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Abstract—It is known that parallel relay channels are not
separable, i.e., the capacity with joint processing of the subchan-
nels can be higher than the sum of the individual capacities.
The same holds for the data rates achievable using partial
decode-and-forward in parallel Gaussian MIMO relay channels.
However, in this paper, we show that it is sufficient to allow
the relay to remap information from one subchannel to another
between the decoding and the re-encoding. A carrier-cooperative
transmission in the sense of spreading transmit symbols over
several subchannels does not bring advantages in terms of
achievable rate.

I. INTRODUCTION

Since the capacity of relay networks is still an open problem
except for special cases, many researchers have focused on
deriving upper bounds such as the cut-set bound [1] and
achievable schemes such as amplify-and-forward, compress-
and-forward, and decode-and-forward [1], [2], [3, Ch. 9].

In the decode-and-forward protocol, the relay has to decode
the complete message to then transmit it to the destination
coherently with the source node. This strategy can be capacity-
achieving if the channel between the source and the relay is
strong [2], but otherwise, the source-relay link can become a
bottleneck [2], [3, Section 9.2.1]. In this case, schemes where
only a part of the message is decoded by the relay can be
superior. Such a generalization of decode-and-forward is given
by the partial decode-and-forward (PDF) scheme [2], [4]–[8],
[3, Section 9.4.1].

In this paper, we consider the application of PDF to a set
of parallel Gaussian multiple-input multiple-output (MIMO)
relay channels. With the term parallel we refer to a setting with
a single-relay node that supports the communication between
a source and a destination over a set of parallel orthogonal
resources (e.g., carriers). Note that is in accordance with the
nomenclature of [9], [10], but differs from the nomenclature
in [11], where parallel relay networks contain multiple relays.

In a communication system with such parallel orthogonal
resources, data transmission can be performed separately on
each resource or jointly across the resources. In the case of
a single-hop transmission, the terms joint coding and carrier-
cooperative transmission can be used interchangeably (see,
e.g., [12], [13]). For multihop systems, we propose to make
the following distinction.
• In a system with separate coding, messages are split into

chunks that are then processed on a per-carrier basis. On
the other hand, if a joint processing across carriers takes

place at some encoding or decoding stage, we speak of
joint coding.

• We say that carrier-cooperative transmission takes place
in a time slot if the signals on the various carriers are
statistically dependent in this time slot. This can be
interpreted as spreading a transmit symbol over several
carriers. If this is not the case, carrier-noncooperative
transmission is performed.

The notion of a time slot (or block) is necessary since
multihop transmission often relies on block coding schemes.
In particular, the PDF rate can be achieved with a block-
Markov coding scheme [3, Section 9.4.1]. The importance of
above distinction will become clear in the interpretation that is
given in Section V. Note that carrier-cooperative transmission
requires joint coding in order to form a sensible transmit
strategy, but the converse is not true.

It is known that separate coding is in general not capacity-
achieving in parallel relay channels [10]. Imagine a two-
carrier system where the source-relay channel is zero on the
first carrier while the relay-destination channel is zero on the
second carrier. Then, the relay can only be helpful if it can
forward information on a carrier different from the one on
which it has received the information.

Clearly, this observation also applies to the PDF scheme,
i.e., joint coding can be necessary to achieve the optimal PDF
rate. However, we show in this paper that carrier-cooperative
transmission is not needed in the PDF scheme.

For parallel single-antenna relay channels, PDF was con-
sidered in [9], but mainly for the case where the relay and
the source are not able to transmit in a coherent manner. This
simplifies the implementation, but degrades the performance.
For the case with coherent transmission, as assumed in our
work, a complete solution of the PDF rate optimization was
not obtained in [9] due to the nonconvexity of the problem.

