
Optimal Charging Strategies for Electric Cars on Long Trips

Gerhard Huber, Klaus Bogenberger
Department of Traffic Engineering, University of Federal Armed Forces Munich

Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
gerhard.huber@unibw.de, klaus.bogenberger@unibw.de

Abstract— The rather low range of electric vehicles makes
it necessary to recharge on long-distance trips. A question,
one can ask in this context, is where and how long should
be charged in order to reach the destination as fast as possible,
for example by avoiding rush hour, and certainly, i.e., without
running out of energy. Traditional routing algorithms are not
capable of providing this kind of information. In this paper,
the task of finding such charging strategies is modeled as a
bicriteria shortest path problem in a time-dependent network.
It is discussed how the possibility to charge can be included
in the graph-based model of a road network and how negative
edge costs due to charging can be handled. Two algorithms are
proposed for solving the described problem. The correctness
of the first one is proven, whereas the second one is intended
as a speed-up technique, which provides only approximative
solutions.

I. INTRODUCTION
During the last years, besides the traditional combustion

engine, alternative driving concepts have emerged. Especially
battery electric vehicles attract attention, as they are sup-
posed to be environment-friendly and cheap in maintenance.
However, low driving range and, as a consequence thereof,
the so-called range-anxiety are often assumed to be crucial
barriers for the establishment of pure electric cars. Covering
long distances with electric vehicles, for example to go on
holidays, is usually not even considered. One possibility
to reduce range-anxiety and generate range certainty is to
give adequate and reliable routing information. In case of
distances that cannot be covered even with a fully charged
battery, conventional navigation is not sufficient. On-trip
information concerning the location of the next charging
station available is one option for improvement. Another one,
this paper is discussing, is pre-trip information. The idea is
to provide, before the trip is started, a charging strategy for a
given route. The charging strategy is intended similarly as a
pit strategy: Instructions are given defining at which charging
stations along the proposed route one has to charge and for
how long. The goal is to reach the destination as fast as
possible, but also certainly, i.e., without the risk of running
out of energy. The fundamental idea in these considerations
is the development of a charging strategy which allows
avoiding rush hour traffic.

A. Scope of the Paper

There are many aspects that have to be covered for
the development of a charging strategy: Traffic prediction,
modeling the energy consumption of electric vehicles and
analyzing factors influencing it, the charging behaviour and

how the resulting optimization problem can be modeled
and solved. In this paper the focus is set on modeling
the optimization problem as a multicriteria, time-dependent
point-to-point shortest path problem and on constructing an
algorithm that leads to a time-optimal solution. Nevertheless,
all mentioned topics, especially the energy consumption, are
discussed in such a way that issues which are critical for
modeling or solving the considered shortest path problem
can be identified and their impact can be understood.

II. FINDING OPTIMAL PATHS IN TIME-DEPENDENT
NETWORKS

Typically, the task of finding optimal paths is carried out
on the basis of a database which contains information about
a graph which again represents a road network. Formally,
a (directed) graph

−→
G is a tuple (V,

−→
E ), where V denotes

a set of vertices or nodes and
−→
E ⊆ V × V is a set of

edges connecting some of these nodes. In this paper, no
multi-edges are allowed, i.e., for two nodes v1 and v2, at
most one edge (v1, v2) ∈

−→
E exists. It is also postulated

that v1 6= v2 for any edge (v1, v2) ∈
−→
E . Moreover, only

finite graphs are considered, i.e., | V |< ∞. The edges,
which basically represent road segments, possess features or
attributes, e.g. the length of the road segment or its slope. In
addition, to be able to optimize, a cost function c :

−→
E −→ R

assigning costs to the edges is necessary. These costs usually
depend on the attributes of the respective edge. For instance,
the cost function cdist may assign the length in meter to
road segments. A path on

−→
G = (V,

−→
E ) is defined as a

finite sequence of nodes v1, v2, ..., vn, where for each pair
of successive nodes (vi, vi+1) with i ∈ {1, 2, ..., n − 1}
the corresponding edge exists, i.e., (vi, vi+1) ∈

−→
E . A path

starting at a node v1 and leading to a node v2 is denoted as
v1− v2−path. Then, the problem of finding an optimal path
from a node s to a node d on the directed graph

−→
G = (V,

−→
E )

w.r.t. a cost function c can be stated as:

min c(P ) (1)

subject to: P is a s-d-path on
−→
G. (2)

Note that c(P ) denotes the sum over the costs of all edges
in path P .

A. Time-dependent Cost Functions

Finding optimal charging strategies will be modeled as
a shortest path problem, i.e., one has to compute optimal



paths. Here, a path is called optimal if it leads to the lowest
possible travel time. The cost function assigning travel times
to road segments is denoted with cT . As the traffic state
clearly influences the time needed for passing a road segment
and the traffic state itself strongly depends on time, cT is
time-dependent. When speaking of time-dependent costs, in
this paper it is assumed that the costs for an edge are fixed
at the time the edge is reached, i.e., if one wants to compute
the costs for a path P := [v1, v2, v3] for a given starting time
tS and a given time-dependent cost function c, then

c(P, tS) =c((v1, v2), tS)+ (3)
c((v2, v3), tS + cT ((v1, v2), tS)). (4)

Defining time-dependency in this way is denoted as frozen
link model [16]. Clearly, the time costs cT for any edge and
any (starting) time cannot be negative:

cT :
−→
E × R≥0 −→ R≥0 (5)

Note that here it is assumed that the starting time tS is
also non-negative. However, only considering time costs is
not realistic for developing a charging strategy. The limited
range of electric vehicles makes it necessary to take also
energy consumption into account. For instance, driving on
highways leads usually to very high speeds and consequently
such roads are interesting for optimizing travel times. On
the other hand, high speeds lead to high air resistance and
thus to high energy consumption for electric cars. In the
case of long distances, this implies more stops for charging,
which may be counter-productive for reducing the total
travel time. Estimating energy consumption for certain road
segments is not trivial, since the energy consumption of
electric cars depends on many aspects. Interior factors like
driving behaviour or vehicle type have influence as well as
exterior factors as weather conditions, road features [6] and
the current traffic situation [21]. Some of these factors are
strongly time-dependent. As a result, it is necessary to define
the cost function, which represents the energy consumption,
as a time-dependent function, i.e.: c̃E :

−→
E × R≥0 −→ R.

