I

Technische Universitdt Miinchen
Ingenieurfakultdt Bau Geo Umwelt

Lehrstuhl fiir Statik

STABILIZED CO-SIMULATION OF COUPLED PROBLEMS
INCLUDING FIELDS AND SIGNALS

Stefan Alfred Sicklinger

Vollstdandiger Abdruck der von der Ingenieurfakultit Bau Geo
Umwelt der Technischen Universitdt Miinchen zur Erlangung des
akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender:
Univ.-Prof. Dr.-Ing. habil. Fabian Duddeck
Priifer der Dissertation:

1. Univ.-Prof. Dr.-Ing. Kai-Uwe Bletzinger
2. Prof. Dr. Riccardo Rossi,
Universitat Politecnica de Catalunya - BarcelonaTech/Spanien

Die Dissertation wurde am 3. Juli 2014 bei der Technischen
Universitiat Miinchen eingereicht und durch die Ingenieurfakultét
Bau Geo Umwelt am 28. November 2014 angenommen.

Zusammenfassung

Das Berechnungsverfahren Co-Simulation wird mehr und
mehr zu einer integralen und unverzichtbaren Methode zur
Losung der heutigen anspruchsvollen technischen Fragestel-
lungen. Mit Hilfe dieser Kopplungstechnik, kann das zu l6sen-
de Gesamtproblem in einzelne Teilsysteme aufgeteilt werden,
welche zur Laufzeit Informationen austauschen. Der inhdrente
Vorteil der Co-Simulation ist im Gegensatz zum gesamtheitli-
chen (monolithischen) Ansatz, dass etablierte und spezialisierte
Simulationswerkzeuge wieder verwendet werden konnen. Dar-
tiber hinaus erlaubt die Co-Simulation verschiedene Modellie-
rungstiefen der einzelnen Teilsystemen, dem jeweiligen Stand
des Produktentwicklungszyklus entsprechend zu kombinieren
und anzupassen. Leider stellt die partitionierte Behandlung der
einzelnen Teilsysteme eine Herausforderungen fiir die numeri-
sche Stabilitdt und Genauigkeit dar.

Als Ziel dieser Arbeit wurde ein neuartiges Berechnungs-
verfahren fiir die Co-Simulation entwickelt, das als Interface-
Jacobian-based Co-Simulation Algorithm (IJCSA) bezeichnet
wird. Das Verfahren stabilisiert die Co-Simulation wéihrend die
Modularitét erhalten bleibt. Ferner kann dieser Algorithmus ei-
ne beliebige Anzahl von Feldern und Signalen bedienen. Selbst
algebraische Schleifen kénnen einfach aufgelost werden, da
er auf einer Residualform beruht. Des Weiteren kénnen alle
an der Co-Simulation beteiligten Subsysteme parallel gestartet
werden, wodurch die Laufzeit der Simulation deutlich verkiirzt
wird. Ebenfalls Teil dieser Arbeit ist eine eingehende Stabilitéts-
betrachtung des Algorithmus.

Abschliefend wird die Anwendbarkeit des IJJCSA mit meh-
reren industriell relevanten Beispielen veranschaulicht. Die ge-
zeigten Beispiele reichen von einer vollstandig gekoppelten und
geregelten Fluid-Struktur-Signal-Wechselwirkungen bis hin zu
einer vollstdndig gekoppelten Notbremsung einer Windturbine.
Bei der Notbremsung wird die Interaktion des Generators/Ge-
triebes, der flexiblen Verbundrotorblitter, der Steuereinheit und
dem dreidimensionalen turbulenten Stromungsfeld berticksich-
tigt. Dariiber hinaus werden die Simulationsergebnisse anhand
von Messdaten aus dem National Renewable Energy Laboratory
(NREL) Unsteady Aerodynamics Experiment Phase VI durchge-
fiihrt im NASA AMES Windkanal validiert.

ii

Abstract

Co-simulation is becoming an increasingly integral and in-
dispensable technique for solving today’s challenging engineer-
ing problems. By means of this code coupling technique, the
engineering problem is partitioned as an assembly of different
subsystems exchanging solution information at run time. The
inherent advantage of co-simulation in contrast to the mono-
lithic approach is that it allows the (re)use of well-established
and specialized simulation software to be combined, with minor
alterations. Furthermore, co-simulation allows different fidelity
models to be combined at different stages of the design pro-
cess. Unfortunately, this partitioned treatment of the individual
system poses stability and accuracy challenges.

Anovel co-simulation algorithm is introduced, referred to as
the Interface Jacobian-based Co-Simulation Algorithm (IJCSA),
which overcomes present stability issues. The algorithm can
solve co-simulation scenarios involving an arbitrary number
of fields and signals. Due to the fact that the IJCSA is based on
the residual form it handles algebraic loops in a natural man-
ner. Furthermore, the individual simulators can run in parallel
without flow dependency reducing the wall-clock time of the
simulation, since the subsystems do not have to be executed
using the classical Gauss-Seidel pattern. A thorough stability
analysis of the IJCSA is presented.

In order to demonstrate the applicability, several industri-
ally relevant examples are solved by using the IJCSA. The shown
examples range from a fully coupled fluid-structure-signal in-
teraction with closed-loop control to fully coupled emergency
brake maneuver of a wind turbine. Here the interaction of the
generator/gearbox, flexible composite blades, control unit and
the three-dimensional flow field is taken into account. Further-
more, the simulation results are validated against measurement
data from the National Renewable Energy Laboratory (NREL)
Unsteady Aerodynamics Experiment Phase VI, performed in the
NASA AMES wind tunnel.

Acknowledgments

This dissertation was written from 2011 to 2014 during my
time as research assistant at the Chair of Structural Analysis at
the Technische Universitdt Miinchen, Munich, Germany.

Iwould like to thank Prof. Dr.-Ing. Kai-Uwe Bletzinger for
giving me the possibility to work in his research group. Moreover,
I would like to sincerely thank him not only for his helpful and
inspiring guidance as doctoral supervisor, but also for providing
me the academic freedom to develop and realize new ideas
and methods. I also want to thank Dr.-Ing. Roland Wiichner for
fruitful and inspiring discussions.

Furthermore, I would like to thank Prof. Dr. Riccardo Rossi
for being my co-examiner and for his interest in my work. Also
I want to thank Univ.-Prof. Dr.-Ing. habil. Fabian Duddeck for
charing the jury.

My gratitude goes also to my coworkers at the Chair of Struc-
tural Analysis for their friendly cooperation and for the pleasant
time that I had working with them. In particular I would like
to thank Tianyang Wang and my student Christopher Lerch for
numerous inspiring and motivating discussions.

I'would like to gratefully point out the cooperation with the
headquarter of Dassault Systemes SIMULIA. Especially, I want
to gratefully express my appreciation towards Bruce Engelman,
Vladimir Belsky, Albert Kiirkchiibasche and Jeff Haan who gave
me ideas and valuable hints. Moreover, I would like to sincerely
thank them for their hospitality during my visits.

Finally, I would like to thank my parents and my brother,
without whom I would never have been able to achieve so much.
Most importantly, I would like to express my deepest gratitude
to Anja and my son Christian for their patience, support, encour-
aging inspiration and advice during all times.

Stefan Alfred Sicklinger
Technische Universitdt Miinchen
December 18, 2014

ii

LIST OF SYMBOLS AND ABBREVIATIONS

Calligraphic letters

extrapolation operator for next time step

interface constraint operator for interface constraint i

J() Jacobian extraction operator

"R residual associated with input i at time step 7 at iteration
m (vector)

"R residual associated with input i at time step n at iteration
m (scalar)

Si() operator of subsystem i

Greek letters

A eigenvalue

u dynamic viscosity

% kinematic viscosity

w eigenfrequency

[oF damped eigenfrequency

T ~ 3.141592653589793

Jo) spectral radius

€ Hencky strain

0 density

List of Symbols and Abbreviations

Mathematical symbols

X sum

0 operator for partial derivative
o first variation

[l 1l euclidean norm

[lmax ~ Maximum norm

R set of real numbers
Latin letters

cp drag coefficient

cL lift coefficient

Cp pressure coefficient
E Young’s modulus

I identity matrix

muyn input of subsystem i at time step n at iteration m (vector)
myr input of subsystem i at time step n at iteration m (scalar)
mxn state of subsystem i at time step n at iteration m (vector)

i
mxnr state of subsystem i at time step n at iteration m (scalar)
ny’ output of subsystem i at time step n at iteration m (vector)
mynr output of subsystem i at time step # at iteration m (scalar)
Abbreviations:

ALE arbitrary Lagrangian-Eulerian

BDF2 second order Backward Differentiation Formula

BE backward Euler

CAD computer-aided design

vi

CFD
CSE
CSM
DAE
DOF
DOFs
FEM
FSI
GMRES
GS
GSE
IJCSA
JC
JENK
NASA
NREL
ODE
PDAE
PID
TR
TUM

URANS
Re
Sr

List of Symbols and Abbreviations

computational fluid dynamics

Co-Simulation Engine

computational structural mechanics
differential algebraic equation

degree of freedom

degrees of freedom

finite element method

fluid-structure interaction

generalized minimal residual

Gauss-Seidel

global sensitivity equation

Interface Jacobian-based Co-Simulation Algorithm
Jacobi

Jacobian-free Newton-Krylov

National Aeronautics and Space Administration
National Renewable Energy Laboratory
ordinary differential equation

partial differential algebraic equations
proportional-integral-derivative

trapezoidal rule

Technische Universitdt Miinchen (University of Technology,
Munich)

unsteady Reynolds averaged Navier-Stokes
Reynolds number

Strouhal number

vii

CONTENTS

List of Symbols and Abbreviations

Contents

1 Introduction

2 Mathematical and Algorithmic Framework

2.1
2.2

2.3

24
2.5

Notation for Co-Simulation of Multiple Subsystems
Fixed-Point Iteration

2.2.1 Constant Under-Relaxation............
2.2.2 AitkenAcceleration..................
Newton Methods

2.3.1 QuasiNewtonMethod
2.3.2 Newton-KrylovMethods
2.3.3 Krylov Subspace Methods
2.3.4 Jacobian-free Newton-Krylov Methods . ..
Extrapolation

Elements of Numerical Analysis

3 Co-Simulation

3.1

3.2

Monolithic

3.1.1 BackwardEuler.....................

3.1.2 Generalized-aMethod

313 BDF2

3.1.4 NumericalResults...................

Partitioning Procedure — From Monolithic to Co-

Simulation

3.2.1 Co-Simulation with Coherent Time Integra-
tionSchemes

© oo N

12
14
19
22
24
25
26
28
30

33
35
35
36
38
38

39

43

ix

Contents

5

3.3

3.4
3.5

3.2.2 Co-Simulation with Mixed Time Integration
Schemes

Communication Pattern

3.3.1 Jacobi-Parallel.....................

3.3.2 Gauss-Seidel -Serial

Decomposition

Block Diagram

Interface Jacobian-based Co-Simulation Algorithm

4.1 The Algorithm for two Subsystems
4.2 Generalization of the Concept
4.3 Efficiency Enhancements
4.4 Usability Enhancements - Jacobian Approximation
4.5 Interface Jacobian Extraction
4.6 Stability Considerations
4.6.1 Gauss-Seidel Fixed-Point Iterations
4.6.2 Jacobi Fixed-Point Iterations
4.6.3 InterfaceJacobian-based Co-Simulation Al-
gorithm
4.6.4 Discussion of the Stability Properties
4.7 Examples
4.7.1 Truss versus Truss Problem
4.7.2 AMulti-Code Problem
473 BspK6
4.8 Conclusion
Application Examples
5.1 Turek Benchmark
5.1.1 Co-Simulation
512 Results...........................
5.2 Oscillating Cylinder
5.2.1 CFDWValidation.....................
5.2.2 Forced Oscillation Validation.
5.2.3 Fluid-Structure with Closed-Loop Control .
524 Conclusion........................
5.3 NREL Phase VI Wind Turbine

53.1 Experiment
532 CFDModel........................
533 CSMModel
5.3.4 Handling Deformations & Rotations

46
57
58
59
60
68

69
70
72
76
76
78
80
83
84

85
86
88
88
103
110
117

119
120
120
124
126
126
129
129
135
135
136
138
151
154

Contents

5.3.5 Fluid-Structure Interaction Model 157
5.3.6 Emergency Brake Maneuver 162

5.3.7 Emergency Brake Maneuver with Flexible
Blades 174
6 Conclusion and Outlook 185
A Algebraic Loops 189
B Aspects of Co-Simulation Software Realization 193
Bibliography 197

xi

An investment in knowledge
pays the best interest.

Benjamin Franklin

CHAPTER

INTRODUCTION

“Storm caused wind turbine fire”! this headline news is one which
the manufacturers and designers of wind turbines try to avoid. The
failure or wrong design of a wind turbine shut down mechanism can
have a catastrophic consequence as shown in Figure 1.1.

In order to design for an emergency brake maneuver load case the
consideration of the interaction of all system components with the
wind is critical. In order to avoid failures in the final product the virtual
analysis (simulation) is an indispensable tool. The term simulation
within this work is used for the combination of modeling reality and
the numerical solution of the mathematical model.

In the case where simulation needs to model the interaction of
a various number of technical components with their environment
it usually results in so-called multiphysics simulations. Hence, mul-
tiphysics simulations involve multiple physical models or multiple
concurrent physical phenomena. For instance in order to simulate
the emergency brake maneuver of a wind turbine the interaction of

! http://www.bbc.co.uk/news/uk- 16115139 British Broadcasting Corpo-
ration [21]

http://www.bbc.co.uk/news/uk-16115139

1 Introduction

Figure 1.1: Exploded wind turbine in Ardrossan, North Ayrshire,
Scotland due to high winds and problems with the emergency
shutdown British Broadcasting Corporation [21]

the generator/gearbox, flexible composite blades, control unit and
the three-dimensional flow field is essential.

Multiphysics typically involves solving coupled systems (Defini-
tion 1.1) of partial differential algebraic equations (PDAE).

Definition 1.1: Coupled System

“Coupled systems and formulations are those ap-
plicable to multiple domains and dependent vari-
ables which usually (but not always) describe differ-
ent physical phenomena and in which

(a) neither domain can be solved while separated
from the other;

(b) neither set of dependent variables can be ex-
plicitly eliminated at the differential equation
level.

»a

4 Zienkiewicz [164]

1 Introduction

For the solution of the coupled problem there are two main meth-
ods, namely monolithic and partitioned.

The monolithic approach discretizes the coupled problem as a
whole single system and afterwards solves the resulting equation sys-
tem. On the one hand the advantage of this approach is that this
usually results in a robust and accurate numerical method. On the
other hand a single software package needs to be able to model all
the needed physics. Therefore, it is not possible to reuse any existing
solvers. Furthermore, within the design process of a product the fi-
delity level of the simulation models are increased towards the end as
more refined analysis needs to be preformed as the design of the prod-
uct matures. With the monolithic approach the existing simulation
cannot be reused if the fidelity level needs to be changed.

The partitioning procedure identifies the process of spatial sepa-
ration of the coupled problem into multiple partitioned subsystems
and a set of interface constraints (see also Felippa et al. [49]). The par-
titioned treatment allows that the modeling process can be done for
each subsystem separately. That further implies that well-established
and specialized simulation tools can be (re)used for the different sub-
systems. On top of that the modeling can be done by different experts
at the same time for the individual subsystems. Furthermore, the par-
titioned approach allows different fidelity models to be combined at
all stages of the design process. If the partitioning is done at the PDAEs
level it is called co-simulation (see Definition 3.1). However, these
advantages come for the price of numerical stability and accuracy
issues.

In contrast to the partitioning where the term is linked to the
spatial separation process, the term decomposition is used in this
work for the process of defining the input/output relations for each
individual subsystem.

The introductory example of an emergency brake maneuver of
a wind turbine poses a further complication. Here, the coupling of
fields (see Definition 1.2) and signals (see Definition 1.3) is needed.
Since the discretizations of the composite blades and the flow field
result in fields whereas the generator/gearbox and the control unit
result in subsystems of type signal. Therefore, simulation techniques
are needed in order to cope with field-signal coupling of an arbitrary
number of subsystems.

1 Introduction

Definition 1.2: (Physical) Field

“ A field is a physical quantity that has a value for each point in
space and time. "¢

4 Gribbin [65]

Definition 1.3: Signal

A signal is defined in general as an abstract description of one
varying quantity, where the independent variable in most cases
is time. ¢

@ Frey et al. [54] and Manolakis et al. [99]

The goal of this work is the design of coupling algorithms for ex-
actly this situation where a small number of field subsystems are
coupled to a moderate number of signal subsystems. The developed
algorithm which is called Interface Jacobian-based Co-Simulation
Algorithm (IJCSA) combines the advantages of both monolithic and
co-simulation approaches. It is based on a hybrid idea which pre-
serves modularity and adds stability and accuracy to the classical
co-simulation approaches.

As consumer products are becoming increasingly sophisticated
there are a lot of technical disciplines which are benefiting of such
simulation capabilities. An incomplete list includes

¢ Aerospace

¢ Automotive

¢ Micro-electromechanical systems (MEMS)
* Medical devices

e Structural engineering

The IJCSA is designed for a general situation where very little
knowledge of the individual subsystem is available. Therefore, there
exist tailored algorithms for the coupling of a specific situation that
perform better than the IJCSA. For the classical co-simulation ap-
proach several solution algorithms are proposed in literature. For
the coupling of two simulators there are numerous references, for
instance Degroote [34], Farhat et al. [42], Felippa et al. [48], Gravouil
et al. [64], and Kiittler et al. [89]. The modular co-simulation of surface

1 Introduction

coupled problems which result in field-type subsystems is presented
by Schulte [130].

For the co-simulation of an arbitrary number of signals there is de-
velopment towards a standardized interface (called Functional Mock-
up Interface (FMI)) on the basis of functional mock-up units (FMU)
ongoing. As the FMI standard [53] does not specify coupling algo-
rithms the development of coupling algorithms is left to the imple-
mentors.

Tailored solutions for the co-simulation of multibody dynamics
(signals) and finite element systems (fields) are presented in Busch
et al. [26]. A parallel implementation for signal co-simulation is pre-
sented by Friedrich [56].

The novelty in this work is the design of a general purpose co-
simulation algorithm (IJCSA) for field-signal interaction. The follow-
ing bullet points summarize the properties of the proposed algorithm.

The IJCSA

* allows a general stable treatment of tightly coupled problems

* handles an arbitrary number of subsystems

* can incorporate (non)linear interface constraints at the inter-
face level

* allows a parallel execution of all the subsystems

* maintains the full flexibility and modularity of classical co-sim-
ulation

¢ can handle algebraic loops

This thesis is outlined as follows:

* Chapter 2: Mathematical and Algorithmic Framework
Here the operator notation of co-simulation is introduced. Fur-
thermore, an overview of solution methods for nonlinear equa-
tion systems is given, where Jacobian-based and Jacobian-free
techniques are discussed. Last but not least essential defini-
tions of numerical analysis are given as they are used in the
subsequent chapters.

* Chapter 3: Co-Simulation
This chapter discusses co-simulation. Thereafter, the link be-
tween the monolithic approach and the classical co-simulation
approach is shown. For the co-simulation the effect of the com-
bination of different time integrators is discussed. Moreover,

1 Introduction

different communication patterns are presented (Gauss-Seidel
and Jacobi) and their usability and performance is discussed.
Towards the end of the chapter the impact of the different de-
compositions on the stability is presented. Finally, the block
diagram representation of co-simulation is shown.

* Chapter 4: Interface Jacobian-based Co-Simulation Algorithm
The idea of the IJCSA is presented, usability and performance
enhancements for the IJCSA are shown. Moreover, the extrac-
tion procedure for interface Jacobians is demonstrated. Last but
not least, various benchmark cases are performed and different
versions of IJCSA are compared to the classical co-simulation
algorithms.

e Chapter 5: Application Examples

The performance of the IJCSA for industrially relevant problems
is the center point of this chapter. The first problem is a classical
benchmark for FSI, the so-called FSI3 benchmark proposed by
Turek et al. [148]. Afterwards, a fully coupled fluid-structure-
signal interaction with closed-loop control is shown. Finally,
the emergency brake maneuver of a wind turbine is presented.
Here the interaction of the generator/gearbox, flexible compos-
ite blades, control unit and the three-dimensional flow field is
taken into account. The simulation results are validated against
measurement data from the National Renewable Energy Lab-
oratory (NREL) Unsteady Aerodynamics Experiment Phase VI
performed in the NASA AMES wind tunnel.

* Chapter 6: Conclusion and Outlook
The results of the various studies performed are summarized
and discussed. Moreover,the properties of the IJJCSA are sum-
marized and ideas for future research are proposed.

Any intelligent fool can make
things bigger, more complex,
and more violent. It takes a
touch of genius — and a lot of
courage — to move in the
opposite direction.

Albert Einstein

CHAPTER

MATHEMATICAL AND ALGORITHMIC
FRAMEWORK

The chapter introduces the operator notation used throughout this
work.

As the solution of coupled problems usually necessitates the solu-
tion of a (non)linear interface constraint equation system, an overview
of (non)linear solution methods is given in this chapter. Most meth-
ods for solving nonlinear equation systems can be sorted into two
main categories. The first category is the one, where no derivative
information of the residual is necessary. The second category needs
at least information about the first derivative (Jacobian) of the func-
tion (residual). In the following a few members of each category are
presented with the focus on the applicability to co-simulation.

Last but not least basic elements of numerical analysis are re-
capped as they are needed in Chapters 3 and 4.

2 Mathematical and Algorithmic Framework

2.1 Notation for Co-Simulation of Multiple
Subsystems

The notation is introduced on the basis of the well-known two-field
coupling methodology. It is generalized to a multi-code scenario af-
terwards.

We start with an example where we have two subsystems, each
equipped with one input and one output scalar quantity. Note that
there are various synonyms used for subsystem, e.g. client, code, sim-
ulator, solver, agent.

The input/output relations for the problem are given by

Y =8, (), @.1)
Y, =8,(0y). 2.2)

Each of the subsystems S; (Ul) and S, (Uz) have state (internal) vari-
ables in addition to the output quantities ¥; and Y,. The state variables
are referred to as X; and X,. The subsystems S; (Ul) and S, (UZ) are
assumed to model a (non)linear relation between output Y5 and input
U; quantities, i.e. Sy is in general a nonlinear operator. The coupled
problem is defined by the interface constraint equations

7, (¥, Y%, Uy, Up) =0, (2.3)
(%, %, U, Up) =0. (2.4)
Here 7 is the interface constraint operator which can also be nonlin-
ear in general. Note that the state variables are not needed within the
interface constraint equations. The interface constraint operator is
essential to the co-simulation, as it defines the coupled problem. It

reflects the relations between input and output variables. The output
variables can be replaced by the subsystems. Hence we arrive at

Z (Sl(Ul),Sz(Uz)yUpUz):O, (2.5)
L (81 (U), S (W), U, Us) =0 (2.6)

In order to be able to derive coupling algorithms for multiple sub-
systems a generalized notation is introduced. If an arbitrary number
{r eN|r > 2} of subsystems is present, the output-input relation for
the i-th subsystem is defined as

Y,=S,(U;) i=1,..,r. 2.7)

2.2 Fixed-Point Iteration

Note here the input and output quantities are generalized to vectors.
The interface constraint operator for the i-th subsystem is defined as

(Y, U, j=1,.,1) i=1,..r. 2.8)
Using Equation (2.7) one has

7, (8;(U)), U} j=1,.,r) i=1,..,r. 2.9)
Hence the interface constraint equation system is given by

7,(8;(0;), U, j=1,..,7)=0 i=1,.,r. 2.10)
The residual components of the residual vector are given by

Ri=1;(8;(U;), Uj, j=1,..,r) i=1,..r. @.11)

The global residual vector components R; define the entire co-
simulation and thus the coupled problem. Furthermore, in order to
solve the coupled problem the global interface residual vector

R

1
r=|: 2.12)

R

r

needs to be minimized until a certain convergence criterion is met.
In other words it is a (non)linear root finding problem that needs to
be dealt with. In the next section root finding methods are reviewed.

2.2 Fixed-Point Iteration

The classical fixed-point iteration method belongs to the category
of Jacobian-free methods. They rely on the residual evaluation only.
Hence, a solution of all the subsystems is sufficient. This is a major ad-
vantage in contrast to Newton methods where the Jacobian is needed.
However, this advantage may have the drawback of stability loss. This
is discussed in detail in Chapter 3.

In order to derive the fixed-point iteration method the definition
of a contraction (Definition 2.1) and the Banach fixed-point theorem
(see Theorem 2.1) are a prerequisite.

2 Mathematical and Algorithmic Framework

Definition 2.1: Contraction

Let X be a metric space. Thenamap T : X — X is called a con-
traction (contraction mapping) on X if there exists g €[0, 1] such
that

1T =T <a]lx—y]
Vx,y € X. Note q is called Lipschitz constant (see Schwarz et al.
[132)).
Theorem 2.1: Banach Fixed-Point Theorem

Let (X, ||.]|) be a non-empty complete metric space with a con-
traction T : X — X. Then the equation

x=T(x)

has one solution x*, called fixed-point and the fixed-point itera-
tion

mx=T("x) m=0,1,2,..

converges for any °x € X to x* for m — oo.

In co-simulation the main task is to find the root(s) of the global
interface residual vector equation (see Equation (2.12)). If a classical
fixed-point iteration is deployed to solve the interface residual equa-
tion system the first task is to formulate a fixed-point problem. In
the following it is shown how the root finding problem can be trans-
formed into a fixed-point problem. For the derivation the root finding
problem is defined by the map F : X — X, where X is a metric space.
Hence, the root finding problem is defined as

F(x)=0. (2.13)
Theorem 2.1 defines the fixed-point of T as

x*=T(x*). (2.14)
If we assume that x* is the root of F (x) we have

F(x*)=0. (2.15)

10

2.2 Fixed-Point Iteration

With this assumption Equation (2.14) is equivalent to
x*+F(x*)=T(x*), (2.16)
x*—F(x*)=T(x*). (2.17)

Hence, we can define the fixed-point iteration sequence for the root
finding problem Equation (2.13) as

My ="x+F("x). (2.18)

Furthermore, the error " eg,p can be defined by

*

e =" x—x (2.19)

For the discussion of stability properties it is favorable to rewrite
Equation (2.18) into matrix form. This is only possible as long as F (x)
is a linear map. However, for stability considerations this is a common
assumption. With this we arrive at

My —(IFG)"x £c, (2.20)
where F (x) is assumed to be
F(x)=Gx—c, (2.21)

here G is a linear operator and c is a constant vector which represents
the constant part of T (x). With this, Equation (2.20) can be further
simplified to

mtly =H™x +c. (2.22)

Here ¢ represents the constant part of T (x). H is of special inter-
est if convergence properties of the constructed fixed-point iteration
sequence are analyzed. In particular the spectral radius of H is deter-
mining the stability. The spectral radius is defined by

p (H)=max(|2;1) (2.23)

where A; are the eigenvalues of H. The fixed-point iteration method
converges (see Hanke-Bourgeois [70] and Strang [143]) if

p(H)<1. (2.24)

11

2 Mathematical and Algorithmic Framework

With the help of the spectral radius the convergence rate for Equa-
tion (2.22) can also be determined. The convergence rate k is given
by

k =—log,,(p (H)). (2.25)

This means that the error " ey, (2.19) drops by digits per iteration.

2.2.1 Constant Under-Relaxation

In order to improve the convergence behavior of Equation (2.22) the
relaxation factor {a¢ € R} is introduced. Thus, Equation (2.18) becomes

My ="x+aF("x). (2.26)

Here the possibility of a plus or a minus sign is valid. Equation (2.26)
can be written in matrix form as-well. This leads to

mHx =(I+aG)"x—ac. (2.27)
This can be further simplified to

"x=H"x—ac. (2.28)
The latter equation is similar to Equation (2.22) as for convergence

p (H)=max(|2;]) (2.29)

must hold. Note that Equation (2.27) states the core equation of the
Richardson iterative method, which is discussed in detail in Hanke-
Bourgeois [70] and Richardson [124]. The effect of the relaxation factor,
which is a user input, is discussed in detail in Section 3.4. In general
it is challenging to determine a good relaxation factor value a-priori.
However, for some special cases there is helpful a-priori knowledge
available as shown in the following.

Optimal Relaxation Factor for Scalar Case

The optimal relaxation factor renders
p(H)=0. (2.30)

This will render the correct solution within one iteration.

12

2.2 Fixed-Point Iteration

Unfortunately, it is in general not possible to construct such an
optimal relaxation factor. However, for the special case, where x is a
scalar and G is a linear map it is possible.

In order to derive the optimal relaxation factor @,y we start with
the scalar form of Equation (2.27), which is

mly =(1+aG)"x—ac. (2.31)
For optimal convergence we need

p(H)=0=1+0a0yG. (2.32)
This leads to the optimal relaxation factor

1
Copi == (2.33)

Optimal Relaxation Factor for Vector Case

For the case that x is a vector and G is symmetric and positive-definite
the following expression guarantees an optimal choice of « such that

minp (H). (2.34)
Hence, it is in general not possible to get

p(H)=0. (2.35)
This means we need to minimize

minp (I +aG). (2.36)
If A; are the eigenvalues of G this is equivalent to

min|l+ak;| VA, (2.37)
Furthermore, for guaranteeing convergence we need to have

1+al;|<1 VA, (2.38)

Thus we need to choose « such that

2
0<a<———. (2.39)

max

13

2 Mathematical and Algorithmic Framework

Therefore, in order to minimize Equation (2.37) we have

Qopt = —ﬁ (2.40)
where

Amin =min(2;) (2.41)
and

Ainax = miax(li). (2.42)

The proof for Equation (2.40) is available in Hanke-Bourgeois [70].
Note that Equation (2.40) represents the basic idea of the Chebyshev
iteration method as shown in Gutknecht et al. [67].

2.2.2 Aitken Acceleration

For nonlinear problems (G is no longer linear) it is even harder to
estimate an optimal relaxation factor as the optimal value for the re-
laxation will change during the simulation. Therefore, adaptive tech-
niques were developed to update the relaxation factor during the
iterations. One of the most prominent and for practical applications
most useful methods, is discussed in the following.

The Aitken acceleration method is named after Alexander Aitken
[1]. Ithas been reformulated for an efficient computer implementation
by Irons et al. [80].

The main idea of the method is to assume a linear map 7': X —
X. Furthermore a scalar problem is assumed X € R. For two initial
guesses a,b € X we getd = T(a),b =T (b)< X. Based on these two
points we can compute the solution c of the fixed point problem if
T : X — X is alinear map (see Figure 2.1) and we arrive at

ab—ab
c=——-—=. (2.43)
a—b—a+b

In Figure 2.1 the effect of the assumption, that T (x) is a linear map
is demonstrated. The linearization assumption results in the blue
line. If T'(x) is nonlinear, ¢ will not be the fixed point x*. Hence, more
iterations need to be carried out. As a relaxation factor form of Equa-
tion (2.43) can be integrated smoothly into Equation (2.26) the re-
laxation factor form is derived next. In order to derive the relaxation

14

2.2 Fixed-Point Iteration

>,
A /7
+ /,
a4
W4
7
T(x) ,
/7
S 7
Vs
/
S > \\I/
4 :
Vs
7
/
/
w’ i
a x*c b)x

Figure 2.1: Graphical interpretation of Aitken

factor form of Equation (2.43) an iteration depended relaxation factor
b B is defined by rewriting Equation (2.43) to

c=b+"B(b-D), (2.44)
bp= LﬁN. (2.45)
a—b—a+b
For the first increment the relaxation factor ¢ # needs to be given
b=a+"B(a—a), (2.46)
ag—initg (2.47)

If we combine Equation (2.45) and Equation (2.46) we arrive at a re-
cursive formula for the relaxation factor

b—"b

m. (2.48)

'B=p+("p-1)

The notation from Irons et al. [80] is in the following converted to the
notation used in this work. Equation (2.46) is equivalent to

b=(1-“B)T(a)+“Ba. (2.49)

15

2 Mathematical and Algorithmic Framework

If Equation (2.16) is substituted into Equation (2.46) we arrive at
b=a+(1-"B)F(a). (2.50)

In case that this equation is compared with Equation (2.26) we can
identify

a=1-—p. (2.51)
Thus Equation (2.49) can be written as

'”“x:’”x—k\mg/(T(mx)—mx). (2.52)
(1-8)

Furthermore, we can reformulate Equation (2.48) to

" - T (m—lx)_ m—lx
a=""a . (2.53)
(T(m—lx)—m—lx)+(mx— T(mx) t)

For T (x)= x + F (x) Equation (2.52) reads
My ="x+"aF ("x), (2.54)
and Equation (2.53) reads

Mo =m-1 F("x) 2.55
a= aF(m—lx)—F(W'x)' (2.55)

Equation (2.55) represents an iteration dependent relaxation factor
which is depending on previous and current evaluation of F (x) only.
Hence Equations (2.54) and (2.55) represent a convenient form for
implementation.

However, there is one problem left in the case where X € R” for
n > 1, the division in Equation (2.55) is not possible. Therefore dif-
ferent versions of the Aitken A? method exist for the vector case. A
comparison can be found in Macleod [97]. Within Macleod [97] the
Aitken acceleration method is defined by

, (xi+2_xi+1)2

X\ 0= Xjt0— . (2.56)
2T X —2xi X

1+

16

2.2 Fixed-Point Iteration

In order to compare the work of Macleod [97] with the one of Irons
et al. [80] it is necessary to know how x;, X;,1, X1, x;ﬂ of Macleod

[97] are connected to a, b, ﬁ,%, ¢ of Irons et al. [80]. With

X;=a,
Xit1=4a,
Xit1 = br
Xi2=D,

/

Xiv2 =€

the notation used in Macleod [97] can be transformed to the one
used in Irons et al. [80]. Thus Equation (2.56) can be converted to
Equation (2.43).

One of the most prominent methods for the vector case (see Kiittler
et al. [89]) is the multiplication by the denominator of Equation (2.53)
which results in

mey —

(T ("Hx)— "Hx)T ((T ("Hx)— "Hx) + (’”x - T('"x)))

m—1
a 2

H(T (m-1x)— mflx) + (mx -T (mx))

(2.57)

For a two code Gauss-Seidel communication pattern (see Section
3.3) the Aitken method is given in Algorithm 2.1. This version of the
algorithm is also used in the context of fluid-structure interaction (see
Kiittler et al. [89]).

The Aitken method works well for cases where the global residual
vector holds degrees of freedom which represent the same physical
quantity (e.g. displacements for fluid-structure interaction as pre-
sented in Kiittler et al. [89]). One advantage of the Aitken method is
that it is simple to implement and produces little computational effort
at the interface even if the global residual vector has a large number of
entries. However, the convergence rate of the Aitken method is linear
(proof available in Henrici [72, p. 71]) it converges significantly faster
than the constant under-relaxation method as shown by Kiittler et al.
[89]. Figure 2.1 illustrates that the Aitken method will give the correct
result after the second iteration if the problem is linear.

