td>II</td>
<td>Herzerkrankung mit leichter Einschränkung der körperlichen Leistungsfähigkeit. Keine Beschwerden in Ruhe. Alltägliche körperliche Belastung verursacht Erschöpfung, Rhythmusstörungen, Luftnot oder Angina pectoris</td>
</tr>
<tr>
<td>III</td>
<td>Herzerkrankung mit höhergradiger Einschränkung der körperlichen Leistungsfähigkeit bei gewohnter Tätigkeit. Keine Beschwerden in Ruhe. Geringe körperliche Belastung verursacht Erschöpfung, Rhythmusstörungen, Luftnot oder Angina pectoris</td>
</tr>
<tr>
<td>IV</td>
<td>Herzerkrankung mit Beschwerden bei allen körperlichen Aktivitäten und in Ruhe. Bettlägrigkeit</td>
</tr>
</tbody>
</table>

NYHA = New York Heart Association

2.3 Klassifikation und Prognose

Wichtige Kriterien zur Diagnose, ob eine Stenosierung der Aortenklappe vorliegt oder nicht, stellen der auskultatorische Befund, die klinische Symptomatik des Patienten sowie die echokardiographische und angiographische Evaluation der erkrankten Klappe und des linken Ventrikels dar (Bonow et al., 2008; Vahanian et al., 2012). Zusätzlich sollte angiographisch eine koronare Herzerkrankung ausgeschlossen werden (Lange, 2006). Im Rahmen der Graduierung der AS mittels Ultraschall ist wichtig zu erwähnen, dass die Bestimmung der Klappenöffnungsfläche stark vom Untersucher abhängig ist und daher vor allem die transvalvulären Gradienten eine wichtige Rolle spielen (Vahanian et al., 2012). Gemäß der aktuellen Leitlinien nach Vahanian et al. liegt eine schwere Stenose der Aortenklappe vor, wenn dopplerechokardiographisch die Aortenklappenöffnungsfläche \(< 1,0 \text{ cm}^2\), das Verhältnis der Klappenöffnungsfläche zur Körperoberfläche \(< 0,6\), der mittlere transvalvuläre
Gradient > 40 mmHg und die maximale Flussgeschwindigkeit > 4,0 m/s betragen (Vahanian et al., 2012). Was die Prognose dieser Erkrankung angeht, so ist wichtig zu unterscheiden, ob der Patient sich als symptomatisch oder asymptomatic darstellt. Bei asymptomatischen Patienten ist hier vor allem auf den Einsatz der Belastungselektrokardiographie und Ergometrie hinzuweisen, da vor allem ältere Patienten klinische Symptome aufgrund ihres Alterungsprozesses negieren, wobei solche Untersuchungen bei symptomatischen Patienten kontraindiziert sind (Picano et al., 2009). Pellikka et al. beschrieben in einer Studie aus dem Jahre 2005 ein komplikationsfreies Überleben von nur ca. 33 % bei asymptomatischen Patienten mit einer hochgradigen AS bei einer maximalen Flussgeschwindigkeit $\geq 4,0$ m/s nach 5 Jahren (Pelliccata et al., 2005). Sollten im Rahmen der AS Symptome auftreten, so liegt die durchschnittliche Überlebenszeit nach Symptombeginn bei ungefähr 2 - 3 Jahren (Bonow et al., 2008).

2.4 Therapiemöglichkeiten

2.4.1 Konventioneller Aortenklappenersatz

2.4.1.1 Indikation und Kontraindikation

Ein zeitnaher konventionell chirurgischer Aortenklappenersatz ist gemäß den aktuellen europäischen und amerikanischen Leitlinien indiziert bei allen symptomatischen Patienten mit schwerer AS ohne signifikante Comorbiditäten (Bonow et al., 2008; Vahanian et al., 2012). Ein offener Klappenersatz ist ebenfalls indiziert bei Patienten mit schwerer AS, bei denen ein Aortocoronarer Bypass, ein Eingriff an der Aorta ascendens oder an anderen Herzklappen durchgeführt wird (Bonow et al., 2008; Vahanian et al., 2012). Ein chirurgisches Vorgehen ist indiziert bei asymptomatischen Patienten mit schwerer AS, die eine LVEF < 50 % zeigen und bei denen im Rahmen des Belastungstests Symptome aufgrund der stenosierten Aortenklappe
auftreten (Vahanian et al., 2012). Im Gegensatz zu den europäischen Leitlinien sollte nach den amerikanischen ein konventioneller offener Aortenklappenersatz bei asymptomatischen Patienten mit schwerer Stenose und auffälligem Belastungstest nur in Betracht gezogen werden (Bonow et al., 2008). War die LVEF nur aufgrund der erhöhten Druckbelastung durch die verringerte Klappenöffnung reduziert, so zeigt sich der chirurgische Eingriff von großem Nutzen. War jedoch die Auswurfleistung des linken Ventrikels im Rahmen von myokardialen Ischämien oder Kardiomyopathien eingeschränkt, so kann die initiale Symptomatik nach konventionellem Klappenersatz aufgrund der nicht einsetzenden Erholung des Ventrikels persistieren und die Prognose zeigt sich nur minimal verbessert (Bonow et al., 2008). Eine weitere wichtige Entität stellt die sogenannte low-flow, low-gradient AS bei normaler LVEF dar, wobei ein operatives Vorgehen nach Vahanian et al. bei auftretenden Symptomen oder ausgeprägter valvulärer Kalzifizierung empfohlen wird (Vahanian et al., 2012).

Die wichtigsten Kontraindikationen für einen chirurgischen Ersatz der Aortenklappe stellen eine stark eingeschränkte Lebenserwartung des Patienten und ein zu hohes Operationsrisiko aufgrund ausgeprägter Begleiterkrankungen dar (Vahanian et al., 2012).

2.4.1.2 Technik

![Abb. 2: Intraoperative Bilder der a) Exzidierung der verkalkten Klappensegel und b) der eingebrachten Aortenprothese (Quelle: DHM)](image)

2.4.1.3 Komplikationen

2.4.2 Interventioneller Aortenklappenersatz

2.4.2.1 Entwicklung

In den letzten 10 Jahren wurde dieses minimalinvasive Verfahren zum Aortenklappenersatz mehrere zehntausend Mal durchgeführt und dementsprechend gibt es heutzutage sehr viele unterschiedliche perkutan zu implantierende Aortenklappenprothesen, wobei in dieser Arbeit das Augenmerk auf der Medtronic-CoreValve-Prothese liegt.

2.4.2.2 Indikation und Kontraindikation

Gemäß den aktuellen europäischen kardiologischen und herzchirurgischen Leitlinien ist nach Vahanian et al. ein perkutaner kathetergeführter Aortenklappenersatz indiziert bei Patienten mit schwerer symptomatischer Aortenklappenstenose, die aufgrund ihres hohen Operationsrisikos nicht für einen konventionellen chirurgischen Ersatz in Frage kommen und die durch dieses interventionelle Verfahren eine wahrscheinliche Verbesserung ihrer Lebensqualität erfahren werden, wobei diese Patienten nach Berücksichtigung ihrer Begleiterkrankungen eine Lebenserwartung von über einem Jahr haben sollten (Vahanian et al., 2012). Die Berechnung des individuellen operativen Risikos des Patienten geschieht mittels der online verfügbaren Scoringsysteme, wie dem logistischen EuroSCORE und dem STS-Score, wobei Faktoren wie die Gebrechlichkeit, als auch die kognitive Fähigkeit des Patienten und wichtige anatomische
Variablen wie z.B. eine Porzellanaorta, vorausgegangene Bypassoperationen, thorakale Fehlbildungen oder Bestrahlungen in dieser Region in die Risikostratifizierung nicht miteinbezogen werden (Willson et al., 2011; Kappetein et al., 2013). Somit wird die TAKI allgemein bei einem logistischen EuroSCORE $\geq 20\%$ und bei einem STS-Score $> 10\%$ als indiziert angesehen, da ab diesen Werten ein hohes Operationsrisiko vorliegt (Willson et al., 2011; Vahanian et al., 2012; Kappetein et al., 2013). Die Entscheidung, ob eine TAKI durchgeführt wird, sollte jedoch nicht nur anhand der Scores ermittelt werden, sondern in Kombination mit dem klinischen Eindruck des Patienten unter Berücksichtigung der Comorbiditäten durch ein multidisziplinäres „Herz-Team“ aus Herzchirurgen, Kardiologen und Radiologen erfolgen. Was die Kontraindikationen für die TAKI angeht, so sind diese in Tabelle 2 aufgeführt.

Tab. 2: Kontraindikationen für die TAKI gemäß den aktuellen europäischen Leitlinien (verändert nach Vahanian et al., 2012)

<table>
<thead>
<tr>
<th>Absolute Kontraindikationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehlen eines interdisziplinären "Herz- Teams" und keine herzchirurgische Präsenz</td>
</tr>
<tr>
<td>TAKI als Alternative zum chirurgischen Klappenersatz durch das "Herz-Team" als nicht angebracht bewertet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klinisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussichtliche Lebenserwartung < 1 Jahr</td>
</tr>
<tr>
<td>Unwahrscheinliche Verbesserung der Lebensqualität aufgrund der Begleiterkrankungen</td>
</tr>
<tr>
<td>Schwere Erkrankung anderer Klappen, die maßgeblich zur Symptomatik des Patienten beitragen, aber jedoch nur chirurgisch behandelbar sind</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anatomisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ungereigte Annulusgröße</td>
</tr>
<tr>
<td>Linksventrikulärer Thrombus</td>
</tr>
<tr>
<td>Floride Endokarditis</td>
</tr>
<tr>
<td>Erhöhtes Risiko für die Obstruktion eines Koronarostiums (asymmetrische Klappenkalzifikation, kurze Entfernung zwischen Annulus und Koronarostium, kleine Sinus aortae)</td>
</tr>
<tr>
<td>Plaques mit mobilen Thromben in der Aorta ascendens oder im Aortenbogen</td>
</tr>
<tr>
<td>Für einen transfemoralen/transaxillären Zugang: Inadäquater Gefäßzugang (Gefäßgröße, Kalzifikation, Gewundenheit)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relative Kontraindikationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bikuspidale oder nicht kalzifizierte Klappe</td>
</tr>
<tr>
<td>Unbehandelte revaskularisierungsbedürftige Koronargefäßerkrankung</td>
</tr>
<tr>
<td>Hämodynamische Instabilität</td>
</tr>
<tr>
<td>LVEF $< 20%$</td>
</tr>
<tr>
<td>Für einen transapikalen Zugang: Schwere pulmonale Erkrankungen, nicht zugänglicher linksventrikulärer Apex</td>
</tr>
</tbody>
</table>

LVEF = left ventricular ejection fraction
TAKI = Transkatheter-Aortenklappenimplantation
2.4.2.3 Technik und Zugangswege der Medtronic-CoreValve-Prothese

Die Medtronic-CoreValve-Prothese (Medtronic, Irvine, CA, USA) besteht aus 3 Schweineperikardtaschen, die sich in einem selbstentfaltenden Nitinolstent befinden, siehe Abbildung 3.

Abb. 3: Selbstexpandierende Medtronic-CoreValve-Prothese (Abdruck mit freundlicher Genehmigung der Firma Medtronic)

Die perkutane kathetergeführte Aortenklappenimplantation sollte entweder in Allgemeinanästhesie mit Intubationsnarkose oder in Analgesierung in einem Hybrid-Operationssaal inklusive Angiographieeinheit durchgeführt werden. Prinzipiell gibt es 2 Implantationstechniken: die transarterielle, retrograde Implantation und die transapikale, anterograde Implantation.

In Abbildung 4 werden die unterschiedlichen retrograden Implantationszugänge aufgezeigt.
2.4.2.4 Komplikationen

Eine der wichtigsten Komplikationen nach perkutanem Aortenklappenersatz stellen paravalvuläre Insuffizienzen dar, die bei einem Großteil der Patienten nach solch einer Intervention auftreten und sich hauptsächlich als geringgradig darstellen (Grube et al., 2007; Zahn et al., 2011; Ussia et al., 2012). Sel tener treten mittel- oder höhergradige paravalvuläre Insuffizienzen nach TAKI auf (Abdel-Wahab et al., 2011; Buellesfeld et al., 2011). Paravalvuläre Leckagen können auftreten aufgrund von inadäquater Stentexpansion durch massive Kalzifikation des Annulus oder der Taschen der nativen Klappe, zu hoher oder zu tiefer...
Prothesenimplantation und eines Mismatches zwischen Prothesen- und Annulusgröße (Sinning et al., 2012). Die Graduierung solcher Insuffizienzen sollte echokardiographisch gemäß den aktuellen Leitlinien des Valve Academic Research Consortium erfolgen (Kappetein et al., 2013).

