

An Approach to Describe Arbitrary Transition Curves in an IFC Based

Alignment Product Data Model

J. Amann1, M. Flurl2, J. R. Jubierre1, A. Borrmann1

1Chair of Computational Modeling and Simulation, Faculty of Civil, Geo and

Environmental Engineering, Technische Universität München, P.O. Box 80333,

Munich, Arcisstrasse 21; PH +49 89 289 23047; FAX +49 89 289 25051;

email:{julian.amann, javier.jubierre, andre.borrmann}@tum.de
2Chair for Computation in Engineering, Faculty of Civil, Geo and Environmental

Engineering, Technische Universität München, P.O. Box 80333, Munich,

Arcisstrasse 21; PH +49 89 289 23047; FAX +49 89 289 25051;

email: matthias.flurl@tum.de

Leonhard Obermeyer Center – TUM Center of Digital Methods for the Built

Environment

ABSTRACT

 Open standards for infrastructure based on IFC (Industry Foundation

Classes) are mainly developed by the openINFRA initiative of the buildingSMART

organization. Recently, several proposals for alignment models emerged with the

development of the upcoming IFC 5 standard that in particular targets infrastructure

projects such as roads, bridges and tunnel buildings. A common drawback of all

these proposals is their limited description of arbitrary transition curves. For

instance, in all proposed alignment models there are some missing types of

transition curves, or different parameters are suggested to describe a certain

transition curve type. Designing a neutral data format that satisfies all stakeholders

in an international context is therefore difficult. A novel approach to describe

transition curves based on the so-called IFCPL (Industry Foundation Classes

Programming Language) is described and its integration into an IFC based

alignment model is shown to avoid these problems.

INTRODUCTION AND MOTIVATION

The highest level of abstraction in the description of linear infrastructure projects

such as roads, bridges or tunnel buildings is the so-called alignment model, which

defines the principle course of the infrastructure project. With the ongoing

development of the upcoming IFC 5 standard that in particular targets infrastructure

projects, many different proposals for alignment models emerged. These proposals

share the idea to describe the final alignment by the superposition of two two-

dimensional curves, namely the horizontal and vertical alignment. Usually, the

horizontal alignment consists of line segments, arcs and transition curves and

describes the course of an alignment in the XY plane, while the vertical alignment

usually consists of line segments and parabola arcs and defines the corresponding

z-coordinates as a function of the length s of the horizontal alignment curve up to a

certain point.

Transition curves ensure a smooth transition between elements with different

curvature in order to avoid curvature discontinuities (see Figure 1). For instance, if

a straight line segment is directly followed by an arc segment, the resulting

(continuous) alignment curve would have a discontinuity in the curvature. A

possible transition curve is a clothoid also known as Euler spiral. In its real world

application a clothoid enables a car driver to ride smoothly through a curve by

turning the steering wheel with a constant speed. Besides the clothoid, many

different types of transition curves exist that are crucial for smooth alignment

design resulting in the difficult question which transition curves should be included

in an alignment model.

Figure 1. Transitions curves, such as clothoids result in smooth transition

from a line to an arc segment which is important in alignment design.

None of the existing standards, such as LandXML (Rebolj et al. 2008),

OKSTRA (Schultze and Buhmann 2008), or RoadXML (Chaplier et al. 2010),

supports all types of transition curves used in Civil Engineering (see Table 1). For

instance, LandXML is missing a C-Clothid curve type, OKSTRA is missing a

sinusoid curve type, and RoadXML and the IfcAlignment Proposal (Amann et al.

2013) lack the support of a Bloss transition curve type. Even if we provide a very

large amount of different transition curve types, it is most likely that we are missing

support of one particular transition curve type that is used for instance in a special

domain like railways or is specific to a certain country policy. To overcome these

issues, we propose an approach to describe transition curves in a generic

representation that supports all transition curve types.

