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Abstract

Two main lines of approach can be identified in the recent literature on improper signals and

widely linear operations. The augmented complex formulation based on the signal and its complex

conjugate is considered as more insightful since it leads to convenient mathematical formulations

for many considered problems. Moreover, it allows an easy distinction between proper and improper

signals as well as between linear and widely linear operations. On the other hand, the composite real

representation using the real and imaginary parts of the signal is closer to the actual implementation,

and it allows to readily reuse results that have originally been derived for real-valued signals or

proper complex signals. In this work, we aim at getting the best of both worlds by introducing

mathematical tools that make the composite real representation more powerful and elegant. The proposed

approach relies on a decomposition of real matrices into a block-skew-circulant and a block-Hankel-

skew-circulant component. By means of various application examples from the field of signal processing

for communications, we demonstrate the usefulness of the proposed framework.

Index Terms

Asymmetric complex, composite real representation, improper signals, linear algebra, noncircular,
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I. MOTIVATION

The successful application of widely linear filtering in practice as well as proofs of performance

gains due to improper signaling in information theoretic studies have recently drawn the attention

of the signal processing community to the processing of improper complex signals. An example

from practice is the so-called single-antenna interference cancellation (SAIC, e.g., [1]), which is

based on widely linear filtering. This technique is applied in the throughput-increasing Voice over

Adaptive Multi-user channels on One Slot (VAMOS) method, which is included in 3GPP Release

9 [2]. From an information theoretic point of view, improper signals have attained considerable

interest first of all due to the unexpected performance gains obtained using interference alignment

with asymmetric complex signaling [3], i.e., using improper signals.

But what are the outstanding properties of widely linear filters and improper signals, which

have led to these successes recently? And what is the relation between these two concepts? To

answer these questions, let us consider the following. Any complex number z = x+jy, x, y ∈ R

can be represented as a real vector ž = [x, y]T, and, accordingly, a complex linear mapping

z 7→ (a1 + ja2)z, a1, a2 ∈ R can be represented as

ž 7→ Àž =

a1 −a2

a2 a1

 ž. (1)

But what about the reverse direction? Can any real linear mapping ž 7→ Až with A ∈ R2×2 be

represented as a linear mapping in the complex domain? The answer is no. This is possible only

if the matrix A has the particular structure in (1) (e.g., [4], [5]). Otherwise, the corresponding

mapping in the complex domain is not linear.

In a technical system, complex multiplications are implemented as four real-valued multi-

plications, and it seems to be natural to allow arbitrary real linear mappings ž 7→ Až, while

the restriction to complex linear mappings could be considered as artificial. Therefore, the term

widely linear has been introduced for these more general operations, which are linear functions

of the real and imaginary parts of a complex number—or, equivalently, of the complex number

and its conjugate (e.g., [4]–[7]).

Now let z = x+jy be a complex random variable, where x and y are uncorrelated real random

variables with equal variance. Such a complex random variable is called proper (e.g., [4], [5],

[8], [9]). We can now ask the question what happens if we apply a linear transformation z 7→ Az.
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The answer is that the resulting random variable again has uncorrelated real and imaginary parts

with equal variance, i.e., it is again a proper random variable. This changes if we instead apply

a widely linear operation, which can introduce correlations between real and imaginary parts or

individually change the power of these two components. The resulting random variable is then

called improper (e.g., [4], [5], [9]). As above, excluding this possibility could be considered as

an artificial restriction while allowing improper signals could—despite the name—be considered

as the more natural assumption.

Nevertheless, the restriction to (strictly) linear operations and to proper signals is a common

assumption in complex-valued signal processing, and there are good reasons for this. It has

been shown that proper Gaussian random vectors have maximum differential entropy for a

given covariance matrix [8], [10], and that physical signals such as the demodulated noise in a

communication system can be assumed to be proper Gaussian [8], [10]. Moreover, we have seen

that proper random vectors stay proper under linear transformations, and it follows that linear

operations are the right choice as long as all signals in the system are proper (for an example

of a formal proof in a particular scenario see [11]). Therefore, even though proper signals and

linear processing are only special cases of general complex signals and widely linear processing,

they are not arbitrary special cases, but cases of particular importance.

On the other hand, there are also many examples of improper signals, which are of practical

importance. For example, many practical coding and modulation schemes in communication

systems (e.g., BPSK, ASK, or GMSK) lead to transmit signals that do not fulfill the conditions

for propriety. Whenever this is the case, complex linear operations might not exploit the potential

of the system, and the natural extension to widely linear processing can be beneficial. The

abovementioned VAMOS method takes advantage of this, by allowing simultaneous transmission

of maximally improper signals to two users and by separating these two signals at the receivers—

using widely linear filters. Another application of widely linear filters is the compensation of

hardware imperfections—such as I/Q imbalance, which leads to improper received signals (e.g.,

[12]).

The above discussion makes clear that improper signals and widely linear operations are

concepts that go hand in hand. Whenever a signal in the system is improper, widely linear

processing should be applied, but linear processing is sufficient if all signals are proper. Knowing

this, there still is the need to find out which one out of all widely linear filters is optimal for a
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given setting. This has led to a large number of publications on how to process improper signals

and how to optimize widely linear filters (e.g., [1], [12]–[25]).

From a theoretical perspective, there is a second interesting question. If the given signals

(e.g., the noise signals) are proper, and we are free to design the remaining signals as well as

the filters, what is the better choice? Using only proper signals and making all filters linear? Or

applying widely linear operations in order to introduce impropriety into the system? The probably

best known result from this line of research is the abovementioned combination of interference

alignment [26] and improper signals proposed in [3]. The large gains achieved by this scheme

in a three-user interference channel (extended to four users in [27]) might have been somehow

surprising at the first glance since using proper signals and linear filters was shown to be optimal

for point-to-point communication [10]. However, from a different perspective, the surprise might

not be that big since the restrictions to linear processing and proper signals can be considered as

artificial as discussed above. Gains by dropping this restriction have recently been reported also

for other interference channel scenarios [28]–[31] and for broadcast (point-to-multipoint) sce-

narios without nonlinear interference cancellation [11], [31], [32]. Apparently, the generalization

to allow improper signals is particularly useful in interference-limited communication systems.

For both purposes, i.e., for the optimization of widely linear processing as well as for the study

of potential gains due to improper signaling, it is clear that adequate mathematical tools and

formulations are needed. Note that examples for both kinds of studies are included in Section VII.

Two kinds of mathematical tools have been widely applied in the recent literature on the

subject. In the above discussion, a so-called composite real representation of vectors (ž) and

matrices (À) was used. Apart from being closely related to the practical implementation and to

our intuitive understanding of complex numbers, this representation has the following important

advantage, which was exploited, e.g., in [11], [16], [17], [32]–[35] (and for the special case

of scalar complex random variables in [3], [24], [28]). Whenever we know a method to solve

a given problem involving real vectors, we can readily apply the method to composite real

representations of general (proper or improper) complex vectors. Moreover, methods that have

originally been developed for proper complex vectors can usually be easily transferred to the

real-valued case and, via this intermediate step, also to general complex vectors.

On the other hand, there is a second formulation, which might be less straightforward in the

first place, but has led to convenient mathematical formulations for various problems considered
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in recent research. This so-called augmented complex representation is based on the complex

vector and its conjugate instead of on the real and imaginary parts. This formulation allows

an easy identification of the proper signals among all complex signals as well as an easy

identification of linear operations among all widely linear ones (e.g., [4], [5], [7], [9]). Moreover,

a large variety of mathematical tools to work with augmented complex representations have been

introduced in the literature, e.g., [4], [5], [7], [9], [29], [31], [36], [37]. However, the augmented

complex representation makes it necessary to derive new algorithms since it does not feature the

property that methods developed for real-valued signals can be adopted.

In this work, we aim at getting the best of both worlds by introducing mathematical tools that

make the composite real representation more powerful and elegant. This shall not be misunder-

stood as a campaign against the augmented complex representation. Quite the contrary, we think

that it is worthwhile having not only one powerful framework for dealing with impropriety and

widely linear processing, but two different approaches, in order to always choose the one that is

more convenient and more adequate for the problem under consideration. However, we want to

argue against the impression that the augmented complex formulation generally leads to more

convenient formulations than the composite real representation (see, e.g., [4], [5], [9], [29], [31],

[37]). The framework based on block-skew-circulant and block-Hankel-skew-circulant matrices,

which we propose in this paper, makes the composite real representation a powerful tool that can

handle many problems at least as good as the augmented complex formulation. Moreover, we

show examples of recent advances in communication theory that would not have been achieved

without the composite real representation.

We first review the formal definitions of proper and improper signals, linear and widely

linear operations, as well as augmented complex and composite real representations (Section II).

