
On Capacity Regions of Two-Receiver Broadcast
Packet Erasure Channels with Feedback and

Memory
Michael Heindlmaier∗, Navid Reyhanian†, Shirin Saeedi Bidokhti∗

∗Institute for Communications Engineering, Technische Universität München, Munich, Germany
†University of Tehran, Tehran, Iran

Email: michael.heindlmaier@tum.de, n.reyhanian@ut.ac.ir, shirin.saeedi@tum.de

Abstract—The two-receiver broadcast packet erasure channel
with feedback and memory is studied. Memory is modelled
using a finite-state Markov chain representing a channel state.
Outer and inner bounds on the capacity region are derived when
the channel state is strictly causally known at the transmitter.
The bounds are both formulated in terms of feasibility problems
and they are matching in all but one of the constraints. The
results are extended to feedback with larger delay. Numerical
results show that the gains offered through feedback can be
quite large.

I. INTRODUCTION

The capacity of broadcast channels (BCs) remains
unresolved both without and with feedback. It was shown in
[1] that feedback does not increase the capacity of physically
degraded BCs. Nevertheless, feedback increases the capacity
of general BCs and even partial feedback can help [2], [3].
Feedback also increases the capacity region of AWGN BCs
[4], [5].

The capacity region of memoryless broadcast packet
erasure channels (BPECs) with feedback (FB) was found
in [6] for two receivers. The region is characterized by the
closure of all non-negative rate pairs (R1, R2) such that

R1

1− ε1
+

R2

1− ε12
≤ 1

R1

1− ε12
+

R2

1− ε2
≤ 1,

where ε1 and ε2 are the erasure probabilities at receiver 1
and 2, respectively, and ε12 is the probability of erasure at
both receivers. In particular, feedback increases the capacity
and this is of practical interest since the required feedback is
only a low-cost ACK/NACK signal that is easy to implement
in BPECs.

This result has been extended to certain cases of broadcast
channels with more number of receivers in [7], [8], [9].
In all these works, the capacity region is achieved using
feedback-based coding algorithms that are based on network
coding ideas. The converse theorems are proved by proving
genie-aided outer bounds on the capacity region. The trick
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is that the genie helps the receivers such that the broadcast
channel becomes a physically degraded one, for which the
capacity region with feedback is known [1], [10], [11].

The capacity region of two-receiver multiple-input BPECs
with feedback has been studied in [12] where the capacity
region is derived and is shown to be achievable using linear
network codes (LNC). The schemes are also applied to
partially Markovian and partially controllable broadcast PECs
where the linear network coding rate region is characterized
by a linear program which exhaustively searches for the
LNC scheme(s) with the best possible throughput. During
the preparation of this work we were informed that the
coding methods developed in [12] are able to achieve the
outer bounds derived in Section IV of this work and are thus
optimal.

In a recent trend of research, noisy feedback has been
studied and achievable schemes are developed in [13], [14].

This paper studies BPECs with memory and feedback.
The problem is motivated by the bursty nature of erasures
in practical communication systems, e.g., satellite links [15],
[16], [17]. We model the memory of a channel by a
finite state machine and a set of state-dependent erasure
probabilities. For finite state channel models see e.g. [18]
and the references therein.

When there is no feedback, one can use erasure
correcting codes for memoryless channels in combination
with interleavers to decorrelate the erasures. But feedback
enables more sophisticated coding methods and several such
schemes are discussed in [19]. We remark that [20] studied
the general broadcast channel with feedback and memory
and considered different cooperation scenarios. The capacity
characterizations in [20] are, however, in multi-letter form
and not computable.

The main contribution of this paper is to provide lower and
upper bounds on the capacity region for two receivers when
the channel state is strictly causally known at the transmitter.
Both bounds are formulated in terms of feasibility problems,
and are similar in all but one set of constraints. Our outer
bound is a genie-aided bound. The bound is subtle in the
sense that it cannot be derived directly using the results
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Fig. 1. Block diagram for the broadcast packet erasure channel with visible
state. The box marked with d = 1 represents a delay of one time unit.

of [1], [10], [11]. The outer bound turns out to have a
similar structure as for the memoryless case. Our proposed
achievable scheme extends the queue-based algorithms of [6],
[8], [21] to incorporate knowledge about the past channel
states. The techniques generalize to BPECs with delayed
feedback.