Table 1. Support of different transition curve types across different

standards.
Curve Type LandXML RoadXML OKSTRA IfcAlignment Proposal

Clothoid Yes Yes Yes Yes

Bloss Yes No No No

Sinusoid Yes No No No

Wiener Bogen Yes No No No

C-Clothoid No No No No

RELATED WORK

There are a number of existing standards for representing and exchanging alignment

data. The most frequently used one for data exchange purposes is LandXML

(Rebolj et al. 2008), which is nevertheless currently not being supported by any

standard organization. LandXML supports 16 different transition curve types. A

transition curve is called ‘Spiral’ in LandXML. The XML schema definition of a

‘Spiral’ is shown in Table 2. The development of LandXML suddenly stopped in

2009. Besides, the LandXML schema has several flaws such as insufficient

documentation, syntax errors in the LandXML 1.2 schema, weak point typing, case

inconsistencies, or name inconsistencies (Scarponcini 2013).

Table 2. Listing of the XSD definition of the element type ‘Spiral’ in

LandXML.

<xs:element name="Spiral">

 <xs:complexType>

 <xs:sequence>

 <xs:choice minOccurs="3" maxOccurs="3">

 <xs:element ref="Start"/>

 <xs:element ref="PI"/>

 <xs:element ref="End"/>

 </xs:choice>

<xs:element ref="Feature" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="length" type="xs:double" use="required"/>

 <xs:attribute name="radiusEnd" type="xs:double" use="required"/>

 <xs:attribute name="radiusStart" type="xs:double" use="required"/>

 <xs:attribute name="rot" type="clockwise" use="required"/>

 <xs:attribute name="spiType" type="spiralType" use="required"/>

 <xs:attribute name="chord" type="xs:double"/>

 <--! Continued: -->

 <xs:attribute name="constant" type="xs:double"/>

 <xs:attribute name="desc" type="xs:string"/>

 <xs:attribute name="dirEnd" type="direction"/>

 <xs:attribute name="dirStart" type="direction"/>

 <xs:attribute name="name" type="xs:string"/>

 <xs:attribute name="theta" type="angle"/>

 <xs:attribute name="totalY" type="xs:double"/>

 <xs:attribute name="totalX" type="xs:double"/>

 <xs:attribute name="staStart" type="xs:double"/>

 <xs:attribute name="state" type="stateType"/>

 <xs:attribute name="tanLong" type="xs:double"/>

 <xs:attribute name="tanShort" type="xs:double"/>

 <xs:attribute name="oID" type="xs:string"/>

 </xs:complexType>

</xs:element>

The possible 16 different transition curve types are bloss, clothoid, cosine,

cubic, sinusoid, reverse biquadratic, reverse bloss, reverse cosine, reverse sinusoid,

sine half wave, biquadratic parabola, cubic parabola, Japanese cubic, radioid,

Wiener Bogen and can be described by this ‘Spiral’ type (the curve type is defined

by the ‘spiType’ attribute). The LandXML ‘Spiral’ types have many drawbacks.

For example a clothoid can be described unambiguously by specifying only six

parameters (six double values), while LandXML allows to overdetermine the spiral

type, for instance by specifying a clothoid with more than six values. Unfortunately,

that also allows to specify impossible transition curves, which violates the principle

of data integrity.

RoadXML (Chaplier et al. 2010) is a standard that is commonly used in car

driving simulation applications. Its road description is also based on a vertical and

a horizontal alignment. Exclusively, clothoids are used for transition curves in

RoadXML. Clothoids are described by six parameters (see Table 3). This allows a

very compact and at the same time unique definition of a clothoid. Other transition

curve types are missing in RoadXML.

Table 3. Clothoid parameters in RoadXML.
Name Type Description

x double The x coordinate of the starting point

y double The y coordinate of the starting point

direction double The orientation at the starting point

startCurvature double The starting curvature (1/radius)

endCurvature double The ending curvature (1/radius)

length double Length of the clothoid

OKSTRA (Schultze and Buhmann 2008) is used for road information

systems for the federal government, states, counties and communities within the

Federal Republic of Germany. OKSTRA does only support clothoids as a transition

curve type.

