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Zusammenfassung

Das Berechnungsverfahren Co-Simulation wird mehr und

mehr zu einer integralen und unverzichtbaren Methode zur

Lösung der heutigen anspruchsvollen technischen Fragestel-

lungen. Mit Hilfe dieser Kopplungstechnik, kann das zu lösen-

de Gesamtproblem in einzelne Teilsysteme aufgeteilt werden,

welche zur Laufzeit Informationen austauschen. Der inhärente

Vorteil der Co-Simulation ist im Gegensatz zum gesamtheitli-

chen (monolithischen) Ansatz, dass etablierte und spezialisierte

Simulationswerkzeuge wieder verwendet werden können. Dar-

über hinaus erlaubt die Co-Simulation verschiedene Modellie-

rungstiefen der einzelnen Teilsystemen, dem jeweiligen Stand

des Produktentwicklungszyklus entsprechend zu kombinieren

und anzupassen. Leider stellt die partitionierte Behandlung der

einzelnen Teilsysteme eine Herausforderungen für die numeri-

sche Stabilität und Genauigkeit dar.

Als Ziel dieser Arbeit wurde ein neuartiges Berechnungs-

verfahren für die Co-Simulation entwickelt, das als Interface-

Jacobian-based Co-Simulation Algorithm (IJCSA) bezeichnet

wird. Das Verfahren stabilisiert die Co-Simulation während die

Modularität erhalten bleibt. Ferner kann dieser Algorithmus ei-

ne beliebige Anzahl von Feldern und Signalen bedienen. Selbst

algebraische Schleifen können einfach aufgelöst werden, da

er auf einer Residualform beruht. Des Weiteren können alle

an der Co-Simulation beteiligten Subsysteme parallel gestartet

werden, wodurch die Laufzeit der Simulation deutlich verkürzt

wird. Ebenfalls Teil dieser Arbeit ist eine eingehende Stabilitäts-

betrachtung des Algorithmus.

Abschließend wird die Anwendbarkeit des IJCSA mit meh-

reren industriell relevanten Beispielen veranschaulicht. Die ge-

zeigten Beispiele reichen von einer vollständig gekoppelten und

geregelten Fluid-Struktur-Signal-Wechselwirkungen bis hin zu

einer vollständig gekoppelten Notbremsung einer Windturbine.

Bei der Notbremsung wird die Interaktion des Generators/Ge-

triebes, der flexiblen Verbundrotorblätter, der Steuereinheit und

dem dreidimensionalen turbulenten Strömungsfeld berücksich-

tigt. Darüber hinaus werden die Simulationsergebnisse anhand

von Messdaten aus dem National Renewable Energy Laboratory

(NREL) Unsteady Aerodynamics Experiment Phase VI durchge-

führt im NASA AMES Windkanal validiert.
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Abstract

Co-simulation is becoming an increasingly integral and in-

dispensable technique for solving today’s challenging engineer-

ing problems. By means of this code coupling technique, the

engineering problem is partitioned as an assembly of different

subsystems exchanging solution information at run time. The

inherent advantage of co-simulation in contrast to the mono-

lithic approach is that it allows the (re)use of well-established

and specialized simulation software to be combined, with minor

alterations. Furthermore, co-simulation allows different fidelity

models to be combined at different stages of the design pro-

cess. Unfortunately, this partitioned treatment of the individual

system poses stability and accuracy challenges.

A novel co-simulation algorithm is introduced, referred to as

the Interface Jacobian-based Co-Simulation Algorithm (IJCSA),

which overcomes present stability issues. The algorithm can

solve co-simulation scenarios involving an arbitrary number

of fields and signals. Due to the fact that the IJCSA is based on

the residual form it handles algebraic loops in a natural man-

ner. Furthermore, the individual simulators can run in parallel

without flow dependency reducing the wall-clock time of the

simulation, since the subsystems do not have to be executed

using the classical Gauss-Seidel pattern. A thorough stability

analysis of the IJCSA is presented.

In order to demonstrate the applicability, several industri-

ally relevant examples are solved by using the IJCSA. The shown

examples range from a fully coupled fluid-structure-signal in-

teraction with closed-loop control to fully coupled emergency

brake maneuver of a wind turbine. Here the interaction of the

generator/gearbox, flexible composite blades, control unit and

the three-dimensional flow field is taken into account. Further-

more, the simulation results are validated against measurement

data from the National Renewable Energy Laboratory (NREL)

Unsteady Aerodynamics Experiment Phase VI, performed in the

NASA AMES wind tunnel.
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1
INTRODUCTION

“Storm caused wind turbine fire”1 this headline news is one which

the manufacturers and designers of wind turbines try to avoid. The

failure or wrong design of a wind turbine shut down mechanism can

have a catastrophic consequence as shown in Figure 1.1.

In order to design for an emergency brake maneuver load case the

consideration of the interaction of all system components with the

wind is critical. In order to avoid failures in the final product the virtual

analysis (simulation) is an indispensable tool. The term simulation

within this work is used for the combination of modeling reality and

the numerical solution of the mathematical model.

In the case where simulation needs to model the interaction of

a various number of technical components with their environment

it usually results in so-called multiphysics simulations. Hence, mul-

tiphysics simulations involve multiple physical models or multiple

concurrent physical phenomena. For instance in order to simulate

the emergency brake maneuver of a wind turbine the interaction of

1 ❤tt♣✿✴✴✇✇✇✳❜❜❝✳❝♦✳✉❦✴♥❡✇s✴✉❦✲✶✻✶✶✺✶✸✾ British Broadcasting Corpo-

ration [21]

1

http://www.bbc.co.uk/news/uk-16115139


1 Introduction

Figure 1.1: Exploded wind turbine in Ardrossan, North Ayrshire,

Scotland due to high winds and problems with the emergency

shutdown British Broadcasting Corporation [21]

the generator/gearbox, flexible composite blades, control unit and

the three-dimensional flow field is essential.

Multiphysics typically involves solving coupled systems (Defini-

tion 1.1) of partial differential algebraic equations (PDAE).

Definition 1.1: Coupled System

“Coupled systems and formulations are those ap-

plicable to multiple domains and dependent vari-

ables which usually (but not always) describe differ-

ent physical phenomena and in which

(a) neither domain can be solved while separated

from the other;

(b) neither set of dependent variables can be ex-

plicitly eliminated at the differential equation

level.

”a

a Zienkiewicz [164]
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1 Introduction

For the solution of the coupled problem there are two main meth-

ods, namely monolithic and partitioned.

The monolithic approach discretizes the coupled problem as a

whole single system and afterwards solves the resulting equation sys-

tem. On the one hand the advantage of this approach is that this

usually results in a robust and accurate numerical method. On the

other hand a single software package needs to be able to model all

the needed physics. Therefore, it is not possible to reuse any existing

solvers. Furthermore, within the design process of a product the fi-

delity level of the simulation models are increased towards the end as

more refined analysis needs to be preformed as the design of the prod-

uct matures. With the monolithic approach the existing simulation

cannot be reused if the fidelity level needs to be changed.

The partitioning procedure identifies the process of spatial sepa-

ration of the coupled problem into multiple partitioned subsystems

and a set of interface constraints (see also Felippa et al. [49]). The par-

titioned treatment allows that the modeling process can be done for

each subsystem separately. That further implies that well-established

and specialized simulation tools can be (re)used for the different sub-

systems. On top of that the modeling can be done by different experts

at the same time for the individual subsystems. Furthermore, the par-

titioned approach allows different fidelity models to be combined at

all stages of the design process. If the partitioning is done at the PDAEs

level it is called co-simulation (see Definition 3.1). However, these

advantages come for the price of numerical stability and accuracy

issues.

In contrast to the partitioning where the term is linked to the

spatial separation process, the term decomposition is used in this

work for the process of defining the input/output relations for each

individual subsystem.

The introductory example of an emergency brake maneuver of

a wind turbine poses a further complication. Here, the coupling of

fields (see Definition 1.2) and signals (see Definition 1.3) is needed.

Since the discretizations of the composite blades and the flow field

result in fields whereas the generator/gearbox and the control unit

result in subsystems of type signal. Therefore, simulation techniques

are needed in order to cope with field-signal coupling of an arbitrary

number of subsystems.

3



1 Introduction

Definition 1.2: (Physical) Field

“ A field is a physical quantity that has a value for each point in

space and time. ”a

a Gribbin [65]

Definition 1.3: Signal

A signal is defined in general as an abstract description of one

varying quantity, where the independent variable in most cases

is time. a

a Frey et al. [54] and Manolakis et al. [99]

The goal of this work is the design of coupling algorithms for ex-

actly this situation where a small number of field subsystems are

coupled to a moderate number of signal subsystems. The developed

algorithm which is called Interface Jacobian-based Co-Simulation

Algorithm (IJCSA) combines the advantages of both monolithic and

co-simulation approaches. It is based on a hybrid idea which pre-

serves modularity and adds stability and accuracy to the classical

co-simulation approaches.

As consumer products are becoming increasingly sophisticated

there are a lot of technical disciplines which are benefiting of such

simulation capabilities. An incomplete list includes

• Aerospace

• Automotive

• Micro-electromechanical systems (MEMS)

• Medical devices

• Structural engineering

The IJCSA is designed for a general situation where very little

knowledge of the individual subsystem is available. Therefore, there

exist tailored algorithms for the coupling of a specific situation that

perform better than the IJCSA. For the classical co-simulation ap-

proach several solution algorithms are proposed in literature. For

the coupling of two simulators there are numerous references, for

instance Degroote [34], Farhat et al. [42], Felippa et al. [48], Gravouil

et al. [64], and Küttler et al. [89]. The modular co-simulation of surface

4



1 Introduction

coupled problems which result in field-type subsystems is presented

by Schulte [130].

For the co-simulation of an arbitrary number of signals there is de-

velopment towards a standardized interface (called Functional Mock-

up Interface (FMI)) on the basis of functional mock-up units (FMU)

ongoing. As the FMI standard [53] does not specify coupling algo-

rithms the development of coupling algorithms is left to the imple-

mentors.

Tailored solutions for the co-simulation of multibody dynamics

(signals) and finite element systems (fields) are presented in Busch

et al. [26]. A parallel implementation for signal co-simulation is pre-

sented by Friedrich [56].

The novelty in this work is the design of a general purpose co-

simulation algorithm (IJCSA) for field-signal interaction. The follow-

ing bullet points summarize the properties of the proposed algorithm.

The IJCSA

• allows a general stable treatment of tightly coupled problems

• handles an arbitrary number of subsystems

• can incorporate (non)linear interface constraints at the inter-

face level

• allows a parallel execution of all the subsystems

• maintains the full flexibility and modularity of classical co-sim-

ulation

• can handle algebraic loops

This thesis is outlined as follows:

• Chapter 2: Mathematical and Algorithmic Framework

Here the operator notation of co-simulation is introduced. Fur-

thermore, an overview of solution methods for nonlinear equa-

tion systems is given, where Jacobian-based and Jacobian-free

techniques are discussed. Last but not least essential defini-

tions of numerical analysis are given as they are used in the

subsequent chapters.

• Chapter 3: Co-Simulation

This chapter discusses co-simulation. Thereafter, the link be-

tween the monolithic approach and the classical co-simulation

approach is shown. For the co-simulation the effect of the com-

bination of different time integrators is discussed. Moreover,

5



1 Introduction

different communication patterns are presented (Gauss-Seidel

and Jacobi) and their usability and performance is discussed.

Towards the end of the chapter the impact of the different de-

compositions on the stability is presented. Finally, the block

diagram representation of co-simulation is shown.

• Chapter 4: Interface Jacobian-based Co-Simulation Algorithm

The idea of the IJCSA is presented, usability and performance

enhancements for the IJCSA are shown. Moreover, the extrac-

tion procedure for interface Jacobians is demonstrated. Last but

not least, various benchmark cases are performed and different

versions of IJCSA are compared to the classical co-simulation

algorithms.

• Chapter 5: Application Examples

The performance of the IJCSA for industrially relevant problems

is the center point of this chapter. The first problem is a classical

benchmark for FSI, the so-called FSI3 benchmark proposed by

Turek et al. [148]. Afterwards, a fully coupled fluid-structure-

signal interaction with closed-loop control is shown. Finally,

the emergency brake maneuver of a wind turbine is presented.

Here the interaction of the generator/gearbox, flexible compos-

ite blades, control unit and the three-dimensional flow field is

taken into account. The simulation results are validated against

measurement data from the National Renewable Energy Lab-

oratory (NREL) Unsteady Aerodynamics Experiment Phase VI

performed in the NASA AMES wind tunnel.

• Chapter 6: Conclusion and Outlook

The results of the various studies performed are summarized

and discussed. Moreover,the properties of the IJCSA are sum-

marized and ideas for future research are proposed.

6



Any intelligent fool can make

things bigger, more complex,

and more violent. It takes a

touch of genius – and a lot of

courage – to move in the

opposite direction.

Albert Einstein
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2
MATHEMATICAL AND ALGORITHMIC

FRAMEWORK

The chapter introduces the operator notation used throughout this

work.

As the solution of coupled problems usually necessitates the solu-

tion of a (non)linear interface constraint equation system, an overview

of (non)linear solution methods is given in this chapter. Most meth-

ods for solving nonlinear equation systems can be sorted into two

main categories. The first category is the one, where no derivative

information of the residual is necessary. The second category needs

at least information about the first derivative (Jacobian) of the func-

tion (residual). In the following a few members of each category are

presented with the focus on the applicability to co-simulation.

Last but not least basic elements of numerical analysis are re-

capped as they are needed in Chapters 3 and 4.

7



2 Mathematical and Algorithmic Framework

2.1 Notation for Co-Simulation of Multiple

Subsystems

The notation is introduced on the basis of the well-known two-field

coupling methodology. It is generalized to a multi-code scenario af-

terwards.

We start with an example where we have two subsystems, each

equipped with one input and one output scalar quantity. Note that

there are various synonyms used for subsystem, e.g. client, code, sim-

ulator, solver, agent.

The input/output relations for the problem are given by

Y1 = S1

�
U1

�
, (2.1)

Y2 = S2

�
U2

�
. (2.2)

Each of the subsystems S1

�
U1

�
and S2

�
U2

�
have state (internal) vari-

ables in addition to the output quantities Y1 and Y2. The state variables

are referred to as X1 and X2. The subsystems S1

�
U1

�
and S2

�
U2

�
are

assumed to model a (non)linear relation between output Y� and input

U� quantities, i.e. S� is in general a nonlinear operator. The coupled

problem is defined by the interface constraint equations

I1

�
Y1, Y2,U1,U2

�
= 0, (2.3)

I2

�
Y1, Y2,U1,U2

�
= 0. (2.4)

Here I� is the interface constraint operator which can also be nonlin-

ear in general. Note that the state variables are not needed within the

interface constraint equations. The interface constraint operator is

essential to the co-simulation, as it defines the coupled problem. It

reflects the relations between input and output variables. The output

variables can be replaced by the subsystems. Hence we arrive at

I1

�
S1

�
U1

�
,S2

�
U2

�
,U1,U2

�
= 0, (2.5)

I2

�
S1

�
U1

�
,S2

�
U2

�
,U1,U2

�
= 0. (2.6)

In order to be able to derive coupling algorithms for multiple sub-

systems a generalized notation is introduced. If an arbitrary number

{r ∈N | r ≥ 2} of subsystems is present, the output-input relation for

the i -th subsystem is defined as

Yi = Si

�
Ui

�
i = 1, ..., r . (2.7)

8



2.2 Fixed-Point Iteration

Note here the input and output quantities are generalized to vectors.

The interface constraint operator for the i -th subsystem is defined as

Ii

�
Y j , U j , j = 1, ..., r

�
i = 1, ..., r . (2.8)

Using Equation (2.7) one has

Ii

�
S j

�
U j

�
, U j , j = 1, ..., r

�
i = 1, ..., r . (2.9)

Hence the interface constraint equation system is given by

Ii

�
S j

�
U j

�
, U j , j = 1, ..., r

�
= 0 i = 1, ..., r . (2.10)

The residual components of the residual vector are given by

Ri = Ii

�
S j

�
U j

�
, U j , j = 1, ..., r

�
i = 1, ..., r . (2.11)

The global residual vector components Ri define the entire co-

simulation and thus the coupled problem. Furthermore, in order to

solve the coupled problem the global interface residual vector

r =





R
1

...

R
r




(2.12)

needs to be minimized until a certain convergence criterion is met.

In other words it is a (non)linear root finding problem that needs to

be dealt with. In the next section root finding methods are reviewed.

2.2 Fixed-Point Iteration

The classical fixed-point iteration method belongs to the category

of Jacobian-free methods. They rely on the residual evaluation only.

Hence, a solution of all the subsystems is sufficient. This is a major ad-

vantage in contrast to Newton methods where the Jacobian is needed.

However, this advantage may have the drawback of stability loss. This

is discussed in detail in Chapter 3.

In order to derive the fixed-point iteration method the definition

of a contraction (Definition 2.1) and the Banach fixed-point theorem

(see Theorem 2.1) are a prerequisite.

9



2 Mathematical and Algorithmic Framework

Definition 2.1: Contraction

Let X be a metric space. Then a map T : X → X is called a con-

traction (contraction mapping) on X if there exists q ∈ [0, 1] such

that



T (x )−T (y )


≤ q



x − y




∀x , y ∈ X . Note q is called Lipschitz constant (see Schwarz et al.

[132]).

Theorem 2.1: Banach Fixed-Point Theorem

Let (X ,‖.‖) be a non-empty complete metric space with a con-

traction T : X → X . Then the equation

x = T (x )

has one solution x ∗, called fixed-point and the fixed-point itera-

tion

m+1 x = T
�

m x
�

m = 0, 1, 2, ...

converges for any 0 x ∈ X to x ∗ for m→∞.

In co-simulation the main task is to find the root(s) of the global

interface residual vector equation (see Equation (2.12)). If a classical

fixed-point iteration is deployed to solve the interface residual equa-

tion system the first task is to formulate a fixed-point problem. In

the following it is shown how the root finding problem can be trans-

formed into a fixed-point problem. For the derivation the root finding

problem is defined by the map F : X → X , where X is a metric space.

Hence, the root finding problem is defined as

F (x ) = 0. (2.13)

Theorem 2.1 defines the fixed-point of T as

x ∗ = T
�
x ∗
�

. (2.14)

If we assume that x ∗ is the root of F (x )we have

F
�
x ∗
�
= 0. (2.15)

10
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With this assumption Equation (2.14) is equivalent to

x ∗+ F
�
x ∗
�
= T

�
x ∗
�

, (2.16)

x ∗− F
�
x ∗
�
= T

�
x ∗
�

. (2.17)

Hence, we can define the fixed-point iteration sequence for the root

finding problem Equation (2.13) as

m+1 x =m x ± F
�

m x
�

. (2.18)

Furthermore, the error m+1efixP can be defined by

m+1efixP =


m+1 x − x ∗



 . (2.19)

For the discussion of stability properties it is favorable to rewrite

Equation (2.18) into matrix form. This is only possible as long as F (x )

is a linear map. However, for stability considerations this is a common

assumption. With this we arrive at

m+1x = (I ∓G )m x ± c , (2.20)

where F (x ) is assumed to be

F (x ) =G x − c , (2.21)

here G is a linear operator and c is a constant vector which represents

the constant part of T (x ). With this, Equation (2.20) can be further

simplified to

m+1x =H m x + c . (2.22)

Here c represents the constant part of T (x ). H is of special inter-

est if convergence properties of the constructed fixed-point iteration

sequence are analyzed. In particular the spectral radius of H is deter-

mining the stability. The spectral radius is defined by

ρ (H ) =max
i

�
|λi |

�
(2.23)

where λi are the eigenvalues of H . The fixed-point iteration method

converges (see Hanke-Bourgeois [70] and Strang [143]) if

ρ (H )< 1. (2.24)

11



2 Mathematical and Algorithmic Framework

With the help of the spectral radius the convergence rate for Equa-

tion (2.22) can also be determined. The convergence rate κ is given

by

κ=− log10

�
ρ (H )

�
. (2.25)

This means that the error m+1efixP (2.19) drops by κ digits per iteration.

2.2.1 Constant Under-Relaxation

In order to improve the convergence behavior of Equation (2.22) the

relaxation factor {α ∈R} is introduced. Thus, Equation (2.18) becomes

m+1 x =m x +αF
�

m x
�

. (2.26)

Here the possibility of a plus or a minus sign is valid. Equation (2.26)

can be written in matrix form as-well. This leads to

m+1x = (I +αG )m x −αc . (2.27)

This can be further simplified to

m+1x =H m x −αc . (2.28)

The latter equation is similar to Equation (2.22) as for convergence

ρ (H ) =max
i

�
|λi |

�
(2.29)

must hold. Note that Equation (2.27) states the core equation of the

Richardson iterative method, which is discussed in detail in Hanke-

Bourgeois [70] and Richardson [124]. The effect of the relaxation factor,

which is a user input, is discussed in detail in Section 3.4. In general

it is challenging to determine a good relaxation factor value a-priori.

However, for some special cases there is helpful a-priori knowledge

available as shown in the following.

Optimal Relaxation Factor for Scalar Case

The optimal relaxation factor renders

ρ (H ) = 0. (2.30)

This will render the correct solution within one iteration.

12



2.2 Fixed-Point Iteration

Unfortunately, it is in general not possible to construct such an

optimal relaxation factor. However, for the special case, where x is a

scalar and G is a linear map it is possible.

In order to derive the optimal relaxation factor αopt we start with

the scalar form of Equation (2.27), which is

m+1 x = (1+αG )m x −αc . (2.31)

For optimal convergence we need

ρ (H ) = 0= 1+αoptG . (2.32)

This leads to the optimal relaxation factor

αopt =−
1

G
. (2.33)

Optimal Relaxation Factor for Vector Case

For the case that x is a vector and G is symmetric and positive-definite

the following expression guarantees an optimal choice of α such that

minρ (H ) . (2.34)

Hence, it is in general not possible to get

ρ (H ) = 0. (2.35)

This means we need to minimize

minρ (I +αG ) . (2.36)

If λi are the eigenvalues of G this is equivalent to

min |1+αλi | ∀λi . (2.37)

Furthermore, for guaranteeing convergence we need to have

|1+αλi |< 1 ∀λi . (2.38)

Thus we need to choose α such that

0<α<− 2

λmax

. (2.39)

13
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Therefore, in order to minimize Equation (2.37) we have

αopt =−
2

λmin+λmax

, (2.40)

where

λmin =min
i

�
λi

�
(2.41)

and

λmax =max
i

�
λi

�
. (2.42)

The proof for Equation (2.40) is available in Hanke-Bourgeois [70].

Note that Equation (2.40) represents the basic idea of the Chebyshev

iteration method as shown in Gutknecht et al. [67].

2.2.2 Aitken Acceleration

For nonlinear problems (G is no longer linear) it is even harder to

estimate an optimal relaxation factor as the optimal value for the re-

laxation will change during the simulation. Therefore, adaptive tech-

niques were developed to update the relaxation factor during the

iterations. One of the most prominent and for practical applications

most useful methods, is discussed in the following.

The Aitken acceleration method is named after Alexander Aitken

[1]. It has been reformulated for an efficient computer implementation

by Irons et al. [80].

The main idea of the method is to assume a linear map T : X →
X . Furthermore a scalar problem is assumed X ⊆R. For two initial

guesses a , b ∈ X we get ea = T (a ) ,eb = T (b ) ∈ X . Based on these two

points we can compute the solution c of the fixed point problem if

T : X → X is a linear map (see Figure 2.1) and we arrive at

c =
aeb − ea b

a − b − ea +eb
. (2.43)

In Figure 2.1 the effect of the assumption, that T (x ) is a linear map

is demonstrated. The linearization assumption results in the blue

line. If T (x ) is nonlinear, c will not be the fixed point x ∗. Hence, more

iterations need to be carried out. As a relaxation factor form of Equa-

tion (2.43) can be integrated smoothly into Equation (2.26) the re-

laxation factor form is derived next. In order to derive the relaxation
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x

y

T (x )
y
=

x

x ∗a

e a

bc

e b

Figure 2.1: Graphical interpretation of Aitken

factor form of Equation (2.43) an iteration depended relaxation factor
bβ is defined by rewriting Equation (2.43) to

c = eb + bβ
�
b −eb

�
, (2.44)

bβ =
eb − ea

a − b − ea +eb
. (2.45)

For the first increment the relaxation factor aβ needs to be given

b = ea + aβ
�
a − ea

�
, (2.46)

aβ = initβ . (2.47)

If we combine Equation (2.45) and Equation (2.46) we arrive at a re-

cursive formula for the relaxation factor

bβ = aβ +
�

aβ −1
� b −eb
�
a − ea

�
−
�
b −eb

� . (2.48)

The notation from Irons et al. [80] is in the following converted to the

notation used in this work. Equation (2.46) is equivalent to

b =
�
1− aβ

�
T (a ) + aβa . (2.49)
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If Equation (2.16) is substituted into Equation (2.46) we arrive at

b = a +
�
1− aβ

�
F (a ) . (2.50)

In case that this equation is compared with Equation (2.26) we can

identify

α= 1−β . (2.51)

Thus Equation (2.49) can be written as

m+1 x =m x + mα︸︷︷︸
(1−β)

�
T
�

m x
�
−m x

�
. (2.52)

Furthermore, we can reformulate Equation (2.48) to

mα=m−1α
T
�

m−1 x
�
−m−1 x

�
T (m−1 x )−m−1 x

�
+
�

m x −T (m x ) t
� . (2.53)

For T (x ) = x + F (x ) Equation (2.52) reads

m+1 x =m x +mαF
�

m x
�

, (2.54)

and Equation (2.53) reads

mα=m−1α
F
�

m−1 x
�

F (m−1 x )− F (m x )
. (2.55)

Equation (2.55) represents an iteration dependent relaxation factor

which is depending on previous and current evaluation of F (x ) only.

Hence Equations (2.54) and (2.55) represent a convenient form for

implementation.

However, there is one problem left in the case where X ⊆Rn for

n > 1, the division in Equation (2.55) is not possible. Therefore dif-

ferent versions of the Aitken ∆2 method exist for the vector case. A

comparison can be found in Macleod [97]. Within Macleod [97] the

Aitken acceleration method is defined by

x
′

i+2
= xi+2−

�
xi+2− xi+1

�2

xi+2−2xi+1+ xi

. (2.56)
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In order to compare the work of Macleod [97] with the one of Irons

et al. [80] it is necessary to know how xi , xi+1, xi+2, x
′

i+2
of Macleod

[97] are connected to a , b , ea ,eb , c of Irons et al. [80]. With

xi = a ,

xi+1 = ea ,

xi+1 = b ,

xi+2 = eb ,

x
′

i+2
= c ,

the notation used in Macleod [97] can be transformed to the one

used in Irons et al. [80]. Thus Equation (2.56) can be converted to

Equation (2.43).

One of the most prominent methods for the vector case (see Küttler

et al. [89]) is the multiplication by the denominator of Equation (2.53)

which results in

mα=

m−1α

�
T
�

m−1x
�
−m−1x

�⊤ ��
T
�

m−1x
�
−m−1x

�
+
�

m x −T (m x )
��





�
T (m−1x )−m−1x

�
+
�

m x −T (m x )
�




2
.

(2.57)

For a two code Gauss-Seidel communication pattern (see Section

3.3) the Aitken method is given in Algorithm 2.1. This version of the

algorithm is also used in the context of fluid-structure interaction (see

Küttler et al. [89]).

The Aitken method works well for cases where the global residual

vector holds degrees of freedom which represent the same physical

quantity (e.g. displacements for fluid-structure interaction as pre-

sented in Küttler et al. [89]). One advantage of the Aitken method is

that it is simple to implement and produces little computational effort

at the interface even if the global residual vector has a large number of

entries. However, the convergence rate of the Aitken method is linear

(proof available in Henrici [72, p. 71]) it converges significantly faster

than the constant under-relaxation method as shown by Küttler et al.

