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Abstract

In this thesis, a flexible and modular framework for a stringent Code Verification
is developed and applied for partitioned Fluid-Structure Interaction (FSI) environ-
ments. The particular application focuses on the simulation of lightweight and elas-
tic membranes in the wind.
In addition to the assessment of the single fields of FSI simulations, the main me-
thodical focus is on the assessment of the Dirichlet-Neumann surface coupling
within partitioned FSI analyses using non-matching grids.
This Code Verification assessment focuses on the consistency of the implemented
equations and on the convergence of the field variables. In the context of parti-
tioned Fluid-Structure Interaction (FSI), a framework containing analytical bench-
mark suites with increasing complexity is elaborated which covers all challenging
aspects of lightweight surface structures in turbulent flows. Apart from consider-
ing the different fields of the structure and the fluid individually, a fully coupled
benchmark for FSI is developed.
Whilst the application of the developed framework generates trust in the software,
it also reveals deficiencies or even mistakes of the software, thus clearly pointing
out the demand for further software development.

The developed framework and the respective benchmark suites are applied to the
partitioned FSI environment of the Chair of Structural Analysis of the Technische
Universität München. The consistency of this environment and the convergence
with at least first order of accuracy in space and time has been confirmed for all
parts separately as well as combined. Through this application of the hierarchical
benchmark suites the presented framework can be used for further simulations with
the long term objective of generating trust in the predictive capability of the numer-
ical wind tunnel environment. Moreover, promising and effective routes of further
code development are identified, the treatment of which could significantly improve
the quality of the results of further simulations.

It can be concluded that the developed framework is highly qualified for a strict
mathematical assessment of engineering software. More importantly, the flexibility
and modularity of the developed assessment framework are encouraging for modifi-
cations and extensions to other parts of the simulation environment. Consequently,
the range of predictive capability can in further research continuously be extended
in order to finally obtain reliable results of the numerical wind tunnel.
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Zusammenfassung

In der vorliegenden Arbeit wird eine flexible und modulare Umgebung zur stringen-
ten Code Verifikation von Umgebungen zur partitionierten Fluid-Struktur Interak-
tion (FSI) entwickelt und angewendet. Die spezielle Anwendung konzentriert sich
auf die Simulation von leichten und flexiblen Membrantragwerken im Wind.
Das methodische Hauptaugenmerk liegt neben der Bewertung der Einzelfelder von
FSI Simulationen auf der Bewertung der Dirichlet-Neumann Oberflächenkopplung
mit nicht übereinstimmenden Gittern der beiden Felder innerhalb der partitionierten
FSI Analyse.
Die Code-Verifikationsbewertung beschränkt sich hierbei auf die Konsistenz der
implementierten Gleichungen sowie die Konvergenz der Feldvariablen. Im Kon-
text der partitionierten Fluid-Struktur Interaktion (FSI) wird hierzu eine Umgebung
entwickelt, die analytische Benchmarks mit ansteigender Komplexität beinhaltet.
Diese Benchmarkreihe deckt insbesondere alle speziellen Anforderungen zur Simu-
lation leichter Flächentragwerke in turbulenten Strömungen ab. Hierfür wurde jew-
eils eine eigene Reihe von Benchmarks für die Struktur und für das Fluid, sowie
eine Reihe für die vollständig gekoppelte FSI entwickelt.
Die Anwendung der entwickelten Testumgebung erhöht so die Belastbarkeit der
Ergebnisse und führt zu mehr Vertrauen in die bewertete Software. Darüber hinaus
kann das vorgestellte Vorgehen Schwächen und Fehler der Software offenlegen und
so klare Ansatzpunkte für weitere Entwicklungen aufzeigen.

Die Testumgebung mit ihren Benchmark-Reihen wird hier auf die vorhandene par-
titionierte FSI Umgebung des Lehrstuhls für Statik der TU München angewandt.
Die Konsistenz dieser Berechnungsumgebung und die Konvergenz mit mindestens
erster Ordnung in Raum und Zeit werden hierbei sowohl für die einzelnen Be-
standteile als auch für die gesamte Berechnungsumgebung bestätigt. Nach der
Anwendung der hierarchischen Benchmarkreihen kann die vorgestellte Umgebung
für weitere Untersuchungen verwendet werden. Diese Untersuchungen sollen als
Fernziel dem Aufbau größeren Vertrauens in die prädiktiven Möglichkeiten des nu-
merischen Windkanals dienen. Ferner werden hierbei vielversprechende und effek-
tive Ansätze zur Weiterentwicklung der Software aufgezeigt, deren Ausarbeitung
zu einer signifikanten Verbesserung der Qualität künftiger Simulationsergebnisse
beitragen können.

Abschließend bleibt festzuhalten, dass die entwickelte Umgebung für die strin-
gente mathematische Bewertung gekoppelter Software im Ingenieurwesen sehr gut
geeignet ist.
Darüber hinaus empfiehlt sich die Modularität und Flexibilität der vorgestellten Be-
wertungsumgebung für Modifikationen, um die Bewertung auf andere Anwendun-
gen bzw. Simulationsprogramme auszudehnen. Infolgedessen kann durch weitere
Forschung der Geltungsbereich der abgesicherten Vorhersagefähigkeit stetig erweit-
ert werden, um letzten Endes verlässliche Ergebnisse des numerischen Windkanals
zu erhalten.
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CHAPTER 1

Introduction

1.1 General

This work addresses the analysis of lightweight elastic structures, sensitive and flex-
ible in the atmospheric wind. The structures in focus for example are elastic mem-
brane tubes or umbrella structures in wind (cf. figure 1.1). The assessment of struc-

(a) A lightweight umbrella structure from a
collaboration with SL Rasch, http://www.sl-
rasch.de

(b) A prototype of an inflatable four-tubes
structure, developed in the ULITES project,
http://www.cimne.com/websasp/ulites

Figure 1.1: Examples for lightweight membrane structures sensitive to wind

tures in wind, today and in the past, normally is performed using an experimental
wind tunnel analysis beside expert judgment. The limitations of the experimental
wind tunnel and the increase in computational power lead engineers more and more
towards computer aided approaches in wind engineering. Thus, this results in the
development of numerical wind tunnels as complements to the experimental wind
tunnels.

1



1.2 Target of this Work

The design of numerical wind tunnels, encompasses plenty of aspects, such as tur-
bulence, modeling of the atmospheric boundary layer, creating geometric models,
solving the problem with all relevant influencing physical factors, et cetera.

Beside these topics, which are complex scientific research areas themselves, the
justified skepticism in new approaches has been and still is very high. This can be
seen analogously to the early stages of computational structural mechanics using the
Finite Element method [61]. The early developments in the Finite Element method
in the forties and fifties of the 20th century by Turner, Argyris et al. [3, 116] were
also seen very critically and were refused as nonsense from the scientific societies
[61]. It took more than 20 years that the Finite Element method found its way into
the structural mechanics application in civil engineering (e.g., [56]). One famous
breakthrough point of the Finite Element application in civil engineering was the
construction of the Olympic stadium 1971 in Munich, Germany. In the eighties, a
further development in shell structures et cetera completed the early developments
in Finite Elements for civil engineering application [126].
This long term development, from the pioneering publications until the further de-
velopment and rather the acceptance of Finite Elements as an aiding approach for
the design and construction of structures, gives confidence in the promising, but
also enduring, developments of numerical wind tunnels [8]. The parallels to Finite
Elements rather demonstrate that there is the time, but also the strong requirement
for sustainable and high qualitative work to create confidence in software [8, 10, 17,
90, 103, 105].

1.2 Target of this Work

In terms of engineering analysis, the desired simulations deal with Fluid Structure
Interaction (FSI) problems. FSI consists of a fluid contribution, a structural con-
tribution, and a coupling part at the common interface between the fluid and the
structure. The structural and the fluid part is computed by a Computational Struc-
tural Dynamics (CSD) resp. a Computational Fluid Dynamics (CFD) software (cf.
figure 1.2).

Coupling & FSI

CSD CFD

Figure 1.2: Overview of a partitioned FSI environment
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1 Introduction

This work presents a Code Verification framework for the assessment of FSI envi-
ronments, to be able to assess the correctness of the implementations of all parts
of the environment both individually and jointly. As partitioned FSI environments
may consist of different software, possibly with different discretization methods, a
special focus is on the topic of non-matching grids at the common interface. Thus
it is aimed at increasing the confidence in the predictive capability of the software
environment. Furthermore, the presented method gives a basic setup for the reader
to adapt or to customize the framework for his particular software environment.

The individual numerical errors arising in the named FSI analyses are identified,
shown, and assessed using the Method of Manufactured Solutions (MMS) as a
method for Code Verification [73]. Therefore, a stairway of benchmarks with
increasing complexity is developed to assess the complete FSI environment alto-
gether, but also all individual parts independently. On the one hand, this stairway of
benchmarks compose a framework to evaluate the individual accuracy and to gen-
erate trust in the applicability of the environment on the application of interest. On
the other hand, the modularity and flexibility of the framework makes adaptations
and further developments of Verification tasks possible (cf. sections 3.9, 4.13 and
5.9).

The individual results of the assessment clearly point out the needs and, very im-
portant, the most efficient locations of further software development. Furthermore,
a successful assessment can be used as a certificate of confidence in the software
environment to finally produce predictive results.

1.3 Restrictions for the Application

As it is not possible to completely test and assess all parts of the code and code
combinations [73], a target application has to be defined. This definition, or rather
restriction, defines the necessary functionality to be tested in a benchmark sequence
in the following chapters. The restrictions concerning the FSI functionality due to
the available FSI environment are depicted in the following list:

• Partitioned FSI

• Dirichlet-Neumann partitioning using force elimination

• Gauss-Seidel communication

Besides the restrictions due to the environment, further restrictions are made for the
assessment framework in the following list:

• Structured grids using quadrilateral and hexahedral volumes

• Incompressible Newtonian fluids using the Navier-Stokes equations

• Membrane structures

• Isotropic St. Venant-Kirchhoff structural material

• Negligence of structural damping

3



1.4 Requirements

1.4 Requirements

After selecting the target application and carefully defining the restrictions of the
physics and the software features, the requirements for the software components
can be defined. The precise determination of requirements similarly defines the
demand of components to be assessed in the order of accuracy tests in the following
chapters. The following sections define the requirements of the three contributing
engineering software of the FSI process.

1.4.1 Coupling Interface
As shortly mentioned in section 1.3, a Dirichlet-Neumann decomposition is chosen
for the partitioning of the FSI process [117]. This means for the specific case of
the chosen environment, that, on the one hand, the displacements (Dirichlet) and,
on the other hand, the traction forces (Neumann) at the common interface are used
as coupling fields. Therefore, the requirements for the interface is the functional-
ity of surface transfer of geometry and the sampling and mapping of forces and
displacements in a conservative respectively consistent way.

1.4.2 Computational Structural Dynamics
The selected target applications and the named restrictions define the Computa-
tional Structural Dynamics (CSD) functionality. The requirement therefore defines
a prestressed membrane structure, using the linear St. Venant-Kirchhoff material
law with the plane-stress assumption. As the structure will behave in an unsteady
manner, beside the inner forces out of stresses, inertial/mass forces are required.
As already mentioned, structural damping is neglected due to the fact that fluid
damping (added mass effect) is assumed to be much larger as structural damping of
membranes.

1.4.3 Computational Fluid Dynamics
The selected target applications and the named restrictions define the Computational
Fluid Dynamics (CFD) functionality. Dealing with a wind regime, the fluid flow is
described by the incompressible Navier-Stokes equations in an unsteady regime.
These contain convection, diffusion, inertia effects, and possibly turbulence. Addi-
tionally, the fluid boundaries respectively a body in the fluid, must be able to move.

1.5 The Partitioned FSI Environment

The software environment used in this work is a partitioned FSI environment. Par-
titioned means that the equations of the fluid, the structure, and their coupling are
solved in a segregated and staggered way. In the present case, the segregation of
the equations is additionally a segregation of software (cf. figure 1.2). The fluid
part of the FSI is performed using the CFD software OpenFOAM R© (Version 2.1.x
from 03/01/2014). It is an open source project software using the Finite Volume
discretization. The structural part of the FSI is performed using the CSD software

4



1 Introduction

Carat++ (version from 03/01/2014). Carat++ is an in-house developed code of the
Chair of Structural Analysis at the Technische Universität München, using the Fi-
nite Element discretization. The FSI environment is set with the software EM-
PIRE (version from 03/01/2014), and the coupling procedures are provided using
the software Emperor (version from 03/01/2014). Both software are provided from
http://www.empire-multiphysics.com/. The respective EMPIRE_API is an add-on
to each software to guarantee the communication between the single software com-
ponents in the EMPIRE environment. A software overview of the FSI environment
is shown in figure 1.3.

Emperor

EMPIRE_API

Carat++ OpenFOAM R©

EMPIRE_API

EMPIRE

Figure 1.3: Overview of the FSI environment of EMPIRE

1.6 Organization of the Thesis

The introduction in chapter 1 provides a short overview of the topic and the subject
focus on Verification of FSI environments for wind engineering application.
Chapter 2 gives an overview of predictive capability of software and the place-
ment of Code Verification tasks. The particular focus lies on the application of the
Method of Manufactured Solutions (MMS) as an order of accuracy assessment.
The application of the developed MMS framework on a particular partitioned FSI
environment directly provides the arrangement of the subsequent chapters. The
structural dynamics are presented in chapter 3, the fluid dynamics are presented in
chapter 4, and the coupling and the FSI processes are given in chapter 5.
The mentioned chapters 3-5 have the same setup. The chapter starts with assump-
tions and restrictions for the intended use of the software, which will be assessed.
As it is in general not possible to completely assess a software, the precise defini-
tion of the application of interest constitutes a key feature of software assessment.
The governing equations in its differential and integral form as well as the chosen
discretization and solution method are shown. The formal orders of accuracy are de-
rived from the knowledge of the implemented discretization schemes. Afterwards,
the framework of the generalized MMS application is elaborated, and the partic-
ular MMS framework is presented. Finally, application examples arranged in an
hierarchical stairway of complexity to assess the FSI environment step by step are
outlined. These examples are designed and presented in detail in order to serve as
benchmarks for the reader. A conclusion of the insights and proposals for potential

5
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adaptations of the MMS framework to encourage the reader to modify and extend
the presented framework completes each chapter.

Chapter 6 draws an overall conclusion and an outlook on possible further develop-
ments of the framework and the general application of Verification and Validation
tasks to generate and to increase the confidence and reliability in the numerical wind
tunnels.
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CHAPTER 2

The Role of Code Verification

Code Verification, as a part of Verification and Validation (V&V), contributes to
the assessment of predictive capability and reliability of software for modeling and
simulation (M&S) [76]. As the terminology in the literature is not unified, all nec-
essary term definitions are given and referenced in the following sections. The work
at hand follows the definitions in [73, 76, 79, 91, 100].

2.1 Placement in the Frame of Predictive Capability of
Software

This work follows the definition of prediction as the ’use of a [...] model to foretell
the state of a physical system under conditions for which the [...] model has not
been validated’ [76]. This means, the specific simulations of interest are different
from the cases that have been validated. Therefore [76] states that ’it is a prediction,
not a postdiction’.

2.2 Uncertainty and Error

In the literature the terms uncertainty and error are often intermixed. To evaluate the
credibility of software, both have to be differentiated carefully. A good overview is
presented in [2, 33, 76, 79, 94, 114]. This work follows the definition of the terms
given in [76]:

• Uncertainty: A potential deficiency in any phase of activity of the modeling
process that is due to lack of knowledge.

• Error: A recognizable deficiency in any phase or activity of modeling and
simulation that is not due to lack of knowledge.

In general, sensitivity analyses (so-called what-if analyses) and uncertainty analyses
(using probabilistic methods) are used to evaluate uncertainty and the quality of the
physical model (e.g., [21, 51, 73, 95]). Furthermore, it consists of unacknowledged
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Figure 2.1: Phases of modeling and simulation and the role of V&V [100]

errors like mistakes of the analyst, programming blunders, and compiler errors.
There are no straightforward methods for their estimation [78].
The acknowledged error is characterized by knowledge of the divergence from an
approach that is considered to be a baseline for accuracy [78]. Acknowledged errors
are the finite precision of computers (’round-off’), the transfer of a set of governing
equations to an algebraic system of equations (’discretization’), and the incomplete
iterative convergence error (IICE) solving the equations iteratively [57, 73, 75].

2.3 Verification & Validation

Oberkampf and Roy present the fundamental elements for the credibility in compu-
tational results [73]. Among these, Verification and Validation (V&V) of compu-
tational simulations provide evidence for the correctness of the code as well as the
results and contain a concept of quantitative accuracy assessment. The necessity of
V&V efforts is shown very impressively in Hatton’s T-experiments [42], where Hat-
ton assessed software codes, which were thought to work as intended. He analyzed
in total 1.7 million lines in Fortran and 1.4 million lines in C [79]. Hatton con-
cluded, ’The T-experiments suggest that the results of scientific calculations carried
out by many software packages should be treated with the same measure of disbelief
researchers have traditionally attached to the results of unconfirmed physical exper-
iments’ [42]. Reasons for the magnitude of errors in the codes are discussed in [79].

Figure 2.1 illustrates the role of V&V in the context of modeling and simulation.
Verification means the "process of assessing software correctness and numerical
accuracy of the solution to a given mathematical model" [73], or simpler spoken
"Verification is about solving the equations right" [91] (cf. figure 2.2). Validation
means the "process of assessing the physical accuracy of the mathematical model
based on comparison between computational results and experimental data" [73],
or simpler spoken "Validation is about solving the right equations" [91] (cf. figure
2.3). A huge effort is taken in the serious Validation of software simulations in
comparison with real scale and wind tunnel measurements [1, 66, 73–75, 77–79,
84, 112, 113, 115]. As Validation is not the core of this work, the detailed overview
of recent Validation efforts in the work of Blocken is denoted as a reference [8].
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Figure 2.2: Code Verification process [76]
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Verification splits in Code Verification and Solution Verification [73]:

• Code Verification: The process of determining that the numerical algorithms
are correctly implemented in the computer code and of identifying errors in
the software.

• Solution Verification: The process of determining the correctness of the input
data, the numerical accuracy of the solution obtained, and the correctness of
the output data for a particular simulation.

2.3.1 Solution Verification
Following [73], Solution Verification addresses the estimation of the magnitude of
errors originating from human mistakes in preparation of input data for a simulation,
numerical errors due to the execution of the simulation, and of human errors in post-
processing of the output data of the simulation. Compared to Code Verification, the
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2.3 Verification & Validation

simulation in Solution Verification is a physical realistic case. A detailed discussion
of Solution Verification and the approaches to estimate the errors can be found in
[9, 11–13, 25, 41, 52, 53, 73, 77, 78, 88, 89, 92, 93, 96, 97].

2.3.2 Code Verification
In general, a conservation law defines the (physical) base for engineering modeling
and simulation software. The conservation law is formulated in integral, in ordinary
differential or in partial differential equations. These equations are called the inte-
rior equations. The basic form of the equations constitute the conceptual model of
a problem (cf. figure 2.1). Additionally, auxiliary conditions or equations are set.
On the one hand, different assumptions are made for the equations, e.g., isotropy of
the material, constant density, et cetera. On the other hand, the definition of a solu-
tion domain, the boundary conditions, and the initial conditions are set as auxiliary
conditions. The interior and the auxiliary equations together form the so-called gov-
erning equations. Code Verification assesses whether the governing equations are
solved in a consistent way by the software implementation [98].

Numerical schemes are named consistent, if the discretized equations approach the
actual governing equations in the limit as the discretization parameters (∆x,∆t)
approach zero [73].
Beside consistency, the convergence needs to be defined. Convergence addresses,
whether the exact solution of the discrete equations approach the exact solution of
the governing equations in the limit as the discretization parameters (∆x,∆t) ap-
proach zero [73]. Simply spoken, consistency deals with the representation of the
equations, convergence deals with representation of the solution.

Discretization is the transfer of the governing equations to an algebraic equation
system [75, 78, 98]. Discretization of the governing equations divides the continu-
ous (infinite) domain to a finite number of elements or volumes, where the solution
is approximated. The precise solution of the approximated (discretized) governing
equations is called the discrete solution. The difference between the discrete and the
exact solution, is called the discretization error [98] (cf. figure 2.4). Discretization
methods are called consistent, if the error tends to zero as the number of elements
respectively volumes increase towards infinity. A more detailed description of the
prerequisites of discrete methods, especially the topics of consistency, stability, and
convergence can be found in [73].