17

2 Mathematical and Algorithmic Framework

Algorithm 2.1: Aitken algorithm for a 2-code example with GS-pattern

// Time loop

1 for n =0 ton=ng,y do
// Iteration loop

2 for m =0 to m = mg,q do

// Solve all subsystems (sequential)
+1 _

3 myl =8, (muy)
+1 +1

|| s iy

// Compute and check residual

mR;z mUIn_mYZnJrl =0

5 mrn = =
mayn myyn _myn+l
R} U, Y,
6 if | r"||. < € then
7 | break
8 if m =0 then
9 L 0" = inityn
10 else
// For a scalar residual
myn m—1yn WHR;
11 a” = a PTRI—RE
// For a vector residual
— T —
b mg = m1 gn " RE ("R RY)

|| Ry—m Ry

// Apply update
m+lyyn —mjyyn . mpyn m n
13 uy=""0'+"a R,

// Initial solution for next time step

u | Ut =g(medtlyf k=0,..,n)

One of the severe disadvantages for multi-code coupling of the
Aitken method is, that it has problems delivering a converged solution
if the entries in the global residual vector are stemming from differ-
ent physical quantities (e.g. forces and displacements) as shown by
Sicklinger et al. [134].

18

2.3 Newton Methods

2.3 Newton Methods

In this section a few variants of the famous Newton method are pre-
sented. Newton methods need in contrast to the classical fixed-point
iteration method information of the first derivative of F (x). The itera-
tion sequence of the Newton method is given by

mix="x—g(F("x)] F("x), (2.58)

where 7 (F (x)) is the first derivative of F (x). Equation (2.58) can be
reformulated to

J(F("x))"Ax=—F("x), (2.59)
with
MAx=""tx "My, (2.60)

The ordinary Newton method is summarized in algorithmic form in
Algorithm 2.2. If Equation (2.58) is compared to the Banach fixed-
point theorem (see Theorem 2.1) it is evident that the Newton method
is also within the family of fixed pointiterations method. If T is defined
as

-1

T("x)="x-7J(F("x)) F("x), 2.61)

the Newton method can be written as
My =T("x). (2.62)

One could ask the question why to use Newton methods as the
Jacobian information makes the method more bulky. There are mainly
two arguments to use the Newton method. The most important one is
the advantage in terms of stability (see Chapter 3). The second one is a
higher convergence rate. If ° x is sufficiently close to x* it is possible to
show (proof available in Deuflhard [36, p. 49]), that the error is reduced
with a quadratic convergence rate. This means that

et e <p e 26)

is true. Here p is some constant.

19

2 Mathematical and Algorithmic Framework

Algorithm 2.2: Ordinary Newton method for vector case

// Initialize
1 Oy = inity
// Iteration loop

2 for m =0 to m = mgpq do
// Evaluate and check residual

3 Mp=F(M"x)
4 if || r||. < € then
5 | break

// Evaluate Jacobian
6 | "I=J(F("x))

// Solve for corrector
7 myjy.mAx =—"r

// Apply update

8 | Mlx="x+MAx

A similar theorem holds for the convergence rate of the residuals
(see Deuflhard [36, p. 77])

2

HF(’"“x)“ gﬁHF(’"x) (2.64)

Intuitively it means that the number of correct digits at least doubles
for every iteration.

A few variants of Newton methods with respect to applications to
co-simulation should be discussed in following. The following defini-
tions are an excerpt of Deuflhard [36] which is an excellent reference
for Newton methods.

¢ Ordinary Newton method
The basic Newton method according to Equation (2.59) which
shows a quadratic convergence rate.

¢ Simplified or Modified Newton method
The initial derivative is kept throughout the iterations. This re-
sults in a general linear convergence rate.

¢ Newton-like method
The finite dimensional Jacobian is replaced by some approxi-

20

2.3 Newton Methods

mation of the Jacobian. This generally results in a linear conver-
gence rate and might render a smaller convergence radius.

* Exact Newton method
The resulting linear equation system is solved in a numerically
exact manner i.e. by using a direct solver and proper scaling.

* Inexact Newton method
The resulting linear equation system is not solved in a numer-
ically exact manner. This maybe due to the use of an iterative
solver.

e Secant method
For scalar problems the tangent (Jacobian) is replaced by the
secant. It works very well for scalar problems where the Jacobian
is difficult to compute and it shows a superlinear convergence
rate.

¢ Quasi-Newton method
Extends the secant method to finite dimensions (Jacobian rank
update)

With these definitions the classical fixed-point iteration methods
(see Section 2.2) can be seen as a subclass of the Newton method.
They belong in the category of Newton-like methods.

If the Jacobian is replaced by some approximation it harms in
general the convergence rate. For most cases this results in a linear
convergence rate.

Example 2.1 should be used to illustrate the difference between
quadratic, superlinear and linear convergence rate. Within Example
2.1 the ordinary, the quasi Newton and the modified Newton method
are compared.

Example 2.1: Newton Example

The following example should demonstrate the convergence behaviors of different variants of the Newton
method. The residual vector of the example is given by

F(x1,%)= [ZZ((Z)):Z?;EX;} . (2.65)

The Jacobian of the residual vector is a two by two matrix and is given by

21

2 Mathematical and Algorithmic Framework

7(Fne)- [cos(x1)

—sin(xl)

—cos(xz)

sin(xz)})

The convergence criteria is set to ||'" r|| <1-1075 for all cases.
The results for the ordinary Newton method can be found in Table 2.1. The results are aligned with theory
and show a quadratic convergence rate.
If the initial Jacobian is kept constant throughout the iterations the convergence rate drops from quadratic
to linear (see Table 2.2). The linear convergence rate can be improved by using a quasi Newton method to
superlinear (see Table 2.3 and Table 2.4).

(2.66)

Table 2.1: Behavior of the ordinary Newton method for Example
2.1
iteration ||F(’"x)|| ||'"Ax|| ™ epp
1.4142135623730951 1.4142135623730951 0.3034928278335036

W —=o

0.4259168303185923
0.0067125111144309
0.000000025204 507 2

0.3082392988724014
0.0047464888611759
0.0000000178222780

0.0047464710388979
0.0000000178222780
0.0000000000000002

2.3.1 Quasi Newton Method

The convergence rate of the modified Newton method can be im-
proved to superlinear by using the famous Broyden’s 'good’ rank-1
update as shown by Broyden et al. [23]. This algorithm can be found
in an implementation-friendly form in Deuflhard [36, p. 62]. The algo-
rithm is based on the idea of the secant method, where the Jacobian

is approximated by
"JmAx =F (" x)—F("x). (2.67)

m=.
Here ' J is the secant approximation of the Jacobian in iteration m.
Broyden et al. [23] transferred this idea from the scalar case the multi-
dimensional vector case by using the following update rule:

F(mx)—F(™'x)— ML Eml Ay

"T="" . mIAxT (2.68)
[~ Ax]
Similar to Equation (2.58) we need to solve
mily=myx"J1F("x), (2.69)

22

2.3 Newton Methods

Table 2.2: Behavior of the modified Newton method for Example

2.1
iteration ||F(’”x)H [I™x Al ™M enp
0 1.4142135623730951 1.4142135623730951 0.3034928278335036
1 0.4259168303185923 0.4259168303185923 0.1224240024850888
2 0.1729175269566564 0.1729175269566564 0.0504935244715677
3 0.0713934561574834 0.0713934561574834 0.0208999316859157
4 0.0295558909634516 0.0295558909634516 0.0086559592775359
5 0.0122412985730548 0.0122412985730548 0.0035853392955189
6 0.0050704300258744 0.0050704300258744 0.0014850907303555
7 0.0021002350662185 0.0021002350662185 0.000615144 3358630
8 0.0008699454351620 0.0008699454351620 0.0002548010992990
9 0.0003603431683866 0.0003603431683866 0.0001055420690876
10 0.0001492590253660 0.0001492590253660 0.0000437169562785
11 0.0000618251124648 0.0000618251124648 0.0000181081561863
12 0.0000256088000676 0.0000256088000676 0.0000075006438813
13 0.0000106075123034 0.0000106075123034 0.0000031068684221
14 0.0000043937754590 0.0000043937754590 0.0000012869070369
15 0.0000018199613850 0.0000018199613850 0.0000005330543481
16 0.0000007538526886 0.0000007538526886 0.0000002207983405
Table 2.3: Behavior of the quasi Newton method (Broyden’s rank
1 update) for Example 2.1 where °J =°7
iteration ||F [”’x)H ||'"Ax|| M onp
0 1.4142135623730951 1.4142135623730951 0.3034928278335036
1 0.4259168303185923 0.3273340629945428 0.0238412351610392
2 0.0337150010756715 0.0240106701324139 0.0001694349713746
3 0.0002396172338851 0.0001694429402329 0.0000000079688583
4 0.0000000112696676 0.0000000079688584 0.0000000000000002

in order to proceed to the next Newton iteration. Hence, Broyden
et al. [23] further suggested to use the Sherman-Morrison formula

23

2 Mathematical and Algorithmic Framework

Table 2.4: Behavior of the quasi Newton method (Broyden’s rank
1 update) for Example 2.1 where °J = I
iteration ||F(”‘x)|| ||”’Ax|| " efixp

NOoO G WwN = O

1.4142135623730951 1.4142135623730951 3.3679193005322525
1.4142135623730951 3.0763990779719688 1.3885279516650408
1.0036489262526811 0.9861735635978887 0.9363766796367083
1.2049665497942681 1.2708935391401748 0.3441123687795715

0.4810202555487200
0.0029567819957473
0.0000076062051413
0.0000000005383695

0.3462111561982265
0.0021054124889697
0.0000054024077045
0.0000000003823569

0.0021000104639128
0.0000054020253477
0.0000000003823570
0.0000000000000010

(see Strang [143]) to directly update the inverse of the Jacobian ap-
proximation " J~1, which results in

m=lAx — m_lf‘l (F ("x)—F (m_lx))

m=1 A xT" J-1 (F (mx)—F (m—lx))

ms~_1 m—ls_
] =

(m—leT'"‘li‘—l). 2.70)

A comprehensive presentation of Broyden’s 'good’ rank-1 update is
given in Algorithm 2.3.

The performance of Algorithm 2.3 is demonstrated with the help of
Example 2.1 in Table 2.3 and Table 2.4. Furthermore it is demonstrated
that the influence of the initial choice of the global interface Jacobian
can have a significant impact on the convergence. For a correct initial
Jacobian ° J =°J Example 2.1 needs 5 iterations for convergence (see
Table 2.3). Whereas if the initial Jacobian is set to be the identity matrix
0J = I Example 2.1 needs 8 iterations for convergence (see Table 2.4).

2.3.2 Newton-Krylov Methods

If the Newton method is combined with a Krylov subspace method for
the solution of the linear equation system this is called Newton-Krylov
method. Because of the usage of an iterative Krylov linear equation
solver Newton-Krylov methods are also in the category of inexact
Newton methods. If Quasi-Newton methods or Newton-like methods
are combined with Krylov subspace methods it is possible to design

24

2.3 Newton Methods

Algorithm 2.3: Broyden’s 'good’ rank-1 update

// Initialize
1 Ox = inity
2 0] — 1n1t]
// Iteration loop

3 for m =0 to m = mgpq do
// Evaluate and check residual

4 Mp=F(Mx)
5 if | r||. < € then
6 L break

// Rank-1 update of approximative Jacobian

7 if m # 0 then

. L mj':mflj'_{_mr_m_lr_m_llm_le
Im=1 Ax|?

// Solve for corrector

9 my.mpax =—mr

// Apply update

10 | "Mlyx="x4+MAx

mfleT

Jacobian-free Newton-Krylov (JFNK) methods (see Brown et al. [22]).
For further information and a good overview of different techniques
the reader is referred to Knoll et al. [88]. Despite of this excellent refer-
ence a short introduction to JFNK is given in the following.

2.3.3 Krylov Subspace Methods

Krylov subspace methods are iterative solution methods for large
linear systems. They were introduced as iterative methods by Reid
etal.[121].

These methods are generalized projection methods according to
Saad [127] for solving Ax = b, where A € R™", x e R"” and b € R".
They are using the jth Krylov subspace

IC;(Aoa)=span{,a, Aja, A%a,...,A"ca}, (2.71)

where ya = b — Ayx is the initial linear residual for some given (x.
This idea forms the whole family of Krylov subspace methods, which
includes for instance conjugate gradients, Arnoldi method, Lanczos

25

2 Mathematical and Algorithmic Framework

method and the generalized minimal residual method (GMRES). The
GMRES method is especially interesting as it can be used to solve large
sparse nonsymmetric linear equation systems. For illustration pur-
poses the GMRES algorithm is given in Algorithm 2.4. Please note that
only the GMRES iteration index is denoted for an improved readability.

2.3.4 Jacobian-free Newton-Krylov Methods

The central idea of JENK methods is to use a Krylov subspace method
to solve the linear Equation System (2.58) which needs to be solved
in every Newton iteration m of the ordinary Newton method. For
instance if the GMRES method is used as linear solution methods, the
kth GMRES iteration will minimize ” ka| ,» Where

va=="r-"J.'Ax, (2.72)

in a least-squares sense (see also Knoll et al. [88]). The key feature to
construct a matrix-free methods is that GMRES requires the action of
the Jacobian only in the form of matrix-vector products, which may
be approximated by

J(Fw) v~) (2.73)

according to Brown et al. [22], where € € R is a small number. Hence
we can now formulate a basic version of the JFNK method in Algo-
rithm 2.5. The GMRES algorithm is here indicated via a function call.
A good reference for the implementation of a GMRES algorithm is
pretested by Ayachour [7]. The behavior of the JFNK methods pre-
sented in Algorithm 2.5 is demonstrated with the help of Example 2.1
in Table 2.5. Please note that for each Newton iteration two GMRES
iterations were performed.

The JFNK method shows a very good performance for the simple
Example 2.1. For bigger problems preconditioning is required in order
to achieve convergence (see Knoll et al. [88]). For very ill-conditioned
problems it can be a very difficult task to find a good preconditioner
(see for instance Benzi et al. [17]). The applicability of JENK methods
for the solution of simple elliptic coupled problems is discussed in
Kerkhoven et al. [87]. Here it is found that if the clustering of the
eigenvalues of the global interface Jacobian is at 1 preconditioning of

26

2.3 Newton Methods

Algorithm 2.4: GMRES method according to Hanke-Bourgeois [70]

w N

10
11
12

13

14
15
16
17

18
19
20
21

22

23
24
25

26
27

// Initialize
ay=—r—]- Ax,
do =laoll2
vy = %/d,

// GMRES Iteration loop
fork=1tok = k,q do

// Use Equation (2.73)
Zrm=Jvop~ (F('"x+6vk)fF('”x))/6

// Arnoldi process
fori=1toi=kdo

L i =v] z1
Zp41 =Zgs1 — ik V;

w =1zl
// Apply old Givens rotations on Iy

fori=1toi=k—1do
h=cihi+sihik
hizix ==Sihi+ il k
hik = E
// Determine new Givens rotation
if w < |hiy| then

U = W/l
Cr = Mk | el /1447
| Sk = tf\/1+2
else
[‘k = hkk/w

C = 1/ T3 E
sk =11+
// Apply Givens rotation
Wi = g + S w
// Complement d to a vector decRK'!

dp=—sdi_; // |di| corresponds to |lal,
dy—y = crdi—
if |d,| < € then

// Trivial solve as H is an upper Hessenberg

Hy,=d
Axp = Axy+ kak // VA-:[l!I,...,U,(]
break

27

2 Mathematical and Algorithmic Framework

Algorithm 2.5: Basic Jacobian-free Newton-Krylov method

// Initialize
1 Oy = inity
// Iteration loop

2 for m =0 to m = mgpq do
// Evaluate and check residual

3 Mp=F(M"x)

4 if || r||. < € then
5 | break
// Use Algorithm 2.4 and Equation (2.73) for
corrector

6 "™ Ax = GMRES("x,—"r)
// Apply update

7 | MHlx="x+MAx
Table 2.5: Behavior of the JENK method for Example 2.1
iteration ||F("’x)|| ||"’Ax|| " efixp
1.4142135623730951 1.4142135567740073 0.3034928222344159

[SSI SR)

0.4259168225819227
0.0067125092788733
0.0000000251897958

0.3082392919753713
0.004 7464875528316
0.0000000180575680

0.0047464697409562
0.0000000178118777
0.0000000029776933

the GMRES method is not required for convergence. However this is
rarely the case for general co-simulation scenarios.

This is the main reason why JFNK methods are difficult to use in
general co-simulation scenarios, where the details of each subsystem
might not be known nor accessible. Nevertheless as also illustrated
by Example 2.1 and Table 2.5, the JENK methods can be a very good
choice for special kinds of co-simulation for instance fluid-structure
interaction or structure-structure interaction.

2.4 Extrapolation

So far methods have been discussed which allow the solution of the
interface constraint equation within the iteration loop. An open ques-

28

2.4 Extrapolation

tion is still how the solution of the converged time step can be ex-
trapolated to the next one. This is accomplished with the help of the
extrapolation operator £ (e.g. last line of Algorithm 2.1). This operator
takes as input an arbitrary number of previous converged time steps
of the inputs and extrapolates in time the next input ° Ul."“.

For practical applications the use of previous converged time steps
israther small (r < 3). The simplest case of extrapolation is zero-order
hold (ZOH), where the previous converged time step is taken as start
solution for the next time step.

0 Uin+1 — €ZOH (mcnd+1 Uin) — Meng+1 Uin (2.74)

A good compromise between storage requirements and approxima-
tion error is first-order hold (FOH). Within this method a linear ex-
trapolator is build-up by using two previous converged time steps.
This reads

Ogyn+1 _ Meng+1 yrn—1 Mepg+1lyyn) —
U™ = Epoy (Mt g e g) =

1 1 t n+l __ t n—1) 1)
Meng+ n— Mend+ . __ Mengt n—
L/ tn—tn-1 (" o). @)
If a constant time step is used throughout the entire simulation the
equation above is reduced to

Oyyn+l _ Menda+1 yrn—1 Mepg+1 n)_
Ui - SFOH (Ui ’ Ui -

2 Menatl Uin — Mena+1 Uinil. (2.76)

Besides the two presented extrapolators there are a lot of different
ones available in the literature. They are mostly all tuned towards the
use between two subsystems, where the subsystems are limited to a
special choice of time integrators. Even though they are not applicable
for general co-simulation scenarios they can perform very well for
the special case they are designed for.

Some prominent loosely coupled fluid-structure interaction al-
gorithms which exploit the knowledge of the time integrators can
be found in Farhat et al. [44], Felippa et al. [49], Felippa et al. [51],
and Piperno et al. [114, 115]. Loosely coupled means that one does
not iterate within the time step (m.,q = 0). Note that the operator £
is sometimes also called predictor, this is especially true within the
design of loosely coupled partitioned algorithms. In this work the

29

2 Mathematical and Algorithmic Framework

term extrapolator is used for the predicted input variables of a new
time step. The term predictor is used for predicted new input values
when a new interface iteration is started. Moreover, as the scope of
this work is the design of general co-simulation algorithms, the de-
sign of extrapolators which are geared towards a specific choice of
subsystem integrators or towards a specific number of subsystems is
not the focus of this work.

2.5 FElements of Numerical Analysis

At the end of this chapter a few basic definitions of numerical analysis
should be recapped as they are essential to the following chapters.

When algorithms are implemented in software and executed on
a central processing unit (CPU) it is important to realize that these
CPUs usually work with floating-point arithmetic. This means that
the rational numbers R are approximated by numbers with a finite
amount of digits. This has the consequence that during the calcu-
lation a round-off error needs to be taken into account. A further
complication with finite precision is that multiplication and addition
are no longer necessarily associative. There is an excellent overview
paper by Goldberg [63] which shows the implications of floating-point
arithmetic. Further references on the analysis of round-off error prop-
agation are presented by Henrici [72, 73] and Wilkinson [155]. The
reader is referred to these references as the round-off error analysis is
beyond the scope of this work.

If algorithms are analyzed consistency is one basic property. Con-
sistency can be associated with the local error of the numerical meth-
od (see Definition 2.2).

Definition 2.2: Consistency

Let (5 (x"“) be the numerical solution at time step n + 1 for the
case, Where the numerical method was started from the exact

value ¢ (x") at time step n. The local error of the method can be
defined by
110;:’; H¢tn+l tn+1 (2‘77)

30

2.5 Elements of Numerical Analysis

The numerical method is called consistent if

=0, (2.78)
where F is the time step size.

Consistency is a necessary but not sufficient condition for conver-
gence. For convergence a method needs to be consistent and stable.
Hence, stability and the closely linked condition are defined next.

Definition 2.3: Stability and Condition
Let F : R" — R™ be the problem which depends on x and F
should be the numerical algorithm which approximates the prob-

lem. X is the disturbed input data.
In order to estimate the error we can use the triangle inequality:

||F(x) F(x H HF(x)||+||F(f)—ﬁ(3c‘)”. (2.79)

condition stability

Note that condition is a property of the problem itself and stabil-
ity is a property of the algorithm.

A consequence of consistency and stability is convergence. It is
linked to the global error of the numerical method and is therefore
very important in accuracy analysis as noted by Felippa et al. [49].

Definition 2.4: Convergence

A numerical method is said to be convergent if the numerical
solution ¢ approaches the exact solution ¢ as the step size &
goes to zero.

Convergence can also be defined by using the global error. For
the global error

egtl;¥ — qgtn+1 _¢tn+l , (2_80)
if the following relation holds
ehor|[—0 for h—0, (2.81)

31

2 Mathematical and Algorithmic Framework

the method is converging.
The method is said to have an accuracy of order m if

egqu =0(h™), (2.82)

at a specific time step n.
The last definition within this chapter introduces an error norm
for the global interface residuals vector. In this case it is favorable to
normalize the residual by the number of DOFs in order to get residual

numbers which have the same physical meaning as demonstrated in
Kiittler et al. [89]. Let ¢ € R” then we define

1
le].=—7ll. (2.8

32

I think there’s a world market
for about five computers.

Thomas Watson

CHAPTER

CO-SIMULATION

This chapter focuses on co-simulation. As a first step it is shown how
the co-simulation model can be derived from the monolithic problem.
Afterwards aspects of co-simulation like decomposition, communica-
tion patterns and block diagrams are discussed.

These discussion points provide the necessary background to
derive the Interface Jacobian-based Co-Simulation Algorithm (IJCSA)
introduced by Sicklinger et al. [134] in Chapter 4. The IJCSA is designed
for robust co-simulation with an arbitrary number of subsystems.

Definition 3.1: Co-Simulation

In co-simulation the different subsystems which form a coupled
problem are modeled and simulated in a segregated manner.
Hence, the modeling is done on the subsystem level without
having the coupled problem in mind. Furthermore, the coupled
simulation is carried out by running the subsystems in a black-
box manner. During the simulation the subsystems will exchange
data.

33

3 Co-Simulation

Before the transition from monolithic to co-simulation is dis-
cussed, co-simulation should be defined. The Definition 3.1 used
within this work is close to the one of Geimer et al. [59].

In order to discuss the properties of co-simulation a linear model
is used. This procedure is done in a lot of disciplines, where some
prominent references are presented by Busch et al. [27], Causin et
al. [28], Dettmer et al. [35], Felippa et al. [51], and Strang [143]. Even

%) W
—

AR AN

d, mg

interface

domain 1 domain 2

Figure 3.1: Monolithic/co-simulation test problem

though the used linear model (see Figure 3.1) is motivated from struc-
tural mechanics the properties can be carried over to fluid-structure
interaction (see also Dettmer et al. [35]) as well as domain 2 can be
seen as an idealization of a fluid model. The model problem is an
initial value problem (see also Table 3.1).

The model problem (Figure 3.1) has 3 DOFs for the monolithic
case and 4 DOFs for the co-simulation case. Hence, subsystem 1 and
subsystem 2 have each one input, one output and one state variable.
Therefore, the model problem is used to show the accuracy behavior
of the state and the interface variables for different combinations of
time integrators. Before the co-simulation is analyzed the accuracy
properties for the monolithic system are shown for different time
integrators. In order to keep the discussion more general first and
second order single and multi-step time integrators are used. All the
presented time integrators are in the class of linear multistep methods
(LMS) according to Felippa et al. [49)].

34

3.1 Monolithic

3.1 Monolithic

The following linear system of ODEs describes the model problem
shown in (Figure 3.1).

d k k
i+ — i+ —u+—(u—v)=0

ny ny ny
d k

b+ —(0—)+—(v—u)=0 3.1)
ny nmy

d k.
W+ —=(W—0)+—w=0
mg mg
Note that there is one second order ODE per DOE In order to apply a
numerical time integration procedure, Equation Set (3.1) isrearranged
in matrix form.

M é D é
ki+k —k 0| |u| o
—k, kk o||lv|=0o] B2
0 0 k| |w 0
K ¢ f

Equation (3.2) represents the monolithic continuous form of the
model problem. In order to solve the continuous problem different
numerical time integrators are used in the following.

3.1.1 Backward Euler

The most basic implicit time integrator is backward Euler (BE). The
backward Euler time integrator is also called implicit Euler or first

35

3 Co-Simulation

order backward (_ﬁfferentiation formula (BDF1). The BE operator is
given for ¢ and ¢
¢n+l ¢Vl+h¢ﬂ+l (3'3)
¢n+l ¢ + h¢n+1 (34)

where £ is the time step. Rewriting these equations renders an ap-
proximation for the velocity, namely

'n+1_l n+l_ 4n
o = (9""—9"), (3.5)

and one for the acceleration

¢n+1:ﬁ(¢n+l_2¢n+¢n_l)- (3.6)

With these two approximations the BE time discretized ODE System
(3.2) can be written as

1 1
- M _D+K }’H—l

2 1 1
—M+-D|¢"—| =M |¢p" ' +hf"". (3.7
nelale [l o
The initial conditions ¢ ™ and ¢™ can be set for the BE method with
the following equations:

¢O — ¢init (3.8)
¢—1 ¢1mt h¢m1t (3‘9)

3.1.2 Generalized-a Method

The generalized-a method is a very prominent method in structural
dynamics, which was introduced by Chung et al. [31]. It is a second or-
der accurate single step method with four user parameters. By setting
different values for the four user parameters a,,, s, 3,7 the General-
ized-a method can be transformed into various time integrators (e.g.
trapezoidal rule, Newmark method, Hilber-Hughes-Taylor method
presented by Hilber et al. [75] and more).

36

3.1 Monolithic

The following approximations are used for the velocity and the
acceleration:

¢n+1:¢n+h(y$n+l+(l_,},)q§") (3.10)
- _L - _L n_i'" _i n
¢ 1_h2ﬂ¢ ' hz/j¢ hp +(1 2ﬁ)¢ G-11

With these approximations the generalized-a time discretized ODE
System (3.2) can be written as

1 [24%) Y agy n+l _
() R) LA
1 an . 1 m \ :n 1 oy -
M((W‘W)"’ (=i)"+ 55 1)9)
RN A PPIN G P
D((hﬂ hﬁ)¢ *(/5 ' ﬂ)¢+
hy ashy \ .

(ﬁ +afh—h—W)¢")—K(af¢”)+f"+l_af. (3.12)

The following parameter values are used for the subsequent discus-
sions:

an=0.5
a;=0.5
B =0.25
ry=0.5

These values result in a second order accurate, unconditionally stable
scheme with minimal numerical dissipation. The initial conditions
¢™t and @™ can be set for the generalized-a method as shown by
Chung et al. [31] with the following equations:

¢0 — ¢il’1it (3.13)
¢° = pinit (3.14)
¢°=M"'(f"—D¢°—K¢°) (3.15)

37

3 Co-Simulation

3.1.3 BDE2

The second order Backward Differentiation Formula (BDF2) method
is a two step second order accurate method. More details of the Back-
ward Differentiation Formula can for instance be found in Ascher et al.
[5]. The BDF2 operator for approximating the velocity is given by

. 1(3 1

n+l _ ~ | © n+1_2 n_ — pn—l , 3.16

¢ h(2¢ 9" +50 (3.16)
and for the acceleration by

. 1(9 11 1

¢n+1=ﬁ(z¢n+l_6¢n+?¢n1_2¢n2+z¢n3) (317)

If the method is applied to the second order ODE System (3.2) the
following linear equation system is obtained:

9 3
—M+-—D+K |¢"" =
[t 550 K)o
11

2 1
n—1 n—2 n—3
2h2¢ +E¢ __¢)+

6
M| —¢"—
(h2¢ 4h?

E n_i n—1 n+l
D(hqb 2h¢)+f (3.18)

Setting the initial conditions ¢ ™™ and ¢ ™ for the second order Back-
ward Differentiation Formula is more complicated. In order to get
the method started values for ¢ 2, ¢ 2, ¢ ' and ¢° are needed. This
can be accomplished by running the BE method for the first two time
steps and afterwards switching to BDF2. However, for initial value
problems this will lower the order of accuracy. Another possibility is
to use the generalized-a method to get the BDF2 method started. This
conserves the second order of accuracy of the BDF2 method.

3.1.4 Numerical Results

For the presented three time integrators the accuracy order is plotted
in Figure 3.2 for the model problem presented in Figure 3.1. Clearly,
the numerical examples match the theoretical expectations. The BE
method shows a first order of accuracy for displacements. Whereas
the other two methods show a second order of accuracy.

38

3.2 Partitioning Procedure — From Monolithic to Co-Simulation

1E+06
1E+04

_ 1EB+02

g

25 1E+00

Nbl}

S

£ 1E-02

5]

o

Z 1E-04

=}

2

<

1E-06

1E-08

1E-10 L i i j
1E-07 1E-05 1E-03 1E-01 1E+01

Time step size h (s)

Figure 3.2: Absolute global error (2.80) of the displacements
over time step size h

For the system parameter in Table 3.1 the results for displacements
u, v, w can be found in Figure 3.3.

Note that the reference solution for the test problem was obtained
by using Richardson extrapolation.

3.2 Partitioning Procedure - From Monolithic to
Co-Simulation

Within this section the transition process from the monolithic prob-
lem to the co-simulation is illustrated and investigated. Co-Simulation
implies so-called differential partitioning according to Felippa et al.
[49] of the monolithic system. Hence the differential equation system
is partitioned. In contrast to the differential partitioning there is also
the so-called algebraic partitioning according to Felippa et al. [49],
where the monolithic differential equation system is first discretized
and afterwards partitioned.

The maximum flexibility is obtained by using the differential par-
titioning approach or in other words co-simulation (Definition 3.1).

39

3 Co-Simulation

Displacement (m)

40

0 0.2 0.4 1
Time 1 (s)
Figure 3.3: Solution over time

Table 3.1: System parameters for the model problem
Property Symbol Value Unit
Mass my 0.1 kg
Mass my 0.2 kg
Mass ms 0.3 kg
Damping coefficient dy 0.1 N/s
Damping coefficient dy 0.5 N/s
Spring stiffness ky 1.0 N/m
Spring stiffness k> 2.0 N/m
Spring stiffness k3 3.0 N/m
Initial displacement yinit 1.0 m
Initial velocity gyinit 0.0 m/s

3.2 Partitioning Procedure — From Monolithic to Co-Simulation

The notation introduced in Section 2.1 will be used to describe the
differential partitioned ODE system. Hence, the first step is to partition
the monolithic second order ODE System (3.1) into two domains.

For the first domain we get

mlul+d1u1+k1u1+k2(u1—l’1)=0, (3.19)
my i + kz(Vl - Ul) =fi. (3.20)

The equations for the first domain can be rearranged in matrix nota-
tion. This renders

m 0 ||| |4 of |y
+ +
0 m| | 0 of|n

= . (3.21)
—k, k, %1 f
For the second domain we get

dy (10— 10y) = f5, 3.22)
m3d)2+d2(w2—l72)+k3w2=0, (323)

and in matrix notation we have

0 0 1./.2 dz _dz l./z
+ +
0 0 v

2| |2 (3.24)

0 k| |w, 0

If the partitioned Equation Sets (3.21) and (3.24) are compared to the
monolithic Equation Set (3.2) it is evident that some terms vanish due
to the partitioning. This information loss needs to be compensated
by an appropriate set of interface constraint equations.

Hence as a next step a complete set of equation is established
which describes the monolithic problem in a co-simulation sense.
Note that in this case the monolithic ODE system will be reformulated

41

3 Co-Simulation

in a set of differential algebraic equations (DAEs). This is also the case
in fluid-structure interaction. Here the reader is referred to Dorfel [38]
and Dorfel et al. [39].
The general notation for this problem with two subsystems is given
by
Y, =8 (Uh), (3.25)
Y =38, (). (3.26)

By using the information of the partitioned Equation Sets (3.21) and
(3.24) we can rewrite the general notation to

n=5(f), (3.27)
n=5(f), (3.28)
where v; and 1, are the interface displacements for domain 1 and do-
main 2. In order to retain the coupled problem the interface constraint
equations need to be added. In general form they read
) (3.29)
. (3.30)

7, (%, %, Uy, Uy) =0
(%, %, Uy, Uy)=0

Again the general notation applied to the partitioned Equation Sets
(3.21) and (3.24) reads

L(fifh)=fi+£ =0, 3.31)
(v, v)=v1—v,=8(f)-S:(f)=0. (3.32)

The first interface constraint Equation (3.31) ensures the force balance
at the interface. The latter Equation (3.32) the kinematic compatibility
of the displacements.

The Partitioning and Decomposition Procedure

For a practical co-simulation scenario the input and output quanti-
ties are predefined through the subsystems and can not be changed.
However, if the monolithic problem is decomposed this is a decision
which needs to be made (see Section 3.2). The implications on the
stability of the co-simulation of a certain decomposition are discussed
in detail in Section 3.4.

42

3.2 Partitioning Procedure — From Monolithic to Co-Simulation

A hint for choosing interface constraint equations and input and
output quantities is that the constructed system should be as close as
possible to the monolithic system.

This means for the example depicted in Figure 3.1 the inputs for
each of the two subsystems are forces and that the interface constraint
equations need to comply with kinematic compatibility and force
balance.

Nevertheless a "good" choice of interface constraint equations
and input/output quantities is in general problem dependent.

3.2.1 Co-Simulation with Coherent Time Integration
Schemes

In the following it is shown that the co-simulation will not harm the
order of accuracy, if the same time integrators are used throughout
all subsystems of the co-simulation. Furthermore it is shown that for
this case the derived quantities (i.e. velocity and acceleration) at the
interface are the same as for the monolithic case.