[89]. Figure 2.1 illustrates that the Aitken method will give the correct

result after the second iteration if the problem is linear.
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Algorithm 2.1: Aitken algorithm for a 2-code example with GS-pattern

✴✴ ❚✐♠❡ ❧♦♦♣

1 for n = 0 to n = nend do
✴✴ ■t❡r❛t✐♦♥ ❧♦♦♣

2 for m = 0 to m =mend do
✴✴ ❙♦❧✈❡ ❛❧❧ s✉❜s②st❡♠s ✭s❡q✉❡♥t✐❛❧✮

3
m Y n+1

2
= S2

�
m U n

2

�

4
m Y n+1

1
= S1

�
m Y n+1

2

�

✴✴ ❈♦♠♣✉t❡ ❛♥❞ ❝❤❡❝❦ r❡s✐❞✉❛❧

5
m r n =




m
Rn

1

m
Rn

2



=




m U n

1
−m Y n+1

2
= 0

m U n
2
−m Y n+1

1





6 if ‖m r n‖
ε
< ε then

7 break

8 if m = 0 then

9
0αn = initαn

10 else
✴✴ ❋♦r ❛ s❝❛❧❛r r❡s✐❞✉❛❧

11
mαn =m−1αn

m−1Rn
2

m−1Rn
2 −mRn

2

✴✴ ❋♦r ❛ ✈❡❝t♦r r❡s✐❞✉❛❧

12
mα=m−1αn

m−1Rn
2

T
(m−1Rn

2 −mRn
2 )

‖m−1R
n
2 −mR

n
2 ‖2

✴✴ ❆♣♣❧② ✉♣❞❛t❡

13
m+1U n

2
=m U n

2
+mαn mRn

2

✴✴ ■♥✐t✐❛❧ s♦❧✉t✐♦♥ ❢♦r ♥❡①t t✐♠❡ st❡♣

14
0U n+1

2
= E

�
mend+1U k

2
k = 0, ..., n

�

One of the severe disadvantages for multi-code coupling of the

Aitken method is, that it has problems delivering a converged solution

if the entries in the global residual vector are stemming from differ-

ent physical quantities (e.g. forces and displacements) as shown by

Sicklinger et al. [134].
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2.3 Newton Methods

In this section a few variants of the famous Newton method are pre-

sented. Newton methods need in contrast to the classical fixed-point

iteration method information of the first derivative of F (x ). The itera-

tion sequence of the Newton method is given by

m+1 x =m x −J
�
F
�

m x
��−1

F
�

m x
�

, (2.58)

where J
�
F (x )

�
is the first derivative of F (x ). Equation (2.58) can be

reformulated to

J
�
F
�

m x
��

m∆x =−F
�

m x
�

, (2.59)

with

m∆x =m+1 x −m x . (2.60)

The ordinary Newton method is summarized in algorithmic form in

Algorithm 2.2. If Equation (2.58) is compared to the Banach fixed-

point theorem (see Theorem 2.1) it is evident that the Newton method

is also within the family of fixed point iterations method. If T is defined

as

T
�

m x
�
=m x −J

�
F
�

m x
��−1

F
�

m x
�

, (2.61)

the Newton method can be written as

m+1 x = T
�

m x
�

. (2.62)

One could ask the question why to use Newton methods as the

Jacobian information makes the method more bulky. There are mainly

two arguments to use the Newton method. The most important one is

the advantage in terms of stability (see Chapter 3). The second one is a

higher convergence rate. If 0 x is sufficiently close to x ∗ it is possible to

show (proof available in Deuflhard [36, p. 49]), that the error is reduced

with a quadratic convergence rate. This means that



m+1 x −m x


≤ p



m x −m−1 x


2

(2.63)

is true. Here p is some constant.
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Algorithm 2.2: Ordinary Newton method for vector case

✴✴ ■♥✐t✐❛❧✐③❡

1
0x = initx

✴✴ ■t❡r❛t✐♦♥ ❧♦♦♣

2 for m = 0 to m =mend do
✴✴ ❊✈❛❧✉❛t❡ ❛♥❞ ❝❤❡❝❦ r❡s✐❞✉❛❧

3
m r = F (m x )

4 if ‖m r ‖
ε
< ε then

5 break

✴✴ ❊✈❛❧✉❛t❡ ❏❛❝♦❜✐❛♥

6
m J =J

�
F (m x )

�

✴✴ ❙♦❧✈❡ ❢♦r ❝♦rr❡❝t♦r

7
m J ·m∆x =−m r

✴✴ ❆♣♣❧② ✉♣❞❛t❡

8
m+1x =m x +m∆x

A similar theorem holds for the convergence rate of the residuals

(see Deuflhard [36, p. 77])




F
�

m+1 x
�


≤ ep




F
�

m x
�




2

. (2.64)

Intuitively it means that the number of correct digits at least doubles

for every iteration.

A few variants of Newton methods with respect to applications to

co-simulation should be discussed in following. The following defini-

tions are an excerpt of Deuflhard [36]which is an excellent reference

for Newton methods.

• Ordinary Newton method

The basic Newton method according to Equation (2.59) which

shows a quadratic convergence rate.

• Simplified or Modified Newton method

The initial derivative is kept throughout the iterations. This re-

sults in a general linear convergence rate.

• Newton-like method

The finite dimensional Jacobian is replaced by some approxi-
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mation of the Jacobian. This generally results in a linear conver-

gence rate and might render a smaller convergence radius.

• Exact Newton method

The resulting linear equation system is solved in a numerically

exact manner i.e. by using a direct solver and proper scaling.

• Inexact Newton method

The resulting linear equation system is not solved in a numer-

ically exact manner. This maybe due to the use of an iterative

solver.

• Secant method

For scalar problems the tangent (Jacobian) is replaced by the

secant. It works very well for scalar problems where the Jacobian

is difficult to compute and it shows a superlinear convergence

rate.

• Quasi-Newton method

Extends the secant method to finite dimensions (Jacobian rank

update)

With these definitions the classical fixed-point iteration methods

(see Section 2.2) can be seen as a subclass of the Newton method.

They belong in the category of Newton-like methods.

If the Jacobian is replaced by some approximation it harms in

general the convergence rate. For most cases this results in a linear

convergence rate.

Example 2.1 should be used to illustrate the difference between

quadratic, superlinear and linear convergence rate. Within Example

2.1 the ordinary, the quasi Newton and the modified Newton method

are compared.

Example 2.1: Newton Example

The following example should demonstrate the convergence behaviors of different variants of the Newton
method. The residual vector of the example is given by

F
�
x1 , x2

�
=



sin
�
x1

�
− cos

�
x2

�

cos
�
x1

�
− sin

�
x2

�



 . (2.65)

The Jacobian of the residual vector is a two by two matrix and is given by
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J

�
F
�
x1 , x2

��
=



 cos
�
x1

�
sin

�
x2

�

−sin
�
x1

�
−cos

�
x2

�



 . (2.66)

The convergence criteria is set to


m r



< 1 ·10−6 for all cases.
The results for the ordinary Newton method can be found in Table 2.1. The results are aligned with theory
and show a quadratic convergence rate.
If the initial Jacobian is kept constant throughout the iterations the convergence rate drops from quadratic
to linear (see Table 2.2). The linear convergence rate can be improved by using a quasi Newton method to
superlinear (see Table 2.3 and Table 2.4).

Table 2.1: Behavior of the ordinary Newton method for Example

2.1

iteration


F (m x )



 

m∆x


 m efixP

0 1.414 213 562 373 095 1 1.414 213 562 373 095 1 0.303 492 827 833 503 6

1 0.425 916 830 318 592 3 0.308 239 298 872 401 4 0.004 746 471 038 897 9

2 0.006 712 511 114 430 9 0.004 746 488 861 175 9 0.000 000 017 822 278 0

3 0.000 000 025 204 507 2 0.000 000 017 822 278 0 0.000 000 000 000 000 2

2.3.1 Quasi Newton Method

The convergence rate of the modified Newton method can be im-

proved to superlinear by using the famous Broyden’s ’good’ rank-1

update as shown by Broyden et al. [23]. This algorithm can be found

in an implementation-friendly form in Deuflhard [36, p. 62]. The algo-

rithm is based on the idea of the secant method, where the Jacobian

is approximated by

m eJ m∆x = F
�

m+1 x
�
− F

�
m x

�
. (2.67)

Here
m eJ is the secant approximation of the Jacobian in iteration m .

Broyden et al. [23] transferred this idea from the scalar case the multi-

dimensional vector case by using the following update rule:

m eJ =m−1 eJ +
F (m x )− F

�
m−1 x

�
−m−1 eJ m−1∆x



m−1∆x


2

m−1∆x⊤ (2.68)

Similar to Equation (2.58) we need to solve

m+1 x =m x −m eJ −1F
�

m x
�

, (2.69)
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Table 2.2: Behavior of the modified Newton method for Example

2.1

iteration


F (m x )



 ‖m x∆‖ m efixP

0 1.414 213 562 373 095 1 1.414 213 562 373 095 1 0.303 492 827 833 503 6

1 0.425 916 830 318 592 3 0.425 916 830 318 592 3 0.122 424 002 485 088 8

2 0.172 917 526 956 656 4 0.172 917 526 956 656 4 0.050 493 524 471 567 7

3 0.071 393 456 157 483 4 0.071 393 456 157 483 4 0.020 899 931 685 915 7

4 0.029 555 890 963 451 6 0.029 555 890 963 451 6 0.008 655 959 277 535 9

5 0.012 241 298 573 054 8 0.012 241 298 573 054 8 0.003 585 339 295 518 9

6 0.005 070 430 025 874 4 0.005 070 430 025 874 4 0.001 485 090 730 355 5

7 0.002 100 235 066 218 5 0.002 100 235 066 218 5 0.000 615 144 335 863 0

8 0.000 869 945 435 162 0 0.000 869 945 435 162 0 0.000 254 801 099 299 0

9 0.000 360 343 168 386 6 0.000 360 343 168 386 6 0.000 105 542 069 087 6

10 0.000 149 259 025 366 0 0.000 149 259 025 366 0 0.000 043 716 956 278 5

11 0.000 061 825 112 464 8 0.000 061 825 112 464 8 0.000 018 108 156 186 3

12 0.000 025 608 800 067 6 0.000 025 608 800 067 6 0.000 007 500 643 881 3

13 0.000 010 607 512 303 4 0.000 010 607 512 303 4 0.000 003 106 868 422 1

14 0.000 004 393 775 459 0 0.000 004 393 775 459 0 0.000 001 286 907 036 9

15 0.000 001 819 961 385 0 0.000 001 819 961 385 0 0.000 000 533 054 348 1

16 0.000 000 753 852 688 6 0.000 000 753 852 688 6 0.000 000 220 798 340 5

Table 2.3: Behavior of the quasi Newton method (Broyden’s rank

1 update) for Example 2.1 where 0 eJ = 0 J

iteration


F (m x )



 

m∆x


 m efixP

0 1.414 213 562 373 095 1 1.414 213 562 373 095 1 0.303 492 827 833 503 6

1 0.425 916 830 318 592 3 0.327 334 062 994 542 8 0.023 841 235 161 039 2

2 0.033 715 001 075 671 5 0.024 010 670 132 413 9 0.000 169 434 971 374 6

3 0.000 239 617 233 885 1 0.000 169 442 940 232 9 0.000 000 007 968 858 3

4 0.000 000 011 269 667 6 0.000 000 007 968 858 4 0.000 000 000 000 000 2

in order to proceed to the next Newton iteration. Hence, Broyden

et al. [23] further suggested to use the Sherman–Morrison formula
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Table 2.4: Behavior of the quasi Newton method (Broyden’s rank

1 update) for Example 2.1 where 0 eJ = I

iteration


F (m x )



 

m∆x


 m efixP

0 1.414 213 562 373 095 1 1.414 213 562 373 095 1 3.367 919 300 532 252 5

1 1.414 213 562 373 095 1 3.076 399 077 971 968 8 1.388 527 951 665 040 8

2 1.003 648 926 252 681 1 0.986 173 563 597 888 7 0.936 376 679 636 708 3

3 1.204 966 549 794 268 1 1.270 893 539 140 174 8 0.344 112 368 779 571 5

4 0.481 020 255 548 720 0 0.346 211 156 198 226 5 0.002 100 010 463 912 8

5 0.002 956 781 995 747 3 0.002 105 412 488 969 7 0.000 005 402 025 347 7

6 0.000 007 606 205 141 3 0.000 005 402 407 704 5 0.000 000 000 382 357 0

7 0.000 000 000 538 369 5 0.000 000 000 382 356 9 0.000 000 000 000 001 0

(see Strang [143]) to directly update the inverse of the Jacobian ap-

proximation
m eJ −1, which results in

m eJ −1 =
m−1 eJ −1+

m−1∆x −m−1 eJ −1
�
F (m x )− F

�
m−1 x

��

m−1∆x⊤
m eJ −1

�
F (m x )− F (m−1 x )

�
�

m−1∆x⊤
m−1 eJ −1

�
. (2.70)

A comprehensive presentation of Broyden’s ’good’ rank-1 update is

given in Algorithm 2.3.

The performance of Algorithm 2.3 is demonstrated with the help of

Example 2.1 in Table 2.3 and Table 2.4. Furthermore it is demonstrated

that the influence of the initial choice of the global interface Jacobian

can have a significant impact on the convergence. For a correct initial

Jacobian 0 eJ = 0 J Example 2.1 needs 5 iterations for convergence (see

Table 2.3). Whereas if the initial Jacobian is set to be the identity matrix
0 eJ = I Example 2.1 needs 8 iterations for convergence (see Table 2.4).

2.3.2 Newton-Krylov Methods

If the Newton method is combined with a Krylov subspace method for

the solution of the linear equation system this is called Newton-Krylov

method. Because of the usage of an iterative Krylov linear equation

solver Newton-Krylov methods are also in the category of inexact

Newton methods. If Quasi-Newton methods or Newton-like methods

are combined with Krylov subspace methods it is possible to design
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2.3 Newton Methods

Algorithm 2.3: Broyden’s ’good’ rank-1 update

✴✴ ■♥✐t✐❛❧✐③❡

1
0x = initx

2
0 eJ = init eJ
✴✴ ■t❡r❛t✐♦♥ ❧♦♦♣

3 for m = 0 to m =mend do
✴✴ ❊✈❛❧✉❛t❡ ❛♥❞ ❝❤❡❝❦ r❡s✐❞✉❛❧

4
m r = F (m x )

5 if ‖m r ‖
ε
< ε then

6 break

✴✴ ❘❛♥❦✲✶ ✉♣❞❛t❡ ♦❢ ❛♣♣r♦①✐♠❛t✐✈❡ ❏❛❝♦❜✐❛♥

7 if m 6= 0 then

8
m eJ =m−1 eJ +

m r −m−1r −m−1 eJ m−1∆x

‖m−1∆x ‖2
m−1∆x ⊤

✴✴ ❙♦❧✈❡ ❢♦r ❝♦rr❡❝t♦r

9
m eJ ·m∆x =−m r

✴✴ ❆♣♣❧② ✉♣❞❛t❡

10
m+1x =m x +m∆x

Jacobian-free Newton-Krylov (JFNK) methods (see Brown et al. [22]).

For further information and a good overview of different techniques

the reader is referred to Knoll et al. [88]. Despite of this excellent refer-

ence a short introduction to JFNK is given in the following.

2.3.3 Krylov Subspace Methods

Krylov subspace methods are iterative solution methods for large

linear systems. They were introduced as iterative methods by Reid

et al. [121].

These methods are generalized projection methods according to

Saad [127] for solving Ax = b , where A ∈ Rn×n , x ∈ Rn and b ∈ Rn .

They are using the j th Krylov subspace

K j (A, 0a ) = span{0a , A0a , A2
0a , . . . , A j−1

0a }, (2.71)

where 0a = b − A0x is the initial linear residual for some given 0x .

This idea forms the whole family of Krylov subspace methods, which

includes for instance conjugate gradients, Arnoldi method, Lanczos

25



2 Mathematical and Algorithmic Framework

method and the generalized minimal residual method (GMRES). The

GMRES method is especially interesting as it can be used to solve large

sparse nonsymmetric linear equation systems. For illustration pur-

poses the GMRES algorithm is given in Algorithm 2.4. Please note that

only the GMRES iteration index is denoted for an improved readability.

2.3.4 Jacobian-free Newton-Krylov Methods

The central idea of JFNK methods is to use a Krylov subspace method

to solve the linear Equation System (2.58) which needs to be solved

in every Newton iteration m of the ordinary Newton method. For

instance if the GMRES method is used as linear solution methods, the

k th GMRES iteration will minimize




k a




2
, where

m
k

a =−m r −m J ·m
k
∆x , (2.72)

in a least-squares sense (see also Knoll et al. [88]). The key feature to

construct a matrix-free methods is that GMRES requires the action of

the Jacobian only in the form of matrix–vector products, which may

be approximated by

J
�
F (u )

�
·v ≈ F (u +εv )− F (u )

ε
, (2.73)

according to Brown et al. [22], where ε ∈R is a small number. Hence

we can now formulate a basic version of the JFNK method in Algo-

rithm 2.5. The GMRES algorithm is here indicated via a function call.

A good reference for the implementation of a GMRES algorithm is

pretested by Ayachour [7]. The behavior of the JFNK methods pre-

sented in Algorithm 2.5 is demonstrated with the help of Example 2.1

in Table 2.5. Please note that for each Newton iteration two GMRES

iterations were performed.

The JFNK method shows a very good performance for the simple

Example 2.1. For bigger problems preconditioning is required in order

to achieve convergence (see Knoll et al. [88]). For very ill-conditioned

problems it can be a very difficult task to find a good preconditioner

(see for instance Benzi et al. [17]). The applicability of JFNK methods

for the solution of simple elliptic coupled problems is discussed in

Kerkhoven et al. [87]. Here it is found that if the clustering of the

eigenvalues of the global interface Jacobian is at 1 preconditioning of
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2.3 Newton Methods

Algorithm 2.4: GMRES method according to Hanke-Bourgeois [70]

✴✴ ■♥✐t✐❛❧✐③❡

1 a 0 =−r − J ·∆x 0

2 d0 = ‖a 0‖2
3 v1 = a 0/d0

✴✴ ●▼❘❊❙ ■t❡r❛t✐♦♥ ❧♦♦♣

4 for k = 1 to k = kend do
✴✴ ❯s❡ ❊q✉❛t✐♦♥ (2.73)

5 z k+1 = J vk ≈
�
F (m x+εvk )−F (m x )

�
/ε

✴✴ ❆r♥♦❧❞✐ ♣r♦❝❡ss

6 for i = 1 to i = k do

7 hi k = v ⊤
i

z k+1

8 z k+1 = z k+1−hi k vi

9 w = ‖z k+1‖2
✴✴ ❆♣♣❧② ♦❧❞ ●✐✈❡♥s r♦t❛t✐♦♥s ♦♥ hk

10 for i = 1 to i = k −1 do

11 eh = ci hi k + si hi+1,k

12 hi+1,k =−si hi k + ci hi+1,k

13 hi k = eh
✴✴ ❉❡t❡r♠✐♥❡ ♥❡✇ ●✐✈❡♥s r♦t❛t✐♦♥

14 if w ≤ |hk k | then

15 tk = w/|hk k |
16 ck = hk k/|hk k |

q
1+t 2

k

17 sk = tk/
q

1+t 2
k

18 else

19 tk = hk k/w

20 ck = tk/
q

1+t 2
k

21 sk = 1/
q

1+t 2
k

✴✴ ❆♣♣❧② ●✐✈❡♥s r♦t❛t✐♦♥

22 hk k = ck hk k + sk w

✴✴ ❈♦♠♣❧❡♠❡♥t d t♦ ❛ ✈❡❝t♦r d ∈Rk+1

23 dk =−sk dk−1 ✴✴ |dk | ❝♦rr❡s♣♦♥❞s t♦ ‖a k ‖2
24 dk−1 = ck dk−1

25 if |dk |< ε then
✴✴ ❚r✐✈✐❛❧ s♦❧✈❡ ❛s H ✐s ❛♥ ✉♣♣❡r ❍❡ss❡♥❜❡r❣

H yk = d

26 ∆x k =∆x 0+Vk yk ✴✴ Vk =
�
v1, ..., vk

�

27 break
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Algorithm 2.5: Basic Jacobian-free Newton-Krylov method

✴✴ ■♥✐t✐❛❧✐③❡

1
0x = initx

✴✴ ■t❡r❛t✐♦♥ ❧♦♦♣

2 for m = 0 to m =mend do
✴✴ ❊✈❛❧✉❛t❡ ❛♥❞ ❝❤❡❝❦ r❡s✐❞✉❛❧

3
m r = F (m x )

4 if ‖m r ‖
ε
< ε then

5 break

✴✴ ❯s❡ ❆❧❣♦r✐t❤♠ ✷✳✹ ❛♥❞ ❊q✉❛t✐♦♥ (2.73) ❢♦r

❝♦rr❡❝t♦r

6
m∆x =GMRES (m x ,−m r )

✴✴ ❆♣♣❧② ✉♣❞❛t❡

7
m+1x =m x +m∆x

Table 2.5: Behavior of the JFNK method for Example 2.1

iteration


F (m x )



 

m∆x


 m efixP

0 1.414 213 562 373 095 1 1.414 213 556 774 007 3 0.303 492 822 234 415 9

1 0.425 916 822 581 922 7 0.308 239 291 975 371 3 0.004 746 469 740 956 2

2 0.006 712 509 278 873 3 0.004 746 487 552 831 6 0.000 000 017 811 877 7

3 0.000 000 025 189 795 8 0.000 000 018 057 568 0 0.000 000 002 977 693 3

the GMRES method is not required for convergence. However this is

rarely the case for general co-simulation scenarios.

This is the main reason why JFNK methods are difficult to use in

general co-simulation scenarios, where the details of each subsystem

might not be known nor accessible. Nevertheless as also illustrated

by Example 2.1 and Table 2.5, the JFNK methods can be a very good

choice for special kinds of co-simulation for instance fluid-structure

interaction or structure-structure interaction.

2.4 Extrapolation

So far methods have been discussed which allow the solution of the

interface constraint equation within the iteration loop. An open ques-
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2.4 Extrapolation

tion is still how the solution of the converged time step can be ex-

trapolated to the next one. This is accomplished with the help of the

extrapolation operator E (e.g. last line of Algorithm 2.1). This operator

takes as input an arbitrary number of previous converged time steps

of the inputs and extrapolates in time the next input 0U n+1
i .

For practical applications the use of previous converged time steps

is rather small (r < 3). The simplest case of extrapolation is zero-order

hold (ZOH), where the previous converged time step is taken as start

solution for the next time step.

0U n+1
i
= EZOH

�
mend+1U n

i

�
=mend+1U n

i
(2.74)

A good compromise between storage requirements and approxima-

tion error is first-order hold (FOH). Within this method a linear ex-

trapolator is build-up by using two previous converged time steps.

This reads

0U n+1
i
= EFOH

�
mend+1U n−1

i
, mend+1U n

i

�
=

mend+1U n−1
i
+

t n+1− t n−1

t n − t n−1

�
mend+1U n

i
−mend+1U n−1

i

�
. (2.75)

If a constant time step is used throughout the entire simulation the

equation above is reduced to

0U n+1
i
= EFOH

�
mend+1U n−1

i
, mend+1U n

i

�
=

2 mend+1U n
i
−mend+1U n−1

i
. (2.76)

Besides the two presented extrapolators there are a lot of different

ones available in the literature. They are mostly all tuned towards the

use between two subsystems, where the subsystems are limited to a

special choice of time integrators. Even though they are not applicable

for general co-simulation scenarios they can perform very well for

the special case they are designed for.

Some prominent loosely coupled fluid-structure interaction al-

gorithms which exploit the knowledge of the time integrators can

be found in Farhat et al. [44], Felippa et al. [49], Felippa et al. [51],

and Piperno et al. [114, 115]. Loosely coupled means that one does

not iterate within the time step (mend = 0). Note that the operator E

is sometimes also called predictor, this is especially true within the

design of loosely coupled partitioned algorithms. In this work the
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term extrapolator is used for the predicted input variables of a new

time step. The term predictor is used for predicted new input values

when a new interface iteration is started. Moreover, as the scope of

this work is the design of general co-simulation algorithms, the de-

sign of extrapolators which are geared towards a specific choice of

subsystem integrators or towards a specific number of subsystems is

not the focus of this work.

2.5 Elements of Numerical Analysis

At the end of this chapter a few basic definitions of numerical analysis

should be recapped as they are essential to the following chapters.

When algorithms are implemented in software and executed on

a central processing unit (CPU) it is important to realize that these

CPUs usually work with floating-point arithmetic. This means that

the rational numbers R are approximated by numbers with a finite

amount of digits. This has the consequence that during the calcu-

lation a round-off error needs to be taken into account. A further

complication with finite precision is that multiplication and addition

are no longer necessarily associative. There is an excellent overview

paper by Goldberg [63]which shows the implications of floating-point

arithmetic. Further references on the analysis of round-off error prop-

agation are presented by Henrici [72, 73] and Wilkinson [155]. The

reader is referred to these references as the round-off error analysis is

beyond the scope of this work.

If algorithms are analyzed consistency is one basic property. Con-

sistency can be associated with the local error of the numerical meth-

od (see Definition 2.2).

Definition 2.2: Consistency

Let eφ
�
x n+1

�
be the numerical solution at time step n +1 for the

case, where the numerical method was started from the exact

valueφ (x n ) at time step n . The local error of the method can be

defined by

e t n+1

locT
=




 eφt n+1 −φt n+1



 . (2.77)
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The numerical method is called consistent if

lim
h→0

e t n+1

locT
= 0, (2.78)

where h is the time step size.

Consistency is a necessary but not sufficient condition for conver-

gence. For convergence a method needs to be consistent and stable.

Hence, stability and the closely linked condition are defined next.

Definition 2.3: Stability and Condition

Let F : Rn → Rm be the problem which depends on x and eF
should be the numerical algorithm which approximates the prob-

lem. ex is the disturbed input data.

In order to estimate the error we can use the triangle inequality:




F (x )− eF
�
ex
�


≤




F (x )− F
�
ex
�




︸ ︷︷ ︸
condition

+




F
�
ex
�
− eF

�
ex
�




︸ ︷︷ ︸
stability

. (2.79)

Note that condition is a property of the problem itself and stabil-

ity is a property of the algorithm.

A consequence of consistency and stability is convergence. It is

linked to the global error of the numerical method and is therefore

very important in accuracy analysis as noted by Felippa et al. [49].

Definition 2.4: Convergence

A numerical method is said to be convergent if the numerical

solution φ̂ approaches the exact solution φ as the step size h

goes to zero.

Convergence can also be defined by using the global error. For

the global error

e t n+1

gloT
=




φ̂t n+1 −φt n+1



 , (2.80)

if the following relation holds

max
n




e t n

gloT




→ 0 for h→ 0, (2.81)
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the method is converging.

The method is said to have an accuracy of order m if

e t n

gloT
=O(h m ), (2.82)

at a specific time step n .

The last definition within this chapter introduces an error norm

for the global interface residuals vector. In this case it is favorable to

normalize the residual by the number of DOFs in order to get residual

numbers which have the same physical meaning as demonstrated in

Küttler et al. [89]. Letφ ∈Rn then we define



φ



ε
=

1p
n



φ




2
. (2.83)
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3
CO-SIMULATION

This chapter focuses on co-simulation. As a first step it is shown how

the co-simulation model can be derived from the monolithic problem.

Afterwards aspects of co-simulation like decomposition, communica-

tion patterns and block diagrams are discussed.

These discussion points provide the necessary background to

derive the Interface Jacobian-based Co-Simulation Algorithm (IJCSA)

introduced by Sicklinger et al. [134] in Chapter 4. The IJCSA is designed

for robust co-simulation with an arbitrary number of subsystems.

Definition 3.1: Co-Simulation

In co-simulation the different subsystems which form a coupled

problem are modeled and simulated in a segregated manner.

Hence, the modeling is done on the subsystem level without

having the coupled problem in mind. Furthermore, the coupled

simulation is carried out by running the subsystems in a black-

box manner. During the simulation the subsystems will exchange

data.
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3 Co-Simulation

Before the transition from monolithic to co-simulation is dis-

cussed, co-simulation should be defined. The Definition 3.1 used

within this work is close to the one of Geimer et al. [59].

In order to discuss the properties of co-simulation a linear model

is used. This procedure is done in a lot of disciplines, where some

prominent references are presented by Busch et al. [27], Causin et

al. [28], Dettmer et al. [35], Felippa et al. [51], and Strang [143]. Even

interface

k1 k2

domain 1 domain 2

m1

d1

m2 d2 m3

k3

u v1 v2 w

Figure 3.1: Monolithic/co-simulation test problem

though the used linear model (see Figure 3.1) is motivated from struc-

tural mechanics the properties can be carried over to fluid-structure

interaction (see also Dettmer et al. [35]) as well as domain 2 can be

seen as an idealization of a fluid model. The model problem is an

initial value problem (see also Table 3.1).

The model problem (Figure 3.1) has 3 DOFs for the monolithic

case and 4 DOFs for the co-simulation case. Hence, subsystem 1 and

subsystem 2 have each one input, one output and one state variable.

Therefore, the model problem is used to show the accuracy behavior

of the state and the interface variables for different combinations of

time integrators. Before the co-simulation is analyzed the accuracy

properties for the monolithic system are shown for different time

integrators. In order to keep the discussion more general first and

second order single and multi-step time integrators are used. All the

presented time integrators are in the class of linear multistep methods

(LMS) according to Felippa et al. [49].
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3.1 Monolithic

3.1 Monolithic

The following linear system of ODEs describes the model problem

shown in (Figure 3.1).

ü +
d1

m1

u̇ +
k1

m1

u +
k2

m1

(u − v ) = 0

v̈ +
d2

m2

(v̇ − ẇ ) +
k2

m2

(v −u ) = 0

ẅ +
d2

m3

(ẇ − v̇ ) +
k3

m3

w = 0

(3.1)

Note that there is one second order ODE per DOF. In order to apply a

numerical time integration procedure, Equation Set (3.1) is rearranged

in matrix form.





m1 0 0

0 m2 0

0 0 m3





︸ ︷︷ ︸
M





ü

v̈

ẅ





︸︷︷︸
φ̈

+





d1 0 0

0 d2 −d2

0 −d2 d2





︸ ︷︷ ︸
D





u̇

v̇

ẇ





︸︷︷︸
φ̇

+





k1+k2 −k2 0

−k2 k2 0

0 0 k3





︸ ︷︷ ︸
K





u

v

w





︸︷︷︸
φ

=





0

0

0





︸︷︷︸
f

(3.2)

Equation (3.2) represents the monolithic continuous form of the

model problem. In order to solve the continuous problem different

numerical time integrators are used in the following.

