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Abstract

Enterprise modeling communities such as business process management, strategic IT man-
agement, or project portfolio management are supported by highly specialized models
representing domain knowledge in a formal manner. Although knowledge of modeling
communities is maintained locally, subsets thereof are of high interest for the entire organi-
zation, e.g. to perform holistic analyses. This makes synchronization of changes essential
such that modeling communities share up-to-date information with each other. At the
same time, each modeling community wants to keep control over its model and metamodel.
Enterprise architects act as mediators between these different communities to provide
their stakeholders with up-to-date information. Enterprise Architecture (EA) management
seeks to foster the mutual alignment of business and IT. This requires both, a holistic
management and a sound decision base, which is commonly captured in an EA model.
Enterprise architects retrieve information from diverse autonomous modeling communities
to maintain a central, coherent, and consistent EA model. Our empirical findings confirm
that enterprise architects consider the maintenance of an EA model as time-consuming,
cost-intensive, and error-prone and that they procure EA information primarily from exist-
ing model repositories. A particular challenge is to continuously integrate model changes
from specialized and autonomous modeling communities into a holistic and consistent EA
model. Since each modeling community remains autonomous, conflicts between models as
well as metamodels can arise when independent communities concurrently alter models. In
this process, most of these conflicts cannot be resolved automatically or by a single user,
but require cross-community collaboration.

In this thesis, we assume that the EA model and models of other modeling communities
form a federation. We illuminate typical characteristics of such a federation and of Federated
EA Model Management such as number of elements or direction of information flows and
provide delimitations to existing approaches from federated databases, software merging,
and version control systems. Based on these characteristics we develop ModelGlue, a
socio-technical solution facilitating a software-supported process to continuously integrate
object-oriented models of decentralized special purpose repositories into a central EA model.
ModelGlue includes model integration mechanisms and tolerates model conflicts to offer
the necessary degree of freedom for a federated management of models. We detail concepts
for conflict detection in different models, for user awareness, and for adaptable resolution
strategies. ModelGlue empowers users to resolve model and metamodel conflicts in a
collaborative fashion by providing tasks aimed at resolving conflicts and an interactive
conflict management dashboard. This way, ModelGlue provides means to increase
consistency in all models that participate in the federation. We describe an implementation
of ModelGlue based on a state-of-the-art Enterprise 2.0 solution, summarize user feedback
from two case studies in practice, and report on further insights from an interview series.
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Zusammenfassung

Modellierungsgemeinschaften, wie z. B. das Business-Prozess-Management, das strategi-
sche IT-Management oder das Projekt-Portfolio-Management, werden von hochspeziellen
Modellen unterstützt, die Domänenwissen formal repräsentieren. Das Wissen dieser Model-
lierungsgemeinschaften wird meist lokal verwaltet; gewisse Teilaspekte sind jedoch auch
für die Gesamtorganisation relevant, z. B. im Rahmen von ganzheitlichen Analysen. Die
Synchronisation von Modelländerungen ist essentiell, um aktuelle Informationen der Model-
lierungsgemeinschaften miteinander zu teilen. Dabei wollen die Modellierungsgemeinschaften
die uneingeschränkte Kontrolle über ihr Modell und Metamodell behalten. Enterprise Ar-
chitekten agieren als Mediatoren zwischen verschiedenen Modellierungsgemeinschaften,
um ihre Interessensgruppen mit aktuellen Informationen zu versorgen. Im Rahmen von
Enterprise Architecture (EA) Management Initiativen versuchen sie das Business und
die IT aneinander auszurichten. Das verlangt ein ganzheitliches Management und eine
fundierte Entscheidungsbasis, die in einem EA Modell verwaltet wird. Um dieses zentrale
EA Modell zu pflegen, beziehen sie relevante Informationen aus verschiedenen autonomen
Modellierungsgemeinschaften. Unsere empirischen Ergebnisse untermauern, dass Enterprise
Architekten die Pflege eines EA Modells für zeitaufwändig, kostenintensiv und fehleranfällig
erachten. Besonders auffallend ist, dass sie EA Informationen primär von existierenden
Modellierungssystemen beziehen. Die kontinuierliche Integration von Modelländerungen
autonomer Modellierungsgemeinschaften in ein ganzheitliches und konsistentes EA Modell
stellt eine besondere Herausforderung dar, weil die gleichzeitige Modellierung in den Model-
lierungsgemeinschaften zu Konflikten zwischen den involvierten Modellen und Metamodellen
führt. Die meisten dieser Konflikte können weder automatisch noch von einzelnen Nutzern
aufgelöst werden, so dass eine gemeinschaftsübergreifende Kollaboration meist unabdingbar
ist.

In dieser Arbeit gehen wir davon aus, dass das EA Modell und die Modelle der Modellie-
rungsgemeinschaften eine Föderation bilden. Wir erläutern typische Charakteristiken einer
solchen Föderation und Föderierten-EA-Modell-Managements, wie z.B. die Anzahl der Ele-
mente oder die Richtung des Informationsflusses, und nehmen eine Abgrenzung gegenüber
existierenden Ansätzen aus föderierten Datenbanken, Software Merging und Versionskon-
trollsystemen vor. Basierend auf diesen Charakteristiken entwerfen wir ModelGlue, eine
sozio-technische Lösung die einen softwaregestützten Prozess zur kontinuierlichen Integrati-
on von objekt-orientierten Modellen dezentraler Spezialsysteme in ein zentrales EA Modell
unterstützt. Die Integrationsmechanismen von ModelGlue tolerieren Modellkonflikte
und realisieren so einen notwendigen Grad an Freiheit für das föderierte Management von
Modellen. Wir detaillieren Konzepte für die Konflikterkennung in verschiedenen Modellen,
für ein Konfliktbewusstsein bei Nutzern und für adaptierbare Lösungsstrategien. Unser
Ansatz nutzt Tasks die zur Konfliktauflösung gedacht sind und ein interaktives Konflikt-
Management-Dashboard, das Nutzern ermöglicht, Modell- und Metamodellkonflikte auf
kollaborative Art zu lösen. ModelGlue ist ein Hilfsmittel, um die Konsistenz in allen
Modellen, die der Föderation angehören, zu erhöhen. Wir beschreiben eine Implementierung
von ModelGlue auf Basis einer existierenden Enterprise 2.0 Lösung, fassen Feedback
von Nutzern in zwei Fallstudien zusammen und berichten über weitere Erkenntnisse einer
Interviewserie.
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Chapter 1

Introduction

Enterprises face highly competitive markets driven by enormous cost pressure. In response
to globalization and industrialization, managers are forced to reengineer how their business
operates [HC93] and how they can foster innovation [ABP06]. As a consequence, enterprises
transform. Mutual alignment of business and Information Technology (IT) is a crucial factor
for successful enterprise transformations [Ve94] to reduce time-to-market and to support
new and existing capabilities by information systems in an effective and yet cost efficient
manner. Inherently complex, ongoing trends such as hyperconnectivity [We01, QHCW05],
cloud computing [MG11], and big data [BCM10] accelerate the design of new business
models and open new possibilities but also aggravate the holistic management of an entire
organization’s IT. Although complexity increases, managers of today’s leading enterprises
are able to transform their business while creating innovative products and new business
models outperforming their competitors [WR09, p. 115ff]. To transform efficiently and
to anticipate undesired side-effects of changes to business or IT, a holistic view of the
organization is required.

A commonly accepted means to facilitate enterprise transformations is the strategic manage-
ment of an Enterprise Architecture (EA) [RWR06, Ha10]. Schönherr [Sc08, Sc09] reports
that there is no common definition of the term EA. Although there are plenty attempts
to define the term, e.g. [Th11], in this thesis we consider an EA as a conceptual view of a
software intensive system in line with the International Organization for Standardization
(ISO) [In07] and our recent publications [BEG+12, FBH+13, RHF+13] (cf. Definition 1.1).

Definition 1.1: Enterprise Architecture
An Enterprise Architecture is a comprehensive conceptual view on an organi-
zation as a whole. It embraces essential elements of the entire organization
including relationships among them as well as to its environment. �
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1. Introduction

Managing an entire EA is a challenging task [HSR+13]. The EA management discipline
seeks to strategically plan and guide EA transformations and copes with resulting complexity.
That includes enacting a managed evolution of an EA towards a desired visionary state.
The evolution of an EA aims to align business and IT with each other and with the strategy
of the organization [RWR06].

Primarily, EA management creates value by deriving planned states that outline EA
transformations or by providing information to its stakeholders. The former seeks to
operationalize the evolution of an EA by increasing either effectiveness or efficiency of an
EA whereas the latter facilitates and ultimately accelerates or simplifies work of stakeholders.
Both alternatives must be backed by a sound information base for profound decisions. In
particular, planning transitions from the current state towards a desired target state of
an EA requires an overview of the status-quo. This current state of an EA is commonly
documented in the course of EA model maintenance endeavors [La13, p. 54].

Although it is possible to carry out this documentation in an informal manner, commonly
EA information is captured formally, i.e. in the course of EA model maintenance endeavors,
EA information is added to an EA model. An EA model describes a specific part of an EA
in a formal manner. It contains EA information commonly conceptualized in a metamodel
describing relevant entities and relationships among them. The purpose of an EA model
is to serve as a solid basis for decision-making for EA management and its stakeholders.
Thus, it is of high importance that the EA model reflects the reality in terms of desired
granularity, correctness, topicality, and completeness [Ha10, p. 70].

Well-executed EA management is a strategic advantage [WR09, ch. 1]. However, often,
large-scale EA management endeavors are financed without showing any substantial benefit
to stakeholders of the EA management discipline. It is a considerable challenge for EA
management endeavors to provide evidence for its benefits [Sc05, p. 59]; this holds true for
young and unexperienced EA management endeavors in particular [HSR+13].

1.1 Problem Statement

Many authors report that the EA model maintenance process poses a challenge and is often
regarded both, error-prone and time-consuming [BEG+12, FBH+13, HMR12, RHF+13].
Long-lasting EA model maintenance endeavors unable to show early results in a timely
manner cannot provide the decision base required for adequate EA management. As a
consequence, many EA management endeavors lack the ability to show an early Return on
Investment (ROI) [AKL99b] or an ROI at all [OPW+09, p. 129]; a situation which often
ends in stakeholder dissatisfaction [HSR+13] and a badmouthed EA initiative that is very
likely to fail.

In collaboration with University of Innsbruck, we investigated the maintenance process of EA
models empirically. In [RHF+13], we present results of a survey carried out among 140 EA
practitioners; two key observations are central for the further discourse within the present
thesis. First, Table 1.1 illustrates the challenges organizations face when maintaining an
EA model. The figures confirm that maintaining an EA model is perceived as a huge effort
while the outcome is dissatisfactory, i.e. data quality of the EA model often remains low. At
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the same time, practitioners also report insufficient tool support. In [RHF+13], we present
results of a statistical analysis of the two challenges ‘insufficient tool support’ and ‘huge
data collection effort’. One of our hypotheses in [RHF+13] is that a successful EA model
maintenance process requires adequate tool support. We applied Pearson’s chi square (𝜒2)
test [Pe00] to evaluate our hypotheses. 39 (˜%81) of 48 participants reporting insufficient
tool support also agree with the time consuming nature of EA model maintenance; 54 (˜%58)
of the remaining 92 participants which do not report inadequate tool support confirm the
high efforts for EA model maintenance. Our null hypothesis is that as many participants
confirm the ‘time consuming nature of data collection’ as the ‘inadequate tool support’. The
result of the 𝜒2 goodness of fit test allows us to reject our null hypothesis with 𝑝 = 0.007
(𝑝 ≤ 0.05) [RHF+13]. Consequently, the analysis of our empirical findings strongly suggests
that the effort of EA model maintenance depends on adequate tool support.

Challenge n % of all

Huge data collection effort 77 55.0%
Low EA model data quality 77 55.0%
Insufficient tool support 48 34.3%
No management support 44 33.4%
Low return on investment 36 25.7%
Other 32 22.9%
No specific challenge 10 7.1%

Table 1.1: Challenges organizations face during EA model maintenance [RHF+13]

Second, we investigated the sources utilized to acquire information relevant for EA manage-
ment. Such an information source contains knowledge relevant for EA management or its
stakeholders in a tangible or intangible manner. Table 1.2 shows different methods and
techniques applied in organizations to procure information for EA management. We found
that enterprise architects often utilize existing information systems, i.e. applications and
databases, to gather information relevant for their EA model.

Type of collection n % of all

Manually from applications/databases 95 76.0%
Manually via interviews 85 68.0%
Manually modeled in workshops 66 52.8%
Manually via questionnaires 46 36.8%
Partially collected automatically 44 35.2%

Table 1.2: How organizations procure information for EA model maintenance [RHF+13]

Another hypothesis analyzed in [RHF+13] is that the use of automation techniques decreases
required efforts for EA model maintenance. Our null hypothesis is that participants who
have implemented automation techniques and those who have not equally complain about
the time consuming nature of EA model maintenance. 64 (˜70%) of 91 participants who
have not implemented automation complain about the time needed to collect information.
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Only 12 (˜44%) of 27 participants whose organization employs automation complain about
this challenge. This can indicate that automation actually has a positive effect on the time
spent for EA model maintenance. The goodness of fit test results with 𝑝 = 0.014 (𝑝 ≤ 0.05).
Thus, our empirical results strongly suggest that automation techniques reduce efforts to
maintain an EA model1.

In line with these observations, recent research [BEG+12, FAB+11a, RHF+13] focuses
on utilizing existing information sources within the organization to accelerate EA model
maintenance. Although practitioners widely agree that EA management uses information
that is often already contained in existing applications [FBH+13], these approaches face
new challenges [HMR12].
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Figure 1.1: Information exchange in a federated EA model environment as a socio-technical
system of systems

For our next considerations, Figure 1.1 illustrates an organizational structure and situation
we often observe in practice. It shows specialized communities A , B , and C , their
processes, involved teams, and repositories which are used by the teams to operate. In
this context, a community can be regarded a business unit. Members of such a business
unit perform tasks locally, i.e. tasks within the community. For the common good of the
organization, community members share information by publishing their model changes
( E in Figure 1.1). Goodhue and Thompson [GT95] observe that individual performance

1We refer to [RHF+13] for a discussion on potential threats to validity and a comprehensive description
of the dataset.
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rises when a good fit between tasks and technology prevails and coin the term ‘task-
technology fit’. We assume that the repositories of the specialized communities fit best for
the tasks at hand in these communities.

Assumption 1.1: Modeling community members
We assume that although members of modeling communities are eager to ac-
complish priority objectives of their respective individual community primarily,
they are willing to share information for the common good of their organization.

EA management ( D in Figure 1.1) integrates this information in a coherent and holistic
model maintained in a separate repository. Note that the three communities project
portfolio management (PPM), Business Process Management (BPM), and IT Service
Management (ITSM) serve as a vivid example. In Figure 1.1, we illustrate three rather
concrete communities to describe a general structure between these communities and EA
management; in practice we observe quite a few of these communities which—together with
the EA management community—build a federated EA model environment (cf. Preliminary
Definition 1.1).

Preliminary Definition 1.1: Federated EA modeling environment
A federated EA model environment refers to the evolutionary development and
maintenance of a common model and metamodel that is based on

∙ autonomous,

∙ distributed, and

∙ heterogeneous

information systems. The common metamodel is called federal metamodel
when existing information systems are utilized as information source in an
automated fashion. A federal metamodel might be extended by additional
concepts over time; its model is maintained (semi-)automatically and manually
by end-users. �

Within such a federation, EA management exhibits the federal or central entity as it is
the community that maintains an integrated decision base seeking to tie together pieces
of different information sources in a coordinated manner. Thereto, EA management also
establishes processes and performs tasks on a regular basis.

Symptomatic for such a federated EA model environment are model conflicts, which have
to be resolved [RHM13b], e.g. if two communities describe the same real-world object.
However, as of today, in EA management neither Buschle et al. [BHS+12, BEG+12], Far-
wick et al. [FAB+11a], nor Fischer et al. [FAW07] detailed how to resolve these model
conflicts. We further diagnose that it remains unclear how information of specialized
communities is exchanged with EA management as well as if and how this process can be
facilitated by a socio-technical solution. In [HMR12], we report on these challenges based

5



1. Introduction

on our practical experience and results of a survey among 123 experts in the field of EA
management and IT management. In the paper, we provide four categories of challenges:
(model) transformation challenges, data challenges, business and organizational challenges,
and tooling related challenges. These categories give a first impression on the socio-technical
context of a federated EA model environment and confirm a significant research gap.

In the present thesis, we investigate on the characteristics of a federated EA model environ-
ment, coin the term Federated EA Model Management, and provide software-support for
Federated EA Model Management. In the next section, we present research questions to
guide this investigation.

1.2 Research Questions

After outlining the problem investigated in the present thesis, we deduce research questions
that guide the investigations on the management and maintenance of an EA model in a
federated EA model environment. With our first research question, we intend to describe
the current situation in organizations so far referred to as federated EA model environments.

Research question 1 (RQ1): What are typical characteristics, i.e. core use
cases, involved roles, and information sources, of a federated EA model environ-
ment?

Our recent empirical observations [RHF+13] reveal that EA management commonly in-
tegrates different knowledge-bases in a coherent model to serve as a single point of truth
for decision makers. For this purpose, EA model maintenance endeavors utilize both, EA
information gathered manually from stakeholders or automatically from information sources
within operative IT environments. Further, we observe that stakeholder demands may vary
over time [Ha13] such that an adaptation of the EA metamodel is needed and other, not
yet considered information sources could become relevant [RHM13a]. In the course of this
thesis, we underpin that EA model maintenance is not a one-off endeavor but an iterative
process [BMM+11a]. It takes place continuously to provide up-to-date information to
decision makers in a timely manner. This includes an extension of the EA metamodel over
time, which is required to document new concepts, attributes, and relationships. Utilizing
the knowledge of the characteristics of a federated EA model environment, our intent is to
improve the current situation. Hence, we raise the next research question:

Research question 2 (RQ2): How can a system design and a process design
that continuously integrate models from specialized and autonomous modeling
communities with an EA model look like?

Such an integration includes the detection, communication, and resolution of conflicts
between different models. Especially the resolution takes place across different communities.
Since these communities want to be in full possession of their repository, a system facilitating
Federated EA Model Management must be capable to manage multiple metamodels of
different information sources. Hence, the system must feature a metamodel that is able to

6



1. Introduction

homogenize metamodels. Models as well as metamodels of information sources may change
over time. Concurrent modeling is an inherent characteristic of the continuous integration
process of information such that in a federated EA model environment, model conflicts
such as concurrent updates or deletes are inevitable. Thus, the metamodel must allow
collaborative conflict management among multiple modeling communities. The development
of a metamodel suitable for Federated EA Model Management is addressed by our next
research question:

Research question 3 (RQ3): How can a metamodel look like that realizes
Federated EA Model Management?

Striving for consistency, community members seek to resolve conflicts, such as contradicting
information, to reach a common agreement. On the other hand, involved parties could also
agree to maintain local inconsistencies between the different repositories. Communicating,
managing, and resolving model conflicts can be facilitated by an information system. Put in
context, model conflicts can be regarded as complex information. Few [Fe06, ch. 1] argues
that a dashboard can be used to communicate a vast amount of information. He further
outlines that details are often shown through splitting up the dashboard and enabling
interaction [Fe06, sec. 3.1.1]. We conclude that finding a suitable user interface (UI) is an
important factor for a high user adoption.

Research question 4 (RQ4): What is a suitable integrated UI for collabora-
tive Federated EA Model Management?

Especially when realizing a system with sophisticated UI support, further challenges
arise. Additionally, aspects in the course of concurrent modeling in a federated EA model
environment are subject of our next research question. With this question, we seek for an
answer how our conceptual work can be realized by an implementation artifact:

Research question 5 (RQ5): What are the software engineering challenges
for a system that facilitates Federated EA Model Management?

According to Hevner et al. [HMP+04], our concepts must be evaluated and iteratively
refined based on practitioner feedback to prove the utility of the solution in a given context.
In order to evaluate our approach, its practical application is subject of the final research
question:

Research question 6 (RQ6): What is the experience of real stakeholders us-
ing this system of systems for EA model maintenance? What are the specificities
and further challenges of the Federated EA Model Management process?

7
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1.3 Research Design

In this section, we outline the research approach taken. The research design of the thesis
pursues the conceptual framework for design science research2 in information systems
presented by Hevner et al. in [HMP+04].

Design science is concerned with the creation and evaluation of new artifacts. While
the evaluation ideally should be a result of practical application in an organizational
setting, the creation of an artifact should “extend the boundaries of human problem
solving and organizational capabilities by providing intellectual as well as computational
tools” [HMP+04]. That is, theories are not only developed by observation and synthesis
of best-practices but are gained through experiments in a practical setting. This includes
constructs, models, methods, or instantiations [MS95]. An assessment of the created artifact
is based on the utility it provides to solve identified organizational problems.

The conceptual framework presented by Hevner et al. intends to provide guidance for all
information systems research for understanding, executing, and evaluating the research.
Figure 1.2 illustrates the framework.

Fundamental property of the framework is its iterative nature, i.e. a repeated loop between
two phases: the creation or refinement and the assessment of an artifact. Hevner et al. refer
to these phases as ‘develop/build’ and ‘justify/evaluate’. Hevner [He07] summarizes these
phases of the information systems research as the ‘design cycle’.

As depicted, information systems research interacts with the environment and the knowledge
base. Within the environment are people, organizations, and technology. On the one hand,
it represents the problem space (cf. [Si96]) and ‘business needs’ addressed by the conducted
research. On the other hand, the environment defines the context in which an artifact is
applied and assessed. Practical requirements for an artifact originate from the environment.
The assessment of the artifact in the environment builds the context of the evaluation. This
relationship is referred to as ‘relevance cycle’ in [He07].

In the course of both phases of the design cycle the ‘raw materials’ of the existing information
systems knowledge base are applied. That means results of prior information systems
research, e.g.methods and models, are applied to create or refine a new artifact in the
‘develop/build’ phase. Methodologies serve an appropriate assessment of the utility of the
artifact and provide guidelines to evaluate and justify the artifact. Rigor is achieved by
selecting applicable knowledge appropriately to build and evaluate the artifact. Outcomes
of the conducted research contribute to the knowledge base and may inform the community
about future research. In [He07], Hevner summarizes the selection and contribution to the
knowledge base as the ‘rigor cycle’.

Hevner et al. establish seven guidelines “to assist researchers [...] to understand the require-
ments of effective design-science research” [HMP+04]. Below, we outline these guidelines
briefly and describe how they were taken into account in the research presented in this
thesis.

2For an overview of different research methods in information systems, we refer the interested reader
to [Fr06, ch. 7]. In his technical report, Frank also introduces a framework to configure different research
methods [Fr06, ch. 9].
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Figure 2.  Information Systems Research Framework

tified business need.  The goal of behavioral-
science research is truth.2  The goal of design-
science research is utility.  As argued above, our
position is that truth and utility are inseparable.
Truth informs design and utility informs theory.  An
artifact may have utility because of some as yet
undiscovered truth.  A theory may yet to be devel-
oped to the point where its truth can be incorpor-
ated into design.  In both cases, research assess-
ment via the justify/evaluate activities can result in
the identification of weaknesses in the theory or

artifact and the need to refine and reassess.  The
refinement and reassessment process is typically
described in future research directions.

The knowledge base provides the raw materials
from and through which IS research is accom-
plished.  The knowledge base is composed of
foundations and methodologies.  Prior IS research
and results from reference disciplines provide
foundational theories, frameworks, instruments,
constructs, models, methods, and instantiations
used in the develop/build phase of a research
study.  Methodologies provide guidelines used in
the justify/evaluate phase.  Rigor is achieved by
appropriately applying existing foundations and
methodologies.  In behavioral science, methodol-
ogies are typically rooted in data collection and
empirical analysis techniques.  In design science,
computational and mathematical methods are

2Theories posed in behavioral science are principled
explanations of phenomena.  We recognize that such
theories are approximations and are subject to numer-
ous assumptions and conditions.  However, they are
evaluated against the norms of truth or explanatory
power and are valued only as the claims they make are
borne out in reality.

Figure 1.2: Information systems research framework of Hevner et al. [HMP+04]

1. Design as an artifact. The first guideline is summarized by Hevner et al. as follows.
“Design-science research must produce a viable artifact in the form of a construct,
a model, a method, or an instantiation” [HMP+04]. In this thesis, an approach
for a federated management of EA models is developed. Besides its conceptual
description, also a viable software prototype was implemented. Hevner et al. calls this
an instantiation of an artifact.

2. Problem relevance. The second guideline of Hevner et al. states information system
research has to develop technology-based solutions that address important and rele-
vant business problems. The goal of this thesis is to develop an approach to facilitate
Federated EA Model Management to improve the current situation in EA model
maintenance endeavors of organizations. Related problems to EA model maintenance
endeavors as well as to federated approaches to information management are well
studied (see Section 1.1, Section 2, and Chapter 3). In 2011, we gained first project
experiences facing problems related to this thesis. First results reporting on initial
findings were published in the beginning of 2012 [BEG+12]. To investigate problems
in EA management on a broad scale organizational factors that influence EA manage-
ment endeavors were investigated in [HSR+13]. In particular, we looked at factors
and challenges organizations face that are related to automated approaches for EA
model maintenance [HMR12]. The data quality aspects of one particular information
source were investigated in [GMR12]. A variety of typical information sources were
analyzed in [FBH+13].

3. Design evaluation. Hevner et al. argue that the “utility, quality, and efficacy of a
design artifact must be rigorously demonstrated” [HMP+04]. The authors suggest
a variety of design evaluation methods split into five categories, i.e. observational,
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analytical, experimental, testing, descriptive. Within the observational methods,
the case study is described as the study of an “artifact in depth in [a] business
environment” [HMP+04]. For the evaluation of ModelGlue, we apply observational
methods in Chapter 7. We carried out two case studies during which we tested
the prototypical implementation with industrial data and gathered feedback from
practitioners. Additionally, we carried out an interview series in order to get feedback
for our concepts from a broader audience and to foster an understanding of a viable
Federated EA Model Management process.

4. Research contributions. The core contribution of this thesis is the design artifact,
i.e.ModelGlue, a software-supported process design for Federated EA Model Man-
agement that improves the current situation for EA model maintenance and allows to
increase the model consistency in an enterprise collaboratively. The core use cases of
Federated EA Model Management are described in Chapter 4 whereas the design of
ModelGlue is detailed in Chapter 5. Technical feasibility of the approach is demon-
strated by implementing a prototype based on an existing enterprise 2.0 collaboration
platform (see Chapter 6). Utility of the prototype is shown in an empirical assessment
in the context of the case studies whereas utility of the overall process that guides
ModelGlue is confirmed in an interview series (see Chapter 7).

5. Research rigor. Hevner et al. state that “design-science research relies upon the appli-
cation of rigorous methods in both the construction and evaluation of the designed
artifact” [HMP+04]. The foundations of Federated EA Model Management and re-
lated fields such as EA documentation, software and model merging, and federated
information systems were extensively studied. We report on the state-of-the-art in
EA model management in Chapter 3. Further, the design goals and the guidelines
followed during the design of ModelGlue were precisely formulated (cf. Chapter 4
and Chapter 5). Finally, the arrangements, execution, and results of the evaluation are
described comprehensively in Chapter 7. That includes details of in-depth interviews
and a detailed description of the case studies.

6. Design as a search process. Hevner et al. consider the design of an artifact as a
search process. “The search for an effective artifact requires utilizing available means
to reach desired ends while satisfying laws in the problem environment” [HMP+04].
ModelGlue is the result of an iterative process that can be roughly divided into
three phases. In the first phase, we obtained an understanding of current practices and
point out problems in the domain of EA model maintenance. In the second phase, we
attempted to establish concepts for an automation of EA model maintenance and we
gathered feedback from industry for single components of ModelGlue, e.g. processes,
conflict types, conflict visualizations and its technical basis. A third and final phase
was conducted when it turned out that these components seemed to be promising
solution artifacts, the components were integrated in a coherent solution design as a
single artifact named ModelGlue.

7. Communication of research. The final guideline of Hevner et al. proposes to present
research to both, “technology-oriented as well as management oriented audi-
ences” [HMP+04]. The former is addressed by providing implementation details and
demonstrating that ModelGlue can be integrated in an existing enterprise collabora-
tion platform. The conceptual design as well as industry feedback obtained during the
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case studies and interview series serve the latter. Preliminary results have been pub-
lished to more business-oriented venues, e.g. [BEG+12, FBH+13, RHF+13, RHM13b],
as well as technical venues, e.g. [HMR12, HRP+13b, RM14, RHM13a], and are refer-
ences in the remainder of this thesis.

1.4 Contributions

The research questions and the research design aim to guide our research which contributes
to the knowledge base regarding collaborative management of EA models in federated
modeling environments. Towards this objective, we propose ModelGlue. ModelGlue
fosters the continuous efforts to increase integrity and consistency in federated EA model
environments. Subsequently, we outline the main contributions of the present thesis and
ModelGlue (cf. also Figure 1.3).

The first contribution is a comprehensive description of the characteristics and
challenges of Federated EA Model Management based on available literature in
related fields and empirical studies within the domain of EA management. We employ a
topic map ( A1 ) for EA model maintenance to revisit the state-of-the-art in literature
and point out research gaps ( A2 ). Essentially, a federated EA model environment is
an organizational setting in which a central architecture management function integrates
models of specialized, semi-autonomous IT management functions. We describe typical
characteristics ( A3 ) such as relationships between involved models, stakeholders, and
roles. Additionally, we give an overview of data quality aspects of relevant information
sources. Based on these characteristics, we analyze the core use cases ( A4 ) which build
the foundation for requirements ( A5 ) of a software-supported process design.

Our second contribution is a holistic design and implementation of a system of
systems for Federated EA Model Management, which build the foundation of a
consistent modeling environment to develop a central, integrated model among multiple
distributed, autonomous, and heterogeneous information systems while maintaining feder-
ated models of these information systems in a collaborative manner. We present a system
design and a process design ( A6 ). A metamodel ( A7 ) realizing a dynamically-typed
repository builds the groundwork of our design. We extend entity types, relationship types
and attributes types of an existing metamodel. We equip these types with roles such that
the resulting metamodel features a fine-grained access control. The metamodel further
incorporates tasks and transient changesets to facilitate collaboration among different roles
when model conflicts arise. These tasks are used to realize a flexible, collaborative, and
conflict-driven model evolution process that guides the resolution of model conflicts.
In this process, users of ModelGlue receive tasks to manipulate the life-cycle of model
elements. The life-cycle of a model element is captured in its state. ModelGlue utilizes
the fine-grained access model to realize a role model and to provide escalation mechanisms.
This way, different stakeholders can be involved in the conflict resolution process. We
present an implementation of ModelGlue in a state-of-the-art Enterprise 2.0 framework,
mechanisms and algorithms ( A8 ) for model and metamodel (local and cross-model)
conflict detection as well as strategies for semi-automatic model conflict resolution
( A9 ) through conflict resolution tasks. These are integrated in a conflict management dash-
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Figure 1.3: Research questions, structure of the thesis, and related publications

board that allows resolving conflicts collaboratively and is part of the interactive visual
support ( A10 ) of ModelGlue. The dashboard is used to communicate conflicts visually
and it allows the different roles involved to resolve model conflicts interactively. Moreover,
ModelGlue facilitates model quality assurance by providing visual means to view model
differences. Besides innovative UI designs ( A11 ), we provide implementation details of
an interactive visualization framework ( A12 ) and present lessons learned ( A13 )
during the iterative development of a prototypical implementation of ModelGlue.

Our third contribution is a practical evaluation of ModelGlue in industry to provide
feedback on the developed solution. We present an overview of published artifacts that
prove feasibility and continue to summarize learnings from two case studies ( A14 and
A15 ) that use industrial data. The case studies embrace models of the application
landscape and the infrastructure configuration management database (CMDB) of two
German organizations using live data captured over a time period of 52 months and 1
month respectively. We utilize multiple physically federated repositories and integrate
these with a single logically federal EA repository. During the case studies, we extended
and refined our design iteratively. The present thesis reports on the final design and
details rationales for the design decisions as well as practitioner feedback. A subsequent
interview series ( A16 ) among 11 EA experts confirms the general design and flow of
events, i.e. applied methods and processes when pursuing Federated EA Model Management.
The results of both, the case studies and interview series, give further insights how to pursue
Federated EA Model Management.
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1.5 Structure of the Thesis

This thesis is divided into eight chapters. Figure 1.3 illustrates the structure of the thesis,
the addressed research questions, created artifacts as outlined above as well as related core
publications. Each chapter is outlined in the following.

Chapter 1—Introduction—motivated the present thesis, detailed the problem, and
derived research questions which guide the present thesis. Further, we described the
research design taken and outlined the core contributions. The chapter concludes
with this outline.

Chapter 2—Foundations—summarizes existing work relevant for the remainder of the
thesis. The chapter serves the reader to build foundations to understand the thesis
and refers to literature relevant for the topics investigated.

Chapter 3—State-of-the-Art in EA Model Maintenance—presents a topic map
outlining gaps identified throughout our research and revisits the state-of-the-art
referring to work of others that influenced our design decisions.

Chapter 4—Requirements Analysis—characterizes a federated EA model environ-
ment, details core use cases relevant for Federated EA Model Management, and
derives requirements for an information system that supports Federated EA Model
Management.

Chapter 5—Federated EA Model Management Design—presents the conceptual
design of Federated EA Model Management and ModelGlue. That embraces
methods, techniques and a design for the software-support of Federated EA Model
Management.

Chapter 6—Software Support for Federated EA Model Management—reveals
implementation details of ModelGlue. A particular focus is put on collaboration
aspects and visual support. As a consequence, we outline a framework for interactive
visualizations and demonstrate how we apply it to realize our conceptual design of
ModelGlue in a prototypical implementation.

Chapter 7—Evaluation—reports on the setup and results of two case studies in an
industrial setting. In the chapter, we further present qualitative insights from a
broader audience and feedback as an outcome of an interview series.

Chapter 8—Conclusion—summarizes the thesis’ contributions, critically reflects on the
contributions and the results, informs about further research, and finally outlines
parts of the thesis that potentially could be generalized by subsequent investigations.
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Chapter 2

Foundations

In this chapter, we clarify the important concepts relevant for the present thesis. Figure 2.1
depicts the diversity of related disciplines for this thesis as well as their intersections as a
Venn diagram. In the following we briefly provide rationales for these different areas and
outline their interrelationship, common ground, and relevance to this thesis.

EA 
Management

Federated
Database 
Systems

Model 
Evolution & 

Merging

Figure 2.1: Intersection of different areas of related work for the present thesis

Areas summarized cover topics of different information systems and computer science
communities, namely:

∙ EA management is the problem domain in which we observe insufficiencies con-
cerning methodological guidance and tool support in the initial phase and subsequent
maintenance of EA models. To provide a general understanding of the domain, we
describe fundamental concepts and principles of EA management upon which we
build our considerations in the remainder of the present thesis.
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∙ Model Evolution & Merging also concentrates on the maintenance of models in
a slightly different context. While EA models are formally defined, they are primarily
used for knowledge management and decision making. In contrast, the model evolution
and merging community is mostly interested in merging executable models commonly
used in model-driven engineering (MDE). “Global model management involves keeping
track of the relationships between various models, and, from time to time, combining
information from several models into a single model” [BCE+06].

∙ Federated Database Systems focus on storing and sharing information in a fed-
erated structure between different databases. This field is also concerned with the
exchange of information while federated systems, i.e. databases, stay autonomous.

Next, we sketch the problem space, i.e. fundamental concepts that make up an EA and the
different perspectives on EA management and modeling.

2.1 EA and EA Management

In this section we introduce concepts which are central for EA management endeavors and
illustrate the relationships between these concepts. After introducing our perspective of
an EA as a whole, we revisit the core contribution of the ISO 42010 standard briefly. The
conceptual model of the ISO serves to explain important relationships among concepts. We
then put focus on the interdisciplinary role of EA management and its relationship to other
management disciplines. This aspect of EA management plays an important role in the
discourse of this thesis. Finally, a high-level overview of the phases of EA management
is shown to point out an important aspect, i.e. the stakeholder involvement and iterative
and incremental nature of EA management in general and in particular the impact on the
maintenance and evolution of an EA model.

2.1.1 A Structural Perspective on an Enterprise Architecture

We observe that many EA researchers [RWR06, p. 47] and practitioners [Ha10] have a
similar view on an enterprise1. In line with Buschle et al. [BEG+12], Doucet et al. [DGS+09,
pp. 79,345], Hanschke [Ha10, p. 66], Matthes et al. [MBL+08, pp. 28–31], Winter and Fis-
cher [WF07], and Wittenburg [Wi07] we illustrate a high-level, holistic view on an enterprise
in Figure 2.2.

It is divided in different layers and cross-functional aspects which exert influence on all
layers. In the following we explain the layers from top down.

∙ Business Capabilities “describe the functional building blocks of an enterprise’s
business model as part of the business architecture” [Fr14, p. 2]. They are core abilities
of an enterprise (cf. Prahalad and Hamel [PH90]).

1Note that other research communities describe an organization from a different perspective; for instance
Inkpen and Choudhury [IC95], Morgan [Mo83], and Weick [We12, p. 3ff].
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Figure 2.2: Fundamental structure of a holistic view on an enterprise [BEG+12]

∙ Organization & Processes are used to realize and implement business capabilities.
The organizational structure, e.g. a matrix organization [Ga71], tends to be static
while processes describe behavioral aspects for value creation (cf.Davenport and
Short [DS90]. At this level, coarse-grained information is modeled such as business
objects, e.g. customer, product, or contract.

∙ Business Services describe the provision of tangible products or services to ac-
complish certain processes. The right granularity of these services enable reuse and
an effective composition to new processes as a response to a frequently changing
environment.

∙ Applications & Information describe the IT support and required information to
accomplish a business service. This embraces not only in-house IT but also applications
hosted by a third party, e.g. through Software as a Service (SaaS).

∙ Infrastructure Services are technical services used to provide applications and
information, e.g. access to the Internet, the provision of an application server, etc. Sim-
ilar to the applications, procurement of third-party services has become a commodity
through Infrastructure as a Service (IaaS) and Platform as a Service (PaaS).

∙ Infrastructure & Databases is the technical backbone of an organization and
includes for instance network elements like hubs, routers, and switches as well as
servers and clusters. Databases on the other hand are the physical data storage for the
most valuable asset today’s knowledge-intensive organizations possess—information.

Other descriptions of these layers exist. To name one prominent example, ArchiMate
2.0 [Th12a, p. 6] refers to these layers as ‘Business Layer’, ‘Application Layer’, and ‘Tech-
nology Layer’. As stated above, these layers are influenced by cross-functional aspects which
are driving forces to any of these layers. These aspects are:

∙ Visions & Goals are derived from the enterprise strategy. Visions are desired states
of the reality in the far future. Visions are operationalized to goals.
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∙ Questions & KPIs help to measure the accomplishment of goals in a quantitative
manner. Metrics help to formalize questions and key performance indicator (KPI)
values can provide a means to control efforts.

∙ Strategies & Projects are instruments to implement change and to create inno-
vation. Especially, projects transform the EA whereas strategies provide courses of
action to achieve goals [Ob13, p. 29], [BMR+10a].

∙ Principles & Standards define guidelines and borders for the EA. Thus, they can
be viewed as constraints for the solution space [BMR+10a].

∙ Security aspects are relevant to prevent e.g. industrial espionage, data loss, and
contempt of private and personal data.

∙ Compliance relates to influencing factors like regulatory changes or audit trails
(cf. [AHR14]).

In line with these observations, Winter et al. [WF06] consider an EA as depicted in
Figure 2.3. To a large extent, this perspective is in line with the situation described in
Section 1.1.

Business
Architecture

Process
Architecture

Integration
Architecture

Software
Architecture

Enterprise
Architecture

Technology
Architecture

Figure 2.3: An EA as cross-layer view of aggregated artifacts [WF06]

We summarize key aspects of this perspective as follows:

∙ An EA and respective model is a description of an integrated view upon (aggregated)
information of different architectural layers.

∙ The EA management function is primarily interested in the relationships between the
different layers.
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∙ A modeling community owns different information silos; these may be integrated.

∙ Any specialized knowledge and information remains within the respective architecture
(cf.modeling community Section 1.1).

As outlined above, at a high level EA researchers as well as practitioners have the same or
a very similar view on an enterprise. However, in detail organizations vary strongly when it
comes to specifying the exact terminology, concepts, and their interrelationships, cf. [SW09].
This has a great influence on the metamodel of an EA model.

Preliminary Definition 2.1: Metamodel
A metamodel is a conceptualization of a class of models. It can be considered
a language that determines how to specify permissible models [Fr11, p. 39]. �

To define a metamodel, commonly a (semi-)formal notation is employed. Prominent
examples for these languages are:

∙ the Unified Modeling Language (UML) defined by the Object Management Group
(OMG) [OMG11b],

∙ the Entity Relationship Model (ERM) introduced by Chen [Ch76], or

∙ the Object-Role Modeling (ORM) developed by Halpin [Ha05] (see also [HM10]).

Developing an EA metamodel that finds acceptance within an enterprise is a task influenced
by many factors. Some important factors are intangible, others are described by literature.
In the following, we outline a particular framework that the most prominent EA frameworks,
researchers as well as practitioners often refer to.

2.1.2 Conceptual Framework of the ISO 42010 Standard

An EA can be considered a model of a software-intensive system (cf. [Th11, p. 9], [La13,
p. 23]). These software-intensive systems can be described utilizing the conceptual framework
as proposed in the ISO 42010 standard2 [ISO07b]. Figure 2.4 depicts the framework
for architectural descriptions of software-intensive systems, concepts therein, and their
relationships to each other.

A Mission is (directly or indirectly) derived from the business strategy3 and contributes
to an objective, i.e. it should describe “a use or operation [...] to meet some set of objec-
tives” [ISO07b]. One or multiple Missions get fulfilled or supported by a software-intensive
System. We regard such a System as a system of systems, i.e. an enterprise. An enterprise

2The ISO 42010 standard adopted the Institute of Electrical and Electronics Engineers (IEEE) standard
1471 [IE00].

3In [Po80], Porter presents three general widely accepted strategies. These are cost leadership, differenti-
ation, and focus. As business strategies are beyond the scope of the present thesis, we refer the interested
reader to [TW93, TW97] for other business strategies.
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Figure 2.4: Conceptual framework of the ISO 42010 standard for architectural descriptions
of software-intensive systems [ISO07b]

or System is surrounded by an Environment. Consequently, a System has accompanied
properties of its Environment; the System is influenced by the Environment and in
turn influences it (cf. [Be68]).

An enterprise, as a system of systems, has individuals or groups of individuals that have
interests or concerns regarding the system; these are called Stakeholders4. Concerns
describe any aspects important to one or more Stakeholders, e.g.“considerations such as
performance, reliability, security, distribution, and evolvability” [ISO07b].

As we consider the System to be an enterprise and each system has an Architecture,
the respective architecture is an EA (cf.Definition 1.1). The EA can be documented by
an Architectural Description. Note that the Architecture is purely conceptual
whereas the Architectural Descriptions are concrete artifacts. The Architectural
Description provides Rationale for the selection of a architectural concepts. This
(enterprise) Architectural Descriptions are maintained and analyzed using different
Views. A View addresses particular Concerns expressing the Architecture from a
particular angle, i.e. a Viewpoint. This Viewpoint is “a specification of the conventions
for constructing and using a view. A pattern or template from which to develop individual
views by establishing the purposes and audience for a view and the techniques for its
creation and analysis” [ISO07b].

4The term stakeholder and its roots in management literature is investigated in depth by Freeman [Fr10,
p. 32ff].
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Both, the View and Viewpoint can be described with a Model. Thus, Models
(cf. Section 2.2.1) are means to describe the Architectural Description, Views, and
Viewpoints; a Library Viewpoint is a Viewpoint that does not originate from the
Architectural Description.

Above concepts and in particular their interrelationships serve to build a general un-
derstanding of the interactions within an EA viewing it as a software-intensive system.
During the discussions in the remainder of this thesis, we refer to the relationships be-
tween Stakeholders their Concerns, Viewpoints and Views on an Architectural
Description.

The ISO 42010 standard gives guidelines which describe the interrelationships in a conceptual
model. In the following, we employ a different perspective to describe the relationships
between EA management and other management disciplines.

2.1.3 EA Management Interrelated with other Management Disciplines

In the conceptual model of the ISO 42010 standard (cf. [ISO07b] or Section 2.1.2) the
enterprise and the EA respectively are part of an environment. We already motivated that
an EA is administered by an EA management function (cf. Chapter 2.1). Also, we outlined
that an EA embraces business as well as IT aspects (cf. Section 2.1.1). EA management
serves as a mediator between different management disciplines. With respect to a system
approach, the environment of EA management can be considered other management
disciplines. Wittenburg [Wi07, p. 12] and Matthes et al. [MBL+08, p. 28] highlight the
importance of an integration with other disciplines for successful EA management initiatives.
While we look at EA management as a continues process (cf. Section 2.1.4), we also see an
integration with other management disciplines. This integration can be described taking a
more static perspective. Figure 2.5 illustrates this integration with other disciplines.

Enterprise Architecture Management

Multi-Project Management

Project Portfolio Management

Strategy & Goal Management

Project Lifecycle
Define

Measure
Plan 

Measure
Prioritize
& Commit  

Implement 
Measure

Deploy
& Migrate

Demand
Management

Identify
Measure

Ticket 
∑

∑

Infrastructure Management

Figure 2.5: Integration of EA management with other management functions (based on
[Wi07, p. 12])
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We stress that EA management must be linked to related management processes to use
their input and output to plan, control, and monitor the evolution of the EA.

Figure 2.5 shows the different management areas and illustrates their interconnections
referring to information flow and collaboration. In the following we sketch these management
areas briefly:

EA management functions as a mediator between the different management areas by
providing current, planned, and target states of the EA to align, plan, and control its
evolution.

Demand Management is the entry point for new action items, which may change the
EA in terms of projects. Typical tasks of demand management embrace gathering
demands, identifying affected architectural elements, and preparing the transformation
of project proposals.

Strategy & Goal Management puts focus on the realization, monitoring and evaluation
of defined strategies and goals. Strategy and goal management assesses demands,
projects, and their affected architectural elements with respect to the strategies and
goals defined for the enterprise.

Project Portfolio Management uses project proposals to compose a project portfolio
for the next planning period according to a set of criteria, e.g. [Kr10, pp. 258–261]:

∙ risk (project duration, project size, available resources, problem dimension,
dependencies),

∙ utility (economic viability, lifetime, non-quantifiable utility, employee-orientation,
potential development),

∙ strategic fit, (customer-orientation, competitor-orientation, process-orientation,
efficiency), and

∙ application landscape plan, (process organization, process responsibility, process
goals, information system architecture data, information system architecture
functionalities, IT strategy and technology fit).

Multi-Project Management seeks to synchronize projects. According to project inter-
dependencies derived from the objects used, e.g. application systems or services, a
project is likely to change. Further, delayed projects may affect other projects. These
deviations have to be identified and projects have to be rescheduled accordingly.

Infrastructure Management focuses on the provision of essential components required
for IT operations such as e.g. hardware and other (typically physical) devices (cf. [Kr10,
p. 272]).

Project Lifecycle describes the project execution phases that realizes change in an EA.
Note that Figure 2.5 is a schematic view illustrating a sequential design process,
e.g. the waterfall model [Ro70], and iterative and incremental approaches, e.g. agile
projects, shall be referred to as well.
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Typical information exchanged between the disciplines embraces e.g. the current, planned,
or target state of the EA, project proposals as well as strategies and goals. Commonly,
EA management serves as a mediator between these different management disciplines
when exchanging and sharing information about an EA. Federated EA Model Management
accounts for this fact. In this thesis, we consider these management functions as modeling
communities and describe a design aiming at the utilization of existing information sources
employed by these communities.

As of now, we viewed at an EA from a structural and more static perspective. Additionally,
we outlined the interrelationships between the respective management function, EA man-
agement, and other management functions. In the following, we take a process perspective
and describe high-level phases EA management endeavors typically carry out.

2.1.4 EA Management is a Continuous Process

Academia, e.g.Ahlemann et al. [ASM+12, p. 249] and Buckl [Bu11, p. 152], as well as
practitioners, e.g. Hanschke [Ha10], Keller [Ke12], and Niemann [Ni05, p. 38], describe EA
management as an iterative process. In [BMM+11a] we first discussed an agile design which
incorporates the basic ideas of iterations that deliver increments of an EA artifact. On this
basis, we present a holistic design for an EA management process in [RZM14, p. 12] and
provide empirical results on the agility of current EA management practices [HRS+14].

Figure 2.6 depicts the EA management discipline as an iterative, incremental, and continuous
process. The central notion of continues improvement through learning from past decisions
(cf. Deming[De82]) often found in contemporary process-based frameworks, e.g. Information
Technology Infrastructure Library (ITIL) [Ca11a, Ca11e, Ca11c, Ca11f, Ca11d] or The
Open Group Architecture Framework (TOGAF) [Th11, p. 445], has been incorporated in
this process.
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Figure 2.6: EA management as an iterative management discipline (based on [RZM14,
p. 12])
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In the first phase (➊ in Figure 2.6), EA management starts by motivating an EA endeavor.
Especially in the first iteration, value-generation does not take place during this preliminary
phase. However, for a successful EA management initiative, it is of utmost importance to get
the stakeholder buy-in, i.e. convince stakeholders of the meaningfulness of EA management
and long-term benefits for the entire organization. Further, top management support is
considered essential for successful EA management endeavors (cf. [YP13]). In [HSR+13], we
provide empirical evidence of the impact of top management support on EA management.

∙ Motivate: At all times, the consideration of social aspects for EA management
is of major importance. In line with Ahlemann et al. [ASM+12, p. 138], we find
that top management support is a crucial success factor for an EA management
initiative; without top management support an EA management endeavor is likely
to fail. Existing management functions that coordinate efforts across business units,
e.g. the strategy office, may provide a business and/or IT strategy that can serve as
a starting point for EA management, focusing on aligning business and IT strategy.
Equally important, however, is the stakeholder buy-in and proactive stakeholder
engagement. It is of utmost importance not to underestimate the role of stakeholders
for a successful EA management initiative. Important stakeholders include but are
not limited to business, project managers, and application owners; but also technical
staff such as IT operations (cf. Hanschke [Ha10, p. 99ff]).

∙ Collect: Next to motivating EA management, the EA team collects information
that serves as a decision base later on. The collected information is formalized by
developing models of an EA that reflect the reality. In the first iteration, any initial
information should be gathered. This information can build a profound basis for a
conceptualization. In subsequent iterations of this phase, a more focused way for data
gathering should be chosen. Challenges that arise during this phase are detailed in
Chapter 3. Usually, an EA model conforms to an EA metamodel that represents a
conceptualization of the different entities, their attributes, and their relationships to
each other.

∙ Model: Hence, an EA model (mental or explicit) is conceptualized or the existing
conceptualization is extended or adapted to reflect the current circumstances within
an enterprise. Ideally, each aspect that addresses a concern of a stakeholder is reflected
by the conceptualization of the EA. An anti-pattern reported by Ambler et al. [ANV05,
p. 194] is the ‘ivory tower architecture’: the EA looks good on paper commonly fully
blown conceptualized but does not reflect the reality. Enterprise architects must
understand their stakeholders and incorporate their feedback in the EA model and
respective conceptualization. Moreover, the focus should be put on the most important
aspects which generate value.

In the second phase (➋ in Figure 2.6), developed models and concepts are communicated and
used to explain decisions and the long-term benefit and further course of EA transformation
projects. Backed by top management, the EA team nurtures an organizational culture that
embraces the EA initiative. In this phase, the EA team should show the turnover for each
individual stakeholder. While EA management is meant to realize mid-term to long-term
goals, it is important to justify intermediate costs for EA management. In this step the
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agile principle “Individuals and Interactions over Processes and Tools” should guide an EA
management initiative (cf. [HRS+14]).

∙ Communicate: In EA management, the communication of results is facilitated
using metrics and calculated KPIs as well as visualizations and reports. The concrete
representation form depends on the stakeholder (cf. Section 2.1.2). Top managers for
instance make decisions on highly aggregated KPIs whereas visualizations displaying
interconnectedness and eventually causal dependencies are valuable for business stake-
holders as well as for software development and architects. Since collecting required
information commonly is regarded cost-intensive, a small number of visualizations and
KPIs, which generate most value to the organization should be maintained, instead
of wasting efforts with the time-consuming composition of outdated and defective
reports that seek to explain and forecast everything. Other important factors are to
speak the language of the EA Stakeholders and to cultivate relationships to members
of other management functions, e.g. PPM or change management (see involve).

∙ Explain: The EA model as well as its usefulness for the organization as a whole and
for individual members of the organization should be communicated and explained
explicitly.

During this activity, the EA team explains not only the benefits of EA management
and the need to maintain an EA model but further provides rational of architec-
tural decisions (cf. Section 2.1.2). These can be incorporated for example in visual
representation of planned states.

∙ Involve: It is important to involve stakeholders at all levels, i.e. top management,
business stakeholders, software developers, IT operations, solution architects, project
managers, etc. The EA team might support stakeholders in solving their individual
challenges such that the efforts for the information collection to keep the EA model
up-to-date are justified. This often can be accomplished by providing necessary
information and highlighting the common good for the company that EA management
provides (see communicate). The quality of the information base that is referred to as
EA model is crucial for the trust in an EA management initiative. One way to ensure
a sustainable model quality is through incentives and integration in organizational
processes, e.g. PPM and change management (cf. Section 2.1.3 and Section 3.2.1).

∙ Support: In this phase it is important to avoid negative effects of tools on team
collaboration and EA models. In line with Ambler et al. [ANV05] in [HSR+13], we
empirically confirmed the issue of an over-sized EA information model. Hence it is
important to avoid ‘waste’ in terms of gathering information that in the end is not
used. Rather we advocate to focus strictly on the actual information demand of top
stakeholders.

∙ Get feedback: A common step to iterative process designs is to gather feedback on
the method and steps undertaken to feed an administrative method that seeks to
improve the process. Typically, EA Stakeholders are asked what went good and what
went wrong, e.g. during the execution of their software development project. This way,
feedback concerning the EA management process is gathered directly and indirectly.
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In the third phase (➌ in Figure 2.6), EA management should reflect their practices and
outcomes. EA management still is a young discipline; researchers and practitioners should
synthesize building blocks and patterns of best-practices and constantly re-evaluate applied
methods (cf. [BMM+11a]).

∙ Reflect: This activity serves not only to analyze and critically reflect the outcomes
of each iteration but also to analyze and reflect stakeholder feedback and engagement.
This activity seeks to find root causes of deviations between planned and actual
achievements. Given a new basis of information, the EA team may propose changes
to processes.

∙ Adapt: This final activity serves to adapt the EA management function as well as
organizational processes. These may have to be adjusted in response to the produced
results or the feedback gathered in the previous phase. An example for an adaptation
of the organizational process is a new policy that require approval of architectural
changes by the EA team, which in turn might have a finite (and shared) set or
requirements (cf. principles and standards in Section 2.1.1) for the EA or individual
solution architectures.

A critical reflection of the EA management team’s behavior as well as delivered artifacts
requires constant feedback. The EA management team has to demand feedback and adapt
their models and methods if needed. This especially emphasizes the human and social
aspect of EA management. A successful EA management initiative relies on continuous col-
laboration between the EA management team, their stakeholders as well as top management
support.

In [BMM+11a] we propose to proceed iteratively and incrementally such that a cycle (phase
1-3 in Figure 2.6) lasts no longer than 12 months. Meanwhile, EA management initiatives
should take changes in business and technology into consideration. Ahlemann [ASM+12,
p. 231] proposes that an iteration should not take longer than three to nine months. Although
many of our empirical investigation confirm that TOGAF is the prevalent EA management
framework, we conclude that, as of today, there is no established standard we can refer to
and diagnose that empirical evidence for the ideal time-frame for an iteration is missing.
Similar to the conceptualization of an EA model this may depend on organization-specific
factors.

Note that this process is meant to give an overview of our current understanding of EA
management; we are aware of many other factors that are important for EA management.
Especially Aier [Ai13] and Hauder et al. [HSR+13] outline cultural and organizational
specifics that seem to have an impact on EA management.

2.1.5 Summary of EA and EA Management

In this section, we established a general understanding of EA management. Therefore, we
looked at EA management from a rather static perspective. Thereafter, we emphasized
involved elements by referring to the ISO 42010 standard. Finally, we gave a more dynamic
perspective on EA management and described a typical EA management process. Thereby,
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we pointed out the social component that is of utmost importance for a successful EA
management initiative. In the remainder of the thesis, we build on these groundwork: Our
approach adds information from different modeling communities incrementally and involves
stakeholders during the resolution of model conflicts.

Although EA management depends on a sound information based stored in an EA model,
current frameworks for EA management, e.g. TOGAF [Th11] or Zachman [Za87], do not
provide any guidance for information procurement [FAB+11b]. This holds true for the
lean approach to EA management we presented above. In the remainder of this thesis, we
establish that a software-supported process design can facilitate some of the important
aspects of EA management.

2.2 Modeling and EA Modeling

The description of an EA is a means to derive planned states that describe transformations
leading towards an envisioned target state. Thereby, the description of an EA is an explicit
artifact (cf. Section 2.1.2). This description is formalized in a model. In this section, we
briefly revisit the fundamental features of a model to build a common understanding of
models. Further, the different levels of abstraction commonly employed as a frame of
reference are sketched.

2.2.1 Fundamental Properties of a Model

According to Stachowiak [St73, pp. 131-133] there are particular features a model always
exhibits5. Those features are:

Mapping feature: Models always refer to an original—a so-called universe of discourse.
Models are mappings or representations that serve as surrogates of objects in the
physical world or of artificial or mental originals.

Reduction feature: Models commonly do not include every attribute of an original,
but rather limit the scope relevant to their respective model creators and/or other
stakeholders. The art of reducing the model to such a purposeful scope is called
abstraction.

Pragmatism feature: Models are not uniquely assigned to their originals in the real-world.
They fulfill a replacement function

∙ for a particular subject (human or artificial receiver),

∙ within particular time intervals, and

∙ restricted to particular mental or actual operations, i.e.models serve a special
purpose and are a means to an end.

5We refer the interested reader to Thomas [Th05]. He presents a comprehensive review of different
notions of models and an extensive discussion on the topic.
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For the remainder of the thesis and with respect to the domain of EA management, we
define:

Definition 2.1: Model
Essential properties of a model are that

∙ a model is built by a model creator at a particular time,

∙ a model abstracts from reality, i.e. physical or mental originals in the
real-world,

∙ a model serves model users (stakeholders) for a specific purpose.

�

A model can be conceptualized by defining properties of specific concepts in the real-world
that are of interest for the modeler. From an object-oriented (OO) perspective, each physical
object is an object that conforms to an entity. Such an entity has attributes. A special
kind of attribute refers to other objects. We call these relationships. We refer to such a
conceptualization of a model as metamodel.

Definition 2.2: Metamodel†

A metamodel is a conceptualization of a class of models. It is an explicit
conceptual description of entities, attributes, and their relationships to each
other. This description forms a language that determines how to specify
permissible models (cf. [Fr11, p. 39]).

†Synonym(s): information model [Le99], schema, conceptual schema [HM10, p. 27] �

In Section 2.1.1, we already established the role of modeling languages that are employed to
formalize a model. We also established an intuitive understanding of the term metamodel.
In the following, we investigate the relationship between models and metamodels more
closely.

2.2.2 Meta-levels of Models

Figure 2.7 illustrates the different levels models (cf. [OMG11a, pp. 17–20]). Each level
conforms to the next upper level, i.e. is an instance thereof.

From bottom-up, we begin with the reality. Depending on the community, whether modeling
or database management system (DBMS), two prevalent terms exist to describe the reality.
Each of the terms is used exclusively by only one community. The modeling community
speaks of a model whereas the DBMS speaks of data that is physically stored within a
database managed by a DBMS. Both capture the real-world, are created by a particular
person (modeler), and serve a purpose, i.e. both terms conform to our notion of a model
(Definition 2.1).
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Figure 2.7: Relationship of model, metamodel, meta-metamodel, and meta-meta-metamodel

This model—or data—can again be conceptualized as we established in Preliminary Defi-
nition 2.1. Thus, a model is an instance of a metamodel whereas the DBMS community6

refers to the conceptualization of data as the schema or database schema. This modeling
process demands considerable analytical skills. A modeling expert has to

∙ understand the model and perhaps also the circumstances in the real-word described
by the model,

∙ conceptualize the model in a metamodel, and, thus,

∙ understand the metamodel offered by the respective meta modeling facilities employed
(cf. Section 2.1.1).

Before we proceed with the discussion, we provide Example 2.1.

Example 2.1: Developing a schema for a database
The modeling expert—a Database Administrator (DBA)—gets the initial data
(model) on a hand-written piece of paper. He is trained expert for a particular
DBMS (meta modeling facilities) and, thus, develops a schema (metamodel). It
is not necessary that the user of a system understands the schema. Still, the

6In this thesis, we view DBMS from a user and Database Administrator (DBA) perspective; we refer to
Date [Da04, p. 34ff] for the classical three level architecture of database systems.
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user can describe and manage information about entities in the real-world with
the corresponding information system that accesses the database and provides
read and write access.

A meta-metamodel is (commonly) a means to realize a modeling language. The meta-
metamodel of such a language typically conforms to a meta-meta-metamodel. A prominent
example for meta-metamodel is the Unified Modeling Language (UML) which conforms
to a meta-meta-metamodel, namely the Meta Object Facility (MOF) as the self-contained
foundation for UML (cf. [OMG11a, p. 14]). We discuss these rather distinct notion between
the different layers in Section 5.1.2.8 and meanwhile refer the interested reader to Atkinson
and Kühne [AK01b, AK03] for an interesting discussion on the topic. To conclude our
description of Figure 2.7, a meta-schema is what a DBMS system commonly implements
whereas—to our best knowledge—following this logic for the DBMS community no such
thing as a meta-meta-schema exists. This would be one possible solution to build a common
denominator among different DBMS implementations. Harmonization efforts of different
DBMS systems are further discussed in Section 2.4 where we also introduce the different
schemas that interact within a federated database system (FDBS).

2.3 Model Evolution and Merging

Next, we draw a parallel between software merging and model merging. Software can be
considered a model (source code) that conforms to a metamodel (programming language).
The model evolution and merging community originates from source code merging. For
this purpose, line-based approaches are utilized to merge changes on source code. Many
publications, cf. e.g. [Me02], underpin that line-based approaches, e.g. [HM76, He78, My86],
are not sufficient for software or source code merging (cf. also [Ti84]). Respective solutions
proposed to solve related issues, e.g. [Li04, LKT06, TBW+07], are very similarly to model
merging approaches, e.g. [KWN05, BP08]. In particular, programming language independent
approaches, e.g. [Me99], are faced with similar problems outlined by the model merging
community, e.g. [BSW+09, KPR13, TEL+10, WLS+12]. Mens [Me02] outlines structural
merging of source code and exemplifies related issues using UML class diagrams, i.e.models
(cf. Definition 2.1).

Rutle et al. [RRL+09] motivate model merging from another angle, namely model-driven
engineering (MDE). MDE is an often applied methodology in software engineering. Models
as well as their change over time, i.e. their evolution, are essential for MDE. Thus, many
authors, e.g. [Ba08, DMJ+07, KHS09, NMB+05, OK02, RW98], motivate the need to merge
not only source code but also models in a repository, describe arising issues, e.g. [LW13,
WL13], propose solutions, e.g. [Ba08], and carry out empirical evaluations of different merge
approaches, e.g. [KHS09].

In his extensive state-of-the-art survey Mens [Me02] revisits literature on the topic of software
merging and identifies multiple dimensions to compare the different approaches. While Mens
puts emphasis on software merging, Koegel et al. [KHL+10], Kolovos et al. [KDRP+09],
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and Rose et al. [RHW+10] concentrate on models. Literature often compares model merge
approaches based on a particular dimension, e.g. [KDRP+09, KHL+10]. Focus is often
put on matching elements [KDRP+09, SE08, LHS+06], mapping elements [RB01a, RB01b,
BM07, VIR10], detecting conflicts [LW13, TEL+10, KHS09, As94, Ed97] and resolving
them [Br12, KHS09, CDRP08, SP94], or runtime behavior of employed algorithms [RC13],
i.e. computational complexity.

In the following, we outline core concepts of this community to foster an understanding of
important terms of the software and model merging communities.

2.3.1 Two-way, Three-way, and N-way Merging

The first step towards a merge of two versions of source code is to calculate their dif-
ferences [Me02]. Mens [Me02] distinguished between two general merge or differencing
approaches:

∙ Two-way differencing: A two-way differencing approach compares two versions of
an artifact without considering their origin.

∙ Three-way differencing: A three-way differencing approach utilizes knowledge
about the (common) origin of both versions to be merged to calculate differences.
When multiple versions originate from the same version, i.e. they are branches thereof,
we call this a common origin.

Two-way differencing has its drawbacks. Namely, with a two-way differencing it is often
hard or not at all possible to tell whether differences are caused by adding, removing, or
updating information from a previous version. As a reaction to these shortcomings, today’s
source code management (SCM) tools, e.g. Subversion (SVN) [Ap14], Git [Ch08, Ch09],
or Mercurial (HG) [Me14], use three-way differencing approaches by default. Similar to
these approaches, we consider the common origin (cf. Section 5.2.5). Example 2.2 shows a
two-way as well as a three-way approach to illustrate their differences more clearly.

Example 2.2: Two-way and three-way merge of text files
We can use the Unix utilities diff [HM76, HS77] and diff3 to calculate differences7

of a small piece of source code written in the Java programming language
illustrated in different versions (cf. Figure 2.8). The diff utility compares version
1a with version 1b without knowing the common origin version 1. Based on
this two-way difference calculation (cf. result of diff in Figure 2.8), it cannot be
decided whether lines have been added, some lines have been deleted, or are
just updated.

7We refer the interested reader to [HVT98] for an overview of delta algorithms and their runtime behavior.
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Merge output of Diff3 (Version 1a, 1, 1b)
public class HelloWorld

{

  public static void main(String[] args)

  {

<<<<<<< Version 1a

   if(args[0].equals("print"))

    System.out.println("HelloWorld");

||||||| Version 1

    System.out.println("HelloWorld");

=======

    System.out.println("My first Java program");

>>>>>>> Version 1b

  }

}

Output of Diff (Version 1a, 1b)
5,6c5

<    if(args[0].equals("print"))

<     System.out.println("HelloWorld");

---

>     System.out.println("My first Java program");

Output of Diff3 (Version 1a, 1, 1b)
1:5,6c

     if(args[0].equals("print"))

      System.out.println("HelloWorld");

2:5c

      System.out.println("HelloWorld");

3:5c

      System.out.println("My first Java program");

1 public class HelloWorld

2 {

3   public static void main(String[] args)

4   {

5     System.out.println("My first Java program");

6   }

7 }

Version 1b
1 public class HelloWorld

2 {

3   public static void main(String[] args)

4   {

5     if(args[0].equals("print"))

6       System.out.println("HelloWorld");

7   }

8 }

Version 1a

1 public class HelloWorld

2 {

3   public static void main(String[] args)

4   {

5     if(args[0].equals("print"))

6       System.out.println("HelloWorld");

7       System.out.println("My first Java program");

8   }

9 }

Merge of version 1a and 1b

Create Branch Create Branch

MergeMerge

1 public class HelloWorld

2 {

3   public static void main(String[] args)

4   {

5     System.out.println("HelloWorld");

6   }

7 }

Version 1

Figure 2.8: Merge of source code using the Unix diff and diff3 utilities

In contrast, the diff3 utility also considers the common origin. The subsequently
applied merge strategy can take into account that only the value of the string
in line 5 has changed. Further, the if statement (line 5 of version 1a) is added
to the merged version.

To resolve model conflicts, it is often beneficial to merge multiple versions at once to have
all the intended changes at hand [RC13]. Rubin et al. [RC13] provide a formal definition
of n-way model merging [RC13]. In their paper, Rubin et al. [RC13] use weights on model
elements to merge 𝑛 models and reduce the matching problem to the NP-hard problem of
‘weighted set packing’ [AH98]. While we agree with the general problem that 𝑛 versions of a
model or subsets thereof must be considered to find or calculate an ‘optimal’ merge result,
for EA model maintenance, this is a highly manual task. The merge and conflict resolution
in an EA model is influenced by many factors which undoubtedly cannot be reduced to
weights in a fully automated algorithm. Thus, the present thesis takes a different perspective
(cf. Section 5.2). Definition 2.3 summarizes our notion of an n-way merge (cf. [KR14]).
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Definition 2.3: N-way merge
An n-way merge approach utilizes knowledge about the origin of 𝑛 versions to
be merged to calculate differences provided that 2 < 𝑛 <∞. When multiple
versions of a model element ℰ2..𝑛 originate from the same version ℰ1, i.e. are
branches of ℰ1, ℰ1 is called common ancestor, origin, or provenance. �

In Chapter 5, we build on the foundations outlined above. Thereby, two-way and three-way
differencing as well as our notion of an n-way merge are of special interest. We provide an
algorithm that calculates differences between models (cf. Section 5.2.4) and an algorithm
that realizes an n-way merge (cf. Section 5.2.5) with integrated models that build a federation
(cf. Section 5.2.1).

2.3.2 Textual, Syntactic, Semantic, Structural Merging

The result of the merge in Example 2.2 shows that also syntactical merge conflicts may
arise in the event of source code merging. In the illustrated case, it remains unclear whether
both System.out statements should be included or not (cf. line 6 and 7 in merged version of
Figure 2.8). When both statements are included, the brackets of the if statement could be
missing. On the one hand, this depends strongly on the intended behavior of the program.
On the other hand, it also depends on the syntax of the programing language. However,
text-based, i.e. line-based, approaches cannot resolve such conflicts.

To address shortcomings of text-based approaches, Buffenbarger proposes syntactic software
merging [Bu95]. Key to this approach is to apply merge strategies not to text but to the
structure of the source code resulting from the parsing process, i.e. an Abstract Syntax
Tree (AST). Mens [Me02] distinguishes syntactic merge approaches by their underlying
data structure. This can be either tree-based or graph-based. Graph-based approaches
outperform tree-based ones when it comes to reflecting cross-references as this is the case
for instance for function or method calls. For instance Rho and Wu [RW98], Taentzer
et al. [TEL+10], and Mens [Me99] use attributed graphs as an internal representation of
software artifacts.

Another approach is ‘semantic merging’. Mens distinguishes between ‘static semantic
conflict’ and ‘behavioral conflict’. The former refers to syntactical errors that would raise
exceptions by the compiler, e.g. an undeclared variable; the latter describes conflicts in the
runtime behavior of the executed code. Semantic merging is strongly related to source
code—be it static or runtime characteristics—and thus respective approaches are regarded
out of scope for the present thesis.

Instead, another kind of approach is of interest—structured merging [Me02]. These ap-
proaches are motivated by demands to increase maintainability of source code while preserv-
ing its functionality and behavior, i.e. software refactoring as advocated by Fowler [Fo99],
Griswold [Gr91] and Opdyke [Op92]. Related conflicts are coined by Mens as ‘structural
merge conflicts’ [Me02]. Mens notes that “existing merge tools and techniques provide no
support whatsoever for detecting structural merge conflicts. The main reason is that the
information required to detect these conflicts is usually implicit and cannot be inferred
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from the source code only” [Me02]. This holds true for EA model maintenance; especially
when comparing different EA metamodels, the (original) intention of the modeler is often
unclear or remains implicit.

2.3.3 State-based, Change-based, and Operation-based Merging

An orthogonal dimension is mentioned by Koegel et al. [KHS09] as well as Mens [Me02];
they distinguish between:

∙ state-based approaches compare two different model versions, i.e. a version and
its successor after changes have been made [CW98]. This post-mortem analysis is
referred to as differencing [Me02].

∙ change-based approaches track changes while they occur such that there is no need
for differencing since changes are stored in a repository explicitly [KHL+10].

∙ operation-based approaches are specialized change-based approaches [LO92] defin-
ing transformations in such a way that a state of a model is turned into the state of
its successor [CW98].

To further distinguish these approaches, we briefly discuss their advantages and disadvan-
tages. Change-based approaches often are implemented as operation-based approach. Thus,
we focus primarily on state-based and operation-based approaches in the following. A major
advantage of state-based approaches is their tool independence [KHL+10], i.e. one does not
need a prescribed tool to manipulate a model. The operations performed on a state-based
approach are immediately applied to the model, i.e. operations alter the model’s state. In
literature [Me02, RL07], change-based and operation-based approaches are considered more
powerful than state-based approaches; state-based approaches exhibit several disadvantages:

∙ No temporal order of changes: Temporal order cannot be derived anymore. Tem-
poral order can be important for understanding changes or for detecting conflicts,
e.g. dirty updates [LO92].

