
Deadline-Aware Interrupt Coalescing in
Controller Area Network (CAN)
Christian Herber, Andre Richter, Thomas Wild, Andreas Herkersdorf

Technische Universität München - Institute for Integrated Systems
Munich, Germany

{christian.herber, andre.richter, thomas.wild, herkersdorf}@tum.de

Abstract—The introduction of virtualized multi-core proces-
sors in automotive embedded systems opens up opportunities
like safe consolidation of previously distributed electronic control
units (ECUs) on a shared platform. On the other hand, challenges
arise in areas like I/O processing due to overheads experienced
in virtualized environments. Designs of I/O controllers have to
be adjusted to allow efficient, scalable, and real-time capable
communication under these circumstances.

Interrupts are an essential part in real-time communication.
However, they introduce significant computational overheads,
because they force multiple context switches within the CPU.
Interrupt coalescing reduces the burden of interrupt processing
by merging multiple interrupts within the I/O hardware. How-
ever, existing coalescing approaches are not feasible for real-time
networks like CAN due to the latencies they introduce.

In this paper, we introduce a deadline-aware approach of
interrupt coalescing for CAN controllers. It minimizes the
amount of interrupts forwarded while guaranteeing the systems
real-time capability. We provide three approximations of the
method, which can be implemented in hardware. We evaluate the
reduction of interrupts that can be achieved with each approach
and determine the hardware cost with a prototypical FPGA
implementation.

Index Terms—Controller area network, CAN, interrupt coa-
lescing, automotive electronics, embedded systems.

I. Introduction

Automotive embedded systems are composed of distributed
electronic control units (ECUs) that are interconnected by a
variety of fieldbuses like Controller Area Network (CAN),
FlexRay and MOST. The approach of introducing new ECUs
for every new function has led to a high complexity with up
to 100 ECUs and more than 2.7 km in wire length.

OEMs are planning to reduce the number ECUs by integrat-
ing previously distributed functions on virtualized multi-core
platforms [1]–[3]. These act as domain controllers in one of
the functional domains like powertrain, chassis, infotainment,
driver assist etc. Simple, distributed nodes remain within each
domain to provide access to sensors and actuators. Central-
ized control units face significantly increased communication
requirements compared to traditional ECUs.

Virtualization is an important technology to leverage iso-
lated computing resources on shared multi-core platforms [4]–
[7], but also introduces significant overheads. Traditionally,
I/O processing has been the major contributor of computational
overheads in virtualized systems [8]. For example, interrupts in

a virtualized x86 system introduce an additional computational
overhead in of around 10,000 cycles per interrupt [9].

While interrupts for CAN I/O events are considered essen-
tial for low receive latencies, they come along with several
downsides. First, interrupt requests (IRQs) force the processor
to suspend running tasks and switch to a privileged mode to
run an interrupt service routine (ISR). The time needed for
context switching is lost for the execution of tasks. This time
is greater for virtualized systems. Other problems are cache
pollution due to frequent execution of ISRs and unnecessary
wake-ups from low power states.

Interrupt coalescing has originally been introduced for
UART [10] as a mechanism to reduce the rate of IRQs.
Later on, it was adopted for Ethernet based systems [11].
IRQ reduction is achieved by issuing interrupts only after a
predefined number of packets are buffered or after a time-
out. This approach reduces the computational overhead for
IRQ processing, but increases average and maximum packet
latencies. While such added latencies can be tolerated in
most Ethernet systems, they can cause deadline violations in
systems with real-time requirements.

In this paper, we introduce deadline-aware interrupt coa-
lescing for CAN. Existing coalescing mechanisms are applied
and extended to incorporate knowledge about the last possible
time at which an interrupt has to be forwarded (deadline).
This allows us to reduce the number of interrupts without
drawbacks in real-time performance. While we implemented
the concept for CAN in this paper, deadline aware interrupt
coalescing could be applied to many other interconnects and
sources of interrupts.

We provide a detailed presentation of three possible imple-
mentations for CAN, which differ in complexity and effec-
tiveness (Section III). We evaluate their ability to reduce the
amount of necessary interrupts. Additionally, we show that
the coalescing mechanism leads to an advantageous shaping
of IRQ inter-arrival times (Section IV). Finally, we present a
prototypical implementation and the associated HW costs for
all proposed variations of deadline-aware interrupt coalescing
(Section V).

