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Abstract—If the senders and the receiver of an Arbitrarily
Varying Multiple-Access Channel (AV-MAC) have access to the
outputs of discrete correlated memoryless sources, the same rate
region is achievable as if common randomness were available.
This reduces the necessary amount of cooperation in an AV-
MAC considerably. Moreover, to transmit blocklength-n words,
no more than order logn source outputs are required.

I. INTRODUCTION

Arbitrarily Varying Channels (AVCs) and Arbitrarily Vary-
ing Multiple Access Channels (AV-MACs) are examples of
channels where deterministic coding must not be confused
with random coding. Ahlswede observed that in AVCs there
is a dichotomy: the deterministic capacity of an AVC, i.e. the
capacity achievable with deterministic coding, either equals
the random capacity, i.e. the capacity achievable with random
codes, or it equals zero [1]. Csiszár and Narayan showed that
the discriminating property is symmetrizability as introduced
by Ericson [6]: the deterministic capacity of an AVC equals
zero if and only if the channel is symmetrizable [5].

If the senders of an AV-MAC are allowed to do Willems
conferencing at positive rates C1, C2, the situation is rather
close. Willems conferencing was introduced by Willems in
[8], [9]. This iterative way of encoder cooperation interpolates
between the traditional non-cooperative case (C1 = C2 = 0)
and the case where the two senders can be treated as one (C1 =
C2 =∞). The symmetrizability condition applied in this case
is Ericson’s if the senders of the AV-MAC are considered to
be one. One obtains a dichotomy similar to the AVC case:
symmetrizability means that no message can be transmitted
deterministically, otherwise deterministic coding achieves the
same capacity region as random coding [7].

What does random coding mean? It means that both the
sender(s) and the receiver know the outcome of a single
random experiment which then is used to select the codewords
and decoding set for a given message (pair). The random
experiment is distributed according to a finite uniform dis-
tribution on a set with arbitrary cardinality. For the cases
described above, one can show that this cardinality can be
chosen to be quadratic in the blocklength of the random code.
But still, an application of random codes requires a lot of
coordination within the channel which in reality will be hard
to establish. Thus the question comes naturally whether less
“coordinated randomness” still is able to achieve the random
coding capacity or what it achieves instead.

For AVCs, this question was answered by Ahlswede and
Cai. If there is a Discrete Memoryless Multiple Source
(DMMS) with two stochastically dependent components, the
first of which is known to the sender and the second of which is
known to the receiver, then using this less coordinated type of
randomness is sufficient to achieve the random capacity. This
holds no matter whether or not the AVC is symmetrizable.
Thus one gets rid of the Ahlswede dichotomy at the expense
of allowing some randomness, which however does not have
to be coordinated as strongly as in what we have called
random coding so far [2]. To distinguish the two types of
randomness, we call the type of randomness described in the
first paragraphs common randomness, whereas in the second
case, we say that sender and receiver have access to correlated
sources.

The analogy to the AVC suggests that for AV-MACs, one
might get rid of the dichotomy observed for deterministic cod-
ing with the help of correlated sources. It is shown below that
this is indeed so and that the complete common randomness
capacity region is achievable, both where the senders have
a common source correlated with the receiver’s source, and
where there are three sources, one for each channel terminal.
It turns out that this can even be realized in a causal manner.

The core of the proof is to show that with these models,
some pair of positive rates is achievable. This can be done by
reducing the multi-sender setting to the single-sender setting
from [2] via conferencing. Once the existence of a pair of
positive rates has been established, one can apply Ahlswede’s
elimination technique developed in [1]. This is a derandom-
ization technique whose goal is to show the achievability of
the random coding capacity region. The underlying idea is that
the positive-rate code is used as a prefix code to transmit the
random index of any common randomness code.

For the AV-MAC, the application of the elimination tech-
nique has interesting consequences: one needs even less
coordination of randomness than in the case of the AVC
with correlated sources. In the latter case, the sender and
the receiver need n independent samples of their respective
sources. This result is used to show that a positive rate is
achievable in the AV-MAC with correlated sources. But the
correlated multiple-access codes thus obtained only enter the
code construction in the elimination technique as prefix codes
for random codes. As the blocklength of these prefix codes
grows logarithmically in the blocklength of the corresponding
random code, only order log n source outputs are necessary to



form a correlated sources code with blocklength n.
Suppose that a multiple access channel with conferencing

encoders is disturbed by a jammer. Information-theoretically,
this generates an AV-MAC. If only deterministic coding is
possible and the AV-MAC is symmetrizable, then the jammer
can completely prevent any message transmission from the
senders to the receiver. However, if the senders and the receiver
can observe the output of correlated sources, then the jammer
loses its power: transmission is possible at all rate pairs
contained in the common randomness capacity region.

