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ABSTRACT 
 

 Open standards for infrastructure based on IFC (Industry Foundation 

Classes) are mainly developed by the openINFRA initiative of the buildingSMART 

organization. Recently, several proposals for alignment models emerged with the 

development of the upcoming IFC 5 standard that in particular targets infrastructure 

projects such as roads, bridges and tunnel buildings. A common drawback of all 

these proposals is their limited description of arbitrary transition curves. For 

instance, in all proposed alignment models there are some missing types of 

transition curves, or different parameters are suggested to describe a certain 

transition curve type. Designing a neutral data format that satisfies all stakeholders 

in an international context is therefore difficult. A novel approach to describe 

transition curves based on the so-called IFCPL (Industry Foundation Classes 

Programming Language) is described and its integration into an IFC based 

alignment model is shown to avoid these problems. 

 
INTRODUCTION AND MOTIVATION 

The highest level of abstraction in the description of linear infrastructure projects 

such as roads, bridges or tunnel buildings is the so-called alignment model, which 

defines the principle course of the infrastructure project. With the ongoing 

development of the upcoming IFC 5 standard that in particular targets infrastructure 

projects, many different proposals for alignment models emerged. These proposals 

share the idea to describe the final alignment by the superposition of two two-

dimensional curves, namely the horizontal and vertical alignment. Usually, the 

horizontal alignment consists of line segments, arcs and transition curves and 

describes the course of an alignment in the XY plane, while the vertical alignment 

usually consists of line segments and parabola arcs and defines the corresponding 

z-coordinates as a function of the length s of the horizontal alignment curve up to a 

certain point. 



Transition curves ensure a smooth transition between elements with different 

curvature in order to avoid curvature discontinuities (see Figure 1). For instance, if 

a straight line segment is directly followed by an arc segment, the resulting 

(continuous) alignment curve would have a discontinuity in the curvature. A 

possible transition curve is a clothoid also known as Euler spiral. In its real world 

application a clothoid enables a car driver to ride smoothly through a curve by 

turning the steering wheel with a constant speed. Besides the clothoid, many 

different types of transition curves exist that are crucial for smooth alignment 

design resulting in the difficult question which transition curves should be included 

in an alignment model. 

 
Figure 1. Transitions curves, such as clothoids result in smooth transition 

from a line to an arc segment which is important in alignment design. 

None of the existing standards, such as LandXML (Rebolj et al. 2008), 

OKSTRA (Schultze and Buhmann 2008), or RoadXML (Chaplier et al. 2010), 

supports all types of transition curves used in Civil Engineering (see Table 1). For 

instance, LandXML is missing a C-Clothid curve type, OKSTRA is missing a 

sinusoid curve type, and RoadXML and the IfcAlignment Proposal (Amann et al. 

2013) lack the support of a Bloss transition curve type. Even if we provide a very 

large amount of different transition curve types, it is most likely that we are missing 

support of one particular transition curve type that is used for instance in a special 

domain like railways or is specific to a certain country policy. To overcome these 

issues, we propose an approach to describe transition curves in a generic 

representation that supports all transition curve types.  

Table 1. Support of different transition curve types across different 

standards. 
Curve Type LandXML RoadXML OKSTRA IfcAlignment Proposal 

Clothoid Yes Yes Yes Yes 

Bloss Yes No No No 

Sinusoid Yes No No No 

Wiener Bogen Yes No No No 

C-Clothoid No No No No 

RELATED WORK 

There are a number of existing standards for representing and exchanging alignment 

data. The most frequently used one for data exchange purposes is LandXML 

(Rebolj et al. 2008), which is nevertheless currently not being supported by any 

standard organization. LandXML supports 16 different transition curve types. A 

transition curve is called ‘Spiral’ in LandXML. The XML schema definition of a 

‘Spiral’ is shown in Table 2. The development of LandXML suddenly stopped in 

2009. Besides, the LandXML schema has several flaws such as insufficient 



documentation, syntax errors in the LandXML 1.2 schema, weak point typing, case 

inconsistencies, or name inconsistencies (Scarponcini 2013).  

Table 2. Listing of the XSD definition of the element type ‘Spiral’ in 

LandXML. 