Example 3.1: Backward Euler for Domain 1 and Domain 2

If the backward Euler time integrator Equation (3.7) is applied to Equation (3.21) we arrive at
1m0 ki+ky —kgp| | |ultt|
ko my —ks ko o
2 [m 0 dy 0| ||ul 1 |m 0 uli~! 0
2 |“n +|4 i L . 333
hlo my 0 0 vt hlo my Vl"’l i +1

Here the input Uj is the force fj. Subsystem 1 v} =S (fl] solves for the interface displacement vy and for
the state displacement «; which is not shown to the interface.
The same procedure is applied to Equation (3.24) and thus we arrive at

0 0 dy —dy 0 0 vihe
+ +h =
0 mg —d; dy 0 k3 wﬁ”l
L T it U L N RO
hlo mg —dy do wjt 0 mg wz"_1 0

For the second subsystem the input U is the force f,. The subsystem 2 v, =S, (fz) solves for the interface
displacement v, and for the state displacement ws.

dy
0 0

+ +h

=~

43

3 Co-Simulation

The first case to investigate is Example 3.1. Here subsystem 1 and
subsystem 2 are discretized via the backward Euler time integrator.
This should result in a first order accurate co-simulation in time for dis-
placements, velocities and accelerations. The results should be equal
for the monolithic and co-simulation case if the interface constraint
Equations (3.31) and (3.32) are satisfied precisely.

The graph in Figure 3.4(a) shows the accuracy order for the mono-
lithic and the co-simulation solution of the problem. It is evident that
the results meet the expectations. Displacements, velocities and ac-
celerations converge with first order in time. The results are the same
for the monolithic case and for the co-simulation case.

Note that the interface constraint equations are satisfied to ma-
chine precision by using the Interface Jacobian-based Co-Simulation
Algorithm, which is described in detail in Chapter 4.

As a next step the second order accurate generalized-a method is
used for the co-simulation of the model problem. Similar to Example
3.1 the co-simulation and the monolithic solution show the same
order of accuracy namely, second order for displacements, velocities
and accelerations (see Figure 3.4(b)).

Example 3.2: Generalized-a Method for Domain 1 and Domain 2

The following example is similar to Example 3.1. However, the generalized-a method (3.12) is used to inte-
grate Equation (3.21) and thus we arrive at

1 _om)jm 0 7 _ar\|la o ki+ky —kp

((hzﬁ hzﬁ)[o m2}+(hﬁ hﬁ)[o 0]*(1 “f)[by]QD

g | 0 (L_ am) uf +(L_aﬂ) ufl .

it o m||\n2B K2 or np hp)|

L _om ||| 4 O (L,ﬂ) o (1, ,ﬂ) if

(2;5 2B lj[ﬁ{,D+[0 0}(% w6) | o +ﬁ 1 5 U_ln+
hy ., othr ap B ki+ky —k uf 0 .
(2ﬁ+afh h 25)[V{'D [7162 k2:|(af[yfl])+[fln+1:|' (3.35)

For the first subsystem input, output and state variables are chosen to Example 3.1 accordingly.
The same integration procedure is applied to Equation (3.24) and thus we arrive at

(Gl o Gmls 2l 2

44

3.2 Partitioning Procedure — From Monolithic to Co-Simulation

g _jo o ()| |+ (-)| £ |+

wZ”Jrl B 0 mg h2p h2p w2” hp hp u'/z”

1 _am % d2 —d (L,m) vy (1, ,ﬂ) vy
(213 2 ‘)L;;D*[dz dz}(hﬁ 0 P A A P

By o) 5 v Fak
g1 L)]

For the second subsystem input, output and state variables are chosen to Example 3.1 accordingly.

o
o

The last case is Example 3.3 where the two step, second order
accurate BDF2 method is discussed. Similar to Example 3.2 the co-
simulation and the monolithic solution for Example 3.3 show a second
order of accuracy (see Figure 3.4(c)).

Conclusion

The model problem (see Figure 3.1) demonstrates that the monolithic
and the co-simulation solution are identical as long as the interface
constraint equations are satisfied exactly and the same numerical dis-
cretization methods are used within all subsystem. In the terminology
of Felippa et al. [49] this means that it has been demonstrated with the
help of Example 3.1 to Example 3.3 that a coherent (time) discretiza-
tion throughout all subsystems renders an algebraic partitioning of
the monolithic problem.

In order to summarize this section we can note the following facts:
Co-simulation can be derived from the monolithic system in a consis-
tent manner. If the same discretization is used in all subsystems as for
the monolithic problem and if the interface constraint equations are
solved sufficiently accurate the co-simulation solution is equivalent
to the monolithic one.

Example 3.3: Second Order Backward Differentiation Formula for Domain 1 and
Domain 2

The following example is similar to Example 3.1. However, the two step method BDF2 (3.18) is used to
integrate Equation (3.21) and thus we arrive at

9 |m 0 3 |d 0 ki+ke —k Giad
2 L2 + =
4h2 | o my| 2h|0 o0 —kp | ||t

45

3 Co-Simulation

m 0 6 |up 1 |up? 2 || ||
= - + = -
0 my || h? vl 2h2 ,,lnfl h2 ul’"z 4h? Ulrt%
dy 0| 2 |uf 1w . 0 337
0 0 h Vln 2h 1/1”_1 f1n+1 : :

For the first subsystem input, output and state variables are chosen to Example 3.1 accordingly. The same
integration procedure is applied to Equation (3.24) and thus we arrive at

9 o o0 3| d —d| [0 0 vyt
= +— + 2=
420 my| 2R |-d, dp| |0 ks|||ws*
0 0 6 | v 1 |t 2 || a2 1| v
— - +— - +
0 ms h2 Wzn 2h2 wz'l’l h2 w2’"2 4h2 wzn—s
dy —dy
—dy dy

For the second subsystem input, output and state variables are chosen to Example 3.1 accordingly.

2 } . 339
0

3.2.2 Co-Simulation with Mixed Time Integration Schemes

After discussing the case of equal time discretization for all subsys-
tems, the discussion is focused on the more general and more practical
relevant case where different time integrators in the different subsys-
tems are present. As this leads to a high number of possible combina-
tions, the investigation is limited to representative cases. However, the
methods used in following can be applied to different combinations
of time integrators as well, besides the ones presented.

Example 3.4: Generalized-a Method for Domain 1 and BDE2 for Domain 2

The first subsystem is integrated with the generalized-a method.
1 m 0 d 0 ki +k; —k
(! _azm) 1 +(L_ﬂ) 1 fli—ag)| BT 2
k2B h2B)0 my| \HB RBJ|o 0 —ke ko

utt| _fm 0 (;,Lm) uf +(L,Lm) atl,
vt o mp|\\B2B B2B) | T\RB BB |gp

46

pend
gloT

Absolute error e,

3.2 Partitioning Procedure — From Monolithic to Co-Simulation

]l ol G-

I

The second subsystem (3.24) is integrated with the BDF2 method and thus we arrive at

am

2p

(a5~

h
+agh— h—u

9 |0 o 3| d —d» 0 0 g
5 +— + =
k2 o my| 20 |-dy, dp| |0 ks ||wpt!
0 0 6 | v 1 VZ”’I . 2 vzr"z 1 y2'"3
0 mgl|| R w})! 2h2 wzﬂ—l h2 wzn—z 4h2 wzn—s

B O H] A

Within this example two different second order accurate time integrators are combined. The overall order
of accuracy can be seen in Figure 3.5(a).

Note that the input and output relations for this example are the same as for Example 3.1.

1E+10
1E+08
1E+06
1E+04
1E+02
1E+00
1E-02

1E-04

1E-06

1E-08 i i i j
1E-07 1E-05 1E-03 1E-01 1E+01

Time step size h (s)
(a) Backward Euler (Example 3.1)

Figure 3.4: Absolute global error (2.80) over time step size for
displacement, velocity and acceleration

47

3 Co-Simulation

1E+10
1E+08
1E+06

1E+04

end
gloT

1E+02

1E+00

Absolute error e’

1E-02

1E-04

1E-06

1E-08
1E-07 1E-05 1E-03 1E-01 1E+01

Time step size & (s)

(b) Generalized-a method (Example 3.2)

1E+10
1E+08
1E+06

1E+04

end
gloT

1E+02

1E+00

1E-02

Absolute error e’

1E-04

1E-06

1E-08
1E-07 1E-05 1E-03 1E-01 1E+01

Time step size h (s)
(c) BDF2 (Example 3.3)

Figure 3.4: Absolute global error (2.80) over time step size for
displacement, velocity and acceleration

48

3.2 Partitioning Procedure — From Monolithic to Co-Simulation

Due to the interface constraint equations the displacements are
compatible at the interface for Example 3.4 and Example 3.5. If the
same time integrators are used between the subsystems the compat-
ibility of velocities and accelerations is also achieved. For the case
of different time integrators this is not the case. Only the quantities
which are enforced by the interface constraint equations are com-
patible at the interface. This is demonstrated for Example 3.4 in Fig-
ure 3.5(b). Here the generalized-a method for domain 1 is coupled to
the BDF2 for domain 2. The displacements are enforced to be kine-
matic compatible at the interface. Figure 3.5(b) shows the matching
displacements for the left and right interface node. Moreover Fig-
ure 3.5(b) also demonstrates that the velocities and accelerations are
not matching at the interface for Example 3.4 due to the different time
integration schemes in domain 1 and domain 2.

Even though Example 3.4 uses two second order accurate time
integrators, the coupled solution does not show second order of ac-
curacy (see Figure 3.5(a)), this has also been shown by Farhat et al.
[44] and Joosten et al. [84]. However, for this combination of time in-
tegrators and coupling conditions the overall numerical method is
consistent for the interface DOFs.

An accuracy order loss does not necessarily occur for other com-
binations of time integrators. If the backward Euler method is chosen
for the first domain and the BDF2 method for the second domain (see
Example 3.5) the resulting method is still first order accurate for DOFs
at the interface as depicted in Figure 3.6. This is the maximum order
which can be expected as the BE integrator is only first order accurate.

Example 3.5: BE Method for Domain 1 and BDF2 for Domain 2

The first subsystem is integrated with the backward Euler time integrator Equation (3.7).
1 |(m 0 d 0 k+k ko !
= + +h =
hlo m| |0 o —kz ko | || vt
m 0 d 0 uy! 1 |m 0 il 0
! +|7 - ! L +h . 341
0 my 0 0 vl 0 my o= ias

The second subsystem (3.24) is integrated with the BDF2 method and thus we arrive at

9 o o 3| do —do 0 0 vt
ol +— + all=
4h2 o mg| 2h|-dp, dp| |0 kg|||wgt

IR
=

49

3 Co-Simulation

0 off e [vp| 11 [vpt] 2 |u? 1|
2 oz the ~anz 4
0 mg h w2" 2h wz"’1 h wZ”’2 4h wzﬂ’3
n+l
£ } . (342

dy —dy|| 2 |v) 1 112"’1 .
—d, dy || P wjt 2h wp! 0

Within this example two different first order and second order accurate time integrators are combined.
The overall order of accuracy can be seen in Figure 3.6.

Note that the input and output relations for this example are the same as for Example 3.1.

Another important parameter to investigate is the type of cou-
pling conditions. Throughout Example 3.1 to Example 3.5 the dis-
placements and forces were enforced at the interface. In the following
itis shown what happens if the displacement compatibility constraint
is replaced by a velocity compatibility constraint.

The velocity coupling (enforcing equal interface velocity) and ac-
celeration coupling for Example 3.5 show the same order of accuracy
as for displacement coupling as depicted in Figure 3.7. Hence the par-

IE+10 premnnanaeas freeeaeaas prseeenenaas ;
' Co-Simulation: ! ¢ e o
1E+08 besraeneaa beseaeneaa 9

1E+06 [b b b !

end
gloT

1E+04 |- e b b !
1E+02
1E+00

1E-02

Absolute error e

1E-04

1E-06 P EEEEr e e :

1E-08 i i i j
1E-07 1E-05 1E-03 1E-01 1E+01

Time step size h (s)

(a) Absolute global error (2.80) over time step size for displacement, velocity and
acceleration

Figure 3.5: Generalized-a versus BDF2 method (Example 3.4)

50

3.2 Partitioning Procedure — From Monolithic to Co-Simulation

Displacement (m) and velocity (m/s)
Acceleration (m/s2)

0 0.2 0.4 0.6 0.8 1

Time £ (s)

(b) Displacements, velocities and accelerations for the co-simulation case at the
interface

Figure 3.5: Generalized-a versus BDF2 method (Example 3.4)

ticular combination of time integrators of Example 3.5 (BE and BDF2)
is first order for displacement, velocity and acceleration coupling for
the model problem shown in Figure 3.1. Note that this is also true for
the combination of BE and generalized-a which is not shown in detail
in order to focus the discussion.

Moreover the behavior of the order of accuracy for Example 3.4 is
similar for displacement, velocity and acceleration coupling as well
(compare Figure 3.5(a) with Figure 3.8(a)). However, by coupling the
accelerations the high frequency oscillation in the solution can be
reduced to a minimum (compare Figure 3.5(b) with Figure 3.8(b)).

Conclusion & Remedy

As we have seen the combination of mixed time integration schemes
for the individual subsystems is pretentious. In the best case the over-
all order of accuracy is the minimum of the orders of accuracy of all
subsystems.

51

3 Co-Simulation

1E+10 oo T To R LT EOTEEE RSP :
' Co-Simulation: ;| @ ----s----
1B+08 [b beoeeeeeeee b e !

1E+06

end

gloT

1E+04

1E+02

1E+00

Absolute error e,

1E-02

1E-04

1E-06

1E-08 i i i i
1E-07 1E-05 1E-03 1E-01 1E+01

Time step size h (s)

Figure 3.6: Absolute global error (2.80) over time step size for
displacement, velocity and acceleration for Example 3.5

Moreover with the help of Example 3.4 it has been demonstrated
that the overall oder of accuracy can be less than the minimum of all
subsystems.

This phenomena is well known in literature. In the fluid-structure
interaction community it is discussed by Farhat et al. [45] and Joosten
et al. [84]. A recent publication from the structure-structure inter-
action community is provided by Li et al. [94] and Mahjoubi et al.
[98].

In order to solve the problem of accuracy order loss due to the
coupling of incompatible time integration schemes several ideas are
discussed.

Joosten et al. [84] suggests to interpolate the transfered forces in
time, so that they can be evaluated at the same point in time by the
different time integration schemes. However, this idea relies on the
use of a generalized-a type method for all subsystems.

The idea of Li et al. [94] is to couple the velocities in an integral
sense by applying a weighted residual form of the velocity coupling
constraint which preserves the energy over the interface. This idea is
tested by coupling an explicit second order accurate Lax-Wendroff

52

3.2 Partitioning Procedure — From Monolithic to Co-Simulation

1E+10
1E+08
1E+06

1E+04

pend
gloT

1E+02

1E+00

Absolute error e,

1E-02

1E-04

1E-06

1E-08 i i i j
1E-07 1E-05 1E-03 1E-01 1E+01

Time step size h (s)

Figure 3.7: Absolute global error (2.80) over time step size for
displacement, velocity and acceleration for velocity and
acceleration coupling of Example 3.5

scheme with a fourth order Runge-Kutta scheme in Li et al. [94]. How-
ever in the case where the interface residual is zero it is shown in the
following that the weighted residual form of Li et al. [94] reduces to
the strong form of the interface constraint, namely

L (01, 00)=0,— 0, =S, (f)—S2(fp) =0. (3.43)

Li et al. [94] introduces the interface constraint by

tn+1

7J U (1)—y(r)dr =0. (3.44)

Li et al. [94] shows that Equation (3.44) is equivalent to
Uy —U,=0, (3.45)
where 7 is an average interface velocity, hence is defined by

l)n+1 + pn

D= 5 . (3.46)

53

3 Co-Simulation

1E+10
1E+08
1E+06

1E+04

end
gloT

1E+02

1E+00

1E-02

Absolute error e’

1E-04

1E-06

1E-08 : : : i
1E-07 1E-05 1E-03 1E-01 1E+01

Time step size h (s)

(a) Absolute global error (2.80) over time step size for displacement, velocity and
acceleration for velocity and acceleration coupling

Displacement (m) and velocity (m/s)
Acceleration (m/s2)

0 0.2 0.4 0.6 0.8 1
Time ¢t (s)

(b) Displacements, velocities and accelerations for the co-simulation case at the
interface for acceleration coupling

Figure 3.8: Generalized-a versus BDF2 method for velocity and
acceleration coupling (Example 3.4)

54

3.2 Partitioning Procedure — From Monolithic to Co-Simulation

With that, Equation (3.44) is equal to

. n+l .+l
Vanr - n+

= gt — o, (3.47)

If the interface residual is reduces to zero within every time step the
right hand side of Equation (3.47) is zero and the integral form of the
interface constraint is equal to Equation (3.43).

After discussing all those ideas the question remains how to restore
the second oder accuracy for Example 3.4. Let us first examine what
exactly causes the loss of accuracy. Therefore it needs to be repeated
that following interface constraints were applied

(A L)=h+1 =0, (3.48)
(v, v)=v—v,=8(f)-S:(f)=0. (3.49)

Let us have a closer look into the first constraint. Here the forces at
every point in time 7 + 1 need to be in equilibrium

[+ =o. (3.50)
If the BDF2 method is applied to S, we have
So(f)= vt (3.51)

Example 3.4 makes the same assumption for the generalized-a meth-
od, namely

S ()= v (3.52)

However, the integration parameter is set to a;=0.5. As Chung et al.
[31] has shown the load needs also to be interpolated for the general-
ized-a method by

f=—a)f™ " +asf". (3.53)

This shows that the assumption of Equation (3.52) is not correct. The
correct statement for gy = 0.5 is

S, (flm%) =y, (3.54)

So we can conclude if the load is interpolated inside S; to the time step
n+1/2 one should be able to restore second order accuracy for Example
3.4. Example 3.6 clearly shows that this is the case as demonstrated
by Figure 3.9.

55

3 Co-Simulation

Example 3.6: Generalized-a Method for Domain 1 and BDF2 for Domain 2 (with
Interpolation in Time for Domain 1)

The first subsystem is integrated with the generalized-a method. The load which is applied to the system
is interpolated from the current input force fl”Jrl and the old input force f;" by

fn+(1—af)h :(l—af)f"“ fagf". (3.55)

Afterwards the generalized-a method is applied.

wtt _{mo0 (;,Lm) uf +(L,Lm) atl,

vae 0 my h2p h2p vl hp hp 2

R O L P (L_ﬂ) oif (1_ _ﬂ) i
(% I)L} +[o o} Dl P D P

ki+ky —kp ul
ag
—ky ky

0
fer(l—af]h :| . (3.56)

e
il

The second subsystem (3.24) is integrated with the BDF2 method and thus we arrive at

0 0 6 | va 1n |t L2 w2 1| v
0 mg|| wf! 2h2 w1 h2 wzn—z 4h2 wzn—:i

2 | vn 1 vn—l n+1
=1 == MEANE (3.57)
h wz” 2h wz’"l 0

Within this example two different second order accurate time integrators are combined. The overall order
of accuracy can be seen in Figure 3.9.
Note that the input and output relations for this example are the same as for Example 3.1.

As a final remark it can be stated that one needs to take care when
mixed time integrators are coupled in a co-simulation scenario. But if

everything is done in a consistent manner a simulation result which
is as accurate as the monolithic one can be obtained.

A useful feature for the end user is an automatic estimation of
the overall order of accuracy during the co-simulation as this gives
feedback to the user about the quality of the obtained results. The

56

3.3 Communication Pattern

IE+10 e L L LT T LR R P PR TP PP PPPR ;

' Co-Simulation: ; @ ----s----
1B+08 [RS beoeeeeeeee A !
1IE+06 - b b b !

1E+04 - basaeaanaanas e b }

pend
gloT

1E+02

1E+00

1E-02

Absolute error e,

1E-04

1E-06

1E-08 i al i i j
1E-07 1E-05 1E-03 1E-01 1E+01

Time step size h (s)

Figure 3.9: Absolute global error (2.80) over time step size for
displacement and velocity for generalized-a with time
interpolation versus BDF2 method (Example 3.6)

ideas of Busch et al. [25] for automatic time step control can be used
in order allow for an automatic estimation.

3.3 Communication Pattern

The definition of co-simulation (Definition 3.1) states the exchange
of data between the individual subsystems as an essential property of
co-simulation. The choice of the order for the information exchange
is part of the discussion in this section. There are mainly two possibil-
ities how to exchange data, namely in a parallel and a serial manner.
The parallel information exchange is called Jacobi (JC) and the serial
Gauss-Seidel (GS) as their properties are similar to linear iterative
solvers.

The implications of the two communication patterns on stability
and on the convergence rate of the interface constraint equation set
are discussed in detail in Sections 3.4 and 4.6.

57

3 Co-Simulation

3.3.1 Jacobi - Parallel

The Jacobi communication pattern is shown for the iterative case
in Figure 3.10. Here, it is assumed that the iterations are converged
after the second iteration. However, it is straight forward to extend the
figure for any number of iterations. Furthermore, the figure assumes
that only two subsystems are present, otherwise the variety of different
combinations will distract from the focus of the discussion.

S

15t Tteration

2nd Jteration

Figure 3.10: Iteration pattern for Jacobi

For an arbitrary multi-code scenario the advantage of the Jacobi
pattern is that it allows for parallel execution of the subsystems. In
Figure 3.10 this is indicated by a and b. For instance the execution of
S and S, can be done at the same time (steps 2a and 2b). This is a
huge benefit as all subsystems can be executed in parallel and there

58

3.3 Communication Pattern

is no waiting of an individual subsystem on the outcome of another
subsystem necessary within one time step. Hence, this pattern will
lead to a co-simulation with no data flow dependency within the time
step.

3.3.2 Gauss-Seidel - Serial

In fluid-structure interaction the Gauss-Seidel scheme is commonly
used. There, Farhat et al. [45] also calls it conventional serial staggered
(CSS) approach within the context of loose coupling. The GS commu-
nication pattern for two iterations is plotted in Figure 3.11. However,
in a practical use case as many iterations as needed are performed in
order to meet a certain convergence criteria.

15 Iteration

2nd Jteration

tn+2

Figure 3.11: Iteration pattern for Gauss-Seidel

59

3 Co-Simulation

The advantage of the GS pattern is a higher convergence rate of
the fixed-point iteration method with respect to the JC pattern (see
Section 4.6).

However, within a GS pattern based co-simulation the subsystem
need to wait on each other. This can already lead to an increase of the
overall runtime by a factor of two for a two subsystem co-simulation,
where the individual subsystem runtime is equal (e.g. fluid-structure
interaction when fluid and structure need the same wall-clock time
for one time step). Moreover, the more subsystems there are, the worse
this drawback gets.

Furthermore, the design of the GS pattern, where the output of
one subsystem is directly feed as an input to another subsystem, has
implications on the possible decompositions of the problem as the
next section will show.

3.4 Decomposition

In the following the fixed point iteration method should be illustrated
in the context of co-simulation. A linear steady state spring example is
used. With this example the discussion can be focused on the decom-
position. Examples with dynamic effects bring more effects as shown
in Section 3.2. Hence, the example in Figure 3.12 helps to demon-
strate effects which arise from the decomposition of the monolithic
problem.

domain 1 domain2 RN\
Iy interface ky

const

N

Figure 3.12: Model problem for stability considerations

Four different decompositions of the steady state model problem
are presented in the subsequent section in combination with the dif-
ferent communication patterns JC and GS. This results in six different
possible iterative methods. These will be called Dirichlet/Dirichlet

60

3.4 Decomposition

(JC), Dirichlet/Neumann (JC and GS), Neumann/Dirichlet (JC and GS)
and Neumann/Neumann (JC) borrowing the terminology from cor-
responding domain decomposition algorithms introduced by Quar-
teroni et al. [120]. Some of these cases are also well investigated with
respect to fluid-structure interaction by Causin et al. [28]. The different
decompositions map to the examples in the following manner:

Dirichlet/Dirichlet — Example 3.7
Dirichlet/Neumann — Example 3.8
—
—

e Neumann/Dirichlet Example 3.9
e Neumann/Neumann Example 3.10

Mixed methods which will result in Robin type decompositions
(see Badia et al. [8]) are not discussed as they are less general in terms
of applicability to general co-simulation problems.

Example 3.7: Fixed-point formulation - Dirichlet-Dirichlet decomposition

In order to give an example for a Dirichlet-Dirichlet decomposition the linear steady state spring example
(see Figure 3.12) is used. The general operator notation for the problem is defined as

Si1(t)=1,
S2(U2) = Ya.

Note this decomposition will lead to a Jacobi communication pattern. For two linear springs, which are
decomposed in a Dirichlet-Dirichlet manner (each subsystem has a displacement as input) this can be
written as

S1(u1)=k1 - 11— feonst = fi,
Sa(uz)=ko - up =f.

Furthermore, the interface constraint operators (in this case functions) for this problem read

R1=71 (U,) =u;—uy =0,

R2 =12(51(U1),52(U2])=f1+f2 =0.

The task is to find the roots to these two real-valued functions. We use Equation (2.26) to formulate the
fixed-point iteration

k+1 g
k+1 U,

kU1
kU2

) . ky —ky,
sl(kul)+sz(’<uz)

This is equivalent to

ket | [y,
kel [[y,

Bon L }

ky -k U1 — feonst + k2 - X u

61

3 Co-Simulation

62

In order to investigate the convergence properties of this fixed-point iteration the system is reformulated
to match the structure of Equation (2.22). This renders

ktly, 1+a —a ku, 0
kL, aky L+aky | |Kup @ fconst
[N
H

For a converging fixed-point iteration
p(H)<1

has to be true. The spectral radius of H is given by

1 1 1
Eozk2+ Eoz+1i 5ar,/kzz—4k1—2k2+1

The graph of the spectral radius is depicted in Figure 3.14(b).

)

p(H):max(

Example 3.8: Fixed-point formulation - Dirichlet-Neumann decomposition

For an example of a Dirichlet-Neumann decomposition the linear steady state spring example (see Fig-
ure 3.12) is used again. Note this decomposition can lead to a Jacobi and a Gauss-Seidel communication
pattern. For two linear springs, which are decomposed in a Dirichlet-Neumann manner (one subsystem
has a displacement as input the other a force) this can be written as

S1(w1)=k1 - u1— feonst = fi,
S2(f)= % =up.
Furthermore, the interface constraint operators (in this case functions) for this problem read
Ri1=T) (UI,SZ (Uz)] =up—u =0,
Ry=T5(81 (), tR)=fi+fo =0.

The task is to find the roots to these two real-valued functions. We use Equation (2.26) to formulate the
fixed-point iteration

ol k-8, (Fua)
kg, | kg, s (Fun)+* vy

This is equivalent to
k
k+ly, Ky B — sz
g | T ke [T2, & 2 aalf
f f ki u1 — feonst +* f2
In order to investigate the convergence properties of this fixed-point iteration the system is reformulated
to match the structure of Equation (2.22). This renders

Hlu | _[1ve =g | |*m 0
k+1fZ aky 1+a| | f @ feonst
N
H

3.4 Decomposition

The spectral radius of H is given by

i11\/—k1 ko +aky + ko

P(HJ=maX(o

The graph of the spectral radius is shown in Figure 3.14(c). Note for a Dirichlet-Neumann decomposition of

the problem a Gauss-Seidel communication pattern can be used. It can either eliminate the displacement
or the force from the interface residual equation.

cons —k
Sl(sz(fz)):kl%_fconsl:fl 52(—51(u1)):f‘k721ul:
k .k
k+1f=kf+a(kf+k1ff*fconst) k+1u=ku+a(kufw)
ko k2
(<) (o))
p(H)=max| |[1+af 1+ — pH)=max| [1+a|1+—
ko k2

The graph of the spectral radius for eliminated displacements is shown in Figure 3.14(d) and for eliminated
forces in Figure 3.14(e).

Example 3.9: Fixed-point formulation - Neumann-Dirichlet decomposition

For an example of a Dirichlet-Neumann decomposition the linear steady state spring example (see Fig-
ure 3.12) is used again. Note this decomposition can lead to a Jacobi and a Gauss-Seidel communication.
For two linear springs, which are decomposed in a Dirichlet-Neumann manner (one subsystem has a dis-
placement as input the other a force) this can be written as

si(fi)= fl+lflcnnst _
82(u2]=u2<k2 =f.

Furthermore, the interface constraint operators (in this case functions) for this problem read
R1 =71 (V1,82 (V) =1 —up =0,
Ra =Iz(51(U1),Uz)=f1+f2 =0.

The task is to find the roots to these two real-valued functions. We use Equation (2.26) to formulate the
fixed-point iteration

kg | Foy e s (ko) —*w
kg, | |k, kU +8, (Fup)

This is equivalent to

k
+
k+lf1 B kfl ra h kflconst _Icu2
lup | | Fuy kfi+kuy ky

In order to investigate the convergence properties of this fixed-point iteration the system is reformulated
to match the structure of Equation (2.22). This renders

a
k+lf1 B 1+% —a kf] . /ckolns(
k+ly, a 1+aky | |*us 0

H

63

3 Co-Simulation

64

The spectral radius of H is given by

akpky +a+2ky £ay/ k2 k3 —ak? —2k kp +1

2k,

p (H)=m;

The graph of the spectral radius is shown in Figure 3.15(b). Note for a Dirichlet-Neumann decomposition of
the problem a Gauss-Seidel communication pattern can be used. It can either eliminate the displacement
or the force from the interface residual equation.

k consfk
Sz(sl[fl)Jzé(ﬁ+ﬁonst]=ﬁ 51(752(u2))=f1k712uz=
k consi 7kk
k“f:kf'*'a(kf*'k%(kf+fconst)) k”u:ku+a(7f ‘k1 2 u—"u)
() (f=<-2)
p(H)=max| |1+a|1+-= p(H)=max| |[1—a|1+ =
k1 k1

The graph of the spectral radius for eliminated displacements is shown in Figure 3.15(c) and for eliminated
forces in Figure 3.15(d).

Example 3.10: Fixed-point formulation - Neumann-Neumann decomposition

For an example of a Neumann-Neumann decomposition the linear steady state spring example (see Fig-
ure 3.12) is used again. The general operator notation for the problem is defined as

Note this decomposition will lead to a Jacobi communication pattern. For two linear springs which are
decomposed in a Neumann-Neumann manner (each subsystem has a force as input) this can be written
as

Sl(ﬁ]:flJrkflconst _

S2(f)= v =up.

2

Furthermore, the interface constraint operators (in this case functions) for this problem read

R1=T (Sl(Ul)vsz[Uz))=u1*u2=0,
R =1, (U1, L) =fi+f =0

The task is to find the roots to these two real-valued functions. We use Equation (2.26) to formulate the
fixed-point iteration

kg ko ‘a Sl(kUl)*Sz(kUz))

k+1U2 kU2 kU1+kU2

This is equivalent to

k+1 k £+ feonst +fconet kg
i Ky [
k+1 A k fi+ k I

3.4 Decomposition

In order to investigate the convergence properties of this fixed-point iteration the system is reformulated
to match the structure of Equation (2.22). This renders

AL E | S]] feonst
k+l g a 1+al| [%f 0 ’
< 9

H

The spectral radius of H is given by

P(HJ=maX(

The graph of the spectral radius is shown in Figure 3.15(e).

akykp +aky +2ky ky + ay/ k2 k2 —4k? kp —2k1 k2 + k2

2k kp

).

The stability maps for 5 different relaxation factor values for Ex-
ample 3.7 to Example 3.10 are shown in Figure 3.14 and Figure 3.15.
By analyzing these graphs of the steady state model problem the fol-
lowing conclusions can be drawn:

All GS based patterns show a good coverage of the stability. This is
even true in the nonphysical stiffness space (k < 0). However, the
best stability in the physical stiffness space (kg > 0) is achieved by
using the Neumann/Neumann decomposition (see Example 3.10).

The best decomposition in terms of stability and efficiency is usu-
ally highly problem dependent. However, in general the decomposi-
tion should not lead to an ill-posed subsystem. In order to demon-
strate the consequences of a numerically unfavorable decomposition
a small example is presented in Figure 3.13. If the input of subsys-
tem 2 is set to be a force f,, subsystem 2 is not solvable anymore as
it is missing a Dirichlet boundary condition and will result in a pure
Neumann problem.

domain 1 domain 2
ky k,

ﬁor]st

interface

N

Figure 3.13: Model problem for decomposition considerations

65

3 Co-Simulation

(b) Example 3.7 (D/D) Jacobi (c) Example 3.8 (D/N) Jacobi

10 10

(d) Example 3.8 (D/N) Gauss-Seidel with (e) Example 3.8 (D/N) Gauss-Seidel with
residual force residual displacement

Figure 3.14: Stability maps for the linear steady state spring
example (see Figure 3.12) - stable within colored regions

66

3.4 Decomposition

(b) Example 3.9 (N/D) Jacobi (c) Example 3.9 (N/D) Gauss-Seidel with
residual force

ky ky
(d) Example 3.9 (N/D) Gauss-Seidel with (e) Example 3.10 (N/N) Jacobi
residual displacement

Figure 3.15: Stability maps for the linear steady state spring
example (see Figure 3.12) - stable within colored regions

67

3 Co-Simulation

3.5 Block Diagram

A block diagram is a diagram of a system in which the principal parts
or functions are represented by blocks connected by lines that show
the relationships of the blocks.!

The block diagram is typically the representation of a co-simu-
lation with that the user is confronted with. As it can represent the
interface constraint equations. However, using the block diagram for
representing the interface constraint equations has the drawback
that this can not represent all different possible decompositions of a
co-simulation.

For instance if we consider fluid-structure interaction which is
from the decompositions point of view similar to the model problem
of Section 3.4. A typical block diagram for fluid-structure interaction
can be seen in Figure 3.16. As long as the block diagram does only

Figure 3.16: Block diagram for fluid-structure interaction

contain subsystem blocks and no algorithm block it is not possible to
represent the Dirichlet/Dirichlet or Neumann/Neumann decomposi-
tion cases. Hence, for co-simulation scenarios where the full flexibility
should be preserved it is best to add an algorithm block which then
allows to represent all possible decomposition cases.

The block diagram can also be represented as a graph, where the
signal flow for the co-simulation can be described by a directed graph
with the subsystems as the nodes and the exchanged data as the edges.
This is of advantage when a graphical user interface is implemented
as the implementation can leverage graph theory.

! SEVOCAB: Software and Systems Engineering Vocabulary. Term: block diagram.
retrieved 31 July 2008.

68

Research is what I'm doing
when I don’'t know what I'm
doing.

Wernher von Braun

CHAPTER

INTERFACE JACOBIAN-BASED
CO-SIMULATION ALGORITHM

The previous chapter discussed the different aspects of co-simulation
and the associated drawbacks, such as stability and accuracy issues.
Within this work a new kind of co-simulation algorithm is proposed
which is based on a Jacobi communication pattern, therefore it is
suited for a large number of subsystems. In order to overcome sta-
bility issues the algorithm uses interface Jacobians for stabilization.
Hence, the algorithm will need more information from the subsystems
than fixed point iteration based methods. The proposed algorithm is
called Interface Jacobian-based Co-Simulation Algorithm (IJCSA), it is
a hybrid algorithm which combines the advantages of the monolithic
approach and co-simulation. As long as the subsystems can provide
their own interface Jacobian the full modularity of co-simulation is
preserved. The interface Jacobian information of each subsystem is
assembled at interface level to a global Jacobian which stabilizes the
entire co-simulation. The algorithm is formulated in residual form,
so it handles cycles within the graph (block-diagram) without special
treatment, as the cycles do not occur if the problem is formulated in
aresidual form (see Bastian et al. [11] and Appendix A).

