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Abstract: Systems that are physically interconnected, e.g. electric power systems, evolve in the
regime of physical consistency laws, such as balance of power flows. This complicates the analysis
and control of the global system behavior drastically, because mathematically these balance laws
induce nonlocal relations among all dynamical variables, thus leading to a system of differential
algebraic equations. While a stability theory for local analysis is available, i.e. for the small
perturbations evolving about a steady-state power flow solution as operational set-point, little
is known about dynamical behavior under large disturbances that induce changes in the steady-
state operation point. Recently, this problem has been listed in numerous publications as key
challenge to overcome in the restructuring process of electric power systems thus preserving
electric infrastructures from black-outs. Here we present a novel method that bridges this gap
between local, linear stability analysis, and nonlinear changes in steady-state. We provide an
analytical framework suited to quantify the maximum change of a specific eigenvalue, given a
large, external disturbance affecting the system at specific locations. Our method bases on a
Lagrangian method for constrained optimization and the use of Gateaux differentials to compute
first variations. We formulate a Lagrangian with eigenvalue variation as objective function and
set-point dependent eigenvalue problem as equality constraint. The application of necessary
optimality conditions provides sensitivity fields w.r.t. set-point changes succeeding the given,
external disturbance. The application of the approach in the electric power system is discussed.
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1. INTRODUCTION

Approaches to the mathematical modeling and operation
of large-scale systems are usually modular due to the
complexity of the systems to be analyzed. For the class
of physically networked systems a decoupling into a set
of subsystems is particularly difficult, because the inter-
connection of subsystems imposes algebraic constraints on
the dynamic variables of the system, see for example Seiler
(2010). These constraints naturally lead to differential al-
gebraic equations (DAESs) for the system model, where the
algebraic part represents physical consistency relations, see
for instance Seiler (2010), Chapter 1, and Ascher and Pet-
zold (1998), Chapter 1 and 9. Depending on the physical
context, consistency means conservation of mass, energy,
or momentum, or balance and continuity of power flows,
e.g. validity of Kirchhoff laws in electric networks. While
from the physical point of view it is clear that algebraic
conditions are not additional restrictions on the solution
space - because the physical behavior automatically sat-
isfies physical consistency by its nature - from the math-
ematical point of view their appearance complicates the
analysis and design of control strategies for large-scale sys-
tems significantly. This is due to the fact that the validity
of physical balance (or conservation) laws mathematically
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results in integrability conditions which lead to existence
criteria for solutions on some manifold, see Ascher and
Petzold (1998), Chapter 9, and Seiler (2010), Chapter 1. In
general this implies a nonlinear space of physically consis-
tent system configurations. Classical analysis and control
synthesis approaches might be only locally valid, i.e. in a
(compact) neighborhood of some attractive steady-state
system configuration. Another complicating issue is that
the actual network structure of physically interconnected
systems is often in the algebraic part of the DAEs. This
renders the application of known multi-agent and graph-
theoretical approaches difficult. These two issues are two
main challenges to be met in the restructuring process of
electric power systems, and they have recently lead to a
series of large power system black-outs, e.g. in 2003 and
2006 in the USA and Europe, see Bialek (2007) and UCTE
(2007). Traditional steady-state decentralized operation
turns out to be insufficient to account for overall system
stability in situations where the transmission network has
become a platform for the exchange of large amounts of
electric power between far distant locations in the network.
This leads to changes in steady-state power flow at time-
scales that interact with traditional steady-state real-time
operation. Thus, the open problem is to analyze system
behavior under large disturbances, i.e. the effect of changes
in power balance on the (local) dynamic behavior.



Little is known about the large signal behavior of electric
power systems, as already stated in Dobson and Lu (1992).
The relationship between steady-state dynamic models for
electric power systems and the power flow equations is
analyzed for example in Sauer and Pai (1990). It turns
out that the power flow Jacobian enters the linearized
dynamics for small disturbances evolving about a steady-
state; singularity of the Jacobian matrix implies singular-
ity of the linearized system dynamics. The work of Cao
and Hill (2010) clarifies this result for linear DAE models
with inputs; singularity will affect the system even when
“perfectly” controlled, where “perfect” control means that
control inputs are adjusted to meet the power flow require-
ments. However, in reality this assumption of “perfect”
control can not be met, as the cited black-outs impressively
demonstrate. Conversely, in Wang et al. (2001) it is shown
that the power flow Jacobian becomes ill-conditioned for
highly loaded networks, and the question arises, how a
change in steady-state power flow - represented by the ill-
conditioned power flow Jacobian - interacts with the local
(linearized) behavior of controlled small perturbations.
Thus, of practical interest are those situations where the
power flow Jacobian is not singular, but may induce low-
damped oscillatory behavior as a result of uncoodinated
decentralized controls that do not meet the power flow
requirements, as opposed to the case of Cao and Hill
(2010). It is to note that classical stability theory for
DAEs, see for instance Hill and Mareels (1990), may not
apply in these situations, because the technical condition
that the operating region is contained in a compact posi-
tively invariant set may be violated when a disturbance is
large. Then, the steady-state changes and the succeeding
operation point may leave the compact set. This condition
allows to represent the DAE system locally in ODE form
on the basis of conditions for the existence of solutions as
first integrals, see Hill and Mareels (1990) and Dobson and
Lu (1992).