3. PROBLEMSTELLUNG

Da paravalvuläre Insuffizienzen nach kathetergeführtem Aortenklappenersatz eine sehr häufige Komplikation darstellen, war das Ziel dieser Arbeit die Prävalenz dieser Insuffizienzen nach Implantation der Medtronic-CoreValve-Prothese zu untersuchen und deren Verlauf über das erste postoperative Jahr darzustellen. Ein zentraler Punkt unserer Studie war die Klärung der Fragestellung, ob eine mehr als leichtgradige postprozedurale paravalvuläre Insuffizienz, in der vorliegenden Arbeit als klinisch relevant bezeichnet, einen signifikanten Einfluss auf den subjektiv eingeschätzten allgemeinen Gesundheitszustand, auf den NYHA-Status und auf das Überleben des Patienten ein Jahr nach TAKI hat. Zusätzlich sollte untersucht werden, ob das Vorliegen von klinisch relevanten paravalvulären Leckagen nach TAKI im Vergleich mit anderen Comorbiditäten sich relevant auf die Letalität des Patienten auswirkt. Ein weiterer Bestandteil der vorliegenden Arbeit war die Analyse der Vorhersagekraft von präoperativen CT- und UKG-Daten für das postprozedurale Auftreten klinisch relevanter paravalvulärer Insuffizienzen und die Aufdeckung von Faktoren, die diese Insuffizienzen nach TAKI begünstigen.
4. MATERIAL UND METHODIK

4.1 Patientenkollektiv und Implantationswege

Ein solcher Eingriff wurde bei 169 weiblichen (53,8 %) und 145 männlichen (46,2 %) Patienten durchgeführt. Das minimale Patientenalter lag bei 40 Jahren, das maximale bei 94 Jahren. 273 der Patienten (86,9 %) erhielten einen transfemoralen Zugang via A. femoralis, 31 (9,9 %) einen transaxillären Zugang über die A. subclavia, 5 (1,6 %) einen Zugang über eine direkte Kanülierung der Aorta ascendens und 5 (1,6 %) einen transapikaln Zugang nach linksseitiger anterolateraler Minithorakotomie.

Von der transapikalen Implantationsmöglichkeit hat man jedoch wieder Abstand genommen, was auch die geringe Anzahl der Patienten, die sich solch einer Interventionsart unterzogen hatten, erklärt. Tabelle 3 zeigt die präoperativen Daten der Patienten gemäß den jeweiligen Implantationswegen der CoreValve-Prothese.
Tab. 3: Präoperative Patientendaten bei unterschiedlichen Implantationswegen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Transfemoral (n=273)</th>
<th>Transaxillär (n=31)</th>
<th>Transapikal (n=5)</th>
<th>DAA (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter (Jahre)</td>
<td>80±7</td>
<td>80±9</td>
<td>81±4</td>
<td>79±6</td>
</tr>
<tr>
<td>Geschlecht weiblich (n)</td>
<td>150/273 (54,9%)</td>
<td>12/31 (38,7%)</td>
<td>4/5 (80%)</td>
<td>3/5 (60%)</td>
</tr>
<tr>
<td>NYHA-Stadium</td>
<td>3,1±0,4</td>
<td>3,2±0,4</td>
<td>3,3±0,4</td>
<td>3,2±0,4</td>
</tr>
<tr>
<td>Kreatinin (mg/dl)</td>
<td>1,21±0,55</td>
<td>1,19±0,42</td>
<td>1,38±0,86</td>
<td>1,12±0,37</td>
</tr>
<tr>
<td>KHK (n)</td>
<td>142/273 (52%)</td>
<td>20/31 (64,5%)</td>
<td>2/5 (40%)</td>
<td>2/5 (40%)</td>
</tr>
<tr>
<td>pAVK (n)</td>
<td>34/273 (12,5%)</td>
<td>12/31 (38,7%)</td>
<td>3/5 (60%)</td>
<td>2/5 (40%)</td>
</tr>
<tr>
<td>cAVK (n)</td>
<td>29/273 (10,6%)</td>
<td>9/31 (29%)</td>
<td>1/5 (20%)</td>
<td>1/5 (20%)</td>
</tr>
<tr>
<td>Z.n. Apoplex/TIA (n)</td>
<td>31/273 (11,4%)</td>
<td>6/31 (19,4%)</td>
<td>1/5 (20%)</td>
<td>0</td>
</tr>
<tr>
<td>pHTN (n)</td>
<td>68/273 (24,9%)</td>
<td>8/31 (25,8%)</td>
<td>3/5 (60%)</td>
<td>1/5 (20%)</td>
</tr>
<tr>
<td>COPD (n)</td>
<td>58/273 (21,2%)</td>
<td>7/31 (22,6%)</td>
<td>1/5 (20%)</td>
<td>2/5 (40%)</td>
</tr>
<tr>
<td>Z.n. Herzoperation (n)</td>
<td>43/273 (15,8%)</td>
<td>6/31 (19,4%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Weitere Klappenvitien (n)</td>
<td>41/273 (15%)</td>
<td>4/31 (12,9%)</td>
<td>1/5 (20%)</td>
<td>1/5 (20%)</td>
</tr>
<tr>
<td>LVEF >50% (n)</td>
<td>167/273 (61,2%)</td>
<td>14/31 (45,2%)</td>
<td>3/5 (60%)</td>
<td>2/5 (40%)</td>
</tr>
<tr>
<td>35-50% (n)</td>
<td>55/273 (20,1%)</td>
<td>12/31 (38,7%)</td>
<td>1/5 (20%)</td>
<td>2/5 (40%)</td>
</tr>
<tr>
<td><35% (n)</td>
<td>51/273 (18,7%)</td>
<td>5/31 (16,1%)</td>
<td>1/5 (20%)</td>
<td>1/5 (20%)</td>
</tr>
</tbody>
</table>

cAVK = cerebrale arterielle Verschlusskrankheit
NYHA = New York Heart Association
COPD = chronic pulmonary disease
pAVK = periphere arterielle Verschlusskrankheit
DAA = direct aortic access
PHTN = pulmonary hypertension (PAP ≥ 60 mmHg)
KHK = koronare Herzkrankheit
TIA = transitorische ischämische Attacke
LVEF = left ventricular ejection fraction
Z.n. = Zustand nach

4.2 Patientenselektion und Risikostratifizierung durch Scoringsysteme

Die Patienten, die sich einer TAKI unterzogen, zeigten präoperativ eine hochgradige symptomatische degenerative Aortenklappenstenose, dargestellt in Tabelle 4.

Tab. 4: Präoperative echokardiographische Daten

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKÖF (cm²)</td>
<td>0,68±0,21</td>
</tr>
<tr>
<td>Maximaler Gradient (mmHg)</td>
<td>78,0±25,2</td>
</tr>
<tr>
<td>Mittlerer Gradient (mmHg)</td>
<td>47,4±16,8</td>
</tr>
</tbody>
</table>

AKÖF = effektive Aortenklappenöffnungsfläche

Der STS- und logistische EuroSCORE wurden anhand der präoperativen Daten individuell für jeden Patienten gemäß den offiziellen Internetrechnern ermittelt. Die Verteilung des STS-Score ist in Abbildung 7 und die des logistischen EuroSCORE in Abbildung 8 dargestellt.

Bei dem untersuchten Patientenkollektiv lag der durchschnittliche STS-Score bei 5,96 ± 4,18 %, mit einem Minimum von 0,7 % und einem Maximum von 27,2 %. Der logistische EuroSCORE betrug 19,36 ± 12,66 %. Der minimale und maximale logistische EuroSCORE lag vor Operationszeitpunkt bei 1,5 % und 70,95 %. Der klinische Eindruck des Patienten wurde in der Entscheidungsfindung, ob eine TAKI durchführbar war oder nicht, miteinbezogen, da einige Comorbiditäten (z.B. Leberinsuffizienz) und Gebrechlichkeit nicht in die Scores eingehen.

Abb. 7: Verteilung des STS-Score
Abb. 8: Verteilung des logistischen EuroSCORE
4.3 Präoperative computertomographische Evaluation der Aortenklappe

![Abb. 9: Annulusdurchmesser](image1)
![Abb. 10: Elliptizität des Annulus](image2)
![Abb. 11: Elliptizität des Annulus](image3)

\[
\text{Max/Min} = 22,5/18,9 = 1,2 \\
\rightarrow \text{Eher runder Annulus}
\]
\[
\text{Max/Min} = 29,3/19,5 = 1,5 \\
\rightarrow \text{Eher elliptischer Annulus}
\]

![Abb. 12: Oversizing bei einer 29 mm CoreValve-Prothese](image4)
![Abb. 13: Beurteilung der Kalzifikation der Aortenklappe](image5)

\[
\text{Prothesenumfang/Annulusumfang} = 91,1/81,3 = 12 \%
\]
Von den 139 untersuchten Patienten wurde bei 82 (59 %) eine 29 mm große CoreValve-Prothese mit einem Umfang von 9,11 cm implantiert und bei 57 Patienten (41 %) eine 26 mm große Prothese mit einem Umfang von 8,16 cm.

4.4 Operative Daten

Der Eingriff erfolgte bei 236 Patienten (75,2 %) in Allgemeinanästhesie mit Intubationsnarkose. Bei 78 Patienten (24,8 %) wurde die Implantation in Analgosedierung durchgeführt. Bei allen 314 Patienten war die Medtronic-CoreValve-Prothese die Prothese der Wahl. Die zu implantierte Klappe lag im Studienzeitraum in einer Größe von 26 mm und 29 mm vor. Bei 123 Patienten (39,2 %) sollte die kleinere Klappe mit 26 mm in Aortenposition eingebracht werden. Die 29 mm große CoreValve-Prothese sollte bei 191 Patienten (60,8 %) implantiert werden. Bei 308 der 314 Patienten (98 %) war die Prothesenimplantation erfolgreich, wohingegen sie bei 6 (2 %) frustran verlief. Bei 68 der 314 Patienten (21,7 %) wurde die implantierte Aortenklappenprothese nachdilatiert. Die durchschnittliche Operationsdauer, von der Punktion bzw. Hautschnitt bis zur Hautnaht, lag bei 87,05 ± 41,51 Minuten, mit einer minimalen und maximalen Operationszeit von 30 Minuten und 345 Minuten. Alle Patienten wurden danach auf die herzchirurgische Intensivstation verlegt und in den nächsten Stunden extubiert. Postoperativ wurde den Patienten eine lebenslange Antikoagulation mittels ASS 100 mg pro Tag empfohlen und die ersten 6 postoperativen Monate sollte 75 mg Clopidogrel pro Tag eingenommen werden (Bleiziffer et al., 2009).

4.5 Echokardiographische Untersuchungen

Vor Durchführung einer TAKI wurde bei allen Patienten eine transthorakale Echokardiographie
und bei 91 % der Patienten eine transösophageale Echokardiographie durchgeführt. Diese echokardiographischen Untersuchungen dienten präoperativ zur Beurteilung des Ausmaßes der Aortenklappenstenose.

Zusätzlich wurden im Rahmen dieser Diagnostik die anatomischen Gegebenheiten des jeweiligen Patienten vor interventioneller Implantation mitberücksichtigt. 6 Monate und 12 Monate nach Operationszeitpunkt wurden transthorakale Echokardiographien, zur Kontrolle der Lage und der Funktion des CoreValve-Klappensystems, durchgeführt. Die echokardiographischen Untersuchungen wurden nach den aktuellen Leitlinien der amerikanischen und europäischen Gesellschaft für Kardiologie und der europäischen Gesellschaft für Herzchirurgie durchgeführt (Bonow et al., 2008; Vahanian et al., 2012).

4.5.1 Aortenklappenstenose

Tabelle 5 zeigt die echokardiographische Klassifikation der Aortenklappenstenose.