3.1.1 Backward Euler

The most basic implicit time integrator is backward Euler (BE). The

backward Euler time integrator is also called implicit Euler or first
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order backward differentiation formula (BDF1). The BE operator is

given forφ and φ̇

φn+1 =φn +hφ̇n+1, (3.3)

φ̇n+1 = φ̇n +hφ̈n+1, (3.4)

where h is the time step. Rewriting these equations renders an ap-

proximation for the velocity, namely

φ̇n+1 =
1

h

�
φn+1−φn

�
, (3.5)

and one for the acceleration

φ̈n+1 =
1

h 2

�
φn+1−2φn +φn−1

�
. (3.6)

With these two approximations the BE time discretized ODE System

(3.2) can be written as

�
1

h 2
M +

1

h
D +K

�
φn+1 =

�
2

h 2
M +

1

h
D

�
φn −

�
1

h 2
M

�
φn−1+h f n+1. (3.7)

The initial conditionsφinit and φ̇init can be set for the BE method with

the following equations:

φ0 =φinit (3.8)

φ−1 =φinit−hφ̇init (3.9)

3.1.2 Generalized-αMethod

The generalized-αmethod is a very prominent method in structural

dynamics, which was introduced by Chung et al. [31]. It is a second or-

der accurate single step method with four user parameters. By setting

different values for the four user parameters αm,αf,β ,γ the General-

ized-αmethod can be transformed into various time integrators (e.g.

trapezoidal rule, Newmark method, Hilber-Hughes-Taylor method

presented by Hilber et al. [75] and more).
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The following approximations are used for the velocity and the

acceleration:

φ̇n+1 = φ̇n +h
�
γφ̈n+1+

�
1−γ

�
φ̈n

�
(3.10)

φ̈n+1 =
1

h 2β
φn+1− 1

h 2β
φn − 1

hβ
φ̇n +

�
1− 1

2β

�
φ̈n (3.11)

With these approximations the generalized-α time discretized ODE

System (3.2) can be written as

��
1

h 2β
− αm

h 2β

�
M +

�
γ

hβ
− αfγ

hβ

�
D +

�
1−αf

�
K

�
φn+1 =

M

��
1

h 2β
− αm

h 2β

�
φn +

�
1

hβ
− αm

hβ

�
φ̇n +

�
1

2β
− αm

2β
−1

�
φ̈n

�
+

D

��
γ

hβ
− αfγ

hβ

�
φn +

�
γ

β
−1− αfγ

β

�
φ̇n+

�
hγ

2β
+αfh −h − αfhγ

2β

�
φ̈n

�
−K

�
αfφ

n
�
+ f n+1−αf . (3.12)

The following parameter values are used for the subsequent discus-

sions:

αm = 0.5

αf = 0.5

β = 0.25

γ= 0.5

These values result in a second order accurate, unconditionally stable

scheme with minimal numerical dissipation. The initial conditions

φinit and φ̇init can be set for the generalized-αmethod as shown by

Chung et al. [31]with the following equations:

φ0 =φinit (3.13)

φ̇0 = φ̇init (3.14)

φ̈0 =M −1
�

f 0−D φ̇0−K φ0
�

(3.15)
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3.1.3 BDF2

The second order Backward Differentiation Formula (BDF2) method

is a two step second order accurate method. More details of the Back-

ward Differentiation Formula can for instance be found in Ascher et al.

[5]. The BDF2 operator for approximating the velocity is given by

φ̇n+1 =
1

h

�
3

2
φn+1−2φn +

1

2
φn−1

�
, (3.16)

and for the acceleration by

φ̈n+1 =
1

h 2

�
9

4
φn+1−6φn +

11

2
φn−1−2φn−2+

1

4
φn−3

�
. (3.17)

If the method is applied to the second order ODE System (3.2) the

following linear equation system is obtained:

�
9

4h 2
M +

3

2h
D +K

�
φn+1 =

M

�
6

h 2
φn − 11

2h 2
φn−1+

2

h 2
φn−2− 1

4h 2
φn−3

�
+

D

�
2

h
φn − 1

2h
φn−1

�
+ f n+1 (3.18)

Setting the initial conditionsφinit and φ̇init for the second order Back-

ward Differentiation Formula is more complicated. In order to get

the method started values forφ−3,φ−2,φ−1 andφ0 are needed. This

can be accomplished by running the BE method for the first two time

steps and afterwards switching to BDF2. However, for initial value

problems this will lower the order of accuracy. Another possibility is

to use the generalized-αmethod to get the BDF2 method started. This

conserves the second order of accuracy of the BDF2 method.

3.1.4 Numerical Results

For the presented three time integrators the accuracy order is plotted

in Figure 3.2 for the model problem presented in Figure 3.1. Clearly,

the numerical examples match the theoretical expectations. The BE

method shows a first order of accuracy for displacements. Whereas

the other two methods show a second order of accuracy.
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Figure 3.2: Absolute global error (2.80) of the displacements

over time step size h

For the system parameter in Table 3.1 the results for displacements

u , v , w can be found in Figure 3.3.

Note that the reference solution for the test problem was obtained

by using Richardson extrapolation.

3.2 Partitioning Procedure – From Monolithic to

Co-Simulation

Within this section the transition process from the monolithic prob-

lem to the co-simulation is illustrated and investigated. Co-Simulation

implies so-called differential partitioning according to Felippa et al.

[49] of the monolithic system. Hence the differential equation system

is partitioned. In contrast to the differential partitioning there is also

the so-called algebraic partitioning according to Felippa et al. [49],

where the monolithic differential equation system is first discretized

and afterwards partitioned.

The maximum flexibility is obtained by using the differential par-

titioning approach or in other words co-simulation (Definition 3.1).
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Figure 3.3: Solution over time

Table 3.1: System parameters for the model problem

Property Symbol Value Unit

Mass m1 0.1 kg

Mass m2 0.2 kg

Mass m3 0.3 kg

Damping coefficient d1 0.1 N/s

Damping coefficient d2 0.5 N/s

Spring stiffness k1 1.0 N/m

Spring stiffness k2 2.0 N/m

Spring stiffness k3 3.0 N/m

Initial displacement u init 1.0 m

Initial velocity u̇ init 0.0 m/s
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3.2 Partitioning Procedure – From Monolithic to Co-Simulation

The notation introduced in Section 2.1 will be used to describe the

differential partitioned ODE system. Hence, the first step is to partition

the monolithic second order ODE System (3.1) into two domains.

For the first domain we get

m1ü1+d1u̇1+k1u1+k2

�
u1− v1

�
= 0, (3.19)

m2 v̈1+k2

�
v1−u1

�
= f1. (3.20)

The equations for the first domain can be rearranged in matrix nota-

tion. This renders



m1 0

0 m2







ü1

v̈1



+



d1 0

0 0







u̇1

v̇1



+



 k1+k2 −k2

−k2 k2







u1

v1



 =



 0

f1



 . (3.21)

For the second domain we get

d2

�
v̇2− ẇ2

�
= f2, (3.22)

m3ẅ2+d2

�
ẇ2− v̇2

�
+k3w2 = 0, (3.23)

and in matrix notation we have



0 0

0 m3







 v̈2

ẅ2



+



 d2 −d2

−d2 d2







 v̇2

ẇ2



+



0 0

0 k3







 v2

w2



 =



 f2

0



 . (3.24)

If the partitioned Equation Sets (3.21) and (3.24) are compared to the

monolithic Equation Set (3.2) it is evident that some terms vanish due

to the partitioning. This information loss needs to be compensated

by an appropriate set of interface constraint equations.

Hence as a next step a complete set of equation is established

which describes the monolithic problem in a co-simulation sense.

Note that in this case the monolithic ODE system will be reformulated
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3 Co-Simulation

in a set of differential algebraic equations (DAEs). This is also the case

in fluid-structure interaction. Here the reader is referred to Dörfel [38]

and Dörfel et al. [39].

The general notation for this problem with two subsystems is given

by

Y1 = S1

�
U1

�
, (3.25)

Y2 = S2

�
U2

�
. (3.26)

By using the information of the partitioned Equation Sets (3.21) and

(3.24) we can rewrite the general notation to

v1 = S1

�
f1

�
, (3.27)

v2 = S2

�
f2

�
, (3.28)

where v1 and v2 are the interface displacements for domain 1 and do-

main 2. In order to retain the coupled problem the interface constraint

equations need to be added. In general form they read

I1

�
Y1, Y2,U1,U2

�
= 0, (3.29)

I2

�
Y1, Y2,U1,U2

�
= 0. (3.30)

Again the general notation applied to the partitioned Equation Sets

(3.21) and (3.24) reads

I1

�
f1, f2

�
= f1+ f2 = 0, (3.31)

I2

�
v1, v2

�
= v1− v2 = S1

�
f1

�
−S2

�
f2

�
= 0. (3.32)

The first interface constraint Equation (3.31) ensures the force balance

at the interface. The latter Equation (3.32) the kinematic compatibility

of the displacements.

The Partitioning and Decomposition Procedure

For a practical co-simulation scenario the input and output quanti-

ties are predefined through the subsystems and can not be changed.

However, if the monolithic problem is decomposed this is a decision

which needs to be made (see Section 3.2). The implications on the

stability of the co-simulation of a certain decomposition are discussed

in detail in Section 3.4.
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3.2 Partitioning Procedure – From Monolithic to Co-Simulation

A hint for choosing interface constraint equations and input and

output quantities is that the constructed system should be as close as

possible to the monolithic system.

This means for the example depicted in Figure 3.1 the inputs for

each of the two subsystems are forces and that the interface constraint

equations need to comply with kinematic compatibility and force

balance.

Nevertheless a "good" choice of interface constraint equations

and input/output quantities is in general problem dependent.

3.2.1 Co-Simulation with Coherent Time Integration

Schemes

In the following it is shown that the co-simulation will not harm the

order of accuracy, if the same time integrators are used throughout

all subsystems of the co-simulation. Furthermore it is shown that for

this case the derived quantities (i.e. velocity and acceleration) at the

interface are the same as for the monolithic case.

Example 3.1: Backward Euler for Domain 1 and Domain 2

If the backward Euler time integrator Equation (3.7) is applied to Equation (3.21) we arrive at




1

h



m1 0

0 m2



+



d1 0

0 0
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+h
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 k1 +k2 −k2

−k2 k2






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un+1
1
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1


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
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f n+1
1



 . (3.33)

Here the input U1 is the force f1 . Subsystem 1 v1 =S1

�
f1

�
solves for the interface displacement v1 and for

the state displacement u1 which is not shown to the interface.
The same procedure is applied to Equation (3.24) and thus we arrive at


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1

h



0 0

0 m3


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

+h



 f n+1
2

0



 . (3.34)

For the second subsystem the input U2 is the force f2 . The subsystem 2 v2 =S2

�
f2

�
solves for the interface

displacement v2 and for the state displacement w2 .
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3 Co-Simulation

The first case to investigate is Example 3.1. Here subsystem 1 and

subsystem 2 are discretized via the backward Euler time integrator.

This should result in a first order accurate co-simulation in time for dis-

placements, velocities and accelerations. The results should be equal

for the monolithic and co-simulation case if the interface constraint

Equations (3.31) and (3.32) are satisfied precisely.

The graph in Figure 3.4(a) shows the accuracy order for the mono-

lithic and the co-simulation solution of the problem. It is evident that

the results meet the expectations. Displacements, velocities and ac-

celerations converge with first order in time. The results are the same

for the monolithic case and for the co-simulation case.

Note that the interface constraint equations are satisfied to ma-

chine precision by using the Interface Jacobian-based Co-Simulation

Algorithm, which is described in detail in Chapter 4.

As a next step the second order accurate generalized-αmethod is

used for the co-simulation of the model problem. Similar to Example

3.1 the co-simulation and the monolithic solution show the same

order of accuracy namely, second order for displacements, velocities

and accelerations (see Figure 3.4(b)).

Example 3.2: Generalized-αMethod for Domain 1 and Domain 2

The following example is similar to Example 3.1. However, the generalized-αmethod (3.12) is used to inte-
grate Equation (3.21) and thus we arrive at
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 . (3.35)

For the first subsystem input, output and state variables are chosen to Example 3.1 accordingly.
The same integration procedure is applied to Equation (3.24) and thus we arrive at
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ẅ n
2







−



0 0

0 k3







αf



 v n
2

w n
2







+



 f n+1
2

0



 . (3.36)

For the second subsystem input, output and state variables are chosen to Example 3.1 accordingly.

The last case is Example 3.3 where the two step, second order

accurate BDF2 method is discussed. Similar to Example 3.2 the co-

simulation and the monolithic solution for Example 3.3 show a second

order of accuracy (see Figure 3.4(c)).

Conclusion

The model problem (see Figure 3.1) demonstrates that the monolithic

and the co-simulation solution are identical as long as the interface

constraint equations are satisfied exactly and the same numerical dis-

cretization methods are used within all subsystem. In the terminology

of Felippa et al. [49] this means that it has been demonstrated with the

help of Example 3.1 to Example 3.3 that a coherent (time) discretiza-

tion throughout all subsystems renders an algebraic partitioning of

the monolithic problem.

In order to summarize this section we can note the following facts:

Co-simulation can be derived from the monolithic system in a consis-

tent manner. If the same discretization is used in all subsystems as for

the monolithic problem and if the interface constraint equations are

solved sufficiently accurate the co-simulation solution is equivalent

to the monolithic one.

Example 3.3: Second Order Backward Differentiation Formula for Domain 1 and

Domain 2

The following example is similar to Example 3.1. However, the two step method BDF2 (3.18) is used to
integrate Equation (3.21) and thus we arrive at
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For the first subsystem input, output and state variables are chosen to Example 3.1 accordingly. The same
integration procedure is applied to Equation (3.24) and thus we arrive at
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For the second subsystem input, output and state variables are chosen to Example 3.1 accordingly.

3.2.2 Co-Simulation with Mixed Time Integration Schemes

After discussing the case of equal time discretization for all subsys-

tems, the discussion is focused on the more general and more practical

relevant case where different time integrators in the different subsys-

tems are present. As this leads to a high number of possible combina-

tions, the investigation is limited to representative cases. However, the

methods used in following can be applied to different combinations

of time integrators as well, besides the ones presented.

Example 3.4: Generalized-αMethod for Domain 1 and BDF2 for Domain 2

The first subsystem is integrated with the generalized-αmethod.
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The second subsystem (3.24) is integrated with the BDF2 method and thus we arrive at
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Within this example two different second order accurate time integrators are combined. The overall order
of accuracy can be seen in Figure 3.5(a).
Note that the input and output relations for this example are the same as for Example 3.1.
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Due to the interface constraint equations the displacements are

compatible at the interface for Example 3.4 and Example 3.5. If the

same time integrators are used between the subsystems the compat-

ibility of velocities and accelerations is also achieved. For the case

of different time integrators this is not the case. Only the quantities

which are enforced by the interface constraint equations are com-

patible at the interface. This is demonstrated for Example 3.4 in Fig-

ure 3.5(b). Here the generalized-αmethod for domain 1 is coupled to

the BDF2 for domain 2. The displacements are enforced to be kine-

matic compatible at the interface. Figure 3.5(b) shows the matching

displacements for the left and right interface node. Moreover Fig-

ure 3.5(b) also demonstrates that the velocities and accelerations are

not matching at the interface for Example 3.4 due to the different time

integration schemes in domain 1 and domain 2.

Even though Example 3.4 uses two second order accurate time

integrators, the coupled solution does not show second order of ac-

curacy (see Figure 3.5(a)), this has also been shown by Farhat et al.

[44] and Joosten et al. [84]. However, for this combination of time in-

tegrators and coupling conditions the overall numerical method is

consistent for the interface DOFs.

An accuracy order loss does not necessarily occur for other com-

binations of time integrators. If the backward Euler method is chosen

for the first domain and the BDF2 method for the second domain (see

Example 3.5) the resulting method is still first order accurate for DOFs

at the interface as depicted in Figure 3.6. This is the maximum order

which can be expected as the BE integrator is only first order accurate.

Example 3.5: BE Method for Domain 1 and BDF2 for Domain 2

The first subsystem is integrated with the backward Euler time integrator Equation (3.7).
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The second subsystem (3.24) is integrated with the BDF2 method and thus we arrive at
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Within this example two different first order and second order accurate time integrators are combined.
The overall order of accuracy can be seen in Figure 3.6.
Note that the input and output relations for this example are the same as for Example 3.1.

Another important parameter to investigate is the type of cou-

pling conditions. Throughout Example 3.1 to Example 3.5 the dis-

placements and forces were enforced at the interface. In the following

it is shown what happens if the displacement compatibility constraint

is replaced by a velocity compatibility constraint.

The velocity coupling (enforcing equal interface velocity) and ac-

celeration coupling for Example 3.5 show the same order of accuracy

as for displacement coupling as depicted in Figure 3.7. Hence the par-
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Figure 3.5: Generalized-α versus BDF2 method (Example 3.4)
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Figure 3.5: Generalized-α versus BDF2 method (Example 3.4)

ticular combination of time integrators of Example 3.5 (BE and BDF2)

is first order for displacement, velocity and acceleration coupling for

the model problem shown in Figure 3.1. Note that this is also true for

the combination of BE and generalized-αwhich is not shown in detail

in order to focus the discussion.

Moreover the behavior of the order of accuracy for Example 3.4 is

similar for displacement, velocity and acceleration coupling as well

(compare Figure 3.5(a) with Figure 3.8(a)). However, by coupling the

accelerations the high frequency oscillation in the solution can be

reduced to a minimum (compare Figure 3.5(b) with Figure 3.8(b)).

Conclusion & Remedy

As we have seen the combination of mixed time integration schemes

for the individual subsystems is pretentious. In the best case the over-

all order of accuracy is the minimum of the orders of accuracy of all

subsystems.
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Figure 3.6: Absolute global error (2.80) over time step size for

displacement, velocity and acceleration for Example 3.5

Moreover with the help of Example 3.4 it has been demonstrated

that the overall oder of accuracy can be less than the minimum of all

subsystems.

This phenomena is well known in literature. In the fluid-structure

interaction community it is discussed by Farhat et al. [45] and Joosten

et al. [84]. A recent publication from the structure-structure inter-

action community is provided by Li et al. [94] and Mahjoubi et al.

[98].

In order to solve the problem of accuracy order loss due to the

coupling of incompatible time integration schemes several ideas are

discussed.

Joosten et al. [84] suggests to interpolate the transfered forces in

time, so that they can be evaluated at the same point in time by the

different time integration schemes. However, this idea relies on the

use of a generalized-α type method for all subsystems.

The idea of Li et al. [94] is to couple the velocities in an integral

sense by applying a weighted residual form of the velocity coupling

constraint which preserves the energy over the interface. This idea is

tested by coupling an explicit second order accurate Lax-Wendroff
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Figure 3.7: Absolute global error (2.80) over time step size for

displacement, velocity and acceleration for velocity and

acceleration coupling of Example 3.5

scheme with a fourth order Runge-Kutta scheme in Li et al. [94]. How-

ever in the case where the interface residual is zero it is shown in the

following that the weighted residual form of Li et al. [94] reduces to

the strong form of the interface constraint, namely

I2

�
v̇1, v̇2

�
= v̇1− v̇2 = S1

�
f1

�
−S2

�
f2

�
= 0. (3.43)

Li et al. [94] introduces the interface constraint by

f

t n+1∫

t n

v̇1(t )− v̇2(t )dt = 0. (3.44)

Li et al. [94] shows that Equation (3.44) is equivalent to

v̇ 1− v̇ 2 = 0, (3.45)

where v̇ is an average interface velocity, hence is defined by

v̇ =
v̇ n+1+ v̇ n

2
. (3.46)
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Figure 3.8: Generalized-α versus BDF2 method for velocity and

acceleration coupling (Example 3.4)
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With that, Equation (3.44) is equal to

v̇ n+1
1
− v̇ n+1

2
= v̇ n

2
− v̇ n

1
. (3.47)

If the interface residual is reduces to zero within every time step the

right hand side of Equation (3.47) is zero and the integral form of the

interface constraint is equal to Equation (3.43).

After discussing all those ideas the question remains how to restore

the second oder accuracy for Example 3.4. Let us first examine what

exactly causes the loss of accuracy. Therefore it needs to be repeated

that following interface constraints were applied

I1

�
f1, f2

�
= f1+ f2 = 0, (3.48)

I2

�
v1, v2

�
= v1− v2 = S1

�
f1

�
−S2

�
f2

�
= 0. (3.49)

Let us have a closer look into the first constraint. Here the forces at

every point in time n +1 need to be in equilibrium

f n+1
1
+ f n+1

2
= 0. (3.50)

If the BDF2 method is applied to S2 we have

S2

�
f n+1

2

�
= v n+1

2
. (3.51)

Example 3.4 makes the same assumption for the generalized-αmeth-

od, namely

S1

�
f n+1

1

�
= v n+1

1
. (3.52)

However, the integration parameter is set to αf = 0.5. As Chung et al.

[31] has shown the load needs also to be interpolated for the general-

ized-αmethod by

f = (1−αf) f
n+1+αf f n . (3.53)

This shows that the assumption of Equation (3.52) is not correct. The

correct statement for αf = 0.5 is

S1

�
f

n+ 1
2

1

�
= v n+1

1
. (3.54)

So we can conclude if the load is interpolated insideS1 to the time step

n+1/2 one should be able to restore second order accuracy for Example

3.4. Example 3.6 clearly shows that this is the case as demonstrated

by Figure 3.9.
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Example 3.6: Generalized-αMethod for Domain 1 and BDF2 for Domain 2 (with

Interpolation in Time for Domain 1)

The first subsystem is integrated with the generalized-αmethod. The load which is applied to the system
is interpolated from the current input force f n+1

1 and the old input force f n
1 by

f n+(1−αf )h = (1−αf) f
n+1 +αf f n . (3.55)

Afterwards the generalized-αmethod is applied.
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The second subsystem (3.24) is integrated with the BDF2 method and thus we arrive at
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
2

h



 v n
2

w n
2



− 1

2h



 v n−1
2

w n−1
2







+



 f n+1
2

0



 . (3.57)

Within this example two different second order accurate time integrators are combined. The overall order
of accuracy can be seen in Figure 3.9.
Note that the input and output relations for this example are the same as for Example 3.1.

As a final remark it can be stated that one needs to take care when

mixed time integrators are coupled in a co-simulation scenario. But if

everything is done in a consistent manner a simulation result which

is as accurate as the monolithic one can be obtained.

A useful feature for the end user is an automatic estimation of

the overall order of accuracy during the co-simulation as this gives

feedback to the user about the quality of the obtained results. The

56



3.3 Communication Pattern
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Figure 3.9: Absolute global error (2.80) over time step size for

displacement and velocity for generalized-αwith time

interpolation versus BDF2 method (Example 3.6)

ideas of Busch et al. [25] for automatic time step control can be used

in order allow for an automatic estimation.

3.3 Communication Pattern

The definition of co-simulation (Definition 3.1) states the exchange

of data between the individual subsystems as an essential property of

co-simulation. The choice of the order for the information exchange

is part of the discussion in this section. There are mainly two possibil-

ities how to exchange data, namely in a parallel and a serial manner.

The parallel information exchange is called Jacobi (JC) and the serial

Gauss-Seidel (GS) as their properties are similar to linear iterative

solvers.

The implications of the two communication patterns on stability

and on the convergence rate of the interface constraint equation set

are discussed in detail in Sections 3.4 and 4.6.
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3 Co-Simulation

3.3.1 Jacobi - Parallel

The Jacobi communication pattern is shown for the iterative case

in Figure 3.10. Here, it is assumed that the iterations are converged

after the second iteration. However, it is straight forward to extend the

figure for any number of iterations. Furthermore, the figure assumes

that only two subsystems are present, otherwise the variety of different

combinations will distract from the focus of the discussion.
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Figure 3.10: Iteration pattern for Jacobi

For an arbitrary multi-code scenario the advantage of the Jacobi

pattern is that it allows for parallel execution of the subsystems. In

Figure 3.10 this is indicated by a and b. For instance the execution of

S1 and S2 can be done at the same time (steps 2a and 2b). This is a

huge benefit as all subsystems can be executed in parallel and there
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3.3 Communication Pattern

is no waiting of an individual subsystem on the outcome of another

subsystem necessary within one time step. Hence, this pattern will

lead to a co-simulation with no data flow dependency within the time

step.

3.3.2 Gauss-Seidel - Serial

In fluid-structure interaction the Gauss-Seidel scheme is commonly

used. There, Farhat et al. [45] also calls it conventional serial staggered

(CSS) approach within the context of loose coupling. The GS commu-

nication pattern for two iterations is plotted in Figure 3.11. However,

in a practical use case as many iterations as needed are performed in

order to meet a certain convergence criteria.
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Figure 3.11: Iteration pattern for Gauss-Seidel
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3 Co-Simulation

The advantage of the GS pattern is a higher convergence rate of

the fixed-point iteration method with respect to the JC pattern (see

Section 4.6).

However, within a GS pattern based co-simulation the subsystem

need to wait on each other. This can already lead to an increase of the

overall runtime by a factor of two for a two subsystem co-simulation,

where the individual subsystem runtime is equal (e.g. fluid-structure

interaction when fluid and structure need the same wall-clock time

for one time step). Moreover, the more subsystems there are, the worse

this drawback gets.

Furthermore, the design of the GS pattern, where the output of

one subsystem is directly feed as an input to another subsystem, has

implications on the possible decompositions of the problem as the

next section will show.

3.4 Decomposition

In the following the fixed point iteration method should be illustrated

in the context of co-simulation. A linear steady state spring example is

used. With this example the discussion can be focused on the decom-

position. Examples with dynamic effects bring more effects as shown

in Section 3.2. Hence, the example in Figure 3.12 helps to demon-

strate effects which arise from the decomposition of the monolithic

problem.

interfacek1 k2

domain 1 domain 2

u2u1

fconst

Figure 3.12: Model problem for stability considerations

Four different decompositions of the steady state model problem

are presented in the subsequent section in combination with the dif-

ferent communication patterns JC and GS. This results in six different

possible iterative methods. These will be called Dirichlet/Dirichlet
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3.4 Decomposition

(JC), Dirichlet/Neumann (JC and GS), Neumann/Dirichlet (JC and GS)

and Neumann/Neumann (JC) borrowing the terminology from cor-

responding domain decomposition algorithms introduced by Quar-

teroni et al. [120]. Some of these cases are also well investigated with

respect to fluid-structure interaction by Causin et al. [28]. The different

decompositions map to the examples in the following manner:

• Dirichlet/Dirichlet → Example 3.7

• Dirichlet/Neumann → Example 3.8

• Neumann/Dirichlet → Example 3.9

• Neumann/Neumann → Example 3.10

Mixed methods which will result in Robin type decompositions

(see Badia et al. [8]) are not discussed as they are less general in terms

of applicability to general co-simulation problems.

Example 3.7: Fixed-point formulation - Dirichlet-Dirichlet decomposition

In order to give an example for a Dirichlet-Dirichlet decomposition the linear steady state spring example
(see Figure 3.12) is used. The general operator notation for the problem is defined as

S1

�
U1

�
= Y1 ,

S2

�
U2

�
= Y2 .

Note this decomposition will lead to a Jacobi communication pattern. For two linear springs, which are
decomposed in a Dirichlet-Dirichlet manner (each subsystem has a displacement as input) this can be
written as

S1

�
u1

�
= k1 ·u1 − fconst = f1 ,

S2

�
u2

�
= k2 ·u2 = f2 .

Furthermore, the interface constraint operators (in this case functions) for this problem read

R1 =I1

�
U1 ,U2

�
= u1 −u2 = 0,

R2 =I2

�
S1

�
U1

�
,S2

�
U2

��
= f1 + f2 = 0.

The task is to find the roots to these two real-valued functions. We use Equation (2.26) to formulate the
fixed-point iteration




k+1U1

k+1U2



=




k U1

k U2



+α




k U1 − k U2

S1

�
k U1

�
+S2

�
k U2

�



 .

This is equivalent to




k+1 u1

k+1 u2



=




k u1

k u2



+α




k u1 − k u2

k1 · k u1 − fconst +k2 · k u2



 .
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3 Co-Simulation

In order to investigate the convergence properties of this fixed-point iteration the system is reformulated
to match the structure of Equation (2.22). This renders




k+1 u1

k+1 u2



=



1+α −α
αk1 1+αk2





︸ ︷︷ ︸
H




k u1

k u2



−



 0

α fconst



 .

For a converging fixed-point iteration

ρ (H )< 1

has to be true. The spectral radius of H is given by

ρ (H ) =max

�����
1

2
αk2 +

1

2
α+1± 1

2
α
Ç

k 2
2 −4k1 −2k2 +1

����

�
.

The graph of the spectral radius is depicted in Figure 3.14(b).

Example 3.8: Fixed-point formulation - Dirichlet-Neumann decomposition

For an example of a Dirichlet-Neumann decomposition the linear steady state spring example (see Fig-
ure 3.12) is used again. Note this decomposition can lead to a Jacobi and a Gauss-Seidel communication
pattern. For two linear springs, which are decomposed in a Dirichlet-Neumann manner (one subsystem
has a displacement as input the other a force) this can be written as

S1

�
u1

�
= k1 ·u1 − fconst = f1 ,

S2

�
f2

�
=

f2

k2
= u2 .

Furthermore, the interface constraint operators (in this case functions) for this problem read

R1 =I1

�
U1 ,S2

�
U2

��
= u1 −u2 = 0,

R2 =I2

�
S1

�
U1

�
,U2

�
= f1 + f2 = 0.

The task is to find the roots to these two real-valued functions. We use Equation (2.26) to formulate the
fixed-point iteration




k+1U1

k+1U2



=




k U1

k U2



+α




k U1 −S2

�
k U2

�

S1

�
k U1

�
+ k U2



 .

This is equivalent to




k+1 u1

k+1 f2



=




k u1

k f2



+α




k u1 −

k f2
k2

k1 · k u1 − fconst +
k f2



 .

In order to investigate the convergence properties of this fixed-point iteration the system is reformulated
to match the structure of Equation (2.22). This renders




k+1 u1

k+1 f2



=



1+α − α
k2

αk1 1+α





︸ ︷︷ ︸
H




k u1

k f2



−



 0

α fconst



 .
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3.4 Decomposition

The spectral radius of H is given by

ρ (H ) =max

 �����±
α
p
−k1k2 +αk2 +k2

k2

�����

!

.

The graph of the spectral radius is shown in Figure 3.14(c). Note for a Dirichlet-Neumann decomposition of
the problem a Gauss-Seidel communication pattern can be used. It can either eliminate the displacement
or the force from the interface residual equation.

S1

�
S2

�
f2

��
= k1

f2

k2
− fconst = f1 S2

�
−S1

�
u1

��
=

fconst −k1 u1

k2
= u2

k+1 f = k f +α

�
k f +k1

k f

k2
− fconst

�
k+1 u = k u +α

�
k u − fconst −k1

k u

k2

�

ρ (H ) =max

 �����1+α
�

1+
k1

k2

������

!

ρ (H ) =max

 �����1+α
�

1+
k1

k2

������

!

The graph of the spectral radius for eliminated displacements is shown in Figure 3.14(d) and for eliminated
forces in Figure 3.14(e).

