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Abstract

We consider the number of walks in undirected and directed graphs and, more generally,
the weighted sum of entries of matrix powers. In this respect, we generalize an earlier result
for Hermitian matrices. By using these inequalities for the entry sum of matrix powers, we
deduce similar inequalities for iterated kernels. For further conceivable inequalities, we provide
counterexamples in the form of graphs that contradict the corresponding statement for the
number of walks. For the largest eigenvalue of adjacency matrices, we generalize a bound
of Nikiforov that uses the number of walks. Furthermore, we relate the number of walks in
graphs to the number of nodes and the number of edges in iterated directed line graphs.

1 Introduction

1.1 Notation

We use standard notation, where R denotes the set of real numbers, C is the set of complex
numbers,N denotes the set of nonnegative integers, and [n] is the set {1, . . . , n}. The n-dimensional
vector where each entry is 1 is denoted by 1.

Throughout the paper, A denotes an n×n-matrix with entries ai,j ∈ C. We refer to the entry
in row i and column j of a matrix A (i.e., A(i,j) = ai,j) as the (i, j)-entry of A. The transpose of
matrix A is denoted by AT , i.e., (AT )(i,j) = A(j,i). For c = a + ib ∈ C with a, b ∈ R, c̄ = a − ib
denotes the complex conjugate of c. The conjugate transpose of the matrix A is denoted by A∗,

i.e., (A∗)(i,j) = Ā(j,i). The (i, j)-entry of the k-th matrix power Ak is denoted by a
[k]
i,j =

(
Ak
)
(i,j)

.

The sum of all entries in row i and column j is denoted by ri and cj , respectively. For the total
sum of all entries of A, we use the notation sum(A) =

∑
i∈[n]

∑
j∈[n] ai,j .

Let G = (V,E) be a (directed or undirected) graph having n vertices and m edges. Unless
stated otherwise, we assume that the graph is simple and there are no loops. An undirected edge
between vertices u and v is denoted by the unordered pair {u, v}. In contrast, a directed edge
from u to v is denoted by the ordered pair (u, v). The out-degree of node x (the number of edges
emanating from x) is denoted by dout(x) while the in-degree of x (the number of edges pointing
to x) is denoted by din(x). For undirected graphs, we use dx = dout(x) = din(x). The adjacency
matrix A of G is the n× n-matrix where ai,j = 1 if there is an edge from node i to node j in G,
and ai,j = 0 otherwise.

We investigate (the number of) directed walks, i.e., sequences of vertices, where each pair of
consecutive vertices is connected by an edge. Nodes and edges can be used repeatedly in the
same walk. The length of a walk is the number of its edges. For vertices x, y ∈ V and k ∈ N,
let Wk(x, y) denote the set of walks of length k that start at vertex x and end at vertex y. Let
wk(x, y) = |Wk(x, y)| denote the corresponding number of walks of length k from x to y. For
undirected graphs, we have wk(x, y) = wk(y, x). Let sk(x) =

∑
y∈V wk(x, y) denote the number

of walks of length k that start at node x. Similarly, ek(x) =
∑

y∈V wk(y, x) denotes the number
of walks of length k that end at node x. In the case of undirected graphs, those numbers are
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equal. Then we use the term wk(x) = sk(x) = ek(x). In general, wk =
∑

x∈V sk(x) =
∑

x∈V ek(x)
denotes the total number of walks of length k. Obviously, wk =

∑
x∈V wk(x) holds for undirected

graphs.
It is a well known fact that for every graph on n nodes with adjacency matrix A, the (i, j)-

entry of Ak equals the number of walks of length k that start at vertex i and end at vertex j,

i.e., wk(i, j) = a
[k]
i,j for i, j ∈ [n] and k ∈ N. This implies sk(i) = r

[k]
i , ek(j) = c

[k]
j (in particular

dout(i) = ri, din(j) = cj), and in total wk = sum(Ak). For each node v, we have s0(v) = e0(v) = 1
(w0(v) = 1 for undirected graphs) and s1(v) = dout(v) as well as e1(v) = din(v) (w1(v) = dv for
undirected graphs). This implies w0 = n and w1 = m (w1 = 2m for undirected graphs).