69

4 Interface Jacobian-based Co-Simulation Algorithm

The following derivations and discussions of the IJCSA are based
on Sicklinger et al. [134].

4.1 The Algorithm for two Subsystems

Similar to Section 2.1 the IJCSA is illustrated on the basis of the well-
known two-subsystem coupling methodology, it is generalized to a
multi-code scenario with vectorial input/output quantities afterwards.
The input and output relations for the problem are given by

Y =8 (U), 4.1)
%, =8,(0). 4.2)

Each of the subsystems S; (Ul) and S, (Uz) have state (internal) vari-
ables in addition to the output quantities ¥; and ¥,. The state variables
are referred to as X; and X,. The point of departure for the derivation
of the IJCSA are the interface constraint equations

7, (51 (1),8: (), U, U =0, 4.3)
IZ(SI(III);SZ(UZ)rl]l;[JZ)ZQ (4.4)

The interface constraint operators are essential to the IJCSA, as they
reflect the relations between input and output variables. The basic
idea of the IJCSA is to formulate the Newton method at interface level
where in contrast to a monolithic approach a much smaller system
needs to be solved. However the effort for the reduction process needs
to be taken into account as well. In order to solve Equation (4.3) and
Equation (4.4) with the Newton method the interface residuals need
to be defined as

RIZII(SI([JI)’SZ(UZ)r[]l’[JZ), (4.5)
Re=1(81 (1), S: (W), Uy,). (4.6)

The solution of Equation (4.3) and Equation (4.4) renders a set of input
values Uy which satisfy the interface constraint equations.

The iteration sequence for the Newton method can be written for
a vectorial quantity ¢ as

m+1¢=m¢_j(r(m¢))7 r(m¢), 4.7)

70

4.1 The Algorithm for two Subsystems

which is equivalent to

I(r("¢)) ("9 —"9)=—r("9), (4.8)
Amtlg
I(r(m¢))a™'¢=—r("9), 4.9)

where ¢ is the vector of unknowns, r is the residual vector and 7 is
the Jacobian operator. The dimension of the Jacobian matrix is only
dependent on the number of input variables at the interface level. The
iteration index is denoted with m. For the two-subsystem example ¢
and r are defined by

U,
0= 1 (4.10)
U,
and
R
r=1"". (4.11)
R,

The linear interface system of the Newton method can be written by

Ry Ry
ST AU, R
o H=e| . (4.12)
v ou | |A: Ro
If we assume the following interface conditions
7, (8 (W), i) = U - =0, (4.13)
5(5 (W),)= — v =0, (4.14)
Equation System (4.12) reads
1 2| |ay R
e H=—]T. 4.15)
R R,

71

4 Interface Jacobian-based Co-Simulation Algorithm

It is evident that the final form of the interface equation system is

Y,
o e (4.16)
, . .
= AU, R,

Where 9 ¥/au, represents the derivative of the output with respect to
the input.

The algorithm for the case of two subsystems is described in Algo-
rithm 4.1 on the basis of the previous considerations. Note that if the
global Jacobian matrix Jgopa is set to the identity matrix Algorithm 4.1
reduces to the classical fixed-point iteration scheme. This is shown in
Algorithm 4.2.

4.2 Generalization of the Concept

In Section 2.1 the generalized interface residual components were
defined by

Ri=L,(S;(U;), U}, j=1,..,7) i=1,..,r. 4.17)

With this definition the generalized global interface Jacobian system
is given by

31, 08, 0T, o1, 38, 91,

1 A

s, ou, o, as, o0, Tau, | |2 R

01, 08, , 0T, 91, 85, oL ||,y R

08,0U, 00U, 28, 0U, 0U, ’ ’
(4.18)

This is equivalent to

07, oY, 0TI, 01, oY, 01,

-t A

3Y13U1+3U1 oY, 0U, oU, Ui R

0T, 0w, 0T, 01, oY, L || ,u R

Y, 0U, oU, Y, U, 0U, ! ’
(4.19)

72

4.2 Generalization of the Concept

Algorithm 4.1: Interface Jacobian-based Co-Simulation Algorithm for
a 2-code example

// Time loop

1 for n =0 ton=ne,y do
// Iteration loop

2 for m =0 to m = mgyq do

// Solve for all subsystems in parallel
o || mpes)
4 mY2n+1 :SZ(ngn)
// Compute and check residual
mopn myrn _ My n+l
men_ | R _ 7O,
5 r't= = "
mapn mrrn __ n+1
R, U'="%
if || r"||. < € then
| break
// Get parts of interface Jacobian
moypnn._ oy
8 mjln:j(sl(mUln)): a_Ui :a—Ui
may, 1 Y,
m _ mpyn)|—= 9L " ._ 9%
9 1 —7(82(Uz))— 0, 70,
// Assemble global interface Jacobian
_9%
U,
miprn j— miyrn myjyrn)— 2
10 global_'AJ(]1 ’]2)_ oy,
—50 1
// Solve for corrector
myn .m n__mgn
11 global Ac = r
// Apply corrector
mtlypgn _mjypyn 4 m n
12 ur="u0/"+"Ac|
13 m+1U2n:m(]2n+mACZn

// Initial solution for next time step
14 OUI’“rl = S(me"d“ UllC k=0,..., n)
15 | Uyt =g (et lUf k=0,..,n)

73

4 Interface Jacobian-based Co-Simulation Algorithm

Algorithm 4.2: Constant under-relaxation algorithm for a 2-code ex-
ample

// Time loop
1 for n=0 ton=ne,y do

// Iteration loop
2 for m =0 to m = mg,q do
// Solve all subsystems (parallel)
myn+l — myrn
8 yrt=s (o)
myn+l _ myrn
4 Yy =8,("uy)
// Compute and check residual
mR;z mUln_mYZnJrl
5 mrn = =
mpn myrrn _myn+l
R; U ="
6 if || r"||. < € then
7 | break
// Apply update
m+lygn _mjyyn mpn
8 +1U1 ="U"+a™R]
m n_m n m n
9 B U'="U0"'+a™R;
// Initial solution for next time step
0 |yt =g(meatlyk k=0,..,n)
u | ‘yptt=g(metiyf k=o0,..,n)

With the global interface Jacobian matrix given in Equation (4.19) the
general version of the IJCSA is presented in Algorithm 4.3.

Note that the assembly operator is denoted by .A ;. The previous
derivations show that the entries of the interface Jacobian matrix are
combined by two basic kinds of derivatives. The first part (¢Z;/ay;
and 9Z;/au,) of the interface Jacobian needs to be provided by the
interface for each subsystem. This partreflects the interface constraint
equations. The second part needs to be provided by each individual
subsystem ¢Yi/au,, it represents the subsystem’s sensitivity. Hence,
it is a measure for the change of the output of the subsystem if the
subsystem’s input is perturbed.

74

4.2 Generalization of the Concept

Algorithm 4.3: Interface Jacobian-based Co-Simulation Algorithm

// Time loop

1 for n=0 ton=ng,y do

10

11

// Iteration loop

for m =0 to m = mg,q do
// Solve for all subsystems in parallel

m Yin+1 =S; (m Uin)
// Compute and check residual

mR;z Il (ij”H,man j:l,‘__,r)

mR;l Ir (ijnH’man j=1,...,r)
if || r"||. < € then
| break
// Get parts of interface Jacobian
myt= J(Si (™ Ul.”)) = m‘;—ll;i_n = g_ll;i
// Assemble global interface Jacobian

myn :Aj(m]in):

global

oL 8y, L 9T, . 2%, 2Y, | o1,

7Y, 20, T 20, 7Y, 20, T 70,

i=1,..,r

o1, v, , 09I, .. 09I, 2Y, , oI,

7Y, 20, T 70, 7Y, o0, T 70,

// Solve for corrector
myn .m n__Mmgn

global Ac" = r

// Apply corrector
migr=mynmAct j=1,..1

// Initial solution for next time step

| OUirHl zg(mend+1 Uik k=0,..., n) i=1,..r

75

4 Interface Jacobian-based Co-Simulation Algorithm

4.3 Efficiency Enhancements

The most time is generally spend for the solution of all subsystems in
Algorithm 4.3 in line 3. This is in general a computationally expensive
operation. The cost for the solution operation can be dramatically
reduced by using an approximation.

During the extraction process of 9Yi/au; a by-product is 9Xi/au,
which is a derivative of the state variables with respect to the input
variable. The derivative is used in the following Taylor series approxi-
mation:

m

oX;
Ml =X, a_l; "AU;+0("AU?) (4.20)
i

For the output variables this approximation is not used. The approxi-
mated state variables are used in combination with a nonlinear map
g between the state and the output variables. A more general g may
also depend on the input variables. That is

m+1Yi:g(m+1Xi,m+1 Ul)- (4.21)

This relation is the one which is used inside the simulators S;.

Assuming that g is nonlinear, Algorithm 4.4 represents a more
efficient version of Algorithm 4.3. Note that only line 3 of Algorithm
4.3 is modified to

inn+1 NS;W' (mflAcirl’mUin)‘ (422)

Equation (4.20) can be modified using the notation and indices in
Algorithm 4.4 to

m—1 aX
a1 i m-1
mXNi M Xi + a_l]l m ACin, (4.23)

and for the output update Equation (4.21) we arrive at

"~ g (" Xu, " UY). (4.24)

4.4 Usability Enhancements - Jacobian
Approximation

In some situations it is cumbersome or even impossible to provide
interface Jacobian within the subsystems. In order to apply the IJJCSA

76

4.4 Usability Enhancements - Jacobian Approximation

Algorithm 4.4: Enhanced version of the IJJCSA

// Time loop
1 for n=0 ton=ne,y do
// Iteration loop
2 for m =0 to m = mg,q do

if m =0 then
// Solve for all subsystems in parallel
myn+l _ miyyn
4 v =s,(muy)
5 else
// Approx. solve for all subsystems in
parallel
6 inn+l :Sm(mflAcin,mUin)

// Compute and check residual
mRr| |1, (myj"“,mujn j=1..r)
- mpn — : —
+1 P —
"Ry |z (Yo j=1,.,7)

if || r"||. < € then

| break
// Get parts of interface Jacobian
maoy, n Y;
myn — mpn))= "'oY, " . _
1o J; —j(si(U;))— U, = om,
// Assemble global interface Jacobian
myn _— myn)_—
n global_’Al(]i)_
oL, 0%, | 0T, .. 0L, 3Y, | 0T
oY, 20, T 70, 7Y, 20, T 70,
i=1,..,r
9T, v, | 9T, . 9L, 2Y, 01,
7Y, o0, T 70, 7Y, o0, T 70,
// Solve for corrector
myn mAeR_—_myn
12 global Ac" = r
// Apply corrector
m+lygyn —mjyyn ,m n
13 u'=""0/"+"Ac

// Initial solution for next time step

14 OUi”“=8(me"d+1Uik k=0,...,n) i=1,..,r

77

4 Interface Jacobian-based Co-Simulation Algorithm

to general co-simulation scenarios it is needed to handle such situa-
tions where some subsystems are not able to provide their interface
Jacobian.

In the case where the interface quantities are scalar quantities the
secant method can give a very good compromise between stability
and efficiency on the one hand and applicability of the IJCSA to com-
plicated subsystems (e.g. CFD solvers) on the other hand. The secant
extension of the IJCSA is shown in Algorithm 4.5. It was successfully
applied and tested for wind turbines (see Section 5.3).

4.5 Interface Jacobian Extraction

Static condensation methods introduced by Wilson [157] can be ex-
ploited for the extraction of interface Jacobians. These methods can
be implemented for sparse systems in an efficient manner without
the need of the explicit computation of any matrix inverse as noted
by Felippa [50].

If we assume the following linear relation which is modeled by a
subsystem

A A Y U
YY YX _ ’ 4.25)
N————
A
where Ayy and Axy are square invertible matrices. The state vector
of the subsystem is abbreviated with X, the input vector with U and
the output vector of the subsystem is denoted by Y.
The second equation of Equation System (4.25) can be written as

X=Axx '(b—AxyY). (4.26)

If this equation is plugged into the first equation of Equation System
(4.25) equation

(Ayy —AyxAxx 'Axy)Y=U—AyxAxx"'b (4.27)

Aschur

is obtained.

78

4.5 Interface Jacobian Extraction

Algorithm 4.5: Secant version of the IJCSA

//

Time loop

1 for n =0 to n=ne,q do

10

11

12

13

14

15

//

Iteration loop

for m =0 to m = mgyq do

// Solve for all subsystems in parallel
+1
m Yin =S; (m []ln)

// Compute and check residual
mR? Il (m an+1’m[]jn j=1,...,7‘)
mrn = . =
mR;z Ir (m an+1’m[]jn] — 1’ . 7')
if || r"||. < € then
| break
// Get parts of interface Jacobian if possible

mayn ay;
miyn _ myrn)) — —
jr=g(s(mum)="a" =&
// Use secant approximation if not possible to

approximate parts of interface Jacobian

if m =0 then
L m]in winit]in
else
myn+tl _ m—1yn+l
mna oY Y
J' &~
L m[]in_m_lUn
// Assemble global interface Jacobian
myn _— myn)—
global_“AJ(]i)_
oL 0% | 21, oz, 0, | o1,
v, a0, T 70, 7Y, 30, T 70,
i=1,.,r
o7, 8y, | 9T, 9z, 9Y, , o1,
7Y, o0, T oG, 7Y, o0, T 20,
// Solve for corrector
myn M AEN—_Mmyn
global Ac” = r
// Apply corrector

m+1[]in :m[Jin+mAcin
//

Initial solution for next time step

| UM =g (et lUF k=0,..,n) i=1,..,1

79

4 Interface Jacobian-based Co-Simulation Algorithm

Here the Schur complement of A with respect to Axx is denoted
by Agenur- The name Schur complement goes back to the definition
of the mathematician Issai Schur whose original work was published
in German, an English translation of his work can be found in Schur
[131]. Furthermore, it can be shown (e.g. Boyd et al. [20] and Strang
[144]) that if A is positive definite Ag,,, is also positive definite. For
the determinants the following holds (see Zhang [162])

det(A)=det(Axx)- det(Ascnyr)- (4.28)

The formulation of the system involving the Schur complement has
better numerical properties than the original Equation System (4.25),
which is discussed by Badia et al. [8]. This also holds for the extraction
of the interface Jacobian as the interface Jacobian is given by

oY 4
ﬁ = ASchur . (429)

Note that these ideas can be carried over to the nonlinear regime
by using the so called global sensitivity equation (GSE). Please see
Section 4.7.1 for more details.

4.6 Stability Considerations

An undamped two-mass oscillator system is used to represent a cou-
pled second-order initial value problem. The model problem is used
to analyze the stability properties of the JCSA and compare them with
classical fixed-point iteration algorithms (Gauss-Seidel and Jacobi).
The setting of the model problem is shown in Figure 4.1. The coupled
system is decomposed in two domains (domain 1 and domain 2).

The interface of the two domains is formed by a massless rigid
link between the masses m; and m,. The properties of the partitioned
systems are derived from the monolithic quantities. The monolithic
stiffness is denoted by k and the monolithic mass is denoted by m.
Hence the eigenfrequency of the monolithic system is given by w =
VE/m.

With the initial conditions «(0) =0 and iz (0) = 1 the analytical so-
lution of the monolithic problem is given by u(#) =1/ sin(wt), where
u(t)is the time dependent interface displacement. Let us introduce
f being the force exerted by the mass m, onto m;.

80

4.6 Stability Considerations

N
domain 1 domain 2 \

interface

N

Figure 4.1: Model problem for stability considerations

Furthermore, it is needed to define the quantities m,, m,, k; and
k, of the two subsystems. Therefore, the dimensionless parameters
By and B, are introduced where {;, e R|0< 8, <1} and {5, €R|0 <
B, < 1}. Thus for domain 1 the system parameters are given by

my = pym, (4.30)
ky = B, k. (4.31)

For domain 2 one has
my=(1—pB;)m, (4.32)
ky=(1—p,)k. (4.33)

With these parameters the governing ordinary differential equations
for the two domains can be defined. Hence, for domain 1 we have

myih +kyuy = fi, (4.34)

Pimiu+ Brku, = fi, (4.35)
and for domain 2 we arrive at

mytiy + kytty =—fo, (4.36)

(1=B)mity + (1= Po) kuo =~ . (4.37)

Equations (4.35) and (4.37) can be reformulated in operator notation
to

Y, =8, (W), (4.38)
Y, =8, (). (4.39)

81

4 Interface Jacobian-based Co-Simulation Algorithm

For a Dirichlet-Neumann decomposition of the model problem (see
Section 3.4) the interface constraint equations read

U =uU,=u, (4.40)
h=r. (4.41)

Having that, the output and the input quantities are defined for the
model problem, as follows

U=Hh (4.42)
U, = uy, (4.43)
Y, =uy, (4.44)
Y, =f. (4.45)

Hence, the interface constraint operators are given by

7,(8 (W), U))=U - %, =0, (4.46)
(s ().)=t~ 1 =0. (4.47)

In order to be able to discuss numerical stability properties of the
different coupling algorithms a numerical time integrator needs to be
employed. As this is a model problem the BE (see Section 3.1.1) time
integrator is chosen, however any time integrator could be taken for
the discussion, in general. The BE method is used for both domains.
Generally, different time integrators for the different domains may
be present (see Section 3.2). The stability discussion is not limited
to the particular choice of BE for both domains. However, it keeps
the formulas to a reasonable level of complexity without harming the
generality.

With the help of the BE time integrator, Equations (4.35) and (4.37)
can be discretized in time. This leads to

h? Bim
n+l _ ntl 4 1 2yl — ! ,
W=t Bk h ﬂ1m+ﬁ2kh2(u —uy™)
(4.48)
wi_ Bim—m—kh*+Bokh? . (1=p)m
£ = 1 = 2 "+ - (2u2 —u .
(4.49)

82

4.6 Stability Considerations

4.6.1 Gauss-Seidel Fixed-Point Iterations

As already discussed in Section 3.3, in fluid-structure interaction the
GS scheme is commonly used. Therefore we analyze this pattern first.
The communication pattern for two iterations is plotted in Figure 3.11.
As we focus on iterative schemes in this work iteration counters need
to be added to Equations (4.48) and (4.49). Furthermore, the parti-
tioned treatment requires that the time index of the input quantities
has to be changed which results in

myntl h? mfn+ ﬂlm (Zun_unfl) (4.50)
L BimA+Bokh2 U BymA4Pokh2 T T T
men pim—m—kh*+B,kh?,
f2+1: 1 - 2 u2+
1— m
%(m;—u;l). 4.51)

By analyzing the Gauss-Seidel communication pattern (see steps
3,7 and 11 in Figure 3.11) it is obvious that the following holds:

mfln _m 2n+1 (4.52)

Therefore Equations (4.50) and (4.51) can be coupled into one equa-
tion. After sorting the variables one has
_ pim—m—kh*+p,kh*
T Bim+pokh?

Hgs

m._ n+l

u n

m

Pim+ Bokh?

where Hgg is the so called convergence factor. Note that the operator
notation for this problem can be simplified if the Gauss-Seidel com-

munication pattern is used. Hence Equations (4.38) and (4.39) can be
combined to

Y =5 (S:(t)). (4.54)

(2u"—u""), (4.53)

For convergence of the Gauss-Seidel iterations the following must
hold (see Section 2.2):

|Hgsl < 1 (4.55)

83

4 Interface Jacobian-based Co-Simulation Algorithm

Note that for this particular model problem, which has one scalar
interface variable, an optimal relaxation factor can be determined
to provide the converged solution of the coupled problem after the
first iteration. If relaxation is included the update rule is modified and
instead of using

"y, ="y, (4.56)

the relaxation factor {a € R} is incorporated in the update rule as
follows

"y, ="0,+a("U,—-"Y,). 4.57)
With the help of the convergence factor this can be written as

"y, ="U,+a("U,— Hes"U,—c), (4.58)

"y, =(1+a—aHgs)"U,—c. (4.59)

Similar to Section 2.2.1 for optimal convergence
1+a—aHgs=0, (4.60)

must be true.
Hence the optimal relaxation factor for the model problem is given

Qopt = (4.61)

This is also discussed in Joosten et al. [83, p. 767].

4.6.2 Jacobi Fixed-Point Iterations

In order to determine the convergence factor for the Jacobi scheme,
Equations (4.50) and (4.51) are written in the following matrix from

uptt _ 0 —ﬂlmfgzkhZ "y
mfzn+1 ﬂlm*m*;’;hqﬂzkhz 0 mfzn
Hjc (4.62)
prm
+|P 1('1"_75’? Z)fnhz (2uy —ul™).

h2

84

4.6 Stability Considerations

As the convergence factor Hj¢ is no longer a scalar the convergence
criterion (4.55) needs to be extended to a multi-dimensional space. In
a multi-dimensional space the spectral radius is introduced. Hence,
Equation (2.24) must be satisfied for convergence. Thus we have

p(Hi)<1, (4.63)

for the Jacobi scheme. Therefore Jacobi iterations will converge for
the model problem if and only if

h? —m—kh? kh2
prm=—m=Kh*+ fokh?) (4.64)
\ |Bim + pokh? n2
is satisfied. This may be further simplified to
—1—w2h2+ 2h2
il L Ll DY (4.65)
\ B1+ Paw?h?

which is the square root of the convergence factor for the Gauss-Seidel
Hgg pattern.

4.6.3 Interface Jacobian-based Co-Simulation Algorithm

As the IJCSA is applied to a linear problem it needs to converge to the
correct solution within one iteration. In order to proof that the Newton
method converges for the model problem Theorem 2.12 of Deuflhard
[36] is used. As the model problem is linear the only assumption left
to check is for which model properties Jgop is invertible.

Y,

_|!
Jgova = |, (4.66)

R

For the model problem the interface Jacobian matrix is defined by

1 Brm—m—kh?+pykh?
2
Jalobal = " " = const. (4.67)
|~ Pum+pokh? 1

85

4 Interface Jacobian-based Co-Simulation Algorithm

For a 2 x 2 matrix the inverse is given by

-1

a b 1 d —b

= 4.68
c d ad—bc | g4 (468)

That means that the global interface Jacobian is not invertible if

Brm—m—kh?+ B, kh? h?

=1. 4.69
h2? Bim+ Bokh? (4.69)

This is only the case if
m+kh*=0, (4.70)

which is not the case for a physical meaningful parameter set. There-
fore we conclude that the IJCSA is unconditionally stable for the model
problem.

4.6.4 Discussion of the Stability Properties

In the following the results of the stability considerations for GS with-
out relaxation, JC without relaxation and the IJCSA should be dis-
cussed. One interesting limit case is i — 0, this case represents the
consistency of the algorithm. Thus we have

prl ' @.71)

lim (o (Hic)) = \ 5

Bi—1
B |

For h — 0 IJCSA is converging as long as the mass of the model prob-
lem is larger than zero m > 0.

As the convergence factor of the GS pattern is the square of the
one of the JC pattern it is enough to analyze the convergence factor
of the GS method. The limit of stability is the same for the JC and
the GS method, the difference is the rate of convergence. The smaller
the convergence factor is the faster the convergence rate is i.e. GS
converges faster than the JC pattern. The convergence factor for GS
may also be written as

lim (|Hss|)= 4.72)

=p(Hyc) . (4.73)

86

4.6 Stability Considerations

o
-
=0

stable

0 0.5 1
Br

Figure 4.2: Stability limit graph

In Figure 4.2 the stability limits are shown for w?h? = 0, w?h? =1
and w?h? — 00. As w?h? is increased the stability limit is rotated
around {f; =0.5, B, =0.5}. The lower left part is always the unstable
region. Thus, if {, €[0..0.5] A B, €[0..0.5]} the parameter set is always
unstable independent of the choice of w?h?.

At the consistency bounds the stability is determined only by the
mass ratio between domain 1 and domain 2. This is aligned with obser-
vations by Causin et al. [28] in fluid-structure interaction. This shows
that IJCSA is the best choice as it will render the coupled solution of
the model problem within one iteration independent of any system
parameter as long as they are physical.

Note that the stability is not just determined by the choice of the
communication pattern (e.g. Gauss-Seidel or Jacobi), but also the
choice of the decomposition is decisive (see Section 3.4). It can be
shown that the IJCSA is unconditionally stable for the model problem
independent of the choice of the decomposition.

87

4 Interface Jacobian-based Co-Simulation Algorithm

4.7 Examples

The following section presents different examples which illustrate
the performance of the IJCSA in more detail. The most general form
of the IJCSA is presented in Algorithm 4.4. By analyzing this algo-
rithm three core capabilities of the subsystems can be identified. The
most obvious capability of a "black-box" like subsystem is requested
in line 4 which is a simple solution of one time step. This ability is
indicated with doSolve. doSolve may indicate a method name in
an implementation of the IJJCSA. The core method of the IJCSA is
given in line 10 where the subsystems need to deliver an interface
Jacobian (getInterfaceJacobian). Inline 6 the solution of all sub-
systems is performed. This can be done in an efficient way by using
Approximation (4.20). Hence the subsystem method may be called
doApproximatedSolve.

These three core capabilities of the subsystems are illustrated in
the following examples. All presented examples are nonlinear as most
co-simulation scenarios involve nonlinear problems.

4.7.1 Truss versus Truss Problem

IJCSA is used to solve a nonlinear transient structural mechanics prob-
lem. Within the problem, two truss systems are coupled. Each truss
system is nonlinear due to the choice of the Hencky strain measure.
The material law is chosen as St. Venant-Kirchhoff. A sketch of the
problem setting is given in Figure 4.3.
The problem is similar to the one used in the stability Section 4.6.
Therefore we have
Y ZSI(UI)’ (4.74)

Y, =8, (Uh), (4.75)
and the interface relations are given by

5(s (). Ul) =t~ % =0, (4.76)
T,(8:(Wh), i) =t~ i =0. @.77)

88

4.7 Examples

interface |

Figure 4.3: Setup of Truss versus Truss problem

The 1D Hencky Truss Element

We start with the quadratic internal energy functional for the truss

1
Iinterna = 5 J Eez dv, (4.78)
14

where E is the Young’s modulus and ¢ is the Hencky strain. The weak
form of Equation (4.78) reads

6 Minternal = f Ee(u(x))de(u(x))dv. 4.79)
|4

This may be split over a sum of finite elements (n, being the total
number of elements)

e
0 Ilinternal = Z 5Heime,ml . (4.80)

e=1

If linear shape functions are used for the approximation of the dis-
placement field u (x), the discretized weak form of a one dimensional
truss with Hencky strain measure is

T

5
hoo_ (] o) (4.81)

p.(u) Ou,
—_———

€internal
Pe(u)

89

4 Interface Jacobian-based Co-Simulation Algorithm

where p. (u) is called element internal force vector. Considering con-
centrated external forces only we can write

,
u ou ou
= [P B A R (4.82)
P2 (u) ou, 0 U,
———
pe(u)

where the element external force vector is denoted by f.. As this must
be true for arbitrary test functions 6 u the nonlinear equation system
to be solved can be written as

u
Fsubsyse (u) = - fe =0. (4.83)
p2(u)

Dynamic Extension of the 1D Hencky Truss Element

In order to add dynamics effects to the nonlinear Residual (4.83), the
D’Alembert forces must also be added. Thus the semi-discretized
version of the dynamic nonlinear residual is

Fsubsys (u)=Mii + Fsubsys (u)=Mii+ 14 (u)— f =0. (4.84)
In order to discretize the vector of accelerations ii the BE operator is

used. Thus Equation (4.84) can be written as

1
rsubsys(un+l) =M

E(un%—l_zun+un—l)+p(un+l)_f=0.

(4.85)
Solving the Nonlinear Equation System with the Newton Method
The iteration sequence for the Newton method is given by

-1

+1U zlu_j(rsubsys (lu)) rsubsys(l”)- (4.86)

The Jacobian of the nonlinear residual vector J (rsubsyS (I u)) is given
by

1
j(rsubsys (lu)):Mﬁ‘i‘j(p(u))’ (4.87)
~—_———

90

4.7 Examples

where K (u) is referred to as tangent stiffness matrix and given by
K(u)=A K. (u). (4.88)

Here A is the assembly operator and K, (u) is given by

op(u) OIp(u)

du, du,
K. (u)= . (4.89)
op,(u) Ip(u)
u, du,

The element system matrices and vectors can be summarized to

In Le + U, —u,
L, 1

u)=EL . 4.90
pe(u) T hti—t |y (4.90)

Where u; is the displacement at element node 1 and u, the displace-
ment at element node 2. The element length is denoted by L.. Form
the internal force vector we get the stiffness matrix

Lo+ uy—uy
Inf ———— |—-1
L, —1 1

K.(u)=EL, > . (4.91)
(Le—i— uz—ul) 1 -1

The lumped form of the mass matrix is given by

0

M.=pL, (4.92)

(] D=

1
2

Next, the algorithms inside the subsystems for the Truss versus
Truss problem are described in detail. Thus the implementation of
the IJCSA for the Truss versus Truss problem is illustrated.

Subsystem 1 Y, =S; (Ul)

Subsystem 1 expects an interface force as an input. The subsystem ad-
ditionally applies a constant force f to the truss system at the interface
node (see Figure 4.3). The nonlinear residual function for subsystem

91

4 Interface Jacobian-based Co-Simulation Algorithm

Table 4.1: Input/Output quantities for subsystem 1

Subsystem InputU Output Y

N m
Sl ﬁn&erface Uinterface
1is given by
1 p—
rsubsys(un+1) = Mﬁ (urH—l —2u"+u" 1)+p (u"“)—f =0.

(4.93)

Please also note that the vector of unknowns is sorted such that the
last degree of freedom is the interface degree of freedom. The internal
degrees of freedom, in the following, are referred to as state variables

-
X, = [ul U, - MH] . Therefore, Equation (4.93) becomes

1 X

rsubsys(u”“):Mﬁ ! —2u"+u" |+
Uinterface = 11
~——
un+1
0 0
pu™)—| |+ =0. (4.94)

f ﬁnterface =U
~_~— —,

f ﬁnterface

doSolve The doSolve function of subsystem 1 expects an inter-
face force as input (U;) and outputs the displacement of the interface
degree of freedom (Y;). In order to solve the system of nonlinear equa-
tions for every time step the function applies a local Newton method
to Equation (4.94)

j (rsubsys (l un+l)) l+1Aun+1 = _rsubsys (l urH—l) . (4-95)

92

4.7 Examples

Note that [is the local Newton iteration counter and # is the time
step counter.

getInterfaceJacobian This function computes the interface Ja-
cobian and updates the internal Jacobian for the state variables. The
basis for the following considerations is the so called global sensitivity
equation (see Henrik [74] and Sobieszczanski-Sobieski [140]), which
reads

arsubsys(u) ou . arsubsys
u oL oL

(4.96)

In the case of the IJCSA ¢ is represented via the interface input vari-
able. For subsystem 1 this is the interface force fieface- Hence Equa-
tion (4.96) for subsystem 1 may be written as

A u __ arsubsys,
0 ﬁnterface 0 ﬁnterface
du _ —Ail 0 rsubsys) (4.97)
0 finterface 0 finterface

Equation (4.97) reads in more detail

X,

1 0
afinterface _ A,1
0 Uinterface
0 ﬁnterface 1
Here
7 uy
0 finterface
ou,
X 1 . a—
Y ﬁnterface
0 ﬁnterface .
ou;,
L 0 ﬁnterface]

93

4 Interface Jacobian-based Co-Simulation Algorithm

and

0 Uinterface _ 0 Yl
afi‘nterface 0 Ul

Thus, a Jacobian extraction involves a linear solution of the system.
However, if within doSolve a direct solver is used, the decomposition
of A is reused for the Jacobian extraction.

doApproximatedSclve The doApproximatedSolve method
provides an efficient approximation for the solution of the subsystem

mox

m+1 m 1 m
Xi~" X+ |=— "AU;, 4.98
1 1 a l]l 1 ()

moX
m+1X1 R~ le + — mAfinterface’ (4.99)

afi‘nterface

m+1Y1=g(m+1X1,m[]1), (4'100)

which does not involve a new integration in subsystem 1.

Note that the approximation is applied for the state variables only.
Be aware that m is the iteration counter for the interface iterations. As
the finite element method is used for the discretization of this problem
and the trial and test functions are chosen to be linear, the g function
is simply a nonlinear relation between the displacements of the nodes
n.—1 and n,.

Subsystem 2 Y, =S, ([]2)

In contrast to subsystem 1, subsystem 2 needs the interface displace-
ment as input (see Table 4.2) . The nonlinear residual function for
subsystem 2 is given by

1

fsubsys (u m ’ ﬁnterface) =M—

2 (un+1 —2u"+ un—l)

+p (un+1)_ﬁnterface =0. (4.101)

94

4.7 Examples

Table 4.2: Input/Output quantities for subsystem 2

Subsystem InputU Output Y

N m

Sz

Uinterface ﬁmerface

The internal degrees of freedom are in the following referred to as

T
state variables X2=[u1 u, - ui—l] once more

1 X,
A 1 _1
Fsubsys (un+ ’ ﬁnterface) = Mﬁ —2u"+u" +

Uinterface = Un

N——
un+1

=0. (4.102)
ﬁnterface =Y,
| S ——
ﬁnterface

doSolve The doSolve function of subsystem 2 expects an inter-
face displacement as an input (U,) and outputs the interface force
of the interface degree of freedom (Y,). In order to solve the nonlin-

ear equation system for every time step the function applies a local
Newton method to Equation (4.102)

j (fsubsys (l ﬂn_H)) l-f—lAl’A‘,H—1 = _fsubsys (l ﬁn_H) . (4.103)

95

4 Interface Jacobian-based Co-Simulation Algorithm

Please note that u is replaced with 7 because uj,erface 1S known now
as it is an input quantity. Hence # is given by

Uy

Up

(4.104)

IS
Il

Ui

ﬁnterface =Y

getInterfaceJacobian Based on the Jacobian extraction proce-
dure of subsystem 1 for subsystem 2 this is

~ adu aF subsys
A =— :
0 Uinterface 0 Uinterface
on A o Fsubsys
— = A1 (4.105)
0 Uinterface d Uinterface

Equation (4.105) can be written as

X,
0 Uinterface _ A,1 o rsubsys
afi‘nterface d Uinterface

0 Uinterface

Note that
[o U
0 Uinterface
du,
aX,

0 0 Uinterface
Uinterface .

Ju,

| 0 Uinterface]

and

afinterface _ aYZ
0 Uinterface 0 U,

96

4.7 Examples

0 rsubsys

Furthermore, represents the last column of A.