In the recent work [14], it was proven that the optimal
PDF rate in Gaussian MIMO relay channels can be achieved
with Gaussian input signals. Moreover, it was shown in [8]
that among all possible Gaussian inputs, circular symmetric
ones achieve optimal performance. These results generalize to
parallel MIMO relay channels since results obtained for single-
carrier MIMO systems can be extended to the multicarrier case
by introducing an equivalent single-carrier system with block-
diagonal channel matrices (see [12], [13] and Section II).
Therefore, we can assume circularly symmetric Gaussian input
signals throughout the paper, and the optimal transmit strategy



can be characterized by the joint covariance matrix of the
source and relay inputs.

However, the existing literature on the optimization of PDF
rates in Gaussian MIMO relay channels [5]–[7] has not yet
overcome the difficulty of the nonconvexity of the arising
optimization problems. Therefore, we cannot simply obtain
the globally optimal covariance matrix and verify whether
it corresponds to carrier-cooperative or carrier-noncooperative
transmission.

Instead, we adopt the proof technique that was used in [8]
to show optimality of circular symmetric transmit signals. To
adapt this technique to multicarrier systems, we first propose
a new parametrization of the involved covariance matrices in
Section III. The proof of the main result is then provided in
Section IV, and a discussion follows in Section V. It turns out
that we need to show the optimality of carrier-noncooperative
transmission in parallel MIMO broadcast channels with a
certain type of shaping constraints as an ingredient for this
proof. Therefore, this paper contains an excursus to parallel
MIMO broadcast channels in Appendix A.

Notation: We use 0 for the zero matrix, IN for the identity
matrix of size N , •T for the transpose, •H for the conju-
gate transpose, and •⊥ for the orthogonal complement. The
notation •? is used for optimizers and optimal values. The op-
erators I(•), h(•), E [•], and tr[•] denote mutual information,
differential entropy, expected value, and trace, respectively. We
use Cx for the covariance matrix of x. The order relation �
has to be understood in the sense of positive-semidefiniteness.

II. SYSTEM MODEL AND CODING SCHEME

We consider data transmission from a source S to a destina-
tion D with the help of a relay R, where all nodes have multiple
antennas. We collect the channel matrices Hij,c ∈ CNj×Ni

with i, j ∈ {S,R,D} in block-diagonal channel matrices

H̀ij = blockdiag(Hij,1, . . . ,Hij,C) (1)

where c ∈ {1, . . . , C} denotes the carrier index, and Ni is the
number of antennas at node i. Data transmission in parallel
Gaussian MIMO relay channels can then be described by

yR = H̀SRxS + ηR (2)

yD = H̀SDxS + H̀RDxR + ηD. (3)

The system model is visualized in Fig. 1. We assume full-
duplex transmission and perfect channel state information.

The noise ηR = [ηT
R,1, . . . ,η

T
R,C ]T ∼ CN (0, C̀ηR) at the

relay and the noise ηD = [ηT
D,1, . . . ,η

T
D,C ]T ∼ CN (0, C̀ηD) at

the destination are assumed to be independent of each other
and independent of the useful signals. Moreover, the noise is
assumed to be independent across carriers, i.e., C̀ηR and C̀ηD

are block-diagonal. Throughout the paper, we assume C̀ηR =
ICNR and C̀ηD = ICND . This is without loss of generality since
other cases can be treated by introducing equivalent channels
(which are still block-diagonal) after noise whitening.

It is optimal to use jointly circularly symmetric Gaussian
transmit signals xS and xR at the source and at the relay (see
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Fig. 1. Illustration of parallel Gaussian MIMO relay channels.

Section I). Consequently, the receive signals yR and yD at the
relay and at the destination are circularly symmetric Gaussian
signals as well.

The source transmit signal xS = u+v is a superposition of
a signal u, which is decoded and forwarded by the relay, and
a signal v, which is transmitted without the help of the relay
(e.g., [4], [5], [3, Section 9.4.1]). The decode-and-forward
signal u is correlated with the relay transmit signal xR, but v
is independent of u and xR.

The PDF rate is then given by [4], [3, Section 9.4.1]

R = min{I(xS;yD|(u,xR)) + I(u;yR|xR)︸ ︷︷ ︸
RA

; I((xS,xR);yD)︸ ︷︷ ︸
RB

}.