Notation: For a positive integer M , we write [M ] :=
{1, . . . ,M}.

II. DEFINITIONS

Fix real numbers C1, C2 > 0. Let W be a set of stochastic
matrices with input alphabet X1 ×X2 and output alphabet Y .
W determines an Arbitrarily Varying Multiple-Access Channel
(AV-MAC). At each time instant, this channel arbitrarily as-
sumes one of the states contained inW . A Willems conference
is an iterative protocol to exchange information between
the senders. In the first time slot, each sender sends some
information to the other. In the subsequent time slots, they
again send information taking into account the information
from the other sender obtained so far. The process terminates
after a fixed number I of iterations. Such a protocol can be
described as a pair of functions

(c1, c2) : A1 ×A2 −→ K1 ×K2,

where A1, A2 represent the respective sender’s knowledge at
the outset of conferencing and Kν = Kν1× . . .×KνI for ν =
1, 2. Details can be found in [7], [9]. A Willems conference
has conferencing capacities C1, C2 at blocklength n if

1

n
log|Kν | ≤ Cν .

In this case, we call it an (n,C1, C2)-Willems conference.
The input to the conference may include any knowledge the
senders have. We use the notation

ν̄ =

{
2 if ν = 1,

1 if ν = 2.

A. Separate source for each node

Let (U1
1 , U

2
1 , V1), (U1

2 , U
2
2 , V2), . . . be a Discrete Memory-

less Multiple Source (DMMS) with three components. We
denote a generic triple by (U1, U2, V ). It attains values in
the finite set U1 × U2 × V .

Definition 1 (Model 1): Let `, n,M1,M2 be positive inte-
gers. An (`, n,M1,M2)-code1 is a 5-tuple (c1, c2, f1, f2, φ),
where

1) (c1, c2) is an (n,C1, C2)-Willems conference

(c1, c2) : ([M1]× U1`)× ([M2]× U2`) −→ K1 ×K2

for finite sets K1,K2,
2) the encoding functions f1, f2 satisfy for ν = 1, 2

fν : [Mν ]× Uν` ×Kν̄ −→ Xnν ,

3) the decoding function φ satisfies

φ : Yn × V` −→ [M1]× [M2].

Thus we allow conferencing also to concern a number ` of
outputs of the DMMS. In [2], only ` = n is considered. In our
case, it is necessary to allow for ` 6= n. Any (`, n,M1,M2)-
code1 (c1, c2, f1, f2, φ) gives rise to a system

{(g1n
m1m2

(u1`, u2`), g2n
m1m2

(u1`, u2`), Dm1m2(v`))M1,M2

m1,m2=1 :

u1` ∈ U1`, u2` ∈ U2`, v` ∈ V`},

where

gνnm1m2
(u1`, u2`) = fν(mν , u

ν`, cν̄(m1, u
1`,m2, u

2`)),

Dm1m2(v`) = {yn ∈ Yn : φ(yn, v`) = (m1,m2)}.
Definition 2 (Average error): For λ>0, an (`, n,M1,M2)-

code1 (c1, c2, f1, f2, φ) is an (`, n,M1,M2, λ)-code1 if

1

M1M2

M1,M2∑
m1,m2=1

∑
u1`,u2`,v`

P `U1U2V (u1`, u2`, v`)·

·Wn(Dm1m2(v`)|g1n
m1m2

(u1`, u2`), g2n
m1m2

(u1`, u2`), sn)

> 1− λ

for every sn ∈ Sn, if W = {W (·|·, ·, s) : s ∈ S}.
B. One source for both senders

Let (U1, V1), (U2, V2), . . . be a DMMS with two compo-
nents. We denote a generic pair by (U, V ). It attains values in
the finite set U ×V . The Willems conference can be restricted
to only concern the messages because we will see that this
already is optimal.