This paper is organized as follows: We introduce notation
and the system model in Section II, and elaborate on the main
result in Section III. The outer bound is presented in Section
IV and the inner bound and two achievable schemes are
discussed in Section V. In Section VI we discuss implications
of our results.

II. NOTATION AND SYSTEM MODEL

A. Notation

Random variables are denoted by capital letters. A finite
sequence (or string) of random variables X1, X2, . . . , Xn is
denoted by Xn. In this context, sequences always refer to
sequences in time. Sequences may have subscripts, e.g. Xn

j

denotes Xj,1, Xj,2, . . . , Xj,n. It is sometimes convenient to
collect random variables that appear at the same time in
a vector. Vectors are written with underlined letters, e.g.,
Zt = (Z1,t, Z2,t). Sets are denoted by calligraphic letters,
e.g., X . The indicator function 1{·} takes on the value 1 if
the event inside the brackets is true and 0 otherwise. The
probability of a random variable X taking on a realization
x given an event E is written as Pr[X = x|E ]. Often, the
conditional event corresponds to another random variable Y
taking on some realization y. This conditional probability is
written as Pr[X = x|Y = y] or equivalently PX|Y (x|y). The
equivalent expressions Pr[X|Y ] or PX|Y are used to address
the conditional probability (distribution) for any outcome of
X,Y .

B. System Model

A transmitter wishes to communicate two independent
messages W1 and W2 (of nR1, nR2 packets, respectively)
to two receivers Rx1 and Rx2 over n channel uses.
Communication takes place over a packet erasure broadcast
channel with memory and feedback as described below:

The input to the broadcast channel at time t, t = 1, . . . , n,
is denoted by Xt ∈ X . The channel inputs correspond to
packets of L bits; we may represent this by choosing X = Fq

with q = 2L, and L � 1. Transmission rates are measured
in packets per slot and so entropies and mutual information
terms are considered with logarithms to the base q.

The channel outputs at time t are written as Y1,t ∈ Y and
Y2,t ∈ Y where Y = X ∪ {E}. Each Yj,t, j ∈ {1, 2}, is
either Xt (i.e., received perfectly) or E (i.e., erased).

We define binary random variables Zj,t, j ∈ {1, 2},
t = 1, . . . , n, to indicate if an erasure occurred at receiver
j in time t; i.e., Zj,t = 1{Yj,t = E}. Clearly, Yj,t can be
expressed as a function of Xt and Zj,t. Furthermore, Yj,t
also determines Zj,t. We denote (Z1,t, Z2,t) by Zt.

The broadcast channel we study has memory that is
modeled via a finite state machine with state St at time t. The
state evolves according to an irreducible aperiodic finite state
Markov chain with state space S and steady-state distribution
πs, s ∈ S . The initial state S0 is distributed according to
π. Depending on the current random state of the channel,
the channel erasure probabilities are specified through the
conditional distribution PZt|St

. Arbitrary correlation between
(Z1,t, Z2,t) is permitted. The transition probabilities between
channel states are known at the transmitter. Note that the
sequence Zn is correlated in time in general, hence the
channel has memory.

After each transmission, an ACK/NACK feedback is
available at the encoder from both receivers. Two possible
setups can be considered for the encoding function ft:

(i) Only ACK/NACK feedback is available at the encoder:

Xt = ft(W1,W2, Z
t−1
1 , Zt−1

2 ) (1)

(ii) ACK/NACK and the previous state feedback is known:

Xt = ft(W1,W2, Z
t−1
1 , Zt−1

2 , St−1) (2)

Depending on whether the transmitter knows the previous
channel state or not, we call the state visible or hidden.
This paper is focused on the problem with visible states (see
Fig. 1). The joint probability mass function of the system
then factorizes as

PW1W2XnSnY n
1 Y n

2 Zn
1 Zn

2
= PW1

PW2
PS0

n∏
t=1

PSt|St−1
·

PXt|St−1Zt−1
1 Zt−1

2
PZ2,t|St

PZ1,t|Z2,tSt
PY1,t|XtZ1,t

PY2,t|XtZ2,t
.

The corresponding functional dependency graph (FDG) [3]
for the visible case is shown in Fig. 2.

The state can be visible either because it is explicitly
available at the transmitter or because it may be determined
from the available feedback. The latter is illustrated via the
following example.