<xs:element name="Spiral"> 

   <xs:complexType> 

    <xs:sequence> 

      <xs:choice minOccurs="3" maxOccurs="3"> 

        <xs:element ref="Start"/> 

        <xs:element ref="PI"/> 

        <xs:element ref="End"/> 

      </xs:choice> 

<xs:element ref="Feature" minOccurs="0" maxOccurs="unbounded"/> 

    </xs:sequence> 

    <xs:attribute name="length" type="xs:double" use="required"/> 

    <xs:attribute name="radiusEnd" type="xs:double" use="required"/> 

    <xs:attribute name="radiusStart" type="xs:double" use="required"/> 

    <xs:attribute name="rot" type="clockwise" use="required"/> 

    <xs:attribute name="spiType" type="spiralType" use="required"/> 

    <xs:attribute name="chord" type="xs:double"/> 

 <--! Continued: --> 

 <xs:attribute name="constant" type="xs:double"/> 

   <xs:attribute name="desc" type="xs:string"/> 

   <xs:attribute name="dirEnd" type="direction"/> 

   <xs:attribute name="dirStart" type="direction"/> 

   <xs:attribute name="name" type="xs:string"/> 

   <xs:attribute name="theta" type="angle"/> 

   <xs:attribute name="totalY" type="xs:double"/> 

   <xs:attribute name="totalX" type="xs:double"/> 

   <xs:attribute name="staStart" type="xs:double"/> 

   <xs:attribute name="state" type="stateType"/> 

   <xs:attribute name="tanLong" type="xs:double"/> 

   <xs:attribute name="tanShort" type="xs:double"/> 

    <xs:attribute name="oID" type="xs:string"/> 

  </xs:complexType> 

</xs:element> 

The possible 16 different transition curve types are bloss, clothoid, cosine, 

cubic, sinusoid, reverse biquadratic, reverse bloss, reverse cosine, reverse sinusoid, 

sine half wave, biquadratic parabola, cubic parabola, Japanese cubic, radioid, 

Wiener Bogen and can be described by this ‘Spiral’ type (the curve type is defined 

by the ‘spiType’ attribute). The LandXML ‘Spiral’ types have many drawbacks. 

For example a clothoid can be described unambiguously by specifying only six 

parameters (six double values), while LandXML allows to overdetermine the spiral 

type, for instance by specifying a clothoid with more than six values. Unfortunately, 

that also allows to specify impossible transition curves, which violates the principle 

of data integrity. 

RoadXML (Chaplier et al. 2010) is a standard that is commonly used in car 

driving simulation applications. Its road description is also based on a vertical and 

a horizontal alignment. Exclusively, clothoids are used for transition curves in 

RoadXML. Clothoids are described by six parameters (see Table 3). This allows a 

very compact and at the same time unique definition of a clothoid. Other transition 

curve types are missing in RoadXML. 

Table 3. Clothoid parameters in RoadXML. 
Name Type Description 

x  double The x coordinate of the starting point  

y double The y coordinate of the starting point  

direction double The orientation at the starting point  

startCurvature double The starting curvature (1/radius) 

endCurvature double The ending curvature (1/radius) 

length double Length of the clothoid 

OKSTRA (Schultze and Buhmann 2008) is used for road information 

systems for the federal government, states, counties and communities within the 

Federal Republic of Germany. OKSTRA does only support clothoids as a transition 

curve type.  



Besides the existing alignment data models, there are also some 

developments in upcoming standards which also provide their own alignment 

models like IfcBridge (Yabuki et al. 2006) or openBrIM (U.S. Department of 

Federal Transportation 2013).  

FROM PLAIN PARAMETERS TO CONSTRUCTION RULES 

In the following sections we focus on transition curves, but denote them just 

as curves for simplicity reasons. All subsequent considerations can be easily 

transferred to curves, in general. All considered standards share the idea to describe 

a curve by defining a set of parameters, such as a start and an end point, start radius 

or similar parameters. Thus, if an alignment expert or a software vendor want to 

leverage the corresponding alignment data model, it is their duty to understand and 

interpret these parameters for each curve type. This approach often leads to 

problems resulting from missing, informal, incomplete or flawed documentation. 

For example, observe the deficient documentation of the spiral type in LandXML 

1.2 schema. The spiral type in LandXML has 19 different XML attributes (see 

Table 2). For none of them a documentation is available (see LandXML 

documentation at landxml.org). A developer has to deduce the meaning of the 

attribute merely from its name. But even a very good and complete documentation 

does not prevent the reader to misinterpret or misunderstand the meaning of given 

parameters. Besides this problem it is also time consuming to understand and 

implement each curve type. 

