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Abstract. The high level of complexity in modern construction projects causes a-priori project 

schedules to be highly sensitive to delays in the involved processes. At underground construction 

sites the earthwork processes are very vital, as most of the following tasks depend on it. This paper 

presents a novel method for tracking the progress of earthwork processes by combing two 

technologies based on computer vision: photogrammetry and video analysis. While the former is 

applied to determine the volume of the excavated soil in regular intervals, the latter is used to 

generate statistics regarding the construction activities, such as loading times and idle times. 

Combining these two data sources allows exact measurement of the productivity of the machinery 

and determining site-specific performance factors. Most importantly, reasons for low productivity 

– such as an insufficient number of trucks – can be identified easily. The paper presents in detail 

the vision-based techniques applied and the methods used for combining both data sources. The 

suitability of the approach has been proved by an extensive case study – a real-world excavation 

project in Munich, Germany. 

1. Introduction 

The high level of complexity in modern construction projects causes a-priori project 

schedules to be highly sensitive to delays in the involved processes. At underground 

construction sites the earthwork processes are very vital, as most of the following tasks 

depend on it. Due to the discovery of archaeological artifacts, relocation of undocumented 

underground utilities, removal of leftover ammunition from wars or pollutants in the soil, 

impact from adverse weather, and through improper site organization, earthwork processes 

are often subject to unanticipated delays. These delays are likely to propagate through the 

entire remaining schedule and adversely impact both progress and productivity. 

In this paper, we present a novel approach for monitoring earthwork processes using visual 

sensors for the purpose of extracting activity, progress, and productivity statistics through 

vision-based processing algorithms. The visual sensors provide both activity and progress 

data regarding the work site. For the former, a static surveillance camera surveying the 

primary zone of activity records the ongoing activities. For the latter, visual data in the form 

of photographs of the work site is obtained on a periodic basis.  

Figure 1 gives on overview of the combined approach proposed in this paper. On the one 

hand we apply photogrammetric processing of photo images to determine the earth volume 

excavated, while on the other hand we perform video analysis to generate statistics regarding 

the site activates, such as loading times, idle times, and other relevant project management 

information. Combining these two data sources enables us to exactly measure the productivity 
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of the machinery system and determine site-specific performance factors (Gouett et al., 2011). 

Most importantly, reasons for low productivity – such as an insufficient number of trucks –

can be identified easily. While onsite personnel can notice occurring delays by common 

sense, the underlying reasons, determined by the described method, can be less obvious. 

 

Figure 1: Data flow diagram of proposed concept 

2. Related work 

Bügler et al. (2013a) presented an approach to estimate the current progress of an excavation 

process based on determining the excavated volume utilizing photogrammetry and applying 

the VisualSFM algorithm (Wu, 2011). Ogunmakin et al. (2013) presented a vision-based 

method for tracking the individual machines involved in the excavation processes and 

calculating more detailed metrics. These metrics include the idle times of dump trucks, 

bulldozers, and excavators, the number of dump truckloads observed, and the timespans the 

dump trucks spend off-site. In this paper, we discuss how these two approaches can be 

integrated, in order to realize a mechanism for determining the labor productivity. Further 

analysis of these fused measurements over longer timespans may reveal the causes and time 

frames of observed delays. Providing feedback of these observations to the worksite 

stakeholders would allow them to more efficiently be apprised of delays, determine their 

causes, and react appropriately. Importantly, Gouett et al. (2011) has shown that awareness of 

labor productivity leads to improvements in the direct work rate, thus the existence of onsite 

measurement abilities such as those sought in this paper is sufficient to improve onsite 

operations, irrespective of any adverse conditions that may occur to impede progress. 

Photogrammetry is increasingly used in many areas of construction projects. Aydin (2014) 

recently presented a photogrammetric method for façade design and Fathi et al. (2013) 

presented a method to monitor the fabrication of metal roof panels. Additionally Dimitrov et 

al. (2014) introduced a method to generate building information models from unordered 

photographs. Vahdatikhaki et al. (2014) propose to combine different kinds of radio based 

tracking methods in order to monitor earthwork processes. Pradhananga and Teizer (2013) 

and Vaseneva et al. (2014) evaluated the use of Global Positioning System (GPS) for such 

purposes. As Ogunmakin et al. (2013) states, several more researchers are active in this area. 