Tab. 5: Schweregradeinteilung der Aortenklappenstenose (nach Bonow et al., 2008)

<table>
<thead>
<tr>
<th></th>
<th>Leichtgrad</th>
<th>Mittelgrad</th>
<th>Hochgrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKÖF (cm²)</td>
<td>> 1,5</td>
<td>1,0-1,5</td>
<td>< 1,0</td>
</tr>
<tr>
<td>Klappenöffnungsflächenindex (cm²/m²)</td>
<td></td>
<td></td>
<td>< 0,6</td>
</tr>
<tr>
<td>Mittlerer Druckgradient (mmHg)</td>
<td>< 25</td>
<td>25-40</td>
<td>> 40</td>
</tr>
<tr>
<td>Maximale Jetgeschwindigkeit (m/s)</td>
<td>< 3,0</td>
<td>3,0-4,0</td>
<td>> 4,0</td>
</tr>
</tbody>
</table>

AKÖF = effektive Aortenklappenöffnungsfläche

Dopplerechokardiographisch wurde die maximale Flussgeschwindigkeit über der Aortenklappe, der mittlere und maximale Druckgradient mittels vereinfachter Bernoulli-Gleichung und das Geschwindigkeitszeitintegral des Flusses im linksventrikulären Ausflusstrakt und über der Aortenklappe bestimmt.
Bernoulli Gleichung: $\Delta P (\text{mmHg}) = 4 \times V_{\text{max}}^2 (\text{m/s})$ (nach Thelen, Erbel, Kreitner, Barkhausen, 2007)

ΔP: Momentaner Druckgradient, V_{max}: Maximale momentane Flussgeschwindigkeit über die Aortenklappe

Mittels continous-wave-Doppler und pulsed-wave-Doppler konnte die effektive Aortenklappenöffnungsfläche gemäß der Kontinuitätsgleichung berechnet werden.

$\text{AKÖF (cm}^2) = \text{LVOT-Fläche (cm}^2) \times \text{VTI [LVOT]} (\text{cm}) / \text{VTI [AV]} (\text{cm})$

(verändert nach Thelen, Erbel, Kreitner, Barkhausen, 2007)

Die LVOT-Fläche wurde wie folgt berechnet:

$\text{LVOT-Fläche} = \pi \times \left(\frac{d [\text{LVOT}]}{2}\right)^2 \quad d [\text{LVOT}] = \text{Durchmesser des LVOT}$

(nach Thelen, Erbel, Kreitner, Barkhausen, 2007)

Der Klappenöffnungsflächenindex wurde definiert als das Verhältnis der effektiven Aortenklappenöffnungsfläche zur Körperoberfläche. Die Körperoberfläche wurde prä- und postoperativ mit der Formel nach DuBois bestimmt:

$\text{KOF (cm} \times \text{kg}) = 0,007184 \times \text{Größe (cm)}^{0,725} \times \text{Gewicht (kg)}^{0,425}$ (nach DuBois et al., 1916)

4.5.2 Aortenklappeninsuffizienz

Tab. 6: Schweregradinteilung valvulärer und paravalvulärer Aortenklappeninsuffizienzen (verändert nach Thelen, Erbel, Kreitner, Barkhausen, 2007; Vahanian et al., 2012; Kappetein et al., 2013)

<table>
<thead>
<tr>
<th>Vena contracta Breite (cm)</th>
<th>Leichtgradig</th>
<th>Mittelgradig</th>
<th>Hochgradig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><0,3</td>
<td>0,3-0,6</td>
<td>>0,6</td>
</tr>
<tr>
<td>PHT (ms)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>500</td>
<td>500-200</td>
<td><200</td>
</tr>
<tr>
<td>Diastolische Flussumkehr AOD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nicht vorhanden oder kurz frühdiastolisch</td>
<td>Intermediär</td>
<td>Stark holodiastolisch</td>
</tr>
<tr>
<td>Circumferentieller Jetanteil bei paravalvulärer Insuffizienz (%)</td>
<td><10</td>
<td>10-29</td>
<td>≥30</td>
</tr>
<tr>
<td>EROA (cm²)</td>
<td>0,10</td>
<td>0,10-0,29</td>
<td>≥0,30</td>
</tr>
<tr>
<td>Regurgitationsvolumen (ml)</td>
<td><30</td>
<td>30-59</td>
<td>≥60</td>
</tr>
<tr>
<td>Regurgitationsfraktion (%)</td>
<td><30</td>
<td>30-49</td>
<td>≥50</td>
</tr>
</tbody>
</table>

AOD = Aorta descendens
PHT = pressure half time
EROA = effective regurgitation orifice area

4.6 Angiographische Untersuchungen

<table>
<thead>
<tr>
<th>Graduierung</th>
<th>Kontrastmittelreflux</th>
<th>Regurgitationsfraktion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grad I</td>
<td>Minimale Kontrastmittelregurgitation in den linksventrikulären Ausflusstrakt, keine komplette Anfärbung des linksventrikulären Kavums</td>
<td>< 20</td>
</tr>
<tr>
<td>Grad II</td>
<td>Komplette Kontrastierung des linken Ventriks nach mehreren Herzaktionen mit deutlich geringerer Kontrastmitteldichte im Ventrikel im Vergleich zur Aorta ascendens</td>
<td>20 - 40</td>
</tr>
<tr>
<td>Grad III</td>
<td>Komplette und dichte Kontrastierung des linken Ventriks, gleiche Kontrastmitteldichte wie in der Aorta ascendens</td>
<td>40 - 60</td>
</tr>
<tr>
<td>Grad IV</td>
<td>Sofortige und komplette Kontrastmittelanfärbung des gesamten linken Ventriks innerhalb von 1-2 Herzaktionen, Zunahme der Kontrastierung mit jeder Herzaktion, Kontrastmitteldichte höher als in der Aorta ascendens</td>
<td>> 60</td>
</tr>
</tbody>
</table>

Tab. 7: Angiographische Quantifizierung der AI (nach Lapp, Krakau, 2009)

Abb. 14: Implantationstiefe der CoreValve-Prothese a = rechts; b = links
4.7 Definition der Protheseninsuffizienz

Die Lokalisation der Protheseninsuffizienz konnte echokardiographisch festgestellt werden. Postoperativ konnte eine valvuläre und paravalvuläre Insuffizienz vorliegen. Die Schwere der Insuffizienz der CoreValve-Prothese wurde echokardiographisch in die Stadien keine bis minimal, leichtgradig, leicht- bis mittelgradig, mittelgradig, mittel- bis hochgradig und hochgradig eingeteilt. Bei manchen Patienten konnte der Grad und die Lokalisation der Protheseninsuffizienz nicht bestimmt werden.

Angiographisch wurde die Ausprägung der Protheseninsuffizienz in die Grade 0 = 0; 0-I = 0,5; I = 1; I-II = 1,5; II = 2; II-III = 2,5; III = 3; III-IV = 3,5 und IV = 4 eingeteilt. Eine auftretende Insuffizienz des implantierten CoreValve-Klappensystems wurde in dieser Arbeit als klinisch relevant definiert, sobald diese entweder in der Echokardiographie größer als leicht- bis mittelgradig war oder sich in der Angiographie stärker als Grad I darstellte.

4.8 Klinische Nachsorgeuntersuchungen

Präoperativ erhielten die Patienten den EQ-5D-Gesundheitsfragebogen. Auf diesem Fragebogen sollten die Patienten ihren aktuellen allgemeinen Gesundheitszustand auf einer linearen Skala zwischen 0 % und 100 % angeben (Anhang). Dieser Fragebogen wurde ebenfalls postoperativ verwendet.

Follow-up-Daten wurden den im DHM durchgeführten Echokardiographieuntersuchungen und Befunden entnommen. Aktuelle Informationen über möglich erfolgte Nachuntersuchungen bei anderen Kliniken, niedergelassenen Kardiologen oder behandelnden Hausärzten wurden angefordert und in die Datenbank integriert. Waren die Patienten zu multimorbide, um einen
Nachsorgetermin im DHM, bei ihrem Kardiologen oder Hausarzt wahrzunehmen, so wurde versucht, Informationen über deren aktuellen Gesundheitszustand telefonisch oder postalisch über den EQ-5D-Fragebogen zu ermitteln.

Es wurden Untersuchungen 6 Monate und 12 Monate nach Operationszeitpunkt durchgeführt. Die durchschnittliche Follow-up-Zeit betrug 1,05 ± 0,17 Jahre.

Von anfangs 314 Patienten konnten Daten im Rahmen der 6-monatigen Nachuntersuchung bei 193 Patienten (61,5 %) und im Rahmen der 12-monatigen Nachuntersuchung bei 189 Patienten (60,2 %) ermittelt werden. 5 aus dem Ausland stammende Patienten verließen Deutschland nach der Entlassung aus dem DHM, sodass eine weitere Nachsorge dieser Patienten nicht mehr möglich war. Postoperativ musste bei 13 Patienten eine erneute Klappenoperation erfolgen, wobei bei 8 eine erneute TAKI durchgeführt wurde und bei 5 ein konventioneller Aortenklappenersatz. Gründe dafür waren bei 5 Patienten eine hochgradige zentrale Insuffizienz des CoreValve-Klappensystems und bei weiteren 6 eine hochgradige paravalvuläre Insuffizienz der implantierten Prothese. Ein Patient musste aufgrund einer Verlegung eines Koronarostiums reoperiert werden und ein weiterer Patient unterzog sich einer erneuten Klappenoperation aufgrund einer Prothesendislokation. Bei 56 Patienten, bei denen eine CoreValve-Prothese implantiert worden war, konnte aufgrund ihres sehr hohen Alters, ihrer Multimorbidität und zahlreicher Krankenhausaufenthalte kein 6-Monate-Follow-up mehr realisiert werden. 54 Patienten waren zum 6-Monate-Follow-up verstorben. Das durchschnittliche Patientenalter betrug zur ersten Nachsorgeuntersuchung 81,34 ± 7,02 Jahre mit einer Spannweite von 45 Jahren bis 95 Jahren.

Im Follow-up-Verlauf von einem Jahr konnte bei 45 behandelten Patienten aufgrund der oben genannten Faktoren keine Nachuntersuchung mehr durchgeführt werden. 69 Patienten waren zum Zeitpunkt des 12-Monate-Follow-up verstorben. Zu diesem Follow-up betrug das durchschnittliche Patientenalter 81,68 ± 7,03 Jahre. Das minimale und maximale Patientenalter lag bei
46 Jahren und 96 Jahren.

4.9 Statistische Auswertung

Im Rahmen der univariaten Analyse von kategorialen und kontinuierlichen Daten wurden diejenigen mit p-Werten von p < 0,1 in die binäre logistische Regression miteingeschlossen. Diese logistische Regressionsanalyse wurde bei der Frage der Auswirkung von verschiedenen kardiovaskulären Risikofaktoren und einer klinisch relevanten postprozeduralen AI auf die Letalität angewandt. Zusätzlich wurde dieses Verfahren eingesetzt, um zu klären, ob man mittels bestimmter präoperativer CT- und UKG-Messungen eine postinterventionelle klinisch relevante Insuffizienz des CoreValve-Klappensystems vorhersagen könnte.

der Log-Rank-Test durchgeführt. Ab einem Wahrscheinlichkeitswert von $p < 0,05$ wurde eine statistische Signifikanz angenommen.

5. Ergebnisse

5.1 Auswertung der Follow-up-Daten

5.1.1 Prävalenz der paravalvulären Aortenklappeninsuffizienz

Bei 308 Patienten wurde intraoperativ eine Angiographie bzw. Aortographie durchgeführt. Wie aus Abbildung 15 ersichtlich ist, lag bei 80 Patienten (26 %) intraoperativ keine Aortenklappeninsuffizienz bzw. Aortenprotheseninsuffizienz vor. Bei 33 Patienten (10,7 %) konnte eine AI Grad 0,5 festgestellt werden. Von 308 Patienten wurde bei 120 Patienten (39 %) eine Insuffizienz Grad 1 diagnostiziert. 39 Patienten (12,7 %) litten an einer AI Grad 1,5 und 30 (9,7 %) an einer AI Grad 2. Bei 4 Patienten (1,3 %) lag eine insuffiziente Aortenklappenprothese von Grad 2,5 vor. Bei 1 Patienten (0,3 %) konnte eine AI Grad 3,5 festgestellt werden. Eine Insuffizienz Grad 4 lag bei 1 Patienten (0,3 %) vor.

