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Abstract—The temperature dependency of a Dual Kalman
Filter (DKF) is shown. For this purpose a validation process
is developed to show the behaviour of the filter at various
cell temperatures (5 ◦C, 25 ◦C, and 35 ◦C). Additionally, the
validation process reveals some unresolved problems such as the
behaviour during constant voltage periods. The behaviour of
the DKF is compared to experimental data. The state estimator
predicts the state of charge (SOC) with an accuracy of 1.5 %
within the investigated temperature range. Furthermore, the state
estimator is able to reproduce the observed characteristics of the
ohmic resistance (Rdc1s) of the equivalent circuit model (ECM).

I. INTRODUCTION

Nowadays, electric mobility gains sufficiently importance.
Due to the reduced range compared to a vehicle equipped with
a conventional combustion engine battery electrical vehicles
(BEV) and hybrid electrical vehicles (HEV) still play a minor
role in today’s mobility. With a reliable state determination
of the built in battery system, the usable amount of energy
can be raised and, hence, the range can be increased. In
literature, numerous algorithms for the state estimation can be
found [1, 2, 3, 4, 5]. However, these algorithms are mostly
tested within the laboratory scale at predefined conditions.
The shortcomings of these algorithms are often not shown.
Therefore, this paper presents a validation method to test state
estimators for the mentioned shortcomings. Here, the Dual
Kalman Filter is investigated. The focus lies on the temperature
dependency of relevant state parameters of the battery and,
consequently, on the high requirements of the filter. In chapter
II the ECM used is presented and the identification process
of the reference parameters is shown. In chapter III the DKF
used here is explained [6]. The validation method is shown
and some problems of the filter are revealed in chapter IV.
The results are presented and discussed in chapter VI.

II. BATTERY MODELLING

To describe the behaviour of batteries an ECM can be
applied. The most frequently used ECM is a simple model,
which consists of a direct voltage source, a serial resistor and
one or more RC-terms. With an increasing number of RC-
terms, the accuracy of the model increases as well. However,
this leads to a higher complexity and, consequently, to an
increased demand on the computational effort (e.g. battery
management system, BMS). Due to the limited computational
power that can be implemented on a BMS, different ECMs
were compared in [7] to find a compromise between accuracy
and computational time. The resulting ECM is shown in figure
1.
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Fig. 1. The equivalent circuit model with one RC-term

U0 corresponds to the SOC dependent open circuit voltage
(OCV). Due to the current sample rate of 1 s, Rdc1s corre-
sponds to the serial ohmic resistance and to the charge transfer
effects. R1 and C1 corresponds to the elements of the RC-term.
U1 is the voltage drop by the RC-term and contains diffusion
effects, UT and IT corresponds to the terminal voltage and
current. Applying the mesh rule, the following set of equations
can be found to describe the states in the time domain.[
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UT (t) = U0(SOC(t)) +Rdc1s · IT (t) + U̇1(t) (2)

CN is the capacity of the cell. The exact derivation of the
equations can be found in [6]. After the discretisation of the
ECM the DKF can be implemented.

The parameters of the model can be identified by measuring
the voltage response of a battery as a result of current pulses
over the entire SOC range (5 % SOC steps). In figure 2 the
voltage response as a result of a current pulse is shown. The
voltage drop between P1 and P2 is used to calculate the resistor
Rdc1s. The following voltage drop between P2 and P3 is a
result of the diffusion effects. After the end of the pulse, the
cell relaxes.

The pulses were performed at 5 ◦C, 25 ◦C and 35 ◦C every
5 % ∆SOC. Applying this method, the measured parameters
can be compared to the estimation using the DKF as a function
of SOC and temperature.
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III. THE DUAL KALMAN FILTER

Within this paper, the investigations are carried out using
the DKF which was introduced in [6]. This implementation has
already shown good agreement of the estimated states of the
battery as well as the parameters of the ECM with measured
data. This filter is a combination of a Linear Kalman Filter
which estimates the states U1 and SOC and an Extended
Kalman Filter which estimates the parameters CN (cell ca-
pacity), Rdc1s, R1 and C1.

Referring to the findings of [6] further optimisation is
shown here. The resulting filter structure can be found in figure
3.

The dual filter structure contains an update and a correction
of the state and parameter estimation. Thereby, the expected
states are updated with the calculation of the state space
formulation in equation 3.