Example 3.9: Fixed-point formulation - Neumann-Dirichlet decomposition

For an example of a Dirichlet-Neumann decomposition the linear steady state spring example (see Fig-
ure 3.12) is used again. Note this decomposition can lead to a Jacobi and a Gauss-Seidel communication.
For two linear springs, which are decomposed in a Dirichlet-Neumann manner (one subsystem has a dis-
placement as input the other a force) this can be written as

S1

�
f1

�
=

f1 + fconst

k1
= u1 ,

S2

�
u2

�
= u2 ·k2 = f2 .

Furthermore, the interface constraint operators (in this case functions) for this problem read

R1 =I1

�
U1 ,S2

�
U2

��
= u1 −u2 = 0,

R2 =I2

�
S1

�
U1

�
,U2

�
= f1 + f2 = 0.

The task is to find the roots to these two real-valued functions. We use Equation (2.26) to formulate the
fixed-point iteration




k+1U1

k+1U2



=




k U1

k U2



+α



S1

�
k U1

�
− k U2

k U1 +S2

�
k U2

�



 .

This is equivalent to




k+1 f1

k+1 u2



=




k f1

k u2



+α




k f1+ fconst

k1
− k u2

k f1 +
k u2 ·k2



 .

In order to investigate the convergence properties of this fixed-point iteration the system is reformulated
to match the structure of Equation (2.22). This renders




k+1 f1

k+1 u2



=



1+ α
k1

−α

α 1+αk2





︸ ︷︷ ︸
H




k f1

k u2



+




α fconst

k1

0



 .
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3 Co-Simulation

The spectral radius of H is given by

ρ (H ) =max





������

αk2k1 +α+2k1 ±α
q

k 2
1 k 2

2 −4k 2
1 −2k1k2 +1

2k1

������



 .

The graph of the spectral radius is shown in Figure 3.15(b). Note for a Dirichlet-Neumann decomposition of
the problem a Gauss-Seidel communication pattern can be used. It can either eliminate the displacement
or the force from the interface residual equation.

S2

�
S1

�
f1

��
=

k2

k1

�
f1 + fconst

�
= f2 S1

�
−S2

�
u2

��
=

fconst −k2 u2

k1
= u1

k+1 f = k f +α

�
k f +

k2

k1

�
k f + fconst

��
k+1 u = k u +α

�
fconst −k2

k u

k1
− k u

�

ρ (H ) =max

 �����1+α
�

1+
k2

k1

������

!

ρ (H ) =max

 �����1−α
�

1+
k2

k1

������

!

The graph of the spectral radius for eliminated displacements is shown in Figure 3.15(c) and for eliminated
forces in Figure 3.15(d).

Example 3.10: Fixed-point formulation - Neumann-Neumann decomposition

For an example of a Neumann-Neumann decomposition the linear steady state spring example (see Fig-
ure 3.12) is used again. The general operator notation for the problem is defined as

S1

�
U1

�
= Y1 ,

S2

�
U2

�
= Y2 .

Note this decomposition will lead to a Jacobi communication pattern. For two linear springs which are
decomposed in a Neumann-Neumann manner (each subsystem has a force as input) this can be written
as

S1

�
f1

�
=

f1 + fconst

k1
= u1 ,

S2

�
f2

�
=

f2

k2
= u2 .

Furthermore, the interface constraint operators (in this case functions) for this problem read

R1 =I1

�
S1

�
U1

�
,S2

�
U2

��
= u1 −u2 = 0,

R2 =I2

�
U1 ,U2

�
= f1 + f2 = 0.

The task is to find the roots to these two real-valued functions. We use Equation (2.26) to formulate the
fixed-point iteration




k+1U1

k+1U2



=




k U1

k U2



+α



S1

�
k U1

�
−S2

�
k U2

�

k U1 +
k U2



 .

This is equivalent to




k+1 f1

k+1 f2



=




k f1

k f2



+α




k f1+ fconst

k1
−

k f2
k2

k f1 +
k f2



 .
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3.4 Decomposition

In order to investigate the convergence properties of this fixed-point iteration the system is reformulated
to match the structure of Equation (2.22). This renders




k+1 f1

k+1 f2



=



1+ α
k1

− α
k2

α 1+α





︸ ︷︷ ︸
H




k f1

k f2



+




α

k1
fconst

0



 .

The spectral radius of H is given by

ρ (H ) =max





������

αk1k2 +αk2 +2k1k2 ±α
q

k 2
1 k 2

2 −4k 2
1 k2 −2k1k 2

2 +k 2
2

2k1k2

������



 .

The graph of the spectral radius is shown in Figure 3.15(e).

The stability maps for 5 different relaxation factor values for Ex-

ample 3.7 to Example 3.10 are shown in Figure 3.14 and Figure 3.15.

By analyzing these graphs of the steady state model problem the fol-

lowing conclusions can be drawn:

All GS based patterns show a good coverage of the stability. This is

even true in the nonphysical stiffness space (k2 < 0). However, the

best stability in the physical stiffness space (k2 > 0) is achieved by

using the Neumann/Neumann decomposition (see Example 3.10).

The best decomposition in terms of stability and efficiency is usu-

ally highly problem dependent. However, in general the decomposi-

tion should not lead to an ill-posed subsystem. In order to demon-

strate the consequences of a numerically unfavorable decomposition

a small example is presented in Figure 3.13. If the input of subsys-

tem 2 is set to be a force f2, subsystem 2 is not solvable anymore as

it is missing a Dirichlet boundary condition and will result in a pure

Neumann problem.

interface

k1 k2

domain 1 domain 2

fconst

u2u1

Figure 3.13: Model problem for decomposition considerations

65



3 Co-Simulation

α
−1.00
−0.67
−0.33

0.33
0.67
1.00

(a) Legend

-10 -5 0 5 10

k1

-10

-5

0

5

10

k
2

(b) Example 3.7 (D/D) Jacobi

-10 -5 0 5 10

k1

-10

-5

0

5

10

k
2

(c) Example 3.8 (D/N) Jacobi

-10 -5 0 5 10

k1

-10

-5

0

5

10

k
2
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(e) Example 3.8 (D/N) Gauss-Seidel with
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Figure 3.14: Stability maps for the linear steady state spring

example (see Figure 3.12) - stable within colored regions
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(b) Example 3.9 (N/D) Jacobi
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residual displacement

-10 -5 0 5 10

k1

-10

-5

0

5

10

k
2

(e) Example 3.10 (N/N) Jacobi

Figure 3.15: Stability maps for the linear steady state spring

example (see Figure 3.12) - stable within colored regions
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3 Co-Simulation

3.5 Block Diagram

A block diagram is a diagram of a system in which the principal parts

or functions are represented by blocks connected by lines that show

the relationships of the blocks.1

The block diagram is typically the representation of a co-simu-

lation with that the user is confronted with. As it can represent the

interface constraint equations. However, using the block diagram for

representing the interface constraint equations has the drawback

that this can not represent all different possible decompositions of a

co-simulation.

For instance if we consider fluid-structure interaction which is

from the decompositions point of view similar to the model problem

of Section 3.4. A typical block diagram for fluid-structure interaction

can be seen in Figure 3.16. As long as the block diagram does only

U1 Y2

U2Y1

CFD CSM

Figure 3.16: Block diagram for fluid-structure interaction

contain subsystem blocks and no algorithm block it is not possible to

represent the Dirichlet/Dirichlet or Neumann/Neumann decomposi-

tion cases. Hence, for co-simulation scenarios where the full flexibility

should be preserved it is best to add an algorithm block which then

allows to represent all possible decomposition cases.

The block diagram can also be represented as a graph, where the

signal flow for the co-simulation can be described by a directed graph

with the subsystems as the nodes and the exchanged data as the edges.

This is of advantage when a graphical user interface is implemented

as the implementation can leverage graph theory.

1 SEVOCAB: Software and Systems Engineering Vocabulary. Term: block diagram.

retrieved 31 July 2008.
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4
INTERFACE JACOBIAN-BASED

CO-SIMULATION ALGORITHM

The previous chapter discussed the different aspects of co-simulation

and the associated drawbacks, such as stability and accuracy issues.

Within this work a new kind of co-simulation algorithm is proposed

which is based on a Jacobi communication pattern, therefore it is

suited for a large number of subsystems. In order to overcome sta-

bility issues the algorithm uses interface Jacobians for stabilization.

Hence, the algorithm will need more information from the subsystems

than fixed point iteration based methods. The proposed algorithm is

called Interface Jacobian-based Co-Simulation Algorithm (IJCSA), it is

a hybrid algorithm which combines the advantages of the monolithic

approach and co-simulation. As long as the subsystems can provide

their own interface Jacobian the full modularity of co-simulation is

preserved. The interface Jacobian information of each subsystem is

assembled at interface level to a global Jacobian which stabilizes the

entire co-simulation. The algorithm is formulated in residual form,

so it handles cycles within the graph (block-diagram) without special

treatment, as the cycles do not occur if the problem is formulated in

a residual form (see Bastian et al. [11] and Appendix A).
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4 Interface Jacobian-based Co-Simulation Algorithm

The following derivations and discussions of the IJCSA are based

on Sicklinger et al. [134].

4.1 The Algorithm for two Subsystems

Similar to Section 2.1 the IJCSA is illustrated on the basis of the well-

known two-subsystem coupling methodology, it is generalized to a

multi-code scenario with vectorial input/output quantities afterwards.

The input and output relations for the problem are given by

Y1 = S1

�
U1

�
, (4.1)

Y2 = S2

�
U2

�
. (4.2)

Each of the subsystems S1

�
U1

�
and S2

�
U2

�
have state (internal) vari-

ables in addition to the output quantities Y1 and Y2. The state variables

are referred to as X1 and X2. The point of departure for the derivation

of the IJCSA are the interface constraint equations

I1

�
S1

�
U1

�
,S2

�
U2

�
,U1,U2

�
= 0, (4.3)

I2

�
S1

�
U1

�
,S2

�
U2

�
,U1,U2

�
= 0. (4.4)

The interface constraint operators are essential to the IJCSA, as they

reflect the relations between input and output variables. The basic

idea of the IJCSA is to formulate the Newton method at interface level

where in contrast to a monolithic approach a much smaller system

needs to be solved. However the effort for the reduction process needs

to be taken into account as well. In order to solve Equation (4.3) and

Equation (4.4) with the Newton method the interface residuals need

to be defined as

R1 = I1

�
S1

�
U1

�
,S2

�
U2

�
,U1,U2

�
, (4.5)

R2 = I2

�
S1

�
U1

�
,S2

�
U2

�
,U1,U2

�
. (4.6)

The solution of Equation (4.3) and Equation (4.4) renders a set of input

values U� which satisfy the interface constraint equations.

The iteration sequence for the Newton method can be written for

a vectorial quantityφ as

m+1φ =mφ−J
�
r
�

mφ
��−1

r
�

mφ
�

, (4.7)
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4.1 The Algorithm for two Subsystems

which is equivalent to

J
�
r
�

mφ
�� �

m+1φ−mφ
�

︸ ︷︷ ︸
∆m+1φ

=−r
�

mφ
�

, (4.8)

J
�
r
�

mφ
��
∆m+1φ =−r

�
mφ

�
, (4.9)

whereφ is the vector of unknowns, r is the residual vector and J is

the Jacobian operator. The dimension of the Jacobian matrix is only

dependent on the number of input variables at the interface level. The

iteration index is denoted with m . For the two-subsystem exampleφ

and r are defined by

φ =



U1

U2



 (4.10)

and

r =



R1

R2



 . (4.11)

The linear interface system of the Newton method can be written by




∂R1

∂U1

∂R1

∂U2

∂R2

∂U1

∂R2

∂U2







∆U1

∆U2



=−



R1

R2



 . (4.12)

If we assume the following interface conditions

I1

�
S2

�
U2

�
,U1

�
=U1− Y2 = 0, (4.13)

I2

�
S1

�
U1

�
,U2

�
=U2− Y1 = 0, (4.14)

Equation System (4.12) reads



 I − ∂ S2

∂U2

− ∂ S1

∂U1
I







∆U1

∆U2



=−



R1

R2



 . (4.15)
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4 Interface Jacobian-based Co-Simulation Algorithm

It is evident that the final form of the interface equation system is



 I − ∂ Y2

∂U2

− ∂ Y1

∂U1
I







∆U1

∆U2



=−



R1

R2



 . (4.16)

Where ∂ Y�/∂U� represents the derivative of the output with respect to

the input.

The algorithm for the case of two subsystems is described in Algo-

rithm 4.1 on the basis of the previous considerations. Note that if the

global Jacobian matrix Jglobal is set to the identity matrix Algorithm 4.1

reduces to the classical fixed-point iteration scheme. This is shown in

Algorithm 4.2.

4.2 Generalization of the Concept

In Section 2.1 the generalized interface residual components were

defined by

Ri = Ii

�
S j

�
U j

�
, U j , j = 1, ..., r

�
i = 1, ..., r . (4.17)

With this definition the generalized global interface Jacobian system

is given by





∂ I1

∂ S1

∂ S1

∂U1

+
∂ I1

∂U1

· · · ∂ I1

∂ Sr

∂ Sr

∂Ur

+
∂ I1

∂Ur
...

...
...

∂ Ir

∂ S1

∂ S1

∂U1

+
∂ Ir

∂U1

· · · ∂ Ir

∂ Sr

∂ Sr

∂Ur

+
∂ Ir

∂Ur









∆U1

...

∆Ur




=−





R1

...

Rr




.

(4.18)

This is equivalent to





∂ I1

∂ Y1

∂ Y1

∂U1

+
∂ I1

∂U1

· · · ∂ I1

∂ Yr

∂ Yr

∂Ur

+
∂ I1

∂Ur
...

...
...

∂ Ir

∂ Y1

∂ Y1

∂U1

+
∂ Ir

∂U1

· · · ∂ Ir

∂ Yr

∂ Yr

∂Ur

+
∂ Ir

∂Ur









∆U1

...

∆Ur




=−





R1

...

Rr




.

(4.19)
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4.2 Generalization of the Concept

Algorithm 4.1: Interface Jacobian-based Co-Simulation Algorithm for

a 2-code example

✴✴ ❚✐♠❡ ❧♦♦♣

1 for n = 0 to n = nend do
✴✴ ■t❡r❛t✐♦♥ ❧♦♦♣

2 for m = 0 to m =mend do
✴✴ ❙♦❧✈❡ ❢♦r ❛❧❧ s✉❜s②st❡♠s ✐♥ ♣❛r❛❧❧❡❧

3
m Y n+1

1
= S1

�
mU n

1

�

4
m Y n+1

2
= S2

�
mU n

2

�

✴✴ ❈♦♠♣✉t❡ ❛♥❞ ❝❤❡❝❦ r❡s✐❞✉❛❧

5
m r n =




mRn

1

mRn
2



=




mU n

1
−m

Y n+1
2

mU n
2
−m

Y n+1
1





6 if ‖m r n‖
ε
< ε then

7 break

✴✴ ●❡t ♣❛rts ♦❢ ✐♥t❡r❢❛❝❡ ❏❛❝♦❜✐❛♥

8
m J n

1
=J

�
S1

�
mU n

1

��
=

m ∂ Y1

∂U1

n
:=

∂ Y1

∂U1

9
m J n

2
=J

�
S2

�
mU n

2

��
=

m ∂ Y2

∂U2

n
:=

∂ Y2

∂U2

✴✴ ❆ss❡♠❜❧❡ ❣❧♦❜❛❧ ✐♥t❡r❢❛❝❡ ❏❛❝♦❜✐❛♥

10
m J n

global =AJ

�
m J n

1
, m J n

2

�
=



 1 − ∂ Y2

∂U2

− ∂ Y1

∂U1
1





✴✴ ❙♦❧✈❡ ❢♦r ❝♦rr❡❝t♦r

11
m J n

global ·m∆c n =−m r n

✴✴ ❆♣♣❧② ❝♦rr❡❝t♦r

12
m+1U n

1
=mU n

1
+m∆c n

1

13
m+1U n

2
=mU n

2
+m∆c n

2

✴✴ ■♥✐t✐❛❧ s♦❧✉t✐♦♥ ❢♦r ♥❡①t t✐♠❡ st❡♣

14
0U n+1

1
= E

�
mend+1U k

1
k = 0, ..., n

�

15
0U n+1

2
= E

�
mend+1U k

2
k = 0, ..., n

�
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4 Interface Jacobian-based Co-Simulation Algorithm

Algorithm 4.2: Constant under-relaxation algorithm for a 2-code ex-

ample

✴✴ ❚✐♠❡ ❧♦♦♣

1 for n = 0 to n = nend do
✴✴ ■t❡r❛t✐♦♥ ❧♦♦♣

2 for m = 0 to m =mend do
✴✴ ❙♦❧✈❡ ❛❧❧ s✉❜s②st❡♠s ✭♣❛r❛❧❧❡❧✮

3
m Y n+1

1
= S1

�
mU n

1

�

4
m Y n+1

2
= S2

�
mU n

2

�

✴✴ ❈♦♠♣✉t❡ ❛♥❞ ❝❤❡❝❦ r❡s✐❞✉❛❧

5
m r n =




mRn

1

mRn
2



=




mU n

1
−m Y n+1

2

mU n
2
−m Y n+1

1





6 if ‖m r n‖
ε
< ε then

7 break

✴✴ ❆♣♣❧② ✉♣❞❛t❡

8
m+1U n

1
=mU n

1
+αmRn

1

9
m+1U n

2
=mU n

2
+αmRn

2

✴✴ ■♥✐t✐❛❧ s♦❧✉t✐♦♥ ❢♦r ♥❡①t t✐♠❡ st❡♣

10
0U n+1

1
= E

�
mend+1U k

1
k = 0, ..., n

�

11
0U n+1

2
= E

�
mend+1U k

2
k = 0, ..., n

�

With the global interface Jacobian matrix given in Equation (4.19) the

general version of the IJCSA is presented in Algorithm 4.3.

Note that the assembly operator is denoted by AJ . The previous

derivations show that the entries of the interface Jacobian matrix are

combined by two basic kinds of derivatives. The first part (∂ I j/∂ Yi

and ∂ I j/∂Ui ) of the interface Jacobian needs to be provided by the

interface for each subsystem. This part reflects the interface constraint

equations. The second part needs to be provided by each individual

subsystem ∂ Yi/∂Ui , it represents the subsystem’s sensitivity. Hence,

it is a measure for the change of the output of the subsystem if the

subsystem’s input is perturbed.
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4.2 Generalization of the Concept

Algorithm 4.3: Interface Jacobian-based Co-Simulation Algorithm

✴✴ ❚✐♠❡ ❧♦♦♣

1 for n = 0 to n = nend do
✴✴ ■t❡r❛t✐♦♥ ❧♦♦♣

2 for m = 0 to m =mend do
✴✴ ❙♦❧✈❡ ❢♦r ❛❧❧ s✉❜s②st❡♠s ✐♥ ♣❛r❛❧❧❡❧

3
m Y n+1

i = Si

�
m U n

i

�

✴✴ ❈♦♠♣✉t❡ ❛♥❞ ❝❤❡❝❦ r❡s✐❞✉❛❧

4
m r n =





mRn
1

...

mRn
r




=





I1

�
m Y n+1

j , m U n
j

j = 1, ..., r
�

...

Ir

�
m Y n+1

j , m U n
j

j = 1, ..., r
�





5 if ‖m r n‖
ε
< ε then

6 break

✴✴ ●❡t ♣❛rts ♦❢ ✐♥t❡r❢❛❝❡ ❏❛❝♦❜✐❛♥

7
m J n

i
=J

�
Si

�
m U n

i

��
=

m ∂ Yi

∂Ui

n
:=

∂ Yi

∂Ui

✴✴ ❆ss❡♠❜❧❡ ❣❧♦❜❛❧ ✐♥t❡r❢❛❝❡ ❏❛❝♦❜✐❛♥

8
m J n

global =AJ

�
m J n

i

�
=



∂ I1

∂ Y1

∂ Y1

∂U1
+
∂ I1

∂U1
· · · ∂ I1

∂ Yr

∂ Yr

∂Ur
+
∂ I1

∂Ur

...
...

...

∂ Ir

∂ Y1

∂ Y1

∂U1
+
∂ Ir

∂U1
· · · ∂ Ir

∂ Yr

∂ Yr

∂Ur
+
∂ Ir

∂Ur




i = 1, ..., r

✴✴ ❙♦❧✈❡ ❢♦r ❝♦rr❡❝t♦r

9
m J n

global ·m∆c n =−m r n

✴✴ ❆♣♣❧② ❝♦rr❡❝t♦r

10
m+1U n

i
=m U n

i
+m∆c n

i
i = 1, ..., r

✴✴ ■♥✐t✐❛❧ s♦❧✉t✐♦♥ ❢♦r ♥❡①t t✐♠❡ st❡♣

11
0U n+1

i = E
�

mend+1U k
i

k = 0, ..., n
�

i = 1, ..., r
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4 Interface Jacobian-based Co-Simulation Algorithm

4.3 Efficiency Enhancements

The most time is generally spend for the solution of all subsystems in

Algorithm 4.3 in line 3. This is in general a computationally expensive

operation. The cost for the solution operation can be dramatically

reduced by using an approximation.

During the extraction process of ∂ Yi/∂Ui a by-product is ∂ X i/∂Ui

which is a derivative of the state variables with respect to the input

variable. The derivative is used in the following Taylor series approxi-

mation:

m+1X i =
m X i +

m ∂ X i

∂Ui

m∆Ui +O
�

m∆U 2
i

�
(4.20)

For the output variables this approximation is not used. The approxi-

mated state variables are used in combination with a nonlinear map

g between the state and the output variables. A more general g may

also depend on the input variables. That is

m+1Yi = g
�

m+1X i , m+1Ui

�
. (4.21)

This relation is the one which is used inside the simulators S≈i .

Assuming that g is nonlinear, Algorithm 4.4 represents a more

efficient version of Algorithm 4.3. Note that only line 3 of Algorithm

4.3 is modified to

m Y n+1
i
≈ S≈i

�
m−1∆c n

i
, m U n

i

�
. (4.22)

Equation (4.20) can be modified using the notation and indices in

Algorithm 4.4 to

m X≈i ≈m−1X i +

m−1 ∂ X i

∂Ui

m−1∆c n
i

, (4.23)

and for the output update Equation (4.21) we arrive at

m Yi ≈ g
�

m X≈i , m Ui

�
. (4.24)

4.4 Usability Enhancements - Jacobian

Approximation

In some situations it is cumbersome or even impossible to provide

interface Jacobian within the subsystems. In order to apply the IJCSA
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4.4 Usability Enhancements - Jacobian Approximation

Algorithm 4.4: Enhanced version of the IJCSA

✴✴ ❚✐♠❡ ❧♦♦♣

1 for n = 0 to n = nend do
✴✴ ■t❡r❛t✐♦♥ ❧♦♦♣

2 for m = 0 to m =mend do

3 if m = 0 then
✴✴ ❙♦❧✈❡ ❢♦r ❛❧❧ s✉❜s②st❡♠s ✐♥ ♣❛r❛❧❧❡❧

4
m Y n+1

i = Si

�
m U n

i

�

5 else
✴✴ ❆♣♣r♦①✳ s♦❧✈❡ ❢♦r ❛❧❧ s✉❜s②st❡♠s ✐♥

♣❛r❛❧❧❡❧

6
m Y n+1

i = S≈i

�
m−1∆c n

i
, m U n

i

�

✴✴ ❈♦♠♣✉t❡ ❛♥❞ ❝❤❡❝❦ r❡s✐❞✉❛❧

7
m r n =





mRn
1

...

mRn
r




=





I1

�
m Y n+1

j , m U n
j

j = 1, ..., r
�

...

Ir

�
m Y n+1

j , m U n
j

j = 1, ..., r
�





8 if ‖m r n‖
ε
< ε then

9 break

✴✴ ●❡t ♣❛rts ♦❢ ✐♥t❡r❢❛❝❡ ❏❛❝♦❜✐❛♥

10
m J n

i
=J

�
Si

�
m U n

i

��
=

m ∂ Yi

∂Ui

n
:=

∂ Yi

∂Ui

✴✴ ❆ss❡♠❜❧❡ ❣❧♦❜❛❧ ✐♥t❡r❢❛❝❡ ❏❛❝♦❜✐❛♥

11
m J n

global =AJ

�
m J n

i

�
=



∂ I1

∂ Y1

∂ Y1

∂U1
+
∂ I1

∂U1
· · · ∂ I1

∂ Yr

∂ Yr

∂Ur
+
∂ I1

∂Ur

...
...

...

∂ Ir

∂ Y1

∂ Y1

∂U1
+
∂ Ir

∂U1
· · · ∂ Ir

∂ Yr

∂ Yr

∂Ur
+
∂ Ir

∂Ur




i = 1, ..., r

✴✴ ❙♦❧✈❡ ❢♦r ❝♦rr❡❝t♦r

12
m J n

global ·m∆c n =−m r n

✴✴ ❆♣♣❧② ❝♦rr❡❝t♦r

13
m+1U n

i
=m U n

i
+m∆c n

i

✴✴ ■♥✐t✐❛❧ s♦❧✉t✐♦♥ ❢♦r ♥❡①t t✐♠❡ st❡♣

14
0U n+1

i = E
�

mend+1U k
i

k = 0, ..., n
�

i = 1, ..., r
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4 Interface Jacobian-based Co-Simulation Algorithm

to general co-simulation scenarios it is needed to handle such situa-

tions where some subsystems are not able to provide their interface

Jacobian.

In the case where the interface quantities are scalar quantities the

secant method can give a very good compromise between stability

and efficiency on the one hand and applicability of the IJCSA to com-

plicated subsystems (e.g. CFD solvers) on the other hand. The secant

extension of the IJCSA is shown in Algorithm 4.5. It was successfully

applied and tested for wind turbines (see Section 5.3).

4.5 Interface Jacobian Extraction

Static condensation methods introduced by Wilson [157] can be ex-

ploited for the extraction of interface Jacobians. These methods can

be implemented for sparse systems in an efficient manner without

the need of the explicit computation of any matrix inverse as noted

by Felippa [50].

If we assume the following linear relation which is modeled by a

subsystem



A Y Y A Y X

A X Y A X X





︸ ︷︷ ︸
A



Y

X



=



U

b



 , (4.25)

where A Y Y and A X X are square invertible matrices. The state vector

of the subsystem is abbreviated with X , the input vector with U and

the output vector of the subsystem is denoted by Y .

The second equation of Equation System (4.25) can be written as

X = A X X
−1
�
b − A X Y Y

�
. (4.26)

If this equation is plugged into the first equation of Equation System

(4.25) equation

�
A Y Y − A Y X A X X

−1 A X Y

�
︸ ︷︷ ︸

A Schur

Y =U − A Y X A X X
−1b (4.27)

is obtained.
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4.5 Interface Jacobian Extraction

Algorithm 4.5: Secant version of the IJCSA

✴✴ ❚✐♠❡ ❧♦♦♣

1 for n = 0 to n = nend do
✴✴ ■t❡r❛t✐♦♥ ❧♦♦♣

2 for m = 0 to m =mend do
✴✴ ❙♦❧✈❡ ❢♦r ❛❧❧ s✉❜s②st❡♠s ✐♥ ♣❛r❛❧❧❡❧

3
m Y n+1

i = Si

�
mU n

i

�

✴✴ ❈♦♠♣✉t❡ ❛♥❞ ❝❤❡❝❦ r❡s✐❞✉❛❧

4
m r n =





mRn
1

...

mRn
r




=





I1

�
m Y n+1

j , mU n
j

j = 1, ..., r
�

...

Ir

�
m Y n+1

j , mU n
j

j = 1, ..., r
�





5 if ‖m r n‖
ε
< ε then

6 break

✴✴ ●❡t ♣❛rts ♦❢ ✐♥t❡r❢❛❝❡ ❏❛❝♦❜✐❛♥ ✐❢ ♣♦ss✐❜❧❡

7
m J n

i
=J

�
Si

�
mU n

i

��
=

m ∂ Yi

∂Ui

n
:=

∂ Yi

∂Ui

✴✴ ❯s❡ s❡❝❛♥t ❛♣♣r♦①✐♠❛t✐♦♥ ✐❢ ♥♦t ♣♦ss✐❜❧❡ t♦

❛♣♣r♦①✐♠❛t❡ ♣❛rts ♦❢ ✐♥t❡r❢❛❝❡ ❏❛❝♦❜✐❛♥

8 if m = 0 then

9
m J n

i
≈ init J n

i

10 else

11
m J n

i
≈

m Y n+1
i −m−1Y n+1

i

mU n
i −m−1U n

i

✴✴ ❆ss❡♠❜❧❡ ❣❧♦❜❛❧ ✐♥t❡r❢❛❝❡ ❏❛❝♦❜✐❛♥

12
m J n

global =AJ

�
m J n

i

�
=



∂ I1

∂ Y1

∂ Y1

∂U1
+
∂ I1

∂U1
· · · ∂ I1

∂ Yr

∂ Yr

∂Ur
+
∂ I1

∂Ur

...
...

...

∂ Ir

∂ Y1

∂ Y1

∂U1
+
∂ Ir

∂U1
· · · ∂ Ir

∂ Yr

∂ Yr

∂Ur
+
∂ Ir

∂Ur




i = 1, ..., r

✴✴ ❙♦❧✈❡ ❢♦r ❝♦rr❡❝t♦r

13
m J n

global ·m∆c n =−m r n

✴✴ ❆♣♣❧② ❝♦rr❡❝t♦r

14
m+1U n

i
=mU n

i
+m∆c n

i

✴✴ ■♥✐t✐❛❧ s♦❧✉t✐♦♥ ❢♦r ♥❡①t t✐♠❡ st❡♣

15
0U n+1

i = E
�

mend+1U k
i

k = 0, ..., n
�

i = 1, ..., r
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Here the Schur complement of A with respect to A X X is denoted

by A Schur. The name Schur complement goes back to the definition

of the mathematician Issai Schur whose original work was published

in German, an English translation of his work can be found in Schur

[131]. Furthermore, it can be shown (e.g. Boyd et al. [20] and Strang

[144]) that if A is positive definite A Schur is also positive definite. For

the determinants the following holds (see Zhang [162])

det (A) = det
�
A X X

�
·det

�
A Schur

�
. (4.28)

The formulation of the system involving the Schur complement has

better numerical properties than the original Equation System (4.25),

which is discussed by Badia et al. [8]. This also holds for the extraction

of the interface Jacobian as the interface Jacobian is given by

∂ Y

∂U
= A Schur

−1. (4.29)

Note that these ideas can be carried over to the nonlinear regime

by using the so called global sensitivity equation (GSE). Please see

Section 4.7.1 for more details.