Abb. 15: Intraoperative angiographische Klassifikation der AI
Bei 300 Patienten wurde intraoperativ eine transösophageale Echokardiographie durchgeführt. Betrachtet man Abbildung 16, so kann man sehen, dass bei 92 von 300 Patienten (30,7 %) eine nur minimale AI oder gar keine vorhanden war. Mit 145 Patienten (48,3 %) lag am häufigsten eine leichtgradige Protheseninsuffizienz vor. Eine leicht- bis mittelgradige AI bestand intraoperativ bei 37 Patienten (12,3 %). 23 Patienten (7,7 %) litten an einer mittelgradigen Insuffizienz. Bei 1 Patienten (0,3 %) konnte eine mittel- bis hochgradige AI diagnostiziert werden. Eine hochgradige Insuffizienz der CoreValve-Prothese lag bei 2 Patienten (0,7 %) vor.

Abb. 16: Intraoperative Klassifikation der AI mittels TEE

Bei 265 Patienten konnte die Lokalisation der Protheseninsuffizienz mittels TEE bestimmt werden. Am häufigsten fand sich eine paravalvuläre Insuffizienz, welche bei 246 Patienten (92,8 %) vorlag. 8 Patienten (3 %) wiesen intraoperativ eine zentrale Insuffizienz der implantierten Prothese auf. Wie aus Abbildung 17 weiterhin ersichtlich ist, konnte eine
kombinierte paravalvuläre und zentrale AI bei 11 Patienten (4,2 %) festgestellt werden.

Abb. 17: Intraoperative Lokalisation der AI im Rahmen der TEE

6 Monate nach Operationszeitpunkt wurde bei insgesamt 193 Patienten im Rahmen der ersten Nachuntersuchung eine transthorakale Echokardiographie durchgeführt.
Dabei zeigte sich, dass bei 77 von 193 Patienten (39,9 %) keine oder eine nur minimale Protheseninsuffizienz zu diagnostizieren war. 76 Patienten (39,4 %) zeigten eine leichtgradige AI. Bei 23 von 193 Patienten (11,9 %) lag postoperativ nach 6 Monaten eine leicht- bis mittelgradige AI vor. Der Abbildung 18 ist zusätzlich zu entnehmen, dass 17 Patienten (8,8 %) an einer mittelgradigen Insuffizienz der Aortenklappenprothese litten.
Die Lokalisation der Protheseninsuffizienz konnte bei der ersten halbjährlichen Nachuntersuchung bei 192 Patienten mittels TTE bestimmt werden (Abb. 19).

Bei 120 von 192 Patienten (62,5 %) lag eine paravalvuläre Insuffizienz vor. Eine zentrale AI konnte bei 7 Patienten (3,6 %) festgestellt werden. Eine kombinierte paravalvuläre und zentrale Protheseninsuffizienz konnte bei 9 Patienten (4,7 %) diagnostiziert werden. 6 Monate nach Operationszeitpunkt konnte bei 47 Patienten (24,5 %) keine Insuffizienz der CoreValve-Prothese festgestellt werden. Bei 9 von 192 Patienten (4,7 %) konnte die Lokalisation der Insuffizienz nicht bestimmt werden.

Abb. 18: Klassifikation der AI 6 Monate nach TAKI
Die zweite Nachuntersuchung 12 Monate nach Operationszeitpunkt wurde bei 189 Patienten mittels TTE durchgeführt. Dabei konnte man bei 73 Patienten (38,6 %) eine nur minimale oder auch keine Insuffizienz der Aortenklappenprothese feststellen. 72 Patienten (38,1 %) wiesen eine leichtgradige AI auf. Zusätzlich kann man der Abbildung 20 entnehmen, dass 29 von 189 Patienten (15,3 %) zu diesem Zeitpunkt an einer leicht- bis mittelgradigen AI litten. Bei 14 Patienten (7,4 %) wurde eine mittelgradige Insuffizienz der implantierten Prothese festgestellt. Bei 1 Patienten (0,5 %) war es nicht möglich die AI im Rahmen der transthorakalen Echokardiographie zu graduieren.
12 Monate nach interventioneller Aortenklappenimplantation konnte die Lokalisation der AI bei 189 Patienten mittels TTE bestimmt werden. Wie in Abbildung 21 zu sehen ist, so wiesen 107 von 189 Patienten (56,6 %) zum oben genannten Untersuchungszeitpunkt eine paravalvuläre AI auf. 5 Patienten (2,6 %) litten an einer zentralen AI. Eine kombinierte paravalvuläre und zentrale Insuffizienz der CoreValve-Prothese konnte bei 8 Patienten (4,2 %) festgestellt werden. Bei 49 Patienten (25,9 %) konnte zur zweiten Follow-up-Untersuchung keine Protheseninsuffizienz diagnostiziert werden. Bei 20 Patienten (10,6 %) konnte die Lokalisation der Protheseninsuffizienz im Rahmen der TTE nicht bestimmt werden.
Nach Implantation der CoreValve-Prothese konnte bei 297 Patienten mittels echokardiographischer oder angiographischer Untersuchungen bestimmt werden, ob eine klinisch relevante AI vorlag oder nicht (Abb. 22). Bei 39 Patienten (13,1 %) zeigte die Aortenklappeninsuffizienz nach TAKI eine klinische Relevanz. Bei 258 Patienten (86,9 %) konnte eine klinische Relevanz der AI nicht festgestellt werden.
5.1.2 Verlauf der Aortenklappeninsuffizienz nach TAKI

Von 300 Patienten, bei denen intraoperativ eine transösophageale Echokardiographie durchgeführt wurde, lag bei 92 (30,7 %) keine oder eine nur minimale Insuffizienz der implantierten CoreValve-Prothese vor. Im einjährigen Verlauf zeigte sich, dass die Anzahl der Patienten mit einer nur minimalen oder nicht vorhandenen AI mäßig abnahm und innerhalb des Zeitraumes zwischen der ersten und zweiten Nachuntersuchung nahezu konstant blieb. Bei einem geringen Anteil dieser Patienten verschlechterte sich die Protheseninsuffizienz innerhalb eines Jahres von einer nicht vorhandenen oder nur minimalen Insuffizienz zu einer leichtgradigen Insuffizienz (Abb. 23).

<table>
<thead>
<tr>
<th>Grad der AI</th>
<th>n = 380</th>
<th>n = 193</th>
<th>n = 189</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>n = 0</td>
<td>n = 0</td>
<td>n = 1</td>
</tr>
<tr>
<td>5</td>
<td>n = 2</td>
<td>n = 0</td>
<td>n = 0</td>
</tr>
<tr>
<td>4</td>
<td>n = 1</td>
<td>n = 0</td>
<td>n = 0</td>
</tr>
<tr>
<td>3</td>
<td>n = 23</td>
<td>n = 17</td>
<td>n = 14</td>
</tr>
<tr>
<td>2</td>
<td>n = 37</td>
<td>n = 23</td>
<td>n = 29</td>
</tr>
<tr>
<td>1</td>
<td>n = 145</td>
<td>n = 76</td>
<td>n = 14</td>
</tr>
<tr>
<td>0</td>
<td>n = 92</td>
<td>n = 77</td>
<td>n = 73</td>
</tr>
</tbody>
</table>

Abb. 23: Verlauf der AI über 12 Monate; 0 = keine oder minimale AI, 1 = leichtgradige AI, 2 = leicht- bis mittelgradige AI, 3 = mittelgradige AI, 4 = mittel- bis hochgradige AI, 5 = hochgradige AI, 6 = nicht bestimmt

Abb. 24: Verlauf der AI über 12 Monate; 0 = keine oder minimale AI, 1 = leichtgradige AI, 2 = leicht- bis mittelgradige AI, 3 = mittelgradige AI, 4 = mittel- bis hochgradige AI, 5 = hochgradige AI, 6 = nicht bestimmt

Im Rahmen der intraoperativen Echokardiographie konnte bei 37 von 300 Patienten (12,3 %) eine leicht- bis mittelgradige Insuffizienz der implantierten Aortenklappenprothese festgestellt werden. Im Verlauf eines Jahres zeigte sich innerhalb der ersten 6 Monate eine deutliche Reduktion der Patientenzahl mit einer leicht- bis mittelgradigen AI nach TAKI. Innerhalb der zweiten 6 Monate konnte man einen geringfügigen Anstieg der Patientenanzahl mit einer leicht-
bis mittelgradigen Protheseninsuffizienz wahrnehmen. Betrachtet man Abbildung 25, so kann man feststellen, dass es innerhalb der ersten 6 Monate nach Operationszeitpunkt zu einer Verbesserung der intraoperativ diagnostizierten Insuffizienz der CoreValve-Prothese kam. Innerhalb der zweiten 6 Monate nach TAKI zeigte sich die AI konstant.

Abb. 25: Verlauf der AI über 12 Monate; 0 = keine oder minimale AI, 1 = leichtgradige AI, 2 = leicht- bis mittelgradige AI, 3 = mittelgradige AI, 4 = mittel- bis hochgradige AI, 5 = hochgradige AI, 6 = nicht bestimmt

Wie in Abbildung 26 gesehen werden kann, zeigte sich bei 23 von 300 Patienten (7,7 %) intraoperativ eine mittelgradige Insuffizienz des CoreValve-Klappensystems. Im Rahmen der beiden Nachuntersuchungen 6 Monate und 12 Monate nach TAKI konnte man eine stetige Abnahme der Anzahl der Patienten mit einer mittelgradigen Insuffizienz feststellen. Innerhalb des Zeitraumes von der Operation bis zur ersten Follow-up-Untersuchung zeigte sich eine Verbesserung der Insuffizienz, vor allem hin zu einer leichtgradigen Insuffizienz. Innerhalb des
Zeitraumes von der ersten bis zur zweiten Follow-up-Untersuchung konnte man feststellen, dass die mittelgradige AI sich teilweise verbesserte, aber tendenziell konstant blieb. Bei 1 von 300 Patienten (0,3 %) wurde intraoperativ mittels TEE eine mittel- bis hochgradige AI diagnostiziert. Diese verbesserte sich innerhalb der ersten 6 Monate nach TAKI zu einer leichtgradigen Insuffizienz, sodass im weiteren Verlauf keine mittel- bis hochgradige Protheseninsuffizienz mehr nachzuweisen war. Des Weiteren ist der Abbildung 26 zu entnehmen, dass sich im Rahmen der intraoperativen Kontrolle der CoreValve-Prothese bei 2 von 300 Patienten (0,7 %) eine hochgradige Insuffizienz zeigte, wobei diese sowohl bei der ersten Nachuntersuchung als auch bei der zweiten Nachuntersuchung nicht mehr feststellbar war.

Abb. 26: Verlauf der AI über 12 Monate; 0 = keine oder minimale AI, 1 = leichtgradige AI, 2 = leicht- bis mittelgradige AI, 3 = mittelgradige AI, 4 = mittel- bis hochgradige AI, 5 = hochgradige AI, 6 = nicht bestimmt

Was den Verlauf der Aortenklappeninsuffizienz nach CoreValve-Implantation angeht, so kann man zusammenfassend feststellen, dass es innerhalb der ersten 6 Monate nach Eingriff
hauptsächlich zu einer leichten Verbesserung der Insuffizienz kam. Innerhalb der zweiten 6
Monate nach TAKI zeigte sich, dass die Insuffizienz tendenziell konstant blieb. Alle
Veränderungen waren statistisch signifikant (p < 0,001).

5.1.3 Einfluss der klinisch relevanten Aortenklappeninsuffizienz auf den postoperativen
allgemeinen Gesundheitszustand

Präoperativ lag der subjektiv eingeschätzte allgemeine Gesundheitszustand bei 230 Patienten bei
54,42 ± 19,04 %. Ein halbes Jahr postoperativ lag dieser bei 138 Patienten bei 64,56 % mit einer
Standardabweichung von 18,44 %. Bei 138 Patienten lag der Gesundheitszustand 12 Monate
nach TAKI bei 63,51 ± 18,21 %. Der individuell von den Patienten angegebene Gesundheits-
zustand zeigte somit präoperativ im Vergleich zu 6 Monaten nach Intervention einen
signifikanten Unterschied (p < 0,001).

Betrachtet man den subjektiv eingeschätzten Gesundheitszustand vor Operationszeitpunkt und
12 Monate nach TAKI, so hat sich dieser statistisch signifikant verbessert (p < 0,001). Jedoch
war ein statistisch signifikanter Unterschied zwischen dem angegebenen Gesundheitszustand 6
Monate und 12 Monate nach Implantation einer CoreValve-Prothese nicht festzustellen (p =
0,863).

Betrachtet man Abbildung 27, so kann man sehen, dass 6 Monate nach interventioneller
Implantation bei 118 Patienten ohne klinisch relevanter AI der durchschnittliche
Gesundheitszustand bei 64,86 % lag. Ein halbes Jahr postoperativ lag dieser bei 11 Patienten mit
einer klinisch relevanten AI bei durchschnittlich 59,55 %.