3 Uinterface

doApproximatedSolve The doApproximatedSolve for subsys-
tem 2 is similar to subsystem 1, namely

mAlx X +m 9%, mAU, (4.106)
2 2 6’(]2 2 .

o o9X,

mHX, M X, + ™ Alipterfaces (4.107)

d Uinterface

m+1Y2:g(m+1X2’ml]2)' (4.].08)

Results

Numerical experiments are performed with the Truss versus Truss
problem in order to demonstrate the performance of the IJJCSA. There-
fore, truss 1 is discretized with 20 elements and truss 2 with 10. The
total length of the two truss systems is set to L = 1 m. Initial conditions
are 1 (0)=0m and i (0) = 0m/s. The interface residual is considered
as converged if

7517, < 1-0- 107 (4.109)

A constant external load f =4.25N is applied inside subsystem 1. The
local iteration convergence constraint for both subsystems is set to

Hrsubsys||max< 1.0- 10_12- (4.110)

For the sake of clarity an absolute residual measure is used. As possible
reference values for a relative residual measure, the applied force and
the maximum interface displacement are close to one, the absolute
residual measure does not restrict the outcome of the discussion in
any way. Time discretization is done with a step size of & = 0.01s
and 200 time steps. To verify the coupled solution the simulations
are compared with a monolithic solution performed with Abaqus. It
turned out that the IJCSA solution matches all the digits of the Abaqus

97

4 Interface Jacobian-based Co-Simulation Algorithm

solution. The densities are set to g; = 0.55k8/m* and g, = 0.5kg/m?.
The Young’s moduli are E; =20N/m? and E, = 50N/m2. This parameter
set is unstable with a standard Jacobi pattern when no relaxation
is applied. Therefore constant under-relaxation a = 0.38 is applied.
The relaxation factor was determined by numerical experiments and
seems to be optimal for this problem parameter set. However it is
possible to use adaptive relaxation methods like Aitken. The Aitken
relaxation method can be used in combination with the Gauss-Seidel
pattern (see Joosten et al. [83]). Convergence for the Aitken relaxation
method is only proven to be guaranteed if the residual is a scalar. The
proof is available in Henrici [72].

014 """" P P rTToT T D D P f
' Geometric nonlinear (Hencky) ———
. . . . Geometric linear ---------- .
OI2 f
0.1

0.08

0.06

Displacement (m)

0.04

0.02

Time (s)

Figure 4.4: Numerical solution of the Truss versus Truss problem

Table 4.3 presents the number of local and interface iterations
for different algorithms. Classical fixed-point techniques and various
versions of the IJCSA are compared. The number of local iterations is
the mostimportant one for the runtime. Each local Newton iteration of
subsystem 1 and 2 involves a solution of a linear equation system. For
the Truss versus Truss problem this is by far the most time consuming
part in terms of the wall-clock time. Hence this is the measure for the
efficiency of the different co-simulation algorithms.

98

Table 4.3:

4.7 Examples

Numerical results for the Truss versus Truss problem

Description

no. of local no. of local no. of local no. of local no. of
iterations iterations iterations iterations interface
for S; for S, for S)~ for S,~ iterations

Aitken relaxation
with Gauss-Seidel
pattern

constant
under-relaxation
with Jacobi pattern

basic IJCSA
(Algorithm 4.3)

enhanced IJCSA
(Algorithm 4.4)

basic IJCSA
(Algorithm 4.3) with
a fixed number of
local Newton
iterations for the
solve step (1 local
iteration)

enhanced IJCSA
(Algorithm 4.4) with
a fixed number of
local Newton
iterations for the
solve step (1 local
iteration)

enhanced IJCSA
(algorithm with
Jacobian extraction
in the first iteration
within each time
step only (modified
Newton)) (1 local
iteration)

4157 3720 0 0 1092

46388 44333 0 0 17446

2526 2568 0 0 785

771 807 1619 1178 789

1146 1146 0 0 1146

200 200 1262 932 666

200 200 1854 1400 900

99

4 Interface Jacobian-based Co-Simulation Algorithm

As the subsystems use local iterations to solve the nonlinear state
equations an additional efficiency enhancement of the IJCSA may be
done. This is to converge the local iteration and the interface (outer)
iterations together. It is about three times faster than converging the
local iterations for the Truss versus Truss co-simulation problem.

Ifthe problemis "mildly" nonlinear it might also be of advantage to
use a modified Newton strategy in which Jacobian extraction is done
in the first iteration only within each time step. However modified
Newton methods exhibit in general only a linear convergence rate
(see Section 2.3).

The numerical solution for the chosen parameter set is shown
in Figure 4.4. The numerical dissipation of the BE time integrator
is dominant. However this is the exact monolithic solution of the
problem setting. Additionally, Figure 4.4 shows the geometrical linear
solution of the Truss versus Truss problem. By comparing that to the
geometrical nonlinear (Hencky) solution of the Truss versus Truss
problem it is evident that the geometrical nonlinearity changes to
structural response distinctly.

The fastest I[JCSA version is about 18x faster than the Aitken relax-
ation for the Gauss-Seidel pattern (this also takes the extraction of the
Jacobian into account). Moreover, Gauss-Seidel based patterns are
no option for a general multi-code co-simulation scenario: they have
the severe disadvantage of data flow dependency of all participating
subsystems.

Figure 4.5(d) shows the evolution of the interface residual norm
for the interface iterations needed to accomplish three time steps.
The Aitken version shows a fairly good reduction of the interface
residual. It needs six iterations to render the residual below 1-1071.
The constant under-relaxation shows a linear convergence rate which
leads to a large number of iterations (approx. 100 per time step). The
basic version of the IJCSA needs the least number of iterations. The
modified Newton starts with ten iterations and drops down to six
iterations for the third time step. The modified Newton method is
best when the problem is "mildly" nonlinear there it is more efficient
than a full Newton method.

100

r
max

Residual ||

r
max

Residual ||

1 .
1E+02 . Time (s

1E+00

1E-0

1E-04
1E-06

1E-08

E14 b v v

1E+02

1E+00

1E-02

1E-04

1E-06

1E-08

1E-10

1E-12

1E-14

4.7 Examples

2

J

123 456123 456 123456

Iterations

(a) Aitken relaxation with Gauss-Seidel pattern

Time (s)

20 40 60 80 1 21 41 61 81 4 24 44 64 84

Iterations
(b) Constant under-relaxation with Jacobi pattern

Figure 4.5: Convergence behavior of the Truss versus Truss
problem for the first 3 time steps

101

4 Interface Jacobian-based Co-Simulation Algorithm

0 1 . 2 3
TE402 (o, Hme)

1E+00
1E-02

1E-04

||max

1E-06

1E-08

Residual || r

1E-10

1E-12

USSR N S T S S T S N A

Iterations
(c) Basic IJCSA (Algorithm 4.3)
1E+02 OlTlme()zg
1E+00
1E-02
1E-04

1E-06

1E-08

Residual || r”max

1E-10

1E-12

E-14 i & 0

123456789101 2345678123456

Iterations

(d) Enhanced IJCSA (algorithm with Jacobian extraction in the first iteration within
each time step only and one local Newton iteration per interface iteration)

Figure 4.5: Convergence behavior of the Truss versus Truss
problem for the first 3 time steps

102

4.7 Examples

4.7.2 A Multi-Code Problem

Within this section an example problem which consists of five subsys-
tems is discussed. The subsystems S; and S, are thereby modeled by a
nonlinear operator described in Section 4.7.1. The spring-subsystem
S; is a simple linear spring model. The dashpot-subsystem &, is inte-
grated with the BE integrator; this subsystem is also linear. The last
subsystem is a nonlinear ODE stemming from the simplification of
the Navier-Stokes equations on moving grids; it is integrated with the
trapezoidal rule (TR). The problem setup is illustrated in Figure 4.6.
The input/output quantities for the Multi-Code problem are pre-
sented in Table 4.4. Keeping in mind these input/output quantities

Table 4.4: Input/output quantities for the Multi-Code problem

Subsystem InputU Output Y

S h uy
Ss f2 Uz
S; £ us
Sy fa Uy
Ss us fs

the following interface operators and interface residuals are defined
for this problem:

Ry =T, (Us, U, U, Uy, Y6) = Uy + U+ Uy + - Uy — %= 0
A3 Ay
(4.111)
Ro=1,(8(U1),% () =vi—Y, =0
(4.112)
Rszzs(sl(Ul),Ss(Us)) =V+A:1 =0
(4.113)
R4=I4(51(L71),S4(U4)) =V+AY =0
(4.114)

103

4 Interface Jacobian-based Co-Simulation Algorithm

Rs=15(S1 (V). S5(U5)) =¥i—U; =0
(4.115)

Hence, the global interface Jacobian matrix is given by

1 1 28; |
1 1 — - ==
As A4 oUs
8 08,
= == 9 0 0
oy, U,
95y L8 0 (4.116)
ou, 20U, ' '
681 884
=L 0 0 Ady=—o 0
ou, oy,
95 0 0 —1
19U,

Yid
A4=%

slip wall

n

__19pno

0 — 19[1[19A_A v 0 — 19[1n0d

interface

Figure 4.6: Setup of the Multi-Code problem

Subsystem 1 - Truss 1

This subsystem is defined in Section 4.7.1

Subsystem 2 - Truss 2

This subsystem is defined in Section 4.7.1

104

4.7 Examples

Subsystem 3 - Spring
A linear spring model is used in subsystem 3 which is given by

1
ul ™= = i (4.117)
3
Hence the interface Jacobian for this subsystem is constant and given
by

9% _1 (4.118)

oU; ks’ ’
Subsystem 4 - Dashpot
In subsystem 4 a linear dashpot model is used

ydy = fy (4.119)
which is integrated by using the BE integrator

n+1 n h n+1
u, " =u+—f". (4.120)
d,

The interface Jacobian for this subsystem is again constant. Hence,
we have

S, h
—=—. 4.121
ou, " d, ()

Subsystem 5 - Idealized Piston

This section derives the governing equations for the Idealized Piston
subsystem. As the fluid is modeled incompressible the starting point
for the derivations are the Navier-Stokes equations for incompress-
ible flow in combination with a linear material law (Stokes relations).
These equations describe the flow on a fixed grid (Eulerian point of
view). If the structure will be modeled in the Lagrangian framework it
would cause a problem at the interface of fluid and structure. In order
to cope with this problem the arbitrary Lagrangian-Eulerian (ALE)
method is used. As the ALE method is a hybrid reference frame (mix-

105

4 Interface Jacobian-based Co-Simulation Algorithm

ture of Eulerian and Lagrangian reference frame), the Navier-Stokes
equations need to be changed as shown in Donea et al. [37] to

ov;

3_;:1:0’ (4.122)
aUl' i an 10 32Ui
Ll (,,j_ gd)_____p

; = +
ot I Jox; p50x; V@x]?

) (4.123)

where g5 is the fluid density and v is the kinematic viscosity. p is
the most important quantity for the Idealized Piston subsystem as it
represents the hydrostatic pressure. The flow velocity components
are denoted by v;. Furthermore, ¥ are the so called grid velocity
componentsand (v; — v]gnd) the convective velocity components (note
that grid displacement components are denoted via u¥™ = u ;- By
choosing an appropriate set of boundary conditions (see Figure 4.6)
the fluid domain can be reduced to a one dimensional setting, hence
the Equations (4.122) and (4.123) reduce to

oy
Jx,
oy gia\ v 1 dp 2%y,
6t4{vl ")axl_ 05 0% oxt

—0, (4.124)

(4.125)

These equations can be reformulated to one integrable ordinary dif-
ferential equation (ODE) for the pressure (insert conservation of mass
Equation (4.124) in the conservation of momentum Equation (4.125)),
namely

on 1 dp op

27 L ZE_ a0, 4.126

ot 0s0% ox, 1es (4.126)
with a, being the acceleration in x-direction. In the subsequent deriva-
tions the index is dropped as only one dimension is present. Equa-
tion (4.126) can be solved by integration over the domain

o
f%d“‘f’%d* 4.127)

p(x)=—apsx+C. (4.128)

The integration constant C can be determined from the outlet bound-

ary condition for the pressure p(x)|x= L, =0 Please note that the

106

4.7 Examples

coordinate system in Figure 4.6 is fixed in space. As result one obtains
the following linear function for the pressure distribution

p(x)=ags(Ls—x). (4.129)

The ordinary differential nonlinear equation for subsystem 5 is given
by

iis (05 As - Ls) — iis s (05 As) = f, (4.130)

with us being the interface displacement and f; the interface force.

This equation is integrated with the help of the trapezoidal rule,
which is a subset of the generalized-a method presented in Section
3.1.2. If the generalized-a parameters are set ¢, =0, a;=0, =0.25
and y = 0.5 the trapezoidal rule is obtained. The trapezoidal rule
approximates the velocities by

2

i = (=) (4131

Thus the time discretized equation is given by

0 -1 s 0 fs’”l
-1 (Ls_u;ﬁ—l)% U5n+1 -
0 E —1 n+l1
h “
[2
E 1 0 ug’
205A
0 (Ly—ug™) Q;l > (Ls—u)osAs | | v | -
0 2 1 al
h 5
2
ﬁ uéHl
o |. @132
0
With that the interface Jacobian of subsystem 5 is
0S5 2p5A5(2 4 h 2L
a_Uzz%(Eu;—zu;’“uusugaﬁf). (4.133)

107

4 Interface Jacobian-based Co-Simulation Algorithm

Results

The spacial discretization is the same for subsystem 1 and 2 as in the
previous example. The simulation time is 1 s, this results in 1 000 per-
formed time steps. Two different settings are simulated (see Table 4.5).

Table 4.5: Parameter sets for the Multi-Code problem

Parameter Values for setting1 ~ Values for setting2 Unit

h 1 -10°3 1 -10°3 s

f 12.25 12.25 N

E 20 20 N/m2
01 0.55 0.55 Kg/m3
Ly 1 1 m
E, 50 50 N/m?
02 0.5 0.5 kg/m3
L, 1 1 m

ks 500 500 N/m
As 2 2 -

d, 10 10 Ns/m
A4 2 2 _
As 0.1 0.1 m?
Ls 1 1 m
05 1 -10710 2.75 kg/m3

As in setting 1 the fluid density g5 is almost zero the solution is
verified with the monolithic solution of all structural subsystems (one
to four) performed in Abaqus/Standard. For setting 2 the fluid den-
sity is increased and the added mass effect becomes dominate. For
this highly nonlinear example the IJJCSA needs in average 3.7 inter-
face iterations. Please note that the interface residual tolerance of
the previous example is used (see Equation (4.109)). If the modified
Newton version of the IJCSA is used the interface iteration count rises
to five iterations in average per time step. A comparison to classical

108

4.7 Examples

techniques is not possible as all of them failed to deliver a converged
solution for this problem. The results are demonstrated in Figure 4.7.

012 - T T LT T
' © Partitioned solutjon setting 1 ———
- Partitioned solution setting 2 ------

0.1

Displacement (m)

0o 01 02 03 04 05 06 07 08 09 1

Time (s)

Figure 4.7: Numerical solution of the Multi-Code problem

This example demonstrates that the [JCSA can handle complex
co-simulation scenarios in an efficient and accurate manner. It can
handle different numerical time integrators within different subsys-
tems.

Note that Figure 4.8 shows the absolute residual. In a general im-
plementation it is better to use a relative residual. For the discussion
of the Multi-Code problem there is no difference of using the absolute
or relative residual as the applied force and the maximal interface
displacement is close enough to one. Hence the use of a relative defi-
nition will not change the outcome of the discussion.

Figure 4.8 shows that for the Multi-Code problem the different
residuals are not equally important. Here the residual associated with
the interface forces R, plays the dominate role. In a general co-simula-
tion scenario this is always the case. The advantage of using a parallel
(Jacobi) data flow is that this exposes all interface quantities in the
interface residual vector. This is not the case if a Gauss-Seidel data
flowis used e.g. it can be seen in the stability section that Gauss-Seidel

109

4 Interface Jacobian-based Co-Simulation Algorithm

1 2
TB4+20 (o TmE)

1E+15

1E+10

1E+05

1E+00

Residual

1E-05

1E-10

1E-15

P I R T S N N T S N N A

Iterations

Figure 4.8: Residual evolution for the different components of
the interface residual vector for setting 2 of the Multi-Code
problem

removes the force from the interface residual. Hence the advantage
of the IJCSA is that it controls all residuals which leads in general to
more accurate results.

Asitis known from Section 3.2 the mix of different time integrators
may cause problems with the overall convergence of the solution with
respect to the time step size, a convergence study for setting 2 of the
problem is performed. Figure 4.9 shows that a first order of accuracy
is achieved and thus the co-simulation is consistent.

4.7.3 BspK6

The BspK6 is a synthetic co-simulation example proposed by Bastian
etal. [11]. The subsystems S, S,, and S; form a cycle within the graph
of the block-diagram. A cycle is a path in a graph with the same node
as start and end point. Additionally, the BspK6 example has discon-
tinuities within the subsystems. Hence, it is a good supplement of
the test examples for the IJCSA. It consist of four subsystems. The
block-diagram of the BspK6 is shown in Figure 4.10. With the help of

110

(m)

pend
gloT

Absolute error e,

1E+01

1E+00

1E-01

1E-02

1E-03

1E-04

4.7 Examples

I I I

1E-04

1E-03 1E-02 1E-01

Time step size h (s)

Figure 4.9: Absolute global error (2.80) of the interface
displacement for setting 2 of the Multi-Code problem

Figure 4.10:

Block diagram that describes the BspK6 example

111

4 Interface Jacobian-based Co-Simulation Algorithm

the block-diagram we can directly derive the global interface residual
vector, which reads

Ry U,—- Y
Ro U,— Y%
po | R o | U] (4.134)
R4 U, — Y,
Rs U—-Y,
Rs U;—1,

Hence the global interface Jacobian matrix is defined by

oY,
1 0 00 —22 9
o,
Y,
0 1 o0 o 2=
U,
0 0 10 0 0
Tatobal = . (4.135)
global 0 0 01 0 0
oY, oY,
—h Zh g 9 1 0
ou, ou,
2y, ov,
e 1
ou, o,

Furthermore, the block-diagram shows that the subsystems S;, S,,
and S; form a cycle.

The BE method is used within all subsystems in order to compare
the result with Bastian et al. [11].

Subsystem 1

The system is given by the following three equations:

Xi+2X,—U;, — Uy, =0 (4.136)

0 ifU14:1,

(4.137)
U,—X; else.

Y11 =81, (Ull’Xl) = {

112

4.7 Examples

Y, =g (U, X)) =1 " O, =1, (4.138)
1, — glz 1,0 41)— Ulz —X1 else. .
The BE discretized version of subsystem 1 reads:
Un+1 + Un+1 + XTI"
xpH= L& (4.139)
F+2
0 ifurtt=1
Y= = ’ (4.140)
h U™ — X[else.
0 ifurtt=1
Y= s ’ (4.141)
Iz U =X else.

In the following the four interface Jacobian components of subsystem
1 are derived.

aY 0 if Ul4 = 1,
ﬁUl1 =194, 9% + 281, =1— else (4.142)
L aXl aUll 5U11 B %4— ’

0 iU, =1,

aYII 5X1 agll 1
+ =— else.
ox, ou,, du, 149

oV,
U,

(4.143)

28 g Ise.
U\ ox, o0, T ou, else

==

0 ifU, =1,
oy, 0X, N o8,
0X, 00, 02U, ++2

oV,
U,

(4.145)

0 ifU;, =1
oy, L=
h{aylz ox, 0g, 1 (4.144)
2

113

4 Interface Jacobian-based Co-Simulation Algorithm

Subsystem 2

The system is given by the following two equations:

1.
5 Xe+ Xo + Uy —sin(371) =0 (4.146)

2T
Y2=g2(U2,X2)=X2+UZ(IOOOsin(Et)HOOI) (4.147)

The BE discretized version of subsystem 2 reads

ﬁXZ" —UM + sin(Sﬂt"“)

Xn+1:
2 o+ 1

: (4.148)
27
Y, = X+ (1000 sin(l—o t"“) + 1001) Ut (4.149)

The interface Jacobian of subsystem 2 is given by

Y, 0Y,0X, O 2n
222222, 98 1000sin| == |+ 1001,
(4.150)
Subsystem 3
The system is given by the following two equations:
1.
5 Xa+ Xa+ Uy —sin(2m1) =0 (4.151)

27
Y3=g3(U3,X3)=X3+U3(—10005in(1—0t)+1001) (4.152)

The BE discretized version of subsystem 3 reads

o XJ1 — U™ +-sin (27 17+1)

1
1

X = , (4.153)

27
Yy =X+ (—1000sin (1—0 t"“) + 1001) U/t (4.154)

114

4.7 Examples

The interface Jacobian of subsystem 3 is given by

Y, 0¥ 0X3; O 1 2n
S it OB 1000sin| — ™ |+ 1001,
0U; 0X30U; 0U; a5 +1 10
(4.155)
Subsystem 4
The system is given by the following two equations:
1 ifsin(rct)>%,
Y, = (4.156)
0 else.
1 ifsin(2wr)<—3,
Y, = (4.157)
2 |0 else.
The discretized version of subsystem 4 reads
1 ifsin(me"1)> 1,
Y, = (4.158)
0 else.
1 ifsin(Znt”+1)<—%,
4, = (4.159)
0 else.

As subsystem 4 has no input quantities there is no interface Jacobian
needed for this subsystem. The interface Jacobian of subsystem 4 is
zero by definition.

Results

The IJCSA is used to solve the BspK6 example with a time step size h
of 1-107*. This is the same time step size as in Bastian et al. [11].
The IJCSA needs in average two interface iterations in order to
converge the global interface residual vector to machine precision.
Even when the discontinuity is introduced the IJCSA converges the in-
terface residual to machine precision within three interface iteration.
Figure 4.11 shows the converged results of all five output quantities
of the BspKB®, the results match the one from Bastian et al. [11] exactly.

115

4 Interface Jacobian-based Co-Simulation Algorithm

Output

-0.0004 i i

Time t

(@ ¥, and Y3,

Output

Time t

(b) ¥, ¥, ¥;, and ¥;,

Figure 4.11: Numerical solution of the BspK6 example

116

4.8 Conclusion

4.8 Conclusion

The presented co-simulation algorithm (IJCSA) is based on the idea
of interface Jacobian information for stabilization. With the help of
the stability analysis it is shown that the algorithm outperforms clas-
sical fixed point techniques based on the Jacobi and Gauss-Seidel
approaches. In the example section numerical investigations are per-
formed where the IJCSA is compared to classical co-simulation algo-
rithms which include Aitken relaxation for the Gauss-Seidel pattern.
The IJCSA is for all examples by far more stable and efficient than the
classical techniques. Its design allows for parallel execution of all the
involved subsystems. Furthermore, performance enhancements are
discussed and investigated with different nonlinear examples. The
IJCSA can cope with different time integrators in the subsystems. Cy-
cles within the graph (block-diagram) can be handled because the
co-simulation is formulated in residual form. Furthermore, even alge-
braicloops can be handled because of the residual-based formulation
of the IJCSA (see Appendix A) . The IJCSA presents an efficient, accu-
rate and robust method for solving co-simulation scenarios.

117

Mathematics is the language
in which God has written the
universe.

Galileo Galilei

CHAPTER

APPLICATION EXAMPLES

After presenting the theory and the concept of co-simulation in Chap-
ter 3, a new algorithm for co-simulation was presented in Chapter 4.
The algorithm was tested with demonstrator examples. Within this
chapter the focus is on the validation of a co-simulation framework
for application relevant examples.

Moreover it should be shown how the modularity of co-simulation
can be used to combine existing simulation tools to a powerful mul-
tiphysical environment. Within this chapter the structural mechan-
ics solvers Abaqus/Standard and Carat++, the computational fluid
dynamics solver OpenFOAM, signal solvers implemented in C and
Python and control units implemented in C are coupled together by
using the Enhanced MultiPhysics Interface Research Engine (EMPIRE
[40]) and the SIMULIA Co-Simulation Engine (CSE).

The IJCSA is used in order to solve the coupled problem. In case
where the subsystems are not able to provide their individual inter-
face Jacobian, it is approximated with techniques introduced in the
previous chapters. The focus of the application examples is the co-
simulation of fields and signals where open- and closed-loop control
is present. Within this chapter the examples have fluid-structure inter-

119

5 Application Examples

action in common. The FSI simulation are coupled to various different
signal and control units.

The chapter shows also the benefits of modern co-simulation
techniques. It demonstrates how these methods can be applied to
a fully coupled emergency brake maneuver of a wind turbine. All
shown examples were either verified with simulations or validated
with experiments.

5.1 Turek Benchmark

Before the discussion of fluid-structure-signal interaction is entered
the pure FSI simulation should be verified. A well accepted verification
case in FSI is the FSI3 benchmark proposed by Turek et al. [148]. The
FSI3 benchmark is a rather difficult test case asithas a 1:1 density ratio
between fluid and structure which results in a comparable dominant
interaction with respect to both fields. In other words an imperfection
on the fluid pressure has a significant impact on the displacement on
the structure and vice versa.

Six 8-node incompatible mode elements through the thickness of
the beam are used. The element formulation is based on Simo et al.
[138]. The boundary conditions are set such that plane strain condi-
tions are met. The structure uses the Hilber-Hughes-Taylor method
for time integration which is a subset of the generalized-a discussed
in Chapter 3.

In OpenFOAM a mesh study was performed, the final mesh has
~ 50000 cells. All schemes are set to second order accuracy and the
time integration method is set to BDF2.

5.1.1 Co-Simulation

The problem is decomposed in a Dirichlet/Neumann manner. The
interface Jacobian for the IJJCSA method is set such that it results in a
constant under-relaxation method. It has been shown for the scalar
case in Algorithm 4.2 that a constant under-relaxation method can
be derived from the IJCSA by setting the global interface Jacobian to
be the identity matrix if the individual subsystem residuals have a
certain structure. The same is shown in the following for the Turek
benchmark problem (vector case).

120

5.1 Turek Benchmark

Displacement magnitude (mm)
4-107

(a) Displacement field

o-normalized
pressure (m*/s2)

N
2 f
L O— i
M
(b) p-normalized pressure field
Figure 5.1: Turek benchmark FSI3 displacement and
o-normalized pressure at 10s
The CFD subsystem OpenFOAM can be abbreviated by
1
S (mo)="v, (5.1)

where the input " U/" is a displacement field and the output " ¥,"*! a
force field. For the CSM subsystem the opposite is true, namely

S("u)="vy, (5.2)

Here the input " U," is the force field and the output " ¥,"*! a dis-
placement field. As already noted this is called Dirichlet/Neumann
decomposition. For this decomposition the individual interface resid-
uals are of type

o mRiL m Uln _m Y2n+1
r-= = . (5.3)
ng mUZn_mYInH

121

5 Application Examples

Note that due to the non-machting grids at the fluid-structure
interface the vectors U;” and Y,"*! have different number of elements.
The same problem arises for U, and ¥,**!. This problem can be solved
by using a mapping operation such that the one vector is projected
into a space which renders two equal sized vectors. Within this work an
energy conserving mortar method is used to solve the arising mapping
problems (see Boer et al. [19] and Puso et al. [119]). If the mapping
operator L is discretized this results in a rectangular matrix L. If the
mapping procedure is added to Equation (5.3) this reads

m_.n mRil ml]ln_l’mYZn-*—1 5.4
r = = . .
ng m Uzn _ LTm Y1n+1 ()

In order to keep the notation more readable this is not explicitly writ-
ten in the following discussions.

Equation (5.3) results in a block diagram as depicted in Figure 5.2.
The input/output quantities for the Turek problem are summarized
in Table 5.1. Moreover based on the interface residual definition the
global interface Jacobian is also defined by

oY,
' —zu
"Tgova = | 2, 2. (5.5)
- 1
Ei

Chapter 2 derives the update rule for the constant under-relaxation
method as

My ="x—a™mr. (5.6)

Here x is the global input vector as they are the unknowns. Further-
more the update rule of the IJCSA (Algorithm 4.3) is defined by

+1 -1
mn xnzmx"—m]global M. (5.7)

Itis evident that Equation (5.6) and Equation (5.7) are equal for the
case that

1
m]global = EI! (5.8)

122

5.1 Turek Benchmark

in Equation (5.7). For the Turek benchmark problem the global inter-
face Jacobian of the IJCSA is set such that it corresponds to a constant
under-relaxation method with a = 0.05 by using Equation (5.6) and
Equation (5.7). Please note that the IJCSA with the crude interface
Jacobian approximation performs worse than the GS Aitken method
for the Turek FSI3 example. This is aligned with theory because it
has been shown in Chapter 2 that the Aitken method is an adaptive
advancement of the constant under-relaxation method. This example
is used as a demonstrator, as the Turek FSI3 problem is still solvable
by using a crude approximation for the interface Jacobian and ac-
cepted as a challenging FSI example this shows that the Multi-Code
problem presented in Chapter 4 is even more challenging from the
co-simulation point of view. As the Multi-Code problem is not solv-
able with the Aitken method nor with the constant under-relaxation
method.

Figure 5.2: Block diagram for fluid-structure interaction

Table 5.1: Description of input and output quantities for the

Turek benchmark

Symbol Description Unit

U, Input to CFD m
displacement field

Y, Output of CFD N
force field

U, Input to CSM N
force field

Y, Output of CSM m
displacement field

123

5 Application Examples

A GS Aitken solution where the forces are not present as an inter-
face residual should be compared to a IJCSA solution where forces and
displacements are presented as interface residuals in a fair manner.
Therefore it is necessary to limit the interface residual check for the
IJCSA solution to the displacements only. Both the GS Aitken solu-
tion and the IJCSA solution are converged until the interface residual
vector for the displacements meets

| R[], <1.0- 107 mm. (5.9)

5.1.2 Results

Both the Aitken and the IJCSA render the same solution which is
shown in the Figures 5.3 to 5.4 and summarized in Table 5.2.

-0.008

-0.007

IJCSA
-0.006

-0.005
-0.004

-0.003 Ll

Displacement u, (m)

-0.002

-0.001

o Ak : : j
4 4.5 5 5.5 6

Time (s)

Figure 5.3: FSI3 benchmark displacement u, over time

In order to illustrate how the pressure and the displacement look
like a contour plot of the pressure and the displacement field is given
in Figure 5.1.

The presented results are from a simulation where Abaqus/Stan-
dard is coupled to OpenFOAM. The results show a very good agree-

124

5.1 Turek Benchmark

-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

Displacement u,, (m)

0.01

0.02

0.03 }--

0.04 M i IR
4 45 5 55 6

Time (s)

Figure 5.4: FSI3 benchmark displacement u, over time

Table 5.2: Results for FSI3 with time step 2 =1-10"3s for
amplitude and frequency

Symbol Reference Turek et al. [148] Co-Simulation Rel. deviation
mm {!/s} mm {!/s} % {%}

Uy —2.69+ 2.53{10.9} —2.79+ 2.51 {11.050} 0.83 {1.37}

u, 1.48+34.38 { 5.3} 1.52+34.13{ 5525} 0.74 {4.24}

ment with the provided reference data. The deviation in the amplitude
is less than 1%, the deviation in frequency is less than 5 %.

In order to show the modularity of the co-simulation the FSI3
benchmark was also simulated by using an in-house FEM package
called CARAT. The fluid model could be reused without any modifica-
tions. On top of the reusability of the individual subsystem models,
here a commercial and an in-house FEM package are coupled to Open-
FOAM. This demonstrates that with co-simulation it is possible to

125

5 Application Examples

replace the simulation tool of one individual subsystem and still be
able to reuse all the other subsystem models without any modifica-
tion.

5.2 Oscillating Cylinder

Within this section the transition from FSI to fluid-structure-signal
interaction is performed by using an oscillating cylinder as validation
example. The setting of the oscillating cylinder example is show in Fig-
ure 5.5. A rigid cylinder with mass m is mounted on a spring-damper
system. The cylinder is excited by the vortex shedding of a laminar
flow. An actuator can move the root point of the spring &.

16.5D 50.0D N
L

{

Voo

16.5D

interface

16.5D

I
T

Figure 5.5: Setting of the oscillating cylinder example

The example is used in order to demonstrate closed-loop control
for a fully coupled fluid-structure-signal example. As a first step the
pure CFD simulation where the cylinder is not moving is validated.

5.2.1 CFD Validation

The laminar flow past a cylinder is a well documented benchmark case
in literature. In the following the drag coefficient, lift coefficient and
Strouhal number are compared to various references. The OpenFOAM
and StarCCM+ simulation used the same block structured mesh with
~ 70000 cells. Second order schemes are used for time and spatial
discretization. The time step size is set to 1-10~*s. The mesh size and
the time step size are the result of a performed convergence study.

126

— _Tomean

— _ Homax

vZ A

1
2

Drag coefficient cp

1pvk A

Lift coefficient ¢,

1.47
1.46
1.45
1.44
1.43
1.42
1.41

1.4
1.39
1.38
1.37
1.36
1.35
1.34
1.33
1.32
1.31

1.3

5.2 Oscillating Cylinder

100 140 170
Voo D

Reynolds number Re= ==

110 120 130 150 160

Figure 5.6: Drag coefficient of different measurements and

0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2

simulations
Expefiment, :Gerouak:he [601 x
[Numerical simulation, Placzek etal.[116] ~ © .
,,,,,,,,,,,,,,, Numerical simulation, Bahmanietal. [10}. .. =
. Numerical simulation with OpenFOAM
"""" ©°°° 1 Numerical simulation with STAR-CCM+ @~~~
rrrrrr T S e S SR
"""" .
| o
|- . q ,,,,,,,,,,,,,,,, AR
1 i i i i i i i i i
70 80 90 100 110 120 130 140 150 160 170

Reynolds number Re= =2

Figure 5.7: Lift coefficient of different measurements and
simulations

127

5 Application Examples

_5LD
==

Strouhal number Sr

B.max
p Ui A

1
2

Lift coefficient ¢,

128

0.28
0.27
0.26
0.25
0.24
0.23
0.22
0.21

0.2
0.19
0.18
0.17
0.16
0.15
0.14
0.13

Curve fitting of experiment, Hammache et al. [68] ——— :

"""" ==~~~ 1 Curve fitting of experiment, Feyet al. {52] === |

rrrrrr - B E:xperim:en{,Ane‘ignoste‘psulos :et al. [31‘7 B A S
O S Experiment, Gerouache [60] X
Nur:nerical :simulation, Pla:czek et aJ [1 161 o

"""" " Numerical simulation, Bahmani et al. [10] =
"""" © 77717 Numerical simulation with OpenFOAM @~~~
''''' ‘- ----*-- - Numerical simulation with-STAR-CCM+-

L I L I I I I L I j

70 80 90 100 110 120 130 140 150 160 170

Reynolds number Re= %22

Figure 5.8: Strouhal number of different measurements and

e oo e ==
o R =N RO o N

S oS0
ERC RS

2 2.1 2.2 2.3 2.4 2.5 2.6

simulations

| | OpenFOAM
"""" cooooosroo---------Placzeketal. [116] -

T OpenFOAM v
"""" i Placzeketal [116] -

Time ¢ (s)

Figure 5.9: Time varying lift coefficient forced oscillating
cylinder

Displacement (mm)

5.2 Oscillating Cylinder

The drag and the lift coefficient show good agreement with the
values provided by literature (see Figure 5.6 and Figure 5.7 respec-
tively). Moreover the Strouhal number is also in good agreement with
literature values as shown in Figure 5.8. With these results the CFD
is validated. The next evolution step of the example is to verify the
forced motion of the cylinder which is done in the following.