This paper aims at bridging the methodological gap be-
tween static methods to solve steady-state set-point equa-
tions for the physical network and methods for stability
analysis of (controlled) small perturbation dynamics. We
derive a formula to quantify the effect of the non-singular
Jacobian matrix - related to nonlinear changes in the
steady-state operating configuration - on the behavior of
small disturbances that evolve about a fixed steady-state
set-point solution. The quantification is accomplished by
means of the variation of a specifically chosen eigenvalue
in the complex domain. Our novel approach is based on a
Lagrangian method for constrained optimization, where
the nonlinearity stemming from variations in the alge-
braic balance conditions is handled using a sensitivity
approach within the formalism of Gateaux differentia-
tion. Our framework is motivated by sensitivity studies
in physical systems with infinite dimensional state, see
for instance Qadri and Juniper (2012) and Meliga et al.
(2010), where we make use of the fact that the discretized
and linearized local dynamics are described by a finite di-
mensional DAE system. In contrast to classical eigenvalue
sensitivity frameworks, as for instance derived in Verghese
et al. (1982), here we go one step further an compute
variations of an eigenvalue. Moreover, in our framework we
are able to retain physical meaning of network structure
in that we are able to relate the locational structure and

magnitude of a large external disturbance as network input
to the variation of the output, i.e. the chosen eigenvalue.

The paper is structured as follows: In Section 2 we intro-
duce the class of (large-scale) physically networked sys-
tems, approaches for their control, and give a problem
formulation. In Section 3 we put the problem in the setting
of constrained optimization, and develop our analytical
framework. In Section 4 we discuss our results on the
example of electric power system problems, before we
conclude.

Notation: We use (-,-) to denote the inner product,
and ||-|| denotes the 2-norm. The formal adjoint is denoted
by (-)T. The notation df/dx denotes differentiation w.r.t.
vector elements of x, and grad,f is the gradient of a
vector-valued function f in the direction of the vector x.

2. MODEL SETUP & STABILITY PROBLEM

Motivated by electric power systems in this work we
consider physically networked systems. The problem under
investigation is to quantify changes in a specifically chosen
eigenvalue when external disturbances are large enough to
induce changes in the nonlinear steady-state solution of
the DAE system that serves as operational set-point for
small disturbance dynamics.

2.1 Large-Scale Physically Networked Systems Modeling

Large-scale physically networked systems are formally
represented in modularized form as tuple ¥ = ({%;},9),
where a set of subsystems 3; is interconnected according to
a graph ¢. The graph is a tuple (V, £) comprising the set
of vertices, denoted as V, and the set of edges, denoted
as &, which connect vertices pairwise. Each subsystem
is a controlled dynamical system described by a vector-
valued ODE in explicit form, i.e. &; = f,;(x;,u;), i € V,
where x; is the state of a subsystem, and w; the control
vector. With N denoting the number of subsystems, the
overall system state vector is 7 = (z1,...,2%), ¢ € R",
and u? = (uf,... uk), u € R" is the stacked vector
of system controls. The graph represents the physical
interconnection, where edges are constituted as terminals,
in the sense of Willems (2010).

Remark 1. The systems notion of a terminal and physical
interconnection is well explained in the circuits related
work of Willems (2010) (which does also apply to dynam-
ical systems and state space models, see for instance An-
derson and Vongpanitlerd (2006)): “interconnection leads
to terminals that share their potential and current, (up
to a sign) while energy transfer occurs through ports.
Terminal connection is a local operation, while energy
involves several terminals (that satisfy Kirchhoff’s laws)
simultaneously, and is therefore action at a distance”. By
that physically consistent stability studies require nonlocal
methods, because energy as vehicle that drives physical
motion is not a local quantity.