A fundamental observation is that, in any directed or undirected graph, the number of walks
of length k + ` from a vertex x ∈ V to a vertex z ∈ V can be decomposed by wk+`(x, z) =∑

y∈V wk(x, y) · w`(y, z). For matrices, this could be expressed as a
[k+`]
x,z =

∑
y∈[n] a

[k]
x,y · a[`]y,z For

an arbitrary matrix A, we have sum
(
Ak+`

)
=
∑

i∈[n] c
[k]
i · r

[`]
i . This implies for directed graphs

that wk+` =
∑

x∈V ek(x) · s`(x) and for undirected graphs that wk+` =
∑

x∈V wk(x) · w`(x).

1.2 Motivation and Related Work

Inequalities for the entry sum of matrix powers, and in particular for the number of walks in
graphs, appeared in different research subjects. Prominent examples are inapproximability re-
sults for the problems Maximum Clique and Densest k-Subgraph [AFWZ95; FKP01], extremal
graph theory [ES82], spectral radius bounds [Nik06], combinatorics on words generated by au-
tomata [Lot83], or simple combinatorial problems like the number of length k sequences of moves
of a king on an n × n chess board [Cve70]. A huge amount of publications exists in the field of
theoretical chemistry, see, e.g., [Raz86]. In general, entry sums of matrix powers often appear in
the analysis of iteration processes, e.g., in population genetics [Edw00]. Among other things, we
will show further relations between walks and iterated kernels as well as directed line graphs.

First, we briefly review related work. Lagarias, Mazo, Shepp, and McKay [LMSM84] proved
that the inequality wr · ws ≤ n · wr+s holds for the case of an even sum r + s. Hence, it could be
stated as w2a+b · wb ≤ w0 · w2(a+b) for a, b ∈ N. (Furthermore, they presented counterexamples
whenever r + s is odd and r, s ≥ 1.) A unification with the similar result w2

a+b ≤ w2a · w2b by
Dress and Gutman [DG03] was provided in [TWK+13]. Later, it was realized that this generalized
form is a special case of the following theorem in which Marcus and Newman [MN62] considered
inequalities of unweighted entry sums.

Theorem 1 (Marcus and Newman). For every Hermitian matrix A and nonnegative integers
a, b, c ∈ N, the following inequality holds:

sum
(
A2a+c

)
· sum

(
A2a+2b+c

)
≤ sum

(
A2a

)
· sum

(
A2(a+b+c)

)
.

Actually, Lagarias et al. did not only prove the inequality for the number of walks. They
proved the more general real-weighted inequality

(
vTArv

) (
vTAsv

)
≤
(
vT v

) (
vTAr+sv

)
for even

sum r + s, real symmetric matrix A, and real vector v. Thus, it could be stated as follows.

Theorem 2 (Lagarias, Mazo, Shepp, and McKay). For any real symmetric n× n-matrix A, real
vector ~s ∈ Rn, and a, b ∈ N we have(

~sTA2a+b~s
) (
~sTAb~s

)
≤
(
~sT~s

) (
~sTA2(a+b)~s

)
.

Those two theorems were unified and generalized by Täubig and Weihmann [TW12; TW14]
to the following inequality with Hermitian matrix A, real weight vector ~s ∈ Rn, and a, b, c ∈ N:(

~sTA2a+c~s
) (
~sTA2a+2b+c~s

)
≤
(
~sTA2a~s

) (
~sTA2(a+b+c)~s

)
.

In this paper, we will generalize it to complex weight vectors in an appropriate way.
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The related theorem (~sTAk~s)(~sT~s)k−1 ≥ (~sTA~s)k for nonnegative symmetric matrix A, non-
negative weight vector ~s and positive integer k was discovered by Mulholland and Smith [MS59],
and later independently in slightly different form by Blakley and Roy [BR65]. This was used by

Erdős and Simonovits [ES82] to deduce wk ≥ n · dk, where d is the average degree of the graph.
Using w1 = 2m and w0 = n, this can also be written as wk ≥ w0(w1

w0
)k or wk

1 ≤ wk−1
0 · wk. The

generalized form wk
2`+p ≤ w

k−1
2` · w2`+pk for walk numbers was proposed in [TWK+13].

2 Hermitian Matrices and Undirected Graphs

2.1 The Complex-Weighted Sandwich Theorem

If A is a Hermitian matrix then the sum of all entries (1T
nA1n) is a real number. Also the sum of

all entries for any principal submatrix is a real number. In particular, this applies to each entry
on the main diagonal.