Fig. 1. Estimating the consumption of vehicles for road segments

A common approach to estimate the energy consumption
of cars for certain road segments is based on physical con-
sumption models [20]. These models allow the computation
of the instantaneous fuel consumption by considering vehicle

parameters, the slope of the road, the current speed and
the current acceleration. Note that this also implies that for
each car-type a new energy consumption cost function has to
be constructed. Recently, such models were also developed
for electric vehicles [13]. The most important difference
between energy consumption models and traditional fuel
consumption models is the possibility of gaining energy by
electric vehicles due to recuperation. According to this last
point, c̃E also assumes negative values, an aspect that will
be of relevance later on. To get from the energy consumption
model to an energy consumption c̃E(e, t) for a specific road
segment e ∈

−→
E at a certain time t, it is necessary to make

assumptions about typical driving patterns for e at t. A
driving pattern, on the other hand, depends on the driver,
road features, the weather and the traffic state. Since the
estimation of energy consumption along road segments is
not in the scope of this paper, see [12] for more details
concerning this topic.

Another important aspect, especially relevant for modeling
charging processes, is that the energy consumption does also
depend on the current state of charge. For example, if the
battery is almost fully charged, then its charging behaviour
impairs. The state of charge, denoted with SOC, results
from the initial state of charge SOCS , the precedent energy
consumption and the energy capacity of the battery. As the
state of charge is typically given as a percentage value, it
only obtains values between 0 and 1. Here, it is distinguished
between c̃E , which are the energy consumption costs that
does not take the current state of charge into account, and cE ,
which quantifies the percentage change of the state of charge.
Hence, for a given state of charge SOC, a given time t, the
energy consumption costs cE :

−→
E ×R≥ × [0, 1] −→ [−1, 1]

of an edge e are denoted by cE(e, t, SOC). As SOC can
obtain only values between 0 and 1, it is postulated for any
time t > 0, any SOC ∈ [0, 1] and any e ∈

−→
E :

0 ≤ SOC − cE(e, t, SOC) ≤ 1. (6)

Condition 6 ensures that within the model one cannot charge
(due to recuperation or charging at a charging station) more
energy than the amount of energy which leads to a fully
recharged battery. Additionally, it implies that if not enough
energy is stored in the battery to drive to the end of a certain
edge at a certain time, the resulting state of charge has to
be set to 0. Consequently, the corresponding edge cannot be
passed by the electric vehicle - at least not at the considered
time with the given state of charge. This leads to the idea that
only those paths are allowed during the route optimization,
for which the state of charge does not get too low:

Definition 1. Let a finite and directed graph
−→
G = (V,

−→
E ),

two cost functions cT , cE as described above, a starting
state of charge SOCS , a minimal allowed state of charge
SOCmin > 0 and a starting time tS be given. Then, a
path P = (v1, ..., vn) on

−→
G is called energy-secure (w.r.t.

SOCmin) if there is no node vi of P with

SOCS − cE((v1, ..., vi), tS , SOCS) < SOCmin. (7)



An energy-secure path is actually a path where the state
of charge never drops below the value SOCmin. Introducing
SOCmin is necessary to be able to compensate uncertainties
due to an inaccurate traffic prediction, or the unknown
behaviour of the driver. The lower SOCmin, the higher the
risk that mistakes of the energy cost estimation lead to an
empty battery.

A small example for the computation of time-dependent
cost functions is provided in Fig. 2. Here, the costs for
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Fig. 2. Cost computation in time-dependent networks

all edges but for (c, d) are time-independent. The costs are
displayed in the gray rectangles. The first entry within the
brackets refers to the time costs cT , the second entry to the
energy consumption costs c̃E . The costs c̃E for the edge
(c, d) are given by:

c̃E((c, d), t) :=

{
4, t ≤ 1;

1, else
(8)

The time costs cT ((c, d), t) are defined by:

cT ((c, d), t) :=

{
3, t ≤ 1;

1, else
(9)

The values SOCS = 1.0, SOCmin = 0.15 and the
maximum energy capacity of the battery Emax = 10 are
given. Emax is only introduced to allow the computation of
percentage changes of the state of charge. Furthermore, it is
assumed that cE is almost independent of the current state of
charge, only equation 6 is considered, i.e., a cE-value, which
offends this condition for an edge e, at time t and a state of
charge SOC, is adapted in the following way:

if Emax · SOC − c̃E(e, t, SOC) > 1, then (10)
cE(e, t, SOC) := SOC − 1 (11)

if Emax · SOC − c̃E(e, t, SOC) < 0, then (12)
cE(e, t, SOC) := SOC (13)

else (14)

cE(e, t, SOC) :=
c̃E(e, t, SOC)

Emax
(15)

Now, it is possible to compute the energy consumption costs
of path P := (a, c, d), when starting at time tS = 0. The
time at which node c is reached on P is denoted with tc.
The corresponding state of charge is given by SOCc:

tc := tS + cT ((a, c), tS) = 0 + 1 = 1 (16)
SOCc := SOCS − cE((a, c), tS , SOCS) (17)

= 1.00− 4

Emax
= 0.6 (18)

Then, the state of charge SOC(P, tS , SOCS) after driving
along path P when starting at time tS can be computed as
follows:

SOC(P, tS , SOCS) = SOCS − cE(P, tS , SOCS) (19)
= SOCc − cE((c, d), tc, SOCc) (20)
= 1.0− 0.4− 0.4 = 0.2 (21)

P is an energy-secure path according to definition 1. This
would not be the case if SOCmin would be set to more than
0.2.