Then, we introduce the definition and the properties of real block-skew-circulant (BSC) and

block-Hankel-skew-circulant (BHSC) matrices (Section III) as well as their relation to complex

matrices (Section IV). In Section V, we show how BSC and BHSC matrices can be used

to describe widely linear filters, and in Section VI, we apply them to describe the statistical

properties of complex random vectors. Having established the framework of block-skew-circulant

matrices for complex-valued signal processing, we proceed to the presentation of application

examples in Section VII: we show how various results from the recent literature fit into the

proposed framework, and we point out possible further applications.
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Notation: Vectors are typeset in boldface lowercase letters and matrices in boldface uppercase

letters. To easily distinguish real quantities from complex quantities, we use a tilde •˜ below

complex quantities. We write 0 for the zero matrix or vector, IL for the identity matrix of size

L, •T for the transpose of a vector or matrix, •H for the conjugate transpose, and •+ for the

pseudoinverse. We use <, =, and •∗ for real part, imaginary part, and complex conjugation,

respectively, and the shorthand notation x̌ (pronounced as x-check or x-real) is used for a vector

[<(x‹)T,=(x‹)T]T. We use ⊗ for the Kronecker product, and •⊥ for the orthogonal complement

of a linear subspace. The space S2M ⊂ R2M×2M is the space of real symmetric matrices. The

order relation � has to be understood in the sense of positive semi-definiteness.

II. IMPROPER SIGNALS AND WIDELY LINEAR OPERATIONS

In the last section, we have already seen scalar examples of linear and widely linear operations

and of proper and improper signals. However, for the remainder of the paper, it is necessary to

formally define these notions for the vector case. In accordance with the existing literature on

the subject (e.g., [4]–[9], [38]), we introduce the following definitions.

Definition 1: Given a complex random vector x‹, the matrixC˜x˜ = E
î
(x‹− E

î
x‹ó)(x‹− E

î
x‹ó)H

ó
is the covariance matrix of x‹, and the matrix C̃˜x˜ = E

î
(x‹− E

î
x‹ó)(x‹− E

î
x‹ó)T

ó
is the pseudo-

covariance matrix of x‹.

Alternative names for the pseudocovariance matrix are complementary covariance matrix,

conjugate covariance matrix, or relation matrix (e.g., [5], [38]).

Definition 2: A complex random vector x‹ is called proper if the pseudocovariance matrix C̃˜x˜
vanishes. Otherwise, it is called improper.

For zero-mean Gaussian distributions, propriety is equivalent to a circularly symmetric prob-

ability density function [5].

Definition 3: A complex mapping x‹ 7→ f‹(x‹) is called widely linear if it can be expressed as

[6]

f‹(x‹) = A˜Lx‹+A˜CLx‹∗ (2)

where the complex matrices A˜L and A˜CL are used as factors for the linear part and the conjugate

linear part, respectively.
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Therefore, widely linear operations are also called linear-conjugate-linear operations (e.g.,

[5]). Alternatively, widely linear mappings can be expressed as

f‹(x‹) = A˜R<(x‹) +A˜I=(x‹) (3)

with complex matrices A˜R and A˜I.

Definition 4: The augmented complex representation of a widely linear mapping is

f(x) = Ax =

A˜L A˜CL

A˜∗CL A˜∗L

 x‹
x‹∗
 . (4)

In the special case of a linear mapping, A˜CL vanishes, and A becomes block-diagonal.

Similarly, the augmented complex covariance matrix

C˜x
= E

î
(x− E[x])(x− E[x])H

ó
=

C˜x˜ C̃˜x˜
C̃˜∗x˜ C˜∗x˜

 (5)

is block-diagonal if C̃˜x˜ = 0, i.e., if x‹ is proper.

Definition 5: The composite real representation of a widely linear mapping is

f̌(x̌) = AWLx̌ =

<(A˜R) <(A˜I)

=(A˜R) =(A˜I)


<(x‹)

=(x‹)

 . (6)

In the composite real representation, identifying the special case of a complex linear mapping

is not as simple as in the augmented complex version. Here, we have to verify whether <(A˜R) =

=(A˜I) and =(A˜R) = −<(A˜I) such that we have the special block structure

f̌(x̌) =

<(A˜R) −=(A˜R)

=(A˜R) <(A˜R)


<(x‹)

=(x‹)

 . (7)

In Section V, we introduce a method to easily identify complex linear mappings in the composite

real representation.

As shown in Section VI, the framework introduced in this paper additionally allows easy

identification of proper complex signals. However, at the first glance, the covariance matrix of

the composite real representation1

Cx̌ = E
î
(x̌− E[x̌])(x̌− E[x̌])T

ó
=

 C<x˜ C<x˜=x˜
CT
<x˜=x˜ C=x˜

 (8)

1This matrix may not be confused with the composite real equivalent C̀x˜ [see (23)] of the (complex) covariance matrix C‹x˜.
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does not directly reveal whether or not a random vector x is proper: we have to check the

conditions

C<x˜ = C=x˜ and CT
<x˜=x˜ = −C<x˜=x˜ (9)

to test for propriety based on the composite real formulation (e.g., [5]), i.e., we have to verify

whether the covariance matrix of the composite real random vector has the special structure

Cx̌ =

 C<x˜ −CT
<x˜=x˜

CT
<x˜=x˜ C<x˜

 . (10)

Note that the block structures in (10) and (7) are the same.

III. BLOCK-SKEW-CIRCULANT MATRICES

It can be seen from (7) and (10) that there is a particular block structure that plays an

important role for complex-valued signal processing. As explained below, matrices with this

special structure can be called block-skew-circulant matrices.

While there exists a significant number of works dealing with skew-circulant matrices (e.g.,

[39]–[41]) and block-circulant matrices (e.g., [42] and the references therein), only few results

on block-skew-circulant matrices can be found in the existing literature. The rare examples

include the statements in [43], [44] that are referenced later in this section. Moreover, block-

skew-circulant matrices were recently used as a tool in [45], but without a detailed study of their

properties.

Therefore, this section is meant as a collection of formulae for block-skew-circulant and block-

Hankel-skew-circulant matrices. Most of the properties presented in this section are quite easy

to prove. Nevertheless, we formally state them as lemmas in order to allow easy referencing

later on. Even though many of the properties introduced in this section analogously hold for

complex matrices, we restrict ourselves to real-valued matrices since this is sufficient for the

intended application.

A. Fundamentals

A skew-circulant matrix is the special case of a Toeplitz matrix where each row is a cyclically

shifted copy of the preceding row with a sign change for the elements on one side of the main
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diagonal (e.g., [39]).2 With matrix blocks Ai ∈ RK×L instead of scalar elements ai, we obtain

an N -block-skew-circulant (BSCN ) matrix.3

Definition 6: A matrix with the block structure

À =



A1 −A2 . . . −AN

AN A1 . . . −AN−1

... . . . ...

A2 A3 . . . A1


(11)

is called N -block-skew-circulant (BSCN ). The set of real BSC matrices with N blocks of size

K × L is denoted by BSCK×LN ⊂ RNK×NL, where the superscript of BSCN may be omitted if

the block size becomes clear from the context.

With a block-Hankel structure instead of a block-Toeplitz structure, we can define N -block-

Hankel-skew-circulant (BHSCN ) matrices,4 which are a generalization of skew-left-circulant

matrices (e.g., [39]) to the case with block elements.

Definition 7: A matrix with the block structure

B́ =



B1 . . . BN−1 BN

B2 . . . BN −B1

... . .. ...

BN . . . −BN−2 −BN−1


(12)

is called N -block-Hankel-skew-circulant (BHSCN ). The set of real BHSC matrices with N

blocks of size K × L is denoted by BHSCK×LN ⊂ RNK×NL, where the superscript of BHSCN
may be omitted if the block size becomes clear from the context.

Throughout the paper, the notations À and B́ are used to indicate the block-Toeplitz and

block-Hankel structures, respectively. We have chosen these notations since the shape of the

grave accent ` reminds us of northwest-to-southeast diagonals, which are constant in a Toeplitz

matrix. Accordingly, the acute accent ´ resembles the southwest-to-northeast diagonals of a

2Note that [46] uses a different nomenclature where skew-circulant refers to a circulant Hankel matrix. Here, skew refers to

the sign change instead.
3Or block-Toeplitz-skew-circulant, block-skew-right-circulant.
4Or block-skew-left-circulant.
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Hankel matrix. Depending on the reader’s preference, À could, e.g., be pronounced as A-grave,

A-right, or A-BSC, while B́ could, e.g., be pronounced as B-acute, B-left, or B-BHSC.

For the case N = 2, the block structures reduce to

À =

A1 −A2

A2 A1

 and B́ =

B1 B2

B2 −B1

 . (13)

The first important property to note is that the set of block-skew-circulant matrices is closed

under transposition (cf. [43]) and under vector space operations. The same is true for the set of

block-Hankel-skew-circulant matrices.