∙ Groups of changes to composite changes are lost: Atomic changes are often
hard to understand for users; they are too technical and are related to fine-grained
operations of the modeling framework. In particular Kehrer et al. [KKO+12] ad-
dresses this issue for EMF-based solutions. The authors investigate the semantics of
multiple primitive operations. Xing et al. also analyze and group changes to detect
refactorings [XS06].

∙ Computational complexity: Especially for large models the required computa-
tional effort is high [LKT06, TBW+07]. Differencing of models is commonly regarded
expensive in terms of computation time. On the one hand computational time can
be attributed to the complexity of the algorithms; on the other hand, the size of the
models is also an important factor.
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In particular operation-based approaches have several advantages for conflict detection
and merging [DMJ+07, LO92, Me02], repository mining [BMM+08], and coupled evolution
[HBJ09, Wa07]. Against this background, we employ an operation-based approach for the
merge of different models in our solution design (cf. Section 5.2.5.2). Moreover, we employ a
state-based comparison (cf. Section 5.2.4) to visualize differences between the latest revisions
of models. Although thousands of elements are captured in an EA model, an EA model
is considerably smaller than a software model—thus, the present thesis does not focus on
reducing complexity of differencing and merging algorithms.

2.3.4 Static Identity-based, Signature-based, and Similarity-based
Matching

Kehrer et al. [KKP+12] and Kolovos et al. [KDRP+09] distinguish between model-type-
specific and generic approaches. For the present thesis, we focus on generic approaches,
i.e. approaches supporting an arbitrary metamodel. Kehrer et al. [KKP+12] and Kolovos
et al. [KDRP+09] further categorize generic approaches in ‘static identity-based’, ‘signature-
based’, and ‘similarity-based’ approaches.

Static identity-based approaches use a non-volatile unique identifier (UID) for each
model element [KDRP+09]. This persistent UID is assigned to a model element upon
creation. The core idea of static identity-based approaches, e.g. [AP03, FGC+06], is
to match models and respective elements based on corresponding identities. Kolovos
details two main advantages. First, no configuration by end-users is required and
second, utilizing UIDs to match model elements is particularly fast. However, neither
can it be applied to models built independently nor to modeling frameworks that
do not support the maintenance of UIDs [KDRP+09]. Further drawbacks of this
approach are discussed in [SK07].

Signature-based Reddy et al. [RFG+05] propose signature-based matching to overcome
limitations of static identity-based approaches. Instead of using static UIDs, the
signature-based approaches calculate the identity of model elements dynamically.
These calculations are specified as functions over model elements values employing
a model querying language. As this calculation is done dynamically, the signature-
based approaches overcome one of the drawbacks of static identity-based approaches,
i.e. they can be applied to models build independently from each other. On the
other hand, with signature-based approaches developers or users have to specify the
identity function of different model elements [KDRP+09]. Kehrer et al. report that
“the signature is typically a hash value which comprises one or many conceptual
properties of model elements, including their type or technical properties such as
persistent identifiers of model elements” [KKP+12]. That means in practice, static
identity-based and signature-based approaches are also mixed.

Similarity-based Both approaches, static identity-based and signature-based, calculate a
boolean value, i.e. true or false, for a match of model elements. In contrast, similarity-
based approaches seek to match the most similar model elements [KKP+12]. Thereto,
a configuration defines how similarity matches are calculated since not all model
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elements are equally important, e.g. classes with similar names are more likely to be a
match than classes with similar values [KDRP+09]. Thus, the configuration specifies
the relative weight of model elements. For each type this configuration includes
relevant properties and a respective function that computes the similarity of two
property values. Additionally, another function computes the total similarity of two
model elements [KWN05, TBW+07]. Some approaches, e.g. [TEF13, RV08], utilize
one standard function for any property [KKP+12]. Mens [Me02] compares identity-
based with similarity-based matching and concludes that latter delivers more accurate
results. However, Mens also notes that the fine-tuning of weights is a challenging and
long-lasting trail-and-error process.

In the remainder of the thesis, we provide a solution design that—to some extent—combines
static identity-based and signature-based approaches (cf. Section 5.2.4.3).

2.3.5 Tentative Merge Results

In their ‘fundamental approach to model versioning’, Taentzer et al. [TEL+12] propose an
interesting approach that inspired our work. The authors consider models as evolving
artifacts, which especially holds true for MDE. They also draw an analogy to text-based
version control system (VCS) solutions and propose a graph-based approach that takes
model structures and their evolution into account. Model changes are thereby viewed as
graph modifications consisting of primitive delete and insert actions. Their approach to
conflict-detection is two-fold, i.e. Taentzer et al. check graph modifications for operation-
based conflicts and employ the resulting (merged) graph for state-based conflict detection.
For the latter, they temporarily resolve operation-based conflicts preferring inserts over
deletes. This way, they keep as much information as possible. They call this intermediate
model a ‘tentative merge result’. This merge result builds the basis for “manual conflict
resolution as well as for the application of repair actions” [TEL+12]. In her PhD thesis,
Brosch [Br12, ch. 6.3.2] also employs a tentative merge.

In Section 5.2.5.4, we apply the general idea of such an ‘tentative merge result’ to be
able to quickly revert changes and preserve any information. Further, we propose an
optimistic conflict resolution strategy that preserves as much information as possible
(cf. Section 5.2.8.2).

2.3.6 Conflict Detection

There are different hard-coded and more flexible ways to detect a conflict [Me02]. In his
comprehensive state-of-the-art article, Mens [Me02] reports on:

∙ Merge matrices: This category subsumes techniques to detect conflicts which em-
ploy a ‘merge matrix’ or ‘conflict table’ to manage operations. Thereby, conflict detec-
tion is often reduced to a pair-wise lookup in a lookup table (LUT), i.e. pairs of opera-
tions which may lead to a conflict are used to perform the lookup whereas the result de-
fines how the system reacts. Examples of such approaches are Feather [Fe89], Steyaert
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et al. [SLM+96], Munson and Dewan [MD94], Mens [Me99], Lippe et al. [LO92], and
Kirschner et al. [KR14].

∙ Conflict sets: Approaches of this category group together potential conflicting situ-
ations, i.e. allow to specify several patterns of operations that—potentially—trigger
a conflict. Edwards [Ed97] proposes such an approach. Moreover, Edwards also
proposes to tolerate conflicts within the system.

∙ Semantic conflict detection: For the sake of completeness, the final category uses
either implicit or explicit semantics of programs to detect conflicts. We regard this
category of little interest for the present thesis and refer the interested reader to the
excellent study by Mens [Me02]. He summarizes further approaches and outlines some
of their shortcomings.

The first two approaches had considerable impact on our designs that led toward this
thesis. In [RHM13b], we propose an approach for manually specifying an explicit conflict
set, i.e. the conflict set does not serve to detect a conflict but is used for the resolution
of manually detected conflicts by involving users. In [KR14] we propose a configurable
approach and concrete conflict resolution strategies (cf. Section 5.2.8). This approach is
similar to merge matrices (cf. Section 2.3.6).

2.3.7 Conflict Avoidance, Tolerance, and Resolution

Conflict resolution and conflict tolerance is perhaps the most significant difference between
software and model merging. Especially when the model is used to capture information
and is not used for execution, conflicts are perceived differently. In contrast to MDE, an
EA model is not meant for execution and especially syntactical flaws in specific attributes,
e.g. type constraint violations, commonly have little impact.

Based on the works of Mens [Me02] and Edwards [Ed97] and in line with Brosch
et al. [BLS+10] we distinguish between three different approaches:

∙ Conflict avoidance seeks to avoid conflicts entirely. Brosch et al. provide two
examples [BLS+10]: by realizing a pessimistic strategy, e.g. with explicit locking
mechanisms or by synchronous modeling activities.

∙ Immediate conflict resolution tries to keep only consistent versions of a model.
Brosch et al. [BLS+10] note that in traditional VCSs, the developer who checks in
last bears the responsibility to produce a working, i.e. consistent, piece of software.

∙ Conflicts tolerance allows (temporary) inconsistencies. Brosch et al. [BLS+10] use
a model (with tentative merge results) as a basis to resolve inconsistencies and apply
repair actions.

Especially the last strategy assumes that by ignoring inconsistencies during a merge
gives modeling experts the opportunity to see all conflicts. In the approach of Wieland
et al. [WLS+12] respective conflicts are preserved as annotations on a model element such
that modeling intentions can be discussed collaboratively (cf. Section 5.3.2).
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Another approach from the software merging community is proposed by Asklund [As94].
Thereby, a fine-grained revision control is employed to keep persons aware of each others
changes. The authors expect to minimize conflicting changes which in the end makes a
merge simpler. Perry et al. [PSV01] even observe that it is easier to merge small changes
on a frequent basis. The authors note that a merge of larger changes leads to very costly
overhead and increased coordination effort. Policy-based approach give guidelines for
organizational regulations. For instance, Bruegge and Dutoit [BD99] propose to develop
software in one main branch; respective changes in this branch should be restricted to bug
fixes. Features should be developed in separate branches. At the same time, the total
number of branches should be as small as possible.

In Section 5.2.1 we detail the role of branches for our approach. Additionally, conflict
tolerance and a considerable degree of freedom during modeling and meta modeling within
and across communities is central to our approach (cf. Section 5.2.8.2). We propose a
fine-grained access control (cf. Section 5.1.2) which is also used to notify responsible persons
within an organization. Observations made by Perry et al. could be transfered to EA models
as it is more likely to succeed in merging small changes on a frequent basis with an EA
model. However, there are exceptions: For instance, in the course of a new major release of
a commercial off-the-shelf (COTS) product, the model and metamodel could be migrated
such that considerable structural changes occur in a repository of a modeling community.

2.3.8 Collaboration

In the context of structural merging (cf. [Me02]), Mens also mentions the need of user
intervention to resolve conflicts—an idea that guides our design (cf. Chapter 5). Since
Mens’ study [Me02], several approaches coping with models and related conflicts have been
developed, e.g. [GKL+13, Br12, HRP+13b, Wi11].

Traditionally, a single developer is in charge of the merge process [Me02, BLS+10]. Wieland
et al. [WLS+12] propose a different approach. First, they merge models in a conflict tolerant
manner annotating a model that incorporates tentative merge results. Thereafter, this
model serves as a basis for collaborative activities that seek to resolve model conflicts. The
annotations capture not yet applied, concurrent, modeling operations.

In the present thesis, we detail a collaborative approach as proposed for MDE by Wieland
(cf. [WLS+12]). Thereby, we extend the existing notion of conflicts (cf. Section 4.2.7 and
5.2.5) and provide means that intends to foster collaboration and conflict resolution
(cf. Section 5.2 and [RHM13b, HRP+13b]).

2.3.9 Persistent Versions

SCM systems rely on delta algorithms [HVT98] to reduce storage space. Applying delta
algorithms commonly means less input/output (I/O), since only deltas must be read
from storage. According to Mens [Me02], the I/O time saved is even higher than the
required time to regenerate entire revisions. Assuming Moore’s Law [Mo65, Sc97] holds
true, delta algorithms will remain an important dimension to consider when designing a
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system capturing revisions of artifacts. For traditional SCM we distinguish between the
following approaches:

∙ persistent deep-copy refers to approaches that store an entire version for each
change on a revision without applying any delta algorithm.

∙ delta-forward means that the original version is stored and for changes only the
deltas to the current revision are stored.

∙ delta-backward describes approaches that store latest revision and for changes only
the deltas to the original version are stored.

Mens states that two-way merge approaches commonly use a ‘symmetric delta’ calculation
(see [CW98, p. 239]) to compute the differences between two versions [Me02]. For three-way,
operation-based merge approaches, a ‘directed delta’ approach calculates the sequence of
operations between two versions.

In our approach, we apply a variation of the delta-backward approach. We store operations
that incorporate information about the old revision and new revision. However, we persist
the latest version which clearly qualifies for the delta-backward approach (cf. Section 5.2.5.2).

2.3.10 Visualizations

Many authors, e.g. [Ke97, We08], argue that visual support for model evolution and
merging is a necessity. Some even use hand-crafted visualizations to explain their
concepts, e.g. [KDRP+09]. Edwards [Ed97] outlines the importance to represent con-
flicts that occur in a collaborative environment in a visual manner and gives some de-
sign hints how to represent conflicts. Since then, visual representations for differenc-
ing [KKO+12, OWK03, RM14, We08] and conflicts [BLS+10, Wi11] have been proposed.

In [KDRP+09], Kolovos et al. discuss the role of visualizations for model matching and
differencing. The authors mention that the presentation of differences varies by scope
and only some pieces of information might be highlighted. The concrete syntax which
renders the abstract syntax thus may even vary between diagrammatic or textual notations.
Consequently, the authors distinguish between the internal calculation, an abstract represen-
tation of differences, and concrete visual presentation. We already established that an EA
model serves different stakeholders by addressing particular concerns and commonly views
are utilized as a means to communicate a specific viewpoint of architectural descriptions
(cf. Section 2.1.2). In line with Kolovos et al. and in order to separate models and views,
we provide an abstract syntax for model differences in terms of a metamodel capable to
store model and metamodel differences in Section 5.2.4.1 and a concrete syntax for model
differences in terms of a multi-layered visualization in Section 5.3.1.

Kehrer et al. [KKO+12] describe the challenge of communicating technical model changes
to end-users. These are often too fine grained. As a solution, the authors propose ‘SiLift’,
an engine to semantically lift model changes such that end-users understand model changes
more intuitively. ‘SiLift’ can adapt a differencing engine, e.g. Eclipse Modeling Framework
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(EMF) Compare [TEF13] or SiDiff [KKP+12], detect user-level model operations, and
presents the results as an UML diagram as an Eclipse plugin (see [KKO+12]). A similar
presentation is used in [KKT11] to annotate an UML model with changes.

Ohst et al. [OWK03] propose to visualize differences of UML diagrams. The authors not only
present their concepts but also provide insights for layout considerations of the diagrams
and semantics of different interactions. Further, they sketch related challenges and present
tool support for their solution.

In [RHM13a, RHM13b, RM14] we present preliminary work and evaluation results that
build the foundation for the visual support described in the present thesis (cf. Section 5.3).
We propose a concept that picks up the analogy to UML and the layering principle (see
Lidwell et al. [LHB10, p. 146]) which previously has been transfered to the domain of
system cartography by Wittenburg [Wi07, p. 83].

2.3.11 Technology Stack

According to Kelter et al. [KPR13] most approaches to model versioning, comparison,
merging, and evolution are based on EMF. EMF with its corresponding modeling core meta
modeling facility Ecore [SBP+09, ch. 5] is considered the de facto standard for model-driven
development [KPR13].

In the present thesis, we take a different perspective. In line with the considerations outlined
above (cf. Section 2.3.5 and Section 2.3.7), we present a more flexible way to maintain a
model and its metamodel. Instead of fat-clients developed with the EMF, we present a
web-based solution which fosters collaboration (cf. Section 5.3 and Chapter 6).

2.3.12 Summary of Model Evolution & Merging

In the preceding sections, we outlined important concepts coined by the model evolution
and merging community which influenced and guided our design decisions that are described
throughout this thesis.

One can learn from this community as they seek to cope with similar problems, and propose
innovative solution designs. However, there is a considerable difference in the nature of
the models investigated by EA research and model evolution and merging research. In the
remainder of the thesis, we argue that informal modeling for EA management is sufficient
since models are a means to an end. Thus, they are used for knowledge management
primarily to derive or plan states of an EA and justify decisions. The model evolution and
merging community on the other hand copes with problems during software integration,
particularly during MDE. The desired result thus differs considerably. However, we revisited
some interesting approaches that proposed collaboration, tolerant merging, and models
that incorporate tentative merge results. These ideas are also incorporated in our solution
design described in Chapter 5.

Since a direct comparison of approaches is beyond the scope of the present thesis, we refer
the interested reader to Altmanninger et al. [ASW09]. The authors give a comprehensive
overview of different approaches used for comparison, conflict detection and resolution in
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(software) model versioning. An even more recent comparison of the different communities
and tool-driven approaches is provided by Brosch [Br12, p. 27]. Particulars of model
matching and differencing are investigated by Kolovos et al. in [KDRP+09].

2.4 Federated Database Systems

The idea of a FDBS dates back to 1979 initially proposed by Hammer and McLeod [HM79].
Based on this idea McLeod and Heimbigner [MH80] proposed an architecture for FDBSs.
The authors call for a contemporary approach to database system architecture and advocate
that this requires the complete integration of data into a single, centralized database.
According to McLeod and Heimbigner multiple logical databases can be supported by a
DBMS. However, techniques for relating these databases are generally ad hoc. In [HM85]
Heimbigner and McLeod present a consolidated version of their approach for a coordinated
information sharing and interchange of information. Thereby, they emphasize partial,
controlled sharing among autonomous components, i.e. databases. Since then, a multitude
of approaches for FDBSs has been proposed. Consolidating this knowledge, Sheth and
Larson [SL90] present a reference architecture for FDBSs.

In line with Conrad [Co97, p. 44ff], Sheth and Larson [SL90] and Popfinger [Po07, p. 9], we
revisit three orthogonal characteristics of a FDBS:

Distribution of the different components within a federation is the first characteristics
of a FDBS. Classical reasons for distribution of multiple DBMSs are often improved
response behavior or availability [RG03, ch. 22]; for FDBS however, the distribution
often is due to preexisting DBMSs, i.e. typically DBMSs exist before the FDBS is
built.

Heterogeneity between the different components as well as between components and
federal entities is the second characteristic of a FDBS. Three general types of hetero-
geneity exist [SL90, SK93, Su01, NRS+99]:

Syntactical heterogeneity. When the same date in two databases is represented
differently, e.g. in terms of its structure [HG01], we call this syntactical het-
erogeneity among DBMSs and respective databases. This includes technical
heterogeneity arising through diverse file formats, access protocols, physical
representation, query languages etc.

Logical heterogeneity. Conceptual schemas of the data could differ, i.e. same or
similar data is represented in a different logical structure. In databases this could
manifest in terms of table design for an entity including table decomposition
and column names. Logical heterogeneity may originate from applying different
data encoding to the same data; for instance using different measurement scales,
e.g. ∘F or ∘C, to record temperature. Respective values can have the same
semantics but different numbers through different encodings applied.

Semantic heterogeneity. Same or similar looking data has—perhaps in another
context—a different meaning, i.e. concepts look like they may be related but in
fact are different. “Semantic heterogeneity refers to differences or similarities
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in the meaning of [...] data” [HG01]. Hakimpour and Geppert [HG01] provide
two examples: 1) two model elements can have the same intended meaning, but
different names (synonyms); 2) two model elements might be named identically,
while their intended meanings are incompatible (homonyms).

With respect to DBMSs, Sheth and Larson [SL90] also describe differences in supported
constraints and query languages of DBMSs.

Autonomy of the different components is the third characteristic of a FDBS. Ultimately,
it is autonomy that underpins the difference to a centralized approach. In FDBSs,
typically existing systems are integrated to a federation. An intact autonomy of
components implies that organizational responsibilities for each component can remain
unchanged.

These properties also apply for a federated EA model environment (cf. Preliminary Def-
inition 1.1). For subsequent discussions, we view a schema as a metamodel and data as
a model; data conforms to a schema similar than a model conforms to its metamodel
(cf. Section 2.2.2).

2.4.1 Interacting Schemas in Federated Database Systems

Heimbigner and McLeod [HM85] describe an architecture for FDBSs in which independent
DBMSs are united into a loosely coupled federation to share and exchange information. In
this vein, a federation consists of multiple ‘components’, and a single ‘federal dictionary’.
The federal dictionary maintains the topology of the federation and oversees the entry of
new components, i.e. autonomous databases [HM85]. Each component in this federation
controls its interactions with other components by means of an ‘export schema’ and an
‘import schema’. The former specifies the information that a component shares with
other components, while the latter specifies the nonlocal information a component wishes
to manipulate. Besides an export and import schema, each component has a ‘private
schema’. The notions of private, export, and import schemes according to Heimbigner
and McLeod are detailed in the following with respect to the reference architecture of
Sheth and Larson [SL90]. Sheth and Larson introduce a ‘five-level schema architecture for
federated databases’ that can be used to compare different approaches to FDBS design. In
the following we revisit their core ideas briefly and provide the reader with a conceptual
model illustrating the interaction between different schemas.

Local schemas are the metamodel of components stored at the components locally. He-
imbigner and McLeod refer to the local schema as the ‘private schema’ of a com-
ponent [HM85]. Further they note that major parts of the private schema describe
information available to the component and, thus, correspond to database in a non-
federated environment similar to common DBMSs. Although most of the information
described in the private schema remains local to the component, some parts of the
application data and transactions relevant to the participation in the federation are
exported to other components. Heimbigner and McLeod describe three different
categories of federation-specific information:
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∙ meta information, e.g. name and network address of the component,

∙ operations for data manipulation, e.g. accessing a type, and

∙ import and export schemas.

Sheth and Larson [SL90] note that the local schema is defined in a component-specific
way, i.e. in the native format of the respective DBMS. Hence, different local schemas
may be expressed in different, possibly heterogeneous formats.

Component schemas are considered the translation of local schemas in a unified format,
the Canonical or Common Data Model (CDM) of the FDBS. The CDM builds
the foundation for the schema integration of heterogeneous components within the
federation. Sheth and Larson give two reasons for defining component schemas using
a CDM, i.e.

∙ component schemas describe divergent local schemas employing a single repre-
sentation and

∙ component schemas can be equipped with additional semantics which are even-
tually missing in the local schema.

Export schemas specify a subset of the respective component schemas. Thereby, an
export schema describes information a component is willing to share. In line with
Heimbigner and McLeod [HM85], Sheth and Larson [SL90] note that a component
may not share all information to the entire federation and its users. Consequently, an
export schema may include information about desired access rights for particular types.
These access rights can be enforces either by filtering accessible data or by limiting
the available transactions that can be executed by a component, e.g. [HM85, VPZ88].
In the approach of Heimbigner and McLeod [HM85] similar to the private schema,
the export schema embraces federation-specific information and application-specific
information; both are derived from the respective parts of the private schema.

Federated schemas represent an integration of multiple export schemas. A concept
similar to that of federated schema is represented by the terms ‘import schema’
Heimbigner and McLeod [HM85], ‘global schema’ [LR82, HG01], ‘global conceptual
schema’ [LBE+82] unified schema, and enterprise schema. Except the term import
schemas these concepts are usually used when there is only a single overarching schema
in the FDBS. Although some systems use a separate schema to store information
on data distribution [SL90], commonly this information is included in the federated
schema. For instance, Heimbigner and McLeod [HM85] refer to the federated schema
as the ‘import schema’ specifying information a component desires to use from other
components. Their import schema contains both federation-specific and application-
specific information.

External schemas define (updateable) views tailored to the specific needs of users and/or
applications. Sheth and Larson [SL90] name the following reasons to use external
schemas:

Customization: Federated schemas tend to become large, complex, and are rela-
tively difficult to change. External schemas are a means to specify a subset of
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information in a federated schema relevant to particular users. Especially in the
event of frequently changing users’ needs, the external schemas can be changed
more readily than federated schemas.

Integrity constraints: In addition to integrity constraints specified in the different
schemas, the external schema could also be equipped with additional integrity
constraints.

Access control: In analogy to the Access Control List (ACL) in an export schema
providing access control for data managed by the component, an ACL can also
be applied to the external schema to specify access for data managed by the
FDBS.

Note that an external schema is an optional schema and yet there could be multiple
external schemas within a FDBS.
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Figure 2.9: Component, FDBS, and interrelated schemas in the reference FDBS architecture
of Sheth and Larson

Figure 2.9 gives a simplified conceptual UML class diagram that summarizes the relationships
between the different schemas in the reference architecture for FDBSs introduced by
Sheth and Larson [SL90]. Besides the concepts outlined above, a variety of alternative
architectures exists, e.g. [BKL+99, HM85]. Thereby, not all schemas are required to build
a FDBS. For instance, Heimbigner and McLeod [HM85] only rely on export, import and
private schemas. Busse et al. [BKL+99] present a four-layer architecture for FDBSs that
consists of a foundation layer, a wrapper layer, a mediation layer and a presentation
layer [BKL+99, BKL00]. Essentially, Busse et al. summarize the component schema and
export schema in one ‘export component schema’ that resides in the ‘wrapper layer’. Sheth
and Larson [SL90] explain alternative architectures of FDBS. These alternatives come from
redundancies between schemas and, thus, are a combination of the schemata outlined above.
For further discussions and comparison of different alternative architectures to FDBSs, we
refer to Conrad [Co97, p. 62ff].

2.4.2 Access Rights

The notion on access rights within a federation is described by Heimbigner and
McLeod [HM85]. They assume that a component is willing to share certain types with
every component, whereas it may also contain types that are shared only with a specified
subset of the components in the federation. Thus, they place access controls on types and
maps in the export schema; i.e. they equip the export schema with an Access Control List
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(ACL) specifying which components may access a particular type and a list specifying
which components have imported this type and, thus, are potentially accessing it. Access
rights are specified additive and embrace read and write permissions. These ACLs for
different schemas play an important role in our solution design; in particular, we discuss
different alternatives for shared and private access rights during real-time collaboration in
Section 6.4.

2.4.3 Exchange of Schemas

Similar to our solution design, FDBS exchange information about the schema. “Schema
importation is the fundamental information-sharing operation in a federation. The term
‘importation’ refers to the process of [...] gaining access to some element of exported
information.” [HM85]. Before exchanging information, each component is required to import
the schema describing it. Schema exchanges are explicitly negotiated. Each component in a
FDBS can discover other components via the ‘federal dictionary’. This federal dictionary
provides names and network addresses of the components [HM85]. Thereafter, the schema
exchange takes place between the components. In the design presented in Chapter 5, we
expect metamodel changes in different information sources.

2.4.4 Negotiation and Transactions

Each component within a FDBS has a negotiation database, where it maintains state
information initiating, accessing, and finalizing a transaction in the federation [HM85].
Similar to this idea, we incorporate state information in a—by far less technical—transaction
(cf. Section 5.1.2.5 on p. 137). The authors discuss system-level issues: concurrency control,
nested transactions, and object passing. As these topics are beyond the scope of the present
thesis, we refer to the original literature [HM85] and to [Da04, p. 76ff, p. 465ff] as well as
[BHG87, chs. 3, 5].

In our solution design, this negotiation between technical systems can be mapped to human
tasks. Thereby, we utilize tasks carrying identifiers, such as the network address as part of
a Uniform Resource Identifier (URI), to identify and refer to information stored in external
information systems.

2.4.5 Replication of Information and Provenance

In the federated architecture of Heimbigner and McLeod, objects always reside in the
component in which they are created, but references to them may be passed to other
components so that the objects can be manipulated remotely through a set of exported
operators. Figure 2.10 gives an illustration of the example given by Heimbigner and McLeod
a message between components. In our solution design, we do not export such operators;
however, to a certain extent, we assume that humans execute operations on information.
We equip tasks with the necessary information to carry out a change. Also a message
has a far more technical purpose, both concepts have the same purpose, i.e. to manipulate
information.
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c1 c2

order:
part  partname
quantity  integer

Export 
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c1/order:
part  partname
quantity  integer

Import
Schema

let  m  = new (c1/order)
insert  (m,  c1/order.part
insert  (m,  c1/order.quantity, 100)

Message

Figure 2.10: Message exchange between two components in a federated architecture

A copy of any shared (exported) object can be created by any component, but the copy is
a different object, i.e. a transaction object. These transaction objects are equipped with
unique names indicating the component that contains the specified object (cf. also ‘surrogate
key’ in [KC04, p. 213ff]). In the remainder of the thesis, we utilize such a concept referring to
it as surrogate key (cf. Section 5.1.2.1). The authors further outline how to update records in
a federated architecture addressing the view update problem [BS81, CGT75, DB78, DH84].
We refer the interested reader to [HM85] for further details. In our solution design, we
use tasks to update records in external systems, such that from a technical perspective a
bidirectional integration is not required.

2.4.6 Integrity

In [PC05] and [Po07, ch. 5], global integrity constraints for FDBS are proposed. Although
the authors claim that local components remain autonomous with their ‘Active Component
System’ [PC05], they employ direct connections between DBMSs that participate within
the federation. For EA model maintenance, this would require a considerable amount of
modifications of existing systems. While we seek to reach an eventual consistent state
within a federation (cf. Section 4.1.4), for our design we assume that modeling communities
remain autonomously with respect to ownership, local responsibilities, etc. Moreover, our
design omits modifications on information sources.

2.4.7 Evolution Process of Federated Database Systems

Introducing a FDBS is a complex task. Sheth and Larson [SL90] generalize the concepts of
Heimbigner and McLeod and propose a reference architecture for FDBSs. This reference
architecture can be utilized to compare prominent approaches to FDBSs. Moreover, they
sketch the alternatives how to introduce a FDBS and provide a process that guides the
introduction of a FDBS in organizations.

“The federation approach offers a preferred evolutionary path. It allows continued
operation of existing applications to remain unchanged, preserves most of the
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organizational structure, supports controlled integration of existing databases,
and facilitates incorporation of new applications and new databases.” [SL90]

The authors highlight that a FDBS evolves through ‘gradual integration’ and divide the
respective process in three phases:

∙ Pre-integration: This phase describes efforts that take place in order to migrate
existing files to a DBMS in order to ease access. This includes

1. the development of a local schema and component schema,

2. loading the files in the DBMS, and

3. modifying existing applications to access the DBMS instead of files.

∙ Developing a FDBS: The different schemas of a FDBS are created including com-
ponent, export, federated, and external schemas. Further, this phase involves the
definition of mappings between various schemas.

∙ FDBS operation: In this phase, the FDBS is put in operation and serves to manage
and manipulate the integrated DBMS systems via accessing a federal system.

In Section 5.2 we describe an iterative method that covers some of these concepts. Especially
the development and alignment of schemas in the first two phases is a challenging task for
EA management.

Sheth and Larson [SL90] detail on how to develop schemas for a FDBS and distinguish
between

∙ bottom-up, reusing existing DBMS to compose a FDBS, and

∙ top-down, introducing new DBMS to compose a FDBS.

The top-down approach is used only if the information demanded by the FDBS cannot
be covered by existing DBMSs. In our approach, we assume a bottom-up approach.
Technology-stacks of new applications are commonly not aligned with an EA repository.

2.4.8 Summary of Federated Database Systems

Different approaches to federated databases of information systems have been revisited.
These approaches feature mechanisms to share and exchange data. Primarily, this is
accomplished by an automated negotiation [HM85]. Common to our approach is the idea to
share parts of information sources that are still managed autonomously, i.e. the structure of
the system of systems is similar. Similar to FDBSs, we we intend to share information among
information sources. In contrast to FDBSs, we do not intend to maintain a bidirectional
relationship to the original data. Although the FDBS solutions are technical and do not
involve user interventions, one can learn from many problems described by the FDBS
community (see e.g. [Co97]).
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Contrary to FDBSs, we rely on expert knowledge as well as organizational accountability
and responsibility for information. We automate and facilitate the import and conflict
resolution but do not propose mechanisms for a technical negotiation among information
systems. Our solution primarily intends to foster collaboration in order to maintain a
federated model and improve consistency within and across local models.

2.5 Summary

In this chapter, we gave an overview of the problem domain and sketched important
concepts of solution domains to build a general understanding of concepts that are used in
the remainder of the present thesis.

We drew a parallel between model merging and software merging. These research com-
munities cope with similar problems that arise when integrating different models into a
consistent model. Commonly only one person is in charge of the merge process. Recent
work also focuses on collaborative aspects as well as it introduces the notion of a tentative
merge result. Both, the model merging and software merging communities, focus on the
integration of a formally consistent artifact. In the remainder of the thesis, we emphasize
the importance of consistency. However, EA management and their stakeholders can employ
EA models to create value although these may be flawed with inconsistencies. We conclude
that a high degree of inconsistency in EA models is not desirable, but (formal) consistency
is not as important for EA management as for the model merging and software merging
communities.

Thereafter, we drew a parallel to FDBSs. The properties of this system of systems,
e.g. autonomy of each component, are similar to what we experience in organizations that
maintain an EA model. The FDBS community assumes that different heterogeneous
information systems exist prior to their integration and provides concepts to overcome
heterogeneity in order to create federal views. In contrast to EA management, which often
fosters to reduce heterogeneity, the FDBS community does not address such issues.
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Chapter 3

State-of-the-Art in EA Model Maintenance

So far, we have established an understanding of models and metamodels. For EA man-
agement, gathered information builds the foundation for profound decisions backed by
information stored within a coherent EA model. However, as of today, EA model main-
tenance endeavors are considered error-prone and time-intensive by many enterprises
[RHF+13, HMR12, HSR+13, FBH+13]. In this section we revisit the state-of-the-art in EA
model maintenance.

Definition 3.1: EA model maintenance†

EA model maintenance describes the implicit or explicit proposition to gather
information on an EA.

†Synonym(s): describe an EA [BDM+10], EA documentation [FBH+13] �

To provide a comprehensive overview of the different fields, literature reviews are performed
according to the guidelines for an extensive literature review provided by Webster and
Watson [WW02]. The literature review comprises leading journals and conferences of both
communities, information system and computer science. As proposed by Webster and
Watson, our “literature review is concept-centric” [WW02]. Thus, found concepts from
literature determine the framework for our review.

Our review on EA model maintenance concentrates on giving an overview on the state-
of-the-art of the solution domain. Recent research, e.g. [FBH+13, HMR12, RHF+13],
coined the term automated EA documentation. Technical details, relevant information
sources, data quality aspects, documentation processes, and respective challenges have
been investigated by different research groups, e.g. Farwick et al. [FAB+11a], Buschle
et al. [BHS+12], or Roth et al. [RHM13b]. Further, requirements [FAB+11b], governance
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and processes [FAW07, FAB+11a], case studies [FBH+13], and issues [HMR12] are pointed
out by different research groups.

Before we proceed with the presentation of the results of a rigorous literature study,
we summarize key findings of a recent analysis of related work performed by Farwick
et al. [FSB+14] and add additional insights we found during our literature study. Thereby,
we employ a topic map to provide a mapping of Farwick’s study to our findings and to
point out research gaps identified as well as contributions made by the present thesis and
the published work that lead to it.

3.1 Research Topics in EA Model Maintenance

Figure 3.1 depicts a topic map that summarizes important aspects of EA model maintenance.
We do not claim to solve all identified research gaps; however, we provide insights and
contributions which shed light on these issues.

In the following, we outline the findings of Farwick et al. [FSB+14] denoted 1 – 8 in our
topic map depicted in Figure 3.1. Thereby, we stick with the terminology as used by
Farwick et al. [FSB+14], comment on some aspects and add further sources. Subsequently,
we discuss each top-level topic and provide further details.

1. Interviews & forms: Farwick et al. [FSB+14] describe this type as the most com-
mon way to collect information to maintain an EA model. Typically, information
is gathered during an interview with stakeholders. Such interviews can be used
to hand forms to stakeholders such that they can provide information in a semi-
structured manner. Farwick et al. argue that only practitioners suggest such an
approach [EHH+08, ASM+12, La13, Ke12, Ha10]. In [RHF+13], we outline that this
‘traditional’ approach to gather information for an EA model requires a high degree of
manual work and, thus, is regarded error-prone, time-consuming, and cost-intensive.
This goes in line with Farwick et al. ; they note that a sole form-based or interview-
based approach is rarely sufficient. Against this background, many publications seek
to improve the situation.

2. Wiki collaboration: This category describes methods that leverage Web 2.0 tech-
nologies to get information from stakeholders [FSB+14]. Many authors propose such
an approach [BMN+11, FKF08, HS08]. The core idea is to keep the repository up-to-
date by including many stakeholders. These stakeholders on the other hand provide
information in an informal manner. Results from informal modeling can be understood
by humans and—if necessary—can be further processed and formalized (cf. [Ne12,
p. 42ff]). Even for traditional software engineering, Bruegge [Br13] argues that infor-
mal modeling is ‘OK’. Fiedler et al. [FHS+13] propose the integration of Enterprise
Wikis into an EA repository and provide empirical grounds. Farwick et al. distinguish
between approaches that employ semantic wikis such as [FKF08, HS08] and hybrid
wikis that store structured and unstructured data [BMN+11, Ne12].
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3. Defined data collection processes: In [FAB+11a], Farwick et al. argue that the
information to maintain an EA model is gathered in an ad hoc manner. In their more
recent article, Farwick et al. [FSB+14] reports on work that prescribes pre-defined
processes. Typically these processes come with a role description that (cf. Section 3.2.2
and Section 4.1.1) to indicate who carries out which activity [MJB+09, FAW07,
FSB+12, FPB+12, FAB+11a]. Farwick et al. [FSB+14] close the discussion noting
that none of these approaches discusses the organization-specific adaption of the
processes. In the remainder of the paper [FSB+14], they introduce such a situational
method. The idea is based on method engineering by Brinkkemper [Br96]. It
can be roughly described with the core activities 1) characterizing the situation or
project, 2) selection of method fragments from a method base, 3) assembly of method
fragments (cf. also [BSH98]), and 4) measuring the project’s performance such that
an administrative method align the method base. The last step serves as an iterative
step to contribute and improve to the method base over time.

4. Generic import concepts: In Section 1.1, we argue that many information that is
subject of interest for enterprise architects is already existing within an enterprise.
Further, this information is already contained in information systems that store
information in formal models. Following this idea, researchers as well as practitioners
propose to import information to the EA repository [SGT+11, PLW+12, Ke12, Ha10,
FKF08, FHK09, FAB+11a, BGP11]. In their article, Farwick et al. note that some
papers provide ideas how components of such a tool should look like [FKF08, PLW+12].
They further state that the “majority, however, stays vague on how to tackle technical
challenges such as data mapping or the avoidance of duplicates.” [FSB+14].

5. Tool-, model, semantic integration: Surprisingly, in the article by Farwick
et al. [FSB+14] importing information is discussed prior to integration issues.
As we point out in Section 4.2.2 and Section 5.2.2, this is a major challenge
when reusing existing information of communities. Farwick et al. summarize ap-
proaches that seek to integrate existing tools or models with the EA repository
[SOB+08, DL04, La13, CHL+13, ABB+07]. They provide a list of approaches that
“focus on the integration of the content of diverse modeling tools into the main reposi-
tory fostering a seamless navigation between the tools” [FSB+14], i.e. ter Doest [[DL04],
Arbab et al. [ABB+07] and Lankhorst [La13]. Semantic technologies [BLHL01] are
employed by Chen et al. [CHL+13] as well as Schmidt et al. [SOB+08] for the model
integration. For a comparison on both alternatives, we refer to Table 4.6 on p. 100.

6. Automation via specific data sources: When carrying out model-to-model
transformations, one must understand the source and target models. Some work
has been published on concrete models that have been used to extract information
and map it to an EA repository. Examples are [HBL+12, BEG+12, AV10]. Alegria
et al. [AV10], Buschle et al. [BHS+12], and Holm et al. [HBL+12] utilize network
analysis tools to gather IT-infrastructure information. In collaboration with KTH
Stockholm, we took a different approach. In Buschle et al. [BEG+12], we extracted
information from an Enterprise Service Bus (ESB) to get information flows between
business applications1. Farwick et al. found that common to these approaches is there

1For an extensive documentation we also refer to Grunow [Gr12].
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limitation in scope, i.e. they are limited to a specific layer of the EA model. Further,
they do not include methods on how to ensure the quality of the collected data.
In addition to their conclusions, we note that these approaches assumed a specific
target model, i.e. EA metamodel, which commonly is regarded to be configured in
an organization-specific manner. Although we did not sketch how to improve the
situation, in Grunow et al. [GMR12], we published empirical insights of data quality
aspects of ESB systems.

7. Change events and notifications: Farwick et al. continue their review of re-
lated work with publications that discuss the notion of triggering events for
EA model maintenance. These events are meant to indicate relevant changes
[ASM+12, FSB+12, SGT+11, Ha10, Bu11]. Farwick et al. provide examples of publica-
tions that only mention the importance of external events [ASM+12, SGT+11, Ha10].
In her PhD thesis, Buckl considers triggers in the provided metamodel [Bu11, p. 67].
Farwick et al. close the discussion by referring to their paper [FPB+12] that discusses
implementation issues related to the utilization of external events to trigger EA model
maintenance processes.

8. Conflict resolution & quality assurance: The final category found by Farwick
et al. [FSB+14] considers the resolution of conflicts that arise when integrating different
information sources. Thereby, authors consider quality assurance steps and automation
[FAW07, RHM13b, FAB+11a, FPB+12, MJB+09]. Farwick et al. suppose that only
one of these papers reveals details and refer to their paper [FPB+12] that presents
implementation details for conflict resolution mechanisms. Especially in [RHM13b],
we propose a concrete process and visual means that has been demonstrated in
[HRP+13b]. We proposed processes, role description, design, and a prototypical
implementation on the evolution and resolution of conflicts that build the foundation
for the present thesis [RHM13b, RHM13a].

Farwick et al. summarize their findings during the literature study and state the existence
of ‘small islands’ of research on EA model maintenance which are carried out by few
different researchers and conclude that none of these combines EA model maintenance
with situational method engineering. As stated above, Farwick et al. then introduce such
a situational approach in their paper. Their situational method is based on the ideas of
Brinkkemper [Br96] and allows to characterize the situation and assemble a method that is
deemed appropriate for an organization. Farwick et al. provide software-support for their
method and use an Resource Description Framework (RDF) store to persist information.
They present insights of a case study and confirm that a software-supported process can
provide utility to organizations.

The approach of Farwick et al. comes with two major drawbacks: First, they do not address
updates in an EA repository that may be in conflict with changes within the information
sources of other modeling communities. We claim that conflicts arise in the course of
concurrent modeling activities within multiple information sources describing the same
real-world object. This includes modeling activities within the EA repository and respective
information sources. Second, Farwick et al. assume that an EA metamodel does not change
over time. In [RHM13a], we stress that a coupled model and metamodel evolution is an
important property for a successful EA initiative. It allows to start lean, to show results
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of EA management early on, and to extend the EA repository incrementally. Especially,
extending the metamodel of the repository allows to address new concerns of stakeholders
(cf. Section 2.1.2 and Section 2.1.4). In the remainder of this thesis, we present a design
that addresses these issues thoroughly.

The following sections are dedicated to provide further insights in the state-of-the-art of EA
model maintenance and important details that influenced our work. Thereby, we employ
the structure of our topic map illustrated in Figure 3.1.

3.2 Organizational Aspects

Many authors write on organizational aspects of EA and EA management,
e.g.Ahlemann [ASM+12, ch. 9], Hanschke [Ha10, ch. 6]. They highlight the impor-
tance of stakeholder analyses, role definitions and responsibilities. In his master’s thesis,
Aleatrati [AK14] investigates specific organizational aspects that are especially important
to maintain an EA model. In Figure 3.1, we illustrate these aspects: incentives, roles, and
change events.

3.2.1 Incentives

Incentives play an important role for EA model maintenance and EA management in
general. In line with Ahlemann et al. [ASM+12, p. 49], Aleatrati [AK14] confirms that
incentives and supportive stakeholders are of utmost importance for a successful EA model
maintenance and, hence, for a successful EA management. Thereby, the authors describe
two fundamentally different ways (cf. also Ross et al. [RWR06, pp. 132–134]):

∙ Top down via organizational measures: This strategy commonly incorpo-
rates the EA model maintenance tasks in objectives of individuals. Ahlemann
et al. [ASM+12, p. 245] state this common management practice as a means to
accelerate the introduction of EA management in an organization. During our
interview series Section 7.5 we could confirm the work of Ahlemann et al. : A common
practice to increase support of individuals couples goals to financial compensation.
In particular, we found instances in which EA model maintenance success has been
coupled with bonuses. Additionally, Ahlemann et al. [ASM+12, p. 245] list other
forms of compensations such as:

∙ attending an EA management training,

∙ visiting courses for EA management (or related) certifications, or

∙ participating at EA management conferences.

∙ Via prestige: Ahlemann et al. recommend to rewards ground-breaking EA-related
projects with ‘EAM awards’ [ASM+12, p. 245]. Delivered during a social event such
as Christmas or annual meetings such an award is not limited to its motivational
effects but also serves to inform about the EA initiative and can “be exploited for
marketing purposes” [ASM+12, p. 245]. In the interview series of Aleatrati [AK14],
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we could not confirm this approach. However, we regard this a meaningful way to
promote an EA initiative.

Besides these incentives, we propose a bottom-up approach to EA management
(cf. Section 2.1.4) that is able to show results early. In [RHM13a], we propose an evo-
lutionary approach to EA modeling that seeks to increase stakeholder buy-in. Our approach
falls in the ‘wiki collaboration’ category of Farwick et al. A general trend we diagnose in
[RM14] is that current EA repository seek to lower technical barriers to access information,
e.g. via web-based platforms to increase stakeholder buy-in. In our approach [RHM13a],
we employ the notion of tasks to engage stakeholders in the evolution of an EA model.
However, empirical research which provides evidence confirming that lowering the technical
barrier to contribute to an EA model actually has an impact on stakeholder buy-in is yet
to be done.

3.2.2 Roles

Besides a process model, Fischer et al. [FAW07] introduce role descriptions and a mapping
of process activities to roles and their responsibilities. Thereto, Fischer et al. uses a
Responsible Accountable Consulted Informed (RACI) matrix. Other work builds upon
these role descriptions, e.g. [FAB+11a, FSB+14, RHM13a]. We sketch the roles introduced
by Fischer et al. briefly and refer to Section 4.1.1 for a more comprehensive role description:

Chief enterprise architect is not directly involved and only informed about updates on
the EA model. The management is carried out by the EA coordinator.

EA coordinator manages the EA model maintenance. The EA Coordinator

∙ enacts the EA metamodel,

∙ supports the specification of interfaces to specialized repositories and their
models,

∙ maintenance of information stored within the EA repository, and

∙ is responsible for the compilation and design of reports on the EA.

Data owner provides information to the EA team. Each specialized model (modeling
community), has a data owner. Data owners assist the EA team in specifying and
maintaining the interface between the EA repository and the specialized model.

EA stakeholder subsumes all personnel within business and IT units that contribute or
utilize EA information.

EA repository manager is a technology-oriented role (cf. also [RHM13a]) responsible
for technical issues related to the EA repository.
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3.2.3 Change Events

The final organizational aspect centers around ‘change events’ or ‘triggering events’. As
outlined above, events in the real-world commonly trigger EA model maintenance endeavors.
For the maintenance of an EA model, Fischer et al. [FAW07] discuss two different strategies
to initiate a new maintenance cycle, these are:

periodic is initiated by the EA team and based on a maintenance schedule. Fischer
et al. use their contract based approach to incorporate the schedule in this contract.
In their periodic approach, the EA team triggers a data owner. The data owner then
provides the model of an information source as defined in the contract.

non-periodic can be triggered by both parties, the EA team as well as data owners. A non-
periodic cycle is initiated, e.g. if models changed significantly. Fischer et al. provide
an example: The model could change due to project work. Upon project completion,
the data owner informs the EA team about the changes which then decides whether
or not to initiate a maintenance cycle for the respective information source.

We refer to Section 4.2.4 during which we discuss the different notions of these events
in more detail. During the discussion, we draw a parallel to other disciplines like data
warehouse (DWH) research.

Moreover, we refer to other authors who provide a concrete list of events. In [FSB+12],
Farwick et al. present a non-exhaustive list of change events. To some extent, the authors
assume that these events are triggered by tools rather than persons. However, they
also provide the real-world event, e.g. ‘project start’ is triggered by the PPM tool. In
Assumption 4.3 on p. 66 we state that a bi-directional tool integration is beyond the scope of
the present thesis. In Chapter 7 we summarize feedback from practitioners which confirms
our hypothesis that it is too cost intensive for EA practitioners and comes with additional
technical difficulties.

3.3 Process Descriptions

Jonkers et al. state that “instruments needed for creating and using enterprise architectures
are still in their infancy” [JLD+06]. They further elaborate that EA frameworks provide
high-level guidance in identifying which areas (cf. concern in Section 2.1.2) of business
and technology should be considered when creating an EA and point out that current EA
frameworks, e.g. TOGAF [Th11] and Zachman [Za87] provide little assistance in creating
the architectural artifacts themselves. We diagnose that as of today, the situation has not
changed; this is confirmed in a more recent paper by Farwick et al. [FSB+14]. Since then,
some authors addresses the maintenance process in more detail seeking to improve the
situation. We report on these efforts, outline their core contributions, and—if applicable—
sketch how they have influenced our research.

Fischer et al. [FAW07] present a federated approach to keep EA models up-to-date. Thereby,
they designate the EA repository“to store a copy of model data from specialized architectures
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relevant for EA purposes”. Fischer et al. detail their concept to maintain an EA model;
that includes a high-level maintenance process and role descriptions. Moreover, they
discusses shortcomings of existing approaches to EA model maintenance and reports on
the application of their approach at a financial service provider. We briefly summarize the
key points of their approach, findings in literature as well as insights Fischer et al. gained
during the application of their approach.

∙ Reuse of existing models: In line with ter Doest and Lankhorst [DL04], Fischer
et al. agree “that EA modeling should focus on consolidating models, modeling tech-
niques and tools already existing in a company and integrating these at an appropriate
level of abstraction” [FAW07], i.e. they propose to reuse existing models of more spe-
cialized architectural descriptions for EA model maintenance. This has been adopted
by other research communities, e.g. Buschle et al. [BEG+12], Farwick et al. [FAB+11a],
and Moser et al. [MJB+09] and practitioners (cf. [RHF+13]). Thereby, specialized
communities remain autonomously, i.e. are in full control, of their model.

∙ Scope and evolution: Fischer et al. [FAW07] propose to specify and maintain in-
terfaces between EA and specialized architectures and provide a list of concrete
information demands. In contrast to Fischer et al. [FAW07], we present an iterative
approach that is guided by concrete concerns (cf. Section 2.1.2 and Section 2.1.4). This
goes in line with the anti-patterns detailed by Ambler et al. (cf. ‘modeling for the mod-
eling’s sake’ and ‘yesterday’s enterprise model’ in [ANV05, pp. 142–143]) and accounts
for the typical characteristics of EA management endeavors we observed that create
little value during long-lasting EA model maintenance endeavors [HMR12, HRS+14].
Although they provide a list of entities for information demands of an EA model,
Fischer et al. conclude their paper with the insight that the integration of information
from specialized architectures into an EA repository is an ongoing process rather
than a one-time effort. They further state that it “is necessary to monitor the qual-
ity of model data from source systems continuously—particularly regarding their
consistency” [FAW07].

∙ Autonomy of models: “In real life, several models for different parts of the en-
terprise might be maintained, and/or EA will co-exist with other, more specialized
architectures that cover a subset of those artifacts” [FAW07]. This autonomy is
one of our main assumptions that influenced our design (cf. Assumption 1.1 and
Definition 1.1).

∙ Conflicts and inconsistencies: stakeholders are involved in the resolution of incon-
sistencies. Although Fischer et al. [FAW07] do not directly refer to these inconsistencies
as conflicts between different models, we assume that these inconsistencies are model
conflicts. “The integration of model data from specialized architectures into the EA
repository is an ongoing process rather than a one-time effort. It is necessary to
monitor the quality of model data from source systems continuously—particularly
regarding their consistency” [FAW07].

∙ Iterative stakeholder involvement: Fischer et al. [FAW07] propose to involve
stakeholders in the maintenance process. Fischer et al. propose that all changes
intended to be performed on the EA repository are compiled to a report prior to their
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application. All EA stakeholders are then informed about intended changes and are
meant to evaluate them. Eventually, EA stakeholders may state their objection with
an explicit veto. The EA team coordinates the vetoed stakeholder and the data owner
and—if necessary—other affected stakeholders. This goes in line with Hanschke [Ha10,
p. 101]; she also advocates that maintenance of an EA model should be performed by
people who have the knowledge. Others follow this idea, e.g. [FAB+11a, RHM13b].

∙ Final approval by a responsible person: Fischer et al. introduced the notion of
a final approval for changes on the EA repository. Since it serves as a decision base,
it must contain reliable and consistent information. However, initial feedback from
practitioners has been quite controversial (cf. [RHM13b]). While some practitioners
prefer the final approval, there are others that refer to this step as an act of ‘unnecessary
bureaucracy’ which is perceived as an ‘administrative barrier’ [RHM13b]. A situational
approach (e.g. Farwick et al. [FSB+14]) might help. Initially, Farwick et al. [FAB+11a]
distinguished between major and minor releases. The former must be approved by
a person before it is applied to the EA repository whereas the latter immediately is
applied to the EA repository.

Next to the details of the process descriptions provided by literature, we briefly discuss a
specialized process description that copes with conflicts.

3.3.1 Conflict Resolution

Fischer et al. [FAW07] and Farwick et al. [FAB+11a] propose processes for EA model
maintenance which incorporate high-level activities that are meant to resolve inconsistencies
and conflicts. In [RHM13b], we detail this high-level process description (cf. also Section 5.2)
and provide further insights. In line with Farwick et al. [FAB+11a], we distinguish between
minor and major updates [RHM13b]. During the evaluation of the process [RHM13b], we
show that it still remains unclear how such a process looks like. It strongly depends on
the organizational context (cf. [FSB+14]) how exactly the conflict resolution is guided by a
process. During our interview series (cf. Section 7.5), most organizations follow an ad hoc
process. Thus, we conclude that respective software support for EA model maintenance
must facilitate non-deterministic processes (cf. also Requirement Pr1 on p. 119).

Inspired by Farwick et al. [FAB+11a], we employ tasks to resolve conflicts. In [RHM13b], we
present details of the conflict resolution process. In the proposed process, the EA repository
manager creates a new conflict task if the conflict cannot be resolved. This conflict task
contains any information about the conflicting model elements and may provide additional
tool support, e.g. a specialized merge tool, to facilitate the conflict resolution. The EA
repository manager is able to understand the model conflict on a conceptual level but,
however, is unable to provide required information on an instance level. Thus, in the
next step, the data owner receives the conflict set including the respective configuration.
This way, the process proposed in [RHM13b] contains an escalation mechanism to get the
information. This characteristic has been incorporated in the present thesis. In contrast
to the approach of Farwick et al. [FAB+11a], we facilitate task support by incorporating
the tasks in interactive visualizations. In the initial evaluation, practitioners liked the idea
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to provide interactive visual means to resolve a conflict. They referred to ‘gamification
scenarios’ [RHM13a].

3.3.2 Collaboration

Initial thoughts on collaboration come from Fischer et al. [FAW07]. The authors propose to
involve EA stakeholders and data owners in the EA model maintenance process. Farwick
et al. follow this idea in [FAB+11a]. They detail how to integrate new information sources
with an EA repository. In their process design, the EA repository manager and the data
owners are supposed to collaboratively resolve arising conflicts. However, both research
groups do not detail the conflict resolution process. In [RHM13b], we present a software-
supported process design that describes this collaboration during the resolution of conflicts
in detail. Initial concepts and practitioner feedback presented in [RHM13b] build the
foundation for the present thesis.

3.4 Tools and Techniques

Many publications report that tool support is insufficient, e.g. [FAW07] In a more recent
paper, we [HMR12] confirm this issue and report on arising challenges when automating
EA model maintenance. These findings are incorporated in the use case analyses and
requirements elicitation (cf. Section 4.2 and Section 4.3).

3.4.1 Collection

As discussed above and reported in the state-of-the-art section in their article, Farwick
et al. distinguish between:

∙ Interviews and form-based and

∙ Wiki-based approaches.

In addition, we see publications of another category, namely semi-automated imports. This
refers to the import of integrated models in an EA repository. That includes the import
of models that are build automatically by network scanners [AV10, HBL+12, BHS+12,
BBK+13]. Their approaches commonly focus on technical information about an EA,
e.g. available servers and operating systems.

3.4.2 Experience Reports

Initial findings on experience reports are given by Fischer et al. [FAW07] and Farwick
et al. [FSB+14]. Farwick et al. present their approach that builds on four documentation
techniques which are meant to be configured in an organization-specific EA model main-
tenance process. Their approach is prototypically implemented and has been applied at
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a German insurance company. The authors report on findings from this case study in
particular. In his master’s thesis, Kirschner [Ki14] presents two case studies. He reports
on the application of the design related to the present thesis and reveals arising challenges
as well as solutions. The essential setup and most important findings are summarized in
Section 7.2 and Section 7.3. Other empirical reports are based on surveys or interviews
[FBH+13, RHF+13, RHM13b]. As of today, studies that investigate the approaches at a
broader scale are missing.

3.4.3 Quality Assurance

Fischer et al. [FAW07] introduce the concept of ‘data delivery contracts’. Such a contract
is intended to ensure the data quality delivered by a third party (cf. data owner in Sec-
tion 4.1.1.2). “A data delivery contract includes a definition of the interface to the source
system, descriptions of model data from the specialized architecture to be stored in the
EA repository, transformation rules and a maintenance schedule. Data maintenance pro-
cesses are executed in regular intervals. Special events however, may trigger additional
maintenance cycles. Before model data from specialized architectures are stored in the EA
repository, consistency checks are performed” [FAW07]. This research gap is also emphasized
by Farwick et al. in [FSB+14]. In [RM14], we introduce a concept to show visual model and
metamodel differences (cf. also Section 5.3.1).

3.4.4 Conflict Management

We diagnose that EA literature is scarce on tool support or designs for the collaborative
resolution of model conflicts. While many authors state that it is important to cope with
conflicts and call for automation and tool support, e.g. Farwick et al. [FAB+11a] or Fischer
et al. [FAW07], only little has been published that sketch how conflict resolution could be
supported by software, e.g. [RHM13b, HRP+13b].

3.4.5 Integration

A first step towards gathering information from existing models is integration
(cf. Section 4.2.2 and Section 5.2). With respect to EA model maintenance, literature
distinguishes between integration via:

∙ Interfaces: Some authors, e.g. [BEG+12, HMR12], propose interfaces to other mod-
els. This requires a physical integration; whether loosely coupled or not. In the
context of EA management, physical integration approaches are discussed by Engels
et al. [EHH+08, p. 206ff]. The authors distinguish between

∙ presentation

∙ logic, and

∙ data integration.
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∙ Contracts: Fischer et al. [FAW07] suggest a contract that specifies a model that is
then transfered as a snapshot, e.g. in a Comma-Separated Values (CSV) file.

∙ Semantic matching: A more sophisticated variant for integrating different models
with each other is proposed by Chen et al. [CHL+13]. The authors propose to employ
semantic technologies [BLHL01], i.e. ontologies, to map different models.

∙ Source specific models: Some approaches provide insights on specific models,
e.g. [BEG+12]. In [BEG+12], the outcomes from a practical application of a concrete
mapping between a model of an Enterprise Service Bus (ESB) available as COTS
product and an EA model that conforms to the ArchiMate 2.0 [Th12a] metamodel is
presented. While there is little to learn for our research, these kind of contributions
are interesting for practitioners and show feasibility as well as they reveal technical
challenges.

Although further approaches to integration of information systems exist (see [Co97, p. 84]),
to our best knowledge only above outlined metdhos and techniques have been applied to
automate EA model maintenance. In Section 5.2.2, we describe our notion of integration
based on dimensions proposed by Frank [Fr08] and Kattenstroth et al. [KFH13].

3.5 Summary

We reviewed literature on EA model maintenance and gave an overview of insights that
influenced our design. Although current EA frameworks, e.g. [Th11, De09, Za87], mention
that EA model maintenance is important for a successful EA management initiative, these
frameworks do not provide any details on how to procure information efficiently. In line
with the recently published journal article by Farwick et al. [FSB+14], we conclude that only
few research communities investigated the topic and a coherent design for an integration of
different models into a holistic EA model is missing.

We discussed issues arising when integrating different federated models with an EA repository
and presented multiple empirical studies on the topic, e.g. [HMR12, FBH+13, RHF+13]. A
topic map for EA model maintenance served to sketch the research gaps. While we do not
claim to solve all of these issues, some of them are addressed by the work presented in this
thesis.

In the present thesis, we detail the conceptual foundations including typical characteristics
of EA model maintenance endeavors which seek to integrate multiple federated models with
a single EA model. We propose a design for collaborative model integration that includes
conflict resolution and quality assurance. This includes a process design, role descriptions
as well as software support. Our design combines multiple fields related to the topic in a
coherent manner (cf. Section 2.3, Section 2.4, and Chapter 5). Before we detail our design,
we describe the core use cases and requirements in the next chapter.
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Chapter 4

Requirements Analysis

In this chapter, we detail our initial observations leading towards our design decisions. For
a better understanding, we sketch the essentials of the solution space for Federated EA
Model Management subsequently. These are supplemented by the design details which we
describe in the next chapter. In this chapter, we further present use cases and requirements
for ModelGlue—the software support for Federated EA Model Management. To present
the use cases of various stakeholders in Federated EA Model Management, we employ a
structured use case template. The structure of this template is explained followed by the
results of a rigorous use case analysis. Afterwards, we derive concrete requirements utilizing
the identified use cases as a foundation. In the final part of this chapter, we summarize use
cases and requirements and relate them to each other.

4.1 Conceptual Overview of Federated EA Model Manage-
ment

In this section, we present a high-level overview of our conceptual design to provide the
reader with knowledge to foster an understanding of use cases relevant to federated EA
model environments and Federated EA Model Management.

Figure 4.1 illustrates a conceptual overview of a federated EA model environment. Modeling
communities, e.g. PPM, BPM, and ITSM, make up a federation with the EA management
community as the federal entity (cf. A , B , C , and D in Figure 4.1). Each community
performs tasks which follow processes defined either explicitly or implicitly. These processes
are supported by technology. In [BMR+10a] we report that each modeling community can
be considered a separate linguistic community. That means each community describes
real-world objects with their own terminology. Although the modeling communities may
refer to the same real-world objects, they use different names and attributes to describe them.
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Figure 4.1: Conceptual overview of Federated EA Model Management as a socio-technical
system of systems

This is also reflected by respective conceptualizations, i.e. the metamodels of the modeling
communities exhibit different structures and use various terminologies. As motivated in
Section 1.1, multiple modeling communities perform their tasks employing highly specialized
repositories which capture information in a model. For the further discourse we establish a
special notion of consistency of repositories within a federation in Definition 4.1.

Definition 4.1: Local consistency
The repository of a modeling community in a federated EA model environment is
locally consistent if information captured in the model conforms to a metamodel,
i.e. the repository’s model is consistent with its metamodel. �

Commonly, best-practice knowledge is incorporated in these repositories. This influences the
design of their metamodels; i.e. the specificities of a modeling community are incorporated
in a metamodel and even may change the way software is developed, cf. Domain-Specific
Modeling (DSM) in [KT08, p. 15]. In [GT95], Goodhue and Thompson observe a phe-
nomenon and coined the phrase ‘task technology fit’. The authors highlight that individual
performance rises if a good fit prevails between employed technologies and the task. Hence,
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we conclude that the repositories employed by the different communities are intended to fit
best for the tasks at hand for this particular community.

A different terminology, best-practice processes, efficient communication within a community,
and convenience are major reasons why modeling communities want to stay autonomously.
Hence, we articulate Assumption 4.1 for our approach.

Assumption 4.1: Modeling communities
We assume the modeling communities do not adhere to a top-down terminology
and metamodel(s). Further, we assume that each modeling community wants
to remain autonomously.

Our next observation is that IT environments of organizations are large systems of systems
that are commonly not build from scratch [Za97]. In particular approaches to EA manage-
ment commonly do not assume to build a system of systems from scratch, i.e. enterprise
architects do not build an EA with a greenfield approach. Especially in a large scale
enterprise (LSE), a plethora of business applications exists; a greenfield approach, hence, is
rather unusual for today’s organizations. The—commonly heterogeneous—technological
base of an entire IT environment cannot be simply ripped and replaced with new technology.
For the design of Federated EA Model Management, we presume characteristics of these
repositories as explicated in Assumption 4.2.

Assumption 4.2: Repositories of modeling communities
We assume that a repository of a modeling community

∙ varies between a local consistent and inconsistent state,

∙ features a metamodel which is either stored within the repository explicitly
or the implementation of the repository reflects the metamodel implicitly,

∙ may be based on legacy technology, and

∙ cannot be replaced with new technology due to technical or financial
constraints.

The teams of modeling communities are aware that the information they maintain may
contribute to the overall performance of an organization. As expressed more general in
Assumption 1.1 (see p. 5), we presume that members of a modeling community are willing
to publish and share information at a regular basis. This way, the community members
can contribute to the decision base of EA management. Put differently, they contribute to
the common good of an organization by sharing information with the federation (cf. E in
Figure 4.1).

Since each modeling community is a separate linguistic community, their conceptualization
has to be aligned. A conceptual alignment ensures that everyone knows and understands a
unique concept by a certain term in a particular modeling community. The result of such

65



4. Requirements Analysis

an alignment is a semantic mapping of different metamodels. To develop such a semantic
mapping modeling experts have to align the understanding of different models. This requires
a close collaboration among community teams and the EA team. The final outcome of
these conceptual alignment efforts manifests in explicit metamodel mappings. These explicit
metamodel mappings can be transformed in syntactic mappings that are executable by an
information system.

Once an alignment of different concepts between the metamodel of a modeling community
and the EA metamodel is agreed upon and the mapping is created, instances can be shared
with the federation. This is commonly done by importing model changes to a federal
system that serves as the glue between repositories of modeling communities and the EA
repository as the technology support of the federal entity. This federal entity, i.e. holistic
EA management function (cf. D in Figure 4.1), can utilize exchanged information within
the federal system to optimize the organization as a whole, e.g. increase flexibility or reduce
costs (cf. Section 2.1). Prior to that, a synchronization of model and metamodel changes of
both information sources and EA repository must take place. The EA repository thereby
serves as a sink for the information sources (cf. Assumption 4.3). Confirming our assumption,
EA experts (cf. Chapter 7) perceive a bidirectional synchronization as too cost-intensive,
atypical for a federated EA model environment, and fragile.

Assumption 4.3: Synchronization type
We assume a unidirectional synchronization between information sources and
EA repository, i.e. information is exchanged from multiple information sources
to the EA repository (information sink).

From a technological perspective, modeling communities can either publish model snapshots
or publish model changes. In order to be able to store historical information of different
integrated models, especially the former case requires calculating the differences between
models. This process is called differencing. Differencing is very important to enterprise
architects in different contexts (cf. Chapter 7). They want to compare differences between
models within the EA repository and the federal system. The federal system stores
the community models in a uniform manner, i.e. these models are—to a certain degree—
consistent with a common metamodel.

The information exchange between modeling communities and the federation takes place
at a regular basis as a unidirectional synchronization. Once integrated, information can
be changed in its origin (the information source), but can also be modified by enterprise
architects in an EA model. That is, modifications on information that describe the same
real-world objects or properties thereof can take place in different models concurrently. In
[KR14, RM14], we report that in the course of concurrent modeling activities conflicts may
arise on three different levels: model/model, model/metamodel, and metamodel/metamodel
conflicts.

In Example 4.1 we describe a situation that ends with a model/model conflict1.

1For now, we assume an intuitive understanding of the terms Attribute and AttributeDefinition.
We refer to Section 5.1.2 for a description of these concepts.
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Example 4.1: Model/model conflict
The enterprise architect calls the infrastructure team. They respond that they
do not host Linux servers anymore. Hence, the enterprise architect changes
the Attribute ‘Operating System’ of the Business Application ‘SAP
CRM’ to the default, i.e. ‘Windows Server 2012 R2’. At the same time, an
infrastructure monitor detects the actual running instance of this ‘SAP CRM’
Application and updates information within the CMDB. The CMDB serves as
an information source and is part of a federated EA model environment. Both,
the EA model and the CMDB, describe the same real-world object but have
concurrently maintained contradicting information about the operating system.
Hence, a model/model conflict arises on the next synchronization of the CMDB
(as the information source) with the EA repository.

The second kind of conflicts may occur between the model and its metamodel
(cf. Example 4.2).

Example 4.2: Model/metamodel conflict
A type ‘Business Application’ has an Attribute ‘Maintenance Cycle’
indicating the frequency updates are installed. The system is optimized based
on the current performance characteristics. An instance of such a Business Ap-
plication is ‘SAP ERP Central Component (ECC) 6.0 Enhancement Package
7’ denoted SAP ERP in the following.

An EA modeling expert changes the AttributeDefinition of ‘Maintenance
Cycle’ from natural text to an enumeration {weekly, biweekly, monthly,

quarterly, bi-annually, annually}. The EA modeling expert thoroughly
considered implications of this single update operation of an AttributeDef-
inition and applies it after carefully considering all literal descriptions and
conversion of all instances. However, at the same time, a data owner changes
the Attribute ‘Maintenance Cycle’ of the SAP ERP from ‘two times a
month’ to ‘once every month’. This concurrent change results in a conflict of
the model (SAP ERP) and the metamodel (Business Application).

Typically, model/metamodel conflicts are resolved by altering the model. The third category
of conflicts commonly cannot be resolved that straight forward and needs more collaboration,
discussions, and synthesis. Example 4.3 illustrates such a situation.
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Example 4.3: metamodel/metamodel conflict
Let us assume the same situation as described in Example 4.2. Meanwhile, an
enterprise architect deletes the AttributeDefinition ‘Maintenance Cycle’.
Then, an metamodel/metamodel conflict occurs between the changes of the EA
modeling expert and the enterprise architect: While the EA modeling expert
is concerned about a more thorough definition of the attribute, the enterprise
architect wants to discard it—both changes cannot be applied to the same
metamodel.

We conclude that in the course of such concurrent modifications conflict detection is necessary
to identify conflicts that occur and to keep the models within a federation consistent. When
conflicts are detected, it is necessary to resolve them to restore a consistent state within
the federation. Typical characteristics of this conflict resolution process are that it is highly
collaborative and long-lasting [RHM13b] compared to other approaches. For instance, in
a distributed version control system (DVCS), the developer is the sole person obliged to
resolve conflicts [Ch08, p. 28ff] and to submit a new version to the DVCS.

Although the technical and semi-automated synchronization between information source
and EA repository takes place in a unidirectional manner, the members of a federated
EA model environment want to establish and sustain a consistent state. To be able to
update the imported instances in their origin, a mapping of the EA model to the initial
information source is required. These mappings are called instance mappings. To distinguish
one described object from another, in line with Khoshafian and Copeland [KC86a, KC86b]
and Evans [Ev04], we formulate Definition 4.2.

Definition 4.2: Identity
Identity of an object distinguishes it from all others [KC86a]. It is identity that
helps to track an object through different states, across different implementa-
tions, and the real-world [Ev04, ch. 5]. �

Summarizing our present understanding, autonomous modeling communities act as a part
of a federated EA model environment and are willing to share, i.e. publish, information
that is integrated—possibly in a transformed manner—with an EA model. Further conflict
detection and identity reconciliation is necessary to inform the teams of the modeling
communities about conflicts. These modeling communities are considered an essential part
of the federation. In the following, we take a closer look at the communities and investigate
essential roles within the teams.

4.1.1 Roles within Federated EA Model Management

Next, we characterize the members of a federated EA model environment such that the
reader gains a better understanding of the involved stakeholders and identified use cases. In
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this section, we use the term role in its sense as an organizational role (see Definition 4.3)
not to be confused with the role concept of UML or modeling theory.

Definition 4.3: Role†

A role is a comprehensive description of duties, responsibilities, and tasks one
or more individuals should perform within an organization. Such an individual
may be obligated to possess several roles. The assignment of roles to individuals
is commonly based on their qualifications.

†Synonym(s): functional role [Be12, p. 24]; actor [OMG11b, p. 598] �

Before we detail different roles within a federated EA model environment, our intent is
to point out the general nature of these roles as well. We perceive the majority of the
community members as knowledge workers. The main capital of a knowledge worker,
e.g. software engineers and scientists, is knowledge, because they “think for a living” [Da05,
ch. 1]. In contrast to other forms of work, the primary task of knowledge work is ‘non-
routine’ problem solving involving a combination of convergent, divergent, and creative
thinking [RSS+11]. This commonly requires a high level of education and the use of IT
as an integral part of the work [Py05]. Grounds for an analogy to individuals within a
team of a modeling community is given by Davenport [Da05, ch. 1], who highlights that
knowledge workers prefer autonomy. In a federated EA model environment this not only
holds true for each team as a whole, but also for the individual members. We conclude that
the individuals within a federated EA model environment can be considered ‘knowledge
workers’.

In contrast to the need for autonomy of each modeling community and respective individ-
uals, there is also a demand for coherency [DGS+09, p. 494ff]. In EA management and
Federated EA Model Management, the EA team is responsible to establish and sustain
coherency between different models and the EA model. To accomplish this challenging task,
management support is essential as detailed in Assumption 4.4 but also a major issue for
most EA management endeavors [HSR+13].

Assumption 4.4: EA management function
We assume that EA management has been established within an organization
and is valued and supported by upper management. This includes a managerial
authority for members of the EA team, e.g. to issue compulsive directives to
contribute information or correct model inconsistencies.