3. Experimental Setup 

To evaluate the proposed method, we applied both capturing technologies on a single 

construction site. A video camera was placed on site on a tower crane to record footage of the 

excavators and dump trucks. Photographs taken from different viewpoints were used for the 

photogrammetry approach. As the site for the experiment, we chose a new subterranean 
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parking lot (see Figure 2) in a particularly confined area of Munich. The site requires a large 

excavation task to be finished prior to commencing the main building activities. 

4. Volume Calculation using Photogrammetry 

A suitable approach to quantify the amount of excavated soil on an excavation site is to create 

a three-dimensional (3D) point cloud of the site space (see Figure 3) and use the information 

to obtain a volume measure. The photogrammetry approach uses photos taken by a pedestrian 

worker equipped with a conventional digital camera as input data (see Figure 4). 

Alternatively, a method to record the data using an unmanned aerial vehicle (UAV) system 

was proposed by Siebert and Teizer (2014). The algorithm locates feature points within the 

recorded photos using the scale invariant feature transform SIFT (Wu, 2007). Those features 

are then matched among the individual photographs. Features visible in at least three 

photographs can then be used to triangulate points in the 3D space (see Figure 3) using the 

bundler approach published in Wu (2011). Those points eventually form a point cloud. 

Additionally the patch based multi view stereo (PMVS) algorithm (Furukawa et al., 2010) can 

be used to create a denser representation of the scene and to add information about normals. 

In order to calculate the volume of the point cloud, several steps are required. First, the cloud 

needs to be cleaned from points outside the excavation area, which is performed using cluster 

analysis. Secondly, a consistent top plane, which covers the excavation area, is found using 

marker points or a vertical histogram analysis. Furthermore, the top plane is filled with a layer 

of artificial points with normals facing downwards. Eventually a closed mesh is created using 

Poisson surface reconstruction (Kazhdan et al., 2006) and the volume of the mesh is 

calculated using signed tetrahedron volumes. More details on the entire procedure are given in 

Bügler et al. (2013a). 

Figure 2: Layout of construction site subject to the 

experiments, the diameter is about 50 meters 

Figure 3: Point cloud of the excavation site 
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Figure 4: Photographs of the excavation site in the downtown area of Munich, Germany 

5. Excavation Tracking using Video Analysis 

As described in Ogunmakin et al. (2013), an automated system for processing construction 

site video requires a priori information about the site layout and the proper design of a 

surveillance system contextualized for the task at hand (in this case the extraction of activity 

and event statistics of onsite machines). The information required by the system is the work 

site layout, the machines being tracked, and their process diagrams encoded as a probabilistic 

graph model (Yang et al., 2013; Ogunmakin et al., 2013). The video processing system 

consists of four major parts: (1) target detection, (2) target tracking, (3) activity status 

estimation, and (4) event detection processing. The first part identifies elements in the image 

that should be tracked. Here, a background model (Stauffer and Grimson, 1999) of an empty 

scene is used to detect targets within the field of view, especially those that enter the site. 

When a target is detected, a kernel covariance tracker is initialized for the tracking the target 

(Yang et al, 2010; Ogunmakin et al., 2013). The role of the tracker is to maintain a consistent 

temporal trajectory for the detected target over time. While the targets are being tracked, the 

activity status for each machine, moving or static, is estimated. The activity status estimator 

also estimates whether an excavator is filling a dump truck or not. The event detection 

processor combines the output from the tracker and the activity status estimator to generate 

detailed metrics regarding important onsite events. Figure 5 shows the process flow of the 

automatic system. For the system to work, the stationary video camera providing the visual 

stream must be mounted in a position that provides a field-of-view large enough to capture 

the work area of all machines of interest. Tower crane mast, roofs of nearby buildings or 

structures, or other temporary construction facilities offer good locations as long as they do 

not move much (Bohn and Teizer 2010).  

