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Abstract—The two-user broadcast erasure channel with
feedback and memory is analyzed. It is shown that memory
increases the capacity region for this scenario. Several heuristic
algorithms are proposed and analyzed. Although these schemes
do not achieve capacity, significant gains can be observed
compared to the memoryless case.

I. INTRODUCTION

The memoryless broadcast erasure channel (BEC) with

feedback (FB) is one of the examples in multiuser

communication systems where the capacity region is known

and feedback increases the capacity region. The result was

found recently in [1] for the two-user case and was extended

to the general K-user case in [2], [3]. For the two-user case

with independent erasure probabilities ǫ1 and ǫ2, the capacity

region consists of all rate pairs (R1, R2) ∈ Cf = C1 ∩ C2,

where

C1 =

{

(R1, R2) ≥ 0 :
R1

1− ǫ1
+

R2

1− ǫ1ǫ2
≤ 1

}

,

C2 =

{

(R1, R2) ≥ 0 :
R1

1− ǫ1ǫ2
+

R2

1− ǫ2
≤ 1

}

,

and rates are measured in symbols per transmission. This

region is strictly larger than the capacity region for the

memoryless BEC without FB, denoted Cnofb, consisting of all

rate pairs

(R1, R2) ≥ 0 :
R1

1− ǫ1
+

R2

1− ǫ2
≤ 1. (1)

The latter region is one of the few examples for broadcast

channels where time sharing between different users is

optimal.

Motivated by possible applications, we try to extend

this work for channels with memory. In many practical

scenarios erasures occur in bursts. If no feedback is present,

interleaving can decorrelate the erasures and erasure correcting

codes designed for memoryless channels can be used. With

feedback however, more sophisticated methods are possible

or simpler coding schemes suffice. We analyze some of the

capacity-achieving algorithms proposed in [1] when erasures

do not occur independently in time and introduce two new

schemes. While none of the proposed algorithm can be shown

to be capacity-achieving for the case with memory, significant

gains can be exploited if memory is present.

The work for the broadcast erasure channel with feedback

is closely related to the index coding problem [4]. For

index coding, one usually seeks to minimize the number

of transmissions that are necessary to complete a multicast

transmission [5], [6]. Without erasures, the index coding

reduces to a hard combinatorial problem [4], [7], [8].

A related setup has been investigated in [9], where the

authors study the multiple-input multiple-output broadcast

packet erasure channel with feedback for two users, without

memory however. In [10], the scheme in [1] was extended to

Rayleigh fading channels.

For the general case of discrete channels, the two-user

finite-state broadcast channel with feedback and unidirectional

user cooperation has been investigated in [11]. To the best

of our knowledge for the case without user cooperation, the

general capacity region remains unknown.

II. SYSTEM MODEL

We keep the notation similar to [1]. In particular, a sequence

X1, X2, . . . , Xn is denoted by Xn. Two users U1 and U2 wish

to receive two independent messages W1 ∈ W1, W2 ∈ W2 in

n uses of the channel from one transmitter.

Let Xt ∈ X denote channel input in time slot t, t =
1, . . . , n. Each channel input corresponds to a packet of L

bits, so X = Fq with q = 2L. All rates, entropies and mutual

informations are with respect to logarithms to the base q, so

W1 = {1, 2, . . . , qnR1}, W2 = {1, 2, . . . , qnR2}.

Packet Xt is broadcast to both users, where it is either

completely erased or perfectly received. Let E denote the

erasure symbol. The channel output at user i in time slot

t is denoted by Yi,t ∈ X ∪ {E}. Define Zi,t as a binary

random variable indicating if an erasure occurred at user i in

slot t, i.e. Zi,t = 1{Yi,t = E}. Equivalently, one can write

Yi,t = Zi,tE+(1−Zi,t)Xt. Yi,t is thus a function of Xt and

Zi,t, but Yi,t also determines Zi,t without ambiguity.

Different to [1], the sequence {Zi,t}
∞
t=1 is correlated in time.