That is, balance equations of algebraic type are valid glob-
ally, whereat the interconnection structure of ¢, contained
in &£, determines those variables of the subsystems that
enter the algebraic equations, and thus, from a physi-
cal viewpoint, contribute to balance of power flows. The
action of such consistency conditions imposes nonlocal,



instantaneous relations among all dynamical variables that
constrain the overall system behavior to some restricted
(lower dimensional) space, see Seiler (2010), Chapter 1,
and Ascher and Petzold (1998), Chapter 9. The system
behavior therefore is represented by DAEs of the form

&= f(z,y,u), (1a)

0=g(z,y), (1b)
where y € RY denotes algebraic variables, see the fol-
lowing remark 2 for a mathematical argument for their
emergence. The algebraic part (1b) represents so-called
network equations, which refer to an invariant of the re-
duced ODE system (1a), see Ascher and Petzold (1998),
Chapter 9, i.e. its trajectories evolve on the (smooth) man-
ifold M £ {x € R" : g(,y) = 0}. Physically it represents
instantaneous balance of power flows within ¢, similar to

the familiar nodal equations in electric circuits, see Ilic and
Zaborszky (2000), Chapter 5, and the following remark 3.

Remark 2. The algebraic variables are obtained as a result
of the implicit functions theorem. A dynamical system
(here without inputs) with state denoted by z is generally
represented by an implicit vector equation F(2,z) = 0.
When the Jacobian 0F /0% is singular, then the state can
be partitioned as 27 = (zT,yT) leading to the generic
form (1) (without controls in the autonomous case).
Thereby, the Jacobian of the reduced ODE system 0 f /0
has full rank, and the same rank as OF/0%. Thus, the
dimension of the vector y containing the algebraic vari-
ables is determined by the rank deficiency of 0F /9%. This
argument is central to the understanding of why classical
systems tools may not be valid, i.e. physically networked
systems are singular, and cannot readily be transformed
into a system of ODEs, unless one has knowledge about
the n-dimensional manifold M on which the reduced n-
dimensional ODE system evolves.

Remark 3. In electric power systems (la) describes the
set of dynamic machines generating electric power. The
vector y contains mainly variables for voltage phasors at
network buses, see Cao and Hill (2010). The network buses
are usually separated into a slack bus, serving as reference,
PV-buses, i.e. generator nodes injecting generated real
power P at given voltage magnitude V', and PQ-buses,
i.e. nodes representing loads via active and reactive pow-
ers P and @, see Sauer and Pai (1998), Chapter 7. The
graph structure is explicitly visible in the Jacobian of the
algebraic equations J,. := dg/0y for the load-buses, i.e.
in the load flow equations. That is, we have Jye i1 # 0,
whenever nodes i and k are interconnected, i.e. ik € &,
else Jye i = 0, see Barret et al. (1997), Chapter 2.

The goal for real-time control is steady-state stability
of an operational set-point, where set-points are ob-
tained as equilibrium point of (1), denoted by =zZopt,
with 27 = (zT,y7T), 2 € R, see also remark 2, i.e. zopt
satisfies

f(mopta Yopt> 0) -0 (2)
g(mopt: yopt)
This equilibrium point is computed as solution of a static

optimization problem, for instance via Newton iterations.
Defining the resolvent (or residual) operator

me= [ ®

a steady-state operation condition is for example obtained
from optimization as

Zopt = argmin ||R(2)]|. (4)
In (2) controls are neglected because they are zero in equi-
librium, i.e. when no deviations from the steady-state zopt
occur. In contrast to the homogeneous case (2), inho-
mogeneity due to a large, external disturbance d ¢ R*t¢
affects the system (1) as external forcing of the operation
state via the relation

R(zgp) +d =0, ()
+

where zg,, denotes the post-disturbance operation point,
in contrast to the pre-disturbance operation point z,ps.
Therefore the forced algebraic balance equations (5) are
the constitutive equations defining szt. In the following
we consider disturbances d such that a solution szt
exists, and the Jacobian OR/0z|.,,, is non-singular. The
disturbance enters in additive form, because it is external,
i.e. a forcing of the nonlinear balance laws, and physically
it induces the internal re-balancing of steady-state power
flows.

When an equilibrium point is given, the equations for
small perturbations, denoted by Az” = (AzT, AyT), are
obtained via linearization of (1) without inputs about zgp,

so that
052 o1 (2)
Az = 5 . Ax + oy . Ay, (6a)
~ 0g(z) 9g(z)
0= ox |, Ax + oy |... Ay. (6b)

We write the linear DAE system (6) in matrix notation as

Ad A
( 0:1:) = A(zopt) (AZ> , (7&)
of of
A1 Az & OR(z) _ ox @
A - |:A21 Jac:| - 8Z Zont o 879 879 ’ (7b)
! ox Oy

Zopt
where J,, denotes the Jacobian of the network equations,
see also remark 3.

In practice, real-time control of large-scale physically net-
worked systems like electric power systems is accomplished
locally, i.e. spatially located at vertices i € V using pro-
portional feedback controllers under the assumption of
linearity, and without a global system control strategy,
see for example Sauer (2005). While controllers are acting
decentralized, their actions are physically coupled via the
balance of power flows, which leads to dynamical interfer-
ence of control actions that is not taken into account.