5.2.2 Forced Oscillation Validation

Within the forced motion validation the motion of the cylinder is
prescribed as a time-varying boundary condition via a separate sub-
system. The resulting lift coefficients are compared to simulation
results provided by Placzek et al. [116].

The oscillation frequency of the cylinder is chosen to be 110%
of the vortex shedding frequency for Reynolds number 100 as this is
according to Placzek et al. [116].

The Strouhal number for a Reynolds number of 100 can be found
in Figure 5.8. With the help of the Strouhal number the oscillation
frequency can be found by

D
Sr(Re=100)=0.16406 = fs#,
Voo (5.10)

for=6.4085Hz.

The amplitude of the oscillating motion is set to 0.4 mm accordingly
to Placzek et al. [116]. Hence, the function for the oscillating motion
of the cylinder is given by

u(t)=0.4sin(2m 6.4085Hz 1.1 t),

. (5.11)
u(t)=0.4sin(44.2930rad/s ¢).

The comparison of obtained values and the ones of Placzek et al. [116]
for the lift coefficient and the oscillation frequency are presented in
Figure 5.9 and Table 5.3. The results show a good agreement with
values provided by Placzek et al. [116] (deviation less than 3 %).

5.2.3 Fluid-Structure with Closed-Loop Control

With the validated CFD results the fully coupled fluid-structure-signal
interaction is approached. The spring-damper model has properties

129

5 Application Examples

Table 5.3: Results for forced oscillating case with time step size
h=1-10"*s amplitude and frequency

Symbol Reference Placzek et al. [116] Co-Simulation Rel. deviation
mm {/s} mm {1/s} % {%}

u, 0.000.40 {7.26} 0.00+0.40 {7.05} 0.00 {2.90}
—{V/s} —{vs} % {%}

a 0.00£0.71 {7.26} 0.00+0.70 {7.05} 1.40 {2.90}

Table 5.4: System parameters for the spring-damper system of
the oscillating cylinder problem

Property Symbol Value Unit
Mass m 0.03575 kg
Damping coefficient d 0.0043 N/s
Spring stiffness k 69.48 N/m
Damped eigenfrequency wqy 7.01635 Hz

according to Anagnostopoulos et al. [3], which are summarized in
Table 5.4.
The spring-damper system can be described by

mit+du+ku=f+k. (5.12)

130

5.2 Oscillating Cylinder

Here f is an external force coming from the fluid. In OpenFOAM the
trapezoidal rule is used for time integration. Hence, it is also used for
the discretization of Equation (5.12), which results in

| 0| [umt 2.1 0of|u"
k 3+d of|v =0 ¥ m||v"|+
0 % -1 anJrl 0 % 1 an
(5.13)
0
f"+1+klp”+1
0

The Reynolds number is set to 108.83. This value is in the so called
lock-in region of the fluid-structure interaction where the vortex shed-
ding frequency is synchronizing with the oscillation frequency of the
cylinder. This lock-in frequency is slightly smaller than the damped
eigenfrequency of the spring-damper system. The lock-in frequency
for the lift coefficient and the cylinder oscillation is 6.990Hz for the
simulation. This behavior is also observed in the measurement of
Anagnostopoulos et al. [3] where the coupled frequency is measured
to be 6.995Hz.

Proportional-Integral-Derivative Controller

A proportional-integral-derivative controller (PID controller) is used
for the fluid-structure-signal interaction simulation. This is a closed
loop feedback mechanism widely used in industrial control systems.
The PID controller calculates an error value as the difference between
a measured process variable and a prescribed trajectory value. The
controller continuously attempts to minimize the error by manipu-
lating the control variable. The continuous control law for the PID
controller is

t

W(t)zKPe(t)+KIJ e(t)dt+ Kpeé(t), (5.14)
0

(see Friedland [55], Liptak [96], Preumont [118], and Unbehauen [149]).
The constants Kp, K; and Ky, are user inputs, they are determined

131

5 Application Examples

within a preprocessing step. The continuous error e (¢)is the deviation
of the measured output quantity with respect to the desired trajectory
value. The discretized control law for the PID controller is

o = K X + K X + Kp XS, (5.15)
with

X1+ = g, (5.16)

X7 = g(en+1+en)+XIn’ (5.17)

Xg“:%(enﬂ—e”). (5.18)

Equation (5.17) can be derived by using TR time integration and Equa-
tion (5.18) by using BE time integration. This combination renders a
stable and robust discretization.

With all the necessary equations at hand the block diagram of the
fluid-structure-signal interaction of the oscillating cylinder example
is given according to Figure 5.10. Within Table 5.5 all output and input
quantities are defined and summarized. With the help of the block

Table 5.5: Description of input and output quantities for the
fluid-structure-signal interaction

Symbol Description Unit

U; Input to CFD m
displacement of cylinder u

) Output of CFD N
force on cylinder f

Uy, Input to CSM N
force on cylinder f

Uy, Input to CSM m
root point displacement of cylinder ¥

Y, Output of CSM m
displacement of cylinder u

Us Input to Controller m
displacement of cylinder u

Y3 Output of Controller m

root point displacement of cylinder &

132

5.2 Oscillating Cylinder

U,

1

Figure 5.10: Block diagram for oscillating cylinder with PID
controller

diagram the interface residual equations are also set to

R, U-%| |(U-8(0, U,
= Ro| _|Un=N]|_ U, =S (1) . (5.19)
Rs| |U,— Y U, — S5 (Us)

2

R4 U-Y UG-8 (0, Us,)

This results in

[Y, Y,
1 - - 0
U, oU,,
on
“ou, o0
Jgiobal = ! oY, | (5.20)
0 0 1 —_
oUs
Y, Y,
0 - - 1
oU,, oU,,

133

5 Application Examples

being the assembled interface Jacobian matrix. The secant variant of
the IJCSA (Algorithm 4.5) is used in order to solve the interface resid-
ual system. The secant approximation is only used for the interface
Jacobian of the CFD, namely

myn+l _ m—1yn+l
oY, ", Y

ou, muf—mayr

(5.21)

as this is hard to compute exactly. All other needed interface Jacobians
can be computed straight forward from Equations (5.13) and (5.15).
The procedure is the same as presented in Chapter 4. In average 4
interface iterations where necessary to converge || r|. below 1-1078,

The PID controller constants are set to Kp = 0.02, K; = 0.02 and
Kp =0.01. This results in a robust transient behavior which means
that overshoots are small. If the objective of the PID controller is to
suppress the cylinder motion the error e is equal to the displacement
of the cylinder u.

ﬁjé ,,,,,,, . Amplitude cylinder ——
. . Amplitude actuator ----------- :

os Ll
R L 1 e SR s S
03 P L R
02 [| A T
0.1 3 3 3 e o — e 3
0 e PR e
O b
N T SR
0.3 | f V-t sV booeens beoeees b b f
04 F-{}- [N L - L L [[f
ol VY
06 LVt H
0.7 i i i i i ; ; j
394 396 398 40 40.2 404 406 40.8 41

Time ¢ (s)

Displacement (mm)

Figure 5.11: PID controller for case with Re=108.83

Figure 5.11 depicts the impact of active closed-loop control for
the oscillating cylinder example. Firstly, the controller is switched

134

5.3 NREL Phase VI Wind Turbine

off which results in an oscillating motion of the cylinder as the lock-
in effect is present for Re=108.83. At time 40s the PID controller is
activated. The PID controller reduces the motion of the cylinder by
orders of magnitudes as shown in Figure 5.11.

5.2.4 Conclusion

Within this section a validated example shows how a fully coupled
fluid-structure interaction with closed-loop control can be handled
with the IJCSA. Moreover, the IJCSA allows to fulfill the interface
residual equation numerically exact. Therefore, the controller can
be treated in a continuous manner. It means that the delay which
occurs if loosely coupled co-simulation approaches are deployed is
not present.

These delays between the controller and the other subsystems
may cause problems with stability of the closed-loop system. These
problems are especially present when the hardware control unit has
a much higher sampling frequency as the time sampling frequency of
the numerical model (large time step). For this situation the delay of
the real control unit is much smaller than for the one in the simulation
in case the simulation is done in a loose manner.

5.3 NREL Phase VI Wind Turbine

The last and most complicated application example should demon-
strate how the IJCSA performs in a large scale co-simulation involving
fields and signals. Within this example a wind turbine is analyzed by
using the co-simulation approach. The interaction between the fluid,
the flexible blades, the generator and the control unit is taken into
account.

The example is presented in a hierarchical manner where the
complexity is gradually increased. First the pure CFD is validated and
afterwards more complexity is added. Again this shows the modularity
of co-simulation.

In order to be able to validate the simulation an experiment needs
to be the basis for the simulation. The NREL Phase VI experiment is
a good experiment for validation purposes as it is a full scale wind
tunnel experiment. This means that the needed boundary conditions
for the simulation are known. A major advantage for validation is the

135

5 Application Examples

elimination of stochastic atmospheric wind as the wind tunnel can
deliver a constant inlet velocity profile.

Furthermore, this experiment is a very well documented case and
investigated by other research groups, namely Anjuri [4], Dam et al.
[32], Hsu et al. [76, 77], Li et al. [93], Lindenburg [95], McTavish et al.
[100], Mo et al. [105, 106], Potsdam et al. [117], Sezer-Uzol et al. [133],
Serensen et al. [141], Tongchitpakdee et al. [146], Wang et al. [152],
Yelmule et al. [160], and Zahle et al. [161]. A lot of different numerical
methods were validated by using the data of the experiment. This
gives a good basis as a lot of simulation data is available. However,
none of the given references takes into account the interaction of the
fluid, the flexible blades, the generator and the control unit at the
same time.

In the following a comprehensive description of the experiment is
given.

5.3.1 Experiment

The Unsteady Aerodynamics Experiment, initially named "Combined
Experiment", was started in 1987 by the National Renewable Energy
Laboratory (NREL) to provide detailed information on the full-scale
3D aerodynamic behavior of wind turbines. Within this series detailed
wind tunnel experiments were performed on a full-scale machine
(Phase VI).

(a) Wind tunnel aerial view (b) Six wind tunnel fans

Figure 5.12: NASA wind tunnel photos from NREL 10-m Wind
Turbine Testing in NASA Ames[110]

136

5.3 NREL Phase VI Wind Turbine

The wind tunnel (see Figure 5.12) is located in the NASA Ames
Research Center in Moffett Field (Silicon Valley), California. Six fans
with a total power consumption of 104 MW produce the inlet velocity
for the 24.4 m by 36.6 m test section. The achieved turbulence intensity
in streamwise direction is less than 0.5 % Simms et al. [137].

The testing wind turbine (see Figure 5.13) is the NREL Phase VI, a
modified Grumman Windstream 33 with full-span pitch control and
a power rating of 20kW. It has 2 blades, with NREL S809 tapered and
twisted blade profile. The rotor has 10.058 m in diameter while hub
heightis 12.192m.

—— s | S _

(a) Experiment photo from NREL 10-m (b) CAD model
Wind Turbine Testing in NASA Ames[110]

Figure 5.13: NREL Phase VI wind turbine real model and virtual
model

The wind turbine details can be found in Hand et al. [69]. From
this data a CAD model was made as the basis for all simulation models
(see Figure 5.13(b)). As reference for the pitch angle the chord line
of the tip airfoil lying in the rotor plane is defined as zero see Mo
et al. [105]. To achieve the desired pitch angle of 3° all values in the
definition table of Hand et al. [69] are corrected by an offset of +1.814°.
The simulated test sequence "S" normally uses the standard tip out of

137

5 Application Examples

the three available tip adapters. The CAD model is cut off at a radius
of 5.029m, which corresponds to the total length including standard
tip. This results in sharp edges which simplifies the mesh generation.

The first simulation model which is derived from this geometry is
the CFD model which is described in the following section.

5.3.2 CFD Model

With OpenFOAM a body-fitted finite-volume discretization for the
fluid is chosen. As this means that the mesh is fixed and needs to
follow the blade surfaces a sliding mesh interface is needed in order
to allow for rotation and pitching motion of the blades while the tower
is present.

In OpenFOAM the sliding mesh interface is called Arbitrary Mesh
Interface (AMI) (see OpenFOAM [111]). Furthermore, the arising non-
matching grid problem is solved via local Galerkin projection method,
which is presented in Farrell et al. [46].

The overall mesh topology is shown in Figure 5.14, there four sep-
arate mesh parts can be identified. The non-moving outer part covers
the wind tunnel, the tower and the nacelle. It encloses the second
part, which is following the rotating motion of the blades around the
global y-axis, indicated by the angle of rotation w. This rotor mesh
part again encloses two more mesh parts which are directly attached
to the blade surfaces. These innermost mesh parts provide the possi-
bility of pitching around the global x-axis. On top of the rigid body
rotations elastic deformations of both blades can be handled by Lapla-
cian based mesh deformation inside both blade mesh parts only. For
more information see Section 5.3.4.

The block structured outer mesh part has the same dimensions
as the wind tunnel and consists of ~ 3.7 million cells with an edge
length starting from 180 mm immediately downstream of the wind
turbine and increases to 800 mm towards the outlet. The rotor region
containing ~ 0.8 million cells is realized as hybrid mesh. It consists
of block structured and tetrahedral meshed parts. A pure block struc-
tured version was tested without gaining any benefit in accuracy but
increasing the cell count and computation time. Therefore, the hybrid
version was chosen.

The mesh of the inner cylinders which embeds the blades is tran-
sitioned from the blade shoulder (Figure 5.15(a)) to the blade tip (Fig-
ure 5.15(b)). 100 cells in chord-wise direction and 240 in radial di-

138

5.3 NREL Phase VI Wind Turbine

r%j

N

Figure 5.14: CFD mesh parts for NREL Phase VI wind turbine

rection render ~ 2.6 million cells per blade region. Due to the CFL
limitation the mesh was coarsened and aligned to the main flow direc-
tion at specific critical positions, where high velocities are expected.
The first cell height at the blade surfaces is set to 0.4 mm. Hence, for
the S0700000 case (inlet velocity is 7m/s) an average dimensionless
wall distance y* ~ 7 and a maximum dimensionless wall distance

139

5 Application Examples

y* ~ 12 are achieved. The maximal normal geometrical growth rate
of the mesh is 1.4.

! THim
b

.

0
SRR

(a) Mesh at blade radius =0.32m (b) Mesh at blade radius =4 m

100 cells

>
240 cells

(c) Surface mesh blade

(d) Entire mesh around blade

Figure 5.15: CFD mesh of the inner cylinder around the blades

The boundary conditions for the CFD model are all of type wall
except for the inlet and outlet. Here a velocity inlet (5m/s or 7m/s) and
a pressure outlet (0Pa) are set. The turbulence is modeled via the
URANS k-w-SST model introduced by Menter [102] in combination
with high Reynolds wall functions. The boundary conditions for k
and w are set such that a turbulence intensity of 0.5% is reached. The

140

5.3 NREL Phase VI Wind Turbine

segregated solution procedure called PIMPLE in combination with
ALE mesh handling is used. PIMPLE is a variant of the famous PISO
pressure-correction algorithm by Issa [81]. For time integration the
BDF2 method is used and spatial schemes are set to be second order
accurate. The time step is set to 1103 s for all simulations.

For the validation of the CFD model two measurement sequences
are chosen. They are called S0500000 and S0700000. The parameters
are summarized in Table 5.6.

Table 5.6: Properties of NREL Phase VI experiment for test
sequences S0500000 and S0700000

Parameter Sequence S0500000 Sequence S0700000 Unit
Inlet velocity 5 7 m/s
Cone angle 0.0 0.0 °
Yaw angle 0.0 0.0 °
Blade tip pitch angle 3.0 3.0 °
Angular velocity 432 432 °/s
Air density 1.23 1.23 kg/m3
Kinematic viscosity of air 1.46-107° 1.46-107° m? /g
Turbulence inlet intensity 0.5 0.5 %

During these two test sequences the flow is fully attached on the
surface of the blades, which is also observed by Dam et al. [32] and
Serensen et al. [141].

Results & Validation

During the experiment pressure coefficients were evaluated. There-
fore, pressure probes have been integrated into the blade surfaces.
Multiple of these pressure probes were clustered at the five specific
sections of the blade as shown in Figure 5.16.

For the validation, the first step was to post-process the raw mea-
surement data in order to compute characteristic values such as mean,
standard deviation and extrema of the measurement over time. All
these values are computed out of measurement data which was rec-
orded over 30s at 15625 samples.

141

5 Application Examples

30.0%

46.6 %

Figure 5.16: Measurement sections for pressure coefficients at
different locations in % blade radius

The same procedure was applied to the simulation. However, here
seven full revolutions of the rotor are the basis for the averaging pro-
cedure. These seven revolutions of the turbine, which is equivalent
to 5.8333s, are recorded after the flow is fully developed. The averag-
ing over five and seven revolutions gave the same results, so seven
revolutions are more than sufficient. Also the measurement data was
averaged over 5.8333 s and the results were compared to values which
resulted from the averaging over 30s. There was almost (less than
0.1%) no difference between these two averaging time spans. The
seven revolutions of the simulation render 5833 sample points in
time for each individual boundary face.

The computation of the standard deviation o is done by

1 & . 1 Y
g = _N_lz(pz_p)z’ Wherep:NZpi. (522)

i=1 i=1

Here N is the total number of samples and p; is the pressure value for
a specific sample i at a specific probe location. p represents the time
averages pressure value at a specific probe location. For the compu-
tation of the pressure coefficients the maximum of all time averaged
pressure values at one specific measurement section is needed, it is
denoted with pay.

The results of the validation of the pressure coefficients for series
S0500000 and series S0700000 are depicted in Figure 5.18 and Fig-

142

5.3 NREL Phase VI Wind Turbine

max

mean

min

Figure 5.17: Legend of experiment box and whisker plots for
pressure coefficients

ure 5.20 respectively. The meaning of the whiskers is illustrated in
Figure 5.17.

Additionally, Figure 5.19 and Figure 5.21 show the development
of the low-speed-shaft-torque (LSSTQ) in comparison to the aver-
aged experimental data. A fast Fourier transform (FFT) analysis of the
LSSTQ simulation data renders a peak at 2.4 Hz, this corresponds to
the double frequency of the rotor rotations. Hence, it is caused by the
blades passing the tower.

143

5 Application Examples

T T T EE I R T T TEET TP
! ' ' Slmulatlon min/max

R SRR AR o R =1

;R A S L,,,,L,,,,L,mean ,,,,,,,,,,,,

__r
Pmax

Local pressure coefficient cp

Chord length (%)

(a) Cut at 30 % blade radius

__r
Pmax

Local pressure coefficient cp

Chord length (%)

(b) Cut at 46.6 % blade radius

Figure 5.18: Pressure coefficients for NREL case S0500000

144

5.3 NREL Phase VI Wind Turbine

P
Prmax

Local pressure coefficient cp

0 10 20 30 40 50 60 70 80 90 100
Chord length (%)

(c) Cut at 63.3 % blade radius

Slmulatlon mm/ max _

In.|£‘>§

Local pressure coefficient cp

Chord length (%)

(d) Cut at 80 % blade radius

Figure 5.18: Pressure coefficients for NREL case S0500000

145

5 Application Examples

Local pressure coefficient cp

Chord length (%)
(e) Cut at 95 % blade radius

Figure 5.18: Pressure coefficients for NREL case S0500000

650
600
550
500
450 |
400
350
300
250
200
150
100

50

| Experjment: | min/max
o meano

Rotor shaft torque (Nm)

Time (s)

Figure 5.19: Low speed shaft torque S0500000

146

Local pressure coefficient cp

7
gt

Local pressure coefficient cp

ax

5.3 NREL Phase VI Wind Turbine

Chord length (%)

(a) Cut at 30 % blade radius

Chord length (%)

(b) Cut at 46.6 % blade radius

Figure 5.20: Pressure coefficients for NREL case S0700000

147

5 Application Examples

__r
Pmax

Local pressure coefficient cp

Chord length (%)

(c) Cut at 63.3 % blade radius

7
max

Local pressure coefficient ¢p

Chord length (%)

(d) Cut at 80 % blade radius

Figure 5.20: Pressure coefficients for NREL case S0700000

148

Local pressure coefficient cp

Rotor shaft torque (Nm)

5.3 NREL Phase VI Wind Turbine

Chord length (%)
(e) Cut at 95 % blade radius

Figure 5.20: Pressure coefficients for NREL case S0700000

1600 [------nmm-gommpmmommsasepmemmeess e
1500 [.
1400
1300
1200
1100
1000 |

Experimen

Time (s)

Figure 5.21: Low speed shaft torque S0700000

149

5 Application Examples

For the pressure coefficients and low speed shaft torque good
agreement between simulation and measurement is achieved. In or-
der to get more insight into the flow field the surface streamlines are
presented. Figure 5.22 shows a clear three dimensional flow pattern
towards the trailing edge of the blade.

L.

(a) High pressure side

o

(b) Low pressure side

Figure 5.22: Surface streamlines of blade 3 for S0700000 at 7.5s

Figure 5.23: Pressure contour plot at 5.00s including
streamlines at 80% radius of blade 1 of sequence S0700000

The flow condition for wind turbines are exceptionally challeng-
ing. This is due to the varying twist angle, chord length and effective

150

5.3 NREL Phase VI Wind Turbine

velocity over the blade radius. The effective velocity is the resultant
of the angular and upstream velocity (see Figure 5.24). Figure 5.25
illustrates the change of the effective velocity and the local Reynolds
number with respect to the blade radius.

shear force

upstream
velocity

angular component

Figure 5.24: Velocity and force components of a horizontal axis
wind turbine

Finally, Figure 5.23 gives insight into the pressure field of the flow
field for the rotating turbine. The streamlines depicted in Figure 5.23
indicate the fully attached flow conditions.

5.3.3 CSM Model

After validating the CFD model, the CSM model for the flexible blades
is validated in this section. The composite structure of the blades is
described in detailed in Van Dusen [150]. The aerodynamic, dynamic
and dead loads are carried by a carbon fiber D-spar that tapers in
thickness from root to tip, shown in Figures 5.26 to 5.27. The non-
load-carrying skin is fiberglass. A 3.175mm thick honeycomb core
was included aft of the spar dam for added skin stiffness.

151

Local Reynolds number

5 Application Examples

1.2E+06
1.1E+06
1.0E+06
9.0E+05
8.0E+05

7.0E+05

Effective local velocity (m/s)

6.0E+05

SO N S S S S N S SN SN S S
0 10 20 30 40 50 60 70 80 90 100
Blade radius (%)

Figure 5.25: Local Reynolds number and effective local velocity
for sequence S0700000

Classical laminate theory (see Daniel et al. [33]) is used in order
to model the structure where all properties are given in Van Dusen
[150]. The measurement instrumentation and paint is modeled by
using non-structural mass. The root of the blades is clamped by using
a kinematic coupling which constrains all the root DOFs of the blades
to one central node. This node has 6 DOFs, namely 3 displacements
and 3 finite rotations. Each blade is discretized with ~ 60000 fully
integrated finite-membrane-strain shell elements (S3 and S4). A non-
linear kinematic formulation is chosen in order to handle the finite
rotations. In Abaqus/Standard the Hilber-Hughes-Taylor method is
set for the time integration.

Results & Validation

For validation an eigenfrequency analysis is performed and compared
to the measurement data from Hand et al. [69, p. 79]. A comparison
between measurement and simulation can be found in Table 5.7.
The relative deviation between simulation and measurement is
below 10% except for the first edge-wise eigenfrequency. The cor-

152

5.3 NREL Phase VI Wind Turbine

Carbon-fiber D-spar

PVC pipe for ins-
trumentation wires

Figure 5.26: Photograph of blade section presented in Hand
etal. [69, p. 77]

Figure 5.27: Outer and inner geometry of the blade (green
D-spar structure)

Table 5.7: Structural properties for blade 1 & blade 3

Property Measured value ~ Simulation value ~ Unit Relative error
%

Blade mass with 60.2 60.12 kg 0.13

standard tip

Blade center of 2.266 2.287 m 0.92

gravity with

standard tip

First flap-wise 7.313 7.901 Hz 8.04

eigenfrequency

Second flap-wise 30.062 30.981 Hz 3.05

eigenfrequency

First edge-wise 9.062 12.740 Hz 40.58

eigenfrequency

153

5 Application Examples

responding eigenvector of the first edge-wise eigenfrequency (see
Figure 5.28) shows that the stiffness for the hub adapter is decisive for
this eigenfrequency. As no detailed geometry information is available
for the adapter it is modeled as rigid, therefore the eigenfrequency is
higher than the measurement. However, this eigenfrequency is not de-
cisive for the dynamic behavior of the turbine as the fluid load mainly
excites the flap-wise eigenfrequencies.

The displacement contour plot of the gravity loaded turbine blades
is depicted in Figure 5.29. Under this loading the maximal tip displace-
ment is 2.3 mm.

5.3.4 Handling Deformations & Rotations

Since both field-type subsystem models (CFD and CSM) are validated
so far the coupling issues are discussed in the following. As the used
CFD approach is based on ALE (see Section 5.3.2) special care needs
to be taken when the displacements of the rotor are applied to the
CFD solver.

Typically the structural solver is outputting a displacement field
with respect to the original frame of reference (also called initial con-
figuration see Donea et al. [37]). The total displacement field with
respect to the original frame is denoted with u;.

OpenFOAM expects the mesh deformation also with respect to
the initial mesh configuration. However, due to the boundary fitted
approach the structural displacement field needs to be decomposed
in arigid body part stemming from the rotation (main rotation and
pitch) and a part stemming from the deformation of the blades. Hence,
we have

Uior = Urot T Upic T Udef- (5.23)

Here u,, is a rigid body rotation around the y-axis of the turbine, so
it represents the main rotor motion of the turbine. u,, is also a rigid
body rotation representing the pitching of blade 1. Hence, u is a
rotation around the x-axis of the turbine. Last but not least, 4 is the
displacement field stemming from the elastic/plastic deformation of
the blades.

It is possible to represent the total deformation of the turbine
with one global rotation vector representing i, + Uy and the global
deformation vector u 4.

154

5.3 NREL Phase VI Wind Turbine

(a) First flap-wise eigenmode

(b) Second flap-wise eigenmode

(c) First edge-wise eigenmode

Figure 5.28: Eigenmode shapes of CSM model

155

5 Application Examples

u

Displacement u4.f magnitude (m)
2.333-107%

Figure 5.29: Displacement contour plot of gravity loaded
turbine; deformation scaled by 200

The rigid body rotation of the pitching around the x-axis is applied
to mesh part AMI 2a. It is assumed that the pitch angle of blade 3 is
the negative of the one of blade 1. Hence, the negative rigid body
rotation around the x-axis is applied to blade 3. The main rigid body
rotation around the y-axis is applied to the mesh parts AMI 1, AMI 2a
and AMI 2b. The remaining displacement vector u 4 is diffused via
the Laplacian mesh motion approach, which is described in Jasak

156

5.3 NREL Phase VI Wind Turbine

et al. [82], from the blades surfaces into the corresponding mesh parts
AMI 2a and AMI 2b.

In the following it is shown how to compute #,q, U and wger
from a given field of the structural solver u,.

Dealing with Finite Rotations

In order to be able to apply the main rotation and the pitch rotation
at the same time the non-commutative property of finite rotations
needs to be taken into account (see Altmann [2] and Woernle [158]).

A transformation matrix which rotates the blades first around the
x-axis and then around the y-axis is given by

cos(w) sin(l/;)sin(w) cos(tp)sin(a))
R= 0 cos(y) —sin(v) . (5.24)

—sin(w) sin(w) cos(w) cos (w) cos(w)

Where ¢ is the pitch angle around the x-axis and w being the main
rotation angle around the y-axis. If needed this rotation matrix can be
transformed in a global rotation vector by converting it to quaternions,
which is discussed in Woernle [158, p. 83].

If we assume that 1 and w are known we can write

Udet = Utot — Urot — Uptc- (5.25)
This can be reformulated by using Equation (5.24) to
Uger = Uror— Ry, (5.26)

Note that the coupling is done with angular velocities. The ve-
locities are integrated by the time integrator used by the individual
subsystem. Hence, the transformations are performed on the basis of
angles again. This is done in order to avoid high acceleration oscilla-
tions as shown in Section 3.2.

5.3.5 Fluid-Structure Interaction Model

Similar to the pure CFD case a prescribed constant angular velocity
of «&» =432°/sis used for the CFD and the CSM model. Inside the CSM
solver the rigid part of the deformation is removed and only u . is

157

5 Application Examples

Y, U,

U, Y,

Figure 5.30: Block diagram for fluid-structure interaction

Table 5.8: Description of input and output quantities for the
fluid-structure interaction model

Symbol Description Unit

U, Input to CFD m
displacement field u4e¢

Y, Output of CFD N
force field

U, Input to CSM N
force field

Y, Output of CSM m

displacement field e

exchanged with the CFD solver. Therefore, the block diagram for the
fluid-structure interaction case can be stated as shown in Figure 5.30.

With the help of Table 5.8 and the block diagram (see Figure 5.30)
the global interface residual vector can be defined by

. - _ (5.27)

Co-Simulation

The IJCSA is deployed in order to minimize the interface residual
vector defined in Equation (5.27). Similar to Section 5.1 the global
interface Jacobian is approximated by the identity matrix. In contrast
to the Turek example of Section 5.1 no under-relaxation is applied
a =1 as the interaction between fluid and structure is not as severe as

158

5.3 NREL Phase VI Wind Turbine

|

(a) 0.30s (b) 0.30s

T |

|

(c) 2.70s (d) 2.70s

Figure 5.31: Q-criterion isosurface colored by velocity
magnitude for the FSI case, where u4 is scaled by factor of 70

for the Turek example. Essentially, this means that the two interface
Jacobian blocks 9Y1/au, and 9Y:/au, are set to zero. Despite the fact
that this seems to be a crude approximation for the interface Jacobian
only two interface iterations were necessary to achieve

R, <1.0-107°m. (5.28)

Results

A time series of this simulation is illustrated in Figure 5.31. There the
flow field is visualized by the Q-criterion according to Hunt et al. [78].
Note that an overview of different vortex identification schemes can
be found in Chakraborty et al. [29].

159

5 Application Examples

(e) 2.95s (f) 2.95s

(g) 3.15s (h) 3.15s

(i) 3.35s () 3.35s

Figure 5.31: Q-criterion isosurface colored by velocity
magnitude for the FSI case, where uqes is scaled by factor of 70

160

5.3 NREL Phase VI Wind Turbine

The fluid-structure interaction simulation was performed with
sequence S0700000 only, as this case gives higher loads on the blades
as the inlet velocity is higher than for sequence S0500000.

The low speed shaft torque is compared to the pure CFD case in
Figure 5.32. The impact of including the fluid-structure interaction
for the case where the angular velocity is prescribed is rather small.
This results in a maximum blade tip displacement in flow direction of
approximately 1 cm as shown in Figure 5.32. The blade-tower interac-
tion is nicely illustrated by Figure 5.32 as the lowest frequency of the
tip displacement curve spectra is 1.2Hz.

1300
1200
1100 |,
1000
900
800
700
600
500
400
300
200
100

0

Rotor shaft torque (Nm)
Tip displacement (m;

Time (s)

Figure 5.32: Low speed shaft torque S0700000 including FSI
with tip displacement in flow direction of blade 1

161

5 Application Examples

5.3.6 Emergency Brake Maneuver

In the previous section a FSI co-simulation was presented. However,
within this simulation an important part of physics is missing as the
angular velocity is prescribed and is not determined by the interaction
of the fluid with the blades and the generator.

This defect is removed in the following. In order to focus the dis-
cussion the blade flexibility is removed within this section again. The
FSI for constant angular velocity renders small displacements and
stresses. However, for other load situations of the turbine this changes
drastically. One of these cases is an aerodynamic emergency brake
maneuver where the wind turbine is brought to standstill by pitching
the blades in stall conditions.

Y U,

Figure 5.33: Block diagram for emergency brake maneuver

In order to simulate a physically accurate emergency brake maneu-
ver of the NREL Phase VI wind turbine three subsystems are needed,
the CFD, a generator/gearbox/rotor subsystem and an open-loop
control unit.

162

Table 5.9:

5.3 NREL Phase VI Wind Turbine

Description of input and output quantities for the

emergency brake maneuver

Symbol Description Unit

U, Input to CFD °/s
angular velocity of rotor around y-axis &

U, Input to CFD) °/s
angular pitching velocity around x-axis for blade 1 ¢

U, Input to CFD) °/s
angular pitching velocity around x-axis for blade 3 —)/

Y Output of CFD Nm
aerodynamic torque around y-axis bcgp

U, Input to Generator/Rotor Nm
aerodynamic torque around y-axis bcgp

Y, Output of Generator/Rotor °/s
angular velocity of rotor around y-axis &

Us Input to Control Unit °/s
angular velocity of rotor around y-axis &

Y, Output of Control Unit °/s

angular pitching velocity around x-axis for blade 1

With the help of Table 5.9 and the block diagram (see Figure 5.33)
the global interface residual vector can be defined by

Generator/Gearbox/Rotor Model

Ri
R,
Rs
Ry
Rs

U,— Y%
U,— Y%
U,+Y;
U,—Y
U;—-Y

(5.29)

The generator/gearbox/rotor subsystem mainly models the mass mo-
ment of inertia, friction and electrical behavior of the power train,
the generator and the rotor. Hence the following linear ordinary dif-

163

5 Application Examples

ferential equation can be used as a simplified model for this system:

do)
]a +Dw= bCFD (5.30)

« is the angular velocity and J the mass moment of inertia. D repre-
sents the generator as it removes energy from the system. The torque,
which acts on the rotor around the horizontal y-axis is denoted by
bcrp- This subsystem is integrated in time via the BDF2 method, the
same method as used in the CFD subsystem which results in

4]] _ 2h

- n+l N - n—1 n+1

= w' — w +—b .
3]+2hD 3] +2hD 3] +2hD CFD

(5.31)

Here the time step size is denoted by /. The input U, of the generator
subsystem is given by bcpp and its output Y, is given by «»"**1. Hence,
the interface Jacobian of the generator subsystem is given by

Y, da™' 2k 5.32)
U, bl 3]+2hD’ ‘

In order to show the potential of the IJCSA the measured mass
moment of inertia of the turbine is reduced by a factor of ten. This
results in a highly sensitive behavior with respect to the pitch angle of
the turbine. The mass moment of inertia is set to J = 111kg-m? and
the angular damping coefficient to D =10.62Nm s.