Lemma 1: Let À ∈ BSCK×LN , À
′
∈ BSCK×LN , B́ ∈ BHSCK×LN , B́

′
∈ BHSCK×LN , and

α, β ∈ R. Then,

1) À
T
∈ BSCL×KN ,

2) B́
T
∈ BHSCL×KN ,

3) αÀ+ βÀ
′
∈ BSCK×LN ,

4) αB́ + βB́
′
∈ BHSCK×LN .

Proof: Immediate after inserting the block structures.

This means that BSCK×LN and BHSCK×LN are linear subspaces of RNK×NL, see item 3) and 4).

B. Matrix Products

Inspired by the backward identity matrix used in the study of Toeplitz and Hankel circu-

lants with scalar elements in [47], let us define the following permutation matrix, which is an

orthogonal BHSCN matrix:

Π́N,M =


IM

. ..

IM

 ∈ BHSCM×MN . (14)

Lemma 2: B́ ∈ BHSCK×LN if and only if there exist C̀, C̀
′
∈ BSCK×LN such that B́ =

C̀Π́N,L = Π́N,KC̀
′
.

Proof: Reversing the order of the block-rows (or block-columns) turns the structure (11)

into the structure (12).

The permutation matrix Π́N,M is useful to prove the following lemma about matrix multipli-

cation of block-skew-circulant matrices and block-Hankel-skew-circulant matrices.
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Lemma 3: Let À ∈ BSCK×LN , À
′
∈ BSCL×MN , B́ ∈ BHSCK×LN , and B́

′
∈ BHSCL×MN . Then

1) ÀÀ
′
∈ BSCK×MN ,

2) B́B́
′
∈ BSCK×MN ,

3) ÀB́
′
∈ BHSCK×MN ,

4) B́À
′
∈ BHSCK×MN .

Proof: Item 1) is easy to verify after inserting the BSC block structure and calculating the

matrix product. Using 1) and Lemma 2, we have

2) B́B́
′
= C̀Π́N,LΠ́N,LC̀

′
= C̀C̀

′
∈ BSCK×MN .

3) ÀB́
′
= À(C̀Π́N,L) = (ÀC̀)Π́N,L ∈ BHSCK×MN since ÀC̀ ∈ BSCK×MN .

4) B́À
′
= (Π́N,KC̀

′
)À
′
= Π́N,K(C̀

′
À
′
) ∈ BHSCK×MN since C̀

′
À
′
∈ BSCK×MN .

From Lemma 3, we see that the set of block-skew-circulant matrices is closed under multipli-

cation (as already mentioned in [43]) whereas the product of two block-Hankel-skew-circulant

matrices is block-skew-circulant.

C. Decomposition into Orthogonal Components

From now on, we restrict ourselves to the case of N = 2 blocks, which is sufficient for the

intended application.

Lemma 4: Let B́ ∈ BHSCK×K2 . Then tr[B́] = 0.

Proof: tr[B́] = tr[B1] + tr[−B1] = 0.

Lemma 4 can be generalized to arbitrary even numbers of blocks, but the following properties,

which play a crucial role in the remainder of the paper, are specific for N = 2.

First, recall that R2K×2L is a 4KL-dimensional vector space with an inner product defined as

〈A,B〉 = tr[ATB] for A,B ∈ R2K×2L [48, Section 5.7]. Also recall that two elements of a

vector space are orthogonal to each other if their inner product equals zero.

Lemma 5: (BSCK×L2 )⊥ = BHSCK×L2 , i.e., the space of 2-block-skew-circulant matrices is

the orthogonal complement of the space of 2-block-Hankel-skew-circulant matrices in R2K×2L.

Proof: For any À ∈ BSCK×L2 , B́ ∈ BHSCK×L2 , À
T
B́ ∈ BHSCK×K2 due to Lemma 3, so

that tr[À
T
B́] = 0 due to Lemma 4. This establishes orthogonality. BHSCK×L2 and BSCK×L2 are

both 2KL-dimensional since two blocks of size K×L can be chosen freely in both cases. This

sums up to 4KL, which is the dimensionality of R2K×2L.
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As a consequence, any matrix C ∈ R2K×2L can be uniquely decomposed into a BSC2

component and a BHSC2 component:5

C = C̀ + Ć = PBSC2(C) + PBHSC2(C) (15)

where the projection operators P• are given in the following lemma.

Lemma 6: The orthogonal projections to BSCK×L2 and BHSCK×L2 are given by

PBSC2

ÖC1 C2

C3 C4


è

=
1

2

C1 +C4 C2 −C3

C3 −C2 C1 +C4

 , (16)

PBHSC2

ÖC1 C2

C3 C4


è

=
1

2

C1 −C4 C2 +C3

C2 +C3 C4 −C1

 . (17)

Proof: The approximation error

C − PBSC2(C) =
1

2

C1 −C4 C2 +C3

C2 +C3 C4 −C1

 ∈ BHSCK×L2 (18)

is orthogonal to all C̀ ∈ BSCK×L2 due to Lemma 5. The approximation error

C − PBHSC2(C) =
1

2

C1 +C4 C2 −C3

C3 −C2 C1 +C4

 ∈ BSCK×L2 (19)

is orthogonal to all Ć ∈ BHSCK×L2 due to Lemma 5.

The decomposition into two orthogonal components given in (15) allows us to provide con-

verses to some of the statements given in Lemmas 1 and 3. In the following lemma, we state

only some examples that will be useful later in this paper, but we remark that further statements

of similar kind are possible.

Lemma 7: Let À ∈ BSCK×L2 , C ∈ R2K×2L, and C ′ ∈ R2L×2M . Then,

1) À+C ∈ BSCK×L2 only if C ∈ BSCK×L2 .

2) If null[À] = {0}, ÀC ′ ∈ BSCK×M2 only if C ′ ∈ BSCL×M2 .

3) If null[À] = {0}, ÀC ′ ∈ BHSCK×M2 only if C ′ ∈ BHSCL×M2 .

5In a different context, a decomposition of general block-Toeplitz matrices into BSC and block-circulant components was

proposed in [45]. The decomposition into BSC and BHSC components proposed here is on the one hand more general since

it is not restricted to block-Toeplitz matrices, but on the other hand more limited since it only applies to block structures with

2× 2 blocks. Another difference is that the decomposition proposed here is unique.
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Proof: Let C and C ′ be decomposed as in (15).

1) PBHSC2(À+ C̀ + Ć) = Ć = 0 only if Ć = 0.

2) PBHSC2(ÀC̀
′
+ ÀĆ

′
) = ÀĆ

′
= 0 only if Ć

′
= 0.

3) PBSC2(ÀC̀
′
+ ÀĆ

′
) = ÀC̀

′
= 0 only if C̀

′
= 0.

The following lemma can be generalized to arbitrary numbers of blocks [43], but the proof

is particularly simple for N = 2 blocks.

Lemma 8: Let À ∈ BSCK×K2 . Then, À
−1
∈ BSCK×K2 if it exists.

Proof: null[À] = {0} if À
−1

exists. Thus, item 2) of Lemma 7 applies to ÀÀ
−1

= I2K ∈

BSCK×K2 .

D. Symmetric Matrices

In our recent work [34], a decomposition of the space of real symmetric 2M × 2M matrices

into a so-called power shaping space PM and an impropriety space NM was proposed. We

come back to the notions of power shaping and impropriety in Section VI, where we consider

the application of BSC2 and BHSC2 matrices for describing statistical properties of complex

signals. However, at this point, we want to provide a formal definition of these two subspaces

by means of the notations defined in this section.

Definition 8: The sets of real symmetric BSC2 and BHSC2 matrices are denoted by

PM = S2M ∩ BSCM×M2 (20)

NM = S2M ∩ BHSCM×M2 . (21)

In the context of complex-valued signal processing, PM may be called power shaping space,

and NM may be called noncircularity space or impropriety space.

Note that the following lemma, which is reproduced from [34], is not a trivial consequence

of Lemma 5.

Lemma 9: NM is the orthogonal complement of PM in S2M .

Proof: Orthogonality follows from Lemma 5. To obtain symmetric P̀ ∈ PM and Ń ∈ NM

from (13), we need that P1, N1, and N2 are symmetric whereas P2 must be skew-symmetric.

Thus, we can count that PM is M2-dimensional, and NM is (M2 +M)-dimensional. This adds

up to (2M2 +M), which is the dimensionality of S2M .

For some proofs later in this paper, the following lemma is helpful.
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Lemma 10: Let P̀ ∈ PM , Ń ∈ NM , and

J̀M =

 0 −IM
IM 0

 . (22)

Then, we have

1) J̀
−1

M = J̀
T

M = −J̀M ,

2) J̀
T

M P̀ J̀M = P̀ ,

3) J̀
T

MŃJ̀M = −Ń ,

4) xTJ̀Mx = 0, ∀x ∈ R2M ,

5) x ∈ null[P̀ ] ⇔ J̀Mx ∈ null[P̀ ],

6) x ∈ null[Ń ] ⇔ J̀Mx ∈ null[Ń ].