An important aspect of this first example is that the energy
consumption costs could be reduced if the car waits at the
beginning until t′S = 1:

t′c := t′S + cT ((a, c), t′S) = 1 + 1 = 2 (22)
SOC ′c := SOCS − cE((a, c), t′S , SOCS) = 0.6 (23)

Then, for the resulting state of charge it holds:

SOC(P, t′S , SOCS) = SOCS − cE(P, tS , SOCS) (24)
= SOCS − cE((a, c), t′S , SOCS)

(25)
− cE((c, d), t′c, SOC

′
c) (26)

= 1− 0.4− 0.1 = 0.5 (27)

The reason for this is that the energy consumption costs for
the edge (c, d) are significantly lower if one starts at node
c at t > 1. However, proposing waiting times seems not
to be relevant for the practical application of navigation-
services and it is in a realistic scenario counter-productive
for minimizing the time costs. Thus, waiting times are not
considered in the remaining part of the paper.

B. Multicriteria Optimization

The notion of optimality for multicriteria minimization
problems leads to several issues. For instance, considering
the example graph shown in Fig. 2. If one compares the
a-d-paths P1 = (a, d) and P2 = (a, b, c, d). This leads for
tS = 0 and SOCS = 1.0 to costs

c(P1, tS , SOCS) :=

(
cT (P1, tS)

cE(P1, tS , SOCS)

)
=

(
5

0.5

)
(28)

c(P2, tS , SOCS) :=

(
cT (P2, tS)

cE(P2, tS , SOCS)

)
=

(
3

0.6

)
(29)

Deciding which path is ”better” is not trivial, since P2

leads to lower time costs, P1 to lower energy consumption
costs. For such situations, the concept of Pareto optimality
was introduced. Here, one possible formulation of Pareto



optimality for cheapest path problems in time-dependent
networks is stated:

Definition 2. Let a finite and directed graph
−→
G = (V,

−→
E ),

a starting node s, a destination node d, a starting time tS
and Z time-dependent cost functions c1, c2, ..., cZ be given.
Then, for a starting time tS , a s-d-path P ∗ is called Pareto
optimal if and only if there is no other s-d-path P̄ with

c(P̄ , tS) =

c1(P̄ , tS)
...

cZ(P̄ , tS)

 � c(P ∗, tS) =

c1(P ∗, tS)
...

cZ(P ∗, tS)

 .

(30)
Hereby, for two vectors c∗ := (c∗1, ..., c

∗
Z) and c̄ :=

(c̄1, ..., c̄Z) ∈ RZ , it is c̄ � c∗ if and only if the following
two conditions hold:

c̄i ≤ c∗i ∀i ∈ {1, ..., Z} (31)

and there is at least one index j ∈ {1, ..., Z} with

c̄j < c∗j . (32)

If c(P̄ , tS) � c(P ∗, tS), then it is written that P̄ dominates
P ∗ (for starting time tS).

The problem of finding all Pareto optimal paths on a
directed graph

−→
G for a starting time tS , a starting node s, a

destination node d and cost functions c1, ..., cZ is then stated
as:

min
�

c(P, tS) =

c1(P, tS)
...

cZ(P, tS)

 (33)

subject to: P is a s-d-path on
−→
G. (34)

Remembering the paths P1 and P2 from before, both paths
are Pareto optimal for tS = 0 due to definition 2 (under
the assumption of a fixed SOCS). In general, the number
of Pareto optimal paths can be very high. Actually, even for
only two cost functions, it can increase exponentially with the
number of nodes in V (see theorem 9.3 in [5]). This is one of
the main reasons leading to an extremely high computational
effort when generating the whole set of Pareto optimal
paths. To avoid unbearable computation times, several ap-
proaches were developed to reduce multicriteria optimization
problems to single-criteria optimization problems in such
a way that solving the new problem still leads to Pareto
optimal or at least to ”good” solutions. Besides the weighted
sum scalarization, where a weighted sum of cost functions
is considered as new objective function, the so-called ε-
constraint method (see section 4.1 in [5]) is one of the
most common ideas: Instead of trying to optimize all cost
functions c1, ..., cZ simultaneously, only the cost function
c1 is chosen as objective function. The other cost functions
c2, ..., cZ are allowed to obtain any value, as long as certain

upper bounds ε2, ..., εZ are respected:

min
�

c1(P, tS) (35)

subject to: P is a s-d-path on
−→
G (36)

ci(P, tS) ≤ εi ∀i ∈ {2, ..., Z} (37)

For the case of two cost functions and a path P =
[v1, ..., vZ ], the ε-constraint problem mirrors perfectly the
idea of energy-secure time-optimal paths if the following
definitions are made:

c1(P, tS) := cT (P, tS) (38)
c2(P, tS) := max{cE(P1:i, tS , SOCS) | i ≤ n} (39)

ε2 := SOCS − SOCmin (40)

Note that c2 depends not only on time, but also on the state
of charge.