 

Figure 5: Process flow for the automatic surveillance system 

5.1 Target Detection 

Target detection utilizes a background Gaussian Mixture Model (GMM), which identifies 

anomalies in the image relative to an expected background image (Stauffer and Grimson, 

1999). The initial background model comes from the estimation technique proposed by Reddy 

et al. (2009). Targets detection is performed by computing the probability of each pixel 

belonging to the background. Regions with low probabilities below a threshold result in a 

foreground mask giving all foreground items in the scene. This information is coupled with 

the work site layout information (e.g., entrance gates or zones) to determine when a target 
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first enters the scene. Figure 6 depicts the primary background model (the strongest mixture 

element for each pixel), a sample image from surveillance video, and the foreground regions. 

   

Figure 6: From left to right: sample estimated background, sample image, and foreground detection 

5.2 Kernel Covariance Tracking 

The kernel covariance tracker used in this work is an improvement on the tracker proposed by 

Yang et al. (2010). Several improvements are made: (1) reduction of data before tracking 

(Kingravi et al., 2013) and (2) introduction of a scale space search with upper limits and lower 

limits. The data reduction step saves memory and lowers the computational cost of tracking. 

The scale space search allows the tracker to handle changes in scale. To initialize the tracker, 

the target’s color and spatial information are learned through kernel principal component 

analysis (KPCA) with a Gaussian kernel. For every frame and each target, a gradient ascent 

procedure localizes the target by comparing the foreground image data with the targets’ 

learned model. Figure 7 depicts the tracking results for a short segment of time. The three 

targets are outlined by a bounding box and their trajectories into the future are depicted. 

 

Figure 7: Sample kernel covariance tracking results 

5.3 Activity Status Estimation 

The activity status of the machines follows that of Ogunmakin (2013), where machine activity 

is decomposed into static, moving, or within a region of interest. Each region of interest has 

specific meaning as derived from the probabilistic graph model of the potential activity states 

of each machine. An additional activity check is performed when an excavator and a dump 

truck are in close proximity. Then, much like in Golparvar-Fard et al. (2013), where the 

movement of the excavator’s spatio-temporal features provides an indication of excavator 

activity, the movement of the excavator in the proximity zone of a dump truck establishes 
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when an excavator is filling a dump truck. This state can only be triggered when the two 

machines are in close proximity and the dump truck is static.  

5.4 Event Detection Processor 

The event detection processor takes as input, the trajectory information from the tracker and 

the results from the activity status estimation, and uses this to generate the statistics needed to 

determine the timespans of the work activities of the excavators and dump trucks. The metrics 

computed are the number of dump trucks that entered the scene, how much time they spent in 

the region of interest getting filled, how many bucket loads of soil were placed in each dump 

truck, and how long the machines spent idle while in the scene. Figure 9 depicts the output of 

the event detection processor, which includes a display of the aggregate statistics, Figure 9(a), 

and a table with the temporal breakdown of the activity states, Figure 9(b). In addition, robust 

estimation is used to estimate activity averages and identify outliers (discussed in results). 

 

   

Figure 8: Dump truck state estimates for a video segment. The activity states are static (red), moving (green), 

filling (magenta), and absent (blue).  Initially a dump truck is in the scene, then leaves (2 minute mark). Another 

enters (near 3 minute mark) and is then filled by the excavator. 

 

Truck 
Load 
(No.) 