Due to the fact that the state space formulation does not
exist for the parameters of the ECM, an update is not possible
and the adaptation of the parameters has to be done in the
correction. This results in the fact that the input ŵ−

k for the
correction is the parameter ŵ+

k−1 from the previous step (figure
3). For a dynamic adaptation of the parameters it is vital to
consider the process noise of the parameters themselves.
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Fig. 3. The structure of the DKF

x̂+k−1 estimated state of the step before
x̂−k updated state of the actual step
x̂+k corrected state of the actual step
P+
x̂k−1

state error covariance of the step before
P−
x̂k

updated state error covariance of the actual step
P+
x̂k

corrected state error covariance of the actual step
P+
ŵk−1

parameter error covariance of the step before
P−
ŵk

updated parameter error covariance of the actual
step

P+
ŵk

corrected parameter error covariance of the actual
step

uk actual input
uk−1 input of the step before
yk measured output
T time transformation

A first coupling of the two filters is implemented at the
beginning of each cycle k given the fact that the parameters
are the input for the state and parameter estimator. A second
coupling is achieved in the correction, as the updated state x̂−k
is also necessary for the parameter correction [6].

The parameter Rdc1s can be found only in the output
equation ŷk but not in the equations of the state vector x̂k.
Hence, Rdc1s can be removed from the parameter estimator
and can be added to the state estimator. Due to this, the
performance of the resistor Rdc1s estimation and the stability
of the filter could be increased.

The resulting discrete state space formulation is presented
in equation 3 and 4.

x̂k = Φk · x̂k−1 + bk · uk + vk (3)
ŷk = hk · x̂k + nk (4)

with

x̂k =
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SOCk
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 (5)
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 (6)
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The output vector hk is calculated to

hk =


1

U0(x̂
−
2k

)

x̂−
2k

Ik

 (8)

The variables vk and nk represent an independent,
zero–mean, Gaussian process and measurement noise. The
equations for the calculation of the linear state estimator based
on [6] are shown in table I.



description equation

prediction states x̂−k = Φk · x̂+k−1 + bk · uk
measurement update ŷk = hk · x̂−k
prediction error covariance P−

k = Φk · P+
k−1 · ΦT

k + Qk

Kalman gain Kk = P−
k · hTk ·

(hk · P−
k · hTk + Rk)

correction states x̂+k = x̂−k + Kk(yk − ŷk)
correction error covariance P+

k = (I − Kk · hk)P−
k

TABLE I. EQUATIONS FOR THE LINEAR KALMAN FILTER

The matrices Qk and Rk are the process and measurement
noise matrices, I is the identity matrix.

The parameters CN , R1 and C1 are estimated with the
Extended Kalman Filter shown in table II.

description equation

state space formulation xk = f(xk−1, wk, uk) + vk
y
k

= g(xk, uk) + nk
prediction parameter ŵ−

k = ŵ+
k−1

prediction error covariance P−
wk

= P+
wk−1

+ Qwk

Kalman gain Kwk
= P−

wk
· HT

w·
(Hw · P−

wk
· HT

w + Rwk
)

correction parameter ŵk = w−
k + Kwk

(yk − ŷk)
correction error covariance P+

wk
= (I − Kwk

· Hw)P−
wk

TABLE II. EQUATIONS FOR THE EXTENDED KALMAN FILTER

Qw and Rw are the process and measurement noise ma-
trices for the parameter estimator. For the implementation the
Jakobi matrix of the matrix Hw is needed. For this purpose
the partial derivation has to be calculated [8]. The formulation
of the partial derivation is:

Hw,k =
dg(x̂−k , uk)

dŵ−
k

dg(x̂−k , uk)

dŵ−
k

=
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dŵ−

k
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dŵ−

k

=
δf(x̂+k−1, uk−1, ŵ

−
k )

δŵ−
k

+
δf(x̂+k−1, uk−1, ŵ

−
k )

δx̂−k−1

dx̂+k−1

dŵ−
k

(9)

IV. THE VALIDATION METHOD

Within the literature various algorithms for the state esti-
mation can be found which are validated by applying different
methods. Due to this, the comparison of the algorithms is not
easy. Furthermore, shortcomings of the estimators are often
not considered within the validation process. Therefore, in this
chapter the problems of the DKF are shown and a feasible
validation process is presented.