II. RelatedWork

Interrupts are an important mechanism to provide low
latencies in I/O reliant applications, but also require significant

cO 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.



computational resources to be processed. The time spent
serving interrupt requests (IRQs) is made up of context-
switches, data transfers and interrupt controller interaction and
is essentially lost for actual applications. For high interrupt
rates, livelocks can occur, where interrupts arrive faster than
the CPU is capable of processing [11].

A number of similar approaches aimed at reducing the inter-
rupt rate have been introduced. Mogul and Ramakrishnan [11]
proposed disabling interrupts temporarily if the interrupt pro-
cessing cannot keep up with arrival rates. Another approach
modifies the network interface controller (NIC) to enable
coalescing of interrupts within the hardware [12]. Today, such
interrupt throttling mechanisms are included in many NICs
and only issue IRQs after a certain number of received frames
or a timeout.

By reducing the number of interrupts, interrupt coalescing
increases packet latencies. Finding a good trade-off between
I/O processing overhead and packet latency is an important
design goal. While Ethernet communication is usually not con-
straint by real-time requirements, added latencies can degrade
the TCP throughput [13].

Interrupt processing overheads are greater in virtualized
systems, where privileged operations are executed by the
hypervisor and applications are run in virtual machines (VMs).
Interrupts are first processed by the hypervisor or a dedicated
driver domain and forwarded to the receiving virtual machines
(VMs) afterwards, which forces additional context switches.

Coalescing of virtual interrupts issued towards VMs reduces
the number of switches between VMs and the hypervisor or
driver domain. It has been implemented in e.g. XEN [9] and
VMWare ESX [14]. Using a Xeon 5560 platform and Gigabit
Ethernet, Dong et al. [9] demonstrated that virtual interrupt
coalescing reduces the CPU load by 71% for TCP and 24%
for UDP for 9 VMs.

The best I/O performance is achieved using NICs with
dedicated virtualization support [15]. VMs can bypass the
hypervisor and directly access these devices for data and
control path operations. However, hypervisor involvement is
still necessary for interrupt processing, therefore forcing VM
exits for each interrupt. A software extension to enable exitless
interrupts has been shown in [16], but comes along with the
downside that all interrupts have to be directed towards VMs.
Another solution is proposed by Guan et al. [17], who propose
an event based polling scheme to reduce the computational
overhead.

We propose a concept for deadline-aware interrupt coalesc-
ing, which reduces the computational overhead for processing
IRQs in CAN based embedded systems. In contrast to existing
approaches, the throttling of IRQs is constrained by real-
time requirements. Therefore, the hardware must have reliable
knowledge of how long it can delay IRQ forwarding (deadline-
awareness).

III. Deadline-Aware Interrupt Coalescing

CAN is the most prevalent bus in automotive systems. It is
a broadcast medium, i.e. every node receives every transmitted

message. Based on a unique message ID, the content can be
identified. The ID also serves as strict priority in the bus access
arbitration scheme.

Interrupts are important to achieve low latency communica-
tion in CAN [18]. Each CAN node is programmed to accept
a subset of all received frames depending on its function. The
I/O controller notifies the arrival of frames to the host system
by issuing an interrupt request (IRQ). In a virtualized system,
this forces a VM exit, and the hypervisor will forward the
interrupt to the VM. The received data is then copied to the
main memory by an interrupt service routine (ISR) executed
within the VM. After completion of the ISR, the hypervisor
notifies the interrupt controller and the interrupted task is re-
sumed. Fig. 1 shows an exemplary illustration of the interrupt
handling behavior of the hypervisor, which can involve more
than two VM exits depending on its implementation and the
platform. Time spend with additional hypervisor routines and
context-switching equals the overhead contributed from each
IRQ.

Fig. 1. CAN interrupt handling in a virtualized environment

CAN is used in real-time systems, i.e. message trans-
missions have to meet predefined deadlines. The worst-case
response time (WCRT) of each message m can be calculated
analytically [19] and should be smaller than its deadline Dm

to guarantee a system’s schedulability. Messages are either
transmitted in cyclic manner or sporadically with a minimum
inter-arrival time Tm. Fig. 2 shows an exemplary configuration
of these values for a single message.