4.6 Stability Considerations

An undamped two-mass oscillator system is used to represent a cou-

pled second-order initial value problem. The model problem is used

to analyze the stability properties of the IJCSA and compare them with

classical fixed-point iteration algorithms (Gauss-Seidel and Jacobi).

The setting of the model problem is shown in Figure 4.1. The coupled

system is decomposed in two domains (domain 1 and domain 2).

The interface of the two domains is formed by a massless rigid

link between the masses m1 and m2. The properties of the partitioned

systems are derived from the monolithic quantities. The monolithic

stiffness is denoted by k and the monolithic mass is denoted by m .

Hence the eigenfrequency of the monolithic system is given byω=p
k/m.

With the initial conditions u (0) = 0 and u̇ (0) = 1 the analytical so-

lution of the monolithic problem is given by u (t ) = 1/ωsin (ωt ), where

u (t ) is the time dependent interface displacement. Let us introduce

f being the force exerted by the mass m2 onto m1.
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interface

k1 k2

domain 1 domain 2

u2u1

m1 m2

Figure 4.1: Model problem for stability considerations

Furthermore, it is needed to define the quantities m1, m2, k1 and

k2 of the two subsystems. Therefore, the dimensionless parameters

β1 and β2 are introduced where {β1 ∈R |0≤ β1 ≤ 1} and {β2 ∈R |0≤
β2 ≤ 1}. Thus for domain 1 the system parameters are given by

m1 =β1m , (4.30)

k1 =β2k . (4.31)

For domain 2 one has

m2 =
�
1−β1

�
m , (4.32)

k2 =
�
1−β2

�
k . (4.33)

With these parameters the governing ordinary differential equations

for the two domains can be defined. Hence, for domain 1 we have

m1ü1+k1u1 = f1, (4.34)

β1m ü1+β2k u1 = f1, (4.35)

and for domain 2 we arrive at

m2ü2+k2u2 =− f2, (4.36)
�
1−β1

�
m ü2+

�
1−β2

�
k u2 =− f2. (4.37)

Equations (4.35) and (4.37) can be reformulated in operator notation

to

Y1 = S1

�
U1

�
, (4.38)

Y2 = S2

�
U2

�
. (4.39)
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4 Interface Jacobian-based Co-Simulation Algorithm

For a Dirichlet-Neumann decomposition of the model problem (see

Section 3.4) the interface constraint equations read

u1 = u2 = u , (4.40)

f1 = f2. (4.41)

Having that, the output and the input quantities are defined for the

model problem, as follows

U1 = f1, (4.42)

U2 = u2, (4.43)

Y1 = u1, (4.44)

Y2 = f2. (4.45)

Hence, the interface constraint operators are given by

I1

�
S2

�
U2

�
,U1

�
=U1− Y2 = 0, (4.46)

I2

�
S1

�
U1

�
,U2

�
=U2− Y1 = 0. (4.47)

In order to be able to discuss numerical stability properties of the

different coupling algorithms a numerical time integrator needs to be

employed. As this is a model problem the BE (see Section 3.1.1) time

integrator is chosen, however any time integrator could be taken for

the discussion, in general. The BE method is used for both domains.

Generally, different time integrators for the different domains may

be present (see Section 3.2). The stability discussion is not limited

to the particular choice of BE for both domains. However, it keeps

the formulas to a reasonable level of complexity without harming the

generality.

With the help of the BE time integrator, Equations (4.35) and (4.37)

can be discretized in time. This leads to

u n+1
1
=

h 2

β1m +β2k h 2
f n+1

1
+

β1m

β1m +β2k h 2

�
2u n

1
−u n−1

1

�
,

(4.48)

f n+1
2
=
β1m −m −k h 2+β2k h 2

h 2
u n+1

2
+

�
1−β1

�
m

h 2

�
2u n

2
−u n−1

2

�
.

(4.49)
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4.6.1 Gauss-Seidel Fixed-Point Iterations

As already discussed in Section 3.3, in fluid-structure interaction the

GS scheme is commonly used. Therefore we analyze this pattern first.

The communication pattern for two iterations is plotted in Figure 3.11.

As we focus on iterative schemes in this work iteration counters need

to be added to Equations (4.48) and (4.49). Furthermore, the parti-

tioned treatment requires that the time index of the input quantities

has to be changed which results in

m u n+1
1
=

h 2

β1m +β2k h 2

m f n
1
+

β1m

β1m +β2k h 2

�
2u n

1
−u n−1

1

�
, (4.50)

m f n+1
2
=
β1m −m −k h 2+β2k h 2

h 2

m u n
2
+

�
1−β1

�
m

h 2

�
2u n

2
−u n−1

2

�
. (4.51)

By analyzing the Gauss-Seidel communication pattern (see steps

3, 7 and 11 in Figure 3.11) it is obvious that the following holds:

m f n
1
=m f n+1

2
(4.52)

Therefore Equations (4.50) and (4.51) can be coupled into one equa-

tion. After sorting the variables one has

m u n+1 =
β1m −m −k h 2+β2k h 2

β1m +β2k h 2

︸ ︷︷ ︸
HGS

m u n+

m

β1m +β2k h 2

�
2u n −u n−1

�
, (4.53)

where HGS is the so called convergence factor. Note that the operator

notation for this problem can be simplified if the Gauss-Seidel com-

munication pattern is used. Hence Equations (4.38) and (4.39) can be

combined to

Y1 = S1

�
S2

�
U2

��
. (4.54)

For convergence of the Gauss-Seidel iterations the following must

hold (see Section 2.2):

|HGS|< 1 (4.55)
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4 Interface Jacobian-based Co-Simulation Algorithm

Note that for this particular model problem, which has one scalar

interface variable, an optimal relaxation factor can be determined

to provide the converged solution of the coupled problem after the

first iteration. If relaxation is included the update rule is modified and

instead of using

m+1U
2
=m Y

1
, (4.56)

the relaxation factor {α ∈ R} is incorporated in the update rule as

follows

m+1U
2
=mU

2
+α

�
mU

2
−m Y

1

�
. (4.57)

With the help of the convergence factor this can be written as

m+1U
2
=mU

2
+α

�
mU

2
−HGS

mU
2
− c

�
, (4.58)

m+1U
2
=
�
1+α−αHGS

�
mU

2
− c . (4.59)

Similar to Section 2.2.1 for optimal convergence

1+α−αHGS = 0, (4.60)

must be true.

Hence the optimal relaxation factor for the model problem is given

by

αopt =
1

HGS−1
. (4.61)

This is also discussed in Joosten et al. [83, p. 767].

4.6.2 Jacobi Fixed-Point Iterations

In order to determine the convergence factor for the Jacobi scheme,

Equations (4.50) and (4.51) are written in the following matrix from



m u n+1

1

m f n+1
2



=



 0 h 2

β1m+β2k h 2

β1m−m−k h 2+β2k h 2

h 2 0





︸ ︷︷ ︸
H JC




m u n

1

m f n
2





+




β1m

β1m+β2k h 2

(1−β1)m
h 2



�2u n
2
−u n−1

2

�
.

(4.62)

84



4.6 Stability Considerations

As the convergence factor H JC is no longer a scalar the convergence

criterion (4.55) needs to be extended to a multi-dimensional space. In

a multi-dimensional space the spectral radius is introduced. Hence,

Equation (2.24) must be satisfied for convergence. Thus we have

ρ
�

H JC

�
< 1, (4.63)

for the Jacobi scheme. Therefore Jacobi iterations will converge for

the model problem if and only if

√√√
����

h 2

β1m +β2k h 2

β1m −m −k h 2+β2k h 2

h 2

����< 1, (4.64)

is satisfied. This may be further simplified to

√√√
����
β1−1−ω2h 2+β2ω2h 2

β1+β2ω2h 2

����< 1, (4.65)

which is the square root of the convergence factor for the Gauss-Seidel

HGS pattern.

4.6.3 Interface Jacobian-based Co-Simulation Algorithm

As the IJCSA is applied to a linear problem it needs to converge to the

correct solution within one iteration. In order to proof that the Newton

method converges for the model problem Theorem 2.12 of Deuflhard

[36] is used. As the model problem is linear the only assumption left

to check is for which model properties Jglobal is invertible.

Jglobal =



 1 − ∂ Y2

∂U2

− ∂ Y1

∂U1
1



 (4.66)

For the model problem the interface Jacobian matrix is defined by

Jglobal =



 1 −β1m−m−k h 2+β2k h 2

h 2

− h 2

β1m+β2k h 2 1



= const. (4.67)
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For a 2×2 matrix the inverse is given by


a b

c d




−1

=
1

a d − b c



 d −b

−c a



 . (4.68)

That means that the global interface Jacobian is not invertible if

β1m −m −k h 2+β2k h 2

h 2

h 2

β1m +β2k h 2
= 1. (4.69)

This is only the case if

m +k h 2 = 0, (4.70)

which is not the case for a physical meaningful parameter set. There-

fore we conclude that the IJCSA is unconditionally stable for the model

problem.

4.6.4 Discussion of the Stability Properties

In the following the results of the stability considerations for GS with-

out relaxation, JC without relaxation and the IJCSA should be dis-

cussed. One interesting limit case is h → 0, this case represents the

consistency of the algorithm. Thus we have

lim
h→0

�
ρ
�
HJC

��
=

√√√
����
β1−1

β1

����, (4.71)

lim
h→0

���HGS

���=
����
β1−1

β1

���� . (4.72)

For h→ 0 IJCSA is converging as long as the mass of the model prob-

lem is larger than zero m > 0.

As the convergence factor of the GS pattern is the square of the

one of the JC pattern it is enough to analyze the convergence factor

of the GS method. The limit of stability is the same for the JC and

the GS method, the difference is the rate of convergence. The smaller

the convergence factor is the faster the convergence rate is i.e. GS

converges faster than the JC pattern. The convergence factor for GS

may also be written as

��HGS

��=
����
β1−1−ω2h 2+β2ω

2h 2

β1+β2ω2h 2

����=ρ
�
HJC

�2
. (4.73)
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Figure 4.2: Stability limit graph

In Figure 4.2 the stability limits are shown for ω2h 2 = 0, ω2h 2 = 1

and ω2h 2 →∞. As ω2h 2 is increased the stability limit is rotated

around {β1 = 0.5,β2 = 0.5}. The lower left part is always the unstable

region. Thus, if {β1 ∈ [0..0.5]∧β2 ∈ [0..0.5]} the parameter set is always

unstable independent of the choice ofω2h 2.

At the consistency bounds the stability is determined only by the

mass ratio between domain 1 and domain 2. This is aligned with obser-

vations by Causin et al. [28] in fluid-structure interaction. This shows

that IJCSA is the best choice as it will render the coupled solution of

the model problem within one iteration independent of any system

parameter as long as they are physical.

Note that the stability is not just determined by the choice of the

communication pattern (e.g. Gauss-Seidel or Jacobi), but also the

choice of the decomposition is decisive (see Section 3.4). It can be

shown that the IJCSA is unconditionally stable for the model problem

independent of the choice of the decomposition.

87



4 Interface Jacobian-based Co-Simulation Algorithm

4.7 Examples

The following section presents different examples which illustrate

the performance of the IJCSA in more detail. The most general form

of the IJCSA is presented in Algorithm 4.4. By analyzing this algo-

rithm three core capabilities of the subsystems can be identified. The

most obvious capability of a "black-box" like subsystem is requested

in line 4 which is a simple solution of one time step. This ability is

indicated with ❞♦❙♦❧✈❡. ❞♦❙♦❧✈❡ may indicate a method name in

an implementation of the IJCSA. The core method of the IJCSA is

given in line 10 where the subsystems need to deliver an interface

Jacobian (❣❡t■♥t❡r❢❛❝❡❏❛❝♦❜✐❛♥). In line 6 the solution of all sub-

systems is performed. This can be done in an efficient way by using

Approximation (4.20). Hence the subsystem method may be called

❞♦❆♣♣r♦①✐♠❛t❡❞❙♦❧✈❡.

These three core capabilities of the subsystems are illustrated in

the following examples. All presented examples are nonlinear as most

co-simulation scenarios involve nonlinear problems.

4.7.1 Truss versus Truss Problem

IJCSA is used to solve a nonlinear transient structural mechanics prob-

lem. Within the problem, two truss systems are coupled. Each truss

system is nonlinear due to the choice of the Hencky strain measure.

The material law is chosen as St. Venant-Kirchhoff. A sketch of the

problem setting is given in Figure 4.3.

The problem is similar to the one used in the stability Section 4.6.

Therefore we have

Y1 = S1

�
U1

�
, (4.74)

Y2 = S2

�
U2

�
, (4.75)

and the interface relations are given by

I1

�
S2

�
U2

�
,U1

�
=U1− Y2 = 0, (4.76)

I2

�
S1

�
U1

�
,U2

�
=U2− Y1 = 0. (4.77)
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Figure 4.3: Setup of Truss versus Truss problem

The 1D Hencky Truss Element

We start with the quadratic internal energy functional for the truss

Πinternal =
1

2

∫

V

E ǫ2 dV , (4.78)

where E is the Young’s modulus and ǫ is the Hencky strain. The weak

form of Equation (4.78) reads

δΠinternal =

∫

V

E ǫ
�
u (x )

�
δǫ

�
u (x )

�
dV . (4.79)

This may be split over a sum of finite elements (ne being the total

number of elements)

δΠinternal =

ne∑

e=1

δΠeinternal
. (4.80)

If linear shape functions are used for the approximation of the dis-

placement field u (x ), the discretized weak form of a one dimensional

truss with Hencky strain measure is

δΠh
einternal

=



p1 (u )

p2 (u )




⊤

︸ ︷︷ ︸
pe(u )



δu1

δu2



 , (4.81)

89



4 Interface Jacobian-based Co-Simulation Algorithm

where pe (u ) is called element internal force vector. Considering con-

centrated external forces only we can write

δΠh =



p1 (u )

p2 (u )




⊤

︸ ︷︷ ︸
pe(u)



δu1

δu2



− fe
⊤



δu1

δu2



= 0, (4.82)

where the element external force vector is denoted by fe. As this must

be true for arbitrary test functions δu the nonlinear equation system

to be solved can be written as

ersubsyse
(u ) =



p1 (u )

p2 (u )



− fe = 0. (4.83)

Dynamic Extension of the 1D Hencky Truss Element

In order to add dynamics effects to the nonlinear Residual (4.83), the

D’Alembert forces must also be added. Thus the semi-discretized

version of the dynamic nonlinear residual is

rsubsys (u ) =M ü + ersubsys (u ) =M ü +p (u )− f = 0. (4.84)

In order to discretize the vector of accelerations ü the BE operator is

used. Thus Equation (4.84) can be written as

rsubsys

�
u n+1

�
=M

1

h 2

�
u n+1−2u n +u n−1

�
+p

�
u n+1

�
− f = 0.

(4.85)

Solving the Nonlinear Equation System with the Newton Method

The iteration sequence for the Newton method is given by

l+1u = l u −J
�
rsubsys

�
l u
��−1

rsubsys

�
l u
�

. (4.86)

The Jacobian of the nonlinear residual vector J
�
rsubsys

�
l u
��

is given

by

J
�
rsubsys

�
l u
��
=M

1

h 2
+J

�
p (u )

�
︸ ︷︷ ︸

K (u )︸ ︷︷ ︸
A(u )

, (4.87)
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where K (u ) is referred to as tangent stiffness matrix and given by

K (u ) =A
ne

e=1K e (u ). (4.88)

Here A is the assembly operator and K e (u ) is given by

K e (u ) =





∂ p1 (u )

∂ u1

∂ p1 (u )

∂ u2

∂ p2 (u )

∂ u1

∂ p2 (u )

∂ u2




. (4.89)

The element system matrices and vectors can be summarized to

pe (u ) = E Le

ln

�
Le+u2−u1

Le

�

Le+u2−u1



 1

−1



 . (4.90)

Where u1 is the displacement at element node 1 and u2 the displace-

ment at element node 2. The element length is denoted by Le. Form

the internal force vector we get the stiffness matrix

K e (u ) = E Le

ln

�
Le+u2−u1

Le

�
−1

�
Le+u2−u1

�2



−1 1

1 −1



 . (4.91)

The lumped form of the mass matrix is given by

Me =̺Le




1
2 0

0 1
2



 . (4.92)

Next, the algorithms inside the subsystems for the Truss versus

Truss problem are described in detail. Thus the implementation of

the IJCSA for the Truss versus Truss problem is illustrated.

Subsystem 1 Y1 = S1

�
U1

�

Subsystem 1 expects an interface force as an input. The subsystem ad-

ditionally applies a constant force f to the truss system at the interface

node (see Figure 4.3). The nonlinear residual function for subsystem
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Table 4.1: Input/Output quantities for subsystem 1

Subsystem Input U Output Y

N m

S1 finterface uinterface

1 is given by

rsubsys

�
u n+1

�
=M

1

h 2

�
u n+1−2u n +u n−1

�
+p

�
u n+1

�
− f = 0.

(4.93)

Please also note that the vector of unknowns is sorted such that the

last degree of freedom is the interface degree of freedom. The internal

degrees of freedom, in the following, are referred to as state variables

X 1 =

h
u1 u2 · · · ui−1

i⊤
. Therefore, Equation (4.93) becomes

rsubsys

�
u n+1

�
=M

1

h 2







 X 1

uinterface = Y1





︸ ︷︷ ︸
u n+1

−2u n +u n−1




+

p
�
u n+1

�
−



0

f





︸︷︷︸
f

+



 0

finterface =U1





︸ ︷︷ ︸
f interface

= 0. (4.94)

❞♦❙♦❧✈❡ The ❞♦❙♦❧✈❡ function of subsystem 1 expects an inter-

face force as input (U1) and outputs the displacement of the interface

degree of freedom (Y1). In order to solve the system of nonlinear equa-

tions for every time step the function applies a local Newton method

to Equation (4.94)

J
�
rsubsys

�
l u n+1

��
l+1∆u n+1 =−rsubsys

�
l u n+1

�
. (4.95)
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Note that l is the local Newton iteration counter and n is the time

step counter.

❣❡t■♥t❡r❢❛❝❡❏❛❝♦❜✐❛♥ This function computes the interface Ja-

cobian and updates the internal Jacobian for the state variables. The

basis for the following considerations is the so called global sensitivity

equation (see Henrik [74] and Sobieszczanski-Sobieski [140]), which

reads

∂ rsubsys (u )

∂ u

∂ u

∂ ι
=−

∂ rsubsys

∂ ι
. (4.96)

In the case of the IJCSA ι is represented via the interface input vari-

able. For subsystem 1 this is the interface force finterface. Hence Equa-

tion (4.96) for subsystem 1 may be written as

A
∂ u

∂ finterface

=−
∂ rsubsys

∂ finterface

,

∂ u

∂ finterface

=−A−1
∂ rsubsys

∂ finterface

. (4.97)

Equation (4.97) reads in more detail





∂ X 1

∂ finterface

∂ uinterface

∂ finterface




=−A−1





0

1




.

Here

∂ X 1

∂ finterface

=





∂ u1

∂ finterface

∂ u2

∂ finterface
...

∂ ui−1

∂ finterface




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and

∂ uinterface

∂ finterface

=
∂ Y1

∂U1

.

Thus, a Jacobian extraction involves a linear solution of the system.

However, if within ❞♦❙♦❧✈❡ a direct solver is used, the decomposition

of A is reused for the Jacobian extraction.

❞♦❆♣♣r♦①✐♠❛t❡❞❙♦❧✈❡ The ❞♦❆♣♣r♦①✐♠❛t❡❞❙♦❧✈❡ method

provides an efficient approximation for the solution of the subsystem

m+1X 1 ≈m X 1+

m
����
∂ X 1

∂U1

m∆U1, (4.98)

m+1X 1 ≈m X 1+

m
����
∂ X 1

∂ finterface

m∆ finterface, (4.99)

m+1Y1 = g
�

m+1X 1, mU1

�
, (4.100)

which does not involve a new integration in subsystem 1.

Note that the approximation is applied for the state variables only.

Be aware that m is the iteration counter for the interface iterations. As

the finite element method is used for the discretization of this problem

and the trial and test functions are chosen to be linear, the g function

is simply a nonlinear relation between the displacements of the nodes

ne−1 and ne.

Subsystem 2 Y2 = S2

�
U2

�

In contrast to subsystem 1, subsystem 2 needs the interface displace-

ment as input (see Table 4.2) . The nonlinear residual function for

subsystem 2 is given by

r̂subsys

�
u n+1, f interface

�
=M

1

h 2

�
u n+1−2u n +u n−1

�

+p
�
u n+1

�
− f interface = 0. (4.101)
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Table 4.2: Input/Output quantities for subsystem 2

Subsystem Input U Output Y

N m

S2 uinterface finterface

The internal degrees of freedom are in the following referred to as

state variables X 2 =

h
u1 u2 · · · ui−1

i⊤
once more

r̂subsys

�
u n+1, f interface

�
=M

1

h 2







 X 2

uinterface =U2





︸ ︷︷ ︸
un+1

−2u n +u n−1




+

p
�
u n+1

�
−



 0

finterface = Y2





︸ ︷︷ ︸
f interface

= 0. (4.102)

❞♦❙♦❧✈❡ The ❞♦❙♦❧✈❡ function of subsystem 2 expects an inter-

face displacement as an input (U2) and outputs the interface force

of the interface degree of freedom (Y2). In order to solve the nonlin-

ear equation system for every time step the function applies a local

Newton method to Equation (4.102)

J
�
r̂subsys

�
l û n+1

��
l+1∆û n+1 =−r̂subsys

�
l û n+1

�
. (4.103)
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Please note that u is replaced with û because uinterface is known now

as it is an input quantity. Hence û is given by

û =





u1

u2

...

ui−1

finterface = Y2





. (4.104)

❣❡t■♥t❡r❢❛❝❡❏❛❝♦❜✐❛♥ Based on the Jacobian extraction proce-

dure of subsystem 1 for subsystem 2 this is

Â
∂ û

∂ uinterface

=−
∂ r̂subsys

∂ uinterface

,

∂ û

∂ uinterface

=−Â−1
∂ rsubsys

∂ uinterface

. (4.105)

Equation (4.105) can be written as




∂ X 2

∂ uinterface

∂ finterface

∂ uinterface




=−Â−1

∂ r̂subsys

∂ uinterface

.

Note that

∂ X 2

∂ uinterface

=





∂ u1

∂ uinterface

∂ u2

∂ uinterface
...

∂ ui−1

∂ uinterface





,

and

∂ finterface

∂ uinterface

=
∂ Y2

∂U2

.
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Furthermore,
∂ rsubsys

∂ uinterface

represents the last column of A.

❞♦❆♣♣r♦①✐♠❛t❡❞❙♦❧✈❡ The ❞♦❆♣♣r♦①✐♠❛t❡❞❙♦❧✈❡ for subsys-

tem 2 is similar to subsystem 1, namely

m+1X 2 ≈m X 2+

m
����
∂ X 2

∂U2

m∆U2, (4.106)

m+1X 2 ≈m X 2+

m
����
∂ X 2

∂ uinterface

m∆uinterface, (4.107)

m+1Y2 = g
�

m+1X 2, mU2

�
. (4.108)

Results

Numerical experiments are performed with the Truss versus Truss

problem in order to demonstrate the performance of the IJCSA. There-

fore, truss 1 is discretized with 20 elements and truss 2 with 10. The

total length of the two truss systems is set to L = 1 m. Initial conditions

are u (0) = 0m and u̇ (0) = 0 m/s. The interface residual is considered

as converged if



m+1r n




max
< 1.0 ·10−10. (4.109)

A constant external load f = 4.25 N is applied inside subsystem 1. The

local iteration convergence constraint for both subsystems is set to



rsubsys




max
< 1.0 ·10−12. (4.110)

For the sake of clarity an absolute residual measure is used. As possible

reference values for a relative residual measure, the applied force and

the maximum interface displacement are close to one, the absolute

residual measure does not restrict the outcome of the discussion in

any way. Time discretization is done with a step size of h = 0.01s

and 200 time steps. To verify the coupled solution the simulations

are compared with a monolithic solution performed with Abaqus. It

turned out that the IJCSA solution matches all the digits of the Abaqus
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solution. The densities are set to ̺1 = 0.55 kg/m3 and ̺2 = 0.5 kg/m3.

The Young’s moduli are E1 = 20 N/m2 and E2 = 50 N/m2. This parameter

set is unstable with a standard Jacobi pattern when no relaxation

is applied. Therefore constant under-relaxation α = 0.38 is applied.

The relaxation factor was determined by numerical experiments and

seems to be optimal for this problem parameter set. However it is

possible to use adaptive relaxation methods like Aitken. The Aitken

relaxation method can be used in combination with the Gauss-Seidel

pattern (see Joosten et al. [83]). Convergence for the Aitken relaxation

method is only proven to be guaranteed if the residual is a scalar. The

proof is available in Henrici [72].
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Figure 4.4: Numerical solution of the Truss versus Truss problem

Table 4.3 presents the number of local and interface iterations

for different algorithms. Classical fixed-point techniques and various

versions of the IJCSA are compared. The number of local iterations is

the most important one for the runtime. Each local Newton iteration of

subsystem 1 and 2 involves a solution of a linear equation system. For

the Truss versus Truss problem this is by far the most time consuming

part in terms of the wall-clock time. Hence this is the measure for the

efficiency of the different co-simulation algorithms.

98



4.7 Examples

Table 4.3: Numerical results for the Truss versus Truss problem

Description

no. of local
iterations
for S1

no. of local
iterations
for S2

no. of local
iterations
for S1≈

no. of local
iterations
for S2≈

no. of
interface
iterations

Aitken relaxation
with Gauss-Seidel
pattern

4 157 3 720 0 0 1 092

constant
under-relaxation
with Jacobi pattern

46 388 44 333 0 0 17 446

basic IJCSA
(Algorithm 4.3)

2 526 2 568 0 0 785

enhanced IJCSA
(Algorithm 4.4)

771 807 1 619 1 178 789

basic IJCSA
(Algorithm 4.3) with
a fixed number of
local Newton
iterations for the
solve step (1 local
iteration)

1 146 1 146 0 0 1 146

enhanced IJCSA
(Algorithm 4.4) with
a fixed number of
local Newton
iterations for the
solve step (1 local
iteration)

200 200 1 262 932 666

enhanced IJCSA
(algorithm with
Jacobian extraction
in the first iteration
within each time
step only (modified
Newton)) (1 local
iteration)

200 200 1 854 1 400 900
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As the subsystems use local iterations to solve the nonlinear state

equations an additional efficiency enhancement of the IJCSA may be

done. This is to converge the local iteration and the interface (outer)

iterations together. It is about three times faster than converging the

local iterations for the Truss versus Truss co-simulation problem.

If the problem is "mildly" nonlinear it might also be of advantage to

use a modified Newton strategy in which Jacobian extraction is done

in the first iteration only within each time step. However modified

Newton methods exhibit in general only a linear convergence rate

(see Section 2.3).

The numerical solution for the chosen parameter set is shown

in Figure 4.4. The numerical dissipation of the BE time integrator

is dominant. However this is the exact monolithic solution of the

problem setting. Additionally, Figure 4.4 shows the geometrical linear

solution of the Truss versus Truss problem. By comparing that to the

geometrical nonlinear (Hencky) solution of the Truss versus Truss

problem it is evident that the geometrical nonlinearity changes to

structural response distinctly.

The fastest IJCSA version is about 18× faster than the Aitken relax-

ation for the Gauss-Seidel pattern (this also takes the extraction of the

Jacobian into account). Moreover, Gauss-Seidel based patterns are

no option for a general multi-code co-simulation scenario: they have

the severe disadvantage of data flow dependency of all participating

subsystems.

Figure 4.5(d) shows the evolution of the interface residual norm

for the interface iterations needed to accomplish three time steps.

The Aitken version shows a fairly good reduction of the interface

residual. It needs six iterations to render the residual below 1 ·10−10.

The constant under-relaxation shows a linear convergence rate which

leads to a large number of iterations (approx. 100 per time step). The

basic version of the IJCSA needs the least number of iterations. The

modified Newton starts with ten iterations and drops down to six

iterations for the third time step. The modified Newton method is

best when the problem is "mildly" nonlinear there it is more efficient

than a full Newton method.
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(a) Aitken relaxation with Gauss-Seidel pattern
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(b) Constant under-relaxation with Jacobi pattern

Figure 4.5: Convergence behavior of the Truss versus Truss

problem for the first 3 time steps
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(c) Basic IJCSA (Algorithm 4.3)
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(d) Enhanced IJCSA (algorithm with Jacobian extraction in the first iteration within

each time step only and one local Newton iteration per interface iteration)

Figure 4.5: Convergence behavior of the Truss versus Truss

problem for the first 3 time steps
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4.7.2 A Multi-Code Problem

Within this section an example problem which consists of five subsys-

tems is discussed. The subsystems S1 andS2 are thereby modeled by a

nonlinear operator described in Section 4.7.1. The spring-subsystem

S3 is a simple linear spring model. The dashpot-subsystem S4 is inte-

grated with the BE integrator; this subsystem is also linear. The last

subsystem is a nonlinear ODE stemming from the simplification of

the Navier-Stokes equations on moving grids; it is integrated with the

trapezoidal rule (TR). The problem setup is illustrated in Figure 4.6.