Remark 4. The differential algebraic nature of electric
power systems leads to a separation of models and prob-
lems at different time scales. For long time scales, power
system planning is accomplished on grounds of purely
static methods, e.g. in terms of snapshots of steady-state
load flow solutions at load buses. Real-time control of
small perturbations however is accomplished on grounds
of localized measures of full linear dynamics (7) at genera-
tor buses, given a steady-state operation condition. Thus,
tools to analyze dynamics are separated from tools for
static balance considerations, which leads to significant



problems in the operation of modern electric power sys-
tems, see Barret et al. (1997), Chapter 11, and Bialek
(2007).

Remark 5. In view of electric power system applications
the work of Cao and Hill (2010) introduces function map-
pings to describe the procedure of obtaining an equilib-
rium z,py without resorting to the full resolvent as in (2).
There, an operating point is obtained on the basis of
the load flow (network) equations, being related to the
Jacobian J,e of the algebraic variables, see (7b). This is
of importance because only J . carries information about
the physical network structure, and it is the major tool to
couple dynamic and static methods, see remark 4,

2.2 Network Structure and Linear Stability under Changes
of Operating Point

Traditionally, an ODE system is obtained from (7a)
via elimination of algebraic variables. Therefore one
solves (6b) for Ay and substitutes into (6a), which leads
to the equivalent ODE system

Az = [All — Ang(,:elAgl]A.’B. (8)
The physical interconnection structure, which is originally
contained in J,e, is then no more present as sparsity
pattern in the system matrix of (8); it gets lost through the
inversion and matrix multiplications. Thus, the sparsity
pattern of a local ODE representation of a physically net-
worked system carries no physical meaning in the sense of
transmitting energy between coupled states. This is a con-
sequence of Kirchhoff balance laws, and contrasts classical
multi-agent models where subsystems interact through a
communication network whose graph can be interpreted
as transportation structure for some information quantity.

Therefore, we stay within the setting of the DAE sys-
tem (7). Then, linear (in)stability is derived from modal
analysis in terms of the generalized eigenvalue problem

o EC

where (\;, v;) denotes an eigenpair. The linear behavior is
characterized by the eigenvalues \; = o; + jw;, where o;
is the growth rate, and w; the frequency of the eigen-
mode corresponding to the i-th eigenvector v;. Denote
by ()\ZT, w;) the associated adjoint eigenpair satisfying the
adjoint generalized eigenvalue problem

(A}B - AT) w; = 0. (10)

Then the local behavior of (1) is described by the evolution
of small amplitude perturbations, starting in Az(t = 0),
at fixed operating point, i.e. by the linear combination of
the operational state zp¢ and superpositioned eigenmodes

2(t) = Zopt + Az (t) = Zopt +Z (w;, Az(0)) eMitw,. (11)

A’UZ' = )\iB’Ui, B = |:

When all eigenvalues are stable, i.e. they lie in the open
left-half-plane of the complex plane R()\;) < 0, for all 4,
then the eigenmode ¢ with the growth rate closest to zero
is the dominant eigenmode. The dominant eigenmode is
the most critical for stability. In the following we choose
the dominant eigenvalue as output measure and denote it

by A.

Problem statement: The problem we consider is to find
an expression for the change of the dominant eigen-

value 60X = AT — X = M(A(z],(d))) — AM(A(zopt)), when a
large enough, external disturbance vector d, with struc-
ture such that the component d; enters at component z;,
forces the system, and leads to a new operational steady-
state szt. A change dzopt = z:pt — Zopt of steady-state,
induced by d, affects the local behavior via the newly
parameterized system matrix A(2z,pe+) with associated
dominant eigenvalue A*T. That is, we consider the domi-
nant eigenvalue A as function of the operating point zopt,
with the dependencies (9) and (7). The operating point
in turn is a function of the algebraic balance equations in
equilibrium according to (2) and (4), and of the external
disturbance d that acts as forcing on the internally bal-

anced equilibrium configuration, when present.

Note that the algebraic balancing constraint (5) imposes a
generally nonlinear relation, which has to be respected in
the derivation process for a quantitative expression of J\.
In the following we use the symbol ¢ preceding a variable
as notation for the first variation of the variable, and
equivalently as notation for the difference between the
respective post- and pre-disturbance values. Further we
assume A having algebraic multiplicity one, which assures
continuous dependence on system parameters.

Remark 6. Making equivalent use of § for first variations
and differences we obtain only estimates of respective
variable changes. These become more exact, and related to
physical reality, the “smaller” the nonlinearity is, i.e. the
better the first variation is approximated by a difference
within a Taylor series expansion to first order.