Example 1: Consider a Gilbert-Elliot model [22], [23]
with state space S = {GG,GB,BG,BB} where G and B
respectively refer to a good and bad state at each user.
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Fig. 2. FDG for the two-receiver broadcast packet erasure channel with
memory and ACK/NACK + previous state feedback (visible state), for n = 3
and d = 1. Dependencies due to feedback are drawn with dashed lines.

One case of interest is when we have erasure in state B
and no erasure in state G, i.e.,

PZt|St
(0, 0|GG) = 1, PZt|St

(0, 1|GB) = 1

PZt|St
(1, 0|BG) = 1, PZt|St

(1, 1|BB) = 1. (3)

In such a channel the feedback Zt determines the channel
state, and we thus say that the state is visible. We use this
channel model for our simulation results in Section VI.

We define the probability of erasure events given the
previous channel state s as follows:

ε12(s) = PZt|St−1
(1, 1|s), ε12̄(s) = PZt|St−1

(1, 0|s),
ε1̄2(s) = PZt|St−1

(0, 1|s), ε1̄2̄(s) = PZt|St−1
(0, 0|s),

ε1(s) = ε12(s) + ε12̄(s), ε2(s) = ε12(s) + ε1̄2(s).
(4)

Note that these probabilities do not depend on t in our setup.
The goal is to have each decoder Rxj reliably estimate

Ŵj = hj(Y
n
j ) from its received sequence. A rate-pair

(R1, R2) is said to be achievable if the error probability
Pr[Ŵ1 6= W1, Ŵ2 6= W2] can be made arbitrarily small as
n gets large. The capacity region Cmem

fb is the convex closure
of the achievable rate pairs.

III. MAIN RESULT

The main result of this paper is the following bounds on
the capacity region of the two-user packet erasure broadcast
channel with memory and ACK/NACK feedback.

Define C̄mem
fb to be the closure of rate pairs (R1, R2) for

which there exist variables xs, ys, s ∈ S such that

0 ≤ xs ≤ 1, 0 ≤ ys ≤ 1 (5)

R1 ≤
∑
s∈S

πs(1− ε1(s))xs (6)

R1 ≤
∑
s∈S

πs(1− ε12(s))(1− ys) (7)

R2 ≤
∑
s∈S

πs(1− ε2(s))ys (8)

R2 ≤
∑
s∈S

πs(1− ε12(s))(1− xs). (9)

Define, furthermore, Cmem
fb to be the closure of rate pairs

(R1, R2) for which there exist variables xs, ys, s ∈ S such
that

0 ≤ xs ≤ 1, 0 ≤ ys ≤ 1 (10)
xs + ys ≥ 1, ∀s ∈ S (11)

R1 ≤
∑
s∈S

πs(1− ε1(s))xs (12)

R1 ≤
∑
s∈S

πs(1− ε12(s))(1− ys) (13)

R2 ≤
∑
s∈S

πs(1− ε2(s))ys (14)

R2 ≤
∑
s∈S

πs(1− ε12(s))(1− xs). (15)

Note that C̄mem
fb and Cmem

fb differ in (11).
Theorem 1: The capacity region Cmem

fb of the two-user
broadcast packet erasure channel with feedback and visible
state is sandwiched between Cmem

fb and C̄mem
fb ; i.e,

Cmem
fb ⊆ Cmem

fb ⊆ C̄mem
fb (16)

For example, consider Theorem 1 when S has one state only,
say state s, which models a memoryless erasure broadcast
channel. One may verify that the two regions Cmem

fb and C̄mem
fb

match, and that eliminating variables xs, ys, the well-known
result of [6] follows. Let us call this capacity region Cfb(s).
Now consider the case where |S| is larger: One might guess
that the capacity region Cmem

fb is the average direct sum (set
sum) of the capacity regions Cfb(s) over all states s ∈ S .
However, this is not in general the case: the capacity region
can be strictly larger than the average direct sum of the Cfb(s).
We expand on this remark in Section VI.

In Section IV, we prove that C̄mem
fb forms an outer bound;

i.e., for any achievable scheme the problem defined in (5)-(9)
is feasible. This is done by bounding the achievable rates
R1, R2 and expressing them in a manner similar to (5)-(9).
Our converse proof is motivated by [10], [1], [24].