The input/output quantities for the Multi-Code problem are pre-

sented in Table 4.4. Keeping in mind these input/output quantities

Table 4.4: Input/output quantities for the Multi-Code problem

Subsystem Input U Output Y

S1 f1 u1

S2 f2 u2

S3 f3 u3

S4 f4 u4

S5 u5 f5

the following interface operators and interface residuals are defined

for this problem:

R1 = I1

�
U1,U2,U3,U4, Y5

�
=U1+U2+

1

λ3

U3+
1

λ4

U4− Y5= 0

(4.111)

R2 = I2

�
S1

�
U1

�
,S2

�
U2

��
= Y1− Y2 = 0

(4.112)

R3 = I3

�
S1

�
U1

�
,S3

�
U3

��
= Y1+λ3Y3 = 0

(4.113)

R4 = I4

�
S1

�
U1

�
,S4

�
U4

��
= Y1+λ4Y4 = 0

(4.114)
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R5 = I5

�
S1

�
U1

�
,S5

�
U5

��
= Y1−U5 = 0

(4.115)

Hence, the global interface Jacobian matrix is given by





1 1
1

λ3

1

λ4

− ∂ S5

∂U5
∂ S1

∂U1

− ∂ S2

∂U2

0 0 0

∂ S1

∂U1

0 λ3

∂ S3

∂U3

0 0

∂ S1

∂U1

0 0 λ4

∂ S4

∂U4

0

∂ S1

∂U1

0 0 0 −1





. (4.116)
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Figure 4.6: Setup of the Multi-Code problem

Subsystem 1 - Truss 1

This subsystem is defined in Section 4.7.1

Subsystem 2 - Truss 2

This subsystem is defined in Section 4.7.1
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Subsystem 3 - Spring

A linear spring model is used in subsystem 3 which is given by

u n+1
3
=

1

k3

f n+1
3

. (4.117)

Hence the interface Jacobian for this subsystem is constant and given

by

∂ S3

∂U3

=
1

k3

. (4.118)

Subsystem 4 - Dashpot

In subsystem 4 a linear dashpot model is used

u̇4d4 = f4, (4.119)

which is integrated by using the BE integrator

u n+1
4
= u n

4
+

h

d4

f n+1
4

. (4.120)

The interface Jacobian for this subsystem is again constant. Hence,

we have

∂ S4

∂U4

=
h

d4

. (4.121)

Subsystem 5 - Idealized Piston

This section derives the governing equations for the Idealized Piston

subsystem. As the fluid is modeled incompressible the starting point

for the derivations are the Navier-Stokes equations for incompress-

ible flow in combination with a linear material law (Stokes relations).

These equations describe the flow on a fixed grid (Eulerian point of

view). If the structure will be modeled in the Lagrangian framework it

would cause a problem at the interface of fluid and structure. In order

to cope with this problem the arbitrary Lagrangian-Eulerian (ALE)

method is used. As the ALE method is a hybrid reference frame (mix-
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ture of Eulerian and Lagrangian reference frame), the Navier-Stokes

equations need to be changed as shown in Donea et al. [37] to

∂ vi

∂ xi

= 0, (4.122)

∂ vi

∂ t
+
�
v j − v

grid

j

� ∂ vi

∂ x j

=− 1

̺5

∂ p

∂ xi

+ν
∂ 2vi

∂ x 2
j

, (4.123)

where ̺5 is the fluid density and ν is the kinematic viscosity. p is

the most important quantity for the Idealized Piston subsystem as it

represents the hydrostatic pressure. The flow velocity components

are denoted by vi . Furthermore, v
grid

j are the so called grid velocity

components and (v j − v
grid

j ) the convective velocity components (note

that grid displacement components are denoted via u
grid

j = u j ). By

choosing an appropriate set of boundary conditions (see Figure 4.6)

the fluid domain can be reduced to a one dimensional setting, hence

the Equations (4.122) and (4.123) reduce to

∂ v1

∂ x1

= 0, (4.124)

∂ v1

∂ t
+
�
v1− v

grid
1

� ∂ v1

∂ x1

=− 1

̺5

∂ p

∂ x1

+ν
∂ 2v1

∂ x 2
1

. (4.125)

These equations can be reformulated to one integrable ordinary dif-

ferential equation (ODE) for the pressure (insert conservation of mass

Equation (4.124) in the conservation of momentum Equation (4.125)),

namely

∂ v1

∂ t
=− 1

̺5

∂ p

∂ x1

→ ∂ p

∂ x1

=−a1̺5, (4.126)

with a , being the acceleration in x -direction. In the subsequent deriva-

tions the index is dropped as only one dimension is present. Equa-

tion (4.126) can be solved by integration over the domain

∫
∂ p

∂ x
dx =−

∫
a̺5 dx , (4.127)

p (x ) =−a̺5 x +C . (4.128)

The integration constant C can be determined from the outlet bound-

ary condition for the pressure p (x )
��

x=L5
= 0. Please note that the
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coordinate system in Figure 4.6 is fixed in space. As result one obtains

the following linear function for the pressure distribution

p (x ) = a̺5

�
L5− x

�
. (4.129)

The ordinary differential nonlinear equation for subsystem 5 is given

by

ü5

�
̺5 ·A5 · L5

�
− ü5u5

�
̺5 ·A5

�
= f5, (4.130)

with u5 being the interface displacement and f5 the interface force.

This equation is integrated with the help of the trapezoidal rule,

which is a subset of the generalized-αmethod presented in Section

3.1.2. If the generalized-α parameters are set αm = 0, αf = 0, β = 0.25

and γ = 0.5 the trapezoidal rule is obtained. The trapezoidal rule

approximates the velocities by

u̇ n+1
5
=

2

h

�
u n+1

5
−u n

5

�
− u̇ n

5
. (4.131)

Thus the time discretized equation is given by





0 −1 0

−1
�
L5−u n+1

5

� 2̺5A5

h
0

0
2

h
−1









f n+1
5

v n+1
5

a n+1
5




=





2

h
1 0

0
�
L5−u n+1

5

� 2̺5A5

h

�
L5−u n+1

5

�
̺5A5

0
2

h
1









u n
5

v n
5

a n
5




−





2

h
u n+1

5

0

0




. (4.132)

With that the interface Jacobian of subsystem 5 is

∂ S5

∂U5

=
2̺5A5

h

�
2

h
u n

5
− 4

h
u n+1

5
+2v n

5
+

h

2
a n

5
+

2L5

h

�
. (4.133)
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Results

The spacial discretization is the same for subsystem 1 and 2 as in the

previous example. The simulation time is 1 s, this results in 1 000 per-

formed time steps. Two different settings are simulated (see Table 4.5).

Table 4.5: Parameter sets for the Multi-Code problem

Parameter Values for setting 1 Values for setting 2 Unit

h 1 ·10−3 1 ·10−3 s

f 12.25 12.25 N

E1 20 20 N/m2

̺1 0.55 0.55 kg/m3

L1 1 1 m

E2 50 50 N/m2

̺2 0.5 0.5 kg/m3

L2 1 1 m

k3 500 500 N/m

λ3 2 2 −

d4 10 10 Ns/m

λ4 2 2 −

A5 0.1 0.1 m2

L5 1 1 m

̺5 1 ·10−10 2.75 kg/m3

As in setting 1 the fluid density ̺5 is almost zero the solution is

verified with the monolithic solution of all structural subsystems (one

to four) performed in Abaqus/Standard. For setting 2 the fluid den-

sity is increased and the added mass effect becomes dominate. For

this highly nonlinear example the IJCSA needs in average 3.7 inter-

face iterations. Please note that the interface residual tolerance of

the previous example is used (see Equation (4.109)). If the modified

Newton version of the IJCSA is used the interface iteration count rises

to five iterations in average per time step. A comparison to classical
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techniques is not possible as all of them failed to deliver a converged

solution for this problem. The results are demonstrated in Figure 4.7.
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Figure 4.7: Numerical solution of the Multi-Code problem

This example demonstrates that the IJCSA can handle complex

co-simulation scenarios in an efficient and accurate manner. It can

handle different numerical time integrators within different subsys-

tems.

Note that Figure 4.8 shows the absolute residual. In a general im-

plementation it is better to use a relative residual. For the discussion

of the Multi-Code problem there is no difference of using the absolute

or relative residual as the applied force and the maximal interface

displacement is close enough to one. Hence the use of a relative defi-

nition will not change the outcome of the discussion.

Figure 4.8 shows that for the Multi-Code problem the different

residuals are not equally important. Here the residual associated with

the interface forcesR1 plays the dominate role. In a general co-simula-

tion scenario this is always the case. The advantage of using a parallel

(Jacobi) data flow is that this exposes all interface quantities in the

interface residual vector. This is not the case if a Gauss-Seidel data

flow is used e.g. it can be seen in the stability section that Gauss-Seidel
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Figure 4.8: Residual evolution for the different components of

the interface residual vector for setting 2 of the Multi-Code

problem

removes the force from the interface residual. Hence the advantage

of the IJCSA is that it controls all residuals which leads in general to

more accurate results.

As it is known from Section 3.2 the mix of different time integrators

may cause problems with the overall convergence of the solution with

respect to the time step size, a convergence study for setting 2 of the

problem is performed. Figure 4.9 shows that a first order of accuracy

is achieved and thus the co-simulation is consistent.

4.7.3 BspK6

The BspK6 is a synthetic co-simulation example proposed by Bastian

et al. [11]. The subsystems S1, S2, and S3 form a cycle within the graph

of the block-diagram. A cycle is a path in a graph with the same node

as start and end point. Additionally, the BspK6 example has discon-

tinuities within the subsystems. Hence, it is a good supplement of

the test examples for the IJCSA. It consist of four subsystems. The

block-diagram of the BspK6 is shown in Figure 4.10. With the help of
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Figure 4.10: Block diagram that describes the BspK6 example
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the block-diagram we can directly derive the global interface residual

vector, which reads

r =





R1

R2

R3

R4

R5

R6





=





U11
− Y2

U12
− Y3

U13
− Y41

U14
− Y42

U2− Y11

U3− Y12





. (4.134)

Hence the global interface Jacobian matrix is defined by

Jglobal =





1 0 0 0 − ∂ Y2

∂U2

0

0 1 0 0 0 − ∂ Y3

∂U3

0 0 1 0 0 0

0 0 0 1 0 0

−
∂ Y11

∂U11

−
∂ Y11

∂U12

0 0 1 0

−
∂ Y12

∂U11

−
∂ Y12

∂U12

0 0 0 1





. (4.135)

Furthermore, the block-diagram shows that the subsystems S1, S2,

and S3 form a cycle.

The BE method is used within all subsystems in order to compare

the result with Bastian et al. [11].

Subsystem 1

The system is given by the following three equations:

Ẋ1+2X1−U11
−U12

= 0 (4.136)

Y11
= g11

�
U11

, X1

�
=

(
0 if U14

= 1,

U11
−X1 else.

(4.137)
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Y12
= g12

�
U12

, X1

�
=

(
0 if U13

= 1,

U12
−X1 else.

(4.138)

The BE discretized version of subsystem 1 reads:

X n+1
1
=

U n+1
11
+U n+1

12
+

X n
1

h

1
h +2

(4.139)

Y n+1
11
=

(
0 if U n+1

14
= 1,

U n+1
11
−X n+1

1
else.

(4.140)

Y n+1
12
=

(
0 if U n+1

13
= 1,

U n+1
12
−X n+1

1
else.

(4.141)

In the following the four interface Jacobian components of subsystem

1 are derived.

∂ Y11

∂U11

=






0 if U14
= 1,

∂ Y11

∂ X1

∂ X1

∂U11

+
∂ g11

∂U11

= 1− 1
1
h +2

else.
(4.142)

∂ Y11

∂U12

=






0 if U14
= 1,

∂ Y11

∂ X1

∂ X1

∂U12

+
∂ g11

∂U12

=− 1
1
h +2

else.
(4.143)

∂ Y12

∂U11

=






0 if U13
= 1,

∂ Y12

∂ X1

∂ X1

∂U11

+
∂ g12

∂U11

= 1− 1
1
h +2

else.
(4.144)

∂ Y12

∂U12

=






0 if U13
= 1,

∂ Y12

∂ X1

∂ X1

∂U12

+
∂ g12

∂U12

=− 1
1
h +2

else.
(4.145)
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Subsystem 2

The system is given by the following two equations:

1

2
Ẋ2+X2+U2− sin (3πt ) = 0 (4.146)

Y2 = g2

�
U2, X2

�
= X2+U2

�
1000 sin

�
2π

10
t

�
+1001

�
(4.147)

The BE discretized version of subsystem 2 reads

X n+1
2
=

1
2h X n

2
−U n+1

2
+ sin

�
3πt n+1

�

1
2h +1

, (4.148)

Y n+1
2
= X n+1

2
+

�
1000 sin

�
2π

10
t n+1

�
+1001

�
U n+1

2
. (4.149)

The interface Jacobian of subsystem 2 is given by

∂ Y2

∂U2

=
∂ Y2

∂ X2

∂ X2

∂U2

+
∂ g2

∂U2

=− 1
1

2h +1
+1000 sin

�
2π

10
t n+1

�
+1001.

(4.150)

Subsystem 3

The system is given by the following two equations:

1

2
Ẋ3+X3+U3− sin (2πt ) = 0 (4.151)

Y3 = g3

�
U3, X3

�
= X3+U3

�
−1000 sin

�
2π

10
t

�
+1001

�
(4.152)

The BE discretized version of subsystem 3 reads

X n+1
3
=

1
2h X n

3
−U n+1

3
+ sin

�
2πt n+1

�

1
2h +1

, (4.153)

Y n+1
3
= X n+1

3
+

�
−1000 sin

�
2π

10
t n+1

�
+1001

�
U n+1

3
. (4.154)
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The interface Jacobian of subsystem 3 is given by

∂ Y3

∂U3

=
∂ Y3

∂ X3

∂ X3

∂U3

+
∂ g3

∂U3

=− 1
1

2h +1
−1000 sin

�
2π

10
t n+1

�
+1001.

(4.155)

Subsystem 4

The system is given by the following two equations:

Y41
=

(
1 if sin (πt )> 1

2 ,

0 else.
(4.156)

Y42
=

(
1 if sin (2πt )<− 1

2 ,

0 else.
(4.157)

The discretized version of subsystem 4 reads

Y41
=

(
1 if sin

�
πt n+1

�
> 1

2 ,

0 else.
(4.158)

Y42
=

(
1 if sin

�
2πt n+1

�
<− 1

2 ,

0 else.
(4.159)

As subsystem 4 has no input quantities there is no interface Jacobian

needed for this subsystem. The interface Jacobian of subsystem 4 is

zero by definition.

Results

The IJCSA is used to solve the BspK6 example with a time step size h

of 1 ·10−4 . This is the same time step size as in Bastian et al. [11].

The IJCSA needs in average two interface iterations in order to

converge the global interface residual vector to machine precision.

Even when the discontinuity is introduced the IJCSA converges the in-

terface residual to machine precision within three interface iteration.

Figure 4.11 shows the converged results of all five output quantities

of the BspK6, the results match the one from Bastian et al. [11] exactly.
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Figure 4.11: Numerical solution of the BspK6 example
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4.8 Conclusion

The presented co-simulation algorithm (IJCSA) is based on the idea

of interface Jacobian information for stabilization. With the help of

the stability analysis it is shown that the algorithm outperforms clas-

sical fixed point techniques based on the Jacobi and Gauss-Seidel

approaches. In the example section numerical investigations are per-

formed where the IJCSA is compared to classical co-simulation algo-

rithms which include Aitken relaxation for the Gauss-Seidel pattern.

The IJCSA is for all examples by far more stable and efficient than the

classical techniques. Its design allows for parallel execution of all the

involved subsystems. Furthermore, performance enhancements are

discussed and investigated with different nonlinear examples. The

IJCSA can cope with different time integrators in the subsystems. Cy-

cles within the graph (block-diagram) can be handled because the

co-simulation is formulated in residual form. Furthermore, even alge-

braic loops can be handled because of the residual-based formulation

of the IJCSA (see Appendix A) . The IJCSA presents an efficient, accu-

rate and robust method for solving co-simulation scenarios.
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5
APPLICATION EXAMPLES

After presenting the theory and the concept of co-simulation in Chap-

ter 3, a new algorithm for co-simulation was presented in Chapter 4.

The algorithm was tested with demonstrator examples. Within this

chapter the focus is on the validation of a co-simulation framework

for application relevant examples.

Moreover it should be shown how the modularity of co-simulation

can be used to combine existing simulation tools to a powerful mul-

tiphysical environment. Within this chapter the structural mechan-

ics solvers Abaqus/Standard and Carat++, the computational fluid

dynamics solver OpenFOAM, signal solvers implemented in C and

Python and control units implemented in C are coupled together by

using the Enhanced MultiPhysics Interface Research Engine (EMPIRE

[40]) and the SIMULIA Co-Simulation Engine (CSE).

The IJCSA is used in order to solve the coupled problem. In case

where the subsystems are not able to provide their individual inter-

face Jacobian, it is approximated with techniques introduced in the

previous chapters. The focus of the application examples is the co-

simulation of fields and signals where open- and closed-loop control

is present. Within this chapter the examples have fluid-structure inter-
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action in common. The FSI simulation are coupled to various different

signal and control units.

The chapter shows also the benefits of modern co-simulation

techniques. It demonstrates how these methods can be applied to

a fully coupled emergency brake maneuver of a wind turbine. All

shown examples were either verified with simulations or validated

with experiments.

5.1 Turek Benchmark

Before the discussion of fluid-structure-signal interaction is entered

the pure FSI simulation should be verified. A well accepted verification

case in FSI is the FSI3 benchmark proposed by Turek et al. [148]. The

FSI3 benchmark is a rather difficult test case as it has a 1:1 density ratio

between fluid and structure which results in a comparable dominant

interaction with respect to both fields. In other words an imperfection

on the fluid pressure has a significant impact on the displacement on

the structure and vice versa.

Six 8-node incompatible mode elements through the thickness of

the beam are used. The element formulation is based on Simo et al.

[138]. The boundary conditions are set such that plane strain condi-

tions are met. The structure uses the Hilber-Hughes-Taylor method

for time integration which is a subset of the generalized-α discussed

in Chapter 3.

In OpenFOAM a mesh study was performed, the final mesh has

≈ 50000 cells. All schemes are set to second order accuracy and the

time integration method is set to BDF2.

5.1.1 Co-Simulation

The problem is decomposed in a Dirichlet/Neumann manner. The

interface Jacobian for the IJCSA method is set such that it results in a

constant under-relaxation method. It has been shown for the scalar

case in Algorithm 4.2 that a constant under-relaxation method can

be derived from the IJCSA by setting the global interface Jacobian to

be the identity matrix if the individual subsystem residuals have a

certain structure. The same is shown in the following for the Turek

benchmark problem (vector case).
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Figure 5.1: Turek benchmark FSI3 displacement and

̺-normalized pressure at 10 s

The CFD subsystem OpenFOAM can be abbreviated by

S1

�
m U n

1

�
=m Y n+1

1
, (5.1)

where the input m U n
1

is a displacement field and the output m Y n+1
1

a

force field. For the CSM subsystem the opposite is true, namely

S2

�
m U n

2

�
=m Y n+1

2
. (5.2)

Here the input m U n
2

is the force field and the output m Y n+1
2

a dis-

placement field. As already noted this is called Dirichlet/Neumann

decomposition. For this decomposition the individual interface resid-

uals are of type

m r n =




m
Rn

1

m
Rn

2



=




m U n

1
−m

Y n+1
2

m U n
2
−m

Y n+1
1



 . (5.3)
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Note that due to the non-machting grids at the fluid-structure

interface the vectors U n
1

and Y n+1
2

have different number of elements.

The same problem arises for U n
2

and Y n+1
1

. This problem can be solved

by using a mapping operation such that the one vector is projected

into a space which renders two equal sized vectors. Within this work an

energy conserving mortar method is used to solve the arising mapping

problems (see Boer et al. [19] and Puso et al. [119]). If the mapping

operator L is discretized this results in a rectangular matrix L . If the

mapping procedure is added to Equation (5.3) this reads

m r n =




m
Rn

1

m
Rn

2



=




m U n

1
− L

m
Y n+1

2

m U n
2
− L⊤

m
Y n+1

1



 . (5.4)

In order to keep the notation more readable this is not explicitly writ-

ten in the following discussions.

Equation (5.3) results in a block diagram as depicted in Figure 5.2.

The input/output quantities for the Turek problem are summarized

in Table 5.1. Moreover based on the interface residual definition the

global interface Jacobian is also defined by

m J n
global

=




I − ∂ Y2

∂U2

− ∂ Y1

∂U1

I



 . (5.5)

Chapter 2 derives the update rule for the constant under-relaxation

method as

m+1x =m x −αm r . (5.6)

Here x is the global input vector as they are the unknowns. Further-

more the update rule of the IJCSA (Algorithm 4.3) is defined by

m+1x n =m x n −m Jglobal
−1m r . (5.7)

It is evident that Equation (5.6) and Equation (5.7) are equal for the

case that

m Jglobal =
1

α
I , (5.8)
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in Equation (5.7). For the Turek benchmark problem the global inter-

face Jacobian of the IJCSA is set such that it corresponds to a constant

under-relaxation method with α= 0.05 by using Equation (5.6) and

Equation (5.7). Please note that the IJCSA with the crude interface

Jacobian approximation performs worse than the GS Aitken method

for the Turek FSI3 example. This is aligned with theory because it

has been shown in Chapter 2 that the Aitken method is an adaptive

advancement of the constant under-relaxation method. This example

is used as a demonstrator, as the Turek FSI3 problem is still solvable

by using a crude approximation for the interface Jacobian and ac-

cepted as a challenging FSI example this shows that the Multi-Code

problem presented in Chapter 4 is even more challenging from the

co-simulation point of view. As the Multi-Code problem is not solv-

able with the Aitken method nor with the constant under-relaxation

method.

U1 Y2

U2Y1

CFD CSM

Figure 5.2: Block diagram for fluid-structure interaction

Table 5.1: Description of input and output quantities for the

Turek benchmark

Symbol Description Unit

U1 Input to CFD
displacement field

m

Y1 Output of CFD
force field

N

U2 Input to CSM
force field

N

Y2 Output of CSM
displacement field

m
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A GS Aitken solution where the forces are not present as an inter-

face residual should be compared to a IJCSA solution where forces and

displacements are presented as interface residuals in a fair manner.

Therefore it is necessary to limit the interface residual check for the

IJCSA solution to the displacements only. Both the GS Aitken solu-

tion and the IJCSA solution are converged until the interface residual

vector for the displacements meets



R1




ε
< 1.0 ·10−4mm. (5.9)

5.1.2 Results

Both the Aitken and the IJCSA render the same solution which is

shown in the Figures 5.3 to 5.4 and summarized in Table 5.2.
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Figure 5.3: FSI3 benchmark displacement ux over time

In order to illustrate how the pressure and the displacement look

like a contour plot of the pressure and the displacement field is given

in Figure 5.1.

The presented results are from a simulation where Abaqus/Stan-

dard is coupled to OpenFOAM. The results show a very good agree-
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Figure 5.4: FSI3 benchmark displacement u y over time

Table 5.2: Results for FSI3 with time step h = 1 ·10−3 s for

amplitude and frequency

Symbol Reference Turek et al. [148] Co-Simulation Rel. deviation

mm {1/s} mm {1/s} % {%}

ux −2.69± 2.53 {10.9} −2.79± 2.51 {11.050} 0.83 {1.37}

u y 1.48±34.38 { 5.3} 1.52±34.13 { 5.525} 0.74 {4.24}

ment with the provided reference data. The deviation in the amplitude

is less than 1 %, the deviation in frequency is less than 5 %.

In order to show the modularity of the co-simulation the FSI3

benchmark was also simulated by using an in-house FEM package

called CARAT. The fluid model could be reused without any modifica-

tions. On top of the reusability of the individual subsystem models,

here a commercial and an in-house FEM package are coupled to Open-

FOAM. This demonstrates that with co-simulation it is possible to
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replace the simulation tool of one individual subsystem and still be

able to reuse all the other subsystem models without any modifica-

tion.

5.2 Oscillating Cylinder

Within this section the transition from FSI to fluid-structure-signal

interaction is performed by using an oscillating cylinder as validation

example. The setting of the oscillating cylinder example is show in Fig-

ure 5.5. A rigid cylinder with mass m is mounted on a spring-damper

system. The cylinder is excited by the vortex shedding of a laminar

flow. An actuator can move the root point of the spring Ψ .

16.5D 50.0D

1
6

.5
D

1
6

.5
D

D

u

Ψ

m

d k

v∞

interface

Figure 5.5: Setting of the oscillating cylinder example

The example is used in order to demonstrate closed-loop control

for a fully coupled fluid-structure-signal example. As a first step the

pure CFD simulation where the cylinder is not moving is validated.

5.2.1 CFD Validation

The laminar flow past a cylinder is a well documented benchmark case

in literature. In the following the drag coefficient, lift coefficient and

Strouhal number are compared to various references. The OpenFOAM

and StarCCM+ simulation used the same block structured mesh with

≈ 70000 cells. Second order schemes are used for time and spatial

discretization. The time step size is set to 1 ·10−4 s. The mesh size and

the time step size are the result of a performed convergence study.
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The drag and the lift coefficient show good agreement with the

values provided by literature (see Figure 5.6 and Figure 5.7 respec-

tively). Moreover the Strouhal number is also in good agreement with

literature values as shown in Figure 5.8. With these results the CFD

is validated. The next evolution step of the example is to verify the

forced motion of the cylinder which is done in the following.

5.2.2 Forced Oscillation Validation

Within the forced motion validation the motion of the cylinder is

prescribed as a time-varying boundary condition via a separate sub-

system. The resulting lift coefficients are compared to simulation

results provided by Placzek et al. [116].

The oscillation frequency of the cylinder is chosen to be 110%

of the vortex shedding frequency for Reynolds number 100 as this is

according to Placzek et al. [116].

The Strouhal number for a Reynolds number of 100 can be found

in Figure 5.8. With the help of the Strouhal number the oscillation

frequency can be found by

Sr (Re= 100) = 0.16406=
fSrD

v∞
,

fSr = 6.4085 Hz.

(5.10)

The amplitude of the oscillating motion is set to 0.4 mm accordingly

to Placzek et al. [116]. Hence, the function for the oscillating motion

of the cylinder is given by

u (t ) = 0.4 sin (2π 6.4085 Hz 1.1 t ) ,

u (t ) = 0.4 sin (44.2930 rad/s t ) .
(5.11)

The comparison of obtained values and the ones of Placzek et al. [116]

for the lift coefficient and the oscillation frequency are presented in

Figure 5.9 and Table 5.3. The results show a good agreement with

values provided by Placzek et al. [116] (deviation less than 3 %).

5.2.3 Fluid-Structure with Closed-Loop Control

With the validated CFD results the fully coupled fluid-structure-signal

interaction is approached. The spring-damper model has properties
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Table 5.3: Results for forced oscillating case with time step size

h = 1 ·10−4 s amplitude and frequency

Symbol Reference Placzek et al. [116] Co-Simulation Rel. deviation

mm {1/s} mm {1/s} % {%}

u y 0.00±0.40 {7.26} 0.00±0.40 {7.05} 0.00 {2.90}

− {1/s} − {1/s} % {%}

cL 0.00±0.71 {7.26} 0.00±0.70 {7.05} 1.40 {2.90}

Table 5.4: System parameters for the spring-damper system of

the oscillating cylinder problem

Property Symbol Value Unit

Mass m 0.035 75 kg

Damping coefficient d 0.004 3 N/s

Spring stiffness k 69.48 N/m

Damped eigenfrequency ωd 7.016 35 Hz

according to Anagnostopoulos et al. [3], which are summarized in

Table 5.4.

The spring-damper system can be described by

m ü +d u̇ +k u = f +kΨ . (5.12)

130



5.2 Oscillating Cylinder

Here f is an external force coming from the fluid. In OpenFOAM the

trapezoidal rule is used for time integration. Hence, it is also used for

the discretization of Equation (5.12), which results in





2
h −1 0

k 2m
h +d 0

0 2
h −1









u n+1

v n+1

a n+1




=





2
h 1 0

0 2m
h m

0 2
h 1









u n

v n

a n




+





0

f n+1+kΨn+1

0




.

(5.13)

The Reynolds number is set to 108.83. This value is in the so called

lock-in region of the fluid-structure interaction where the vortex shed-

ding frequency is synchronizing with the oscillation frequency of the

cylinder. This lock-in frequency is slightly smaller than the damped

eigenfrequency of the spring-damper system. The lock-in frequency

for the lift coefficient and the cylinder oscillation is 6.990Hz for the

simulation. This behavior is also observed in the measurement of

Anagnostopoulos et al. [3]where the coupled frequency is measured

to be 6.995 Hz.

Proportional-Integral-Derivative Controller

A proportional-integral-derivative controller (PID controller) is used

for the fluid-structure-signal interaction simulation. This is a closed

loop feedback mechanism widely used in industrial control systems.

The PID controller calculates an error value as the difference between

a measured process variable and a prescribed trajectory value. The

controller continuously attempts to minimize the error by manipu-

lating the control variable. The continuous control law for the PID

controller is

Ψ (t ) = KP e (t ) +KI

∫ t

0

e (τ)dτ+KD ė (t ) , (5.14)

(see Friedland [55], Liptak [96], Preumont [118], and Unbehauen [149]).

The constants KP , KI and KD are user inputs, they are determined
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within a preprocessing step. The continuous error e (t ) is the deviation

of the measured output quantity with respect to the desired trajectory

value. The discretized control law for the PID controller is

Ψn+1 = KP X n+1
P
+KI X n+1

I
+KD X n+1

D
, (5.15)

with

X n+1
P
= e n+1, (5.16)

X n+1
I
=

h

2

�
e n+1+ e n

�
+X n

I
, (5.17)

X n+1
D
=

1

h

�
e n+1− e n

�
. (5.18)

Equation (5.17) can be derived by using TR time integration and Equa-

tion (5.18) by using BE time integration. This combination renders a

stable and robust discretization.