A. Determination of the reference state of charge

An important issue of the validation is the determination
of the reference SOC to compare the estimated SOC with a
reliable value. A common method to measure the reference
SOC is the Ah-counter. For this issue, mostly the same current
sensor is applied which is also used for the Kalman Filter.
Hence, the accuracy of the estimation is determined by using
the same sensor signal as for the reference. So, a profound
evaluation considering the accuracy of the state estimation
is not possible. Consequently, a more accurate validation is
needed. This can be achieved by including a second current
sensor with a higher accuracy [3, 6, 9].

By the determination of the reference SOC with a Ah-
counter the finite sample rate causes an error during dynamic
current curves (green area in figure 4 A). This error increases
with an increase of time. A more accurate possibility is a rest
discharge at the end of the test. Due to the constant current
discharge the accumulated errors because of the finite sample
rate can be neglected (figure 4 B). This issue is mandatory
during long term tests.
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Fig. 4. Comparison of the error due to the finite sample rate during a dynamic
current discharge and a constant current discharge

B. Influence of the temperature

The parameters of a battery are dependent on the tem-
perature. Furthermore the OCV changes with temperature
depending of the chemistry and SOC [10]. Xing et al. [3]
shows the influence of the temperature depending OCV of a
Lithium-Iron-Phosphate (LFP) cell to the state estimation with
a KF. To resolve this problem different OCVs at different
temperatures were implemented in the battery model. The
OCV of the cell (NMC) used in this paper has a small
dependency of the temperature. Due to this the variation of
the OCV with the temperature is neglected here and only the
OCV at 25 ◦C is used. The self-heating of the cell during the
driving cylce is lower than 1 ◦C and thereby neglected as well.
The temperature dependency of the parameters and the results
of the estimation are shown in chapter VI.

C. Charging - constant voltage phases

In literature the KF is rarely validated during charging.
The reason are the slow dynamics in the constant current
and voltage phases during the charging process. Because these
required informations for the parameter estimator are missing,
the estimation can not be precisely. This behaviour is shown
for R1 in figure 5. The DKF is initialised with a SOC of 10 %.
Due to the missing dynamics mentioned before the parameter
is not estimated correctly (from the left to the right). When the



dynamic driving cycle is started more information is available,
hence the estimation converges to the measured curve (from
the right to the left).
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Fig. 5. The measured (red) and the estimated (blue) resistor R1 during
charging and discharging
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Considering the voltage estimation (figure 6) an overshoot
when the current is switched on can be observed. Thereby the
blue curve shows the estimated, the red curve the measured
voltage. In the figure also the estimated (green) and measured
(orange) OCV is shown. The measured OCV is calculated by
the reference SOC and the OCV look up table. The voltage
overshoot indicates too high initial parameters of the internal
resistances. The DKF is able to correct the parameters quickly.
This can be seen in figure 5. In the SOC estimation the

overshoot is not visible (figure 7). Also the undershoot of the
voltage in the CV phase can arise from the wrong estimation
of the parameters during the charging due to missing informa-
tions. But the DKF is able to correct the estimation within the
constant voltage phase.
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phase

In the literature this problem is often not shown or avoided
by using e.g. the inverted driving cycle to charge the cell [11].
Due to this the DKF has enough information also during the
charging process.

D. Pause - constant SOC phases
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Fig. 8. Two hour pause with the following driving cycle. The DKF corrects
the error based on the offset of the current measurement.



Due to the wide measurement range of current sensors the
measurement of small currents can be disturbed by noise or the
offset of the sensor. This errors can effect the SOC estimation.
To investigate this issues long pauses are necessary. During this
phase the Ah-counter increases due to the offset of the current
sensor, despite of this the SOC estimation of the DKF has to
stay constant. Figure 8 shows that after a transient effect the
estimated SOC stays constant while the Ah-counter increases
the SOC. The transient effects at the beginning are evoked
by inaccurate initial parameters. During the driving cycle the
estimation converges again to the reference SOC.

E. Long term validation

To prove the stability and the convergence of the DKF a
long term validation is necessary. Further investigations have
to show the estimation accuracy and the stability of the filter
despite variable ambient temperatures and ageing effects. Due
to the short term validation in this paper, the capacity CN is
constant.