Besides the existing alignment data models, there are also some

developments in upcoming standards which also provide their own alignment

models like IfcBridge (Yabuki et al. 2006) or openBrIM (U.S. Department of

Federal Transportation 2013).

FROM PLAIN PARAMETERS TO CONSTRUCTION RULES

In the following sections we focus on transition curves, but denote them just

as curves for simplicity reasons. All subsequent considerations can be easily

transferred to curves, in general. All considered standards share the idea to describe

a curve by defining a set of parameters, such as a start and an end point, start radius

or similar parameters. Thus, if an alignment expert or a software vendor want to

leverage the corresponding alignment data model, it is their duty to understand and

interpret these parameters for each curve type. This approach often leads to

problems resulting from missing, informal, incomplete or flawed documentation.

For example, observe the deficient documentation of the spiral type in LandXML

1.2 schema. The spiral type in LandXML has 19 different XML attributes (see

Table 2). For none of them a documentation is available (see LandXML

documentation at landxml.org). A developer has to deduce the meaning of the

attribute merely from its name. But even a very good and complete documentation

does not prevent the reader to misinterpret or misunderstand the meaning of given

parameters. Besides this problem it is also time consuming to understand and

implement each curve type.

A neutral standard for an alignment data model should support a rich set of curve

types in order to be accepted internationally, in particular it should be aware of

region specific facts. This is a typical problem of all of the described alignment

model standards. But even if a rich set of curves is included, it is often not clear

which parameters should be used in order to describe a certain curve type. For

instance, instead of storing the start or end curvature of a clothoid, the start or end

radius could also be used respectively. This burdens the developer of a standard to

incorporate a minimal, but sufficient set of parameters or to integrate redundant

data, as exemplarily done in the LandXML specification of the spiral type.

Due to the reasons described above, we propose an inversion of control in the design

of an alignment model standard. The main idea in the inversion of control approach

is not to store parameters and their values solely, but to additionally exchange

functions to interpret these values in order to visualize or analyze curves. Thereby,

the computational algorithm for a curve itself is described in a neutral data standard

– the below proposed so-called IFCPL– and interchanged between different

applications.

INVERSION OF CONTROL – INCORPORATING CONSTRUCTION

RULES

In the following section, we will explain this inversion of control approach in detail

and highlight its advantages in comparison to the currently used approaches. It is

clear, that in order to exchange the geometry of a curve specific parameters and

their values must be exchanged. To this end, currently used alignment data models

define a proper description for each type of curve and a specific set of parameters,

which allows a correct reconstruction of this curve.

To overcome the above explained drawbacks of this approach, we propose to

include only one generic curve type into the alignment data model specification

representing all possible curves such as clothoids, cubic parabolas, etc. Since

different curve types depend on different parameter sets, the way of describing

parameters also has to be generic. We propose to use a generic parameter set, which

does not dictate which specific parameters to include, but merely gives the

possibility to store a set of (suitable) parameters, in a general way. In the field of

Building Information Modeling the functionality of IfcPropertySets to store

parameters and their values, respectively, is widely accepted and standardized.

Simply put, an IfcPropertySet is a set containing IfcProperties, which themselves

contain the actual data as a triple including name, type, and value. Thus, we suggest

storing the parameter and their values necessary to describe a curve as IfcProperties

and to compose them into an IfcPropertySet.

To allow a correct interpretation of a curve, we determine a mandatory inclusion of

suitable functionality in a specific alignment describing document. To this end, a

common interface that defines a set of functions necessary to visualize and analyze

curves is defined in the alignment data model specification. Furthermore, the

specification stipulates the integration of functions implementing the prescribed

interface. It remains the user’s decision to provide its own suitable interpretation

functionality or to rely on already existing functionality. To provide a generic way

to create this functionality, we recommend the usage of the so-called IFC

Programming Language (IFCPL), which is a dedicated imperative language and

will be described below. In particular, this programming language defines a proper

interface that is suited to visualize a curve.