Der durchgeführte t-Test zeigte, dass eine klinisch relevante Insuffizienz der implantierten
CoreValve-Prothese sich statistisch nicht signifikant auf den allgemeinen Gesundheitszustand
des Patienten 6 Monate nach TAKI auswirkt (p = 0,366).
Abb. 27: Subjektiv eingeschätzter allgemeiner Gesundheitszustand 6 Monate nach TAKI bei Patienten mit und ohne klinisch relevanter AI

12 Monate nach TAKI lag bei 122 Patienten, die nicht an einer klinisch relevanten AI litten, der subjektiv eingeschätzte allgemeine Gesundheitszustand bei durchschnittlich 63,98 %. Des Weiteren ist der Abbildung 28 zu entnehmen, dass zum oben genannten Zeitpunkt bei 10 Patienten mit einer klinisch bedeutsamen Insuffizienz der Aortenklappenprothese dieser bei durchschnittlich 53 % lag. Im Rahmen des t-Tests konnte festgestellt werden, dass der allgemeine Gesundheitszustand des Patienten 12 Monate nach Intervention statistisch nicht signifikant durch eine klinisch relevante Protheseninsuffizienz beeinflusst wird (p = 0,068).

Abb. 28: Subjektiv eingeschätzter allgemeiner Gesundheitszustand 12 Monate nach TAKI bei Patienten mit und ohne klinisch relevanter AI
5.1.4 Einfluss der klinisch relevanten Aortenklappeninsuffizienz auf den postoperativen NYHA-Status

Von insgesamt 314 Patienten konnte präoperativ das NYHA-Stadium erfasst werden. 225 der Patienten befanden sich vor dem Operationszeitpunkt im NYHA-Stadium III und 39 im NYHA-Stadium IV. 6 Monate postoperativ gaben 194 Patienten erneut das NYHA-Stadium im Rahmen ihres ersten Follow-up an. 74 der Patienten befanden sich zu diesem Zeitpunkt im NYHA-Stadium I und 97 im NYHA-Stadium II. Zum zweiten Follow-up, 12 Monate nach Intervention, wurde von 179 Patienten das NYHA-Stadium erfasst. 62 der Patienten gaben ein NYHA-Stadium I an und 89 der Patienten ein NYHA-Stadium II an. Die gesamten NYHA-Stadien sowohl präoperativ als auch 6 und 12 Monate postoperativ sind in Tabelle 8 zusammengefasst.

Tab. 8: NYHA-Stadien präoperativ, 6 Monate postoperativ, 12 Monate postoperativ

<table>
<thead>
<tr>
<th>NYHA-Stadium</th>
<th>Präoperativ (n,%</th>
<th>6 Monate postoperativ (n,%</th>
<th>12 Monate postoperativ (n,%</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYHA I</td>
<td>1 (0,3)</td>
<td>74 (38,1)</td>
<td>62 (34,6)</td>
</tr>
<tr>
<td>NYHA II</td>
<td>1 (0,3)</td>
<td>97 (50)</td>
<td>89 (49,7)</td>
</tr>
<tr>
<td>NYHA II-III</td>
<td>15 (4,8)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>NYHA III</td>
<td>225 (71,7)</td>
<td>23 (11,9)</td>
<td>27 (15,1)</td>
</tr>
<tr>
<td>NYHA III-IV</td>
<td>33 (10,5)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>NYHA IV</td>
<td>39 (12,4)</td>
<td>0 (0)</td>
<td>1 (0,6)</td>
</tr>
</tbody>
</table>

NYHA = New York Heart Association

Was den Verlauf des NYHA-Stadiums angeht, so kann man eine Verbesserung zwischen dem präoperativen und 6-monatigen postoperativen NYHA-Stadium feststellen, jedoch ohne statistische Signifikanz (p = 0,626).

Vergleicht man das präoperative NYHA-Stadium mit dem NYHA-Stadium 12 Monate nach Operation, so ist eine statistisch signifikante Veränderung erkennbar (p = 0,001). Des Weiteren zeigt sich ein statistisch signifikanter Unterschied bezüglich des NYHA-Stadiums zwischen der
ersten und zweiten Nachuntersuchung (p < 0,001). Abbildung 29 zeigt die Verteilung von unterschiedlichen NYHA-Stadien 6 Monate nach TAKI bei Patienten mit und ohne klinisch relevanter Protheseninsuffizienz. In diesem Diagramm kann man eine fast identische Verteilung der NYHA-Stadien bei Patienten ohne klinisch relevanter AI (n=171) und mit klinisch relevanter AI (n=13) erkennen.

![Diagramm NYHA-Stadien 6 Monate nach TAKI bei Patienten mit und ohne klinisch relevanter AI](image_url)

Abb. 29: NYHA-Stadien 6 Monate nach TAKI bei Patienten mit und ohne klinisch relevanter AI

Tabelle 9 zeigt die prozentuale Verteilung der NYHA-Stadien bei Patienten mit und ohne klinisch relevanter AI ein halbes Jahr nach Implantation der CoreValve-Prothese.

Tab. 9: NYHA-Stadien bei Patienten mit und ohne klinisch relevanter AI 6 Monate nach TAKI

<table>
<thead>
<tr>
<th>NYHA-Stadium</th>
<th>Keine klinisch relevante AI (n,%),</th>
<th>Klinisch relevante AI (n,%),</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYHA I</td>
<td>66 (38,6)</td>
<td>5 (38,5)</td>
</tr>
<tr>
<td>NYHA II</td>
<td>84 (49,1)</td>
<td>6 (46,2)</td>
</tr>
<tr>
<td>NYHA III</td>
<td>21 (12,3)</td>
<td>2 (15,4)</td>
</tr>
</tbody>
</table>

AI = Aortenklappeninsuffizienz
NYHA = New York Heart Association

Im Rahmen der statistischen Auswertung konnte eine statistisch signifikante Auswirkung der klinisch relevanten Protheseninsuffizienz auf das postoperative 6-monatige NYHA-Stadium nicht nachgewiesen werden (p = 0,944). Abbildung 30 zeigt die unterschiedliche Verteilung von...
NYHA-Stadien 12 Monate nach CoreValve-Implantation bei Patienten mit und ohne klinisch relevanter AI. Ein minimaler Unterschied bezüglich der Verteilung der NYHA-Stadien zwischen den Patienten ohne klinisch relevanter Protheseninsuffizienz (n=157) und mit klinisch relevanter Protheseninsuffizienz (n=13) ist in dieser Abbildung erkennbar.

Abb. 30: NYHA-Stadien 12 Monate nach TAKI bei Patienten mit und ohne klinisch relevanter AI

Tabelle 10 zeigt die prozentuale Verteilung der NYHA-Stadien bei Patienten mit und ohne klinisch relevanter AI ein Jahr nach TAKI.

Tab. 10: NYHA-Stadien bei Patienten mit und ohne klinisch relevanter AI 12 Monate nach TAKI

<table>
<thead>
<tr>
<th>NYHA-Stadium</th>
<th>Keine klinisch relevante AI (n,%</th>
<th>Klinisch relevante AI (n,%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYHA I</td>
<td>53 (33,8)</td>
<td>4 (30,8)</td>
</tr>
<tr>
<td>NYHA II</td>
<td>78 (49,7)</td>
<td>7 (53,8)</td>
</tr>
<tr>
<td>NYHA III</td>
<td>25 (15,9)</td>
<td>2 (15,4)</td>
</tr>
<tr>
<td>NYHA IV</td>
<td>1 (0,6)</td>
<td>0</td>
</tr>
</tbody>
</table>

Al = Aortenklappeninsuffizienz
NYHA = New York Heart Association

Der Chi-Quadrat-Test ergab, dass das Vorliegen einer klinisch relevanten AI keinen statistisch signifikanten Einfluss auf das NYHA-Stadium 12 Monate nach TAKI hat (p = 0,984).
5.1.5 Einfluss der Aortenklappeninsuffizienz nach TAKI auf die Überlebenszeit

Abbildung 31 zeigt die Kaplan-Meier-Überlebenskurve der Patienten, bei denen intraoperativ eine angiographische Graduierung der Aortenklappeninsuffizienz durchgeführt wurde. Der beobachtete Zeitraum ist das erste postoperative Jahr. Im einjährigen Verlauf kann man erkennen, dass die Überlebenswahrscheinlichkeit abhängig vom Grad der Insuffizienz unterschiedlich stark abnimmt. Nach einem Jahr lebten noch ca. 85 % der Patienten mit einer Insuffizienz Grad 0,5 und ca. 75 % der Patienten mit einer Insuffizienz Grad 1. Im Rahmen der statistischen Auswertung mittels Log-Rank-Test konnte man keinen statistisch signifikanten Unterschied zwischen den verschiedenen Patientengruppen erkennen (p = 0,688).

<table>
<thead>
<tr>
<th>Patients at risk</th>
<th>0</th>
<th>180 days</th>
<th>365 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI Angiographie (0,0)</td>
<td>80</td>
<td>68</td>
<td>54</td>
</tr>
<tr>
<td>AI Angiographie (0,5)</td>
<td>33</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>AI Angiographie (1,0)</td>
<td>120</td>
<td>88</td>
<td>72</td>
</tr>
<tr>
<td>AI Angiographie (1,5)</td>
<td>39</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>AI Angiographie (2,0)</td>
<td>30</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>AI Angiographie (2,5)</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

AI = Aortenklappeninsuffizienz

Abb. 31: Kumulatives Überleben der Patienten mit intraoperativ angiographisch diagnostizierter AI
Betrachtet man das Überleben der Patienten in Abhängigkeit des Schweregrades der AI gemessen mit Ultraschall, so zeigt sich ein deutlicher Unterschied innerhalb des ersten Jahres nach TAKI. Wie aus Abbildung 32 ersichtlich ist, so kann man ein deutlich schlechteres Überleben bei Patienten mit einer leichtgradigen Protheseninsuffizienz als bei Patienten mit einer minimalen Protheseninsuffizienz feststellen. Ein Jahr nach Implantation der CoreValve-Prothese lebten noch ca. 85 % der Patienten mit einer minimalen Insuffizienz und ca. 77 % der Patienten mit einer leichtgradigen Insuffizienz. Es zeigte sich, dass der Unterschied zwischen den einzelnen Patientengruppen in Abhängigkeit des Schweregrades der AI keine statistische Signifikanz aufwies (p = 0,403).

<table>
<thead>
<tr>
<th>Patients at risk</th>
<th>0</th>
<th>180 days</th>
<th>365 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraoperativ AI TEE (Keine oder minimal)</td>
<td>92</td>
<td>77</td>
<td>58</td>
</tr>
<tr>
<td>Intraoperativ AI TEE (Leichtgradig)</td>
<td>145</td>
<td>109</td>
<td>97</td>
</tr>
<tr>
<td>Intraoperativ AI TEE (Leicht- bis mittelgradig)</td>
<td>37</td>
<td>29</td>
<td>23</td>
</tr>
<tr>
<td>Intraoperativ AI TEE (Mittelgradig)</td>
<td>23</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Intraoperativ AI TEE (Hochgradig)</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

AI = Aortenklappeninsuffizienz TEE = transösophageale Echokardiographie

Abb. 32: Kumulatives Überleben der Patienten mit intraoperativ diagnostizierter AI mittels TEE
Vergleicht man das Überleben von Patienten mit klinisch relevanter und ohne klinisch relevanter AI nach TAKI, so zeigt sich, dass dies bei Patienten mit einer klinisch relevanten AI sichtlich eingeschränkt ist, jedoch nicht statistisch signifikant (p = 0,337). Abbildung 33 zeigt, dass nach 180 Tagen noch ca. 82 % der Patienten ohne eine klinisch relevante AI und ca. 72 % der Patienten mit einer klinisch relevanten AI am Leben waren. Nach 365 Tagen lebten noch ca. 80 % der Patienten, deren AI sich als klinisch nicht relevant darstellte, und ungefähr 72 % der Patienten mit einer klinisch relevanten Insuffizienz der implantierten Aortenklappenprothese.