For simplicity we assume statistical independence of the pair

(Z1,t, Z2,t). Hence, erasures occur independently over users,

but not over time, with average erasure probability at user i

ǫi = lim
n→∞

1

n

n
∑

t=1

Pr[Zi,t = 1]. (2)

The correlation of the erasures is according to a Gilbert-Elliot

model [12], [13]. The random channel state at user i in slot t

is denoted by Si,t ∈ Si, Si = {G,B}, referring to a good and

bad state. The erasure probability can differ in each of the two

states. Although the results can be adapted, we focus on the
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Fig. 1. Markov Chain of channel state space with transition probabilities.

case where Pr[Zi,t = 1|Si,t = G] = 0 and Pr[Zi,t = 1|Si,t =
B] = 1.

The overall channel state in slot t is the concatenation of

S1,t and S2,t, denoted by St ∈ S, S = {GG,GB,BG,BB}.

Transitions between the channel states are parametrized by

Pr[Si,t+1 = G|Si,t = B] = gi

Pr[Si,t+1 = B|Si,t = G] = bi. (3)

The corresponding channel transitions for the four-state

channel Markov chain is shown in Fig. 1. The parameters of

the model are assumed to be known to the transmitter.

For the ergodic case the average erasure probability yields

ǫi = lim
n→∞

1

n

n
∑

t=1

Pr[Si,t = B] = πi,B =
bi

gi + bi
, (4)

where πi,B is the steady-state probability of the bad state at

user i. The initial channel state at user i, Si,0 is distributed

according to this steady-state distribution. This assumption

represents the fact that the initial channel state is unknown. If

0 < bi < 1, 0 < gi < 1 for both i = 1, 2, the channel Markov

chain is ergodic.

Define the channel memory µi for user i as in [14]:

µi = Pr[Si,t+1 = s|Si,t = s]− Pr[Si,t+1 = s|Si,t 6= s]

= 1− gi − bi for s ∈ {G,B}. (5)

If µi > 0, the channel is called persistent, as the probability of

remaining in a state is larger than the steady-state probability.

If µi < 0, the channel is oscillatory, whereas for µi = 0 the

channel is memoryless.

After slot t, each receiver provides feedback if an erasure

occurred or not. This feedback is assumed without errors and

delay. This enables the transmitter to choose its next channel

input as a function of the previous channel state:

Xt = ft(W1,W2, Z
t−1
1 , Zt−1

2 ) (6)

For simplicity we assume that this feedback is known to all

nodes in the network. In most cases this assumption is not

realistic, but it simplifies notation and algorithms. Usually,

algorithms can be adapted to work also with feedback only

present at the transmitter.

The decoder at user i maps its received sequence to an

estimate Ŵi = hi(Y
n
i ). The capacity region R consists of the

closure of all pairs (R1, R2) such that Pr[Ŵi 6= Wi] −→ 0 as

n → ∞, i = 1, 2.

III. UPPER BOUNDS

The capacity region R is a subset of the set RUB consisting

of all pairs (R1, R2) ≥ 0 for which

R1 ≤ 1− ǫ1

R2 ≤ 1− ǫ2

R1 +R2 ≤ 1− ǫ1ǫ2. (7)

This upper bound is very intuitive for the erasure channel

because it also holds for broadcast erasure channels without

feedback and without memory. A formal proof that neither

memory nor feedback loosens the bounds is given in

Appendix A. Whereas this upper bound is rather trivial and

loose for the memoryless cases with and without feedback,

as shown in Fig. 2, boundary points of RUB can be achieved

when memory is present:

Consider the limiting cases where both gi and bi are very

close to 0 or 1 for both users. Feedback about erasures in the

past state almost completely removes the uncertainty about the

next transmission. The transmitter knows almost exactly when

packets will be lost and can adapt its transmission strategy

accordingly. Coding is unnecessary as there is no uncertainty

about the channel. When n is large, there will be n(1 − ǫ1)
erasure-free slots to U1, n(1 − ǫ2) erasure-free slots to U2.

n(1 − ǫ1ǫ2) slots are erasure-free to both users, so every

boundary point on RUB can be approached even without time

sharing, and thus R = RUB. This illustrates that memory

does increase the capacity region of the broadcast erasure

channel with feedback. Note that this is not the case for the

point-to-point erasure channel with feedback and memory.