In Section V, we introduce two schemes that can achieve
any rate-pair in Cmem

fb , and thus prove achievability of it. The
first scheme is a probabilistic scheme that chooses encoding
operations according to a probability distribution. The second
scheme uses a deterministic queue-length based algorithm
that chooses encoding operations based on the feedback and
the current buffer states. This scheme stabilizes all queues in
the network for every rate pair in Cmem

fb .
While Cmem

fb and C̄mem
fb match and characterize the capacity

in several examples, there are interesting cases where Cmem
fb

is strictly smaller than Cmem
fb . One such example is given in

[25, Sec. II.B]. In this example Cmem
fb turns out to be strictly

smaller than the capacity region.
In Section VI, we plot our lower and upper bounds on Cmem

fb
for a few examples and address the gain due to feedback
and causal knowledge of the channel state. We furthermore
discuss how this rate-region is strictly larger that the average
direct sum of the Cfb(s). Finally, we discuss variations of the
problem with delayed feedback.



IV. THE CONVERSE

In this section, we prove that C̄mem
fb is an outer bound on

the capacity region. The general idea is to show that for any
achievable scheme, there are parameters xs, ys, s ∈ S, as
in Theorem 1. We find these parameters by relating them to
mutual information terms.

In order to bound R1 and R2, for any δ > 0, we write
the following multi-letter bounds and single-letterize them
properly next. For j ∈ {1, 2}, we define j̄ ∈ {1, 2} such that
j̄ 6= j.

nRj ≤ I(Wj ;Y
n
j ) + nδ (17)

nRj ≤ I(Wj ;Y
n
1 Y

n
2 |Wj̄) + nδ (18)

In (17)-(18), we have used the independence of the messages
and Fano’s inequality [26, Chapter 2.10].

For j = 1, the single-letterization is done as follows:

R1 − δ ≤
1

n
I(W1;Y n

1 )

≤ 1

n
I(W1;Y n

1 S
n−1)

=
1

n

n∑
t=1

I(W1;Y1,tSt−1|Y t−1
1 St−2)

=
1

n

n∑
t=1

[
I(W1;St−1|Y t−1

1 Zt−1
1 St−2)

+I(W1;Y1,t|Y t−1
1 St−1)

]
(a)
=

n∑
t=1

1

n
I(W1;Y1,t|Y t−1

1 St−1)

≤
n∑

t=1

1

n
I(W1Y

t−1
1 St−1;Y1,t|St−1)

(b)
=

n∑
t=1

1

n
I(U1,t;Y1,t|St−1)

(c)
= I(U1,T ;Y1,T |ST−1T )

=
∑
s∈S

πsI(U1,T ;Y1,T |T, ST−1 = s). (19)

In the above chain of inequalities, (a) follows because Zt−1
1

is a function of Y t−1
1 and because of the Markov chain

W1 − Y t−1
1 Zt−1

1 St−2 − St−1,

(b) follows by defining U1,t = (W1Y
t−1
1 St−1), and

(c) follows by a standard random time sharing argument with
time sharing random variable T . Similarly, one obtains

R1 − δ ≤
1

n
I(W1;Y n

1 Y
n
2 |W2)

≤
∑
s∈S

πsI(U1,T ;Y1,TY2,T |U2,TVTT, ST−1 = s),

(20)

where U2,T = (W2Y
T−1
2 ST−1) and VT =

(Y T−1
1 Y T−1

2 ST−1).
By symmetry, we also have the following bounds:

R2 − δ ≤
∑
s∈S

πsI(U2,T ;Y2,T |T, ST−1 = s) (21)

R2 − δ ≤
∑
s∈S

πsI(U2,T ;Y1,TY2,T |U1,TVTT, ST−1 = s)

(22)

Remark 1: Note that
(i) VT is a function of (U1,TU2,T ), and

(ii) ZT −TST−1−U1,TU2,TVTXT forms a Markov chain.
The following lemma extends [24, Lemma 1] and is proven

in [27].
Lemma 1: For every s ∈ S and j ∈ {1, 2}, we have:

I(Uj,T ;Yj,T |T, ST−1 = s)

= (1− εj(s))I(Uj,T ;XT |T, ST−1 = s), (23)
I(Uj,T ;Y1,TY2,T |Uj̄,T , VTT, ST−1 = s)

= (1− ε12(s))I(Uj,T ;XT |Uj̄,TVTT, ST−1 = s). (24)

We now replace the mutual information terms in (19) - (22)
using Lemma 1 and define the following variables, for j ∈
{1, 2} and s ∈ S.

u(j)
s = I(Uj,T ;XT |T, ST−1 = s) (25)

z(j)
s = I(Uj,T ;XT |Uj̄,TVTT, ST−1 = s) (26)

We have

Rj − δ ≤
∑
s∈S

πs(1− εj(s))u(j)
s , j = 1, 2, (27)

Rj − δ ≤
∑
s∈S

πs(1− ε12(s))z(j)
s , j = 1, 2. (28)

The following Lemma relates the parameters defined above
and is proven in Appendix A.