(4)
The optimization of this rate with maximum transmit powers
PS and PR at the source and the relay, respectively, reads as

max
pm∈M

R s.t. E
[
xH

S xS
]
≤ PS and E

[
xH

RxR
]
≤ PR (5)

where m = [uT,xT
S ,x

T
R ]T, and M is the set of all valid

probability distributions of m that have the property that u–
(xS,xR)–(yR,yD) is a Markov chain.

III. PARAMETRIZATION OF COVARIANCE MATRICES

Let DK×L denote the projection of a matrix onto the set
of block-diagonal matrices with block-size K ×L. We define
the subspace of block-diagonal complex matrices

DN,K×L = {À ∈ CNK×NL | DK×L(À) = À} (6)

and the subspace of complex matrices consisting of only off-
diagonal blocks

ON,K×L = {Ă ∈ CNK×NL | DK×L(Ă) = 0}. (7)

From this definition, it follows that ON,K×L is the orthogonal
complement of DN,K×L in CNK×NL.

Let HL ⊂ CL×L be the space of Hermitian matrices. It
can be easily verified that the subspace of block-diagonal
Hermitian matrices DN,M×M ∩ HNM and the subspace of
Hermitian matrices consisting of only off-diagonal blocks
ON,M×M ∩ HNM are orthogonal complements in HNM .
Therefore, the covariance matrix Cx of any random vector
x ∈ CNM can be uniquely decomposed as

Cx = C̀x + C̆x, C̀x ∈ DN,M×M , C̆x ∈ ON,M×M . (8)



If x represents a signal in a system with N carriers and M
dimensions per carrier, the block-diagonal part C̀x describes
the power shaping within the carriers while the off-diagonal
part C̆x describes the correlation between the carriers.

A meaningful covariance matrix Cx is obtained only for
those pairs of C̀x ∈ DN,M×M ∩HNM and C̆x ∈ ON,M×M ∩
HNM that fulfill C̀x + C̆x � 0 (which implies C̀x � 0). For
convenience, we define

C̆(C̀) = {C̆ ∈ ON,M×M ∩HNM | C̀ + C̆ � 0} (9)

for C̀ ∈ DN,M×M ∩HNM .
As a consequence of [15, Appendix], we obtain the first of

the following lemmas. The second one is easy to verify.
Lemma 1: For fixed C̀x, the entropy of a circularly sym-

metric Gaussian random vector x is maximized by C̆x = 0.
Lemma 2:
1) ÀB̀ ∈ DN,K×L if À ∈ DN,K×M and B̀ ∈ DN,M×L,
2) ÀB̆ ∈ ON,K×L if À ∈ DN,K×M and B̆ ∈ ON,M×L.

IV. OPTIMALITY OF CARRIER-NONCOOPERATIVE
TRANSMISSION

We now state and proof the main theorem of this paper. An
interpretation is given afterwards.

Theorem 1: In parallel Gaussian MIMO relay channels with
partial decode-and-forward, carrier-noncooperative transmis-
sion is optimal.

Proof of Theorem 1: Using a block-diagonal matrix À,
we decompose u as

u = q + ÀxR such that DNS×NR(E
[
qxH

R

]
) = 0 (10)

i.e., the correlation between the components of u and xR on
each carrier is completely covered by ÀxR, but there could
still be correlations between components of q and ÀxR that
belong to different carriers. It will later be seen that using
completely uncorrelated q and xR is optimal.

Let X = (C̀v, C̀q, C̀xR , À, C̆v, C̆q, C̆xR , C̆qxR), and let

X =

{
X
∣∣∣∣ C̀v�0,C̀q�0,C̀xR�0,

C̆v∈C̆(C̀v),C̆ρ∈C̆(C̀ρ)

}
(11)

where we have used the abbreviation ρ = [qT xT
R ]T and

the parametrization of covariance matrices introduced in Sec-
tion III. The maximization (5) can then be written as

max
X∈X

min{RA(X ); RB(X )} (12)

s.t. tr[C̀v + C̀q + ÀC̀xRÀ
H] ≤ PS

tr[C̀xR ] ≤ PR

with RA and RB from (4). To formulate the constraints, we
have made use of Lemma 2 and of the fact that only the block-
diagonal part is relevant for the trace.