Definition 3 (Model 2): Let `, n,M1,M2 be positive inte-
gers. An (`, n,M1,M2)-code2 is a 5-tuple (c1, c2, f1, f2, φ),
where

1) (c1, c2) is an (n,C1, C2)-Willems conference

(c1, c2) : [M1]× [M2] −→ K1 ×K2

for finite sets K1,K2,
2) the encoding functions f1, f2 satisfy for ν = 1, 2

fν : [Mν ]× U` ×Kν̄ −→ Xnν ,

3) the decoding function φ satisfies

φ : Yn × V` −→ [M1]× [M2].

Codewords and decoding sets are defined in the same way
as in Model 1, the average error and (`, n,M1,M2, λ)-codes2

are defined analogously.

C. Capacity regions
Definition 4: Let µ ∈ {1, 2}. A pair (R1, R2) of nonnega-

tive real numbers is called a rate pair achievable by model µ if
for every ε, λ > 0 and sufficiently large n there are `,M1,M2

and an (`, n,M1,M2, λ)-codeµ with
1

n
logMν ≥ Rν − ε, ν = 1, 2.

The set of all achievable rate pairs is called the capacity region
of model µ and denoted by Cµ.



D. Deterministic and Common Randomness Codes

All of the above models generalize the concept of deter-
ministic coding. Deterministic codes are also the components
of codes which apply common randomness shared by senders
and receiver. The latter generalize the two above models. The
question answered in this work will be where Cµ lies between
the deterministic and common randomness capacity regions.

Definition 5 (Deterministic codes): Let n,M1,M2 be
positive integers. An (n,M1,M2)-coded is a 5-tuple
(c1, c2, f1, f2, φ), where

1) (c1, c2) is a (n,C1, C2)-Willems conference

(c1, c2) : [M1]× [M2] −→ K1 ×K2

for finite sets K1,K2,
2) the encoding functions f1, f2 satisfy for ν = 1, 2

fν : [Mν ]×Kν̄ −→ Xnν ,

3) the decoding function φ satisfies

φ : Yn −→ [M1]× [M2].

The average error is defined analogously to the average error
of a codeµ.

Definition 6 (Common randomness codes): Let n,M1,M2

be positive integers. An (n,M1,M2)-coder is a family

{(c1(γ), c2(γ), f1(γ), f2(γ), φ(γ)) : γ ∈ Γ}, (1)

Γ a finite set, of (n,M1,M2)-codesd. |Γ| is called the amount
of common randomness.

For λ ≥ 0, an (n,M1,M2)-coder is an (n,M1,M2, λ)-
coder if

1

M1M2

M1,M2∑
m1,m2=1

1

|Γ|
∑
γ∈Γ

Wn(Dm1m2(γ)|g1n
m1m2

(γ), g2n
m1m2

(γ), sn)

> 1− γ,

where gνnm1m2
(γ), ν = 1, 2, and Dm1m2

(γ) are the codewords
and the decoding set, respectively, for message pair (m1,m2)
in the γ-th deterministic component of the (n,M1,M2)-coder.

The achievability of a rate pair by codesd or codesr,
respectively, is defined analogously to Definition 4. In contrast
to Models 1-2, to form a coder, the senders and the receiver
jointly have to know the outcome of a uniform random
experiment on a finite set whose size can be chosen. Note that
using a uniform distribution on a sufficiently large set can be
used to approximate any discrete probability distribution. The
continuity of the average error of codesr in the distribution of
the common randomness thus implies that common random-
ness codes generalize those from Models 1 and 2.

Definition 7: 1) A pair (R1, R2) which is achievable by
codesd is called deterministically achievable. The set of
all such rate pairs is called the deterministic capacity
region and denoted by Cd.

2) A pair (R1, R2) which is achievable by codesr is called
achievable with common randomness. The set of all such

rate pairs is called the common randomness capacity
region and denoted by Cr.

We note the obvious relations

Cd ⊂ C1 ∩ C2 ⊂ C1 ∪ C2 ⊂ Cr. (2)

Cr depends on C1, C2 in a continuous manner. In Model
1, conferencing may also concern the outputs of U1 and U2.
Such conferencing will be necessary to achieve Cr. However,
this has to be done in such a way that one does not lose rate
compared to Cr. The actual form of Cr is as follows. Let W
be the convex closure of W and let S be an index set for W ,
so W = {Ws̄(·|·, ·, s̄) : s̄ ∈ S}. Then

Cr = closure

(
conv

(⋃
p

R(p)

))
.