More generally, we could try to sum up the entries of A or Ak in a weighted form where the
entries of each row and every column are scaled by certain values. For instance, this method
would allow to calculate the entry sum of a certain submatrix of Ak. In the context of walks of
length k, we could filter the sets of start and end vertices by using the corresponding characteristic
vectors of the vertex sets. By multiplying each row i and column i with the same scaling factor
si, we obtain a Hermitian matrix again. Thus, using the quadratic form sum~s(A) = ~sTA~s ∈ R
for ~s ∈ Rn, the weighted sum of all entries is again a real number. Of course, the same applies to
the powers of the matrix, i.e., sum~s

(
Ak
)

= ~sTAk~s ∈ R for ~s ∈ Rn. Using the same scaling vector
for rows and columns allows us, for instance, to calculate the entry sum of a principal submatrix
of Ak by using the characteristic vector of an index subset in place of ~s.

This weighting scheme can be generalized even further to vectors of complex numbers by using
Hermitian forms (or symmetric sesquilinear forms). A sesquilinear form on a complex vector space
maps two argument vectors to a complex number in such a way that the mapping is linear in one
argument and conjugate-linear (antilinear) in the other. A Hermitian form h(x, y) is a sesquilinear
form that satisfies h(x, y) = h(y, x). The standard Hermitian form is just the inner product
〈x, y〉 =

∑n
i=1 x̄iyi.

1 Note that the quadratic form h(x, x) for any Hermitian form h(x, y) = h(y, x)
is always real. In the following, we will consider the quadratic form sum~s(A) = ~s∗A~s = 〈~s,A~s〉 ∈ R
for ~s ∈ Cn and Hermitian matrix A.

By the spectral decomposition theorem, we know that each Hermitian matrix A can be diago-
nalized by a unitary matrix U , i.e., we have A = UDU∗, where D is a diagonal matrix containing
the eigenvalues λi of A. Since A is Hermitian, all eigenvalues are real numbers. For matrix powers,
we have Ak = (UDU∗)k = UDkU∗. The weighted sum of entries yields sum~s

(
Ak
)

= ~s∗Ak~s =

~s∗(UDU∗)k~s = ~s∗UDkU∗~s = ~c∗~sD
k~c~s, i.e., sum~s

(
Ak
)

= 〈~s,Ak~s〉 = 〈U∗~s,DkU∗~s〉 = 〈~c~s, Dk~c~s〉
with ~c~s = (c~s,1, . . . , c~s,n)T = U∗~s. We have a

[k]
x,y =

(
Ak
)
(x,y)

=
∑n

i=1 uxiūyiλ
k
i . Since each entry

in row x and column y will be weighted with the corresponding weights s̄x and sy, we define the
following weighted version:

a[k,~s]x,y = s̄xsy
(
Ak
)
(x,y)

= s̄xsy

n∑
i=1

uxiūyiλ
k
i .

Now, we use the following generalized definitions for entry sums of matrix powers: For index x ∈
[n], let r

[k],~s
x denote the weighted sum of the terms a

[k]
x,y over all y ∈ [n]:

r[k],~sx =

n∑
y=1

a[k,~s]x,y = s̄x

n∑
y=1

sy

n∑
i=1

uxiūyiλ
k
i = s̄x

n∑
i=1

uxic~s,iλ
k
i .

1Here, we used the physics convention with conjugate linearity in the first (x) and linearity in the second (y)
argument.
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Then, the total weighted sum of the entries is

sum~s

(
Ak
)

=

n∑
x=1

s̄xr
[k],~s
x =

n∑
x=1

s̄x

n∑
i=1

uxic~s,iλ
k
i =

n∑
i=1

c~s,ic̄~s,iλ
k
i .

Note that c~s,ic̄~s,i is a nonnegative real number since it is the product of a complex number c =
a + ib ∈ C (a, b ∈ R) and its complex conjugate c̄ = a − ib, i.e., we have cc̄ = (a + ib)(a − ib) =
a2 − i2b2 = a2 + b2. Although sum~s(A) is a function of a complex vector ~s and a complex
matrix A, this (Hermitian) form yields only real function values for any Hermitian matrix A. The
same applies to sum~s

(
Ak
)
.