Proof: Immediate after inserting the block structures of the matrices and the partitioning

xT = [xT
1 ,x

T
2 ].

E. Eigenvalue Decompositions

We conclude this section by some statements concerning eigenvalue decompositions (EVDs)

and singular value decompositions (SVDs) of block-skew-circulant matrices.6

Lemma 11: For a symmetric BSC2 matrix À ∈ PM , the eigenvalue decomposition can be

written as À = Q̀Λ̀Q̀
T

with Q̀ ∈ BSCM×M2 and a diagonal BSC2 matrix Λ̀ ∈ PM .

Proof: The proof relies on J̀M from Lemma 10 and can be found in Appendix A.

Eigenvalue decompositions are not only ambiguous with respect to permutations of the eigen-

values and eigenvectors and to scaling of the eigenvectors, but also with respect to the choice

of the bases of eigenspaces corresponding to eigenvalues with multiplicity larger than one. The

latter is of particular importance for symmetric BSC2 matrices whose eigenvalues always have

even multiplicity (λi+M = λi, i = {1, . . . ,M} since Λ̀ is BSC2). This ambiguity is exploited in

the proof of Lemma 11 to find a modal matrix that is BSC2.

Definition 9: We refer to an EVD of the form given in Lemma 11 as a standard eigenvalue

decomposition of a symmetric BSC2 matrix.

6The EVD of a BSC matrix was previously considered in [44], but only for the special case that the blocks are themselves

skew-circulant matrices.

January 15, 2015 DRAFT

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2015.2395992

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



15

With the standard EVD, we can prove the following lemma.

Lemma 12: A symmetric positive-semidefinite BSC2 matrix 0 � À ∈ PM has a symmetric

BSC2 square root S̀ ∈ PM with À = S̀S̀.

Proof: Let S̀ = Q̀Λ̀
1
2 Q̀

T
= S̀

T
, where Q̀Λ̀Q̀

T
= À is a standard EVD of À. Since the

square root of the diagonal matrix Λ̀
1
2 is an element-wise operation, it does not destroy the

BSC2 structure, so that S̀ is BSC2 due to Lemma 3.

Similarly, we can obtain an EVD of a symmetric BHSC2 matrix.

Lemma 13: For a symmetric BHSC2 matrix B́ ∈ NM , the eigenvalue decomposition can be

written as B́ = Q̀Λ́Q̀
T

with Q̀ ∈ BSCM×M2 and a diagonal BHSC2 matrix Λ́ ∈ NM .

Proof: Apply the same reasoning as in the proof of Lemma 11, but use item 3 of Lemma 10

instead of item 2.

Note that it would also be possible to decompose B́ ∈ NM as B́ = Q́Λ́Q́
T

with Q́ ∈

BHSCM×M2 . Nevertheless, we choose to state the following definition.

Definition 10: We refer to an EVD of the form given in Lemma 13 as a standard eigenvalue

decomposition of a symmetric BHSC2 matrix.

Lemma 14: Symmetric BHSC2 matrices B́ ∈ NM , B́ 6= 0 are indefinite.

Proof: Since Λ́ ∈ NM in the standard EVD, λi+M = −λi, i = {1, . . . ,M} (and λi 6= 0 for

some i).

F. Singular Value Decompositions

When ignoring the convention that singular values are usually sorted in descending order, we

obtain the following lemma for general BSC2 matrices.

Lemma 15: A reduced singular value decomposition of À ∈ BSCK×L2 is given by À =

ÙΣ̀V̀
T

with Ù ∈ BSCK×M2 , V̀ ∈ BSCL×M2 , and a diagonal BSC2 matrix Σ̀ ∈ PM , where

Ù
T
Ù = V̀

T
V̀ = I2M , and M = min{K,L}.

Proof: See Appendix A.

For the proof of Lemma 15, it is again necessary to exploit the ambiguities of eigenvalue

decompositions discussed below Lemma 11, which translate to ambiguities of the singular value

decomposition.

Definition 11: We refer to an SVD of the form given in Lemma 15 as a standard singular

value decomposition of a BSC2 matrix.
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In a similar manner, we can define a standard singular value decomposition of BHSC2

matrices.

Definition 12: We define the standard singular value decomposition of a BHSC2 matrix B́ ∈

BHSCK×L2 as follows. For K ≤ L: B́ = ÙΣ̀V́
T

with Ù ∈ BSCK×K2 , V́ ∈ BHSCL×K2 , and a

diagonal BSC2 matrix Σ̀ ∈ PK , where Ù
T
Ù = V́

T
V́ = I2K . For K ≥ L: B́ = ÚΣ̀V̀

T
with

Ú ∈ BHSCK×L2 , V̀ ∈ BSCL×L2 , and a diagonal matrix Σ̀ ∈ PL, where Ú
T
Ú = V̀

T
V̀ = I2L.

Lemma 16: A standard singular value decomposition as given in Definition 12 can be found

for any B̀ ∈ BHSCK×L2 .

Proof: See Appendix A.

Note that we could also decompose a BHSC2 matrix into a product B́ = ÚΣ́V́
T

, where all

matrices are BHSC2, Σ́ ∈ NM is diagonal, and Ú
T
Ú = V́

T
V́ = I2M , where M = min{K,L}.

However, this would not be an SVD since half of the nonzero diagonal elements of Σ́ would

be negative.

Above results on the SVD enable us to show the following properties.

Lemma 17: The rank of a BSC2 or BHSC2 matrix is even.

Proof: Follows from Lemma 15 and Lemma 16.

Lemma 18: The pseudoinverse of a BSC2 (BHSC2) matrix is BSC2 (BHSC2).

Proof: Using the standard SVD of À = ÙΣ̀V̀
T
∈ BSCK×L2 , we can write the pseudoinverse

as À
+

= V̀ Σ̀
+
Ù

T
. The matrix Σ̀

+
is obtained by inverting the nonzero diagonal elements

of Σ̀ and leaving the zero elements unchanged, which does not destroy the BSC2 structure.

Consequently, À
+
∈ BSCL×K2 due to Lemma 3. The proof for BHSC2 matrices follows the

same lines.

IV. RELATIONS TO COMPLEX MATRICES

Using the properties derived above, we can discuss relations

A˜ ∈ CK×L ↔ À =

<(A˜) −=(A˜)

=(A˜) <(A˜)

 ∈ BSCK×L2 (23)

between complex matrices and real block-skew-circulant matrices.
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A. Fundamentals

We first translate some of the properties found in [10] to the framework of block-skew-circulant

matrices.

Lemma 19: For real BSC2 matrices À, C̀, D̀ with the structure from (13) and their complex

equivalents A˜ = A1 + jA2, C˜ = C1 + jC2, D˜ = D1 + jD2, we have that

1) À = C̀D̀ ⇔ A˜ = C˜D˜,

2) À = C̀ + D̀ ⇔ A˜ = C˜ +D˜,

3) À = C̀
T
⇔ A˜ = C˜H,

4) À = C̀
−1
⇔ A˜ = C˜−1,

5) À is orthonormal ⇔ A˜ is unitary.

Proof: See [10, Lemma 1] and [10, Corollary 1].

B. Eigenvalue Decompositions

In [49], a method to derive the eigenvalues of certain kinds of block matrices was presented.

Using this approach, we can find the eigenvalues and eigenvectors of BSC2 matrices.

Lemma 20: Àq˜ = q˜λ˜ for the BSC2 matrix À from (13) if and only if (A1 + jA2)x‹ = x‹ϕ˜
with

q˜ =

 x‹
−jx‹

 , λ˜ = ϕ˜ or q˜ =

x‹∗
jx‹∗

 , λ˜ = ϕ˜∗. (24)

Proof: See Appendix A.

The lemma implies that eigenvalues of BSC2 matrices are either real with even multiplicity

(this is the case for all eigenvalues in Lemma 11) or they are complex conjugate pairs.

For symmetric À ∈ PM , the complex eigenvectors obtained in Lemma 20 do not contradict the

real-valued ones obtained in Lemma 11: as a subspace of C2M , the two-dimensional eigenspace

corresponding to the double eigenvalue ϕ˜ = ϕ˜∗ is

span


<x‹
=x‹

 ,
−=x‹
<x‹


 = span


 x‹
−jx‹

 ,
x‹∗

jx‹∗

 . (25)

This means that Lemma 20 does not directly deliver a standard EVD of symmetric BSC2

matrices, but that the result can be easily transformed to a standard EVD using (25).
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For [10, Lemma 1, (4e)], which is reproduced in the following, Lemma 20 delivers an

alternative proof.

Lemma 21: For a BSC2 matrix À as in (13),

det(À) = det(A1 + jA2) det(A1 − jA2)

= det
Ä
(A1 + jA2)(A1 + jA2)H

ä
. (26)

Proof: Follows from Lemma 20 since the determinant of a square matrix is the product of

its eigenvalues.

