Chemical storage of excess electricity - Interdisciplinary collaboration at TUM

MSE Colloquium
3rd July 2014, Munich, Germany
Contents

• Introduction/Motivation
• Collaboration - Seed Funding Project PtX
 – Project description
 – Project structure
• Research needs, focus points, aim and findings of the project
 – WP1: System
 – WP2: Electrolysis
 – WP3: Synthesis
• Project initiatives
• Conclusion
Motivation for Power-to-Gas / Power-to-X

Increasing installation of fluctuating energy sources like wind and solar energy requires technologies and processes for the storage and distribution of power!!!

Source: Deutsche Umwelthilfe e.V.

EEX-Transparency, 2012
What storage technologies do we have/need?
Status quo of the „Energiewende“

„Energiewende“ not only for the power sector!!!

Power (600 TWh)
- 25%
- 75%

Heat (1480 TWh)
- 9%
- 91%

Transport (620 TWh)
- 5%
- 95%

→ Connecting the sectors by Power-to-X!!!

Source: BMWi (2013)
Seed Funding PtG – Project description

- Title: „Seed Funding PtG“ – Chemical storage of excess electricity
- Project runtime: 12 month
- 5 TUM-Partners: APT, ENS, LES, TEC, TC1 and ZAE
- Main research areas: system analysis, electrolysis, synthesis
- Goals:
 - Enhance visibility of TUM activities and bundle research efforts by the partners
 - Coordination of common approach and initiation of a demonstration project and research platform, respectively
 - Acquisition of potential industry partners

→ Interdisciplinary research team (MW, CH, EI)
Project levels

Energy system level
Analysis of chemical storage integration in future energy scenarios

Storage level
Integration of chemical storage in flexible power plant concepts and analysis of synergy effects from integration of material and energy balance

Technology level
Excess electricity

Electrolysis
- Investigation and optimization of dynamic behavior
- Test of commercial technologies
- Analysis of new electrode materials

H₂

Synthesis
- Investigation of innovative reactor concepts
- Analysis of dynamic behavior
- Basic research: Catalysis, reaction kinetics

O₂

CO, CO₂

Waste heat

SNG, MeOH, FT,...
Project structure

Research on chemical storage of excess electricity

System (ENS, LES)
- Future energy systems
- Integration of innovative power plant concepts
- Storage concepts

Electrolysis (TEC, ZAE)
- Dynamic behavior
- Material development
- Process development
- Testing of market-available modules

Synthesis (LES, TC1, APT)
- Catalysis and reaction kinetics
- Reactor design
- Waste heat utilization and heat integration
- Dynamic behavior

Future technologies and concepts
Which market shares are possible for PtX?
How does that influence the need for additional investments in the power grid?
What end product(s) might be best suitable to fulfill the need(s)?
Can SNG for example reduce the dependency on fossil natural gas?
What is economically and what is commercially preferable?

Work packages:

- Analysis of global causal relations of relevant markets and future trends (heat, power and gas)
- Modeling of individual systems (markets) and subsequent coupling of the models
- Evaluation of innovative system integration concepts (IGCC-EPI)
- Evaluation of competitiveness of PtX
System - Investigations

Power-to-Methane

Methane generation costs with P2X

- Generation costs (Status quo)
- Generation costs (Prognosis 2020)
- Power purchasing costs
- Trade price

Winklmaier et al. (2014)

See Poster #48

Herzog et al. (2014)
Energy systems study – Forecast of future excess power generation

→ Negative residual loads up to 2700 FLH (2050)

→ Excess power situations with a duration of up to 86 h (2050):
 >1h: 35.7 TWh 12 h: 12.2 TWh >24 h: 6.1 TWh
Electrolysis

- Alkaline vs. PEM EL
- Dynamic operation
- Cost reduction
- Scale
- Long-term stability
- Material issues
- Integration in storage concepts
- Power density
- Optimization of process parameter
- Catalysts/Membranes
- Hybrid systems
- HTEL

Alkaline electrolysis
40 - 90 °C

PEM electrolysis
20 - 100 °C

Cathode → Anode

- **Cathode**
 - H₂O → H₂ + ½ O₂
- **Anode**
 - 2H₂ → 2H₂O + 2e⁻

2OH⁻ → ½ O₂ + H₂O + 2e⁻

Diaphragm

Membrane

Total reaction

H₂O → H₂ + ½ O₂
Electrolysis – research need and approach

<table>
<thead>
<tr>
<th>PEM electrolysis</th>
<th>KOH electrolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ high differential p_{H2}</td>
<td>- requires $p_{H2} \approx p_{O2}$</td>
</tr>
<tr>
<td>+ “easy” shut-down</td>
<td>- complex shut-down</td>
</tr>
<tr>
<td>+ high currents (1.5-2 A/cm2)</td>
<td>- low currents (0.5 A/cm2)</td>
</tr>
<tr>
<td>+ easy handling</td>
<td>- concentrated KOH</td>
</tr>
<tr>
<td>- high PGM loadings</td>
<td>+ non-PGM catalysts</td>
</tr>
<tr>
<td>- expensive titanium plates</td>
<td>+ stainless steel plates</td>
</tr>
</tbody>
</table>

→ Alkaline membrane electrolysis (AM) attributes ultra-low PGM / noble-metal free, stainless steel plates, high current, high differential p_{H2}

Research focus on:
- Membrane-electrode-assembly (MEA): optimization & characterization
- Electrocatalyst development
- Performance modeling (voltage & permeation losses)
- Effect of feed composition/location
Synthesis – Research areas (SNG, MeOH, …)

- Catalysis and reaction kinetics
 - Catalysts characterization
 - Kinetic modeling
 - Measurements of micro- and macro kinetics
 - Deactivation and poisoning effects

- Dynamic behavior
 - Investigation of startup and rundown processes
 - Structure-activity investigations under dynamic reaction conditions
 - Stability evaluation of catalysts under dynamic conditions

- Reactor design
 - Modelling and optimization of innovative reactor designs
 - Measurement and evaluation of hot spot and runaway mechanisms
 - Investigation of alternative reactor concepts like 3-phase reactors

- Waste heat utilization and heat integration
Synthesis

- Potential synthesis pathways:
 - SNG (methane)
 - MeOH
 - FT diesel
- Methanation promising option concerning the flexible usable end product (methane)
- Aim: Address all issues from fundamental kinetic to modeling of the system and design of the reactor
Example: test results from dynamic methanation test

Methanation with dynamic CO₂-addition and air cooling

- Stable reactor, no runaway
- Stable gas comp: < 10 min
- Stable temperature profile: < 30 min
TUM-Workshop on SNG
„SNG as Key for Future Energy Systems“

- Workshop on Power-to-Gas and Biomass-to-Gas
- More than 150 participants from research and industry

- Invited presentations from experts from industry and science together with a poster session
- Aim: bring together people to discuss results and progress, initiate new collaborations and share latest developments
Project initiatives

TUM research platform

- Interdisciplinary research platform at TUM regarding chemical storage of excess power from renewables
- Fundamental research coupled with applied science alongside the whole process chain and different end products (SNG, MeOH,…)
- Commonly usable, interdisciplinary experimental rest rig
- Unique selling point: open research with no constrains

Demonstration project Campus Garching

- Innovative energy supply for the Research Campus Garching, PtX as one technology to demonstrate integrated renewable power and heat supply on demand (in combination with e.g. ChengCycle)
- Accompanying research measures in combination with industry partners
- Unique Bavarian PtX demonstration project?!
Thank you for the attention!

Thanks to the MSE for funding
and thanks to the project partners
at APT, ENS, TEC, TC1 and
ZAE!!!