Entered 
Site at 
Minute 

Moving 
(Mins) 

Static 
(Mins) 

Filling 
(Mins) 

Exited 
Site at 
Minute 

Total on 
Site 

(Mins) 

# of 
Buckets 
to Load 

3 26.75 0.36 3.2 1.43 31.74 4.99 8 

4 32.85 0.59 1.35 2.06 36.85 3.99 9 
 

(a) Sample pie chart (b) Sample event statistics table 

Figure 9: Event analysis and statistics for a video segment. The event processor tabulates the temporal statistics 

of the activities and also identifies events, such as filling cycles and outlier time spans. For the analysed 

timespan, the pie chart on the left indicates what percentage of the time was spent engaged in which activity 

state. The activity states are static (red), moving (green), filling (magenta), and absent (blue). The sample table 

on the right depicts the activity analysis breakdown based on the frames analysed 

6. Data Consolidation 

Both data sources are utilized to observe the site. The excavated volume is measured on a 

regular basis using the photogrammetry approach. At the same time, all excavation processes 

are recorded using a stationary video camera. Whenever a delay in excavation is observed, the 

video analysis is used as a tool to determine the cause of the delay; as the video analysis gives 

rise to idle times of the individual machines. Charts like the one visualized in Figure 9 are 
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used to categorize the events recorded in the video by means of different machine states. If 

excavation is particularly slow in a certain time span and there are extended periods of absent 

dump trucks at the same time, this can indicate that trucks might be stuck in road traffic jams 

or are not sequenced timely enough. Alternatively, it is possible that the overall number of 

used dump trucks is too low and it would be useful to hire additional trucks. In the contrary 

case, where dump trucks are waiting a long time to be filled, it is likely that either too few 

excavators are used or too many trucks are in use. Other reasons can be site congestion, when 

equipment or other obstacles (e.g., as-built structures or temporary placement of objects) 

cause delays because of complex on site traffic patterns. Whenever the site allows for placing 

more excavators, this is worth consideration, when the deadlines for the excavation processes 

are in jeopardy and the cost of hiring additional excavators does not exceed the costs for 

possible schedule delays and potential penalties. 

7. Results 

A period of 4 hours was recorded on video during excavation of the site described in Section 

3, while two point clouds were created before and after the recording period. The point clouds 

are illustrated in Figure 10. As the time period was comparatively short, the difference is 

minimal but visible on the left side of the pit next to the excavator. The video camera was 

positioned on a tower crane during the recording in order to have an overview of both 

excavators and dump trucks. A screenshot of the recorded video was shown in Figure 7. The 

analysis of the video indicates some periods of idle machinery and available time.  

Table 1 contains a breakdown of the time statistics for the 22 filling cycles detected in the 4 

hours period of video recorded. These statistics were used to generate several graphs 

automatically (in Matlab). The chart of aggregate statistics, Figure 11(a) indicates that only 

39% of the available filling time was used. It is therefore possible to improve on the 

efficiency of the process by incorporating more dump trucks to reduce the idle times of the 

excavators and increase the amount of soil removed from the site. The filling time per dump 

truck averaged 3.65 minutes with five identified outliers (taking 4.8 minutes or more; marked 

in orange in Table 1). The estimated total amount of time the dump trucks were in the scene 

was 88.33 minutes (out of 240 minutes of video). Additionally, the inter-arrival time between 

dump trucks was measured to be 3.21 minutes on average (excluding the automatically 

identified outliers), with the estimated total inter-arrival time for the dump trucks being 144 

minutes, see Figure 12. The outlier times (there are six of them totalling about 105 minutes) 

consist of periods when the excavators are doing support work, or are idle. 

  

Figure 10: Point clouds of excavation site before and after video recording 
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(a) Pie chart with aggregate statistics (b) Time spent per dump truck in the scene 

Figure 11: Aggregate dump truck states for the entire video sequence (left) and dump truck filling time estimates 

per truck (right): (a) Indicates what percentage of total recording time the associated work states were observed. 

(b) Total time each dump truck spent in the scene. The red line is the average time spent in the scene. The 

average represents the typical amount of time spent to load and prepare the dump truck (the excavator spends 

some time levelling the soil in the filled truck bed).  

 

Figure 12: Inter-arrival times between the dump trucks. The inter-arrival time is the time duration between when 

the previous dump truck leaves and the next dump truck enters. For the first dump truck, the time quantity 

measures the amount of time from the start of the video to when the dump truck first entered. The red line is the 

average of the inter-arrival times, after excluding the larger outlier times. This average represents the typical 

amount of time between when a dump truck exits and another enters for a relatively continuous stream of dump 

trucks (for this observed video sequence). 