IV. ANALYSIS OF ALGORITHMS

This section first reviews two capacity-achieving algorithms

for the memoryless case from [1], called Algorithm I and

Algorithm III. We then describe two alternative heuristic

strategies. All algorithms are possible implementations of the

encoder Xt = ft(W1,W2, Z
t−1
1 , Zt−1

2 ). In our case this is

equivalent to an encoder Xt = ft(W1,W2, S
t−1
1 , St−1

2 ) as the

channel state St is determined by Z1,t, Z2,t without ambiguity.

The feedback informs the sender if the previous packet has

been erased or not. In the following, packets destined for U2

(U1) that are received only by U1 (U2) are put into buffer

Q2 (Q1) at the transmitter. Hence buffer Q1 contains packets

destined for U1 that have been received at U2 but not at U1,

and vice versa for Q2. Each user keeps every received packet

in a buffer, even if it is not destined for it.
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A. Algorithm A

Algorithm A corresponds to Algorithm I in [1] and consists

of 3 phases for the sender:

1) Transmit each of the nR1 packets destined for U1

uncoded until it is received at either U1 or U2.

2) Same for the nR2 packets destined for U2.

3) Transmit random linear combinations of all packets in

buffers Q1 and Q2 until both users can decode all its

requested packets.

The corresponding rate region is denoted RA. Note that

each of the phases of Algorithm A runs for long blocks and

thus only long-term average erasure probabilities affect the

performance, for sufficiently large values of n. As shown

in [1], Algorithm A can approach every point in Cf for the

memoryless case, so every rate pair (R1, R2) ∈ Cf can still

be approached when memory is present for the corresponding

average erasure probabilities ǫ1, ǫ2. Hence RA = Cf , but the

required block length n to approach points on the boundary

will be larger in general for erasures with memory, as the

underlying process has to reach steady state.

B. Algorithm B

Algorithm B corresponds to Algorithm III in [1] and

requires only single-packet buffers Q1, Q2 and XOR coding

operations. With slight abuse of notation, we write the buffer

state in slot t as Qt = (Q1,t, Q2,t) ∈ Q. Qt can take one of

the values in Q = {00, 10, 01, 11}, referring to the number

of packets in Q1, Q2, respectively. Algorithm B consists of 2

phases for the sender:

1) As long as both users miss some of the requested

packets, do the following steps:

a) If Q = 00, transmit a packet for U1.

b) If Q = 01, transmit a packet for U1.

c) If Q = 10, transmit a packet for U2.

d) If Q = 11, transmit the binary addition (XOR) of

the two packets in Q1, Q2.

2) Transmit the remaining packets uncoded to the user

that is still missing some, until all packets have been

delivered.

Steps 1.b) and 1.c) try to create coding opportunities, i.e.

to create a situation where both buffers are nonempty and

a coded packet is sent. If such a transmission is received

by both users, 2 packets are delivered and one previous

erasure is compensated. The average achievable transmission

rates of the algorithm can be analyzed with a Markov

chain with states corresponding to the 4 different queue

states. The corresponding rate region is denoted RB. In

contrast to Algorithm A, the performance of Algorithm B

for the memoryless case differs from the performance for

erasures with memory. To illustrate this, consider the following

situation: Before time slot t, both buffers are empty, so the

sender transmits a packet for U1 according to step 1.a). The

state in slot t turns out to be St = BG, so the packet is

correctly received at U2 but erased at U1. In slot t + 1,

the sender transmits a packet for U2 according to 1.c). If

the channel to U2 is persistent, then it is likely that this

transmission is successfully received by U2 and transmitting a

packet for U2 is a reasonable choice. However if the channel to

U2 is oscillatory, then it is likely that this packet is erased at U2

(it might still be received at U1). Numerical results will show

that the performance of this algorithm degrades compared

to the memoryless case if both channels are oscillatory.