Theorem 3. For all Hermitian matrices A, nonnegative integers a, b, c ∈ N, and complex weight
vectors ~s ∈ Cn, the following inequality holds:

sum~s

(
A2a+c

)
· sum~s

(
A2a+2b+c

)
≤ sum~s

(
A2a

)
· sum~s

(
A2(a+b+c)

)
.

Proof. Consider the difference of both sides of the inequality:

sum~s

(
A2a

)
· sum~s

(
A2(a+b+c)

)
− sum~s

(
A2a+c

)
· sum~s

(
A2a+2b+c

)
=

n∑
i=1

c~s,ic̄~s,iλ
2a
i

n∑
j=1

c~s,j c̄~s,jλ
2(a+b+c)
j −

n∑
i=1

c~s,ic̄~s,iλ
2a+c
i

n∑
j=1

c~s,j c̄~s,jλ
2a+2b+c
j

=

n∑
i=1

n∑
j=1

c~s,ic̄~s,ic~s,j c̄~s,j

(
λ2ai λ

2(a+b+c)
j − λ2a+c

i λ2a+2b+c
j

)

=

n−1∑
i=1

n∑
j=i+1

c~s,ic̄~s,ic~s,j c̄~s,jλ
2a
i λ

2a
j

(
λ
2(b+c)
j − λciλ2b+c

j + λ
2(b+c)
i − λcjλ2b+c

i

)

=

n−1∑
i=1

n∑
j=i+1

c~s,ic̄~s,ic~s,j c̄~s,jλ
2a
i λ

2a
j

(
λ2b+c
j − λ2b+c

i

) (
λcj − λci

)
.

Each term within the last line must be nonnegative, since (c~s,ic̄~s,i), (c~s,j c̄~s,j), λ
2a
i , and λ2aj are all

nonnegative, and (λ2b+c
j − λ2b+c

i ) and (λcj − λci ) must have the same sign.

The last argument means that the sequences {λ2b+c
i } and {λci} are similarly ordered (because

2b+ c and c must be either both odd or both even numbers). If all eigenvalues λi are nonnegative,
then the proof also works for mixed odd/even powers:

Theorem 4. For all positive-semidefinite matrices A, integers a, b, c ∈ N, and weight vectors
~s ∈ Cn, the following inequality holds:

sum~s

(
Aa+b

)
· sum~s

(
Aa+b+c

)
≤ sum~s

(
Aa
)
· sum~s

(
Aa+2b+c

)
.

Proof. The proof is essentially the same as for Theorem 3, except that squares of eigenvalues are
not required as all eigenvalues are nonnegative in the case of positive-semidefinite matrices.
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As in the proof of Theorem 3, we consider the difference of both sides of the inequality:

sum~s (Aa) · sum~s

(
Aa+2b+c

)
− sum~s

(
Aa+b

)
· sum~s

(
Aa+b+c

)
=

n∑
i=1

c~s,ic̄~s,iλ
a
i

n∑
j=1

c~s,j c̄~s,jλ
a+2b+c
j −

n∑
i=1

c~s,ic̄~s,iλ
a+b
i

n∑
j=1

c~s,j c̄~s,jλ
a+b+c
j

=

n∑
i=1

n∑
j=1

c~s,ic̄~s,ic~s,j c̄~s,j
(
λai λ

a+2b+c
j − λa+b

i λa+b+c
j

)
=

n−1∑
i=1

n∑
j=i+1

c~s,ic̄~s,ic~s,j c̄~s,j

(
λai λ

a+2b+c
j − λa+b

i λa+b+c
j + λajλ

a+2b+c
i − λa+b

j λa+b+c
i

)

=

n−1∑
i=1

n∑
j=i+1

c~s,ic̄~s,ic~s,j c̄~s,jλ
a
i λ

a
j

(
λ2b+c
j − λbiλb+c

j + λ2b+c
i − λbjλb+c

i

)

=

n−1∑
i=1

n∑
j=i+1

c~s,ic̄~s,ic~s,j c̄~s,jλ
a
i λ

a
j

(
λb+c
j − λb+c

i

) (
λbj − λbi

)
.