10−1 100 101

0

5

10
D14 T14WCRTTCRT

Average Slack

Response Time (ms)

Pr
ob

ab
ili

ty
(%

)

Fig. 2. Response time distribution of CAN message m = 14 with cycle time
T14 = 10 ms at 90 % bus load on 500 kbit/s bus

Average latencies in a physical system differ greatly from
their computed worst-case latencies [20]. The distribution
of response times shown in Fig. 2 shows that typical case



response time (TCRT) and the corresponding WCRT and
deadline respectively differ in more than one order of mag-
nitude. The gap between a message’s TCRT and its deadline
constitutes an average slack, that we will leverage in our
interrupt coalescing mechanism. If messages arrive with high
slack, IRQs do not have to be delivered immediately after
message reception, but can be delayed and coalesced with
other IRQs.

Fig. 3. Deadline-aware interrupt coalescing for CAN

We propose a concept, in which an IRQ is forwarded just
in time before any deadline violation can occur. If multiple
messages are currently buffered in the I/O controller, their
reception can be signaled using one instead of multiple IRQs
(see Fig. 3). To realize this coalescing, timing information has
to be available in the I/O controller.

We assume that ti
D,m describes the instant of time, at which

an interrupt has to be forwarded to guarantee the timely
delivery of message mi. The deadline Dm of a message mi

describes the time available after the release of a message to
conclude the transmission by issuing an IRQ. The timeout for
an IRQ delivery can be computed as

ti
D,m = ti

release,m + Dm, (1)

where ti
release,m is the release time of message instance mi. If

a message gets released while the bus is idle, it gets transmitted
immediately and every receiver can derive the release time
accurately. Otherwise, the release of a message is masked by
ongoing transmissions. Therefore, approximations have to be
made, which allow deadline-aware interrupt coalescing while
providing real-time guarantees.

We propose three approaches that approximate the ideal
concept of deadline-aware interrupt coalescing. They have
in common that interrupts are triggered based on timeout,
which indicates the (approximate) next deadline of a buffered
message. The timer is updated after a message reception if
the expected slack is smaller than the current timeout value.
The slack of a received message mi can be computed as the
difference between the nominal deadline Dm and the time
elapsed between the initial release ti

release,m and the successful
reception ti

Rx,m

ti
slack,m = Dm − (ti

Rx,m − ti
release,m). (2)

The approaches we introduce differ in their approximation
of the slack. We present them in the order of increasing
complexity.

a) Fixed delay: Interrupts are forwarded after a fixed
delay. The delay is equal to the minimum slack of received
messages that can occur in a worst-case scenario. This ap-
proach is similar to existing approaches used in Ethernet NICs.

b) Message based delay: The worst-case slack for each
message is known. Upon message reception, the timer may be
updated based on the messages slack. This poses an improve-
ment, because the worst-case slack varies for all messages.

c) Dynamic deadline estimation: After reception, the
deadline of the message is estimated and the timer is updated
if necessary. A detailed description of the estimation algorithm
is presented in the remainder of this Section.

The release time of a message can be estimated in a
pessimistic way so that real-time constraints are not at risk.
We propose a simple estimation, which makes use of the
last time the bus was idle. After reception of a message, the
receiver can safely assume that the message was not released
during the last idle time. We use the end of this period as a
pessimistic estimate of the release time. An example of the
deadline estimation is illustrated in Fig. 4.

〈
·̂
〉

denotes that a
value is estimated. The estimation error is given as

ei
est,m = ti

slack,m − t̂ i
slack,m ≥ 0. (3)

It shows that the estimated slack is strictly smaller than
or equal the actual slack and therefore fulfills the necessary
condition of pessimism.

tD,m

CAN

trelease,m t
t̂release,m

Message m

t̂D,m

Dm
tslack,m

t̂slack,m

tRx,m

eest,m

Fig. 4. Deadline estimation of a message based on the last idle time.

The effectiveness of the proposed approaches depends on
the accuracy of their approximation. It will be evaluated in
the following Section.

IV. Simulation & Results

We verified the concept by simulating the interrupt behavior
of a CAN node with and without interrupt coalescing. The
simulation uses realistic automotive communication patterns.
A detailed description of the simulation scenario and results
are presented in the subsequent Sections.

A. Simulation Scenario

We simulated deadline-aware interrupt coalescing using a
realistic setting for future automotive IT architectures. Our
point of interest is the central ECU within a domain, the so
called domain controller. In this scenario, 50% of the messages
are received by this node on average.