Besides upper management support [DGS+09, p. 499ff], stakeholder buy-in is of utmost
importance for an EA management initiative in order to succeed [Ha10, p. 97ff]. Thereby,
the identification of stakeholders is crucial. Austin et al. [ANO09, p. 203ff] presents a
three-step framework to identify stakeholders assessing their importance and influence as
well as determining their interests and motivations. Depending on the outcome of the
analysis, Austin et al. provide guidelines how to deal with these stakeholders. An even
more comprehensive guide is given by Belbin [Be12, p. 22]. He describes different general
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‘team roles’ from a social perspective. In [Be12, ch. 6], Belbin elaborates different kinds
of interpersonal chemistry at work places which we regard as an important factor when
establishing an EA team within an organization. However, for the further discourse of the
present thesis, we stick to a mere functional description of roles within Federated EA Model
Management.

In [RSV08], van der Raadt et al. provide such a functional description for EA management
in general. They discuss the different key EA stakeholders and group them by aspect areas
as well as organizational levels. The identification of key EA stakeholders is certainly an
important topic worthwhile to be mentioned in a thesis that centers around EA management.
Further readings on general stakeholder management can be found in [RSV08] and [Ha10,
pp. 97–102]. We abstract from the extensive list of key EA stakeholder described in [RSV08],
focus on roles relevant for Federated EA Model Management, and elaborate descriptions
thereof in the following.

In line with Fischer et al. [FAW07] and our research results presented in [RHM13b], we
advocate that an EA team commonly consists of multiple enterprise architects whereas
the modeling communities are considered as EA stakeholders (cf. [RSV08]). Figure 4.2
depicts the relationship of a federated EA model environment and Federated EA Model
Management as well as the various EA stakeholders of the modeling communities and
enterprise architects within the EA team. As suggested the different roles within a Federated
EA Model Management initiative follow an iterative process; these efforts take place in a
federated EA model environment. Subsequently, we detail further characteristics of this
environment and Federated EA Model Management.

Federated EA Model Environment

Federated EA Model Management

EA TeamModeling Community

Enterprise 
Architects

EA Coordinators

EA Repository 
Managers

EA 
Stakeholders Data Owners

Decision Makers

Data Stewards

EA Modeling 
Experts

Figure 4.2: Stakeholders of a federated EA model environment: roles of the EA team and
modeling communities
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4.1.1.1 Roles of the EA Team

The EA team within Federated EA Model Management consists of EA coordinators,
EA modeling experts, and EA repository managers. Within an organization, individuals
possessing one or more of these roles are all known as enterprise architects, i.e. enterprise
architects specialize in at least one of the above roles.

Enterprise architect. Hanschke describes the role of an enterprise architect as follows.
“Enterprise architects are tasked with documentation and analysis, strategic planning
and control of one section of the current and future landscape model. They have
overall stewardship of one part of the landscape model. When detailed data is collected
from sources right across the enterprise, it will inevitably vary in terms of quality,
granularity, and topicality. It is the task of the enterprise architects to pull this data
together, quality-assure and consolidate it” [Ha10, p. 100]. For further readings on
the topic, Op ’t Land et al. [OPW+09, pp. 113–125] provide an extensive description
of the competencies relevant for an enterprise architect.

EA coordinator. The EA coordinator is responsible for managing the maintenance process
of an EA model and reports to management [RHM13b]. Also, the EA coordinator is
responsible for deciding which information sources are integrated with the EA model
to synchronize information in a unidirectional manner. Based on stakeholder demands
it might not be useful to integrate arbitrary information sources with the EA model.
The EA coordinator is tasked to estimate efforts of the procurement of information
weight these against stakeholder benefits (cf. [Ha10, p. 103]). Next to determining
which model is relevant to support decision makers, the EA coordinator is responsible
for initiating and controlling the EA model maintenance process [FAW07].

EA repository manager. The EA repository manager is mainly responsible for technical
issues and defines model mappings for the information sources that are synchronized
with the EA model. Besides being responsible for further administrative tasks, the
EA repository manager supports the Federated EA Modeling Community to resolve
model conflicts that arise in the course of model synchronizations. The EA repository
manager has a technology-oriented perspective and is capable to configure and adapt
the different technical settings including complex model-to-model transformations.
Thus, the EA repository manager exhibits particular expertise in a broad variety of
query languages and applies these on a regular basis.

EA modeling expert. The EA modeling expert brings special expertise in the area of
general modeling theory and has a particular focus on integrating different models
with the EA model. An EA modeling expert is tasked to grasp a structural and
semantical understanding of different models of modeling communities. Further, an
EA modeling expert copes with systematic model conflicts, tries to identify patterns
and develops resolution strategies to resolve conflicts efficiently. It is the EA modeling
expert who ensures quality of models within the entire enterprise.

EA stakeholders can contribute information and at the same time use existing information
from other sources, which they initially did not possess as a decision base. Hanschke
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illustrates this relationship in [Ha10, p. 99]: especially project portfolio managers and
project managers can be ‘data providers’ and ‘beneficiaries’, i.e. ordinary EA stakeholders,
at the same time. Armour et al. also discuss the different perspectives EA stakeholders
take [AKL99a, AK01a].

“A database administrator, for example, may focus on the structure and location
of specific databases, while a sales executive may be focused on the location and
movement of data through multiple information systems. Business executives are
often more interested in seeing how information flows through the organization
and which high-level information systems and applications support the business
operations.” [KAV05]

In the light of this diversity, we continue with a description of roles EA stakeholders engage
in during the course of Federated EA Model Management.

4.1.1.2 Roles of the Modeling Communities

Although the description of EA stakeholders and respective roles is rather general in litera-
ture, we synthesized specific functional roles relevant for Federated EA Model Management.
These are decision maker, data owner, and data steward.

EA stakeholder. EA stakeholders can be part of IT as well as business units in the
enterprise and serve as first contact person between their organizational unit and the
EA team. They can provide information on the current state of the EA that is not
available in the existing information sources in the enterprise.

Decision maker. Decision makers play an important role for EA management endeavors.
In a Federated EA Model Management, their primary intent is to consume information,
i.e. they immediately benefit from a coherent decision base. They may be responsible
and accountable for information sources whether this is an information system or
human. Thus, they can influence and support the maintenance of an EA model.

Data owner. Data owners are experts for the repository of their respective modeling
community. The data owner knows all the concepts of an information source’s
metamodel, their semantics including attributes and relationships among concepts.
Data owners assist the EA team to specify and maintain the interfaces to the EA
model. They can resolve conflicts that result from a synchronization of the information
source of their community with the EA repository—they are in possession of domain
knowledge and participate in the day-to-day business of their modeling community.

Data steward. Data stewards contribute information to the EA model. Hanschke calls
this role ‘data provider’ [Ha10, p. 101]. Unlike enterprise architects who have a
holistic perspective on an enterprise, i.e. are commonly interested in aggregated
information [WF06], data stewards provide detailed information [Ha10, p. 101].

We conclude that members of modeling communities within a federated EA model environ-
ment embrace EA stakeholders and enterprise architects. Team members may specialize
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and possess different roles within Federated EA Model Management. Depending on the
modeling community and task technology fit, the repositories used to support work vary.
In the different modeling communities there is a considerable difference of these special
purpose repositories. In the next section, we take a closer look at these repositories.

4.1.2 Repositories of Modeling Communities

As outlined in Section 4.1, information contained in multiple special purpose repositories
can be integrated in a single EA repository. In the following sections we describe the nature
of these systems.

4.1.2.1 Special Purpose Repositories

In a joined research initiative with University of Innsbruck, we carried out an empirical study
analyzing different information sources that are utilized for EA model maintenance [FBH+13].
We surveyed 123 EA practitioners and questioned which information sources they use, how
they perceive the data quality of these information sources, and which difficulties they
were faced with during the integration thereof. We analyzed the following categories of
information sources:

∙ Infrastructure and network monitors and scanners,

∙ CMDB solutions,

∙ PPM solutions,

∙ Enterprise Service Bus (ESB) solutions,

∙ Change management solutions, and

∙ License management solutions.

Figure 4.3 gives an impression of the frequency these information sources are actually
utilized in practice. A comprehensive description of the related data set is provided in
[FBH+13]. For these information sources, we analyzed the following information quality
attributes:

∙ Actuality, i.e. is the information contained up-to-date?

∙ Completeness, i.e. is the information maintained (not null)?

∙ Correctness, i.e. does the information reflect the state of the real-world?

∙ Granularity, i.e. is the granularity of the information appropriate in the EA context?

The EA experts rated the different criteria according to their attitude on a five-point Likert
scale [Li32] from 1 (very bad) to 5 (very good). Additionally, they could just indicate
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Figure 4.3: System usage and relevance as EA information sources (n=123) [FBH+13]

that they employ such an information source to procure information for EA management
without judging the data quality. This is denoted by a dash (‘-’). Figure 4.4 illustrates the
different information quality criteria as they are perceived by EA experts. Since not all of
the 123 EA experts have integrated the same information source with their EA model, the
total number of answers varies and is therefore given in the caption of the respective figure.

We conclude that information sources maintained manually are perceived as less reliable
(cf. Figure 4.4). In contrast, information systems that reflect the actual operative envi-
ronment are perceived as a more reliable source, cf. Network scanners (Figure 4.4(a)) and
Enterprise Service Bus (ESB) solutions (Figure 4.4(d)). For additional information on the
data quality of a particular ESB solution that is frequently used in industry, we refer the
interested reader to Grunow et al. [GMR12] and Farwick et al. [FBH+13].

Figure 4.5 depicts a classification scheme of information sources relevant for Federated EA
Model Management. These range from plain text contained in documents over spreadsheets
to fully blown business applications employing sophisticated ontologies. That means an
information source must not necessarily feature an explicit metamodel2. For instance,
natural language lacks any structure that can be analyzed by an information system using
common techniques3. Semi-structured information uses an explicit reference to a unique
classifier. However, semi-structured information is not typed and to a large extent mixed
with unstructured content [Ne12, p. 19]. Structured information on the other hand has
additional constraints that makes information accessible to machines by a defined structure.
These constraints range from value constraints [HM10, p. 220ff] sometimes also called object
type constraint or data type constraint [Ne12, p. 33], over occurrence frequencies [HM10,
p. 278ff], to more sophisticated mechanisms like ring constraints [HM10, p. 283ff]. In contrast
to unstructured information, for structured information a wide range of analytics is available
(see e.g. [MZ08, p. 41ff]).

2We refer the interested reader to [BMR+10a] for a discussion on implicit, so-called mental models, and
explicit models in EA design.

3We do not consider Natural Language Processing (NLP) techniques here. For a comprehensive description
about the advantages and limitations of NLP, see [ID10].
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Figure 4.4: Empirical results on information quality attributes of different information
sources [FBH+13]

Another class of information systems uses ontologies to describe their concepts. In this
context the schema is most-often called domain ontology. In contrast to a schema in the
classical sense, ontologies seek to define semantics of their concepts formally. “Ontolo-
gies generally appear as a taxonomic tree of conceptualizations, from very general and
domain-independent at the top levels to increasingly domain-specific further down in the
hierarchy” [CJB99]. This is accomplished by deriving ‘domain ontologies’ from an ‘upper
ontology’4 [NP01]. With respect to a federated EA model environment, the former concept
would define local specifics of a modeling community whereas the latter defines globally
accepted semantics of more general types, i.e. could serve as a federated EA model. On-
tologies pose a well-founded means to cope with mapping problems [HG01], [SS09, p. 573ff]
and respective tool support moreover facilitates reasoning and type inference. From a mere
technical perspective, the representation of an ontology is commonly (more) homogeneous.
Two prominent examples for ontology representations are RDF [W304a], [SS09, p. 71ff] and
Web Ontology Language (OWL) [W312], [SS09, p. 91ff]. However, interactions between
ontologies pose a considerable challenge for researchers [SS09, p. 293ff].

4An upper ontology sometimes is also called top-level ontology [CJB99], [SS09, p. 279].
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The creation process of an ‘ontology’ is called ‘ontology engineering’. Creating a domain
ontology commonly follows a top down approach, i.e. a domain ontology is derived from
an existing upper ontology [NP01]. We claim that ontologies are not particularly suited
for Federated EA Model Management for different reasons. First, in Assumption 4.2, we
stated that we consider legacy environments. Respective legacy systems do not feature
ontology support as the adoption of ontology models for knowledge management still
ongoing [MMS+03],[SS09, pp. 713–734]. Second, ontology engineering takes particularly
more effort, cf. e.g. [SMJ02], and new problems arise [NK04]. Third, ontology models are
richer in their expressive power [De02, NK04]. During our expert interviews (cf. Chapter 7)
we found that EA practitioners have a hard time to find ontology engineers within their
organization and, thus, consider ontologies as a cutting edge technology that is mostly used
in an academic setting. Fourth, even if ontologies are used to describe concepts, they can
be transformed to the basic object-oriented models, e.g. [FSS03],[KR07, p. 229].

Revisiting Figure 4.1, repositories of different modeling communities may serve as informa-
tion source for the EA repository. Commonly these information sources capture information
in a structured manner conforming to well-defined concepts. Depending on the information
source, their metamodel is either stored within the information source or can be reverse
engineered with the help of an expert for a particular information source. Considering
the multitude of potential information sources within an enterprise, we concentrate on
core object-oriented modeling facilities in Assumption 4.5, since the common denomina-
tor between different systems is often made up of the concepts: objects, attributes, and
relationships between objects, cf. [SL90] or [HK87].

Assumption 4.5: Information source
We assume a model of an information source always conforms to a metamodel.
This metamodel may exist implicitly or explicitly. It can be either specified
using an object-oriented modeling paradigm or can be mapped to an existing
object-oriented model and metamodel.
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In addition, many authors cope with problems that arise transforming from different
paradigms to object-oriented paradigms, e.g. Fong [Fo97] describes a methodology to convert
relational to object-oriented databases.

4.1.2.2 EA Repositories

Matthes et al. describe three types of EA repositories [MBL+08, pp. 344–345]. We summa-
rize these types below.

metamodel driven tools feature mechanisms for metamodel adaptations. Their capabili-
ties vary; some tools adhere to standardized metamodeling facilities, e.g. the MOF,
while other tools are equipped with proprietary facilities. These may exert limitations
on the possible metamodel adaptations.

methodology driven tools provide a comprehensive predefined metamodel. These tools
allow only minor adaptations of the underlying metamodel, e.g. the introduction of
new attributes, but commonly do not allow extensive structural changes.

process driven tools give maximum guidance for EA management. Matthes et al. describe
the process driven approach as an extension to the methodology driven tools, comple-
menting them with defined workflows that guides an EA management initiative by
describing concrete activities of predefined roles.

Federated EA Model Management can be considered an iterative and incremental approach
to EA model maintenance and thus the metamodel of an EA repository must be adaptable
(cf. Assumption 4.6). We conclude that methodology and process driven approaches are too
rigid and inflexible to support Federated EA Model Management.

Assumption 4.6: EA repository
We assume an EA repository that adheres to a metamodel driven approach
and it is able to serve as a meta-modeling platform. In particular, we assume
the EA repository features mechanisms which allow

∙ to create and alter models,

∙ to create and alter object definitions (classes), and

∙ to create and alter attribute definitions

within the EA repository.

In [RZM14], we analyze the state-of-the-art in EA tools. Thereby, we put particular focus
on visualization capabilities as well as adaptability of the metamodel. In the study, 19 tools
of 18 vendors have been investigated. We refer the interested reader to this study that
details which EA tools support such adaptations.
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4.1.3 Models within a Federated EA Model Environment

Models within an EA repository and information sources share a special relationship. In
the following, we detail our observations on this relationship5.
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Figure 4.6: Semantic relationship between an EA model and specialized models

Figure 4.6(a) illustrates semantic relationships between three different models. Each model
seeks to describe a certain part of reality. This described part of the reality is referred to as
a ‘universe of discourse’ [Bo53, pp. 30–31]. Different universes as well as the models used
to describe them may overlap semantically. Depending on the chosen universes this overlap
may look differently. The illustration shows the semantic relationship between an EA model
and two specialized models, which can be considered models of information sources. In an
enterprise, different communities use highly specialized models to accomplish their tasks
whereas an EA model serves as the glue between these specialized models. In [RM14]
and Section 2.1, we emphasize the importance of information on the relationships between
different real-world objects for EA management. To explain the relationship between the
different models, we introduce the notion of a model element.

Definition 4.4: Model element
A model element is an element in a model that describes or conceptualizes
real-world objects or properties thereof. It features either an explicit identity or
an implicit identity through membership in another model element. In contrast
to identity of a model element, we call the property of the model element that
reveals its kind classifier, e.g.Object or Attribute are classifiers of model
elements. �

The EA model contains elements that seek to describe aspects beyond the scope of other,
specialized models, cf. ℰ1 in Figure 4.6(a). However, it also contains elements from special-
ized models, cf. ℰ2,3,4. The specialized models embrace model elements that are used to

5 With respect to multidatabase systems, Sheth and Kashyap [SK93] observed similar relationships.
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accomplish particular tasks and, thus, may be unique with respect to other models, cf. ℰ7,5.
A specialized model may

∙ overlap with the EA model, cf. ℰ2,4,

∙ overlap with another specialized model, cf. ℰ6, or

∙ overlap with one or more specialized model(s) and overlap with the EA model, cf. ℰ3.

In the following we examine these relationships more closely. Figure 4.6(b) illustrates
the models viewed separately according to their universe of discourse denoted A , B ,
and C . A special notion is put on the mapping function 𝑓 :ℳ → ℳ which describes
complex model-to-model transformations possibly involving human intervention adding
further information. This function is subject of our later analyses (cf. Section 4.2.3 and
Section 5.2). For now, we concentrate on the semantic relationships. We assume that
universe U𝐴 is EA management ( A in Figure 4.6(b)), U𝐵 is PPM ( B in Figure 4.6(b)), and
U𝐶 is ITSM ( C in Figure 4.6(b)). Modelsℳ𝐴,𝐵,𝐶 describe the respective universe using
model elements ℰ1..𝑛𝐴, ℰ1..𝑛𝐵, ℰ1..𝑛𝐶. In the following, we give a more formal description
followed by a concrete example for the model phenomena observed.

Our first observation concerns model elements whose semantics can be shared by two
different universes.

ℰ2𝐵 ↦→ ℰ2𝐴 ∧ ∀ℰ𝑥𝐶 ∈ℳ𝐶 (ℰ𝑥𝐶 ̸↦→ ℰ2𝐴) (4.1)

In Example 4.4 Costs are maintained by both, EA management and PPM. PPM is
interested in Costs to estimate the overall Costs of the project portfolio while EA
management is concerned to decrease costs while increasing flexibility of the application
landscape. Although ITSM is interested in Costs, in our example they use their CMDB to
manage operations only. As a consequence, the concept Cost is currently not captured by
their model.

A similar relationship can be observed between EA management and ITSM.

ℰ4𝐶 ↦→ ℰ4𝐴 ∧ ∀ℰ𝑥𝐵 ∈ℳ𝐵 (ℰ𝑥𝐵 ̸↦→ ℰ4𝐴) (4.2)

In Example 4.4 Operating Systems are maintained by ITSM to be able to react to
security vulnerabilities adequately. EA management also keeps track of the Operating
Systems to make platform decisions in a more strategical manner with respect to Business
Applications currently running and planned to be build in the future.

Our next observation is concerned about model elements that are shared not only by two
models.

ℰ3𝐵 ↦→ ℰ3𝐴 ∧ ℰ3𝐶 ↦→ ℰ3𝐴 (4.3)

In Example 4.4 Business Applications are of high interest for PPM, EA management
as well as ITSM; each from a slightly different angle. While PPM is concerned to carry
out projects, ITSM is interested in Business Applications to be able to contact the
respective owner prior to unexpected maintenance cycles. EA management takes a holistic
perspective and seeks to analyze the interconnections between Business Applications.

79



4. Requirements Analysis

While in the above outlined examples EA management had an interest in the model elements
shared, there may be semantic relationships between model elements that are not (yet) of
interest for EA management.

ℰ6𝐵 ↦→ ℰ6𝐶 ∧ ∀ℰ𝑥𝐴 ∈ℳ𝐴 (ℰ6𝐵 ̸↦→ ℰ𝑥𝐴 ∧ ℰ6𝐶 ̸↦→ ℰ𝑥𝐴) (4.4)

In Example 4.4 the communities could share information about SLAs. PPM is concerned
about requested SLAs and Costs associated with the Projects while the SLAs have to
be met by ITSM.

Our final observations address model elements that are maintained solely in one universe.

∃ℰ7 ∧ ∀ℰ𝑥 ∈ℳ𝐴,𝐶(ℰ7 ̸↦→ ℰ𝑥) (4.5)

In Example 4.4 Projects are only subject of interest for PPM.

∃ℰ5 ∧ ∀ℰ𝑥 ∈ℳ𝐴,𝐵(ℰ5 ̸↦→ ℰ𝑥) (4.6)

In Example 4.4 Servers are only subject of interest for ITSM.

∃ℰ1 ∧ ∀ℰ𝑥 ∈ℳ𝐵,𝐶(ℰ𝑥 ̸↦→ ℰ1) (4.7)

In Example 4.4 Information Flow is only subject of interest for EA management.

Example 4.4: Overlapping models within an enterprise
Figure 4.7 shows a minimalistic example of models from EAM, PPM, and
ITSM respective entities and their semantic relationships. In order to derive
planned states of an EA any of these entities are subject of interest for EA
management. However, currently EA management focuses on the Business
Applications and the Information Flow between them, their Operating
System and involved Costs. PPM in contrast concentrates on Projects.
Also, they keep track of requested SLAs as well as involved Costs for hosted
Business Applications. With this information PPM is able to decide on
projects and to estimate Costs based on requested SLAs. ITSM primarily
is concerned to track runtime information such as hardware failure as well as
inventory records. Thus, it maintains a list of all Servers within the enterprise
as well as information about their Operating Systems. In order to improve
their level of service, ITSM also maintains a list with SLAs they have to meet.
On a maintenance cycle, ITSM has to inform the respective owner of a Business
Application that may be influenced by updating the Operating System or
Server hardware.

80



4. Requirements Analysis

Legend

Project

Server

PPM

EAM

ITSM

runs

Operating SystemSLA

Business
Application

Cost

Information Flow

fulfills

hosts

inbound

outbound

requests

has costs

Figure 4.7: Entities and relationships of models of EAM, PPM, ITSM

Figure 4.7 takes a holistic perspective on different models describing different
universes of discourse. Viewed separately, the local perspectives are restricted.

∙ PPM cannot tell the actual costs involved, because with the given informa-
tion PPM does not know the information flow between business applications
an thus cannot estimate the impact on other, currently existing, SLAs.

∙ ITSM cannot tell the actual impact of hardware upgrades or software
updates because the Information Flow so as the interfaces to other
Business Applications are not known.

∙ EA management cannot decide to homogenize the Operating Systems
because they do not have any information of the Servers the Operating
Systems are running on. Especially the future demands of projects that
will be carried out are unknown to EA management.

We generalize from the example outlined above and describe a federated EA model environ-
ment formally.

Definition 4.5: Federated EA model environment
Modelℳ1 ∈ U1 builds a federal model with the federated modelsℳ2..𝑛 ∈ U2..𝑛

iff:
ℳ2..𝑛

∘↦−→ℳ1 ⇔ ∀ℳ2..𝑛∃ℰ 𝑖𝜎 ∈ℳ2..𝑛 (ℰ 𝑖𝜎 ↦→ ℰ1𝜑 ∈ℳ1) (4.8)

If Equation 4.8 holds,ℳ1..𝑛 build a federated EA model environment. �

Thereby,ℳ2..𝑛 as well asℳ1 may contain model elements not captured by models of other
universes. We call these isolated model elements.
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Definition 4.6: Isolated model elements
In a federated model environment ℳ1..𝑛 with ℳ2..𝑛

∘↦−→ ℳ1, model ℳ𝜎 ∈
ℳ1..𝑛 has isolated model elements iff:

∃ℰ𝜎 ∈ℳ𝜎

(︀
@ℰ𝜑 ∈ℳ1..𝑛 ∖ℳ𝜎 (ℰ𝜎 ↦→ ℰ𝜑 ∨ ℰ𝜑 ↦→ ℰ𝜎)

)︀
(4.9)

�

Isolated elements are maintained by a modeling community of one universe of discourse.
Such a modeling community can also be considered a ‘linguistic community’. A linguistic
community speaks the same language and, thus, members of a linguistic community share a
common understanding, i.e.mental model, when using specific terms to describe real-world
objects [BMR+10a]. Sometimes the universes described by the communities overlap and a
cross community understanding is formed.

In contrast to isolated elements, we introduce the notion of boundary model elements.
Boundary elements are subjects of interest to multiple universes of discourse and respective
linguistic communities. The concept of boundary model elements is derived from the
notion of ‘boundary objects’; a term initially coined by Star and Griesemer [SG89]. In their
paper, the authors point out the “problem of common representation in diverse intersecting
social worlds” [SG89]. In the context of Zoology and in a broader sense scientific work,
Star and Griesemer [SG89] not only describe the central role of a repository, but also the
necessity to build a shared understanding of ‘boundary objects’ among groups with diverse
backgrounds. These intersecting, heterogeneous groups face diversity and the challenge to
ensure consistency in information in order to solve scientific problems. This poses especially
a challenge when exchanging information that has different meanings in different universes.
The authors state that the “n-way nature of the [...information exchange...] cannot be
understood from a single viewpoint” [SG89] and outline social implications. In their study,
diverse parties that share a common goal participate concurrently in heterogeneous work.
Star and Griesemer [SG89] also emphasize the importance of autonomy and communication
between different ‘worlds’, i.e. universes. The authors confirm that some information are
interesting for all these ‘social worlds’ and describe two ways to overcome challenges,
i.e.methods standardization and the development of boundary objects.

“Boundary objects are objects which are both plastic enough to adapt to local
needs and the constraints of the several parties employing them, yet robust
enough to maintain a common identity across sites. They are weakly structured
in common use, and become strongly structured in individual-site use. These
objects may be abstract or concrete. They have different meanings in different
social worlds but their structure is common enough to more than one world to
make them recognizable, a means of translation. The creation and management
of boundary objects is a key process in developing and maintaining coherence
across intersecting social worlds.” [SG89]

Inspired by the idea of boundary objects we include objects, attributes, relationships, and
(subsets of) models and introduce the notion of boundary model elements.
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Definition 4.7: Boundary model elements
In a federated model environment ℳ1..𝑛 with ℳ2..𝑛

∘↦−→ ℳ1, model ℳ𝜎 ∈
ℳ1..𝑛 has boundary model elements iff:

∃ℰ𝜎 ∈ℳ𝜎

(︁
∃ℳ𝜑 ∈ℳ1..𝑛

(︀
∃ℰ𝜑 ∈ℳ𝜑(ℰ𝜑 ↦→ ℰ𝜎 ∨ ℰ𝜎 ↦→ ℰ𝜑 ∧ℳ𝜑 ̸≡ ℳ𝜎)

)︀)︁
(4.10)

�

Referring to the work of Star and Griesemer, Wenger [We98, pp. 106ff] notes that not every
object is a boundary objects (cf. Definition 4.6). Wenger further adds that perspectives may
change and an object may become a boundary object. Aier et al. [AKS+08] state that an
EA model captures information in a rather broad and aggregated form. The authors state
that an EA model should not include concepts that do not influence the EA. In line with
these observations, we advocate that an EA model as well as its metamodel evolve over
time, cf. [RHM13a]. Typically, relationships add most value in an EA model for decision
makers (cf. Chapter 7 and Section 2.1).

4.1.4 Consistency within a Federated EA Model Environment

Next to our analysis of the semantic relationships among models, we detail different notions
of consistency that exist within a federated EA model environment.

In DBMS different notions of consistency exist. Date [Da04, p. 264] lays grounds that let us
conclude a consistent system does not necessarily lead to a sound decision base. “The system
cannot enforce truth, only consistency” [Da04, p. 264]. Date further continues to clarify that
correctness implies consistency but consistency does not imply correctness [Da04, p. 265]. In
addition, inconsistencies imply incorrectness and incorrectness does not imply inconsistencies.
This is a very strict perspective and certainly meaningful from a DBMS perspective. In
this thesis we take a less strict position. While data might be inconsistent, humans can still
retrieve the relevant information from it. We argue that for a knowledge worker, correct
information is sufficient to carry out tasks [Da05]. For automated calculations on the other
hand, correct data is required, e.g. in order to aggregate values [DHM10, p. 31]. In line with
Date, by correctness or correct, we understand information that “reflects the true state of
affairs in the real world” [Da04, p. 265].

Example 4.5: Data consistency vs. information consistency
The number of licenses purchased in the license management solution displays
the integer ‘5’ for Customer Relationship Management (CRM) solutions and
the string ‘five’ for Enterprise Resource Planning (ERP) solutions.

Example 4.5 illustrates a case in which a knowledge worker can decide; the string ‘five’ does
have the same meaning to a human as the integer ‘5’ in many contexts. For now, we close
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the discussion with the conclusion that an information system can function for a particular
purpose of knowledge workers even if there are inconsistencies. In the remainder of this
thesis we continue the discussion about the necessary degree of freedom in a federated EA
model environment.

With regards to distributed DBMSs Vogels reports on ‘eventual consistency’ in [Vo08, Vo09].
The Chief Technology Officer (CTO) and Vice President of Amazon.com presents different
notions of consistency for distributed systems.

Strong consistency means that on an update and subsequent access, a system returns
the updated value right after the update completes.

Weak consistency gives no guarantees to subsequent read access. A set of defined
conditions must be met before the updated value is returned. Vogels calls the period
between the initial update and the moment when the system can guarantee that any
subsequent access will return the updated value ‘inconsistency window’.

Eventual consistency is a specific form of weak consistency; it is guaranteed that if
no further updates are made to the object updated initially, the system will return
the last updated value eventually. “If no failures occur, the maximum size of the
inconsistency window can be determined based on factors such as communication
delays, the load on the system, and the number of replicas involved in the replication
scheme” [Vo09].

Building on the different notions of consistency in distributed systems, we establish an
understanding of terms that denote consistency in a federated EA model environment. We
start with consistency within a single information source.

Definition 4.8: Local consistency
Local consistency denotes the conformance of a federated information source’s
model and its elements to its metamodel. �

Each information source can implement a consistency paradigm on its own, e.g. one in-
formation source could implement strong consistency whereas the next could favor weak
consistency and so on. In the remainder of this chapter, we outline that these potentially
heterogeneous information sources are unidirectionally synchronized with a federal EA
repository.

Definition 4.9: Federal consistency
Federal consistency denotes the conformance of the EA repository’s model to
its metamodel, i.e. local consistency of the EA repository. �

Our final notion of consistency is concerned with the entire federation. Contradicting
information could be misleading for decision makers or fracture trust in the EA repository.
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Preliminary Definition 4.1: Cross-community model consistency
Cross-Community Model Consistency (CCMC) or global consistency denotes
the semantic integrity of all information sources with the EA repository and
among each other. �

Assumption 4.7 details that Cross-Community Model Consistency (CCMC) is a goal
constantly shared by all members of the modeling communities. However, there are
exceptions that aggravate to reach CCMC or even prohibit to reach it. We further detail
these exceptions and the different states of a model element in Chapter 5.

Assumption 4.7: Organizational culture
CCMC is a vision shared among all modeling communities. The different
community teams constantly work towards CCMC.

4.2 Use Case Analysis of Federated EA Model Management

After giving an overview of Federated EA Model Management and its characteristics with
respect to involved roles, repositories, and models, we proceed to analyze the use cases of
different stakeholders. These use cases are derived from our research experience [BEG+12,
HMR12, RHM13b, RHF+13, FBH+13, RHM13a] and have been validated in the course of
the expert interviews (cf. Chapter 7). They build the foundation of the requirements we
determine for our approach to Federated EA Model Management and its software support,
namely ModelGlue. Prior to discussing details, Figure 4.8 gives an overview of the use
cases.

The use cases are split in manual use cases and use cases that address three information
systems, namely a federal system, an EA repository, and an information source. The
manual use cases do not involve an information system. They are however prerequisite
and serve to prepare essential artifacts that are utilized during other use cases. We give a
comprehensive description for the manual use cases as well as for use cases that concern
the federal system. For the remaining use cases, we provide a brief overview and emphasize
their relationship to other use cases that address the federal system (cf. Section 4.2.13).

In the remainder of this section, we motivate essential parts of the use cases briefly, provide
an overview of the solution space as well as pointers to literature and describe each of the
use case for a federal system in a tabular manner. Thereby, we employ a structure that can
be used as a template for use case analysis.

4.2.1 A Template for the Structured Presentation of Use Cases

In [Co01, ch. 11], Cockburn discusses different use case templates. Although he favors the
‘fully dressed use case’, he also introduces the ‘casual’ template which omits certain sections
as well as more structured variations, namely the one-column table and two-column table
template. Cockburn states that “others often choose the table style” [Co01, p. 122]. For
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Figure 4.8: Use Cases of Federated EA Model Management
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Table 4.1 illustrates the template employed to describe use cases in the present thesis. It
is a slightly modified version of Cockburn’s one-column table template [Co01, ch. 11] and
embraces a brief identifier, name of the use case, context, scope and level as well as main
stakeholders and respective interests. The template further describes any preconditions,
minimal guarantees that are fulfilled in any case and success guarantees. A trigger starts
the main success scenario which describes the common flow of events using steps as well as
sub steps. Extensions to this main success scenario are introduced using a branch criteria
and either an immediate action or a label that refers to another use case. The final part of
the template describes variations that are influenced by technology and data, e.g. it may be
a difference if users access an application via a mobile device or not.

Table 4.1: Use Case Template of Cockburn [Co01, ch. 11]

Use case #
a unique identifier Use Case Name the name is the goal as

a short active verb
phrase

Context of use a longer statement of the context of use if needed

Scope what system is being considered black box under design

Level one of: Summary, Primary Task, Subfunction

Primary actor a role name for the primary actor, or description

Stakeholder &
Interests

Stakeholder Interest

Stakeholder Interest the stakeholder has concerning this use
case.

Preconditions what we expect is already the state of the world

Minimal
Guarantees

the interests as protected on any exit

Success
Guarantees

the interests as satisfied on successful ending

Trigger the action upon the system that starts the use case

Main Success
Scenario

Step Action

1 put here the steps of the scenario from trigger to goal deliv-
ery, and any cleanup after

... ...
n ...

Extensions

Step Branching Action

1 condition causing branching : action or name of sub-use
case

... ...

n ...

Technology &
Data
Variations

Step Description

1 variations that occur because of a technology involved

... ...

n ...
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4.2.2 Integrate Information Source

Table 4.2 presents the first use case (UC1). It addresses the initial integration of an
information source with a federated EA model environment. The integration is necessary
to synchronize information that is contained in an information source with information
contained in an EA model. The use case includes the initial setup of an import metamodel
that uses the terminology of the EA model. This import metamodel can be explained
by employing the reference architecture for federated information systems by Sheth and
Larson [SL90].

In the domain of FDBSs the concepts of an ‘export schema’ and an ‘import schema’
come close to what the data owner and the EA modeling expert intend to create in UC1.
Inspired by the concepts presented first by Heimbinger and McLeod [HM85] and Sheth and
Larson [SL90] (cf. Section 2.4), we define two terms central for the further discourse of this
thesis.

Definition 4.10: Export metamodel
An export metamodel describes the parts of a metamodel of an information
source which are intended to be shared with the federation in an explicit manner.
The author of the export metamodel uses the structure and terminology of the
information source to describe concepts of the export metamodel and their
relationships to each other. �

Definition 4.10 transfers the idea of the ‘export schema’ and comes intentionally close to
the notion of Sheth and Larson [SL90] and Heimbinger and McLeod [HM85].

Definition 4.11: Import metamodel
An import metamodel describes parts of an information source’s metamodel
which are intended to be integrated with the EA model. The author of the
import metamodel uses the structure and terminology of the EA model to
describe concepts of the import metamodel and their relationships to each other,
i.e. an import metamodel commonly describes a subset of the EA repository’s
metamodel. �

Definition 4.11 on the other hand specifies a concept that must not be confused with
the ‘import schema’ of Heimbinger and McLeod [HM85], i.e. an import metamodel is not
specified within or for the information demand of an information source, especially since
in Federated EA Model Management information sources do not import any information
automatically. However, we transfer the core idea to Federated EA Model Management. In
contrast to FDBS, import metamodels may represent concepts in a transformed manner
such that the resulting view, i.e. the import model, on the original information, i.e. the export
model, must be considered read only.

Figure 4.9 depicts the relationship of the different models as well as the conformance to
a common metamodel. Note that the export metamodel commonly is not stored in the
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Figure 4.9: Relationship of a common metamodel, import metamodel, export metamodel,
import model and export model

information source. The conformance to the common metamodel is similar to the Canonical
or Common Data Model (CDM) of Sheth and Larson [SL90]. This overcomes heterogeneity
of different metamodel languages and, thus, fosters the creation of a mapping.

After this brief excursion, we continue with the flow of activities in UC1 (cf. Table 4.2). In
this use case, different parties seek to integrate an information source and prepare essential
artifacts for developing a mapping between two different metamodels. Before initiating a
workshop, the export metamodel of an information source is specified by the data owner.
The data owner captures concepts that have been requested by the EA coordinator. This
export metamodel serves as a basis for the mapping to the EA repository. In this vein,
the quality of the information source’s metamodel is checked by the EA modeling expert.
General model quality criteria can be found for instance in [Kr95, p. 93ff], [KLS95], and
[St73, pp. 131–133]. If the EA modeling expert proposes changes, the data owner can
decide to alter the metamodel according to identified potential for improvements. This
step serves to prevent an uncontrolled model growth, i.e. the models and metamodels
within a federation could be improved in a iterative manner potentially. In the course of a
collaborative workshop semantics of concepts can be discussed and clarified. The goal is to
develop a mapping between the export metamodel and an import metamodel. Once, the
models and semantics of their concepts are clarified, and a mapping has been created, the
EA repository manager creates the physical import metamodel within the federal system.
That includes the definition of roles and access rights for the community members of the
information source within the federal system.

The important steps of UC1 are to create a mapping of model elements, to refine the
conflict resolution strategy, and to synchronize the information source with the EA model
subsequently. Since these steps are also primary use cases that can be triggered by other
events, we explain their details separately.
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Table 4.2: Use Case: Integrate Information Source

Use case #
UC1 Use Case Name Integrate Information

Source

Context of use A model of an (additional) information source should be integrated
with an existing EA model.

Scope Federal system implementing ModelGlue

Level Primary Task

Primary actor EA coordinator

Stakeholder &
Interests

Stakeholder Interest

EA coordinator wants to integrate information of an existing
model with the EA model to utilize the con-
tained information for decision making

EA modeling
expert

wants to prevent and counter uncontrolled
growth of models and ensure model quality
through conformance to general model princi-
ples

Data owner intends to share information for the common
good of an organization

EA repository
manager

has the technical skills to define the mapping
and wants to increase the relevance of the EA
repository as a reliable source for decision mak-
ers

EA stakeholders
want to have a sound decision base with consis-
tent information

Preconditions An information source of interest has been chosen by the EA co-
ordinator and all stakeholders have been informed and agree to
collaborate, i.e. are involved.

Minimal
Guarantees

Any change to the EA model is logged in a version history and
changes can be reverted.

Success
Guarantees

The model of an additional information source is integrated with
an EA model. A unique link to the original information source is
maintained for new as well as existing information.

Trigger The EA coordinator contacts the data owner of an information
source to start this use case manually.

Main Success
Scenario

Step Action

1 The EA coordinator identifies concepts within an informa-
tion source, which contain information relevant for the EA
team or EA stakeholders.

2 The data owner specifies an export metamodel that con-
ceptualizes information to be exported; the EA coordinator
formulates the information demands.

3 The export metamodel is reviewed by the EA modeling
expert.

4 The EA modeling expert creates a conceptual import meta-
model in collaboration with the EA coordinator.
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Main Success
Scenario (cont’d)

5 The data owner, EA modeling expert, and EA repository
manager collaborate to clarify semantics of the export and
import metamodel in order to define mappings from the
information source to an EA repository (see UC2). In this
step, minor modifications to both, the export and the im-
port metamodel are to be expected.

6 The EA repository manager creates the physical model in
the federal system based on the import metamodel pro-
vided by the EA modeling expert.

7 The EA repository manager creates roles for new modeling
community members in the federal system.

8 The EA modeling expert and EA repository manager
collaborate to refine the conflict resolution strategy (see
UC9).

9 The EA repository manager synchronizes the information
source with the EA model (see UC3).

Extensions

Step Branching Action

9 The EA repository manager wants to view the differences
to the information contained in the EA model: view model
differences (see UC5)

9 The EA repository manager just wants to import the
model of an information source to the federal system rather
than synchronizing it with the EA model: import informa-
tion (see UC4)

4.2.3 Configure Mapping

As described above, the mapping between the export metamodel of an information source
and an import metamodel of the federal system is created in one or more collaborative
workshops. During these workshops, the data owner and the EA Modeling Export create
a conceptual mapping from the information source to the EA repository, which later is
translated to technical model transformations. In line with Schulz, we advocate that a
technical mapping is derived from an initial conceptual mapping [Sc12, p. 134]. The creation
and adaptation of a mapping, i.e. its configuration, is described in the next use case, UC2,
illustrated in Table 4.3.

In line with Sheth and Larson [SL90], we advocate two major reasons for a description of
an export metamodel; these are

1. it describes the information to be exported in a uniform representation; hence an
export metamodel overcomes heterogeneity of divergent meta-metamodels and

2. it allows adding further information that may be missing in the information source,
e.g. additional semantics or type and cardinality constraints.
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Table 4.3: Use Case: Configure Mapping

Use case # UC2 Use Case Name Configure Mapping

Context of use A mapping between an export metamodel of an information source
and an import metamodel within the federal system has to be
created or altered.

Scope Federal system implementing ModelGlue

Level Primary Task

Primary actor
EA modeling expert

Stakeholder &
Interests

Stakeholder Interest

Data owner has domain knowledge and wants that infor-
mation in the information source is understood
correctly

EA coordinator wants to gather information from an informa-
tion source

EA modeling
expert

wants to create or alter a mapping between an
export metamodel and an import metamodel

EA repository
manager

wants to create a technical model-to-model
transformation based on the mapping created

Preconditions Entities and relationships within the information source are cap-
tured in an export metamodel as well as import metamodel.

Minimal
Guarantees

Only valid configurations, i.e. specifications of model-to-model
transformations are stored within the federal system

Success
Guarantees

A new version of a mapping configuration for an information
source is stored in the federal system.

Trigger The EA modeling expert coordinates with the data owner of an
information source to start this use case manually.

Main Success
Scenario

Step Action

1 The EA modeling expert collaborates with the data owner
such that both parties understand the semantics and struc-
ture of the export metamodel and import metamodel.

2 The EA modeling expert collaborates with the data owner.
They specify which model element of the export meta-
model has to be mapped to which model element of the
import metamodel; this embraces types, attributes, rela-
tionships

3 The EA modeling expert and the data owner specify which
instances to query, i.e. they define filter criteria.

4 The EA Modeling expert and the data owner define access
rights and a unique identifier within the information source
that allows for an identity reconciliation later on.

5 Based on the conceptual mapping, the EA repository man-
ager specifies transformation rules and stores these rules
in a configuration file; this configuration file details which
relations to materialize and how to query, i.e. traverse, the
metamodels during synchronization (cf. UC3).
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Note that an import metamodel does not describe any additional transformation rules such
as aggregations. These rules are part of the mapping. In the MDE community, there is a
similar notion, cf. the model transformation pattern of Jouault et al. [JAB+08, JK06].

After this brief excursion motivating the role of an export metamodel, we continue with
the description of UC2. Its ultimate goal is to provide transformation rules that detail
how to traverse the model of an information source such that the relevant information
can be mapped to concepts within the EA model. This includes aggregations, traversing
relationships, and specifying a unique identifier for each model element imported. The
latter serves as a means to identify the origin of model elements. This way, the original
source, i.e. its origin, can be traced such that conflicts or incorrect values can be corrected
in the information source which is leading information delivery platform for a particular
model element.

Definition 4.12: Identity reconciliation within a federation
Identity reconciliation is regarded as the ability to trace a particular model
element to its corresponding model element in its original information source.
The origin of a model element can be either an information source or the EA
repository. �

Given Definition 4.12, it is imperative that the information source is distinct within the
federated EA model environment. Regarding identity reconciliation, the EA repository can
be considered as an information source, too.

In line with Conrad [Co97, p. 91], we omit the description of a technical propagation of
changes, i.e. a transformation from the information source to the EA model are not required
to be invertible to update the model of the information source automatically. The intent of
UC2 is to create a unidirectional mapping, i.e. we do not seek to propagate changes to the
information source. In line with Pierce [Pi02, pp. 181–185], Schweda [Sc11, p. 179f] revisits
the subsumption relationship of models with respect to read-only access and calls this ‘weak
subsumption’ which can be viewed as a read-only embedding. Weak subsumption means
automated updates are technically not feasible when a certain set of transformations is
applied to a model transformation.

In a joint research cooperation with KTH Stockholm, we provide a mapping for SAP PI
to ArchiMate [BEG+12] and illustrate an example utilizing the ATLAS Transformation
Language (ATL) [JAB+08]. Besides this concrete example, Czarnecki and Helsen [CH03]
as well as Mens and Van Gorp [MVG06] provide the interested reader with an overview of
model transformation approaches.

In [HMR12], we outline that model mappings are a particular challenge for industry and
various ways are required to transform one model to another. Transformation languages
like ATL account for this fact. Jouault et al. state that “it is sometimes difficult to provide
a complete declarative solution for a given transformational problem” [JAB+08]. As a
solution, ATL implements a hybrid approach, i.e. it embraces declarative and imperative
language constructs. “In general, model transformations may be implemented in different
ways, for example, by using a general purpose programming language” [JAB+08]. The
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sheer variety of different mappings entails this situation. Schulz made this observation of
arbitrary complex mappings in the context of large data migration projects in [Sc12, p. 129].

Figure 4.10 displays different structural transformations that can be specified with mappings
for one respectively two attributes in the export model. In the simplest case, values can
be transfered from one model to another by an assignment. This gets more complex when
the values are split, e.g. one model contains the first and last name as one value and the
other model has separate attributes for both. Values can also become entire objects. Some
part of the value can be transformed to an object and any other part can become an
attribute. Multiple combinations are foreseeable such as an attribute that is split and
becomes two objects. Besides these split operations, also merge operations, or more complex
look-ups are realistic examples for model mappings. This observation is not limited to model
transformation for EA models, cf. [JAB+08]. For instance, a lookup table (LUT) often
serves as a means to overcome synonym issues in the data cleansing process (cf. e.g. [KR02,
p. 21]). In their paper, Jouault et al. [JAB+08] point out that a purely declarative approach
is often not sensible for complex model-to-model transformations. In line with the authors
we foresee utility functions that are employed to transform a value. A simple example is the
transformation of a timestamp to another date format with respect to particular time zones.
Further, third party services could be utilized, e.g. to look up locations based on Global
Positioning System (GPS) coordinates. Note that this is a non-exhaustive list of possible
mappings for one respectively two attributes and different operations can be combined in
various ways.

4.2.4 Synchronize Information Source

Once, the information source is integrated in the federal system, it can be synchronized
with the EA model in a unidirectional manner. This synchronization is subject of our next
use case, UC3, detailed in Table 4.4. Goal of this use case is to import information of the
information source with the EA model and to resolve arising model conflicts.

In the context of the extract, transform, and load (ETL) process, the DWH community
outlines that different triggering events to import information exist [BG13, pp. 56,94], [KC04,
ch. 3]. A general distinction can be made between pull and push. That is the information
source can either push information to a federal system or vice versa, i.e. the federal system
pulls information from the source.

Periodical. A synchronization takes place at a regular basis. The polling frequency
strongly depends on the information change rate in the export model and required
information actuality of the EA model.

Request-based. A synchronization starts upon an explicit request. This can be reasonable
if a particular information source is updated at a higher frequency than usual e.g. in
the course of inventory measures.

Event-based. A synchronization takes place based on an external event. These can be
further classified as

∙ time-based events, e.g.monthly for a stakeholder report,
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Table 4.4: Use Case: Synchronize Information Source

Use case #
UC3 Use Case Name Synchronize Information

Source

Context of use An integrated model of an information source should be synchro-
nized with an existing EA model.

Scope Federal system implementing ModelGlue, information source,
and EA repository

Level Primary Task

Primary actor EA repository manager

Stakeholder &
Interests

Stakeholder Interest

Data owner eventually knows reasons why models are con-
flicting and can resolve conflicts within the infor-
mation source

EA repository
manager

wants to synchronize a model of an information
source with the EA model

EA stakeholder
wants to have a sound decision base with consis-
tent information

Preconditions A valid configuration file to synchronize the information source
exists, i.e. the model of the information source is integrated.

Minimal
Guarantees

Any changes to the import model and the EA model are tracked in
a version history and can be reverted if necessary; any conflicts are
detected and information about conflicts is available.

Success
Guarantees

All changes of an information source since the last synchronization
are transfered to the import model stored within the federal sys-
tem and are synchronized with the EA model; arising conflicts are
resolved.

Trigger The EA repository manager coordinates with a data owner of an
information source to start this use case manually or the federal
system triggers this use case periodically.

Main Success
Scenario

Step Action

1 The EA repository manager triggers the import of an infor-
mation source manually (UC4).

2 After the import is completed, the EA repository manager
triggers an action to merge the import model of an infor-
mation source to the EA model (UC6).

Extensions

Step Branching Action

1 The import is triggered by the federal system automatically
based on a period specified in the configuration.

2 The EA repository manager wants to view differences of
the import model compared to the EA model: View model
differences (UC5).
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∙ information source events, e.g. number of updated records typically specified a
priori, or

∙ external events, e.g. in the course of an acquisition the latest EA information is
needed to merge application landscapes.

In their book, Bauer and Günzel [BG13, p. 94] clarify that strictly speaking, periodic
and request-based extractions can also be classified as event-based.

Instantaneous. To get the latest changes of an information source near real-time, an
instantaneous propagation of modifications in an information source must be consid-
ered. Instantaneous synchronization demands high efforts to propagate changes to
the federal system immediately as they occur in an information source.

Focusing on UC3, an import of information takes place in an automated manner. This keeps
the import model up-to-date with reasonable efforts. In a federated EA model environment,
the different synchronization strategies could be realized. The choice depends on the specific
EA model and criticality of a particular model element with respect to the impact of model
element changes on decision making.

UC3 further comprises a merge of the import model with the EA model. This use case is
described separately (cf. UC6) in particular, since the EA repository manager may want to
view the differences between an updated import model and an EA model prior to a merge,
cf. UC3 and UC5.

4.2.5 Import Information

The transfer of information from an export model to an import model is subject to our
next use case, UC4, described in Table 4.5. A particular challenge during the import of
information is the detection of changes within an information source.

Especially in the context of DWH systems, the detection of incremental changes is regarded a
necessity since the amount information that must be transfered to a DWH is too voluminous
for a bulk load. Within the DWH community, Vavouras [VGD99], [Va02, pp. 95–96],
Vassiliadis [Va09], Kimball [KC04, p. 106ff] as well as Bauer and Günzel [BG13, pp. 54–55]
report on the following possibilities to monitor an information source.

log-based assumes that the information source builds on a DBMS which captures transac-
tions in a log file [Va02, pp. 95–96]. This log file is analyzed using scraping or sniffing
techniques [KC04, p. 107]. Effectively, scraping takes the ‘database redo log’ and parses
it for modifications on relevant information. Sniffing on the other hand polls on the
redo log and captures modifications on the fly. Kimball and Caserta regard sniffing
on log files as “probably the messiest of all techniques [in particular since they could]
get full and prevent new transactions from occurring” [KC04, p. 108].

trigger-based refers to an active mechanism and requires a particular trigger on a database
event [Va02, p. 95]. A particular suitable example is an update trigger, i.e. any
modification of an information source could inform the federal system. Effectively, the
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Table 4.5: Use Case: Import Information

Use case # UC4 Use Case Name Import Information

Context of use An export model of an integrated information source should be
synchronized with its import model within the federal system,
e.g. during model synchronization (UC3).

Scope Federal system implementing ModelGlue

Level Primary Task

Primary actor EA repository manager

Stakeholder &
Interests

Stakeholder Interest

EA repository
manager

wants to import changes a model of an informa-
tion source to the federal system

Data owner wants to share information for the common
good of an enterprise

EA stakeholder
wants to have an up-to-date decision base

Preconditions The respective information source is integrated, i.e. a valid configu-
ration file exists.

Minimal
Guarantees

The transaction is ‘idempotent’ (see [Da04, p. 541]), i.e. another
import, e.g. resuming an interrupted import, will only affect not
yet updated model elements assuming the export model has not
been changed. Any changes written to an import model are stored
within a version history and can be reverted.

Success
Guarantees

All changes made to an export model within an information source
since the last import are written to the respective import model
within the federal system.

Trigger The EA repository manager starts this use case manually or the
federal system triggers it automatically.

Main Success
Scenario

Step Action

1 The EA repository manager chooses an action to start an
import for a particular information source.

2 The federal system loads the configuration file for the cho-
sen information source and connects to the specified desti-
nation.

3 The federal system reads changes of an export model ac-
cording to queries defined in the configuration file.

4 The federal system executes the specified model-to-model
transformation for each model element with respect to the
mapping specification within the configuration file.

5 The federal system writes transformed model elements to
the import model, i.e. new model elements are created.

6 For new model elements, the federal system creates a ref-
erence indicating the origin of the model element, i.e. a
unique identifier within the information source.
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Extensions

Step Branching Action

1 The import is triggered by the federal system automati-
cally.

Technology &
Data
Variations

Step Description

3 In the event the information source does not support to
query for the last changes, information is read as a single
bulk and differences to the previous version are calculated
employing the import model within the federal system.

5 The model element of the export model has a correspond-
ing model element in the import model: The system de-
tects existing model elements and updates information
only in case the model element has been altered since the
last import. This update is stored as a new version of the
model element, i.e. old versions can still be retrieved.

propagation of changes is realized as a DBMS hook. Vavouras [Va02, p. 96] proposes
to store the modification in an auxiliary table or file upon detection of modifications.

replication-based means one keeps an entire replica including all changes. This is similar
to the proposal of Vavouras since operational information and changes thereof are
stored separately. Vavouras states that commercial tools offer mechanisms to detect
changes and offer replication services to store the information elsewhere [Va02, p. 96].

time-based can be regarded as a very intuitive way to query for changed data. Each
piece of information is associated with a timestamp which is set to the current time
in the event of a modification [BG13, p. 54]. Kimball and Caserta point out that
although intuitive, the approach comes with a severe drawback. A time-based query
loads duplicate information when it is restarted from a mid process failure. “This
means that manual intervention and data cleanup is required if the process fails for
any reason” [KC04, p. 108].

audit columns is a special variant of the time-based approach detailed by Kimball and
Caserta [KC04, p. 106]. It utilizes so-called ‘audit columns’. These can be considered
build-in attributes that track date and time as soon as a particular model element
is created or modified. Kimball and Caserta report that information systems often
already use audit columns. Thus, using audit columns would not necessarily modify
the information source. Kimball and Caserta also warn about a particular threat to
this method, namely back-end scripts that could modify these audit columns such
that one could miss changes. As a countermeasure they propose is a quality assurance
step for back-end scripts to ensure consistency of the audit columns.

snapshot-based involves a periodical data dump and a subsequent delta calculation,
i.e. differencing of consecutive dumps, to capture changes [Va02, p. 96]. Depending
on the polling frequency, a considerable amount of changes may remain undetected.
Kimball and Caserta coin the term ‘process of elimination’ which describes the
differencing of the previous version with the current data dump. The authors point
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out that this is not the most efficient technique but“the most reliable of all incremental
load techniques for capturing changed data” [KC04, p. 108].

application-assisted refers to the explicit adaptation of the underlying application logic
of an information source. Vavouras argues that this option particularly must be
considered for non-DBMSs and often is the only option for an incremental update
of a DWH. A näıve approach is to alter the application to add timestamps in the
event information is changed. Subsequent polls can then query for information that
is annotated with a timestamp older than the one of the previous query. Vavouras
further describes the creation of a ‘delta file’ that captures changes in an explicit
manner.

Although the efforts are high, in line with Vavouras [Va02, p. 97], we advocate that only
snapshot-based monitoring is applicable for most legacy systems and agree with Kimball
and Caserta [KC04, p. 108] that snapshot-based monitoring is a very reliable technique.

As of now, we only considered to keep a copy, namely the import model stored within
the federal system, that embraces the desired part of an information source’s model. A
different approach is to establish semantic links to the information source (cf. [CHL+13]).
Bergamaschi et al. [BCV99] advocate to establish (semantic) links between objects rather
than transferring a deep copy of the information from one model to another. We briefly
discuss the differences between maintaining links to objects in a model or to create copies
of objects. Table 4.6 gives an overview of both approaches.

Copy Semantic Link

Versions/History federal system dependents on the in-
formation source

Redundancy redundant information none, just identifiers
Differencing and conflict detection queries information

from the federal system
queries information
from the information
source

Synchronization efforts high: queries (changed)
information as a deep
copy from the informa-
tion source

low: queries for the
links within the infor-
mation source

Table 4.6: Semantic links vs. information import

In contrast to Bergamaschi et al. [BCV99], we advocate to keep a local copy within the
federal system. This guarantees a version history and better autonomy of the import
model and the information source’s model. Any additional modifications, aggregations, or
cleansing can take place outside the information source and respective transformations do
not influence the operative system. Additional features offered by (semantically) linked data,
e.g. support for reasoning, is currently neither required nor are operationalized ontologies
like RDF frequently found in legacy systems. Hence, UC4 (cf. Table 4.5) describes the
import of information from an information source to the federal system rather than creating
links to objects, which remain only within their original information source.
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4.2.6 View Differences

Table 4.7: Use Case: View Differences

Use case # UC5 Use Case Name View Differences

Context of use Prior merging models or for planning purposes, it may become
necessary to view the differences between two models.

Scope Federal system implementing ModelGlue

Level Primary Task

Primary actor EA repository manager

Stakeholder &
Interests

Stakeholder Interest

EA repository
manager

Wants to view the difference between two mod-
els prior merging or for planning purposes

Preconditions A model of an information source has been imported and at least
two models exist within the federal system.

Minimal
Guarantees

Information is not altered by any user interaction.

Success
Guarantees

The differences between two models are visualized.

Trigger The EA repository manager starts this use case manually.

Main Success
Scenario

Step Action

1 The EA repository manager selects two models within the
federal system; commonly the EA model and an import
model for an information source.

2 The system calculates the differences between the models.

3 The differences between the metamodels of the chosen mod-
els are shown to the user in a visual manner.

4 The user can drill down on model differences by clicking on
a concept of the metamodel.

5 The system shows all instances of a chosen concept,
i.e. instances of both models as well as differences between
them.

6 The user can click on an instance to see its relationships to
other instances.

7 The user can click on an instance that has been changed,
i.e. has differences, in one or both models.

In many publications, e.g. [SMR12, RHM13b, RHZ+13, RZM14], we emphasize the im-
portance of visual means for EA management. In [RM14], we claim that viewing model
differences is an essential task for enterprise architects. In Federated EA Model Management,
prior to a merge of an import model with the EA model or in the course of modeling
planned states, it may become necessary to view differences of two models. This way, the
EA repository manager gets an overview which information has been changed during the
last synchronization. However, no common standard to view differences in models and in
particular for EA models exists and we observe a particular challenge in the communication
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of model differences. Table 4.7 illustrates the respective use case (UC5). It embraces the
calculation and the visual display of differences as well as the provision of means necessary
for an analysis thereof. Differences thereby include both, model as well as metamodel
differences.

When it comes to model differencing, to some extent one can learn from source code merging.
Code merging is commonly supported by tools applying textual merging [Me02]. As we
outlined in Section 2.3.1, there exist two general approaches to calculate differences, two-way
differencing and three-way differencing. We detail our approach to model differencing in
Section 5.2.4.

4.2.7 Merge Models

A unidirectional model synchronization can be viewed as a merge of models. Although
UC6 (see Table 4.8) describes this use case in a generic way, we argue that in a federated
EA model environment commonly one or more import models must be merged with an EA
model, cf. [KR14].

Since we assume all modeling communities stay autonomously, the EA model as well
as the model of the information source co-evolve. In Section 4.1.3, we outlined that a
federated EA model environment contains boundary model elements (cf. Definition 4.7 on
p. 83). “Conflicting representations are a major challenge for integration methodologies.
Two designers modeling the same universe of discourse, or two overlapping universes of
discourse, will probably describe the common real-world objects in different ways” [SPD92].
In the event of a merge of models within a federated EA model environment, conflicts may
arise particularly for modifications on boundary model elements. Taentzer et al. outline
that during a merge of different models incorporating concurrent changes conflicts may
arise [TEL+10]. Wieland et al. [WLS+12] discuss that most of these conflicts cannot be
resolved automatically. The modelers’ intentions, especially the semantics are not captured
in the model.

In this vein, the federal system must store context information about a conflict. To resolve
such model conflicts, the federal system sends human tasks containing a conflict description
to roles, i.e. persons who are responsible for a particular model element. Conrad [Co97,
p. 79] distinguishes between four kinds of conflicts originally published by Spaccapietra
et al. [SPD92]. These are: semantic conflicts, descriptive conflict, heterogeneity conflicts,
and structural conflicts.

semantic conflicts may arise if modelers describe common real-world object in different
ways. Spaccapietra et al. [SPD92] name, for instance, that one view may denote a class
Student that matches the semantics of another view’sComputer Science Student.
These semantic conflicts have been discussed by Mannino and Effelsberg [ME84] for
the domain of relational models extensively. In a federated EA model environment,
semantic conflicts are grown evolutionary. We regard the resolution of semantic
conflicts as a highly challenging, manual, and collaborative task.

descriptive conflicts may arise if modelers describe a common real-world with different
attributes due to a different perception or intended focuses. The information for
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Table 4.8: Use Case: Merge Models

Use case # UC6 Use Case Name Merge Models

Context of use After information has been imported to an import model in the
federal system it may be synchronized with the EA model.

Scope Federal system implementing ModelGlue; EA repository

Level Primary Task

Primary actor Enterprise architect (EA coordinator or EA repository manager)

Stakeholder &
Interests

Stakeholder Interest

Enterprise
architect

wants to update the EA model with information
of an import model

EA stakeholder
wants to have a sound and up-to-date decision
base

Preconditions Information has been imported to the corresponding import model
in the federal system.

Minimal
Guarantees

The source models and the target model remain unchanged until
the merge transaction is completed. The source model does not
cease to exist after the merge transaction.

Success
Guarantees

One or more chosen source models are merged with a target model
and all conflicts have been either resolved or forwarded to a respon-
sible role.

Trigger The enterprise architect manually triggers an action to merge mod-
els.

Main Success
Scenario

Step Action

1 The enterprise architect chooses models to be merged
(source models) and a destination (target model). The
source models are commonly one or more import models
whereas the target model commonly is the EA model.

2 The federal system creates a preview model (a clone of
the target model) that is used during the merge process
such that subsequent actions have no immediate effect on
involved models.

3 The federal system attempts to merge the source models
with the target model.

4 The federal system detects conflicts that arise during a
merge.

4a The federal system resolves conflicts automatically if a
respective rule is configured within the conflict resolution
strategy.

4b The federal system sends human tasks for any unresolved
conflict for further analysis and resolution to responsible
roles defined in the involved models.

5 The federal system checks for a corresponding model ele-
ment within the source and preview model; if no conflict
occur, it applies changes performed on the source model to
the preview model.

6 Enterprise architects and EA stakeholders resolve model
conflicts (see UC7 and UC8).
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Main Success
Scenario (cont’d)

6a On resolution, the federal system marks human tasks for
conflicts as resolved.

7 The enterprise architect finalizes the merge transaction.

8 The federal system moves the preview model to the tar-
get of the merge action (commonly considered the EA
model or a planned state thereof, both stored within the
EA repository)

9 For unresolved conflicts in the target model, human tasks
remain in the federal system for further analysis and resolu-
tion by respective responsible roles.

Extensions

Step Branching Action

7 The enterprise architect aborts the merge process: the
federal system deletes the preview model including human
tasks that describe a conflict therein.

Technology &
Data
Variations

Step Description

8 The target model is stored within the federal system: the
federal system moves the preview model to the target
model.

a common real-world object in different domains and the information captured by
the resulting models can differ considerably. Descriptive conflicts also include name
conflicts, i.e.modelers using different names for the same semantics (synonyms) or
using the same name for describing different semantics (homonyms).

heterogeneity conflicts may arise if the different information sources follow different
paradigms to describe and store information (cf. Section 4.1.3). Although two modelers
using a structured way to model real-world objects, they could use different approaches
to model real-world objects, e.g. relational or object-oriented models. An ontology
model offers more mechanisms, i.e. is semantically richer, than an object-oriented
model, which in turn is semantically richer than a relational model. In a federated EA
model environment, this kind of heterogeneity is ‘built-in’; it is a challenge enterprises
face that comes with a legacy system environment.

structural conflicts may arise even if the same paradigm is used for modeling. Modelers
can choose from a variety of alternatives to represent common real-world objects.
For instance, in an object-oriented model, the same set of real-world objects may be
represented as an entity type in one view and as an attribute of an entity type in
another view.

For relational databases in multidatabase systems (MDBS), Kim and Seo [KS91] classify
conflicts into schema conflicts and data conflicts. However, we foresee that in the course of
an evolutionary EA model, even more complex conflicts will arise. That is in the terminology
of the database community: conflicts between data, between schemata, and between schema
and data. With respect to object-oriented information systems, we distinguish different
categories of conflicts that may arise between models (see Definition 4.13).
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Definition 4.13: Model conflict
A conflict between two or more models may arise in the course of concurrent
modeling. That is

∙ model/model conflicts, i.e. conflicts between two or more instances,

∙ model/metamodel conflicts, i.e. conflicts between one or more instances
and the respective metamodel, and

∙ metamodel/metamodel, i.e. conflicts between two or more metamodels.

�

4.2.8 Resolve Conflict

In the course of synchronizing information sources, the EA repository manager may seize
the chance to immediately resolve conflicts. Major reason to resolve conflicts is consistency
between the different interacting models, cf. Assumption 4.7.

The resolution of these model conflicts is subject of our next use case illustrated in Table 4.9
on p. 106. In essence, it centers around the resolution of conflicts that arose during a model
merge. Commonly, such a merge of models may include two models. Potentially, conflicts
in more than two models could arise during an n-way merge of models [KR14].

In UC6, the federal system detects the conflicts and generates human tasks for unresolved
conflicts. Each of these task contains a description of the conflict. This description is
interpretable by a human actor and must contain sufficient contextual information to resolve
the conflict. The user can either resolve the conflict or forward the task to another user
that may be capable to resolve the conflict adequately.

Central to the use case is the notion of a worklist. Each user within the federal system has
such a worklist. Essentially, it embraces a list of human tasks assigned to that specific user.
A human task or task describes a piece of work that is assigned to one or more persons.
The notion of tasks is further detailed in UC10. For now, we continue the discussion with
an implicit understanding the term.

Two types of collaboration are addressed in UC7, i.e. asynchronous and synchronous. The
former type is realized by forwarding a task which essentially transfers a task from one
person’s worklist to another person or assigns additional persons to a task.
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Table 4.9: Use Case: Resolve Conflicts

Use Case # UC7 Use Case Name Resolve Conflicts

Context of
Use

After information has been imported to a model and merged to an
EA model conflicts may arise.

Scope Federal system implementing ModelGlue

Level Primary Task

Primary Actor Enterprise architect

Stakeholder &
Interests

Stakeholder Interest

Enterprise
architect

wants to keep the EA model consistent such
that it represents a reliable decision base within
the organization

Data owner wants to know whether information is conflict-
ing and perhaps must be corrected in the infor-
mation source

EA stakeholder
wants to have a sound decision base with consis-
tent information

Preconditions Information has been imported to a model and merged to an EA
model such that conflicts arose.

Minimal
Guarantees

Any unresolved conflicts are assigned to at least one person that is
responsible for its resolution.

Success
Guarantees

All conflicts have been either resolved or forwarded to a responsi-
ble person.

Trigger This use case is triggered by its stakeholders in the event of merg-
ing two or more models.

Main Success
Scenario

Step Action

1 The user can choose a task that describes a conflict to be
resolved from the worklist.

2 The user can view conflicting changes; for each change,
the involved role or information system of an information
source and temporal information of a change is given.

3 The user can apply a change as a resolution to the conflict
or revert changes to the original state.

4 The federal system propagates the chosen change to the
model.

5 The task is marked as ‘resolved’ which denotes that the
conflict is resolved; the task disappears in the worklist of
each assigned role.

Extensions

Step Branching Action

3 The user does not know the final resolution to a conflict:
the user annotates the conflict and forwards it to another
user.

3 The user initiates a collaborative resolution session: resolve
conflict collaboratively (UC8).

3 The user wants to reschedule the conflict for further analy-
sis: the user postpones the conflict, i.e. the task remains in
the worklist.
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Technology &
Data
Variations

Step Description

1a The user can choose from a list of conflicts by browsing the
model.

1b The user can choose conflicts in a conflict management
dashboard that displays conflicts within the model at the
place at which they occur.

4a The conflict describes a conflict within an information
source: the user resolves the conflict within the information
source utilizing the contextual information. Subsequently
the user alters the state of the task manually to indicate
the resolution status of the conflict.

4.2.9 Resolve Conflicts Collaboratively

As outlined above, the resolution of conflicts between an information source and an EA
model is a highly collaborative task. The next use case (UC8) detailed in Table 4.10 puts a
special focus on synchronous collaboration in the course of model conflict resolution.

In UC3, we describe that the EA repository manager performs the synchronization triggered
either manually or the synchronization is triggered automatically by the federal system,
e.g. on a temporal event such as once a month, a week before the due date of the financial
statement, etc. As an important step, the merge of models (UC6) is intended to bring
together current models of potentially different information sources and the EA model.
Conflicts may be resolved by a single user or by multiple users in a collaborative and
asynchronous way (UC7).

In line with Wieland et al. [WLS+12], we advocate that collaboration is essential for the
resolution of conflicts. A synchronous discussion can be regarded a highly efficient and
effective means to resolve model conflicts collaborative. Especially effectiveness is a desirable
property of conflict resolution within Federated EA Model Management and contributes to
the goal to achieve CCMC. Thus, UC8 describes how the conflict resolution can take place
as a collaborative session. This session may take place between the enterprise architects,
data owner, and other EA stakeholders that may have an interest in resolving particular
conflicts.

Key to collaborative conflict resolution is the notion of a conflict management dashboard.
This dashboard shows information that is relevant to resolve the conflict directly in the
modeling context. That embraces the exact location of a conflict within a model, the
changes on a model that must be discussed, involved persons that issued these changes,
and additional information about the modeling context. Basic chat facilities (messenger
and voice) can support the synchronous resolution of model conflicts. They enable ad-
hoc communication and provide an efficient means to collaborate while the model and
information about the conflicts to be solved are always at hand and media-breaks can be
avoided.
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Table 4.10: Use Case: Resolve Conflicts Collaboratively

Use case #
UC8 Use Case Name Resolve Conflicts

Collaboratively

Context of use After the merge of models conflicts may arise that can be solved
best in a collaborative fashion.

Scope Federal system implementing ModelGlue

Level Primary Task

Primary actor Enterprise architect

Stakeholder &
Interests

Stakeholder Interest

Enterprise
architect

wants to keep the EA model consistent such
that it represents a reliable decision base within
the organization

Data owner wants to know whether information is conflict-
ing and perhaps must be corrected in the infor-
mation source in order to improve the reliability
of the information source

EA stakeholder
wants to have a sound decision base with consis-
tent information

Preconditions Information was imported to a model and merged to an EA model
such that conflicts arose.

Minimal
Guarantees

Unresolved conflicts are assigned to the role that opened them.

Success
Guarantees

All conflicts are either resolved or forwarded to a responsible per-
son.

Trigger Triggered manually by stakeholders after two or more models were
merged.

Main Success
Scenario

Step Action

1 The EA coordinator invites users (EA stakeholders and
enterprise architects) to a collaborative session.

2 The users open the conflict management dashboard and
join a collaborative session.

3 The federal system displays the conflict management dash-
board that shows conflicts which have been detected and
according to the conflict resolution strategy configured are
not resolvable automatically.

4 Users can only view conflicts assigned to them either in-
dividually or due to membership of a group, i.e. everyone
within the collaborative session on the one hand sees a per-
sonalized view but on the other sees interactions that are
applicable for this personalized view.

5 Users can choose a conflict to be resolved.

6 Users can view conflicting changes, involved roles, and
timestamps to discuss the conflict.

7 The federal system synchronizes the views and actions of
each user in real-time with respect to individual access
rights.
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Main Success
Scenario (cont’d)

8 Users can work on a conflict collaboratively.

8a Users can chat with each other to discuss a conflict.

8b Users can have a voice session with each other to discuss a
conflict.