Code Verification efforts consist, on the one hand, of Software Quality Assurance
(SQA) efforts and, on the other hand, of Numerical Algorithm Verification [52, 73,
75, 93]. Numerical Algorithm Verification provides procedures to identify and to
quantify the five predominant sources of error in simulations:

• Insufficient spatial convergence (spatial discretization error)

• Insufficient time convergence (time discretization error)

• Incomplete iterative convergence error (IICE)

• Computer round-off error
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2 The Role of Code Verification

• Programming mistakes

Assuming a code without programming mistakes, the relationship between numer-
ical error and discretization error is shown in figure 2.4. The goal of Code Verifi-

Exact Solution

Numerical SolutionDiscrete Solution

Numerical
Error

Discretization
Error

Round-Off
and IICE

Figure 2.4: Relationship between numerical error and discretization error [57]

cation efforts is "to distinguish errors in mathematical modeling accuracy as clearly
as possible from other errors" [78]. In other words, the discretization error is tried
to be isolated from the numerical error (cf. figure 2.4).

Salari and Knupp give an overview of commonly used dynamic testing approaches
and their acceptance criteria [98]. Among others, the paper gives a good overview
about the applicability and value of Trend Tests, Symmetry Tests, Code-to-Code
Comparisons, the Method of Exact Solutions (MES) and the Method of Manufac-
tured Solutions (MMS). A detailed discussion and extensive description of different
methods for Code Verification methodologies are given in [73, 91, 98].
Both, the MES and the MMS are based on the concept of dealing with analytical
solutions [76]. Both of them are preferred approaches and generate the most con-
fidence in a code’s correctness, as they are able to assess the consistency and the
order of accuracy of a code; they are therefore called order of accuracy tests. The
order of accuracy defines the rate of the solution’s improvement during refinement.
MES deals with published or self-created (exact) analytical solutions of physical
problems (e.g., [108]). The limitation of using the MES is that the code application
of interest usually is far more complex than the available solutions of MES.

2.3.3 The Method of Manufactured Solutions
The Method of Manufactured Solutions (MMS) was invented by Steinberg and
Roache [104]. The idea of the MMS is similar to the MES. More precisely, the
MMS also deals with analytical solutions. However, the MMS is far more flexible
and able to assess the equations implemented in the software code in its entirety.
The reverse of the medal is that this flexibility in general requires access to the
algebraic equations or even the complete code. The MMS has already been used
successfully in fluid dynamics, e.g., in [22, 24, 32, 57, 73, 93, 97, 98, 119], but also
in structural dynamics [31, 58] or recently in monolithic fluid structure interaction
computations [26].
In the work at hand, a framework and benchmarks are developed to assess a parti-
tioned fluid structure interaction environment using the MMS.
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2.3.3.1 Idea of the MMS

The MMS can be seen and used as a toolbox to assess implemented numerical
schemes and procedures for the solution of conservation equations, e.g., as a partial
differential equation (PDE). The principle idea of the MMS is to build own analyti-
cal solutions; therefore, they are called manufactured solutions. The manufactured
solution in general is not fulfilling the actual PDE. Thus additional source respec-
tively force terms must be added to the algebraic/discretized governing equations.
Hence the program is able to compute the manufactured solution asymptotically.
The addition of the source respectively force is the reason for the need of acces-
sibility to the algebraic equations in the software as mentioned above. With this
concept, all parts of the governing equations can be assessed with a variety of man-
ufactured test cases as benchmarks. Arranging these benchmarks in a hierarchical
manner, an obstacle course is built. Successful passing the course means that the
mentioned observed order of accuracy matches the formal order of accuracy. In
the case of passing, the tested schemes can be used for further and more complex
investigations. If benchmarks are not passed, the hierarchical order of the named
obstacle course clearly helps to identify inconsistencies or even mistakes in the code
[57, 98].

2.3.3.2 Requirements to the Manufactured Solution

As the manufactured solution of the governing equations should rigorously assess
the computer code, there are a few requirements to the solution [98]. The ma-
jor parts are given in the following list. The solution of the governing equations
should...

• be composed of smooth and non-trivial functions

• be generally enough and well balanced to exercise every term in the govern-
ing equations

• have a sufficient number of non-trivial derivatives

• not contain singularities

• be in a realistic range of the designed application, e.g., no negative density

• be defined on a connected subset of the dimensions in space

It is stated once again, there is no requirement that the manufactured solution is
physically a realistic one. Simply spoken, the code is not able to know, whether the
problem is physically realistic or non-physical. The code is only solving a set of
algebraic equations [98].

2.3.3.3 General Procedure of the MMS

The developed manufactured solution field b̂ represents an analytical solution for
the primary variable field b of a PDE in the continuum. The hat above a variable is
always used here for indicating a manufactured solution. After insertion of the field
solution b̂ into the differential equations, a source respectively force term remains

12



2 The Role of Code Verification

as the equilibrium no longer holds for an arbitrary solution b̂. The source/force
term can be obtained by hand or by using symbolic manipulation software, such as
Maple R© or Mathematica R©. If the numerical schemes are implemented consistently,
it can be observed that b tends towards b̂ for systematically refined calculations.
During the assessment, it is aimed at determining and observing the development of
the discretization error along with systematic grid and time refinement. However,
the numerical solution is additionally equipped with round-off errors and IICE (cf.
figure 2.4). The round-off error is generally very small compared to the discretiza-
tion error, if double machine accuracy is used. To keep the IICE small, the solution
of the equation systems should be iterated almost until machine accuracy or at least
to a certain factor smaller then the discretization error [57, 75]. Considering the
named two points, the numerical solution nearly matches the discrete solution (cf.
figure 2.4). Therefore the discretization error can be evaluated by comparison of b

and b̂. If all numerical schemes are implemented correctly, it can be observed that
the solution b tends towards the manufactured solution b̂ for systematically refined
calculations.

As b̂ constitutes the exact reference solution, the difference between b and b̂ repre-
sents the exact numerical error of the individual calculation. The error of a discrete
solution can be determined with formula 2.1:

Eh =‖ b− b̂ ‖= c · hp (2.1)

In equation 2.1, Eh is the error of a discrete simulation in a chosen error norm
(cf. section 2.3.3.7). c is a constant, h is a characteristic element or time step size,
and p is the observed order of accuracy. Equation 2.1 constitutes that the discrete
solution error reduces with the factor rp (with r = hcoarse

hfine
) during refinement

with a refinement factor r. Additionally, using equation 2.1, the observed order of
accuracy between two different refined simulations can be derived with equation
2.2 [57]:

p =

log

(
Ehcoarse
Ehfine

)
log (r)

(2.2)

If the formal order of accuracy p̂ matches p in the asymptotic range of the solu-
tion, the following parts of the code have been verified [91]: all coordinate trans-
formations, the order and the programming of the discretization, and the solution
procedure of the algebraic equation system. If the two orders p and p̂ do not match,
there can be many reasons, e.g., programming mistakes, insufficient grid resolution,
singularities, et cetera. An extensive discussion of reasons is given in [73]. The de-
signed MMS procedure with all its parts is shown in detail in the following chapters.

The independence of the numerical approach turned out as a major advantage of
the MMS providing analytical benchmark solutions: The governing equations are
handled in the continuum; therefore, it is completely independent of the discretiza-
tion method (e.g., Finite Elements, Finite Volume,...), the solution procedure (direct
solution, fix-point iteration, Newton-Raphson,...), or if the equations are linear or
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non-linear. This point makes it very attractive for the integral assessment of the
existing partitioned FSI environment, which consists of different programs using
different discretization methods.

The outlined manufactured solutions provide a hierarchical sequence of complexity
or even a benchmark series to assess all constituent parts of an FSI process step
by step as elaborated in the following chapters. The mentioned hierarchical order
can be very helpful to localize coding or other mistakes [57, 98]. Therefore, each
solution should be as simple as possible, but as complex as necessary.

In the work at hand, the MMS is applied to assess the Finite Element formulation of
a fully geometric nonlinear membrane element in an unsteady regime, fully coupled
with the Finite Volume formulation of unsteady incompressible fluid dynamics.

2.3.3.4 Initial and Boundary Conditions

Every solution of a PDE needs to have auxiliary conditions. If the PDE is space-
dependent, boundary conditions are necessary. If the PDE is (additionally) time-
dependent, initial condition are (additionally) necessary. For the MMS applica-
tion, the boundary and initial conditions can directly be derived from the solution
b̂(x, t) [57]. The vector x denotes the position in space and t denotes the time.
Purely space-dependent problems are from now on called steady state problems,
and space-time-dependent problems are called unsteady problems.

For the assessment of the steady state solution of a code, the chosen initial condi-
tions as a starting point of the (iterative) solution must be significantly different to
b̂(x, t = 0). If the chosen initial condition matches the analytical solution, the abil-
ity of the code to solve steady state problems will not be approved. Pragmatically,
the initial condition at the field is very often set to a zero value field.

For the assessment of the unsteady solution of a code, the initial condition must
match the analytical solution at the initial time step (b(x, t = 0) = b̂(x, t = 0)) to
guarantee that no artificial error is introduced.

The Dirichlet and Neumann boundary conditions at the boundary γ at the boundary
position xγ with the boundary normal nγ can directly be calculated respectively
derived from the manufactured solution field b̂(x, t). The boundary field of a field
b is abbreviated by:

bγ = b(x = xγ , t) (2.3)

Using equation 2.3, the Dirichlet and Neumann boundary conditions are set in equa-
tions 2.4 and 2.5:

bγ = b̂γ = b̂(x = xγ , t) (2.4)

∂bγ

∂nγ
(∗) =

∂b̂γ

∂n̂γ
(∗) =

∂b̂(x = xγ , t)

∂n̂(x = xγ , t)
(∗) (2.5)
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In the context of this work, no other boundary conditions with possibly higher
derivatives are used.

2.3.3.5 Assessment of Steady State Simulations

As generally described in section 2.3.3.3, the discretization error of the primary
variable b(x, t) compared to the manufactured solution b̂(x, t) has to be observed.

At steady state simulations, the error of the converged solution is evaluated and ob-
served with mesh refinement to calculate the observed order of accuracy p using
equation 2.2. To make the results of the different refined grid simulations compara-
ble, the error at the same sampling points independent of the grid resolution have to
be evaluated. As an example, these sampling points could correspond to the avail-
able grid points of the coarsest grid used in the study. A detailed explenation and
examples can be found in chapters 3 and 4.

2.3.3.6 Assessment of Unsteady Simulations

Similar to the steady state simulations, the error is evaluated always at the same
sampling points over time, independent of the time resolution of the particular
simulation, to make unsteady simulations comparable. The demand of the sam-
pling points in space correspond to that for the steady state simulations.

There are two different ways to assess an unsteady environment. On the one hand,
the time and spatial accuracy are assessed separately. On the other hand, the spatial
and time accuracy are assessed at the same time.

To assess the spatial accuracy separately, the manufactured solution of a steady state
problem is used. As the time contribution to the PDE vanishes, the spatial terms are
isolated.

To assess the time accuracy separately, the spatial contribution should vanish. This
is possible in two different ways. The first way is to choose an arbitrary manufac-
tured solution covering all terms of the PDE and to use a superfine grid in all time
refinement steps. The assumption herein is that the spatial discretization error of the
superfine grid is much smaller than the time discretization error, which should be as-
sessed. However, this assumption is a priori very difficult to estimate and therefore
cannot recommended without reservation. The second way is to choose a manu-
factured solution, which fulfills the solution requirements (cf. section 2.3.3.2) only
over time. The solution should therefore be mesh independent. This means, the
spatial terms of the PDE herein are, aligned to the spatial discretization, vanishing.
For example, if the code uses linear form functions for the spatial discretization, the
spatial variation of the manufactured solution should be constant or linear such that
the code is able to exactly represent the solution independently of the grid resolu-
tion.

Alternatively, the spatial and time accuracy altogether can be assessed jointly. This
has the advantage that time-space correlated errors can additionally be assessed
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[73]. For this assessment, the manufactured solution is fulfilling the requirements
for all terms of the PDE in space and time and the error evaluation is again per-
formed at the same sampling points. If the formal time and the formal spatial orders
of accuracy match (p̂ = p̂t = p̂s), the spatial and time refinement factors must
match as well (r = rt = rs). If the formal time and spatial orders of accuracy do
not match, the refinement factors must be adapted to really assess both accuracies.
This means for example, if a formally second order accurate spatial discretization
and a formally first order accurate time discretization are used, the refinement factor
over time has to be the square of the spatial refinement factor (rt = r2

s ). As dis-
cussed later more in detail, if the grid points in all spatial directions are doubled, the
time steps in every refinement step have to be increased by a factor of four [57] as
p̂t = 1 and p̂s = 2. If therein an order of accuracy of p = 2 is observed, the spatial
observed order of accuracy is determined to be ps = 2 and the time observed order
of accuracy is determined to be pt = 1 [57].

2.3.3.7 Evaluation of the Global Error

As already mentioned above, the general and omnipresent error sources in com-
puter simulations are physical modeling errors, discretization and incomplete it-
erative convergence error (IICE), programming mistakes, and computer round-off
errors [22, 57, 73, 75]. As the round-off and the IICE are kept very low as described
above, the leading error is the discretization error as long as there are no program-
ming mistakes.

Error norms can be used to determine the global error of a field b in its spatial
domain K. An E2 norm is chosen to have a representative mean field error of the
complete domain. The continuous E2 error norm for the variable b compared to
the exact solution b̂ in the domain K can be seen in equation 2.6. If we assume
a discrete solution and an equidistant domain discretization with N elements or
nodal results, the discrete E2 norm of b compared to the exact solution b̂ can be
determined as shown in equation 2.7 [22, 57, 73].

E2 =‖ b− b̂ ‖2=

√
1

K

∫
K

(
b− b̂

)2

dK (2.6)

E2 =‖ b− b̂ ‖2=

√√√√ 1

N

N∑
n=1

(
bn − b̂n

)2

(2.7)

Beside the given E2 norm, a non-normalized E2 norm is often used, neglecting the
division by N of equation 2.7.

The infinity (or inf) norm returns the maximum absolute error over the entire do-
main (cf. equation 2.8); therefore, it is the most sensitive error measure. It is very
proper to detect local discontinuities or singularities.

Ei = max |bn − b̂n|, n ∈ [1, N ] (2.8)
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2 The Role of Code Verification

Besides the given error norms, other error norms are often used in the literature. In
the work at hand, we concentrate on the discrete infinity and the E2 norm to report
the errors of the individual primary variable field solutions b compared to b̂.

2.3.3.8 Limitations of the MMS

The MMS is restricted to rigorously assess the accuracy of a code as long as the
individual terms have the same formal orders of accuracy. Thus, mixed-order terms
cannot be assessed rigorously. An example of CFD can be given: Choosing a first
order accurate discretization for the convection part and a second order accurate
discretization for the diffusive part, the total accuracy can only be assessed to be
(at least) first order. The higher quality of the error reduction of the second or-
der diffusion discretization is overpowered by the lower accurate convection error.
Therefore, the ability of the second order discretization cannot be assessed rigor-
ously.
Additionally, coding mistakes which do not affect the order of accuracy of the pro-
duced results cannot be verified. A good example is the efficiency of a numerical
solution procedure like the Newton-Raphson method for the solution of a nonlinear
equation system. The MMS assessment can only verify, whether the correct solution
is asymptotically produced by the algorithms at the point of solution convergence.
But the method cannot assess, whether the iterative convergence is decreasing with
the theoretical rate of the solution procedure. A more detailed discussion about the
limitations is given in [91].
Furthermore, there are limitations on the applicability of the MMS. The manufac-
tured solution by definition need to be computed asymptotically by the code. This
means that the solution should not contain too short wave-lengths and too high fre-
quencies. For example, if the user can afford a finest time resolution of 1000 steps
in a total time of one second, a frequency below one per second of the manufactured
solution is recommended to really reach the asymptotic range of the solution.
On the one hand, if a manufactured problem is constructed carelessly regarding
the space-time correlations, stability problems are expected, which may make the
solution of the problems impossible with the used discretization schemes. On the
other hand, the physical restrictions concerning the code have to be considered.
This means e.g. that the turbulent kinetic energy of a flow or the density cannot be
negative.

2.3.4 Formal Order of Accuracy

The discretization method and the chosen shape functions for spatial and time dis-
cretization determine the formal order of accuracy, also called the formal order of
convergence. The formal order of convergence p̂ of an approximated expression
can be determined by comparison with its Taylor series expansion. The first term of
the Taylor series expansion, which is not approximated, is called the leading error
term. This term represents the main error in the asymptotic range of the solution.
In general, the derived formal order can be observed as long as no other errors with
smaller convergence rate occur. A detailed discussion of deriving the individual
parts is given in the following chapters.
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2.3 Verification & Validation

2.3.5 Short Example
For exemplifying the methodology of the order of accuracy test, the approximative
calculation of π is investigated. π represents the circumference of a circle with a
diameter of 1.

In the following example, the exact solution of π̂ is approximated on the base of
polygon perimeters with an increasing number of edges. The example is adapted
from http://www.logisch-gedacht.de/pi-berechnen/. As it is commonly known, the
perimeter of a circle with radius R is Û = 2Rπ̂.
Assuming the perimeter U and π as unknowns, the solution of Û has to be ap-
proximated to determine π. Starting with (the coarse discretization of) a hexagon to
approximate the circle, the perimeter can be calculated as Uhexa = 6R and gives an
approximation of πhexa = Uhexa

2R
= 3.0. Next, a refinement with a factor of r = 2

is performed. Therefore, the circle is approximated with a dodecagon, which is a
12-sided figure. The circle and its approximations with a hexagon and a dodecagon
are exemplary shown in figure 2.5.

Circle Hexagon Dodecagon

Figure 2.5: A circle and its approximation with a hexagon and a dodecagon

The length of an edge can be calculated using equation 2.9:

sdodeca =

√√√√(R
2

)2

+

(
R−

√
R2 − R2

4

)2

(2.9)

Using the calculation of the perimeter (Udodeca = 12 · sdodeca), the approximation
of the circle gives πdodeca = 3.106. For further refinement steps with a constant
refinement factor of r = 2, the edge length of the next refined polygon sn+1 can be
determined by leveraging the result of the previous coarser polygon sn as described
by equation 2.10:

sn+1 =

√√√√s2
n

4
+

(
R−

√
R2 − s2

n

4

)2

(2.10)
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sn=1 corresponds to the edge length of the dodecagon. Assuming R = 1 for sim-
plicity, equation 2.10 transfers to 2.11:

sn+1 =

√√√√s2
n

4
+

(
1−

√
1− s2

n

4

)2

(2.11)

The polygon with the edge length sn+1 has 6 · 2n+1 edges. π can therefore be
approximated by a polygon with equation 2.12

πn+1 =
1

2
· 6 · 2n+1 ·

√√√√s2
n

4
+

(
1−

√
1− s2

n

4

)2

(2.12)

The individual error of the approximations is directly calculated by the difference
of the calculated result πn and the target solution π̂. The results and the errors for a
few refinement steps with a refinement factor of r = 2 are given in table 2.1, using
19 digits, calculated with Microsoft Excel R©.

Table 2.1: Short example: Approximation of π using polygons

number of edges approximation of π̂: πn error size En = π̂ − πn
6 3.0 0.141592653589793000
12 3.1058285412302500000 0.035764112359544200
24 3.1326286132812400000 0.008964040308555350
48 3.1393502030468700000 0.002242450542926380
96 3.1410319508905100000 0.000560702699283322
192 3.1414524722854600000 0.000140181304330689
384 3.1415576079118600000 0.000035045677935219
768 3.1415838921483200000 0.000008761441474547
1536 3.1415904632280500000 0.000002190361742649
3072 3.1415921059992700000 0.000000547590521371
6144 3.1415925166921600000 0.000000136897635450

Using the produced results of the refinement study in table 2.1, the observed order
of accuracy can be obtained applying equation 2.2 as shown in equation 2.13 [57]:

pn+1 =
log
(

En
En+1

)
log (r)

(2.13)

The pairwise results of the observed order of accuracy p are depicted in table 2.2.
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Table 2.2: Short example: Observer order of accuraccy p

number of edges refinement observed order
coarse grid fine grid factor r of accuracy p
6 12 2 1.98516187
12 24 2 1.99629159
24 48 2 1.99907297
48 96 2 1.99976825
96 192 2 1.99994206
192 384 2 1.99998552
384 768 2 1.99999638
768 1536 2 1.99999909
1536 3072 2 1.99999977
3072 6144 2 1.99999995

Beside the table representation of the error and the observed order of accuracy in
tables 2.1 and 2.2, a graphical representation of the results is shown in figure 2.6 that
is further explained in the following paragraphs. The errorEn is plotted in a log-log
diagram in figure 2.6 in the left panel. The negative slope of the log-log diagram of
figure 2.6 indicates that the error is decreasing during refinement and tends towards
machine accuracy. Therefore it indicates the convergence of the computation of π
towards π̂.