In addition, we can provide an alternative proof for the following Lemma, which is known

from [10, Corollary 2] and [50, Problem 4.2.1].

Lemma 22: À ∈ PM with the block structure from (13) is positive semidefinite if and only

if A1 + jA2 is positive semidefinite.

Proof: Follows from Lemma 20 and from the fact that a Hermitian matrix is positive

semidefinite if and only if all its eigenvalues are nonnegative.

To conclude this subsection, we turn our attention to BHSC2 matrices, whose eigenvalues can

be obtained from [49] as well.

Lemma 23: ϕ˜ is an eigenvalue of the BHSC2 matrix B́ from (13) if and only if ϕ˜2 is an

eigenvalue of B2
1 +B2

2 + j(B1B2 −B2B1).

Proof: See [49, Example below Th. 5].

Consequently, the eigenvalues of real BHSC2 matrices must form real pairs ϕ˜ ,−ϕ˜ or complex

quads ϕ˜ , ϕ˜∗,−ϕ˜ ,−ϕ˜∗. Note that this confirms Lemma 4.

C. Singular Value Decompositions

We can also relate the singular values and singular vectors of À to the singular values and

singular vectors of A1 + jA2.

Lemma 24: The set of singular values of À ∈ BSCK×L2 from (13) is the same as the set of

singular values of A1 + jA2, but the multiplicity of each singular value is doubled.

Proof: Apply Lemma 20 and (25) to ÀÀ
T

or À
T
À.

This delivers a simple proof for the following lemma, which was stated in our previous work

[32] without a detailed proof (due to lack of space).

Lemma 25: The rank of the BSC2 matrix À from (13) fulfills Rank[À] = 2 Rank[A1 +jA2].
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Proof: Follows from Lemma 24.

Note that this property was also shown in [51], but only for Hermitian matrices.

V. LINEAR AND WIDELY LINEAR OPERATIONS

In Section II, we have seen that a complex linear mapping, i.e., the multiplication of a matrix

A˜ and a vector x‹, can be written as the multiplication of the corresponding BSC2 matrix À

and the composite real vector x̌ [cf. (7)].

In a similar manner, we can study a conjugate linear mapping in the composite real represen-

tation.

Theorem 1: A conjugate linear mapping x‹ 7→ f‹CL
(x‹) = B˜x‹∗ can be represented by the

multiplication of a BHSC2 matrix and the composite real vector x̌.

Proof: Let

J́N =

IN 0

0 −IN

 ∈ BHSCN×N2 . (27)

The composite real representation of x‹∗ ∈ CN is given by J́N x̌ ∈ R2N . Consequently, f̌CL(x̌) =

B̀J́N x̌ = B́x̌, where B̀ ∈ BSCM×N2 is the real-valued equivalent (23) of B˜ ∈ CM×N , and

B́ ∈ BHSCM×N2 due to Lemma 3.

This enables us to give a second variant of the composite real representation of a widely linear

mapping.

Theorem 2: The composite real representation (6) of a widely linear mapping of the form (2)

is given by

f̌WL(x̌) = AWLx̌ = (ÀL + ÁCL)x̌ = ÀLx̌+ ÀCLJ́N x̌ (28)

with J́N from (27), where the BSC2 matrices ÀL and ÀCL are the real-valued equivalents (23)

of A˜L and A˜CL, respectively. The complex form (2) of a widely linear mapping is obtained from

the composite real representation (6) by setting A˜L and A˜CL to the complex equivalents (23) of

the BSC2 matrices

ÀL = PBSC2(AWL) and ÀCL = PBHSC2(AWL)J́N (29)

respectively.

Proof: Follows from Theorem 1 and (7).

Corollary 1: A widely linear mapping is linear if the composite real representation (6) fulfills

PBHSC2(AWL) = 0.
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VI. SECOND-ORDER PROPERTIES OF COMPLEX RANDOM VECTORS

In this section, we apply the proposed framework in combination with the definitions given

in Section II to characterize complex random vectors.

A. Fundamentals

Let x‹ ∈ CM be a complex random vector, x̌ ∈ R2M its composite real representation, and

Cx̌ ∈ R2M×2M the (real-valued) covariance matrix of the composite real vector x̌ with the block

structure given in (8).

In our recent work [34], we decomposed Cx̌ into a term depending on the complex covariance

matrix and a term depending on the pseudocovariance matrix. In the following, we show how

this decomposition fits into the framework of block-skew-circulant matrices.

Theorem 3: The BSC2 component PBSC2(Cx̌) of the composite real covariance matrix de-

pends only on the complex covariance matrix C˜x˜. The BHSC2 component PBHSC2(Cx̌) of the

composite real covariance matrix depends only on the pseudocovariance matrix C̃˜x˜.

Proof: The covariance matrix and pseudocovariance matrix of the complex random vector

x‹ can be expressed as [5]

C˜x˜ = C<x˜ +C=x˜ + j(CT
<x˜=x˜ −C<x˜=x˜) (30)

C̃˜x˜ = C<x˜ −C=x˜ + j(CT
<x˜=x˜ +C<x˜=x˜). (31)

Solving for C<x˜, C=x˜, and C<x˜=x˜ yields

Cx̌ =
1

2

<(C˜x˜) −=(C˜x˜)

=(C˜x˜) <(C˜x˜)


︸ ︷︷ ︸

P̀x˜
+

1

2

<(C̃˜x˜) =(C̃˜x˜)

=(C̃˜x˜) −<(C̃˜x˜)


︸ ︷︷ ︸

Ńx˜
. (32)

Obviously, P̀ x˜ has the structure of a BSC2 matrix while Ńx˜ has the structure of a BHSC2

matrix.

Corollary 2: A complex random vector x‹ is proper if the impropriety matrix Ńx˜ vanishes,

i.e., if PBHSC2(Cx̌) = 0. Otherwise, x‹ is improper.

Note that both P̀ x˜ and Ńx˜ must be symmetric to obtain a symmetric matrix Cx̌. Thus, P̀ x˜
lies in the power shaping space PM defined in (20) and Ńx˜ lies in the impropriety space NM

defined in (21). This makes clear why the names for PM and NM are a sensible choice. While
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P̀ x˜ ∈ PM depends only on the complex covariance matrix, which describes the power shaping

of the complex random vector x‹, Ńx˜ ∈ NN is determined by the pseudocovariance matrix,

which describes the impropriety (or noncircularity).

By summing up arbitrary elements of PM and NM , we obtain a symmetric Cx̌, but this is not

sufficient to obtain a valid covariance matrix. In addition, we need that Cx̌ � 0, i.e., Cx̌ must

be positive semidefinite. For this, we find necessary and sufficient conditions in the following.

In the complex formulation, it is a common practice to check whether the generalized Schur

complement of the augmented covariance matrix, C˜x˜ − C̃˜x˜(C˜∗x˜)+C̃˜∗x˜, is positive semidefinite.

Together with the nullspace condition null[C˜x˜] ⊆ null[C̃˜x˜], positive-semidefiniteness of C˜x˜,

and symmetry of C̃˜x˜, this is a necessary and sufficient condition for having a valid pair of

covariance matrix and pseudocovariance matrix [4], [52]. The composite real counterpart of this

test reads as follows.

Theorem 4: For P̀ ∈ PM and Ń ∈ NM , we have P̀ + Ń � 0 if and only if

1) P̀ � 0,

2) P̀ − ŃP̀
+
Ń � 0, and

3) null[P̀ ] ⊆ null[Ń ].

Proof: P̀ + Ń � 0 means that xT(P̀ + Ń )x ≥ 0, ∀x ∈ R2M . In particular, the inequality

also holds for x′ = J̀Mx with J̀M from (22). Using Lemma 10, we have

0 ≤ xT(J̀
T

M P̀ J̀M + J̀
T

MŃJ̀M)x = xT(P̀ − Ń )x (33)

i.e., we have P̀ + Ń � 0 ⇔ P̀ − Ń � 0. Thus, P̀ + Ń � 0 is equivalent toP̀ Ń

Ń P̀

 =

1

2

IM IM

IM −IM


P̀ + Ń

P̀ − Ń


︸ ︷︷ ︸

�0

IM IM

IM −IM

 � 0. (34)

Since P̀ − ŃP̀
+
Ń is the generalized Schur complement of P̀ in the matrix in (34), we can

conclude from [53, Appendix A.5] that (34) is equivalent to P̀ � 0, P̀ − ŃP̀
+
Ń � 0, and

range[Ń ] ⊆ range[P̀ ]. Due to Ṕ
T

= Ṕ and Ń
T

= Ń , this is equivalent to the conditions in

the theorem.
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Unlike in the complex formulation, it is questionable whether a test via the Schur complement

makes sense in the composite real representation. Instead we can directly verify whether the

sum P̀ + Ń is positive-semidefinite, which is a much simpler test. Nevertheless, the positive-

semidefiniteness condition and the nullspace condition turn out to be very useful for charac-

terizing pairs of power shaping matrices and impropriety matrices (see, e.g., next subsection).