With all the necessary equations at hand the block diagram of the

fluid-structure-signal interaction of the oscillating cylinder example

is given according to Figure 5.10. Within Table 5.5 all output and input

quantities are defined and summarized. With the help of the block

Table 5.5: Description of input and output quantities for the

fluid-structure-signal interaction

Symbol Description Unit

U1 Input to CFD
displacement of cylinder u

m

Y1 Output of CFD
force on cylinder f

N

U21
Input to CSM
force on cylinder f

N

U22
Input to CSM
root point displacement of cylinder Ψ

m

Y2 Output of CSM
displacement of cylinder u

m

U3 Input to Controller
displacement of cylinder u

m

Y3 Output of Controller
root point displacement of cylinder Ψ

m
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U1 Y2

U21
Y1

U3

Y3

CFD

Controller

U22

SDOF

PID

Figure 5.10: Block diagram for oscillating cylinder with PID

controller

diagram the interface residual equations are also set to
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This results in

Jglobal =


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, (5.20)

133



5 Application Examples

being the assembled interface Jacobian matrix. The secant variant of

the IJCSA (Algorithm 4.5) is used in order to solve the interface resid-

ual system. The secant approximation is only used for the interface

Jacobian of the CFD, namely

∂ Y1

∂U1

≈
m Y n+1

1
−m−1Y n+1

1

mU n
1 −m−1U n

1

, (5.21)

as this is hard to compute exactly. All other needed interface Jacobians

can be computed straight forward from Equations (5.13) and (5.15).

The procedure is the same as presented in Chapter 4. In average 4

interface iterations where necessary to converge ‖ r ‖
ε

below 1 ·10−8.

The PID controller constants are set to KP = 0.02, KI = 0.02 and

KD = 0.01. This results in a robust transient behavior which means

that overshoots are small. If the objective of the PID controller is to

suppress the cylinder motion the error e is equal to the displacement

of the cylinder u .
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Figure 5.11: PID controller for case with Re= 108.83

Figure 5.11 depicts the impact of active closed-loop control for

the oscillating cylinder example. Firstly, the controller is switched
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off which results in an oscillating motion of the cylinder as the lock-

in effect is present for Re = 108.83. At time 40s the PID controller is

activated. The PID controller reduces the motion of the cylinder by

orders of magnitudes as shown in Figure 5.11.

5.2.4 Conclusion

Within this section a validated example shows how a fully coupled

fluid-structure interaction with closed-loop control can be handled

with the IJCSA. Moreover, the IJCSA allows to fulfill the interface

residual equation numerically exact. Therefore, the controller can

be treated in a continuous manner. It means that the delay which

occurs if loosely coupled co-simulation approaches are deployed is

not present.

These delays between the controller and the other subsystems

may cause problems with stability of the closed-loop system. These

problems are especially present when the hardware control unit has

a much higher sampling frequency as the time sampling frequency of

the numerical model (large time step). For this situation the delay of

the real control unit is much smaller than for the one in the simulation

in case the simulation is done in a loose manner.

5.3 NREL Phase VI Wind Turbine

The last and most complicated application example should demon-

strate how the IJCSA performs in a large scale co-simulation involving

fields and signals. Within this example a wind turbine is analyzed by

using the co-simulation approach. The interaction between the fluid,

the flexible blades, the generator and the control unit is taken into

account.

The example is presented in a hierarchical manner where the

complexity is gradually increased. First the pure CFD is validated and

afterwards more complexity is added. Again this shows the modularity

of co-simulation.

In order to be able to validate the simulation an experiment needs

to be the basis for the simulation. The NREL Phase VI experiment is

a good experiment for validation purposes as it is a full scale wind

tunnel experiment. This means that the needed boundary conditions

for the simulation are known. A major advantage for validation is the
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elimination of stochastic atmospheric wind as the wind tunnel can

deliver a constant inlet velocity profile.

Furthermore, this experiment is a very well documented case and

investigated by other research groups, namely Anjuri [4], Dam et al.

[32], Hsu et al. [76, 77], Li et al. [93], Lindenburg [95], McTavish et al.

[100], Mo et al. [105, 106], Potsdam et al. [117], Sezer-Uzol et al. [133],

Sørensen et al. [141], Tongchitpakdee et al. [146], Wang et al. [152],

Yelmule et al. [160], and Zahle et al. [161]. A lot of different numerical

methods were validated by using the data of the experiment. This

gives a good basis as a lot of simulation data is available. However,

none of the given references takes into account the interaction of the

fluid, the flexible blades, the generator and the control unit at the

same time.

In the following a comprehensive description of the experiment is

given.

5.3.1 Experiment

The Unsteady Aerodynamics Experiment, initially named "Combined

Experiment", was started in 1987 by the National Renewable Energy

Laboratory (NREL) to provide detailed information on the full-scale

3D aerodynamic behavior of wind turbines. Within this series detailed

wind tunnel experiments were performed on a full-scale machine

(Phase VI).

(a) Wind tunnel aerial view (b) Six wind tunnel fans

Figure 5.12: NASA wind tunnel photos from NREL 10-m Wind

Turbine Testing in NASA Ames [110]
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The wind tunnel (see Figure 5.12) is located in the NASA Ames

Research Center in Moffett Field (Silicon Valley), California. Six fans

with a total power consumption of 104 MW produce the inlet velocity

for the 24.4 m by 36.6 m test section. The achieved turbulence intensity

in streamwise direction is less than 0.5 % Simms et al. [137].

The testing wind turbine (see Figure 5.13) is the NREL Phase VI, a

modified Grumman Windstream 33 with full-span pitch control and

a power rating of 20 kW. It has 2 blades, with NREL S809 tapered and

twisted blade profile. The rotor has 10.058m in diameter while hub

height is 12.192 m.

(a) Experiment photo from NREL 10-m

Wind Turbine Testing in NASA Ames [110]

(b) CAD model

Figure 5.13: NREL Phase VI wind turbine real model and virtual

model

The wind turbine details can be found in Hand et al. [69]. From

this data a CAD model was made as the basis for all simulation models

(see Figure 5.13(b)). As reference for the pitch angle the chord line

of the tip airfoil lying in the rotor plane is defined as zero see Mo

et al. [105]. To achieve the desired pitch angle of 3 ◦ all values in the

definition table of Hand et al. [69] are corrected by an offset of+1.814 ◦.
The simulated test sequence "S" normally uses the standard tip out of
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the three available tip adapters. The CAD model is cut off at a radius

of 5.029 m, which corresponds to the total length including standard

tip. This results in sharp edges which simplifies the mesh generation.

The first simulation model which is derived from this geometry is

the CFD model which is described in the following section.

5.3.2 CFD Model

With OpenFOAM a body-fitted finite-volume discretization for the

fluid is chosen. As this means that the mesh is fixed and needs to

follow the blade surfaces a sliding mesh interface is needed in order

to allow for rotation and pitching motion of the blades while the tower

is present.

In OpenFOAM the sliding mesh interface is called Arbitrary Mesh

Interface (AMI) (see OpenFOAM [111]). Furthermore, the arising non-

matching grid problem is solved via local Galerkin projection method,

which is presented in Farrell et al. [46].

The overall mesh topology is shown in Figure 5.14, there four sep-

arate mesh parts can be identified. The non-moving outer part covers

the wind tunnel, the tower and the nacelle. It encloses the second

part, which is following the rotating motion of the blades around the

global y -axis, indicated by the angle of rotationω. This rotor mesh

part again encloses two more mesh parts which are directly attached

to the blade surfaces. These innermost mesh parts provide the possi-

bility of pitching around the global x -axis. On top of the rigid body

rotations elastic deformations of both blades can be handled by Lapla-

cian based mesh deformation inside both blade mesh parts only. For

more information see Section 5.3.4.

The block structured outer mesh part has the same dimensions

as the wind tunnel and consists of ≈ 3.7 million cells with an edge

length starting from 180mm immediately downstream of the wind

turbine and increases to 800 mm towards the outlet. The rotor region

containing ≈ 0.8 million cells is realized as hybrid mesh. It consists

of block structured and tetrahedral meshed parts. A pure block struc-

tured version was tested without gaining any benefit in accuracy but

increasing the cell count and computation time. Therefore, the hybrid

version was chosen.

The mesh of the inner cylinders which embeds the blades is tran-

sitioned from the blade shoulder (Figure 5.15(a)) to the blade tip (Fig-

ure 5.15(b)). 100 cells in chord-wise direction and 240 in radial di-
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Figure 5.14: CFD mesh parts for NREL Phase VI wind turbine

rection render ≈ 2.6 million cells per blade region. Due to the CFL

limitation the mesh was coarsened and aligned to the main flow direc-

tion at specific critical positions, where high velocities are expected.

The first cell height at the blade surfaces is set to 0.4 mm. Hence, for

the S0700000 case (inlet velocity is 7 m/s) an average dimensionless

wall distance y + ≈ 7 and a maximum dimensionless wall distance

139



5 Application Examples

y + ≈ 12 are achieved. The maximal normal geometrical growth rate

of the mesh is 1.4.

(a) Mesh at blade radius = 0.32 m (b) Mesh at blade radius = 4 m

240 cells

100 cells

(c) Surface mesh blade

(d) Entire mesh around blade

Figure 5.15: CFD mesh of the inner cylinder around the blades

The boundary conditions for the CFD model are all of type wall

except for the inlet and outlet. Here a velocity inlet (5 m/s or 7 m/s) and

a pressure outlet (0Pa) are set. The turbulence is modeled via the

URANS k -ω-SST model introduced by Menter [102] in combination

with high Reynolds wall functions. The boundary conditions for k

andω are set such that a turbulence intensity of 0.5 % is reached. The

140



5.3 NREL Phase VI Wind Turbine

segregated solution procedure called PIMPLE in combination with

ALE mesh handling is used. PIMPLE is a variant of the famous PISO

pressure-correction algorithm by Issa [81]. For time integration the

BDF2 method is used and spatial schemes are set to be second order

accurate. The time step is set to 1 ·10−3 s for all simulations.

For the validation of the CFD model two measurement sequences

are chosen. They are called S0500000 and S0700000. The parameters

are summarized in Table 5.6.

Table 5.6: Properties of NREL Phase VI experiment for test

sequences S0500000 and S0700000

Parameter Sequence S0500000 Sequence S0700000 Unit

Inlet velocity 5 7 m/s

Cone angle 0.0 0.0 ◦

Yaw angle 0.0 0.0 ◦

Blade tip pitch angle 3.0 3.0 ◦

Angular velocity 432 432 ◦/s

Air density 1.23 1.23 kg/m3

Kinematic viscosity of air 1.46 ·10−5 1.46 ·10−5 m2/s

Turbulence inlet intensity 0.5 0.5 %

During these two test sequences the flow is fully attached on the

surface of the blades, which is also observed by Dam et al. [32] and

Sørensen et al. [141].

Results & Validation

During the experiment pressure coefficients were evaluated. There-

fore, pressure probes have been integrated into the blade surfaces.

Multiple of these pressure probes were clustered at the five specific

sections of the blade as shown in Figure 5.16.

For the validation, the first step was to post-process the raw mea-

surement data in order to compute characteristic values such as mean,

standard deviation and extrema of the measurement over time. All

these values are computed out of measurement data which was rec-

orded over 30 s at 15 625 samples.
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30.0 %
46.6 %

63.3 %
80.0 %

95.0 %

Figure 5.16: Measurement sections for pressure coefficients at

different locations in % blade radius

The same procedure was applied to the simulation. However, here

seven full revolutions of the rotor are the basis for the averaging pro-

cedure. These seven revolutions of the turbine, which is equivalent

to 5.8333 s, are recorded after the flow is fully developed. The averag-

ing over five and seven revolutions gave the same results, so seven

revolutions are more than sufficient. Also the measurement data was

averaged over 5.8333 s and the results were compared to values which

resulted from the averaging over 30s. There was almost (less than

0.1%) no difference between these two averaging time spans. The

seven revolutions of the simulation render 5833 sample points in

time for each individual boundary face.

The computation of the standard deviationσ is done by

σ=

√√√ 1

N −1

N∑

i=1

�
pi −p

�2
, where p =

1

N

N∑

i=1

pi . (5.22)

Here N is the total number of samples and pi is the pressure value for

a specific sample i at a specific probe location. p represents the time

averages pressure value at a specific probe location. For the compu-

tation of the pressure coefficients the maximum of all time averaged

pressure values at one specific measurement section is needed, it is

denoted with pmax.

The results of the validation of the pressure coefficients for series

S0500000 and series S0700000 are depicted in Figure 5.18 and Fig-

142



5.3 NREL Phase VI Wind Turbine

max

min

σ
mean

σ

Figure 5.17: Legend of experiment box and whisker plots for

pressure coefficients

ure 5.20 respectively. The meaning of the whiskers is illustrated in

Figure 5.17.

Additionally, Figure 5.19 and Figure 5.21 show the development

of the low-speed-shaft-torque (LSSTQ) in comparison to the aver-

aged experimental data. A fast Fourier transform (FFT) analysis of the

LSSTQ simulation data renders a peak at 2.4 Hz, this corresponds to

the double frequency of the rotor rotations. Hence, it is caused by the

blades passing the tower.
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Figure 5.18: Pressure coefficients for NREL case S0500000
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Figure 5.20: Pressure coefficients for NREL case S0700000
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For the pressure coefficients and low speed shaft torque good

agreement between simulation and measurement is achieved. In or-

der to get more insight into the flow field the surface streamlines are

presented. Figure 5.22 shows a clear three dimensional flow pattern

towards the trailing edge of the blade.

(a) High pressure side

(b) Low pressure side

Figure 5.22: Surface streamlines of blade 3 for S0700000 at 7.5 s

Figure 5.23: Pressure contour plot at 5.00 s including

streamlines at 80% radius of blade 1 of sequence S0700000

The flow condition for wind turbines are exceptionally challeng-

ing. This is due to the varying twist angle, chord length and effective
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velocity over the blade radius. The effective velocity is the resultant

of the angular and upstream velocity (see Figure 5.24). Figure 5.25

illustrates the change of the effective velocity and the local Reynolds

number with respect to the blade radius.
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Figure 5.24: Velocity and force components of a horizontal axis

wind turbine

Finally, Figure 5.23 gives insight into the pressure field of the flow

field for the rotating turbine. The streamlines depicted in Figure 5.23

indicate the fully attached flow conditions.

5.3.3 CSM Model

After validating the CFD model, the CSM model for the flexible blades

is validated in this section. The composite structure of the blades is

described in detailed in Van Dusen [150]. The aerodynamic, dynamic

and dead loads are carried by a carbon fiber D-spar that tapers in

thickness from root to tip, shown in Figures 5.26 to 5.27. The non-

load-carrying skin is fiberglass. A 3.175mm thick honeycomb core

was included aft of the spar dam for added skin stiffness.
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Figure 5.25: Local Reynolds number and effective local velocity

for sequence S0700000

Classical laminate theory (see Daniel et al. [33]) is used in order

to model the structure where all properties are given in Van Dusen

[150]. The measurement instrumentation and paint is modeled by

using non-structural mass. The root of the blades is clamped by using

a kinematic coupling which constrains all the root DOFs of the blades

to one central node. This node has 6 DOFs, namely 3 displacements

and 3 finite rotations. Each blade is discretized with ≈ 60000 fully

integrated finite-membrane-strain shell elements (S3 and S4). A non-

linear kinematic formulation is chosen in order to handle the finite

rotations. In Abaqus/Standard the Hilber-Hughes-Taylor method is

set for the time integration.

Results & Validation

For validation an eigenfrequency analysis is performed and compared

to the measurement data from Hand et al. [69, p. 79]. A comparison

between measurement and simulation can be found in Table 5.7.

The relative deviation between simulation and measurement is

below 10% except for the first edge-wise eigenfrequency. The cor-
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PVC pipe for ins-

Carbon-fiber D-spar

Aramid Honeycomb

trumentation wires

Figure 5.26: Photograph of blade section presented in Hand

et al. [69, p. 77]

Figure 5.27: Outer and inner geometry of the blade (green

D-spar structure)

Table 5.7: Structural properties for blade 1 & blade 3

Property Measured value Simulation value Unit Relative error

%

Blade mass with
standard tip

60.2 60.12 kg 0.13

Blade center of
gravity with
standard tip

2.266 2.287 m 0.92

First flap-wise
eigenfrequency

7.313 7.901 Hz 8.04

Second flap-wise
eigenfrequency

30.062 30.981 Hz 3.05

First edge-wise
eigenfrequency

9.062 12.740 Hz 40.58
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responding eigenvector of the first edge-wise eigenfrequency (see

Figure 5.28) shows that the stiffness for the hub adapter is decisive for

this eigenfrequency. As no detailed geometry information is available

for the adapter it is modeled as rigid, therefore the eigenfrequency is

higher than the measurement. However, this eigenfrequency is not de-

cisive for the dynamic behavior of the turbine as the fluid load mainly

excites the flap-wise eigenfrequencies.

The displacement contour plot of the gravity loaded turbine blades

is depicted in Figure 5.29. Under this loading the maximal tip displace-

ment is 2.3 mm.

5.3.4 Handling Deformations & Rotations

Since both field-type subsystem models (CFD and CSM) are validated

so far the coupling issues are discussed in the following. As the used

CFD approach is based on ALE (see Section 5.3.2) special care needs

to be taken when the displacements of the rotor are applied to the

CFD solver.

Typically the structural solver is outputting a displacement field

with respect to the original frame of reference (also called initial con-

figuration see Donea et al. [37]). The total displacement field with

respect to the original frame is denoted with u tot.

OpenFOAM expects the mesh deformation also with respect to

the initial mesh configuration. However, due to the boundary fitted

approach the structural displacement field needs to be decomposed

in a rigid body part stemming from the rotation (main rotation and

pitch) and a part stemming from the deformation of the blades. Hence,

we have

u tot = u rot+u ptc+u def. (5.23)

Here u rot is a rigid body rotation around the y -axis of the turbine, so

it represents the main rotor motion of the turbine. u ptc is also a rigid

body rotation representing the pitching of blade 1. Hence, u ptc is a

rotation around the x -axis of the turbine. Last but not least, u def is the

displacement field stemming from the elastic/plastic deformation of

the blades.

It is possible to represent the total deformation of the turbine

with one global rotation vector representing u rot+u ptc and the global

deformation vector u def.
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(a) First flap-wise eigenmode

(b) Second flap-wise eigenmode

(c) First edge-wise eigenmode

Figure 5.28: Eigenmode shapes of CSM model
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2.333 ·10−03

0

Displacement u def magnitude (m)

Figure 5.29: Displacement contour plot of gravity loaded

turbine; deformation scaled by 200

The rigid body rotation of the pitching around the x -axis is applied

to mesh part AMI 2a. It is assumed that the pitch angle of blade 3 is

the negative of the one of blade 1. Hence, the negative rigid body

rotation around the x -axis is applied to blade 3. The main rigid body

rotation around the y -axis is applied to the mesh parts AMI 1, AMI 2a

and AMI 2b. The remaining displacement vector u def is diffused via

the Laplacian mesh motion approach, which is described in Jasak
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et al. [82], from the blades surfaces into the corresponding mesh parts

AMI 2a and AMI 2b.

In the following it is shown how to compute u rot, u ptc and u def

from a given field of the structural solver u tot.

Dealing with Finite Rotations

In order to be able to apply the main rotation and the pitch rotation

at the same time the non-commutative property of finite rotations

needs to be taken into account (see Altmann [2] and Woernle [158]).

A transformation matrix which rotates the blades first around the

x -axis and then around the y -axis is given by

R =





cos (ω) sin
�
ψ
�

sin (ω) cos
�
ψ
�

sin (ω)

0 cos
�
ψ
�

−sin
�
ψ
�

−sin (ω) sin
�
ψ
�

cos (ω) cos
�
ψ
�

cos (ω)




. (5.24)

Whereψ is the pitch angle around the x -axis andω being the main

rotation angle around the y -axis. If needed this rotation matrix can be

transformed in a global rotation vector by converting it to quaternions,

which is discussed in Woernle [158, p. 83].

If we assume thatψ andω are known we can write

u def = u tot−u rot−u ptc. (5.25)

This can be reformulated by using Equation (5.24) to

u def = u tot−R u tot. (5.26)

Note that the coupling is done with angular velocities. The ve-

locities are integrated by the time integrator used by the individual

subsystem. Hence, the transformations are performed on the basis of

angles again. This is done in order to avoid high acceleration oscilla-

tions as shown in Section 3.2.

5.3.5 Fluid-Structure Interaction Model

Similar to the pure CFD case a prescribed constant angular velocity

of ω̇= 432 ◦/s is used for the CFD and the CSM model. Inside the CSM

solver the rigid part of the deformation is removed and only u def is
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U1 Y2

U2Y1

CFD CSM

Figure 5.30: Block diagram for fluid-structure interaction

Table 5.8: Description of input and output quantities for the

fluid-structure interaction model

Symbol Description Unit

U1 Input to CFD
displacement field u def

m

Y1 Output of CFD
force field

N

U2 Input to CSM
force field

N

Y2 Output of CSM
displacement field u def

m

exchanged with the CFD solver. Therefore, the block diagram for the

fluid-structure interaction case can be stated as shown in Figure 5.30.

With the help of Table 5.8 and the block diagram (see Figure 5.30)

the global interface residual vector can be defined by

r =



R1

R2



=



U1−Y2

U2−Y1



 . (5.27)

Co-Simulation

The IJCSA is deployed in order to minimize the interface residual

vector defined in Equation (5.27). Similar to Section 5.1 the global

interface Jacobian is approximated by the identity matrix. In contrast

to the Turek example of Section 5.1 no under-relaxation is applied

α= 1 as the interaction between fluid and structure is not as severe as
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(a) 0.30 s (b) 0.30 s

(c) 2.70 s (d) 2.70 s

Figure 5.31: Q-criterion isosurface colored by velocity

magnitude for the FSI case, where u def is scaled by factor of 70

for the Turek example. Essentially, this means that the two interface

Jacobian blocks ∂ Y1/∂U1 and ∂ Y2/∂U2 are set to zero. Despite the fact

that this seems to be a crude approximation for the interface Jacobian

only two interface iterations were necessary to achieve



R1




ε
< 1.0 ·10−5m. (5.28)

Results

A time series of this simulation is illustrated in Figure 5.31. There the

flow field is visualized by the Q-criterion according to Hunt et al. [78].

Note that an overview of different vortex identification schemes can

be found in Chakraborty et al. [29].
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(e) 2.95 s (f) 2.95 s

(g) 3.15 s (h) 3.15 s

(i) 3.35 s (j) 3.35 s

Figure 5.31: Q-criterion isosurface colored by velocity

magnitude for the FSI case, where u def is scaled by factor of 70
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The fluid-structure interaction simulation was performed with

sequence S0700000 only, as this case gives higher loads on the blades

as the inlet velocity is higher than for sequence S0500000.

The low speed shaft torque is compared to the pure CFD case in

Figure 5.32. The impact of including the fluid-structure interaction

for the case where the angular velocity is prescribed is rather small.

This results in a maximum blade tip displacement in flow direction of

approximately 1 cm as shown in Figure 5.32. The blade-tower interac-

tion is nicely illustrated by Figure 5.32 as the lowest frequency of the

tip displacement curve spectra is 1.2 Hz.
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Figure 5.32: Low speed shaft torque S0700000 including FSI

with tip displacement in flow direction of blade 1
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5.3.6 Emergency Brake Maneuver

In the previous section a FSI co-simulation was presented. However,

within this simulation an important part of physics is missing as the

angular velocity is prescribed and is not determined by the interaction

of the fluid with the blades and the generator.

This defect is removed in the following. In order to focus the dis-

cussion the blade flexibility is removed within this section again. The

FSI for constant angular velocity renders small displacements and

stresses. However, for other load situations of the turbine this changes

drastically. One of these cases is an aerodynamic emergency brake

maneuver where the wind turbine is brought to standstill by pitching

the blades in stall conditions.

U11
Y2

U2Y1

U3

Y3

CFD

Control

U12
U13

−1

Generator/

Gearbox/

Rotor

Figure 5.33: Block diagram for emergency brake maneuver

In order to simulate a physically accurate emergency brake maneu-

ver of the NREL Phase VI wind turbine three subsystems are needed,

the CFD, a generator/gearbox/rotor subsystem and an open-loop

control unit.
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Table 5.9: Description of input and output quantities for the

emergency brake maneuver

Symbol Description Unit

U11
Input to CFD
angular velocity of rotor around y -axis ω̇

◦/s

U12
Input to CFD
angular pitching velocity around x -axis for blade 1 ψ̇

◦/s

U13
Input to CFD
angular pitching velocity around x -axis for blade 3 −ψ̇

◦/s

Y1 Output of CFD
aerodynamic torque around y -axis bCFD

Nm

U2 Input to Generator/Rotor
aerodynamic torque around y -axis bCFD

Nm

Y2 Output of Generator/Rotor
angular velocity of rotor around y -axis ω̇

◦/s

U3 Input to Control Unit
angular velocity of rotor around y -axis ω̇

◦/s

Y3 Output of Control Unit
angular pitching velocity around x -axis for blade 1 ψ̇

◦/s

With the help of Table 5.9 and the block diagram (see Figure 5.33)

the global interface residual vector can be defined by

r =





R1

R2

R3

R4

R5





=





U11
− Y2

U12
− Y3

U13
+ Y3

U2− Y1

U3− Y2





. (5.29)

Generator/Gearbox/Rotor Model

The generator/gearbox/rotor subsystem mainly models the mass mo-

ment of inertia, friction and electrical behavior of the power train,

the generator and the rotor. Hence the following linear ordinary dif-
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ferential equation can be used as a simplified model for this system:

J
dω̇

dt
+D ω̇= bCFD (5.30)

ω̇ is the angular velocity and J the mass moment of inertia. D repre-

sents the generator as it removes energy from the system. The torque,

which acts on the rotor around the horizontal y -axis is denoted by

bCFD. This subsystem is integrated in time via the BDF2 method, the

same method as used in the CFD subsystem which results in

ω̇n+1 =
4J

3J +2hD
ω̇n − J

3J +2hD
ω̇n−1+

2h

3J +2hD
b n+1

CFD
. (5.31)

Here the time step size is denoted by h . The input U2 of the generator

subsystem is given by bCFD and its output Y2 is given by ω̇n+1. Hence,

the interface Jacobian of the generator subsystem is given by

∂ Y2

∂U2

=
∂ ω̇n+1

∂ b n+1
CFD

=
2h

3J +2hD
. (5.32)

In order to show the potential of the IJCSA the measured mass

moment of inertia of the turbine is reduced by a factor of ten. This

results in a highly sensitive behavior with respect to the pitch angle of

the turbine. The mass moment of inertia is set to J = 111 kg ·m2 and

the angular damping coefficient to D = 10.62 Nm · s.

Control Unit

The open-loop control unit observes the angular velocity ω̇ and trig-

gers an emergency brake maneuver, when ω̇ exceeds 500 ◦/s. The con-

trol unit takes also care of the startup procedure of the turbine. It

gradually pitches the blades to operation conditions (pitch angleψ =

0 ◦). The pitch angle over time is depicted in Figure 5.37 and a zoomed

view is shown in Figure 5.38. Note that ψ = 0 ◦ corresponds to the

geometrical position of the blades of the pure CFD case.

Co-Simulation

Similar to Section 5.2.3 the secant version of the IJCSA is used in order

to solve the co-simulation scenario.
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Note that the interface residuals R2, R3, R5 ≡ 0 by definition due

to the open-loop control, as its output Y3 does not depend on the

input U3. The input is only used for triggering the emergency brake

maneuver. Therefore all interface Jacobian parts associated with the

open-loop control unit are zero.

With this knowledge the reduced global interface residual vector

can be formulated to

r =



R1

R4



=



U11
− Y2

U2− Y1



=



U11
−S2

�
U2

�

U2−S1

�
U11

�



 , (5.33)

where S1 denotes OpenFOAM and S2 the generator/gearbox/rotor

subsystem.

According to the reduced interface residual vector the global in-

terface Jacobian is evaluated to

Jglobal =





∂R1

∂U11

∂R1

∂U2

∂R4

∂U11

∂R4

∂U2



=



 1 − ∂ Y2

∂U2

− ∂ Y1

∂U11
1



 . (5.34)

The secant version of the IJCSA is used in order to solve the co-

simulation scenario. The interface Jacobian part of the discretized

generator/gearbox/rotor model (see Equation (5.31)) is provided by

the subsystem. It takes the constant value

∂ Y2

∂U2

=
2h

3J +2hD
, (5.35)

according to Equation (5.32). The time-variant interface Jacobian part

of OpenFOAM is approximated by using the secant method

∂ Y1

∂U11

≈
m Y n+1

1
−m−1Y n+1

1

mU n
11
−m−1U n

11

, (5.36)

(see line 11 of Algorithm 4.5).
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Hence, the global interface Jacobian is evaluated during the co-

simulation as

Jglobal =





∂R1

∂U11

∂R1

∂U2

∂R4

∂U11

∂R4

∂U2



≈




1 − 2h

3J +2hD

−
m Y n+1

1
−m−1Y n+1

1

mU n
11
−m−1U n

11

1



 . (5.37)

Figure 5.37 and Figure 5.38 show the secant approximation of the

time-variant interface Jacobian component of OpenFOAM during the

emergency brake maneuver.

Moreover, as this example is stable also for loosely coupled co-

simulation with first-order hold extrapolation, an accuracy compari-

son is done. Loosely coupled means that one does not iterate within

the time step (mend = 0).

Results

Figure 5.34 and Figure 5.35 illustrate the absolute error in velocity and

torque respectively if loosely coupled co-simulation with first-order

hold extrapolation is carried out. The absolute error is defined as the

difference between the loosely coupled co-simulation solution and

the IJCSA solution, as the IJCSA states the correct solution, provided

that the interface residual is zero. The overlay of the velocity and

torque for loosely coupled and IJCSA coupled is demonstrated in

Figure 5.36. The Figures show that the error of the loosely coupled

co-simulation of the emergency brake maneuver is up to 10% for

the torque which is significant, as the peak loads are decisive for the

design of such a machine.