C. Dijkstra’s Limits

In this paper, the optimization is done w.r.t. cT . Conse-
quently, to avoid confusion, it is not spoken of ”shortest” path
problems, but of ”cheapest” path problems. One of the most
common algorithms for solving cheapest path problems is
Dijkstra’s algorithm [3]. In the following, modified versions
of this algorithm are applied in order to find for a starting
time tS , a graph

−→
G , a starting node s, an initial state of

charge SOCS , a minimum state of charge SOCmin and a
destination node d a time-optimal and energy-secure s-d-path
P ∗ on

−→
G . Clearly, some kind of modification is necessary,

because Dijkstra’s algorithm in its basic version can neither
handle general time-dependent networks, nor cost functions
that assume negative values, nor several cost functions at the
same time. Solution methods meeting any of these conditions
have already been developed. For example, an approach to
use Dijkstra’s algorithm also for negative costs especially in
the context of electric vehicles is shown in [10]. The problem
of time-dependency is intensively discussed in [11], [8], [17]
and for multicriteria cheapest path problems an extension of
Dijkstra’s algorithm is stated in [15]. More recent work even
considers combinations of the above mentioned problems:
In [14] and [4], algorithms for solving multicriteria cheapest
path problems in time-dependent networks are shown. In [9]
additionally the topic of negative costs is covered. However,
any algorithm proposed in these papers which is capable of
handling several criteria generates the whole set of Pareto
optimal paths and thus suffer from very high computation
times. It has already been stated that in this paper one is
interested in just finding one time-optimal solution. Due to
this, different requirements are of interest, which leads to the
fact that algorithm 1 from [15] seems to be most suitable. In
its basic version, this algorithm is intended for multicriteria
cheapest path problems. It returns the set of all Pareto
optimal paths, but it cannot handle negative costs. Also time-
dependency has not been considered in [15]. The huge ad-
vantage of this algorithm is that it is a label-setting algorithm.
In contrast to label-correcting algorithms, as for example
in [9], algorithms of this type can typically be modified in



such a way that they stop as soon as one (Pareto) optimal
path is computed, a fact that can reduce computation times
drastically. Certainly, label-correcting algorithms are usually
used for handling negative costs as in most cases label-setting
algorithms cannot do this. For the proposed algorithm, this
will be no problem, as not a general multicriteria cheapest
path problem will be considered, but an ε-constraint problem,
where the optimization is done according to the nonnegative
cost function cT . When proving the correctness of algorithm
A, it can be observed that neither the negativity of cE , nor
its dependency on the state of charge have any impact within
the proof.

III. COMPUTATION OF ENERGY-SECURE TIME-OPTIMAL
PATHS

In this section, an algorithm (denoted as algorithm A) for
finding optimal charging strategies is introduced. It uses the
following definition:

Definition 3. For two Z-dimensional vectors c∗ :=
(c∗1, c

∗
2, ..., c

∗
Z), c̄ := (c̄1, c̄2, ..., c̄Z) ∈ RZ , the vector c∗ is

denoted as lexicographically smaller than c̄ if c∗ = c̄ or
if c∗j < c̄j with j := min{i : c∗i 6= c̄i, i ∈ {1, ..., Z}}.
Alternatively, one can write c∗ ≤lex c̄.

Furthermore, the notion of labels is used. Here, a label
L := (cT , cE , v

pre, npre, vcur, ncur) is a 6-tuple, i.e., an
ordered set of size six. Each label belongs to a specific
node, storing additional information about how the node
is reached during the route finding process: The first entry
contains the cumulated time costs of the considered node
on the current path, the second entry the cumulated energy
consumption costs. The third entry is the preceding node
on the current path. The fourth entry is the index of the
label of the preceding node. As different paths, which leads
to the same node, may lead to varying arrival times or a
different state of charge at this node, several labels may
belong to the same node. Consequently, an index is necessary
to distinguish between these labels. The fifth entry is the
current node, i.e., the node the label belongs to, and the last
entry is the corresponding index. Note that a label belongs to
a node, but it also allows the reconstruction of a path leading
to this node. Actually, by referring to its preceding label,
each label encodes a path. In the basic version of Dijkstra’s
algorithm, labels are assigned to nodes, too. However, these
labels only contain the costs for getting to this node and the
information about the preceding node.

The proceeding of algorithm A is comparable to Dijkstra’s
algorithm. In the following, it is explained for the case of
the example stated in Fig. 2. The starting node is a and the
destination node is d. Similar to Dijkstra’s algorithm, there
is a set of temporary labels Ltemp and a set of permanent
labels Lperm. Note that, in contrast to Dijkstra’s algorithm,
algorithm A cannot delete any labels, even labels of Ltemp.
The development of these sets during the initialization step
and all five iterations of the while-loop can be found in
Tab. I. Labels are ordered lexicographically according to
the costs which are associated with them. For a label L =

(ccurT , ccurE , vpre, npre, vcur, ncur), the corresponding costs
c(L, tS , SOCS) are defined as the cumulative costs

c(L, tS , SOCS) := (ccurT , ccurE ) (41)

Consequently, the labels in Ltemp are primarily ordered
according to their first entry, i.e., according to the cumulated
time costs which they encode. If several labels have the same
first entry, then these labels are ordered according to their
second entry.