Here, p ranges over the families of random variables p =
(Z,X1, X2, {Ys̄}s̄∈S) where Z attains values on an arbitrary
finite set, (X1, X2) on X1×X2 and Ys̄ on Y for every s̄ ∈ S.
Further, for every s̄ ∈ S, the sequence Z, (X1, X2), Ys̄ forms
a Markov chain, X1, X2 are independent conditional on Z,
and the distribution of Ys̄ conditional on (X1, X2) equals Ws̄.
The setsR(p) can be written as

⋂
s̄∈S R(p, s̄). The setR(p, s̄)

consists of those pairs (R1, R2) of nonnegative real numbers
satisfying

R1 ≤ I(Ys̄ ∧X1|X2Z) + C1, (3a)
R2 ≤ I(Ys̄ ∧X2|X1Z) + C2, (3b)

R1 +R2 ≤ min{I(Ys̄ ∧X1X2|Z) + C1 + C2, (3c)
I(Ys̄ ∧X1X2)}.

For a better understanding of the discussions, we also give
the definition of symmetrizability.

Definition 8: An AV-MAC is called jointly symmetrizable
if there is a stochastic matrix σ with inputs from X1 × X2

and outputs from S such that for every choice x1, x
′
1 ∈ X1,

x2, x
′
2 ∈ X2 and y ∈ Y ,∑

s∈S
W(y|x1, x2, s)σ(s|x′1, x′2)=

∑
s∈S

W(y|x′1, x′2, s)σ(s|x1, x2).

Remark 1: Two other, “marginal” symmetrizability condi-
tions exist for AV-MACs. They are important in the description
of the capacity region of the AV-MAC without conferencing. If
both of these conditions are satisfied, the AV-MAC is useless
with deterministic coding. However, the complete determin-
istic capacity region of the AV-MAC without conferencing
encoders is not yet completely known. Details can be found
in [3], [7]. With C1, C2 > 0, these marginal symmetrizability
conditions do not matter any more. Thus conferencing changes
the structure of AV-MACs into the direction of single-sender
AVCs.

III. MAIN THEOREM

Recall the dichotomy derived in [7] for Cd: it equals Cr if
W is not jointly symmetrizable, otherwise it equals {(0, 0)}.
The question is whether common randomness in all generality
is necessary to achieve Cr or whether, and if so how far, this



condition can be relaxed. Models 1 and 2 describe a setting
where the senders and the receiver only have access to the
outputs of given correlated sources.

Theorem 1: Correlated sources at senders and receiver are
sufficient to achieve Cr. More precisely:

1) C1 = Cr if I(U1U2 ∧ V ) > 0.
2) C2 = Cr if I(U ∧ V ) > 0.
From (3a)-(3c) it is intuitively clear that using conferencing

for other purposes than to exchange information about mes-
sages could reduce the achievable rates. Hence in the proof
of the theorem one has to be careful to keep the conferencing
not concerned with messages as short as possible.

IV. PROOF OF MAIN THEOREM

A. Achieving a positive rate

This is the central part of the proof of the theorem. We may
assume that Cr 6= {(0, 0)}, otherwise the theorem is trivial.
First we treat Model 2. We formulate the corresponding result
as a lemma.

Lemma 1: Set α := C1/(C1 + C2). Then there exists an
R ∈ (0,min{C1, C2}) with (αR, (1− α)R) ∈ C2.

Proof: ConsiderW as a single-sender Arbitrarily Varying
Channel (AVC) as in [2] with input alphabet X1 × X2 and
output alphabet Y . Using I(U ∧ V ) > 0, it is proved in
[2] that with the help of the sequence of random variables
(U1, V1), (U2, V2), . . ., this AVC achieves a positive rate R
which we can without loss of generality assume to be strictly
smaller than min{C1, C2}. More precisely, for arbitrary ε, λ >
0 and n sufficiently large there exists a system

{(g̃nm(un), D̃m(vn))Mm=1 : un ∈ Un, vn ∈ Vn}, (4a)
g̃nm(un) ∈ (X1 ×X2)n for un ∈ Un, (4b)

D̃m(vn) ⊂ Yn for vn ∈ Vn (4c)

with D̃m(vn) ∩ D̃m′(vn) = ∅ for m 6= m′

where M is a positive integer satisfying

min{C1, C2} ≥
1

n
logM ≥ R− ε (5)

and where

1

M

M∑
m=1

∑
un,vn

PnUV (un, vn)·Wn(D̃m(vn)|g̃nm(un), sn)>1−λ.