Therefore, we summarize them in the following corollary.

Corollary 3: For any valid pair of power shaping matrix P̀ ∈ PM and impropriety matrix

Ń ∈ NM , we have

1) P̀ � 0,

2) null[P̀ ] ⊆ null[Ń ],

3) null[P̀ ] ⊆ null[P̀ + Ń ],

4) Rank[Ń ] ≤ Rank[P̀ ].

Proof: All items directly follow from Theorem 4, but unlike Theorem 4, this weaker state-

ment can be proven without making use of the properties of the generalized Schur complement.

See Appendix A for this alternative proof.

B. Cross-Covariances and Joint Propriety

Let x‹ ∈ CM and y˜ ∈ CN be complex random vectors. For simplicity, we assume E
î
x‹ó = 0

and E
[
y˜
]

= 0, but the considerations can be easily extended to vectors with nonzero mean.

The vectors x‹ and y˜ are called jointly proper if the composite vector z˜T = [x‹T,y˜T] ∈ CM+N

is proper (e.g., [4, Section 2.3]).

Theorem 5: x‹ ∈ CM and y˜ ∈ CN are jointly proper if and only if Cx̌ ∈ BSCM×M2 , Cy̌ ∈

BSCN×N2 and

Cx̌,y̌ =

E
[
<x‹<y˜T

]
E
[
<x‹=y˜T

]
E
[
=x‹<y˜T

]
E
[
=x‹=y˜T

]
 ∈ BSCM×N2 . (35)
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Proof: We have to verify whether

E
î
žžT

ó
= 

E
î
<x‹<x‹T

ó
E
[
<x‹<y˜T

]
E
î
<x‹=x‹T

ó
E
[
<x‹=y˜T

]
E
[
<y˜<x‹T

]
E
[
<y˜<y˜T

]
E
[
<y˜=x‹T

]
E
[
<y˜=y˜T

]

E
î
=x‹<x‹T

ó
E
[
=x‹<y˜T

]
E
î
=x‹=x‹T

ó
E
[
=x‹=y˜T

]
E
[
=y˜<x‹T

]
E
[
=y˜<y˜T

]
E
[
=y˜=x‹T

]
E
[
=y˜=y˜T

]


(36)

∈ R2(M+N)×2(M+N) is a BSC2 matrix. To this end, we have to partition the matrix into four

blocks consisting of four subblocks each, as indicated by the dashed lines. Clearly, we have

equality of a pair of blocks if and only if the equality holds for each of the four pairs of

subblocks.

The intuition behind Theorem 5 is that x‹ and y˜ must be individually proper, the correlation

between the two real parts must be the same as the correlation between the two imaginary parts,

and the correlation between <x‹ and =y˜ must be minus the correlation between =x‹ and <y˜ .

In [4, Section 2.3], the last two conditions were subsumed under the notion of cross-propriety

between x‹ and y˜: x‹ and y˜ are called cross-proper, if the pseudo-cross-covariance matrix C̃˜x˜,y˜vanishes. To transfer this to the framework of block-skew-circulant matrices, let us apply the

partitioning from (32) to the composite real cross-covariance matrix Cx̌,y̌:

Cx̌,y̌ = P̀ x˜,y˜ + Ńx˜,y˜ =

1

2

<(C˜x˜,y˜) −=(C˜x˜,y˜)
=(C˜x˜,y˜) <(C˜x˜,y˜)

+
1

2

<(C̃˜x˜,y˜) =(C̃˜x˜,y˜)
=(C̃˜x˜,y˜) −<(C̃˜x˜,y˜)

 (37)

where P̀ x˜,y˜ ∈ BSCM×N2 and Ńx˜,y˜ ∈ BHSCM×N2 . This shows that the composite real cross-

covariance matrix can be partitioned into a cross-power-shaping matrix P̀ x˜,y˜ with BSC2 structure

and a cross-impropriety matrix Ńx˜,y˜ with BHSC2 structure. We have Ńx˜,y˜ = 0 if and only if

C̃˜x˜,y˜ = 0, i.e., if x‹ and y˜ are cross-proper.

Since cross-covariance matrices are not necessarily symmetric and in general not even square

matrices, P̀ x˜,y˜ and Ńx˜,y˜ are in general not elements of the power shaping space PM or the

impropriety space NM defined in Definition 8.

January 15, 2015 DRAFT

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2015.2395992

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



24

C. Entropy

By definition, the differential entropy of a complex random vector is the same as the differential

entropy of the composite real vector (e.g., [4, Section 2.2.3]), i.e., h(x‹) = h(x̌). For a general

(proper or improper) complex Gaussian random vector x‹ ∈ CM , we therefore have

h(x‹) = h(x̌) =
1

2
log det(2πeCx̌)

=
1

2
log det

(
2πe(P̀ x˜ + Ńx˜)

)
=

1

2
log det(2πeP̀ x˜) +

1

2
log det

Å
I2M + P̀

−1

x˜ Ńx˜
ã

(38)

if P̀
−1

x˜ exists, i.e., if det(P̀ x˜) 6= 0. Due to item 4) of Corollary 3 and due to Lemma 25, this

is always the case if det(C˜x˜) 6= 0, i.e., if the distribution is not degenerate. This leads to the

following theorem.

Theorem 6: The differential entropy of a complex Gaussian random vector x‹ with det(C˜x˜) 6=

0 can be decomposed into

h(x‹) = hproper(P̀ x˜) +∆ h(P̀ x˜, Ńx˜)︸ ︷︷ ︸
≤0

(39)

where hproper(P̀ x˜) is the differential entropy of a proper complex Gaussian random vector with the

same power shaping matrix P̀ x˜, and ∆ h(P̀ x˜, Ńx˜) is a nonpositive correction term accounting

for the possible impropriety of x‹, which vanishes if and only if Ńx˜ = 0.

Proof: See Appendix A.

Corollary 4: The differential entropy of a complex Gaussian random vector x‹ is maximized

if Ńx˜ = 0, i.e., if PBHSC2(Cx̌) = 0.

So far, such a decomposition had only been reported based on the formulation with covariance

matrix and pseudocovariance matrix, where h(x‹) can be written as (e.g. [29])

h(x‹) =

log det(πeC˜x˜)︸ ︷︷ ︸
hproper

Ä
C˜x˜
ä +

1

2
log det(IM −C˜−∗x˜ C̃˜

H

x˜C˜−1
x˜ C̃˜x˜)︸ ︷︷ ︸

∆h

Ä
C˜x˜,C̃˜x˜

ä
≤0

. (40)

Recalling that there is a bijective mapping between P̀ x˜ and C˜x˜ as well as between Ǹx˜ and

C̃˜x˜, we can see the connection between (39) and (40). However, it is important to note that the
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framework of block-skew-circulant matrices has delivered a derivation for (39) that is independent

from the existing literature on complex-valued signal processing.

VII. APPLICATION EXAMPLES

Having established the framework of block-skew-circulant matrices for complex-valued signal

processing, we now present application examples to demonstrate the usefulness of this frame-

work. The examples come from the area of signal processing for communications since our

focus in studying improper signals has been in this area. However, we are confident that there

is a large potential for the application of the framework also in other areas of complex-valued

signal processing.

A. Widely Linear MMSE Filters

If we want to estimate a zero-mean random vector x‹ ∈ CM from a zero-mean observation

y˜ by means of a widely linear minimum mean square error (MMSE) estimator, we can do so

by applying a linear MMSE estimator to the composite real representation y̌, i.e., the complex

estimate x̂‹ is given by

x̂‹ =
ï
IM jIM

ò
GLMMSE y̌ =

ï
IM jIM

ò
Cx̌,y̌C

+
y̌ y̌. (41)

If x‹ and y˜ are jointly proper,Cy̌ andCy̌,x̌ are BSC2 matrices (see Corollary 2 and Theorem 5).

Then, due to Lemmas 18 and 3, we have that GLMMSE is BSC2, which corresponds to a (strictly)

linear complex filter (see Corollary 1).

From this, we see that an MMSE-optimal widely linear filter becomes linear if the involved

signals are jointly proper. This fact is well known (e.g., [6], [11]), but the framework of block-

skew-circulant matrices delivers an alternative proof.

B. MIMO Capacity

In [10], it was shown that proper Gaussian signals are the capacity-achieving input distribution

of a point-to-point multiple-input multiple-output (MIMO) communication system with proper

Gaussian noise. Using the framework of block-skew-circulant matrices, we can easily extend

this result to general complex Gaussian noise.
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To this end, we apply the derivation of the MIMO capacity given in [10] to the compos-

ite real representation with the channel matrix H̀ ∈ BSCN×M2 and noise covariance matrix

Cň ∈ S2N . We obtain that real-valued Gaussian inputs with covariance matrix Cx̌ = UQUT

achieve the capacity, where UΛUT = H̀
T
C−1
ň H̀ is an eigenvalue decomposition, and [Q]i,i =

max
¶
µ− 1

λi
, 0
©

is a waterfilling power allocation (see, e.g., [54]).