Lemma 2: For every j ∈ {1, 2} and s ∈ S, we have

u(j)
s + z(j̄)

s ≤ 1,

Combining the above results and letting δ go to zero,
(R1, R2) can be achieved only if, for some variables u(1)

s ,
u

(2)
s , z(1)

s , z(2)
s , the following inequalities hold:

0 ≤ u(j)
s , z(j)

s ≤ 1 ∀j ∈ {1, 2}, ∀s ∈ S (29)

u(j)
s + z(j̄)

s ≤ 1 ∀j ∈ {1, 2}, ∀s ∈ S (30)

Rj ≤
∑
s∈S

πs(1− εj(s))u(j)
s ∀j ∈ {1, 2} (31)

Rj ≤
∑
s∈S

πs(1− ε12(s))z(j)
s ∀j ∈ {1, 2}. (32)

The final step is to show that the above outer bound matches
C̄mem

fb of Theorem 1. This is done by noting that inequality
(30) can be made tight without changing the rate region. The
equivalence of the two regions then becomes clear by setting
z

(1)
s = 1− ys, z(2)

s = 1− xs, u(1)
s = xs, and u(2)

s = ys.

V. ACHIEVABLE SCHEMES

A. Queue and Flow Model

In this section we develop codes that achieve the rate
region Cmem

fb . For this, we build on the idea of tracking
packets that have been received at the wrong destination,
as in [6], [7]. The transmitter has two buffers Q(1)

1 , Q(2)
1 to



store packets destined for Rx1, Rx2, respectively. We consider
dynamic arrivals, where packets for Rx1, Rx2 arrive in each
slot according to a Bernoulli process with probability R1, R2,
respectively. An analysis for more general arrival processes
is possible. The transmitter has two additional buffers Q(1)

2

(resp. Q(2)
2 ) for packets that have already been sent, but have

been received only by Rx2 (resp. Rx1). Hence buffer Q(1)
2

contains packets that are destined for Rx1 and have been
received at Rx2 but not at Rx1, and vice versa for Q(2)

2 . These
queues are empty before transmission begins. Each user j,
j = 1, 2, has a buffer Q(j)

3 that collects desired packets. These
buffers correspond to the system exit and are always empty.
The networked queuing system is shown in Fig. 3.

Each receiver has an additional buffer (not depicted in
Fig. 3) that collects packets not intended for it, i.e. packets
for the other user. Note that packets in this buffer are either
also present in Q(1)

2 , Q(2)
2 , or have left the system.

A packet for Rxj will only traverse buffers with superscript
j, i.e. Q(j)

1 , Q
(j)
2 or Q(j)

3 . In the following, slightly abusing
notation, we use Q(j)

l,t to denote the number of packets stored
in buffer Q(j)

l in time slot t. Obviously, Q(j)
l,t ∈ Q with Q =

{0, 1, . . . ,∞}. Define

Qt =
(
Q

(1)
1,t , Q

(1)
2,t , Q

(2)
1,t , Q

(2)
2,t

)
∈ Q4. (33)

Because Q
(1)
3 = Q

(2)
3 = 0 by definition, the vector Qt

determines the queue state at time t.
If both Q

(1)
2 and Q

(2)
2 are nonempty, the transmitter can

send the XOR combination of these packets. If both users
receive this coded packet, both can decode one desired
packet and two packets per slot are delivered. In general,
the transmitter can select his action At in slot t from the set
of actions A = {1, 2, 3}, where

1 corresponds to sending a packet for Rx1 from Q
(1)
1 ,

2 corresponds to sending a packet for Rx2 from Q
(2)
1 ,

3 corresponds to sending a coded packet.
Actions at time t are based on the current queue state Qt

and the previous channel state St−1.
Note that we permit actions from the action space A only.