Control Unit

The open-loop control unit observes the angular velocity ¢ and trig-
gers an emergency brake maneuver, when ¢ exceeds 500°/s. The con-
trol unit takes also care of the startup procedure of the turbine. It
gradually pitches the blades to operation conditions (pitch angle ¢ =
0°). The pitch angle over time is depicted in Figure 5.37 and a zoomed
view is shown in Figure 5.38. Note that i) = 0° corresponds to the
geometrical position of the blades of the pure CFD case.

Co-Simulation

Similar to Section 5.2.3 the secant version of the IJCSA is used in order
to solve the co-simulation scenario.

164

5.3 NREL Phase VI Wind Turbine

Note that the interface residuals R,, R3, R5 =0 by definition due
to the open-loop control, as its output Y; does not depend on the
input U;. The input is only used for triggering the emergency brake
maneuver. Therefore all interface Jacobian parts associated with the
open-loop control unit are zero.

With this knowledge the reduced global interface residual vector
can be formulated to

r = Rl = Ull N Y2 = (Jll _82 (UZ) y (533)
R4 Uh-Y U,-S(U,)

where S; denotes OpenFOAM and S, the generator/gearbox/rotor
subsystem.

According to the reduced interface residual vector the global in-
terface Jacobian is evaluated to

OR, OR,

J _|1oU, AU | _ au, (5.34)

global — 57?,4 3'R4 - oy 1 . .
U, oU, ot

The secant version of the IJCSA is used in order to solve the co-
simulation scenario. The interface Jacobian part of the discretized
generator/gearbox/rotor model (see Equation (5.31)) is provided by
the subsystem. It takes the constant value

o ___2h (5.35)
oU, 3J+2hD’ '

according to Equation (5.32). The time-variant interface Jacobian part
of OpenFOAM is approximated by using the secant method

myn+l__ m—1vyn+l
oy "% Y,
oy, myr —m=1"
1 1 1

) (5.36)

(see line 11 of Algorithm 4.5).

165

5 Application Examples

Hence, the global interface Jacobian is evaluated during the co-
simulation as

R, OR,
ou, oy,
Iglobal= OR, OR, ~
ou, au,
2h
! 3] +2hD
mYIn+1_m—1Y1n+1 . (5.37)
- mUln_m—lUln 1

Figure 5.37 and Figure 5.38 show the secant approximation of the
time-variant interface Jacobian component of OpenFOAM during the
emergency brake maneuver.

Moreover, as this example is stable also for loosely coupled co-
simulation with first-order hold extrapolation, an accuracy compari-
son is done. Loosely coupled means that one does not iterate within
the time step (Mepg = 0).

Results

Figure 5.34 and Figure 5.35 illustrate the absolute error in velocity and
torque respectively if loosely coupled co-simulation with first-order
hold extrapolation is carried out. The absolute error is defined as the
difference between the loosely coupled co-simulation solution and
the IJCSA solution, as the IJCSA states the correct solution, provided
that the interface residual is zero. The overlay of the velocity and
torque for loosely coupled and IJCSA coupled is demonstrated in
Figure 5.36. The Figures show that the error of the loosely coupled
co-simulation of the emergency brake maneuver is up to 10% for
the torque which is significant, as the peak loads are decisive for the
design of such a machine.

The interface Jacobian of OpenFOAM which is estimated by the se-
cant version of the IJCSA on the fly is visualized within Figure 5.37 and
Figure 5.38. They show a noisy behavior, especially in the last part of
the simulation (see Figure 5.38) where the turbine has already almost
stopped. This raises the question how is the convergence behavior
of the IJCSA for such conditions. The IJCSA takes at most five inter-

166

5.3 NREL Phase VI Wind Turbine

800
700
600
500
400
300
200
100

Angular velocity (°/s)
Absolute error (°/s)

-100
-200

Time (s)

Figure 5.34: Angular velocity of loose coupling and IJCSA with
absolute error for the emergency brake maneuver of S0700000

face iteration in order to converge the interface velocity to machine
precision. This shows the great potential of the IJCSA.

Figure 5.39 depicts the convergence behavior during startup, Fig-
ure 5.40 during the brake maneuver and Figure 5.41 after the brake
maneuver.

These kinds of co-simulations can be used not only to optimize
for higher durability and performance, but they can also be used for
the proper design of the control units for wind turbines. As the control
unit takes care for startup of the turbine, it is crucial that pitching is
not done too fast otherwise the angular velocity of the rotor is too slow
which results in stall conditions of the blades as the effective angle of
attack becomes too high.

Figure 5.42 shows the situation of a too fast pitching with respect to
the angular velocity of the rotor. These situations can be investigated
via the co-simulation.

Finally, a time series of the emergency brake maneuver is shown
in Figure 5.43 where the vorticity magnitude isosurface is used to
visualize the flow field.

167

5 Application Examples

Rotor shaft torque (Nm)

Rotor shaft torque (Nm)

168

5000
4000
3000
2000
1000

-1000
-2000
-3000
-4000
-5000

Figure 5.35:

900
800
700
600
500
400
300
200

100

-100

Figure 5.36: Rotor shaft torque and angular velocity of loose

Time (s)

Rotor shaft torque of loose coupling and IJCSA with

absolute error for the emergency brake maneuver of S0700000

Rotor ‘'shaft torque loose -

Angular velomty loose -
‘ 'IJCSA -

Pltch angle

Time (s)

coupling and IJCSA for the emergency brake maneuver of
$0700000

Absolute error (Nm)

Angular velocity (°/s)

Interface Jacobian (°/Ns)

Interface Jacobian (°/Ns)

500
450
400
350
300
250
200
150
100

50

-50
-100
-150
-200
-250
-300

Figure 5.37:

8000
7000
6000
5000
4000
3000
2000
1000

-1000
-2000
-3000
-4000
-5000

-6000 |

-7000
-8000

Figure 5.38:

Time (s)

Interface Jacobian component of OpenFOAM vs.

pitch angle for the emergency brake maneuver of S0700000

" Rotor shaft torq

Pit

4 4.125 4.25 4.375

Time (s)

4.625 4.75 4.875 5

Interface Jacobian component of OpenFOAM vs.

pitch angle for the emergency brake maneuver of S0700000
(zoomed)

5.3 NREL Phase VI Wind Turbine

Pitch angle (°)

Rotor shaft torque (Nm)

169

Residual

Residual

5 Application Examples

Time (s)

1e+006 ------ o o o o P [[I
' ' Rotor shaft torque ———

10000
100

1

0.01
0.0001
le-006
1e-008
le-010
le-012
le-014

le-016

Iterations

Figure 5.39: Interface residuals during startup

Time (s)

2 2.631 2 2.632 2.633
1e+006 R STEEE

10000

100

1

0.01

0.0001

1e-006

1e-008

le-010

le-012

le-014

le-016

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Iterations

Figure 5.40: Interface residuals during emergency braking

170

Residual

1e+006
10000
100

1

0.01
0.0001
1e-006
1e-008
le-010
le-012
le-014
le-016

5.3 NREL Phase VI Wind Turbine

Time (s)

4.789 4.790 4.791

o B e L N
Rotor shaft torque —

* - Angular velocity -

5

Iterations

Figure 5.41: Interface residuals after emergency braking

Figure 5.42: Pressure contour plot at 2.79s including streamlines
at 80% radius of blade 1 for a wrong designed control unit

171

5 Application Examples

(a) 0.38s (b) 1.00s

(c) 1.90s (d) 2.62s

Figure 5.43: Time series of vorticity magnitude isosurface for
emergency brake maneuver colored by the velocity magnitude

172

5.3 NREL Phase VI Wind Turbine

(e) 2.70s (f) 2.82s

(g) 3.32s (h) 5.00s

Figure 5.43: Time series of vorticity magnitude isosurface for
emergency brake maneuver colored by the velocity magnitude

173

5 Application Examples

5.3.7 Emergency Brake Maneuver with Flexible Blades

Within this section the FSI and the emergency brake maneuver are
combined within one co-simulation. This results in a block diagram
which is shown in Figure 5.44.

Figure 5.44: Block diagram for emergency brake maneuver with
flexible blades

The corresponding input and output quantities are specified in
Table 5.10.

Besides the reused subsystems CFD, CSM and control unit it is
necessary to change the subsystem of the generator unit. This is due
to the fact that the mass moment of inertia of the rotor is no longer
needed to be modeled by this subsystem as it is already taken care of
by the CSM model.

174

5.3 NREL Phase VI Wind Turbine

Generator/Gearbox Model

Hence, this new generator/gearbox subsystem has smaller mass mo-
ment of inertia. Moreover, it is also equipped with the possibility to
work as an electric motor during the startup of the turbine. The ODE
for the generator/gearbox subsystem reads

dw .
]E +Dw= bCSM + bmotor' (538)

Table 5.10: Description of input and output quantities for the
emergency brake maneuver with flexible blades

Symbol Description Unit

Uy, Input to CFD m
displacement field u4e¢

U, Input to CFD °/s
angular velocity of rotor around y-axis ©

U, Input to CFD) °/s
angular pitching velocity around x-axis for blade 1 i

U, Input to CFD) °/s
angular pitching velocity around x-axis for blade 3 —

Y, Output of CFD N
force field

Uy, Input to CSM N
force field

Uy, Input to CSM Nm
torque induced by generator bcsy

Yy, Output of CSM m
displacement field e

Y, Output of CSM °/s
angular velocity of rotor around y-axis &

Us Input to Control Unit °/s
angular velocity of rotor around y-axis ©

Y3 Output of Control Unit) °/s
angular pitching velocity around x-axis for blade 1 ¢

U, Input to Generator °/s
angular velocity of rotor around y-axis &

Y, Output of Generator Nm

torque induced by generator bcsy

175

5 Application Examples

In contrast to Section 5.3.6 the mass moment of inertia is set to J =
161kg-m? and the angular damping coefficient to D =100.1Nm-s.
Co-Simulation

With the help of Table 5.10 and the block diagram (see Figure 5.44)
the global interface residual vector can be defined by

R, |U. -1,
Ri| |-,
R,| |-
po [T o Yt (5.39)
R4 U, -Y,
Rs| |-V
Re| |Uh—1,
Ri| |Ui-%,

Again, the IJCSA is deployed in order to minimize the interface residual
vector. The individual interface Jacobian entries and convergence
criteria of each subsystem are set accordingly to Section 5.3.5 and
Section 5.3.6. Therefore the overall interface iteration count is the
same as for the emergency brake maneuver of Section 5.3.6.

Results

The overall co-simulation is best explained with the help of Figure 5.45.
The first thing to note is that the generator acts as a motor during the
first 1.2s of the simulation.

Within this period the motor delivers 5000 Nm. At 4 s the control
unit issues the emergency brake maneuver by pitching the blades.
Towards the end of the simulation a high frequency oscillation in
the shaft torque can be observed. By analyzing the CSM model it is
evident that this particular setup triggers a flutter phenomena. This
is also visual in the time series of the CSM model in Figure 5.46. Due
to the control of the interface residual a numerical instability of the
coupling can be ruled out.

176

5.3 NREL Phase VI Wind Turbine

6000 - -- co S IR S hf """ R I
. | | ' Motor shaft torque

S000 | p==my T Angular velocity

4000 Rotor shaft torque -

3000
2000
1000

-1000
-2000
-3000
-4000
-5000

Torque (Nm)
Angular velocity (°/s)

Time (s)

Figure 5.45: Torque and velocity for emergency brake maneuver
with flexible blades

Last but not least a time series of the Q-criterion is available within
Figure 5.47 which presents a summary of the overall NREL Phase VI
co-simulation where the I[JCSA was used. Furthermore the physical
correct energy extraction from the flow field due to the wind turbine
was taken into account.

177

5 Application Examples

(a) 0.39s

(b) 1.73s

Figure 5.46: von Mises stress on outer composite layer

178

5.3 NREL Phase VI Wind Turbine

(c) 4.03s

(d) 4.37s

Figure 5.46: von Mises stress on outer composite layer

179

5 Application Examples

(e) 5.08s

(f) 10.00s

Figure 5.46: von Mises stress on outer composite layer

180

5.3 NREL Phase VI Wind Turbine

(a) 0.39s

(b) 1.73s

Figure 5.47: Q-criterion isosurface colored by velocity
magnitude where u 4, is scaled by factor of ten

181

5 Application Examples

(d) 4.37s

Figure 5.47: Q-criterion isosurface colored by velocity
magnitude where u 4, is scaled by factor of ten

182

5.3 NREL Phase VI Wind Turbine

(f) 10.00s

Figure 5.47: Q-criterion isosurface colored by velocity
magnitude where u 4, is scaled by factor of ten

183

Learning never exhausts the
mind.

Leonardo da Vinci

CHAPTER

CONCLUSION AND OUTLOOK

Within this work a hybrid algorithm for the solution of coupled prob-
lems is presented and benchmarked. It is hybrid in the sense of com-
bining the advantages from the monolithic and the co-simulation
approach, such as allowing for the (re)use of well-established and
specialized simulation software in a modular fashion, the possibility
to combine different fidelity models at all stages of the product design
process and this is achieved while maintaining stability and accuracy
of the solution.

The presented algorithm is based on the stabilization by interface
Jacobian information, therefore it is called Interface Jacobian-based
Co-Simulation Algorithm (IJCSA). Moreover, the introduced approach
handles the co-simulation involving an arbitrary number of fields
and signals. Due to the fact that the IJCSA is based on the residual
form it handles algebraic loops in a natural manner. Furthermore, the
individual simulators can run in parallel without flow dependency
reducing the wall-clock time of the simulation, since the subsystems
use the Jacobi pattern as a communication model.

After the theoretical derivation of the IJCSA its mathematical sta-
bility properties are analyzed and compared to classical co-simulation
approaches. This clearly shows that the I[JCSA is the superior choice

185

6 Conclusion and Outlook

in terms of stability and also efficiency. Furthermore, academic test
cases are used to demonstrate a variety of different use cases of the
IJCSA, as there are nonlinear cases, algebraic loops, discontinuities
and the handling of difficult cases with respect to stability. In addition
it is possible to add any (non)linear interface constraint between the
subsystems while maintaining the full modularity of co-simulation,
since there is no need to modify the subsystems by any means.

Last but not least, industrial relevant use cases proof the appli-
cability of the IJCSA. The examples add the interaction of different
signals, open and closed-loop control to common fluid-structure in-
teraction. In order to achieve that a number of different open-source
and commercial software tools are coupled. At the end the emergency
brake maneuver of a wind turbine is simulated and validated in order
to hopefully avoid the headline “Storm caused wind turbine fire”! in
future.

The IJCSA is so far tested for the case where all subsystems run at
the same time step size and exchange information after every time
step. To relax that constraint subcycling is needed. This is especially
beneficial for co-simulation scenarios which involve the coupling
of explicit and implicit time integrators, since then subcycling of the
explicit subsystems is needed to maintain an overall coupling step size
which is in the same range as the time step of the implicit integrated
subsystems. For the cases of structure-structure interaction this is
already discussed in Gravouil et al. [64].

The ability to perform subcycling with the IJCSA and the a-priori
knowledge of the convergence order in case of mixed time integrators
would be an interesting and an application relevant extension of the
presented work.

! http://www.bbc.co.uk/news/uk-16115139 British Broadcasting Corpo-
ration [21]

186

http://www.bbc.co.uk/news/uk-16115139

Appendices

APPENDIX

ALGEBRAIC LOOPS

An algebraic loop in a Simulink model occurs when a sig-
nal loop exists with only direct feedthrough blocks within
the loop. Direct feedthrough means that the block output
depends on the value of an input port; the value of the
input directly controls the value of the output. Non-direct-
feedthrough blocks maintain a State variable.

This is the definition of algebraic loop according to Simulink User
Guide R2014a[139]. In the following this definition should be used
in order to illustrate how the IJCSA can cope with algebraic loops.
Similar to the definition given in Simulink User Guide R2014a [139]
the example in Figure A.1 is constructed. For the example we define
two simple subsystems. The first one is given by

S (Uh)=sin(1). (A.1)
The second subsystem if given by

SZ(UZ) = cos(Uz). (A.2)

189

A Algebraic Loops

An analysis of the block diagram shown in Figure A.1 renders the
following two interface constraint equations:

7(Y%U)=Y%-U=0 (A.3)
L%,)= -U,=U, (A.4)

The latter equation is derived from the cyan block in the middle of
Figure A.1 which is causing the algebraic loop. The IJCSA is used to

Figure A.1: Block diagram that describes the algebraic loop
example

solve the interface constraint Equations (A.3) and (A.4). Based on
these equations the interface residual vector is given by

R Y,—U
r=" = % " | (A.5)
Ry YhW-0U—-U

Hence the global interface Jacobian matrix is defined by

-1 —sin(l)
Jalobal = . (A.6)
cos (U) —2

190

A Algebraic Loops

The algebraic loop example is solving equation
sin (cos(UZ))— U,=U,, A.7)
which has 3.983 194 523 366 732 - 107! as solution.

This example demonstrates that the IJCSA can handle algebraic
loops without special treatment.

191

APPENDIX

ASPECTS OF CO-SIMULATION
SOFTWARE REALIZATION

Within this work the algorithmic and mathematical aspects of co-
simulation are discussed. Another interesting point of view of co-
simulation is the implementation point of view. A client-server model
fits the needs of a general co-simulation scenario, as it allows to run
the overall co-simulation on a heterogeneous architecture. The server
can for instance use a state machine approach as shown by Tripakis
et al. [147] to control all participating subsystems.

The Co-Simulation Engine (CSE) from SIMULIA Dassault Sys-
témes and MpCCI from Fraunhofer SCAI are two prominent com-
mercially available client-server-based approaches.

An open-source software called Enhanced MultiPhysics Interface
Research Engine (EMPIRE [40]) was developed as a part of this thesis.
In EMPIRE the server is called Emperor and coordinates the co-simu-
lation via a xml-based input file. For more information and documen-
tation please visit the website.

For large scale co-simulations it is important that the server can
communicate with clients (subsystems) in an efficient way by utilizing
the high-performance computing interconnects as InfiniBand. In

193

12

20

22

24

26

28

30

32

B Aspects of Co-Simulation Software Realization

order that client-server-based programs run on such interconnects
it takes a considerable implementation effort. The Message Passing
Interface (MPI) introduced by the Message Passing Interface Forum
[103] provides a way that client-server-based approaches can be built
on top of the MPI standard as shown in Gropp et al. [66] and Latham
et al. [90]. Especially, for research purposes (see Schliiter et al. [129])
this is a good approach as most MPI implementation support high-
performance computing interconnects in an efficient way for instance
see Intel MPI Library for Linux* OS [79]. However, the use of MPI poses
the constraint that all clients and the server need to run on the same
architecture.

In order that the server can connect to an arbitrary number of
clients at any time different threads need to be used inside the server
application. An example using MPI-2 and OpenMPI is provided in
Listing B.1 for the server and in Listing B.2 for the client.

B.1 Listing: server.c

// C99

// Start program: mpirun -np 1 server

#include <mpi.h>

#include <omp.h>

#include <stdio.h>

#include <stdbool.h>

#include <unistd.h> // needed for sleep() on POSIX system

#define MAX_DATA 100
int main(int argc, char **argv)

{
int providedThreadSupport;
bool terminatelListening = false;
char portName [MPI_MAX_PORT_NAME];
MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &
providedThreadSupport) ;
if (MPI_THREAD_MULTIPLE != providedThreadSupport) {
printf ("Requested MPI thread support is not guaranteed.\n
")
¥
MPI_Open_port (MPI_INFO_NULL, portName);
printf ("Server available at port:%s\n", portName);
#pragma omp parallel num_threads(2) shared(portName,
terminatelistening)
{
// Use OpemMP section construct for function parallelism
#pragma omp sectioms
#pragma omp section
// Do some work
sleep (15);
// Connect to yourself in order to terminate listening
terminateListening = true;

MPI_Comm dummy ;

194

34

36

38

40

42

44

46

48

50

52

54

56

60

12

14

16

18

20

22

24

B Aspects of Co-Simulation Software Realization

MPI_Comm_connect (portName, MPI_INFO_NULL, O,
MPI_COMM_WORLD, &dummy) ;

printf ("Server is connected to itself.\n");

MPI_Comm_disconnect (&dummy) ;

printf ("Server is disconnected.\n");

MPI_Close_port (portName) ;

T

#pragma omp section

// Listening section
while (1) {
MPI_Comm interClient = MPI_COMM_NULL;
MPI_Comm_accept (portName, MPI_INFO_NULL, O,
MPI_COMM_WORLD, &interClient);
if (terminateListening == true) {
break;
3
MPI_Status status;
char clientName [MAX_DATA];
MPI_Recv(clientName, MAX_DATA, MPI_CHAR,
MPI_ANY_SOURCE, MPI_ANY_TAG, interClient,
status) ;
printf ("Client is connected with name: %s\n",
clientName) ;
MPI_Comm_disconnect (&interClient);
printf ("Client is disconnected.\n");
3
3
} // End of sections
} // End of parallel section
MPI_Finalize();
return (0);

&

B.2 Listing: client.c

// C99

// Start program: mpirun -np 2 client
#include <mpi.h>
#include <stdio.h>

#define MAX_DATA 100

int main(int argc, char **argv)

int isMpiInitCalledByClient;
int myRank;
char portName [MPI_MAX_PORT_NAME];
char clientName [MAX_DATAJ;
MPI_Initialized (&isMpiInitCalledByClient);
if (!isMpiInitCalledByClient){
MPI_Init (&argc, &argv);
¥
MPI_Comm_rank (MPI_COMM_WORLD, &myRank);
if (myRank == 0) {
printf ("Please provide server port:");
scanf ("%99s", &portName [0]);
printf ("Please provide client name:");
scanf ("%99s", &clientName [0]);
&

MPI_Comm server;

195

26

28

30

32

B Aspects of Co-Simulation Software Realization

196

MPI_Comm_connect (portName, MPI_INFO_NULL, O,

server);
if (myRank == 0) {
MPI_Send(clientName, MAX_DATA,
¥
MPI_Comm_disconnect (&server) ;
MPI_Finalize();
return (0);

MPI_CHAR,

MPI_COMM_WORLD,

0,

0,

server) ;

[1]

2]

[3]

[4]

[5]

[6]

BIBLIOGRAPHY

A. C. Aitken. “On Bernoulli’s numerical solution of algebraic
equations.” In: Proceedings of the Royal Society of Edinburgh.
Vol. 46. 1926, pp. 289-305.

S. Altmann. Rotations, Quaternions, and Double Groups.
Dover books on mathematics. Dover Publications, 2005. ISBN:
9780486445182.

P. Anagnostopoulos and P. Bearman. “Response
characteristics of a vortex-excited cylinder at low reynolds
numbers.” In: Journal of Fluids and Structures 6.1 (1992),
pp. 39-50. DOI: 10.1016/0889-9746(92) 90054-7.

E. V. Anjuri. “Comparison of Experimental results with CFD
for NREL Phase VI Rotor with Tip Plate.” In: International
Journal of Renewable Energy Research (IJRER) 2.4 (2012),
pp. 556-563.

U. Ascher and L. Petzold. Computer Methods for Ordinary
Differential Equations and Differential-Algebraic Equations.
Society for Industrial and Applied Mathematics, 1998. ISBN:
9780898714128.

S. Aubrun, S. Loyer, P. Hancock, and P. Hayden. “Wind turbine
wake properties: Comparison between a non-rotating
simplified wind turbine model and a rotating model.” In:
Journal of Wind Engineering and Industrial Aerodynamics 120
(2013), pp. 1-8. DOI: 10.1016/j . jweia.2013.06.007.

E. Ayachour. “A fast implementation for GMRES method.” In:
Journal of Computational and Applied Mathematics 159.2
(2003), pp. 269-283. DOLI:
10.1016/80377-0427(03)00534-X.

197

http://dx.doi.org/10.1016/0889-9746(92)90054-7
http://dx.doi.org/10.1016/j.jweia.2013.06.007
http://dx.doi.org/10.1016/S0377-0427(03)00534-X

Bibliography

(8]

[9]

[11]

[12]

[13]

198

S. Badia, E Nobile, and C. Vergara. “Robin-Robin
preconditioned Krylov methods for fluid-structure
interaction problems.” In: Computer Methods in Applied
Mechanics and Engineering 198.33-36 (2009), pp. 2768-2784.
DOI: 10.1016/j .cma.2009.04.004.

S. Badia, E Nobile, and C. Vergara. “Robin-Robin
preconditioned Krylov methods for fluid-structure
interaction problems.” In: Computer Methods In Applied
Mechanics And Engineering 198.33-36 (2009), pp. 2768-2784.
DO1: 10.1016/j . cma.2009.04.004.

M. Bahmani and M. Akbari. “Response characteristics of a
vortex-excited circular cylinder in laminar flow.” In: Journal of
Mechanical Science and Technology 25.1 (2011), pp. 125-133.
DOI: 10.1007/s512206-010-1021-0.

J. Bastian, C. Claul}, S. Wolf, and P. Schneider. “Master for
co-simulation using FML.” In: 8th International Modelica
Conference. Dresden. 2011, pp. 115-120.

Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa,
B. Henicke, T. Spielman, and T. E. Tezduyar. “3D simulation of
wind turbine rotors at full scale. Part I: Geometry modeling
and aerodynamics.” In: International Journal for Numerical
Methods in Fluids 65.1 (2011), pp. 207-235. DOTI:
10.1002/£1d.2400.

Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wiichner, and

K.-U. Bletzinger. “3D simulation of wind turbine rotors at full
scale. Part II: Fluid-structure interaction modeling with
composite blades.” In: International Journal for Numerical
Methods in Fluids 65.1 (2011), pp. 236-253. DOI:
10.1002/£1d.2454.

T. Belytschko and T. Hughes. Computational methods for
transient analysis. Computational methods in mechanics.
North-Holland, 1983. 1SBN: 9780444864796.

T. Belytschko, W. Liu, and B. Moran. Nonlinear finite elements
for continua and structures. John Wiley & Sons, 2000. ISBN:
9780471987734.

http://dx.doi.org/10.1016/j.cma.2009.04.004
http://dx.doi.org/10.1016/j.cma.2009.04.004
http://dx.doi.org/10.1007/s12206-010-1021-0
http://dx.doi.org/10.1002/fld.2400
http://dx.doi.org/10.1002/fld.2454

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

Bibliography

M. Benedikt, H. Stippel, and D. Watzenig. “An adaptive
coupling methodology for fast time-domain distributed
heterogeneous co-simulation.” In: SAE Technical Paper
(2010). DOI: 10.4271/2010-01-0649.

M. Benzi, R. Kouhia, and M. Tima. “An assessment of some
preconditioning techniques in shell problems.” In:
Communications in Numerical Methods in Engineering 14.10
(1998), pp. 897-906. DOIL:
10.1002/(SICI)1099-0887(1998100)14:10<897::
AID-CNM196>3.0.C0;2-1L.

R. Bisplinghoff, H. Ashley, and R. Halfman. Aeroelasticity.
Dover Books on Aeronautical Engineering Series. Dover
Publications, 1996. ISBN: 9780486691893.

A. de Boer, A. van Zuijlen, and H. Bijl. “Comparison of
conservative and consistent approaches for the coupling of
non-matching meshes.” In: Computer Methods in Applied
Mechanics and Engineering 197.49-50 (2008), pp. 4284-4297.
DOI: 10.1016/j.cma.2008.05.001.

S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004. ISBN: 9780521833783.

British Broadcasting Corporation. Storm caused wind turbine
fire. Dec. 9, 2011. URL:
http://www.bbc.co.uk/news/uk-16115139.

P Brown and Y. Saad. “Hybrid Krylov Methods for Nonlinear
Systems of Equations.” In: SIAM Journal on Scientific and
Statistical Computing 11.3 (1990), pp. 450-481. DOI:
10.1137/0911026.

C. G. Broyden et al. “A class of methods for solving nonlinear
simultaneous equations.” In: Mathematics of Computation
19.92 (1965), pp. 577-593.

K. Burg, H. Haf, E Wille, and A. Meister. Partielle
Differentialgleichungen und Funktionalanalytische
Grundlagen: Hohere Mathematik Fiir Ingenieure,
Naturwissenschaftler und Mathematiker. Vieweg Studium.
Vieweg Verlag, Friedr, & Sohn Verlagsgesellschaft mbH, 2010.
ISBN: 9783834896841.

199

http://dx.doi.org/10.4271/2010-01-0649
http://dx.doi.org/10.1002/(SICI)1099-0887(1998100)14:10<897::AID-CNM196>3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1099-0887(1998100)14:10<897::AID-CNM196>3.0.CO;2-L
http://dx.doi.org/10.1016/j.cma.2008.05.001
http://www.bbc.co.uk/news/uk-16115139
http://dx.doi.org/10.1137/0911026

Bibliography

[25]

[26]

(28]

[30]

[31]

200

M. Busch and B. Schweizer. “An explicit approach for
controlling the macro-step size of co-simulation methods.”
In: Proc. of The 7th European Nonlinear Dynamics Conference,
Rome, Italy. 2011.

M. Busch and B. Schweizer. “Coupled simulation of
multibody and finite element systems: an efficient and robust
semi-implicit coupling approach.” In: Archive of Applied
Mechanics 82.6 (2012), pp. 723-741. DOI:
10.1007/s00419-011-0586-0.

M. Busch and B. Schweizer. “Explicit and Implicit Solver
Coupling: Stability Analysis Based on an Eight-Parameter Test
Model.” In: Proceedings in Applied Mathematics and
Mechanics 10.1 (2010), pp. 61-62. DOI:
10.1002/pamm.201010023.

P. Causin, J.-E Gerbeau, and E Nobile. “Added-mass effect in
the design of partitioned algorithms for fluid—structure
problems.” In: Computer methods in applied mechanics and
engineering 194.42 (2005), pp. 4506-4527. DOIL:
10.1016/j.cma.2004.12.005.

P Chakraborty, S. Balachandar, and R. J. Adrian. “On the
relationships between local vortex identification schemes.’
In: Journal of Fluid Mechanics 535 (2005), pp. 189-214. DOI:
10.1017/50022112005004726.

A. Chorin. “Numerical solution of the Navier-Stokes
equations.” In: Mathematics of Computation 22.104 (1968),
pp- 745-762. DOI:
10.1090/80025-5718-1968-0242392-2.

J. Chung and G. M. Hulbert. “A Time Integration Algorithm
for Structural Dynamics With Improved Numerical
Dissipation: The Generalized-a Method.” In: 60.2 (1993),
pp. 371-375. DO1: 10.1115/1.2900803.

C.van Dam, D. D. Chao, and D. E. Berg. CFD analysis of
rotating two-bladed flatback wind turbine rotor. Sandia
National Laboratories, 2008.

I. Daniel and O. Ishai. Engineering Mechanics of Composites
Materials. Engineering mechanics of composite materials.
Oxford University Press, Incorporated, 2006. ISBN:
9780195150971.

»

http://dx.doi.org/10.1007/s00419-011-0586-0
http://dx.doi.org/10.1002/pamm.201010023
http://dx.doi.org/10.1016/j.cma.2004.12.005
http://dx.doi.org/10.1017/S0022112005004726
http://dx.doi.org/10.1090/S0025-5718-1968-0242392-2
http://dx.doi.org/10.1115/1.2900803

[34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

Bibliography

J. Degroote. “Development of algorithms for the partitioned
simulation of strongly coupled fluid-structure interaction
problems.” PhD thesis. Belgium: Ghent University, 2010. ISBN:
9789085783442.

W. G. Dettmer and D. Peri¢. “A new staggered scheme for
fluid—structure interaction.” In: International Journal for
Numerical Methods in Engineering 93.1 (2013), pp. 1-22. DOI:
10.1002/nme . 4370.

P. Deuflhard. Newton Methods for Nonlinear Problems: Affine
Invariance and Adaptive Algorithms. Springer Series in
Computational Mathematics. Springer, 2011. ISBN:
9783642238987.

J. Donea, A. Huerta, J.-P. Ponthot, and A. Rodriguez-Ferran.
“Arbitrary Lagrangian—Eulerian Methods.” In: Encyclopedia of
Computational Mechanics. John Wiley & Sons, Ltd, 2004. ISBN:
9780470091357. DOI: 10.1002/0470091355 . ecm009.

M. R. Dorfel. “Fluid-structure interaction: a
differential-algebraic approach and acceleration techniques
for strong coupling.” PhD thesis. Germany: Technische
Universitidt Miinchen, 2011.

M. Dorfel and B. Simeon. “Fluid-Structure Interaction:
Acceleration of Strong Coupling by Preconditioning of the
Fixed-Point Iteration.” English. In: Numerical Mathematics
and Advanced Applications 2011. Ed. by A. Cangiani,

R. L. Davidchack, E. Georgoulis, A. N. Gorban, J. Levesley, and
M. V. Tretyakov. Springer Berlin Heidelberg, 2013, pp. 741-749.
ISBN: 978-3-642-33133-6. DOI:
10.1007/978-3-642-33134-3_78.

EMPIRE. Aug. 2014. URL:
http://empire-multiphysics.com.

G. Falkovich. Fluid Mechanics: A Short Course for Physicists.
Cambridge University Press, 2011. ISBN: 9781139497510.

C. Farhat and M. Lesoinne. “Two efficient staggered
algorithms for the serial and parallel solution of
three-dimensional nonlinear transient aeroelastic problems.”
In: Computer Methods in Applied Mechanics and Engineering
182.3-4 (2000), pp. 499-515. DOL:
10.1016/50045-7825(99)00206-6.

201

http://dx.doi.org/10.1002/nme.4370
http://dx.doi.org/10.1002/0470091355.ecm009
http://dx.doi.org/10.1007/978-3-642-33134-3_78
http://empire-multiphysics.com
http://dx.doi.org/10.1016/S0045-7825(99)00206-6

Bibliography

[43]

[45]

[47]

[48]

202

C. Farhat, M. Lesoinne, and P. L. Tallec. “Load and motion
transfer algorithms for fluid/structure interaction problems
with non-matching discrete interfaces: Momentum and
energy conservation, optimal discretization and application
to aeroelasticity.” In: Computer Methods in Applied
Mechanics and Engineering 157.1-2 (1998), pp. 95-114. DOI:
10.1016/50045-7825(97)00216-8.

C. Farhat, M. Lesoinne, and N. Maman. “Mixed
explicit/implicit time integration of coupled aeroelastic
problems: Three-field formulation, geometric conservation
and distributed solution.” In: International Journal for
Numerical Methods in Fluids 21.10 (1995), pp. 807-835. DOI:
10.1002/£1d.1650211004.