Again, (c~s,ic̄~s,i) and (c~s,j c̄~s,j) are nonnegative numbers. Furthermore, λai λ
a
j is nonnegative, and

(λb+c
j −λb+c

i ) and (λbj −λbi ) must have the same sign since λi, λj ≥ 0. Therefore, each term within
the last line must be nonnegative.

The missing cases for negative-semidefinite matrices can be deduced from the last line of the
previous proof.

Theorem 5. For all negative-semidefinite matrices A, integers a, b, c ∈ N, and weight vectors
~s ∈ Cn, the following inequalities hold.

If c is even, we have

sum~s

(
Aa+b

)
· sum~s

(
Aa+b+c

)
≤ sum~s

(
Aa
)
· sum~s

(
Aa+2b+c

)
.

If c is odd, we have

sum~s

(
Aa+b

)
· sum~s

(
Aa+b+c

)
≥ sum~s

(
Aa
)
· sum~s

(
Aa+2b+c

)
.

Proof. We refer to the same transformation as in the previous proof. Again, (c~s,ic̄~s,i), (c~s,j c̄~s,j),

and λai λ
a
j are nonnegative. Now, the sequences {λbi} and {λb+c

i } are similarly ordered if c is even
(since λi ≤ 0). They are conversely ordered if c is odd.

2.2 Inequalities for Iterated Kernels

An integral transform is a mathematical operator T that obeys the form

(Tf)(u) =

∫ x2

x1

K(x, u) f(x) dx .

In this way, it transforms the function f into a new function Tf . Each instance of an integral
transform is specified by a particular choice forK. This function of two variables is called the kernel
function of the integral transform. There are several popular examples of integral transforms like
the Fourier transform, the Laplace transform, or the Mellin transform.

An iterated kernel is a function Ki(x, s) that is formed from the given kernel K(x, s) of an

integral operator Af(x) =
∫ b

a
K(x, t) f(t) dt by the recurrence relations K1(x, s) = K(x, s) and

Ki(x, s) =
∫ b

a
Ki−1(x, t)K(t, s) dt. The function Ki is called the i-th iterated kernel of K. The

kernel Ki is the kernel of the operator Ai. The equality Ki(x, s) =
∫ b

a
Ki−j(x, t)Kj(t, s) dt holds

for 1 ≤ j ≤ i− 1.
From Theorem 3, we conclude the following by Riemann approximation of the integrals.
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Corollary 6. For any symmetric kernel K and any function v, we have

∫ a

0

∫ a

0

v(x)v(y)K2a+c(x, y) dx dy

∫ a

0

∫ a

0

v(x)v(y)K2a+2b+c(x, y) dx dy

≤
∫ a

0

∫ a

0

v(x)v(y)K2a(x, y) dx dy

∫ a

0

∫ a

0

v(x)v(y)K2(a+b+c)(x, y) dx dy .

For the unweighted case, we have

∫ a

0

∫ a

0

K2a+c(x, y) dx dy

∫ a

0

∫ a

0

K2a+2b+c(x, y) dx dy

≤
∫ a

0

∫ a

0

K2a(x, y) dx dy

∫ a

0

∫ a

0

K2(a+b+c)(x, y) dx dy .

Inequalities of this kind are useful, e.g., in the context of mathematical population genetics,
see [MPF91; Edw00].

2.3 Counterexamples for Further Conceivable Inequalities

By giving counterexamples, Lagarias et al. [LMSM84] disproved the inequality wr ·ws ≤ n·wr+s for
all pairs (r, s) where the sum r + s takes an odd value. Those counterexamples are disconnected
graphs consisting of a complete graph Km+1 and a star Sm2+t+1 for t ≥ 1 and m sufficiently
large. Connected counterexamples can be constructed by adding an edge between a vertex of the
complete subgraph and a leaf of the star.

We will reuse the method of Lagarias et al. and try to construct counterexamples for other
possible inequalities. In particular, we are looking for counterexamples to the following conceivable
sandwich inequality:

wa+c · wa+2b+c+1

?
≤ wa · wa+2b+2c+1 .