CAN message sets are randomly generated at predefined bus
loads, with the available bandwidth being 500 kbit/s. Message
cycle times Tm are chosen from four harmonic sets with 10 ms,
20 ms, 50 ms, and 100 ms respectively. Message deadlines



20 40 60 80

0

5

10

15

20

25

Bus Load U (%)

IR
Q

R
ed

uc
tio

n
R

co
al
.

ideal
dyn. deadline est.
message based delay
fixed delay

Fig. 5. Reduction of interrupts using different approximations of deadline-
aware interrupt coalescing

Dm are randomly chosen from the range between 50% and
100% of a messages respective cycle time. The payload varies
between 1 and 8 bytes. To capture the effects of oscillator
inaccuracies, the release of messages is subject to a drift of
±1.5% of their cycle time. The random values used to generate
the scenario are uniformly distributed.

Using an event based simulation of CAN, we measured the
number of interrupts forwarded in state of the art systems
and with variations of deadline-aware interrupt coalescing. To
be able to draw general conclusions independent of single
message set configurations, we repeat the simulation 10,000
times for every bus load. This gives us a realistic estimate on
what can be achieved in the average case.

B. IRQ Reduction

The reduction of IRQs Rcoal., which can be achieved using
the proposed coalescing schemes, will be used as central
measure to evaluate our different approaches. We define it as
the average amount of IRQs that can be reduced to a single
IRQ. It compares our approach with state of the art systems,
where interrupts are used for each message. Assuming IRQcoal

and IRQSotA to be measures for the number of IRQs forwarded
in systems with and without interrupt coalescing respectively,
it can be computed as

Rcoal. =
IRQSotA

IRQcoal.
. (4)

The simulation results presented in Fig. 5 show the IRQ
reduction for ideal interrupt coalescing and the three approx-
imations presented in Section III. In ideal deadline-aware
interrupt coalescing, all timing information is available and
perfect coalescing decisions can be made. It is not reachable
in an actual implementations. CAN controllers without inter-
rupt coalescing would be represented by the horizontal line
Rcoal. = 1.

50 60 70 80 90 100

5

10

15

Relative Deadline Drel (%)

W
ei

gh
te

d
IR

Q
R

ed
uc

tio
n

W
(D

re
l)

Fig. 6. Weighted reduction of interrupts depending on latency requirements.
A small relative deadline implicates low latency requirements.

In the ideal case, the IRQ reduction scales linearly with the
bus load. It can be credited to the fact that messages arrive
in shorter intervals and are therefore easier to coalesce. Even
for high bus loads, where the worst-case slack of messages
is small, the mechanism shows no deviation from this linear
trend. This shows that on average, messages experience low
delays on the CAN bus and arrive with high slack even in
high load scenarios.

All approximations show visible degradation compared to
ideal coalescing for high bus loads. Interrupt coalescing with
fixed delay can only work if the slack of all messages is
greater than the minimum transmission time of a CAN frame.
Otherwise, interrupts will be forwarded before another frame
can arrive. Because of the small worst-case slack in highly
loaded CAN systems, the performance drops significantly at
loads around 80%. The mechanism stops working at loads
around 90%.

The use of dedicated delays for interrupts generated by
different messages (message based delay) nearly doubles the
IRQ reduction for most loads. However, the performance drops
at a similar point, when the static worst-case slack approaches
the minimum transmission time of a CAN message. Because
some messages will still have significant slack even for high
loads, the IRQ reduction is still working to some degree.

Dynamic deadline estimation proves to give the best approx-
imation of ideal deadline-aware interrupt coalescing at all bus
loads. Similar to the static implementations of the method,
the IRQ reduction deviates from the ideal case especially
for high bus loads. Here, the deadline estimation accuracy
drops, because the bus is busy for longer periods and therefore
masking the release of messages. However, the degradation is
less steep and a high IRQ reduction rate can be sustained even
for bus loads around 90%.

We further evaluate, how the distribution of deadlines in-
fluences the reduction of IRQs. In this analysis, we keep the



the relative deadline of all messages in a specific message
set constant. It is defined as the ratio between the nominal
deadline Dm and the cycle time Tm of a message m

Drel = Dm/Tm. (5)

We introduce the measure of weighted IRQ reduction, which
can be computed as

W(Drel) =

∑
∀U U · Rcoal.(U,Drel)∑

∀U U
. (6)

It is a weighted average of the IRQ reduction introduced
in (4) as a function of the relative deadline Drel. The weighting
emphasizes the importance of high bus loads U. It allows a
dedicated inspection of a single parameter without neglecting
the influence of the bus load. Such weighted measures are
widely used in the context of schedulability analyses and were
introduced in [21].