8c Users can annotate conflicts.

8d Users can forward conflicts.

8e Users can apply changes as a resolution to the conflict.

8f Users can discard changes as a resolution to a conflict.

9 The federal system applies changes.

9a The federal system propagates chosen conflict resolutions
to the model immediately.

9b The federal system persists open conflict for further analy-
sis.

10 The model conflict is marked as resolved and disappears in
the model conflict list, the conflict management dashboard,
and worklist of each assigned role.

Technology &
Data
Variations

Step Description

9a A conflict resolution requires changes that affect an infor-
mation source, i.e. changes influence the model or meta-
model of an information source: The federal system gener-
ates ‘propagate’ tasks and sends it to the responsible role
such that changes can be aligned.

4.2.10 Configure Conflict Resolution

Once decided on a conflict resolution, the participants of a collaborative conflict resolution
session (UC8) may identify a certain pattern that could be applied in the future to resolve
conflicts automatically. Such a pattern could be part of an organization-specific conflict
resolution strategy. The configuration of predefined conflict resolution strategies and
organization-specific adaptations are subject to our next use case, UC9. It is detailed in
Table 4.11 on p. 110.

Wieland et al. [WLS+12] report on model conflicts that arise in the course of a merge of
concurrently edited models with a common origin. The authors describe the problem when
operations are simultaneously applied to model elements in different branches describing the
same real-world objects. Because logically simultaneous operations overlap, the result might
be a conflict. Table 4.12 on p. 111 summarizes central findings of Wieland et al. [WLS+12].
The table depicts overlapping operations and designates situations in which a conflict arises
in the course of concurrent modeling activities and situations in which the modelers did not
see all information and implicit changes took place. For some of these conflict situations, an
organization-specific action can be taken to resolve the conflict automatically. However, since
we distinguish three kinds of model conflict classes, i.e.model/model, model/metamodel, and
metamodel/metamodel conflicts, conflict detection within a federated EA model environment
tends to be more complex. Moreover, model conflicts in EA management are commonly
resolved collaboratively and demand prior communication and possibly mediation. Thus,
we conclude that while some model conflicts can be resolved specifying rules (cf. [KR14]),
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Table 4.11: Use Case: Configure conflict resolution strategy

Use case #
UC9 Use Case Name Configure conflict

resolution strategy

Context of use During conflict resolution (UC7 and UC8), the participants may
identify a pattern that can be applied to resolve certain conflicts in
the event of prospective model synchronizations.

Scope Federal system implementing ModelGlue

Level Primary Task

Primary actor EA repository manager

Stakeholder &
Interests

Stakeholder Interest

Data owner wants to minimize efforts to keep the EA model
consistent

EA repository
manager

wants to specify or refine a rule within the cur-
rent conflict resolution strategy

EA stakeholder
wants to have a sound decision base

Preconditions The federal system must be in operation and a conflict pattern
must have been identified.

Minimal
Guarantees

A syntactically valid conflict resolution strategy is stored within
the federal system.

Success
Guarantees

The new conflict resolution strategy reflects user needs, is per-
sisted, and is applied on subsequent model merges.

Trigger The EA repository manager triggers this use case manually in the
event the conflict resolution strategy must be altered.

Main Success
Scenario

Step Action

1 The EA repository manager opens the customization dialog
for the current conflict resolution strategy.

2 The EA repository manager can choose from predefined
strategies: A strict strategy with notifications for deletions
and concurrent updates, or an optimistic and more con-
flict tolerant strategy with less notifications on deletions
and concurrent updates. Both strategies realize a lossless
conflict resolution.

3 The federal system displays the behavior for each model
event including potentially conflicting events for the chosen
strategy to the user.

4 The EA repository manager can choose from model events
to customize the strategy currently active.

5 The federal system displays a customization dialog that
facilitates the configuration of organization-specific merge
rules.

6 The EA repository manager specifies merge rules that
are applied on a specific model event. Commonly this is
done only for conflicting situations, e.g. for simultaneous
delete/update operations on the same model element.
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Main Success
Scenario (cont’d)

7 The federal system persists the altered conflict resolution
strategy with the merge rules specified.

Extensions

Step Branching Action

2 The EA repository manager chooses to modify the existing
strategy: The federal system loads the existing conflict
resolution strategy.

most model conflicts within EA management must be resolved manually, i.e. they require
human intervention.

Insert Delete Update Use Move

Insert

Delete ✕ ✕ ✕

Update ✕ ! !

Use !

Move ✕

✕ : Conflict

! : Warning

Table 4.12: Overlapping changes according to Wieland et al. [WLS+12]

Common resolution patterns in this context include but are not limited to:

∙ take change of a particular information source over another,

∙ take latest change,

∙ take changes submitted by person 𝐴 over person 𝐵, or

∙ merge both changes violating constraints.

In particular the last pattern can be incorporated in a predefined, tolerant merge strategy.
Goal of such a tolerant merge strategy is to store any information in a human interpretable
manner while eventually violating federal consistency.

In contrast to such an tolerant merge strategy, a strict merge strategy does not violate
federal consistency and immediately generates conflict tasks as modelers might not have
seen all information that has been modeled concurrently. That includes many cases in
which persons have to be informed about a change or must confirm a deletion. In UC9,
one of two predefined conflict resolution strategies, i.e. tolerant and strict merging, can
be modified by an expert such that an organization-specific merge strategy evolves over
time. Additionally, this organization-specific strategy can be loaded and tailored iteratively.
Such an organization-specific conflict resolution strategy may cope with conflicts in an
increasingly automated manner or account for organization-specific exceptions in models or
metamodels.
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Example 4.6: Organization-Specific Conflict Resolution
The Database Administrator (DBA), John Doe, recognizes that information
about some physical servers stored within the CMDB is flawed. John informs
Sally, the data owner of the CMDB. Sally recognizes a systematic error within
the CMDB that can be traced to a particular revision number. It seems that
the procurement department did not enter the right revision numbers after the
acquisition of these machines. However, Sally sees that the CMDB is valid for
revision numbers after 0.2. The CMDB is highly integrated and, thus, Sally
decides for local inconsistency, i.e. to maintain this inconsistent state. As a
data owner of an integrated information source, Sally knows that information
contained in the CMDB is used for decision making by EA management. Hence,
she writes a brief e-mail to Bob, the EA repository manager. The e-mail contains
information about how to deal with these flaws in information. Receiving the
e-mail, Bob immediately knows how to resolve this issue for the EA model; he
would just use another CMDB as primary information source for these particular
servers and merge the two CMDB models with the EA model. He takes a brief
note that sketches the rule for the subsequent conflict resolution.

1 if(A==B && CMDB1.server.revision <= 0.2)
2 revision = CMDB2.server.revision

4.2.11 Assign Task

The next use case details the assignment of tasks to individuals or groups. In Federated
EA Model Management this assignment can take place either manually or automatically.
For the manual assignment, we assume that the EA repository manager could detect model
inconsistencies in the model at any time (Section 5.2.6). A particular example for such
a situation is the detection of an abstraction gap. In [RHM13b] we discuss the role of
an abstraction gap; in the present thesis we postpone the discussion of this phenomenon
and detail its specifics in Section 5.2.8.4. Other triggering events that could lead to an
assignment of a task within Federated EA Model Management center around the resolution
of model conflicts. An assignment or reassignment (forwarding) of tasks could take place in
the event of resolving conflicts (UC7) or during a collaborative conflict resolution session
(UC8). An automated assignment of tasks on the other hand is initiated by the federal
system. This may happen during the merge of models if the federal system detects conflicts
(UC6). In [RHM13a], we detail other events that may trigger an automated generation of
tasks in the course of EA model and metamodel evolution.

In line with Malone and Crowston [MC94], we agree that a task means both, achieving goals
and performing activities (cf. also [MCH03, ch. 3.2.3]). Goals describe desired states of the
real-world whereas activities refer to actions performed to achieve a particular state. Malone
et al. advocate that both, goals and activities, are clearly different. However, the authors
further argue that analyzing both concepts together makes sense. They compose goals into
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Table 4.13: Use Case: Assign Task

Use case # UC10 Use Case Name Assign Task

Context of use A model conflict has been detected or annotated.

Scope Federal system implementing ModelGlue

Level Primary Task

Primary actor EA repository manager

Stakeholder &
Interests

Stakeholder Interest

Data owner wants to have the right information in the in-
formation source such that no further conflicts
occur and information does not contradict other
statements about the real-world

EA coordinator wants to delegate existing conflict tasks to re-
solve conflicts

EA repository
manager

wants to enforce consistency within the federa-
tion by delegating tasks that describe activities
to resolve issues, i.e. inconsistencies, in a model

EA stakeholder
wants to have a sound decision base with consis-
tent information

EA modeling
expert

wants to facilitate the resolution of conflicts
found manually

Preconditions A model conflict has been detected.

Minimal
Guarantees

The federal system does not allow to persist any unassigned tasks.

Success
Guarantees

An existing task or a new task is (re)assigned to a user.

Trigger The EA repository manager or the federal system detects a model
conflict.

Main Success
Scenario

Step Action

1 The EA repository manager or the EA modeling expert
chooses an action to create a new task.

2 The federal system creates a new task that is in an initial
state.

3 The EA repository manager adds a description to the task
that explains the issue to be solved and its context.

4 The EA repository manager assigns the newly created task
to an individual or group that is responsible for the issue
to be solved.

5 The task is in the state assigned and is shown in the as-
signee’s worklist.

Extensions

Step Branching Action

1 The EA repository manager or another enterprise architect
chooses an existing task that has to be reassigned.

1 The federal system creates the task during a merge of mod-
els (UC6).
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Task

GoalActivity Context

1

*
requires

*

*

*

1..*
contributes to
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Role

* *
executes

* 1
responsible for

Figure 4.11: An initial conceptual notion of tasks within Federated EA Model Management

subgoals to be achieved and activities into primitive sub-activities to be performed. This
way, Malone et al. describe the notion of a task that embraces both, goals and activities to
be undertaken.

Figure 4.11 illustrates a conceptualization of this view. Additionally, we add the notion
of Context in which Activities are carried out and Goals are achieved. Moreover,
someone is always responsible that an activity is carried out and goals are achieved within
a given Context, i.e. a state of the real-world. This Role not necessarily is the one that
actually carries out an Activity, since Tasks can be forwarded, i.e. delegated to other
Roles. However, a certain understanding of the activity comes with being responsible for
it. We conclude the discussion about tasks with Assumption 4.8.

Assumption 4.8: Responsible roles
We assume that responsible roles know how a task is performed and to whom
it can be delegated.

4.2.12 View Conflicts

Contextual information of a task embraces any information about conflicts that facilitates
their resolution. To resolve a conflict one must first view all relevant information about a
conflict. This use case is further detailed in UC11, cf. Table 4.14.

The user goal of this use case is to get an overview of all conflicts as well as detailed
information of a single conflict of interest. That includes information on

∙ what has been modified, i.e. which changes on which model element have been
performed?

∙ who modified a model element, i.e. which user including contact details within the
federal system?

∙ when did the modifications take place, i.e. what is the issuing date and time of the
conflicting changes?
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Table 4.14: Use Case: View Conflicts

Use case # UC11 Use Case Name View Conflicts

Context of use A model conflict was detected and its resolution was assigned as a
tasks to a responsible role.

Scope Federal system implementing ModelGlue

Level Primary Task

Primary actor EA repository manager

Stakeholder &
Interests

Stakeholder Interest

EA repository
manager

wants enforce consistency within the federation

Data owner wants view and eliminate the root cause of a
conflict in the information source

EA stakeholder
wants to have a sound decision base with consis-
tent information

Preconditions The resolution of a conflict task addresses a model element stored
either externally, i.e. within an information source, or within inter-
nally, i.e. within the federal system.

Minimal
Guarantees

The federal system keeps the current information.

Success
Guarantees

Information about conflicts such as the origin of the affected model
element and issued changes is shown to the user.

Trigger Stakeholders start this use case manually, preferably when they are
about to solve a conflict (UC7) or delegate a task (UC10).

Main Success
Scenario

Step Action

1 The user chooses an action to view all conflicts.

2 The system shows a list of conflicts.

3 The user can drill down on a single conflict to get its entire
details.

Technology &
Data
Variations

Step Description

2 The system shows the conflicts as annotations on an UML-
like diagram.
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∙ where could the modification exert influence on other model elements, i.e. what is
the model element’s context and does it have an impact on other model elements?

When an enterprise architect or an EA stakeholder is in possession of this information, they
can decide how to cope with a model conflict (cf. UC7, UC8, and UC9); alternatively, they
can forward the conflict to a person who may find an adequate resolution for this conflict
(cf. UC10).

4.2.13 Additional Use Cases within Federated EA Model Management

Besides use cases that concern the federal system primarily, there are other use cases
that center around the EA repository and the integrated information sources. Since the
present thesis focuses on Federated EA Model Management and does not outline or detail
a reference architecture for an information source or an EA repository, in this section we
briefly sketch these use cases highlighting how they interact with UC1–UC11.

Note that stakeholders of an information source may raise additional use cases; the following
use cases must be considered a non-exhaustive list that serves the further discourse of
this thesis. We refer the interested reader to Matthes et al. [MBL+08]; they provide a
comprehensive list and detailed descriptions of typical scenarios that are carried out using
an EA repository. In Federated EA Model Management, the following use cases of an
information source are essential to be addressed.

∙ Manage information embraces use cases that center around general knowledge
management employing an information system. That includes the maintenance of a
model that reflects the real-world. This model conforms to a metamodel that may
exist implicitly or is stored explicitly within the information source.

∘ Keep model consistent addresses the need to keep stored information in
accordance with the real-world; the users of an information source naturally are
focused to foster local consistency.

∘ Publish information is an important use case, relevant for instance in the
course of executive presentations as well as to other presentations to third parties
that are interested in information and may benefit from it. This especially
includes EA management and respective EA stakeholders.

∙ Manage meta-information covers all use cases that concern meta-information
from managing access rights to tagging information. The former may apply to the
model as well as metamodel whereas the latter commonly applies to the model only.

∘ Restrict information to be published is especially important for Feder-
ated EA Model Management. Data owners may not want to publish every
bit of information and want to restrict access to some concepts. This restriction
can be either implemented by the information source or is part of the mapping
(UC2).

∙ Evolve metamodel accounts for change requests on an information system that
may alter the metamodel of an information source to adapt to an ever changing
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environment. While this is not a day-to-day use case, we consider this an important
use case as it has an influence on a coherent Federated EA Model Management. The
metamodel evolution of an information source may require to adapt the export model,
the import model as well as respective mappings (cf. UC1 and UC2).

∙ Resolve conflict in an information source is a use case specifically introduced to
achieve CCMC within a federated EA model environment. A person may get a
task assigned (UC10) that describes a conflict, which must be resolved within an
information source. This resolution can be carried out by the common operations to
alter information within an information source (manage information) such that the
information system does not have to be changed to enter a federation.

An important term in these use cases is meta-information. Kimball defines meta-information
as “all the information [...] that is not the actual data itself” [KR02, pp. 14–15]. In line
with the ISO standard 11179 [ISO04, p. 10] we advocate that meta-information depends on
particular circumstances, for particular purposes, and with certain perspectives. Therefore,
Definition 4.14 seeks to give a more precise description of the term in the context of
Federated EA Model Management.

Definition 4.14: Meta-information†

The term meta-information refers to information that intends to describe
information or properties thereof. For instance its

∙ creation and origin,

∙ flow and transition,

∙ ownership and access rights,

∙ ...

†Synonym(s): metadata [Ba68, p. 28], [KR02, pp. 14–15], [Na04], [ISO04, p. 10] �

Commonly, meta-information cannot be derived from stored information and, thus, is
maintained explicitly. Example 4.7 gives the reader an illustrative case in which we
distinguish between information and meta-information.

Example 4.7: information vs. meta-information
On Monday July 9, Bob calls Alice and tells her that he will arrive a bit later
to an appointment. The information in this call is that Bob will arrive later,
while the meta-information is any information about the fact that Bob called
Alice using a particular device and phone number on Monday morning, July 9,
3.00 am.
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Our final considerations for use cases within a federated EA model environment center
around the EA repository. Let us assume that an EA repository can be viewed as a special
kind of information source. Our recent study shows that more and more tools EA repositories
store the metamodel explicitly [RZM14, p. 22] and also allow user adaptations [RZM14,
p. 22]. Common use cases relevant to Federated EA Model Management are managing
information and evolving the metamodel of an EA model. The former use case embraces
the basic maintenance of an EA model. The latter accounts for the iterative nature of EA
management and the evolution of an EA metamodel (cf. Section 2.1). Besides enterprise
architects, EA stakeholders may have an interest to view information from time to time.
This holds especially true in the course of conflict resolution. When EA stakeholders are
about to contribute to a resolution of a model conflict, it is very likely that they must view
information that is related to the conflict.

4.3 Requirements for a Federated EA Model Management
Solution

Above, we presented use cases that build the foundation for a more detailed requirements
analysis for a federal system. Use cases can be considered black-box behavioral require-
ments [Co01, ch. 17.3]. In [Co01, ch. 16], Cockburn states use cases are not sufficient and
further information on requirements is needed to design and develop a solution. Hence, in
this section, we deduce concrete requirements from these use cases introduced in Section 4.2
with respect to the challenges, we identified in an empirical study published in [HMR12].
Thereby, we employ some key words to indicate the requirements levels as defined by
Bradner in Requests for Comments (RFC) 2119.

“The key words ‘MUST, ‘MUST NOT, ‘REQUIRED’, ‘SHALL’, ‘SHALL NOT’,
‘SHOULD’, ‘SHOULD NOT’, ‘RECOMMENDED’, ‘MAY’, and ‘OPTIONAL’
in this document are to be interpreted as described in RFC 2119.” [Br97]

The requirements are split into different color-coded categories, i.e. requirements focusing
on

∙ Process requirements— are colored with a light-orange background,

∙ Collaboration requirements— are colored with a light-purple background,

∙ Modeling requirements— are colored with a light-green background,

∙ Usability requirements— are colored with a light-red background, and

∙ Technology requirements— are colored with a light-yellow background.

In the subsequent sections, we motivate each category briefly and discuss concrete require-
ments for each of these categories.
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4.3.1 Process Requirements

In [RHM13b], we propose a collaborative process for the resolution of conflicts in EA models.
Although this process has an iterative nature and incorporates escalation mechanisms, we
regard this process as one possible success scenario for the resolution of conflicts. Deviations
to this process are very likely and in the article we focus on the main success scenario
to emphasize the collaborative nature of this process. Fahland and van der Aalst [FA13]
diagnose that industrial business processes exhibit a plethora of exceptional behavior
that commonly is not captured in a business process designed top down. Researchers
in the domain of Adaptive Case Management (ACM), e.g. [Sw10, ch. 3], give experts—
commonly knowledge workers—a high degree of freedom. These researchers discourage
from anticipating each possible transition within a process. Instead ACM provides means
such that each expert may treat a case differently and in turn each case may be treated
differently by an expert. However, an information system can still provide utility for the
management of each case, e.g. templates may facilitate tasks of knowledge workers and,
thus, increase productivity [Sw10, ch. 7]. We advocate that conflict resolution in EA models
cannot be supported by a ‘hardwired’ process that is executed by a common workflow or
business process execution engine.

Requirement Pr1: Non-deterministic process support
A solution must feature flexible process capabilities to facilitate an iterative
and non-deterministic conflict resolution process with human tasks.

We consider it very unlikely that every conflict found either by a federal system, an enterprise
architect, or by an EA stakeholder can be resolved immediately by a single person without
prior consultation of other parties. Our next requirement focuses on the escalation in the
event no resolution is found. Although the federal system must feature flexible process
capabilities (cf.Pr1), it should rely on a coherent role model that captures access rights and
responsibilities such that a human task can be delegated along a chain of responsibility. Our
next requirement focuses on the escalation in a chain of responsible roles in an enterprise
(cf. [FAW07]).

Requirement Pr2: Escalation mechanisms
A conflict resolution must define clear escalation mechanisms, i.e. a chain of
responsibility for each conflict.

Requirement Pr2 implies that the federal system is able to determine the responsible
role of one model element on the finest possible granularity. We advocate this should be
the case even if responsibilities are not set explicitly. This can be accomplished based on
a chain of responsibility that divides work between different responsible roles. Gamma
et al. describe the object behavioral pattern coined ‘chain of responsibility’ in [GHJ+94,
p. 223ff]. Abstractly speaking, the pattern circumvents “coupling the sender of a request
to its receiver by giving more than one object a chance to handle the request. Chain the
receiving objects and pass the request along the chain until an object handles it” [GHJ+94,
p. 223]. Transferring this idea to a design for a federal system that facilitates Federated
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EA Model Management, an object (person) handles a request (human task). To resolve
a conflict, the path of this chain must be based on 1) the last-editors of a model element,
2) the explicitly named responsible persons, or 3) the data owner of a particular model
element.

Requirement Pr3: Clearly defined responsible roles on model ele-
ments
The system must be able to assign responsible roles on model elements at
different granularities, i.e. elements of the model as well as elements of the
metamodel.

A holistic solution design for Federated EA Model Management requires not only a federal
system but also an adaptation of organizational processes [FAW07]. Towards a socio-
technical solution for Federated EA Model Management, a description of required processes is
needed. A solution should embrace an administrative process, involved roles, responsibilities,
and triggering events. This process must give guidance throughout the integration of
information sources in a federation and address the collaborative resolution of conflicts that
arise during the synchronization of different models.

Requirement Pr4: Process guidelines
A solution must describe the required core process steps to support and guide
Federated EA Model Management.

4.3.2 Collaboration Requirements

As discussed before, an integration of a model in a federated EA model environment is a
long-lasting process. In particular the conflict resolution (UC7 and UC8) is characterized
by its collaborative nature with the ultimate goal to reach a consistent state within and
among the models that participate in a federation, i.e. to achieve CCMC. In line with
Bente et al. [BBL12, p. 137], we advocate that collaboration is essential for a successful EA
management initiative [RHM13a]. Further, we agree with Wieland et al. [WLS+12] that it
is equally important during the resolution of model conflicts [FAB+11b, RHM13b].

Requirement Co1: Collaborative conflict resolution
The system must provide facilities to resolve conflicts collaboratively by involv-
ing different stakeholders.

Although the resolution of model conflicts in Federated EA Model Management should take
place collaboratively, it is essential to know which person is responsible to resolve a conflict
ultimately. This is especially important during asynchronous collaboration and conflict
resolution (cf. UC7). The next requirement addresses the determination of responsibilities
for a model element which are utilized during the task assignment (cf.Pr3).
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Requirement Co2: Responsibility for conflicts
The system must be able to determine the responsible role for model conflicts
in a chain of responsibilities.

EA management serves as a mediator to resolve conflicts utilizing tasks assigned to one
role, which can be either a person or an entire group. A shared goal of the Federated EA
Modeling Community, is to resolve conflicts (cf. UC7). In case this conflict resolution is done
asynchronously an individual may not be able to resolve a conflict. However, a person could
add new insights and relevant information (cf.Co3) that could contribute to the resolution
of the conflict. In search of a resolution, both, synchronous and asynchronous collaboration
should be used to discuss and resolve a conflict. Such a discussion can take place interactively
in a synchronous manner or via annotations and comments asynchronously (cf. [Re14]).

Requirement Co3: Annotate and discuss conflicts
The system must provide means to annotate and discuss a conflict. A discussion
may take place synchronously or asynchronously.

A person that is not in possession of all relevant information and cannot resolve a conflict
should be able to delegate this conflict to another person possibly along the chain of
responsibility (cf.Pr3 and [FAW07]).

Requirement Co4: Delegation of conflicts
The system must be able to delegate contextual information and the responsi-
bility for the resolution of conflicts to other roles.

Our next requirement seeks to resolve a conflict in a mediation session. Such a session
typically takes place in a real-time collaboration tool, cf. e.g. [Ci14, Re14, Te14]. On the
one hand this is similar to screen sharing, but on the other hand the federal system must
respect the access rights of the different parties. That is, not every party should see all
model elements and respective conflicts.

Requirement Co5: Real time collaboration
The system must provide facilities to discuss and resolve conflicts collaboratively.
The discussion should take place by involving stakeholders in a real-time
session. [FAB+11b], Own experience

In this vein, access rights and trust plays an important role. To a certain extent the need
to share information is contradicting with the desire to restrict access to parts thereof.
However, we regard access control as an essential property for a functioning Federated
EA Model Management. This access control must be consistent in a shared session or
deactivated explicitly.
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Requirement Co6: Access rights during real time collaboration
The system must provide mechanisms to hold a synchronized collaborative
session while enforcing individual access rights such that each participant is
effectively limited to a personalized view, i.e. each participant must only see
information according to respective access rights. [FAB+11b], Own experience

4.3.3 Modeling Requirements

As described in UC2, a mapping is created in a collaborative workshop. We assume that this
mapping is created manually since we consider an application of semantic technologies to
automate a mapping using a reference ontology, e.g. [NP01], not to be realistic considering the
legacy systems that are involved in a federated EA model environment (cf. Assumption 4.2).
However, this mapping must be translated into concrete model transformations.

Requirement Mo1: Configurable model mappings
The system must provide means to define model mappings. Thereby, the trans-
lation of a logical mapping to physical mappings should be defined thoroughly.

In UC2, we describe that a logical as well as a physical mapping is specified. For a
synchronization of models (UC3) the federal system must be able to interpret these physical
mappings and act accordingly. The next requirement addresses the processing of the model
mapping, i.e. the execution of model-to-model transformations.

Requirement Mo2: Executable model mappings
The system must be able to execute model mappings, i.e. to translate model
mappings into model transformations.

In UC1, UC3, and UC4 we assume that the federal system is able to create a model and
metamodel for each information source. Moreover, in Section 4.2.13 we outline that an
information source’s metamodel may evolve over time and, thus, the mapping as well as
the metamodel within the federal system has to be aligned.

Requirement Mo3: Creation of a metamodel
The system must provide mechanisms to define a metamodel for each integrated
information source.

In UC4, the users intent is to import information to the federal system. Regardless of the
direction, i.e. push or pull, logically speaking the information must be imported into the
federal system. Gathered information must be stored in a model within the federal system.

Requirement Mo4: Import model
The system must be able to create and maintain an import model that conforms
to a predefined metamodel.
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In their best-selling book, Peters and Waterman [PW04, pp. 106] emphasize the importance
of evolution and adaptation for superior organizations. This evolution has to be reflected by
the EA and respective models describing the EA. We argue that a federal system must also be
designed to maintain metamodels that evolve over time. In [BMM+11a, HRS+14, RHM13a],
we advocate that an iterative approach to EA management prevails in industry. Especially
an integration of multiple information sources is considered to last a longer period. Such an
endeavor requires an incremental integration of information sources. Thus, the EA model
and respective metamodel must be extended iteratively, i.e. they evolve. Additionally, in
Assumption 4.6 we stated that the EA repository must be able to evolve its metamodel.
Although Assumption 4.5 states models of information sources always conform to their
metamodels, a solution must be designed such that similar to the EA repository, the
information sources can evolve their metamodels. That implies an approach to Federated
EA Model Management should not assume local consistency.

Requirement Mo5: Evolutionary metamodel
The system must provide means to alter the metamodel without further
migration steps.

To meet Mo5, one can either strive for a coupled evolution, a so-called co-evolution of
models and metamodels or through allowing and tolerating inconsistencies between models
and their metamodels. Gruschko et al. [GKP07] present concepts for the coupled evolution
of a model with a changing metamodel. In their article, they discuss the challenge of
deducing automated migration steps of a model from metamodel changes. In the domain
of Relational Database Management System (RDBMS), Terwilliger et al. [TBU10] study
scenarios in which the metamodel and conforming models must co-evolve. They employ an
explicit object-relational mapping between model and metamodel to support co-evolution
and present a technique that, according to the authors in most cases, allows evolutions to
progress automatically. In the present thesis, we take a different perspective. In contrast
to the authors, we advocate a decoupled approach for Federated EA Model Management.
On metamodel changes, human tasks should be utilized to inform relevant stakeholders
and—if necessary—manual migration steps are employed by experts to carry out migrations
(cf. [RHM13a]). Although an information source should maintain a model that is consistent
with its metamodels, sometimes there could be inconsistencies within an information source.
Davenport et al. [DHM10, p. 31] report that although inconsistencies within information pose
a problem for analytics, skilled analysts can cope with inconsistent and flawed information.
Thus, a solution should deal with these inconsistencies in a tolerant manner. That is, the
information must be kept in any case and users decide how to cope with inconsistencies.
However, these inconsistencies should only remain temporarily and resolved over time.

Requirement Mo6: Offer the necessary degree of freedom
The system must allow maintaining an inconsistent model, i.e. a model that
does not fully conform to its metamodel.

In UC5, stakeholders want to view the differences of a model. These differences have to
be calculated in a process called differencing. This is subject to our next requirement.
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Thereby, we consider that not only the model but also the metamodel changes over time
potentially [RM14].

Requirement Mo7: Model differencing
The system must be able to show the differences of two models with respect to
their origin. This should not only include model differences but also metamodel
differences.

Once, the differences are viewed and reviewed, the model of an information source can
be merged with the EA model. Lippe and van Oosterom [LO92] as well as Koegel
et al. [KHL+10] report that commonly operation-based approaches outperform state-based
approaches. Operation-based approaches capture all model events whereas state-based
approaches may miss modeling events or cannot distinguish between an update and a delete
followed by a create operation.

Requirement Mo8: Model merging
The system must be able to merge multiple (source) models to a given (target)
model based on the operations, i.e. changes, performed on the source models.

Conflicts may arise during a model merge [KR14]. In particular concurrently describing
the same real-world object in different models provokes conflicts.

Requirement Mo9: Conflict detection
The system must detect conflicts that arise through concurrent modeling
automatically. Further, the system should provide means to raise a model
conflict manually for conflicts that are detected by a modeling experts.

The resolution of conflicts (cf. UC7 and UC8) is a long-lasting process [RHM13b]. Especially
finding and agreeing upon patterns to resolve conflicts (cf. UC9) can be regarded as a
non-trivial task that requires expert knowledge. However, an information system can still
provide utility in such situations.

Requirement Mo10: Conflict resolution
Conflicts must be delegated to responsible roles automatically or resolved by a
user-defined conflict resolution strategy.

In Federated EA Model Management, conflicts between the EA model and other information
sources should be resolved in the respective information source in which the information
is stored. Thus, the federal system must provide a way to identify the respective origin
of a model element [FAB+11b, FAW07]. This concerns the EA model as well as models of
integrated information sources.
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Requirement Mo11: Identity reconciliation
The system must feature support for identity reconciliation.

As stated above, the necessary degree of freedom should allow users to maintain inconsistent
information. However, over time, this situation should be improved. Next, we focus on the
measurement of progress during conflict resolution and the degree of consistency of a model
to its metamodel.

Requirement Mo12: Model consistency check
The system should provide means to perform a consistency check of models.
These checks embrace local as well as federal consistency verification.

In order to track changes and to guarantee traceability, the federal system has to keep
versions of changes of different models that are integrated. This information can be utilized
to get contextual information of a conflict, e.g. who or which information source changed
what information at which particular date and time.

Requirement Mo13: Version history
The system must be able to store versions of a model and should allow to
restore a previous state of a model, i.e. revert changes.

Our next requirement addresses the access rights within the federal system. That includes
the visibility of conflicts in a collaborative conflict resolution session (UC8), task assignment
(UC10) and other use cases. Although these features are intended to create utility, they
should not violate access rights. In [BMR+10b, BMM+11b], we discussed access right
issues in the context of EA management. For a solution design of a federal system, we
deliberate on the right granularity at which to define access rights. With regard to the
collaborative nature of the conflict resolution, a coarse-grained access control may hide too
much information. On the other hand, too fine-grained access control mechanisms may
generate unnecessary administrative overhead. Shen and Dewan motivate such a fine-grained
access control with respect to collaborative environments. They state the system “should
allow independent specification of each access right of each user on each object” [SD92]. In
line with the authors, we also recommend an easy assignment of access rights. Moreover,
and in line with Saltzer and Schroeder, we advocate “fail-safe defaults” [Sa74, SS75].

Requirement Mo14: Access rights
The system must be able to specify access rights for the model as well as
metamodel on different levels of granularity. The assignment of access rights
should incorporate an inheritance mechanisms and default access rights.
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4.3.4 Usability Requirements

The human brain and human cognition is designed best for finding patterns in information
presented visually [CMS99, Sp01, Tu01, Wa12]. This may be one reason why visualizations
are a de facto means employed for communicating, past, current, planned, and target states
of an EA. For this reason, the concepts of Federated EA Model Management should also
focus on visual communication of model differences and conflicts.

Requirement Us1: Understanding differences and conflict resolution
Users of the solution must understand mechanisms for displaying model differ-
ences and conflicts as well as the resolution thereof.

The users must have an intuitive understanding how to resolve conflicts. It is not only
beneficial for an organization if a solution requires very limited training, but also is an
advantage for users that utilize the system rarely, e.g. data owner and other EA stakeholders
that are involved in the resolution process.

Requirement Us2: Intuitive conflict resolution
Mechanisms for conflict resolution should be intuitive for the users.

In [Gr64, p. 857], Gross mentions the phenomena of ‘information overload’. Speier et al. give
a sound definition of the term.

“Information overload occurs when the amount of input to a system exceeds its
processing capacity. Decision makers have fairly limited cognitive processing
capacity. Consequently, when information overload occurs, it is likely that a
reduction in decision quality will occur.” [SVV99]

Yang et al. [YCH03] detail this problem in the context of information represented visually.
The authors propose to employ fisheye views to cope with the problem of information
overload. Kirschner [Ki12] seeks to cope with the problem for visualizations in the domain
of EA management. He employs a helicopter view that seeks to give a holistic overview
while allowing users to zoom into details. We conclude that mechanisms to deal with
common model sizes in EA management must be provided such that the users do not lose
overview.

Requirement Us3: Coping with information overload
The system should provide means to cope with information overload.

At the same time, a certain degree of efficiency is also important. In particular commu-
nicating multiple conflict efficiently is an important aspect. This is subject to our next
requirement.
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Requirement Us4: Batch processing—communication
The system should be able to facilitate the communication of multiple model
conflicts.

Another important aspect intended to increase efficiency is to provide mechanisms that
facilitate to resolve multiple conflicts at once, i.e. resolving multiple conflicts with just a few
actions should also be possible.

Requirement Us5: Batch processing—conflict resolution
The system should be able to define multiple conflict resolutions at once.

A particular means to facilitate the resolution of multiple conflicts in just a few steps is
mechanism that learns from user input and recommends further actions based upon previous
decisions, i.e. a heuristic. In combination with Us5, our next requirement seeks to eliminate
unnecessary manual work.

Requirement Us6: Learning
The system must be able to learn from previous decisions of modelers and
propose recommendations for the resolution of conflicts.

Working on complex tasks is often designated by human errors, mistakes, and flaws. A
typical example for such a complex task is the conflict resolution in the course of a model
merge. If—for any reason—things go wrong, the user must be empowered to take counter
actions with just a few actions. That is, a complete roll back of a merge action without any
impact on the involved source and target models.

Requirement Us7: Batch Processing—Correction
The system must support the user to take counter actions for multiple model
conflict resolutions.

Although computer-mediated communication is often able to produce valuable results
[Bo97], we regard face-to-face communication as highly effective means to develop models
multiple parties agree upon.

Requirement Us8: Face-to-face meeting support
The solution must be able to facilitate face-to-face communication.

4.3.5 Technology Requirements

The next category of requirements centers around technology constraints. During our work
on the EA Visualization Tool Survey 2014 [RZM14], we perceived that there is a technology
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shift from fat-client solutions towards web-based EA tools. Especially, this holds true for
solutions recently developed.

In [Mc06], McAfee outlines the striving success of the web. Social platforms demonstrated
that collaboration and knowledge exchange can be facilitated by web-based technologies.
McAfee transfers the underlying technology, collectively summarized as Web 2.0 to collab-
oration requirements within an enterprise coining the term Enterprise 2.0. In line with
McAfee, we regard Enterprise 2.0 tools to facilitate unstructured work that requires a high
degree of collaboration and at the same time is knowledge intensive. McAfee as well as
Davenport [Da05, p. 16] advocate the strong demand of autonomy when carrying out such
work. A platform that has a low entrance barrier as well as an intuitive design (cf.Us2–Us8)
can provide utility for organizations pursuing Federated EA Model Management. Such a
technical solution also comes with a certain set of technology involved which is subject to
our next requirement.

Requirement Te1: Web-based
The system must be web-based and accessible without the need to install
additional browser plugins.

In [FAB+11b], Farwick et al. outline that a solution which facilitates the automated collection
of information for an EA model must feature an internal data structure that can be
understood by machines. Farwick et al. refer to the work of Tanner and Feridun [TFN09]
whose general idea is to define declarative mappings to arbitrary information sources.
Tanner and Feridun propose a loosely coupled approach for an integration of different
information systems. They employ source specific queries to map information to an internal
store and point out the importance of the implied semantics of imported information.

Requirement Te2: Internal Data Structure
The system must feature an internal data structure capable to store an entity
its attributes and implied semantics.

4.4 Summary

In this chapter, we gave an overview of the characteristics of a federated EA model
environment and detailed typical use cases of Federated EA Model Management. We
employed the use cases and known challenges from literature and practice (cf. [HMR12]) to
deduce requirements for a federal system and necessary process support.

In Table 4.15, we provide an overview of the use cases and outline which of the requirements
address a use case. While most requirements were derived from literature or our empirical
findings, some are inferred from the use cases or as a logical consequence when taking a
usability perspective. Although important, in the present thesis, additional non-functional
requirements are not considered.
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Table 4.15: Mapping of use cases to requirements and respective categories

Requirement
Use Case

UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8 UC9 UC10 UC11

Pr1
Pr2
Pr3
Pr4
Co1
Co2
Co3
Co4
Co5
Co6
Mo1
Mo2
Mo3
Mo4
Mo5
Mo6
Mo7
Mo8
Mo9
Mo10
Mo11
Mo12
Mo13
Mo14
Us1
Us2
Us3
Us4
Us5
Us6
Us7
Us8
Te1
Te2

denotes a requirement that is not crucial to fulfill a use case but is meaningful for the use case either

to increase usability or convenience of the user or other systems.

denotes a requirement that is required and must be supported by software.
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Chapter 5

Federated EA Model Management Design

In this chapter, we detail a design of Federated EA Model Management. It is derived from
the use case analysis in close collaboration with practitioners (cf. Chapter 7) which are
currently pursuing an integration of federated information sources with a central, i.e. federal,
EA model.

We start by further elaborating our conceptual picture that guides the present thesis. Then,
we add a process model that outlines the high-level phases and their transitions within
Federated EA Model Management. Further, model and metamodel conflicts are illuminated
in a twofold manner, i.e. their detection as well as their resolution. For the latter, we
provide visual means to anticipate and resolve conflicts. Visual differencing empowers users
to perform a semi-automated quality assurance. During this step, enterprise architects
often can anticipate possible conflicts that originate from differences in models as well
as metamodels. A conflict management dashboard allows users to analyze arising model
conflicts and to resolve conflicts in context of other model elements. Thereby, we emphasize
(real-time) collaboration and the concept of tasks for asynchronous and synchronous conflict
resolution.

5.1 System Design

We explain the design of Federated EA Model Management by elaborating our conceptual
view of a federated EA model environment (cf. Figure 1.1 and Figure 4.1). Thereby, we
detail concepts that are central for Federated EA Model Management. Then we introduce
a metamodel that serves to build the foundation for the subsequent sections.
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Figure 5.1: Conceptual overview of ModelGlue: EA model management in a federated
environment

5.1.1 Overview of ModelGlue

We already detailed different aspects that are relevant for integration and subsequent
synchronization of information sources with an EA model. Figure 5.1 illustrates a federated
structure for information management in an organization pursuing EA management. Differ-
ent modeling communities utilize an information source. The decentralized and autonomous
modeling communities are denoted A , B , and C whereas a federal EA management
function is denoted E .

In Figure 5.1, we add specifics relevant for Federated EA Model Management. In Federated
EA Model Management, the parts of an information source’s model and the respective
import metamodel which are intended to be integrated with the EA model are kept locally
as deep copies. This concept comes close to what in DWH is referred to as a ‘staging-area’,
cf. [KC04, p. 31]. These local copies are under version control such that changes over time
can be traced or analyzed. In line with Assumption 4.6, we exploit the ability of an EA
repository to create and manipulate arbitrary metamodels. This way, in Figure 5.1 we
further consider the federal system and the EA repository as one physical information
system.
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So far, E was viewed separately (cf. Figure 1.1 and Figure 4.1). In Figure 5.1 the commu-
nities D and E are merged, since

∙ EA management oversees and manages a federated EA model environment, hence
takes an integral part of the responsibilities in the Federated EA Model Management
process, and

∙ the federal system, ModelGlue, and the EA repository can be viewed as a single
information system.

ModelGlue supports the creation of executable metamodel mappings (see ➊ in Figure 5.1).
In the course of an import of changes, information is stored in the local copies (see ➋
in Figure 5.1) and instance mappings (see ➌ in Figure 5.1) are created to reconcile the
identity of a model element in case of model conflicts: an element can be traced back to its
information source within the model community.

The local copies are import models that can be synchronized with the EA model (see ➍ in
Figure 5.1). Thereby, a collaborative conflict resolution engine (see ➎ in Figure 5.1) facilitates
the synchronization. It employs a conflict resolution strategy (see ➏ in Figure 5.1) that
details how ModelGlue responds to a conflict, e.g. how conflicts are resolved automatically
or how to communicate a conflict. As a result of this synchronization, which is performed as
a long-lasting, collaborative merge of models, ModelGlue generates conflict tasks (see ➐
in Figure 5.1) which inform users about conflicts between different models and metamodels.
The resolution of conflicts is facilitated by an interactive conflict management dashboard
(see ➑ in Figure 5.1). Although the modeling experts (see ➒ in Figure 5.1) guide the
resolution process and have special expertise in general modeling and EA modeling, the
members of all modeling communities ( A , B , and C in Figure 5.1) are involved in the
conflict resolution. They are informed by tasks generated either manually by modeling
experts or automatically by ModelGlue. The tasks can be delegated to different members
of the federated modeling community (see ➓ in Figure 5.1). This community is the union
of the members of the decentralized modeling communities ( A , B , and C in Figure 5.1)
as well as the EA Team.

5.1.2 A Metamodel for Evolutionary EA Modeling in a Federated Envi-
ronment

In Section 2.2 we outlined the different layers (𝑀0–𝑀3) as specified by the Object Manage-
ment Group (OMG). Although we elaborate that we do not stick to this model strictly, we
refer to the model presented subsequently as a metamodel. After introducing core concepts
of the metamodel, we discuss this issue in the light of linguistic and ontological instantiation
in Section 5.1.2.8.

Figure 5.2 presents a metamodel (m1) that fosters conflict resolution in a collaborative and
federated EA model environment. The metamodel advances the approach of Neubert [Ne12]
and incorporates extensions to his model. In contrast to Neubert, we abstract from the
implementation as a wiki-based system. Central extensions relevant for Federated EA
Model Management are (cf. also [RHM13a]):
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Figure 5.2: A language for Federated EA Model Management

∙ the notion of the abstract ModelElement and implied Role and State concepts,

∙ the separation between types, i.e.ObjectDefinition and AttributeDefinition,
and instances, i.e.Object and Attribute,

∙ the introduction of a Task and respective subclasses, and

∙ the transient Changesets that can be attached to a Task to capture model conflicts.

In the following, we detail features of this general purpose metamodel with respect to the
application domain EA management. Thereby, we emphasize concepts that support a
Federated EA Model Management.

5.1.2.1 Model Elements

Each ModelElement is identified via an immutable unique identifier (UID). Additionally,
an origin identifier (OID) is used to inform the system about the origin of a ModelElement.
This can be a UID within the system (from another model), or a UID within an external
system. In the latter case, the first part of the UID, which ideally is implemented as an

134



5. Federated EA Model Management Design

URI, is a surrogate key that refers to the external system. Strictly speaking, surrogate
keys carry no information other than to denote that a certain attribute exists [HOT76].
In contrast to the strict definition (cf. also [Da04, p. 434]), we use surrogate keys to refer
not only to Attributes but also to Objects as well as AttributeDefinitions and
ObjectDefinitions. On creation of a new ModelElement within the system, both
identifiers carry the same value, i.e. OID=UID. This is in line with the definitions of surrogate
keys (cf. [Da04, p. 434]), since UIDs are uniquely identified and each new ModelElement
gets assigned a UID that has never been used within the system.

5.1.2.2 Roles

Similar to Farwick et al. [FPB+12], we attached roles to ModelElements such that our
metamodel incorporates roles in a threefold manner. It realizes a fine-grained access control;
besides explicit read and write access, responsibility is modeled as well. That means each
ModelElement may have different Roles assigned to it. These Roles are allowed to
read/write content whereas others, usually a subset thereof, take over responsibility for a
ModelElement. Note that Roles may be grouped such that a Role can be either a
single person or an entire group possibly with subgroups. Further, a Role can also be an
information system.

In an EA model, it should be possible to define concepts, i.e.models or objects, for which re-
sponsibility is partially shared in terms of more fine-grained responsibilities (cf. Example 5.1).

Example 5.1: Different responsible roles for a single object
An Object with ObjectDefinition ‘application’ has an AttributeDefi-
nition ‘uptime’; an instance of such an application, e.g. SAP CRM, has an
application owner assigned as responsible Role for this Object. However, for
maintenance reasons, the responsibility of the Attribute ‘uptime’ is delegated
to the respective system administrator since this Role is also responsible for
installing patches, server restarts, etc.

In contrast to Neubert [Ne12] and through the introduction of the ModelElement, we
define access rights and responsibilities on instance level for Models, Objects, and
Attributes as well as on type level for ObjectDefinitions and AttributeDefinitions.
This not only offers a more fine-grained access control as well as more precision when
modeling responsibilities, but allows a logical inheritance of responsibility. We explain
the separation of types and instances and come back to this concept of inheritance of
responsibility afterwards.

5.1.2.3 Separation of Types and Instances

In line with Neubert [Ne12], our approach offers flexibility as Attributes may or may not
conform to an AttributeDefinition. Due to a separation of the concepts Attribute,
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AttributeDefinition, and Value, end-users are free to store Values that do not
conform to their definition, which is commonly perceived as a larger degree of freedom in
an early modeling phase [MNS12]. That means, inconsistent states of the model in terms
of conformance to the respective definitions are tolerated by the model and end-users may
maintain Objects and Attributes regardless of their exact type conformance. This
fosters a bottom-up approach as described by [Ne12, p. 41ff]. Neubert calls the explicit
specification of an Attribute type within an AttributeDefinition ‘type constraint’. In
our metamodel, we denote this concept with the Type subclass of Constraint.

Example 5.2: Benefits through an increased degree of freedom
An Object, SAP CRM, with ObjectDefinition ‘Application’ has an attribute
‘service level’. Within its AttributeDefinition, the Attribute is defined as
an enumeration {gold, silver}. An information source uses the additional
service level platinum, i.e. a new enumeration element for ‘service level’ is
required. The problem just has been identified and the organization did not
yet decided whether to treat platinum levels differently. However, the system
allows end-users to add new Values regardless of their type, stores the Value,
and informs the end-user about the type violation. Meanwhile, all information
is maintained and the employees that are familiar with the platinum level are
aware of its implications.

Example 5.2 illustrates the benefits of lose coupling between data (EA model) and schema
(EA metamodel). We call an Attribute that has an AttributeDefinition which
enforces conformance strict. By default, end-users may add Attributes relevant for
their particular purposes without any AttributeDefinition. In the EA domain, the
EA repository manager may add an AttributeDefinition based on the frequency an
Attribute has been used or the number of occurred type violations. The idea is not to
maintain inconsistency, but to temporarily allow inconsistencies that are consolidated in
the long run. This brings us back to the discussion about the responsibility of a particular
model element.

5.1.2.4 Inheritance of Responsibility for Model Elements

Algorithm 1 can be used to determine the responsible role of an Attribute with the
chain of responsibility {Model, ObjectDefinition, Object, AttributeDefintion,

Attribute}. This chain gets shortened for determining the responsible role of an Attribut-
eDefinition, {Model, ObjectDefinition, AttributeDefintion}. The same holds true
for an Object, i.e. {Model, ObjectDefinition, Object}, and the ObjectDefinition,
{Model, ObjectDefinition}. For the Model, responsibility must be configured on cre-
ation such that it can always be determined directly and does not need to be derived from
other ModelElements. Since the Model is the last escalation instance, it is mandatory
to set a responsible role for a Model. The escalation path is traversed from finest level on
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instances through types and then to the next level of instances and types up to the model.
This way, the fine-grained access control can be used, but, however, more coarse-grained
access control concepts can also be enforced with respect to the chain of responsibility as
given above. Thereby, 𝜎 denotes a utility function that is able to query the respective
property of a ModelElement whose classifier is indicated by the current position in the
chain.

Algorithm 1: Determining responsible roles of an attribute

1: Input : chain of responsibility as stack, model element ℰ
2: Output: responsible role 𝜌 = ∅
3: function determineResponsibleRole(chain, ℰ):
4: ℰ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← ℰ
5: while 𝜌 ≡ ∅ do
6: ℰ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝜎(chain.pop(), ℰ𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
7: if ∃ℰ𝑐𝑢𝑟𝑟𝑒𝑛𝑡.responsibleRole then
8: 𝜌← ℰ𝑐𝑢𝑟𝑟𝑒𝑛𝑡.responsibleRole

5.1.2.5 Tasks and States

We introduce the notion of Tasks to facilitate the semi-automated model maintenance
within ModelGlue in order to keep the model consistent during its evolution. These tasks
are meant to modify the State of a ModelElement. Before we detail the States of a
Task and the different kinds of Tasks, we put focus on the nature of the ModelElement
and its life-cycle with respect to model conflicts.

Figure 5.3 illustrates the different States of a ModelElement as well as transitions
between these states. Initially, each ModelElement is in State normal. In his Master’s
Thesis, Kirschner [Ki14, p. 27] calls this State ‘clean’, since no pending changes are to
be applied to a ModelElement. For our next considerations, we assume a ModelEle-
ment is involved in a conflict with concurrent modifications on another or the very same
ModelElement. The State in conflict is devoted to this condition. The general idea
behind the State transitions of a ModelElement is that the ModelElement is in
conflict if Tasks for this element exist, but are not yet viewed or opened by the assigned
responsible Role. These Tasks are a result of the conflict detection in the course of a
model merge. In subsequent sections, we point out how this detection is performed. As
soon as a Task is not in State new (cf. Figure 5.4), the ModelElement is in State
under consolidation. To some extent, the aggregation of Attributes to an Object and
AttributeDefinitions to ObjectDefinition denotes a part-whole relationship. This
semantic part-whole relationship has an impact on the determination of the State of a
ModelElement. In the following we describe the States of different ModelElements
more formally.
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Figure 5.3: States of a ModelElement

Let T be the set of all instances of Task within ModelGlue. Then the State 𝑆ℳ of a
Modelℳ is determined by Equation 5.1.

𝑆ℳ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

in conflict if ∃𝑡 ∈ T(𝑡.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ∈ℳ ∧
𝑡.𝑠𝑡𝑎𝑡𝑒 =“unresolved”∧ 𝑡.𝑠𝑡𝑎𝑡𝑒.𝑠𝑢𝑏 =“new”)

under consolidation if ∀𝑡 ∈ T(𝑡.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ∈ℳ ∧
𝑡.𝑠𝑡𝑎𝑡𝑒 =“unresolved”∧ 𝑡.𝑠𝑡𝑎𝑡𝑒.𝑠𝑢𝑏 ̸=“new”)

normal else

(5.1)
Through the generalization of Attribute, Object, ObjectDefinition and Attribute-
Definition to a ModelElement, Tasks that address these concepts are included in
Equation 5.1.

Further, let 𝒪 be an Object with its Attributes 𝒜1..𝑛, then the state 𝑆𝒪 of 𝒪 is
calculated as described in Equation 5.2.

𝑆𝒪 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

in conflict if ∃𝑡 ∈ T(𝑡.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 = 𝒪 ∨ 𝑡.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ∈ 𝒜1..𝑛 ∧
𝑡.𝑠𝑡𝑎𝑡𝑒 =“unresolved”∧ 𝑡.𝑠𝑡𝑎𝑡𝑒.𝑠𝑢𝑏 =“new”)

under consolidation if ∀𝑡 ∈ T
(︀
(𝑡.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 = 𝒪 ∨ 𝑡.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ∈ 𝒜1..𝑛) ∧
𝑡.𝑠𝑡𝑎𝑡𝑒 =“unresolved”∧ 𝑡.𝑠𝑡𝑎𝑡𝑒.𝑠𝑢𝑏 ̸=“new”

)︀
normal else

(5.2)
For a single attribute 𝒜 the state 𝑆𝒜 is given by Equation 5.3.

𝑆𝒜 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

in conflict if ∃𝑡 ∈ T(𝑡.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 = 𝒜 ∧
𝑡.𝑠𝑡𝑎𝑡𝑒 =“unresolved”∧ 𝑡.𝑠𝑡𝑎𝑡𝑒.𝑠𝑢𝑏 =“new”)

under consolidation if ∀𝑡 ∈ T(𝑡.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 = 𝒜 ∧
𝑡.𝑠𝑡𝑎𝑡𝑒 =“unresolved”∧ 𝑡.𝑠𝑡𝑎𝑡𝑒.𝑠𝑢𝑏 ̸=“new”)

normal else

(5.3)
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The state 𝑆𝒟
𝒪
of an ObjectDefinition 𝒟𝒪 with the AttributeDefinitions 𝒟𝒜0..𝑛 is

calculated in a similar way to the state of an Object as depicted in Equation 5.4.

𝑆𝒟
𝒪
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

in conflict if ∃𝑡 ∈ T
(︀
(𝑡.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 = 𝒟𝒪 ∨ 𝑡.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ∈ 𝒟𝒜0..𝑛) ∧
𝑡.𝑠𝑡𝑎𝑡𝑒 =“unresolved”∧ 𝑡.𝑠𝑡𝑎𝑡𝑒.𝑠𝑢𝑏 =“new”

)︀
under consolidation if ∀𝑡 ∈ T

(︀
(𝑡.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 = 𝒟𝒪 ∨ 𝑡.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ∈ 𝒟𝒜0..𝑛) ∧
𝑡.𝑠𝑡𝑎𝑡𝑒 =“unresolved”∧ 𝑡.𝑠𝑡𝑎𝑡𝑒.𝑠𝑢𝑏 ̸=“new”

)︀
normal else

(5.4)

Finally, the state 𝑆𝒟
𝒜
of an AttributeDefinition 𝒟𝒜 is given by Equation 5.5.

𝑆𝒟
𝒜
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

in conflict if ∃𝑡 ∈ T(𝑡.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 = 𝒟𝒜∧
𝑡.𝑠𝑡𝑎𝑡𝑒 =“unresolved”∧ 𝑡.𝑠𝑡𝑎𝑡𝑒.𝑠𝑢𝑏 =“new”)

under consolidation if ∀𝑡 ∈ T(𝑡.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡 = 𝒟𝒜∧
𝑡.𝑠𝑡𝑎𝑡𝑒 =“unresolved”∧ 𝑡.𝑠𝑡𝑎𝑡𝑒.𝑠𝑢𝑏 ̸=“new”)

normal else

(5.5)

Before we introduce the subclasses of Task which implement specialized model maintenance
tasks in Section 5.2.5.5, we elaborate on the general States of a Task. Figure 5.4 provides
an overview and the transitions between the States of a Task. The States are explained
in the following.

Unresolved denotes the initial state that is divided in further sub-states.

New is the initial sub-state a Task is in. The Task has been assigned to a Role, but not
yet viewed by persons that are in possession of this Role and now responsible for
this Task.

Overdue denotes a Task that is past its due date, i.e. each Task has a desired deadline
when it has to be either resolved or ignored. The transition to this state is performed
by the system based on the due date.

Reviewed refers to a Task that has been viewed by the responsible role, i.e. it is ensured
a human being has been informed about the content of a Task. Its resolution can be
deferred and it can be forwarded to another Role such that the state is altered from
reviewed to new again.

Ignored means the Task actively has been put to the ignored state. In this state the
conflict resides within the system but parties agree to maintain an inconsistent
state. This decision is remembered by keeping the instance in this state such that a
subsequent conflict that refers to the same issue can be discarded (cf. Section 5.2.5.4).

Resolved is the final state and denotes that the related model conflict has been resolved.
This state must be set manually.

From a user perspective, tasks can be either forwarded, ignored, or resolved to finish the
piece of work denoted by an instance of a Task.
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Figure 5.4: States of a Task

One of our EA practitioners provided us with a vivid example for a typical situation in an
organization in which ignoring model conflicts is indispensable:

Example 5.3: Ignoring a model conflict permanently
Our accounting systems do not allow any changes once an annual report is
published. Thus, there is no other solution for any conflict with these systems
then to ignore the conflict and ‘live with it’.

5.1.2.6 Transient Changesets

Changesets of a ModelElement are used to keep track of recent changes. They contain
the respective role that initiated the transaction and a timestamp. Through the connection
of ModelElements and Changesets as well as the relationship to the abstract concept of
Tasks, the concrete Tasks may refer to Objects, ObjectDefinitions, Attributes, and
AttributeDefinitions. Note that possible model conflicts are stored within subclasses of
a Task including references to involved Changesets1.

On the one hand, Changesets save a history of operations that have been applied by a
user. This way, they allow to track changes over time and can serve as audit trails. On
the other hand, not yet applied changes are stored in Changesets that are marked as
transient, i.e. they may or may not get applied to an element.

In ModelGlue, Changesets are realized as a delta-backward version history. In Sec-
tion 2.3.9 we conclude that such an approach has the advantage of a fast access to the most
recent version and moreover saves a considerable amount of storage compared to a fully
materialized version history.

1For a detailed description how to save model changes as patches, we refer the interested reader to Kelter
et al. [KKK13] and Kirschner [Ki14, p. 24].

140



5. Federated EA Model Management Design

5.1.2.7 Constraints and Constraint Violations

AnObjectDefinition is defined by its name that is unique within a model, a comprehensive
and meaningful description of its semantics, and through its AttributeDefinitions.
As outlined above, AttributeDefinitions can be equipped with Constraints. For
Federated EA Model Management, we use two kinds of constraints. These are (cf. [Ne12,
p. 33]):

∙ Type constraints and

∙ Cardinality constraints.

In [Ne12, p. 35], Neubert discusses the importance not only to validate a model on demand,
i.e. on access, but also to persist the validation status. In [Ne12, p. 101], he discusses an
efficient technique to persist the validity of an Attribute. In addition to Neubert, we
propose to persist violations of constraints as first-class objects. ConstraintViolations
give information about the current conformity of a model to its metamodel. For an EA
model this conformity serves as a quality indicator (cf. Chapter 7).

5.1.2.8 Excursion: Linguistic vs. Ontological Instantiation

In [Kü06], Kühne investigates the role of different models and distinguishes between the
‘token model’ and the ‘type model’. The token model “holds between a system and a model
representing the former in a one-to-one fashion. Model elements are regarded as designators
for system elements”[Kü06]. The ‘token model-of’ relationship is denoted �𝑖. The type
model “holds between a system and a model classifying the former in a many-to-one fashion.
Model elements are regarded as classifiers for system elements”[Kü06]. The ‘type model-
of’ relationship is denoted �𝑡. In his discourse, Kühne further distinguishes ‘linguistic
instantiation’ denoted �𝑙 and ‘ontological instantiation’ denoted �𝑜 (cf. Definition 8 and 10
in [Kü06]). We employ these foundations to describe the nature of our model that we so
far referred to as a metamodel.

Let us assume an EA as a system of systems denoted 𝒮 and an EA modelℳ𝐸𝐴 with an
EA metamodelℳℳ𝐸𝐴. Then, the following relationships between these models hold true:

On the one hand,ℳ𝐸𝐴 is a token model of 𝒮.

𝒮 �𝑖ℳ𝐸𝐴 (5.6)

On the other hand, the EA metamodel is an ontological token model of the EA model.

ℳ𝐸𝐴 �𝑜
𝑡 ℳℳ𝐸𝐴 (5.7)

Both, the EA model and its metamodel are a linguistic instanceOf (cf. also [AK03]) a
common metamodel.

ℳ𝐸𝐴 �𝑙
𝑡 ℒ ∧ℳℳ𝐸𝐴 �𝑙

𝑡 ℒ (5.8)
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In its classical sense, ℒ could be considered to be a meta-metamodel since we intend to
use it as a means to specify EA metamodels, hence each EA metamodel is an instanceOf a
meta-metamodel. On the other hand, ℒ is also a metamodel since the EA model is also an
instanceOf ℒ. To some extent, our model ℒ is level agnostic since it incorporates concepts
of different levels (cf. Figure 2.7 on p. 29).
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Figure 5.5: Linguistic and ontological instantiation of core concepts in our metamodel based
on Kühne [Kü06]

We employ Kühne’s notation to illustrate the different instantiation types in Figure 5.5. In
the remainder of the present thesis, we proceed referring to this model as a metamodel. We
further assume that the metamodel of an EA model is an linguistic instance of language ℒ
which is defined by the metamodel illustrated in Figure 5.2.

5.2 Process Design

In this section, we outline the core activities of Federated EA Model Management. First, we
present an iterative and incremental process design for Federated EA Model Management.
Thereafter, we establish our understanding of a federated EA model environment as branches
of a federal model. In the subsections of this section, we present details of the process and
elaborate the design and techniques of ModelGlue. In line with the OMG, we perceive
a process as structured guide for certain roles to achieve particular goals. Processes are
subdivided in tasks employing context information and eventually utilizing tools to create
artifacts, i.e. tasks describe the essential activities that have to be performed within a
process. In line with the Business Process Modeling Notation (BPMN) [Ob10], we define a
task as follows.
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Definition 5.1: Task
A task denotes a single piece of work performed by a role to execute an explicit
or implicit process. �

Figure 5.6 shows an iterative process to continuously integrate models from specialized and
autonomous modeling communities within an enterprise into a holistic and consistent EA
model. We briefly describe the activities which correspond to the use cases introduced in
Section 4.2 and outline how they are interrelated.

Synchronize information source

Integrate 
information source Import changes View differences 

(quality assurance)

[integration 
required?No

Merge models

Yes

Resolve conflictsAdapt resolution 
strategy Yes

Test resolution 
strategy

Yes

No

[Desired result 
achieved?]

Yes

No

[Test of 
resolution 
strategy 

required?]

[Pattern to 
resolve conflicts 

identified?]

No

Figure 5.6: Process model for integrating information sources in a federation

Integrate information source includes the identification of relevant information sources,
the alignment of terminology, and the logical as well as physical definitions of mappings
from an information source to the EA model. It is divided in additional sub tasks
and can be executed in parallel.

Synchronize information source is an iterative sub-process that seeks to import infor-
mation to a staging area and subsequently merge changes of the model to an EA
model.
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Import changes describes the mere import of information from a source to a model within
ModelGlue. The task is performed entirely automated and is either time-triggered
or triggered in the event of a synchronization.

View model differences serves as a quality assurance step; thus, it is performed by a
human being. The EA repository manager views at the model differences and decides
to continue after sampling some well-known ModelElements for their correctness.
Thereby, the decision to continue with the merge of models is more based on experience
with the involved models and ‘gut feeling’ than on a comprehensive analysis.

Merge models denotes the process to take over model changes of an information source’s
model to the EA model.

Resolve conflicts summarizes the (collaborative) activities to find a resolution to model
inconsistencies of any kind including model as well as metamodel conflicts.

Adapt resolution strategy is the reactive or proactive definition of a strategy to auto-
mate conflict resolution. This automation can incorporate notifications via human
tasks such that it represents a de facto (semi-)automated resolution process.

Test resolution strategy serves to test the newly created or adapted resolution strategy.
This is commonly done with a subset of actual live information rather than purely
synthetic information.

Note that Figure 5.6 represents the core process and tasks of Federated EA Model Manage-
ment and is not meant as a comprehensive model with all possible transitions. For instance,
during the quality assurance step it could turn out that the import delivered flawed or
corrupted information. Possible counter actions may include contacting the data owner such
that recent development changes and any undesired side-effects are resolved collaboratively.

5.2.1 A Federated Model Environment as Branches of a Federal Model

In Section 4.1.3 we already explained the observed phenomena of semantically overlapping
models within an enterprise. In the following, we view at the different models of information
sources as branches of an EA model. This can be accomplished by creating a branchℳ𝑎

of the current state of the EA modelℳ𝑏.

In line with Definition 5.2, we considerℳ𝑎 a branch ofℳ𝑏. ℳ𝑎 serves as staging model
whereas the EA modelℳ𝑏 co-evolves independently. This staging model serves as an import
model for one information source, i.e. for 𝑛 information sources one intends to integrate in
the federation, 𝑛 branches of the EA model are created such thatℳ𝑏 and branchesℳ𝑎

1..𝑛

build a federationℳ𝑎
1..𝑛

∘↦−→ℳ𝑏 (cf. Definition 4.5 on p. 81).
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Definition 5.2: Branch
A model element ℰ𝑎 is a branch of ℰ𝑏 iff

ℰ𝑎→𝑏 ⇔ ∃ℰ𝑏
(︀
ℰ𝑎.𝑜𝑖𝑑 ≡ ℰ𝑏.𝑢𝑖𝑑 ∧ ℰ𝑎.𝑢𝑖𝑑 ̸≡ ℰ𝑏.𝑢𝑖𝑑

)︀
A modelℳ𝑎 is a branch of a modelℳ𝑏 iff

ℳ𝑎→𝑏 ⇔ ∃ℰ𝑎 ∈ℳ𝑎 ∃ℰ𝑏 ∈ℳ𝑏
(︀
ℰ𝑎→𝑏

)︀
�

Such a branch creates a clone of the EA model that references its origin. This clone not
only includes a deep copy2 of a model but also includes its revisions (versions). Thereby,
these newly created model elements have different UIDs than their origin. The OID serves
as surrogate to mark the origin of a particular model element by storing a reference to
the original UID. Algorithm 2 describes this branching more formally. Thereby, let 𝜑 be a
utility function that creates UIDs.

Algorithm 2: Branching a model in ModelGlue

1: function branch(ℰ𝑠, ℰ𝑡):
2: ℰ* = new instance
3: ℰ*.uid = 𝜑
4: ℰ*.oid = ℰ𝑠.uid
5: // copy changesets

6: // copy access rights

7: if ℰ𝑡 ̸= ∅ then
8: ℰ𝑡 = ℰ* ∪ ℰ𝑡 // includes models, attributes, objects and their

definitions

9: // copy sub-model elements

10: foreach ℰ𝑖 ∈ ℰ𝑠 do
11: branch(ℰ𝑖, ℰ*) // recursion

Before we proceed with the further steps that are required to integrate an information
source, we provide rationale for our notion of the OID. Kirschner [Ki14] proposes to use a
list of OIDs. At a first glance, it looks like an entire collection of OIDs is needed for each
ModelElement in particular when allowing to merge multiple models with one model. We
argue, that an Object denotes only the name and order of Attributes. The same holds
true for a model which serves as a named container for Objects and ObjectDefinitions.
A more fine-grained perspective on an Object as an ordered collection of Attributes
whose elements in turn may have different OIDs than their Object reveals that a list of
OIDs is not necessary to keep track of different origins of an Object and its Attributes.
One has to look at the Attributes and Objects and respective definitions as separate
entities. Since all these ModelElements are equipped with separate OIDs and UIDs,
Objects, ObjectDefinitions as well as Models are able to aggregate information

2Note that literature often refers to such a deep copy as a fork.
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that originates from different information sources. This allows for Objects to merge
Attributes of different branches, i.e. each Attribute may refer to different branches
whereas the Object’s name originates from exactly one branch. A change of an Object’s
OID is determined by the origin of its name and attribute order as well as its description.
In addition, meta-information of each merge action, e.g. the user that triggered the merge
and an exact timestamp, is stored within the system (see [Ki14, p. 28ff]).

After this discourse about the OID, we outline how a federation can be viewed as branches of
models. This is meant to give an overview of the general principle that is refined in subsequent
sections. During the task integrate information source for each information source, a
branch is created. More formally, we can write ℳ𝑎1..𝑛

∘↦−→ ℳ𝑏 ∧ ∀ℳ𝑥 ∈ ℳ𝑎1..𝑛(ℳ𝑥→𝑏)
whereasℳ𝑏 denotes the EA model andℳ𝑎1..𝑛 denote the import models of information
sources. As a side effect, all import modelsℳ𝑎1..𝑛 carry the OID of the EA model. These
branchesℳ𝑎1..𝑛 not only serve as import model but also as a target model and metamodel
for the mapping that is to be defined subsequently (cf. Section 5.2.2.5). Source models
and metamodels are considered the export models of the respective information sources.
During this mapping, the creation of OIDs that serve as surrogates to refer to information
sources is defined. Commonly, the URI of the information source is incorporated with
the identifier of a ModelElement in the information source. During the process step
import changes, changes to ObjectDefinitions and AttributeDefinitions as well
as changes to existing Objects and Attributes can be traced to their origin. Importing
changes from information sources is triggered whereas OIDs serve as surrogate for the
involved information sources. At this point, the ModelElements of an import model
commonly consist of OIDs that point to the EA model as well as OIDs that point to
information sources. The models ℳ𝑎1..𝑛 and ℳ𝑏 are merged and arising conflicts are
detected (task merge models). A preview model contains the tentative merge result and
serves to resolve conflicts. This commonly involved multiple parties and takes place in a
collaborative fashion. Note that we propose an incremental extension to the metamodel
ofℳ𝑏 according to new information source that are to be integrated. Process further is
iterative since changes ofℳ𝑎1..𝑛 on a frequent basis are imported and merged with the EA
modelℳ𝑏 .

5.2.2 Integrate Information Sources

Before we describe the sub-process which details how to integrate an information source,
we discuss our notion of integration. In [Fr08], Frank proposes a conception of integration.
In line with Frank, Kattenstroth et al. [KFH13] present further insights on the conception
of integration. We employ their work to take a closer look at the notion of integration in
the context of ModelGlue. Thereby, we assume that the reader is familiar with [Fr08]
and [KFH13].

Figure 5.7 builds on the topic map presented by Kattenstroth et al. [KFH13]. We add
additional dimensions found in [Fr08] and use Harvey Balls to denote to which extent
our approach addresses integration. ModelGlue first requires to define a unidirectional
mapping ( meta-level) which operates on a shared understanding of concepts ( static).
Our approach uses an export model to realize loose coupling ( coupling) and imports
information that is merged to a common EA model ( merging). Via an OID, identity of
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Instance Meta

Integration

Direction

Range

Dimension

Time

Kind

Coupling

Merging

Ex-post

Ex-ante

Evolutionary

Static Functional Object-oriented Dynamic Organizational

Vertical

Horizontal

Intraorganizational

Interorganizational

4

2

4

4

Level

21

2

2

Virtual Integration3

0 0

0

1

0

Static Functional Dynamic4 44

0

0

0

Figure 5.7: Topic map on the term integration and the perspectives taken in our approach

a piece of information can be reconciled ( instance). An information source commonly
is a legacy system ( ex-post) whereas the integration can also take place throughout
the evolution of an information system or the EA repository, because new concepts could
address future concerns of stakeholders ( evolutionary). To a certain extent, we expect
that information within the EA repository is also shared with other communities, but
primarily the integration serves to procure information for the maintenance of the EA
model ( virtual integration). Although we regard our process design as flexible in the
way transitions are performed, the core activities need to be integrated into organizational
processes ( organizational). That includes a static integration as well as functional and
dynamic integration ( respectively). In our design, we limit the scope to models within
one organization ( intraorganizational).

So far, we established an understanding of our notion of integration. Figure 5.8 describes the
sub-process of the task integrate information sources as a BPMN diagram. As a first step
towards an integration of an information source, one has to select a relevant information
source. The selection of an information source is done by the EA coordinator. This selection
depends on many factors such as relevant scope of model, quality, etc. such that the selection
of an appropriate information source can be considered a challenging task. Especially the
scope depends on a particular concern; a comprehensive list of typical concerns in EA
management presented in seven categories can be found in [BEL+08, ch. 3]. In Section 4.1.2,
we already reported empirical research results on information sources used in industry.

After an identification of the relevant part of the information source’s metamodel that
is intended to be integrated with the EA model, the EA coordinator informs the data
owner that the information source is of particular interest for the EA model. The specific
part must be detailed since commonly only some concepts within an information source
are relevant for EA management (cf. Section 2.1.2). The data owner specifies the export
metamodel of an information source. It is the task of the data owner to capture concepts
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that have been requested by the EA coordinator. This export metamodel serves as a basis
for the mapping to the EA repository.