<table>
<thead>
<tr>
<th>Patients at risk</th>
<th>0</th>
<th>180 days</th>
<th>365 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klinisch relevante AI</td>
<td>39</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>Klinisch nicht relevante AI</td>
<td>258</td>
<td>204</td>
<td>170</td>
</tr>
</tbody>
</table>

AI = Aortenklappeninsuffizienz

Abb. 33: Kumulatives Überleben der Patienten mit und ohne klinisch relevanter AI
5.1.6 Auswirkung der klinisch relevanten Aortenklappeninsuffizienz und ausgewählter kardiovaskulärer Comorbiditäten auf die Letalität

Bei den in Tabelle 11 aufgeführten kardiovaskulären Faktoren wurde eine univariate Analyse in Bezug auf die Letalität durchgeführt und es stellte sich heraus, dass keine von diesen untersuchten Faktoren einen statistisch signifikanten Einfluss auf das Überleben ein Jahr nach interventioneller Implantation einer CoreValve-Prothese hat.

Tab. 11: Kardiovaskuläre Faktoren und deren Auswirkung auf die Letalität

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td>0,277</td>
</tr>
<tr>
<td>logistischer EuroSCORE (%)</td>
<td>0,206</td>
</tr>
<tr>
<td>NT-pro-BNP (pg/ml)</td>
<td>0,216</td>
</tr>
<tr>
<td>KHK</td>
<td>0,799</td>
</tr>
<tr>
<td>cAVK</td>
<td>0,987</td>
</tr>
<tr>
<td>pHTN</td>
<td>0,362</td>
</tr>
<tr>
<td>COPD</td>
<td>0,322</td>
</tr>
<tr>
<td>Z.n. Herzoperation</td>
<td>0,841</td>
</tr>
<tr>
<td>Weitere Klappenvitien</td>
<td>0,187</td>
</tr>
<tr>
<td>Z.n. TIA/Apoplex</td>
<td>0,903</td>
</tr>
</tbody>
</table>

cAVK = cerebrale arterielle Verschlusskrankheit NT-pro-BNP = N-terminales pro brain natriuretic peptide COPD = chronic obstructive pulmonary disease pHTN = pulmonary hypertension KHK = koronare Herzkrankheit TIA = transitorische ischämische Attacke

Bei den Parametern in Tabelle 12 ergab die univariate Analyse einen p-Wert von p < 0,1, außer bei dem Faktor der klinisch relevanten Protheseninsuffizienz (p = 0,236). Da die Fragestellung, ob das Vorliegen einer postprozeduralen klinisch signifikanten AI das Überleben des Patienten ein Jahr nach TAKI statistisch signifikant verschlechtert, von hoher Bedeutung ist, wurde dieser Parameter trotz seines p-Wertes in die logistische Regression integriert. Dieser wird auch als sogenannte “forced-in” Variable bezeichnet. Die logistische Regression ergab, dass Patienten mit einer präoperativ vorliegenden pAVK ein statistisch signifikant schlechteres 1-Jahres-Überleben nach kathetergeführter Implantation aufweisen als Patienten ohne diese Comorbidität (p = 0,01).
Somit war das Risiko ein Jahr nach TAKI zu versterben bei Patienten mit pAVK fast 2,5-fach höher als bei Patienten ohne pAVK. Zusätzlich konnte man feststellen, dass ein präoperatives erhöhtes Kreatinin und eine somit schlechtere Nierenfunktion einen signifikant negativen Einfluss auf das Überleben nach TAKI darstellt (p = 0,015). Wie aus Tabelle 12 ersichtlich ist, so führt eine Erhöhung der Kreatininkonzentration um 1 mg/dl zu einem 1,8-fach erhöhten Risiko innerhalb eines Jahres nach Operation zu versterben.

Im Rahmen der statistischen Auswertung mittels logistischer Regression zeigte sich, dass eine klinisch relevante Aortenklappeninsuffizienz bzw. Protheseninsuffizienz keinen statistisch signifikanten Einfluss auf das Überleben des Patienten ein Jahr nach TAKI hat (p = 0,325). Dennoch konnte man feststellen, dass Patienten mit einer klinisch relevanten Insuffizienz ein ca. 1,5-fach höheres Risiko haben ein Jahr nach Implantation einer CoreValve-Prothese zu versterben als Patienten ohne eine klinisch relevante Protheseninsuffizienz.

Tab. 12: Auswirkung von präoperativen Risikofaktoren und der postprozedural klinisch relevanten AI auf das Überleben ein Jahr nach TAKI

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-Wert</th>
<th>Exp(B)</th>
<th>95%-Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kreatinin (mg/dl)</td>
<td>0,015</td>
<td>1,822</td>
<td>1,125 - 2,951</td>
</tr>
<tr>
<td>STS-Score (%)</td>
<td>0,566</td>
<td>1,022</td>
<td>0,949 - 1,1</td>
</tr>
<tr>
<td>pAVK</td>
<td>0,01</td>
<td>2,472</td>
<td>1,245 - 4,909</td>
</tr>
<tr>
<td>LVEF 35-50%</td>
<td>0,196</td>
<td>1,601</td>
<td>0,784 - 3,271</td>
</tr>
<tr>
<td>LVEF <35%</td>
<td>0,139</td>
<td>1,733</td>
<td>0,837 - 3,591</td>
</tr>
<tr>
<td>Klinisch relevante AI</td>
<td>0,325</td>
<td>1,495</td>
<td>0,671 - 3,334</td>
</tr>
</tbody>
</table>

AI = Aortenklappeninsuffizienz
pAVK = periphere arterielle Verschlusskrankheit
LVEF = left ventricular ejection fraction
5.2 Vorhersagekraft von präoperativen CT- und UKG-Messungen auf die Entstehung einer postoperativen klinisch relevanten Aortenklappeninsuffizienz

In Tabelle 13 sind die unterschiedlichen Parameter, die mittels UKG und CT erhoben wurden, dargestellt.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Patienten ohne klinisch relevanter AI (n=119)</th>
<th>Patienten mit klinisch relevanter AI (n=20)</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annulusdurchmesser (mm)</td>
<td>23,1±2,1</td>
<td>23,7±2,1</td>
<td>0,12</td>
</tr>
<tr>
<td>TEE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annulusdurchmesser (mm)</td>
<td>23,5±1,9</td>
<td>24,3±1,8</td>
<td>0,013</td>
</tr>
<tr>
<td>CT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimaler Annulusdurchmesser (mm)</td>
<td>21,6±2,4</td>
<td>22,7±2,7</td>
<td>0,055</td>
</tr>
<tr>
<td>Maximaler Annulusdurchmesser (mm)</td>
<td>27,7±2,6</td>
<td>29±2,3</td>
<td>0,041</td>
</tr>
<tr>
<td>Durchschnittlicher Annulusdurchmesser (mm)</td>
<td>24,6±2,25</td>
<td>25,85±2,25</td>
<td>0,028</td>
</tr>
<tr>
<td>Elliptizität des Annulus</td>
<td>1,29±0,11</td>
<td>1,29±0,12</td>
<td>0,865</td>
</tr>
<tr>
<td>Annulusumfang (mm)</td>
<td>78,87±7,07</td>
<td>83,29±7,05</td>
<td>0,011</td>
</tr>
<tr>
<td>Vom Annulusumfang abgeleiteter Durchmesser (mm)</td>
<td>25,10±2,25</td>
<td>26,51±2,25</td>
<td>0,011</td>
</tr>
<tr>
<td>Annulusfläche (cm²)</td>
<td>4,73±0,87</td>
<td>5,29±0,92</td>
<td>0,009</td>
</tr>
<tr>
<td>Von der Annulusfläche abgeleiteter Durchmesser (mm)</td>
<td>24,43±2,21</td>
<td>25,86±2,25</td>
<td>0,009</td>
</tr>
<tr>
<td>Kalzifikation des linkskoronaren Segels</td>
<td>227±201</td>
<td>320±231</td>
<td>0,062</td>
</tr>
<tr>
<td>Kalzifikation des rechtskoronaren Segels</td>
<td>222±230</td>
<td>339±219</td>
<td>0,036</td>
</tr>
<tr>
<td>Kalzifikation des akoronaren Segels</td>
<td>316±261</td>
<td>556±456</td>
<td>0,032</td>
</tr>
<tr>
<td>Kalzifikation gesamt</td>
<td>765±561</td>
<td>1215±786</td>
<td>0,022</td>
</tr>
<tr>
<td>Oversizing (%)</td>
<td>11,09±7,74</td>
<td>5,15±5,44</td>
<td>0,001</td>
</tr>
<tr>
<td>Implantationstiefe rechts (mm)</td>
<td>8,14±3,8</td>
<td>10,3±3,54</td>
<td>0,038</td>
</tr>
<tr>
<td>Implantationstiefe links (mm)</td>
<td>10,3±4,21</td>
<td>12,77±3,41</td>
<td>0,046</td>
</tr>
</tbody>
</table>

AI = Aortenklappeninsuffizienz TEE = transösophageale Echokardiographie
CT = Computertomographie TTE = transthorakale Echokardiographie

Wie aus Tabelle 13 ersichtlich ist, wiesen 20 von 139 Patienten mit ausgewerteten CT-Daten (14,4 %) postprozedural eine klinisch relevante AI auf. Bei dem Vergleich der Mittelwerte der Patienten ohne und mit klinisch relevanter Protheseninsuffizienz konnte man durch den Einsatz
des t-Tests präoperativ mittels TEE einen statistisch signifikant größeren Annulusdurchmesser (24,3±1,8mm vs. 23,5±1,9mm; p = 0,013) bei Patienten mit klinisch relevanter AI nachweisen. Des Weiteren zeigte sich im Rahmen des t-Tests ein statistisch signifikant größerer maximaler Annulusdurchmesser (29±2,3mm vs. 27,7±2,6mm; p = 0,041) und durchschnittlicher Annulusdurchmesser (25,85±2,25mm vs. 24,64±2,25mm; p = 0,028), ein signifikant höherer Annulusumfang (83,29±7,05mm vs. 78,87±7,07mm; p = 0,011), eine signifikant größere Annulusfläche (5,29±0,92mm vs. 4,73±0,87mm; p = 0,009), eine signifikant stärkere Kalzifikation des gesamten Klappenapparates (1215±786 vs. 765±561; p = 0,022), ein signifikant geringeres Oversizing (5,15±5,44% vs. 11,09±7,74%; p = 0,001) und eine statistisch signifikant tiefere Implantation der CoreValve-Prothese in Aortenposition (8,14±3,8mm vs. 10,3±3,54mm; p = 0,038. 10,3±4,21mm vs. 12,77±3,41mm; p = 0,046) bei Patienten mit einer klinisch relevanten AI.

Der Annulusdurchmesser, bestimmt in der TTE, der minimale Annulusdurchmesser, die Elliptizität des Aortenklappenannulus und die Kalzifikation des linkskoronaren Segels, bestimmt mittels CT, waren hingegen nicht mit einer klinisch signifikanten AI assoziiert. Zusätzlich wurde eine logistische Regressionsanalyse durchgeführt, bei der festgestellt wurde, dass die Größe des Annulusdurchmessers, abgeleitet von dessen Fläche, einen unabhängig statistisch signifikanten Faktor für das Auftreten einer postinterventionellen klinisch relevanten AI darstellt (Exp(B) = 1,701; 95%-Konfidenzintervall = 1,163 - 2,487; p = 0,006).
6. Diskussion

Eine der häufigsten Komplikationen dieses Verfahrens stellt das Auftreten von paravalvulären Insuffizienzen nach Prothesenimplantation dar (Cribier et al., 2006; Grube et al., 2007; Webb et al., 2007; Sherif et al., 2010; Zahn et al., 2011). Dieses Problem ist jedoch nicht trivial, da die zugrunde liegende Pathophysiologie sehr unterschiedlich sein kann (Tarantini et al., 2011). Die genaue Klassifikation solcher Insuffizienzen stellt sich als sehr komplex und anspruchsvoll dar, wobei das Valve Academic Research Consortium Leitlinien zu dieser Einteilung nennt (Kappetein et al., 2013). Nach Kappetein et al. sollte die Graduierung der Protheseninsuffizienz...