A neutral standard for an alignment data model should support a rich set of curve 

types in order to be accepted internationally, in particular it should be aware of 

region specific facts. This is a typical problem of all of the described alignment 

model standards. But even if a rich set of curves is included, it is often not clear 

which parameters should be used in order to describe a certain curve type. For 

instance, instead of storing the start or end curvature of a clothoid, the start or end 

radius could also be used respectively. This burdens the developer of a standard to 

incorporate a minimal, but sufficient set of parameters or to integrate redundant 

data, as exemplarily done in the LandXML specification of the spiral type. 

Due to the reasons described above, we propose an inversion of control in the design 

of an alignment model standard. The main idea in the inversion of control approach 

is not to store parameters and their values solely, but to additionally exchange 

functions to interpret these values in order to visualize or analyze curves. Thereby, 

the computational algorithm for a curve itself is described in a neutral data standard 

– the below proposed so-called IFCPL– and interchanged between different 

applications.  

INVERSION OF CONTROL – INCORPORATING CONSTRUCTION 

RULES 

In the following section, we will explain this inversion of control approach in detail 

and highlight its advantages in comparison to the currently used approaches. It is 

clear, that in order to exchange the geometry of a curve specific parameters and 

their values must be exchanged. To this end, currently used alignment data models 

define a proper description for each type of curve and a specific set of parameters, 

which allows a correct reconstruction of this curve. 



To overcome the above explained drawbacks of this approach, we propose to 

include only one generic curve type into the alignment data model specification 

representing all possible curves such as clothoids, cubic parabolas, etc. Since 

different curve types depend on different parameter sets, the way of describing 

parameters also has to be generic. We propose to use a generic parameter set, which 

does not dictate which specific parameters to include, but merely gives the 

possibility to store a set of (suitable) parameters, in a general way. In the field of 

Building Information Modeling the functionality of IfcPropertySets to store 

parameters and their values, respectively, is widely accepted and standardized. 

Simply put, an IfcPropertySet is a set containing IfcProperties, which themselves 

contain the actual data as a triple including name, type, and value. Thus, we suggest 

storing the parameter and their values necessary to describe a curve as IfcProperties 

and to compose them into an IfcPropertySet.  

To allow a correct interpretation of a curve, we determine a mandatory inclusion of 

suitable functionality in a specific alignment describing document. To this end, a 

common interface that defines a set of functions necessary to visualize and analyze 

curves is defined in the alignment data model specification. Furthermore, the 

specification stipulates the integration of functions implementing the prescribed 

interface. It remains the user’s decision to provide its own suitable interpretation 

functionality or to rely on already existing functionality. To provide a generic way 

to create this functionality, we recommend the usage of the so-called IFC 

Programming Language (IFCPL), which is a dedicated imperative language and 

will be described below. In particular, this programming language defines a proper 

interface that is suited to visualize a curve.  

This approach offers several advantages:  

 The user is free to use whatever set of parameters he or she wants to use to 

describe a transition curve, as long as a proper interpretation function is 

available. 

 There is no more possibility for the misinterpretation of a given parameter set 

by the user, since the provided interpretation functionality unburdens the user 

from the interpretation task.  

 A user can introduce new curve types nobody thought of before. Only new 

functionality to interpret this curve and its describing parameters respectively 

needs to be added to support this new curve type. 

 In principle, no more documentation for describing a curve or the used 

parameter set respectively is necessary, but surely useful. 

 No time is needed to understand and implement different curve types, since 

this knowledge is no longer vendor specific application knowledge. 

For instance, a user describes a clothoid by an IfcPropertySet comprising 

the following parameters: the coordinates of the start point, the tangents intersection 

point, start and end radius, the clothoid constant and the (clockwise) orientation. 

Additionally, he consigns a function that provides the possibility to calculate the x- 

and y-position of the clothoid points as function of the percentage position between 

start and endpoint, a functionality to extract the parameters and their values 

respectively from the IfcPropertySet. On the one hand, this enables the recipient to 

visualize the clothoid by using the first function in an extremely easy, but safe way, 



and on the other hand, to do its own analysis of the clothoids by providing the 

specific parameters and their values. 

DEFINITION OF AN ARBITRARY TRANSITON CURVE 

 
Figure 2. Abstraction of an arbitrary transition curve. 