In a next step, the EA modeling expert checks the quality of the information source’s
model as well as metamodel. Assuming that no further changes to the information source
are necessary, the creation of the import metamodel is the next task. With our present
understanding to view at a federation as branches of an EA model, the EA repository
manager is instructed by the EA modeling expert to adapt the metamodel of the EA model
such that concepts therein reflect the part of a new information source intended to import.
That is, the activity create import metamodel also refers to the creation of an extension of
the EA model. Depending on the part of an information source that has to be integrated
with the EA model, considerable adaptations might be necessary. This step further includes
the creation of a model that serves as a staging area for a particular information source,
i.e. the import model and its metamodel. This is created by branching the extended EA
model.

Next, the EA modeling expert, the EA repository manager, and the data owner develop
a mapping between this import metamodel and the export metamodel. Exact semantics
of concepts can be discussed and clarified best in a face-to-face workshop. As we detail
below, once the models and semantics of their concepts are clarified, a conceptual mapping
is created that serves as input for the EA repository manager who is tasked to create the
physical, i.e. executable, model mapping. In this vein, the EA repository manager can also
incorporate known resolution patterns for conflicts in the conflict resolution strategy. After
this step, the actual integration is finished. However, most commonly, the EA repository
manager triggers an initial synchronization with the information source.

5.2.2.1 Initial Considerations for Creating a Mapping for an Information
Source

Interoperability and integration of information sources is a common problem of information
systems that has been around for decades. To integrate multiple DBMSs, Spaccapietra
et al. [SPD92] refer to these model mappings as ‘schema integration’. The authors outline
the importance of an ‘Generic Data Model (GDM)’ that serves as a common denominator.

In [No04] Noy discusses the conceptual difference of traditional information integration and
semantic integration of ontologies. She highlights that in traditional information integration,
models of different information sources exist prior to the common schema. The schema
used for an integration is “only general enough to provide access to all the schemas that
it integrates” [No04]. In contrast to traditional schema mapping approaches, the vision
of ontologies is that an upper ontology exists which serves as a frame of reference. It is
assumed that all modelers agree upon this reference ontology prior to creating extensions
thereof that detail specific aspects. These extensions are commonly called domain ontologies.
Some approaches propose an automated mapping employing an upper ontology to map
different domain ontologies, see e.g. [SE13].

Although ontologies have advantages, e.g. support for reasoning engines, in line with
Noy [No04], we stress that as of today automatic mapping between ontologies is not feasible
considering today’s enterprise IT environments. Practitioners (cf. Chapter 7) confirm that
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legacy systems are always involved in a federated EA model environment and building an IT
environment from scratch, i.e. doing a greenfield approach for EA management, is unrealistic.
With a greenfield approach, one could use an upper ontology as a frame of reference to
infer which information is stored in an information source. We refer to Karfoglou and
Schorlemmer [KS03] for a comprehensive overview of the details and Choi et al. [CSH06] for
an overview of tools that facilitate the mapping process. Moreover, ontologies are regarded
rather counterintuitively when it comes to their definition. Hence, the configuration of a
mapping becomes even more time-consuming. Besides these factors, ontology matching
itself still faces challenges [SE08].

There are many ways to define a model mapping that go far beyond the scope of the
present thesis. The interested reader finds an extensive discussion on the topic by Rahm
and Bernstein in [RB01b]. Subsequently, we describe a pragmatic approach that we
found useful in the case studies presented in Chapter 7 and other occasions where we
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implemented a mapping to an information source, e.g. [Or13]. It embraces an alignment of
the different terminology involved, a logical, and a physical mapping of the intended part
of an information source to an EA repository.

5.2.2.2 Terminology Alignment

In a first step, the different terms used to describe a concept within information sources must
be aligned. This is a highly collaborative effort and is commonly carried out in form of a
workshop employing white boards, flip-charts or pen and paper to facilitate communication.
Typical attendees of such a workshop meeting are the data owner, the EA coordinator, and
the EA modeling expert. Although the goals of this step are

∙ to find or develop and agree upon a description for a concept,

∙ to identify similar or equal concepts, and

∙ to identify possible synonyms, homonyms, hyponyms and hyperonyms,

relationships among concepts including concepts which may be beyond the scope of Federated
EA Model Management is very common.

Often it helps to model by example, i.e. talk about concrete instances within an information
source instead of the concept behind the instance, cf. [Zl77]. On a larger scale, spreadsheets
are used to keep track of the alignment. Example 5.4 elaborates such a spreadsheet-based
alignment. Such an initial conceptual alignment is helpful—especially when Federated EA
Model Management is executed at a large scale, i.e. with many information sources.

Example 5.4: Spreadsheet-based conceptual alignment
The alignment embraces names of classes, i.e. the name of an ObjectDefini-
tion, within the EA model and the model of an information source. Besides
different names that refer to the same concept the sheet embraces a description
for the core meaning of the concept.

5.2.2.3 Logical Mapping

In the next step, logical mapping takes place. It is developed in a collaborative fashion
often carried out in a series of workshops, too. First, the conceptual alignment is perused
and concepts are detailed by describing their attributes. Typically, the data owner, EA
coordinator, EA repository manager and an EA modeling expert attend such a workshop.
At a more mature stage, also developers may attend such a meeting since they can provide
detailed knowledge for a specific information source.
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The goal during the workshop is to develop a logical mapping that serves

∙ to identify similar or equal attributes of concepts,

∙ to align concepts on an attribute level,

∙ to identify possible abstraction gaps, and

∙ to describe in which fashion (commonly a database table) the objects and attributes
are stored in.

During the meeting the different structures are discussed using OO concepts, i.e. objects,
types, attributes, and relationships etc. The terminology alignment is extended by attributes.
It depends on the expertise of the participants whether data types are also included or
these issues are delayed to the next step, the physical mapping.

Generally, for model or schema mappings, we distinguish [KGI+13]:

∙ unidirectional — information is pushed or pulled out of an information system 𝑎
into an information system 𝑏, and

∙ bidirectional — information is pushed or pulled out of an information system 𝑎
into an information system 𝑏 and if this information is changed in 𝑏, these changes
are propagated (push or pull) to 𝑎.

This not only holds true for technical mappings but also applies to the logical flow of
information in Federated EA Model Management. In this vein, an orthogonal dimension is
the kind of interface between the information source and the federal system. Figure 5.9
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Figure 5.9: Different types of communication within a federated EA model environment

illustrates the different types of communication which can take place between an information
source and a federal system 1) to exchange information and 2) to resolve a conflict.
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∙ Human-to-human which can be realized through manually forwarding tasks in a
workflow engine. Other communication media such as e-mail or phone conferences
might be used. In particular complex for issues, workshops are an appropriate means.

∙ Human-to-machine refers to manual user input in an information system commonly
done utilizing an advanced UI.

∙ Machine-to-human describes an e-mail or task in an information system that is
generated and sent to a user (semi-)automatically.

∙ Machine-to-machine denotes the fully automated communication realized by a
technical interface between information systems.

Note that although humans are sender or receiver of information, it is common to store
information in an EA repository for further processing. However, means used to communicate
a particular piece of information vary considerably. The different types of communication
can be combined, i.e. applied as a sequence. For instance, after communicating in a workshop
(human-to-human), the information is entered in an information source or the EA repository
(human-to-machine). The outcome of this step is an extensive logical mapping of elements
within an information source that should be mapped to an EA model.

5.2.2.4 Quality Assessment

In Section 4.1.2, we pointed out that the data quality of different information sources varies
considerably. We distinguish between perceived data quality and actual data quality.

Perceived data quality can be measured via:

∙ workshops,

∙ face-to-face interviews,

∙ phone interviews,

∙ questionnaires,

∙ ...

Actual data quality can be measured via:

∙ correctness in tables,

∙ existence of null values,

∙ completeness, i.e. amount of null values,

∙ topicality of data,

∙ ...

Whether perceived or actual data quality is measured depends on the intended target quality
of a specific model element within the EA model. If a low target quality is tolerated, a survey
on the perceived quality can be sufficient to accomplish the desired goals. Target quality
on the other hand depends on criticality to answer a particular concern (cf. Section 2.1.2).
If the element is of high importance to address a concern of EA stakeholders, the target
quality must be considerably higher than the target quality of less important elements that
describe details.

Figure 5.10 depicts a taxonomy introduced by Rahm and Do in [RD00]. This taxonomy
is also discussed by Hinrichs in his PhD thesis [Hi02, p. 29] and Bauer and Günzel [BG13,
p. 49]. However, in the context of Federated EA Model Management it provides a clas-
sification of problems for information sources divided by single- and multi-source and
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Figure 5.10: A taxonomy of data quality problems according to Rahm and Do [RD00]

schema- and instance-level problems. Rahm et al. further outlined the major steps for data
transformation and data cleaning and emphasize the need to cover schema- and instance-
related data transformations in an integrated way. Although their research originates in
the DBMS area, it is of high relevance for Federated EA Model Management. During case
studies and interview series, we found out that the definition of a master-slave relationship
(cf. Section 7.5.5 and Definition 5.3) for contradicting information may help to resolve some
issues.

Definition 5.3: Master-slave relationship
A master-slave relationship denotes a strategy for conflict avoidance in Fed-
erated EA Model Management. Let us assume ℰ𝑎, ℰ𝑏 are boundary model
elements with respective information sources ℐ𝑎, ℐ𝑏. We call ℐ𝑎 master and ℐ𝑏
is slave if changes on ℰ𝑎 are always preferred over changes on ℰ𝑏 in the course
of a model merge. �

For an extensive discussion on data quality, we refer the interested reader to Batini
et al. [BCF+09]. The authors provide a comprehensive overview of relevant literature which
covers a wide range of approaches to not only assess but also to improve the quality of
information.

5.2.2.5 Physical Mapping

The terminology alignment and logical mapping serve as a starting point for the development
of a physical mapping. Although attributes and physical data types already may be
documented, in this step, these technical details become very important. They include but
are not limited to [BG13, p. 57] (cf. also Section 4.2.3 and Section 5.2.8.2):

∙ transforming and harmonizing data types,
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∙ converting between different encodings,

∙ harmonization of strings,

∙ harmonization of dates,

∙ conversion of different units, and

∙ combining or splitting values.

In order to develop a physical mapping, a concrete Generic Data Model (GDM) must
be used that serves as a common denominator among the different information sources
(cf. Figure 4.9). This GDM can be considered the target metamodel. The target metamodel
of ModelGlue is a subset of the metamodel presented in Figure 5.2. It is a model with
objects, attributes, and relationships between the objects.

In order to apply this model as a target metamodel, one must create the (ontologic) meta-
model as a linguistic instance of this metamodel. In the course of an evolution of an
information source, this metamodel must be maintained as well. The creation and mainte-
nance of this model can be done either manually or automatically. Manual maintenance of
the metamodel is commonly required for the retrieval and import of information from a
Relational Database (RDB) or from a spreadsheet. Alternatively, automated approaches
can be considered for information systems which feature metamodeling facilities, such that
the different metamodels can be mapped.

In practice, a multitude of metamodels exist. In the following, we illustrate one example,
namely Ecore as part of the EMF project. Ecore can be used for an automated model
as well as metamodel synchronization realized through a mapping of the metamodels of
Ecore with ModelGlue. After explaining this mapping in more detail, we elaborate two
additional examples, namely RDBs and spreadsheets. These are often used as interface
techniques in situations, in which the manual creation and adaptation of a metamodel is
common (cf. Chapter 7).

5.2.2.5.1 Mapping Ecore to ModelGlue

Ecore [TEF14] is a very prominent example of an open-source platform that offers meta-
modeling facilities. Its core entities and their relationships are depicted in Figure 5.11.

The diagram consists of the following entities [SBP+09, ch. 5]:

∙ EClass models classes which are identified by a name. They can have a number of
attributes and references. Inheritance is realized by a reference to other classes which
are considered supertypes. In ModelGlue, EClasses map to ObjectDefinitions.

∙ EAttribute models attributes which are identified by their name, too. Additionally,
EAttributes have a type (see EDataType). In ModelGlue, EAttributes map to
AttributeDefinitions.
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Figure 5.11: Simplified view of the Ecore kernel based on [SBP+09, ch. 5]

∙ EReference is used to model associations between classes. An EReference models
one end of such an association. Like attributes and classes, references are identified
by name. Similar to attributes, references have a type. In contrast to attributes,
however, this type must be the EClass at the other end of the association. Similar
to Attributes within ModelGlue, an association that is navigable in the opposite
direction is expressed by another EReference to denote this bidirectional relation.
Each EReference further specifies lower and upper bounds to express cardinalities. In
ModelGlue, EReferences map to AttributeDefinitions.

∙ EDataType denotes the primitive data types. These EDataType map to data
types defined in Java, e.g. String, int, etc. EDataType are used to specify a type of
an attribute. In ModelGlue, EDataTypes map to Types whereas the notion of
Types is more volatile than an EDataTypes. Commonly, Types in ModelGlue are
interpreted when accessing Values.

To illustrate a mapping of both metamodels, we need to examine an additional concept
of EMF, namely an instance of an EClass which is called EObject. Since an introduction
of the exact inheritance and relations between the different concepts in EMF is beyond
the purpose of the present thesis, we refer the interested reader to [SBP+09, ch. 5] and
continue under the assumption that an EObject is capable to store EAttributes and
EReferences as its contents.

Table 5.1(a) depicts the mapping of the metamodels of Ecore and ModelGlue. This
mapping builds the foundation for fully automated, bidirectional exchange of metamodels
which are based on Ecore or ModelGlue. However, as we discussed above within Federated
EA Model Management unidirectional approaches prevail; especially the metamodel is
commonly synchronized unidirectionally.

Table 5.1(b) shows the mappings on instance level to exchange information stored in models.
We assume that an EObject stores EAttributes and EReferences as its content. Both
mappings reflect that ModelGlue treats relationships as ‘ordinary’ attributes.

5.2.2.5.2 Mapping Spreadsheets to ModelGlue

A frequently offered export format of commercial tools is Comma-Separated Values (CSV) or
Microsoft Excel Spreadsheet Format (XLS/XLSX). Although these formats are well-known
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ECore 2.0 ModelGlue

EClass ObjectDefinition
EAttribute AttributeDefinition
EReference AttributeDefinition
EDataType Type

(a) Schema mapping

ECore 2.0 ModelGlue

EObject Object
EAttribute Attribute
EAttribute Type
EAttribute Value
EReference Attribute
EReference Type
EAttribute Value

(b) Instance mapping

Table 5.1: Mapping of the Ecore kernel and the core concepts of ModelGlue

and relatively simple, the exact mapping of information to rows, columns, and sheets varies
considerably. However, during our case-studies and during occasional imports in more than
four years, we experienced a certain consolidation in the number of approaches to export
spreadsheets taken by metamodeling platforms. In the following, we sketch a pattern that
we observed, i.e.

∙ One sheet per type, i.e. for each type a separate sheet is used

∙ One row per object, i.e. for each object a separate row is used

∙ One column per attribute, i.e. for each attribute a separate column is used

This general structure sketches a solution space that varies considerably. Hence, we outline
the variants observed, i.e.

∙ Using a unique identifier for each object

∙ Relationships can be defined via URIs, referenced cells in the same or a different sheet,
or (exact) name matching

∙ Multi-valued attributes can be exported via a multi-line cell with a delimiter, e.g. the
newline character, or for n-valued attributes one can use n-columns

5.2.2.5.3 Mapping Relational Databases to ModelGlue

Figure 5.12 depicts the target metamodel of ModelGlue which represents a subset of the
metamodel presented in Figure 5.2 and a mapping to database tables. We assume that
each type a real-world object is modeled as a separate table, columns are used to model
attributes as well as foreign key columns to model relationships with cardinality 1..n and
n..1 respectively. Moreover, relationship tables are used to model n..m relations. Each
real-world object is then stored as a single row of a table that is identified by a unique
primary key.
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Figure 5.12: Illustrative mapping of a relational database to the target metamodel

In [Or13], Orhan utilizes Extensible Markup Language (XML) files to specify mappings
between RDBMS and models which conform to the structure illustrated in Figure 5.12. It
shows how database tables can be related to this import model.

To create XML-based mappings, sophisticated tools, e.g. [Al14], exist that allow users
to define mappings graphically. We refer the interested reader to Kirschner [Ki14] and
Orhan [Or13]; in their master’s theses, both authors develop mappings for the outlined
target structure and import real-world data. The core structure as well as the entire XML-
Schema to develop such a mapping is provided in Appendix A. Besides the specification of
model-to-model transformations via Structured Query Language (SQL) queries it allows to
define access-rights for each model element that is imported. These can also be imported or
generated based in information stored within the RDBMSs using the SQL-queries, i.e. each
mapping commonly can incorporate vendor-specific SQL-queries.

5.2.3 Importing Information

Figure 5.13 shows the flow between ModelGlue, which realizes a basic scheduling for
the different information sources, its importer component, and an information source. The
importer writes information to the import model whereas the information source pulls
information from the export model. Since the importer pulls information from the source,
the information source is not modified (cf. Assumption 4.2). If an object identified with its
OID already exists within the import model, a new version is created that captures current
information provided by the export model.

Both alternatives in Figure 5.13 result in an object that is finally returned. Besides meta-
information and the object name, attribute changes and changes of links between objects
have to be imported. Figure 5.14 illustrates schematically how an object’s attributes are
updated with information of a source. In a first step, each attribute is either created or
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Figure 5.13: Importer: initiating a connection and querying for objects

updated if changes occur, i.e. this schematic figure depicts an update scenario where we rely
on the OID to find the provenance. We further must distinguish single-valued attributes
and multi-valued attributes. In addition to the sketched updates, the update of links is
an important step. In this context, it might be relevant to create object stubs within the
system. One could either ensure to create all objects first and then update their attributes
or use stubs as a target link. Objects within the import model that are not contained
within the information source must be removed similar to missing attributes. In particular
when no OID exists, this approach is considerable error-prone when one must rely on other
techniques such as exact name matching.

In line with the different mechanisms to get information, which are described in Section 4.2.5,
an Application Programming Interface (API) could also return a log file of the performed
operations3. In such a case, one has to apply these logged changes to the import model.
This could require a model-to-model transformation of the query language used within
the log file to the query language of the information system which contains the import
model. Although an eventually required transformation of query languages is necessary,
this mechanism provides clear advantages. In contrast to the sketched approach, directly
replaying changes minimizes not only the amount of transfered information but also does

3A prominent example of an API that is widely used is OData [ODa13]. One could use OData operations
to represent applied changes in an information system.
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Figure 5.14: Importer: updating an object

not require to traverse the entire import model. Another advantage of this approach is given
by the ability to trace updates on object names in the import model if no OID exists within
the source system. If one has to rely on exact name matching, an updated object appears as
newly created object—a change that cannot be detected and reapplied. Instead, the original
object and its entire history is deleted and a new object is created. While information of
performed operations is desirable, often fine-grained information on performed operations
is not available within an information source.
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Whether dumps must be compared or operations can be replayed, in the course of an import,
the physical mapping is executed. As already mentioned in Section 4.2.5, an import can
be triggered manually, time-based, or triggered in an automated fashion based on certain
events, see e.g. [FSB+12].

5.2.3.1 Metamodel Changes

Changes within a metamodel are most likely to occur in the course of a change request
within an information source. As we depicted in Section 6.2, the exchange of a model and
metamodel could be capabilities of an information source. However, this is not always the
case. In turn, this means if the information source is not capable to inform the federal system
about changes within its metamodel, a manual trigger and reconfiguration of the mapping
(cf. UC2) has to be integrated into the change management process of an organization.

5.2.3.2 Important parameters

Even in cloud environments, resources are finite. Commonly system load rises linearly
until resource pools are exhausted (cf. [FGP+08, p. 250]). Then load rises non-linearly
and commonly can be described with a polynomial function. Response behavior is easy to
predict when system load rises linearly. In contrast, it is hard to predict when it rises in a
polynomial manner since caches, paging/swapping, queues, etc. are utilized to overcome
limited resources. Respective polynomial functions that describe the load behavior vary
considerably and depend on the actual load.

In this vein, the chunk size and timing specificities with regard to an automated periodical
synchronization of information are of high relevance. During production, a bulk import of
all information might not be possible since this would influence the information source’s
runtime behavior. Specifying a chunk size limits the size of information requested to a
reasonable amount such that the information can be synchronized incrementally.
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Figure 5.15: Relationship between chunk size and system load (schematic)
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Figure 5.15 illustrates this relationship more clearly. As the system reads or writes more
data at once, its load rises. If resources are exhausted during read (➊ in Figure 5.15), the
time rises non-linearly—possibly exponentially. The graphic also illustrates that reading
information is commonly faster than writing it to a persistent storage. This behavior
strongly depends on the underlying hardware but generally holds true for magnetic drives
as well as solid-state drives. Even if the import model can write larger chunks of data in
almost linear time (➋ in Figure 5.15), there is an upper bound which—in the course of
importing information—causes the systems of the export model as well as the import model
(➌ and ➍ in Figure 5.15) to run into bottlenecks. Again, during these bottlenecks (➊, ➋,

➌, ➍ in Figure 5.15) system response cannot be predicted adequately. While Figure 5.15
describes the relation of one information source’s load to the import model, in Federated
EA Model Management, multiple information sources must be considered such that the
parameters

∙ chunk size of information imported at once,

∙ period how frequently the information is imported, and

∙ cache size of the import model

as well as the involved hardware resources must be carefully balanced.

In Figure 5.15, we assume that load commonly rises linearly till no further resources, such as
memory and Central Processing Unit (CPU) time, are available; then it rises exponentially
and reaches its peak. When this peak is reached, the reaction of the system could be
influenced. This may lead to unresponsive behavior or even to system failures. Consequently,
synchronizing an information source during operations should take place using a chunk
size that does not impact the system substantially. In contrast, a synchronization process
executed during times when the information source is not used for operations can use a larger
chunk size. Note that Figure 5.15 abstracts from concrete load profiles and completely
omits any latencies that are typical for distributed systems and load produced due to
productive day-to-day usage. This illustration is meant to outline the schematics of the
causal relationship between time intervals, the chunks read and written, and system load
produced rather than an exact model for system load behavior.

The goal during an import is not to reach any bottlenecks while information must be
exchanged in a timely manner. Especially time constraints depend on the intent of the
model element of the information source synchronized with the EA model. Another
important aspect on the writing end, i.e. the import model, is the cache size used for objects
and attributes within ModelGlue. Generally speaking, the larger this cache size is, the
better the performance behavior. However, caches require resources, i.e.memory, and, thus,
it must be sized for each information source individually as well.

To find the right chunk size and other important factors, empirical data is needed, which
can be gathered using profiling techniques to measure load behavior. We refer the interested
reader to Ford et al. [FGP+08, p. 245ff]. The authors elaborate on capacity planning,
provide best practices, and illustrative examples.
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5.2.4 Model Differencing

To ensure model quality, we provide means to compare two models in a visual fashion.

Definition 5.4: Model differencing
Model differencing describes the calculation process of deviations between two
model elements. �

Brun and Pierantonio refer to the problem of model differencing as intrinsically complex
[BP08]. They propose a coarse-grained structure that helps to analyze and understand
diverse differencing approaches. Brun and Pierantonio divide the problem in

∙ calculation, i.e. an algorithm able to compare models,

∙ representation, i.e. a model that is used to represent the outcome of the algorithm,
and

∙ visualization, i.e. a human-readable format for differences easy to grasp for stake-
holders.

In the remainder of this section, we report on the calculation (Section 5.2.4.2) and rep-
resentation (Section 5.2.4.1) whereas the visual aspect of model differences is covered in
Section 5.3.1.

In the algorithm design, we combine concepts of two-way and three-way state-based
differencing (cf. Section 2.3.1), i.e. the algorithm compares two models since many users are
familiar with visualizations of comparisons between two objects (e.g. source code). We aim
at an intuitive understanding of visual concepts; thus, differencing is restricted to pairwise
comparisons (two-way). However, if the model differencing algorithm detects differences,
the base revision is used for showing a three way comparison.

In Figure 5.16, we show the different models involved in the algorithm and their intersection.
The general idea of the difference algorithm is to compare ObjectDefinitions that are
inℳ𝑎 ∩ℳ𝑏. Wherebyℳ𝑎 ∩ℳ𝑏 is calculated using the congruence operator (cf. ‘∼=’ in
Section 5.2.4.3). However, for our purposes we transform all ModelElements inℳ𝑎△ℳ𝑎

to placeholders which conform to the differencing model. These ‘stubs’ carry no differences
and serve for later display in the differencing visualization (cf. Section 5.3.1). However, they
conform to a certain metamodel. This metamodel can be processed by the visualization
algorithm and is introduced in the following.

5.2.4.1 A Metamodel for Model Differencing

Figure 5.17 illustrates the metamodel to calculate the differences between different models,
their Objects, Attributes and respective Definitions. It constitutes a subset of the
metamodel introduced in Section 5.1.2. In addition to the concepts explained in Section 5.1.2,
the metamodel illustrated in Figure 5.17 incorporates a concept called Difference which
saves information about two versions a, b and the origin of a ModelElement.
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Figure 5.17: A metamodel for calculating differences between different models

5.2.4.2 An Algorithm for Model Differencing

Algorithm 3 compares two models with each other. This is accomplished by looking at a
particular state of each model, i.e. the latest revision of two branches. The algorithm takes
two modelsℳ𝑎,ℳ𝑏 that conform to the metamodel depicted in Figure 5.2 and returns
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the differences of these models as an instance of the metamodel shown in Figure 5.17. This
model can be used as an information base for visualizing the differences (cf. Section 5.3.1).

Function compareModels (line 1) takes two Models that conform to the metamodel as
introduced in Section 5.1.2 and calculates model as well as metamodel differences.

Line 2: In a first step, an empty model of the structure illustrated in Figure 5.17 is
initialized which carries the results.

Line 3–4: In a second step, all intersecting ObjectDefinitions are analyzed.

Line 5–8: For all other ObjectDefinitions, placeholders are generated which later
on serve to visualize not only elements that carry differences but also to visualize
the remaining ModelElements.

Line 9–10: In a final step, all Objects are investigated for differences. Found
differences are stored in the globally available modelℳ𝑐 which is returned by
the algorithm.

Function compareObjectDefinitions (line 11) compares two ObjectDefinitions
with each other.

Line 12: Differences are calculated by invoking a generic differencing method. Dif-
ferences are then passed to a new ObjectDefinition that conforms to the
metamodel depicted in Figure 5.17.

Line 13: The AttributeDefinitions of the currently investigated ObjectDefini-
tions are analyzed for differences and added to the newly created ObjectDefi-
nition.

Line 14: The result of the differencing of the two ObjectDefinitions and their
AttributeDefinitions is finally added to the model.

Function compareObjects (line 15) takes two Objects as input and calculates their
differences.

Line 16: A new Object that conforms to the metamodel depicted in Figure 5.17 is
created. Thereby, the results of a difference calculation is passed to the newly
created Object.

Line 17: The newly created differencing Object is part of the produced result of
the algorithm. As such, it is added to the model.

Line 18: All Attributes of the currently investigated Objects are analyzed for
differences. Note that relationships are also included as they are represented as
ordinary Attributes.

Line 19–20: The object tree is traversed recursively in case any of the in-
volved Objects exhibits children. Note that the same congruence operator
(cf. Section 5.2.4.3) is used to determine related children; only these are traversed.

Line 21–24: For all non-related objects the same argument is passed as first and
second parameter for the differencing such that, effectively, the result serves for
visualization purposes only and does not carry actual differences.

Function compareAttributes (line 25) compares all attributes of two given Objects
with each other returning their differences.
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Algorithm 3: Differencing of models
Input: Modelℳ𝑎,ℳ𝑏, Baseline Time 𝑡𝑏
Output: Modelℳ𝑐

1: function compareModels(ℳ𝑎, ℳ𝑏):
2: ℳ𝑐 ← {∅}
3: foreach 𝒟𝒪

𝑎 ∈ℳ𝑎.objectDefintions, 𝒟𝒪
𝑏 ∈ℳ𝑏.objectDefintions

(︀
𝒟𝒪

𝑎
∼= 𝒟𝒪

𝑏

)︀
do

4: compareObjectDefinitions(𝒟𝒪
𝑎 , 𝒟𝒪

𝑏 )

5: foreach 𝒟𝒪
𝑎 ∈

(︀
ℳ𝑎.objectDefintions ∖ ℳ𝑏.objectDefintions

)︀
do

6: compareObjectDefinitions(𝒟𝒪
𝑎 ,∅)

7: foreach 𝒟𝒪
𝑏 ∈

(︀
ℳ𝑏.objectDefintions ∖ ℳ𝑎.objectDefintions

)︀
do

8: compareObjectDefinitions(∅,𝒟𝒪
𝑏 )

9: compareObjects(ℳ𝑎.root,ℳ𝑏.root)
10: returnℳ𝑐

11: function compareObjectDefinitions(𝒟𝒪
𝑎 , 𝒟𝒪

𝑏 ):

12: 𝒟𝒪
Δ(𝑎,𝑏)

← new ObjectDefinition
(︀
createDifference(𝒟𝒪

𝑎 , 𝒟𝒪
𝑏 )

)︀
13: compareAttributeDefinitions(𝒟𝒪

𝑎 , 𝒟𝒪
𝑏 , 𝒪Δ(𝑎,𝑏)) /* similar to compareAttributes(..) */

14: ℳ𝑐.objectDefintions ← ℳ𝑐.objectDefintions ∪ 𝒟𝒪
Δ(𝑎,𝑏)

15: function compareObjects(𝒪𝑎, 𝒪𝑏):
16: 𝒪Δ(𝑎,𝑏) ← new Object

(︀
createDifference(𝒪𝑎, 𝒪𝑏)

)︀
17: ℳ𝑐.objects ← ℳ𝑐.objects ∪ 𝒪Δ(𝑎,𝑏)

18: compareAttributes(𝒪𝑎, 𝒪𝑏, 𝒪Δ(𝑎,𝑏))

19: foreach 𝑐ℎ𝑖𝑙𝑑𝑎 ∈ 𝒪𝑎.children, 𝑐ℎ𝑖𝑙𝑑𝑏 ∈ 𝒪𝑏.children
(︀
𝑐ℎ𝑖𝑙𝑑𝑎 ∼= 𝑐ℎ𝑖𝑙𝑑𝑏

)︀
do

20: compareObjects(𝑐ℎ𝑖𝑙𝑑𝑎, 𝑐ℎ𝑖𝑙𝑑𝑏) /* traverses the Object tree recursively */

21: foreach 𝑐ℎ𝑖𝑙𝑑𝑎 ∈ (𝒪𝑎.children ∖ 𝒪𝑏.children) do
22: compareObjects(𝑐ℎ𝑖𝑙𝑑𝑎, ∅) /* traverses the Object tree recursively */

23: foreach 𝑐ℎ𝑖𝑙𝑑𝑏 ∈ (𝒪𝑏.children ∖ 𝒪𝑏.children) do
24: compareObjects(∅, 𝑐ℎ𝑖𝑙𝑑𝑏) /* traverses the Object tree recursively */

25: function compareAttributes(𝒪𝑎, 𝒪𝑏, 𝒪Δ(𝑎,𝑏)):

26: foreach 𝒜𝑎 ∈ 𝒪𝑎.attributes, 𝒜𝑏 ∈ 𝒪𝑏.attributes
(︀
𝒜𝑎
∼= 𝒜𝑏

)︀
do

27: 𝒪Δ(𝑎,𝑏).attributes ← 𝒪Δ(𝑎,𝑏).attributes ∪ new Attribute
(︀
createDifference(𝒜𝑎, 𝒜𝑏)

)︀
28: foreach 𝒜𝑎 ∈ (𝒪𝑎.attributes ∖ 𝒪𝑏.attributes) do
29: 𝒪Δ(𝑎,𝑏).attributes ← 𝒪Δ(𝑎,𝑏).attributes ∪ new Attribute

(︀
createDifference(𝒜𝑎, ∅)

)︀
30: foreach 𝒜𝑏 ∈ (𝒪𝑏.attributes ∖ 𝒪𝑎.attributes) do
31: 𝒪Δ(𝑎,𝑏).attributes ← 𝒪Δ(𝑎,𝑏).attributes ∪ new Attribute

(︀
createDifference(∅, 𝒜𝑏)

)︀
32: function createDifference(ℰ𝑎, ℰ𝑏):
33: if ℰ𝑎 ≡ ℰ𝑏 then
34: return new Difference(ℰ𝑎, ℰ𝑏, EQUAL)

35: ℰ𝑏𝑎𝑠𝑒 ← getBaseVersion(ℰ𝑎, 𝑡𝑏)
36: if ℰ𝑏𝑎𝑠𝑒 ≡ ∅ ∧ ℰ𝑎 ≡ ∅ then
37: return new Difference(NEW, ℰ𝑏, NEW)

38: else if ℰ𝑏𝑎𝑠𝑒 ≡ ∅ ∧ ℰ𝑏 ≡ ∅ then
39: return new Difference(ℰ𝑎, NEW, NEW)

40: else if ℰ𝑏𝑎𝑠𝑒 ̸≡ ∅ ∧ ℰ𝑎 ≡ ∅ then
41: return new Difference(DELETED, ℰ𝑏, ℰ𝑏𝑎𝑠𝑒)
42: else if ℰ𝑏𝑎𝑠𝑒 ̸≡ ∅ ∧ ℰ𝑏 ≡ ∅ then
43: return new Difference(ℰ𝑎, DELETED, ℰ𝑏𝑎𝑠𝑒)
44: else
45: return new Difference(ℰ𝑎, ℰ𝑏, ℰ𝑏𝑎𝑠𝑒)
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Line 26–27: The same congruence operator is used to find related attributes, cal-
culate their differences, and create an Attribute that receives the result of
the differencing as an argument. Thereafter, the newly created Attribute is
attached to the Object.

Line 28–31: All non-related Attributes are used to create placeholders that serve
visualization purposes only.

Function createDifferences (line 32) Checks for similarity of ModelElements and
creates a three-way difference if the ModelElements passed to the function are
different.

Line 33–34: The algorithm compares two model elements and returns immediately
if they turn out to be equal.

Line 35: The base version for a given time 𝑡𝑏 is retrieved. This base version of a
ModelElement is used for the three-way comparison. The base version, helps
to distinguish whether new model element have been created or deleted.

Line 36–39: The cases are handled in which a change is only performed in one of
the branches and the model element does not exist in the other branch.

Line 40–43: Deleted model elements are dealt with. Possibly a model element has
been deleted in one of the branches and modified in the other branch.

Line 45 The actual differences are stored if all other cases did not match.

5.2.4.3 Equivalence of Model Elements

For the sake of clarity, we abstract from two specificities in Algorithm 3. First, we did
not detail how to determine whether two elements are in the same set (∼=). Second, the
equivalence (≡) of a ModelElement in line 33 is determined using different parameters.

In his master’s thesis, Kirschner [Ki14, p. 39] uses the congruence symbol (∼=) for two model
elements ℰ1, ℰ2 to denote that either one element is a branch of the other or both elements
share a common origin (cf. Equation 5.9).

ℰ1
∼= ℰ2 ⇔ ℰ1.𝑢𝑖𝑑 ≡ ℰ2.𝑜𝑖𝑑 ∨

ℰ1.𝑜𝑖𝑑 ≡ ℰ2.𝑢𝑖𝑑 ∨
ℰ1.𝑜𝑖𝑑 ≡ ℰ2.𝑜𝑖𝑑

(5.9)

Since OIDs are considered to be URIs, their equivalence can be determined by normalizing
as specified in [BLFM05, DS05] and by comparing them for equivalence as described in
[FGM+99]. This notion of congruence between ModelElements is used to detail the
equivalence of the different kinds of ModelElements as used in Algorithm 3.

Let 𝚤 be a utility function determining the index within an ordered list of ModelElements,
then Equation 5.10 illustrates equivalence between two Attributes 𝒜1,𝒜2.

𝒜1 ≡ 𝒜2 ⇔ 𝒜1
∼= 𝒜2 ∧

𝒜1.𝑛𝑎𝑚𝑒 = 𝒜2.𝑛𝑎𝑚𝑒 ∧
∀𝒱1 ∈ 𝒜1.𝑣𝑎𝑙𝑢𝑒𝑠 ∃𝒱2 ∈ 𝒜2.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

(︀
𝒱1 ≡ 𝒱2 ∧ 𝚤(𝒱1) = 𝚤(𝒱2)

)︀ (5.10)
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Equation 5.11 illustrates equivalence between two AttributeDefinitions 𝒟𝒜1 ,𝒟𝒜2 .

𝒟𝒜
1 ≡ 𝒟𝒜

2 ⇔𝒟
𝒜
1
∼= 𝒟𝒜2 ∧

𝒟𝒜1 .𝑛𝑎𝑚𝑒 = 𝒟𝒜2 .𝑛𝑎𝑚𝑒 ∧
∀𝒞1 ∈ 𝒟𝒜1 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡∃𝒞2 ∈ 𝒟𝒜2 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝒞1 ≡ 𝒞2)
∀𝒞2 ∈ 𝒟𝒜2 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡∃𝒞1 ∈ 𝒟𝒜1 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝒞2 ≡ 𝒞1)

(5.11)

Equation 5.12 illustrates equivalence between two Objects 𝒪1,𝒪2.

𝒪1 ≡ 𝒪2 ⇔ 𝒪1
∼= 𝒪2 ∧

𝒪1.𝑛𝑎𝑚𝑒 = 𝒪2.𝑛𝑎𝑚𝑒 ∧
∀𝒜1 ∈ 𝒪1.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

∃𝒜2 ∈ 𝒪2.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠
(︀
𝒜1 ≡ 𝒜2 ∧ 𝚤(𝒜1) = 𝚤(𝒜2)

)︀
∧

∀𝒜2 ∈ 𝒪2.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

∃𝒜1 ∈ 𝒪1.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠
(︀
𝒜2 ≡ 𝒜1 ∧ 𝚤(𝒜2) = 𝚤(𝒜1)

)︀
(5.12)

Equation 5.13 illustrates equivalence between two ObjectDefinitions 𝒟𝒪1 ,𝒟𝒪2 . Note
that not only the OID, and names of the ObjectDefinition and respective Attribut-
eDefinition are compared but also the order of the AttributeDefinitions within both
ObjectDefinitions.

𝒟𝒪
1 ≡ 𝒟𝒪

2 ⇔𝒟𝒪1 ∼= 𝒟𝒪2 ∧
𝒟𝒪1 .𝑛𝑎𝑚𝑒 = 𝒟𝒪2 .𝑛𝑎𝑚𝑒 ∧
∀𝒟𝒜1 ∈ 𝒟𝒪1 .attributeDefinitions

∃𝒟𝒜2 ∈ 𝒟𝒪2 .attributeDefinitions
(︀
𝒟𝒜1 ≡ 𝒟𝒜2 ∧
𝚤(𝒟𝒜1 ) = 𝚤(𝒟𝒜2 )

)︀
∧

∀𝒟𝒜2 ∈ 𝒟𝒪2 .attributeDefinitions

∃𝒟𝒜1 ∈ 𝒟𝒪1 .attributeDefinitions
(︀
𝒟𝒜2 ≡ 𝒟𝒜1 ∧
𝚤(𝒟𝒜2 ) = 𝚤(𝒟𝒜1 )

)︀

(5.13)

5.2.5 Merging Models and Metamodels

Next to detailing the design of the differencing, we explain our approach to merge different
models. We already outlined that an information source has an import model which is a
branch of the EA repository’s model (cf. Section 5.2.1). We assume each import model
conforms to an import metamodel which in turn is an instance of the metamodel introduced
in Section 5.1.2. In addition, we assume that each import metamodel is a branch of an EA
metamodel (cf. Definition 5.2).

Before we introduce prerequisites to build an understanding for our subsequent considera-
tions, we vivify our approach to merge models with a brief example. Figure 5.18 depicts
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Figure 5.18: Different evolution paths with the same resulting state

two different branches of model elements denoted 𝐴 and 𝐵 with changes 𝐶𝑎1..𝑛 and 𝐶𝑏1..𝑛

respectively. Branch 𝐵 is created at time 𝑡3. Thereafter, it evolves independently such
that at 𝑡4 both branches apply different changes to model elements that describe the same
real-world circumstances. However, at 𝑡5 both branches are equal again. Next, we merge
the evolved branch 𝐵* with 𝐴* at 𝑡6. Since we chose an operation-based approach, a näıve
approach would assume to compare all changes since the creation of the branch must be
considered to detect conflicts, i.e.𝐶𝑏1 and 𝐶𝑎2 would certainly raise a conflict while 𝐶𝑏2

and 𝐶𝑎3 would not. Following the Atomicity, Consistency, Isolation, Durability (ACID)
paradigm, one could even propose to compare 𝐶𝑏1 and 𝐶𝑎3 as well as 𝐶𝑏2 and 𝐶𝑎2. The
resulting conflicts would certainly not reflect the intention one has in mind when merging
two models with each other. On the other hand, just looking at the latest state of a model
has clear drawbacks (cf. state-based in Section 2.3.3).

We claim that just looking at the latest revision, i.e. a state-based comparison, is insuffi-
cient, in particular considering the relationship of Objects and Attributes with their
respective definitions. This hypothesis is supported by other researchers: For instance,
Koegel et al. [KHL+10] found that the size and types of changes are relevant factors for
understanding changes. The authors state that additional information recorded by an
operation-based approach can be valuable.

Our approach to merge models is first identifies Changesets which are in an eventual
conflicting state since their ModelElements are related to each other and then compress
changes. For our merge scenario illustrated in Figure 5.18, that means changes 𝐶𝑎2 and 𝐶𝑏1

get superseded by their respective successors 𝐶𝑏2 and 𝐶𝑎3.

For our next considerations, let us assume an enterprise architect discusses with a data
owner about the system described by this model element. During the discussion, the
exact version of that system has been unclear. As a reaction and to prevent any decision
based on uncertain information, the enterprise architect changed the name indicating the
version. To indicate that the version is unclear, the enterprise architect just appends ‘???’
to the element in branch 𝐵* at 𝑡7. During a quality initiative at 𝑡8, the entire Object
gets deleted accidentally. Meanwhile in branch 𝐴* the correct version number is added,
i.e. the respective Attribute has been updated at 𝑡7. Again, a näıve approach that only
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considered Changesets that are applied on one kind of ModelElements, in this example
Attributes, would not detect such a conflict. The structural relationship between the
Object and its Attributes must be considered. This holds true for similar relationships
as we detail below.

In the following, we explain prerequisites for a merge algorithm that builds a central element
of ModelGlue. It can be divided in the following phases:

1. identification of potential collisions and selection of involved Changesets, i.e. only
those elements that exert influence on each other are analyzed,

2. compression of atomic operations, i.e. all Changes within the involved Changesets
are compressed,

3. conflict detection and classification, i.e. which Changes are actually conflicting,

4. creation of a preview model that contains the tentative merge result, i.e. apply non-
conflicting changes to a temporary model that serves for the conflict resolution,
and

5. conflict task generation and assignment, i.e. create tasks that instruct humans which
conflicts arose, determine responsible role, and send the task to this role.

We provide details to foster an understanding of this five-phased approach and subsequently
present the algorithm.

5.2.5.1 Selecting Potentially Conflicting Changesets

Kirschner [Ki14, pp. 31–32] provides insights how to reconcile the baseline time 𝑡𝑏 of a
branch. Informally, it denotes the time a model has been branched from another model,
e.g. in Figure 5.18 𝑡𝑏 = 𝑡3.

For an identification of potential collisions of changes, we distinguish between Objects,
Attributes, ObjectDefinitions, and AttributeDefinitions. As introduced by the
metamodel in Section 5.1.2, we can access each of these ModelElements through the
association between Changeset and ModelElement. Let us assume we analyze two
Changesets which both access two ModelElements.

For our following considerations, we further assume that the set of directly compared
Changesets contains only Changesets that refer to ModelElements with the same
classifier. Put differently, we only compare changes of Objects with other changes
on Objects, changes on Attributes with other changes on Attributes, changes on
AttributeDefinitions with changes on AttributeDefinitions, and changes on Ob-
jectDefinitions with other changes of ObjectDefinitions. In turn, that does not mean,
we do not intend to analyze the context of a ModelElement, e.g. the ObjectDefinition
of an Object.
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More formally, for two given Objects 𝒪1, 𝒪2, we analyze changes iff Equation 5.14 holds.

𝒪1 𝒪2 ⇔ 𝒪1
∼= 𝒪2 ∨(︀

𝒪1.name = 𝒪2.name ∧
(𝒪1.parent ∼= 𝒪1.parent ∨ 𝒪1.parent.name = 𝒪1.parent.name) ∨
(𝒪1.objectDefinition ∼= 𝒪2.objectDefinition∨
𝒪1.objectDefinition.name = 𝒪2.objectDefinition.name)

)︀
(5.14)

That is, we do not compare the entire object (cf. also Equation 5.12 on p. 167), but we
compare their OIDs and UIDs. Although that is the common case, other scenarios must be
taken care of. Only if the Objects are not congruent, their names are analyzed. Within a
certain scope, these must be unique otherwise they describe the same Object. The first
case described by Equation 5.14 is the scope of the same parent Object. Thus, the parent’s
OIDs and UIDs must be analyzed to ensure that they are not branches of each other. The
same name of the parent could also pose a problem. The second case is an Object of the
same kind, i.e.Objects conforming to the same ObjectDefinition, may be involved in a
conflict if they possess the same name. This serves to ensure that a different Object has
not been renamed and is used as the parent for this object.

And for Attributes 𝒜1,𝒜2, we analyze Changesets if Equation 5.15 holds.

𝒜1 𝒜2 ⇔ 𝒜1
∼= 𝒜2∨

𝒜1.name = 𝒜2.name ∧
𝒜1.object ∼= 𝒜2.object

(5.15)

The name of an ObjectDefinition within a model must be unique, consequently congru-
ence is not the only possibility for a collision. More formally, we write for two ObjectDef-
initions 𝒟𝒪1 ,𝒟𝒪2 :

𝒟𝒪
1  𝒟

𝒪
2 ⇔ 𝒟𝒪1 ∼= 𝒟𝒪2 ∨ 𝒟𝒪1 .name = 𝒟𝒪2 .name (5.16)

Similarly, the name of an AttributeDefinition within an ObjectDefinition must be
unique, consequently for two AttributeDefinitions 𝒟𝒜1 ,𝒟𝒜2 , we write:

𝒟𝒜
1  𝒟

𝒜
2 ⇔ 𝒟

𝒜
1
∼= 𝒟𝒜2 ∨

𝒟𝒜1 .name = 𝒟𝒜2 .name ∧
𝒟𝒜1 .objectDefinition ∼= 𝒟𝒜2 .objectDefinition

(5.17)

So far, we assumed that only changes of the same kind of ModelElement are considered.
Now we define some exceptions. The fist exception is that we must investigate concurrently
performed changes on Objects and their ObjectDefinitions, i.e. they are related and
may exert influence on each other. For our next considerations, let us assume an Object
𝒪 with an ObjectDefinition 𝒟𝒪.

𝒪 𝒟𝒪 ⇔ 𝒪.objectDefinition ∼= 𝒟𝒪 (5.18)
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If Equation 5.18 holds, these Changesets are analyzed. A potential conflict that could
arise during the further analysis of these Changesets is called model/metamodel conflict
(see Example 4.2 on p. 67).

Our next considerations focus on Changes applied to an AttributeDefintion 𝒟𝒜 that
is part of an ObjectDefinition 𝒟𝒪 which is affected by an issued Change.

𝒟𝒜 𝒟𝒪 ⇔ 𝒟𝒜.objectDefinition ∼= 𝒟𝒪 (5.19)

Our final concern about depending Changes on ModelElements can be explained with
an Attribute 𝒜 and AttributeDefinition 𝒟𝒜:

𝒜 𝒟𝒜 ⇔ 𝒜.attributeDefinition ∼= 𝒟𝒜 ∨
(𝒜.name = 𝒟𝒜.name ∧
𝒜.object.objectDefinition ∼= 𝒟𝒜.objectDefinition)

(5.20)

As illustrated in Equation 5.20, modifications on the name of an Attribute and concurrent
modifications on an AttributeDefinition are investigated, too. Note that Values are not
considered to be ModelElements (cf. Figure 5.2 on p. 134) and are stored in this step as
Changesets that address Attributes. During the conflict detection however, attributes
and values are considered separately4. For the further considerations, detailed in the next
sections, we introduce Definition 5.5 to refer to Changesets of related ModelElements.

Definition 5.5: Potentially conflicting changesets
We call Changesets C1,C2 potentially conflicting iff Equation 5.21 holds.

C1/̂ C2 ⇔ C1.modelElement C2.modelElement (5.21)

Note that for each subclass of ModelElement the respective rules (Equa-
tion 5.14–5.20) apply for the identification of related elements. �

As of now, we provided a formal description to identify Changesets referring to related
elements. This reduces the number of Changesets considerably and leaves us with
Changesets which potentially are conflicting. In the following, we have a closer look at
Changesets.

5.2.5.2 Operation-based Changesets

As outlined in Chapter 3, there are fundamental differences of merge approaches follow-
ing either a state-based or operation-based paradigm. In their empirical study, Koegel
et al. conclude that “operation-based change tracking exhibits advantages in understanding
more complex changes” [KHL+10]. In particular since “additional information recorded by
the operation-based approach can be valuable” [KHL+10] and is more efficient in terms of

4We refer the interested reader to Kirschner [Ki14, p. 35ff] for further implementation details on the
detection of operations and conflicts.
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computational complexity [Me02], we choose an operation-based tracking of Changes to
ModelElements. Moreover, it is important to be able to determine who changed which
particular ModelElements at a certain point in time. Such information could be highly
relevant not only in the course of an audit trail but also to find the relevant persons to talk
to and to collaborate with when conflicts in an EA model occur. Subsequently, we outline
our notion of operation-based Changesets briefly.

In ModelGlue, operations applied on ModelElements are stored in form of Change-
sets. Thereby, an element always carries the most recent Changes of Changesets in
a persistent manner (cf. delta-backward in Section 2.3.9) whereas all Changesets related
to a ModelElement can be seen as a version history. In our metamodel, a Changeset
(cf. Section 5.1.2) summarize user transactions whereas Changes are atomic modifications
to mutable objects, i.e.ModelElements.

Changeset Change
*

has Operation11 has

Move Create Update Delete

ModelElement

1

1

oldValue

1

1

newValue

Timestamp

1

1
when

Use

*

has

Figure 5.19: Operation-based tracking of modifications using Changesets and Changes

Figure 5.19 depicts details of the concepts Changeset and Change. The entire transaction
is recorded as a Changeset issued by a particular user at a particular time (cf. Figure 5.2
on p. 134). Each Change is made to exactly one ModelElement and has an old as well
as a new value. The Operations that can be applied to a ModelElement are as follows:

Create induces a new ModelElement from scratch. Newly created ModelElements
have separate UIDs and an OID that refers to this UID. This initial condition between
OID and UID denotes that each ModelElement is initially its own origin.

Update alters an existing ModelElement. For instance, a change of an Object’s name,
or a change of its Attributes.

Delete removes an existing ModelElement. This operation does not remove any data
physically. On the one hand, this guarantees traceability of Changes for an even-
tual audit trail. On the other hand, it may facilitate conflict detection as deleted
ModelElements could be common origin of other ModelElements. If elements
are discarded physically, one has to keep track of the deletions to identify potential
conflicts in the course of a merge.
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Move denotes a change in the hierarchy of the model. Since ModelGlue does not
support inheritance, move operations have considerably less impact than in a systems
supporting inheritance. In such a system, the move of a supertype is regarded a
non-trivial conflict situation with considerably high semantics (cf. [WLS+12]).

Use is a passive operation to a ModelElement ℰ𝑎, i.e. it is not modified by the use
operation. This subtype of a Change is created as a side effect of a Create or an
Update to another ModelElement ℰ𝑏 referencing ℰ𝑎, i.e. updating or creating a
link.

5.2.5.3 Compressing Changes

As discussed above, Changesets can be regarded transactions incorporating multiple
Changes. Some of these Changes are reciprocally rectified; for instance, multiple Updates
on the same Attribute get compressed and the most recent Update prevails. Other
operations cancel each other out; for instance, multiple Updates and a subsequent Delete.
The Delete prevails if it is the most recent Change. Table 5.2 gives a more structured view
how we compress Changes. Note that only Changes within a branch can be compressed,
i.e. inter-branch compression requires a conflict detection first. In fact, we only compress
Changes prior to the conflict detection. This way, compressing Changes preserves all
information to resolve conflicts manually. Similarly, we do not provide an order in which
Changes would become executable since this could obscure the original intentions. Instead,
we present conflicting Changes in their chronological order (cf. Section 5.3.2.4).

In our implementation, a subsequent Update operation with a preceding Create gets
reduced to a Create operation; however, this is system specific since a Create in
ModelGlue first creates an empty ModelElement and subsequently performs an
Update on this element to set its initial name.

Create Delete Update Use Move

Create

Delete 	 	 	

Update 	 XX. XX

Use XX. XX

Move 	

	 take most recent change

XX take both

. only if from two different source objects

Table 5.2: Outline of the compression method applied to changes
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5.2.5.4 An Algorithm for Model Merging

Assuming that models ℳ𝑎, ℳ𝑏 build a federation, i.e.ℳ𝑎 ∘↦−→ ℳ𝑏 (cf. Definition 4.5)
and at the same time the models are branches of each other, i.e.ℳ𝑎→𝑏 (cf. Definition 5.2),
Algorithm 4 details how different models in Federated EA Model Management can be merged
such that responsible Roles, i.e. humans, are notified via Tasks that carry contextual
information of a conflict. This information is meant to facilitate the conflict resolution.
Thereby,ℳ𝑎 is denoted the model of an information source whereasℳ𝑏 constitutes the
EA model. In the following, we describe the algorithm in more detail.

Lines 1–2: In a first step, for each task type, a Conflict Information Container (CIC) is
created that serves as a temporary in-memory data structure to store the relevant
meta-information for a task. The CIC data structure is described by Kirschner who
introduces the concept of the CIC to cope with multiple conflicts per ModelElement.
We refer the interested reader to [Ki14, pp. 24,44,48] for a detailed description how
this structure can be employed to not only describe conflicts, but also to detect and
store n-way conflicts based on the algorithm described in this thesis. Additionally,
line 2 serves to allocate a collection that temporarily saves the Changesets under
investigation.

Line 3–7: Next, we analyze all Changesets that were created since the baseline time 𝑡𝑏.
Note that we only add those Changesets for further analysis that describe changes
on ModelElements, which are related to each other (cf. Section 5.2.5.1). Thereafter,
the resulting Changesets contain only potentially conflicting changes.

Line 8–9: Subsequently, the algorithm takes all Changes within the identified Change-
sets and compresses them, i.e. some Changes within one branch eliminate each
other such that they can be compressed. Details of this compression are described in
Section 5.2.5.3.

Line 10–25: Prior to the actual conflict detection, we ensure that only potentially con-
flicting Changesets are checked in subsequent steps (lines 11–12). For the sake of
brevity and to increase readability, we used only two foreach loops to sketch the core
idea of the algorithm whereas the actual implementation requires four loops. The
actual conflict detection is performed through a lookup in the matrix of the conflict
resolution strategy (line 14). Thereby, the Operation performed and the classifier
of a ModelElement serve to lookup if and what further actions are necessary.
Classifier denotes the type of the subclass. The matrix returns either one of the
tasks approve, resolve, or validate or a customized merge rule that is part of an
organization-specific merge strategy. Each cell within the matrix specifies 1 of 210
cases for the conflict detection (cf. Section 5.2.5.6). In line with the selection of the
Changesets, the detection embraces elements of the model as well as the metamodel
and their relationships to each other (cf. Definition 5.5).

Line 14–25: The algorithm looks up the conflict resolution strategy that is configured in
ModelGlue to resolve a certain conflict. The information, i.e.Changesets and
type of conflict is added to the respective CIC data structure. If no further action is
configured (line 25), the Changes are not in conflict and no further action is required.
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Algorithm 4: n-way merging of models based on the initial versions published
in [KR14, Ki14]

Input: Source Modelsℳ1..𝑛, Baseline Time 𝑡𝑏, Conflict Resolution Strategy 𝜍, Tasks 𝑇 𝑖
1..𝑛

Output: Task 𝑇1..𝑛, Target Modelℳ𝑡

1: approve, resolve, validate, custom ← {key: ∅, value: {∅}}
2: changesets ← {∅}
3: // Phase 1: select and compress changes

4: foreach C1 ∈ℳ1..𝑛.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠.𝑐ℎ𝑎𝑛𝑔𝑒𝑠𝑒𝑡𝑠(C1.𝑤ℎ𝑒𝑛 > 𝑡𝑏) do
5: foreach C2 ∈ℳ1..𝑛.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠.𝑐ℎ𝑎𝑛𝑔𝑒𝑠𝑒𝑡𝑠(C2.𝑤ℎ𝑒𝑛 > 𝑡𝑏) do

6: if C1/̂ C2 then
7: changesets ← changesets ∪ C1 ∪ C2

8: // Phase 2: compress changes

9: changesets ← compressOperations(changesets)
10: // Phase 3: detect conflicts

11: foreach C1 ∈ 𝑐ℎ𝑎𝑛𝑔𝑒𝑠𝑒𝑡𝑠,C2 ∈ 𝑐ℎ𝑎𝑛𝑔𝑒𝑠𝑒𝑡𝑠 do

12: foreach 𝛿1 ∈ C1.𝑐ℎ𝑎𝑛𝑔𝑒𝑠, 𝛿2 ∈ C2.𝑐ℎ𝑎𝑛𝑔𝑒𝑠
(︀
C1/̂ C2

)︀
do

13: // perform lookup of rule in conflict resolution strategy

14: conflict ←
𝜍[C1.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡.𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟][𝛿1.𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛][C2.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡.𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟][𝛿2.𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛]

15: switch conflict.classifier do
16: case approve
17: approve ← appendToCIC(approve, 𝛿1, 𝛿2, C1, C2)

18: case resolve
19: conflicts ← appendToCIC(conflicts, 𝛿1, 𝛿2, C1, C2)

20: case validate
21: validate ← appendToCIC(validate, 𝛿1, 𝛿2, C1, C2)

22: case custom
23: custom ← appendToCIC(custom, 𝛿1, 𝛿2, C1, C2)

24: else
25: continue

26: // Phase 4: create ‘tentative’ merge result

27: foreach ℰ ∈ (𝑟𝑒𝑠𝑜𝑙𝑣𝑒.𝑘𝑒𝑦𝑠 ∪ 𝑎𝑝𝑝𝑟𝑜𝑣𝑒.𝑘𝑒𝑦𝑠 ∪ 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒.𝑘𝑒𝑦𝑠 ∪ 𝑐𝑢𝑠𝑡𝑜𝑚.𝑘𝑒𝑦𝑠) do
28: foreach C ∈ 𝑐ℎ𝑎𝑛𝑔𝑒𝑠𝑒𝑡𝑠 do
29: if ℰ.𝑢𝑖𝑑 ≡ C.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡.𝑢𝑖𝑑 then
30: changesets ← changesets ∖ C

31: ℳ𝑡 ← getBaselineModel(ℳ1..𝑛, 𝑡𝑏)
32: foreach C ∈ 𝑐ℎ𝑎𝑛𝑔𝑒𝑠𝑒𝑡𝑠 do
33: ℳ𝑡 ←ℳ𝑡 ∪ C

34: // Phase 5: create conflict resolution tasks and invoke custom merge rules

35: foreach 𝑐𝑖𝑐 ∈ 𝑎𝑝𝑝𝑟𝑜𝑣𝑒.𝑣𝑎𝑙𝑢𝑒𝑠 do
36: owners ← {∅}
37: foreach 𝑒𝑛𝑡𝑟𝑦 ∈ 𝑐𝑖𝑐.𝑒𝑛𝑡𝑟𝑖𝑒𝑠 do
38: owners ← owners ∪ 𝑒𝑛𝑡𝑟𝑦.𝑐ℎ𝑎𝑛𝑔𝑒𝑠𝑒𝑡.𝑚𝑜𝑑𝑒𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡.𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑏𝑙𝑒𝑅𝑜𝑙𝑒
39: // see Section 5.1.2.4 for further details on how to determine the responsible role for

a model element

40: if cic ̸∈
(︀
𝑇 𝑖
1..𝑛

)︀
.𝑐𝑖𝑐𝑠 then

41: 𝑇𝑖 ← 𝑛𝑒𝑤 𝐴𝑝𝑝𝑟𝑜𝑣𝑒(𝑐𝑖𝑐, 𝑜𝑤𝑛𝑒𝑟𝑠)

42: // repeat from line 35 for ‘resolve’ and ‘validate’ tasks

43: foreach 𝑐𝑖𝑐 ∈ 𝑐𝑢𝑠𝑡𝑜𝑚.𝑣𝑎𝑙𝑢𝑒𝑠 do
44: if cic ̸∈

(︀
𝑇 𝑖
1..𝑛

)︀
.𝑐𝑖𝑐𝑠 then

45: cic.invokeRule()
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Line 26–33: Changesets which are contained in a CIC are removed from the set of
Changesets under investigation (line 33). The remaining Changesets are applied
to a model at time 𝑡𝑏 which is then target modelℳ𝑡.

Line 35–41: In a final step, the algorithm intends to create new conflict resolution tasks,
which are equipped with the meta-information contained in the CIC and sent to the
responsible role (cf. also Algorithm 1 on p. 137). Thereby, we reconcile tasks that have
been marked as ‘ignored’ in the course of a merge that previously took place. Only if
the CIC is not found in one of these tasks 𝑇 𝑖

1..𝑛, new tasks are instantiated and sent
to their owner (line 40). The same procedure is performed for ‘resolve’ and ‘validate’
tasks as well. The final action of the algorithm is to invoke the custom merge rules
specified in the conflict resolution strategy (line 43). We assume that by executing
the rule, any conflicts described by the respective CIC are resolved.

Note that in the course of a merge, the source models do not cease to exist. Hence, we
merge multiple source models ‘with’ a target model, not ‘into’. This property is especially
important to reconcile the identity of elements that are imported from an information
source.

More sophisticated change detection, e.g. in elements that feature transitive relationships, are
omitted here. We put primary focus on the conformance ofObjects toObjectDefinitions
and Attributes to their AttributeDefinitions. However, our final considerations
concerning the algorithm are additional checks for any relationships between the two
elements that semantically affect each other by Changesets C1 and C2. We considered to
define such relationships explicitly such that each relationship specified (ℰ1, ℰ1) influences
the outcome of the check C1/̂ C2.

5.2.5.5 Task Types in Federated EA Model Management

In [RHM13a], we outlined an initial version of different task types. In the following, we
describe and refine the different types of these tasks. We distinguish between the following
types of tasks:

Assign Role is a Task type concerned with the assignment of the responsible role, readers,
and writers of a particular ObjectDefinition, Object, AttributeDefinition,
or Attribute. If a suitable role is defined, tasks are sent to a role. This addressee,
i.e. the responsible role, is inferred as described in Section 5.1.2.4.

Validate commonly refers to the validation of particular Attributes or entire Objects.
When assigning validation tasks, Changesets are already applied to the respective
ModelElement such that respectiveChangesmust be reverted or newChangesets
must be issued. This can be done by any writer who are informed by default. Due
to their write access, writers are immediately able to correct flaws issued by made
Changes. If no objections are raised concerning the applied Changes or further
actions are required, the addressee of a Task manually marks it as ‘solved’. Commonly,
validate Task are employed to inform about concurrent Changes that might have a
semantic impact on another Change. In such a case, the receiving user has to review
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the Changes made and validate whether applied changes are still valid in the new
context or in turn are contradictory given the changed context. By default, the user
does not have to modify any value.

Approve is required to approve certain modifications and always requires user intervention.
By default, only one of the pending Changes can be approved and remaining
Changes are discarded (cf.RevokeChanges in Section 6.3.2). In the course of
concurrent model Changes, respective editors are informed. If the editors cannot
determine whether to approve a Change or not, the system involves the responsible
Role, i.e. the Task is forwarded. For instance, deletions of entire Objects must be
approved or Changes of certain Attributes that a responsible role is accountable for,
e.g.Changes of a ‘service level’ Attribute. If both parties agreed upon a Change,
the system marks this Task as ‘resolved’ and the respective ModelElement switches
its state to ‘normal’ if no further Tasks exist (cf. Section 5.1.2.5).

Resolve seeks to merge multiple Changes into one consistent model state. This requires
user intervention to resolve a situation of concurrent Changes on ModelEle-
ments describing the same circumstances of the real-world or Changes on adjacent
ModelElements that may have an impact on the semantics of another Changes
(cf. Section 5.2.5.1).

The notion of order plays an important role when resolving a conflict. Although some
approaches seek to reorder Changes such that they become applicable, we claim that
conflict resolution requires human intervention. The software support for a conflict
is limited to present the Changes, respective roles, and timestamp to the user in a
reverse-chronological order such that the most recent Change is on top of all the
Changes.

It is perhaps the most complex Task since multiple parties must be involved in
order to decide on pending model Changes. To support this Task type, we adopt
the general idea of a tentative merge result (cf. Section 2.3.5) in order to store any
concurrent model Changes. Thereafter, the system is able to show made Changes
to the end-users with the original version, i.e. a three-way difference (cf. Section 2.3.1).
In case, different Changes are in conflict, i.e. cannot be resolved by the conflict
resolution strategy currently configured in an automated manner, users may chose
which of the Changes they want to apply. In contrast to an approve Task, multiple
Changesets may get applied or new Changesets are issued by the resolving
parties. This resolution process commonly takes place in a synchronous manner
such that a technical solution should support face-to-face to face communication
(cf.Requirement Us8 in Section 4.3.4).

Propagate refers to the (manual) propagation of Changes to other information systems,
i.e. an integrated information source. It is generated if a Changeset is applied to
a ModelElement whose OID refers to information stored externally. This task
type asks to apply Changes in an information source, i.e. it propagates Changes.
Generally speaking, this propagation can be done either automatically via technical
interfaces, or manually by the assigned Role. We propose to propagate Changes
via human tasks. This way, an information source is integrated logically in a bidirec-
tional manner but one does not have to cope with the complexity of developing and

177



5. Federated EA Model Management Design

maintaining a plethora of bidirectional interfaces. The URI of the OID encodes the
necessary information to indicate ‘where’ the Change must be applied. Ideally, a
web-based system is used such that the URI can serve as an Uniform Resource Locator
(URL) for a hyperlink target. Given today’s browsers, this would foster a seamless
integration within a federation. Additionally, the user gets context information that
describes the details of the Change to be performed in an information source.

Inform tasks are no conflict tasks. They serve to inform users about automated merge
actions. As soon as they are viewed, they are marked as ‘solved’ by the system
automatically. Further, they are disregarded automatically after passing their due-
date.

Document asks the writers to maintain a certain Object or Attributes thereof. This
task is automatically sent to writers as soon as an Attribute is set as strict
(cf. [RHM13a]).

5.2.5.6 Conflict Detection

We already specified the notion of connectedness of ModelElements in Section 5.2.5.1. In
contrast to Wieland et al. [WLS+12], this approach considers not only Changes on elements
of the model but also Changes on elements of the metamodel. Moreover, we consider
Changes on the metamodel that may exert (semantic) influence on the model and vice
versa. This way our conflict detection is far more complex than a 5 by 5 operation-matrix
(cf. Table 4.12 on p. 111).

The actual detection is performed with a LUT whereas its cells store formal specifications for
the conflict detection and resolution. In his master’s thesis, Kirschner [Ki14, p. 42] reports
on 325 possible cases to consider. Although his considerations include also operations on
Values of Attributes, the order of magnitude remains the same removing the operations
for values from the equation. On the other hand, Kirschner presents both conflict resolution
strategies in his thesis ([Ki14, Appendix A]). The cells, i.e. specified actions, for the tolerant
conflict resolution strategy embrace only 30 conflict/approve tasks, i.e. only 30 cases in
which ModelGlue cannot decide how to merge changes. These 30 cases build the minimal
set that has to be specified either by the task of the tolerant strategy or by a customized
merge rule.

𝑛∑︁
𝑖=1

𝑖 =

{︃
325 if 𝑜 = 5, 𝑒 = 5

210 if 𝑜 = 5, 𝑒 = 4
(5.22)

Equation 5.22 provides the exact numbers of cases to be considered whereas the prod-
uct 𝑛 = 𝑒 * 𝑜 is defined by the cardinal numbers of involved Operations = {Cre-
ate, Update, Delete, Move, Use}, 𝑜 := |Operations| ⇒ 5, and considered Mod-
elElements = {Attributes, AttributeDefinitions, Object, ObjectDefinitions},
𝑒 := |ModelElements| ⇒ 4.

Since it is beyond the scope of the present thesis to specify 325 cases formally, we outline
the general principles, we followed implementing both strategies, i.e. tolerant and strict
(cf. Section 5.2.8). Further, we provide insights on how to specify organization-specific
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merge rules that are executed instead of a task. In the remainder of this section, we provide
designs for intuitive UIs that allow users to specify merge rules.

5.2.6 Manual Detection of Conflicts

Up to now, we discussed automated conflict detection as well as means for the assessment of
quality via differencing, and conflict resolution. In this section, we discuss the role of model
conflicts or other issues in models that cannot be detected automatically. In [RHM13b], we
report on phenomena between different models and coined the term abstraction gap. In the
following, we explain the notion of an abstraction gap more formally and present means to
overcome it. In this vein, we present UI support for the manual creation of tasks.

5.2.6.1 Abstraction Gaps Between Models

In [RHM13b], we use the ArchiMate 2.0 metamodel as an illustrating example to show
how to overcome an abstraction gap employing an interactive visualization that propagates
visual changes to the EA model. Before we continue to explain the details of an abstraction
gap, let us start with an example.

Example 5.5: An abstraction gap in an EA model
A CMDB contains information about Nodes. According to the ArchiMate 2.0
specification, a Node Device is “a hardware resource upon which artifacts may
be stored or deployed for execution. A device is a specialization of a node that
represents a physical resource with processing capability. It is typically used to
model hardware systems such as mainframes, PCs, or routers” [Th12b, p. 46].

An additional information source, i.e. an ESB namely SAP Process Integration
(PI), contains information about the Application Component and their
communication. Many EA stakeholders raise concerns when it comes to finding
out which Node Device is used to run an Application Component. Espe-
cially knowledge of the transitive relationships of Application Components
could be verified with runtime information of the Node Devices. Currently,
the EA metamodel does not include Node Devices. To address EA stake-
holder demands, the EA coordinator wants to integrate information about
Node Devices in the EA model. However, by including the Node and its
subclasses, the EA modeling expert diagnoses an arising problem. Currently,
Node instances are not mapped to Application Component instances. This
piece of information is missing as well as it is not captured in the respective
metamodels, i.e. there is an abstraction gap between Node and Application
Component. Although these concepts are semantically related, currently no
modeling community includes this part of reality in their models.

Figure 5.20 illustrates the current situation and sketches a solution on the
metamodel level. A Node is exposed to the application layer via an Infras-
tructure Interface (see also [Th12a, pp. 48–49]). These Infrastructure
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Interface instances are then assigned to Application Components by which
they are used, i.e. we can use the Infrastructure Interface as a binding
element between Nodes and Application Components [RHM13b].

Network

Node

Infrastructure 
Interface

Device System Software

Application 
Component ......

Figure 5.20: Abstraction gap within an EA model

Building on our current understanding of a federation, we describe an abstraction gap more
formally. In Section 4.1.3 we established that different modelers may describe different
universes. Further, we gave a formal description of the relationship of models within a
federation.

Definition 5.6: Abstraction gap
Let there be federation ℳ𝑏,𝑐

∘↦−→ ℳ𝑎 with universes U𝑎,𝑏,𝑐 as the perceived
part of the real-world by respective roles 𝜌𝑎,𝑏,𝑐 whose intention is to use models
ℳ𝑎,𝑏,𝑐 to describe their universe. Then, an abstraction gap in modelℳ𝑎 occurs
if and only if the federation exhibits two isolated model elements ℰ𝑎 ∈ℳ𝑏 and
ℰ𝑏 ∈ℳ𝑐 (cf. Definition 4.6) for which the following holds:

∙ 𝜌𝑎,𝑏,𝑐 agree that ℰ𝑎 and ℰ𝑏 are semantically related,

∙ ℰ𝑎 and ℰ𝑏 are syntactically or structurally not related to each other,

∙ their proximity can be determined with a utility function ℛ deducing
proximity relationships among model elements,

∙ ℛ can be described under the assumption that 𝜌𝑎,𝑏,𝑐 collaborate,

∙ ℛ requires the introduction of an additional model element ℰ𝛿
(cf. Equation 5.23) to describe their relationship formally.

∃ℰ𝛿 ∈ℳ*𝑎ℛ(ℰ𝑎, ℰ𝛿) ∧ℛ(ℰ𝛿, ℰ𝑏) ℰ𝛿 /∈ℳ𝑎,𝑏,𝑐 (5.23)

�
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Note that ℰ𝛿 in Definition 5.6 can be

∙ an attribute directly linking ℰ𝑎 and ℰ𝑏 realizing a one-to-many or many-to-one rela-
tionship,

∙ an object realizing a many-to-many relationship between ℰ𝑎 and ℰ𝑏, or

∙ a model realizing transitive relationships between ℰ𝑎 and ℰ𝑏.