The slope of the error graph is calculated at each refinement step from a pair of
errors using equation 2.13. The pairwise calculated error slope is drawn as a graph
in figure 2.6 in the right panel. As seen in equation 2.13, the calculated slope rep-
resents exactly the observed order of accuracy p. In order to judge a simulation
successfully, the observed order of accuracy must reach the formal order of accu-
racy with refinement. Using the results in table 2.2 and figure 2.6, the observed
order of accuracy for systematic refined approximations reaches p = 2 asymptoti-
cally. The example used polygons for the approximation of the circle. The polygons
are described as a combination of linear functions. As the formal order of accuracy
for the arc length calculation of an arbitrary curve using linear functions is p̂ = 2.0,
the calculation process therefore is positively assessed respectively verified.

Finally, it has to be pointed out that this example does not fulfill all requirements of
the MMS as the target solution π̂ actually is an infinite long number. Nevertheless,
the example clearly demonstrates the general procedure and the purpose of order of
accuracy tests like the Method of Manufactured Solutions.
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Figure 2.6: Error plot of the approximation of π, log− log plot (left) and the
observed order of accuracy p with refinement (right)

2.4 Assessment of a Linear Error Estimator

During the iterative solution of an equation system, it is very helpful to know, when
the solution is converged. This is equivalent to the fact that the IICE converges to a
very small number (cf. section 2.3.3.3). For the abandoning of an iterative solution,
in general a convergence criterion is set. As the real iterative error is not known a
priori, error estimators are used for the determination of the IICE. The linear error
estimator with its reasonable computational effort that has been proposed, among
others, in [30], is a popular tool. The estimator is originally developed for the
error estimation of linear equation systems, but is also commonly used for nonlinear
equation systems.
Subsequently, the calculation procedure of the error estimator is briefly described
and then illustrated by an application.

2.4.1 Linear Error Estimator

The difference between two consecutive solution fields φ at the iterative steps n and
n+ 1 is given in equation 2.14.

δn = φn+1 − φn (2.14)

λ1 defines the largest eigenvalue, also called the spectral radius of the iteration
matrix. It can be estimated by equation 2.15.

λ1 ≈
‖ φn ‖
‖ φn−1 ‖

(2.15)

As error norm, the discrete E2 norm (cf. equation 2.7) is chosen. The error ε in
every point respectively the total error e can therefore be estimated using equation
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2.16 respectively equation 2.17 :

εn1 ≈
δn

λ1 − 1
(2.16)

e =‖ εn1 ‖≈
‖ δn ‖
λ1 − 1

(2.17)

2.4.2 Application
The application of the error estimator is exemplarily shown for the steady state CFD
benchmark with a grid of 128 by 128 cells, given in section 4.12.10.2. The IICE
error e is, on the one hand, estimated using equation 2.17. On the other hand, the
IICE error is determined as the difference of the finally converged solution and the
current solution in step n. During the application, the complete numerical error NE,
containing the discretization error as well, is known by the analytical MMS solution.
These three errors are illustrated over the number of iterations n in the figures 2.7
and 2.8 for the velocity u respectively the pressure P . In the given figures 2.7 and
2.8, it is obvious that the error estimation for the nonlinear equation system solved
by an iterative scheme is almost matching the error estimated by the fully converged
solution.
Furthermore, the amount of discretization error in the example is much larger than
the IICE error. This information could be used for the setup of more efficient com-
putations. Combining the informations of discretization error estimations with the
IICE estimation, many iterations can be saved without loosing accuracy of the simu-
lation results. It can be additionally seen that the machine accuracy does not limit
the simulation as the errors do not reach a horizontal line.

2.5 Setup of Iterative Solver Tolerances

As presented above, many error sources enter the simulation procedure. Beside
the discretization error, the numerical solution contains IICE and round-off errors
(cf. figure 2.4). The commonly known statement of the literature (e.g. in [73])
that double machine accuracy brings the computer round-off far beyond the other
contributing errors, coincides with the results of simulations shown in the following
chapters.

IICE error is always induced as soon as the software solves an equation in an itera-
tive process. On the one hand, there are nonlinear or coupled equations which can-
not be solved directly. On the other hand, the iterative solution of a linear equation
system induces IICE, which is especially relevant for the solution of large equa-
tion systems. Simply spoken, this topic concerns almost all engineering software,
including the presented partitioned FSI environment and also FSI simulations in
general.

The presented MMS assessment framework always requires a minimization of the
IICE error in order to isolate the discretization error from the numerical error (cf.
figure 2.4). For the software application on "real" problems, the setup of the numer-
ical effort should be balanced to reach the most accurate result for the individual
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computational effort. This means precisely that the iterative convergence criterion
can be set to the magnitude of the discretization error without loosing accuracy of
the solution and saving computational costs compared to a fully converged iterative
solution. An example of this setup is given above. In figures 2.7 and 2.8, the IICE
and the total numerical error NE can be observed. In this case, the pressure and the
velocity solutions iterated equal to 1 · 10−10. The numerical error curves (dotted
lines) indicate that the discretization error dominates the total error from an iterative
convergence of ≈ 1 · 10−5 on. From this stage onwards the effort to converge the
iterative solution to the level of 1 · 10−10 has not noticeably improved the solution
and can, therefore, be regarded as waste of computational effort.
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Figure 2.7: Error development over the nonlinear iteration of the velocity solu-
tion u
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Figure 2.8: Error development over the nonlinear iteration of the pressure solu-
tion P
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CHAPTER 3

Structural Dynamics

Structural Dynamics is concerned with the behavior of structures subjected to static
and dynamic loads. In the work at hand, a special focus is on the modeling of
membrane structures with large deformations.
The chapter aims at providing an overview of the requirements, the assumptions,
the balance equations, and the implementations of the structural dynamics with the
named geometrical nonlinear membrane element in the CSD software Carat++. The
notation of the equations use the Einstein summation convention. A detailed de-
scription can be found, e.g., in [6, 38, 122].

For the application of the MMS in the context of structural dynamics, a frame-
work for the assessment is presented. Furthermore, the application of the MMS,
the development of a hierarchical benchmark series, and the assessment results are
elaborated. Using these results and the derived formal order of accuracy, the CSD
code can be assessed for the intended application.

The derivation of the balance equations of the membrane is kept compact. A more
detailed derivation containing discussions of different possibilities to model mem-
brane structures using Finite Elements can be found in [19, 43, 68].

3.1 General Assumptions

As defined in section 1.3, the structural part of the FSI analysis consists of flexible,
elastic membrane structures containing prestress. Prestress is a typical matter of
membranes as these structures in general are pre-tensioned or prestressed to gener-
ate an initial stiffness. For the target application of the membrane structures, large
deformations with small strains are expected. Therefore, a linear isotropic material
with the plane stress assumption and a fully nonlinear strain measure is used. As
the structure will behave in an unsteady manner, inertial/mass forces are necessary
beside the inner forces out of stresses, while structural damping is neglected.
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3.2 Equilibrium

For the spatial description, the Total Lagrangian approach is chosen. The discretiza-
tion of the structural analysis part is performed using the Finite Element method in
space and a Newmark scheme over time. An overview of the assessed features of
the software Carat++ is given in figure 3.1.

CSM - Carat++

Finite Element Method
Total Lagrangian Formulation
Unsteady state using Newmark time discretization rule
Isotropic St. Venant-Kirchhoff material
Nonlinear strains
Large deflections
Membrane structures
Plane stress assumption
Pre-stress

Figure 3.1: Overview of the CSD software to assess: Carat++

3.2 Equilibrium

In structural dynamics, the conservation of momentum in every point of a continu-
ous structure defines the interior equilibrium equation in the so-called strong form.
It can be shown that the equilibrium with respect to the current/deformed configu-
ration (equation 3.1) and the initial configuration of a structure (equation 3.2) are
equivalent [123].
Equations 3.1 and 3.2 describe the conservation of momentum in the Lagrangian
description derived from Cauchy’s first equation of motion [6, 45]. Herein, ρs rep-
resents the density, which is assumed to be constant, and t the time. dc = d(x, t)
is the field of displacements with respect to the current configuration x, and d =
d(X, t) with respect to the initial configuration X [45]. Analogously, the fields of
displacements q and Q are the volume forces with respect to the current respectively
the initial configuration. σ represents the Cauchy and P the first Piola-Kirchhoff
(PK1) stress tensor [123]. It can be shown that the presented equilibria in the strong
form can be transformed into the commonly known weak forms of equilibrium us-
ing, e.g., the principle of virtual work in equation 3.3 [46, 71, 123]. In equation
3.3, Ω represents the initial domain and T the traction forces on the surfaceA of Ω.
S represents the second Piola-Kirchhoff (PK2) stress and E the Green-Lagrangian
strain tensor. The named equivalence of the weak and the strong form compose a
key feature for the applicability of the MMS. With the goal to perform the MMS
simulations, all necessary terms of the strong form equilibrium (equation 3.1 respec-
tively 3.2) have to be determined, completely independent of the implementation of
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the equilibrium (e.g., equation 3.3).

− ρs
d2dc
dt2

+∇ · σ + ρsq = 0 (3.1)

− ρs
∂2d

∂t2
+∇ ·P + ρsQ = 0 (3.2)

δW =−
∫

Ω

ρs
∂2d

∂t2
δddΩ +

∫
Ω

S : δEdΩ−
∫
A

TδddA+

∫
Ω

ρsQδddΩ = 0

(3.3)

3.3 Kinematics

The kinematics of the membrane are shown in figure 3.2. Capital and lower case
letters generally indicate, whether quantities belong to the initial (e.g., X) or the
current/deformed configuration (e.g., x) respectively. Using equations 3.4 and 3.5,
the covariant base vectors in the initial (Gα) and the deformed configuration (gα)
can be derived. θα are the surface parameters along the base vector Gα. Greek
index letters always count from 1 to 2, and Latin index letters always count from 1
to 3 at the Einstein summation convention (cf. [38, 122]). As membranes are very
thin, their kinematics can be completely described using the two named in-plane
base vectors. The third base vectors G3 respectively g3 are constructed as nor-
malized cross-product of the first two base vectors to be orthogonal on the tangent
plane. Using the base vectors, the covariant metricsGij and gij can be evaluated by
gij = gi · gj (Gij analogously). The calculation of the contravariant base vectors
can be performed with the aid of the contravariant metric (gij = (gij)

−1) using
gi = gijgj .

The deformation gradient F is calculated in equation 3.6, where ⊗ represents the
dyadic product [45, 123]. The Green-Lagrangian strain tensor E is calculated using
F and the unity tensor I in equation 3.7.

x = X + d = Xiei + diei (3.4)

Gα =
∂X

∂θα
gα =

∂x

∂θα
(3.5)

F = gα ⊗Gα (3.6)

E =
1

2
·
(
FTF− I

)
(3.7)

3.4 Constitutive Equations

The isotropic St. Venant-Kirchhoff material combined with the plane stress assump-
tions can be calculated with the aid of modified Lamé parameters λm and µm [68,
124] in equation 3.8 with 3.9. Using the material tensor C and the strain tensor E,
the PK2 stress tensor S can be calculated (equation 3.10). E represents the Young’s
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deformed
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initial
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G3

X(θ1, θ2)

x(θ1, θ2, t)

G2

G1

deformation

g1

d(θ1, θ2, t)

Figure 3.2: Different configurations and the deformation process of a surface
body

modulus, and ν the Poisson’s ratio of the material.

C = CαβγδGα ⊗Gβ ⊗Gγ ⊗Gδ

= λm ·GαβGγδ + µm
(
GαγGβδ +GαδGβγ

)
(3.8)

λm =
E · ν

(1− ν2)
µm =

E

2 · (1 + ν)
(3.9)

S = C : E (3.10)

3.5 Stress

Additionally to the stresses caused by strains, membranes in general are prestressed.
The prestress of the present element is set and defined with respect to the initial
configuration. The prestress tensor Sps is therefore added to the PK2 stress tensor
[68]. As the equilibrium of momentum (equations 3.1 and 3.2) contains the Cauchy
stress tensor σ respectively the PK1 stress tensor P, they can be evaluated from the
present PK2 stress tensor with equations 3.11 and 3.12 [45, 123].

σ =
1

det(F)
F (S + Sps) FT (3.11)

P = F (S + Sps) (3.12)
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Figure 3.3: Discretized configurations of the deformation process of a surface
body

3.6 Discretization

3.6.1 Spatial Discretization

The chosen spatial discretization method is known as the Finite Element method,
e.g. in [5, 46, 106, 123, 127]. Herein, the domain is approximated by a set of
non-overlapping elements constructed by nodes. Figure 3.3 gives an example of a
discretized surface using 16 four-node elements. Following the concept of isopara-
metric finite elements, the field information, such as the geometry X respectively
x or the displacement field d are approximated by the fields X̄, x̄, and d̄ (com-
pare figure 3.2 and 3.3). This approximation is described using a finite number of
nodal information at a node i (e.g., d̃i) combined with a set of shape functions Ni
of the solution. The displacement field between the discrete nodal information is
approximated by a chosen shape function in the directions of θ1 and θ2. Therefore,
the deformation d of a discrete element is a combination of the deformation of its
nodes:

d(θ1, θ2, t) ≈ d̄(θ1, θ2, t) =

nnodes∑
i=1

Ni(θ
1, θ2)d̃i(t) (3.13)

The mentioned isoparametric elements use the same shape functions for the descrip-
tion of the geometry as for the solution field. Therefore, the geometry in the initial

29



3.6 Discretization

and the deformed configuration respectively is described by:

X(θ1, θ2) ≈ X̄(θ1, θ2) =

nnodes∑
i=1

Ni(θ
1, θ2)X̃i (3.14)

x(θ1, θ2, t) ≈ x̄(θ1, θ2, t) =

nnodes∑
i=1

Ni(θ
1, θ2)x̃i(t) (3.15)

In the context of this work, quadrilateral elements with bilinear shape functions
are used. This means, the number of nodes nnodes = 4 and the shape functions
Ni(θ

1, θ2) are formulated as shown in equations 3.16-3.19. For the sake of sim-
plicity, the discrete nodal information of the geometry and displacements are noted
without the tilde.

N1(θ1, θ2) =
1

4

(
1 + θ1) (1 + θ2) (3.16)

N2(θ1, θ2) =
1

4

(
1− θ1) (1 + θ2) (3.17)

N3(θ1, θ2) =
1

4

(
1− θ1) (1− θ2) (3.18)

N4(θ1, θ2) =
1

4

(
1 + θ1) (1− θ2) (3.19)

with θ1 ∈ [−1; 1] and θ2 ∈ [−1; 1]

3.6.2 Time Discretization
For the discretization of the time derivative respectively the time integration, an
explicit Newmark scheme is used and will be presented [72]. The velocity v is
equal to the first time derivative of the displacement field d (cf. equation 3.20). The
acceleration a is equal to the second time derivative of the displacement field d (cf.
equation 3.21).

v =
∂d

∂t
= ḋ (3.20)

a =
∂2d

∂t2
= d̈ (3.21)

The continuous time period [t0, T ] is split into discrete time increments m with a
size of ∆t. With the assumption of a constant ∆t, the current time tm therefore is
described with equation 3.22:

tm = t0 + ∆t ·m (3.22)

The Newmark time integration is able to describe and approximate the displace-
ments, the velocity and the acceleration of the new time step tm+1 completely in
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known terms of the last time step m and the primary variable of the balance equa-
tions. In the present case, the primary variable is the displacement field d. There-
fore, the velocity and the acceleration at time step m+ 1 are described in equations
3.23 and 3.24 [19, 60]:

ḋm+1 =
γ

β∆t
[dm+1 − dm]− γ − β

β
ḋm −

γ − 2β

2β
∆td̈m (3.23)

d̈m+1 =
1

β∆t2
[dm+1 − dm]− 1

β∆t
ḋm −

1− 2β

2β
d̈m (3.24)

An intermediate time step approximation, where the displacements, the velocities,
and the accelerations are approximated using a linear interpolation between the two
timesteps m and m+ 1 as introduced in [16] is given in equations 3.25-3.27:

dm+1−αf = (1− αf )dm+1 + αfdm (3.25)

ḋm+1−αf = (1− αf )ḋm+1 + αf ḋm (3.26)

d̈m+1−αm = (1− αm)d̈m+1 + αmd̈m (3.27)

The choice of the parameters αf , αm, β, and γ regulate the stability and the order
of accuracy of the discretization method. A detailed discussion of the method and
its accurate choice of the parameters is presented in [36, 60].

3.7 Formal Order of Accuracy

The discretization method, the chosen shape functions for spatial and time dis-
cretization, and the numerical integration determine the formal order of convergence
[5, 106, 127].
The formal order of accuracy p̂ of an approximated expression can be determined
by comparison with its Taylor series expansion. The first term of the Taylor series,
which is not approximated, is the leading error term within the asymptotic range
of the solution. The formal order can be reached as long as no other errors (e.g.,
geometry approximation or integral approximation) with smaller convergence rate
occur. A detailed discussion can be found in [106].

3.7.1 Taylor Series Expansion of d

The basis of an assessment of the formal order of convergence p̂ of a variable field d
is the comparison of its Taylor series expansion with its approximation. The Taylor
series of d is given over time and space in equations 3.28 and 3.29. The spatial
Taylor series expansion is simplified here to one dimension. The superscript m
indicates the initial timestep in equation 3.28. The subscript p indicates the initial
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location in equation 3.29.

d(tm + ∆t) =d(tm+1) = dm + ∆t

(
∂d

∂t

)m
+

∆t2

2

(
∂2d

∂t2

)m
+

∆t3

3!

(
∂3d

∂t3

)m
+ ...+

∆tn

n!

(
∂nd

∂tn

)m
(3.28)

d(θ) =dp + (θ − θp)
(
∂d

∂θ

)
p

+
(θ − θp)2

2

(
∂2d

∂θ2

)
p

+

(θ − θp)3

3!

(
∂3d

∂θ3

)
p

+ ...+
(θ − θp)n

n!

(
∂nd

∂θn

)
p

(3.29)

3.7.2 Spatial Discretization
3.7.2.1 Shape Functions

The chosen linear shape functions in the software Carat++ in equations 3.16-3.19
combined with equation 3.13 can be rewritten for simplicity’s sake in one dimension
in equation 3.30:

d(θ) =

2∑
i=1

Ni(θ)d̃i

= d(θ = −1)
1− θ

2
+ d(θ = 1)

1 + θ

2

= d1 + (θ + 1)

(
∂d

∂θ

)
1

(3.30)

Comparing the used approximation of d(x) in equation 3.30 with its spatial Taylor
series in equation 3.29, the error E of the approximation can directly be derived in
equation 3.32. The developing point for the Taylor series is θp = θ1 = −1.

E =
(θ − θp)2

2

(
∂2d

∂θ2

)
p

+

(θ − θp)3

3!

(
∂3d

∂θ3

)
p

+ ...+
(θ − θp)n

n!

(
∂nd

∂θn

)
p

(3.31)

E =O
(
(θ + 1)2) = O

(
(∆θ)2) (3.32)

The result of equation 3.32 combined with equation 2.1 represents a p̂ = 2 in space.
In line with [127] p. 32 ff, the error for an isoparametric polynomial approximation
of order j is O(hp̂) = O(hj+1−m). h defines the characteristic mesh size and m
the magnitude of the mth derivative of the primary variable. This conforms to the
statements in [34, 46, 106, 109].

In the present case, using bilinear form functions (j = 1), the displacement (primary
variable, m = 0) convergences with a formal order of p̂ = 2, while stresses and
strains (m = 1) converge with a formal order of p̂ = 1.
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3.7.2.2 Geometric Approximation

Membranes are generally curved structures in space. In [106, 127] is shown that the
defined formal order of accuracy in the previous section already contains the errors
of geometrical approximation as it is an isoparametric approach. Nevertheless, it
should be mentioned and assessed separately within this work as it introduces an
additional source of error compared to plane structures. As already mentioned, the
isoparametric concept uses the same shape functions for the geometrical description
and the variable fields. This means, the description of an arc length is approximated
with the formal order elaborated in the previous section.

This can exemplarily be confirmed in the example given in section 2.3.5. In this
example, π is estimated using polygons for the calculation of the perimeter of a
circle. Polygons are equal to linear shape functions. Using an increasing number of
edges of the polygon the resulting estimation of π constantly improves towards the
exact solution. The reduction of the error and the observed order of accuracy are
shown in tables 2.1 and 2.2. Finally, this example confirms the order of accuracy of
the arc length approximation of a curve to p̂ = 2. This knowledge of the accuracy
of the arc length approximation in 1D can equally be transferred and is valid for the
approximation of the surface integral in 2D as well.