The corresponding stability region consists of all rate tuples
(R1, R2) for which all queues in the network are strongly
stable [28, Definition 3.1], i.e., if

lim sup
n→∞

1

n

n∑
t=1

E[Qt] <∞. (34)

A network is strongly stable if all queues are strongly
stable [28, Definition 3.2]. The algorithms developed in the
following ensure network stability for rate pairs inside Cmem

fb .
For the analysis methods from [28], [21] are used, adapted
to the setup.

B. Probabilistic Scheme

Consider a strategy that bases decisions for actions only on
the previous channel state St−1, but not on the queue state
Qt. These strategies are called S-only algorithms in [21].
The decisions are random and independent from previous

Q
(1)
1 Q

(2)
1

Q
(1)
3 Q

(2)
3

Q
(1)
2 Q

(2)
2

R1

f
(1)
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f
(1)
13

f
(1)
23
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f
(2)
12

f
(2)
13

f
(2)
23

Fig. 3. Networked system of queues.

decisions, according to a probability distribution PAt|St−1

that does not depend on t.
Let F (j)

lm,t denote the number of packets that can travel
from buffer Q(j)

l to Q(j)
m in slot t. Clearly, F (j)

lm,t depends on
the action chosen in slot t. Recall that Zj,t is equal to one
if an erasure occurs at time t for Rxj and is zero otherwise,
so that

F
(1)
12,t = 1{At = 1}Z1,t(1− Z2,t). (35)

The long-term average rate f (1)
12 is bounded by

f
(1)
12 ≤ lim

n→∞

1

n

n∑
t=1

F
(1)
12,t = E[F

(1)
12,t], (36)

where the expectation in (36) is taken over the random
previous channel state St−1, the random erasure events and
the possibly random action At. Equality in (36) is achieved
if Q(1)

1,t > 0 whenever At = 1. Similarly, we have

f
(1)
13 ≤ E[F

(1)
13,t], F

(1)
13,t = 1{At = 1}(1− Z1,t) (37)

f
(1)
23 ≤ E[F

(1)
23,t], F

(1)
23,t = 1{At = 3}(1− Z1,t) (38)

and correspondingly for the flows to Rx2.
Thus, with this scheme, rate tuples (R1, R2) can be

achieved if there is a distribution PAt|St−1
such that

Rj ≤ f (j)
13 + f

(j)
12 (39)

f
(j)
12 ≤ f

(j)
23 (40)

f
(j)
12 ≤

∑
s∈S

πsPAt|St−1
(j|s)(εj(s)− ε12(s)) (41)

f
(j)
13 ≤

∑
s∈S

πsPAt|St−1
(j|s)(1− εj(s)) (42)

f
(j)
23 ≤

∑
s∈S

πsPAt|St−1
(3|s)(1− εj(s)) (43)

∀j ∈ {1, 2}.

Note that the region described by (39) - (43) is equivalent
to the rate region Cmem

fb described in (12) - (15). This may
be seen by setting PAt|St−1

(1|s) = 1− ys, PAt|St−1
(2|s) =

1 − xs, PAt|St−1
(3|s) = xs + ys − 1 and eliminating the

flow variables f
(j)
lm . Whereas (39) - (43) is a maximum

flow formulation, (12) - (15) describes the dual minimum
cut formulation. Note that inequality (11) ensures that
PAt|St−1

(3|s) ≥ 0. This inequality is implicitly required in
this approach but does not appear in the outer bound C̄mem

fb .



Action At Weight depending on Qt and St−1 = s

1 [1− ε1(s)]Q
(1)
1 + ε12̄(s)(Q

(1)
1 −Q(1)

2 )

2 [1− ε2(s)]Q
(2)
1 + ε1̄2(s)(Q

(2)
1 −Q(2)

2 )

3 [1− ε1(s)]Q
(1)
2 + [1− ε2(s)]Q

(2)
2

TABLE I
DETERMINISTIC SCHEME.

C. Deterministic Scheme

In the probabilistic scheme, actions are chosen depending
on the channel state, so it can happen that there is no packet
to transmit because the corresponding buffer is empty. This
can be avoided by a max-weight backpressure-like algorithm
[29], [30] basing its actions on both queue and channel states.

In each slot t, weights for each action are computed.
These weights depend on the current queue state Qt and the
previous channel state St−1 = s and are shown in Table I.
The strategy executes the action with highest weight in each
slot.

Note that the rule in Table I ensures that actions are chosen
only if the corresponding queues contain packets.