Fig. 6 shows that dynamic deadline estimation outperforms
the static implementations independent of the relative deadline.
Especially in scenarios, where low latencies (small Drel) are
required, dynamically estimating message deadlines nearly
doubles the effectiveness of the coalescing mechanism. When
deadlines are close to the respective cycle times, the static
approach using message based delays reaches a performance
similar to dynamic deadline estimation.

C. Deadline Estimation

The discrepancy between ideal deadline-aware interrupt
coalescing and the approach using dynamic deadline esti-
mation can be accredited to the necessary pessimism in the
estimation mechanism. We recorded the average estimation
error throughout the simulation, which is presented alongside
the percentage of accurate predictions (deadline hits) in Fig. 7.

20 40 60 80
0

20

40

60

80

100

Bus Load U (%)

A
cc

ur
at

e
Pr

ed
ic

tio
ns

(%
)

0

0.5

1

E
rror

e
est

(m
s)

Fig. 7. Percentage of accurate predictions and average error due to overesti-
mation of deadlines.

Accurately predicting a message deadline is only possible if
and only if it is released onto an idle bus. The probability of the
bus being idle is inversely proportional to the bus load. While
at 90% bus load only 20% correct predictions can be made,
the measurement of the IRQ reduction showed that meaningful
results can be obtained nevertheless.

The estimation error increases significantly with the bus
load and exceeds 1 ms for loads greater 85%. Deadlines in
automotive CAN networks range between 5 ms and 100 ms
and exceed the estimation error by up to two orders of
magnitude. Therefore, the estimation mechanism proves to be
feasible even for high bus loads.

D. IRQ Inter-Arrival Time

The inter-arrival time of IRQs is an important figure to
evaluate the impact of interrupts on a systems performance.
During this time, a CPU can process tasks without being
interrupted. If no tasks are pending, the time can be used to
enter low power states. Additionally, the cache will not be
polluted by the IRQ processing in the hypervisor during this
interval.

We evaluated the inter-arrival time of CAN receive IRQs
with and without interrupt coalescing at different bus loads.
The coalescing mechanism uses dynamic deadline estimation.
Probability density functions (PDF) and cumulative distribu-
tion functions (CDF) of the IRQ inter-arrival time tirq2irq are
shown in Fig. 8.

The PDF of IRQ inter-arrival times without coalescing
presented in Fig. 8a shows that low inter-arrival times are
most probable. After a short peak between 400 and 600 µs, it
is monotonically decreasing. The inter-arrival time decreases
with increasing bus load.

Fig. 8b shows the IRQ shaping property of the coalesc-
ing mechanism. The distribution of inter-arrival times peaks
around 10 ms (smallest cycle time in this scenario) at all bus
loads. An additional peak around 20 ms exists for low bus
loads at nodes, that only receive messages with 20 ms cycle
time or higher. Additionally, IRQs are received with a spacing
between 5 ms and 10 ms, which corresponds to the distribution
of deadlines for high priority messages.

The high density of IRQ inter-arrival times around 10 ms
occurs due to a resonance in the coalescing. Typically, CAN
nodes are not trying to transmit at the same time, but the
transmissions spread out equally in time. Messages can be
transferred directly or after a short wait and therefore arrive
with low slack. The first message with low deadline transmit-
ted after an IRQ has been forwarded will determine the time,
when the next IRQ will be released. After the IRQ has been
forwarded, the same message is likely to be transmitted soon
after and therefore a deterministic IRQ pattern emerges.

While such deterministic patterns in the IRQ inter-arrival
times are likely to occur, it cannot be guaranteed to happen
over long time intervals. If message transmissions are increas-
ingly aligned, the queuing delays of all messages increase
as well. Therefore, they are received with small slack and
IRQs are forwarded in short intervals. Because such scenarios
are unlikely, they do not have significant influence on the
distribution of Fig. 8.

The cumulative distribution of IRQ inter-arrival times illus-
trated in Fig. 8c shows that an IRQ will be followed by another
IRQ with more than 50% probability in less than 1 ms. For
high bus loads, this point is around 300 µs.