Algorithm B does not adapt to the channel, so algorithms

exploiting channel state information can potentially perform

better.

C. Algorithm C

In order to adapt to the channel state, we formulate the

problem as a Markov Decision Process: We restrict us to

single-packet buffers Q1, Q2, a possibly suboptimal choice.

The overall state space is given by SQ = S×Q with 16 states.

We write SQ,t = GG00 if the channel state is St = GG and

the buffer state is Qt = 00, and equivalently for the other

cases.

In each slot t the sender chooses an action At from the set

of actions A = {a1, a2, a3}, where

a1 corresponds to transmission of a packet for U1,

a2 corresponds to transmission of a packet for U2,

a3 corresponds to transmission of a coded packet.

Note that the action At is based on the state in the previous

slot SQ,t−1, which is determined through the feedback. The

possibilities for the successive state SQ,t also depend on the

choice of At.

With each action At = a, a reward ρai (sQ, s
′
Q) for user i is

associated when going from state SQ,t−1 = sQ to SQ,t = s′Q
after action At = a. We choose this reward as the number

of requested packets that reach Ui in that state transition. For

example,

ρa1

1 (sQ = GB01, s′Q = GG01) = 1,

ρa1

2 (sQ = GB01, s′Q = GG01) = 0,

because both users receive a packet that is requested only by



TABLE I
POLICY FOR THE FIRST PHASE OF ALGORITHM C

Qt−1 St−1 At = a(SQ,t−1)

11 arbitrary a3
6= 11 GG a1 if θ1(1 − b1) > θ2(1 − b2), otherwise a2

GB a1 if θ1(1 − b1) > θ2g2, otherwise a2
BG a1 if θ1g1 > θ2(1 − b2), otherwise a2
BB a1 if θ1g1 > θ2g2, otherwise a2

U1. As another example, we have

ρa3

1 (sQ = GB11, s′Q = GG00) = 1,

ρa3

2 (sQ = GB11, s′Q = GG00) = 1,

because both users can decode a packet. Note that this case

leads to a change of the buffer state. To facilitate coding

opportunities, action a3 is only permitted when Qt = 11.

In each state SQ we choose the action maximizing the

expected weighted sum reward, i.e.

a(sQ) = argmax
a∈A

E[θ1ρ
a
1(sQ, S

′
Q) + θ2ρ

a
2(sQ, S

′
Q)], (8)

where θ1, θ2 are two positive constants weighting the two

rewards. The corresponding policy is summarized in Table I

and determines the first of the two phases of Algorithm C:

1) As long as both users miss some of the requested

packets, choose the action according to Table I.

2) Transmit the remaining packets uncoded to the user

that is still missing some, until all packets have been

delivered.

The long-term average rates of phase 1 can be analyzed with

the corresponding Markov chain. Let πsQ , sQ ∈ SQ be the

steady-state probability of the Markov chain. The long-term

average rates for user i in phase 1 is given by

ρ̄i =
∑

sQ∈SQ

πsQE[ρ
a(sQ)
i (sQ, S

′
Q)]

=
∑

sQ∈SQ

∑

s′
Q
∈SQ

πsQ Pr[s′Q|sQ, a(sQ)]ρ
a(sQ)
i (sQ, s

′
Q). (9)

Although straightforward in principle, computer algebra

systems are needed to solve πsQ analytically due to the

cardinality of the state space. Unfortunately the resulting

expressions for ρ̄i become too complicated to provide further

insight to the problem. Similar problems arise for the analysis

of Algorithm B. For performance comparisons, we have to

resort to numerical evaluations. Based on ρ̄i, the rate region

RC(θ1, θ2) of Algorithm C can be computed, for the choice

of θ1 and θ2. See Appendix B for details. We define RC as

the convex hull of the union of all regions RC(θ1, θ2) for all

possible choices of θ1, θ2.