Iteration Ltemp Lperm
L1
a := (0, 0%, ∅, 0, a, 1)

It. 1 L1
b := (1, 20%, a, 1, b, 1), L1

a

L1
c := (1, 40%, a, 1, c, 1)

L1
d := (5, 50%, a, 1, d, 1)

It. 2 L1
c L1

a, L1
b

L2
c := (2, 50%, b, 1, c, 2)

L1
d

It. 3 L2
c L1

a, L1
b , L1

c

L2
d := (4, 80%, c, 1, d, 1)

L1
d

It. 4 L3
d := (3, 60%, c, 2, d, 3) L1

a, L1
b , L1

c , L2
c

L2
d

L1
d

It. 5 L2
d L1

a, L1
b , L1

c , L2
c ,

L1
d L3

d

TABLE I
PROCEEDING OF ALGORITHM A FOR THE EXAMPLE FROM FIG. 2

During the initialization the label L1
a := (0, 0%, ∅, 0, a, 1)

belonging to the starting node a is generated and added to
the temporal labels Ltemp. The entries of L1

a result directly.
As there is no preceding node, the third and the fourth entry
of L1

a are simply set to ∅ and 0. Before the first iteration
of the while-loop, since the termination criteria in line 1 of
algorithm A cannot be fulfilled, the only element of Ltemp

is selected, i.e., in line 2 of algorithm A it is Lcur := L1
a.

The label is removed from the set of temporal labels and
added to the permanent labels Lperm. Then, in lines 4 to
7, new labels are created for all neighbouring nodes of a.
Note that nnew in line 7 of algorithm A is simply defined
by increasing the number of existing labels for node vnew

by 1. If there is no existing label, then nnew := 1. For the
considered example, there are three labels generated, one for
node b, c and d. As shown in Tab. I, these labels are added
to the set Ltemp as all of them fulfill the energy-security
condition in line 8. At the start of the second iteration label
L1
b is selected as the lexicographically smallest temporary

label and added to Lperm. With L2
c only one new label is

created. Note that at this time, two different labels belonging
to node c exist in Ltemp. The algorithm proceeds analogously
three further iterations until it terminates after making the
label L3

d permanent, which is the first label in Lperm that
belongs to the destination node d. If, after the termination
of algorithm A, there is a permanent label which belongs to
the destination node, then a solution, i.e., an energy-secure
path from the start to the destination, has been found. The



Algorithm A: Multicriteria Cheapest Path Search in Time-dependent Network with Negative Edge Costs
Input: A directed graph

−→
G = (V,

−→
E ), a starting node s, a starting time tS := 0, a destination node d, two cost functions

cT and cE as described above, a starting state of charge SOCS and minimal allowed state of charge SOCmin

Initialization: Create label L = (0, 0, ∅, 0, s, 1) for node s and define Ltemp := {L}
1 While Ltemp 6= ∅ and no label belonging to the destination node was added to Lperm, do:
2 Let Lcur = (ccurT , ccurE , vpre, npre, vcur, ncur) be the lexicographically smallest label in Ltemp.
3 Remove Lcur from Ltemp and add it to Lperm.
4 For all vnew ∈ V such that e := (vcur, vnew) ∈

−→
E do:

5 Compute cnewT := ccurT + cT (e, tS + cT )
6 Compute cnewE := ccurE + cE(e, tS + cT , SOCS − ccurE )
7 Create Lnew := (cnewT , cnewE , vcur, ncur, vnew, nnew)
8 If SOCS − cnewE ≥ SOCmin, then:
9 add Lnew to Ltemp

10 End if.
11 End for.
12 End while.
13 If possible, return a label L̄ ∈ Lperm that belongs to node d,
14 otherwise return ”No feasible solution found”.

reconstruction of the computed path can be done similar to
Dijkstra’s algorithm, by starting with the only permanent
label belonging to the destination node and successively
adding predecessors until a label is reached, which belongs
to the starting node. Continuing the example from above,
one has to start with L3

d. Its preceding label is encoded in its
entries three and four, namely the label L2

c . The predecessor
of label L2

c is L1
b , the predecessor of L1

b is L1
a. Hence,

the computed path is (a, b, c, d). The costs of the path are
according to equation 41 given by:

c(L1
d, 0, 100%) =

(
3

60%

)
. (42)

A. Proving Optimality of Algorithm A

Theorem 1. Let a finite and directed graph
−→
G = (V,

−→
E ),

a starting node s, a destination node d, two time-dependent
cost functions cT and cE (as described above), a starting
state of charge SOCS and minimal allowed state of charge
SOCmin be given. Furthermore, let there be no cycle on

−→
G

that leads to time costs of zero and let at least one optimal
solution for the problem of finding a fastest and energy-
secure path from s to d on

−→
G under the given conditions

exist. Then, algorithm A terminates with finding a label which
encodes a time-optimal and energy-secure s-d-path.

The condition that all cycles on
−→
G have to lead to positive

time-costs is only necessary to ensure that algorithm A does
not end up within an infinity-loop. This guarantees, together
with the finiteness of

−→
G and the existence of at least one

solution, that algorithm A terminates with finding a label
which belongs to d. According to this, the following proof
will only show that the computed label encodes a time-
optimal path.

Proof Let P ∗ = [v∗1 = s, ..., v∗K = d] denote a time-optimal
and energy-secure path for the problem described in theorem
1 and let L∗k denote the label corresponding to the k-th node

v∗k. Furthermore, let L̄ be the label computed by algorithm
A and let P̄ = (v̄1 = s, ..., v̄Q = d) be the corresponding
path, i.e., at the end of algorithm A, the label L̄ is added to
the set of permanent labels Lperm. The energy-security of
P̄ is trivially ensured by the condition of line 8 in algorithm
A. Hence, it is now assumed that P̄ is not time-optimal, i.e.

cT (P̄ , tS) > cT (P ∗, tS). (43)

As cT (e, t) ≥ 0 ∀e ∈
−→
E and ∀t, it holds that the time costs

P̄1:3

s v∗2

v∗K−1

d

v̄2

v̄3
v̄Q−1

P ∗

P̄

Fig. 3. Proving optimality of algorithm A

of all subpaths P ∗1:k with k ∈ {1, 2, ...,K} of path P ∗ are at
most as high as cT (P ∗, tS) and thus these costs are smaller
than the time costs for the computed path cT (P̄ , tS):

cT (L∗k, tS) = cT (P ∗1:k, tS) < cT (P̄ , tS) = cT (L̄, tS). (44)