As can be seen, each side consists of a product involving one even and one odd walk length. Again,
the graphs we consider consist of a complete graph Km+1 and a star Sm2+t+1 for t ≥ 1. For the
number of walks of the star part, we have to distinguish between even and odd walk lengths. For
a star on n nodes, we have w2i = n(n − 1)i and w2i+1 = 2(n − 1)i+1. For a complete graph
on n nodes, we have wi = n(n − 1)i. Note that in any case we have wa+c(Gi)wa+2b+c+1(Gi) =
wa(Gi)wa+2b+2c+1(Gi) for each of the two subgraphs G1 = Km+1 and G2 = Sm2+t+1. Thus, only
the mixed terms need to be considered for the difference.

From now, we assume that a is even and a+ 2b+ 2c+ 1 is odd. (This specific approach does
not yield counterexamples when a is odd.) Now, we distinguish the two cases for c. First, we
assume that c is odd (a+ c odd, a+ 2b+ c+ 1 even). Thus, we have

Km+1 Sm2+t+1

wa+c = ma+c(m+ 1) + 2(m2 + t)(a+c+1)/2

wa+2b+c+1 = ma+2b+c+1(m+ 1) + (m2 + t)(a+2b+c+1)/2(m2 + t+ 1)
wa = ma(m+ 1) + (m2 + t)a/2(m2 + t+ 1)

wa+2b+2c+1 = ma+2b+2c+1(m+ 1) + 2(m2 + t)(a+2b+2c+2)/2 .

For the difference wa+cwa+2b+c+1−wawa+2b+2c+1, we obtainma+c(m+1)·(m2+t)(a+2b+c+1)/2(m2+
t+1)+ma+2b+c+1(m+1)·2(m2+t)(a+c+1)/2−ma(m+1)·2(m2+t)(a+2b+2c+2)/2−ma+2b+2c+1(m+
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1) · (m2 + t)a/2(m2 + t+ 1), i.e.,

(wa+cwa+2b+c+1 − wawa+2b+2c+1)/(ma(m+ 1)(m2 + t)a/2)

= mc(m2 + t+ 1)
[
(m2 + t)(2b+c+1)/2 −m2b+c+1

]
+2(m2 + t)(c+1)/2

[
m2b+c+1 − (m2 + t)(2b+c+1)/2

]
=

[
mc(m2 + t+ 1)− 2(m2 + t)(c+1)/2

]
·
[
(m2 + t)(2b+c+1)/2 −m2b+c+1

]
=

[
mc+2 +mc(t+ 1)− 2(m2 + t)(c+1)/2

]
·
[
(m2 + t)(2b+c+1)/2 −m2b+c+1

]
.

By the binomial theorem, we have (m2 + t)(2b+c+1)/2 − m2b+c+1 > 0 and 2(m2 + t)(c+1)/2 ∈
O(mc+1). Therefore, the difference must be strictly positive for fixed t ≥ 1 and sufficiently
large m.

For the second case, we assume that a is even (a + 2b + 2c + 1 odd), c even (a + c even ,
a+ 2b+ c+ 1 odd):

Km+1 Sm2+t+1

wa+c = ma+c(m+ 1) + (m2 + t)(a+c)/2(m2 + t+ 1)
wa+2b+c+1 = ma+2b+c+1(m+ 1) + 2(m2 + t)(a+2b+c+2)/2

wa = ma(m+ 1) + (m2 + t)a/2(m2 + t+ 1)
wa+2b+2c+1 = ma+2b+2c+1(m+ 1) + 2(m2 + t)(a+2b+2c+2)/2 .

For the difference wa+cwa+2b+c+1−wawa+2b+2c+1, we obtain ma+c(m+1)·2(m2+t)(a+2b+c+2)/2+
ma+2b+c+1(m+1)·(m2+t)(a+c)/2(m2+t+1)−ma(m+1)·2(m2+t)(a+2b+2c+2)/2−ma+2b+2c+1(m+
1) · (m2 + t)a/2(m2 + t+ 1), i.e.,

(wa+cwa+2b+c+1 − wawa+2b+2c+1)/(ma(m+ 1)(m2 + t)a/2)

= m2b+c+1(m2 + t+ 1)
[
(m2 + t)c/2 −mc

]
+2(m2 + t)(2b+c+2)/2

[
mc − (m2 + t)c/2

]
=

[
m2b+c+1(m2 + t+ 1)− 2(m2 + t)(2b+c+2)/2

]
·
[
(m2 + t)c/2 −mc

]
=

[
m2b+c+3 +m2b+c+1(t+ 1)− 2(m2 + t)(2b+c+2)/2

]
·
[
(m2 + t)c/2 −mc

]
.