C. Farhat, K. G. van der Zee, and P. Geuzaine. “Provably
second-order time-accurate loosely-coupled solution
algorithms for transient nonlinear computational
aeroelasticity.” In: Computer Methods in Applied Mechanics
and Engineering 195.17-18 (2006). Fluid-Structure
Interaction, pp. 1973-2001. DOI:
10.1016/j.cma.2004.11.031.

P, Farrell and J. Maddison. “Conservative interpolation
between volume meshes by local Galerkin projection.” In:
Computer Methods in Applied Mechanics and Engineering
200.1-4 (2011), pp. 89-100. DOT:
10.1016/j.cma.2010.07.015.

C. A. Felippa and K. C. Park. “Computational Aspects of Time
Integration Procedures in Structural Dynamics—Part 1:
Implementation.” In: 45.3 (1978), pp. 595-602. DOLI:
10.1115/1.3424368.

C. Felippa and K. Park. “Staggered transient analysis
procedures for coupled mechanical systems: Formulation.”
In: Computer Methods in Applied Mechanics and Engineering
24.1 (1980), pp. 61-111. DOLI:
10.1016/0045-7825(80)90040-7.

C. Felippa and K. Park. “Synthesis tools for structural
dynamics and partitioned analysis of coupled systems.” In:
NATO advanced research workshop. 2004, pp. 50-111.

http://dx.doi.org/10.1016/S0045-7825(97)00216-8
http://dx.doi.org/10.1002/fld.1650211004
http://dx.doi.org/10.1016/j.cma.2004.11.031
http://dx.doi.org/10.1016/j.cma.2010.07.015
http://dx.doi.org/10.1115/1.3424368
http://dx.doi.org/10.1016/0045-7825(80)90040-7

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Bibliography

C. A. Felippa. “Procedures for computer analysis of large
nonlinear structural systems.” In: Large Engineering Systems
(1976), pp. 60-101.

C. A. Felippa, K. Park, and C. Farhat. “Partitioned analysis of
coupled mechanical systems.” In: Computer methods in
applied mechanics and engineering 190.24 (2001),

pp. 3247-3270. DOI: 10.1016/50045-7825(00) 00391 - 1.

U. Fey, M. K6nig, and H. Eckelmann. “A new
Strouhal-Reynolds-number relationship for the circular
cylinder in the range 47<Re<2e5.” In: Physics of Fluids 10.7
(1998), pp. 1547-1549. DOI: 10.1063/1.869675.

FMI standard. Aug. 2014. URL:
http://wuw.fmi-standard.org.

T. Frey, M. Bossert, and N. Fliege. Signal- und Systemtheorie.
Vieweg + Teubner Studium. Vieweg Verlag, Friedr, & Sohn
Verlagsgesellschaft mbH, 2008. 1SBN: 9783834892928.

B. Friedland. Control system design: an introduction to
state-space methods. McGraw-Hill series in electrical
engineering: Control theory. McGraw-Hill, 1986. 1SBN:
9780070224414.

M. Friedrich. “Parallel Co-Simulation for Mechatronic
Systems.” Dissertation. Germany: Technische Universitét
Miinchen, 2011.

R. Gasch and J. Twele. Wind Power Plants: Fundamentals,
Design, Construction and Operation. Electrical Engineering.
Springer, 2011. ISBN: 9783642229381.

A. Gasmi, M. Sprague, J. Jonkman, and W. Jones. Numerical
Stability and Accuracy of Temporally Coupled Multi-Physics
Modules in Wind-Turbine CAE Tools. Tech. rep. National
Renewable Energy Laboratory Colorado, USA, 2013.

M. Geimer, T. Kriiger, and P. Linsel. “Co-Simulation,
gekoppelte Simulation oder Simulationskopplung? Ein
Versuch der Begriffsvereinheitlichung.” In: O+P Zeitschrift fiir
Fluidtechnik-Aktorik, Steuerelektronik und Sensorik 50 (2006),
pp. 572-576.

203

http://dx.doi.org/10.1016/S0045-7825(00)00391-1
http://dx.doi.org/10.1063/1.869675
http://www.fmi-standard.org

Bibliography

[60]

[61]

[62]

[63]

[64]

204

M. Gerouache. “Etude numérique de I'instabilité de
bénard-karman derriere un cylindre fix ou en mouvement
pérodique. dynamique de I’écoulement et advection
chaotique.” PhD thesis. France: Ecole Polytechnique de
I'Université de Nantes, 2000.

P. Giguere and M. S. Selig. Design of a tapered and twisted
blade for the NREL combined experiment rotor. Tech. rep.
National Renewable Energy Laboratory Colorado, USA, 1999.

D. Goldberg. “What Every Computer Scientist Should Know
About Floating-point Arithmetic.” In: ACM Computing
Surveys 23.1 (1991), pp. 5-48. DOI:
10.1145/103162.103163.

D. Goldberg. “What Every Computer Scientist Should Know
About Floating-point Arithmetic.” In: ACM Comput. Surv. 23.1
(1991), pp. 5-48. DO1: 10.1145/103162.103163.

A. Gravouil and A. Combescure. “Multi-time-step
explicit-implicit method for non-linear structural dynamics.”
In: International Journal for Numerical Methods in
Engineering 50.1 (2001), pp. 199-225. DOI:
10.1002/1097-0207(20010110)50:1<199: : AID-
NME132>3.0.C0;2-A.

J. Gribbin. Q is for Quantum: Particle Physics from A-Z.
Universities Press (India) Pvt. Limited, 1998. ISBN:
9788173712432.

W. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Advanced
Features of the Message-passing Interface. Scientific and
engineering computation Bd. 2. Globe Pequot Press, 1999.
ISBN: 9780762728206.

M. H. Gutknecht and S. Rollin. “The Chebyshev iteration
revisited.” In: Parallel Computing 28.2 (2002), pp. 263-283.
DOI: 10.1016/S0167-8191(01)00139-9.

M. Hammache and M. Gharib. “An experimental study of the
parallel and oblique vortex shedding from circular cylinders.”
In: Journal of Fluid Mechanics 232 (1991), pp. 567-590. DOI:
10.1017/50022112091003804.

http://dx.doi.org/10.1145/103162.103163
http://dx.doi.org/10.1145/103162.103163
http://dx.doi.org/10.1002/1097-0207(20010110)50:1<199::AID-NME132>3.0.CO;2-A
http://dx.doi.org/10.1002/1097-0207(20010110)50:1<199::AID-NME132>3.0.CO;2-A
http://dx.doi.org/10.1016/S0167-8191(01)00139-9
http://dx.doi.org/10.1017/S0022112091003804

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

Bibliography

M. M. Hand, D. Simms, L. Fingersh, D. Jager, J. Cotrell,

S. Schreck, and S. Larwood. Unsteady Aerodynamics
Experiment Phase VI: Wind Tunnel Test Configurations and
Available Data Campaigns. Tech. rep. National Renewable
Energy Laboratory Colorado, USA, 2001.

M. Hanke-Bourgeois. Grundlagen der Numerischen
Mathematik und des Wissenschaftlichen Rechnens.
Vieweg+Teubner Verlag, 2008. ISBN: 9783834807083.

R. D. Henderson. “Details of the drag curve near the onset of
vortex shedding.” In: Physics of Fluids 7.9 (1995),
pp. 2102-2104. DOI1: 10.1063/1.868459.

P. Henrici. Elements of numerical analysis. Wiley international
edition. Wiley, 1964.

P. Henrici. Error propagation for difference methods. SIAM
series in applied mathematics. Robert E. Krieger Pub.
Co.(Huntington, NY), 1977. ISBN: 9780882754482.

M. Henrik. “Analysis and Optimization for Fluid-Structure
Interaction Problems.” PhD thesis. Denmark: Aalborg
University, 2002.

H. M. Hilber, T. J. R. Hughes, and R. L. Taylor. “Improved
numerical dissipation for time integration algorithms in
structural dynamics.” In: Earthquake Engineering &
Structural Dynamics 5.3 (1977), pp. 283-292. DOI:
10.1002/eqe . 4290050306.

M.-C. Hsu, I. Akkerman, and Y. Bazilevs. “Wind turbine
aerodynamics using ALE-VMS: validation and the role of
weakly enforced boundary conditions.” English. In:
Computational Mechanics 50.4 (2012), pp. 499-511. DoOI:
10.1007/s00466-012-0686-x.

M.-C. Hsu and Y. Bazilevs. “Fluid—structure interaction
modeling of wind turbines: simulating the full machine.” In:
Computational Mechanics 50.6 (2012), pp. 821-833. DOI:
10.1007/s00466-012-0772-0.

J. C. Hunt, A. Wray, and P. Moin. “Eddies, streams, and
convergence zones in turbulent flows.” In: Studying
Turbulence Using Numerical Simulation Databases, 2. Vol. 1.
1988, pp. 193-208.

205

http://dx.doi.org/10.1063/1.868459
http://dx.doi.org/10.1002/eqe.4290050306
http://dx.doi.org/10.1007/s00466-012-0686-x
http://dx.doi.org/10.1007/s00466-012-0772-0

Bibliography

[79]
[80]

(81]

(82]

(83]

[84]

206

Intel MPI Library for Linux* OS. Version 4.1. Intel. 2014.

B. M. Irons and R. C. Tuck. “A version of the Aitken accelerator
for computer iteration.” In: International Journal for
Numerical Methods in Engineering 1.3 (1969), pp. 275-277.
DOI: 10.1002/nme . 16200103086.

R. Issa. “Solution of the implicitly discretised fluid flow
equations by operator-splitting.” In: Journal of
Computational Physics 62.1 (1986), pp. 40-65. DOIL:
10.1016/0021-9991 (86)90099-9.

H. Jasak and Z. Tukovic. “Automatic mesh motion for the
unstructured finite volume method.” In: Transactions of
FAMENA 30.2 (2006), pp. 1-20.

M. M. Joosten, W. G. Dettmer, and D. Peri¢. “Analysis of the
block Gauss—Seidel solution procedure for a strongly coupled
model problem with reference to fluid—structure interaction.”
In: International Journal for Numerical Methods in
Engineering 78.7 (2009), pp. 757-778. DOI:

10.1002/nme . 2503.

M. M. Joosten, W. G. Dettmer, and D. Peri¢. “On the temporal
stability and accuracy of coupled problems with reference to
fluid—structure interaction.” In: International Journal for
Numerical Methods in Fluids 64.10-12 (2010), pp. 1363-1378.
DOI: 10.1002/£1d.2333.

K. Kamran, R. Rossi, E. Ofiate, and S. Idelsohn. “A
compressible Lagrangian framework for the simulation of the
underwater implosion of large air bubbles.” In: Computer
Methods in Applied Mechanics and Engineering 255 (2013),
pp. 210-225. DOI: 10.1016/j.cma.2012.11.018.

C. Kassiotis. Which strategy to move the mesh in the
Computational Fluid Dynamic code OpenFOAM. Tech. rep.
2008.

T. Kerkhoven and Y. Saad. “On acceleration methods for
coupled nonlinear elliptic systems.” English. In: Numerische
Mathematik 60.1 (1991), pp. 525-548. DOLI:
10.1007/BF01385735.

http://dx.doi.org/10.1002/nme.1620010306
http://dx.doi.org/10.1016/0021-9991(86)90099-9
http://dx.doi.org/10.1002/nme.2503
http://dx.doi.org/10.1002/fld.2333
http://dx.doi.org/10.1016/j.cma.2012.11.018
http://dx.doi.org/10.1007/BF01385735

(88]

(89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Bibliography

D. Knoll and D. Keyes. “Jacobian-free Newton-Krylov
methods: a survey of approaches and applications.” In:
Journal of Computational Physics 193.2 (2004), pp. 357-397.
DOI: 10.1016/j.jcp.2003.08.010.

U. Kiittler and W. A. Wall. “Fixed-point fluid—structure
interaction solvers with dynamic relaxation.” English. In:
Computational Mechanics 43.1 (2008), pp. 61-72. DOI:
10.1007/s00466-008-0255-5.

R. Latham, R. B. Ross, and R. Thakur. “Can MPI Be Used for
Persistent Parallel Services?” In: PVM/MPI. Ed. by B. Mohr,

J. L. Traff, J. Worringen, and J. Dongarra. Vol. 4192. Lecture
Notes in Computer Science. Springer, 2006, pp. 275-284. ISBN:
3-540-39110-X.

C. Lerch. “Towards a Turbulent Fluid-Structure-Signal
Co-Simulation: Validate with the NREL 10m Wind Turbine
Testing in NASA Ames Wind Tunnel.” 2013.

M. Lesoinne and C. Farhat. “Geometric conservation laws for
flow problems with moving boundaries and deformable
meshes, and their impact on aeroelastic computations.” In:
Computer Methods in Applied Mechanics and Engineering
134.1-2 (1996), pp. 71-90. DOT:
10.1016/0045-7825(96)01028-86.

Y. Li, K.-J. Paik, T. Xing, and P. M. Carrica. “Dynamic overset
CFD simulations of wind turbine aerodynamics.” In:
Renewable Energy 37.1 (2012), pp. 285-298. DOTI:
10.1016/j.renene.2011.06.029.

Z.Li, A. Combescure, and E Leboeuf. “Coupling of finite
volume and finite element subdomains using different time
integrators.” In: International Journal for Numerical Methods
in Fluids 72.12 (2013), pp. 1286-1306. DO
10.1002/£14.3786.

C. Lindenburg. “Investigation into rotor blade
aerodynamics.” In: Netherlands Society for Energy and the
Environment, Paper ECN-C-03-025 (2003).

B. Liptak. Instrument Engineers’ Handbook,(Volume 2) Third
Edition: Process Control. Instrument Engineers’ Handbook.
Taylor & Francis, 1995. ISBN: 9780801982422.

207

http://dx.doi.org/10.1016/j.jcp.2003.08.010
http://dx.doi.org/10.1007/s00466-008-0255-5
http://dx.doi.org/10.1016/0045-7825(96)01028-6
http://dx.doi.org/10.1016/j.renene.2011.06.029
http://dx.doi.org/10.1002/fld.3786

Bibliography

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

208

A.]. Macleod. “Acceleration of vector sequences by
multi-dimensional A? methods.” In: Communications in
Applied Numerical Methods 2.4 (1986), pp. 385-392. DOI:
10.1002/cnm. 1630020409.

N. Mahjoubi, A. Gravouil, and A. Combescure. “Coupling
subdomains with heterogeneous time integrators and
incompatible time steps.” English. In: Computational
Mechanics 44.6 (2009), pp. 825-843. DOI:
10.1007/s00466-009-0413-4.

D. Manolakis and V. Ingle. Applied Digital Signal Processing:
Theory and Practice. Cambridge University Press, 2011. ISBN:
9781139495738.

S. McTavish, D. Feszty, and E Nitzsche. “Aeroelastic
simulations of the NREL Phase VI wind turbine using a
discrete vortex method coupled with a nonlinear beam
model.” In: Proceedings of the European Wind Energy
Conference. 2009.

E R. Menter, R. Langtry, and S. Volker. “Transition Modelling
for General Purpose CFD Codes.” In: Flow, Turbulence and
Combustion 77.1 (2006), pp. 277-303. DOTI:
10.1007/s10494-006-9047-1.

E R. Menter. “Two-equation eddy-viscosity turbulence
models for engineering applications.” In: AIAA journal 32.8
(1994), pp. 1598-1605.

Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard Version 3.0. 2012.

U. Miekkala and O. Nevanlinna. “Convergence of Dynamic
Iteration Methods for Initial Value Problems.” In: SIAM
Journal on Scientific and Statistical Computing 8.4 (1987),
pp. 459-482. DOI: 10.1137/0908046.

J.-0. Mo, A. Choudhry, M. Arjomandi, and Y.-H. Lee. “Large
eddy simulation of the wind turbine wake characteristics in
the numerical wind tunnel model.” In: Journal of Wind
Engineering and Industrial Aerodynamics 112 (2013),

pp. 11-24. D0O1: 10.1016/j . jweia.2012.09.002.

http://dx.doi.org/10.1002/cnm.1630020409
http://dx.doi.org/10.1007/s00466-009-0413-4
http://dx.doi.org/10.1007/s10494-006-9047-1
http://dx.doi.org/10.1137/0908046
http://dx.doi.org/10.1016/j.jweia.2012.09.002

[106]

[107]

[108]

[109]

[110]

[111]
[112]

[113]

[114]

[115]

Bibliography

J.-O. Mo and Y.-H. Lee. “CFD Investigation on the
aerodynamic characteristics of a small-sized wind turbine of
NREL PHASE VI operating with a stall-regulated method.” In:
Journal of Mechanical Science and Technology 26.1 (2012),
pp. 81-92. DOI: 10.1007/512206-011-1014-7.

P. Moin. Fundamentals of Engineering Numerical Analysis.
Cambridge University Press, 2010. ISBN: 9780521711234.

Navier Stokes Equations. Jan. 2014. URL: http://www.cfd-
online.com/Wiki/Navier-Stokes_equations.

G. D. Nayer, A. Kalmbach, M. Breuer, S. Sicklinger, and

R. Wiichner. “Flow past a cylinder with a flexible splitter plate:
A complementary experimental-numerical investigation and
anew FSI test case (FSI-PfS-1a).” In: Computers & Fluids 99
(2014), pp. 18-43. poI:
10.1016/j.compfluid.2014.04.020.

NREL 10-m Wind Turbine Testing in NASA Ames. Jan. 2014.
URL:https://wind.nrel.gov/amestest.

OpenFOAM. Aug. 2014. URL: http://openfoam. org.

K. C. Park and C. A. Felippa. “Computational Aspects of Time
Integration Procedures in Structural Dynamics—Part 2: Error
Propagation.” In: 45.3 (1978), pp. 603-611. DOI:
10.1115/1.3424369.

T. Peacock and E. Bradley. “Going with (or Against) the Flow.”
In: Science 320.5881 (2008), pp. 1302-1303. DOI:
10.1126/science.1153479.

S. Piperno and C. Farhat. “Partitioned procedures for the
transient solution of coupled aeroelastic problems — Part II:
energy transfer analysis and three-dimensional applications.”
In: Computer Methods in Applied Mechanics and Engineering
190.24-25 (2001). Advances in Computational Methods for
Fluid-Structure Interaction, pp. 3147-3170. DOTI:
10.1016/50045-7825(00)00386-8.

S. Piperno, C. Farhat, and B. Larrouturou. “Partitioned
procedures for the transient solution of coupled aroelastic
problems Part I: Model problem, theory and two-dimensional
application.” In: Computer Methods in Applied Mechanics and

209

http://dx.doi.org/10.1007/s12206-011-1014-7
http://www.cfd-online.com/Wiki/Navier-Stokes_equations
http://www.cfd-online.com/Wiki/Navier-Stokes_equations
http://dx.doi.org/10.1016/j.compfluid.2014.04.020
https://wind.nrel.gov/amestest
http://openfoam.org
http://dx.doi.org/10.1115/1.3424369
http://dx.doi.org/10.1126/science.1153479
http://dx.doi.org/10.1016/S0045-7825(00)00386-8

Bibliography

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

210

Engineering 124.1-2 (1995), pp. 79-112. DOT:
10.1016/0045-7825(95)92707-9.

A. Placzek, J.-E Sigrist, and A. Hamdouni. “Numerical
simulation of an oscillating cylinder in a cross-flow at low
Reynolds number: Forced and free oscillations.” In:
Computers & Fluids 38.1 (2009), pp. 80-100. DOTI:
10.1016/j.compfluid.2008.01.007.

M. A. Potsdam and D. J. Mavriplis. “Unstructured mesh CFD
aerodynamic analysis of the NREL Phase VI rotor.” In: AIAA
paper 1221 (2009), p. 2009.

A. Preumont. Vibration Control of Active Structures: An
Introduction. Solid Mechanics and Its Applications. Springer,
2011. 1SBN: 9789400720336.

M. A. Puso and T. A. Laursen. “A mortar segment-to-segment
frictional contact method for large deformations.” In:
Computer Methods in Applied Mechanics and Engineering
193.45-47 (2004), pp. 4891-4913. DOL:
10.1016/j.cma.2004.06.001.

A. Quarteroni and A. Valli. Domain Decomposition Methods
for Partial Differential Equations. Numerical mathematics
and scientific computation. Clarendon Press, 1999. ISBN:
9780198501787.

J. Reid, I. of Mathematics, and I. Applications. Large sparse
sets of linear equations: proceedings of the Oxford conference
of the Institute of Mathematics and Its Applications held in
April, 1970. Academic P, 1971. 1SBN: 9780125861502.

Richardson extrapolation. Mar. 2014. URL:
http://de.wikipedia.org/wiki/Richardson-
Extrapolation.

L. E Richardson and J. A. Gaunt. “The deferred approach to
the limit. Part I. Single lattice. Part II. Interpenetrating
lattices.” In: Philosophical Transactions of the Royal Society of
London. Series A, containing papers of a mathematical or
physical character (1927), pp. 299-361. DOL:
10.1098/rsta.1927.00080.

http://dx.doi.org/10.1016/0045-7825(95)92707-9
http://dx.doi.org/10.1016/j.compfluid.2008.01.007
http://dx.doi.org/10.1016/j.cma.2004.06.001
http://de.wikipedia.org/wiki/Richardson-Extrapolation
http://de.wikipedia.org/wiki/Richardson-Extrapolation
http://dx.doi.org/10.1098/rsta.1927.00080

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

Bibliography

L. E Richardson. “The approximate arithmetical solution by
finite differences of physical problems involving differential
equations, with an application to the stresses in a masonry
dam.” In: Royal Society of London Philosophical Transactions
Series A210 (1911), pp. 307-357.

A. Roshko. On the Development of Turbulent Wakes from
Vortex Streets. Report 1191. Tech. rep. California Institute of
Technology, 1954.

P. Ryzhakov, R. Rossi, S. Idelsohn, and E. Onate. “A monolithic
Lagrangian approach for fluid-structure interaction
problems.” English. In: Computational Mechanics 46.6 (2010),
pp. 883-899. DOI: 10.1007/s00466-010-0522-0.

Y. Saad. Iterative Methods for Sparse Linear Systems: Second
Edition. Society for Industrial and Applied Mathematics, 2003.
ISBN: 9780898715347.

Y. Saad and M. H. Schultz. “GMRES: A Generalized Minimal
Residual Algorithm for Solving Nonsymmetric Linear
Systems.” In: SIAM J. Sci. Stat. Comput. 7.3 (1986),

pp. 856-869. DOI: 10.1137/0907058.

J. Schliiter, X. Wu, E. vd Weide, S. Hahn, M. Herrmann,

J.J. Alonso, and H. Pitsch. “A python approach to multi-code
simulations: Chimps.” In: Annual Research Briefs (2005),

pp. 97-110.

S. Schulte. “Modulare und hierarchische Simulation
gekoppelter Probleme.” PhD thesis. Germany: Technische
Universitat Miinchen, 1998.

L. Schur. “On Power Series Which are Bounded in the Interior
of the Unit Circle. I.” English. In: I. Schur Methods in Operator
Theory and Signal Processing. Ed. by I. Gohberg. Vol. 18.
Operator Theory: Advances and Applications. Birkhduser
Basel, 1986, pp. 31-59. ISBN: 978-3-0348-5484-9. DOI:
10.1007/978-3-0348-5483-2_3.

H. Schwarz and N. Kockler. Numerische Mathematik.
Lehrbuch Mathematik. Teubner B.G. GmbH, 2004. ISBN:
9783519429609.

211

http://dx.doi.org/10.1007/s00466-010-0522-0
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1007/978-3-0348-5483-2_3

Bibliography

[133]

[134]

[135]

[136]

[137]

[138]

[139]
[140]

[141]

[142]

212

N. Sezer-Uzol and L. N. Long. “3-D time-accurate CFD
simulations of wind turbine rotor flow fields.” In: AIAA paper
394 (2006), pp. 1-23.

S. Sicklinger, V. Belsky, B. Engelmann, H. Elmqvist, H. Olsson,
R. Wiichner, and K.-U. Bletzinger. “Interface Jacobian-based
Co-Simulation.” In: International Journal for Numerical
Methods in Engineering 98.6 (2014), pp. 418-444. DOT:
10.1002/nme .4637.

S. Sicklinger. “Formulation and object-oriented
implementation of a nonlinear node-to-surface mechanical
contact algorithm.” Germany: Technische Universitét
Miinchen, 2010.

D. A. Simms, M. M. Hand, L. J. Fingersh, and D. W. Jager.
Unsteady aerodynamics experiment phases II-1V test
configurations and available data campaigns. Tech. rep. 1999.

D. A. Simms, S. Schreck, M. Hand, and L. Fingersh. NREL
unsteady aerodynamics experiment in the NASA-Ames wind
tunnel: a comparison of predictions to measurements.

Tech. rep. National Renewable Energy Laboratory Colorado,
USA, 2001.

J. C. Simo and M. S. Rifai. “A class of mixed assumed strain
methods and the method of incompatible modes.” In:
International Journal for Numerical Methods in Engineering
29.8 (1990), pp. 1595-1638. DOL:

10.1002/nme . 1620290802.

Simulink User Guide R2014a. MathWorks, 2014.

J. Sobieszczanski-Sobieski. “Sensitivity of complex, internally
coupled systems.” In: AIAA journal 28.1 (1990), pp. 153-160.

N. N. Sorensen, J. A. Michelsen, and S. Schreck.
“Navier-Stokes predictions of the NREL phase VI rotor in the
NASA Ames 80 ft x 120 ft wind tunnel.” In: Wind Energy 5.2-3
(2002), pp. 151-169. DOI: 10.1002/we . 64.

D. Sternel, M. Schifer, M. Heck, and S. Yigit. “Efficiency and
accuracy of fluid-structure interaction simulations using an
implicit partitioned approach.” In: Computational Mechanics
43.1 (2008), pp. 103-113. DOLI:
10.1007/s00466-008-0278-7.

http://dx.doi.org/10.1002/nme.4637
http://dx.doi.org/10.1002/nme.1620290802
http://dx.doi.org/10.1002/we.64
http://dx.doi.org/10.1007/s00466-008-0278-y

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

Bibliography

G. Strang. Computational Science and Engineering.
Wellesley-Cambridge Press, 2007. 1ISBN: 9780961408817.

G. Strang. Introduction to Linear Algebra.
Wellesley-Cambridge Press, 2003. 1SBN: 9780961408893.

Taylor’s Theorem. Jan. 2014. URL: http:
//mathworld.wolfram.com/TaylorsTheorem.html.

C. Tongchitpakdee, S. Benjanirat, and L. N. Sankar.
“Numerical Simulation of the Aerodynamics of Horizontal
Axis Wind Turbines under Yawed Flow Conditions.” In:
Journal of Solar Energy Engineering 127.4 (2005), pp. 464-474.
DOI: 10.1115/1.2035705.

S. Tripakis and D. Broman. Bridging the Semantic Gap
Between Heterogeneous Modeling Formalisms and FMI.

Tech. rep. UCB/EECS-2014-30. EECS Department, University
of California, Berkeley, Apr. 2014.

S. Turek and J. Hron. “Proposal for Numerical Benchmarking
of Fluid-Structure Interaction between an Elastic Object and
Laminar Incompressible Flow.” In: Fluid-Structure
Interaction. Ed. by H.-J. Bungartz and M. Schifer. Vol. 53.
Lecture Notes in Computational Science and Engineering.
Springer Berlin Heidelberg, 2006, pp. 371-385. ISBN:
978-3-540-34595-4. DOI: 10.1007/3-540-34596-5_15.

H. Unbehauen. Regelungstechnik. 1. Klassische Verfahren zur
Analyse und Synthese linearer kontinuierlicher Regelsysteme,
Fuzzy-Regelsysteme. Regelungstechnik. Vieweg, 2005. ISBN:
9783528213329.

T. Van Dusen. Unsteady Aerodynamics Experiment Phase VI:
Wind Tunnel Test Configurations and Available Data
Campaigns. Tech. rep. Composite Engineering 277 Baker
Avenue Concord, MA 01742-2115, USA, 2002.

W. A. Walll, A. Gerstenberger, P. Gamnitzer, C. Forster, and
E. Ramm. “Large Deformation Fluid-Structure Interaction —
Advances in ALE Methods and New Fixed Grid Approaches.”
In: Fluid-Structure Interaction. Ed. by H.-J. Bungartz and

M. Schifer. Vol. 53. Lecture Notes in Computational Science
and Engineering. Springer Berlin Heidelberg, 2006,

pp. 195-232. ISBN: 978-3-540-34595-4. DOLI:
10.1007/3-540-34596-5_9.

213

http://mathworld.wolfram.com/TaylorsTheorem.html
http://mathworld.wolfram.com/TaylorsTheorem.html
http://dx.doi.org/10.1115/1.2035705
http://dx.doi.org/10.1007/3-540-34596-5_15
http://dx.doi.org/10.1007/3-540-34596-5_9

Bibliography

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

214

Q. Wang, H. Zhou, and D. Wan. “Numerical simulation of
wind turbine blade-tower interaction.” In: Journal of Marine
Science and Application 11.3 (2012), pp. 321-327. DOI:
10.1007/s11804-012-1139-9.

T. Wang. “A brief review on wind turbine aerodynamics.” In:
Theoretical and Applied Mechanics Letters 2.6, 062001 (2012).
DOI: 10.1063/2.1206201.

D. Werner. Funktionalanalysis. Springer-Lehrbuch. Springer,
2011. 1SBN: 9783642210167.

J. Wilkinson. Rounding Errors in Algebraic Processes. Dover
books on advanced mathematics. Dover, 1994. ISBN:
9780486679990.

C. Williamson and A. Roshko. “Vortex formation in the wake
of an oscillating cylinder.” In: Journal of Fluids and Structures
2.4 (1988), pp. 355-381. DOIL:
10.1016/50889-9746(88)90058-8.

E. L. Wilson. “The static condensation algorithm.” In:
International Journal for Numerical Methods in Engineering
8.1 (1974), pp. 198-203. DOI: 10.1002/nme . 16200801 15.

C. Woernle. Mehrkérpersysteme. Springer, 2011. ISBN:
9783642159824.

P Wriggers. Nonlinear Finite Element Methods. Vol. 4.
Springer, 2008. I1SBN: 9783540710004.

M. M. Yelmule and E. A. VS]. “CFD predictions of NREL Phase
VI Rotor Experiments in NASA/AMES Wind tunnel.” In:
International Journal of Renewable Energy Research (IJRER)
3.2 (2013), pp. 261-269.

E Zahle, N. N. Sgrensen, and J. Johansen. “Wind turbine
rotor-tower interaction using an incompressible overset grid
method.” In: Wind Energy 12.6 (2009), pp. 594-619. DOI:
10.1002/we.327.

E Zhang. The Schur Complement and Its Applications.
Numerical Methods and Algorithms. Springer, 2006. ISBN:
9780387242736.

http://dx.doi.org/10.1007/s11804-012-1139-9
http://dx.doi.org/10.1063/2.1206201
http://dx.doi.org/10.1016/S0889-9746(88)90058-8
http://dx.doi.org/10.1002/nme.1620080115
http://dx.doi.org/10.1002/we.327

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

Bibliography

X. Zhou and K. K. Tamma. “Design, analysis, and synthesis of
generalized single step single solve and optimal algorithms
for structural dynamics.” In: International Journal for
Numerical Methods in Engineering 59.5 (2004), pp. 597-668.
DOI: 10.1002/nme . 873.

0. Zienkiewicz. “Coupled problems and their numerical
solution.” In: Numerical Methods in Coupled Systems. Ed. by
R. Lewis, P. Bettess, and E. Hinton. Wiley & Sons, Chichester,
1984, pp. 35-68.

O. Zienkiewicz and K. Morgan. Finite elements and
approximation. Dover books on engineering. Dover
Publications, 2006. ISBN: 9780486453019.

O. Zienkiewicz and R. Taylor. The Finite Element Method for
Solid and Structural Mechanics. The element method set.
Elsevier Butterworth-Heinemann, 2005. ISBN: 9780750664318.

O. Zienkiewicz and R. Taylor. The Finite Element Method for
Solid and Structural Mechanics. The element method set.
Elsevier Butterworth-Heinemann, 2013. ISBN: 9780080951362.

0. Zienkiewicz, R. Taylor, and P. Nithiarasu. The Finite Element
Method for Fluid Dynamics. The element method set. Elsevier
Butterworth-Heinemann, 2005. 1SBN: 9780080455594.

0. Zienkiewicz, R. Taylor, and P. Nithiarasu. The Finite Element
Method for Fluid Dynamics. The element method set. Elsevier
Butterworth-Heinemann, 2013. 1SBN: 9780080951379.

0. Zienkiewicz, R. Taylor, and J. Zhu. The Finite Element
Method: Its Basis and Fundamentals. The element method set.
Elsevier Butterworth-Heinemann, 2005. ISBN: 9780080472775.

0. Zienkiewicz, R. Taylor, and J. Zhu. The Finite Element
Method: Its Basis and Fundamentals. The element method set.
Elsevier Butterworth-Heinemann, 2013. ISBN: 9780080951355.

215

http://dx.doi.org/10.1002/nme.873

	List of Symbols and Abbreviations
	Contents
	Introduction
	Mathematical and Algorithmic Framework
	Notation for Co-Simulation of Multiple Subsystems
	Fixed-Point Iteration
	Constant Under-Relaxation
	Aitken Acceleration

	Newton Methods
	Quasi Newton Method
	Newton-Krylov Methods
	Krylov Subspace Methods
	Jacobian-free Newton-Krylov Methods

	Extrapolation
	Elements of Numerical Analysis

	Co-Simulation
	Monolithic
	Backward Euler
	Generalized-alpha Method
	BDF2
	Numerical Results

	Partitioning Procedure – From Monolithic to Co-Simulation
	Co-Simulation with Coherent Time Integration Schemes
	Co-Simulation with Mixed Time Integration Schemes

	Communication Pattern
	Jacobi - Parallel
	Gauss-Seidel - Serial

	Decomposition
	Block Diagram

	Interface Jacobian-based Co-Simulation Algorithm
	The Algorithm for two Subsystems
	Generalization of the Concept
	Efficiency Enhancements
	Usability Enhancements - Jacobian Approximation
	Interface Jacobian Extraction
	Stability Considerations
	Gauss-Seidel Fixed-Point Iterations
	Jacobi Fixed-Point Iterations
	Interface Jacobian-based Co-Simulation Algorithm
	Discussion of the Stability Properties

	Examples
	Truss versus Truss Problem
	A Multi-Code Problem
	BspK6

	Conclusion

	Application Examples
	Turek Benchmark
	Co-Simulation
	Results

	Oscillating Cylinder
	CFD Validation
	Forced Oscillation Validation
	Fluid-Structure with Closed-Loop Control
	Conclusion

	NREL Phase VI Wind Turbine
	Experiment
	CFD Model
	CSM Model
	Handling Deformations & Rotations
	Fluid-Structure Interaction Model
	Emergency Brake Maneuver
	Emergency Brake Maneuver with Flexible Blades

	Conclusion and Outlook
	Algebraic Loops
	Aspects of Co-Simulation Software Realization
	Bibliography