This implies that all labels L∗k encodes lexicographically
lower costs than L̄:

c(L∗k, tS , SOCS) = (45)
(cT (P ∗1:k, tS), cE(P ∗1:k, tS , SOCS)) ≤lex (46)
(cT (P̄ , tS), cE(P̄ , tS , SOCS)) = c(L̄, tS , SOCS). (47)

Note that each label L̄q have to fulfill the condition in line
8 of algorithm A, since P̄ is energy-secure and thus, due to
definition 1, all its subpaths are energy-secure, too. Using
mathematical induction, it is now shown that all labels L∗k



are set permanent before the label L̄, which encodes the path
P̄ . This implies also that L∗K is added to Lperm before L̄
and hence the path P ∗ is found before P̄ . As algorithm A
terminates in line 1 if a permanent label for the destination
node is set, this implies that algorithm A terminates before
the label L̄ is set permanent, which is a contradiction to the
assumption that algorithm A ends with finding L̄.
Start of induction: As P ∗ is a s-d-paths on

−→
G , the first

label for this path is given by

L∗1 = (0, 0, ∅, 0, s, 1). (48)

This label is set permanent during the first iteration of the
while-loop in algorithm A and thus is it is added to Lperm

before L̄.
Inductive step: Let label L∗k with k < K be already added
to Lperm and L̄ /∈ Lperm. As P ∗ is a path on

−→
G , it is

(v∗k, v
∗
k+1) ∈

−→
E . Thus, at that time when L∗k was added to

Lperm, the label L∗k+1 is created in line 7. Since P ∗ and all
its subpaths are energy-secure, the label L∗k+1 is added to
Ltemp in the same iteration of the while-loop in which L∗k
was added to Lperm. Hence, L̄ cannot be in Lperm before
L∗k+1 is added to Ltemp. Thus, according to the term in 45
- 47, the label L∗j+1 is added earlier to Lperm than L̄.

A big advantage of algorithm A is that it returns an energy-
secure and time-optimal path even if under very weak
assumptions: Nonnegative time costs are, from a practical
perspective, no restriction. Furthermore, no FIFO-property
for cT [18], nor any conditions concerning the energy
consumption costs cE are made. However, this leads to
drawbacks for the computational speed:

Lemma 1. Let a finite and directed graph
−→
G = (V,

−→
E ),

a starting node s, a destination d, two time-dependent cost
functions cT and cE (as described above), a starting state of
charge SOCS and minimal allowed state of charge SOCmin

be given. Moreover, let a node v̄, a finite energy-secure s-
v̄-paths P̄ = [v̄1 = s, v̄2, ...., v̄Q = v̄] on

−→
G , as well as a

finite, energy-secure and time-optimal s-d-path P ∗ on
−→
G be

given with
cT (P̄ , tS) < cT (P ∗, tS). (49)

Then, if algorithm A is used to compute a time-optimal and
energy-secure s-d-path on

−→
G , no label encoding a time-

optimal and energy-secure path is added to Lperm before
all labels encoding subpaths of P̄ are added to Lperm.

Proof The proof of lemma 1 can be done via mathematical
induction, analogously to the proof of theorem 1. The only
difference is that now one has to show that all labels encoding
subpaths of P̄ are found before any label encoding a time-
optimal path.

Lemma 1 states that algorithm A computes any possible
path which is energy-secure and leads to time-costs lower
than the optimal time-costs for a s-d-path on

−→
G . The

reason for this is that, in contrast to (for example) Dijkstra’s
algorithm, no label is deleted because it encodes a ”bad”

path. Considering Tab. I, label L2
c leads for getting from

node a to node c to higher time- and consumption-costs than
L1
c , i.e., it is dominated by another label. Nevertheless, L2

c

is added to Ltemp and finally even to Lperm. Compared to
existing algorithms for solving multicriteria cheapest path
problems, which typically deletes dominated labels [15] and
still suffer from an exponential growth of computation time
[5], algorithm A would behave even worse until it terminates.
A possible way to delete at least all dominated labels is
provided by algorithm B: It is constructed as a modification
of algorithm A. The original for-loop is extended by adding
additional conditions which allows to delete all dominated
labels. This reduces the number of computed paths and thus
computation time. Algorithm B is very similar to algorithm
1 in [15]. The only differences are the energy-security
condition stated in line 9 of algorithm B and that algorithm B
terminates as soon as a label belonging to the destination is
added to Ltemp. Due to this also their computational behavior
is comparable. Analogously to Tab. I, Tab. II describes the
proceeding of algorithm B for the small example graph of
Fig. 2. Obviously, for the considered test case the number
of iterations and especially the number of created labels is,
compared to Tab. I, reduced. The condition in line 7 of
algorithm B ensures that in iteration 3, when label L1

b is
added to Lperm, label L2

c = (2, 50%, b, 1, c, 2) is, in contrast
to algorithm A, not added to Ltemp, since it is dominated by
L1
c . However, L2

c is part of the time-optimal path [a, b, c, d].