D. Algorithm D

The motivating example in Section III showed that coding

might not be necessary if the uncertainty about future

transmissions is rather small. For Algorithm D the action

space is reduced to A = {a1, a2}, so coding operations are

not permitted. Hence buffer contents cannot be exploited and

TABLE II
POLICY FOR THE FIRST PHASE OF ALGORITHM D

St−1 At = a(St−1)

GG a1 if θ1(1− b1) > θ2(1− b2), otherwise a2
GB a1 if θ1(1− b1) > θ2g2, otherwise a2
BG a1 if θ1g1 > θ2(1 − b2), otherwise a2
BB a1 if θ1g1 > θ2g2, otherwise a2

the relevant state space reduces to the channel state space S.

Similar to before, a reward ρai (s, s
′) is associated for user i

when going from state St−1 = s ∈ S to St = s′ ∈ S after

action At = a.

The policy for Algorithm D is given by

a(s) = arg max
a∈{a1,a2}

E[θ1ρ
a
1(s, S

′) + θ2ρ
a
2(s, S

′)]. (10)

The resulting policy is summarized in Table II and

determines the first of the two phases of Algorithm D:

1) As long as both users miss some of the requested

packets, choose the action according to Table II.

2) Transmit the remaining packets uncoded to the user

that is still missing some, until all packets have been

delivered.

The long-term average rates of phase 1 can be computed

similarly as before. The rate region for Algorithm D is denoted

by RD(θ1, θ2). Again, let RD be the convex hull of the union

of all regions RD(θ1, θ2) for all possible choices of θ1, θ2.

V. COMPARISON AND DISCUSSION

We first note that Algorithms B, C, and D react to different

state spaces. Whereas Algorithm B only depends on queue

states and Algorithm D only on channel states, Algorithm C

bases its decisions on the combination of both. We also note

that the performance of Algorithm C is at least as good

as the performance of Algorithm D. We pick some typical

examples showing a general trend of the simulations. In the

following figures, we plot rate regions for all algorithms as

well as lower and upper bounds. Additionally, we add the

rate regions for Algorithm C and D for the particular choice

θ1 = θ2 = 1. Consider Fig. 3: We observe that Algorithm B

improves quite a bit compared to the memoryless capacity

region. We also note that Algorithm B can perform better or

worse than Algorithms C and D for θ1 = θ2 = 1, depending

on the rates. The rate regions for all choices of θ1, θ2 (RC

and RD) however provide higher rates than Algorithm B. We

further see that the difference between Algorithms C and D is

not large.

Fig. 4 however shows that also Algorithm B can provide

rate points that are outside of RC and RD. In general we

observe that Algorithm B works quite well for persistent

memory. For oscillatory memory however, like in Fig. 5, we

see that Algorithm B performs even worse than Algorithm A,

whereas Algorithms C and D can adapt to the channel state

and increase the rate region quite significantly. The difference

between both regions is small again, raising the conjecture

that the coding gain is actually decreased when memory and

feedback is present.
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VI. CONCLUSION

The two-user broadcast erasure channel with feedback and

memory was investigated. Starting from extreme cases, where

upper bounds can be achieved we analyze different heuristic

strategies. Significant gains can be observed compared to

the case without memory and motivate the development of

further strategies. The capacity region for this setup was found

recently and a publication is in preparation.
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APPENDIX A

PROOF OF UPPER BOUND

Consider a point-to-point erasure channel with memory and

feedback with message W ∈ {1, 2, . . . , qnR}, channel input

Xt = ft(W,Zt−1), t = 1, . . . , n, channel state sequence

Sn, channel output Y n and erasure indicator Zn. The joint

probability mass function factorizes as

p(w, xn, yn, zn, sn)

= p(w)p(s0)

n
∏

t=1

p(st|st−1)p(zt|st)p(xt|w, z
t−1)p(yt|xt, zt).