Using tools from Lyapunov stability [29], [31], [28], [21]
one can show that this rule stabilizes all queues for every
rate pair (R1 + δ,R2 + δ) ∈ Cmem

fb , δ > 0. The detailed proof
is omitted due to lack of space and can be found in [27].

The proof uses the T -slot drift similar to [21] but has
to be adapted to take into account only previous channel
states instead of the current channel. This difference changes
the proof and the corresponding max-weight policy. In the
model of [32], the authors deal with correlated channels
but have the current channel state (or an estimate of it)
available for the current decision. Similarly, in [31], [33], the
current channel state is available at the transmitter. In [34],
[35] the authors focus on obtaining channel state information
in a scenario that is related to the case of hidden states,
however without permitting coding operations. Similarly, [36]
investigates the case of delayed channel state information
for general networks, without permitting coding operations.
During the preparation of this work we were informed that
a similar approach was analyzed in [25] in a parallel line of
work. More powerful coding actions are permitted in [25]
that allow to close the gap to the outer bound.

VI. DISCUSSION

For the discussion and numerical results in this section
we use the Gilbert-Elliot model of Example 1. We
assume that the individual channels to users 1 and 2 are
both Gilbert-Elliot channels with states G and B. The
broadcast channel state space is therefore given by S =
{GG,GB,BG,BB} where G and B respectively refer to a
good and bad state at each user. Transitions from state B
to state G occur with probability gj for user j, j = 1, 2.
Similarly, a transition from state G to state B occurs with
probability bj for user j. For simplicity these transitions
are assumed to be independent across the two users. The
corresponding finite state Markov chain is summarized in
Fig. 4. The average (long-term) erasure probability at user

GG

GB

BG

BB

b1b2

(1
−

b 1
)b

2

(1− b1)(1− b2)

b1(1− b2)

(1
−

g 1
)b

2

g1b2

g1(1− b2)

(1− g1)(1− b2)

b1(1− g2)

b1g2

(1
−

b 1
)g

2

(1− b1)(1− g2)

g1(1− g2)

g1g2

(1
−

g 1
)g

2

(1− g1)(1− g2)

Fig. 4. Markov Chain of channel state space S with transition probabilities.
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Fig. 5. Bounds on the Capacity region for ε1 = 0.5, ε2 = 0.5, g1 = 0.2,
g2 = 0.3. In this case Cmem

fb and C̄mem
fb almost match.

user j is given by

εj =
bj

gj + bj
· (44)

Fig. 5 shows the capacity region for a channel with
parameters ε1 = 0.5, ε2 = 0.5, g1 = 0.2, g2 = 0.3. In this
figure we compare the bounds on the capacity region with
that of a memoryless channel with the same average erasure
probability (with and without feedback). For comparison we
also show the rate region achieved without permitting coding
between users as defined in [19].

A. Combination of Memoryless Strategies

Looking at the the characterization of Cmem
fb in Theorem 1,

one may wonder if this rate-region can be attained simply
by a combination of memoryless capacity achieving schemes.
Let Cfb(s), s ∈ S, denote the capacity region of a memoryless
BPEC with feedback and erasure probabilities Pr[Zt|St−1 =
s]. Capacity achieving algorithms for memoryless BPEC with



0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R1

R
2

πGGCfb(GG)

πBGCfb(BG)

πGBCfb(GB)

πBBCfb(BB)
R⊕
Cmem

fb
Cfb: Memoryless BPEC with FB
C: Memoryless BPEC w/o FB

Fig. 6. Individual rate regions and Minkowski sum R⊕ for ε1 = 0.6,
ε2 = 0.4, g1 = 0.3, g2 = 0.7. The region Cmem

fb is strictly larger. For
comparison, the corresponding capacity regions for memoryless channels
with the same average erasure probability are shown for the cases with and
without feedback. The difference between Cmem
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this case, so C̄mem
fb is omitted.

feedback are devised in [6]. A combination of memoryless
capacity achieving schemes may be described as follows:

• Choose fractions αs ≥ 0 and βs ≥ 0 such that∑
s∈S αs =

∑
s∈S βs = 1 and (αsR1, βsR2) ∈

πsCfb(s), for all s ∈ S.
• Take nαsR1 packets for Rx1 and nβsR2 packets for Rx2

to be transmitted only when the previous channel state is
equal to St−1 = s, s ∈ S. For each previous state s ∈ S,
the transmitter chooses an optimal memoryless strategy
(e.g., as devised in [6]) corresponding to a memoryless
BPEC channel with feedback and erasure probabilities
Pr[Zt|St−1 = s].