3.7.2.3 Spatial Integration

Following [127], the spatial integration of the discretized terms in equation 3.3
should not affect the solution. This means, the chosen numerical integration should
be at least as exact/accurate as the integrand. It is shown in [80, 127] that the integra-
tion should be exact to the order 2(j − k), where again j is the order of polynomial
approximation and k is the highest order of derivatives occurring in the integrand.
Therefore, the demanded order of accuracy of the integration is O

(
h2(j−k)+1

)
.

In the present case of using linear shape functions, the integral of the inner forces
needs an integration of order O

(
h2(j−k)+1

)
= O

(
h2(1−1)+1

)
= O

(
h1
)

re-

spectively an integration, which is exact to the order 2(j − k) = 2(1− 1) = 0.
The outer forces and the inertia term need an integration of order O(h2(j−k)+1 =

O
(
h2(1−0)+1

)
= O(h3) respectively an integration, which is exact to the order

2(j − k) = 2(1− 0) = 2.

According to the Gaussian integration presented in [59, 107], the integral is evalu-
ated using so-called Gauss points and weighting functions. A Gaussian integral "is
exact for all polynomials of degree≤ 2 ·np− 1" [107]. This defines the number of
required Gauss points np in every dimension to avoid the introduction of additional
errors by numerical integration. Therefore, the required number of Gauss points np
in each direction of a quadrilateral element can be evaluated using equation 3.33:

np ≥
2(j − k) + 1

2
with np ∈ N (3.33)
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Assuming linear shape functions, the integration of the inner forces at least needs
np ≥ 1, and the outer forces and the inertia forces at least need np ≥ 2 at every
element in every direction in space.

3.7.3 Temporal Discretization
As given in section 3.6.2, the parameters αf , αm, β, and γ must be preset for the
time discretization using the Newmark method. For a formal second order of accu-
racy and minimal numerical damping, the choice of parameters is given in equation
3.34 [36, 60].

αf = 0.50, αm = 0.50, β = 0.25, γ = 0.50 (3.34)

3.7.4 Resulting Formal Order of Accuracy
The present code of Carat++ uses bilinear shape functions (cf. equations 3.16-3.19)
for the quadrilateral elements. For the numerical integration, two Gauss points are
used for both directions, which is at least the number of required Gauss points
given in equation 3.33. The Newmark time integration scheme always uses the
parameter choice given in section 3.7.3. Therefore, the formal time and spatial
order of accuracy (p̂t respectively p̂s) of the code is given in equation 3.35:

p̂s = p̂t = p̂ = 2 (3.35)

3.8 Application of the MMS

3.8.1 Equilibrium Forces

The equilibrium forces required to reach a prescribed deformation d = d̂ in the
context of the MMS are shown in equations 3.36 and 3.37, avoiding additional outer
volume or area forces. For the calculation of the manufactured volume or surface
traction forces at the membrane, it is recommended to use a symbolic computation
software, such as Maple R©or Mathematica R©. In order to facilitate understanding,
the stress tensors are shown as a function of the target displacements d̂ (e.g., P =

P(d̂)). The general stress tensor components σij or P ij can be reduced to the in-
plane stresses nαβ respectively Nαβ in the membrane theory [4]. nα|α represents
the covariant derivative of nα [4, 123].

q̂s =
t̂s
b

= ρ
∂2d̂c
∂t2

−∇ · σ(d̂c) = ρ
∂2d̂c
∂t2

− nα|α = ρ
∂2d̂c
∂t2

−
(
nαβgβ

)
|α

(3.36)

Q̂s =
T̂s

B
= ρ

∂2d̂

∂t2
−∇ ·P(d̂) = ρ

∂2d̂

∂t2
−Nα|α = ρ

∂2d̂

∂t2
−
(
Nαβgβ

)
|α
(3.37)

The calculated forces q̂s respectively Q̂s in equations 3.36 or 3.37 are volume
forces. To generate area forces t̂s respectively T̂s which act on the mid-plane of the
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thin assumed membrane, they have to be integrated over the thickness b respectively
B. As the stresses are assumed to be constant over the thickness, the integrations
results in an multiplication with the thickness shown in equations 3.38 and 3.39:

t̂s =

∫ b
2

− b
2

q̂sdθ
3 = q̂sb (3.38)

T̂s =

∫ B
2

−B
2

Q̂sdθ
3 = Q̂sB (3.39)

It is emphasized again that the derived forces represent the equilibrium forces of
the problem for a desired displacement field d̂. Therefore the mentioned surface or
volume force has to be applied to the code regardless of the discretization method of
the implemented equilibrium. All developed equilibria are based on the strong form
equilibria (equation 3.36 or 3.37). Thus the generality of the method is evident.

3.8.2 Boundary and Initial Conditions
The Dirichlet and Neumann boundary conditions (BC) for the deformed and the
initial configuration are set with equations 3.40 respectively 3.41 (cf. section 2.3.3.4
and [123]). N and n represent the in-plane normal vector and T and t are the
traction vectors on the edges of the initial (Γ) and the deformed (γ) configuration
respectively. In steady-state simulations, the initial conditions (IC) are set to a non-
balanced state, e.g., to a zero value field. In transient problems the IC must be set
to the target value of the variable. Therefore, at t = t0 the initial configuration
matches the deformed configuration (equation 3.42 for both configurations).

dγc = d̂γc tγ = σγnγ (3.40)

dΓ = d̂Γ TΓ = PΓNΓ (3.41)

d(X, t = t0) = dc(x, t = t0) = d̂(X, t = t0) = d̂c(x, t = t0) (3.42)

In structural dynamics, a Dirichlet BC is equivalent to a support condition (e.g.,
displacement equal to zero) and a Neumann BC is equivalent to a edge force at the
boundary. In general, the benchmarks defined in the subsequent sections do not
apply boundary conditions at the edges of the structure. If they are applied, they are
given in the examples separately.

3.8.3 Framework
The framework to assess the simulation code Carat++, using EMPIRE for the appli-
cation of the MMS, is presented in this section. In total, five software components
are used in this framework:

• Carat++ (already presented above)

• Maple R©

• mmsClient
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3.8 Application of the MMS

• Emperor

• Matlab R©

An overview of the framework is given in figure 3.4. The procedure and the se-
quence of the program executions are shown in figure 3.5.

Emperor

EMPIRE_API

Carat++ mmsClient

Maple R© Matlab R©

EMPIRE_API

EMPIRE

Figure 3.4: Overview of the MMS framework for the assessment of the CSD

3.8.3.1 Maple R©

For the calculation of the equilibrium traction forces, the boundary and the initial
conditions, equations 3.37, 3.41 and 3.42 are implemented in an own Maple R©code.

The analytical derivation of these terms is modeled in terms of the chosen manu-
factured solution field d̂. Using the chosen initial geometry description and d̂, the
kinematic description given in equations 3.4 - 3.7, the Green-Lagrangian strain ten-
sor E(d̂) in terms of the manufactured solution d̂ is obtained. The linear elastic
isotropic material, given in equations 3.8-3.10, leads to the PK2 stress tensor S(d̂).
The stress tensor due to prestress Sps is added to the stress tensor S(d̂) due to
strains. To convert the available PK2 stress tensors in the desired PK1 stress tensor
P(d̂), the PK2 stresses have to be contracted with the deformation gradient F. To
finally calculate T̂s, the known fields have to be derived as described in equation
3.37.

As d̂ and P(d̂) are known, the normal NΓ at the boundary is computed by the
initial geometry definition. With this information, all boundary conditions can be
computed (cf. equations 3.40-3.42).
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3.8.3.2 mmsClient

The mmsClient is a proprietary auxiliary tool to generate the discrete traction loads
from T̂s, which are transferred to Carat++. Additionally, it receives the computed
displacement field d from Carat++ and evaluates its numerical error.

The generated analytical traction force vector T̂s and the manufactured solution d̂
from Maple R©are stored in a function container of the mmsClient software. Next,
the load is sampled point-wise as preparation for the integration and mapping pro-
cedures of Emperor.

After solving the benchmark in Carat++, the discrete solution field d is transferred
to the mmsClient. As the manufactured solution field d̂ is also stored in the func-
tion container of the mmsClient, the difference between d and d̂ can be calculated,
which represents the field error. To finally get a mesh independent and compara-
ble error information, the difference between d and d̂ is evaluated on a subset of
nodes (cf. figure 3.6), called probes or probe locations. Finally, the representative
probe information is stored with double precision in text files for the processing in
Matlab R©.

3.8.3.3 Emperor

Emperor provides procedures to perform sampling, mapping and integration of
fields between the different contributing software in the frame of EMPIRE. There-
fore the discrete solutions of equations 5.4 and 5.6 using the Mortar method is
performed within Emperor. In the MMS application of Carat++, the same grids are
used in the mmsClient and Carat++ to avoid additional mapping errors (cf. chapter
5).
As the sampling and integration procedures are numerical processes, they introduce
additional error to the simulation. As similarly stated above for the geometrical
approximation, the traction force integration method has to have at least the order
of accuracy as the actual discretization of Carat++. As Carat++ is formally second
order accurate (cf. section 3.7.4), the force integration must be at least formally
second order accurate as well. The used procedures for sampling and integration
also use linear shape functions. Therefore, they are formally second order accurate.

3.8.3.4 Matlab R©

The software Matlab R©is used to finally apply the error norms 2.7 and 2.8 on the
resulting field deviations of d̂ from d at the probe locations. Using these errors
and the named error norms, graphs are plotted for the error development in a log-
log diagram and a diagram for the observed order of accuracy over grid refinement
(e.g., figure 3.11).

3.8.4 Procedure
The procedure applying the MMS for CSD, especially for Carat++, is outlined in
the following. The procedure and its balance equation are based on the momentum
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equilibrium in the initial configuration (cf. equations 3.2, 3.37, 3.41 and 3.42).

1. Creation of a manufactured solution (cf. section 2.3.3) using Maple R©

- Creation of a manufactured field solution d̂

- Creation of all contributing constants

- Derivation of the equilibrium traction force T̂s using equation 3.39
- Derivation of the initial condition using equation 3.42
- Derivation of the boundary conditions using equation 3.41

2. Application of the MMS terms to the code Carat++ by assistance of the mms-
Client tool

- Application of the equilibrium forces T̂s

- Application of the initial condition
- Application of the boundary conditions

3. Performing the simulation in Carat++ with a resulting field d

4. Error evaluation by assistance of the mmsClient tool
- Sampling of d at a set of probe locations

- Error estimation at probes using d and d̂ in equation 2.7 resp. 2.8

5. Repetition of steps 2-4 with systematic refinement

6. Calculation of the observed order of accuracy p using Matlab R©

- Comparison of the error evaluations at each refinement step
- Derivation of p with refinement using equation 2.2

7. Comparison of the formal order of accuracy p̂ with the observed order of
accuracy p

8. Assessment of the code
- If p matches p̂, all tested ordered parts are working as intended
- If p does not match p̂, the error source has to be investigated

For the detailed procedure of refinement for steady state or unsteady analyses, the
proposed procedures of section 2.3.3.5 respectively 2.3.3.6 should be considered.
The MMS procedure is shown additionally in figure 3.5.

3.8.5 Spatial and Time Resolutions
As already mentioned, the MMS deals with a systematic refinement in space and
time. The quantities of grid size and resolution in general is almost arbitrary. The
presented numbers are only a suggestion for the reader, where the results shown
later are produced.

As stated in sections 2.3.3.5 and 2.3.3.6, the set of sampling points of a single MMS
study has to be kept constant. In the context of this work, all nodal and possibly
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creation of a
manufactured

solution

(2) mmsClient (3) Carat++

(5) perform for all refinement stages

calculate
forces,

BC & IC

sampling and
application

of the forces

apply IC, BC
and solve the

problem

evaluate
error at the

probes

(4) mmsClient

derive the ob-
served order of

accuracy p

(6) Matlab(1) Maple(1) Mind

Figure 3.5: The MMS procedure for structural analysis using Carat++

time positions of the coarsest stage are used as sampling points, independently of
the individual grid or time resolution.
The coarsest grid, which in parallel defines the sampling points for the complete
assessment, is chosen as a quadrilateral grid using 8 by 8 elements. In unsteady
solutions 8 timesteps are chosen as coarsest resolution, which in parallel defines the
sampling points over time. A sketch of the spatial sampling points in the first stages
of grid refinement is illustrated in figure 3.6. The grid is drawn with straight lines,
and the probe positions are denoted with crosses.

a) 8x8 elements b) 16x16 elements c) 32x32 elements

Figure 3.6: Sampling points in space during refinement for the CSD

During refinement, this setup is refined with a factor of rs = rt = r = 2 with
the target to reduce the error with each refinement step by a factor of 4 (cf. section
2.3.3.5 and 2.3.3.6) to observe an order of accuracy of p = 2. As shown in the
literature, the refinement factor could be reduced to a minimum of 1.1 − 1.2 for
the observation of the order of accuracy. This can be especially important, if one
cannot afford further large refinement steps in the asymptotic range of the solution.
As already mentioned, in this chapter a constant refinement factor of r = 2 is
chosen.
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3.8.6 Solution Accuracy
Recalling section 2.3.2, the discretization error should be isolated from the total nu-
merical error (cf. figure 2.4). Therefore, the used software Carat++ and all other
contributing software (cf. figure 3.5) are using double precision accuracy to min-
imize the round-off error (cf. figure 3.7). To keep the IICE as small as possible,
the solution tolerance in the inf norm of displacements (cf. equation 2.8) of the
nonlinear equation system (using a Newton-Raphson procedure) is set to 1 · 10−14.

3.8.7 Error Map
In this section, an overview of the errors on the CSD simulation is elaborated. On
the one hand, occurring errors can be described in a general way. The errors origi-
nate from the processes of preprocessing of input data, the solution of the governing
equations, and the postprocessing of output data of the simulation. For the appli-
cation of the present software Carat++, the general error categories and the specific
error sources of the software are shown in figure 3.7 on the left-hand side and the
right-hand side respectively.

Numerical errors
due to the solution

Preprocessing of
input data

Postprocessing of
output data

- Human errors in the preparation
of input data

- Generation of input data *

- Human errors in the postprocessing
of simulation results

- Generation of output data *

of the governing
equations

- Discretization error in time
- Discretization error in space of the physical

- Solver for the linear equation system for d *
- Newton-Raphson IICE *

It
er

at
iv

e
so

lu
tio

n
of

th
e

no
nl

in
ea
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ro
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em

equations (momentum, material, kinematics)

* contains round-off

Figure 3.7: Error map of the presented CSD software Carat++

It is obvious that errors in the generation of input data will influence the total simu-
lation process. This indicates that the generation and application of the MMS proce-
dure (cf. figure 3.5) needs to be at least as accurate as the solution of the simulation
itself. In the present case, the actual simulation provides a formal order of accuracy
of p = 2. Therefore, the generation and application of the MMS forces, the BC,
and the IC need to be at least second order accurate as well. Additionally, the output
generation and the error evaluation in Matlab needs to be at least equally accurate.
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If this is not fulfilled, the total observed order of the simulation will lower to the
accuracy of the weakest link of the chain.

3.8.8 Benchmarks

The following benchmark series for CSD is developed as a stairway in complex-
ity. This means, the proposed benchmarks sequence starts with the assessment of
restricted functionality of the code and becomes increasingly complex through the
benchmark sequence (cf. figure 3.8).

Benchmark 4

Benchmark 3

Benchmark 1

Benchmark 2

In-plane
deformation

Flat geometry
Steady state

Nonlinear EQS

Out-of-plane deformation
Poisson’s ratio

Unsteady
Inertial forces

Initially curved geometry

Figure 3.8: Hierarchical benchmark sequence for CSD

All functions and variables of the following examples are listed in a table, so that
the reader is able to reconstruct the force term Q̂s respectively the traction term
T̂s, the boundary conditions, and the initial conditions. The choice of the BC type
(Dirichlet or Neumann) on each edge is left to the reader. Consequently different
boundary scenarios can be tested on the same example. All of the input parameters
of the benchmarks are defined in the International System of Units (SI) and their
derived expressions [81]. Therefore, units for the input numbers of the benchmarks
are generally omitted.

Remember: The MMS assessment starts at a preset of governing equations with all
its assumptions as a predefined fact. It is not necessary that the used parameters are
in the range of applicability of the equilibrium equations from its physical mean-
ing. This means that, e.g., in the first example the membrane has a thickness B of
0.25m over a span area of only 1.0m2 although this does not make sense in physi-
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cal applications of the membrane theory model. To get familiar with the elaborated
benchmarks, the figures and plots in the first example are explained extensively.

3.8.8.1 Benchmark 1: Plane Membrane, In-Plane Deformation, Steady State

The simplest presented benchmark is a plane rectangular membrane under pure ten-
sion in a steady state regime (cf. table 3.1). To keep this first benchmark as simple
as possible, the Poisson’s ratio νs is set to zero to eliminate the Poisson effect. The
thickness is set to B = 0.25m and the isotropic prestress is set to 25000N/m2.
This benchmark assesses the pure normal force action with prestress in the fully
geometric nonlinear environment. Figure 3.9 shows the undeformed state of the

Table 3.1: Benchmark 1: Overview table

initial configuration deformation domain size
x = θ1 d̂x = 0.1 · θ1π) θ1 ∈ [0, 1]

y = θ2 d̂y = 0 θ2 ∈ [0, 1]

z = 0 d̂z = 0 steady state

material element properties
E = 70000 B = 0.25

ρ = 0 Sps
θ1

= 25000

νs = 0 Sps
θ2

= 25000

rectangular membrane with 1.0m · 1.0m. It is not curved and initially lies in the
global x-y plane. The boundaries at x = 0.0 and x = 1.0 respectively θ1 = 0.0
and θ1 = 1.0, are fixed with a support (Dirichlet zero) boundary condition. The
boundaries at y = 0.0 and y = 1.0 respectively θ2 = 0.0 and θ2 = 1.0 are fixed
in global y and z direction only. Figure 3.10 shows the deformed configuration of
the membrane. Along the formula of the desired deformation dx = 0.1 · sin(θ1π),
figure 3.10 shows the deformation of the membrane during the simulation. It is
an in-plane deformation with a maximum value of 0.10m at θ1 = 0.5 at all θ2.
The systematic refinement during the set of simulations is performed along sections
2.3.3.5 and 3.8.4. Figure 3.11 shows the inf and the E2 error norms of the different
displacement directions d = (dx, dy, dz)T . The index i references to the infinity,
and the index 2 references to theE2 norm of the individual displacement field error.
The negative slope in figure 3.11 in the left panel - with almost a straight line in
the more refined area - of the log-log diagram indicates that the error tends towards
machine accuracy and therefore, it indicates convergence of the fields. The slope
of the error graph is calculated at each refinement step from a pair of errors, using
equation 2.2. The pairwise calculated error development is drawn as a graph in fig-
ure 3.11 right. The calculated inclination represents the observed order of accuracy
p. In order to judge the benchmark execution successful, the observed order of ac-
curacy must reach the formal order of accuracy with refinement. As elaborated in
section 3.7.4, the formal order of accuracy of the used software Carat++ is p̂ = 2.
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d = 0

d = 0

dy = dz = 0

dy = dz = 0
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Figure 3.9: Benchmark 1: Initial configuration and boundary conditions
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Figure 3.10: Benchmark 1: Deformed configuration
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Figure 3.11: Benchmark 1: Spatial convergence plot

As the observed order of accuracy p ≈ 2.0 matches p̂ in both error norms, the exe-
cution results in a positive assessment of all ordered functionalities touched by this
benchmark. Therefore, these features can be used for further investigations.

3.8.8.2 Benchmark 2: Plane Membrane, Out-of-Plane Deformation, Steady
State

Benchmark 2 is a membrane which is deformed out-of-plane. The initial plane
is located in the x-y-plane and the deformation is perpendicular on this plane in
the direction of the z-axis. The inertial forces are neglected, as the computation is
steady state. An overview of the benchmark is presented in table 3.2. As the row
of benchmarks is a benchmark stair with increasing complexity, the special focus
of the current benchmark is on the additional parts contributing to the simulation
compared to the previous ones. This is possible, if the contributing parts/features of
the code to the previous benchmark(s) are already positively assessed.