Prävalenz der paravalvulären Aortenklappeninsuffizienz

Die Prävalenz jeglicher paravalvulärer Insuffizienz unmittelbar nach Implantation einer CoreValve-Prothese, bestimmt mittels TEE, beträgt in dieser Arbeit 92,8 %. Diese Daten stimmen mit jenen von Rajani et al. überein, die ein Auftreten der paravalvulären Insuffizienz direkt nach TAKI bei 90 % der Patienten beschreiben (Rajani et al., 2010). Nach Sherif et al. liegt im Rahmen der postprozeduralen echokardiographischen Untersuchung bei 82 % der Patienten eine paravalvuläre Insuffizienz vor (Sherif et al., 2010). Nach Gotzmann et al. liegt bei 61 % der Patienten eine Protheseninsuffizienz nach TAKI vor (Gotzmann et al., 2011). Anhand
dieser unterschiedlichen Daten kann man erkennen, dass die Diagnostik und Graduierung paravalvulärer Insuffizienzen nach TAKI sich als sehr komplex darstellt und deren Prävalenz je nach Zentrum, in der die jeweilige Studie durchgeführt wurde, variiert. Im Einklang mit vorhergehenden Studien kann man in dieser Arbeit feststellen, dass die paravalvulär auftretende Protheseninsuffizienz unmittelbar nach Implantation sich zum Großteil als minimal oder leichtgradig darstellt, sowohl in der echokardiographischen als auch in der angiographischen Untersuchung (Grube et al., 2008; Sherif et al., 2010; Abdel-Wahab et al., 2011; Buellesfeld et al., 2011; Gotzmann et al., 2011). Gemäß der echokardiographischen Untersuchung liegt bei 8,7 % der Patienten eine mindestens mittel- oder höhergradige Insuffizienz vor, wobei Jabbour et al. ähnliche Zahlen beschreiben (Jabbour et al., 2011). Im Rahmen der Angiographie kann eine Insuffizienz größer gleich Grad II bei 11,6 % der Patienten nachgewiesen werden. Nach Abdel-Wahab et al. liegt der Anteil der Patienten mit einer Protheseninsuffizienz größer gleich Grad II, bestimmt mittels Angiographie, bei ca. 17 % und nach Gotzmann et al. bei ebenfalls 17 % (Abdel-Wahab et al., 2011; Gotzmann et al., 2011). Somit zeigen sich die Studiendaten mit den Daten unserer Auswertung kongruent. Im Rahmen der echokardiographischen Nachuntersuchung 6 Monate nach CoreValve-Implantation ist bei 39,4 % der Patienten eine leichtgradige Protheseninsuffizienz festzustellen, wobei Buellesfeld et al. identische Zahlen beschreiben (Buellesfeld et al., 2011). Ein halbes Jahr nach Intervention kann man in unserer Studie bei 8,8 % der Patienten eine mittelgradige Insuffizienz feststellen, ähnlich den Zahlen nach Buellesfeld et al. (Buellesfeld et al., 2011). 12 Monate nach TAKI kann man bei 38,1 % der Patienten eine leichtgradige Insuffizienz mittels TTE nachweisen. 7,4 % der Patienten zeigen im Rahmen der zweiten Nachuntersuchung eine mittelgradige Insuffizienz der implantierten Prothese. Eine höhergradige Insuffizienz ist nicht nachweisbar. Ähnliche Zahlen werden durch Buellesfeld et al. beschrieben, wobei dort eine mittelgradige paravalvuläre Insuffizienz bei nur 3 % der Patienten 12 Monate nach Intervention nachzuweisen ist (Buellesfeld et al., 2011). Nach
Ussia et al. liegt ein Jahr nach CoreValve-Implantation bei ca. 48 % der Patienten eine leichtgradige paravalvuläre Insuffizienz vor und bei ungefähr 18 % der Patienten eine mittelgradige Insuffizienz (Ussia et al., 2012). Vergleicht man die Daten dieser Arbeit bezüglich der Prävalenz der AI zu verschiedenen Zeitpunkten mit Daten anderer Studien, so kann man nur geringe Abweichungen erkennen, teilweise bedingt durch die unterschiedliche Größe der Patientenkollektive.

Prävalenz der klinisch relevanten Aortenklappeninsuffizienz

In dieser Arbeit zeigen 13,1 % der Patienten eine klinisch relevante Insuffizienz nach Implantation der CoreValve-Prothese. Eine Aortenklappeninsuffizienz nach TAKI wurde als klinisch relevant bezeichnet, sobald diese, gemessen mittels Ultraschall, entweder größer als leicht- bis mittelgradig war oder sich in der angiographischen Untersuchung stärker als Grad I darstellte. In der Literatur gibt es jedoch keine allgemein gültige Definition, ab wann eine klinisch relevante Aortenklappeninsuffizienz nach TAKI vorliegt und mit welcher apparativen Diagnostik diese bestimmt wird. Die aktuellen VARC-Leitlinien empfehlen den Einsatz der echokardiographischen Doppleruntersuchung (Kappetein et al., 2013).

Nach Detaint et al. wird die Protheseninsuffizienz nach TAKI als klinisch relevant bezeichnet, sollte sich die Insuffizienz im Rahmen der transösophagealen Echokardiographie schwerer als leichtgradig darstellen und tritt somit bei ca. 22 % der Patienten auf (Detaint et al., 2009). Sherif et al. definieren die Insuffizienz nach CoreValve-Implantation als klinisch relevant, sollte diese in der Angiographie größer oder gleich Grad II sein. Bei 40 % der Patienten liegt demnach eine klinisch relevante Insuffizienz vor, wobei das Patientenkollektiv aus nur 50 Patienten bestand, bei denen eine CoreValve-Prothese implantiert wurde (Sherif et al., 2010). Nach Abdel-Wahab et al. liegt eine klinisch relevante Aortenklappeninsuffizienz nach TAKI vor, sobald diese sich in
der Angiographie als mindestens leicht- bis mittelgradig darstellt (Abdel-Wahab et al., 2011). Abdel-Wahab et al. beschreiben im Rahmen dieser Studie aus dem Jahre 2011, dass bei ca. 17 % der Patienten postprozedural eine klinisch relevante Protheseninsuffizienz nachzuweisen ist, wobei diese Ergebnisse mit unseren übereinstimmen.

Verlauf der Aortenklappeninsuffizienz nach TAKI

Einfluss der klinisch relevanten Aortenklappenisuffizienz auf den postoperativen allgemeinen Gesundheitszustand

Bei dem Vergleich des präoperativen und postoperativen allgemeinen Gesundheitszustandes zeigt sich in dieser Arbeit ein statistisch signifikanter Unterschied. Nach Implantation der CoreValve-Prothese zeigt sich der allgemeine Gesundheitszustand über den Verlauf des ersten postoperativen Jahres konstant. Vorherige Studien bestätigen, dass es nach TAKI zu einer signifikanten Verbesserung des allgemeinen Gesundheitszustandes kommt und dass dessen Veränderung auch über ein Jahr anhält (Georgiadou et al., 2011; Krane et al., 2012; Grimaldi et al., 2013). Jedoch sollte dabei beachtet werden, dass je nach Studie unterschiedliche Fragebögen zur Evaluation des allgemeinen Gesundheitszustandes benutzt werden. Im Rahmen unserer Arbeit kann kein statistisch signifikanter Einfluss der klinisch relevanten Aorten-

Einfluss der klinisch relevanten Aortenklappeninsuffizienz auf den postoperativen NYHA-Status

ein NYHA-Stadium III und 12,4 % ein NYHA-Stadium IV an. Ein Jahr nach interventioneller Implantation der CoreValve-Prothese sind 34,6 % der Patienten asymptomatisch (NYHA I) und 49,7 % zeigen eine kardiale Symptomatik nur bei schwerer körperlicher Belastung (NYHA II). Was die Auswirkung der klinisch relevanten Aortenklappeninsuffizienz auf den postoperativen NYHA-Status angeht, so kann man in dieser Arbeit weder nach 6 oder 12 Monaten nach CoreValve-Implantation einen Einfluss dieser Insuffizienz auf die kardiale Symptomatik, klasifikiziert gemäß der New York Heart Association, erkennen. Diese Ergebnisse stimmen mit denen von Gotzmann et al. überein, die 2012 in einer Studie zeigen können, dass sich der NYHA-Status ein Jahr nach TAKI zwischen Patienten mit keiner oder leichtgradiger Aortenklappeninsuffizienz und Patienten mit mittel- oder höhergradiger Aortenklappeninsuffizienz nicht signifikant unterscheidet, wobei man die geringe Patientenzahl mit einer mindestens mittelgradigen Insuffizienz 12 Monate nach Intervention beachten sollte (Gotzmann et al., 2012). In dieser Studie wird die Protheseninsuffizienz gemäß den VARC-Kriterien echokardiographisch erfasst und klassifiziert, jedoch nicht angiographisch, was einen Unterschied zu unserer Arbeit darstellt. Weiter schlussfolgernd könnte man sagen, dass die NYHA-Verbesserung multifaktoriell bedingt ist.

Einfluss der Aortenklappeninsuffizienz nach TAKI auf die Überlebenszeit

Ein Jahr nach interventionellem Aortenklappenersatz sind noch ca. 85 % der Patienten ohne Protheseninsuffizienz am Leben. Nach Codner et al. liegt die Überlebenswahrscheinlichkeit bei Patienten ein Jahr nach TAKI bei ungefähr 91 %, wobei in dieser Studie das CoreValve- Klappensystem bei nur 60 % des Patientenkollektivs implantiert wurde (Codner et al., 2013).

Auswirkung der klinisch relevanten Aortenklappeninsuffizienz und ausgewählter kardiovaskulärer Comorbiditäten auf die Letalität

gestützt werden, welche nachweisen, dass Patienten mit einer präoperativ eingeschränkten Nierenfunktion bzw. erhöhtem Kreatininwert eine statistisch signifikant erhöhte Mortalität nach interventionellem Klappenersatz zeigen. Sinning et al. können feststellen, dass es durch eine präoperativ verminderte Nierenfunktion zu einer 4-fach erhöhten Mortalität ein Jahr nach kathetergeführt dem Aortenklappenersatz kommt (Sinning et al., 2010). Weitere Studien aus dem Jahre 2010 können nachweisen, dass eine verminderte Nierenfunktion im Sinne einer akuten Niereninsuffizienz nach TAKI zu einer 4-fach erhöhten postoperativen Mortalität unabhängig der bestehenden Comorbiditäten führt (Bagur et al., 2010). Eine eingeschränkte Nierenfunktion nach interventioneller Implantation kann eventuell durch embolische Ereignisse während der Valvuloplastie und des Einbringens des Katheters in der Aorta begründet werden, wobei solche Embolien durch das Vorliegen einer pAVK zusätzlich begünstigt werden. Weitere Gründe für eine eingeschränkte Nierenfunktion und somit erhöhte Kreatininwerte stellen die renale Minderperfusion während des rapid pacings und der Kontrastmitteleinsatz dar. Sollte eine postprozedurale Protheseninsuffizienz nach TAKI bestehen, so führt dies zu einer Volumenüberlastung eines schon meistens geschwächten linken Ventrikels, was eine verminderte renale Perfusion und eine Einschränkung der Nierenfunktion zur Folge hat. Somit stellt die Protheseninsuffizienz nach TAKI einen Faktor dar, der die Leistung der Niere beeinflussen kann, was Sinning et al. im Rahmen einer Studie aus dem Jahre 2010 bestätigen können (Sinning et al., 2010).