We have

nR ≤ I(Xn → Y n) =

n
∑

t=1

I(Xt;Yt|Y
t−1)

(a)
=

n
∑

t=1

[

I(Xt;Yt|Y
t−1) + I(Xt−1;Yt|Y

t−1, Xt)
]

(b)
=

n
∑

t=1

[

I(Xt;Yt|Y
t−1) + I(Xt−1;Yt|Y

t−1, Zt−1, Xt)
]

(c)
=

n
∑

t=1

[

H(Xt|Y
t−1)−H(Xt|Y

t)
]

=

n
∑

t=1

∑

yt−1

p(yt−1)
[

H(Xt|y
t−1)−H(Xt|Yt, y

t−1)
]

=

n
∑

t=1

∑

yt−1

p(yt−1)
[

H(Xt|y
t−1)−

−p(Yt = E|yt−1)H(Xt|Yt = E, yt−1)
]

(d)
=

n
∑

t=1

∑

yt−1

p(yt−1)H(Xt|y
t−1)

[

1− p(Yt = E|yt−1)
]

(e)

≤ n−

n
∑

t=1

p(Yt = E) (11)



where I(Xn → Y n) denotes the directed information from a

sequence Xn to Y n as in [15], [16],

(a) is due to the chain rule of mutual information,

(b) is due to the fact that Zt−1 is a function of Y t−1,

(c) is due to the fact that Xt−1 is conditionally independent

of Yt given (Y t−1, Zt−1, Xt),
(d) is due to the fact that H(Xt|Yt = E, yt−1) = H(Xt|y

t−1)
and

(e) is due to the fact that H(Xt|y
t−1) ≤ 1.

The first two inequalities in (7) follow immediately, the third

one follows from letting both users cooperate.

APPENDIX B

RATE REGION COMPUTATION

To compute the rate regions for Algorithm B, C and D in

Sect. V, the following method is applied (similar to [1]): Recall

that the average number of packets per slot in phase 1 for Ui

is given by ρ̄i.

Ui requests ki = nRi packets. The first phase of Algorithms

B, C and D last as long as either U1 or U2 has received all of

its requestes packets. The duration of phase 1 is denoted by

n1, the duration of phase 2 by n2 and n = n1 + n2.

The first phase will last for n1 = min
{

k1

ρ̄1

, k2

ρ̄2

}

slots on

average, for large k1, k2. Let α denote the ratio between R2

and R1:

α =
R2

R1
=

k2

k1
. (12)

It follows that n1 = k1 min

{

1

ρ̄1
,
α

ρ̄2

}

. (13)

Two cases must be distinguished:

• If ρ̄2 < αρ̄1, then U1 has finished after phase 1 and

n1 = k1

ρ̄1

. The remaining k2 − n1ρ̄2 = k1

(

α− ρ̄2

ρ̄1

)

packets must be transmitted to U2. This takes

n2 =
k1

(

α− ρ̄2

ρ̄1

)

1− ǫ2

slots and yields the rates

R1 =
k1

n1 + n2
=

1
1
ρ̄1

+ α−ρ̄2/ρ̄1

1−ǫ2

=
ρ̄1

1 + αρ̄1−ρ̄2

1−ǫ2

, (14)

R2 = αR1 =
αρ̄1

1 + αρ̄1−ρ̄2

1−ǫ2

. (15)

• If ρ̄2 > αρ̄1, then U2 has finished after phase 1 and

n1 = αk1

ρ̄2

. The remaining k1 − n1ρ̄1 = k1

(

1− α ρ̄1

ρ̄2

)

packets must be transmitted to U1. This takes

n2 =
k1

(

1− α ρ̄1

ρ̄2

)

1− ǫ1

slots and yields the rates

R1 =
k1

n1 + n2
=

1
α
ρ̄2

+ 1−αρ̄1/ρ̄2

1−ǫ1

=
ρ̄2

α+ ρ̄2−αρ̄1

1−ǫ1

, (16)

R2 = αR1 =
αρ̄2

α+ ρ̄2−αρ̄1

1−ǫ1

(17)

A plot of the boundary of the rate region can be obtained by

choosing different values for α.
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