Further, the abstraction gap also needs to be conceptualized in the respective metamodel
of the federation such that new AttributeDefinitions and ObjectDefinitions must
be introduced.

In line with Stachowiak [St73, pp. 131ff], we assume through the art of modeling an ‘improved’
modelℳ*𝑎 can be created in the sense that it provides some deeper understanding of the
original, i.e.U𝑎,𝑏,𝑐. As a consequence, we assume there exists at least one role that is able
to close the abstraction gap providing new insights to other roles.

Sheth and Kashyap [SK93] observed similar phenomena in the domain of multidatabase
systems and called it ‘Abstraction Level Incompatibility’. They use ‘ANY’ to denote that
any abstraction, e.g. aggregation, generalization, specialization, can be used to define a
mapping between two semantically related objects. Further, they describe the characteristics
of ‘NONE’; it denotes that there does not exist a semantic relationship between objects.
Finally, they also describe ‘NEG’ to denote that a mapping is not possible between two
semantically unrelated objects. They further coin the term of ‘semantic proximity’ to
describe the semantic relationship between two objects. While we observed an abstraction
gap between different EA layers (cf. Section 2.1) many times in organizations, we do not
claim to have found an exhaustive list of phenomena between models and, thus, refer the
interested reader to Sheth and Kashyap [SK93] for further discussions of similarities between
two objects.

5.2.6.2 Resolving Abstraction Gaps

To overcome an abstraction gap as described in Definition 5.6 we extendℳ𝑎, such that an
improved model emerges withℳ*𝑎 ⊆ℳ𝑎 ∪ℳ𝑏 ∪ℳ𝑐 ∪ ℰ𝛿. We claim that an abstraction
gap cannot be detected automatically. However, in [RHM13b], we propose a means to
overcome an abstraction gap. It involves the manual creation and configuration of tasks.

Figure 5.21 shows a preliminary version of ModelGlue which is presented in [RHM13b] and
[HRP+13b]. Although this version served for a preliminary evaluation of the prototype, the
basic support for tasks has not been changed. It depicts the worklist for each individual user
(➊ in Figure 5.21) as well as all tasks that are attached to a workspace (➋ in Figure 5.21). A
workspace in this context can be considered as a model. The UI presents open and finished
tasks (➌ in Figure 5.21) as a list. It has been adapted with respect to the conflict tasks
described in Section 5.2.5.5. Each task can be executed, marked as finished, commented,
forwarded, ignored, or deleted (➍ in Figure 5.21). ModelGlue allows manual intervention
not only during conflict detection but also during normal operations. That embraces the
manual creation of tasks which may be required in the course of conflicts in a model that
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Figure 5.21: User interface of ModelGlue: interactions with the worklist and tasks

cannot be detected automatically (➎ in Figure 5.21). The task can be forwarded to roles
which is either a single person or a group (➏ in Figure 5.21).

Next to this general understanding of tasks (cf. also Section 5.1.2.5 and Section 5.2.5.5), we
introduce one instance for a task that is created manually by an EA repository manager or
an EA modeling expert. This task type is meant to overcome an abstraction gap hence, in
[RHM13b] we introduce the concept of an Abstraction Gap Resolver. Figure 5.22 shows how
to configure such an Abstraction Gap Resolver. The configuration contains information
that helps to resolve the abstraction gap described in Example 5.5 on p. 179. To recap, the
respective model conflict in this example is the missing mapping between Devices and
Application Components since this information cannot be retrieved from neither, the
CMDB or the ESB, automatically.

Besides a name (➊ in Figure 5.22), each task has an owner (➋ in Figure 5.22). Specific for
this task type is the embedded configuration of an Abstraction Gap Resolver. It requires
to specify the two ModelElements involved in the abstraction gap, i.e. ‘Application
Component’ (➌ in Figure 5.22) and ‘Device instances’ (➍ in Figure 5.22), as well as ℰ𝛿
(➎ in Figure 5.22) which is ‘Infrastructure Element’. Since the task addresses humans, it
contains a brief description that gives information about what the issue is and what has to
be done in order to resolve it (➏ in Figure 5.22).
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Figure 5.22: User interface of ModelGlue: configuring an abstraction gap resolution task

In [RHM13b] we coin the term Abstraction Gap Resolver for this type of visualization.
It is an interactive visualization that can be manipulated by the end-user whereas visual
manipulations are propagated to the EA repository. It is a means to overcome an abstraction
gap and can be used to create relationships among model elements via drag & drop operations
performed within the visualization.

In the following, we introduce a conflict resolution visualization to resolve an abstraction
gap based on an example given by model transformations we performed in our joint research
with Buschle et al. [BEG+12] constituting a resolution of the abstraction gap outlined in
Example 5.5 on p. 179.

Figure 5.23 depicts the resulting visualization that is shown to the addressee of a task, i.e. its
owner, as presented in [RHM13b]. Application Component instances (see ➊ in Fig-
ure 5.23) and Device instances (see ➋ in Figure 5.23) are shown to the end-user. The entity
Infrastructure Element instance (see ➌ in Figure 5.23) holds the mapping information
and is configured by the EA repository manager when this manual conflict resolution task
is created, in order to overcome an abstraction gap between these two ModelElements
Application Component and Node Devices.

We assume that after the EA repository manager created the configuration for the visu-
alization, it is forwarded to the responsible data owner or an EA stakeholder if the data
owner is unable to resolve the conflict (cf. Section 5.2.7). Any existing mappings within the
EA repository are illustrated as tuples (see ➍ in Figure 5.23) of 𝑛 Application Component
objects (see ➎ in Figure 5.23) and 𝑚 Device objects (see ➏ in Figure 5.23).

The illustrated visualization type builds upon a so-called cluster map (cf. e.g. [Ma08, p. 530])
that looks familiar to EA stakeholders. In contrast to mere analysis support, this visualiza-
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Figure 5.23: User interface of ModelGlue: resolving an abstraction gap (annotations
added to the screenshot as presented in [RHM13b])

tion type can be utilized to manipulate illustrated relationships. This way, we enable EA
stakeholders and data owners to understand and contribute to the conflict resolution.

The involved roles can drag & drop elements in the interactive visualization from their
type containers (see ➊ and ➋ in Figure 5.23) onto the respective left and right sides of
the middle column (see ➎ and ➏ in Figure 5.23). Thereby, possible drop targets are
highlighted according to the color of the container (cf.➋,➎, and ➐ in Figure 5.23). Thereby,
the particular drop target are pre-calculated such that while dragging elements no server
round-trip is required realizing a high responsiveness for user interactions (cf. Section 6.3).
Dropping elements, visual changes are propagated directly to the underlying model such
that the user gets immediate visual feedback if an operation has been applied to the model
successfully.

Each row (➍ in Figure 5.23) represents a relationship where end-users can add model
elements to an existing relationship, e.g. indicating that a new Device is added to support
a particular Application Component. Dropping an element either on the left or on
the right side of the bottom element in the middle column (➐ in Figure 5.23), a new
Infrastructure Interface instance is created with the respective relationship.

While in most cases the name of an element is sufficient context information, an end-user may
require additional information on an element. By clicking on the element’s label, a separate
window to provide this context information is opened. A counter (➑ in Figure 5.23) indicates
the number of relationships the element currently participates in. Qualitative practitioner
feedback reported in [RHM13b] strongly suggests that this counter is meaningless in practice.
However, given the empirical basis it is too soon to draw any final conclusions.
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Existing relationships already defined in the EA repository can also be manipulated. Thereby,
the visualization supports removing a single relation (➒ in Figure 5.23), i.e.Application
Component or Node Device, or the entire relationship (➓ in Figure 5.23), an Infras-
tructure Interface instance in our example. Using this visualization, various end-users
are able to resolve conflicts and are supported with additional validation techniques to
achieve this goal. These modifications in the conflict resolution visualization are propagated
to the EA repository. Note that the presented concept abstracts from concrete types
such that any model elements could be mapped, and, thus, any abstraction gap within an
arbitrary EA metamodel could be harmonized [HMR+12, HRP+13b, RHM13b, SMR12].

The Abstraction Gap Resolver is seamlessly integrated in the task as it is part of its
configuration. It can be used during the conflict resolution process (cf. Section 5.2.7) as the
task can be forwarded and the state of the interactive visualization is based on the EA model,
i.e. allows to collaborate asynchronously by forwarding the task with its configuration.

5.2.7 Resolve Conflicts

In [RHM13b], we introduce a conflict resolution process. Figure 5.24 depicts this iterative
process. Its main success scenario starts with a conflict set that can be considered a Conflict
Information Container (CIC) of a task and contains a description of the conflict. This set
includes conflicts that could not be resolved automatically during importing and merging
of models.
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Figure 5.24: Conflict resolution sub-process [RHM13b]
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The first escalation instance is the EA repository manager. Since the EA repository manager
issues the merge process, it is the role’s obligation to support the conflict resolution and
to try to resolve arising conflicts (cf. Section 4.1.1.1 and ➊ in Figure 5.24). Conflicts
that can be resolved by the EA repository manager are either forwarded for further
validation or directly applied to the respective models (cf.➋ in Figure 5.24). Further
validation (cf.➌ in Figure 5.24) is required in case of major releases5. In such a case, an
EA stakeholder first validates the model and subsequently, the EA coordinator authorizes
the update (cf.➍ in Figure 5.24).

Note that tasks embrace descriptions of conflicts, which have been detected automatically
(cf. Section 5.2.5), and conflicts, which have been detected manually by either the EA
repository manager or an EA modeling expert (cf. Section 5.2.6). The conflict tasks
(cf. Section 5.2.5.5) serve to validate performed actions. Specific tasks lead either directly to
the conflict management dashboard (cf. Section 5.3.2) or to a special purpose visualization
(cf. Section 5.2.6.2) that serves to understand and to resolve a conflict. While the former
incorporates all task types, the latter is configured by the EA repository manager who
is unable to resolve the conflict (cf.➊ in Figure 5.24). Thus, the EA repository manager
creates such a task manually with the respective configuration that describe the conflict
(➎ in Figure 5.24). In this step, conflict-affected entities to be resolved are selected and the
task is delegated to the responsible role of the ModelElement. By default, the addressee
of the task is the responsible role of an import model, i.e. a data owner of an information
source. In our main success scenario, we assume that the responsible data owner receives
the newly created task including the conflict resolution visualization (cf. Section 5.2.6.2) in
a worklist (cf. Figure 5.21 on p. 182). The data owner is responsible for the information
source and, thus, is able to resolve most conflicts without involving an EA stakeholder
(➏ in Figure 5.24).

When modifying an element with an OID that incorporates a surrogate key to an external
system, i.e. an information system of an information source, a propagate task is generated.
This generally holds true for all modifications of ModelElements, not only for this special
configuration. The core idea is that the propagate task contains all relevant information such
that a modification on an import model can be understood by a human actor and reproduced
within the original information source (cf. also Section 5.2.5.5). As stated in Assumption 4.7,
we establish that CCMC is an aspired vision the community member constantly share.
Facing reality, CCMC will stay such a vision yet to be achieve by collaboration between its
individual members. The propagate tasks serve as a means to work toward this vision. We
define CCMC as follows:

5We refer the interested reader to [RHM13b] for feedback from industry experts and a discussion about
the criteria of major and minor updates of an EA model.
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Definition 5.7: Cross-community model consistency
In a federation with ℳ2..𝑛

∘↦−→ ℳ1 cross-community model consistency is
achieved iff:

1. shared Objects conform to their ObjectDefinition defined inℳ1

2. Attributes conform to their AttributeDefinition defined inℳ1

3. type constraints defined inℳ1 are not violated

4. cardinality constraints defined inℳ1 are not violated

5. queries to elements ofℳ1 return the same (semantic) results as queries
to respective elements inℳ𝑞1..𝑞𝑛 whereasℳ𝑞1..𝑞𝑛 ⊆ℳ2..𝑛 are considered
the sources of the queried information.

�

If the data owner resolves the conflict and respective modifications are regarded as a
major update, the validation by EA stakeholders and subsequent authorization by the EA
coordinator (cf.➌ and ➍ in Figure 5.24). Otherwise, the changes are immediately applied
to the involved models.

On the other hand, if the data owner is unable to resolve the conflict, the task is forwarded
to an EA stakeholder (➐ in Figure 5.24). That means only if the EA repository manager
and the data owner are unable to resolve the conflict, the respective EA stakeholder needs
to be contacted. In this case, the EA stakeholder receives the task describing the conflict.
At this point, the task might be annotated with comments from the data owner or the EA
repository manager. This additional information allows to collaborate asynchronously. We
argue that the EA stakeholder might not have any technical background [KW07], sufficient
skills, access rights, etc. to maintain the EA tool. In [RHM13b], we provide qualitative
feedback from EA experts indicating that the provision of visual means increases utility
in the course of conflict resolution. Since EA Stakeholders are used to interact with EA
information visually (cf. [MBL+08, RZM14]), we regard interactive visualizations as an
intuitive way to empowered EA Stakeholders to resolve conflicts.

If a particular EA stakeholder is not in possession of the knowledge required to resolve the
conflict, the task might get delegated to other stakeholders. Resolved conflicts are either
directly propagated to the EA repository or the EA coordinator is asked to authorize the
update if a major release is issued (➍ in Figure 5.24).

The proposed process realizes an escalation of the model conflict and only involves EA
Stakeholders if the EA repository manager and the data owners are unable to resolve
conflicts. This escalating behavior can be represented in ModelGlue with the chain of
responsibility described in (cf. Section 5.1.2.4).

Note that not all practitioners agree with the final approval step denoted ‘Authorize
Repository Update’ in Figure 5.24. However, practitioners agree that this process has a
highly iterative and collaborative nature. Further, we found that practitioners value visual
means to resolve conflicts or report the status-quo as a basis for discussion [RHM13b].
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5.2.7.1 Learning and Batch Processing

In his bachelor’s thesis [Sc13], Schrade proposes a mechanism to detect frequently applied
users choices throughout the conflict resolution process. The mechanism ‘learns’ from
previous decisions and proposes the user to apply similar solutions to all remaining conflicts.
Thereby, he distinguishes between the dimensions

Model: Are chosen changes part of a particular model?

Role: Are chosen changes issues by a particular role?

Time: Within which of the clusters {latest, oldest, between} are the chosen changes?

Model Role Time

A B C D E A B C D E Latest Oldest Between

Threshold

Ignored

Applied or 
revoked
CHANGES

Keys

Dimension

Figure 5.25: Learning mechanism as proposed by Schrade

Figure 5.25 illustrates this mechanism. It depicts the different dimensions observed by
the approach and their keys. For each applied Change, the system checks whether the
Change falls in such a dimension. The keys depend on the observed dimension; for models
and roles, the key is determined based on meta-information of an applied change, i.e. if
that change originates from a specific model or has been issued by a certain role. For time,
ModelGlue checks if a change is issued in a certain range of time that has been calculated
based on an analysis of the clusters {latest, oldest, between}.

For each key, a certain threshold exists which depends on the number of conflicts to be
resolved. The idea of our design is that for many conflicts, a fixed upper bound exists
whereas for few conflicts, the learning mechanism is not used at all. In [Sc13, p. 41ff],
Schrade details how these fixed values are calculated. Informally, there exist lower and
upper bounds for which absolute values are used whereas for any other amount, a threshold
relative to the number of tasks to resolve by a user is calculated.

Figure 5.26 depicts the UI part of the learning mechanism. Besides agreeing or disagreeing
to proceed with the recommended way to solve conflicts, the user can choose to not being
asked again by the system. This disables the active learning mechanism (cf. ‘ignored’ in
Figure 5.25). However, the usage statistics can still be applied in a different context.

This learning mechanism is part of a three-fold approach to ease and automate conflict
resolution. While this mechanism supports during a conflict resolution session, the states
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Figure 5.26: Confirmation dialog developed by Schrade [Sc13] and as illustrated by Kirschner
in [Ki14, p. 47]

of a task are a way to prevent recurring inconsistency-reports that would only contain
information one already knows about but decided to keep these inconsistencies (contrary to
the idea of CCMC). Although this learning mechanism serves users as a support during a
single conflict resolution session and does not have a direct impact on the applied conflict
resolution strategy, it can serve an identification of recurring patterns that are applied in
the course of conflict resolutions. Once identified, information about the applied pattern
can serve as input for our third mechanism to automate the resolution of conflicts: the
adaptation of the conflict resolution strategy which is discussed in the next section.

5.2.8 Adaptable Conflict Resolution Strategies

Storing operations as Changesets, we can compare different Changes in Changesets
of the models to be merged in order to detect conflicts in the course of a model merge.
Although we motivated that most model conflicts require manual intervention, we outline
two different strategies that can be applied to merge models in a semi-automated fashion,
i.e. different models are merged and some additional work is delegated to responsible roles
to resolve arising conflicts. These are: strict and tolerant conflict resolution strategies.
Especially the latter strategy offers a considerable degree of freedom since it merges elements
of the metamodel and model without enforcing conformance of the model to its metamodel.
Figure 5.27 illustrates the relationship of these strategies and which tasks for conflicting
events it defines.

We first detail a strict strategy to detect conflicts in Section 5.2.8.1. This strategy avoids
any unrecognized changes during a merge, requires approvals on deletions, and informs
about each and every Change. Further, we introduce a less strict variant in Section 5.2.8.2.
This strategy represents the minimal conflicts without further knowledge of the semantics
of a model and its metamodel. As illustrated in Figure 5.27, we allow users to define their
own actions to cope with specific conflicts. This way, conflict resolution strategies can
incorporate expert knowledge and can be adapted for each organization individually. This
mechanism is detailed in Section 5.2.8.4.
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Figure 5.27: Overview of conflict resolution strategies

5.2.8.1 Strict Conflict Resolution

The following principles have been incorporated in the strict conflict resolution strategy:

∙ inform users about any concurrent update of related ModelElements,

∙ require approvals for deletions of changed ModelElements,

∙ ensure that all automatically merged data conforms to a definition,

∙ validate that no additional constraint violations occur after a merge, and

∙ do not merge metamodel/metamodel conflicts automatically.

That means the strict conflict resolution strategy generates Tasks as soon as a responsible
role could be informed about Changes that might not be reviewed by this role. All
information of the merged models is retained in generated Tasks such that effectively no
data will be lost after a merge of models. However, the latest information might not be
incorporated in the EA model, because it only is send to the responsible Roles and needs
further human intervention. Any transaction that is performed by this conflict resolution
strategy is recorded in the version history and can be reverted if necessary.

We refer the interested reader to Kirschner [Ki14, Appendix A]. In his master’s thesis, he
details this strategy. The strict strategy is pessimistic, i.e. nothing can go wrong when it is
applied and constraint violations remain the same after a merge of models. However, this
strategy requires considerably more user intervention than the tolerant conflict resolution
strategy.

5.2.8.2 Tolerant Conflict Resolution

The tolerant conflict resolution strategy guarantees that tasks are generated only if inevitable.
Similar to the strict conflict resolution strategy, any information is kept by the system such
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that none will be lost. In contrast to the strict conflict resolution, the tolerant conflict
resolution applies more information to the target model. For instance delete operations are
immediately performed without the need of an approval. The tolerant conflict resolution
strategy also does not inform about missed updates; however, all transactions are recorded
in the version history and can be reviewed and—if necessary—reverted to the previous
state. The tolerant conflict resolution seeks to merge all data in the target model such that
additional constraint violations are more likely to occur.

The tolerant conflict resolution strategy

∙ merges elements of the metamodel and model without enforcing conformance of the
model to its metamodel

∙ does not inform users about concurrent updates on related ModelElements, and

∙ does store all information to track Changes.

We refer the interested reader to Kirschner [Ki14, Appendix A]. In his master’s thesis, he
details this strategy.

5.2.8.3 Merging Constraints

The tolerant strategy exploits the advantage of a lose coupling between metamodel and
model that is realized by the metamodel introduced in Section 5.1.2. In the following, we
briefly outline how constraints can be merged within ModelGlue.

5.2.8.3.1 Cardinality Constraints

Informally, two cardinality constraints are equal to each other if their upper and lower
bounds are the same. Unequal cardinalities must be merged based on made changes.

Table 5.3 depicts the different actions taken by ModelGlue given two different Changes
that intend to alter constraints of an AttributeDefinition. The cardinalities are either
merged without notification (tolerant) or a user must choose an option. After the merge
transaction is completed, the system subsequently decides whether to check consistency of
the involved model elements. Elements involved are thereby given through the relationship
of the respective Changeset, i.e. for two given Changes 𝛿1, 𝛿2 we check elements for which
𝛿1.𝑐ℎ𝑎𝑛𝑔𝑒𝑠𝑒𝑡 /̂ 𝛿2.𝑐ℎ𝑎𝑛𝑔𝑒𝑠𝑒𝑡 holds. Commonly that means to check all attributes in all
objects which maintain that attribute; a ConstraintViolation occurs if they do not
conform to their definition.

As depicted in Table 5.3, the tolerant conflict resolution strategy can always resolve such
conflicts by transforming the cardinalities to a many-to-many relationship denoted 𝑛..𝑚.
The entry � in Table 5.3 thereby refers to a check whether an object with 𝑛..1, 1..𝑛, 0..𝑛, or
𝑛..0 exists. If for instance, two changes of a cardinality constraint with 𝑛..1 and 1..𝑛 exist,
all Objects are analyzed for the actual frequency an attribute occurs. If no object features
𝑛..1 and the user chose to apply 1..𝑛 instead, ConstraintViolations are created to
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𝛿1
𝛿2 0..n 1..n n..m n..1 n..0

strict tolerant strict tolerant strict tolerant strict tolerant strict tolerant

0..n — — � if 𝛿2 𝛿2
� if 𝛿1 𝛿2

� if 𝛿1 ∨ 𝛿2 𝑛..𝑚 � if 𝛿1 ∨ 𝛿2 𝑛..𝑚
1..n — — � if 𝛿2 𝛿2

� if 𝛿1 ∨ 𝛿2 𝑛..𝑚 � if 𝛿1 ∨ 𝛿2 𝑛..𝑚
n..m — — � if 𝛿2 𝛿1

� if 𝛿2 𝛿1
n..1 — — � if 𝛿1 𝛿2
n..0 — —

� consistency-check after applying the change

Table 5.3: Merging cardinality constraints

report this deviation between the model (Objects with Attributes) and its metamodel
(AttributeDefinition). On the other hand, if changes that alter cardinality constraints
by 𝑛..𝑚 and 1..𝑛 are issued and one chooses to apply the first change, i.e.𝑛..𝑚 cardinalities,
federal consistency—with respect to this operation—is guaranteed such that no further
checks have to be performed.

An alternative design of the tolerant merge strategy is to first check if ConstraintViola-
tions occur and afterwards use the most rigid cardinalities for which at the same time the
fewest ConstraintViolations occur. This way, it is guaranteed that the most specific
cardinalities (𝑛..1, 1..𝑛, 𝑛..0, 0..𝑛, or 𝑛..𝑚) are chosen to merge information in a tolerant
manner.

5.2.8.3.2 Optionality

Whether the optionality of an AttributeDefinition is changed during a merge depends
on the kind of ModelElements merged. Since deviations of an Object to its Object-
Definition are tracked as ConstraintViolations, optionality is only changed if at
least two Changes on congruent AttributeDefinitions have to be merged. If two
transient Changes seek to modify an optionality constraint of an AttributeDefinition,
one Change with optional and the other with mandatory, the tolerant conflict resolution
strategy of ModelGlue modifies the AttributeDefinition such that the optionality is
always set to optional. This way, ConstraintViolations are avoided and information
is accessible for humans. The strict conflict resolution strategy on the other hand does not
merge optionality and creates a resolve task (cf. Section 5.2.5.5).

5.2.8.3.3 Type Constraints

In line with Schweda [Sc11, p. 181], we take into account that objects of the types {byte,
integer, decimal, boolean, date, time, dateTime, duration, URI, ...} (cf. also [ISO07a, p. 28ff])
have a lexical representation [W304b], i.e. they can be converted to a string representing
the value as literal. For our next considerations we introduce the notion of rigidity between
types.
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Definition 5.8: Type order
If 𝒯𝑎 can be subsumed by 𝒯𝑏, we write 𝒯𝑎 ≫ 𝒯𝑏 which reads as 𝒯𝑏 is less rigid
than 𝒯𝑎. �

The tolerant conflict resolution strategy follows the assumption that the more rigid the
type is, the more constraint violations are to expect. Thus, the optimistic, i.e. tolerant,
strategy always uses the less rigid type. For source type 𝒯𝑠 and target type 𝒯𝑡 the merged
type 𝒯𝑚 is given by Equation 5.24.

𝒯𝑚 =

{︂
𝒯𝑡 if 𝒯𝑠 ≫ 𝒯𝑡
𝒯𝑠 else 𝒯𝑡 ≫ 𝒯𝑠 ∨ 𝒯𝑠 ≡ 𝒯𝑡

(5.24)

We assume an Abstract Rewriting System (ARS) for types as defined in Equation 5.25.

Text ≫ Long text
Number ≫ Text
Date ≫ Number
Enumeration ≫ Number
Image ≫ Text
Reference ≫ Text

(5.25)

Note that images and references can be represented as text encoding their URI. Further,
one must take into account a possible precision loss when converting the type date. This
not only embraces the exact format but also its precision, e.g. is it stored as a timestamp in
milliseconds or seconds, as well as its timezone. Similar problems arise from number to text
conversation as the mantissa may play an important role interpreting the number.

5.2.8.4 Adapting the Conflict Resolution Strategy

Besides using one of the predefined conflict resolution strategies, ModelGlue allows to
define an organization-specific conflict resolution strategy. More precisely it allows to adapt
the current conflict resolution strategy. Thereby, a matrix can be used to select whether a
predefined strategy or a customized operation should be executed.

Assumption 5.1: Customized conflict resolution strategy
We assume that a customized conflict operation resolves a conflict, i.e. conflicting
changes are either accepted, discarded, or other actions are performed which
resolve the conflict.

5.2.8.4.1 Customizing an Existing Strategy

Organizations may want to deal with some conflicts in a specific way. For instance changes,
issued from one role, might be preferred over others. In our evaluation, practitioner report
that information stored in a COTS product is not that ‘reliable’ than in a custom developed
application (cf. Chapter 7).
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As illustrated in Figure 5.27 on p. 190, custom code can be executed in any conflict situation
instead of using one of the predefined operations that are used in the strict and tolerant
merge strategies. We assume that by executing the customized code, the conflict is resolved.

Figure 5.28: Conflict resolution strategy widget

Figure 5.28 shows the conflict resolution strategy. Note that we provide two pre-defined
strict and tolerant strategies (cf. Section 5.2.8.1 and Section 5.2.8.2) such that organizations
are only tasked to refine the matrix rather than to configure it from scratch. An organization
can adapt the conflict resolution strategy to individual needs. Customized rules could also
trigger customized human tasks which implement further application logic; however, in the
current design the underlying language does not support to create tasks. The matrix is
a LUT for ModelElement ℰ1, ℰ2 and Changes 𝛿1, 𝛿2, i.e. 𝑔𝑒𝑡𝑇𝑦𝑝𝑒(ℰ1)× 𝛿1.𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛×
𝑔𝑒𝑡𝑇𝑦𝑝𝑒(ℰ2)×𝛿2.𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 whereas 𝑔𝑒𝑡𝑇𝑦𝑝𝑒() is a utility function to determine the classifier
of the subclass of a ModelElement.

For each cell, users can choose to configure whether they want to raise a specific task type
or invoke a customized rule. Cells that are configured with a predefined task type must at
least adhere to the tolerant conflict resolution strategy. However, this does not hold true
for customized rules since we assume that by executing the customized rule, the conflict is
resolved. Equation 5.26 formalizes this lookup.

𝑟𝑢𝑙𝑒𝑗𝑖 =

{︃
𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑡𝑗𝑖 if user choice ̸∈ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑡𝑗𝑖 ∧ @𝑐𝑢𝑠𝑡𝑜𝑚𝑅𝑢𝑙𝑒𝑗𝑖
𝑐𝑢𝑠𝑡𝑜𝑚𝑅𝑢𝑙𝑒𝑗𝑖 else

(5.26)

5.2.8.4.2 User Interface Support for the Definition of Custom Merge Strate-
gies

The customized rules which can be incorporated in a merge strategy can be specified by
users. This way, users can implement their own rules that resolve a conflicting situation.
Inspired by the user interface of iTunes, we develop a dialog for specifying these structured
merge rules. Before we continue with the illustration and description of our design, we
revisit the principles from the iTunes UI we adapted. Figure 5.29 illustrates the dialog to
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Figure 5.29: Filter to customize playlists in iTunes

customize playlists in iTunes. The user is able to specify different filters using an intuitive
interface to specify rules that either match to all elements or any element in a music
collection. Besides this quantification, users may choose from a list of attributes of a music
file, here: media kind, artist, and genre. Depending on this type, operations to compare
are given. These differ for strings (starts with), categories (is/is not), or numbers such as
ratings (less then, more than). User concatenate statements to the collection that apply to
all or any conditions.

ModelGlue incorporates a similar design to specify merge rules with model expression
language (MxL) [Re13]. While the iTunes dialog serves users to specify a filter that is
applied to a collection of elements, our solution intends to specify rules applied to a specific
conflict.

Kirschner [Ki14, p. 46] presents a design to specify multiple merge rules at once. Figure 5.30
illustrates a dialog6 to configure rule-based actions that are invoked in the event of particular
model conflicts. The general structure consists of two boolean expressions (➊ and ➋
in Figure 5.30) which check conditions of involved ModelElements and may trigger
an action (➌ in Figure 5.30). Each condition can be restricted to a particular type
kind of ModelElement (➍ in Figure 5.30) which can be chosen from a drop-down list
(➎ in Figure 5.30). This design brings together the notion of a filter (cf. also Section 5.3.1.5
and Section 5.3.2.6) and the definition of rules for entire ranges of operations. As illustrated,
new conditions for an element can be added or removed (➏ in Figure 5.30) which sets the
scope of the rule beyond the possibilities of type checking of ModelElements. These
conditions are evaluated regarding the applied change, i.e. the comparison assumes that the
change already is applied to the ModelElement. This can be accomplished since both

6Note that ‘object’ reads as ModelElement and ‘Page’ as Object in Figure 5.30.
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ModelElements are physically in one system and represented by a persistent version,
i.e. the latest revision of a ModelElmenent in different branches. This way, the user
compares states. Note that reaching this rule already implies that both ModelElements
are related (cf. Section 5.2.5.1). An action on the other hand (➐ in Figure 5.30) can be one
of {update object, delete object, create new Object, ...}. We envision situations in which
attributes must be updated, deleted, or created (➑ and ➒ in Figure 5.30).
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Figure 5.30: Annotated screenshot of the dialog to specify merge rules developed by
Kirschner [Ki14, p. 46])

An alternative design of this dialog has a smaller focus, is more precisely in its context,
but requires considerably more effort to define rules for entire ranges of operations or an
entire conflict resolution strategy. Since our idea is that an organization adapts a predefined
resolution strategy in an incremental manner, we considered an alternative UI shown in
Figure 5.31. At a first glance, it conveys a lean design. It has been our intent to initially
hide complexity from the user.

In contrast to the design proposed by Kirschner, this dialog already specifies two concrete
types of a ModelElement (➊ in Figure 5.31) and two concrete Operations concurrent
Changes intend to apply in the course of the merge (➋ in Figure 5.31), i.e. a rule specified
by this dialog represents one cell in the conflict resolution strategy matrix (cf. Figure 5.28).
Commonly, for one of Kirschner’s range-rules, one has to configure one rule for each
operation issued for involved objects. To recap what was detailed in Section 5.2.5.6, one
could end up with 25 case for each range-rule. However, we foresee that Kirschners design
bares the risk of over-generalizing cases. Range-rules have drawbacks as they only compare
states of objects with no context information about the performed operation whatsoever.
This makes it considerably harder to cope with involved complexity once more rules, e.g. on
cell level of the conflict resolution strategy, are involved.

We kept the basic if-then structure. At the bottom, an action can be defined (➌ in Fig-
ure 5.31) that is applied on a query result which must be a ModelElement (➍ in Fig-
ure 5.31). Depending on the chosen operation, another query is shown (➎ in Figure 5.31).
In this case, a query for a ModelElement is set to another query result which is composed
of attributes of both changed ModelElements. If both arguments of the ‘+’ operator are
strings, MxL detects the operation as a concatenation of strings [Re13, p. 27] and returns
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Figure 5.31: Screenshot of the dialog to specify merge rules (minified)

one string. Note that elements a, and b are injected in the expressions scope and are, thus,
accessible for the user via the identifier a, and b. If required, the dialog can be expanded
in two ways to support more complex operations. First, multiple actions are supported
(➏ in Figure 5.31) as well as the scope of both involved ModelElements can be specified
by adding conditions (➐ in Figure 5.31).
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Figure 5.32: Screenshot of the dialog to specify merge rules (expanded)

On click, a condition is added (➊ in Figure 5.32). Thereby, the first condition always comes
with the logical and conjunction (➋ in Figure 5.32). A condition is a boolean expression
specified in MxL (➌ in Figure 5.32). Further conditions can be either added or removed
(➍ and ➎ in Figure 5.32). Conjunctions only embrace and and or (➏ in Figure 5.32)
since MxL implements the actual logic and also includes not. Via indenting conditions
(➐ in Figure 5.32) additional criteria can be specified. Conditions can be specified for both
ModelElements involved in a conflict (➑ in Figure 5.32) as well as one can specify further
actions (➒ in Figure 5.32). In this example, changes on b are discarded (➓ in Figure 5.32).
We also foresee that performing consistency checks and other mechanisms to ensure model
quality could be performed. Since this dialog can define queries for any ModelElement
and its Attributes accessible by MxL, further build-in system properties such as ‘last-
modification date’, ‘creation date’, ‘responsible role’, ‘last writer’, etc. are available to
configure an organization-specific conflict resolution strategy.

Although the UI dialogs are meant to ease the configuration of an organization-specific
conflict resolution strategy, we are aware that both UIs are considerable complex regarding
the implied logic one is able to configure with simple click operations. However, both
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designs aim at an experienced audience with advanced technical skills, i.e. EA repository
managers or EA modeling experts.

5.3 Interactive Visual Support

Merging models can be regarded as a complex task. Such a complex task can be facilitated
by advanced user interfaces to make use of human cognition that is especially strong in
identifying patterns in complex information represented visually7. Visualizations are a
common means in EA management not only to identify and prioritize problems but also to
discuss the current state of an EA as well as to discuss planned states thereof in order to
develop transition plans that implement changes.

In ModelGlue, we employ advanced user interfaces that combine interactions known
from UI components as well as common visualizations known from EA management. The
interactive visual support discussed in this section is twofold. First, we propose visual
support for analyzing differences in models and metamodels. Then, we introduce an
interactive conflict management dashboard.

5.3.1 Visualizing Metamodel and Model Differences

ModelGlue empowers users to view at the differences of two metamodels and differences
of respective models visually. This view is generated with respect to the origin of both
models. ModelGlue represents model as well as metamodel differences in one interactive
view augmented by additional information.

In [RM14], we present a preliminary version of an approach to visualize model and metamodel
conflicts. The present thesis builds on this version and presents key concepts. Figure 5.33
illustrates a conceptual overview of the visualization. As suggested by Lidwell et al. [LHB10,
p. 146], we use layering to manage complexity. The main idea is to use the metamodel as
navigation to drill down to instances, i.e.Objects and their Attributes. That is, an
ObjectDefinition of the metamodel is color coded if any differences exist. The end-user
can access information at four layers via different interactions. Thereby, filtering is essential
as showing all the differences of two models (and their instances) is regarded as too complex
and the result ends in an information overload (cf. [To70, SVV99]). Figure 5.33 illustrates
the relationships of the four layers, the visual concept applied at each layer, and the typical
number of instances we regard to interact with an EA model and respective metamodel.
Visual objects at each layer serve the user as means to navigate. In the following we detail
the different layers and give a visual example for each layer.

5.3.1.1 Layer 1: Metamodel Differences

In the context of coupled evolution, Krause et al. [KDG13] annotate an UML class diagram
to illustrate their ideas. Thereby, the authors present the operations that were applied to

7For general design guidelines for visualizations we refer the interested reader to Fitts [Fi54], Tufte [Tu01],
and Moody [Mo09]; for design guidelines for information dashboards we refer to Few [Fe06].
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Figure 5.33: Four-layered interactive difference visualization for EA metamodels and models

different models visually. Krause et al. use gray color to encode concepts (classes) that are
to be preserved in a model, red to highlight deleted concepts, and green for concepts that
have been created. Besides color coding changes of constraints are added as an UML note
to the diagram. We employ similar visual concepts.

In the first layer (see Figure 5.34), we visualize the differences of two meta-models denoted
A and B. The entire metamodel is shown to the user as a graph. A graph layout algorithm
is used to arrange the vertices and edges visual appealingly. An important design criteria
to choose an algorithm is its resistance to change, i.e. the layout must be relatively stable
with respect to small changes in the underlying data. A spring graph layout algorithm for
instance commonly rearranges all the vertices such that a user ends-up with an entirely
new layout each time the graph is rendered. New ObjectDefinitions are displayed in the
background color green, altered classes in orange and deleted ones in red. In case the name
of an ObjectDefinition was altered, a two-way string diff (cf. [He78]) is applied to the
respective name descriptors (see ‘Business Application’ in Figure 5.34).

AttributeDefinitions are displayed at this level as part of the ObjectDefinition.
The number of instances of every attribute, i.e. its actual usage, and the cardinality are
given. New AttributeDefinitions are displayed green, deleted ones in red, and altered
AttributeDefinitions are displayed 1) using a two-way textual differences algorithm,
2) showing version A and B, and 3) showing their origin. Relationships are illustrated
as edges between the vertices in the graph. Newly created Relationships are displayed
green, deleted ones red, and modified, i.e. the name, source, or target in orange. Each
modification is annotated with the version a modification has been made. The respective
versions of a modification (𝐴, 𝐵, or 𝐴+𝐵) is displayed in magenta colored text. This holds
true for ObjectDefinitions, Attributes as well as Relationships. Besides differences
between ObjectDefinitions, their AttributeDefinitions and Relationships to each
other, the first layer also displays aggregated information of model differences, i.e. the
number of differences between Objects of each ObjectDefinition. Absolute and relative
values of Objects that have no differences (green, right part of the progress bar at the
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Figure 5.34: Layer 1: differences of two metamodels (schemas) A and B with aggregated
information of differences in respective models (data)

bottom of each ObjectDefinition), and Objects that have differences in the other
branch (red, left part of the progress bar of each ObjectDefinition) are shown. This
way, an end-user gets a good overview of model differences (per ObjectDefinition) just
by looking at the difference visualization of the meta-models. The user can either navigate
to the respective ObjectDefinition by clicking on its name or can click anywhere else on
an ObjectDefinition to open the next level: the instance overview for Objects that
conform to the clicked ObjectDefinition.

We summarize the color coding of this layer as follows:

blue denotes an ObjectDefinition is equivalent in both models,

black denotes an AttributeDefinition or Relationship is equivalent in both models,

red denotes an ObjectDefinition, an AttributeDefinition, or a Relationship was
deleted,

green denotes an ObjectDefinition, an AttributeDefinition, or a Relationship
was created, and
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orange denotes the name of the ObjectDefinition, a Relationship, or at least one
AttributeDefinition thereof was changed in either of the compared models.

magenta denotes the respective model a change was made in.

Besides this color coding, a progress bar indicates the differences in the respective Objects
of an ObjectDefinition, cf. Figure 5.34.

5.3.1.2 Layer 2: Model Differences Overview

To drill-down on respective model differences, a user clicks on an ObjectDefinition which
opens an overview of all instances. Again, the system shows differences using color codes
similar to the differences between ObjectDefinition and Attributes.

blue means an Object is equivalent in both models,

red means an Object was deleted,

green means an Object was created, and

orange means the name of an Object or at least one Attribute’s Value is different
than in the model that it is compared to.

The user can click on an Object to see its links to other Objects including details of these
Objects. Figure 5.35 illustrates such a detailed view for the domain of EA management.

The second layer gives an overview of the model’s instances, i.e.Objects and Attributes
(cf. Figure 5.35). The end-user already narrowed the scope of the differences down to
Objects of a single ObjectDefinition by the choice made in layer 1. As illustrated
in Figure 5.33 on p. 199, the number of instances can grow considerably large in layer 2.
For this reason, we add an intuitive filter to our interactive visualization. This way, users
can define sophisticated range filters on multiple Attributes (see Subsection 5.3.1.5). At
this layer, our design goal was preventing information overload. We chose to hide any
unnecessary details. As illustrated, just the name and the state of an Object (via color
coding) is shown to the user. The latter denotes whether an Object was altered in 𝐴, 𝐵
or both branches. When the user hovers over an Object, its details are shown. Figure 5.35
further illustrates the controls available in any of the four layers. Besides basic facilities
to zoom and navigate, the visualization can also be downloaded as Microsoft Powerpoint
Format (PPT/PPTX) presentation for further manipulation.
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Figure 5.35: Layer 2: the instance overview with object details on mouse hover

5.3.1.3 Layer 3: Neighborhood Relationships

In EA management, not only the single Object is of interest but the implications changes
might mean considering the bigger picture, i.e. an Object’s environment. In layer 3, we
show this environment to an end-user. Although EA management commonly analyzes
aggregated information [WF06], more fine-grained information such as servers and routers
also could be subject of analysis [BHS+12, BEG+12]. Considering to visualize all instances
and relationships among them, displaying 108 visual objects at once might not be unrealis-
tically. For this reason, we propose this consecutive drill-down on differences. The layout
of the nth-neighborhood of an Object is again, arranged as a graph. Thereby, the depth
of neighborhood Objects to traverse (the 𝑛) is configurable. The same color coding and
semantics like on the other layers are applied on this layer (orange: an Object was modified
in two branches; blue: no changes; red: Object deleted, green: new Object created).
This layer picks up expert feedback on an earlier version (which is also a ‘well-known’ fact
in EA management) that Relationships between Object are far more interesting than
changes of an Attribute.

202



5. Federated EA Model Management Design

Figure 5.36: Layer 3: graph representation of an 1st-neighborhood of an instance

5.3.1.4 Layer 4: Three-way Difference

If and only if the object has differences, the user can again click on the object which opens
another window showing a three-way comparison, i.e. both versions that have differences
and, if existing, the common origin.

Another click brings the user to the last layer of the interactive visualization. At this
layer, a three-way difference is shown, i.e. version 𝐴, 𝐵 and (if existing) their origin (cf.
Figure 5.37). Since only three instances are shown no further (string) differencing is needed.

We consider layer 4 the entrance point to navigate to the respective Object within the
system if any further details, such as access rights or modification date, are needed. Note
that each of the layers 2 to 4 can be opened for multiple Objects and the different views
may overlap each other or switched by the user that analyzes the model differences.
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Figure 5.37: Layer 4: three-way difference view of an instance (top) and other layers
(bottom/background)

5.3.1.5 Filtering

We facilitate the analysis of larger EA models, i.e.more instances, by employing a filter. A
conceptual mock-up of the filter is depicted in Figure 5.38. It is meant to define a query
for Objects and can be applied in layer 1 and 2 preferably. The design was inspired by
the iTunes playlist filter (cf. Figure 5.29 on p. 195). Our design goal was to empower EA
experts to configure filters without the need to program or to adapt sophisticated search
scripts. The filter can be applied to different ObjectDefinitions and, depending on the
type of AttributeDefinition that is subject to the filter, different comparators can be
used. The user can specify different rules that are applied on a specific attribute of a type
(cf. Figure 5.38). At the uppermost level, rules that are applied to a type are evaluated
using a logical or and the logical and. At the same time, or and and can be applied to
attributes of a type, too (cf. Figure 5.39). This way, multiple rules can be applied to an
entire query as the granularity of a particular type.

The result of the filter dialog is a generated JavaScript Object Notation (JSON) string. The
general structure of this string is sketched in Listing 5.1. In the prototypical implementation,
this JSON string is processed as a server-sided query, i.e. it is applied to the result of the
differencing algorithm. As illustrated, filters can be concatenated on the same level or
nested recursively (cf. Figure 5.39 and Listing 5.1). This empowers EA experts to define
sophisticated model queries.

Thereby, each attribute can be compared using the following comparators.

∙ String (applies to string values only)

– contains, filters values for a substring 𝒮𝑠𝑢𝑏 that contained in the string 𝒮
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Figure 5.38: User interface design for a dialog to specify filter rules

– begins with, filters for a certain prefix of the string

– ends with, filters for a certain postfix of the string

– not null, filters any value that is not null

– equals, filters the string for a character-wise match with another string

∙ Number (applies to number values only)

– operator =, filters values that match a given number exactly

– operator >, filters values that are greater than a given number

– operator ≥, filters values that are greater or equal than a given number

– operator <, filters values that are less than a given number

– operator ≤, filters values that less or equal than a given number

∙ Date (applies to date values only)

– equals, filters values that are on an exact date and time

– before, filters values that are before a given date

– after, filters values that are after a given date

We consider this a non-exhaustive list of filter operations and others such as ‘equals ignore
cases’ could be added. However, the more operations are added to the dialog, the more
complex it gets for users to comprehend the dialog. As we seek for an intuitive design,
together with EA practitioners, we concluded that above operations are sufficient for most
queries. More sophisticated queries can be formulated using an expression language. Such a
language on the other hand does require some understanding of programming or scripting
languages. Albeit more expressive, we claim that using an expression language requires
more learning efforts than employing an UI to define a query.

The general structure of the generated JSON string is as follows (cf. Listing 5.1):

∙ Line 1: a filter for one ObjectDefinition,

∙ Lines 2,7: the possible conjunctions whereas the first conjunction defaults to and,
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∙ Lines 3,8: the different kind of comparators users can choose from,

∙ Lines 4,9: a predicate that specifies the value which is evaluated against, and

∙ Lines 5,10: a tree of recursively nested filters that follow the same structure as the
illustrated filters (lines 2–4, 7–9).

Listing 5.1: Schematic illustration of the JSON string produced by the filter dialog
1 {"type" : [ {
2 "conjunction" : "and | or",
3 "comparator" : "contains | starts with | ends with | = | < | > | before | after

| not null",
4 "predicate" : "value",
5 "filter" : [{"conjunction" : "...", "filter" : [{"conjunction" : "..."}]}]
6 },{
7 "conjunction" : "and | or",
8 "comparator" : "contains | starts with | ends with | = | < | > | before | after

| not null",
9 "predicate" : "value",

10 "filter" : [{"conjunction" : "...", "filter" : [{"conjunction" : "..."}]}]
11 }]
12 }

We conclude this section by sketching a typical query that narrows the scope of an analysis
to view model differences (see Example 5.6).

Example 5.6: Filtering a difference visualization
The enterprise architect, John Doe, wants to view differences of the CMDB
and the current EA model with a particular focus on servers that feature
either 16 or 32 CPU cores. Since the latest CMDB update contained specific
information on applications that run on these servers, John wants also to view
the applications. To narrow the analysis, John specifies the amount of random
access memory (RAM) for the servers; servers that have 16 cores should have at
least 128 gigabyte (GB) RAM and servers with 32 cores at least 256 GB RAM.
Figure 5.39 illustrates the resulting range filter.

 RAM in GB ≥ 128 -+Server

Number of Cores = 16 -+and

 Product Name contains String -+Business Application

Owner contains String -+Projects

Name contains String -+Costs

RAM in GB ≥ 256 -+or

Number of Cores = 32 -+and

Figure 5.39: Configured filter for the difference visualization
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5.3.2 An Interactive and Collaborative Conflict Management Dashboard

In this section we elaborate on an interactive visualization that provides means to manage
and resolve conflicts in a model collaboratively.

Metamodel conflicts and 
aggregated information 
about conflicts of objects

D
rill dow

n of m
odel conflicts

Overview of model 
conflicts

Conflicts of
a single object, its 
attributes, and its 
environmental context

Conflict resolution 
task

  102 object definitions,
  101 attribute definitions 
per object definition
  104 objects

   104 objects

  101 objects,
  101 attributes per object

Visual Concept Number of instances in 
EA management

= 3 objects
  101 attributes per object

Figure 5.40: Four-layered interactive conflict management dashboard design

Figure 5.40 gives a conceptual overview of the conflict management dashboard. At a first
glance, it seems very similar to the fashion we visualize metamodel and model differences.
However, the details vary considerably. Although the general idea is similar to the interactive
visualization shown in Section 5.3.1, the conflict management dashboard is different in the
way users are able to interact with it.

In [SMR12], we distinguish between different kinds of interactions. While the difference
visualization realizes visual interactions, the conflict management dashboard also features
visual interactions that are propagated to the interaction model which finally manipulates
the underlying model. Consequently, not the visualization is not only interactive in terms of
visual manipulations, but also allows that visual changes are propagated to the respective
model. This way it can be considered as a visual domain specific language (VDSL) for
model conflicts.

In his bachelor’s thesis, Schrade [Sc13] presents tool support that allows to collabora-
tively resolve conflicts. Thereby, he integrates existing collaboration facilities known from
enterprise 2.0, social network, and collaboration platforms to facilitate communication.
Kirschner [Ki14] refined this prototypical implementation based on practitioner feedback in
his master’s thesis. In the present thesis, we describe the final design of the prototype.

Definition 5.9: Collaborative real-time conflict resolution
Collaborative real-time conflict resolution describes the collaborative efforts
that aim to resolve conflicts. These include proposals for resolutions, comments,
discussions, etc. and can be immediately mediated. �

In the following, we detail the visual concepts as well as interactions on each of these layers.
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5.3.2.1 Layer 1: Metamodel Conflicts

u

v

w

Figure 5.41: Conflict management dashboard: metamodel conflicts

Figure 5.41 shows the first layer of the conflict management dashboard. It shows the conflicts
between the different metamodels that have been merged (➊ in Figure 5.41). These conflicts
are tasks that refer to specific model elements, i.e.ObjectDefinitions (➊ in Figure 5.41)
and AttributeDefinitions (➋ in Figure 5.41). Further, it shows aggregated information
about conflicts between different models (➌ in Figure 5.41), i.e.Objects and Attributes.
The user can either click on an icon denoting an exclamation mark to open a conflict task
in order to resolve a metamodel conflict or click on an ObjectDefinition to drill-down
on conflicts of the model, i.e.Objects that conform to the selected ObjectDefinition.
The latter action opens the next layer of the conflict management dashboard. Thereby,
the scope of the viewed conflicts is already narrowed. In our evaluation, EA practitioners
regard this way of navigation intuitive (cf. Chapter 7).

5.3.2.2 Layer 2: Model Conflicts

The second layer of the conflict management dashboard is depicted in Figure 5.42. Since
the number of elements at this layer is considerably larger than on the first layer, we hide
any detail and only indicate that an Object or an Attribute thereof is conflicting with
another one (➊ in Figure 5.42). The same iconification than on layer 1 applies to layer
2, i.e. if an Object or its Attributes are in conflict the user can click the exclamation
mark to navigate to the conflict task. Note that the first layer is still visible to the user
(➋ in Figure 5.42).

208



5. Federated EA Model Management Design

u

v

Figure 5.42: Conflict management dashboard: model conflicts

5.3.2.3 Layer 3: Context of Model Conflicts

Figure 5.43 shows the third layer of the conflict management dashboard. It illustrates
a conflicting Object (➊ in Figure 5.43) and its Attributes. This view incorporates
further details, i.e. all Attributes and those that are conflicting with other changes
(➋ in Figure 5.43). Additionally, the context of the Object is shown (➌ in Figure 5.43).
Thereby, the depth of this contextual neighborhood is configurable. The objects are arranged
as a hierarchical graph visualization similar to the graph layout applied to layer 1. Note
that other layers (➍ and ➎ in Figure 5.43) are still visible to the user and are accessible
at any time. This way, users are able either to roll-up, to drill-down, or to navigate to
adjacent model elements.
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Figure 5.43: Conflict management dashboard: model conflicts in context
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Figure 5.44: Conflict management dashboard: conflicts resolution tasks

5.3.2.4 Layer 4: Conflict Resolution

Figure 5.44 shows the fourth layer of the conflict management dashboard. After drilling
down on a specific conflict, this layer allows users to find and apply a resolution. Since
every conflict is stored as a task, it also has a due date (➊ in Figure 5.44). The task and
respective conflict can be immediately ignored by setting a flag (➋ in Figure 5.44). All
operations applied by different users are visualized in a tabular manner (➌ in Figure 5.44).
This table lists the source, a description of what was changed, the actual values that were
applied, a precise timestamp, and the roles that issued the change.

Since our metamodel allows to store objects, attributes, and values that do not conform to
their definitions, i.e. violate constraints, the user can apply any of these values (➍ in Fig-
ure 5.44). However, in practice, the different involved parties typically agree upon one value
that represents the state of affairs in the real world. The changes can be applied to the
model with information about the user initially performing the change (➎ in Figure 5.44).
Each task can be forwarded to another user which enables asynchronous collaboration
(➏ in Figure 5.44). In the next section, we discuss how the conflict management dashboard
allows synchronous collaboration.

5.3.2.5 Collaboration

Figure 5.45 depicts conflict management dashboards of two different users. Via the collab-
oration button (➊ in Figure 5.45), different features are enabled that allow synchronous
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collaboration. The conflict management dashboard realizes different collaborative fea-
tures detailed in the following. First, users must be added to a collaborative session
(➋ in Figure 5.45). The communication can take place via voice (➌ in Figure 5.45) or
chat (➍ in Figure 5.45). Furthermore, different mouse cursors are shown to facilitate
the discussion (➎ in Figure 5.45). This real-time collaboration can be compared with
screen sharing. However, different access rights are enforced for each user individually.
Interactions on the visualization are synchronized such that each user that has joined the
conflict resolution session gets the same state of the visualization with respect to individual
access rights. That means, if different access rights apply (➏ in Figure 5.45), different
visualizations are shown. Information that is not visible to all parties is depicted with a
different opacity to inform the user about the different access rights on this model element.
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x

x

y

z

Figure 5.45: Conflict management dashboard: collaboration with distributed access rights

5.3.2.6 Filtering

Figure 5.46 depicts a screenshot of the filter dialog within the prototypical implementation
of ModelGlue. In addition to the conceptual dialog (see Figure 5.41 on p. 208), we added
a checkbox to indicate that only model elements for which tasks exist are displayed in the
conflict management dashboard (➊ in Figure 5.46).
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For each Object, all attributes are shown (➋ in Figure 5.46) and depending on the type
of this Attribute, users can choose from a set of comparators (➌ in Figure 5.46) and
type in a value (➍ in Figure 5.46) that is used to compare the Attribute’s value with.
Filtering rules can be concatenated logically by adding further rules (➎ in Figure 5.46).
Users can either add rules on the same logical level (➎ in Figure 5.46) or add sub-rules
(➏ in Figure 5.46). Sub-rules are displayed as indented rules (➑ in Figure 5.46). All rules
are logically concatenated with and (➑ in Figure 5.46) or or conjunctions (➒ in Figure 5.46).
Users are also allowed to remove rules (➐ in Figure 5.46).

In a final step, the filter is applied to the conflict management dashboard (➓ in Figure 5.46).
If the conflict management dashboard is in collaboration mode, this filter is propagated to
the different parties currently participating in the conflict resolution session. Although the
filter is used to query model elements, individual access rights are applied to each view of
the conflict management dashboard during the conflict resolution session.

u

v w x y

z {|

}

~

Figure 5.46: Screenshot of the user interface for a dialog to specify filter rules

Our final note on the design of the filter are further design considerations we had during its
development. We considered an increase set of interactions for each condition. Our idea
was to provide controls for indenting >, unindenting <, moving up ∧, or moving down
∨ a condition. However, we chose to prefer a lean design over adding additional control
elements to the dialog.

5.3.2.7 Printing

ModelGlue supports face-to-face communication by providing print support for its
visualizations (cf. Section 6.3). Figure 5.47 depicts the basic controls of an interactive
visualization; as these are straight-forward, we just provide a very brief description. Besides
zoom (➊ in Figure 5.47) and navigation facilities (➋ in Figure 5.47), the collaboration mode
and filter can be toggled (➌ in Figure 5.47).

Moreover, the visualization can be downloaded in one of the formats, PPT/PPTX, Open-
Document Presentation (ODP), Portable Network Graphics (PNG), or Scalable Vector
Graphics (SVG). This way, one can print the visualization and use the visualization in
meetings, e.g. to mediate model conflicts. Thereby, it is important that the visual ele-
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wu yv

Figure 5.47: Navigation controls and download menu of the ModelGlue’s visualizations

ments can be manipulated for the non-rasterized formats, i.e. PPT/PPTX, ODP, and SVG
(➎ in Figure 5.47). This way, one can alter the visualization easily and present ideas or
intermediate results that build a starting point for discussions to resolve conflicts.

5.4 Summary

In this chapter we detailed a holistic concept of Federated EA Model Management. Key
to its design is an iterative approach to integrate information sources and the notion of
tasks to facilitate collaboration. This design is based on the assumption that bi-directional
technical interfaces between an EA repository and multiple information sources are too
costly. As a solution, tasks are used to resolve conflicts within the federation, i.e. in the
EA repository as well as in all integrated information sources. We provide a design to
support quality assurance through visual differencing during the iterative Federated EA
Model Management process and incorporate tasks in an interactive conflict management
dashboard.

We described a process for Federated EA Model Management that is based on results of our
research and incorporates feedback from multiple surveys and interview series with industry
experts (cf. Chapter 7). This process is used as a vehicle to describe the core principles and
design of ModelGlue—the software-support for Federated EA Model Management. In
the next chapter, we give an overview of some important implementation aspects with a
focus on the interactive visualizations.
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Chapter 6

Software Support for Federated EA Model Management

In this chapter, we reveal implementation details of ModelGlue. Our implementation is
based on the Enterprise 2.0 platform initially developed by Büchner [Bü07] and extended
by Neubert [Ne12]. We detail significant parts of the implementation, i.e. extensions of
access control, tasks, and interactive visualizations.

6.1 Architecture of ModelGlue

Figure 6.1 depicts the component architecture of ModelGlue. Note that for the sake of
clarity not all dependencies are displayed and the actual implementation is more complex.
In line with Neubert [Ne12, p. 90], we divide the architecture into the classical Model
View Controller (MVC)1 structure to categorize the components by their technical core
capabilities.

Model denotes components which are primarily concerned to facilitate modeling and
storing information.

View denotes components which are primarily concerned to facilitate the (visual) commu-
nication information.

Controller denotes components which are primarily concerned with the flow of events or
computations.

From bottom-up, multiple Federated Systems which denote the different information sources
are shown. We assume a certain structure which is fairly general. Besides the general

1For a comprehensive description of the MVC pattern we refer to Gamma et al. [GHJ+94] and Sommerville
[So11, p. 115].
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MVC structure, the Federated Systems are divided into general modeling capabilities and
specialization which implements domain specific workflows and UIs. For Federated EA
Model Management, a central point here is that the model is stored in a persistent manner
and accessible via an API. This holds true for the model as well as for the metamodel. An
alternative often used in practice is to import (semi-)automated exports that are exchanged
though spreadsheets (cf. Chapter 7). In these cases, the metamodel is often hardcoded and
communicated on paper or presentations than via an API.

Further, Figure 6.1 depicts a Federal System that is presented as a four layered application
architecture, i.e. the import, modeling, conflict detection, and conflict resolution layers. The
importer connects various information sources and imports model as well as metamodel
changes to the import model stored within the Federal System. Depending on the information
sources, the differences of a model to its previous version have to be calculated manually if
the information sources deliver time slices rather than incremental changes. A differencing
widget can be used to view the differences of models which can be either previous versions
of a model or different models (cf. Section 5.3.1). The model merger integrates models with
each other under the usage of the conflict resolution strategy configured in the conflict
resolution strategy widget. During the (collaborative) merge of models, the workflow engine
serves to maintain the states of tasks and allows to forward tasks whereas the task manager
creates new tasks and determines addressees of tasks employing information stored in the
persistency component and the fine-grained access control manager. Tasks can be either
accessed via the tabular view denoted conflict list widget or via an interactive conflict
management dashboard. This visualization is generated by a visualization generator in
multiple model-to-model transformations.

6.1.1 Configuration of Variability Points

Throughout the development, we discussed different variants of the architecture presented
above. In the following, we outline the most significant variability points and state how
these are configured in the prototypical implementation of ModelGlue.

Integrated vs. loosely coupled EA repository. The EA repository can be either
loosely coupled or integrated directly in the Federal System. In ModelGlue, we integrated
the EA repository and the Federal System into one information system.

Integrated vs. loosely coupled information source. Similarly to the EA repository,
an information source can be coupled with the Federal System directly. A directly integrated
information source does not need a separate export and import model. In ModelGlue, we
did not integrate any information source directly but rather developed import mechanisms.
For each information source, a separate export model outside of ModelGlue as well as an
import model within ModelGlue exists.

Automated vs. manual exchange of metamodels. In ModelGlue, we do not
exchange metamodels automatically. However, we ‘duplicate’ changes within the information
source’s metamodel such that mechanisms for metamodel differencing and conflict detection
can be utilized and demonstrated for evaluation purposes.
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Figure 6.1: Architectural overview of ModelGlue as UML component diagram
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6.2 Extending a Non-rigid Typed Repository with Tasks

In this section, we describe how our conceptual design of ModelGlue maps to an existing
system and present extensions thereto which fit the needs of ModelGlue.

For the prototypical implementation, we extended Tricia, an enterprise 2.0 platform intro-
duced by Büchner [Bü07] and extended with flexible, i.e. non-rigid typed model capabilities,
by Neubert [Ne12]. Neubert explains how the concept of non-rigidity support the bottom-up
evolution of models and introduces five stages that guide users from non-rigid to rigid typed
model [Ne12, pp. 37,41–43]. His model offers the flexibility that can be exploit to realize a
repository that offers the necessary degree of freedom during conflict resolution. Building
on Neuberts work, Kirschner [Ki14, p. 21] illustrates a mapping of the conceptual founda-
tions of ModelGlue to the metamodel of Neubert [Ne12, pp. 18,92]. Thereby, Kirschner
illustrates the extensions and concepts reused throughout the prototypical implementation
of ModelGlue. We refer to Kirschner [Ki14, p. 21ff] for an extended version of Neubert’s
metamodel (cf. Appendix B).

In the subsequent sections, we detail how the roles and responsibilities are realized in the
prototype and how tasks have been made accessible for end users.

6.2.1 Roles and Model Actions

Roles are realized as so called Principals within Tricia. The implementation details
are extensively discussed by Neubert in [Ne12, pp. 20–22]. He advocates not to define
access rights on Attributes and AttributeDefinitions. To some extent, Neubert’s
implementation derives default access rights from a Model. For ModelGlue, however, a
more fine-grained access control is necessary. In order to realize the chain of responsibility
as proposed in the design of ModelGlue (cf. Section 5.1.2.4), we introduce a new subclass
of Principal and incorporated it into the existing system. For the exact implementation
details, we refer the interested reader to Kirschner [KR14, p. 21ff]. The changes implemented
by Kirschner have several implications on the UI. In the following, we give an overview how
one can set access rights in the prototypical implementation of ModelGlue.

In Tricia, a Model is also called space or workspace. Figure 6.2 depicts such a workspace
and its actions. For each workspace, a principal is held responsible (➊ in Figure 6.2).
Further, we extended the actions for a workspace. New operations ➋–➎ in Figure 6.2
are specific to support the Federated EA Model Management process (see Figure 5.6 on
p. 143). Branching a model (➋ in Figure 6.2) creates a clone with the reference to its origin.
Merge (➌ in Figure 6.2) triggers a manual merge that can be executed according to the
merge algorithm as specified in Section 5.2.5. Differences of models can be calculated and
visualized (➍ in Figure 6.2) as described in Section 5.2.4. Importing information from an
information source stored in an XLS/XLSX spreadsheet that is uploaded to the system can
also be triggered manually (➎ in Figure 6.2). Further capabilities that are used to facilitate
ModelGlue with the technical system Tricia, e.g. altering the metamodel, are described
by Neubert in [Ne12, ch. 4].
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Figure 6.2: Access right dialog of a Model
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Figure 6.3: Access right dialog of an ObjectDefinition
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Figure 6.3 depicts the UI that can be used for managing access rights of a single Ob-
jectDefinition. The permissions (➊ in Figure 6.3) have been altered such that they are
applicable for an ObjectDefinition and serve as default access rights for the Attribut-
eDefinitions (cf. Section 5.1.2.4). Further, all AttributeDefinitions are shown and
can be edited (➋ in Figure 6.3). As described in Section 5.1.2.4, the default access rights
are inherited from the Model, i.e. space in Tricia.

u

v

Figure 6.4: Access right dialog of an AttributeDefinition

Figure 6.4 illustrates the edit dialog for a single AttributeDefinition. The dialog enables
one to specify a responsible role for each attribute (➊ in Figure 6.4). Moreover, it allows to
override access rights of the respective ObjectDefinition (➋ in Figure 6.4). Here, the
Attribute ‘Name’ can only be written by the user ‘John Doe’.

Figure 6.5 shows the access rights dialog for a single Object. The default access rights for
an Object are determined by the access rights of its ObjectDefinition.

Figure 6.6 shows the edit dialog and the access rights for a single Object. As illustrated,
only on a click on the ‘Permissions’ button, the access rights are shown. In most cases,
the access rights on Attribute and AttributeDefinition stay the same. However,
practitioners find this configuration of access rights for one Attribute meaningful. From
a user perspective, the access rights are copied from the AttributeDefinition. If these
do not exist, the access rights of an Object or ObjectDefinition are used. The user can
then override these defaults with custom access rights for a specific AttributeDefinition.
Internally, the system implicitly detects if default access rights are restored by the user.
From a user perspective, only effective access rights are shown such that the complexity to
find these effective access rights and where they originate from is hidden entirely.

Figure 6.7 shows the dialog to invoke the model differencing. This includes the calculation
of differences and subsequent visual analysis. The current model is already configured as
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Figure 6.5: Access right dialog of an Object

Figure 6.6: Access right dialog of an Attribute

default for one side (➊ in Figure 6.7), whereas another model must be entered by the user
(➋ in Figure 6.7). Thereby, the autocomplete feature of Tricia (cf. [Ne12, p. 112]) supports
the user such that only spaces, i.e.models, are proposed.

In Figure 6.8, we depict the UI to configure the merge of different Models. By default,
the current workspace is already selected as one of the source models and as the target
of the merge action (➊ and ➌ in Figure 6.8). The user is supported by the autocomplete
feature of the system during the input of the models that are merged (➋ in Figure 6.8).
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Figure 6.7: A dialog to configure the differencing of Models
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Figure 6.8: A dialog to configure a merge of Models

Moreover, users can choose a conflict resolution strategy that is applied throughout the
merge (➍ in Figure 6.8). Besides this strategy, one might prefer a model over another during
conflict resolution. This preferred model can be specified in ➎ in Figure 6.8. The dialog
does invoke a long-lasting merge process. For this process, the target model is transfered to
a preview workspace that is used during the conflict resolution. If anything goes wrong,
e.g. the enterprise architect configured a customized merge rule (cf. Section 5.2.8.4) that
deletes ‘random’ model elements, the preview workspace can be deleted and no effective
changes to the involved models are made. Further details on the UI design can be found in
[Ki14, ch. 3].

6.2.2 Tasks

In ModelGlue, we rely on tasks to 1) enable collaboration among different parties, 2)
store information on a conflict, 3) realize a flexible conflict resolution process. Besides the
interactive conflict management dashboard, we provide a tabular view on model conflict
tasks. Figure 6.9 shows this view of model conflicts within Tricia. In our initial design,
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Figure 6.9: Tabular overview of model tasks within Tricia

223



6. Software Support for Federated EA Model Management

we regard this representation not particular suitable to facilitate the resolution of conflict
since the context information is not represented visually. However, during the evaluation,
one practitioner specifically referred to this tabular overview as an intuitive way to resolve
conflicts. The task overview includes meta-information of the merge action (➊ in Figure 6.9).
Further we show tasks that are directly assigned to a person (➋ in Figure 6.9) and through
membership in a group (➌ in Figure 6.9). For each task, the different involved branches of
an EA model are shown (➍ in Figure 6.9). Within Federated EA Model Management, an
import model is a branch of the EA model that is synchronized with an information source
(cf. Section 5.2.2). The user can choose from different changes of a task (➎ in Figure 6.9)
and subsequently the task can be marked as resolved (➏ in Figure 6.9). An approve tasks
allows to revert changes if necessary (➎ in Figure 6.9). Note that information on this level
is only presented partially as the UI hides some details.
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Figure 6.10: Tabular view of conflict task details within Tricia

Another dialog shows these details of a task. In Figure 6.10, we illustrate this dialog. Similar
to the tabular overview dialog, it shows relevant metainformation for a task (➊ in Figure 6.10).
Further the model element affected by the changes is given (➋ in Figure 6.10). During the
evaluation, one practitioner noted that notifications via e-mail could be incorporated since
their collaboration culture heavily relies on email. This feedback has been incorporated
in the final design of the tasks (➌ in Figure 6.10). Further, a classification of the conflict
that has been detected is shown (➍ in Figure 6.10) as well as a direct link to the involved
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elements (➎ in Figure 6.10), which allows to view the actual information of that element in
context. The different changes with their details, e.g. the user that issued the change, the
date and time, as well as the implied modifications of the change, are shown. Similar to the
tabular overview of model conflicts, a user can apply changes (➏ in Figure 6.10).

6.3 A Framework for Interactive Visualizations

In [SMR12] we detail a conceptual framework that builds the foundation for the imple-
mentation we present subsequently. The conceptual framework builds on the works of
Wittenburg [Wi07, p. 89ff and p. 131ff]. Although Wittenburg presents a comprehensive
Visualization Model [Wi07, p. 115ff], his model does not include interactive elements.

Special to the EA management discipline is the evolutionary characteristic of an EA model
and its metamodel (cf. Section 2.1.4). Commonly, at the beginning of an EA endeavor,
questions (i.e. concerns) are not entirely clarified or not of interest, yet [RHM13a]. Thus,
the underlying framework is developed in a loosely coupled manner to be able to visualize
information that conforms to arbitrary metamodels.

The presented concepts in Section 5.3 employ mechanisms to drill-down information by
visual interactions. In information visualization, this is sometimes also called semantic
zoom.

Definition 6.1: Semantic zoom†

Semantic zoom describes the ability of an interactive visualization to add
(contextual) information when zooming in or respectively remove (contextual)
information when zooming out.

†Synonym(s): adaptive zooming [CG02] �

In the remainder of this section, we detail how semantic zoom is realized within our
prototypical implementation. Thereby, the combination of visual elements with interactions
poses a particular software engineering challenge for the tool support of Federated EA
Model Management. First, we present the architecture of the visualization component and
outline general principles. Then, we detail how the visualization framework can be applied
to implement an interactive conflict management dashboard introduced in Section 5.3.2.

6.3.1 Architecture

Figure 6.11 sketches the architecture of the visualization framework implemented to realize
the visualization component of ModelGlue. In the following we describe core concepts
therein.

∙ A VisualizationObject denotes every object that is included in a visualization. It
carries an identifier that is unique within the visualization component. This way, all
visual or interaction concepts can be traced to VisualizationObjects.
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Figure 6.11: Architecture of the Visualization Component of ModelGlue

∙ A ViewpointFactory which serves as a registry for viewpoints that are available.
These AbstractViewpoints can be fetched by name. The factory does not return
instances but only the class of the respective AbstractViewpoint.

∙ A RendererFactory serves as a central registry for Renderers.

∙ The abstract class Renderer performs operations of the rendering process which
are common for all target formats. Its subclasses perform any format specific actions
including preprocessing and postprocessing of a visualization.

∙ An AbstractViewpoint is a special VisualizationObject that denotes a visual-
ization type (cf. [RZM14, p. 35]) that can instantiated on its own, i.e. its subclasses
implement concrete viewpoints which can be instantiated to views (cf. Section 2.1.2).

∙ An AbstractElement is a unique object identified via a URI and carries a name
that serves as a label for visual objects that represent this element. The general
idea is that subclasses of the AbstractElement implement visualization specific
structures that are convenient to traverse in the specific visualization algorithm.

226



6. Software Support for Federated EA Model Management

∙ The interface Databinding denotes subclasses that transform information represented
in a source format to a target structure that is convenient to traverse in the viewpoint.
Within the bind() method of each subclass, this model-to-model transformation
is performed. The binding performs queries on the source model, applies filters
(cf. Section 5.3.1.5) and transforms the model into a view model. This view model
denotes the intended part of a model that is visualized later on. The Databinding
subclasses are aware of any filters that can be applied on both, the source and target
structure of the model-to-model transformation.