The initial configuration of the membrane is similar to benchmark 1. The difference
is that in benchmark 2 all edges are fixed in all directions (compare figures 3.9 and
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Table 3.2: Benchmark 2: Overview table

initial configuration deformation domain size
x = θ1 d̂x = 0 θ1 ∈ [0, 1]

y = θ2 d̂y = 0 θ2 ∈ [0, 1]

z = 0 d̂z = 0.25 · sin(θ1π) · sin(θ2π) steady state

material element properties
E = 1000 B = 0.001

ρ = 0 Sps
θ1

= 5

νs = 0.3 Sps
θ1

= 5

3.12). Beside the fact that different numbers are set for the material and the element
properties, the Poisson effect now is activated through νs = 0.3. The deformation
of the membrane is perpendicular to the initial geometry with a peak deformation
of dz(θ1 = θ2 = 0.5) = 0.25m (cf. figure 3.13).

Compared to the previous benchmark, the second benchmark additionally assesses
the geometric transformation through out-of-plane deformation, shear force action,
and the full material law with the Poisson effect.
Analogous to the results of benchmark 1, figure 3.14 left panel illustrates the infinity
and the E2 error norms of the displacements. The observed order of accuracy p
again is calculated using equation 2.2 and is plotted in figure 3.14 right panel. Figure
3.14 presents an observed order of accuracy of p ≈ 2.0 in the asymptotic range of
the solution. In figure 3.14 can be observed that the code is not able to calculate
a solution which directly tends to the analytical solution, if the grid is too coarse
(p � p̂). This is only possible, if the simulation is in the asymptotic range of the
solution. The asymptotic range of the solution is reached as soon as the observed
order of accuracy converged to its asymptotic value.
As stated in section 3.7.4, the formal order of accuracy of the used software Carat++
is p̂ = 2. As the observed order of accuracy p ≈ 2.0 matches p̂ in both error norms,
the execution results in a positive assessment of all ordered functionalities touched
by this benchmark. Therefore, these features can be used for further investigations.

3.8.8.3 Benchmark 3: Plane Membrane, Out-of-Plane Deformation,
Unsteady

Benchmark 3 is a plane membrane which is deformed out-of-plane from the initial
x-y-plane. Inertial forces appear in this benchmark, as the membrane density is
existent and the calculation is unsteady. An overview of the benchmark is presented
in table 3.3.
The main difference between the previous and the current benchmark is the un-
steadiness over time. Therefore, the figures of the initial and the deformed configu-
ration at t = 1.0s (cf. figures 3.15 and 3.16) are similar to the figures 3.12 and 3.13.
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Figure 3.12: Benchmark 2: Initial configuration and boundary conditions
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Figure 3.13: Benchmark 2: Deformed configuration
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Figure 3.14: Benchmark 2: Spatial convergence plot

By incorporating unsteadiness, two additional things for the assessment strategy
have to be decided. As discussed in section 2.3.3.6, there exist different ways for
the assessment of unsteady simulations. Table 3.3 exhibits that, a solution field
based on a sinus function is chosen in space and time. This indicates that the spatial
and the time accuracy is assessed together with the concurrent refinements outlined
in section 3.8.4. Figure 3.17 shows the error and the observed order of accuracy
plots of the presented benchmark 3. Using a second order accurate method in space
and time, the space and time refinement is performed with the same factor of r = 2
in space and time. This means exemplarily that 1 timestep is used in the level of 23

cells per edge, whereas 4 timesteps are used in the level of 25 cells per edge.

In the refined area, the observed order of accuracy reaches p ≈ 2.0, which matches
the formal order of accuracy of p̂ = 2.
Therefore, the additional mass/inertia contribution and the time discretization are
positively assessed and can be used for further investigations.
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Table 3.3: Benchmark 3: Overview table

initial configuration deformation domain size
x = θ1 d̂x = 0 θ1 ∈ [0, 1]

y = θ2 d̂y = 0 θ2 ∈ [0, 1]

z = 0 d̂z = 0.25 sin(θ1π) sin(θ2π) sin(tπ
2

) t ∈ [0, 1]

material element properties
E = 1000 B = 0.001

ρ = 1000 Sps
θ1

= 25

ν = 0.3 Sps
θ2

= 25

3.8.8.4 Benchmark 4: Curved Membrane, Out-of-Plane Deformation,
Unsteady

The last elaborated benchmark for the CSD is an initially curved membrane which
is deformed out-of-plane in an unsteady calculation (cf. table 3.4).

Table 3.4: Benchmark 4: Overview table

initial configuration deformation domain size
x = θ1 d̂x = 0 θ1 ∈ [0, 1]

y = θ2 d̂y = 0 θ2 ∈ [0, 1]

z = θ1 − θ1θ1 d̂z = 1
4

sin(θ1π) cos(θ2π) sin( 1
2
πt) t ∈ [0, 2]

material element properties
E = 1000 B = 0.001

ρ = 1000 Sps
θ1

= 25

ν = 0.3 Sps
θ2

= 25

The initial configuration is described with a parabola along θ1 in z-direction as
drawn in figure 3.18. The supports at θ2 = 0 and θ2 = 1.0 are only fixed in global
y-direction. The deformation on this curved structure is described with a sinus func-
tion in space and time. The deformed shape at t = 1.0s is drawn in figure 3.19.

Compared to the previous benchmarks, this benchmark additionally assesses the
geometric approximation of the initial configuration and the deformation process
with the base of a curved structure. The unsteady assessment is performed using a
parallel spatial and time refinement similar to benchmark 3.
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Figure 3.15: Benchmark 3: Initial configuration and boundary conditions
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Figure 3.16: Benchmark 3: Deformed configuration at t = 1.0
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Figure 3.17: Benchmark 3: Spatial and time convergence plot

The error and the observed order of accuracy p development are shown in figure
3.20. In the refined area, the observed order of accuracy reaches p ≈ 2.0, which
matches the formal order of accuracy of p̂ = 2.

As shown in section 3.7, the geometric approximation of a curved structure is addi-
tionally introducing error. This additional error due to geometrical approximation
can be seen as a reason, why the errors in benchmark 4 compared to benchmark 3
are larger (compare figures 3.17 and 3.20). Nevertheless, as previously shown, this
geometric approximation error also scales with the same formal order of accuracy
and should not affect the order of accuracy of the solution. Figure 3.20 depicts in
the right panel that the observed order of accuracy reaches p ≈ 2 in the refined
areas, which matches the formal order of accuracy of p̂ = 2.

Therefore, the additional contribution of the geometrical approximations is posi-
tively assessed and can be used for further investigations.
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Figure 3.18: Benchmark 4: Initial configuration and boundary conditions
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Figure 3.19: Benchmark 4: Deformed configuration at t = 1.0
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Figure 3.20: Benchmark 4: Spatial and time convergence plot

3.8.9 Statement and Results for the used CSD Environment

Summarizing this chapter and the benchmarks particularly, the code Carat++ is as-
sessed to work as intended. The elaborated benchmark sequence with increasing
stages of complexity builds confidence in the functionalities and features of the
code. It can be finally determined that the governing equations in the code are
solved consistently. The used geometrical nonlinear membrane using linear shape
functions and Newmark time integration confirms the formal order of accuracy in
space and time with p ≈ p̂ = 2. Consequently all ordered parts of the code are
correctly implemented in the software Carat++. Therefore, all assessed parts of the
code can be used for further investigations in the context of V&V to finally reach a
predictive capability of the software (cf. [9, 57, 75, 79] and chapter 2).

48



3 Structural Dynamics

3.9 Adaptation of the CSD Framework

As shown in this chapter, the MMS framework is applied to a particular CSD en-
vironment for modeling and simulation of lightweight membrane structures. How-
ever, the very general concept of the framework makes it very attractive for the
adaptation to other CSD environments or adaptations and extensions of the assessed
CSD software.

In the next sections, a few examples of potential adaptations are outlined. The pre-
sented examples focus on the required adaptations within the presented MMS envi-
ronment. The actual modeling and simulation functionalities regarding the solution
of the considered field or the internal data handling are not part of the description,
as they should be anyway available independent of an MMS assessment.
Furthermore it is obvious, if the environment is changed, the adapted parts need a
separate investigation to derive the formal order of accuracy. This is required before
the execution of the individual benchmarks, to set the refinement factors correctly
(cf. section 2.3.3.6 and 3.8.5).
It is further shown that only moderate changes are necessary to adapt the MMS
framework for the assessment of slightly adapted, or even different, CSD soft-
ware environments. It may be concluded that the MMS framework lives up to its
promised flexibility, adaptivity, and modularity.

3.9.1 Adaptation of the PDE Formulation
As described in this chapter, the equilibrium of the structural dynamics is formu-
lated in the so called Total Lagrangian formulation. Consequently the reference
geometry information X during the complete simulation is still the initial geom-
etry and the displacements are projected on the initial geometry. In contrast, the
Updated Lagrangian formulation is completely formulated on the current geometry
information x. If the MMS framework presented above is supposed to assess a CSD
software formulated in Updated Lagrange, the following points have to be adapted:

• The MMS forces have to be adapted to t̂s (cf. equation 3.38) instead of T̂s

in equation 3.39

• The boundary conditions have to be adapted to the current configuration using
equations 3.40 instead of equations 3.41.

Those are the only adaptations that have to be conducted in order to ensure a proper
performance of all benchmarks after having changed the formulation from Total
Lagrangian to Updated Lagrangian.

It is therefore obvious that changing the CSD software to another CSD Total La-
grangian formulated software with the same element needs absolutely no change of
the MMS framework.

3.9.2 Adaptation of the Constitutive Equations
Assuming large strains during the deformation of the membrane, one could extend
the simulation environment for membranes with a nonlinear material model. As the
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material is contributing only at the derivation of the traction force T̂s, the consti-
tutive equations (cf. equations 3.8-3.10), giving the relations between stresses and
strains, have to be adapted. This leads to finally different manufactured forces or
tractions which have to be applied to the code. Nevertheless, the elaborated bench-
marks of the previous chapters can still be used without restriction to assess the
environment with the adapted constitutive equations.

3.9.3 Adaptations for a Solid Element
The presented element is a geometrical nonlinear membrane element. Assuming
the adaptation to a framework for the assessment of a geometrical nonlinear solid
element formulated in the same software, the manufactured body forces q̂s respec-
tively Q̂s need to be applied to the software. The difference is only in the derivation
of these forces. First of all, the regular Lamé parameters need to be used, as the
plane stress assumption does not hold for solids. Secondly, the divergence of the
stresses outlined in 3.36 respectively 3.37 needs to be fully evaluated. This means
that the divergence of the stresses are equal to the covariant derivative of the normal
stress, which does not hold for solid elements. Thirdly, if the solid is not able to
handle prestress, it can be easily set to zero.

The presented membrane benchmarks therefore can generally be used for the as-
sessment of solids as well. However, the presented benchmarks of this chapter are
only partially qualified for the assessment of solids. Therefore, the development of
additional benchmarks is recommended, which are adapted to the key features of
the element.
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CHAPTER 4

Fluid Dynamics

Fluid Dynamics is concerned with the behavior and the flow of fluids in a bounded
volume. In the work at hand, a special focus is on the modeling of incompressible
turbulent Newtonian fluids based on the Navier-Stokes equations.
The chapter aims at providing an overview of the requirements, the assumptions,
and the implementations of the fluid dynamics in the CFD software OpenFOAM R©.
The notation of the equations generally use vector notations. A detailed explana-
tion of the used operators, such as the gradient and the divergence of a field, can
be found in [30]. The notation of the equations partially use the Einstein summa-
tion convention. A detailed description can be found, e.g., in [38, 122]. For the
application of the MMS in the context of fluid dynamics, a framework is presented.
Furthermore, the application of the MMS, the development of a hierarchical bench-
mark series, and the assessment results are elaborated. Using these results and the
derived formal order of accuracy, the CFD code can be assessed for the intended
application.

The derivation of the balance equations of the fluid is kept compact. A detailed
derivation, containing discussions of different possibilities to model fluid flows us-
ing the Finite Volume method can be found in [7, 30, 49, 53, 120, 121].

4.1 General Assumptions

As mentioned in chapter 1, the fluid part of the FSI analysis deals with incom-
pressible and isothermal Newtonian fluids. The simulation can be steady state or
unsteady using the Navier-Stokes equations.

For the spatial description of the fluid, the Eulerian and the Arbitrary Eulerian-
Lagrangian (ALE) approach is applied. The discretization of the fluid dynamics
part is performed using the Finite Volume method.
An overview of the assessed features of the software OpenFOAM R©is illustrated in
figure 4.1.
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CFD - OpenFOAM R©

Finite Volume Method
ALE Formulation
Steady state
Unsteady using BDF1, BFD2 and Trapezoidal
time discretization rule
Incompressible fluids
Newtonian fluids
URANS turbulence
Grid motion

Figure 4.1: Overview of the CFD software to assess: OpenFOAM R©

4.2 Equilibrium

The conservation of mass and the conservation of momentum define the interior
equilibrium equations in incompressible fluid dynamics. Assuming νt = 0, these
equations together are called the incompressible Navier-Stokes equations and are
presented in the strong form in vector notation in equations 4.1 and 4.2:

∂u

∂t
+∇ · (uu)−∇ · ((νm + νt)2D) +∇P = 0 (4.1)

∇ · u = 0 (4.2)

In equations 4.1 and 4.2, u is the absolute velocity vector in global directions, νm
and νt is the molecular respectively turbulent viscosity of the fluid, and P is the
kinematic pressure defined in equation 4.3:

P =
p

ρf
(4.3)

p is the pressure, and ρf the constant density of the fluid. D is the symmetric strain
rate tensor given in equation 4.12. If νt 6= 0, equations 4.1 and 4.2 are called
the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. The physi-
cal interpretation of equation 4.1 is the momentum balance at an infinitesimal small
amount of fluid. The first part containing the time derivative corresponds to the
mass and is therefore called the inertia force term. The second part is called the
convection term, where the fluid mass is convected with its own velocity u. The
third part corresponds to the diffusive motions in the fluid; therefore, it is called the
diffusion term. The last part is the pressure or pressure gradient term.

For the application of Finite Volume discretization, the momentum and mass conser-
vation, equations 4.1 and 4.2, are solved in an integral sense over a control volume
V [30]. The integrals of equation 4.1 and 4.2 therefore result in equations 4.4 and
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4.5:∫
V

∂u

∂t
dV +

∫
V

∇ · (uu)dV −
∫
V

∇ · ((νm + νt)2D)dV +

∫
V

∇PdV = 0

(4.4)∫
V

∇ · udV = 0

(4.5)

4.3 Incompressible Fluids

The assumption of incompressibility holds, as the range of velocities of the applica-
tion is small compared to the speed of sound c. At a temperature of 20◦C, the speed
of sound is c ≈ 343m

s
in the air. The ratio of the maximum occurring velocity and

the speed of sound gives the Mach number Ma. The incompressibility condition is
shown in equation 4.6 [30]:

Ma =
umax
c

< 0.3 (4.6)

The assumption of incompressibility leads to a constant density ρf in space and
time.

4.4 Conservation of Mass

The differential form of the mass conservation of incompressible flows derived from
the Reynolds transport theorem is given by equation 4.7 [6, 20, 30, 49, 53, 120]:

∇ · u = 0 (4.7)

u describes the velocity vector of the fluid. ∇ · (.) denotes the divergence of (.).

4.5 Conservation of Momentum

The differential form of the momentum conservation of incompressible flows is
presented in equation 4.8 respectively 4.9:

dρfu

dt
= ∇ · σ (4.8)

ρf
∂u

∂t
+ ρfu · ∇u = ∇ · σ (4.9)

(4.10)

σ is the Cauchy stress tensor, u the absolute fluid velocity, and ρf the density of
the fluid. ∇(.) denotes the gradient of (.). Body forces are neglected.
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4.6 Constitutive Equations

For the application in wind engineering, the assumption of Newtonian fluids holds.
The Cauchy stress tensor σ, which is the molecular rate of transport of momentum
[30], can be expressed as shown in equation 4.11:

σ = −
(
p+

2

3
µm∇ · u

)
I + 2µmD (4.11)

p denotes the pressure, µm = νm · ρf is the dynamic molecular viscosity, I is the
unity tensor, and D is the symmetric rate of strain tensor [30] that is defined by
equation 4.12:

D =
1

2

[
∇u + (∇u)T

]
(4.12)

4.7 Incompressible Navier-Stokes Equations

As a consequence of the assumptions of incompressible and isothermal Newtonian
fluids, the conservation of mass (cf. equation 4.7) and momentum (cf. equation
4.9) along with the constitutive equations 4.11 and 4.12 leads to the final form of
the governing equations of the incompressible Navier-Stokes equations as shown in
equations 4.13 and 4.14:

∂u

∂t
+∇ · (uu)−∇ · (2νmD) +∇P = 0 (4.13)

∇ · u = 0 (4.14)

The actual pressure term 1
ρf
∇p in equation 4.13 is replaced by the gradient of the

kinematic pressure∇P using equation 4.3.
Each of the four terms in equation 4.13 has a physical meaning. From left to right,
this is:

• ∂u
∂t

: the rate of change of u over time

• ∇ · (uu): Transport of u by convection with the velocity u

• ∇ · (2νmD): Transport of u by molecular diffusion

• Rate of kinematic pressure of P

4.8 Turbulence

The turbulent behavior of fluids is a very complex physical process. The phe-
nomenon and its modeling possibilities are broadly discussed in the literature. A
very extensive discussion can be found in [85]. The Boussinesq approximation of
turbulent stresses is applied to model turbulence in the context of this work [30,
85, 120]. Following this idea, turbulence effects can be interpreted as viscous
stresses on the fluid, analogous to the molecular diffusion. Therefore, the viscous
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part of the momentum equation is extended by a turbulence viscosity term contain-
ing νt. The turbulent incompressible Unsteady Reynolds-Averaged Navier-Stokes
(URANS) equations are shown in equations 4.15 and 4.16:

∂u

∂t
+∇ · (uu)−∇ · ((νm + νt)2D) +∇P = 0 (4.15)

∇ · u = 0 (4.16)

The turbulent viscosity νt is a product of a subset of equations depending of the
chosen turbulence models.

For modeling turbulence effects, there are plenty of options. One way is to separate
the models in three main approaches or groups:

• (Unsteady) Reynolds-Averaged Navier-Stokes (RANS or URANS)

• Large-Eddy simulation (LES)

• Direct Numerical simulation (DNS)

A comprehensive discussion of the approaches and their models can be found in
[30, 35, 85, 120]. This work concentrates on the turbulence modeling using the
RANS/URANS approach, using the so-called k − ε turbulence model to show the
general relations between the Navier-Stokes and the turbulence equations and their
behavior within an MMS assessment framework.

4.8.1 Turbulence Modeling using the k − ε model
In this section, the standard k− ε turbulence model originally proposed by Launder
and Spalding [65] is presented. Alternatives in the context of URANS/RANS, e.g.,
are the Mixing-length model proposed by Prandtl [85, 86, 120] or the k−ω−SST
model proposed by Menter [69, 85, 120].

As already mentioned above, additional equations must be solved to derive νt for
the solution of equation 4.15. The turbulent viscosity is computed using equation
4.17:

νt = 0.09
k2

ε
(4.17)

To solve equation 4.17, the k − ε model solves differential equations shown in
equations 4.18 and 4.19 in order to obtain the turbulent kinetic energy k and the
dissipation of turbulent kinetic energy ε:

∂k

∂t
+∇ · (uk)−∇ · ((νm + νt) · ∇k)−Gν + ε = 0 (4.18)

∂ε

∂t
+∇ · (uε)−∇ ·

(
(νm +

νt
1.3

) · ∇ε
)
− 1.44

ε

k
Gν + 1.92

ε2

k
= 0 (4.19)

with

Gν = 2νt ·D : D (4.20)
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Herein, D is the symmetric rate of strain tensor derived in equation 4.12.
Each of the five terms in both of the presented equations has a physical meaning.
From left to right, this is:

• ∂(.)
∂t

: the rate of change of (.) over time

• ∇ · (u(.)): Transport of (.) by convection

• ∇ · ((νm + ∗) · ∇(.)): Transport of (.) by Diffusion

• Rate of Production of (.)

• Rate of Destruction of (.)

4.9 Discretization

4.9.1 Spatial Discretization
The chosen spatial discretization used in the software OpenFOAM R©belongs to the
Finite Volume Method (FVM) [30, 49, 120]. Herein, the domain is approximated
by a set of non-overlapping finite control volumes V . The initial grid is described
by a position vector X.
In the Finite Volume method, the governing equations 4.15 and 4.16 will be inte-
grated over the control volume V , as shown in equations 4.21 and 4.22:∫
V

∂u

∂t
dV +

∫
V

∇ · (uu) dV −
∫
V

∇ · ((νm + νt)2D) dV +

∫
V

∇PdV = 0

(4.21)∫
V

∇ · udV = 0

(4.22)

The application of the Finite Volume method on the presented equations in general
use the Gauss theorem presented in equation 4.23. Additionally, the Leibniz inte-
gration rule, or the Reynolds transport theorem [6, 20, 30, 49, 53, 120] is described
in equation 4.24. The results are elaborated for an arbitrary field (.) in equations
4.25 and 4.26. The application for the time derivative part of the Navier-Stokes is
presented in equations 4.27-4.29. ∫

V

∇ · (.) dV =

∫
S

(.) · ndS (4.23)

d

dt

∫
V (t)

(.) dV =

∫
V (t)

(
d (.)

dt
+∇ · (ug (.))