3. EFFECTS OF THE BALANCE EQUATIONS ON
THE LOCAL BEHAVIOR

The problem under investigation is reformulated in a vari-
ational setting. By that, the first variation of the dominant
eigenvalue as nonlinear function of an external disturbance
can be computed via a linear expression involving sen-
sitivity vectors. First order optimality conditions lead to
analytical expressions for these sensitivity vectors, and it is
seen, that the Jacobian of the algebraic balance equations
for set-points acts in terms of a gain on the sensitivity
vector of a specific eigenvalue w.r.t. steady-state changes.

8.1 Variational Formulation Using a Lagrangian Method
and Gateaux Differentials

The variation of the function A\ at steady-state condi-
tion zops, 6A, with respect to the directional input d
is mathematically described by the Gateaux differential,
i.e. the first variation of the dominant eigenvalue. Denot-
ing the variation in the steady-state operating condition
by 0zopt(d) = 22 (d) — zopt(d = 0), the first variation is
defined as

+ —
o\ (zopii d) 2 lim A* (Zopt + T0z0pi(d)) — AM(Zopt)
T

= , (12)
under the normalization |[0zope|| = 1. This functional is
a nonlinear mapping between pre- and post-disturbance
situations, because szt = Zopt + 0Zopt(d), the new oper-
ating point, is computed such that it satisfies (5), and R (")
is a system of nonlinear algebraic equations.

The first variation (12) has a linear expression in terms
of the Gateaux derivative grad,\ =: S;(\) at point z,ps



in the direction of the vector 6zopt, so that (12) can be
equivalently stated as
SA(Zopt; @) = O (Zopt; 0Zopt(d)) £ (S.(N), T62zopt) - (13)
The Gateaux differential is continuous in the input argu-
ment, so that we assume continuity of 6\ in 6z (d) and d,
respectively. Conceptually, the first variation JA with the
external disturbance as input can formally be expressed as
SA(Zopiid) 2 7 (Sa(N), d) (14)
where 84(\) := gradg\ is the sensitivity of the dominant
eigenvalue in the direction of the disturbance vector d.
Here, the normalization ||d|| = 1 formally applies. Thus, in
a variational setting the dominant eigenvalue deviation A
w.r.t. nonlinear changes in the operating point induced by
an external disturbance d has a linear expression. This
motivates the variational approach using the framework
of Gateaux differentials.

Remark 7. In (14), the linear scaling with the parameter 7
follows from the fact that the first variation is linear in
the input argument for the inner product, and by that
homogenous (or scale invariant), i.e

OXZopt; Td) = TOX(Zopt; d). (15)
For the purpose of deriving estimates of changes J\ in-
duced by unnormalized external disturbances, ||d|| # 1,
we use scale invariance together with the factor 7 to
recast an estimate for the effect of the original magnitude

input. In that we write ||d|| # 1 normalized and scaled
as 7d,||d|| =1

The problem of finding the first variation of the dominant
eigenvalue under large disturbances can be solved by
finding a formula for S,(\) and an expression that relates
it to S4(A). For this purpose we resort to a Lagrangian
framework for (un-)constrained optimization, as in the
work of Meliga et al. (2010) or Qadri and Juniper (2012).
Every dominant eigenvalue )\(A(szt(d)) is required to
satisfy the respective eigenvalue problem (9). By defini-
tion, when d # 0 and large, then there will be a nonzero
difference d A which is a first variation. That is, the sensitiv-
ity Sq(X) is a complex valued (steepest descent) gradient
direction along which the effect of d on the output mea-
sure ||AT — \|| is greatest, where the distance between the
two complex variables is measured by identifying C with
the Euclidean plane R? equipped with the norm || - ||. The
two requirements which are set by definition - satisfying
the eigenvalue problem and being a first variation - im-
pose an extremum condition on the associated Lagrangian
function given by

L, g, 285(d)) = [[M(A(25p4(d))) — M A(2opt)) ]
— (1. [MA(25,4(d) B — A(zg(d))] v)
—(u [A(A(zopt))B A(zopt)] v),

(16

where the vector p is a suitable vector of Lagrange
multipliers. The constraint optimization problem is as
follows: Given (A\,v) and an input d, the goal is find a
sensitivity such that [|]AT — A|| is maximized under the
constraint of the post-disturbance eigenvalue problem.

Remark 8. Since we are interested in maximal deviations

of an eigenvalue in the complex plane we can equivalently

write (16) as
L=X—

(1, VT B = Alzopt)Jv) (17)

because any change in the cost is unit proportional to the
variation magnitude, i.e. [|[A\T = A|| = 1- (R(6X) + (X)),
for small variations, thus having the same form as in the
work of Meliga et al. (2010).

Referring to the maximum principle, the extremum con-
dition corresponds to the stationarity of the first varia-
tion 0L, i.e.