In the special case that the noise is proper, we have Cň = C̀ň ∈ PN ⊂ BSCN×N2 . In this

case, H̀
T
C̀
−1

n H̀ ∈ PM ⊂ BSCM×M2 due to Lemmas 1, 3, and 8. Using the standard EVD

(see Lemma 11), we then obtain a block-skew-circulant U and a block-skew-circulant Λ. The

latter means that λi = λi+M for i = 1, . . . ,M , which implies [Q]i,i = [Q]i+M,i+M . Finally, as a

product of BSC2 matrices, Cx̌ is a BSC2 matrix as well, meaning that the optimal input x for

the complex system is proper.

On the other hand, if the noise n is improper, Cň is not a BSC2 matrix, and the optimal Cx̌

is (in general) not a BSC2 matrix, meaning that the optimal x is (in general) improper.

C. Optimality of Proper Signaling in Gaussian MIMO Broadcast Channels with Shaping Con-

straints

In multiple-input multiple-output (MIMO) broadcast channels with proper Gaussian noise, the

sum rate capacity under a sum power constraint is achievable using so-called dirty paper coding

(DPC) with proper Gaussian signals [55]. However, until recently, it had not been shown that

the optimality of proper signals also holds under a shaping constraint, i.e., a constraint on the

sum transmit covariance matrix instead of on the sum power.7 In our recent works [34], [35],

we used the minimax duality with linear conic constraints from [56], [57] in combination with a

power shaping matrix and an impropriety matrix to show this more general result. As discussed

in Section III-D, these matrices fit into the framework proposed in this paper. Thus, this recently

applied proof technique can be considered as an application of the framework of block-skew-

circulant matrices and is worth being mentioned here. In order to briefly sketch the key idea

of this approach, we reproduce the proof for the special case of a sum rate maximization in

a system with two users. The more general weighted sum rate maximization for an arbitrary

number of users is studied in [35].

7From [33], it can be concluded that Gaussian signals achieve the complete capacity region, but not whether proper or improper

signals are needed.

January 15, 2015 DRAFT

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2015.2395992

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



27

We use xk and ξk, k ∈ {1, 2} for the input signals in the downlink and in the dual uplink,

respectively. Moreover, we use ηk for the downlink noise, and η for the uplink noise. The

number of downlink transmit antennas is denoted by M , and the number of antennas at the kth

downlink receiver is Nk.

We write the sum rate maximization in the downlink as a minimax problem in the composite

real representation.

min
(C̀η̌1

�0,C̀η̌2
�0): (C̀η̌1

,C̀η̌2
)∈Y⊥

tr[C̀η̌1+C̀η̌2 ]=N1+N2

max
(Cx̌1

�0,Cx̌2
�0),Ź∈Z

Cx̌1+Cx̌2�P̀+Ź

RDL (42)

where Z = NM and

Y⊥ = {(C̀ η̌1
, C̀ η̌2

) ∈ S2N1×S2N2 | C̀ η̌k
= αI2Nk

∀k, α ∈ R}. (43)

A shaping constraint
∑K
k=1C˜x˜k � C˜ on the complex sum transmit covariance matrix cor-

responds to a constraint
∑K
k=1 P̀ x˜k � P̀ = 1

2
C̀ on the power shaping matrix, where C̀

is the composite real equivalent (23) of C˜. Consequently, the impropriety component can

be chosen arbitrarily. This is modeled by the possibility of adding an arbitrary Ź ∈ NM

from the impropriety space to the right hand side of the composite real shaping constraint

Cx̌1 +Cx̌2 � P̀ + Ź.

The feasible set of the worst-case noise minimization contains (C̀ η̌1
, C̀ η̌2

) = (1
2
I2N1 ,

1
2
I2N2)

as the only element, i.e., the noise statistics are fixed. However, the formulation as a minimax

problem enables us to apply the minimax uplink-downlink duality from [56], [57]. This duality

was shown in [56] for proper complex signals, but by repeating the derivation from [56] for

real-valued systems, we obtain that the above optimization has the same optimal value as the

following composite real minimax uplink problem.

min
C̀η̌�0,C̀η̌∈Z⊥

tr[P̀ C̀η̌ ]=N1+N2

max
(C
ξ̌1
�0,C

ξ̌2
�0),(Y1,Y2)∈Y

Cξ̌k
�I2Nk

+Yk, k=1,2

RUL. (44)

The constraints of the maximization look complicated at the first glance, but the shaping

constraint in combination with the slack variables (Y1,Y2) from the subspace Y (which is the

orthogonal complement of Y⊥) is in fact equivalent to a sum power constraint [34], [35], [57].

The worst-case noise minimization has the constraint that the composite real noise covariance

matrix has to lie in Z⊥. The key point is now Lemma 9, which tells us that Z⊥ = PM , i.e., the

uplink noise with C̀ η̌ ∈ PM has to be proper.
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For this minimax uplink problem, the optimal transmit strategy can easily be shown to consist

of proper signals [34, Lemma 4]. Transforming this strategy back to the downlink as described

in [56] leads to a proper strategy in the downlink as well.

We can sum up that a key point of the proof is the fact that the power shaping space and

the impropriety space are orthogonal complements of each other. The minimax uplink-downlink

duality thus tells us that allowing arbitrary impropriety components for the downlink transmit

signals corresponds to constraining the uplink noise to have a vanishing impropriety component.

Therefore, the proof sketched above can be considered as a prime example of a useful application

of the framework proposed in this paper.

As stated above, a more general proof for weighted sum rate maximization in a MIMO

broadcast channel with an arbitrary number of users can be found in [35]. Moreover, the same

framework makes it possible to also prove that the worst-case downlink noise in a MIMO broad-

cast channel with shaping constraints is proper [35]. Finally, the combination of the minimax

uplink-downlink duality and the framework of block-skew-circulant matrices is also helpful to

prove results for other system models. In [34], we applied the same technique as a sub-step

to show that proper signals are the optimal Gaussian signals for partial decode-and-forward in

Gaussian MIMO relay channels. Without exploiting the properties of power shaping matrices

and impropriety matrices, this line of proof would not have been possible.

D. Quality of Service Feasibility in MIMO Broadcast Channels with Widely Linear Transceivers

As an example in which improper signaling leads to performance gains, we consider the

problem of achieving required minimal instantaneous rates for all users in a multiple-input

multiple-output (MIMO) broadcast channel without interference cancellation (such as dirty paper

coding, DPC). In such a setting, the question of feasibility arises, i.e., it might happen that certain

rate requirements cannot be fulfilled even if arbitrarily high transmit power is spent [32], [58]–

[60].

For the case where the transmit and receive filters are restricted to be complex linear filters

and the per-user signals are proper Gaussian, it was shown in [59], [60] that rates that fulfill

∑
k∈K

(1− 2−rk) < Rank[H›K] ∀K ⊆ {1, . . . , K} (45)
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can be achieved, where H›K ∈ CM×
∑

k∈KNk is a matrix that comprises the transposed channel

matrices H›T
k
∈ CM×Nk of all users k ∈ K as a block row [60].

In our recent work [32], we derived the feasibility region for the case where the transmit and

receive filters are allowed to be widely linear filters and the per-user transmit signals are allowed

to be improper. By applying the results from [59], [60] to the composite real representation of a

complex MIMO broadcast channel with widely linear filters, we could derive that the feasibility

region is given by ∑
k∈K

(1− 2−2rk) < Rank[H ′K] ∀K ⊆ {1, . . . , K}. (46)

where H ′K ∈ R2M×
∑

k∈K 2Nk comprises the composite real equivalents H̀
T

k ∈ R2M×2Nk of the

transposed channel matrices for k ∈ K. Applying Lemma 25, which was already stated in our

previous work [32] (but without detailed proof), we obtain that Rank[H ′K] = 2 Rank[H›K].

Making use of this, the QoS feasibility region (46) with improper signaling can be shown to be

larger than the QoS feasibility region (45) with proper signaling (see [32]).

E. Algorithm Analysis

Above, we have seen in various examples that an advantage of the composite real representa-

tion is that methods which have originally been developed for real-valued signals and systems

can be applied to treat improper complex signals. This not only applies to theoretical tools as in

the cases discussed above, but also to numerical algorithms. Such algorithms could be applied

to design widely linear transceivers for the transmission of improper signaling to outperform

conventional proper signaling. We demonstrate this application of the framework by means of

the analysis of a simple gradient-projection algorithm and leave the analysis of more complicated

algorithms open for future research.