By the binomial theorem, we have (m2 + t)c/2 −mc > 0 and 2(m2 + t)(2b+c+2)/2 ∈ O(m2b+c+2).
Therefore, the difference must be strictly positive for fixed t ≥ 1 and sufficiently large m.

In summary, we can state the following for the case of odd-times-even lengths on both sides
when a is even (a = 2a′).

Theorem 7. For a′, b, c ∈ N, there are graphs with

w2a′+c · w2a′+2b+c+1 � w2a′ · w2a′+2b+2c+1 .

3 Bounds for the Largest Eigenvalue

Collatz and Sinogowitz [CS57] proved that the average degree is a lower bound for the largest
eigenvalue of the adjacency matrix, i.e., d = 2m/n ≤ λ1. Hofmeister [Hof88; Hof94] later showed
that

∑
v∈V d

2
v/n ≤ λ21. These bounds are equivalent to w1

w0
≤ λ1 and w2

w0
≤ λ21.

In several other papers, the sum of squares of walk numbers was considered to obtain the
lower bounds

∑
v∈V w2(v)2/

∑
v∈V d

2
v ≤ λ21 [YLT04],

∑
v∈V w3(v)2/

∑
v∈V w2(v)2 ≤ λ21 [HZ05],∑

v∈V w4(v)2/
∑

v∈V w3(v)2 ≤ λ21 [Hu09], and
∑

v∈V wk+1(v)2/
∑

v∈V wk(v)2 ≤ λ21 [HTW07].
These inequalities correspond to the following statements:

w4

w2
≤ λ21 ,

w6

w4
≤ λ21 ,

w8

w6
≤ λ21 , and

w2k+2

w2k
≤ λ21 .
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These results were generalized by Nikiforov [Nik06] as follows.2

Theorem 8 (Nikiforov). For each undirected graph and k, r ∈ N, we have

w2k+r

w2k
≤ λr1 ,

where λ1 is the largest eigenvalue of the adjacency matrix of the graph.

Note that this theorem follows already from a result of Hyyrö, Merikoski, and Virtanen
[HMV86]. Nikiforov additionally characterized the case of equality. Here, we propose the fol-
lowing generalization.

Theorem 9. For any normal matrix B with spectral radius ρ(B) and x, y ∈ Cn, we have

|x∗By| ≤ ρ(B)
√
x∗x
√
y∗y .

Proof. By the Cauchy-Schwarz inequality, we have

|x∗By| = |〈x,By〉| ≤
√
|〈x, x〉|

√
|〈By,By〉| =

√
x∗x

√
y∗B∗By .

Note that B∗B is a positive-semidefinite Hermitian matrix. By the Rayleigh-Ritz Theorem, we
know that

y∗B∗By

y∗y
≤ λmax(B∗B) ,

where λmax(B∗B) denotes the largest eigenvalue of the matrix B∗B.

Now we are looking for a connection between λmax(B∗B) and the eigenvalues of B. Since B
is a normal matrix, there is a spectral decomposition B = U∗DU with diagonal matrix D con-
taining the eigenvalues of B. Since B∗ = (U∗DU)∗ = U∗D∗U , we have B∗B = U∗DUU∗D∗U =
U∗(DD∗)U , i.e., the eigenvalues of B∗B are the values λiλ̄i for i = {1, . . . n}. Those values are
just the squares of the absolute value (modulus) of each eigenvalue. Thus we have

y∗B∗By

y∗y
≤ λ1(B∗B) = [ρ(B)]

2

and therefore |x∗By| ≤ ρ(B)
√
x∗x
√
y∗y.

If B is a Hermitian matrix, then all the eigenvalues λi are real and the eigenvalues of B∗B are
just the squared eigenvalues of B. Then the largest eigenvalue of B∗B is just max{λ21, λ2n}. If B
is a nonnegative symmetric matrix, then we know (by the Perron-Frobenius Theorem) that the
largest eigenvalue equals the spectral radius. If we consider an undirected graph with (symmetric)
adjacency matrix A, we can set B = Ar, x = Aa1, and y = Ab1. Then we obtain the following
corollary.