Following the lines of [8], we introduce an auxiliary variable
C̀v+q and apply the max-min-inequality [16, Section 5.4.1] to
obtain the following upper bound to the optimal value:

max
C̀v+q�0

min{R?
A(C̀v+q); R?

B(C̀v+q)} (13)

s.t. tr[C̀v+q] ≤ PS

where C̀v+q is block-diagonal, and

R?
i (C̀v+q) = max

X∈X
Ri(X ) (14)

s.t. C̀v + C̀q = C̀v+q

tr[ÀC̀xRÀ
H] ≤ PS − tr[C̀v+q]

tr[C̀xR ] ≤ PR

for i ∈ {A,B}. We now show that there exists an optimizer
X ?(C̀v+q) that maximizes RA and RB simultaneously for any
given C̀v+q , which implies that the upper bound is tight.

Let us first consider RB, which can be written as

RB = h(yD)︸ ︷︷ ︸
≤h(yD,sep)

−h(ηD)︸ ︷︷ ︸
const.

(15)

where the inequality is due to Lemma 1 if yD,sep is a circularly
symmetric Gaussian vector with

C̀yD,sep = C̀yD = H̀SD(C̀v + C̀q)H̀H
SD+

(H̀SDÀ+ H̀RD)C̀xR(H̀SDÀ+ H̀RD)H + C̀ηD (16)

and C̆yD,sep = 0. Since H̀SD, H̀RD, À, and C̀ηD are block-
diagonal, equality in (15) can be achieved by setting C̆v , C̆q ,
C̆xR , and C̆qxR to zero for any fixed choice of the matrices
C̀v , C̀q , and C̀xR (due to Lemma 2). Moreover, RB does not
depend on C̀v and C̀q , but only on C̀v + C̀q = C̀v+q . Thus,
RB is maximized by an optimizer X ?

B with the structure

X ?
B = (∗, ∗, C̀?

xR
, À?,0,0,0,0) (17)

where ∗ denotes “don’t care.” Note that due to the fact that
C̀qxR = 0 by assumption and C̆qxR = 0 in the optimum, RB
is maximized by uncorrelated vectors q and xR.

The rate RA can be written as

RA = h(H̀SDv + ηD)− h(ηD)

+ h(H̀SR(v + q) + ηR|xR)︸ ︷︷ ︸
≤h(H̀SR(v+q)+ηR)

−h(H̀SRv + ηR). (18)

Since conditioning reduces uncertainty unless in the case of
statistical independence [17, Section 8.6], (18) is maximized
by independent q and xR, i.e., by C̆qxR = 0. Thus, the
conditioning on xR can be dropped, and the probability
distribution of xR does not play a role for the optimal RA.

We rewrite the optimization as

max
Cv�0,Cq�0

RA(Cv,Cq) s.t. C̀v + C̀q � C̀v+q. (19)

with

RA(Cv,Cq) = log
det
(
ICND + H̀SDCvH̀

H
SD

)
det (ICND)

+ log
det
(
ICNR + H̀SRCvH̀

H
SR + H̀SRCqH̀

H
SR

)
det
(
ICNR + H̀SRCvH̀H

SR

) (20)

and we note that this is mathematically equivalent to a sum
rate maximization in a two-user MIMO broadcast channel



with dirty paper coding (cf. (24) and, e.g., [18]). A similar
equivalence to a MIMO broadcast channel was exploited in
[8], but for the case of a single carrier. Here, we have the case
of parallel MIMO broadcast channels (e.g., [13], [15]) due
to the block-diagonal channel matrices H̀SD and H̀SR. The
constraint affects only the block-diagonal parts C̀v and C̀q ,
which is equivalent to a set of per-carrier shaping constraints
C̀v,c + C̀q,c � C̀v+q,c, c ∈ {1, . . . , C}. The relaxation to
an inequality constraint does not change the optimum since it
can be shown that the constraint is active (RA is increasing in
C̀v+q , the proof follows the lines of [8]).