)
dV (4.24)∫

V (t)

∂ (.)

∂t
dV =

d

dt

∫
V (t)

(.) dV −
∫
V (t)

∇ · (ug (.))dV (4.25)∫
V (t)

∂ (.)

∂t
dV =

d

dt

∫
V (t)

(.) dV −
∫
S(t)

(.) ug · ndS (4.26)
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d

dt

∫
V (t)

udV =

∫
V (t)

(
∂u

∂t
+∇ · (ugu)

)
dV (4.27)

d

dt

∫
V (t)

udV =

∫
V (t)

∂u

∂t
dV +

∫
S(t)

(ugu) · ndS (4.28)∫
V (t)

∂u

∂t
dV =

d

dt

∫
V (t)

udV −
∫
S(t)

(ugu) · ndS (4.29)

S or S(t) is the surface of the control volume V respectively V (t), and ug is the
velocity of the moving volume V (t) respectively the grid. Setting (.) = 1, equation
4.26 represents the Geometric Conservation Law (GCL) [20, 28], also known as
the Space Conservation Law (SCL) [30]. The GCL must be satisfied for all control
volumes and has to be adapted along the time integration method [20, 28, 39, 40,
111]. For simplicity’s sake, the time dependent volume V (t) is reduced to V and
the time dependent surface S(t) is reduced to S. For a fixed control volume, this
means a non-moving grid, ug is equal to zero. Using equations 4.23-4.28, equations
4.21 and 4.22 can be rewritten in equations 4.30 and 4.31:

d

dt

∫
V

udV +

∫
S

(u− ug)u · ndS −
∫
S

(νm + νt)2D · ndS +

∫
S

PndS = 0

(4.30)∫
S

u · ndS = 0

(4.31)

These equations are also known as the Arbitrary Lagrangian-Eulerian (ALE) de-
scription of a fluid with a moving grid [20, 40].
Each term of equation 4.30 becomes approximated in the following sections. For
the discrete description of the initial and the deformed geometry (X respectively x)
and the fields u and P , the same linear shape functions are used. This is called an
isoparametric approach, analogous to the CSD in chapter 3.
A function φ(x) around a fixed reference point xp is linearly approximated in space
using equation 4.32:

φ(x) = φp + (x− xp)(∇φ)p (4.32)

with

φp = φ(xp) (4.33)

The volume integral of φ(x) over a volume V therefore is shown in equation 4.34:∫
V

φ(x)dV =

∫
V

[φp + (x− xp)(∇φ)p] dV (4.34)
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Assuming the point xp as the centroid of a control volume by definition, equation
4.34 simplifies to equation 4.35:∫

V

φ(x)dV =

∫
V

φpdV =

∫
V

dV φp = Vpφp (4.35)

The term (x−xp) cancels out, as its integral gives the distance of xp to the centroid
of the volume, which is zero by definition. Vp denotes the volume of the control
volume.

The surface integral of φ(x) is approximated with a sum of integrals over all sur-
faces f using equation 4.36:∫

S

φ(x) · ndS =
∑
f

∫
f

φ(x) · ndf =
∑
f

φf · Sf (4.36)

with the value of φ and the center of the face f

φf = φ(xf ) (4.37)

Sf is the outward-pointing face area vector of each face f . Equation 4.36 can
directly be used to approximate the pressure term of equation 4.31:∫

S

PndS =
∑
f

PfSf (4.38)

4.9.1.1 Approximation of the Diffusive Term

The diffusive term of equation 4.30 is approximated using equations 4.32-4.37 and
is presented in equation 4.39:∫

S

(νm + νt)∇u · ndS =
∑
f

(νm + νt)f (2D)f · Sf (4.39)

with the linear approximation of the face gradient of φ

(∇φ)f = λ(∇φ)p + (1− λ)(∇φ)n (4.40)

with the neighbor point n and the linear interpolation factor presented in equation
4.41:

λ =
xf − xp
xn − xp

(4.41)

More details about the approximations and the special topics of non-orthogonal
treatment is discussed in [30, 49, 53, 120].
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4.9.1.2 Approximation of the Convective Term

The convective term of equation 4.30 is approximated using equations 4.32-4.37
and is presented in equation 4.42:∫

S

(u− ug)u · ndS =
∑
f

(u− ug)fuf · Sf (4.42)

A linear approximation for the face value of φ leads to the Central Differencing
(CD) scheme described in equation 4.43:

φf = λφp + (1− λ)φn (4.43)

As CD for the approximation of the convective term may result to unphysical oscil-
lations in the solution for convection-dominated problems, the solution in general
is not bounded [44, 49, 82].

To guarantee the boundedness of the solution, a numerical diffusion is introduced
at the expense of accuracy. One example is the Upwind Differencing (UD) scheme.
Herein, the face interpolation of φ is approximated using equation 4.44:

φf =

{
φf = φp, for (u− ug)f · S ≥ 0

φf = φn, for (u− ug)f · S < 0
. (4.44)

As the accuracy of UD is mostly not seen as sufficient, there are a lot of intermediate
schemes developed that can be interpreted as a mix between UD and CD, which are
more accurate then UD, but still bounded. A broad overview of possible convection
schemes is given and discussed in [49, 120].

4.9.2 Time Discretization
For the time discretization, the continuous time period [t0, T ] is split intom discrete
time increments with a size of ∆t. The current time tm therefore is described with
equation 4.45:

tm = t0 + ∆t ·m (4.45)

For the discretization of the time derivative term of equation 4.30, two implicit
Backward Differencing Formula (BDF) schemes and the trapezoidal rule are pre-
sented briefly. The BDF1 is shown in equation 4.46 and the BDF2 is shown in
equation 4.47 for the time stepm+1. Furthermore, the trapezoidal rule, also called
the Crank-Nicolson scheme is presented in equation 4.48.

d

dt

∫
V

udV =
d

dt
(Vpu) =

1

∆t

(
V m+1
p um+1

p − V mp ump
)

(4.46)

d

dt

∫
V

udV =
d

dt
(Vpu) =

1

2∆t

(
3V m+1

p um+1
p − 4V mp ump + V m−1

p um−1
p

)
(4.47)

d

dt

∫
V

udV =
d

dt
(Vpu) =

1

2∆t

(
V m+1
p um+1

p + V mp ump
)

(4.48)
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All of the other terms of the equilibria in equations 4.30 and 4.31 are determined in
the time step level m + 1 as all of the used schemes are implicit time integration
schemes.

4.9.3 Grid Motion
The motion of the grid is defined by the solution of an auxiliary equation with the
input of the displacement of the boundary. An extensive discussion of the possibil-
ities and the solution of the grid motion can be found in [50]. It is very common
to describe the grid motion with the spring analogy. The grid points are the joints
and the edges of the cells can be interpreted as springs [50]. Therefore, a steady
Laplacian equation is set for the grid motion as shown in equation 4.49:

∇ · (Γg∇dg) = 0 (4.49)

Γg is the diffusivity or the stiffness of the grid. In the discretized form, equation
4.49 transforms to 4.50:∫

V

∇ · (Γg∇dg) dV =

∫
S

(Γg∇dg) · ndS = 0 (4.50)

As dg is the grid displacement field, it directly defines the current position of a
domain point x = X + dg on the basis of the initial configuration X. The grid
velocity ug is the derivative of the grid displacement dg . The grid velocity ug has
to be discretized along the chosen time discretization method to fulfill the above
mentioned SCL. For the given time discretization schemes, the grid velocities are
calculated using equations 4.51-4.53 for the BDF respectively the CN:

um+1
g |BDF1 =

ddg
dt
|BDF1 =

dm+1
g − dmg

∆t
(4.51)

um+1
g |BDF2 =

ddg
dt
|BDF2 =

3dm+1
g − 4dmg + dm−1

g

2∆t
(4.52)

um+1
g |CN =

ddg
dt
|CN =

dm+1
g + dmg

2∆t
(4.53)

4.10 Solution Process

4.10.1 Boundary Conditions
As the discretized domain is limited in space, boundary conditions (BC) for all pri-
mary variables in general are set. This work concentrates on the numerical boundary
conditions and does not regard physical boundary conditions like no-slip bound-
aries (cf. [30, 49, 120]). One type of numerical BC is a Dirichlet condition, which
prescribes the value of a variable at the boundary. The other type is a Neumann
condition, which prescribes the gradient of the variable in the normal direction of
the boundary. The consistent implementation of the Dirichlet and the Neumann BC
and their influence on the individual parts of the governing equations is shown in
[49, 53].
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4.10.2 Interior Equations
As the solution of the governing equations is complicated by the lack of an inde-
pendent equation of the pressure, the so-called pressure-velocity coupling is con-
structed using equations 4.1 and 4.2. The pressure-velocity coupling is performed
using the projection method originally developed by Chorin and Temam [14, 15,
110]. The projection results in the so-called Poisson equation to compute the pres-
sure. If it is derived theoretically, it results to the form in equation 4.54 [30].

∇ · ∇P = −∇ · ∇ · (uu) (4.54)

Famous schemes for the pressure velocity coupling projection methods are the
steady and unsteady SIMPLE scheme [83, 120], the PISO [47, 48], and their de-
rived schemes. In the Finite Volume application, a Poisson equation similar to the
presented equation 4.54 is derived. To maintain consistency and stability among
the used approximations, it is recommended to derive the pressure equation directly
from the discretized momentum and continuity equations rather than to approximate
equation 4.54 [30, 49, 53]. A consistent derivation of an equation for the pressure
P is shown in detail in [30, 49].

4.11 Formal Order of Accuracy

The discretization method, the chosen spatial and time approximations, the numeri-
cal integration, and the solution process define the formal order of accuracy [30, 53,
120]. The formal order of accuracy p̂ of an approximated expression can be deter-
mined by comparison with its Taylor series expansion. The first term of the Taylor
series, which is not approximated, is the leading error term within the asymptotic
range of the solution. The formal order can be reached as long as no other errors
with smaller convergence rate occur. A detailed discussion can be found in [30, 53].

4.11.1 Taylor Series Expansion of φ
The basis of an assessment of the formal order of convergence p̂ of a variable φ is
the comparison of its Taylor series expansion with its approximation. The Taylor
series of φ is given over time and space in equations 4.55 and 4.56, respectively.
The spatial Taylor series expansion is simplified to one dimension.

φ(t+ ∆t) =φ(tm+1) = φm + ∆t

(
∂φ

∂t

)m
+

∆t2

2

(
∂2φ

∂t2

)m
+

∆t3

3!

(
∂3φ

∂t3

)m
+ ...+

∆tn

n!

(
∂nφ

∂tn

)m
(4.55)

φ(x) =φp + (x− xp)
(
∂φ

∂x

)
p

+
(x− xp)2

2

(
∂2φ

∂x2

)
p

+

(x− xp)3

3!

(
∂3φ

∂x3

)
p

+ ...+
(x− xp)n

n!

(
∂nφ

∂xn

)
p

(4.56)
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4.11 Formal Order of Accuracy

4.11.2 Spatial Discretization

Comparing the used approximation of φ(x) in equation 4.32 with its Taylor series
in equation 4.56, the error E of the approximation can directly be derived in a one
dimensional view in equation 4.58:

E =
(x− xp)2

2

(
∂2φ

∂x2

)
p

+
(x− xp)3

3!

(
∂3φ

∂x3

)
p

+ ...+
(x− xp)n

n!

(
∂nφ

∂xn

)
p

(4.57)

E =O((x− xp)2) (4.58)

The result of equation 4.58 represents combined with equation 2.1 a formal order
of accuracy in space of p̂s = 2.

The volume integral of φ(x) using the second order approximation of φ(x) is given
in equation 4.59:

∫
V

φ(x)dV =

∫
V

φp + (x− xp)(∇φ)pdV =∫
V

φpdV +

∫
V

(x− xp)(∇φ)pdV (4.59)

By definition of the used code OpenFOAM R©, the variables are located at the cell
centroids. For a centroid of a volume V, equation 4.60 always holds:

∫
V

(x− xp)dV = 0 (4.60)

Therefore, the second order accurate volume integral simplifies to the form of equa-
tion 4.35, denoted by equation 4.61:

∫
V

φ(x)dV =

∫
V

φpdV = Vpφp (4.61)

The surface integral of φ at a surface f with the surface center value φf follows the
same way as the volume integral using equation 4.60. Therefore, it simplifies in a
second order accurate way in equation 4.62.

∫
f

φ(x) · ndf = φf · S (4.62)
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4.11.3 Time Discretization

As given above, the Taylor series for a field φ over time is defined for a time step m
and m− 1 with the base of time step m+ 1 in equation 4.63 respectively 4.64:

φ(tm) = φm+1−∆t

(
∂φ

∂t

)m+1

+
∆t2

2

(
∂2φ

∂t2

)m+1

−

∆t3

3!

(
∂3φ

∂t3

)m+1

+ ...+
∆tn

n!

(
∂nφ

∂tn

)m+1

(4.63)

φ(tm−1) = φm+1−2∆t

(
∂φ

∂t

)m+1

+
22∆t2

2

(
∂2φ

∂t2

)m+1

−

23∆t3

3!

(
∂3φ

∂t3

)m+1

+ ...+
2n∆tn

n!

(
∂nφ

∂tn

)m+1

(4.64)

Comparing the used approximation of the time derivative of φwith the Taylor series
of equations 4.63 and 4.64, the error of the time derivative approximation can be
estimated for the three time discretization schemes in equation 4.65-4.67.

EBDF1 =
∆t

2

(
∂2φ

∂t2

)m+1

+O(∆t2) = O(∆t) (4.65)

EBDF2 = ∆t2
(
∂3φ

∂t3

)m+1

+O(∆t3) = O(∆t2) (4.66)

ECN =
∆t2

2

(
∂2φ

∂t2

)m+1

+O(∆t3) = O(∆t2) (4.67)

The solution process of the time integration using the projection method in the un-
steady SIMPLE or the PISO procedure needs to be investigated as well. Following
the error analysis of the PISO algorithm, the time error introduced by a partitioned
solution process can be evaluated by the so-called one-step error analysis as de-
scribed in [37, 47, 48, 55, 67]. Therefore the order of the introduced error reduces
linearly with the number of iterations starting at O(∆t). One iteration step reduces
the error to a level of O(∆t2). This holds analogously for the unsteady SIMPLE
procedure. This means, the projection methods are preserving the order of accuracy
of the time discretization itself, shown in equations 4.65-4.67 [30, 53].

A closer look at the implementation of the BDF2 scheme exhibits a weak point of
multistep schemes. The BDF2 needs the field informations of two recent time steps,
though this information is not available at the begin of a simulation. The current im-
plementation therefore uses for the very first time step a BDF1 discretization, which
unfortunately lowers the complete order of the implemented BDF2 to p̂BDF2

t = 1.
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4.11.4 Resulting Formal Order of Convergence
The present code of OpenFOAM R©uses linear shape functions for the approximation
in space (cf. equations 4.32) using hexahedral volumes. For the numerical integra-
tion, second order still holds using the discussed surface and volume of equations
4.35 and 4.36. The formal order of spatial discretization lowers to first order at skew
grids [53].
The BDF1 time integration scheme formally shows first order, and the BDF2 and
the CN schemes formally show second order of accuracy with the drawback of
unboundedness of the solution. The currently implemented starting condition of the
BDF2 scheme lowers its formal accuracy to p̂BDF2

t = 1.
Therefore, the formal time and spatial order of accuracy (p̂t respectively p̂s) of the
code is given in equations 4.68-4.72:

p̂rectangulars = 2 (4.68)

p̂skews = 1 (4.69)

p̂BDF1
t = 1 (4.70)

p̂BDF2
t = 1 (4.71)

p̂CNt = 2 (4.72)

4.12 Application of the MMS

4.12.1 Equilibrium Source Terms
The equilibrium sources ŝf required to reach the manufactured fluid velocities u =

û and pressure P = P̂ in the context of the MMS are elaborated on throughout this
section. Assuming a laminar flow, equations 4.73 and 4.74 define the set of sources
for the momentum ŝmomf and the mass conservation ŝmassf with νt = 0:

ŝmomf =
∂û

∂t
+∇ · (ûû)−∇ · ((νm + νt)2D̂) +∇P̂ (4.73)

ŝmassf = ∇ · û (4.74)

ŝmomf represents the source term for the momentum conservation in equation 4.21
and ŝmassf represents the source term for the mass conservation in equation 4.22. If
the code uses projection methods for the solution respectively the time advancement
of the Navier-Stokes equations, the actual mass conservation is not solved directly.
But as it is the basis PDE for the Poisson equation in the projection, ŝmassf repre-
sents the source for the Poisson equation 4.54 as well.

Assuming a turbulent MMS flow using the presented k−ε RANS turbulence model,
k, ε, and νt are variable fields of the simulation as well. Therefore, manufactured
solutions have to be created and defined to solve the equation for the turbulent vis-
cosity (cf. equation 4.17) shown in equation 4.75:

ν̂t = 0.09
k̂2

ε̂
(4.75)
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As equation 4.75 defines the relation between k, ε, and νt, manufactured solutions
have to be defined for two of them such that the third one can be directly derived
from 4.75 to avoid additional source terms for equation 4.17 respectively 4.75. Us-
ing the manufactured solutions of the variables, the source terms of the turbulence
equations (cf. equations 4.18 and 4.19) ŝk and ŝε are derived using equations 4.76
- 4.79

ŝkf =
∂k̂

∂t
+∇ · (ûk̂)−∇ ·

(
(νm + νt) · ∇k̂

)
− Ĝν + ε̂ (4.76)

ŝεf =
∂ε̂

∂t
+∇ · (ûε̂)−∇ ·

(
(νm +

νt
1.3

) · ∇ε̂
)
− 1.44

ε̂

k̂
Ĝν + 1.92

ε̂2

k̂
(4.77)

with equations 4.75, 4.78, and 4.79:

Ĝν = 2νt · D̂ : D̂ (4.78)

D̂ =
1

2

[
∇û + (∇û)T

]
(4.79)

It is emphasized again that the calculated sources ŝf represent the equilibrium terms
of the problem for the created or given manufactured fields.
These sources ŝf therefore have to be applied to the code indifferently of the dis-
cretization method of the implemented method for the pressure velocity coupling.
All developed equilibria are based on the strong form equilibrium (equations 4.15
and 4.16 and possibly 4.18 respectively 4.19). Furthermore, the source terms are
independent of the grid motion, as the grid motion is just a product of discretization
and does not exist in the strong formulation of the momentum equation. Thus, the
generality of the method for all kind of fluid treatment once more is evident. The
grid motion can be seen just as an auxiliary condition, as long as it should not be
assessed separately. If the grid motion algorithms should be assessed by the MMS
as well, a manufactured solution d̂g has to be introduced. The source term for the
grid motion sdf generates with the base of equation 4.49 and is outlined in equation
4.80:

ŝ
dg
f = ∇ ·

(
Γg∇d̂g

)
(4.80)

4.12.2 Boundary and Initial Conditions
The Dirichlet and Neumann boundary conditions (BC) are determined by equations
4.81 respectively 4.82 (cf. section 2.3.3.4). In steady state simulations, the initial
conditions (IC) are set to a non-balanced state (e.g., to zero). In transient problems
the IC must be set to the target value of the variable. Therefore, at t = t0 the initial
fields match the manufactured solution fields.

φγ = φ̂γ (4.81)(
∂φ

∂x
· n
)γ

=

(
∂φ̂

∂x
· n̂

)γ
(4.82)

φ(x, t = t0) = φ̂(x, t = t0) (4.83)
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4.12.3 Framework
The framework to assess the CFD simulation code OpenFOAM R©is presented in
this section. In total, three software components are used in this framework:

• OpenFOAM R©

• Maple R©

• Matlab R©

An overview of the framework is illustrated in figure 4.2. The procedure and the
sequence of the program executions is shown in figure 4.3.