By enlarging n if necessary, one can find positive integers
M1,M2 which satisfy M/2 ≤M1M2 ≤M and

1

n
logMν ≥

Cν
C1 + C2

R− ε, ν = 1, 2. (6)

Thus the system (4) has a subsystem

{(g1n
m1m2

(un), g2n
m1m2

(un), Dm1m2
(vn))M1,M2

m1,m2=1 :

un ∈ Un, vn ∈ Vn},

where gνnm1m2
(un) is the X νn-component of g̃nm1m2

(un). This
gives us the possibility of defining an (n, n,M1,M2)-code2.
We set Kν := [Mν ] and define one-shot conferencing functions

cν as the identity on [Mν ], for ν = 1, 2. This conference
is admissible because of (5) and R < min{C1, C2}. The
encoding functions f1, f2 are defined as

fν(m1,m2, u
n) := gνnm1m2

(un), ν = 1, 2.

The decoding sets are obvious. The average error of the
resulting (n, n,M1,M2)-code2 (c1, c2, f1, f2, φ) applied to
the channel with state sequence sn ∈ Sn satisfies

1

M1M2

M1,M2∑
m1,m2=1

∑
un,vn

PnUV (un, vn)·

·Wn(Dm1m2
(vn)c|g1n

m1m2
(un), g2n

m1m2
(un), sn)

≤ M

M1M2
·

· 1

M

M∑
m=1

∑
un,vn

PnUV (un, vn) ·Wn(D̃(vn)c|g̃nm(un), sn)

≤ 2λ.

This completes the proof of the lemma.
Note that conferencing is essential to be able to apply the

single-user AVC theory of [2] to the AV-MAC. To prove a
statement analogous to Lemma 1 for Model 1, the idea is
that the senders first have a conference about the outputs of
their respective sources. Then we can refer to Lemma 1. Even
though the source outputs the senders have a conference about
are generated previous to the application of the code2 from
Lemma 1, the average error of the concatenation is small due
to the memorylessness of the source.

Lemma 2: Set α := C1/(C1 + C2) and define

β :=


(

1
min{C1,C2} + 2

)−1

if min{C1, C2} < 1,

1/2 if min{C1, C2} ≥ 1.

Then there exists an R ∈ (0,min{C1, C2}) with βR · (α, 1−
α) ∈ C1.

Proof: As noted in [2] (details in [4]) we may assume
that |Uν | = 2, otherwise the senders can apply binary functions
b1, b2 such that (b1(U1), (b2(U2)) and V are still stochastically
dependent. Let ε, λ > 0. By Lemma 1 there is a rate 0 < R <
min{C1, C2} such that for sufficiently large n one can find
an (n, n,M1,M2, λ)-code2 (c1, c2, f1, f2, φ) satisfying

1

n
logM1 ≥ αR− ε,

1

n
logM2 ≥ (1− α)R− ε.

If min{C1, C2} < 1, set n′ := dn/min{C1, C2}e, other-
wise let n′ = n. We define an (n, n′, 1, 1)-code1 as follows: for
ν = 1, 2, let c∗ν be the identity on Uνn. (c∗1, c

∗
2) is an admissible

Willems conferencing protocol at blocklength n′. The encod-
ing and decoding functions of the prefix (n, n′, 1, 1)-code1 are
determined by the senders’ unique codewords g1n′

∗ , g2n′

∗ and
the complete set Yn′

as decoding set.
To enable transmission at a positive rate in Model 2, we

concatenate the (n, n′, 1, 1)-code1 and the (n, n,M1,M2)-
code2. Assume transmission starts at time instant 1. Using
the prefix (n, n′, 1, 1)-code1, the senders exchange their first



n source outputs u1n, u2n. When the (n, n,M1,M2)-code2

is applied after this, the senders and the receiver do not use
the source outputs at times n′ + 1, . . . , n′ + n to form their
codewords and decoding sets, but those exchanged earlier. This
forms a (2n, n′ + n,M1,M2)-code1 which is admissible be-
cause the concatenation of admissible conferencing protocols
is admissible. As the sources are memoryless, the average error
of the (2n, n′ + n,M1,M2)-code1 is upper-bounded by λ.
Finally, we note that

1

n′ + n
logM1

≥ α(R− ε)·


(

1
min{C1,C2} + 1

n + 1
)−1

,min{C1, C2} < 1,

1/2, min{C1, C2} ≥ 1.