This approach offers several advantages:

 The user is free to use whatever set of parameters he or she wants to use to

describe a transition curve, as long as a proper interpretation function is

available.

 There is no more possibility for the misinterpretation of a given parameter set

by the user, since the provided interpretation functionality unburdens the user

from the interpretation task.

 A user can introduce new curve types nobody thought of before. Only new

functionality to interpret this curve and its describing parameters respectively

needs to be added to support this new curve type.

 In principle, no more documentation for describing a curve or the used

parameter set respectively is necessary, but surely useful.

 No time is needed to understand and implement different curve types, since

this knowledge is no longer vendor specific application knowledge.

For instance, a user describes a clothoid by an IfcPropertySet comprising

the following parameters: the coordinates of the start point, the tangents intersection

point, start and end radius, the clothoid constant and the (clockwise) orientation.

Additionally, he consigns a function that provides the possibility to calculate the x-

and y-position of the clothoid points as function of the percentage position between

start and endpoint, a functionality to extract the parameters and their values

respectively from the IfcPropertySet. On the one hand, this enables the recipient to

visualize the clothoid by using the first function in an extremely easy, but safe way,

and on the other hand, to do its own analysis of the clothoids by providing the

specific parameters and their values.

DEFINITION OF AN ARBITRARY TRANSITON CURVE

Figure 2. Abstraction of an arbitrary transition curve.

An interface for a transition curve is shown in Figure 2. This interface is sufficient

to display the data of an arbitrary transition curve. The getLength() method can be

used to query the length of a transition curve segment. The method getPosition() is

used to retrieve a 2D position on the transition curve (since the transition curve is

part of the horizontal alignment, it has a 2D position). When the lerpParamter of

the getPosition() is set to 0 it returns the start position of the transition curve. If it

is set to 1, it returns the end position of the transition curve. For values in between

linear interpolation (short lerp) is used to determine a point that is located at the

corresponding position. For instance, a lerp parameter of 0.3 returns the point that

is reached when 30% of the length along the transition curve is travelled. The

getParameter() method returns the IfcPropertySet, which contains all

IfcProperties.

Figure 3. Overview of the integration of arbitrary transitions curves into the

IFC alignment schema.

A parameter of the transition curve is represented as an IfcProperty. The

different IfcProperty elements are collected in an IfcPropertySet that is referenced

by an IfcArbitrayTransitionCurve. The IfcArbitrayTransitionCurve is a subclass of

IfcTransitionCurve. IfcTransitionCurve is a part of the alignment model described

in [ABH2013]. Furthermore, IfcArbitraryTransitionCurve references an

IfcProgram (see Figure 3). We propose to introduce the entity IfcProgram for

holding imperative code written in a special-purpose programming language, which

will be introduced below. An IfcProgram holds the construction rule of a transition

curve in the form of a token list. The transition curve is associated with two

instances of IfcProgram (position and length program). The IfcProgram consists of

a list of IfcToken objects. Each token is a single atomic unit of the language, for

instance a keyword, identifier or symbol name.

IFC PROGRAMMING LANGUAGE (IFCPL)

We illustrate the use of IFCPL by an example describing how a curve is defined.

For simplicity reasons we choose a straight line. The line is defined by its start and

end point. For the start point we store an ‘xStart’ and ‘yStart’ IfcProperty of type

IfcPositiveLengthMeasure in the parameter set (IfcPropertySet) of the

IfcArbitrayTransitionCurve. The same is done for the end point (‘xEnd’ and

‘yEnd’). Now we define two IFCPL programs representing the actual construction

rule. To this end, we define the ‘LengthProgram’ and the ‘PositionProgram’. The

length program determines how the length of the curve is computed. In the example,

the length between two points can be computed by using the Euclidian distance.

The length program is depicted in Table 4 (left column).