OpenFOAM R©

Maple R© Matlab R©

Figure 4.2: Overview of the MMS framework for the assessment of the CFD

4.12.3.1 Maple R©

For the calculation of the source terms ŝf , the boundary and the initial conditions
elaborated in equations 4.73-4.83 are implemented in a Maple R©code.
The analytical derivation of the manufactured solutions is modeled in terms of the
chosen manufactured solution fields φ̂. In detail, φ̂ represents the fields of P̂ , û, and
possibly ν̂t, k̂, and ε̂. The normal vector of the boundary n̂γ can be derived from
the initial definition of the domain boundary X. If the grid boundary is moving,
the geometry and the normal vector are unsteady over time as well. Therefore, the
normal vector n̂γ can be derived from the current position of the boundary of xγ .

4.12.3.2 OpenFOAM R©

Beside the already presented implementations of the solution concept of the incom-
pressible Navier-Stokes equations, a few operations for the application of the MMS
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are implemented in OpenFOAM R©. Therefore, the derived source terms ŝf calcu-
lated in Maple R©are applied directly in the code and added to the individual balance
equation. As the balance equations are formulated as integral equations, the sources
have to be integrated second order accurate along equation 4.61 as well.
After solving the benchmark in OpenFOAM R©, the discrete solution fields φ are
compared to the also stored manufactured solutions φ̂. To finally create a grid in-
dependent and comparable error information, the difference between φ and φ̂ is
evaluated on a subset of points, called probes or probe locations.

4.12.3.3 Matlab R©

The software Matlab R©is used to finally apply the error norms 2.7 and 2.8 on the
resulting field deviations of φ̂ from φ at the probe locations. Using these errors and
the named error norms, graphs are plotted for the error development in a log-log
diagram and a diagram for the observed order of accuracy (e.g., figure 4.14).

4.12.4 Procedure
The procedure applying the MMS for CFD, in particular for OpenFOAM R©, is out-
lined in the following. The procedure and its balance equation are based on the
incompressible Navier-Stokes equations 4.15-4.20.

1. Creation of manufactured solutions (cf. section 2.3.3) using Maple R©

- Creation of the manufactured field solutions φ̂
- Creation of all contributing constants
- Derivation of the source term fields ŝf using equations 4.73-4.79
- Derivation of the initial conditions using equation 4.83
- Derivation of the boundary conditions using equations 4.81 and 4.82

2. Application of the MMS terms to the code OpenFOAM R©

- Application of the source term fields ŝf to the right hand side
of the individual equation

- Application of the initial condition
- Application of the boundary conditions

3. Performing the simulation in OpenFOAM R©with the resulting fields φ

4. Error evaluation
- Sampling of the fields φ at a set of probe locations

- Field error estimation at probes using φ and φ̂

5. Repetition of steps 2-4 with systematical refinement

6. Calculation of the observed order of accuracy p using Matlab R©

- Error norm application to the field errors using equation 2.7 resp. 2.8
- Comparison of the error evaluations at each refinement step
- Derivation of p with refinement using equation 2.13
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7. Comparison of the formal order of convergence p̂ to the observed order of
convergence p

8. Assessment of the code

- If p matches p̂, all ordered functionalities are working as intended

- If p does not match p̂, the error source has to be investigated

For the detailed procedure of refinement for steady state or unsteady analyses, the
proposed procedure of section 2.3.3.5 respectively 2.3.3.6 should be considered.

The MMS procedure is additionally shown in figure 4.3.

creation of
manufactured
solutions φ̂

(2) OpenFOAM

(5) perform for all refinement stages

calculate
sources sf ,

BC & IC

sampling and
application of
the sources s

apply IC, BC
solve the pro-
blem for all φ

evaluate the
field error at
the probes

derive the ob-
served order of

accuracy p

(6) Matlab(1) Maple(1) Mind

(3) OpenFOAM (4) OpenFOAM

Figure 4.3: The MMS procedure for fluid dynamics using OpenFOAM R©

4.12.5 Spatial and Time Resolutions
As already mentioned in chapter 2, the MMS deals with systematic refinement in
space and time. The quantities of grid size and resolution in general is almost ar-
bitrary. The depicted numbers are only a suggestion for the reader, where the later
shown results are produced. For the reason of limited computational resources, the
benchmarks for CFD generally are given for two dimensional computations.

As elaborated in sections 2.3.3.5 and 2.3.3.6, the set of sampling points of a sin-
gle MMS assessment has to be kept constant. In the context of this work, all cell
midpoints and time positions of the coarsest stage are used as sampling points, in-
dependently of the individual grid or time resolution.
The coarsest grids in CFD are chosen as quadrilateral grids using 8 by 8 elements.
Their midpoints define the 64 sampling points of each simulation during refinement
In unsteady simulations 8 timesteps are chosen as the coarsest resolution, which in
parallel defines the sampling points over time. A sketch of the sampling points in
the first stages of grid refinement is illustrated in figure 4.4. The grid is drawn with
straight lines, and the probe positions are denoted with crosses.
Compared to the CSD in chapter 3, the setup of the refinement factors are more
complex. In chapter 3, the formal order of accuracy in space and time always was
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a) 8x8 elements b) 16x16 elements c) 32x32 elements

Figure 4.4: Sampling points in space during refinement for the CFD

p̂ = 2. Therefore, the space and time refinement were always chosen with the same
factor.
Having different formal orders of accuracy, different refinement factors r must be
set to compensate this lack. Therefore, the defined target is to reduce the error
within each refinement step by a factor of 4 (cf. section 2.3.3.5 and 2.3.3.6), which
is the case for second order accuracy using r = 2. In the present case, using,
e.g., a BDF1 time discretization and a rectangular grid, the spatial formal order of
accuracy is p̂rectangulars = 2, and the time formal order of accuracy is pBDF1

t = 1.
To assess both accuracies together, the refinement over time has to be adapted along
its formal order of accuracy to a rt = 4. If the result shows a p = 2, the second
order of accuracy in space and the first order of accuracy over time is successfully
assessed [57].

4.12.6 Solution Accuracy
Recalling section 2.3.2, the discretization error should be isolated from the total
numerical error (cf. figure 2.4). Therefore, the used software OpenFOAM R©and all
other contributing software (cf. figure 4.3) are using double precision accuracy to
minimize the round-off error. To keep the IICE as small as possible, the solution
tolerance in a non-normalized version of the E2 norm of velocities and pressures
(cf. equation 2.8) of the unsteady SIMPLE projection method is set to 1.0 · 10−11.

4.12.7 Error Map
In this section, an overview of the errors on the CFD simulation is outlined. The
errors can be described in a general way [73]. The errors arise in the processes of
preprocessing of input data, the errors due the solution of the governing equations,
and the postprocessing of output data of the simulation. For the application of the
present software OpenFOAM R©, the general sources of error and the specific error
sources of the software are shown in figure 4.5 left hand side and the right hand side
respectively. It is obvious that errors in the generation of input data will influence
the total simulation process. This indicates that the generation and application of the
MMS procedure (cf. figure 4.3) needs to be at least as accurate as the solution of the
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Numerical errors
due to the solution

Preprocessing of
input data

Postprocessing of
output data

- Human errors in the preparation
of input data

- Generation of input data *

- Human errors in the postprocessing of
simulation results

- Generation of output data *

of the governing
equations

- Discretization in time
- Discretization of the grid motion

- Solver for the linear equation system for u and P *
- Unsteady SIMPLE IICE *
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- Discretization of the mass equation

- Discretization of the turbulence equation

- Solver for the linear equation system dg *

(Poisson’s equation) *

- Solver for the linear equation system for νt(k, ε, ...) *

* contains round-off

Figure 4.5: Error map of the presented CFD software OpenFOAM R©

simulation itself. In the present case, the actual simulation provides a formal order
of accuracy between p̂ = 1 and p̂ = 2. Therefore, the generation and application
of the MMS source terms, the BC, and the IC are at least second order accurate.
Additionally, the output generation and the error evaluation in Matlab needs to have
at least the same accuracy. If the accuracy of the MMS input or output processes
are not sufficiently accurate, the total observed order of the simulation will lower to
the accuracy of the weakest link of the chain.

4.12.8 Benchmarks

The following benchmark series for CFD is developed as a stairway in complex-
ity. This means, the proposed benchmarks sequence starts with the assessment of
restricted functionality of the code and becomes increasingly complex through the
benchmark sequence (cf. figure 4.6).
All functions and variables of the following examples are listed in a table such that
the reader is able to construct each source term ŝf , the boundary and the initial con-
ditions, BC respectively IC. The selection of the BC type (Dirichlet or Neumann)
on each edge is left to the reader. Therefore different boundary scenarios can be
assessed on the same example. The only restriction is that at least one Dirichlet BC
has to be set for each φ using incompressible flows. All of the input parameters
of the benchmarks are defined in the International System of Units (SI) and their
derived expressions [81]. Therefore, units for the input numbers of the benchmarks
are generally omitted.
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Benchmark 9

Benchmark 4

Navier-Stokes with grid motion
Rectangular and skew grid with skew motion

Time varying only
Benchmark 1

Unsteady in space and time

RANS turbulence

Benchmark 5

Steady state
Laminar
Rectangular grid
Skew grids

Benchmark 2

Benchmark 3

URANS turbulence

Linear rectangular
grid motion

Benchmark 6 Benchmark 7
Nonlinear skew
grid motion

Benchmark 8
Nonlinear rectangular
grid motion

Figure 4.6: Hierarchical benchmark sequence for CFD

4.12.9 Source Term Application

For the application of the MMS on the turbulent incompressible Navier-Stokes
equations with grid motion, all governing equations in general need a manufac-
tured source term ŝf . Sometimes, the code to be assessed gives no access to some
equations for the addition of a source term. Therefore, the manufactured solutions
φ̂ have to be designed such that φ̂ directly fulfills the non-accessible balance equa-
tions, which is equal to a zero source term. In the present case of OpenFOAM R©,
all equations can be accessed. As already mentioned in section 4.12.1, only two
turbulent fields are chosen (e.g., k̂ and ν̂t) and the third is derived using equation
4.75. If all three fields were arbitrary chosen, a source term for equation 4.75 would
be necessary.
If the mass conservation respectively the Poisson equation is not accessible or
should not be accessed, the velocity field û must satisfy the condition∇·û = 0. As
this construction in general is not a trivial task, a procedure for the construction of
complex divergence-free velocity fields is proposed [26]. For the sake of flexibility
of the manufactured solution fields, the velocity fields of the proposed benchmarks
in general are not divergence free.
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4.12.10 Laminar Navier-Stokes Equations
The laminar Navier-Stokes equations are given in equations 4.13 and 4.14. The in-
dividual chosen boundary conditions are shown in figure 4.7. Herein, D means a
Dirichlet boundary condition and N means a Neumann boundary condition along
equations 4.81 and 4.82. N0 is the special case of a zero Neumann boundary con-
dition, also known as zero-gradient BC.

x
y

u

D

D

N0

N0

x
y P

D

D

N0

N0

Figure 4.7: Laminar benchmarks: Boundary conditions for u and P

4.12.10.1 Benchmark 1: Time Assessment

The first benchmark is an exclusive exercise for the time derivative term of the
unsteady Navier-Stokes equations. All other terms cancel out by the definition of
the fields, as their derivatives in space are zero. Table 4.1 gives the overview of this
benchmark.

Table 4.1: Benchmark 1: Overview table

fields material domain
ûx = sin(50 · πt) νm = 0.5 X1 = x ∈ [0, 1]

ûy = − sin(50 · πt) X2 = y ∈ [0, 1]

ûg = 0 t ∈ [0, 0.01]

P̂ = sin(50 · πt)

The manufactured field definition of the velocities is divergence-free. This is shortly
shown in equation 4.84

∇ · û =
∂ûx
∂x

+
∂ûy
∂y

= 0 (4.84)

The amplitude of the velocities and the kinematic pressure is one, and the first quar-
ter, means the first 90◦ of each sinus wave is simulated within the simulation time
(cf. figure 4.8).

The results produced by the presented framework are illustrated in figures 4.14-
4.16. The left parts of the named figures show the log-log plot of the error norms
of the fields over refinement for the current benchmark example. The right parts of
the named figures show the observed order of accuracy p with refinement. As this
benchmark is only varying over time, a coarse grid is chosen for all time refinement
steps.
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ûx = sin (50πt)

û
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Figure 4.8: Benchmark 1: Flow velocity û over time

4.12.10.2 Benchmark 2: Spatial Assessment

For the individual assessment of the spatial terms respectively steady state simula-
tions, the manufactured solutions are chosen without time variation. This means,
the term ∂û

∂t
is vanishing from the momentum equation. The choice of the variables

and the manufactured field solutions are presented in table 4.2. The velocity fields

Table 4.2: Benchmark 2: Overview table

fields material domain
ûx = sin(x2 + y2) + 0.001 νm = 0.5 X1 = x ∈ [0, 1]

ûy = cos(x2 + y2) + 0.001 X2 = y ∈ [0, 1]

ûg = 0 t ∈ [0, 0.01]

P̂ = sin(x2 + y2) + 2.0

and the pressure are shown exemplarily in figure 4.9. The chosen νm = 0.5 is
much bigger than the viscosity of the desired applications in air or water. But a high
viscosity guarantees the balance of the diffusion compared to the convection. As
elaborated in chapter 2, this balance assures that the discretization errors, produced
by the different terms of the governing equations, have the same magnitude and can
therefore be captured by the order of accuracy test.

In this benchmark, different shapes of the grid are assessed. For this assessment,
three representative grids are under investigation (cf. figures 4.10):

• Rectangular grid, cf. figure 4.10a

• Grid skewness in the interior domain only, cf. figure 4.10b

• Skew grid, cf. figure 4.10c
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Figure 4.9: Benchmark 2: Field plot
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Figure 4.10: Coarsest grid with different skewness

The results of the MMS assessment of the presented framework for the three types
of grids are illustrated in figures 4.17-4.19.
The results show that the observed order of accuracy lowers towards p = 1 as soon
as the grid becomes skew. It seems furthermore that the accuracy of the complete
field is most sensitive to skewness at the boundaries of the domain. It is not reaching
clearly p = 1, as the lower accurate implemented terms, which are sensitive to grid
skewness, are small compared to the main terms in the resolved grid area [49].

4.12.10.3 Benchmark 3: Spatial and time Assessment

In this benchmark, all of the manufactured solution fields are defined variable in
space and time to assess the time and the spatial discretization together. As dis-
cussed in sections 2.3.3.6 and 4.12.5, the resolutions of space and time discretiza-
tion have to be adapted along the formal orders of accuracy to rigorously assess both
discretization. For the assessment of the time and spatial accuracy together, the re-
finement in space is chosen as rs = 2 and over time as rt = 4 for the BDF schemes.
For the CN time discretization, the refinement factors are set to rs = rt = 2, as its
accuracy of p̂t = 2 was confirmed in Benchmark 1.

The choice of the variables and the manufactured field solutions are outlined in table
4.3. The velocity fields and the pressure are shown exemplarily in figure 4.11.
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The results of the benchmark of the rectangular grid (cf. figure 4.10a) are shown in
the figures 4.20-4.22.

Table 4.3: Benchmark 3: Overview table

fields material domain
ûx = x sin

(
πt
2

)
cos(πx2y2) sin(πx2y2) νm = 0.5 X1 = x ∈ [0, 1]

ûy = −y sin
(
πt
2

)
cos(πx2y2) sin(πx2y2) X2 = y ∈ [0, 1]

ûg = 0 t ∈ [0, 1]

P̂ = sin
(
πt
2

)
cos (π(1− x)(1− y))

ûx

x

y

0.10

−0.10x

y

0.10

−0.10
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0.00x
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x

y

x

y

ûy P̂

Figure 4.11: Benchmark 3: Fields û and P at t = 1.0

4.12.10.4 Conclusion

The results of the benchmarks 2-3 show within the presented framework an ob-
served order of accuracy in space for a rectangular grid of prectangulars ≈ 2, and
for a skew grid of pskews ≈ 1. This corresponds to the formal order of spatial
accuracy for the two kinds of grids, elaborated in equations 4.68 and 4.69. The
benchmarks 1 and 3 confirm with p ≈ 1 the formal order of accuracy for both BDF
schemes of p̂BDFt = 1. The Crank Nicolson scheme confirms with p ≈ 2 its formal
order of accuracy of p̂CNt = 2.

4.12.11 Turbulent Navier-Stokes Equations
The turbulent URANS equations are represented by the equations 4.15 and 4.16.
The presented k − ε model, outlined in equations 4.17-4.20, is assessed in the fol-
lowing benchmarks of this section. As for the turbulent parameters discretized equa-
tions are solved, their convergence can also be assessed. Consequently besides the
convergence of the velocities u and the pressure P , the convergence of k and ε are
assessed. The boundary conditions of the fields are exemplarily chosen as shown in
figure 4.12.
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Figure 4.12: Turbulent benchmarks: Boundary conditions

Remembering the flexibility of the presented MMS method, this benchmark could
also be used to assess, e.g., Prandtl’s mixing length model or a k − ω turbulence
model with the presented fields of the following two sections. The only change is
in the individual source term of the subset of turbulence equations. As νt is created
as a manufactured field, nothing changes therefore for the solution of the interior
equations 4.17-4.20, which again underlines the generality and flexibility of the
MMS.

4.12.11.1 Benchmark 4: Steady State

The steady state benchmark example for the RANS equations with turbulence is
based on the laminar steady state benchmark number 2 with additional turbulence.
The field and variable definitions are presented in table 4.4. The results for all fields
are shown in figure 4.23.

Table 4.4: Benchmark 4: Overview table

fields material domain
ûx = sin(x2 + y2) + 0.001 νm = 0.5 X1 = x ∈ [0, 1]

ûy = cos(x2 + y2) + 0.001 X2 = y ∈ [0, 1]

ûg = 0 t ∈ [0, 0.01]

P̂ = sin(x2 + y2) + 2.0

k̂ = 0.1 · sin(x+ y)2 + 0.1

ν̂t = 0.1 · cos(x+ y)2 + 1.0

ε̂ = 0.09 · k
2

νt

4.12.11.2 Benchmark 5: Unsteady

The unsteady benchmark example for the URANS equations with turbulence is
based on the laminar unsteady benchmark number 3 with additional turbulence.
The field and variable definitions are presented in table 4.5. It should be noted that
νt, k and ε must not be negative. Therefore, the sin-functions are lifted with a con-
stant offset to set the minimum value of k and ε to zero. The produced results with
the presented framework for the different time discretization and differently chosen
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refinement factor combinations of rs and rt are shown in figures 4.24, 4.25, and
4.26.

Table 4.5: Benchmark 5: Overview table

fields material domain
ûx = x sin

(
πt
2

)
cos(πx2y2) sin(πx2y2) νm = 0.5 X1 = x ∈ [0, 1]

ûy = −y sin
(
πt
2

)
cos(πx2y2) sin(πx2y2) X2 = y ∈ [0, 1]

ûg = 0 t ∈ [0, 1.0]

P̂ = sin
(
πt
2

)
cos (π(1− x)(1− y))

k̂ = 0.1 · sin
(
πt
2

)
· sin(x+ y)2 + 0.1

ν̂t = 0.1 · sin
(
πt
2

)
· cos(x+ y)2 + 1.0

ε̂ = 0.09 · k
2

νt

4.12.11.3 Conclusion

Compared to the benchmarks 1-3 of this chapter, the additional RANS/URANS
turbulence does not influence the accuracy of the primary variables u and P . The
URANS turbulence fields are also converging with at least an observed order of
accuracy of pt = 1. In space, k and ε show an order of accuracy of ps = 2 for
rectangular grids, which corresponds to the behavior of the velocity field u. As
a note for the convergence of the turbulent fields, it should be mentioned that the
turbulence equations are only solved once at the end of each timestep. Therefore the
unsteady results of k, ε, and νt are not fully converged within the current timestep.
Furthermore, the fields u and P are therefore solved using the turbulent νt from
the old timestep. This arrangement lowers the order of accuracy despite a possible
improvement of the time integration for the turbulent parameters for the sake of
efficiency of the code. As one can e.g. see in figure 4.26, in the region of very high
refinement, there is an additional drop in accuracy observed. This can be interpreted
as an additional error source, that drops the accuracy of the turbulent parameters to
a value smaller than one. Despite this fact, the primary variables u and P are solved
consistently in second order space and at least first order in time.

4.12.12 Grid Motion
As mentioned above, the grid motion influences the solution of the Navier-Stokes
equations. The grid velocity ug in the convection term is a part of the balance
equation 4.30. As presented above, the grid motion is determined by a secondary
equation for the grid displacement dg . Afterwards the grid velocity ug is calculated
using the grid displacement dg along equations 4.51-4.53.

The grid displacement dg is determined solving equation 4.49 respectively 4.50. As
equation 4.50 also constitutes a discretized PDE, an order of accuracy test using the
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MMS is performed for dg .