For each visualization type, a concrete Databinding exists. This concrete Databinding
may exist for different formats. Thus, each concrete Databinding implements its interface
and extends an abstract class, e.g.HybridDatabinding, which can be employed to send
queries to a concrete format. Thereby, the DummyDatabinding denotes a format that
generates Plain Old Java Object (POJO) model elements which serve as a stub (or dummy)
for development purposes. This way, development is considerable faster since developers
do not have to provide concrete information and they can abstract from the underlying
information store. A concrete example is given by the Cluster. It accesses a concrete
Databinding, e.g. the HybridDatabinding, through the interface ClusterDatabinding
and uses the methods defined therein to traverse information.

After describing the core concepts of the visualization framework, we introduce some
additional classes that make up the processing pipe.

6.3.2 A Model for Interactive Visualizations

The abstract visualization model incorporates the notion of interactivity and visual symbols.
Wittenburg [Wi07, p. 119] also presents a visualization model in his PhD thesis. He focuses
on mere drawing aspects and the model driven generation of visualizations and, thus, his
approach does not incorporate interactivity. In the following section, we refine his model
and subsequently detail how interactions are added to this extended visualization model.

Besides the framework of Wittenburg, many frameworks exist that can be employed to
foster user interaction. For instance:

∙ fat client solutions that run as standalone application

– cross-platform user interface components, e.g. Java Swing [LEW+02].

– interface components that incorporate visualization capabilities, e.g. Java Ab-
stract Window Toolkit (AWT) [Zu97],

– frameworks, tools, and facilities for the development of an arbitrary visual domain
specific language (DSL), e.g. EMF [SBP+09],

– ...
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∙ web based solutions that allow users to view the interface of the application within a
browser

– server-based processing and/or programming followed by web-based rendering of
complex UI elements, e.g. JavaServer Faces (JSF) [Be04] or Google Web Toolkit
(GWT) [HT07],

– server-based or script-based approaches to generate an object graph and render
visualizations on the client-side, e.g. [RHZ+13] or Raphaël [Ba13],

– ...

While current frameworks separate visual and interaction aspects rather strictly, the
abstract visualization model presented below uses a common model for both aspects.
Moreover, current frameworks to either concentrate on mere drawing aspects or focus on the
implementation of VDSLs. In line with the latter category, we opt to view at a visualization
of an EA as a model-to-model transformation. More precisely, as multiple model-to-model
transformations. In [SMR12] we presented the interrelationships of the abstract view model,
view model, and the view data model with the abstract visualization model, the visualization
model, and the symbolic model. In this publication we concentrated on giving an overview
of the interplay of different models in the course of model-based, interactive visualizations
for EA management. In the present thesis, we present details of the visualization model
in Figure 6.12 and assume the reader is familiar with the general idea to generate an EA
visualization in a model-driven manner presented in [SMR12].

Although incorporated entirely, for a better understanding, we separate the explanation of
the abstract visualization model. In a first step, we explain the mere drawing aspect of the
visualization model. Before we proceed, we introduce an important term in this context. In
computer vision and information visualization, a scene graph is an “ordered collection of
grouping nodes and other nodes. Grouping nodes [...] may have children nodes.” [In97]. In
our framework, a scene graph is represented as an object graph.

Definition 6.2: Object graph
An object graph is a directed graph of objects that may include cycles. Objects
thereby are virtual items represented within memory and may or may not
correspond to real-world objects. �

∙ The VisualizationObject is a uniquely identifiable object within an instantiated
visualization. It is central to the visualization model and can present 1) an entire
visualization, 2) visual elements or composites of visual elements, 3) interactions or
composites thereof. Through an adapter, it can pose as either a CompositeSymbol
or a Symbol. This way, the dimensions of an interactive visualization can still be
manipulated while holding interaction elements. The interplay with interactions is
further detailed below.

∙ The CompositeVisualizationObject serves as a container realizing the composite
pattern (see Gamma et al. in [GHJ+94, p. 163ff]). It serves to view interactions and
visual elements as one container and realized the object graph in ModelGlue.
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Figure 6.12: Abstract visualization model for interactive visualizations
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∙ Symbol is similar to the VisualizationObject, however, limited to visual elements
that do not carry any interaction. Renderers that do not support interactions and are
rather meant for printing purposes, e.g.PNGRenderer or PowerpointRenderer,
process Symbols only. A Symbol further can feature a Hyperlink. We regard
Hyperlinks not necessarily as an interaction. The interacting nature of Hyperlinks
is format specific, e.g. in common browsers, a click on an object with a link means
following that link to its destination. However, since we also support formats that do
not support interactions, Hyperlinks can also be represented through mere visual
concepts, e.g. footnotes within a text.

∙ CompositeSymbols implements the composition pattern with the class Symbol
as its elements. It implements a variety of utility functions to move a set of visual
elements through the two dimensional space. This particular function is implemented
in two different ways. One manipulates an object by a relative position whereas the
other adds or subtracts an absolute measure to all visual elements.

∙ PlanarSymbols are two dimensional visual symbols that users can actually have a
look at. Its position is given as a tuple of (𝑥|𝑦) coordinates that describe the top left
corner of a visual object. Additionally, each PlanarSymbol has dimension it spans
in the two dimensional space determined by its width and height. The class offers
additional functions to translate, rotate, and scale visual elements. Other parameters
of the PlanarSymbol are concerned to determine the appearance of the border
(color and width) of a visual object, its opacity, fill color, etc.

∙ Separator is a Symbol, because it is visible visually but does not feature properties
common to a PlanarSymbol, i.e. it represents for instance empty space within a
table cell.

In contrast to Wittenburg [Wi07, p. 135], visual elements, i.e. instances of Symbol, comply
to a coordinate system with the origin 𝑃 (0|0) at the top left as commonly for other
state-of-the-art visualization frameworks [Ba13, BOH11, BH09, HA08, HCL05].

Figure 6.12 also illustrates the different color types. Starting with the abstract class
Color, we represent a single color in class SolidColor, realize gradients within the class
ColorGradient that combines several ColorTransitions with different offsets to a
composition. Example 6.1 gives an impression how the gradient is calculated based on the
different ColorTransitions.

Example 6.1: ColorGradient with four ColorTransitions

solidColor: black (#FFFFFF)
angle: 0°
offset: 0

solidColor: white (#000000)
angle: 0°
offset: 25

solidColor: black (#FFFFFF)
angle: 0°
offset: 75

solidColor: black (#000000)
angle: 0°
offset: 100

Color 1 Color 2 Color 3 Color 4

Figure 6.13: ColorGradient with four ColorTransitions
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Note that the angles in Figure 6.13 are given in degrees whereas the SolidColor
offers a finite set of color constants or uses Hypertext Markup Language (HTML)
color codes; the alpha channel of a SolidColor is set to 100% by default.

Often, the specific color assigned to a visual element is determined by a particular value.
Such a behavior is realized within the class ScaledColor. The actual color that is
assigned to an object depends on the value passed to the getColorByValue method.
Subclasses of ScaledColor refine how this calculation is performed. In case of the
class IntervalScaledColor the calculation of the color depends on a range between
startColor (assigned to min) and endColor (assigned to max). Intermediate colors for
values between min and max are calculated such that Colors for values in a continues
manner are returned. Another color type is OrdinalScaledColor. In contrast to the
IntervalScaledColor type it has several ranges a value could fall into. Depending on
the range a value is in, the respective Color gets assigned. Thus, it does not calculate
colors in a continues manner but returns rather discrete colors. The final color type
is NominalScaledColor. While values passed to this class may be numerical the
NominalScaledColor, looks up the assigned color for a particular value in a map and,
thus, could also be considered a simple LUT for colors.

When drawing different symbols as a group, it is beneficial to get the dimensions 𝑑(𝑥, 𝑦, ℎ, 𝑤)
of an entire container. This is realized by the next composite pattern whereas Symbol is the
component, the CompositeSymbol serves as composite, and subclasses of PlanarSymbol
serve as leafs.

Before we explain the subclasses of PlanarSymbol, we detail how the absolute width
𝑆𝑎𝑏𝑠
𝑤 and height 𝑆𝑎𝑏𝑠

ℎ of it is calculated in Equation 6.1.

𝑆𝑎𝑏𝑠
𝑤 = 𝑆𝑤 + 2 * 𝑆𝑏𝑤

𝑆𝑎𝑏𝑠
ℎ = 𝑆ℎ + 2 * 𝑆𝑏𝑤

(6.1)

Whereas 𝑆𝑏𝑤 denotes the border width of a symbol and 𝑆𝑤 and 𝑆ℎ denotes the width and
height of a PlanarSymbol. As illustrated, the border width must be added to get the ab-
solute size of a PlanarSymbol. In line with Wittenburg [Wi07] and Mykhashchuk [My11],
we outline the most important subclasses of PlanarSymbol, their essential properties,
and the most important methods.

Text is used to represent literals within the visualization. The methods,
getRealTextWidth() and getRealTextHeight() are often used for layouting purposes
during the transformation within a visualization. These methods can be used to determine
the actual height and width of a text with a given horizontal and vertical alignment, font,
etc. If a Text object requires more space than specified by its width, i.e. it requires more
space than it should, it gets shrunk to its width. We exemplify this technique below.
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Example 6.2: Cutting text to a specific width
A Text object with width=2cm can only contain several literals in a visual
representation. Figure 6.14 shows the original text and the text after it has
been cut by the algorithm that is applied within the visualization framework.

This is the actual text

This is the a...

(original)

(cut)

6cm 

Figure 6.14: Cutting literals within the visualization framework

Note that a tooltip is used to show the user the original text. Point is a small dot
with predetermined width and height values that are fixed. A Point also carries two
coordinates. Thus, it is also used by the Polyline to specify the path of a line. Polyline
is a line that is made up of a path which is not closed. The Polyline further comes
with different Linestyles and features two Arrows (star and end) that initially are set
to null. Polygon subclasses may realize more sophisticated shapes such as Chevrons.
Mykhashchuk [My11] details substructures often seen in information visualization that are
Polygons. Although she classifies the Chevron as a Symbol, it can be implemented
best as a Polygon in our framework. In contrast to other PlanarSymbols, the position
of a Polygon and Polyline is determined as follows. Let 𝑃 (𝑝𝑥|𝑝𝑦)1..𝑛 be Points of a
Polygon 𝑆, then the position and dimensions of 𝑆 are calculated as shown by Equation 6.2.

𝑆𝑥 = 𝑚𝑖𝑛(𝑝𝑥1..𝑛)

𝑆𝑦 = 𝑚𝑖𝑛(𝑝𝑦1..𝑛)

𝑆𝑤 = 𝑚𝑎𝑥(𝑝𝑥1..𝑛)− 𝑆𝑥

𝑆ℎ = 𝑚𝑎𝑥(𝑝𝑦1..𝑛)− 𝑆𝑦

(6.2)

The LineConnection is a straight connection between a Symbol 𝑠1 at (𝑥1|𝑦1) and
another Symbol 𝑠2 at (𝑥2|𝑦2). The connection between these symbols is calculated in the
course of the transformation of the visualization such that it is not required to calculate
{(𝑥1|𝑦1), (𝑥2|𝑦2)} during design time of a visualization explicitly which gives developers some
freedom when connecting Symbols whose position is not yet determined. Line in contrast
to a LineConnection, needs two coordinates {(𝑥1|𝑦1), (𝑥2|𝑦2)} that must be explicitly
stated at design time. Rectangle is a rectangular shape specified by its position at the
upper left corner with a (x|y) tuple, and its width and height. Circle is a round shape
with a radius. Ellipsis is a round shape with two different radius values. One can specify
the radius in 𝑥 direction whereas the other radius is used for the 𝑦 direction. Important
subclass are EllipsisArc and HarveyBall. Both employ a start and end angle. These
specify the filling within the ellipsis. For the HarveyBall, these values are predetermined
to offer quick access to common fill values. Image refers to an already existing icon or
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figure included in the visualization. This includes vector and raster formats. Compatibility
of these formats with the output format is checked within the respective Renderers and
cannot be determined at design time with the current architecture. However, most graphics
formats can be transformed to other formats that are compatible with the output format of
the Renderer, e.g. an SVG can be transformed to raster formats, e.g. PNG. The subclasses
of Effect realizes ‘eye candy’ which commonly is used to highlight elements or foster an
appealing visual representation. Effects are for instance Blur, Glow, and DropShadow.

Other more complex visual symbols are realized as subclasses of CompositeSymbol. They
use different PlanarSymbols and commonly implement several convenience functions.
Examples are DifferenceText and ProgressBar. The former realizes a two-way or
three-way difference represents of text as depicted in Figure 5.34 on p. 200 whereas the
latter realizes the bars illustrated in the same figure.

VisualizationObject

InteractionSymbol CompositeInteraction

* 1
children

CompositeSymbol

**
children

CompositeVisualization
Object

1*
children

ActiveInteraction

0..1
trigger

ParallelInteract ion

SequentialInteraction

validFormat: Renderer[]
code : String

NativeInteraction

PassiveInteraction ModelInteraction

... ... ...

Visualization 
Model

Interaction 
Model

Figure 6.15: Interaction model of the visualization framework

After outlining visual concepts, we proceed towards interaction support realized by the
framework. Figure 6.15 gives an overview of the different kinds of interactions that are
incorporated with the visualization model.

∙ Interactions subsumes any concept that realizes interactivity. In an interactive
visualization, they can be combined with visual symbols since they are able to pose as
a VisualizationObject. Both, Symbols and Interactions can be stored within
a CompositeVisualizationObject. Technically, any Interaction is realized
with higher-order functions in JavaScript that are executed on invocation within the
RaphaelRenderer.

∙ CompositeInteractions denote a series of interactions to be performed which can
be executed in sequence or in parallel. This behavior is realized by the subclasses
SequentialInteraction and ParallelInteraction.

∙ ActiveInteractions denote interactions that are triggered by an active user inter-
vention commonly performed with an input device, e.g. a mouse click, a drag & drop
operation, or a key press event.
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∙ PassiveInteractions on the other hand can be triggered by user interventions but
are not necessarily required to.

∙ ModelInteractions denote interactions which modify the underlying model or
depend on it, i.e. either visual changes are propagated to the model or model updates
are propagated to the visualization.

∙ NativeInteraction gives the developer direct access to the underlying source code
of the generated visualization. On the one hand, this class provides capabilities such
as

– access to cutting edge features provided by just a few libraries which are used to
realize concrete output formats and

– quick access to the underlying visualization through direct (JavaScript) code
injection.

On the other hand, this concept poses new challenges, e.g.

– the developer must be familiar with the target format,

– the type safety provided by the framework is not guaranteed when using Na-
tiveInteractions, and

– one has no guarantee that the visualization is valid, i.e. can be rendered or
displayed to the user.

Thus, although powerful, the NativeInteraction must be dealt with caution since
it can obscure the outcome of the model-to-model transformation.

Above interactions are further divided in concrete interactions that allow to manipulate the
visualization and underlying model in manifold ways. We continue with the introduction of
these concrete interactions. Figure 6.16 depicts the interactions within the visualization
model. SinceNativeInteraction is a concrete class, we discuss theActiveInteractions,
PassiveInteractions, and ModelInteractions.

The subclasses of ActiveInteractions are as follows.

∙ MouseInteraction implements events that are triggered by mouse. We distinguish
between a simple Click and Double Click, a Hover that is capable of triggering
Interactions when the mouse hovers over a symbol or the mouse is dragged out of
the hovering symbol, and a Drag & Drop operation that is capable of triggering
Interactions on start, move as well as end events of the Drag & Drop operation
and further invokes Interactions in the course of a valid or invalid drop. In this
vein, validity of a drop is determined by the position of the trigger Symbol that is
dropped and the dropTargets Symbols given to the Drag & Drop class.

∙ KeyPressInteraction denotes key events of the user. If the trigger is set for
an KeyPressInteraction, the respective Interactions are only fired if that
|Symbol| has been selected by a mouse click beforehand. Although the prototype of
ModelGlue interprets this class only for the RaphaelRenderer, we note that
Renderers must take care of the transformation of different keycodes within the
target format.
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∙ TouchInteraction accounts for interactions of touch devices such as smartphones or
tablets more and more used in industry. In ModelGlue, most TouchInteractions
are transformed to click interactions since we did not evaluate ModelGlue on touch
devices. We refer the interested reader to Kirschner [Ki12] for details on concrete
touch interactions.

The subclasses of PassiveInteractions are as follows.

∙ Highlight denotes Interactions that change a specific visual property commonly
used to emphasize a Symbol.

∙ CompensatingInteractions are a specific class of Interactions that compensate
other Interactions on invocation. For instance, a Hide Interaction removes a
previously invoked Show Interaction from the execution stack.

The subclasses of ModelInteractions are as follows.

∙ CreateObject is utilized to create new Objects within ModelGlue, whereas
SetObject is utilized to change the name or description of it, and DeleteOb-
ject initiates its removal. In the RaphaelRenderer, this is implemented as
Asynchronous JavaScript and XML (AJAX) callback whereas the result indicates
whether the transaction could be applied or not. Since the model is changed, these
ModelInteractions typically are succeeded by an Update Interaction.

∙ CreateAttribute, SetAttribute, and DeleteAttribute are similar to the
CreateObject, SetObject, and DeleteObject Interaction series.

∙ CreateReference, SetReference, and DeleteReference are similar to the
CreateObject, SetObject, and DeleteObject Interaction series. However,
their explicit source and target URI is used to check the existence of an Object first,
then an Attribute is used to create, set, or delete a reference from source to target.

∙ SetTaskOwner is employed to change the role a task is assigned to. Note that this
can be either persons or groups within ModelGlue.

∙ SetTaskState sets the state of a task based on an Id of a task within ModelGlue.

∙ ApplyChanges applies the Changes to the model element the task refers to. On
invocation, an implicit check of the task’s state is performed, such that an explicit
SetState is not required. If OIDs of a third party system are involved, Propagate
Tasks will be generated to inform about changes that must be applied to other
information sources.

∙ RevokeChanges revokes Changes, removes them from the task, and does not apply
given Changes to a model element. Similar to the ApplyChanges interaction, the
RevokeChanges interaction is aware of changes in a task’s state. If OIDs of a third
party system are involved, Propagate Tasks are generated to inform about changes
that must be applied to other information sources.
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Figure 6.16: Interaction model of the visualization framework
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Figure 6.17: InteractivePlanarSymbol within the interaction model of the visualization
framework

The interactive conflict resolution dashboard presented in Section 5.3 is an advanced UI
incorporating sophisticated visual elements with interactions that even change underlying
information. The nature of some elements is a hybrid combination of visual presentation
and interaction. On the one hand, they are visually represented as a PlanarSymbol, they
are in possession of a position, dimension and may even feature opacity, color, etc. On the
other hand, these elements incorporate a specific predetermined interactive behavior. Users
associate a specific set of interactions that already is determined at the design time of the
control and should not be changed during the design of new visualizations. We refer to
these elements as InteractivePlanarSymbols. InteractivePlanarSymbols realize
for instance menu items that can be drawn based on PlanarSymbols and incorporate
predefined interactions. Since these InteractivePlanarSymbols realize user controls,
they are ignored by Renderers that realize formats that lack support for interactivity.
Figure 6.17 illustrates the relationship of these InteractivePlanarSymbols with the
rest of the interaction model and the visualization model.

6.3.3 Towards Processing an Interactive Visualization

We utilize the visitor pattern [GHJ+94, p. 331ff] to process the object graph generated in
the model-to-model transformation of an AbstractViewpoint. Figure 6.18 depicts the
visitor pattern implemented in the visualization framework. The core functionalities are
outlined below.

∙ The AbstractVisualizationObjectVisitor contains basic visit routines that
implement the processing pipe for the object graph. Besides the visit routine for
subclasses of VisualizationObject, the AbstractVisualizationObjectVisitor
implements a default behavior. After calling the concrete visit routine, the object is
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vis it(visObj : VisualizationObject) : void
vis it(compositeVisObj : CompositeVisualizationObject) : void
vis it(sym : Symbol) : void
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Figure 6.18: Visitor pattern within the visualization framework

type casted and used as an argument for the visit(PlanarSymbol) method. This
way, operations that have to be performed on all visual elements can be handled
centrally while concrete operations can also be performed. The object then is casted
again and travels through the visit(Symbol) and visit(VisualizationObject)

methods. This default behavior can be altered in the subclasses of AbstractVisu-
alizationObjectVisitor.

∙ The AbstractRenderingVisitor implements operations that have to be performed
in the course of rendering an object graph to an arbitraty output format. Thereby, the
AbstractRenderingVisitor implements actions that do not depend on the output
format. Its subclasses on the other hand handle actions that are format specific.

∙ The SizeVisitor calculates the overall dimensions of a visualization in a target
format independent unit. The size of a visualization is based on the entire object
graph that is produced as a result of an AbstractViewpoint’s transformation. The
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SizeVisitor further determines the outermost coordinates that are given by the tuple
(𝑥|𝑦) which gives the top left coordinate, also known as origin, of a visualization.

∙ Subclasses of the AbstractTransformingVisitor transform the coordinate sys-
tems of the object graph to the coordinate system of the target format.

Note that the concrete classes of VisualizationObject, i.e. subclasses of Symbol, Com-
positeSymbol, Interaction, and CompositeInteraction override the polymorphic
accept method, such that the respective visit method of the visitor is invoked by this class
(cf. Figure 6.18).

The visitor pattern comes with well-known advantages and drawbacks [GHJ+94, pp. 335–
337]. We briefly outline the advantages and explain how we exploit these in the prototypical
implementation of ModelGlue. Further we discuss the disadvantage of the visitor pattern
and detail how we cope with it in ModelGlue.

∙ Easy introduction of new operations: New operations that work on an object
graph can be easily added through the introduction of a new AbstractVisualiza-
tionObjectVisitor.

In ModelGlue we regard the visualization model as stable set with finite elements.
It is more static than the operations performed on it. One could think of additional
visitors for applying styles or templates to an already layouted object graph.

∙ Separation of concerns: Similar operations can be dealt with in the visitors and
are not spread across the object graph. “Unrelated sets of behavior are partitioned in
their own visitor subclasses. That simplifies both the classes defining the elements
and the algorithms defined in the visitors. Any algorithm-specific data structures can
be hidden in the visitor” [GHJ+94, pp. 335–336].

In ModelGlue, we separate coordinate transformation, rendering, and calculation
of the overall size of a visualization.

∙ Costs of adding new elements to the visualization model: A known limita-
tion of the visitor pattern is the cost of an extension of the object structure of concrete
elements, i.e. for any new subclass of VisualizationObject all visitors must be
adapted potentially.

In ModelGlue however, we implement a default behavior in the AbstractVi-
sualizationObjectVisitor. Although we regard the object structure,
i.e.VisualizationObjects and its subclasses, as stable such that the draw-
backs of the visitor pattern do not apply that frequently, this default behavior must
be understood by the framework developers. Only then, the developer can consciously
decide to override the default behavior.

∙ Accumulating states: Visitors can carry variables that track the state of the entire
object graph or parts thereof. Without the visitor pattern, this state must be passed as
an argument to the operations that traverse the object graph or must be implemented
as global variables.

In ModelGlue, we track the state of the entire object graph in the visitors, e.g. the
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overall size of a visualization or the StringTemplate that carries the generated
JavaScript code (cf. Section 6.3.4).

∙ Breaking encapsulation: The visitor pattern assumes that an interface of an ele-
ment is powerful enough to allow visitors access to relevant member variables. The
visitor “pattern often forces you to provide public operations that access an element’s
internal state, which may compromise its encapsulation.” [GHJ+94, p. 337].

In ModelGlue, we access common variables by superclasses. To access specific
variables throughout the rendering process, we rely on introspection. We employ a
custom annotation @Serializable which retains at runtime. This annotation carries
parameters specifying whether to access a Java field via its get method or directly
via the respective field facilities. The former is a little bit slower whereas the latter
is the fastest technique we came up with during four years of implementation work.
This annotation technique is considerable faster than using mechanisms offered by the
Enterprise Java Beans (EJB) standard. Note that access methods which just access
fields (getter and setter) potentially could be optimized during byte code compilation
or even by a Java virtual machine (VM) that allows just-in-time compilation.

On the other hand, the visitors are a good place to introduce caching mechanisms. In
fact, during performance optimizations, we introduced a cache for rendering visual
objects. In our prototypical implementation, typesetting text took considerable
computational efforts. Thus, a Text object with the same string, font size, font face,
width, and height parameters now is not measured twice. With caching, typesetting
equal Text objects boils down to a string and several number comparisons which
reduces computational efforts tremendously.

We discussed several advantages of the visitor pattern and detailed how we cope with its
drawbacks. The visitors serve to process the entire class hierarchy of the visualization model
and build the basis for the visualization process which is explained next.

6.3.4 Visualization Process

The VisualizationProcessor brings together the static structure presented in Sec-
tion 6.3.1 and the visitors described in Section 6.3.3. It receives a configuration which
includes information on the databinding, filters, and an extension indicating the target
format as well as further visual parameters that are viewpoint-specific. Figure 6.19 gives a
highlevel overview of the visualization process. In the following we describe the interplay of
the different concepts presented above informally.

In a first step, a concrete Databinding is fetched from the DatabindingFactory. The
target format of the visualization and the viewpoint determine whichDatabinding to return.
In the bind phase of the Databinding, the actual information is bound to the view model.
In this phase, the first model-to-model transformation takes place, i.e. queries are executed
on the source model whereas the results are transformed to a view model. An instance of a
view model is an object graph in a format that is convenient to process by the algorithms
used in the respective viewpoint. In parallel, a concrete AbstractViewpoint is fetched
from the AbstractViewpointFactory. Subsequently, this viewpoint is configured by
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Figure 6.19: Overview of the Visualization Process as an Activity Diagram

injecting the Databinding and visual parameters that are to be processed during the
transformation.

In the next step, a concrete Renderer is fetched from the RenderingFactory. This
renderer executes the second model-to-model transformation, i.e. the viewpoint performs a
static type casts of the Databinding such that the viewpoint can access the convenient
view model; this view model is transformed into objects of the visualization model. Put
differently, during transformation, the view model is bound to visual elements that are
instances of the visualization model. The result of this transformation is an object graph of
visual elements, i.e.VisualizationObjects.

Next, the concrete Renderer employs the SizeVisitor to calculate the dimensions of the
visual object graph. Next to determine the overall size in an output-format independent
way, a concrete TransformingVisitor is called by the concrete Renderer. The Trans-
formingVisitor fits the visualization to the target coordinate system. In this step, the
object graph is modified, i.e. coordinates of the target format are applied to each object.
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In a final step, the modified object graph is transformed to the target format. This
transformation process varies considerably and strongly depends on the output format
that has to be produced. For PNG we employ the build-in Java Abstract Window Toolkit
(AWT) libraries, for PPT/PPTX, SVG, ODP, and JavaScript (Raphaël), we employ the
StringTemplate library [Pa14]. This library is an efficient means to transform a POJO graph
to an arbitrary string-based output format. Depending on the output-format, some post-
processing might be necessary. For instance, for PPT/PPTX and ODP, a .zip archive has to
be created that follows a certain schema (cf. [Mi14]). For the JavaScript output, the Raphaël
framework serves as low-level facility to abstract from browsers. The JavaScript format is
further equipped with additional libraries that implement more complex interactions that
can be handled without further server callbacks. In our prototypical implementation, a
considerable part of the interaction logic is implemented in JavaScript. This way, highly
responsive client-side interactions have been realized. Besides the process, Figure 6.19 also
depicts which of the steps are format specific and which steps are fairly general for all
source and target formats.

6.4 Implementing a Real-time Conflict Management Dash-
board

After introducing the framework for interactive visualizations, which builds the technical
foundations for our advanced UIs, we further detail the implementation of the conflict
management dashboard. We start the discussion with a description of the more complex
conflict management dashboard since visualizing model differences is done in a similar
manner but can be regarded less complex.

6.4.1 Layout and Layers

A graph layout is used to calculate the positions of objects at layer 1 and layer 3. A common
property of graph layout algorithms is that they rearrange the entire graph each time the
layout is calculated.

In our implementation, we use the mxHierarchicalLayout of the JGraph library [JG14].
Its layout remains relatively stable, i.e. if the visualized information stays the same, the
same result is produced whereas minor changes in information and, thus, the underlying
model, produce minor visual changes, eventually.

The visualization framework allows to combine viewpoints via 1) Interactions and 2) new
viewpoints that instantiate others. We applied the two CompensatingInteractions, Hide
and Show, to realize the layer concept within the visualization. Thereby, Show displays
a CompositeVisualizationObject that contains both, Symbols and Interactions.
The Hide action is used as a CompensatingInteraction, since it compensates the
Show interaction. On a single visualization, CompensatingInteractions have little
impact. However, when synchronizing visual manipulations, Interactions are invoked on
different machines. In the long run, not eliminating Interactions which are compensated
by others would lead to unnecessary invocations. For instance if a layer in the conflict
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management dashboard is opened and closed several times this will lead to a flickering
effect on synchronization because show and hide actions are executed multiple times.

6.4.2 Conflict Tasks

In the following, we detail how we implemented the different interactions on the conflict
management dashboard. Thereby, we employ a visual object graph, where appropriate.
Note that we abstract from the composite pattern and refer to the class names that can be
found within the different interaction models presented above.

Viewing a task: At layer 3 of the conflict management dashboard (cf. Section 5.3.2.3), a
ParallelInteraction is used to allow the user to view tasks. Thereby, the state
of a task is set via the SetTaskState to ‘reviewed’ while in parallel an instance of
Show is invoked to display the task’s content.

Forward is realized with an Image and a Click. On a mouse click, a ChangeOwner is
invoked. This callback returns a blocking dialog which allows to set the owner of a
task. Through a SequentialInteraction, the dialog is followed by an Update of
the interactive visualization.

Finish is realized with an Image and a Click. On a mouse click, a SetTaskState is
invoked with the state ‘resolved’. Through a SequentialInteraction, an Update
of the interactive visualization is invoked.

Ignore uses a different Image, but is realized similar to the finish action.

Approve is realized as two iconified buttons which are an instance of Image in the visual-
ization framework. Figure 6.20 depicts the object graph of the approve interaction.
For each change which needs approval, it can either be decided to apply a change or
to revoke a change.

Approve

Image

Click

ApplyChanges

Update

Image

Click

SequentialInteraction

RevokeChanges

Update

SequentialInteraction

Figure 6.20: Object graph for the approve interaction within the conflict management
dashboard

Validate uses an icon for each change that already has been applied to a model element.
A click on such an icon revokes this change. Figure 6.21 depicts the respective object
graph.
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Figure 6.21: Object graph for the validate interaction within the conflict management
dashboard

Document is realized with an Image. On Click, the OpenInNewWindow is invoked
with the respective URI of the model element to be documented. Further, the state
of the Task is set implicitly to ‘reviewed’ and can be set within a document task
explicitly (see Finish).

AssignRole is similar to the Document task. Instead of the URI of the model element,
its settings are shown. The dialog has been illustrated in Figure 6.10 on p. 224.

6.4.3 Real-time Collaboration

In his master’s thesis, Höfler [Hö13] explored the possibilities of using NodeJS [Jo14] to
synchronize different browsers in order to edit the same text simultaneously. Build on the
works of Höfler [Hö13], Schrade [Sc13] uses NodeJS to synchronize interactive visualizations
that run in different browsers on distributed machines. Thereby, he uses NodeJS and
websockets [FM11] to issue broadcasts of the configuration.

Before we proceed to explain the synchronization concept of interactions issued by different
browsers, we further detail the role of the class Update within the interaction model.
Figure 6.22 sketches the core interaction between the browser of the user, and the server,
running the visualization component of ModelGlue. Initially, the browser starts a request
with a certain configuration which is given by its context and commonly is part of the current
page or target page identified by the URI. The configuration is processed by the server which
returns an interactive visualization that, again, includes the configuration. In this example,
we assume that the RaphaelRenderer is used to generate the visualization, i.e. JavaScript
code is produced by the server that is interpreted by the JavaScript engine of the browser.
The configuration thereby is a JSON string and remains as variable within the generated
JavaScript code. For now, let us assume that any PassiveInteraction that is invoked by
the user is stored within the configuration. Thereby, the configuration is altered such that
invoked interactions are temporarily stored within the configuration denoted ‘config*’ in
Figure 6.22. Above, we detailed the notion of ModelInteractions which manipulate the
underlying model of a visualization. Commonly, these ModelInteractions are followed
by a subsequent Update which sends an Asynchronous JavaScript and XML (AJAX)
call containing ‘config*’ as parameters to the server which returns a visualization that
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config* = config* + tracked user interaction
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apply config* to visualization #(n+1)

alter model

opt

Figure 6.22: Sequence diagram to generate user-specific visualizations with an Update
according to [Sc13, p. 35]

reflects the changed model. On success, the Update manipulates the Document Object
Model (DOM) tree and restores the visual parameters of the visualization, e.g. pan and
zoom. Moreover, any Interactions that are stored within ‘config*’ are invoked such
that effectively the state of the visualization is maintained by the Update. Note that
CompensatingInteractions build an exception; CompensatingInteractions are
realized as higher order functions in JavaScript similar to Interactions. Example 6.3
illustrates their behavior.

Example 6.3: CompensatingInteractions in JavaScript
On invocation of a CompensatingInteraction 𝐼𝑐1 the JavaScript engine is
told to check the existence of any Interaction 𝐼𝑐2 currently stored within the
configuration. If 𝐼𝑐2 is stored within the configuration and 𝐼𝑐1 is invoked, 𝐼𝑐2 is
removed from the configuration. This way, 𝐼𝑐2 compensates 𝐼𝑐1.

We tried different designs to synchronize the interactive conflict management dashboard.
In the following, we discuss the different alternatives and outline advantages, disadvantages
as well as arising challenges when implementing the different approaches. Thereby, we
make use of the Update functionality, i.e.maintain the state of a visualization and invoke
Interactions stored within its configuration.
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Broadcasting the configuration: In [Sc13, p. 38], Schrade assumes that the configura-
tion of a visualization is altered locally at the client. The ModelGlue server is
employed to generate a separate visualization for each client. An advantage of this
solution is that it is easy to realize and different access rights, i.e. permissions on
model elements, can be applied to the generated visualization individually. A major
drawback of this solution is that the visualization is generated 𝑛 − 1 times for 𝑛
clients after a broadcast. To cope with this drawback, Kirschner [Ki14] introduces
caches that are employed to speed up the rendering process for similar visual elements.
For instance, typesetting a Text object with a specific font face and font size for
thousands of elements requires considerable computational effort. A cache for such an
element on the other hand compares if the same string is represented by the Text, the
same font and size is used, and the dimensions (width, height) are the same, i.e. the
computational effort is reduced to two string compares and three floating values.
Obviously, this mechanism can be improved by building a hash over the involved
values. However, after the introduction of this cache, the generation of visualization
has been considerably faster.

Client 1
(Browser with 

JavaScript Engine)

Client 2..n
(Browsers with 

JavaScript Engines)

Server
(MODELGLUE) NodeJS Server

getVisualization: visualization + config

getVisualization(config)

getVisualization: visualization + config

config* = config* + 
tracked user interaction

UpdateMessage (config*)

Update (config*)

Update: visualization* + config*

user interaction

config* = config + 
tracked user interaction

Loop

user interaction

replace visualization 
with visualization*

Figure 6.23: Sequence diagram illustrating the broadcast of a configuration to generate user-
specific visualizations to enable visual real-time collaboration developed with Schrade [Sc13,
p. 38]

Figure 6.23 depicts a single user denoted as 𝐶𝑙𝑖𝑒𝑛𝑡 1 that requests a visualization
from the ModelGlue server with a given configuration that may or may not be
embedded within a web page. The ModelGlue server generates a visualization
according to the configuration. Within a collaborative conflict resolution session,
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other parties, denoted 𝐶𝑙𝑖𝑒𝑛𝑡𝑠 2..𝑛, participate. Initially, each client gets served by
the ModelGlue server in the same manner as 𝐶𝑙𝑖𝑒𝑛𝑡 1. If 𝐶𝑙𝑖𝑒𝑛𝑡 1 issues a visual
update, the configuration of that client is broadcasted to 𝐶𝑙𝑖𝑒𝑛𝑡𝑠 2..𝑛 via the NodeJS
server. Subsequently, 𝐶𝑙𝑖𝑒𝑛𝑡𝑠 2..𝑛 query for a new visualization with that altered
configuration, i.e. they invoke the same Update functionality than detailed above.

A more efficient alternative can be realized if underlying information has not been
altered; the configuration can be analyzed by the clients and Interactions can
be executed directly by the JavaScript engines of the 𝐶𝑙𝑖𝑒𝑛𝑡𝑠 2..𝑛. This way, the
ModelGlue server does not have to generate new visualizations for mere visual
interactions. An even more efficient variant of these considerations is discussed below
(see broadcasting interactions).

Broadcasting the visualization In [Sc13, p. 39], Schrade presents an interesting design
alternative. Thereby, the ModelGlue server notices if the underlying model of a
visualization is manipulated and initiates a broadcast to all connected clients through
the NodeJS server.

Client 1 Client 2..n Server
(MODELGLUE) NodeJS Server

request: visualization + config

request (config)

request: visualization + config

config* = config* + 
tracked user interaction

user interaction

config* = config + 
tracked user interaction

Loop

user interaction

ModelInteraction(... + config*)

DataUpdate(visualization* + config*)

alter model

DataUpdate(visualization* + config*)

replace visualization 
with visualization*

replace visualization 
with visualization*

Figure 6.24: Sequence diagram illustrating the broadcast of a single visualization to enable
visual real-time collaboration developed with Schrade [Sc13, p. 39]

Figure 6.24 illustrates the same situation as discussed above. This time, underlying
information is altered by an arbitrary ModelInteraction. This is detected by
the server such that a different broadcast behavior is used. Instead of the client
issuing the modification, the ModelGlue server initiates the broadcast after the
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visualization has been rendered. This way, all connected parties 𝐶𝑙𝑖𝑒𝑛𝑡𝑠 1..𝑛 get the
same visualization as well as the altered configuration. Both are then replaced locally.

This exchange of a generated visualization that is send as serialized JavaScript code
to the clients proved to be very efficient and its complexity to implement is similar to
the broadcasting of the configuration. The advantage is that the visualization is only
rendered once. Combined with our considerations for caching, the synchronization of
visualizations boils down to network latency issues. However, during the evaluation of
ModelGlue, this design proved not to be a viable solution for Federated EA Model
Management. With the current implementation, the access rights of the client that
initiates the broadcast are used to generate the visualization. Since the generated
JavaScript code is then distributed via a broadcast of the NodeJS server, the other
clients see information that may not be accessible with their effective access rights,
i.e. access rights become ineffective and may get violated.

Broadcasting interactions Interactions which do not manipulate the underlying
model of a visualization can be replayed on each client. Thus, the NodeJS server
is used to broadcast just the Interactions performed by a client. One has to be
aware of raise conditions when implementing this principle. The notion of layers
and CompensatingInteractions can help to prevent some of the effects of raise
conditions.

6.5 Summary

In this chapter, we revealed implementation details of the prototypical implementation of
ModelGlue. Thereby, we put emphasis on UI aspects. Especially, we revealed imple-
mentation details of the visualization component since this framework builds the technical
foundation for our innovative UI designs proposed in Section 5.3. Where suitable, we referred
to work of others which describes the technical details. In the final part of this section, we
outlined how this framework is employed to implement the interactive visualization that
realizes the conflict management dashboard. We discussed the software engineering chal-
lenges, provide rational for our design, and discussed different implementation alternatives
we tried as well as their advantages, drawbacks, and lessons learned. This prototypical
implementation builds the software-support for Federated EA Model Management and
serves us to evaluate our concepts in collaboration with EA experts from industry.
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Chapter 7

Evaluation

In this chapter, we report on the evaluation of Federated EA Model Management and
ModelGlue. Researchers can take different paradigms to evaluate an approach, method,
or artifact. We first provide a brief overview which paradigms researchers may chose from
and subsequently provide rational for the design of a multifaceted evaluation.

7.1 Evaluation Design

Wohlin et al. [WRH+12, p. 9] and Shull et al. [SCT01] distinguish two fundamental research
paradigms:

∙ ‘Exploratory research’ focuses on the study of objects in their natural environment such
that findings emerge from observations made. This requires a flexible design to adapt
to new circumstances and lessons learned. Wohlin et al. further relate exploratory
research to ‘qualitative research’ since this flexible design is informed by qualitative
data primarily.

∙ ‘Explanatory research’ seeks to identify and quantify causal relationships. Wohlin
et al. relate explanatory research to a fixed design since influencing factors are fixed
beforehand. In this vein, they also refer to ‘quantitative research’ as explanatory
research is primarily informed by quantitative data.

Wohlin et al. [WRH+12, p. 24f] note that an empirical investigation on new technology,
which shall be considered comprehensively, requires a combination of different methods.
Thus, our empirical study is carried out combining survey as well as case study research.

Although explanatory research has an advantage over exploratory research, i.e. a rigorous
quantitative data basis may serve as a foundation for comparisons and analyses by means
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of statistical methods, Wohlin et al. conclude that both paradigms “should be regarded as
complementary rather than competitive” [WRH+12, p. 9]. Shull et al. [SCT01] propose to
combine different research methods for introducing software processes. Before we outline
our approach, we briefly revisit different methods of empirical studies. Wohlin et al. classify
the following three different empirical strategies [WRH+12, p. 10ff] that depend on the
purpose of the evaluation and whether techniques, methods, or tools are to be investigated.

Surveys are means to collect information in order to describe, compare, or explain knowl-
edge, feelings, values, preferences, and behavior of individuals or society [Fi13, p. 2].
Surveys are best to get information directly from people about what they believe,
know, and think [Fi13, p. 24]. They can be carried out handing a self-administered
(written or online) questionnaire that someone fills. Essential to a good survey design
are the asked questions, answer choices, sampling methods, response rate, design, and
the data analysis.

Experiments are means to learn the impact of a factor or variable on the studied setting
[WRH+12, p. 11]. “Experimentation in software engineering supports the advancement
of the field through an iterative learning process” [BSH86]. In this process, an
experiment includes independent variables (endogenous), i.e. variables the researcher is
in control of during the experiment and dependent variables (exogenous), i.e. variables
the researcher does not or simply cannot influence during the experiment [WRH+12,
p. 92]. An experiment commonly takes place in a controlled environment.

Case Studies are means to evaluate the benefits of methods and tools in an industrial
setting [KPP95]. They allow researchers to “retain the holistic and meaningful
characteristics of real-life events—such as individual life cycles, small group behavior,
organizational and managerial processes[...]” [Yi09, p. 4].

In line with Yin [Yi09] and Wohlin et al. [WRH+12], we summarize the major characteristics
of these methods in Table 7.1.

Characteristic Survey Experiment Case Study Source

Form of Research
Question

who, what,
where,
how many,
how much?

how, why? how, why? [Yi09, p. 8f]

Design Type fixed flexible fixed [WRH+12, p. 12]
Qualitative/
Quantitative

both quantitative both [WRH+12, p. 12]

Execution control no yes no [WRH+12, p. 19],
[Yi09, p. 8f]

Measurement control no yes yes [WRH+12, p. 19]
Investigation cost low high medium [WRH+12, p. 19]
Ease of replication high high low [WRH+12, p. 19]

Table 7.1: Characteristics of different evaluation methods
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Case studies focus on qualitative feedback to foster the understanding of Federated EA
Model Management. Patton [Pa02, p. 4] classifies three different sources of qualitative
data: interviews, observations, and documents. Although experimentation is an important
research strategy [BSH86, Ba96], we chose to carry out

∙ two case studies to get feedback from real-world applications as EA management is a
discipline that is hardly to grasp reading a textbook,

∙ an interview series to gain further process understanding, and

∙ an online survey among EA experts to confirm our findings and assumptions.

Bringing in feedback from EA experts primarily serves to compensate lack of domain
knowledge and gain insights in day-to-day issues and concerns of EA experts as well as to
acquire their feedback and opinions to developed software artifacts, concepts and UI dialogs
of ModelGlue.
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Figure 7.1: Evaluation steps of ModelGlue combining different research strategies

Based on the ideas of Shull et al. [SCT01], Figure 7.1 gives an overview of our approach
taken to evaluate ModelGlue and related artifacts. It also incorporates preliminary results
that have been published in our previous work. These build the foundation of the present
thesis since discussions about empirical findings or technical feasibility at conferences and
workshops certainly influenced our design.

Figure 7.1 depicts an iterative process to introduce new software processes. In the following,
we briefly go through this process and point out the core publications. It starts with a
feasibility study to validate if our ideas researched are doable; results have been presented
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in different adjacent areas, e.g. developing EA visualizations [SMR12], extracting and
importing data from an actual ESB [BEG+12, Gr12], towards results which build upon
these foundations like the visualization of model differences [RM14] or n-way model merging
[KR14]. In these publications, we report on feedback from practitioners who generated new
input for further directions and adaptations of our designs.

Second, we carried out an observational study to find out whether the design and
process steps that we proposed make sense. Thereby, empirical insights are reported,
e.g. feedback on the proposed methods and interactive visualizations [RHM13b], but also
open issues [HMR12] have been reported, as well as the status-quo in organizations
[RHF+13, FBH+13]. These findings built the groundwork for our ideas how to address
the challenges. Besides lessons learned during technical feasibility studies, e.g. [Ki12, Sc13],
additional feedback served us for further iterations on the prototype presented in [HRP+13b].

In a third step, the design is evaluated with respect to an integration in the real lifecycle as
part of case studies. Master’s theses served as vehicle to evaluate our ideas with practical
data [Ki14], or directly in practice [Or13]. Additional interviews gave us insights in further
organizational aspects and furthered our process understanding [AK14].

According to Shull et al. [SCT01], the application in industry takes place in a fourth and
final step to see if the process fits into the industrial setting. This phase is beyond the
purpose of our case studies and require considerable efforts that go beyond a single PhD
thesis (cf. Section 8.2 and 8.3).

In the remainder of this chapter, we detail the approach taken in two case studies and report
additional feedback from industry. Throughout the evaluation, we held several retrospective
meetings during which we reflected the expert feedback, developed solutions, and discussed
possible adaptations. These were prioritized based on their technical complexity, eventual
arising challenges, and potential benefits for the study or the organization. We present
feedback, learnings, and improvements of our design during this phase of research. After
each case study, we reflect on the findings and summarize both case studies in a separate
section. Subsequently, we present additional insights from an interview series among 11 EA
experts.

While we ran ModelGlue with productive data, it has not been used in production, i.e. the
organizations did not actually apply ModelGlue in practice, but we employed backup
files of productive systems utilizing ModelGlue as software support for Federated EA
Model Management. This way, we evaluate ModelGlue and report on experiences gained
in a real-world setting and on feedback gathered from EA experts applying ModelGlue
to their problems in EA management with productive data.

7.2 Case Study in the German Insurance Sector

The first case study took place in the German insurance sector. As of 2012, the organization
counts 8,000 employees. As documented by Kirschner1, the case study took place during
September, 2013 and April, 2014 [Ki14, pp. 11–12]. Taking into account the initial interviews,

1Prior to the case study, Kirschner has been briefed with the guidelines for conducting and reporting on
case studies published by Runeson and Höst [RH09].
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the evaluation of this first case study consisted of six interviews2. In addition to the efforts
described by Kirschner [Ki14, p. 12], two initial calls took place which are described in the
following.

7.2.1 Initial Interviews

In an initial one-hour phone call, we intended to clarify if the organization is an interesting
candidate and in turn is interested in trying out ModelGlue with their organizational
live data. During the call, we

∙ described our design, its purpose, and intended goals,

∙ got to know the context of the EA efforts the organization currently is pursuing,

∙ aligned expectations of a case study on both sides,

∙ sketched the degree to which the organization would be involved and has to provide
support,

∙ formulated meaningful next steps and follow-up activities.

The outcome of our efforts was a precisely formulated scope, i.e. the case study embraces
the exchange of timeslices of historical EA information and the feedback based on an
analysis of this information within ModelGlue. After this initial call, an informal Letter
of Intent (LOI) was exchanged summarizing goals and follow-ups. This LOI was followed-
up by a formal non-disclosure agreement (NDA) since we dealt with productive data of
the organization. Thereafter, we received ˜450 files in XLS/XLSX format that described
enterprise models.

A first step towards their integration was a conceptual alignment. Since we were not familiar
with the models, we prepared conceptual models using UML to describe what we received
in XLS/XLSX format. Although the concepts have been discussed in the initial interview,
the conceptual model helped us to understand their interrelationships and also built a
good basis for discussions in the next call. Using conceptualized models described in UML
revealed abstraction gaps and raised questions how to map these concepts, e.g. ‘how can an
object of this class be identified uniquely?’.

In a second call, we clarified the developed metamodels and the different semantics of the
concepts. To some extent, an intuitive understanding of the class’s identifier helped us to
relate concepts; however the formal models (cf. Figure 7.2) made flaws visible. One major
obstacle at this initial stage has been the unique identification of objects in an information
source as well as across information sources. Later on, we had to rely on exact name
matching mechanisms to relate objects.

2The exact details, e.g. duration of interviews, participants, job descriptions, company size, etc. are
provided by Kirschner in [Ki14, pp. 11–12,69].

253



7. Evaluation

7.2.2 Context

In the following sections, we describe the environment of the organization and detail the
metamodels of the involved information sources. Afterwards, we describe an integrated
view on these metamodels. This integrated view on the conceptual models was the outcome
of our efforts of the second interview.

7.2.2.1 Current Challenges, Technology, and Frameworks

Throughout the case study, we identified an abstraction gap (cf. Section 5.2.6.1) between
involved models. The organization struggles with ambiguous concepts; in particular the
alignment of concepts used in the more business-related models with those used in the
more technical models poses a challenge. The diversity of models used throughout the
organization is aggravated by modeling communities applying different notations and tools,
e.g. natural language, UML, Event-driven Process Chain (EPC), and BPMN. Managing
the interest of multiple stakeholders at a time is often rather difficult for the EA team.
Oftentimes, multiple stakeholders of one modeling community have to be involved to derive
planned states for an EA. The EA team currently pursues a long-term integration and
consolidation of above outlined models. This includes overcoming the abstraction gap
(cf. also Section 5.2.6.2). EA stakeholders within the organization already realized the
benefits of a federal view on the different models and the benefits to work towards CCMC.

The organization implements an ITIL process. Further, they employ a web-based, model-
driven EA repository. The EA repository realizes many concepts of Hanschke [Ha10]. Some
of them are outlined in the course of the introduction of the organization’s metamodels
which we integrated.

7.2.2.2 Core Metamodels of Modeling Communities

We received ˜450 files, representing historical data which served us as an input for an
analysis of the EA between March 2009 and July 2013. These files were data dumps that
served as input for the EA repository. These quarterly time-slices allowed the reconstruction
of the EA model of each 16 quarters between Q3 2009 and Q2 2013. The given models
represent the EA from different perspectives since the models come from different modeling
communities. In the following, we briefly outline each community [Ki14, p. 70–72].

∙ Product and service management is concerned about the organization-wide
product and service catalog. The catalog embraces products and services offered to
other business units as well as to external customers. Product and service management
is part of the controlling department—an administrative department on the same
hierarchy level as EA management.

254



7. Evaluation

∙ Application development focuses on the implementation of company-specific ap-
plications. Application development also handles change requests issued by other
business units.

∙ IT asset management is responsible for the procurement of IT assets. Thus, IT
asset management oversees the entire life-cycle of an asset.

∙ IT operations maintains the CMDB and manages the technical IT infrastructure.
Its terminology and concepts are based upon recommendations of ITIL [Ca11b].

Our analysis started by examining the information sources and building conceptual models
thereof. We briefly introduce the three resulting metamodels. Note that we only detail core
concepts that are relevant to understand the case and to gain insights into the difficulties
when introducing Federated EA Model Management.

∙ The application development model is depicted in Figure 7.2(a). Within the
community, the system is used to measure and control the development of individual
applications. Thus, the central concept is Application which is used to describe indi-
vidual software solutions developed in-house and are utilized within the organization
primarily. It can consist of several Subsystems and features several Attributes like
name, description, production, replacement date, etc. Moreover, every Application
has a boolean flag indicating its status, i.e. whether it is currently Active or not,
and a responsible person. Building the bridge to the next model, an application can
realize or contribute to a Service. The models we dealt with contained between
˜1,200 and ˜1,600 Application instances [Ki14, p. 78]. In [Ki14, p. 78], Kirschner
provides additional insights in the trends of the models.

∙ The IT asset manager model is illustrated in Figure 7.2(b). Core entity of
the model is Product which can be either Rented for a specific duration or an
Asset that has been bought at a specific date. Similar to Applications in the
application development community, Products can realize or contribute to a Service.
Respective models contained between ˜2,500 and ˜3,700 Product instances [Ki14,
p. 78].

∙ The CMDB model is shown in Figure 7.2(c). A Configuration Item (CI) is a concept
of ITIL which serves the documentation of IT infrastructure information. While more
specific information is contained in the subclasses, a CI features common attributes
such as, description, status, service level, etc. A Group is responsible for an CI
and its semantics can be compared to our notion of role (cf. Definition 4.3). In our
analysis, we focused on the concepts Application and Internal services. The
former denotes business applications whereas the latter denotes services, e.g. testing
of server availability. The time-slices of the CMDB models were by far the largest
concerning number of instances we dealt with, i.e. the models contained between
˜16,900 and ˜22,300 CI instances [Ki14, p. 78].

Note that we only received three models from the four communities outlined above. Although
we had no actual model of the ‘product and service management community’, we considered
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Figure 7.2: Core metamodels of the information sources [Ki14, p. 72]

several concepts of the other models boundary model elements (cf. Definition 4.7). Thus,
the product and service catalog is key since many ModelElements of other models have
relationships to services which are contained therein. In particular the service identifiers are
stored as foreign keys in instances of the ObjectDefinitions Application and Product.
In the following, we point out how these models of different modeling communities have
been put together into a coherent EA model.

7.2.2.3 Integrated View as an EA Model

Although we diagnosed in our initial calls that the organization can be considered as
a federated EA model environment, during the integration of the provided models, we
experienced considerable difficulties to map the models physically.
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Figure 7.3 depicts an integrated view of the EA model we discussed during the second initial
interview (cf. Section 7.2.1). In this phase, the conceptual model helped us to understand
how to develop a physical mapping. The model also depicts annotations we made during
the discussion. In particular the matching of objects between the different classes was
discussed. We had to rely on name matching techniques as foreign keys to a large extent
were not used in the provided data sets.

Kirschner diagnoses a lack of direct references between the core elements. However, to some
extent Applications and Products could be mapped via their corresponding Services.
Although the resulting mapping was sometimes ambiguous, in ˜25% of all cases we found
corresponding links to Objects via exact name matching. For the remaining ˜75% we
cannot tell whether a relationship exists or not. This has to be further investigated by
mapping all involved Products to corresponding Applications elements manually.

In this vein, we identified three abstraction gaps: the first was between Group and Person,
the second between CI and Application, and the third between CI and Product.
Resolving the first abstraction gap was beyond the scope of our evaluation; our primary
concern was to map CIs to Products, CIs to Applications, and Applications and
Products.

Overcoming the abstraction gap automatically turned out to be rather problematic, since
more than one CI corresponds to a single Application and Product. Hence, we proposed
our concept of the abstraction gap resolver to the enterprise architects. While they agreed
that the concept could provide utility with respect to the concrete problem, they did not
actually apply the abstraction gap resolver (cf. [RHM13b] and Section 5.2.6.2) to overcome
the abstraction gap.

Further, we also identified boundary model elements (cf.Definition 4.7) within the EA
model. Groups and Persons are primarily managed by the human resources (HR) unit
and currently only represented by its foreign key. Thus, the access rights could not be
automatically imported.

Kirschner proposes to import access rights to other systems based on directory systems.
Such a solution presumes that every model that is integrated with the EA model relies on
such a directory service. Other boundary model elements such as Brand and Supplier
have been identified. These could build the starting point for an integration of additional
information sources. Prior to such an endeavor one has to assess the potential benefits of
such an integration (cf. Section 5.2.2) by determining the concerns such an extended EA
model could address.

Besides this integrated view, we also discussed future states of the EA model. Figure 7.4
depicts the outcome of our discussions. The EA team’s intent is to introduce a new model
referred to as ‘Application Master’. It is meant to support the EA team to overcome the
abstraction gap between Configuration Item (CI) and Application and Product.
As the name ‘Application Master’ suggests, it should become the new leading system
regarding applications utilized and developed throughout the company. Similar to the
case we investigated in [BEG+12], the connection between Applications is also of high
importance since it indicates a connection between CIs. That also means CIs must only be
connected if their high-abstraction counterparts, i.e.Applications within the application
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master are linked via a Relationship. Additionally, this new ‘Application Master’ also
incorporates an identifier that is unique for each Application and serves as foreign key in
all other models.

7.2.3 Execution, Feedback, and Adaptations

After the model integration, we imported the models into an instance of our prototypical
implementation ofModelGlue hosted at a secure infrastructure and granted both enterprise
architects access to this system.

While Kirschner reports on the case studies extensively [Ki14, pp. 68–86], we summarize his
results and subsequently reflect the case study in the light of additional insights through
our interview series and the refined prototype.

Thereby, we describe each of our findings with 1) a brief title followed by 2) an outline of
the context during the interviews, 3) core statements of the expert feedback, and 4) a brief
discourse providing further insights and discussions.

7.2.3.1 General Feedback to the Application

Increased automation due to ModelGlue:

Context: ModelGlue seeks to import information automatically; however it also
requires efforts to define a technical mapping.

Feedback: One enterprise architect argues that in many cases model matching
cannot be accomplished since human-readable formats are involved; mainly
because respective tool support, e.g. office applications, are easier to use. Many
stakeholders favor the perceived flexibility of these tools over a more formal
approach that would foster automation.

Reflection: On the one hand, this statement of the EA expert supports our design
decisions that modeling communities require a considerable degree of freedom
when modeling. However, as of today ModelGlue cannot be used to integrate
fully unstructured content. In his PhD thesis, Neubert [Ne12] proposes a means
to structure content iteratively and incrementally such that a formal metamodel
evolves over time. Since ModelGlue is based on the same platform, further
research could combine his approach and ModelGlue with Natural Language
Processing (NLP) techniques to facilitate structuring unstructured content.

7.2.3.2 Tasks

Conflict task of ModelGlue:

Context: All task types (cf. Section 5.2.5.5) were critically discussed with respect to
their semantics and likelihood to arise during a merge of models.

Feedback: Both enterprise architects regarded the task types helpful, in particular
to determine the impact of a merge on model consistency. Since this conversation
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about the task types took place in context of the conflict detection and different
kinds of conflicts, in-depth discussions revealed that the enterprise architects
consider model/metamodel conflicts more likely to arise with repositories of
communities that maintain information found at higher layers (cf. Figure 2.1.1
on p. 16) as they model on a higher abstraction level. In contrast, one enterprise
architect states that physical hardware would never change its purpose and can
be considered more rigid with respect to model/metamodel conflicts.

Reflection: We anticipated different kinds of tasks and the need for different conflict
resolution strategies. In particular, we claim that it is required to adapt these
strategies to reflect organization-specific circumstances. These statements confirm
our design and give first insights how EA expert assign specific conflict types to
semantics of their models.

Ignoring tasks in ModelGlue:

Context: We discussed the importance of some tasks and conflicts with respect to
particular day-to-day situations that the enterprise architects experience.

Feedback: The enterprise architects formulated the need to discard a conflict. Some
conflicts may be irrelevant for all involved stakeholders and, thus, they want
to remove these conflicts from the system, without actually resolving the con-
flict. Once removed, this conflict should not be raised on subsequent model
synchronizations.

Reflection: After this meeting, we adapted the states of a task adding a new state
‘ignored’ to denote that despite its (generated) due date, this task is irrelevant
for the stakeholders, i.e. they agree to ignore the conflict (cf. Figure 5.4 on
p. 140). Although stakeholders mutually agree to ignore conflicts that refer to a
ModelElement, they still pose inconsistencies. Thus, we also modified states
of a ModelElement to denote elements which are not involved in conflicts that
should immediately be resolved, but, however, are involved in ignored conflicts.
This intermediate state is denoted ‘With ignored tasks only’ (cf. [Ki14, p. 27]).
Our final adaptation to address this concern has been made in the visualizations.
Since ignored conflicts could influence information quality, ignored tasks are still
visualized. We use a different color to denote that these tasks do not have to be
addressed immediately (cf. Figure 7.5(b)). The color has been chosen in analogy
to traffic-lights, i.e. yellow tasks are less critical than red ones (cf. Figure 7.5(a)).

7.2.3.3 Strategies

Conflict resolution strategies of ModelGlue:

Context: The matrix to configure the conflict resolution strategy (cf. Figure 5.28 on
p. 194) is a central element of the UI and meant to provide means for adapting
and configuring how the system resolves conflicts. The matrix not only serves
an adaptation of the conflict resolution strategy but also displays the behavior
of the predefined strategies.
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(a) Red icon for ‘normal’ conflicts (b) Yellow icon for ‘ignored’ conflicts

Figure 7.5: Visual representation of ModelElements with conflicts [Ki14, p. 81]

Feedback: “Despite its size and complexity the conflict resolution strategy matrix
was intuitively understood [...]” [Ki14]. Both enterprise architects agreed that
an adaptation of the strategy which determines how to resolve a conflict is
important. They appreciated the predefined strategies and in particular regarded
the characteristics of the tolerant strategy meaningful.

Reflection: It is beyond the scope of the present thesis to find an appropriate conflict
resolution strategy for organizations or specific industry sectors. Thus, not each
cell of the matrix has been discussed in depth. The characteristics of both
strategies, i.e. tolerant and strict, have been pointed out. Further research has to
show the adaption-behavior of an organization with respect to identified conflict
(resolution) patterns (cf. Section 8.3).

Dialogs for adapting conflict resolution strategies in ModelGlue:

Context: In Section 5.2.8.4.2 we described our design for a UI to (re)define rules that
serve to merge models in the course of conflicting changes. As an alternative, we
provide direct access to the underlying MxL queries (cf. [Re13] for the specification
of MxL). Figure 7.10 on p. 278 depicts two such MxL queries. On the one hand,
we wanted to understand whether our UI design is intuitive, on the other hand,
we intended to test whether the expressive power is sufficient for EA management
tasks.

Feedback: An enterprise architect pointed out that one has to distinguish between
power users and other users like data owners, who only occasionally work with
the EA repository. While enterprise architects certainly are willing to learn
new language concepts rather occasional users, however, have little interest in
learning a ‘cryptic’ language for ‘yet another tool’. The enterprise architect
confirmed that for ‘simple’ EA models and basic queries the dialog is adequate.
In more complex scenarios, direct access to MxL may be useful.

Reflection: The UI design has been confirmed. MxL was designed without having
write access in mind. However, this has been prototypically implemented for
ModelGlue and could be further extended in the future.
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Due-date of conflicts in ModelGlue:

Context: The life-cycle of a conflict was discussed with regard to responsiveness and
reluctance of data owners and EA stakeholders. The enterprise architects raised
the question how the system reacts if conflicts get never solved.

Feedback: Ideally, conflicts immediately get resolved to work towards CCMC. How-
ever, the enterprise architects provided us with examples aggravating conflict
resolution; these range from stakeholder reluctance to complex changes on infor-
mation systems which require considerable efforts. Thus, “consolidation might
even take years, due to few, but substantial changes of the architecture” [Ki14].

Reflection: After this particular interview, we equipped conflict tasks with a ‘due
date’ and refined the states of tasks. We added the new state ‘overdue’ (Figure 5.4
on p. 140) which allows to determine unresolved tasks that are past their due
date. Once overdue, it is possible to send reminders to the owner of the task or
even escalate the task through their superior. The task might get re-assigned as
it is delegated by the superior.

Quality metrics in ModelGlue:

Context: We discussed possibilities to monitor the quality of the imported informa-
tion.

Feedback: Ignoring conflicts could diminish model quality and in the long-run not
only be counter-productive for EA management but pose a threat to the entire
EA initiative. One of the enterprise architects proposed to introduce quality
metrics.

Reflection: In his master’s thesis, Kirschner proposes three solutions, all involving
the introduction of metrics over ModelElements and their conflicts. Since we
regard the introduction of metrics beyond the scope of the present thesis, we
refer to [Ki14, p. 81] for initial ideas on how to measure model quality including
absolute, relative, and weighted (with respect to different conflict types) measures.

7.2.3.4 Conflict Resolution

Recurring conflicts in ModelGlue:

Context: Related to the topics that centered around ignoring conflicts and long-
lasting conflicts, we discussed how the system reacts in the course of consecutive
synchronizations.

Feedback: The enterprise architects raised two major concerns: ModelGlue might
discard unresolved conflicts on subsequent synchronizations, or, alternatively,
the exact same conflicts as in the previous synchronizations will be triggered
again. This might lead to duplicate conflicts referring to the same issue.

Reflection: Kirschner’s notion of CIC helps to identify recurring conflicts. Since this
information is stored in a task, ModelGlue is able to analyze existing tasks
before creating new ones (cf. Section 5.2.5.4).
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Learning and batch-solving in ModelGlue:

Context: Next, we discussed the support to resolve conflicts. In particular, we
focused on Schrade’s learning mechanism (cf. Section 5.2.7.1).

Feedback: The enterprise architects endorsed the idea to support the resolution of
many conflicts that may be resolved applying a very similar strategy. However,
they also raised concerns about the transparency of the approach taken. They
highlighted that the outcome is not clear and transparent for the user.

Reflection: On the one hand, users always apply changes to the tentative merge
result in the preview model such that the changes can be viewed afterwards
and ‘nothing can go wrong’. On the other hand, providing the user with a list
that shows a preview of all actions to be performed before applying Schrade’s
resolution strategy could improve ModelGlue. This way, users could make
adjustments, e.g. generally apply a strategy but remove particular exceptions.
Kirschner [Ki14, p. 82] also discusses the role of further heuristics and even
suggests to provide facilities to define custom rules for the specification of
heuristics. In his discussion, he also details an example. From a conceptual
viewpoint, this would be a case in which the conflict resolution strategy has to
be adapted to reflect more permanent resolution strategies. The heuristics could
be a good indicator to identify patterns that help to further increase the degree
of automation during conflict resolution. Similarly, a post mortem analysis of
multiple conflict resolution sessions could give additional insights into frequently
used resolution patterns of an organization.

7.2.3.5 User Interface Support

Next to the general understanding of ModelGlue, we deep-dived into the visual support
since we realized advanced UIs for differencing and conflict management. Again, Kirschner
reports on this topic extensively in [Ki14, pp. 83–86] and we reflect his discussion from our
perspective.

Visualization layers of the differencing visualization in ModelGlue:

Context: The visual concepts and their behavior within the different interactive
visualizations were discussed.

Feedback: The enterprise architects agreed to the layering concept as a means to
realize a semantic zoom. The first layer was referred to as an intuitive way to
browse through an EA model. They regarded it as a meaningful representation
of the model when analyzing two different models. However, the enterprise
architects also stated that the metamodels of information sources rarely change.
From their perspective, the second layer is an important step to cope with
the complexity of EA models. The third layer raised particular interest as the
neighborhood of an Object is highly important. The enterprise architects even
talked about visual impact analyses at this layer. In line with Section 2.1.1, an
enterprise architect confirmed that changes to attributes and values are not that
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important for EA management. At the same time, these are the changes that
occur most frequently. Against this background, a visual representation of these
changes is generally a good idea. One particular suggestion to our design was
made by the other enterprise architect. The background-colors of the three-way
comparison are rather confusing. The background colors imply semantics (see
Figure 7.6(a)) as some of these colors are used to refer to objects which have
been changed (orange), created (green), or deleted (red).

Reflection: Generally, our design goals have been met. However, to our surprise the
coloring of the three-way differences raised concerns. While our original intent
was to use the background color to underpin that these are different versions of
the same Object, the colors seem to confuse the user. Since the operation that
has been performed on an Object is expressed by the visual element’s color
itself, we adapted our design to a more decent version depicted in Figure 7.6(b).

(a) Potentially misleading background colors (b) Adapted version with unambiguous background
colors

Figure 7.6: Adaptations of the differencing visualization in the three-way comparison [Ki14,
p. 84]

As we pursue a uniform design for both, the differencing visualization as well as the conflict
management dashboard, the feedback for differencing visualization also applies for the
conflict management dashboard.

Layout and order of metamodel elements in ModelGlue:

Context: The exact layout of the first layer of the conflict management dashboard
was discussed with regard to the placement of visual elements representing
ObjectDefinitions.

Feedback: The enterprise architects noted that the layout could be perceived by
end users as being randomly positioned. According to one enterprise architect,
users expect elements of a low abstraction level, e.g. the technical infrastructure,
should be placed at the bottom while elements of a higher level, e.g. business
processes and capabilities, should appear at the top. This perception is similar
to the arrangement illustrated in Figure 2.2 on p. 17. Although power users of
ModelGlue, like enterprise architects, would cope with the pseudo-random
allocation, occasional users, would profit from a layout that adheres to layers
with strict (implied) semantics. Though the ideal layout may depend on the
specific modeling community. A data owner of a CMDB may have a different
viewpoint than one of an ESB.
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Reflection: An alternative layout could assign the different ObjectDefinitions to
a layer or even a cell in a matrix. A major drawback of such a solution is that line
crossings between visualized relationships can only be optimized with respect to
the defined arrangements, e.g. the corner stitching algorithm [Ou84] could be used
to enhance the visual appearance of these lines. This algorithm is known from
very-large-scale integration (VLSI) design and seeks to create an integrated circuit
by combining thousands of transistors into a single chip meanwhile minimizing
wire, i.e. line, crossings. However, from our experience with system cartography
[Ma08, MBL+08, RZM14] and against the background of our own development
efforts in this research direction [SMR12, HMR+12, HRP+13a, RHZ+13] we
draw the conclusion that none of these solutions produces an automatic layout,
which conforms to predefined layers or cells and at the same time is visual
appealing. The underlying technical issues can be regarded complex and there
is a considerable amount of research endeavors investigating visual appearance
and layouts in graph drawing [PMC+01]. Since the metamodel is not modified
all too often, one could combine layout algorithms with manual adaptations,
i.e. initial algorithmic layouts with ex-post user adaptations that are reapplied
until the underlying metamodel changes.

Visualizing constraint violations in ModelGlue:

Context: Different ways to ensure model quality and consistency were discussed. In
particular, we proposed to illustrate constraint violations in the merge result
visualizations.

Feedback: One enterprise architect argued that constraint violations represent a
different viewpoint; such a viewpoint was beyond the scope of their EA manage-
ment initiative. In the enterprise architect’s organization, a separate role was
responsible for quality aspects, documentation, and other formalities. This role
was accountable for constraint violations and their management. The enterprise
architect further continued that this role would profit from similar visualizations
that only focus on constraint violations. The EA team was not interested in
such information and was rather concentrated on model conflicts.

Reflection: Since ModelGlue already is aware of constraint violations, it is cer-
tainly possible to visualize these violations. This would include minor adaptations
in the Databinding of the difference visualization as well as the respective Ab-
stractViewpoint (cf. Section 6.3). To our surprise, it seems that it is beyond
the scope of this EA management initiative to cope with constraint violations.
However, further research might prove utility for a different role within this
organization.

Allowed actions to resolve conflicts in ModelGlue:

Context: The different actions of a model conflict were discussed.

Feedback: In addition to provided actions, one architect motivated additional func-
tionality to resolve conflicts. A person in charge of the conflict resolution could
want to perform arbitrary changes to resolve a conflict. Additional changes could
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be considered more appropriate than the choices offered, e.g. a mixture of two
values for a single attribute.

Reflection: Our current design addresses such a scenario. We provide links to the
ModelElements such that arbitrary changes can be applied. The user must
then manually set the task to a different state.

Tabular view vs. interactive conflict management dashboard of ModelGlue:

Context: Although ModelGlue’s UIs to resolve conflicts follow a coherent design,
the UIs follow two fundamentally different paradigms. One is realized as an
interactive visualization with layered graph and tabular layouts (cf. Section 5.3.2),
whereas an alternative view realizes a tabular conflict list (cf. Figure 6.9 on p. 223)
along with a link to details of each conflict (cf. Figure 6.10 on p. 224).

Feedback: One enterprise architect considers the interactive visualization as an
adequate means to get an overview of the model conflicts and refers to it as the
ideal tool for a manager whose intent is to identify problems in the EA model.
However, conflict tasks most likely will not be solved by a managerial role. The
enterprise architect further explains that for such a task only little knowledge
is required and the assignee of a conflict resolution task perhaps does not have
access-rights to the entire EA model. In such a situation—particularly if many
tasks must be resolved—the tabular view would be prevalent in the analyzed
organization.

Reflection: During the design, it was our intent to incorporate little information
in the interactive visualization. However, the amount of information should be
sufficient for deciding on a conflict. The details view (cf. Figure 6.10 on p. 224)
can be reached from within the interactive visualization.

7.2.3.6 Decontextualization

EA-specific model modifications in ModelGlue:

Context: The rule-based approach to detect conflicts was the staring point for a
discussion that centered around the application of similar rules for general EA
modeling.