5 10 15 20 25

0

10

20

30

IRQ inter-arrival time tirq2irq (ms)

Pr
ob

ab
ili

ty
of

oc
cu

ra
nc

e
(%

) Bus load
20%
40%
60%
80%

(a) No interrupt coalescing (PDF)

5 10 15 20 25

0

10

20

30

40

IRQ inter-arrival time tirq2irq (ms)

Pr
ob

ab
ili

ty
of

oc
cu

ra
nc

e
(%

)

(b) Deadline aware interrupt coalescing with dyn. deadline estimation (PDF)

5 10 15 20 25
0

20

40

60

80

100

IRQ inter-arrival time tirq2irq (ms)

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty
(%

)

(c) No interrupt coalescing (CDF)

5 10 15 20 25

0

20

40

60

80

100

IRQ inter-arrival time tirq2irq (ms)

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty
(%

)

(d) Deadline aware interrupt coalescing with dyn. deadline estimation (CDF)

Fig. 8. IRQ inter-arrival time evaluated for different bus loads: The plots present probability density functions (PDF) and cumulative distribution functions
(CDF) with and without interrupt coalescing.

Using deadline-aware interrupt coalescing (see Fig. 8d), the
50% mark can be shifted to 9.5 ms even for high bus loads.
The probability for IRQ inter-arrival times of at least 5 ms
for 80% bus load is approximately 95%. This predictable
behavior and the long spacing between consecutive IRQs
can be used for uninterrupted task processing (no VM exits,
cache pollution etc.) or to utilized deep sleep states with low
probability of wake ups caused by interrupts triggered from
CAN events.

V. Implementation

We implemented the three proposed coalescing mechanisms
as extension to a virtualized CAN controller [22] and evaluated
them with respect to their resource requirements. For our
implementation, we assume a virtualized system, in which
multiple VMs access the CAN bus through a shared, virtu-
alized CAN controller (see Fig. 9). The virtualized controller
consists of a protocol layer, which essentially implements
the CAN protocol, and a virtualization layer, which offers
abstract data path operations (prioritized buffering, receive

filters etc.) in the form of multiple virtual controllers. Each
virtual CAN controller is directly connected to a VM. As
part of the virtualization layer, the interrupt coalescing module
should be able to handle interrupts from multiple virtual CAN
controllers.

We implemented all three versions of deadline-aware in-
terrupt coalescing in a conditional Verilog module, i.e. parts
of the module are not synthesized based on a design-time
parameter. Using this parameter, we will compare the hardware
cost of all implementations. The architecture of the module is
shown in right half of Fig. 9, where conditional modules, ports
and signals are drawn colored and dashed/dotted, respectively.

After successful message reception from the CAN bus, an
IRQ is signaled to the timeout update module by a rising
flag in irq in. Which virtual CAN controllers are associated
with the IRQ is determined by irq vcan in. The component
maintains a timeout register for each virtual CAN controller.
The timeout value is decremented after each bit time (2 µs at
500 kbit/s) on the CAN bus indicated by can sample point
until it reaches zero. It is set if the slack of a received message



Fig. 9. Architecture of a virtualized system (left) with virtualized CAN controller (mid). As part of the virtualized CAN controller, the interrupt coalescing
module (left) is illustrated as conditional implementation, covering all three design alternatives.

is smaller than the current value or no IRQ is currently
pending. The implementations differ in how they obtain the
slack value. For fixed delay, the slack is a constant value. In
message based delay, a design time parameter is input through
the slack signal. It can be different for every message. In
dynamic deadline estimation, an additional module computes
the slack during run-time.

When a timeout reaches zero, an IRQ has to be forwarded.
The irq output module monitors the timer values and handles
the handshaking in IRQ signaling (irq out and irq ack). The
virtual CAN controller and therefore also the VM to which
the IRQ is directed is indicated by irq vcan out.

In the case of dynamic deadline estimation, the correspond-
ing module calculates the slack by estimating the time at which
the IRQ has to be forwarded to avoid deadline violations. It
maintains a time stamp representing the last time the CAN
bus was idle. It is taken at the start of a CAN frame (rising
edge in can go sof ) if can idle was high before. The slack
is calculated using (2) and the time stamp as an estimate for
the release time.

Static information about worst-case slacks and design time
deadlines of received messages required by the module are
stored alongside the reception filters in the Rx path of the
virtualization layer. Because we integrated them with an
existing RAM module, no additional hardware was required.