V. DESIGN OF EXPERIMENT

In figure 9 the setting of the experiment is shown. The
Artemis driving cycle is applied to the battery with the
BaSyTec testing system. In addition the cell voltage and
the current are measured with the BMS. The more accurate
current sensor from BaSyTec provides the reference SOC.
The accuracies of the used sensors are summarised in table
III. To conduct the measurements at 5 ◦C, 25 ◦C and 35 ◦C
the cell is located in a temperature chamber. In further works
temperatures below 0 ◦C are investigated.
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Fig. 9. Design of experiment

BaSyTec BMS
Voltage resolution 0.3 mV 1.5 mV
Current resolution 1 mA 10 mA
Voltage accuracy 1 mV ± 0.25 % at 3.6 V
Current accuracy 0.2 mA ± 0.25 % rdg

TABLE III. ACCURACIES OF THE VOLTAGE AND CURRENT
MEASUREMENT

Based on chapter IV the voltage curve in figure 10 was
developed. At the beginning the actual usable capacity is
determined by a full CCCV charging followed by a full CCCV
discharging. Due to parameter determination problems at low
SOCs the battery is pre charged to 10 % where the DKF is
initialised. After a pause of two hours the battery is charged to
100 %. Followed a further pause of two hours the discharge is
started. Thereby the discharge is a repeating Artemis driving

cycle until a defined abort criterion is reached. At the end of
the discharge a rest discharge is performed to determine the
exact reference SOC. To proof the functionality of the DKF
over the hole SOC range the length of the driving cycle is
extended about 10 % in every validation cycle. The results
from the estimation is compared to the results of the complete
discharge test.

Start at 10 %

Complete discharge

Reference point (Ah)

Driving cycle

10 % * n

Capacity measurement Constant voltage phase

Fig. 10. The validation process

VI. RESULTS

The estimation results from the DKF compared to the
measurements are shown. The reference parameters are de-
termined with current pulses in 5 % steps over the SOC range
(chapter II). The reference SOC is determined with the rest
discharge test mentioned before. The difference between the
measurement and the estimation is indicated with the absolute
error in %.

A. Temperature influence to the state estimator

Due to the low dynamic during charging in this paper only
the results during discharging are presented. In figure 11 the
SOC curve of a discharge with the driving cycle from 90 %
to 10 % at 25 ◦C is shown.
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The blue (Ah-counter BMS) curve represents the Ah-
counter based on the BMS current sensor. The green (Ah-
Counter BaSyTec) curve is the Ah-counter based on the mea-
surement of the BaSyTec test system. The red (SOC KF) curve
is the SOC estimation of the DKF and the orange (∆ SOC)
curve is the error between the estimation and the reference,
respectively. It can be observed that the DKF converges to the
reference despite the offset drift of the used current sensor.
The noisy error curve (orange) is caused by the asynchronous
measurement between the BMS and the BaSyTec. In figure
12 the accuracies of the estimations at the end of every
driving cycle and discharge tests are compared. In the range
of the tested temperatures the estimation has an absolute
accuracy between -1.0 % and +1.5 %. The parallel translation
could be induced from the temperature depended OCV. An
implementation of the OCV dependency in the model can
increase the accuracy.

The results for the resistor Rdc1s are shown in figure
13. The measurements and the estimations show a good
accordance at different temperatures. Only the estimation at
5 ◦C shows an underestimation of the resistance.

B. Temperature influence to the parameter estimator

Figure 14 present the results of the RC-term elements.
In the measurements of the resistor R1 a low temperature
dependency is observable. This is also seen in the estimation.
At 25 ◦C and 35 ◦C the resistor is under 60 % overestimated,
at 5 ◦C instead underestimated. But the tendency of the curve
of the estimation suits to the measurement. The ripple of the
estimated resistor arise from the modelling of the process
noise. Further investigations have to find a compromise be-
tween stability and a dynamic behaviour with respect to reduce
the ripple. The validation of the capacity (CN ) estimation has
to be done in a long term test.

To receive the shown results it was necessary to change the
tuning parameters of the DKF at the different temperatures.
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VII. CONCLUSION

The presented paper shows the validation of a DKF. At the
beginning the determination of the reference parameter was
shown. The filter structure was explained and the shortcom-
ings of the filter were described. Based on this an objective
validation method was illustrated. The validation contains long
rest periods, low (charging) and high (driving cycle) dynamic
periods. Due to the lower estimation accuracy of the param-
eters during charging only the result during discharging with
the driving cycle were presented. The state estimation shows
during discharging at different temperatures an accuracy of 1.5
%. Also the parameter estimation shows a stable behaviour and
can follow the measured curves. In further investigations the
temperature dependency has to be analysed in more detail, the
focus will be on the different results of the state estimator
at different temperatures. Furthermore the estimation of the
parameters during charging has to be improved.
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