The interface Jacobian of OpenFOAM which is estimated by the se-

cant version of the IJCSA on the fly is visualized within Figure 5.37 and

Figure 5.38. They show a noisy behavior, especially in the last part of

the simulation (see Figure 5.38) where the turbine has already almost

stopped. This raises the question how is the convergence behavior

of the IJCSA for such conditions. The IJCSA takes at most five inter-
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Figure 5.34: Angular velocity of loose coupling and IJCSA with

absolute error for the emergency brake maneuver of S0700000

face iteration in order to converge the interface velocity to machine

precision. This shows the great potential of the IJCSA.

Figure 5.39 depicts the convergence behavior during startup, Fig-

ure 5.40 during the brake maneuver and Figure 5.41 after the brake

maneuver.

These kinds of co-simulations can be used not only to optimize

for higher durability and performance, but they can also be used for

the proper design of the control units for wind turbines. As the control

unit takes care for startup of the turbine, it is crucial that pitching is

not done too fast otherwise the angular velocity of the rotor is too slow

which results in stall conditions of the blades as the effective angle of

attack becomes too high.

Figure 5.42 shows the situation of a too fast pitching with respect to

the angular velocity of the rotor. These situations can be investigated

via the co-simulation.

Finally, a time series of the emergency brake maneuver is shown

in Figure 5.43 where the vorticity magnitude isosurface is used to

visualize the flow field.

167



5 Application Examples

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

0 1 2 3 4 5

-500

-400

-300

-200

-100

0

100

200

300

400

500
R

o
to

r
sh

a
ft

to
rq

u
e

(N
m

)

A
b

so
lu

te
e

rr
o

r
(N

m
)

Time (s)

Absolute error
Loose
IJCSA

Pitch angle

90 ◦

0 ◦

Figure 5.35: Rotor shaft torque of loose coupling and IJCSA with

absolute error for the emergency brake maneuver of S0700000

-100

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5

-100

0

100

200

300

400

500

600

700

800

900

R
o

to
r

sh
a

ft
to

rq
u

e
(N

m
)

A
n

g
u

la
r

v
e

lo
ci

ty
(◦
/s

)

Time (s)

Rotor shaft torque: loose
IJCSA

Angular velocity: loose
IJCSA

Pitch angle

90 ◦

0 ◦
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coupling and IJCSA for the emergency brake maneuver of

S0700000
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Figure 5.39: Interface residuals during startup
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Figure 5.40: Interface residuals during emergency braking
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Figure 5.41: Interface residuals after emergency braking

Figure 5.42: Pressure contour plot at 2.79 s including streamlines

at 80% radius of blade 1 for a wrong designed control unit
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(a) 0.38 s (b) 1.00 s

(c) 1.90 s (d) 2.62 s

Figure 5.43: Time series of vorticity magnitude isosurface for

emergency brake maneuver colored by the velocity magnitude
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(e) 2.70 s (f) 2.82 s

(g) 3.32 s (h) 5.00 s

Figure 5.43: Time series of vorticity magnitude isosurface for

emergency brake maneuver colored by the velocity magnitude
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5.3.7 Emergency Brake Maneuver with Flexible Blades

Within this section the FSI and the emergency brake maneuver are

combined within one co-simulation. This results in a block diagram

which is shown in Figure 5.44.

U11
Y21

U21Y1

Y4

Y3

CFD

Control

U13
U14

CSM

Generator

U12
Y22

U22

U4
U3

−1

Figure 5.44: Block diagram for emergency brake maneuver with

flexible blades

The corresponding input and output quantities are specified in

Table 5.10.

Besides the reused subsystems CFD, CSM and control unit it is

necessary to change the subsystem of the generator unit. This is due

to the fact that the mass moment of inertia of the rotor is no longer

needed to be modeled by this subsystem as it is already taken care of

by the CSM model.
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Generator/Gearbox Model

Hence, this new generator/gearbox subsystem has smaller mass mo-

ment of inertia. Moreover, it is also equipped with the possibility to

work as an electric motor during the startup of the turbine. The ODE

for the generator/gearbox subsystem reads

J
dω̇

dt
+D ω̇= bCSM + bmotor. (5.38)

Table 5.10: Description of input and output quantities for the

emergency brake maneuver with flexible blades

Symbol Description Unit

U11
Input to CFD
displacement field u def

m

U12
Input to CFD
angular velocity of rotor around y -axis ω̇

◦/s

U13
Input to CFD
angular pitching velocity around x -axis for blade 1 ψ̇

◦/s

U14
Input to CFD
angular pitching velocity around x -axis for blade 3 −ψ̇

◦/s

Y1 Output of CFD
force field

N

U21
Input to CSM
force field

N

U22
Input to CSM
torque induced by generator bCSM

Nm

Y21
Output of CSM
displacement field u def

m

Y22
Output of CSM
angular velocity of rotor around y -axis ω̇

◦/s

U3 Input to Control Unit
angular velocity of rotor around y -axis ω̇

◦/s

Y3 Output of Control Unit
angular pitching velocity around x -axis for blade 1 ψ̇

◦/s

U4 Input to Generator
angular velocity of rotor around y -axis ω̇

◦/s

Y4 Output of Generator
torque induced by generator bCSM

Nm
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In contrast to Section 5.3.6 the mass moment of inertia is set to J =

161 kg ·m2 and the angular damping coefficient to D = 100.1 Nm · s.

Co-Simulation

With the help of Table 5.10 and the block diagram (see Figure 5.44)

the global interface residual vector can be defined by

r =





R1

R1

R2

R3

R4

R5

R6

R7





=





U11
−Y21

U12
− Y22

U13
− Y3

U14
+ Y3

U21
−Y1

U22
− Y4

U31
− Y22

U4− Y22





. (5.39)

Again, the IJCSA is deployed in order to minimize the interface residual

vector. The individual interface Jacobian entries and convergence

criteria of each subsystem are set accordingly to Section 5.3.5 and

Section 5.3.6. Therefore the overall interface iteration count is the

same as for the emergency brake maneuver of Section 5.3.6.

Results

The overall co-simulation is best explained with the help of Figure 5.45.

The first thing to note is that the generator acts as a motor during the

first 1.2 s of the simulation.

Within this period the motor delivers 5 000 Nm. At 4 s the control

unit issues the emergency brake maneuver by pitching the blades.

Towards the end of the simulation a high frequency oscillation in

the shaft torque can be observed. By analyzing the CSM model it is

evident that this particular setup triggers a flutter phenomena. This

is also visual in the time series of the CSM model in Figure 5.46. Due

to the control of the interface residual a numerical instability of the

coupling can be ruled out.
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Figure 5.45: Torque and velocity for emergency brake maneuver

with flexible blades

Last but not least a time series of the Q-criterion is available within

Figure 5.47 which presents a summary of the overall NREL Phase VI

co-simulation where the IJCSA was used. Furthermore the physical

correct energy extraction from the flow field due to the wind turbine

was taken into account.
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(a) 0.39 s

(b) 1.73 s

Figure 5.46: von Mises stress on outer composite layer
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(c) 4.03 s

(d) 4.37 s

Figure 5.46: von Mises stress on outer composite layer
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(e) 5.08 s

(f) 10.00 s

Figure 5.46: von Mises stress on outer composite layer
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(a) 0.39 s

(b) 1.73 s

Figure 5.47: Q-criterion isosurface colored by velocity

magnitude where u def is scaled by factor of ten
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(c) 4.03 s

(d) 4.37 s

Figure 5.47: Q-criterion isosurface colored by velocity

magnitude where u def is scaled by factor of ten
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(e) 5.08 s

(f) 10.00 s

Figure 5.47: Q-criterion isosurface colored by velocity

magnitude where u def is scaled by factor of ten
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Learning never exhausts the

mind.

Leonardo da Vinci
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CONCLUSION AND OUTLOOK

Within this work a hybrid algorithm for the solution of coupled prob-

lems is presented and benchmarked. It is hybrid in the sense of com-

bining the advantages from the monolithic and the co-simulation

approach, such as allowing for the (re)use of well-established and

specialized simulation software in a modular fashion, the possibility

to combine different fidelity models at all stages of the product design

process and this is achieved while maintaining stability and accuracy

of the solution.

The presented algorithm is based on the stabilization by interface

Jacobian information, therefore it is called Interface Jacobian-based

Co-Simulation Algorithm (IJCSA). Moreover, the introduced approach

handles the co-simulation involving an arbitrary number of fields

and signals. Due to the fact that the IJCSA is based on the residual

form it handles algebraic loops in a natural manner. Furthermore, the

individual simulators can run in parallel without flow dependency

reducing the wall-clock time of the simulation, since the subsystems

use the Jacobi pattern as a communication model.

After the theoretical derivation of the IJCSA its mathematical sta-

bility properties are analyzed and compared to classical co-simulation

approaches. This clearly shows that the IJCSA is the superior choice
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in terms of stability and also efficiency. Furthermore, academic test

cases are used to demonstrate a variety of different use cases of the

IJCSA, as there are nonlinear cases, algebraic loops, discontinuities

and the handling of difficult cases with respect to stability. In addition

it is possible to add any (non)linear interface constraint between the

subsystems while maintaining the full modularity of co-simulation,

since there is no need to modify the subsystems by any means.

Last but not least, industrial relevant use cases proof the appli-

cability of the IJCSA. The examples add the interaction of different

signals, open and closed-loop control to common fluid-structure in-

teraction. In order to achieve that a number of different open-source

and commercial software tools are coupled. At the end the emergency

brake maneuver of a wind turbine is simulated and validated in order

to hopefully avoid the headline “Storm caused wind turbine fire”1 in

future.

The IJCSA is so far tested for the case where all subsystems run at

the same time step size and exchange information after every time

step. To relax that constraint subcycling is needed. This is especially

beneficial for co-simulation scenarios which involve the coupling

of explicit and implicit time integrators, since then subcycling of the

explicit subsystems is needed to maintain an overall coupling step size

which is in the same range as the time step of the implicit integrated

subsystems. For the cases of structure-structure interaction this is

already discussed in Gravouil et al. [64].

The ability to perform subcycling with the IJCSA and the a-priori

knowledge of the convergence order in case of mixed time integrators

would be an interesting and an application relevant extension of the

presented work.

1 ❤tt♣✿✴✴✇✇✇✳❜❜❝✳❝♦✳✉❦✴♥❡✇s✴✉❦✲✶✻✶✶✺✶✸✾ British Broadcasting Corpo-

ration [21]
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ALGEBRAIC LOOPS

An algebraic loop in a Simulink model occurs when a sig-

nal loop exists with only direct feedthrough blocks within

the loop. Direct feedthrough means that the block output

depends on the value of an input port; the value of the

input directly controls the value of the output. Non-direct-

feedthrough blocks maintain a State variable.

This is the definition of algebraic loop according to Simulink User

Guide R2014a [139]. In the following this definition should be used

in order to illustrate how the IJCSA can cope with algebraic loops.

Similar to the definition given in Simulink User Guide R2014a [139]

the example in Figure A.1 is constructed. For the example we define

two simple subsystems. The first one is given by

S1

�
U1

�
= sin

�
U1

�
. (A.1)

The second subsystem if given by

S2

�
U2

�
= cos

�
U2

�
. (A.2)
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An analysis of the block diagram shown in Figure A.1 renders the

following two interface constraint equations:

I1

�
Y2,U1

�
= Y2−U1 = 0 (A.3)

I2

�
Y1,U2

�
= Y1−U2 =U2 (A.4)

The latter equation is derived from the cyan block in the middle of

Figure A.1 which is causing the algebraic loop. The IJCSA is used to

S2S1

U1 Y2U2Y1

+

−

Figure A.1: Block diagram that describes the algebraic loop

example

solve the interface constraint Equations (A.3) and (A.4). Based on

these equations the interface residual vector is given by

r =



R1

R2



=



 Y2−U1

Y1−U2−U2



 . (A.5)

Hence the global interface Jacobian matrix is defined by

Jglobal =



 −1 −sin
�
U2

�

cos
�
U1

�
−2



 . (A.6)
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A Algebraic Loops

The algebraic loop example is solving equation

sin
�
cos

�
U2

��
−U2 =U2, (A.7)

which has 3.983 194 523 366 732 ·10−01 as solution.

This example demonstrates that the IJCSA can handle algebraic

loops without special treatment.
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B
ASPECTS OF CO-SIMULATION

SOFTWARE REALIZATION

Within this work the algorithmic and mathematical aspects of co-

simulation are discussed. Another interesting point of view of co-

simulation is the implementation point of view. A client-server model

fits the needs of a general co-simulation scenario, as it allows to run

the overall co-simulation on a heterogeneous architecture. The server

can for instance use a state machine approach as shown by Tripakis

et al. [147] to control all participating subsystems.

The Co-Simulation Engine (CSE) from SIMULIA Dassault Sys-

tèmes and MpCCI from Fraunhofer SCAI are two prominent com-

mercially available client-server-based approaches.

An open-source software called Enhanced MultiPhysics Interface

Research Engine (EMPIRE [40]) was developed as a part of this thesis.

In EMPIRE the server is called Emperor and coordinates the co-simu-

lation via a xml-based input file. For more information and documen-

tation please visit the website.

For large scale co-simulations it is important that the server can

communicate with clients (subsystems) in an efficient way by utilizing

the high-performance computing interconnects as InfiniBand. In
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order that client-server-based programs run on such interconnects

it takes a considerable implementation effort. The Message Passing

Interface (MPI) introduced by the Message Passing Interface Forum

[103] provides a way that client-server-based approaches can be built

on top of the MPI standard as shown in Gropp et al. [66] and Latham

et al. [90]. Especially, for research purposes (see Schlüter et al. [129])

this is a good approach as most MPI implementation support high-

performance computing interconnects in an efficient way for instance

see Intel MPI Library for Linux* OS [79]. However, the use of MPI poses

the constraint that all clients and the server need to run on the same

architecture.

In order that the server can connect to an arbitrary number of

clients at any time different threads need to be used inside the server

application. An example using MPI-2 and OpenMPI is provided in

Listing B.1 for the server and in Listing B.2 for the client.

B.1 Listing: server.c

2 ✴✴ ❈✾✾
✴✴ ❙t❛rt ♣r♦❣r❛♠✿ ♠♣✐r✉♥ ✲♥♣ ✶ s❡r✈❡r

4 ★✐♥❝❧✉❞❡ ❁♠♣✐✳❤❃
★✐♥❝❧✉❞❡ ❁♦♠♣✳❤❃

6 ★✐♥❝❧✉❞❡ ❁st❞✐♦✳❤❃
★✐♥❝❧✉❞❡ ❁st❞❜♦♦❧✳❤❃

8 ★✐♥❝❧✉❞❡ ❁✉♥✐st❞✳❤❃ ✴✴ ♥❡❡❞❡❞ ❢♦r s❧❡❡♣✭✮ ♦♥ P❖❙■❳ s②st❡♠

10 ★❞❡❢✐♥❡ ▼❆❳❴❉❆❚❆ ✶✵✵
✐♥t ♠❛✐♥✭ ✐♥t ❛r❣❝ ✱ ❝❤❛r ✯✯❛r❣✈ ✮

12 ④
✐♥t ♣r♦✈✐❞❡❞❚❤r❡❛❞❙✉♣♣♦rt❀

14 ❜♦♦❧ t❡r♠✐♥❛t❡▲✐st❡♥✐♥❣ ❂ ❢❛❧s❡❀
❝❤❛r ♣♦rt◆❛♠❡❬▼P■❴▼❆❳❴P❖❘❚❴◆❆▼❊ ❪❀

16 ▼P■❴■♥✐t❴t❤r❡❛❞ ✭✫❛r❣❝ ✱ ✫❛r❣✈ ✱ ▼P■❴❚❍❘❊❆❉❴▼❯▲❚■P▲❊ ✱ ✫
♣r♦✈✐❞❡❞❚❤r❡❛❞❙✉♣♣♦rt✮❀

✐❢ ✭▼P■❴❚❍❘❊❆❉❴▼❯▲❚■P▲❊ ✦❂ ♣r♦✈✐❞❡❞❚❤r❡❛❞❙✉♣♣♦rt✮ ④
18 ♣r✐♥t❢✭ ✧❘❡q✉❡st❡❞ ▼P■ t❤r❡❛❞ s✉♣♣♦rt ✐s ♥♦t ❣✉❛r❛♥t❡❡❞ ✳❭♥

✧✮❀
⑥

20 ▼P■❴❖♣❡♥❴♣♦rt✭▼P■❴■◆❋❖❴◆❯▲▲ ✱ ♣♦rt◆❛♠❡✮❀
♣r✐♥t❢✭✧❙❡r✈❡r ❛✈❛✐❧❛❜❧❡ ❛t ♣♦rt✿✪s❭♥✧✱ ♣♦rt◆❛♠❡✮❀

22 ★♣r❛❣♠❛ ♦♠♣ ♣❛r❛❧❧❡❧ ♥✉♠❴t❤r❡❛❞s ✭✷✮ s❤❛r❡❞✭♣♦rt◆❛♠❡ ✱
t❡r♠✐♥❛t❡▲✐st❡♥✐♥❣✮

④
24 ✴✴ ❯s❡ ❖♣❡♠▼P s❡❝t✐♦♥ ❝♦♥str✉❝t ❢♦r ❢✉♥❝t✐♦♥ ♣❛r❛❧❧❡❧✐s♠

★♣r❛❣♠❛ ♦♠♣ s❡❝t✐♦♥s
26 ④

★♣r❛❣♠❛ ♦♠♣ s❡❝t✐♦♥
28 ④

✴✴ ❉♦ s♦♠❡ ✇♦r❦
30 s❧❡❡♣ ✭✶✺✮❀

✴✴ ❈♦♥♥❡❝t t♦ ②♦✉rs❡❧❢ ✐♥ ♦r❞❡r t♦ t❡r♠✐♥❛t❡ ❧✐st❡♥✐♥❣
32 t❡r♠✐♥❛t❡▲✐st❡♥✐♥❣ ❂ tr✉❡❀

▼P■❴❈♦♠♠ ❞✉♠♠②❀
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34 ▼P■❴❈♦♠♠❴❝♦♥♥❡❝t✭♣♦rt◆❛♠❡ ✱ ▼P■❴■◆❋❖❴◆❯▲▲ ✱ ✵✱
▼P■❴❈❖▼▼❴❲❖❘▲❉ ✱ ✫❞✉♠♠②✮❀

♣r✐♥t❢✭✧❙❡r✈❡r ✐s ❝♦♥♥❡❝t❡❞ t♦ ✐ts❡❧❢ ✳❭♥✧✮❀
36 ▼P■❴❈♦♠♠❴❞✐s❝♦♥♥❡❝t ✭✫ ❞✉♠♠②✮❀

♣r✐♥t❢✭✧❙❡r✈❡r ✐s ❞✐s❝♦♥♥❡❝t❡❞ ✳❭♥✧✮❀
38 ▼P■❴❈❧♦s❡❴♣♦rt✭♣♦rt◆❛♠❡✮❀

⑥
40 ★♣r❛❣♠❛ ♦♠♣ s❡❝t✐♦♥

④
42 ✴✴ ▲✐st❡♥✐♥❣ s❡❝t✐♦♥

✇❤✐❧❡ ✭✶✮ ④
44 ▼P■❴❈♦♠♠ ✐♥t❡r❈❧✐❡♥t ❂ ▼P■❴❈❖▼▼❴◆❯▲▲❀

▼P■❴❈♦♠♠❴❛❝❝❡♣t✭♣♦rt◆❛♠❡ ✱ ▼P■❴■◆❋❖❴◆❯▲▲ ✱ ✵✱
▼P■❴❈❖▼▼❴❲❖❘▲❉ ✱ ✫✐♥t❡r❈❧✐❡♥t✮❀

46 ✐❢ ✭t❡r♠✐♥❛t❡▲✐st❡♥✐♥❣ ❂❂ tr✉❡✮ ④
❜r❡❛❦❀

48 ⑥
▼P■❴❙t❛t✉s st❛t✉s❀

50 ❝❤❛r ❝❧✐❡♥t◆❛♠❡❬▼❆❳❴❉❆❚❆ ❪❀
▼P■❴❘❡❝✈✭❝❧✐❡♥t◆❛♠❡ ✱ ▼❆❳❴❉❆❚❆ ✱ ▼P■❴❈❍❆❘ ✱

▼P■❴❆◆❨❴❙❖❯❘❈❊ ✱ ▼P■❴❆◆❨❴❚❆● ✱ ✐♥t❡r❈❧✐❡♥t ✱ ✫
st❛t✉s✮❀

52 ♣r✐♥t❢✭✧❈❧✐❡♥t ✐s ❝♦♥♥❡❝t❡❞ ✇✐t❤ ♥❛♠❡✿ ✪s❭♥✧✱
❝❧✐❡♥t◆❛♠❡✮❀

▼P■❴❈♦♠♠❴❞✐s❝♦♥♥❡❝t ✭✫ ✐♥t❡r❈❧✐❡♥t✮❀
54 ♣r✐♥t❢✭✧❈❧✐❡♥t ✐s ❞✐s❝♦♥♥❡❝t❡❞ ✳❭♥✧✮❀

⑥
56 ⑥

⑥ ✴✴ ❊♥❞ ♦❢ s❡❝t✐♦♥s
58 ⑥ ✴✴ ❊♥❞ ♦❢ ♣❛r❛❧❧❡❧ s❡❝t✐♦♥

▼P■❴❋✐♥❛❧✐③❡ ✭✮❀
60 r❡t✉r♥ ✭✵✮❀

⑥

B.2 Listing: client.c

2 ✴✴ ❈✾✾
✴✴ ❙t❛rt ♣r♦❣r❛♠✿ ♠♣✐r✉♥ ✲♥♣ ✷ ❝❧✐❡♥t

4 ★✐♥❝❧✉❞❡ ❁♠♣✐✳❤❃
★✐♥❝❧✉❞❡ ❁st❞✐♦✳❤❃

6
★❞❡❢✐♥❡ ▼❆❳❴❉❆❚❆ ✶✵✵

8 ✐♥t ♠❛✐♥✭ ✐♥t ❛r❣❝ ✱ ❝❤❛r ✯✯❛r❣✈ ✮
④

10 ✐♥t ✐s▼♣✐■♥✐t❈❛❧❧❡❞❇②❈❧✐❡♥t❀
✐♥t ♠②❘❛♥❦❀

12 ❝❤❛r ♣♦rt◆❛♠❡❬▼P■❴▼❆❳❴P❖❘❚❴◆❆▼❊ ❪❀
❝❤❛r ❝❧✐❡♥t◆❛♠❡❬▼❆❳❴❉❆❚❆ ❪❀

14 ▼P■❴■♥✐t✐❛❧✐③❡❞ ✭✫ ✐s▼♣✐■♥✐t❈❛❧❧❡❞❇②❈❧✐❡♥t✮❀
✐❢ ✭✦ ✐s▼♣✐■♥✐t❈❛❧❧❡❞❇②❈❧✐❡♥t✮④

16 ▼P■❴■♥✐t ✭✫❛r❣❝ ✱ ✫❛r❣✈✮❀
⑥

18 ▼P■❴❈♦♠♠❴r❛♥❦✭▼P■❴❈❖▼▼❴❲❖❘▲❉ ✱ ✫♠②❘❛♥❦✮❀
✐❢ ✭♠②❘❛♥❦ ❂❂ ✵✮ ④

20 ♣r✐♥t❢✭✧P❧❡❛s❡ ♣r♦✈✐❞❡ s❡r✈❡r ♣♦rt✿✧✮❀
s❝❛♥❢✭✧✪✾✾s✧✱ ✫♣♦rt◆❛♠❡ ❬✵❪✮❀

22 ♣r✐♥t❢✭✧P❧❡❛s❡ ♣r♦✈✐❞❡ ❝❧✐❡♥t ♥❛♠❡✿✧✮❀
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24 ⑥
▼P■❴❈♦♠♠ s❡r✈❡r❀
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✐❢ ✭♠②❘❛♥❦ ❂❂ ✵✮ ④
28 ▼P■❴❙❡♥❞✭❝❧✐❡♥t◆❛♠❡ ✱ ▼❆❳❴❉❆❚❆ ✱ ▼P■❴❈❍❆❘ ✱ ✵✱ ✵✱ s❡r✈❡r✮❀

⑥
30 ▼P■❴❈♦♠♠❴❞✐s❝♦♥♥❡❝t ✭✫ s❡r✈❡r✮❀

▼P■❴❋✐♥❛❧✐③❡ ✭✮❀
32 r❡t✉r♥ ✭✵✮❀

⑥

196



BIBLIOGRAPHY

[1] A. C. Aitken. “On Bernoulli’s numerical solution of algebraic

equations.” In: Proceedings of the Royal Society of Edinburgh.

Vol. 46. 1926, pp. 289–305.

[2] S. Altmann. Rotations, Quaternions, and Double Groups.

Dover books on mathematics. Dover Publications, 2005. ISBN:

9780486445182.

[3] P. Anagnostopoulos and P. Bearman. “Response

characteristics of a vortex-excited cylinder at low reynolds

numbers.” In: Journal of Fluids and Structures 6.1 (1992),

pp. 39–50. DOI: ✶✵✳✶✵✶✻✴✵✽✽✾✲✾✼✹✻✭✾✷✮✾✵✵✺✹✲✼.

[4] E. V. Anjuri. “Comparison of Experimental results with CFD

for NREL Phase VI Rotor with Tip Plate.” In: International

Journal of Renewable Energy Research (IJRER) 2.4 (2012),

pp. 556–563.

[5] U. Ascher and L. Petzold. Computer Methods for Ordinary

Differential Equations and Differential-Algebraic Equations.

Society for Industrial and Applied Mathematics, 1998. ISBN:

9780898714128.

[6] S. Aubrun, S. Loyer, P. Hancock, and P. Hayden. “Wind turbine

wake properties: Comparison between a non-rotating

simplified wind turbine model and a rotating model.” In:

Journal of Wind Engineering and Industrial Aerodynamics 120

(2013), pp. 1–8. DOI: ✶✵✳✶✵✶✻✴❥✳❥✇❡✐❛✳✷✵✶✸✳✵✻✳✵✵✼.

[7] E. Ayachour. “A fast implementation for GMRES method.” In:

Journal of Computational and Applied Mathematics 159.2

(2003), pp. 269–283. DOI:

✶✵✳✶✵✶✻✴❙✵✸✼✼✲✵✹✷✼✭✵✸✮✵✵✺✸✹✲❳.

197

http://dx.doi.org/10.1016/0889-9746(92)90054-7
http://dx.doi.org/10.1016/j.jweia.2013.06.007
http://dx.doi.org/10.1016/S0377-0427(03)00534-X


Bibliography

[8] S. Badia, F. Nobile, and C. Vergara. “Robin–Robin

preconditioned Krylov methods for fluid–structure

interaction problems.” In: Computer Methods in Applied

Mechanics and Engineering 198.33–36 (2009), pp. 2768–2784.

DOI: ✶✵✳✶✵✶✻✴❥✳❝♠❛✳✷✵✵✾✳✵✹✳✵✵✹.

[9] S. Badia, F. Nobile, and C. Vergara. “Robin-Robin

preconditioned Krylov methods for fluid-structure

interaction problems.” In: Computer Methods In Applied

Mechanics And Engineering 198.33-36 (2009), pp. 2768–2784.

DOI: ✶✵✳✶✵✶✻✴❥✳❝♠❛✳✷✵✵✾✳✵✹✳✵✵✹.

[10] M. Bahmani and M. Akbari. “Response characteristics of a

vortex-excited circular cylinder in laminar flow.” In: Journal of

Mechanical Science and Technology 25.1 (2011), pp. 125–133.

DOI: ✶✵✳✶✵✵✼✴s✶✷✷✵✻✲✵✶✵✲✶✵✷✶✲✵.

[11] J. Bastian, C. Clauß, S. Wolf, and P. Schneider. “Master for

co-simulation using FMI.” In: 8th International Modelica

Conference. Dresden. 2011, pp. 115–120.

[12] Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa,

B. Henicke, T. Spielman, and T. E. Tezduyar. “3D simulation of

wind turbine rotors at full scale. Part I: Geometry modeling

and aerodynamics.” In: International Journal for Numerical

Methods in Fluids 65.1 (2011), pp. 207–235. DOI:

✶✵✳✶✵✵✷✴❢❧❞✳✷✹✵✵.

[13] Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wüchner, and

K.-U. Bletzinger. “3D simulation of wind turbine rotors at full

scale. Part II: Fluid-structure interaction modeling with

composite blades.” In: International Journal for Numerical

Methods in Fluids 65.1 (2011), pp. 236–253. DOI:

✶✵✳✶✵✵✷✴❢❧❞✳✷✹✺✹.

[14] T. Belytschko and T. Hughes. Computational methods for

transient analysis. Computational methods in mechanics.

North-Holland, 1983. ISBN: 9780444864796.

[15] T. Belytschko, W. Liu, and B. Moran. Nonlinear finite elements

for continua and structures. John Wiley & Sons, 2000. ISBN:

9780471987734.

198

http://dx.doi.org/10.1016/j.cma.2009.04.004
http://dx.doi.org/10.1016/j.cma.2009.04.004
http://dx.doi.org/10.1007/s12206-010-1021-0
http://dx.doi.org/10.1002/fld.2400
http://dx.doi.org/10.1002/fld.2454


Bibliography

[16] M. Benedikt, H. Stippel, and D. Watzenig. “An adaptive

coupling methodology for fast time-domain distributed

heterogeneous co-simulation.” In: SAE Technical Paper

(2010). DOI: ✶✵✳✹✷✼✶✴✷✵✶✵✲✵✶✲✵✻✹✾.

[17] M. Benzi, R. Kouhia, and M. Tůma. “An assessment of some
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