TABLE I
Hardware Resource Requirements

module Registers LUTs as Logic

Fixed delay 74 160
Message based delay 74 244
Dyn. deadline estimation 108 267

Protocol Layer 844 1239
Virtualization Layer 534 1735

We synthesized the module for the VC709 (Virtex-7) FPGA

board using Vivado 2013.3. The utilization of FPGA re-
sources for the coalescing modules supporting up to four
virtual CAN controllers is shown in Table I. As expected,
the implementation costs are increasing with the complexity
and granularity of the respective method. When transitioning
from fixed to message based delay, additional logic is required,
because received frames can have smaller slack than the
current timeout value.

Dynamic deadline estimation requires an additional module
to calculate the remaining slack of each received message.
Compared to the implementation using a static, message based
delay, around 45% additional registers 10% additional LUTs
are necessary. The register overhead mainly stems from the
additional timers that are used in the deadline estimation
module.

For comparison, we additionally synthesized the virtualized
CAN controller. The protocol layer is based on an OpenCores
CAN controller1. The interrupt coalescing extensions require
between 11.8% and 17.3% additional registers and between
17.6% and 29.3% additional LUTs compared to the protocol
layer. When also considering the virtualization extensions, the
relative overhead decreases to 5.4-7.8% in registers and 3.4-
5.7% in LUTs.

VI. Conclusion

In this paper, we presented a concept for deadline-aware
interrupt coalescing applied to controller area network (CAN).
The proposed method tackles the problem of high interrupt
processing overheads in real-time computer systems. Multiple
events are signaled by a single interrupt without violating real-
time constraints.

The general concept of deadline aware interrupt coalescing
can be effectively applied to any kind of interrupt sources, if
the following criteria are met: 1. The average slack associated

1http://opencores.org/project,can



with the forwarding of interrupts is large compared to the inter-
arrival of interrupts triggers. 2. (Partial) information about
deadlines of interrupt forwarding is available.

These conditions are fulfilled for CAN. Especially for future
domain controlled architectures, where a single ECU consoli-
dates multiple previously distributed functions, the high inter-
arrival rate of relevant messages allows an efficient coalescing
of interrupts.

We proposed three versions of deadline-aware interrupt
coalescing for CAN, which differ in how they derive deadline
information. Two approaches rely on static worst-case tim-
ing information. The third approach uses pessimistic online
estimations of message deadlines. Based on these deadline
estimations, reliable forwarding decisions can be taken.

We evaluated all three approaches with respect to their
ability to reduce the number of forwarded interrupts. The best
results can be obtained using dynamic deadline estimations.
At 80% bus load, only 1 in 20 interrupts has to be forwarded
compared to state-of-the-art controllers. The advantage of
dynamic deadline estimation over static approaches is greater
in the presence of low latency requirements.

The interrupt coalescing enforces a highly deterministic
shaping in interrupt inter-arrival times. We were able to show
that interrupts arrive in intervals greater than 9.5 ms with 50%
probability at 80% bus load (300 µs without coalescing).

Finally, we implemented the proposed design alternatives as
submodule of a virtualized CAN controller for Virtex-7 FPGA.
As expected, dynamic deadline estimation requires the most
hardware resources. However, compared to the overall design
of a virtualized CAN controller, it only adds an overhead of
7.8% in registers and 5.7% in LUTs.

Acknowledgments

This work was funded within the project ARAMiS by the
German Federal Ministry for Education and Research with
the funding IDs 01|S11035. The responsibility for the content
remains with the authors.

References
[1] G. Gut, C. Allmann, M. Schurius, and K. Schmidt, “Reduction of

electronic control units in electric vehicles using multicore technology,”
in Proceedings of the 2012 International Conference on Multicore
Software Engineering, Performance, and Tools. Springer-Verlag, 2012,
pp. 90–93.

[2] D. Reinhardt and M. Kucera, “Domain controlled architecture: A new
approach for large scale software integrated automotive systems,” in
Pervasive and Embedded Computing and Communication Systems, 2013,
pp. 221–226.

[3] M. Di Natale and A. L. Sangiovanni-Vincentelli, “Moving from fed-
erated to integrated architectures in automotive: The role of standards,
methods and tools,” Proceedings of the IEEE, vol. 98, no. 4, pp. 603–
620, 2010.

[4] D. Reinhardt, D. Kaule, and M. Kucera, “Achieving a scalable e/e-
architecture using autosar and virtualization,” SAE International Journal
of Passenger Cars-Electronic and Electrical Systems, vol. 6, no. 2, pp.
489–497, 2013.