Vorhersagekraft von präoperativen CT- und UKG-Messungen auf die Entstehung einer postoperativen klinisch relevanten Aortenklappeninsuffizienz

Im Rahmen dieser Arbeit zeigt sich anhand der Analyse der präoperativen CT- und UKG-Daten, dass Patienten mit einer klinisch relevanten Aortenklappeninsuffizienz nach TAKI einen

Als wichtigste Komplikation eines zu großen Oversizing ist die Ruptur des Aortenannulus zu nennen, der zur massiven Blutung und Herzbefunderkrankung führt und die Konversion zum offenen chirurgischen Eingriff mit extrakorporaler Zirkulation zur Folge hat. Ein weiterer Faktor, der das Auftreten von paravalvulären Insuffizienzen nach TAKI begünstigt, ist die Kalzifikation der Aortenklappe, die eine adäquate Expansion des Nitinolstents verhindert. Im Rahmen dieser Arbeit kann gezeigt werden, dass eine ausgeprägte Verkalkung des Klappenapparates das Auftreten einer postprozeduralen klinisch relevanten AI begünstigt. In einer Studie aus dem Jahre 2011 weisen Koos et al. nach, dass die computertomographisch erfasste Kalzifikation der Aortenklappe im Zusammenhang mit dem Auftreten einer relevanten paravalvulären Protheseninsuffizienz nach TAKI steht (Koos et al., 2011). In dieser Studie nach Koos et al. zeigt sich, dass der Schweregrad der postoperativen Insuffizienz positiv mit dem Ausmaß der Klappenverkalkung assoziiert ist. Im Einklang mit unseren Ergebnissen beschreiben Leber et al., dass Patienten mit einer angio- und echokardiographisch bestimmt AI größer Grad II eine statistisch signifikant stärkere Kalzifikation der Aortenklappe aufweisen als Patienten mit einer
postprozeduralen AI kleiner Grad II (Leber et al., 2013). In dieser Studie aus dem Jahre 2013 kann ebenfalls gezeigt werden, dass der Verkalkungsgrad sich auf den funktionellen NYHA-Status nach TAKI auswirkt, wobei ein positiver Zusammenhang aufgezeigt werden kann, sodass das Ausmaß der Kalzifikation der Aortenklappe auch als prädiktiver Faktor für die funktionelle Erholung nach CoreValve-Implantation gewertet werden kann. Ein weiterer wichtiger Aspekt, der mit dem Auftreten von paravalvulären Insuffizienzen nach kathetergeführtem Klappenersatz einhergeht, ist die Implantationstiefe der Aortenprothese ausgehend vom Aortenannulus, in unserer Arbeit des CoreValve-Klappensystems. Unsere Ergebnisse zeigen, dass Patienten mit einer postprozeduralen klinisch relevanten Insuffizienz eine statistisch signifikant tiefere Implantation der CoreValve-Prothese in Aortenposition aufweisen als Patienten ohne klinisch relevante Insuffizienz. Diese Ergebnisse stimmen mit denen von Takagi et al. überein, die ebenfalls eine tiefe Implantation der CoreValve-Prothese häufiger bei Patienten mit einer echokardiographisch bestimmten mittel- bis hochgradigen Protheseninsuffizienz nach TAKI beschreiben (Takagi et al., 2011). Nach Sherif et al. liegt die optimale Implantationstiefe der CoreValve-Prothese zwischen 5 und 10 mm unterhalb der Ebene des Aortenannulus, wobei diese Werte sich mit unseren Daten decken, die eine Implantationstiefe des CoreValve-Klappensystems von ca. 8 bis 10 mm unterhalb der Annulusebene bei Patienten ohne postprozeduraler klinisch relevanter Insuffizienz beschreiben (Sherif et al., 2010). In dieser Studie können Sherif et al. ebenfalls zeigen, dass der Winkel zwischen dem linksventrikulären Ausflusstrakt und der Aorta ascendens einen wichtigen Faktor für das Auftreten von höhergradigen paravalvulären Insuffizienzen nach CoreValve-Implantation darstellt.
Behandlungsmöglichkeiten paravalvulärer Insuffizienzen nach TAKI

Ausblick in die Zukunft

Medtronic, die Engager-Aortenklappenprothese, zu nennen. Der Nitinolstent, in dem die Klappe fixiert ist, ist bei diesem Klappensystem mit Polyester eingefasst, um paravalvuläre Insuffizienzen zu vermeiden (Sinning et al., 2012). Nach Sinning et al. zeigen die neuen Transkatheterklappen zusätzlich bessere Repositionsmöglichkeiten, was eine genauere Implantation gewährleisten soll. Was den Zugangsweg betrifft, so werden einige neue selbstexpandierende Klappensysteme, wie auch die Engager-Prothese der Firma Medtronic, apikal implantiert, wobei jedoch der transfemorale Zugang auch in Zukunft vermutlich der Zugang der Wahl bleibt (Webb et al., 2012).

In Zukunft wird die TAKI immer mehr den konventionellen chirurgischen Ersatz der Aortenklappe ablösen und kann schon jetzt in Deutschland als dominierende Therapie-möglichkeit für die Stenose der Aortenklappe angesehen werden, wobei diese Therapieoption für jüngere und gesündere Patienten noch evaluiert werden muss.

Schlussfolgerung

Die kathetergeführte Aortenklappenimplantation erlebte in den letzten Jahren eine rasche Entwicklung und Verbreitung, sodass dieses Verfahren als Therapie der Wahl zum minimal-invasiven Ersatz der Aortenklappe bei inoperablen Hochrisikopatienten angesehen werden kann. Da die native Klappe nicht exzidiert, sondern nur durch die Katheterklappe zur Seite gedrängt wird, kann dies zu einem Auftreten von postprozeduralen paravalvulären Insuffizienzen führen, die eine der häufigsten Komplikationen nach TAKI darstellen.

In dieser Arbeit zeigte sich die paravalvuläre Insuffizienz nach CoreValve-Implantation echokardiographisch oder angiographisch bei einem Großteil der Patienten als nur minimal oder leichtgradig. Eine mehr als leichtgradige paravalvuläre Insuffizienz war nur bei einem geringen Patientenanteil nachweisbar. Was den einjährigen Verlauf der paravalvulären Insuffizienz nach TAKI angeht, so zeigte sich diese weitgehend konstant mit einer statistisch signifikanten Verbesserung innerhalb der ersten 6 Monate nach CoreValve-Implantation. Bei 13,1 % der Patienten konnte die paravalvuläre Aortenklappeninsuffizienz nach TAKI gemäß den Kriterien

8. Literaturverzeichnis

Davies, H. CATHETER-MOUNTED VALVE FOR TEMPORARY RELIEF OF AORTIC INSUFFICIENCY. Lancet. 285 (1965) 250

76

Lapp, H., Krakau, I. "Das Herzkatheterbuch, Diagnostische und interventionelle Kathetertechniken" Georg Thieme Verlag, Stuttgart - New York, 2009

Sherif, M.A., Abdel-Wahab, M., Stocker, B., Geist, V., Richardt, D., Tolg, R., Richardt, G. Anatomic and procedural predictors of paravalvular aortic regurgitation after implantation of

9. ABBILDUNGSVERZEICHNIS

Abb. 1: Intraoperatives Bild einer stenosierten Aortenklappe
Abb. 2: Intraoperative Bilder der a) Exzidierung der verkalkten Klappensegel und b) der eingebrachten Aortenprothese
Abb. 3: Selbstexpandierende Medtronic-CoreValve-Prothese
Abb. 4: Transarterielle Implantationsmöglichkeiten der CoreValve-Prothese
Abb. 5: Implantierte CoreValve-Prothese mit Sicht auf die Koronarostien
Abb. 6: Angiographie der CoreValve-Prothese in 30° RAO
Abb. 7: Verteilung des STS-Score
Abb. 8: Verteilung des logistischen EuroSCORE
Abb. 9: Annulusdurchmesser
Abb. 10: Elliptizität des Annulus
Abb. 11: Elliptizität des Annulus
Abb. 12: Oversizing bei einer 29 mm CoreValve-Prothese
Abb. 13: Beurteilung der Kalzifikation der Aortenklappe
Abb. 14: Implantationstiefe der CoreValve-Prothese
Abb. 15: Intraoperative angiographische Klassifikation der AI
Abb. 16: Intraoperative Klassifikation der AI mittels TEE
Abb. 17: Intraoperative Lokalisation der AI im Rahmen der TEE
Abb. 18: Klassifikation der AI 6 Monate nach TAKI
Abb. 19: Lokalisation der AI 6 Monate nach TAKI
Abb. 20: Klassifikation der AI 12 Monate nach TAKI
Abb. 21: Lokalisation der AI 12 Monate nach TAKI
Abb. 22: Prävalenz der klinisch relevanten AI nach TAKI
Abb. 23: Verlauf der AI über 12 Monate
Abb. 24: Verlauf der AI über 12 Monate
Abb. 25: Verlauf der AI über 12 Monate
Abb. 26: Verlauf der AI über 12 Monate
Abb. 27: Subjektiv eingeschätzter allgemeiner Gesundheitszustand 6 Monate nach TAKI bei Patienten mit und ohne klinisch relevanter AI
Abb. 28: Subjektiv eingeschätzter allgemeiner Gesundheitszustand 12 Monate nach TAKI bei Patienten mit und ohne klinisch relevanter AI
Abb. 29: NYHA-Stadien 6 Monate nach TAKI bei Patienten mit und ohne klinisch relevanter AI
Abb. 30: NYHA-Stadien 12 Monate nach TAKI bei Patienten mit und ohne klinisch relevanter AI
Abb. 31: Kumulatives Überleben der Patienten mit intraoperativ angiographisch diagnostizierter AI
Abb. 32: Kumulatives Überleben der Patienten mit intraoperativ diagnostizierter AI mittels TEE
Abb. 33: Kumulatives Überleben der Patienten mit und ohne klinisch relevanter AI
10. TABELLENVERZEICHNIS

Tab. 1: NYHA-Klassifikation bei Herzinsuffizienz
Tab. 2: Kontraindikationen für die TAKI gemäß den aktuellen europäischen Leitlinien
Tab. 3: Präoperative Patientendaten bei unterschiedlichen Implantationswegen
Tab. 4: Präoperative echokardiographische Daten
Tab. 5: Schweregradeinteilung der Aortenklappenstenose
Tab. 6: Schweregradeinteilung valvulärer und paravalvulärer Aortenklappeninsuffizienzen
Tab. 7: Angiographische Quantifizierung der AI
Tab. 8: NYHA-Stadien präoperativ, 6 Monate postoperativ, 12 Monate postoperativ
Tab. 9: NYHA-Stadien bei Patienten mit und ohne klinisch relevanter AI 6 Monate nach TAKI
Tab. 10: NYHA-Stadien bei Patienten mit und ohne klinisch relevanter AI 12 Monate nach TAKI
Tab. 11: Kardiovaskuläre Faktoren und deren Auswirkung auf die Letalität
Tab. 12: Auswirkung von präoperativen Risikofaktoren und der postprozedural klinisch relevanten AI auf das Überleben ein Jahr nach TAKI
Tab. 13: TTE-, TEE- und CT-Daten von Patienten ohne und mit klinisch relevanter AI
Um Sie bei der Einschätzung, wie gut oder wie schlecht Ihr Gesundheitszustand ist, zu unterstützen, haben wir eine Skala gezeichnet, ähnlich einem Thermometer. Der best denkbare Gesundheitszustand ist mit einer “100” gekennzeichnet, der schlechteste mit “0”.

Wir möchten Sie nun bitten, auf dieser Skala zu kennzeichnen, wie gut oder schlecht Ihrer Ansicht nach Ihr persönlicher Gesundheitszustand heute ist. Bitte verbinden Sie dazu den untenstehenden Kasten mit dem Punkt auf der Skala, der Ihren heutigen Gesundheitszustand am besten wiedergibt.

© 1990 EuroQol Group. EQ-5D™ is a trade mark of the EuroQol Group
12. DANKSAGUNG

Diese Arbeit wurde am Deutschen Herzzentrum München der Technischen Universität München in der Abteilung für Herz- und Gefäßchirurgie durchgeführt. Mein besonderer Dank gilt Herrn Prof. Dr. med. R. Lange für die Bereitstellung und Möglichkeit der Durchführung dieses Themas.

Zusätzlich möchte ich mich bei Herrn Dr. med. C. Nöbauer für die Bilder aus den Operationsräumen des DHM bedanken.

Ein herzliches Dankeschön gilt auch Herrn N. Piazza M.D. PHD für die Unterstützung bezüglich der computertomographischen Daten dieser Arbeit.

Des Weiteren möchte ich mich bei den Mitarbeitern der herzchirurgischen Ambulanz des DHM für die freundliche Unterstützung und Zusammenarbeit bezüglich meiner Anliegen bedanken.

Zuletzt möchte ich mich bei allen Menschen bedanken, die an mich geglaubt haben und mich unterstützt haben. Aber vor allem gilt mein Dank meinen Eltern, einfach für alles.
13. LEBENSLAUF

Name: Benedikt Maximilian Mayr
Geburtsdatum/-ort: 31. Mai 1988 in Füssen
Familienstand: Ledig
Konfession: Römisch-Katholisch

1998 - 2007 Rainer-Maria-Rilke-Gymnasium, Icking
Juni 2007 Allgemeine Hochschulreife

Studium: 2007 - 2010 Vorklinischer Studienabschnitt der Humanmedizin an der Ludwig-Maximilians-Universität München
Februar 2010 Erster Abschnitt der Ärztlichen Prüfung
April 2010 Beginn des klinischen Studienabschnitts der Humanmedizin an der Technischen Universität München
September 2011 Promotionsbeginn, Klinik für Herz- und Gefäßchirurgie am Deutschen Herzzentrum München, „Paravalvuläre Insuffizienz nach Katheterklappenimplantation“
Juni 2014 Zweiter Abschnitt der Ärztlichen Prüfung