Table 4. The IFCPL length and position program.
Length program Position program
dx = xEnd - xStart;
dy = yEnd - yStart;
dx2 = dx * dx;
dy2 = dy * dy;
return(sqrt(dx2+dy2));

vx = (1-lerpParamter) * xStart + lerpParamter * xEnd;
vy = (1-lerpParamter) * yStart + lerpParamter * yEnd;
return(vx,vy);

 The length program uses the variables ‘xStart’, ‘yStart’, ‘xEnd’, ‘yEnd’.

These variables and values are known to the program, because all variables

contained in the parameter set (IfcPropertySet of the IfcArbitrayTransitionCurve)

are injected into the length and position program of the transition curve on startup.

Additionally, a ‘lerpParameter’ variable is injected into the position program, which

is shown in Table 4 (right column). A return statement pushes the computed value

on a return stack that can be further processed by an application.

IFCPL provides several basic built in functions like abs, sin, cos, tan, print, input,

return, factorial, or sqrt. For instance, the sqrt function computes the square root

of a number. The print function can be used to write output for debugging purposes.

Variables in IFCPL need not to be defined. A variable always takes the type of the

expression it is assigned.

SOFTWARE INTEGRATION

For executing IFCPL programs an interpreter is needed that processes the IFCPL

code. To validate the proposed approach, we have prototypically implemented an

IFCPL interpreter in a tool suite called IFCPL Environment. This environment is

provided in the form of a shared library so it can be directly used by other

applications such as parametric CAD tools. Thus, there is no need that every tool

implements an own parser and interpreter. Figure 4 shows an overview of the

IFCPL Environment.

Figure 4. Overview of the IFCPL Environment including the integration of

the IFCPL interpreter into Siemens NX and Autodesk Inventor.

CONCLUSION

We presented a general method for representing transition curves in a generic

manner. Our approach is based on the employment of the imperative programming

language IFPCL for describing the computation of curve points in dependency of a

given abscissa. We indicated the integration of an interpreter of this language into

existing software solutions, thus providing a very fast and convenient way for

achieving interoperability in the infrastructure sector.

REFERENCES

Amann, J.; Borrmann, A,; Hegemann, F.; Jubierre, J.R.; Flurl, M.; Koch, C.; König,

M.:(2013). „A Refined Product Model for Shield Tunnels Based on a

Generalized Approach for Alignment Representation”, In: Proc. of the

ICCBEI 2013, Tokyo, Japan.

U.S. Department of Transportation, Federal Highway Administration (2013),

“Open BrIM Standards”,

https://www.transportationresearch.gov/dot/fhwa/ascbt/brim/default.aspx

Chaplier, J., That, T. N., Hewatt, M., and Gallée, G. (2010) “Toward a standard:

RoadXML, the road network database format” At the proceedings of the

Driving Simulation Conference, pp. 211-220.

Rebolj, D., Tibaut, A., Čuš-Babič, N., Magdič, A., and Podbreznik, P. (2008).

“Development and application of a road product model”. In: Automation in

Construction, Volume 17, pp. 719-728.

Scarponcini, P.: (2013). “InfraGML Proposal (13-121)”, OGC Land and

Infrastructure DWG/SWG.

Schultze, C. ; Buhmann, E. (2008) “Developing the OKSTRA® Standard for the

Needs of Landscape Planning in Context of Implementation for Mitigation

and Landscape Envelope Planning of Road Projects”. International

conference on information technologies in landscape architecture; Digital

design in landscape architecture, International conference on information

technologies in landscape architecture; Digital design in landscape

architecture; 310-320.

Yabuki, N., Lebeque, E., Gual, J., Shitani, T. and Li, Z. T., (2006). International

Collaboration for Developing the Bridge Product Model IFC-Bridge, In

Proc. Of the International Conference on Computing and Decision Making

in Civil and Building Engineering.

http://www.cms.bgu.tum.de/publications/Amann_2013_ICCBEI.pdf
http://www.cms.bgu.tum.de/publications/Amann_2013_ICCBEI.pdf
https://getinfo.de/app/subject-search?action=search&author=%22Schultze%2c+C.%22&form=advanced
https://getinfo.de/app/subject-search?action=search&author=%22Buhmann%2c+E.%22&form=advanced