An interface for a transition curve is shown in Figure 2. This interface is sufficient 

to display the data of an arbitrary transition curve. The getLength() method can be 

used to query the length of a transition curve segment. The method getPosition() is 

used to retrieve a 2D position on the transition curve (since the transition curve is 

part of the horizontal alignment, it has a 2D position). When the lerpParamter of 

the getPosition() is set to 0 it returns the start position of the transition curve. If it 

is set to 1, it returns the end position of the transition curve. For values in between 

linear interpolation (short lerp) is used to determine a point that is located at the 

corresponding position. For instance, a lerp parameter of 0.3 returns the point that 

is reached when 30% of the length along the transition curve is travelled. The 

getParameter() method returns the IfcPropertySet, which contains all 

IfcProperties.

 
Figure 3. Overview of the integration of arbitrary transitions curves into the 

IFC alignment schema. 

A parameter of the transition curve is represented as an IfcProperty. The 

different IfcProperty elements are collected in an IfcPropertySet that is referenced 

by an IfcArbitrayTransitionCurve. The IfcArbitrayTransitionCurve is a subclass of 

IfcTransitionCurve. IfcTransitionCurve is a part of the alignment model described 

in [ABH2013]. Furthermore, IfcArbitraryTransitionCurve references an 

IfcProgram (see Figure 3). We propose to introduce the entity IfcProgram for 

holding imperative code written in a special-purpose programming language, which 

will be introduced below. An IfcProgram holds the construction rule of a transition 

curve in the form of a token list. The transition curve is associated with two 



instances of IfcProgram (position and length program). The IfcProgram consists of 

a list of IfcToken objects. Each token is a single atomic unit of the language, for 

instance a keyword, identifier or symbol name. 

IFC PROGRAMMING LANGUAGE (IFCPL) 

We illustrate the use of IFCPL by an example describing how a curve is defined. 

For simplicity reasons we choose a straight line. The line is defined by its start and 

end point. For the start point we store an ‘xStart’ and ‘yStart’ IfcProperty of type 

IfcPositiveLengthMeasure in the parameter set (IfcPropertySet) of the 

IfcArbitrayTransitionCurve. The same is done for the end point (‘xEnd’ and 

‘yEnd’). Now we define two IFCPL programs representing the actual construction 

rule. To this end, we define the ‘LengthProgram’ and the ‘PositionProgram’. The 

length program determines how the length of the curve is computed. In the example, 

the length between two points can be computed by using the Euclidian distance. 

The length program is depicted in Table 4 (left column). 

Table 4. The IFCPL length and position program. 
Length program  Position program 
dx = xEnd - xStart; 
dy = yEnd - yStart; 
dx2 = dx * dx; 
dy2 = dy * dy; 
return(sqrt(dx2+dy2)); 

vx = (1-lerpParamter) * xStart + lerpParamter * xEnd; 
vy = (1-lerpParamter) * yStart + lerpParamter * yEnd; 
return(vx,vy); 

 

 The length program uses the variables ‘xStart’, ‘yStart’, ‘xEnd’, ‘yEnd’. 

These variables and values are known to the program, because all variables 

contained in the parameter set (IfcPropertySet of the IfcArbitrayTransitionCurve) 

are injected into the length and position program of the transition curve on startup. 

Additionally, a ‘lerpParameter’ variable is injected into the position program, which 

is shown in Table 4 (right column). A return statement pushes the computed value 

on a return stack that can be further processed by an application.  

 

IFCPL provides several basic built in functions like abs, sin, cos, tan, print, input, 

return, factorial, or sqrt. For instance, the sqrt function computes the square root 

of a number. The print function can be used to write output for debugging purposes. 

Variables in IFCPL need not to be defined. A variable always takes the type of the 

expression it is assigned. 

SOFTWARE INTEGRATION 

 

For executing IFCPL programs an interpreter is needed that processes the IFCPL 

code. To validate the proposed approach, we have prototypically implemented an 

IFCPL interpreter in a tool suite called IFCPL Environment. This environment is 

provided in the form of a shared library so it can be directly used by other 

applications such as parametric CAD tools. Thus, there is no need that every tool 

implements an own parser and interpreter. Figure 4 shows an overview of the 

IFCPL Environment. 

  



 
Figure 4. Overview of the IFCPL Environment including the integration of 

the IFCPL interpreter into Siemens NX and Autodesk Inventor. 

CONCLUSION  

 

We presented a general method for representing transition curves in a generic 

manner. Our approach is based on the employment of the imperative programming 

language IFPCL for describing the computation of curve points in dependency of a 

given abscissa. We indicated the integration of an interpreter of this language into 

existing software solutions, thus providing a very fast and convenient way for 

achieving interoperability in the infrastructure sector. 
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