In Theorem 2 in Appendix A, we show that carrier-
noncooperative transmission is optimal for this kind of sum
rate maximization in parallel MIMO broadcast channels. Due
to the mathematical equivalence, we can conclude that there
is an optimal solution of (19) with C̆v = C̆q = 0. Thus, there
is an optimizer X ?

A that maximizes RA and has the structure

X ?
A = (C̀?

v, C̀
?
q , ∗, ∗,0,0, ∗,0). (21)

It is easy to see that there exists an X ? that is compatible
with both structures X ?

A and X ?
B . Therefore, the upper bound

(13) is tight and can be achieved with block-diagonal covari-
ance matrices Cv = C̀v , Cq = C̀q , and CxR = C̀xR . Since
this reasoning holds for any feasible C̀v+q , it also holds for
the optimal C̀?

v+q , which proves that carrier-noncooperative
transmission is optimal for PDF in Gaussian MIMO relay
channels.

V. DISCUSSION

We have shown that the PDF rate in parallel Gaussian
MIMO relay channels is maximized by carrier-noncooperative
transmission, but this does not mean that the setting is sep-
arable in the sense of equality between the achievable PDF
rate and the sum of the rates that can be achieved with PDF
individually on each carrier. For optimal PDF, the relay must
have the possibility to forward a signal on a carrier different
from the one on which it has been received.

For the optimal strategy, Theorem 1 states that all three
source signals v, q, and ÀxR as well as the relay signal
xR consist of per-carrier signals that are not correlated across
carriers. Thus, RA and RB can be achieved by summing up
the respective per-carrier expressions over all carriers, but this
is not the same as assuming separate coding:

R = min
{∑C

c=1RA,c ;
∑C

c=1RB,c

}
(22)

≥
∑C

c=1
min {RA,c ; RB,c} = Rseparate. (23)

The minimum operation in the PDF rate represents the fact
that the rate of information leaving the source (towards relay
and destination) has to be balanced with the rate of information
arriving at the destination (from the source and the relay).
Without joint coding, we have the stricter condition that this
balance has to hold on each carrier individually.

For further interpretation, we recall that the PDF rate can be
achieved by a block-Markov coding scheme [3, Section 9.4.1].
Apparently, ÀxR represents the coherent transmission that is

S
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Fig. 2. Decomposition of the source signal (adapted from [8]).

currently taking place while q represents the message that is
provided to the relay to allow coherent transmission in a future
block [8]. Thus, q, which is not correlated with xR, can be
interpreted as part of the innovation that is introduced into the
system by the source. An illustration can be found in Fig. 2. In
the block-Markov scheme, the important distinction is whether
components of xR and ÀxR on some carrier may depend on
components of q on other carriers in earlier blocks. Such a
dependence complies with carrier-noncooperative transmission
in each block, but requires joint coding across carriers.

APPENDIX A
EXCURSUS: PARALLEL MIMO BROADCAST CHANNELS

In this appendix, we extend a result that is known for par-
allel MIMO broadcast channels with a sum power constraint
(see [15]) to a certain class of shaping constraints.

Theorem 2: If the noise is independent across carriers, the
optimal sum rate in parallel MIMO broadcast channels with
shaping constraints that affect only the per-carrier covariance
matrices is achieved with carrier-noncooperative transmission.

For the proof, we make use of the uplink-downlink minimax
duality with linear conic constraints from [19], [20]. We use xk

and ξk, k ∈ {1, . . . ,K} for the input signals in the downlink
and in the dual uplink, respectively. Moreover, we use ηk for
the downlink noise, and η for the uplink noise. The number of
downlink transmit antennas is denoted by M , and the number
of antennas at the kth downlink receiver is Nk. The data rate
of user k can be expressed as (e.g., [18])

rk = log
det
(
C̀ηk

+ H̀k

(∑
j∈Ik∪{k}Cxj

)
H̀H

k

)
det
(
C̀ηk

+ H̀k

(∑
j∈Ik Cxj

)
H̀H

k

) (24)

where Ik is the set of users causing interference to user k,
i.e., the set of users encoded after user k. In the dual uplink,

rUL
k = log

det
(
C̀η +

∑
j∈IUL

k ∪{k}
H̀H

j CξjH̀j

)
det
(
C̀η +

∑
j∈IUL

k
H̀H

j CξjH̀j

) . (25)

Just like in [18], the decoding order in the uplink is the reverse
downlink encoding order, i.e., IUL

k = {1, . . . ,K}\(Ik∪{k}).