!
0=0L =0\ zopt;d) — 6 [(p, [N B — A(z,1(d))] v)] )
(18

Stationarity of the Lagrangian corresponds to the validity
of first order necessary optimality conditions and yields an
optimality system of equations from where optimal sensi-
tivities can be found, see Gunzburger (2003), Chapter 2.
Using the Lagrangian (16), the unconstrained optimiza-
tion problem is as follows: Given (A, v) and a vector of
external disturbances d, find the sensitivity vector Sg4(L)
and the vector of Lagrange multipliers p, such that the
functional £(A, v, p, 23, (d)) is rendered stationary.

Remark 9. Because )\ is a complex number, the sensitivity
vector 84(\) is a complex vector. By that, for given distur-
bance d, the real part R(S4())) is the sensitivity of growth
rate changes, and $(84(\)) is the sensitivity of frequency
changes. A solution to the unconstrained optimization
problem yields the complex vector Sy(A), and from that
the effect of d on other objectives than maximizing ||0A|]
can be derived by choosing other combinations of real and
imaginary parts of §4(\) that are of interest.

3.2 Estimating Figenvalue Displacements and Main Result

The relation between the sensitivity S (A) and the sensi-
tivity Sq(A) is as follows.
Lemma 1. Consider a system with steady-state dynamics
according to the DAE representation (7) and a large,
external disturbance 7d, ||d|| = 1,7 > 0, such that
the post-disturbace operational point satisfies (5). Assume
the sensitivity vector given by S.()\) satisfies the first
variation equation (13). Then, this relation for the first
variation of the dominant eigenvalue of system (7) satisfies
the equation
AN=T <Sd(/\)a d> ) (19)

with

SaN) =~ (A7) 8.0,

where A = A(zopt) is the system matrix.

(20)

Proof 1. Assuming 7d to be small, see remark 6 with
remark 7, the relation between dz.,; and 7d computes
from (5) by taking differentials, i.e. a first order approx-
imation at the pre-disturbance operating point zgp¢, so
that

OR(z)
2, ez
OR(z)] "
= 5zopt—[ - Loptm. (21b)
With OR/0z = A from (7b), substitution of (21b)

into (13) yields
OX = (8.()), —A'rd) = <— (A ! SZ(A),Td>. (22)

Then, according to (15), scale invariance of the func-
tional A leads to (19) with (20).



In the main result that follows we give the relation be-
tween 7d, ||d|| = 1 and the first variation JA\.

Theorem 1. Consider a system with steady-state dynam-
ics according to the DAE representation (7) and a large,
external disturbance 7d, ||d|| = 1,7 > 0, such that
the post-disturbance operation point satisfies (5). Then,
the effect of the external disturbance on the small-signal
behavior described by the dominant eigenvalue is captured
by the first variation

A=rT1 <(A_1)T [G[A(g:pt)v]} T w, d> ) (23)

with the normalization (w, Bv) = 1 applied.
Proof 2. Using lemma 1, it remains to show that
A (zeop)o] |
0z ’
The first variation A = AT — X results from the optimality
system determined by first order optimality conditions
that render the Lagrangian £ given in (16) stationary.

Using the chain rule the extremum condition (??) can be
written as

0=0L=

oL oL oL oL
<aza5zopt> + <6/J,75u> + {<8)\,5)\> + <av,5’l)>:| .

) (i) (i)

Sz(/\) = - (24)

(25)
For the first variation of the Lagrangian to vanish it is
sufficient for all terms (i)-(iii) to be zero. Evaluating the
second term in (iii) we obtain
O —wB—ay=((MB-A) 1),
v

and hence,

(£ )= ()

follows. Thus, whenever the vector of Lagrange multipliers
corresponds to the adjoint eigenvector associated to v this
term vanishes, because it satisfies the adjoint eigenvalue
problem (10).

(26)

(27)

Evaluating the first term in (iii), which has to vanish
whenever the second term vanishes, we obtain
oL

e 1—{(u, Bv). (28)

Thus, with p = w, the requirement of (28) to vanish is
fulfilled if and only if the normalization condition
(w,Bv) =1 (29)

is true. Then, the term <g—§> vanishes, and (iii) becomes
zero. From here on we replace p by w.

The term (ii) vanishes, too, with the choice p = w,
because then
o _

— = (L,(AB-A)v) (30)

which is equivalently zero, whenever (A, v) is an eigenpair.
This is the case by definition of the problem setting.

Thus, given an eigenpair (A, v), if the vector of Lagrange
multipliers w satisfies the normalization condition (29)
and the adjoint eigenvalue problem (10), then

S.(L)=grad, L = g—i (31)

Consequently, the extremum condition (25) becomes
0=0L= <g§, 5zopt> (32a)
= <gi’5'z°pt> — <w, 3[()\B8zA)v]5z0pt> (32b)
(82 (\), 6zopt) — <w, Wézopt> - (320)

From expression (32b) together with (32a) and (32c) it

follows that
Jl{(AB — A
<Sz(>\), 5Z0pt> = <'LU, [(az)v]azopt>

~([HOB =2 5.