Feedback: Both enterprise architects deemed the application of rules to the EA
model as important. It would provide utility to the EA team in particular to
adapt many ModelElements at once. Kirschner reports an example: “to add
an attribute ‘application life-cycle’ with the possible values ‘plan’, ‘preparation’,
‘implementation’ and ‘operation’ for every element of type ‘application’ ” [Ki14,
pp. 82,83]. He further states that these rules also could be applied to transform
different formats or serve to perform ‘one time’ lookups.

Reflection: Respective adaptations that would have been necessary to implement
such a rule-based model-to-model transformation center around the UI of the
dialogs presented in Section 5.2.8.4.2. Although we estimated the efforts of
these adaptations to be very little, we regarded them as beyond the scope of
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our research and more in scope of a common EA repository. Thus, we did not
implement required changes in our prototype.

Decontextualizing ModelGlue:

Context: It was discussed whether ModelGlue could be applied in the context of
other modeling communities to support their planning habits with a model-driven
tool.

Feedback: Both Enterprise Architects agreed with the general idea but also made
us aware of possible reluctance of stakeholders since ModelGlue could be
perceived as ‘yet another tool’. Hence, they were in doubt that anyone except
the EA team would apply ModelGlue.

Reflection: On the one hand, we stated in Assumption 4.4, that we consider EA
management is supported by upper management and, thus, the EA team has
considerable impact on the modeling communities. Hence, working with Mod-
elGlue could be enforced by additional incentives. On the other hand, using
ModelGlue in a different context than EA model maintenance goes beyond
the scope of the present thesis (cf. Section 8.3).

7.2.4 Reflection of Results

Reflecting on the feedback of the case study outlined above, from our perspective, only
minor adaptations were required, i.e. the major design decisions seem to be promising
with respect to this specific use case. In [Ki14, p. 76], Kirschner additionally sketches a
complexity analysis of the data as well as the trends concerning number of instances. He
confirms the order of magnitudes provide in [RM14] for the different visualization layers
(cf. also Section 5.3.1 and Section 5.3.2).

Although the case study took place in a highly specific environment as well as the feedback
is highly subjective, we gained some insights in minor design flaws which we deem plausible
and are rather obvious retrospectively viewed, e.g. the background color of the three-way
differencing (cf. Section 7.2.3.5). Also, we identified parts of our design which can be applied
in different contexts, e.g. the definitions of model-to-model transformation rules using the
UI as illustrated in Section 7.2.3.6.

7.3 Case Study in the German Health Industry

The second case study took place in an organization of the German health industry.
Neubert [Ne12, p. 167ff] reports on the EA management initiative of this organization in
the context of emergent modeling. While Kirschner reports on the case study extensively,
we briefly summarize his findings and discuss important points that influenced our design
and provide additional insights. For detailed information on the organization and setup of
the case study, we refer to Kirschner [Ki14, pp. 87–98].
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7.3.1 Initial Interviews

In an initial one-hour phone call, we outlined the concepts behind Federated EA Model
Management and ModelGlue. We introduced ModelGlue to a senior enterprise architect
of the organization. Since we already were familiar with the environment of the organization,
we envisioned a good fit between our conceptual work, ModelGlue and the EA initiative
of the organization. The selection of subjects certainly influences the results of case studies
(cf. Section 7.4 and [RH09]). However, our goal to gather expert feedback could still be
met. The limitations and validity and general application of our findings are discussed in
Section 7.4.

During the second part, we mapped the proposed concept to the environment of the
organization and outlined specific use cases it should support. That left us with a precise
scope for the case study and application of ModelGlue. Similar to the first case study
reported in Section 7.2, a LOI has been exchanged followed by a more formal NDA, since
the models sent to us by the enterprise architect may contained confidential information.
For the exchange of models, the organization relied on CSV and XLS/XLSX files.

7.3.2 Context

Before we summarize our findings in Section 7.3.3, we describe the environment as well as
the EA model of the organization. The context provides important insights in an application
scenario for Federated EA Model Management.

7.3.2.1 Federated Modeling Environment of the Organization

The organization pursues EA management for several years. They employ an EA repository
that is metamodel-based and capable to model similar flexible structures than ModelGlue3.

The organization’s federated EA model environment consists of an SAP FI system that is
currently synchronized with the EA repository, i.e. information of the SAP FI system is
part of an entity stored within the EA repository. In particular they employ this entity to
calculate forecasts on made assumptions and trend analyses of the SAP FI system. This
forecasting is done using the EA repository whereas the actual costs are stored in SAP FI.
As we found out, information in SAP FI as well as in the EA repository could be changed
concurrently.

Besides SAP FI, the EA repository is synchronized with a CMDB. This synchronization
takes place in a unidirectional manner whereas the imported information is considered
read-only, i.e. the EA repository changes are discarded if deviations with the CMDB occur
during the next synchronization.

Additional repositories are integrated with the EA repository: The enterprise architect
currently maintains ten models within the EA repository, with approximately 50 Object-
Definitions. For this case study, we decided to limit the scope to these two systems and
the respective process support.

3More precisely, the predecessor of ModelGlue is applied in this organization, cf. also [Ne12, p. 167ff].
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7.3.2.2 Examined Part of the EA Model

id: String
name: String
type: String
status: Status
operation time: String
availability target: Percentage
protection class: Integer
operating since: Date
out of service since: Date

IT service

id: String
name: String
domain: Domain
type: String
distribution: String
versions: List<String>
status: Status
operating since: Date
out of service since: Date
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Figure 7.7: Excerpt of the EA metamodel of the organization [Ki14, p. 95]

The enterprise architect provided us with a database dump representing an excerpt of
their current EA model for further analysis. As depicted in Figure 7.7, key classes of the
metamodel are Software products and IT services. Additionally, the association
class Support is of high importance to describe the relationship between the different
EA objects, which is the common class for all EA model elements. The Support class
captures the allocation level between two EA objects. Thereby, Internal departments
are referenced if the costs have been produced in the respective unit of the organization or
alternatively an External customer is referenced if the costs have been produced by an
entity outside the organization.

In his master’s thesis, Kirschner provides an additional analysis of the given models [Ki14,
p. 95ff] with respect to their structure, number of instances as well as performance con-
siderations. His analysis reveals that our estimated orders of magnitude for each layer as
proposed in [RM14], Section 5.3.1, and Section 5.3.2 prevail. During his analysis, Kirschner
provides concrete examples as well as additional rationales for our visual designs. We want
to emphasize one particular design decision based on one of Kirschner’s illustrations which
is depicted in Figure 7.8. It shows the second layer, i.e. the list of all objects—regardless
of whether model conflicts or differences are viewed. As we stated during the design,
we eliminated every unnecessary detail, except color or an icon indicating its state to
other objects or conflicts. However, during the design of the visualizations, we considered
additional mechanisms to filter objects a necessity although a lean layout has been chosen
(cf. Section 5.3.1.5 and 5.3.2.6).
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(a) 100 Objects as list (b) 1000 Objects as list

(c) 31 Objects as graph

Figure 7.8: Different quantities of objects in the second and third layer of the visualizations
[Ki14, pp. 78,98]

Compared to the graph that also shows the neighborhood as well as the attributes of an object
(cf. Figure 7.8(c)) the list performs well at an order of magnitude of 102 (cf. Figure 7.8(a)).
However, as the list grows considerably large > 103 Objects, information overload (see
p. 126) cannot be prevented (cf. Figure 7.8(b)). To cope with more instances at the second
layer, we introduced the filter dialog. As stated correctly by Kirschner, any graph layout
cannot be applied at the second layer.

7.3.3 Execution, Feedback, and Adaptations

Federated EA Model Management process that guides ModelGlue:

Context: The process behind Federated EA Model Management (cf. Section 5.2)
was discussed.

Feedback: In the organization, the EA team triggers the manual delivery of a
dump from an information source. Provision of information is based on a
mutual agreement including selection of the intended part of an information
source’s model that serves to address the concerns of EA stakeholders. Technical
questions, i.e. exact mapping, format, etc. were dealt with informally. Information
is gathered on a monthly or quarterly basis. Export mechanisms within the
information source select and possibly aggregate information. The produced
result is delivered in CSV format. The enterprise architect also revealed that
currently a spreadsheet application with customized scripts is employed to ensure
model quality, i.e. view differences to previous versions. Moreover, the enterprise
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architect noted that obvious problems can be detected with the differencing
visualization. If inspected successfully, the information is pushed into the EA
repository. In contrast, if this quality check fails, the dump is discarded, the
error identified, and a new dump generated.

Reflection: The description of the rather implicit process, the enterprise architect’s
organization follows to maintain the EA model, confirms our process design
detailed in Section 5.2. Moreover, the enterprise architect assigned specific
software artifacts we provided, to the concrete activities. We found that the
integration of information sources including the logical and physical mapping is
done in an informal manner. Given the size of the organization and the size of
the (analyzed) EA model, pursuing an ad hoc approach could be beneficial.

Incremental extension of the scope of an EA model:

Context: Our process design is not only iteratively but also advices to integrate
information sources gradually and thereby extend the EA model incrementally.

Feedback: The enterprise architect agrees to limit the scope of an EA model initially.
Details are far less important than a quick overview of the entire EA. However,
cumulated details in turn could provide considerable insights in an EA, too
(cf. Section 2.1.1).

Reflection: This shows that an organization pursuing Federated EA Model Man-
agement should choose information sources by considering the (prioritized)
concerns of EA stakeholders to provide benefits and show early results
(cf. [HRS+14, HMR12]).

Integrating information sources in ModelGlue:

Context: The integration of information sources was extensively discussed.

Feedback: The enterprise architect advocates a lean approach. Loose cou-
pled interfaces via dumps are less error-prone than hard-wired interfaces,
e.g.Representational State Transfer (REST) interfaces. The organization cur-
rently applies both, database dumps in the form of file exports as well as fully
integrated (uni-directional) interfaces that push information to the EA repository.
Having experienced both, the enterprise architect favors the exchange of files,
e.g. XLS/XLSX or CSV files, that contain the desired information.

Reflection: ModelGlue has a variety of import mechanisms. Although the present
thesis did not reveal every detail, considerable experiences with import from
XLS/XLSX or relational databases have been made, e.g. [Or13]. For this case
study, we adapted exiting import mechanisms to import CSV files which have
been provided to us by the enterprise architect.

271



7. Evaluation

Information flow in a federation:

Context: In Section 5.2.2.3, we stated two fundamental ways to exchange information:
unidirectional and bidirectional.

Feedback: According to the enterprise architect, only unidirectional flow of informa-
tion is feasible, i.e. from information sources to the EA repository. Automated
change propagation in the opposite direction would be far too complex as well
as implementing bidirectional interfaces would perhaps be more fragile and
raise additional questions, e.g. security, ownership, impact of modifications on
productive information etc.

Reflection: In Assumption 4.3 we also state that—from a technical perspective—we
advocate a unidirectional synchronization. We foresee that the integration of new
information sources is a major cost driver for Federated EA Model Management.
However, propagation of (consolidated) changes should logically flow in both
directions. Thus, we agree with the enterprise architect.

Intermediate models vs. links to other information systems in ModelGlue:

Context: In Section 4.2.5, we outlined the difference between using an ontology to
reference content in third party systems on the one hand and copying content to
an import model such that information is stored in the federal system on the
other hand.

Feedback: The enterprise architect stated that intermediate models are required and
direct mappings are not feasible with respect to the architect’s organizational
context.

Reflection: Since we already discussed both alternatives and their disadvantages
(cf. Section 4.2.5), we appreciate this statement as it is confirming our design.

Granularity of access-rights in ModelGlue:

Context: We discussed the different roles and respective access rights with the
enterprise architect.

Feedback: The enterprise architect pointed out that a fine-grained access control
is of utmost importance. Almost always, the enterprise architect, underlined
his opinion, giving access-rights just on the granularity of ObjectDefinitions
is wrong. This also holds true for access-rights on Objects as these often
contain Attributes that should not be visible for all EA stakeholders and
would be either irritating or would raise additional concerns, e.g. financial goals
or performance measures.

Reflection: The enterprise architect confirms our design decisions since we consider
Attributes to be the finest granularity for access-rights. During our design, we
also considered access-rights on values. However, throughout the case studies
and the interview series it turned out that practitioners do not demand such
access-rights on values.
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7.3.3.1 Tasks

Task handling in ModelGlue:

Context: The role of the tasks during conflict resolution was discussed.

Feedback: The enterprise architect noted that the EA repository was used by the
EA team primarily and other business units within the organization showed
a rather selective usage behavior. Further, the enterprise architect noted that
the person who initiates the merge process also resolves arising conflicts. If
that resolution process involves other parties, the architect directly contacts the
respective modeling community via phone or e-mail.

Reflection: In Assumption 4.4 we stated that the EA initiative has upper manage-
ment support; further, in Assumption 1.1 and Assumption 4.7 we detail that we
assume all communities support EA management by providing information as
well as by working towards an envisioned state of CCMC. Collaborative model
merging (including task assignment) of ModelGlue depends on the support by
the modeling communities and, thus, the organizational culture. ModelGlue
must be established and accepted as a means to improve the decision base for EA
management, i.e. the EA model. During the discussion, we concluded that the
tasks are ‘a nice idea’, but within this specific organization, e-mail is the de facto
collaboration tool. After this feedback, we equipped the tasks with an e-mail
notification containing a direct link to the respective task in ModelGlue.

Conflict task life-cycle in ModelGlue:

Context: In the case study reported in Section 7.2, we found the need for long-living
conflicts or even for ignoring conflicts within ModelGlue.

Feedback: The enterprise architect noted that permanently ignoring conflicts is not
an option in his organization. One must ensure the quality of the EA model,
i.e. conflicts may easily exist for several weeks, but in the end they are resolved.

Reflection: The EA expert’s feedback showed us the wide-range of opinions since the
interviewee states the exact opposite to the first case study. Since the introduced
state ‘ignore’ does not affect operations of the remaining system (assumed no
conflict is ignored), we kept the feature in. More general, contrary meanings
and opinions indicate an additional configuration point for ModelGlue and
Federated EA Model Management.

Tabular view of conflicts in ModelGlue:

Context: The enterprise architect suggested a specific design to deal with conflicts
not knowing the alternative tabular view of ModelGlue.

Feedback: The enterprise architect favored a tabular view of conflicts (cf. Figure 6.9
on p. 223).

Reflection: We implemented both views right from the start of our development
efforts and envisioned users that prefer tabular views over more sophisticated
visualizations. The enterprise architect confirmed our design to provide both,
interactive visualizations as well as tabular views on model conflicts.
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7.3.3.2 Strategies

Conflict detection in ModelGlue:

Context: The conflict detection in the course of a merge process was discussed.

Feedback: The enterprise architect was rather skeptical concerning an automated
detection of model conflicts. If the order of magnitude of conflicts is below 102,
the enterprise architect argues, either a conceptual mistake or technical error
slipped in the process. In this vein, none of the conflicts are actually solved but
the root course is eliminated such that subsequent synchronizations succeed.

Reflection: ModelGlue merges information in a model containing tentative merge
results. This model could be discarded if severe problems are diagnosed. As
stated in Section 5.2.5, involved models are not altered until the merge process
is finished.

Preferred model during a merge in ModelGlue:

Context: The conflict resolution strategies were discussed.

Feedback: The enterprise architect emphasized the importance to specify a ‘preferred
model’ whose changes supersede changes of all other models when merging them.
This could lead to a substantial decrease of conflicts. The interviewee also argued
for a clear separation of responsibilities, i.e. to use one primary information source
for Objects of a particular ObjectDefinition only. The architect estimates
that 90% of imported changes can be applied from a ‘primary information source’.

Reflection: One way to permanently define such a ‘preferred model’ is to adapt the
conflict resolution strategy; this is a rather long-lasting solution which was not
the intent of the enterprise architect. Instead, the learning mechanism could
help to reduce the manual effort. However, during the discussions, it turned
out that this solution is also not quite well designed for this purpose. Thus, we
introduced a way to specify a ‘preferred model’ whose changes are privileged
throughout the merge (cf. Figure 6.8 on p. 222). This preference supersedes any
configured conflict resolution strategy. The concept mentioned by the enterprise
architect was coined master-slave and could be confirmed as prevalent solution
for conflicts in our additional interview series (see Section 7.5).

7.3.3.3 Conflict Resolution

The interviewee stated that for the general resolution of conflicts between information
sources and EA repository, the enterprise architect is in charge. Phone or e-mail is the
common means for communication in their organization.

Boundary model elements in ModelGlue:

Context: We further discussed the aspect of overlapping model elements and respon-
sibilities, i.e. two or more information sources for one real-world object.

274



7. Evaluation

Feedback: The enterprise architect stated that data owners of information sources
involved in conflicts are consulted directly. An often chosen solution is to establish
a master-slave relationship between two or more information sources. Necessary
changes on an information source are performed by the data owner.

Reflection: ModelGlue does not explicitly support master-slave paradigms (see
above). However, a customized merge rule (cf. Section 5.2.8.4.2) could be used
to implement such a scenario.

7.3.3.4 User Interface Support

Similar to the first case study, the UI designs have been discussed in detail. Thereby, we
put focus on the interactive visualizations.

Legend for visual concepts in ModelGlue:

Context: The visualizations were discussed with a particular focus on the semantics
of different symbols and colors.

Feedback: The enterprise architect noted that the semantics could be clarified by
adding a legend to the visualization.

Reflection: Adding a legend would foster initial comprehension; however it would
limit the available size on the screen to display information. Since we strove for
an intuitive design, we did not include a legend. We conclude that, especially for
novel users one could add a legend that could also be turned off for power users.

Transparency of visual overlays in ModelGlue:

Context: The different layers of the visualization were discussed in detail.

Feedback: The high transparency of overlay windows influences visual perception
negatively. Especially crossing lines with layers shown below the layer currently
active is rather confusing.

Reflection: We altered our initial design depicted in Figure 7.9(a) to an adapted
version illustrated in Figure 7.9(b). The design shown in Figure 7.9(b) incor-
porates not only solid colors, but uses a drop shadow to emphasize separation
between layers. This was part of a broader visual re-design of the solution such
that many minor adaptations lead to a more decent appearance.
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(a) Transparent background (b) Solid background

Figure 7.9: Background colors of the overlay windows within the visualizations [Ki14, pp. 93]

Filter in ModelGlue:

Context: In Section 5.3.1.5 we proposed a design to filter Objects based on user-
defined rules. We strove for a self-explanatory and intuitive design meanwhile
offering the required expressive power for EA models.

Feedback: The enterprise architect confirms that the UI is intuitive and any enter-
prise architect should understand how to use it without further explanations.
Concerning the expressive power of the filter, the enterprise architect could not
think of counter-examples and regarded it as sufficient for its purpose.

Reflection: This confirms our design; from our perspective, the expressive power of
the filter needs to be studied in a broader field.

Filtering by constraint violations in ModelGlue:

Context: In the course of the discussion about the filter, the enterprise architect
suggested some improvements.

Feedback: In order to improve the quality of the EA model, one could filter by Con-
straintViolations (cf. Section 5.3.2.6). The interviewee also recommended
to include more details concerning these violations, e.g. filter by objects that
miss mandatory attributes. A respective visualization could provide additional
insights in the quality of the model.

Reflection: The suggestions of the enterprise architect follow our vision to assess
the quality of models visually. A concrete realization of this idea would require
the development of a new AbstractViewpoint (cf. Section 6.3). Assuming
that this visualization type would look similar to the differencing visualization,
a new Databinding, which is a minor adaptation of the existing Databinding,
would be required.

Definition of global filters in ModelGlue:

Context: Our design illustrated in Figure 5.3.1.5 on p. 204 presumes that one intends
to query for Objects that conform to a specific ObjectDefinition.

276



7. Evaluation

Feedback: The enterprise architect formulated the demands for a filter mechanism
that queries across ObjectDefinitions. A concrete example was provided to
us: a query which shows all Objects containing ‘SAP’ in their name regardless
of the respective ObjectDefinition.

Reflection: The enterprise architect identified a potential limitation of the filter
UI or an extension thereof. In the example outlined above, with the current
design, a user must define rules that filter every ObjectDefinition. Cross-
ObjectDefinition filters are currently not supported by ModelGlue. How-
ever, minor changes on the algorithms as well as the UI could realize such a
feature.

Save filter queries in ModelGlue:

Context: Brainstorming about ideas how to further improve the filter, the demand
to persist (filter) queries came up.

Feedback: The enterprise architect thought it would be beneficial if the filter is
stored within the system and could be accessed quickly. It is very likely that
users apply the exact same filter multiple times; persisting the filter (or the
configuration thereof) would accelerate their workflow.

Reflection: Filters are represented as JSON strings (cf. Listing 5.1 on p. 206 and
[RM14]). The UI is already programmed to reload the entire configuration
including existing filter parameters. Thus, the configuration of the dialog, i.e. the
JSON query, could be persisted, loaded, and easily reapplied.

MxL expressions for advanced filtering in ModelGlue:

Context: MxL provides access to define queries that are beyond the expressive
power of the presented UIs (cf. Section 5.2.8.4.2). We provided two examples
illustrated in Figure 7.10 to the enterprise architect. Thereby, the query shown
in Figure 7.10(a) can be configured with the UI whereas the query depicted in
Figure 7.10(b) includes a condition on an Attribute only available by traversing
transitive relationships. Note that the expressive power of the latter query is
beyond the configuration capabilities of the proposed UI.

Feedback: The enterprise architect referred to MxL as not particularly user-friendly
and named reasons why MxL would provide little benefit in the organization:
First, very few people were engaged in EAM. As a consequence, the EA repository
had few power users. Second, the motivation of occasional users to learn a
sophisticated language was rather low when the language could only be applied
to define queries in the already rarely used EA repository. Third, MxL was not
widespread, which would make finding and resolving syntactical issues rather
difficult and posed an additional threat. The enterprise architect envisioned an
active community answering MxL related problems.

Reflection: We employ MxL in dialogs as a means to an end. Thereby, intermediate
templates are used to define queries in MxL syntax. Thus—from an architectural
point of view—designers can vary the amount of MxL that is accessible or shown
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to the user. Given the feedback of the EA expert, one should invest in advanced
UIs that build upon existing query languages.

(a) Range query

(b) Transitive query

Figure 7.10: Exemplified MxL expressions [Ki14, pp. 66]

Conflict management dashboard of ModelGlue:

Context: The visual elements of the conflict management dashboard were discussed.
Particular focus was put on the progress bar beneath an ObjectDefinition
(cf. Figure 5.41 on p. 208). It is used as an indicator for conflicts on Objects.

Feedback: The enterprise architect appreciates the idea and referred to it as a
means to find ‘hot spots’ guiding user’s attention towards elements with the
most conflicts in the EA model. “This fosters [...] model quality assessment and
conflict identification” [Ki14, p. 94].

Reflection: This positive feedback confirms our design.

Two-way or three-way differencing in ModelGlue:

Context: Both, two-way and three-way comparison is possible when calculating
differences (cf. Section 2.3.1). In our prototypical implementation, we employ
both techniques.

Feedback: The enterprise architect stated a two-way-comparison is sufficient in the
context of EA models; the additional option (the display of two ModelEle-
ments’ origin) could be rather irritating for users.

Reflection: The underlying visualization stack of ModelGlue is highly configurable
(cf. also [RHZ+13]) such that users can configure to hide the display of the
common origin of a ModelElement. The framework has to be adapted
with regards to user-specific preferences. Currently, the visualization framework
applies persistent configurations globally and does not allow to define user-specific
preferences.

7.3.3.5 Decontextualization

Decoupling the filter from the visualizations in ModelGlue:

Context: It was discussed that filtering Objects by specific values of their At-
tributes is a common use case of all EA repositories.
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Feedback: Demands for additional filtering capabilities of the EA repository were
raised by the enterprise architect. The enterprise architect outlined that one
does not always work inside a visualization. Demands for filtering the same
information in different views were raised, i.e. defining queries with the filter UI
for other views would provide utility for the enterprise architect.

Reflection: This might be an indicator of limitations of the EA repository currently
used by the enterprise architect. In particular the platform does not allow to
define queries combining multiple logical boolean expressions via conjunctions
or disjunctions (and/or). Future research might decontextualize our UI design
for mere filtering purposes. For further readings of filtering Objects on the
underlying platform in an efficient manner, we refer to Steinhoff [St13].

Deriving planned states with ModelGlue:

Context: In Section 8.3 we point out that another application for ModelGlue could
be the modeling of planned states. Once applied or realized by a transformation
project, a planned state could be merged with the current state of the EA model.

Feedback: The enterprise architect agreed with the general idea, especially having a
branch of the metamodel could be beneficial. However, concerns were raised if
the model must be branched, too. In the opinion of the enterprise architect, for
mere planning purposes the model would not be required.

Reflection: ModelGlue could serve the planning purposes of the enterprise archi-
tect. As a näıve approach, one could delete Objects and their Attributes
after branching. Further considerations would suggest to decouple the branching
of model and metamodel as proposed by Kirschner [Ki14, p. 90].

Towards a VDSL for meta modeling in ModelGlue:

Context: Since the proposed visualizations provide considerable facilities to ma-
nipulate the underlying model (cf. Section 6.3), the discussion centered around
altering the metamodel visually.

Feedback: The enterprise architect noted that ModelGlue currently does not allow
a manipulation of the metamodel via its visualizations. This could facilitate
the creation of planned states of an EA. “As most EA tools offer visual model
manipulation capabilities, users would expect such functionality [...], too.” [Ki14,
p. 90].

Reflection: Extensive manipulation of the metamodel via visual concepts is beyond
the scope of our research presented in this thesis. However, the developed
framework (cf. Section 6.3) is designed to support visual interactions that prop-
agate changes to its underlying model. One could realize a VDSL with this
framework [SMR12, RHZ+13].

7.3.4 Reflection of Results

This case study particularly shaped how we perceive the process support for Federated EA
Model Management and its interrelationship with ModelGlue. Providing his expertise,
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the senior enterprise architect gave us useful insights how the created artifacts can be
integrated in this method in a meaningful way. These findings considerably shaped the
process as well as the structure of Section 5.2 in the present thesis.

Many expectations and ideas of the enterprise architect center around features that have a
productive character and go beyond the purpose of our prototype. Sometimes the enterprise
architect compared ModelGlue with a fully-fledged EA repository and COTS products
of the EA domain. While this certainly was none of our intentions, it shows the maturity
of the prototypical implementation. However, it also shows that a certain set of features
must be achieved by an EA repository which forms a barrier for case studies in this area of
research.

7.4 Conclusion of the Case Studies

In this section, we conclude both case studies. Since the respective conclusions for each
case study already have been drawn in Section 7.2.4 and Section 7.3.4, we stick to a
meta-conclusion outlining our learnings.

An interesting observation in the initial phases of the case studies has been that both
organizations mostly rely on exact name matching and rather lean formats, e.g. CSV or
XLS/XLSX. In the light of this observation, we regard the application of ontologies to
resolve a mapping problem in an organization as even more challenging (cf. Section 4.2.5).

Both case studies shaped our design considerably. While the first case study contributed
to our understanding of necessary and important additionally states of tasks, the second
case study served to better understand interrelationships of process steps with the software
support, we provide. In line with Kirschner [Ki14, p. 98], we conclude that all participating
EA experts appreciate ModelGlue’s functionality and the case studies show that EA
experts familiar with ModelGlue agree that it can provide substantial utility for an
applying organization.

The results have to be interpreted carefully as they state opinions of individuals with a
specific background and organizational environment. Given the empirical basis, they give
us clues for limitations, further improvements and future research; our findings cannot be
generalized. From our perspective, we identified relevant configuration points rather than
ultimate changes to our design.

Potential biases are that we knew both organizations as well as their EA initiatives quite
well. Knowing their initiative, we envisioned a good fit between our approach to Federated
EA Model Management, ModelGlue, and their organization. However, we considered
the selected organizations and respective EA experts since they already pursue similar
endeavors to accelerate their EA model maintenance endeavor.
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7.5 Interview Series

Espinosa et al. [EAB10] state that interviews are “widely used in information systems
research” and give prominent examples ([MRM+00, MMC+01, Or93, Or02]). In line with
Espinosa et al. , we agree that interviews are a good method to gain additional insights in
EA management specifics.

In [AK14, ch. 4], Aleatrati Khosroshahi presents results of an interview series among 11
interview candidates. We summarize the key findings of his research. The interview
guidelines can be found in [AK14, Appendix A], the list of participants with respect to
industry sector, role, and size of the organization in terms of number of employees is
illustrated in [AK14, p. 55–58]. Therein, also the approach of the interview series as well as
the method we followed are described.

7.5.1 Status-quo in Industry

Aleatrati Khosroshahi [AK14, p. 59–61] investigates the current state of EA management
initiatives in organizations. His first finding describes a common threat for EA management
endeavors, i.e. EA stakeholders from business have not (yet) grasped the benefits of an EA
initiative. Besides a lack of general acceptance among business-focused stakeholders, he
diagnoses that most of the interviewed organizations have not established a holistic and
coherent approach for Federated EA Model Management. However, organizations pursue
considerable efforts that can be characterized as closely related to Federated EA Model
Management, e.g. import of information sources’ models to an EA repository.

7.5.2 Benefits of Federated EA Model Management

Next, Aleatrati Khosroshahi [AK14, p. 61–64] investigates the perceived benefits of Federated
EA Model Management. Benefits described concern for instance:

∙ IT Controlling, e.g. increased transparency with respect to IT and the identification
and quantification of unnecessary overheads,

∙ Trends and Forecasting, e.g. determining required storage space and projecting
future demands,

∙ Controlling and Planning the EA, e.g. reducing heterogeneity within an EA,

∙ Regulatory Requirements, e.g. responding to new information demands faster
whereas the EA model helps to determine where to get the information,

∙ ...

While his findings certainly can be attributed to an up-to-date EA model, a direct impact
of methods and techniques of Federated EA Model Management could not be diagnosed.
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7.5.3 Additional Process Steps

During his interviews, Aleatrati Khosroshahi [AK14, p. 65–67] also discussed essential
process steps and their dependencies and transitions as well as the iterative nature of the
Federated EA Model Management process. An important step, we identified throughout the
interviews is the alignment of terminology prior to an integration of an information source
(cf. Section 5.2.2.2). In his master’s thesis, Aleatrati Khosroshahi [AK14, p. 66] details this
sub-process and proposes a process model based on the interview results. Besides this
process step, practitioners agreed to the core process steps (cf. Section 5.2); the interviews
also confirm that the exact order of execution is rather flexible.

7.5.4 Degree of Automation

Next to the process, Aleatrati Khosroshahi [AK14, p. 69–70] elaborates practitioner feedback
that gives insights in important parameters to consider when integrating information sources
with an EA repository in an automated fashion. Important factors to consider are:

∙ number of Attributes of an Object and respective ObjectDefinition,

∙ number of links of an Object and respective relationships within their ObjectDefi-
nitions, and

∙ potential overlap with other information sources, i.e. other models that describe the
same real-world object (cf. Definition 4.7 on p. 83).

Aleatrati Khosroshahi [AK14, p. 69] further proposes a formal way to determine the com-
plexity of an integration of a single object with the EA repository. However, we claim
that with an iterative and incremental approach to Federated EA Model Management, in
particular boundary model elements will not be known at an initial stage. Especially, an
average number indicating the frequency of boundary model elements will not be available.
Measuring complexity upfront to determine and even forecast conflicts that may arise
would require considerable efforts providing very little value for EA management. Also, all
practitioners confirm that metamodel changes are applied manually and have a considerably
impact on the mappings between an EA model and modeling communities, i.e. the mappings
might require and adaptation (cf. Section 5.2.3.1).

7.5.5 Model Changes and Conflict Resolution

Aleatrati Khosroshahi [AK14, p. 69–71] elaborates how practitioners describe their processes
to adapt metamodels as well as models to changes in their information sources. In particular
the import of new information includes an assessment of the quality as well as ‘overlaps’
which potentially could be identified with our differencing visualization (cf. Section 5.3.1).
To a large extent, any quality assessment—may it be for the metamodel or model—depends
on the experience of the enterprise architect or EA repository manager. Another finding
of Aleatrati Khosroshahi [AK14, p. 72] confirms our approach to resolve model conflicts.
Practitioner state a highly collaborative and lean approach that involves different roles.

282



7. Evaluation

Further, a very prominent approach to conflict avoidance for boundary model elements is the
introduction of a master-slave relationship between information sources (cf. Definition 5.3).

7.5.6 Additional Factors

In Section 5.2.2.3 we outlined the notion of bidirectional and unidirectional information
flow between the federal system and the federated information sources. In our interviews we
distinguished between logical and physical flows (cf. human-to-human, human-to-machine,
machine-to-human, machine-to-machine in Section 5.2.2.3). Prevalent arguments for unidi-
rectional integration are that the modeling communities want to remain autonomously and
bidirectional integration with legacy systems could influence day-to-day business since that
are hard to adapt or organizations lack skilled personnel with expertise in the underlying
technology [AK14, p. 73]. In contrast, most examples for a bidirectional integration are the
propagation of new standards and organization-wide concepts. However, this is a logical
bidirectional flow (human-to-human).

Information of a ModelElements version history is a clear preference of EA experts.
Such information serves to analyze the evolution of a ModelElement which sometimes
helps to justify decisions and choices made. Besides justification, also tracking of changes
for auditing purposes was named as a reason for versioning [AK14, pp. 73–74].

Many EA experts report that EA stakeholders from more business focused modeling com-
munities rarely contribute to EA activities. In contrast Federated EA Model Management
requires collaboration among the EA team and all EA stakeholders. Two fundamental
approaches are coined by [AK14, pp. 74–75] ‘social methods’ and ‘governance pressure’;
similar concepts can be found in existing literature (cf. Section 3.2.1).

7.5.7 Reflection of the Interview Results

The interview series gave us additional insights in organizations and their processes. Through-
out the interviews we gained the impression that most organizations carry out EA model
maintenance in an ad hoc manner and individuals rely on (tacit) knowledge to determine
the ‘right’ person to resolve conflicts. Further, interviewees had difficulties with our role
definitions. These are perceived differently by practitioners—they distinguish by job titles
and concrete persons rather than by abstract role definitions. Thus, the proposed roles
could not been evaluated. However, the different activities we assigned to the proposed
roles (cf. Section 4.1.1 and 5.2), are carried out by an enterprise architect or Domain Expert.
Thereby, the latter is an expert of a particular information source.

Identification of an important process step; prior to the interview series this process step
has been included in our design rather implicitly. An extensive alignment of terminology is
the first step in the integration process (cf. Section 5.2.2.2) and serves as a foundation for
the metamodel mapping.

The process designs of Aleatrati Khosroshahi [AK14, p. 65ff] contain several activities that
intend to create documentations of models. We intentionally did not include extensive
prescriptions for a documentation in Federated EA Model Management since we assume
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a modeling system in which changes are tracked by a version history. Since this also
holds true for metamodel changes, enterprise architects could document the intent and
rational (cf. also Section 2.1.2) of a change by annotating these changes with a comment.
This way, the documentation and actual system are at one place which increases the
chance that documentation and model are actually synchronized. In contrast, outdated
and possibly extensive documentation in an agile EA management process (cf. Section 2.1.4
and [HRS+14]) is counterproductive.

Additional results can be found in a final online survey among 48 EA experts. Aleatrati
Khosroshahi [AK14, pp. 77–82] could confirm some of our core design decisions, e.g. the
involvement of EA stakeholders and other roles in the Federated EA Model Management
process, the necessity of a chain of responsibility as well as to follow a lean and pragmatic
approach to EA model maintenance.

7.6 Summary

We already drew conclusions of the individual case studies in Section 7.2.4 and in Section 7.3.4
respectively as well as concluding remarks on both case studies (Section 7.4) and the interview
series (Section 7.5.7).

Simon [Si96, p. 119] advocates that in actual design situations, it often cannot be proven
that solutions are ‘optimal’ and, thus, called ‘best’. However, Simon further introduces his
notion of ‘satisficing’ solutions as initially introduced in [MS58, p. 140f] and [Si59]. As we
currently lack means to find a method to prove an optimal solution, we employ his notion
of ‘satisficing’ to refer to a good or satisfactory solution.

The evaluation underpins the overall concept of Federated EA Model Management and
ModelGlue seems to provide utility to EA experts. These experts confirmed many aspects
of our design. The EA experts not only confirmed the usefulness of our research but also
deem our designs as satisficing in the sense that it provides utility to them and improves
the current situation with respect to their organizational context and personal background.
The case studies helped us to reveal concrete design flaws in our prototype. While the first
case study had considerable influence on the states of tasks, the second case study had a
strong influence on the overall process of Federated EA Model Management. In particular
the second case study revealed the importance of the differencing visualization in order to
assure model quality prior to initiating the merge process.

In a productive environment, ModelGlue would have been applied more intensively such
that more flaws in our design would have become visible. We foresee that minor adaptations
have to be performed on the prototype to reveal the full potential of ModelGlue to EA
stakeholders. However, first adaptations also show that the underlying architecture and
implementation is designed in such a way that ModelGlue can be altered quickly. Many
of these proposed and discussed adaptations can be characterized as beyond the purpose of
a prototype and lead towards a fully-fledged product. The interview series gave us insights
to processes of EA experts, but also pointed out treats to EA management in general and in
particular Federated EA Model Management. These social and organizational circumstances
have been characterized and also explicated in the form of assumptions for our approach.
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Chapter 8

Conclusion

In this chapter, we summarize the thesis, reflect on the proposed design based on the
research questions raised in Section 1.2, reveal known limitations of our research, and give
an overview of further research.

8.1 Summary

The present thesis investigates phenomena that we observed in federated EA model en-
vironments. We described typical characteristics of these environments and proposed a
solution to address the identified challenges. Throughout the thesis, we detailed a software-
supported process that allows to continuously integrate information sources in an EA model.
We described a system design that provides means to ensure consistency. Central to our
approach is a considerable degree of freedom during model maintenance and collaborative
conflict resolution. The former serves to facilitate knowledge management while pursuing
the shared goal to restore and maintain CCMC (cf.Definition 5.7 on p. 187). The latter
is facilitated by interactive visual support for the communication of model differences as
well as model conflicts. Thereby, users can resolve model conflicts interactively. While our
previous research addressed a better understanding of the technical and social challenges in a
federated EA model environment, the design presented in this thesis is the next step towards
a more controlled integration bringing together our findings in a coherent software-supported
process. Federated EA Model Management is an iterative and incremental approach to
integrate existing information sources with an EA model. We sketched typical process
steps, e.g. the selection of relevant information sources and the alignment between different
terminologies, and provided a holistic design that we realized as a prototypical software
artifact.
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Federated EA Model Management responds to demands of practitioners. We found an
increasing number of integration efforts in organizations which seek to employ decentralized
information sources to maintain a holistic EA model. These attempts were carried out in an
ad hoc manner. Neither EA frameworks, literature on EA model maintenance, nor current
tool support for EA management provide support for the arising problems and challenges.

Federated EA Model Management is an innovation facilitating the development and main-
tenance of EA models which make use of existing information within an enterprise. Core
contributions of the thesis are (cf. also Section 1.4 and Figure 1.3 on p. 12):

∙ an extensive description of the conceptual foundations, common use cases, re-
quirements, and typical characteristics of a federated EA model environment
( A1 – A5 ),

∙ an iterative and incremental process design and a system design ( A6 ) incorpo-
rating a metamodel ( A7 ) that facilitates its flexible execution,

∙ formal descriptions of merge and differencing algorithms ( A8 ),

∙ pre-defined and adaptable conflict resolution strategies ( A9 ),

∙ concepts for interactive visual support as well as innovative UI designs for
the collaborative conflict resolution and lessons learned during their implementation
( A10 – A13 ), and

∙ feedback from practitioners who currently pursue Federated EA Model Manage-
ment ( A14 – A16 ).

In Chapter 1, we described the problem and raised research questions that seek to improve
the situation. To build a foundation for the subsequent chapters, we described relevant
concepts in EA management, modeling, model merging, and federated database systems
in Chapter 2. Thereby, we provided references to chapters and sections in which we
applied concepts of other domains that influenced our design. The state-of-the-art was
revisited in Chapter 3; with respect to existing literature, we outlined different research gaps
identified during our research. Building on the understanding of the state-of-the-art, we
described further characteristics of a federated EA model environment in Chapter 4. These
characteristics were presented in the context of a deduction of requirements based on the
core use cases of Federated EA Model Management. An extensive description of our design
was presented in Chapter 5. In Chapter 6, we revealed implementation details. Thereby,
we put a particular focus on the challenge of interactive visualizations that were used as a
means to support synchronous communication as well as face-to-face support. In the final
part of the thesis (Chapter 7), we presented the design and results of a threefold evaluation.
We reported on the application of ModelGlue with industrial data in two case studies
whereas an additional interview series among 11 EA experts focused on processes, roles, and
other important aspects for an organization pursuing Federated EA Model Management.

After summarizing the core contributions of the present thesis and giving an overview of
the individual chapters, we assess our results in the light of the research questions raised in
Section 1.2. Thereafter, we provide a mapping of specific sections to the requirements we
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derived from the use case analysis and literature in Section 4.3. This mapping reveals to
which extent each requirement was addressed.

Research question 1 (RQ1): What are typical characteristics, i.e. core use
cases, involved roles, and information sources, of a federated EA model environ-
ment?

We diagnosed current problems in Section 1.1 and described the typical situation of a
federated EA model environment. Next, we detailed the state-of-the-art in literature in
Chapter 3 and provided a topic map that illustrates current research efforts, identified
gaps, and challenges in EA model maintenance. Thereby, we sketched technical as well as
organizational and social aspects that posed a challenge. Some of these challenges were
addressed in the current thesis; however, further research is required that goes beyond
efforts underlying a single PhD thesis (cf. Section 8.3). Particulars such as the involved
roles and common information sources were extensively described in Section 4.1.1 and
4.1.2. Thereby, we did not only reveal which information sources EA practitioners use
but also provided empirical findings on perceived data quality. A formal definition of
the relationships between models in a federated EA model environment was illustrated in
Section 4.1.3. We described core use cases in Section 4.2 building the foundation for the
design of Federated EA Model Management and ModelGlue.

Research question 2 (RQ2): How can a system design and a process design
that continuously integrates models from specialized and autonomous modeling
communities with an EA model look like?

In Chapter 5, we presented extensive descriptions of a holistic system design and an iterative
process design. Both artifacts seek to evolve an EA model incrementally by integrating
new information sources. The process was described in Section 5.2. Central to this process
was the collaborative conflict resolution and the continuous adaptation of an organization-
specific conflict resolution strategy. As a starting point for organizations, we outlined two
pre-defined conflict resolution strategies described in Section 5.2.8. Further, we provided
rationales for our design decisions. During the description of the state-of-the-art in EA
model maintenance (Chapter 3) and related fields (Chapter 2), we referred to work of
others that influenced our design and sketched how we incorporated existing thoughts and
principles in a holistic design of Federated EA Model Management. The design of Federated
EA Model Management embraces processes and techniques that range from

∙ an initial selection and integration of information sources into a federation (Sec-
tion 5.2.2) including the alignment of terminology (Section 5.2.2.2) and the definition
of mappings (Section 5.2.2.3 and Section 5.2.2.5), over,

∙ a triggering-based continuous importing of information to a branch of the respective
model in a federal system that served as staging model (Section 5.2.3) as well as

∙ approaches to model differencing (Section 5.2.4) and merging (Section 5.2.5) as a
means for a model synchronization, to

287



8. Conclusion

∙ a description of conflicts between involved models and a process design for the conflict
management (Section 5.2.7) as well as adaptable resolution strategies (Section 5.2.8).

Central parts of this software-supported process were facilitated by innovative UI concepts.
In Section 5.3 we detailed designs for the visual representation of model differences as well
as a conflict management dashboard. The former provided means to ensure model quality
by interactively browsing through model and metamodel differences whereas the latter
allowed to propagate visual changes to the underlying model and enables collaboration
among different parties.

Research question 3 (RQ3): How can a metamodel look like that realizes
Federated EA Model Management?

In Section 5.1.2 we introduced a metamodel capable to support Federated EA Model
Management. It incorporated a fine-grained access control, responsible roles for model
elements, and collaborative state-based tasks which carry conflict information. The role
concepts realized a chain of responsibility that allowed to determine the correct addressee
of a conflict task. We illustrated essential states of ModelElements and Tasks and their
transitions in Section 5.1.2.5. Tasks build the technical means for enterprise collaboration
and facilitate the proposed process (cf. Section 5.2).

Federated EA Model Management can be realized with this metamodel by considering a
federation of information sources’ models as branches of an EA model (cf. Section 5.2.1).
We detailed how to perform differencing (Section 5.2.4) and merging (Section 5.2.5) of
instances of this metamodel. Further, we presented concepts to cope with the complexity
of an EA model, e.g. a design for an intuitive filter dialog (Section 5.3.1.5) that allowed to
define queries for ModelElements that conform to positive rule sets. In combination
with the process, the difference visualization (Section 5.3.1), and the conflict management
dashboard (Section 5.3.2), ModelGlue provided means to monitor data quality within
the federation and to restore and maintain CCMC.

Research question 4 (RQ4): What is a suitable integrated UI for collabora-
tive Federated EA Model Management?

In Section 5.3, we described the core concepts of our design for the visual support of
ModelGlue extensively and provided screenshots of our prototypically implemented
solution to explain our design. Additional descriptions of our design and screenshots were
illustrated in Sections 5.2.6, and 6.2. In Section 5.3.2.5, we described the collaborative
aspect of our UI design and its approach to allow to communicate synchronously. We put
particular focus on the aspect of real-time collaboration realized through synchronization
of visual interactions. Its implementation that was build on the interactive visualization
framework (Section 6.3) was sketched in Section 6.4 whereas the respective evaluation
results were reported in Section 7.2 and 7.3. Practitioners understood the concepts and
especially regarded the navigation through the metamodel of an EA as an intuitive way
to browse through an EA model. Compared to expression languages, initial feedback of
practitioners confirms that our design for filter dialogs and definitions of rules for the
customization of model conflict resolution strategies offers more utility.

288



8. Conclusion

Research question 5 (RQ5): What are the software engineering challenges
for a system that facilitates Federated EA Model Management?

In Section 4.3 we derived the requirements for ModelGlue based on the core use cases of
Federated EA Model Management. In Chapter 6, we revealed implementation details of
ModelGlue. These included an overview of the component architecture, chosen variability
points, screenshots of the prototype, and references to existing literature which describes
the implementation of ModelGlue in more detail. Additionally, we provided insights
in the software engineering challenges and their resolutions with respect to interactive
visualizations. Therefore, we introduced an extension of a visualization framework that
not only allowed to interact with information visually but also enabled the propagation of
changes to the underlying model of a visualization. An extensive description of the core
concepts and features of the framework can be found in Section 6.3. Further challenges
were detailed by the requirements in Section 4.3. These were addressed by the metamodel
introduced in Section 5.1.2; e.g. we described the differencing and merging of models formally
in Section 5.2.4 and Section 5.2.5 including our notion of equivalence and congruence among
different kinds of ModelElements and techniques for the identification of potentially
conflicting changesets. The metamodel built the foundation for our implementation and
for the operation-based conflict detection which we explained in Section 5.2.5.6. Further,
we described the different kinds of tasks created during conflict detection and merging of
models in Section 5.2.5.5.

Research question 6 (RQ6): What is the experience of real stakeholders us-
ing this system of systems for EA model maintenance? What are the specificities
and further challenges of the Federated EA Model Management process?

In Section 7.2, we presented feedback from EA experts in the insurance industry who
agreed to evaluate ModelGlue with models of their organization. Three different models
were combined to a holistic model. In addition, we gave insights in a different case study
in Section 7.3 and reported on feedback from a senior enterprise architect who pursued
Federated EA Model Management in an organization in the health care domain. In both
case studies, the overall process of Federated EA Model Management as well as the software
support were evaluated. Thereby, the software support was evaluated with historical live
data of the respective organizations. Multiple interviews and workshops served us to find
out the specificities of Federated EA Model Management and to iterate our design. While
practitioners widely agreed with our major design decisions, their valuable feedback helped
refining the design of ModelGlue. Our design adaptations were sketched in Section 7.2
and Section 7.3.

An additional interview series served to confirm the overall design of Federated EA Model
Management. We shed light on the role of a staging model, actual allocation of roles,
important process steps of Federated EA Model Management, the notion of approvals
by superiors, and other specificities. During the interviews we discussed how to apply
our design to identified organization-specific problems. For instance, in Section 7.5, we
investigated the role of the master-slave relationship among information sources. In the
design of ModelGlue, we incorporated means to (re-)define an organization-specific
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conflict resolution strategy. Due to its adaptable conflict resolution strategy, ModelGlue
can support master-slave strategies between different information sources.

We conclude our summary with a mapping of the developed solution to the requirements
derived in Section 4.3. Table 8.1 gives an overview of the requirements, the particular
sections in which we describe a solution, and a brief description how we address the
requirement indicating to which extent the solution artifact was described in the present
thesis.

8.2 Critical Reflection

In Chapter 3, we stated that we do not claim to resolve all issues which were identified and
were related to EA model maintenance. In the following, we sketch known limitations of
our work; afterwards, we propose directions for further research.

8.2.1 Validity of the Conclusions

Threats to validity of our conclusions and, thus, limitations of our research stem from its
evaluation. Although our design includes the concept of OIDs, we had to rely on exact
name matching throughout the case study. This could have led to undetected changes and
modifications within the information sources.

In our design, we consider all EA stakeholders as target users of ModelGlue. However, we
did not interview any stakeholders outside an EA team. In particular we did not confront
business stakeholders with the system.

All results of the case studies must be interpreted with respect to the organizational
context and background of the individuals interviewed. The feedback gives insights to
opinions of individuals and can be interpreted as confirmation of our design, hints for further
improvements, and demands for adaptations when applying ModelGlue in practice. Given
the empirical basis, we cannot generalize our findings at this point. From our perspective,
we identified relevant configuration points rather than ultimate changes to our design.

8.2.2 Detection of Changes within Information Sources

Another limitation stems from the absence of active monitors within the information
sources. Conceptually, changes in external systems are not monitored and what is actually
exchanged between information sources and ModelGlue strongly depends on the concrete
implementation of a physical mapping. This could lead to ‘phantom conflicts tasks’ that
are reported within ModelGlue but are actually already resolved within the information
source. This also holds true for deletions within the external system, i.e. the element that is
involved in a conflict could cease to exist before the conflict task is opened.
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Table 8.1: Mapping of use cases to requirements and respective categories

Req. Section Description

Pr1 5.1.2, 5.1.2.5 Task support and states

Pr2 5.1.2, 5.1.2.4 Determination of responsible roles for ModelElements

Pr3 5.1.2, 5.1.2.2 Responsible roles for all ModelElements

Pr4 5.2 Iterative and incremental process design

Co1 5.2.5, 5.2.5.5,
5.2.6

Conflicts are sent as tasks produced either automatically in the course
of a merge or explicitly

Co2 5.1.2 Each task has a designated owner

Co3 5.1.2 Meta-information attached to tasks

Co4 5.1.2, 5.1.2.4 Task forwarding

Co5 5.3.2 Real-time conflict management dashboard

Co6 5.1.2, 6.4 Access control and real time conflict management dashboard

Mo1 5.2.2.5 Ecore-mappings, Excel mappings, and XML-based declarative
mappings

Mo2 5.2.3 Import component executes mappings

Mo3 5.1.2 ObjectDefinitions and AttributeDefinition of the metamodel

Mo4 5.2.1, 5.2.3 Model adaptation, model branching, and import component

Mo5 5.1.2 Core feature of the metamodel

Mo6 5.1.2 Constraints are not enforced but violations are captured

Mo7 5.2.4, 5.3.1 Differencing model, algorithm, and visualization

Mo8 5.2.5, 5.2.8 Formal algorithm description

Mo9 5.2.5.6 Formal description of conflict detection

Mo10 5.1.2, 5.1.2.4,
5.2.8, 5.2.6

Conflicts are either detected and assigned by the merge algorithm
based on the adaptable conflict resolution strategy or task is created
manually.

Mo11 5.1.2 OID concept

Mo12 5.1.2 Constraint violations in branches or EA model

Mo13 5.1.2 Delta-backward changesets

Mo14 5.1.2, 5.1.2.4 Fine-grained access control as well as inheritance of (default) access
rights

Us1 5.3, 7.2–7.5 Design, prototype, and feedback from EA experts

Us2 5.3, 7.2–7.5 Design, prototype, and feedback from EA experts

Us3 5.3.1.5 Filter dialog

Us4 5.3.1, 5.3.2 Differencing gives an overview of possible conflicts; interactive conflict
management dashboard shows conflicts, conflict tasks can be shown as
tabular view

Us5 5.2.8 Adaptable conflict resolution strategy

Us6 5.2.7.1 Learning mechanisms

Us7 5.2.5 Merging does neither affect source nor the target model such that
tentative merge results can be reverted

Us8 6.3 Visualizations can be printed on paper with the PNG and PowerPoint
renderer

Te1 6.1 The prototype is implemented in an existing web-based platform

Te2 6.1, 5.1.2 Internal data-structure maps to the conceptual metamodel
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8.2.3 Modeling Capabilities

ModelGlue is based on a metamodel which does not include inheritance. Thus, inheritance
must be emulated by EA modeling experts. Potentially, the absence of inheritance gives
rise to inconsistencies during meta modeling.

Moreover, the metamodel does not feature explicit relationship types. ModelGlue uses
attributes which are interpreted at runtime to describe relationships. This is done to offer
a necessary degree of freedom for Federated EA Model Management. However, annotating
relationships with additional information is not possible due to this conceptual design.

8.2.4 Implementation Aspects

The prototypical implementation of the collaborative mode within the conflict management
dashboard relies on the underlying technology stack; thus, on simultaneous interactions, race-
conditions can occur since our design does not embrace locking mechanisms or additional
mechanisms that cope with common synchronization challenges.

8.2.5 Non-functional Requirements

Although Kirschner [Ki14] presents initial performance considerations, to a large extent
we did not evaluate our prototype concerning non-functional requirements. In particular,
performance criteria could become important if the number of instances within an EA
model, i.e.Objects and Attributes, grows considerably large.

8.3 Further Research

In the final section of this thesis, we discuss further research that could aim to improve the
diagnosed situation in EA management. First, we discuss directions directly related to our
work. Thereafter, we sketch how the created artifacts could be generalized and applied in a
different context.

8.3.1 Additional Case Studies in Real-World Setting

Our evaluation presents initial findings and practitioner feedback that helped us to improve
the current prototype. Many enhancements made are subject to be investigated in further
research. The participants of the case studies and interview series confirmed the relevance
and applicability of the developed artifacts to a large extent but also revealed limitations
and further aspects that are relevant for a successful Federated EA Model Management.
Suggestions for improvements were incorporated in our design. However, in a series of
further case studies, we expect minor changes on the design that may have major impact on
its usability. Improvements will not only be limited to the software support of Federated EA
Model Management. In particular, the proposed process seeks to describe the core activities.
The design of the respective software support is flexible such that other transitions of

292



8. Conclusion

activities can be performed by an organization applying our approach. In this vein, the
conceptual foundations provided in the present thesis can serve as a frame of reference
whereas the software support can be utilized for a continuous monitoring of process variations
and behavior during the conflict resolution process. A larger set of case studies could help
to refine the process and design of Federated EA Model Management. Especially, long-term
observations could reveal patterns for conflict resolution strategies by analyzing common
adaptations thereof. These empirical studies could be combined with advanced Artificial
Intelligence (AI) techniques to recommend conflict resolution strategies. This could not
only improve the learning mechanism proposed in Section 5.2.7.1 but also produce entire
conflict resolution strategies based on individual user choices.

8.3.2 Business Cases for Federated EA Model Management

The ROI of EA management is an often discussed topic [Sc05] and, as of today, poses a
problem for many EA experts. Although we diagnosed that manual EA model maintenance
is an expensive task, we did not provide sufficient evidence for a positive ROI for EA
management investments in organizations applying Federated EA Model Management.
Empirical data indicates that an automation is desirable, however, there is also qualitative
feedback of practitioners that can be interpreted as a counter indicator. Integrating models
with a coherent EA model is an expensive task. Against this background, empirical data on
ROI considerations would be interesting. Additionally, a broad-scaled research project could
seek to identify frequently used information sources. This way, one could develop a catalog
of prevalent information sources detailing how these can be combined in a meaningful
way to integrate respective information with a core metamodel of an EA. Combined with
cost estimations for their integration with an EA model, a cost/benefit analysis could lay
grounds for strong EA management business cases.

8.3.3 Standardization of Models and Domain Ontologies for EA Man-
agement

Canonical models, standards, and reference architectures for business information systems
could help to improve the situation for organizations that seek to maintain their EA
model. In particular standards to exchange models and metamodels are of high relevance
to exchange not only the model but also the metamodel of an application. Current COTS
products implement only rudimentary support for known standards to exchange models
as well as metamodels, e.g. EMF. Adhering to one standard would allow to query model
and metamodel information via standardized interfaces. In this context, COTS tools
could provide utility to create mappings between the different metamodels. One of our
assumptions in the present thesis is that a top-down approach which derives domain
ontologies from an upper ontology is not suitable for EA management since the information
sources already exist and these commonly do not support ontologies. Although ontologies
are regarded as too complex by practitioners that are tasked to develop mappings, an
interesting research direction is the investigation of the development of new (COTS) IT
products that derive their ontologies from an upper ontology. This could further improve
the harmonization of models and—ideally—make manual alignments and mappings obsolete.
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Further research could investigate the integration of such a canonical development model
for business information systems with ModelGlue. Outcomes could lead towards an
upper-ontology for EA management and domain specific ontologies for EA management.
An analysis how current APIs look like that satisfy (most) needs of organizations’ EA
management endeavors could provide a starting point; results could be combined with an
investigation on current and future protocols that implement the exchange of models and
metamodels with respect to knowledge management.

8.3.4 Usability Experiments

We proposed an innovative design that embraces many aspects and unites elements of

∙ modeling, e.g.meta modeling and model-to-model transformations,

∙ software engineering, e.g. architectural design,

∙ software cartography, e.g. visualizing EA models,

∙ dashboard design, e.g. layering,

∙ web-based collaboration, e.g. task management,

∙ ...

The present thesis provides details of a flexible visualization framework that—to our present
understanding—solves most of the software engineering challenges that may arise when
adapting the visual concepts to user needs. However, further research could rigorously
apply methods common in fields outlined above, e.g. the evaluation methods of the HCI
community such as carrying out controlled experiments and observe user behavior to refine
the interactive visualizations and the UI design.

8.3.5 Administering Planned States of an EA Model

Focusing on a more general perspective on future activities, further research could apply
the outcomes of our research, i.e. the research artifacts, to a different context. For instance,
one could apply the solution within the domain of EA management to administer planned
states. This could be accomplished by creating planned states as branches of the current
state of an EA model. In [Ac13], Achenbach discusses the different relationships of planned
states and current states. Some of the planned states (or parts thereof) could be merged
into the EA model as soon as transformation projects have been realized. In [RM13], we
also investigated how such an evolution could be visualized and sketched arising challenges.
Visualizing transformations of the current state with respect to the temporal dimension
and merged planned states could be an interesting research topic.
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8.3.6 De-contextualizing the Visualizations

The visual concepts presented in this thesis constitute an artifact that could be generalized
and applied to other domains. For instance, visual concepts of model differences and conflicts
are needed for MDE (cf. Section 2.3.10). Currently, we assume that the investigated models
are used for knowledge management only. Further research could bridge the gap between our
assumption and the needs of the MDE community. The mapping of EMF to the metamodel
of ModelGlue (cf. Section 5.2.2.5.1) could serve as a starting point. The metamodel then
must be extended with additional features of EMF, e.g.methods and inheritance.

8.3.7 De-contextualizing Tasks for Adaptive Case Management

One could de-contextualize the management of task, i.e. applying it to general knowledge
management processes. ModelGlue heavily relies on Tasks and their States as well as
States of ModelElements. This idea could be applied to general knowledge-intensive
processes that are driven by information demands. Literature on adaptive case management
[Sw10, SPS11] provides insights to situations during which a facilitation of ad hoc processes
is desirable. The presented metamodel could be a starting point for further investigations.
One could analyze the demands of other organizational processes and see if the model turns
out to be a viable solution for these processes. The metamodel of ModelGlue could be
extended by model events that are triggered if a State of a ModelElement or Task
changes.
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Figure A.1: Core structure of the XML-Schema of a mapping in ModelGlue
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Listing A.1: XML-Schema to specify a mapping for the SQL-based importer
1 <?xml version="1.0" encoding="UTF -8"?>
2 <xs:schema xmlns:xs="http://www.w3.org /2001/ XMLSchema">
3 <xs:element name="mapping">
4 <xs:complexType >
5 <xs:all >
6 <xs:element name="group" type="groupType" minOccurs="0"/>
7 <xs:element name="user" type="userType" minOccurs="0"/>
8 <xs:element name="membership" type="membershipType" minOccurs="0"/>
9 <xs:element name="spaces" minOccurs="0">

10 <xs:complexType >
11 <xs:sequence >
12 <xs:element name="space" type="spaceType" minOccurs="0"

maxOccurs="unbounded"/>
13 </xs:sequence >
14 </xs:complexType >
15 </xs:element >
16 <xs:element name="files" minOccurs="0">
17 <xs:complexType >
18 <xs:sequence >
19 <xs:element name="file" type="fileType" minOccurs="0"

maxOccurs="unbounded"/>
20 </xs:sequence >
21 </xs:complexType >
22 </xs:element >
23 <xs:element name="relations" minOccurs="0">
24 <xs:complexType >
25 <xs:sequence >
26 <xs:element name="relation" type="relationType" minOccurs="0"

maxOccurs="unbounded"/>
27 </xs:sequence >
28 </xs:complexType >
29 </xs:element >
30 <xs:element name="tags" minOccurs="0">
31 <xs:complexType >
32 <xs:sequence >
33 <xs:element name="tag" type="tagType" minOccurs="0" maxOccurs="unbounded"/>
34 </xs:sequence >
35 </xs:complexType >
36 </xs:element >
37 </xs:all >
38 <xs:attribute name="connectionprovider" type="xs:string" use="required"/>
39 <xs:attribute name="connectionurl" type="xs:string" use="required"/>
40 <xs:attribute name="connectionusername" type="xs:string" use="required"/>
41 <xs:attribute name="connectionpassword" type="xs:string" use="required"/>
42 <xs:attribute name="documentstoreroot" type="xs:string" use="optional"/>
43 </xs:complexType >
44 </xs:element >
45 <xs:complexType name="spaceType">
46 <xs:all >
47 <xs:element name="readers" minOccurs="0">
48 <xs:complexType >
49 <xs:sequence >
50 <xs:element name="reader" type="principalType" minOccurs="0"

maxOccurs="unbounded"/>
51 </xs:sequence >
52 </xs:complexType >
53 </xs:element >
54 <xs:element name="writers" minOccurs="0">
55 <xs:complexType >
56 <xs:sequence >
57 <xs:element name="writer" type="principalType" minOccurs="0"

maxOccurs="unbounded"/>
58 </xs:sequence >
59 </xs:complexType >
60 </xs:element >
61 <xs:element name="pages" minOccurs="0">
62 <xs:complexType >
63 <xs:sequence >
64 <xs:element name="page" type="pageType" minOccurs="0" maxOccurs="unbounded"/>
65 </xs:sequence >
66 </xs:complexType >
67 </xs:element >
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68 </xs:all >
69 <xs:attribute name="name" type="xs:string" use="required"/>
70 </xs:complexType >
71 <xs:complexType name="relationType">
72 <xs:attribute name="tablename" type="xs:string" use="required"/>
73 <xs:attribute name="tricianame" type="xs:string" use="required"/>
74 <xs:attribute name="fromkeycolumnname" type="xs:string" use="required"/>
75 <xs:attribute name="fromparent" type="xs:string" use="required"/>
76 <xs:attribute name="tokeycolumnname" type="xs:string" use="required"/>
77 <xs:attribute name="toparent" type="xs:string" use="required"/>
78 <xs:attribute name="filter" type="xs:string" use="optional"/>
79 </xs:complexType >
80 <xs:complexType name="tagType">
81 <xs:attribute name="tablename" type="xs:string" use="required"/>
82 <xs:attribute name="tricianame" type="xs:string" use="required"/>
83 <xs:attribute name="idfield" type="xs:string" use="required"/>
84 <xs:attribute name="tagfield" type="xs:string" use="required"/>
85 <xs:attribute name="parent" type="xs:string" use="required"/>
86 <xs:attribute name="filter" type="xs:string" use="optional"/>
87 </xs:complexType >
88 <xs:complexType name="pageType">
89 <xs:all >
90 <xs:element name="readers" minOccurs="0">
91 <xs:complexType >
92 <xs:sequence >
93 <xs:element name="reader" type="principalType" minOccurs="0"

maxOccurs="unbounded"/>
94 </xs:sequence >
95 </xs:complexType >
96 </xs:element >
97 <xs:element name="writers" minOccurs="0">
98 <xs:complexType >
99 <xs:sequence >

100 <xs:element name="writer" type="principalType" minOccurs="0"
maxOccurs="unbounded"/>

101 </xs:sequence >
102 </xs:complexType >
103 </xs:element >
104 <xs:element name="fields" minOccurs="0">
105 <xs:complexType >
106 <xs:sequence >
107 <xs:element name="field" type="fieldType" minOccurs="0"

maxOccurs="unbounded"/>
108 </xs:sequence >
109 </xs:complexType >
110 </xs:element >
111 </xs:all >
112 <xs:attribute name="tablename" type="xs:string" use="required"/>
113 <xs:attribute name="tricianame" type="xs:string" use="required"/>
114 <xs:attribute name="namefield" type="xs:string" use="required"/>
115 <xs:attribute name="idfield" type="xs:string" use="required"/>
116 <xs:attribute name="filter" type="xs:string" use="optional"/>
117 <xs:attribute name="contentfield" type="xs:string" use="optional"/>
118 <xs:attribute name="lasteditorfield" type="xs:string" use="optional"/>
119 <xs:attribute name="lastmodificationtimestampfield" type="xs:string"

use="optional"/>
120 <xs:attribute name="parentpagefield" type="xs:string" use="optional"/>
121 <xs:attribute name="parentpageentitytype" type="xs:string" use="optional"/>
122 <xs:attribute name="order" type="xs:string" use="optional"/>
123 <xs:attribute name="idprefix" type="xs:string" use="optional"/>
124 <xs:attribute name="usedefaultparentpage" type="xs:boolean" use="optional"

default="false"/>
125 </xs:complexType >
126 <xs:complexType name="fileType">
127 <xs:all >
128 <xs:element name="readers" minOccurs="0">
129 <xs:complexType >
130 <xs:sequence >
131 <xs:element name="reader" type="principalType" minOccurs="0"

maxOccurs="unbounded"/>
132 </xs:sequence >
133 </xs:complexType >
134 </xs:element >
135 <xs:element name="writers" minOccurs="0">
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136 <xs:complexType >
137 <xs:sequence >
138 <xs:element name="writer" type="principalType" minOccurs="0"

maxOccurs="unbounded"/>
139 </xs:sequence >
140 </xs:complexType >
141 </xs:element >
142 <xs:element name="fields" minOccurs="0">
143 <xs:complexType >
144 <xs:sequence >
145 <xs:element name="field" type="fieldType" minOccurs="0"

maxOccurs="unbounded"/>
146 </xs:sequence >
147 </xs:complexType >
148 </xs:element >
149 </xs:all >
150 <xs:attribute name="tablename" type="xs:string" use="required"/>
151 <xs:attribute name="tricianame" type="xs:string" use="required"/>
152 <xs:attribute name="namefield" type="xs:string" use="required"/>
153 <xs:attribute name="idfield" type="xs:string" use="required"/>
154 <xs:attribute name="filepathfield" type="xs:string" use="required"/>
155 <xs:attribute name="directorynamelookupquery" type="xs:string" use="optional"/>
156 <xs:attribute name="filter" type="xs:string" use="optional"/>
157 <xs:attribute name="contentfield" type="xs:string" use="optional"/>
158 <xs:attribute name="lasteditorfield" type="xs:string" use="optional"/>
159 <xs:attribute name="lastmodificationtimestampfield" type="xs:string"

use="optional"/>
160 <xs:attribute name="parentpagefield" type="xs:string" use="optional"/>
161 <xs:attribute name="parentpageentitytype" type="xs:string" use="optional"/>
162 <xs:attribute name="order" type="xs:string" use="optional"/>
163 <xs:attribute name="idprefix" type="xs:string" use="optional"/>
164 </xs:complexType >
165 <xs:complexType name="principalType">
166 <xs:attribute name="type" use="required">
167 <xs:simpleType >
168 <xs:restriction base="xs:string">
169 <xs:enumeration value="groupname"/>
170 <xs:enumeration value="username"/>
171 <xs:enumeration value="groupid"/>
172 <xs:enumeration value="userid"/>
173 <xs:enumeration value="system"/>
174 </xs:restriction >
175 </xs:simpleType >
176 </xs:attribute >
177 <xs:attribute name="isderived" type="xs:boolean" use="optional" default="false"/>
178 <xs:attribute name="value" type="xs:string" use="required"/>
179 </xs:complexType >
180 <xs:complexType name="fieldType">
181 <xs:attribute name="columnname" type="xs:string" use="required"/>
182 <xs:attribute name="tricianame" type="xs:string" use="required"/>
183 <xs:attribute name="delimiter" type="xs:string" use="optional" default=";"/>
184 <xs:attribute name="triciatype" use="optional" default="Text">
185 <xs:simpleType >
186 <xs:restriction base="xs:string">
187 <xs:enumeration value="Text"/>
188 <xs:enumeration value="Link"/>
189 <xs:enumeration value="MultiText"/>
190 <xs:enumeration value="Number"/>
191 <xs:enumeration value="Date"/>
192 </xs:restriction >
193 </xs:simpleType >
194 </xs:attribute >
195 <xs:attribute name="parent" type="xs:string" use="optional"/>
196 <xs:attribute name="filter" type="xs:string" use="optional"/>
197 <xs:attribute name="importifnullorempty" type="xs:boolean" use="optional"

default="false"/>
198 </xs:complexType >
199 <xs:complexType name="groupType">
200 <xs:attribute name="tablename" type="xs:string" use="required"/>
201 <xs:attribute name="namefield" type="xs:string" use="required"/>
202 <xs:attribute name="idfield" type="xs:string" use="required"/>
203 <xs:attribute name="contentfield" type="xs:string" use="optional"/>
204 <xs:attribute name="filter" type="xs:string" use="optional"/>
205 <xs:attribute name="order" type="xs:string" use="optional"/>
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206 <xs:attribute name="idprefix" type="xs:string" use="optional"/>
207 </xs:complexType >
208 <xs:complexType name="userType">
209 <xs:all >
210 <xs:element name="fields" minOccurs="0">
211 <xs:complexType >
212 <xs:sequence >
213 <xs:element name="field" type="fieldType" minOccurs="0"

maxOccurs="unbounded"/>
214 </xs:sequence >
215 </xs:complexType >
216 </xs:element >
217 </xs:all >
218 <xs:attribute name="tablename" type="xs:string" use="required"/>
219 <xs:attribute name="namefield" type="xs:string" use="required"/>
220 <xs:attribute name="idfield" type="xs:string" use="required"/>
221 <xs:attribute name="loginfield" type="xs:string" use="required"/>
222 <xs:attribute name="passwordfield" type="xs:string" use="required"/>
223 <xs:attribute name="contentfield" type="xs:string" use="optional"/>
224 <xs:attribute name="filter" type="xs:string" use="optional"/>
225 <xs:attribute name="order" type="xs:string" use="optional"/>
226 <xs:attribute name="idprefix" type="xs:string" use="optional"/>
227 </xs:complexType >
228 <xs:complexType name="membershipType">
229 <xs:attribute name="tablename" type="xs:string" use="required"/>
230 <xs:attribute name="groupfield" type="xs:string" use="required"/>
231 <xs:attribute name="userfield" type="xs:string" use="required"/>
232 <xs:attribute name="groupfieldtype" use="optional" default="id">
233 <xs:simpleType >
234 <xs:restriction base="xs:string">
235 <xs:enumeration value="name"/>
236 <xs:enumeration value="id"/>
237 </xs:restriction >
238 </xs:simpleType >
239 </xs:attribute >
240 <xs:attribute name="userfieldtype" use="optional" default="id">
241 <xs:simpleType >
242 <xs:restriction base="xs:string">
243 <xs:enumeration value="name"/>
244 <xs:enumeration value="id"/>
245 </xs:restriction >
246 </xs:simpleType >
247 </xs:attribute >
248 <xs:attribute name="filter" type="xs:string" use="optional"/>
249 </xs:complexType >
250 </xs:schema >
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B.1 ModelElements and Roles
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Figure B.1: Mapping of ModelElements and Roles to the prototypical implementation
[Ki14, p. 21]

303



B. Mapping of the Conceptual Model to the Implementation

B.2 Changesets and Operations
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Figure B.2: Mapping of Operations to the prototypical implementation [Ki14, p. 34]
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