Iteration Ltemp Lperm
L1
a := (0, 0%, ∅, 0, a, 1)

It. 1 L1
b := (1, 20%, a, 1, b, 1), L1

a

L1
c := (1, 40%, a, 1, c, 1)

L1
d := (5, 50%, a, 1, d, 1)

It. 2 L1
c L1

a, L1
b

L1
d

It. 3 L2
d := (4, 80%, c, 1, d, 1) L1

a, L1
b , L1

c

L1
d

It. 4 L1
d L1

a, L1
b , L1

c , L2
c ,

L2
d

TABLE II
PROCEEDING OF ALGORITHM B FOR THE EXAMPLE FROM FIG. 2

Hence, algorithm B cannot guarantee time-optimal so-
lutions. The critical issue is that in multicriteria time-
dependent networks Bellman’s optimality principle [1] does
not necessarily hold [9]. Bellman optimality principle (or
the Bellman equation) forms typically the fundament of
dynamic programming approaches like Dijkstra’s algorithm.
Solutions to problems sufficing this principle have the prop-
erty that any sub-solution is optimal for the corresponding
sub-problem. Applied to the graph of Fig. 2, if Bellman’s
optimality principle holds, then any subpath of the time-
optimal path [a, b, c, d] should be a time-optimal solution for
the corresponding start and destination node, too. Certainly,
the path [a, b, c] is a subpath of the time-optimal path, but



Algorithm B: Modification of Algorithm A for Accelerated Computation
...
4 For all vnew ∈ V such that e := (vcur, vnew) ∈

−→
E do:

5 Compute cnewT := ccurT + cT (e, tS + cT )
6 Compute cnewE := ccurE + cE(e, tS + cT , SOCS − ccurE )
7 Create Lnew := (cnewT , cnewE , vcur, ncur, vnew, nnew)
8 If Lnew is not dominated by any other label in Ltemp or Lperm that belongs to vcur

9 and if SOCS − cnewE ≥ SOCmin, then:
10 add Lnew to Ltemp and delete all labels belonging to vcur in Ltemp that are dominated by Lnew.
11 End if.
12 End for.
...

not a solution to the problem of finding an energy-secure and
time-optimal path from a to c when starting at tS = 0 with an
initial state of charge SOCS = 100%. The possible existence
of dominated subpaths as parts of optimal paths is a huge
drawback. It prompts for the case of charging strategy op-
timization that dynamic programming approaches in general
cannot reduce their search space and simultaneously ensure
to find an time-optimal and energy-secure solution. Note
that algorithm B not only looses optimality: When trying to
compute an energy-secure and time-optimal a-d-path, Fig. 4
illustrates a small example, where algorithm B does not lead
to any solution at all, even though a feasible solution exists.
Similar to the problem stated in Fig. 2, algorithm B does not

a

b

c

d

(2,0.2)

(3,0.4)

(2,0.3)

time-dependent costs

time-independent costs
(cT , cE)

(2, 0.5), if t ≤ 3

(2, 0.3), if t > 1

tS SOCS SOCmin

0 100 % 20 %

Fig. 4. Limits of algorithm B

add label L2
c = (4, 0.5, b, 1, c, 2) to Ltemp. Unfortunately,

this label is necessary to construct the only energy-secure
a-d-path [a, b, c, d]. The label L1

d = (5, 90%, c, 1, d, 1) is
created during iteration 3, but it encodes no energy-secure
path as SOCmin is equal to 20% and the path [a, c, d], which
is encoded by L1

d, leads to a state of charge of

SOCS−cE([a, c, d], 0, 100%) = 100%−90% = 10%. (50)

Consequently, this label does not fulfill the energy-security
condition in line 9 of algorithm B and it is not added to
Ltemp. Note that algorithm B would return time-optimal
solutions if Bellman’s optimality principle holds. This could

Iteration Ltemp Lperm
L1
a := (0, 0%, ∅, 0, a, 1)

It. 1 L1
b := (2, 20%, a, 1, b, 1), L1

a

L1
c := (3, 40%, a, 1, c, 1)

It. 2 L1
c L1

a, L1
b

It. 3 L1
a, L1

b , L1
c

TABLE III
PROCEEDING OF ALGORITHM B FOR THE EXAMPLE FROM FIG. 4

be proven similar to theorem 1. One has to additionally show
that all labels which are deleted due to the new condition in
line 8 or the new instruction in line 10 of algorithm B are not
preceding labels of a label which encodes a time-optimal and
energy-secure solution. But this follows due to the fact that
all preceding labels of labels which encodes a time-optimal
and energy-secure solution have to encode a non-dominated
path. From a practical perspective, it seems reasonable to
ignore dominated sub-strategies, although first computational
results indicate that even in a realistic scenario, i.e., with
realistic cost functions, Bellman’s optimality principle not
necessarily holds.

IV. MODELING CHARGING PROCESSES

Now, charging stations are modeled as a part of a directed
graph. To do this, a setting is assumed as visualized in the
upper part of Fig. 5: A charging station is located along
the road segment which is represented by the edge (a, b).
The idea is to extend the graph in such a way that paths
may also ”visit” the charging station. In addition, varying
charging durations should be possible. One approach to do
this can be found in the lower part of Fig. 5. Here, charging
durations of 5, 10, 15, ..., 60 minutes are modeled. Starting
from node a, one either can get directly to node b, or one
drives to the charging station denoted by nodes e and ld
with d ∈ {5, 10, 15, ..., 60}. The time costs for the edges
(a, e) and (ld, b) have to represent the duration for driving
from node a to the charging station or from the charging
station to node b, respectively. The same holds for the energy
consumption costs. Important in this context is that on edge
(a, e) an electric vehicle always decelerates its speed down to
zero and on edge (ld, b) it accelerates starting from a speed of
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Fig. 5. Modeling of charging stations