Corollary 10. For all undirected graphs and a, b, r ∈ N, we have

wa+r+b√
w2aw2b

≤ λr1 .

Proof. The result follows from setting B = Ar and from the fact that (by the Perron-Frobenius
Theorem) the largest eigenvalue equals the spectral radius. Setting a = b = k leads to w2k+r

w2k
≤ λr1,

i.e., Nikiforov’s inequality.

2Note that Nikiforov defined wk and the length of a walk in terms of the number of nodes instead of the number
of edges.
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4 Iterated Directed Line Graphs

The (undirected) line graph L(G) of a graph G = (V,E) is a graph where each edge e ∈ E of G
is represented by a vertex ve in L(G), i.e., there is a one-to-one mapping between the edges of G
and the vertices of L(G). For edges e, f ∈ E, there is an edge between the corresponding vertices
ve and vf in the line graph L(G) if and only if e and f share exactly one vertex in G.

The directed line graph or line digraph LD(G) of a directed graph G = (V,E) is the directed
graph that has a vertex ve for each edge e of G. Two vertices v1 and v2 of the line digraph
representing the original edges (s1, t1) and (s2, t2) are connected by an edge (v1, v2) in the line
digraph if and only if t1 = s2.The line digraph of an undirected graph is defined as the line digraph
of its corresponding bidirected graph (using antiparallel edges for each undirected edge). Note that
the line digraph of an undirected graph G is related to but not the same as the graph that results
from the undirected line graph of G by replacing the undirected edges by antiparallel directed
edges. The reason is that the (self-)loops of the line digraphs (representing walks of length 2
traversing the same edge forward and backward) are not present in the undirected line graph.

If we repeat the operation of constructing the line digraph of a graph, this process yields the k-th
iterated line digraph. For convenience, we define LD0(G) = G. Starting with LD1(G) = LD(G),
the process continues recursively using LDk+1(G) = LD(LDk(G)).

Note that the edges of the line digraph LD(G) represent exactly the walks of length 2 in the
original digraph G (while the vertices correspond to the edges, i.e., to the walks of length 1).
Here the question arises whether there is a more general relation between the nodes or edges in
an iterated line digraph and the walks in the original digraph. At first, one might suspect that
repeating the operation leads to doubling the walk length with every iteration, but this is not true.
As shown in following theorem, the walk length is incremented by one in each iteration. Note that
this observation is also implicitly contained in the paper by Levine [Lev11].

Theorem 11. The vertices of the k-th iterated directed line graph of a graph G are in one-to-one
correspondence with the walks of length k in G. The edges of LDk(G) correspond to the walks of
length k + 1 in G.

Proof. For LD0(G) = G, the statement is obvious. As already mentioned, we know for LD1(G) =
LD(G) that the vertices correspond to the edges of G, i.e., to the walks of length 1. The edges
in LD(G) connect exactly the vertices of LD(G) that are represented by original edges (s1, t1)
and (s2, t2) with t1 = s2. Therefore, they represent exactly the walks of length 2: (s1, t1, t2) =
(s1, s2, t2). Now, the proof can be done by induction using the same principle for longer walks.
Assume that the statement is true for k = `. Since the vertices of LD`+1(G) = LD(LD`(G))
correspond to the edges of LD`(G) and there is a bijection between the edges of LD`(G) and the
walks of length ` + 1 in G, there must be a bijection between the vertices of LD`+1(G) and the
(` + 1)-walks in G. Consider two vertices x and y in LD`+1(G). They represent (` + 1)-walks
wx and wy and they correspond to edges (sx, tx) and (sy, ty) in LD`(G). Here sx, tx, sy, and
ty correspond to `-walks in G. The vertices x and y are connected by a directed edge (x, y) in
LD`+1(G) if and only if tx = sy, i.e., the (` + 1)-walks wx and wy overlap in the `-walk tx = sy.
Hence, each such edge (x, y) corresponds to a walk of length k+ 2. Thus, the statement also holds
for k = `+ 1, and therefore for all k ∈ N.

Corollary 12. The number of nodes in LDk(G) equals wk, i.e., the number of walks of length k
in G. The number of edges in LDk(G) equals wk+1.

We can also state this in another form: For the number of walks of length k in the `-th iterated
directed line graph, we have wk(LD`(G)) = wk+`(G).
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