Using the above scheme, for large n, one can
asymptotically achieve the performance of the memoryless
strategy for each state s with the corresponding capacity
region Cfb(s). The overall rate region achievable by this
strategy, called R⊕, is thus a weighted combination of the
individual memoryless rate regions (for each state s):

R⊕ =
⊕
s∈S

πsCfb(s), (45)

where ⊕ denotes the set addition operator1 (Minkowski sum).
We show in Fig. 6 that R⊕ can be strictly smaller than

Cmem
fb .
Remark 2: Note that each memoryless rate region Cfb(s),

s ∈ S, is a polytope defined by linear inequalities. However,
the polytope generated by the Minkowski sum is not equal
to the one defined by the sum of the individual polytope
constraints. That would be the case, for example, if the
memoryless rate regions were polymatroids, as pointed out
in [26, Chapter 15.3.3],[37]. In that case, R⊕ would be equal
to Cmem

fb . However, this is not the case in general.

1For example, π1R1 ⊕ π2R2 = {π1r1 + π2r2|r1 ∈ R1, r2 ∈ R2}.
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when all erasures are known ahead of time.

B. Delayed Feedback

The result in Theorem 1 extends to the scenario where
feedback and channel state become available at the encoder
with more than a single symbol-time delay. Consider a delay
of d time units and call the achievable rate region Cmem

fb (d).
In the converse, one can obtain the corresponding bounds
by replacing the sequences ST−1, Y T−1

1 ZT−1
1 , Y T−1

2 and
ZT−1

2 with ST−d, Y T−d
1 ZT−d

1 , Y T−d
2 and ZT−d

2 .
The bounds on the capacity region Cmem

fb (d) and C̄mem
fb (d)

have thus a characterization as in Theorem 1 by redefining
the erasure probabilities in (4) as

ε12(s) = PZt|St−d
(1, 1|s), ε12̄(s) = PZt|St−d

(1, 0|s),
ε1̄2(s) = PZt|St−d

(0, 1|s), ε1̄2̄(s) = PZt|St−d
(0, 0|s),

ε1(s) = ε12(s) + ε12̄(s), ε2(s) = ε12(s) + ε1̄2(s).

The corresponding deterministic achievable scheme as
in Section V-C uses these redefined conditional erasure
probabilities to obtain the same description as in Table I.

Fig. 7 shows the effect of feedback delay for a
Gilbert-Elliot channel with parameters ε1 = 0.6, g1 = 0.1,
ε2 = 0.5, g2 = 0.1. Two observations can be made:
First, obviously, delayed feedback shrinks both the outer
and inner bounds, as state information becomes less useful.
After a feedback delay of d = 10 time units, the region
Cmem

fb (d = 10) is almost the same as for the memoryless
case for this example. In general this depends on the
convergence speed of the state Markov chain towards its
stationary distribution. Second, the more the memoryless
capacity region is appraoched, the smaller is the difference
between Cmem

fb and C̄mem
fb .

VII. CONCLUSION

We investigated the two-user broadcast packet erasure
channel with feedback and memory. We modelled the channel
memory by a finite state machine and found outer and inner
bounds on the capacity region when the channel state is
known strictly causally at the encoder. For the inner bound we



proposed a probabilistic achievable scheme and presented a
deterministic queue-length based algorithm. The results are
extended to feedback with larger delay. Numerical results
show that the gains offered through feedback can be quite
large and that the difference between the outer and inner
bound is small. One future direction is to determine when
inner and outer bounds meet.
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APPENDIX A
PROOF OF LEMMA 2

First note that I(U1,TU2,TVT ;XT |T, ST−1 = s) ≤ 1
because H(XT |T, ST−1 = s) ≤ 1. Applying the chain rule,
we obtain

1 ≥I(U1,TU2,TVT ;XT |T, ST−1 = s)

=I(U1,T ;XT |T, ST−1 = s)

+I(VT ;XT |U1,TT, ST−1 = s)

+I(U2,T ;XT |U1,TVTT, ST−1 = s)

≥u(1)
s + I(VT ;XT |U1,TT, ST−1 = s) + z(2)

s

≥u(1)
s + z(2)

s . (46)

Similarly, u(2)
s + z

(1)
s ≤ 1.
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