An analogous statement holds for M2, with α replaced by
1− α. This completes the proof.

B. Ahlswede’s elimination technique

In Lemmas 1 and 2 it was shown that a positive rate is
achievable by both models. Now we can establish the equality
Cµ = Cr. This is done using Ahlswede’s elimination technique
from [1] which was already applied in [7]. It builds on the
concatenation of the positive-rate achieving codeµ with a
coder.

Lemma 3 ([7], Lemma 15): Cr is achievable by codesr
whose amount of common randomness is quadratic in block-
length.

Now for any λ > 0 take an (n,M1,M2, λ)-coder given by
a family as in (1), where Γ = [n2]. The goal is to construct a
codeµ with approximately the same message sets and average
error. To do this, one of the senders, say the first one, first
chooses an element of γ uniformly at random. Using the
positive-rate codeµ whose existence we are assuming at the
moment, the outcome of this experiment can be transmitted to
the sender at vanishing rate cost. (Note that by the construction
of the codeµ, the second encoder is also informed about the
outcome of the random experiment.) More precisely, assume
that (R,R) ∈ Cµ for some R > 0. Then if n is large, there
is an ` and an (`, n′, n2, n2, λ)-codeµ (c∗1, c

∗
2, f
∗
1 , f

∗
2 , φ

∗) with
n′ = d(4 log n)/Re, because this implies (2 log n)/n′ ≤ R/2.
For a given γ ∈ [n2], the first sender can now send this index
to the receiver, the other sender transmits an arbitrary message.

Once all parties have been informed about
the value γ, the (n,M1,M2)-coded given by
(c1(γ), c2(γ), f1(γ), f2(γ), φ(γ)) can be applied. This
concatenation defines an (`, n′+n, n2M1, n

2M2)-codeµ with
small average error. It is admissible because for ν = 1, 2

log(|K∗ν ||Kν(γ)|)
n′ + n

≤ n′

n′ + n
Cν +

n

n′ + n
Cν = Cν ,

where K∗ν denotes the range of c∗ν and Kν(γ) denotes the range
of cν(γ). We also obtain for sufficiently large n

log(n2Mν)

n′ + n
≥ n

n′ + n
(R− ε) ≥ R− 2ε.

The average error of the concatenation is upper-bounded by
2λ. Instead of proving this we just state Ahlswede’s Inner-
product lemma [1] and appeal to [1] and [7] for details of the
application ([1] shows and actually develops the elimination
technique in the case of single-sender arbitrarily varying
channels, [7] shows it in the case of AV-MACs).

Lemma 4 (Innerproduct lemma, [1]): Let (α1, . . . , αN )
and (β1, . . . , βN ) be two vectors with 0 ≤ αm, βm ≤ 1 for
m = 1, . . . , N which for some λ ∈ (0, 1) satisfy

1

N

N∑
m=1

βm ≥ 1− λ, 1

N

N∑
m=1

αm ≥ 1− λ,

then
1

N

N∑
m=1

αmβm ≥ 1− 2λ.

Thus we have obtained an (`, n′ + n, n2M1, n
2M2, 2λ)-

codeµ, which shows that all rates achievable by codesr are
achievable by codesµ. This means Cr ⊂ Cµ. In (2) we noted
that the converse holds trivially, so we have equality.

Corollary 1: For µ = 1, 2, Cµ is achievable using
(`, n,M1,M2)-codesµ with ` = O(log n).

Proof: The codesµ constructed above using Ahlswede’s
elimination technique only require the knowledge of the cor-
related sources in the first a log n time slots, where n is the
blocklength and a is a constant.

Corollary 1 should be compared to the single-sender setting
of [2], where the construction requires the observation of n
source outcomes.

Remark 2: Note that the above construction is causal as far
as the DMMS is concerned. No output of the DMMS is used
at the senders or the receiver before it has been realized.
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