A gradient-projection algorithm to optimize the transmit filters Tk in the dual uplink of a

MIMO broadcast channel with linear transceivers was proposed, e.g., in [61], [62]. Transferred

to the composite real representation, the gradient of the weighted sum rate is given by

∂
∑K
k′=1wk′Rk′

∂T ∗k
= AkTk (47)

where the scalars wk′ are constant weighting factors,

Ak =
1

ln 2
H̀k

Ñ
K∑
k′=1

wk′X
−1 −

∑
k′ 6=k

wk′X
−1
k′

é
H̀

T

k (48)
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X = I2M +
K∑
k=1

H̀
T

kTkT
T
k H̀k (49)

and Xk′ = X − H̀
T

k′Tk′T
T
k′H̀k′ . The gradient-projection update is performed by setting each

beamforming matrix Tk to a linear combination of the respective old beamforming matrix and

the gradient, i.e.,

Tk ← (akI2Nk
+ bkAk)Tk (50)

where the scaling factors ak and bk are chosen according to a step size rule and subject to a

sum power constraint [61], [62]. The matrices H̀k ∈ BSCNk×M
2 are the composite real channel

matrices. Now, assume that all filter matrices Tk are BSC2 matrices. The operations contained

in the update rule are transposition, addition, multiplication, and matrix inversion. According

to Lemmas 1, 3, and 8, all these operations preserve the BSC2 structure, so that the new filter

matrices after the update are again block-skew-circulant.

Consequently, when initialized with BSC2 matrices, the gradient-projection algorithm con-

verges to a solution with BSC2 structure. On the other hand, when initialized with matrices

that do not have the BSC2 structure, a solution that does not have this structure either can be

obtained.

VIII. SUMMARY AND OUTLOOK

Based on block-skew-circulant matrices and block-Hankel-skew-circulant matrices, we have

proposed a new framework to characterize widely linear filters and improper signals. After

providing a wide-ranging collection of formulae for these kinds of matrices, we have presented

a variety of application examples from the field of signal processing for communications. We

hope that other researchers will decide to adopt the proposed framework and will come up with

various useful applications also from other fields of complex-valued signal processing.

Moreover, there is still potential to extend the framework by proving further properties and

deriving additional calculation rules. For instance, future research should study the composite real

counterparts of further concepts that were originally introduced in the literature on augmented

complex representations. Possible examples are the circularity coefficients and the canonical

coordinates studied in [4], but also the widely linear principal component analysis (see [4]).

Another line of possible research is to focus on problems that involve scalar complex random

variables (such as in the sum rate maximization for single-antenna interference channels in [29]),
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which become matrix-valued in the composite real representation. Since scalar expressions are

generally more tractable than matrix-valued expressions, the question arises whether the fact that

the underlying complex description is scalar leads to desirable additional structural properties of

the composite real representation that can be exploited.

APPENDIX A

VARIOUS PROOFS

Proof of Lemma 11: As À is symmetric, each eigenvalue φ ∈ R is real-valued, and the

corresponding eigenvector q =
ï
uT vT

òT
∈ R2M can be chosen to be real-valued. Using the

orthogonal BSC2 matrix J̀M from Lemma 10, we have

Àq = qφ ⇔ J̀MÀJ̀
T

M J̀Mq = J̀Mqφ

⇔ ÀJ̀Mq = J̀Mqφ (51)

and qTJ̀Mq = 0. This means that for each eigenvalue φ, we have a pair of orthogonal eigen-

vectors q and J̀Mq. Properly arranging these eigenvalues and eigenvectors in BSC2 matrices,

we obtain

À

U −V

V U


︸ ︷︷ ︸
Q̀∈BSCM×M

2

=

U −V

V U


︸ ︷︷ ︸
Q̀∈BSCM×M

2

Φ
Φ


︸ ︷︷ ︸
Λ̀∈PM

(52)

where Q̀
−1

= Q̀
T

since the eigenvectors of a symmetric matrix form an orthogonal matrix.

Proof of Lemma 15: For K ≤ L, we apply Lemma 11 to ÙΣ̀
2
Ù

T
= ÀÀ

T
∈ PK in order

to obtain an orthogonal matrix Ù ∈ BSCK×K2 and a diagonal matrix Σ̀ ∈ PK . Then, a reduced

SVD of À is obtained by solving À = ÙΣ̀V̀
T

for V̀
T

[63, Ch. 14]. Let us first assume that À

has full rank, i.e., all diagonal entries of Σ̀ are nonzero. Then, since À, Ù , and Σ̀ are BSC2

Lemma 7 implies that V̀ ∈ BSCL×K2 . If we now consider the rank-deficient case by setting

some diagonal entries of Σ̀ to zero, we can keep the corresponding singular vectors unchanged,

i.e., we can keep V̀ ∈ BSCL×K2 . For K ≥ L, we start with V̀ Σ̀
2
V̀

T
= À

T
À ∈ PL and solve

for Ù afterwards.

Proof of Lemma 16: For K ≤ L: since B́B́
T
∈ PK due to Lemma 3, the same steps as in

the proof of Lemma 15 can be applied. The only difference is that for ÙΣ̀V́
T

= B́ ∈ BHSCK×L2
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with BSC2 matrices Ù and Σ̀, Lemma 7 implies that V́ is BHSC2. The proof for K ≥ L is

analogous.

Proof of Lemma 20: A BSC2 matrix À can be written as8

À = I2 ⊗A1 + J̀1 ⊗A2 with J̀1 =

 −1

1

 . (53)

The matrices I2 and J̀1 are jointly diagonalized by

U˜ =
1√
2

 1 1

−j j

 (54)

and we have I2 = U˜ diag(1, 1)U˜H and J̀1 = U diag(j,−j)UH. Therefore, it follows from [49,

Th. 1] that every eigenvalue of

M˜1
= 1⊗A1 + j ⊗A2 = A1 + jA2 (55)

or M˜2
= 1⊗A1 + (−j)⊗A2 = A1 − jA2 (56)

is an eigenvalue of À, and, conversely, every eigenvalue of À is an eigenvalue of M˜1
or M˜2

.

The corresponding eigenvectors are given by

q˜1
=

 1

−j

⊗ x‹1
and q˜2

=

1

j

⊗ x‹2
(57)

due to [49, Corollary 2], where x‹1
and x‹2

= x‹∗1 are eigenvectors of M˜1
and M˜2

= M˜∗
1

respectively.

Alternative Proof of Corollary 3: Since P̀ + Ń � 0 ⇔ P̀ − Ń � 0 (see Proof of

Theorem 4), we have that

0 ≤ xT(P̀ + Ń )x+ xT(P̀ − Ń )x = 2xTP̀ x. (58)

This shows that xTP̀ x ≥ 0, ∀x ∈ R2M . Now let x ∈ null[P̀ ]. Then, 0 ≤ xTŃx. Moreover,

J̀Mx ∈ null[P̀ ] and 0 ≤ xTJ̀
T

MŃJ̀Mx = −xTŃx due to Lemma 10. This implies that

xTŃx = 0. Now suppose that there exists a y such that yTŃx 6= 0. Then,

(αx+ y)T(P̀ + Ń )(αx+ y) = yT(P̀ + Ń )y︸ ︷︷ ︸
=const.≥0

+2αyTŃx (59)

8Note that [49] uses a different definition of the ⊗ operator where the order of the operands is reversed.
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and there exists an α ∈ R such that the sum on the right hand side becomes negative, which

contradicts P̀ + Ń � 0. Thus, yTŃx = 0 for all y, which implies x ∈ null[Ń ]. Items 3) and

4) are necessary since they are implications of 2).

Proof of Theorem 6: Using Lemma 21, and the relation between P̀ x˜ and C˜x˜ in (32),

we have that the first summand in (38) is equal to log det(πeC˜x˜), which is the differential

entropy of a proper complex Gaussian random vector with covariance matrix C˜x˜. We have to

show that the determinant d = det
Å
I2M + P̀

−1
Ń
ã

takes a value between zero and one. Since

AXAH � AX ′AH for X �X ′ [48, Section 7.7],

P̀ + Ń � 0 ⇔ I2M + P̀
− 1

2ŃP̀
− 1

2 � 0 (60)

and, thus,

d = det
Å
I2M + P̀

− 1
2ŃP̀

− 1
2

ã
≥ 0. (61)

Since P̀
− 1

2 is BSC2 due to Lemmas 12 and 8, P̀
− 1

2ŃP̀
− 1

2 is BHSC2 due to Lemma 3. Using

the standard EVD of this symmetric BHSC2 matrix (see Lemma 13), we obtain

d = det
Å
I2M + Q̀Λ́Q̀

T
ã

= det
Ä
I2M + Λ́

ä
=

2M∏
i=1

(1 + λi)

=
M∏
i=1

(1 + λi)(1− λi) =
M∏
i=1

(1− λ2
i )︸ ︷︷ ︸

≤1

≤ 1 (62)

where we have used λi+M = −λi for i = 1, . . . ,M . This shows that 1
2

log d ≤ 0 with equality

if and only if λi = 0 ∀i, i.e., if and only if Ń = 0.
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