[5] K. Sandstrom, A. Vulgarakis, M. Lindgren, and T. Nolte, “Virtualization
technologies in embedded real-time systems,” in Emerging Technologies
& Factory Automation (ETFA), 2013 IEEE 18th Conference on. IEEE,
2013, pp. 1–8.

[6] M. Strobl, M. Kucera, A. Foeldi, T. Waas, N. Balbierer, and C. Hilbert,
“Towards automotive virtualization,” in Applied Electronics (AE), 2013
International Conference on. IEEE, 2013, pp. 1–6.

[7] R. Schneider, A. Kohn, K. Schmidt, S. Schoenberg, U. Dannebaum,
J. Harnisch, and Q. Zhou, “Efficient virtualization for functional inte-
gration on modern microcontrollers in safety-relevant domains,” in SAE
World Congress 2014. SAE International, 2014.

[8] A. Menon, J. Santos, Y. Turner, G. Janakiraman, and W. Zwaenepoel,
“Diagnosing performance overheads in the xen virtual machine environ-
ment,” in Proceedings of the 1st ACM/USENIX international conference
on Virtual execution environments. ACM, 2005, pp. 13–23.

[9] Y. Dong, D. Xu, Y. Zhang, and G. Liao, “Optimizing network i/o
virtualization with efficient interrupt coalescing and virtual receive side
scaling,” in Cluster Computing (CLUSTER), 2011 IEEE International
Conference on. IEEE, 2011, pp. 26–34.

[10] L. C. Eggebrecht, Interfacing to the IBM personal computer, 2nd ed.
Sams, July 1990.

[11] J. C. Mogul and K. Ramakrishnan, “Eliminating receive livelock in
an interrupt-driven kernel,” ACM Transactions on Computer Systems,
vol. 15, no. 3, pp. 217–252, 1997.

[12] P. Druschel, L. L. Peterson, and B. S. Davie, “Experiences with a
high-speed network adaptor: A software perspective,” in Proceedings
of the Conference on Communications Architectures, Protocols and
Applications, ser. SIGCOMM ’94. New York, NY, USA: ACM, 1994,
pp. 2–13.

[13] M. Zec, M. Mikuc, and M. Zagar, “Estimating the impact of interrupt
coalescing delays on steady state tcp throughput,” in SoftCOM 2002:
international conference on software, telecommunications and computer
networks, 2002, pp. 219–224.

[14] I. Ahmad, A. Gulati, and A. Mashtizadeh, “vic: Interrupt coalescing for
virtual machine storage device io,” in 2011 USENIX Annual Technical
Conference (USENIX ATC11), 2011.

[15] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan, “High
performance network virtualization with sr-iov,” Journal of Parallel and
Distributed Computing, 2012.

[16] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau, A. Schus-
ter, and D. Tsafrir, “Eli: bare-metal performance for i/o virtualization,”
ACM SIGARCH Computer Architecture News, vol. 40, no. 1, pp. 411–
422, 2012.

[17] H. Guan, Y. Dong, K. Tian, and J. Li, “Sr-iov based network interrupt-
free virtualization with event based polling,” Selected Areas in Commu-
nications, IEEE Journal on, vol. 31, no. 12, pp. 2596–2609, 2013.

[18] M. Di Natale and H. Zeng, “Practical issues with the timing analysis
of the controller area network,” in Emerging Technologies & Factory
Automation (ETFA), 2013 IEEE 18th Conference on. IEEE, 2013, pp.
1–8.

[19] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area
network (can) schedulability analysis: Refuted, revisited and revised,”
Real-Time Systems, vol. 35, no. 3, pp. 239–272, 2007.

[20] H. Zeng, M. Di Natale, P. Giusto, and A. Sangiovanni-Vincentelli,
“Statistical analysis of controller area network message response times,”
in Industrial Embedded Systems, 2009. SIES’09. IEEE International
Symposium on. IEEE, 2009, pp. 1–10.

[21] A. Bastoni, B. Brandenburg, and J. Anderson, “Cache-related preemp-
tion and migration delays: Empirical approximation and impact on
schedulability,” Proceedings of OSPERT, pp. 33–44, 2010.

[22] C. Herber, A. Richter, H. Rauchfuss, and A. Herkersdorf, “Self-
virtualized can controller for multi-core processors in real-time ap-
plications,” in International Conference on Architecture of Computing
Systems (ARCS), 2013, pp. 244–255.