It will be seen later [due to symmetry in (30)] that this order
can be chosen arbitrarily.

The minimax duality with linear conic constraints and
worst-case noise optimization from [19], [20] reads as follows.

Lemma 3: The downlink minimax problem

min
(Cηk

�0)∀k: (Cηk
)∀k∈Y⊥∑K

k=1 tr[Cηk ]=
∑K

k=1 CNk

max
(Cxk

�0)∀k,Z∈Z∑K
k=1Cxk�C+Z

∑K

k=1
rk (26)

and the uplink minimax problem

min
Cη�0,Cη∈Z⊥

tr[CCη ]=
∑K

k=1 CNk

max
(Cξk

�0)∀k,(Yk)∀k∈Y

Cξk�ICNk
+Yk ∀k

∑K

k=1
rUL
k (27)

have the same optimal value [19], [20], where Z ⊆ HM and
Y ⊆

⊗K
k=1 HNk are linear subspaces.

The subspaces Z and Y can be used to model various
constraints on the transmit covariance matrices (cf. [20])
while their orthogonal complements Y⊥ and Z⊥ determine
constraints for the worst-case noise optimizations.

Proof of Theorem 2: To model that only the diagonal
blocks of the transmit covariance matrices (i.e., the per-carrier
covariance matrices) are affected by the shaping constraint,
let Z = OC,M×M ∩ HCM , which allows adding arbitrary
off-diagonal blocks (as long as Cxk

� 0). This translates to
Z⊥ = DC,M×M∩HCM in the uplink optimization (27). Thus,
the noise in the uplink is constrained to have a block-diagonal
covariance matrix, i.e., to be independent across carriers.

In the downlink, we assume identity matrices as noise
covariance matrices without loss of generality. As in [20], the
sum rate maximization with fixed noise covariance matrices
Cηk

= ICNk
can be rewritten as a minimax problem by

defining a feasible set that contains only one element:

Y⊥ = (28){
(Cηk

)∀k ∈
⊗K

k=1
HCNk

∣∣∣∣ Cηk
= αICNk

∀k, α ∈ R
}

The orthogonal complement

Y =

{
(Yk)∀k ∈

⊗K

k=1
HCNk

∣∣∣∣ ∑K

k=1
tr[Yk] = 0

}
(29)

leads to shaping constraints in (27) that affect only the
diagonal blocks of the uplink transmit covariance matrices.1

The uplink sum rate equals (e.g., [17, Section 15.3])

RUL = h

(∑K

k=1
H̀H

k ξk + η

)
︸ ︷︷ ︸

=h(y)≤h(ysep)

− h (η)︸ ︷︷ ︸
const.

(30)

where y =
∑K

k=1 H̀
H
k ξk + η, and ysep is a circularly sym-

metric Gaussian signal with C̀ysep = C̀y and C̆ysep = 0. The
inequality is due to Lemma 1. To comply with the constraints,
we only have to consider the block-diagonal components of
the transmit covariance matrices. For any fixed choice of

1In fact, it can be shown that constraints of this form are equivalent to a
sum power constraint [20].

them, equality h(y) = h(ysep) can be achieved by setting the
off-diagonal components C̆xk

to zero since the off-diagonal
component C̆η of the noise covariance is zero.

Thus, the optimal uplink transmit covariance matrices are
block-diagonal. By transforming this optimal solution to the
downlink as described in [19], we obtain block-diagonal co-
variance matrices in the downlink, i.e., carrier-noncooperative
transmission is optimal in the downlink.
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