 

  

Figure 13: Performance factor and cumulative soil removed (units are in cubic meters). Soil removal progress is 

per hour (left) and cumulative soil removed is per 10 minute interval. 

The statistics from Table 1 combine with the progress results to provide estimates of the 

average quantity of soil removed per truck and the average quantity of soil per bucket load, 

either of which can be used to estimate the productivity of the earth removal process. 

According to the photogrammetry estimates, the total quantity of soil removed was 417.90 

cubic meters. Given that 22 dump trucks were filled, the average volume of soil per dump 

truck was 19 cubic meters. For the 171 bucket loads detected to have occurred, the average 
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bucket load removed 2.44 cubic meters. Total amount of onsite activity was 134.33 minutes. 

These averages and the data from Table 1 inform progress statistics calculations that are 

performed automatically. Figure 11 depicts the volume of soil removed per hour of 

observation, and the cumulative soil removed over the course of the observations. Project 

schedule management could benefit from the generated information in multiple ways given 

near-real-time processing and availability: (1) hire more trucks to complete excavation 

quicker, (2) increase the contingency available for succeeding activities, (3) learn and add to 

historic schedule estimates, (4) and apply in future projects considering lean principles. 

 Table 1:  Statistics for each truck that entered the scene. 

Truck 
Load 
(No.) 

Entered 
Site at  
Minute 

Moving 
(Mins) 

Static 
(Mins) 

Filling 
(Mins) 

Exited 
Site at 
Minute 

Total  
on Site 
(Mins) 

# of 
Buckets 
to Load 

1 14.57 0.17 2.42 1.84 19.01 4.43 8 

2 20.29 0.41 2.72 2.05 25.46 5.17 10 

3 26.75 0.36 3.20 1.43 31.74 4.99 8 

4 32.85 0.71 1.45 1.84 36.85 3.99 9 

5 38.60 0.15 1.50 1.57 41.87 3.27 9 

6 44.09 0.22 1.73 1.81 47.94 3.85 9 

7 50.07 0.35 1.57 1.64 53.77 3.69 7 

8 69.13 0.15 1.04 1.68 72.17 3.04 8 

9 74.39 0.15 1.52 1.56 77.84 3.45 6 

10 79.27 0.13 1.87 2.00 83.53 4.25 8 

11 87.79 0.72 2.91 1.40 93.11 5.33 9 

12 96.01 0.15 3.63 1.47 101.58 5.57 8 

13 102.79 0.55 1.89 1.02 106.63 3.84 9 

14 108.15 0.15 1.19 1.97 111.87 3.72 9 

15 112.95 0.15 1.67 1.68 116.91 3.96 8 

16 119.07 0.19 0.86 1.57 122.19 3.11 7 

17 131.31 0.14 2.52 1.65 136.15 4.84 7 

18 138.03 0.17 0.81 1.47 141.06 3.03 7 

19 152.77 0.27 1.94 1.35 156.93 4.17 6 

20 165.69 0.13 1.59 1.63 169.69 4.00 6 

21 172.65 0.45 1.38 0.89 176.06 3.41 7 

22 229.14 0.29 1.35 0.84 232.35 3.21 6 

Total  6.15 40.76 34.35  88.33 171 
 

8. Conclusions 

The proposed method combines two state of the art procedures to observe excavation 

processes by video recordings of the involved machinery and photographs of the excavation 

site. While the photogrammetry approach keeps track of the excavated volume of the pit, the 

video analysis serves as a tool to provide activity and event statistics. Combining the two 

provides a means to perform productivity analysis in an automated manner. The determined 

performance factors provide an excellent basis for calculating future projects with similar 

conditions. Furthermore, the activity and event statistics can be analysed to identify the causes 

of observed delays and prevent them in the future. If needed, the time stamps of the 

observations can be used to quickly review specific segments of video to aid in the analysis. 
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