zero. However, the most interesting part is the cost-modeling
for the edges (e, ld). These edges are intended to represent
the charging process itself, i.e., the edge (e, ld) represents a
charging process of duration d. For the current considerations
d is given in minutes, i.e., the edge (e, l20) corresponds to
a charging duration of 20 minutes. Consequently, assuming
that one can start charging immediately, independent of the
arrival time t, it is cT ((e, ld), t) := d. Note that one could
also add additional time for paying the charged energy or get-
ting off and into the car. To define the energy ”consumption”
costs when charging, information concerning the relation
between charging duration and charged energy is necessary.
Here, it is assumed that a function S : R≥0 −→ [0, 1] is
given, which returns for a given charging duration d the
resulting state of charge if one assumes that the initial state
of charge, i.e., the state of charge at the beginning of the
charging duration, is equal to zero. An example of how such
a function may look like, can be found in Fig. 6. It has

duration d

SOC

S(d)

dmax

1.0

SOC

cE((e, ld), SOC, t)

cT ((e, ld), t)

d

Fig. 6. Relation between charging duration and state of charge

already been mentioned that typically less energy can be
charged during a certain time interval if the battery is almost

fully charged. Hence, S is concave. Furthermore, as a longer
charging durations obviously lead to a higher state of charge,
it follows that S is monotonically increasing until the battery
is fully charged. The time which is needed to fully recharge
a battery with an initial state of charge of 0 is denoted with
dmax. Moreover, S(d) ≡ 1 for d ≥ dmax. Consequently,
the function S can be inverted on the interval [0, dmax], i.e.,
S−1 : [0, 1] −→ [0, dmax]. Note that for the nodes ld, a value
d > dmax is not necessary, since even for an initial state of
charge of 0 the battery would be already fully charged after
a charging duration of d. Due to this, the highest possible
charging duration should be set equal to dmax. By assuming
that the charging duration for charging from a value SOC1

up to a value SOC2, with SOC1 ≤ SOC2, is always equal to
the difference between S−1(SOC2) and S−1(SOC1), it can
be concluded for any charging duration d ∈ {5, 10, ..., 60}:

cE((e, ld), t, SOC) := −S(d+ S−1(SOC)) + SOC (51)

Note that such edge costs are negative, but algorithm A still
finds a time-optimal and energy-secure solution, since all
conditions of theorem 1 are fulfilled.

V. APPLICATION POSSIBILITIES AND LIMITS

Algorithms 1 and 2 were originally developed for a very
restricted setting: The starting time and the starting state of
charge are variable, but given. Certainly, the starting point,
the destination and even the route and potential charging
stations are fixed. Within the project (see section ”acknowl-
edgments”), in which this research takes place, a route
starting in Munich and leading via the German autobahn A9
to Leipzig is analyzed. Along this more than 500 kilometers
long road corridor altogether 7 fast charging stations are
placed. Additionally, one fast charging station is located at
the beginning and one at the end of the route. The possibility
to charge fast, i.e., one needs roughly 25 minutes to charge
an empty battery up to a state of charge of 80%, is in this
context very important. Conventional charging would lead to
charging durations of several hours, which is inappropriate
for recharging batteries during a trip. First computational
results for this limited setting shows that algorithm B is
sufficiently fast, whereas algorithm A even in this small
setting is quite slow. Thus, algorithm A is mainly useful for
an ex post determination of the quality of solutions computed
by algorithm B and hence to estimate the applicability of
algorithm B.

The restriction to one specific route does only allow
to avoid traffic congestions temporarily, but not to cir-
cumvent them spatially. Lots of optimization potential is
lost. However, a generalization to arbitrary road networks
probably leads to unacceptably high computation time, even
for algorithm B. The critical issue is that the problem of
finding cheapest paths can (at least up to the current state of
art) neither be solved in polynomial time for general time-
dependent networks [17], nor for the multicriteria case [5].
Nevertheless, recently so-called preprocessing methods were
introduced, for example in [19] or [7]. Such approaches
are used to compute apriori, i.e., before the first route



search is carried out, additional information for a given
graph. Afterwards, this additional information is used by
routing algorithms to speed up their computation times. This
allows to find optimal solutions even for time-dependent or
multicriteria routing problems in moderate time (chapters 5
and 6 in [2]). Note that most of these procedures need the
computation of many optimal paths for the preprocessing.
Both, time-dependency, as well as the existence of several
criteria increase the computational effort. The existence
of negative costs and, remembering lemma 1, especially
the fact that Bellman’s optimality principle does not hold
may increase computations times further. Even though fast
computation times for the preprocessing methods are not
necessary (since the preprocessing has to be done only
once), the corresponding computations at least have to be
executable in reasonable time. All in all, using preprocessing
methods seems inevitable if one wants to apply the proposed
algorithms to general road networks, but a detailed analysis
of potential preprocessing methods has to be carried out
in order to understand which methods can in general be
applied and which of these methods may lead to substantial
accelerations.

VI. SUMMARY

Goal of the paper was the development of a point-to-point
cheapest path problem and a corresponding optimization
algorithm in order to generate optimal charging strategies
for electric vehicles on long trips. At the beginning, the
focus was set on analyzing properties of the cost functions
cT and cE , which describe the time consumption and the
energy consumption, respectively. To mirror reality ade-
quately, it was explained why both cost functions have to
be considered simultaneously, why both functions have to
be time-dependent and why cE can assume negative values.
Each of these three properties causes difficulties for cheapest
path searches. Nevertheless, an algorithm has been proposed
which is capable of handling all of these issues. It has
been proven that this algorithm finds a time-optimal solution
which additionally guarantees an energy-secure arrival at the
destination and it was argued that this algorithm leads to very
high computation times. A modification of this algorithm,
leading in general to non-optimal solutions, was introduced
in order to reduce computational effort. The possibility of
charging during the trip was included in the graph-based
routing model and a small discussion concerning potential
applications of the proposed algorithms was given.
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