(33)

This implies

_ Ayt
d[(\B — A) ]} w (35)

5.0 = |1

and since ABv = const., because A\ is fixed at the
point z,,, about which we expand, but the system matrix
is parameterized by the operating point, we obtain the

result
Zopt)U f
S.(\) =— [a[A(a:P)q w. (36)

In words, theorem 1 states that an external, sufficiently
large, and spatially localized power disturbance directly
affects the dynamical behavior via the first variation of a
specific eigenvalue. Then, the causal chain of the effect is as
follows: a disturbance enters the system, it forces internal
re-balancing of the algebraic variables in the network de-
scribed by the Jacobian J,e, and leads to transitioning to
a new operation point according to R /90z, see remark 5.
These shifts in network state due to algebraic balance
laws interact with the local behavior in terms of a gain
matrix, that amplifies or weakens the complex, small signal
sensitivity of an eigenvalue S, (\).

Remark 10. In our sensitivity analysis to a steady forcing
the definition of the sensitivities depends on the choice
of inner product (they are coordinate dependent) through
computation of adjoint quantities, however, the variation
of the dominant eigenvalue does not, see Meliga et al.
(2010). Thus our result is independent of the specific choice
of coordinates and relates to a generic system property.

Remark 11. Using classical results from eigenvalue sensi-
tivity analysis, see for instance Chatelin (1983), Chapter 1,
one can estimate variations of a specific eigenvalue A ac-
cording to the formula

A — A =wPv+0(?), (37)
where P is a perturbation matrix, such that At is the
eigenvalue associated to AT := A + P, with 7 = ||P|
being suitably small. In contrast to this classical result,
our approach includes nonlinear dependencies of A result-
ing from the algebraic balance equations, and disturbing
with d other than with P has a physical interpretation in
terms of the components z; at which the system is forced.



It is not a priori clear what structure and perturbation
norm an equivalent matrix perturbation P should have.

4. DISCUSSION FOR ELECTRIC POWER SYSTEMS

The main result in theorem 1 is used to explain a mecha-
nism for a subcritical Hopf-bifurcation, and highly sensi-
tive dynamics in high-loading situations. These phenom-
ena are typical in general large-scale physical systems but
rarely observed at hand of classical power grid models.
This gap is bridged using our main result, and it is shown
that the combination of methods for static power flow
computations with methods for analysis of dynamics are
of importance in accounting for current changes in the
electricity industry.

Electric Power System Equations: A structure-preserving
classical model consists of swing dynamics for generators
and the (lossless) network equations, as given in Sauer and
Pai (1998), Chapter 7, where

Gi = Wi — Wsync, (38&)
2H, N+M
i =T — Y ViVisin(6; — ), (38b)
sync k=1
N+M
0= PLZ(V;) — Z V;‘/JBZ]C sin(@i — Ok)7 (38(3)
k=1
N+M
0=QLi(Vi)+ > ViV;Bircos(ti — ).  (38d)
k=1

Here, 6; is the generator and voltage angle, w; the fre-
quency, V; a voltage magnitude, H; is the mechanical
inertia, Ths; the constant mechanical torque input, which
is usually controlled, and Bjj, is the interconnection suscep-
tance between bus ¢ and k. Equations (38c) and (38d), are
the algebraic network equations, referring to (1b). The vec-
tor of dynamical variables contains the states of the IV gen-
erators, i.e. 7 = (01, wi1,...,0n, wy), and the vector of
algebraic variables contains the voltage phasors at M load-
buses, i.e. yT = (On+1, VNt On+m, Vivgenr) , see also
remark 3. In (38), the dynamic variables are coupled with
the static network equations via active power flow (38c).

High-Loading Situations and Subcritical Hopf-Bifurcation:
When the power grid becomes highly loaded, it is observed
that the inherent tolerance to local, small disturbances
reduces and the power system moves from being elastic
to brittle, see IEA (2008). Despite this fact, load flow
studies are methodologically separated from local stability
and local sensitivity studies of dynamics, see remark 4.
Theorem 1 shows that small changes in the balanced
load flows (38c) and (38d), see remark 3, have a direct
impact on the dynamical ebhavior via first variations dA.
Moreover, the load flow Jacobian J, - and by that the
power flow Jacobian OR/0z, see remark 5 - acts as gain
on the sensitivity direction &,(A) of the local dominant
behavior. In the following we argue that the gain results
in an amplification of local sensitivity rather than a damp-
ing. When control is not “perfect”, a subcritical Hopf-
bifurcation may be induced by the increased sensitivity,
i.e. a pair of complex eigenvalues crosses the imaginary
axis while a steady-state power flow solution still exists,
see Sauer and Pai (1998), Chapter 8.

In a subcritical but highly loaded regime the load flow Ja-
cobian is not singular, but ill-conditioned, see Wang et al.
(2001). Ill-conditionedness means, that the matrix J,e has
a large condition number , which is defined as
_1H _ Umax(Jae)

ae Umin(']ac) ’
where o ax/min represents the maximal /minimal singular
value. For electric power systems in stressed situations the
value & is of the order 10° as a result of omy, — 0, see
Wang et al. (2001). Writing (38c) and (38d) for small

power disturbances APr; and AQy; yields to first order
(and after re-ordering the vector y)

AP A A6 L, (AP
(3a1) =7 (a0 = (&%) -9 (3a1)
(40)

From diagonal dominance and positivity of J ;el, see Barret

et al. (1997), Chapter 2, it follows that the inverse of the
Jacobian acts as amplifier on small power injections, with
a worst case gain factor in the order of the natural norm
induced on the vector of power disturbances, i.e. 1/0min,
which approaches infinity the closer the system is operated
to singularity (i.e. the higher the system is loaded). A
subcritical Hopf-bifurcation may occur in situations of
“non-perfect” control, because then the system exhibits
complex eigenvalues, in contrast to purely real ones in the
case of open-loop, or perfectly controlled small disturbance
dynamics, see Sauer and Pai (1998), Chapter 8, and Cao
and Hill (2010). Real eigenvalues imply symmetric, non-
interacting local dynamics and no drift or ill-conditioning
due to transport of power.

f= [ Jaell - [[J (39)

Transport Phenomena and Trading of Large Amounts
of Electricity: Theorem 1 shows that transfer of power
within the power grid directly affects the small-signal
dynamics, when transport phenomena evolve on a time-
scale similar to that of real-time operation (seconds to
minutes). The previous discussion of high-loading situa-
tions motivates high eigenvalue sensitivity in linearized
models of full power system dynamics, and in physically
networked systems in general. In fact, it is seen that in nu-
merous large-scale physical systems, which are represented
by partial differential equations (PDEs), the linearized
system operator is highly ill-conditioned, exhibiting high
eigenvalue sensitivity, see Trefethen and Embree (2005). It
has been shown, that convective transport, i.e. drift terms
that arise naturally in PDE settings, is a source of ill-
conditionedness of physical linear dynamics, see Chomaz
(2005), and Mangesius and Polifke (2011) for a network
model illustration. However, the system matrix used for
the modal analysis of systems of type (38) usually has con-
dition number (close to) one, because the system matrix is
(close to) symmetric, see Sauer and Pai (1998), Chapter 8.
Hence, eigenvalue sensitivity is low, despite the fact that
it fits the class of large, physically networked systems. An
explanation using theorem 1 could be as follows: the load
flow Jacobian, which represents power transport within
the system, introduces large gains, and with that a high
sensitivity of dominant eigenvalue positions in the complex
plane, w.r.t. small disturbances entering the system.

This discussion on including power flow considerations into
analysis of linear behavior is of immediate importance in
practice. Today’s electricity infrastructure is not suited to



support large shifts of power, see UCTE (2007). However,
liberalization tendencies and integration of renewable en-
ergy sources have lead to an economic motif force, that
drives transfer of ever growing power volumes all across
the continent (of Europe) at ever shorter time intervals.

5. CONCLUSION AND FUTURE WORK

In this paper we present an analytical framework that
allows to quantify the effect of an external, large dis-
turbance on the local (linearized) dynamics of physically
networked systems. Our methodology is particularly useful
for the analysis of electric power systems. In specific, it
bridges a methodological gap between different types of
models that are used in the analysis of different dynamic
phenomena: we integrate models for the study of long-term
dynamics, which base on snapshots of operating points
obtain from nonlinear static optimization, with dynamic
stability methods, that classically base on constant steady-
state solutions and modal analysis. Our result exposes
the relation between load flow optimization problems and
dynamical behavior, where the load flow Jacobian takes
the role of a gain. In high-loading situations nonlinear
mechanisms, and highly sensitive, nonlocal coupling de-
termine the behavior. The recent trends of liberalization,
with ever growing trading of large power volumes across
countries, and integration of variable generation make our
result relevant, for instance for novel design and analysis
tools supporting innovative operation schemes, beyond
traditional decentralized, and hierarchically separated ap-
proaches.

Work is in progress, where our framework is applied to
define and specify technical flexibility within a power
system. The distributed computation of sensitivity vectors,
and the use of the latter for real-time distributed control,
both combined in a novel control architecture seems to
be a promising approach for research in the direction of
restructured electric power systems.
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