It has to be mentioned that the probe positions are no longer unique in moving grids
during refinement.
The following two options for the probes are investigated:

• Keep the probe locations fixed in space

• Move the probe locations with the moving grid

The first option guarantees that the results are really comparable of all simulations,
as the probes are at the same positions fixed in space.
The second option guarantees to have valid results at all probe points, as all of them
are always inside the domain, independently of the size of the grid deformation.
Comparisons are made during the development of this work. Both options show the
same order of accuracy in all examined tests. The following results are produced
using the second option for the handling of the probes, as the number of valid probes
is constant.

Three test benchmarks are shown in the following sections:

• - Linear grid motion

• - Nonlinear rectangular grid motion

• - Nonlinear skew grid motion

These three are chosen to separate the functionalities and to identify the properties
of the discretization. The initial grid and the deformed grids at the final time step
are shown in figure 4.13.

4.12.12.1 Benchmark 6: Linear Grid Motion

The linear grid motion benchmark is designed to be solved until machine accuracy
respectively the final IICE by the used linear shape functions.
The manufactured solutions and the diffusion of the grid motion are outlined in
table 4.6. The resulting error is shown in figure 4.27.

Table 4.6: Benchmark 6: Overview table

fields material domain
d̂gx = 0 Γg = 0.5 X1 = x ∈ [0, 1]

d̂gy = 0.5 · (1− y) · sin(πt) X2 = y ∈ [0, 1]

û = P̂ = 0 t ∈ [0, 0.1]
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(a) Initial grid of benchmarks 6− 8 (b) Final grid of benchmark 6

(c) Final grid of benchmark 7 (d) Final grid of benchmark 8

Figure 4.13: Initial grid (a) and grid motion at the final time step of benchmarks
6-8 in subfigures b-d

4.12.12.2 Benchmark 7: Nonlinear Rectangular Grid Motion

As a second step, a nonlinear grid motion is applied on a rectangular grid, which
stays rectangular during the deformation. The manufactured solutions and the dif-
fusion of the grid motion are presented in table 4.7. The resulting error and the
observed order of accuracy is shown in figure 4.28.

Table 4.7: Benchmark 7: Overview table

fields material domain
d̂gx = 0 Γg = 1.0 X1 = x ∈ [0, 1]

d̂gy = 0.5 · (1− y)2 · sin(πt) X2 = y ∈ [0, 1]

û = P̂ = 0 t ∈ [0, 0.1]

4.12.12.3 Benchmark 8: Nonlinear Skew Grid Motion

As the third step, a nonlinear grid motion is applied on a rectangular grid, which
becomes skewed during deformation. The manufactured solutions and the diffusion
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of the grid motion are outlined in table 4.8. The resulting error and the observed
order of accuracy is shown in figure 4.29.

Table 4.8: Benchmark 8: Overview table

fields material domain
d̂gx = cos(0.5πy) sin(πt) Γg = 1.0 X1 = x ∈ [0, 1]

d̂gy = 0.5 sin(πx) cos(πy
2

) sin(πt) X2 = y ∈ [0, 1]

û = P̂ = 0 t ∈ [0, 0.05]

4.12.12.4 Conclusion

The convergence of the solution of the grid motion confirms the formal order of
accuracy for the spatial solution. The linear motion can be solved grid-independent
to machine accuracy, the nonlinear rectangular motion is observed to converge with
ps = 2 and the nonlinear skew motion is observed to converge with ps = 1. This
coincides with the experience from the Navier-Stokes solution and the formal order
analysis of the spatial terms in section 4.11.4.

4.12.13 Navier-Stokes Equations with Grid Motion

Benchmarks for the Navier-Stokes equations, containing grid motion, are presented
in this section. Despite the fact of grid motion, the basic equation is still the same as
the equations without grid motion (cf. equations 4.13 and 4.14). At a first glance,
this may seem confusing, but only the discretized equations with and without grid
motion are different (cf. section 4.9).

4.12.13.1 Benchmark 9

The manufactured solutions and the variables of the grid motion are outlined in
table 4.9. The resulting error and the observed order of accuracy is shown in figure
4.29.
In this benchmark, the fluid velocity relative to the grid is kept constant. This actu-
ally does not fulfill the manufactured solution requirements for the MMS. However,
as this is already assessed from the previous benchmarks, this is a sufficient test for
the combination of Navier-Stokes and the grid motion equations. The results of the
benchmark using a rectangular initial grid and rs = 2 are shown in theE2 norm for
the CN (rt = 2) and the BDF2 time integration using rt = 2 and rt = 4 in figures
4.30-4.32.
Similar to the previous benchmarks, the first order of accuracy in space for skew
grids is confirmed. Therefore, the time refinement factors rt are generally set equal
to the refinement factor in space rs = 2 as an observed order of accuracy of p = 1
is expected. The results for the skew initial grids are shown in figures 4.33 and 4.34.
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Table 4.9: Benchmark 9: Overview table

fields material domain
ûx = 1 + ûgx νm = 0.5 X1 = x ∈ [0, 1]

ûy = 2 + ûgy Γg = 1.0 X2 = y ∈ [0, 1]

ûgx = π · cos
(
π
2
· y
)
· cos (π · t) t ∈ [0, 1]

ûgy = 0.5π · sin (π · x) · cos
(
π
2
· y
)
· cos (π · t)

P̂ = 2 + 100 cos (x+ y) · sin (π · t)
d̂g =

∫
t
ûgdt

4.12.13.2 Conclusion

For the solution of the Navier-Stokes equations with grid motion it can be con-
cluded that the spatial solution converges along the steady state solutions without
grid motion. In terms of observed order of accuracy, this means pskews = 1 and
prectangulars = 2. The code has "problems" solving the unsteady Navier-Stokes
equations in combination with the grid motion using the trapezoidal method. This
can be seen in figures 4.30 and 4.33. Here, the pressure does not converge at all
over refinement. Using the BDF time discretization, the solutions convergence for
all fields with p ≥ 1, which corresponds to the formal orders of accuracy.

4.12.14 Statement and Results for the used CFD Environment

Summarizing this chapter and the benchmarks particularly, the code OpenFOAM R©is
assessed to work mostly as intended. The only problem arised during a benchmark
combining the Navier-Stokes solution with grid motions using the trapezoidal rule
for the time discretization. This defines a task or a challenge for the code developer
to improve the code. At this point it is mentioned again that the MMS is not only
competent for the confirmation of code functionalities. It is very helpful to precisely
identify and localize mistakes in the code.

All other features of the code, containing rectangular and skew grid handling, lam-
inar and turbulent simulations, work as intended and confirm the formal orders of
accuracies derived above. The elaborated benchmark sequence with its increasing
stages of complexity build confidence in the functionalities and features of the code.
It can be concluded that the governing equations in the code are solved consistently,
with the only restriction of the problem mentioned above. Therefore, the positively
assessed parts of the code can be used for further investigations in the context of
V&V to finally reach a predictive capability of the software (cf. [9, 57, 75, 79] and
chapter 2).
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4.13 Adaptation of the CFD Framework

As shown above in this chapter, the MMS framework is applied to a particular CFD
environment for modeling and simulation of laminar and turbulent incompressible
fluid dynamics. However, the very general concept of the framework makes it very
attractive for the adaptation to other CFD environments or adaptations and exten-
sions of the assessed CFD software.
In the next sections, a few examples of potential adaptations are outlined. The given
examples focus on the required adaptations within the presented MMS environment.
The actual modeling and simulation functionalities regarding the solution of the
considered field or the internal data handling are not part of the description, as they
should be anyway available independent of an MMS assessment.
Furthermore it is obvious, if the environment is changed, the adapted parts need a
separate investigation to derive the formal order of accuracy. This is required before
the execution of the individual benchmarks, to set the refinement factors correct (cf.
section 4.12.5).
It will be shown that only moderate changes are necessary to adapt the MMS frame-
work for the assessment of slightly adapted, or even different CFD software envi-
ronments. It may be concluded that the MMS framework lives up to its promised
flexibility, adaptivity, and modularity.

4.13.1 Adaptation of the Turbulence Model
The demand for the assessment of further turbulence models in CFD is obvious.
Therefore, the framework of chapter 4 is slightly adapted. Changing the turbu-
lence model to another model, which is based in the Boussinesq approximation (this
means, a νt exists for the influence of the turbulence on the actual Navier-Stokes
equations), just needs the source term derivation based on the chosen equations of
the turbulence models parallel to the equations 4.75-4.79. As the turbulent viscos-
ity νt is generally defined in the presented CFD benchmarks of this chapter, the
benchmarks can directly be used for the assessment of the adapted environment.
Additional suggested MMS benchmarks and the assessment of different RANS and
URANS turbulence models are given in [23–25].

The adaptation of the turbulence model to an LES sub-grid scale model behaves in
a similar manner. The only challenge to be tackled is that the equations solving the
turbulence viscosity are dependent on a filter length. In CFD, the filter length of the
unresolved scales is either set equal to the current cell size or the user can specify
it by a preset. As an example, the Smagorinsky-Lilly model is mentioned [102]. To
assess the implementation nevertheless with the presented MMS framework, two
different possibilities are mentioned shortly:
If the value of the filter length can be preset, it has to stay constant over the refine-
ment study an a stringent assessment can be performed.
If the grid represents the filter width directly, the individual cell size enters the
analytical equations as a constant. This finally leads to a manufactured solution,
which is grid dependent. From the perspective of this work, it cannot be estimated,
if this would really assess the consistency of the implementations in a stringent way,
as a changing analytical equation actually means changing the physical problem.
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The theoretical convergence having infinity grid points would therefore result in a
vanishing filter, solving the actual Navier-Stokes analogously to a DNS.

4.13.2 Adaptation of the Discretization Method
Assuming the change from a Finite Volume in CFD to a Finite Element formulation,
no changes are necessary in the MMS environment. As already mentioned, a very
important topic is the accessibility to the equations and the ability to add the derived
source terms ŝf (cf. section 4.12.1) in the new software component.

Beside changing the theory of the discretization, one could also think of the change
of the volume discretization. For example tetrahedral or polyhedral elements could
be used to discretize the fluid domain instead of the presented rectangular elements.

The mentioned changes in this section only require the generation of new grids; this
means, the manufactured solutions and the benchmarks can directly be applied for
all types of volume elements.

4.14 Results
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Figure 4.14: Benchmark 1: Time convergence plot using BDF1
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Figure 4.15: Benchmark 1: Time convergence plot using BDF2
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Figure 4.16: Benchmark 1: Time convergence plot using CN
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Figure 4.17: Benchmark 2: Spatial convergence plot on the rectangular grid
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Figure 4.18: Benchmark 2: Spatial convergence plot on the interior skew grid
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Figure 4.19: Benchmark 2: Spatial convergence plot on the skew grid
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Figure 4.20: Benchmark 3: Convergence plot on the rectangular grid using BDF1
with rt = 4
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Figure 4.21: Benchmark 3: Convergence plot on the rectangular grid using BDF2
with rt = 4
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Figure 4.22: Benchmark 3: Convergence plot on the rectangular grid using CN
with rt = 2
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Figure 4.23: Benchmark 4: Spatial convergence plot on the rectangular grid
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Figure 4.24: Benchmark 5: Convergence plot on the rectangular grid using CN
with rt = 2
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Figure 4.25: Benchmark 5: Convergence plot on the rectangular grid using BDF2
with rt = 2
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Figure 4.26: Benchmark 5: Convergence plot on the rectangular grid using BDF2
with rt = 4
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Figure 4.27: Benchmark 6: Convergence plot of a linear grid motion of a rectan-
gular grid
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Figure 4.28: Benchmark 7: Convergence plot of a nonlinear grid motion of a
rectangular grid
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Figure 4.29: Benchmark 8: Convergence plot of a nonlinear skew grid motion of
a rectangular grid
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Figure 4.30: Benchmark 9: Convergence plot of a nonlinear skew grid motion of
a rectangular grid using CN with rt = 2
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Figure 4.31: Benchmark 9: Convergence plot of a nonlinear skew grid motion of
a rectangular grid using BDF2 with rt = 2
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Figure 4.32: Benchmark 9: Convergence plot of a nonlinear skew grid motion of
a rectangular grid using BDF2 with rt = 4
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Figure 4.33: Benchmark 9: Convergence plot of a nonlinear skew grid motion of
a skew grid using CN with rt = 2
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Figure 4.34: Benchmark 9: Convergence plot of a nonlinear skew grid motion of
a skew grid using BDF2 with rt = 2
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CHAPTER 5

Coupling and FSI

Fluid-Structure Interaction (FSI) is concerned with the interaction of structure with
its surrounding fluid flows. Large interactions require joint simulations of the two
fields.
The particular application of interest of lightweight membrane structures in the
wind leads to large dynamic deflections and interaction with the wind, which there-
fore requires a coupled FSI analysis.

This chapter aims at providing an overview of the requirements, the assumptions
and the implementations of the coupling procedures and of the complete FSI pro-
cess of the available environment using the toolbox EMPIRE. In the presented par-
titioned FSI environment, the CSD and CFD software fields, which already have
been presented separately in chapters 3 and 4 respectively, are coupled together.
The topic of non-matching grids at the common interface between the two fields is
a main focus of this chapter.

For the application of the MMS in the context of field coupling and FSI, a frame-
work for the assessment of the environment is presented. Furthermore, the applica-
tion of the MMS, giving a hierarchical benchmark sequence and produced results
are elaborated. Using the results and the derived formal order of accuracy, the com-
plete FSI environment is assessed for the intended application.

The derivation of the balance equation at the common interface of the fluid and the
structure is kept relatively short. A detailed derivation, containing discussions of
different possibilities for the interface modeling can be found in [18, 27, 36, 40, 54,
62–64, 70, 101, 125].

5.1 FSI Overview

FSI environments usually are distinguished in monolithic and partitioned approaches.
As this distinction is not unambiguously used in the literature, this work leans to
the definitions in [70]: Monolithic means that the (two) fields and their coupling
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5.2 Target Application

are treated in a system of aggregated equations. This means, all fields and their
interactions can be solved synchronously. In contrast in partitioned approaches, the
equations from the fields are segregated and their solution therefore is treated asyn-
chronously. This asynchrony in the solution always induces a lag between the two
fields.
The named lag can be minimized, using iterative, or strongly-coupled partitioned
procedures. Iterative means that in a single time step the problem is sub-iterated
until convergence, which almost represents the aggregated system of equations
from the monolithic approach [70, 99]. If the named lag can be accepted, no sub-
iterations are performed which is the case in loose, or loosely-coupled partitioned
procedures. In this case, both field equations are only solved once in a time-step.

5.2 Target Application

In the context of this thesis the target application of the Fluid-Structure Interaction
(FSI) environment is the modeling and simulation of lightweight and flexible elastic
membrane structures in atmospheric wind. The flexibility, the relatively small self
weight, and the load carrying behavior of lightweight structures require a simulation
environment for large deformations of the structures. As soon as the structural
deformations in the wind regime no longer are sufficiently small to be neglected,
the interaction of the fluid and the structure should not be performed independently.
In order to model the behavior in a more realistic manner, the interaction of the fluid
and the structure must be taken into account in an FSI analysis.

5.3 Restrictions for the Application

As it is not possible to completely test and assess all parts of codes and code com-
binations [73], the target application has to be defined. This definition, or rather
restriction, defines the functionality to be tested in a benchmark sequence in the
following sections.
The restrictions concerning the FSI functionality due to the available environment
are outlined in the following list:

• partitioned FSI with surface coupling

• Dirichlet-Neumann partitioning using force elimination

• Gauss-Seidel communication

An overview of the partitioned FSI environment EMPIRE and its assessed features
of the coupling software Emperor, is illustrated in figure 5.1 respectively figure 5.2.
The shown EMPIRE_API, added to the software Carat++ and OpenFOAM R©provides
the communication with the coupling software Emperor.

5.4 Requirements to the Coupling Interface

As named above, a Dirichlet-Neumann decomposition is chosen for the partitioning
of the FSI process [117]. This means for the specific case of the chosen environ-
ment that on the one hand the displacements (Dirichlet), and on the other hand the
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Emperor

EMPIRE_API

Carat++ OpenFOAM R©

EMPIRE_API

EMPIRE

Figure 5.1: Overview of the FSI environment of EMPIRE

Coupling - EMPIRE & Emperor

Finite Element Method
Dirichlet-Neumann coupling
Gauss-Seidel communication
Partitioned FSI
Loose and iterative coupling

Figure 5.2: Overview of the assessed features of EMPIRE and Emperor

traction forces (Neumann) are used as surface coupling variables at the common
interface [64]. Therefore, the requirements for the interface are the functionality of
surface transfer of geometry, and the sampling and mapping of forces and displace-
ments in a conservative resp. consistent way. In particular, the partitioned approach
addresses the topic of non-matching grids at the common interface.

5.5 Equilibrium and Compatibility

5.5.1 Geometry
The FSI problem is defined in a domain Ω, which consists of the two non-overlapping
sub-domains Ωs and Ωf .
The sub-domain Ωs as the structural domain and Ωf as the fluid domain share
the common interface Γ, which is related to the initial configuration. Boundary
conditions are defined at the boundary of the structure Γs, and the boundary of the
fluid Γf . Therefore, the common interface is defined as Γ = Γs ∩ Γf .

5.5.2 Single Field Equilibria
The structural and the fluid fields are each solved in their actual way as presented
in the chapters 3 and 4. Therefore they can be seen as block box solvers inside the
FSI process.
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5.5 Equilibrium and Compatibility

The equations of balance are repeated in their differential form for the sake of com-
pleteness. The equation of balance of momentum in the CSD software Carat++
defined on Ωs is denoted in equation 5.1 (cf. equation 3.2).

− ρs
∂2d

∂t2
+∇ ·P + ρsQ = 0 (5.1)

The incompressible and laminar Navier-Stokes equations in the CFD software
OpenFOAM R©defined on Ωf are presented in equations 5.2 and 5.3 (cf. equations
4.13 and 4.14).

∂u

∂t
+∇ · (uu)−∇ · (2νmD) +∇P = 0 (5.2)

∇ · u = 0 (5.3)

5.5.3 Coupling Conditions
The two separate fields are coupled together at the common interface Γ. The Dirich-
let coupling condition uses the field informations of the velocities u, the pressure P ,
and the grid deformation dg of the fluid, and the displacement d of the structure.
Assuming attached surfaces at Γ, the displacement of the structure represents the
boundary deformation of the fluid at Γ as well, as shown in equation 5.4.

dg(X
Γ, t)− d(XΓ, t) = 0 (5.4)

The Dirichlet coupling condition depicted in equation 5.4 is also called the com-
patibility or the kinematic condition at the interface Γ. The integral form of this
equation, using Galerkin weighted residuals with the test function d̃, is presented in
equation 5.5: ∫

Γ

dg(X
Γ, t)d̃dΓ−

∫
Γ

d(XΓ, t)d̃dΓ = 0 (5.5)

The Neumann coupling condition is the balance of traction forces at the common
interface, also called the dynamic continuity condition. The traction force equilib-
rium is formulated and defined with respect to the current configuration. Therefore
the balance of traction forces act on the interface of the current configuration γ. For
incompressible fluids, this condition is shown in equation 5.6 with equations 5.7
and 5.8:

tγs + tγf = 0 (5.6)

with

tγf = σf · nγf = (−ρfP I + 2νmρfD) · nγf = 0 (5.7)

tγs = σs · nγs (5.8)
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In equation 5.6, the tractions are related to the current configuration. Therefore they
are based on the Cauchy stresses σ ( cf. equations 5.7 and 5.8). As the equilibrium
forces at the structure in the used formulation are related to the initial configuration,
the forces actually have to be applied related to the PK1 stresses P (cf. equation
5.1).
As elaborated in [45], the resultant force of a traction vector over the surface is
independent of the formulation. Therefore, using Nanson’s formula [45] and the
relations of the stress tensors (cf. section 3.5), the balance of traction force integrals
is outlined in equation 5.9 [45]. Capital and lower case letters still are related to the
initial configuration resp. the current configuration.

t(xγ , t)dγ = T(XΓ, t)dΓ (5.9)

This leads to the applied integral form of the force equilibrium equation 5.6 devel-
oped in equations 5.10-5.12: ∫

γ

tγsdγ +

∫
γ

tγfdγ = 0 (5.10)∫
Γ

TΓ
s dΓ +

∫
γ

tγfdγ = 0 (5.11)∫
Γ

TΓ
s dΓ +

∫
γ

(−ρfP I + 2νmρfD) · nγfdγ = 0 (5.12)

For the later given application of the Galerkin approach, the integrals of equation
5.12 are unified with respect to dΓ. Therefore, the traction of the fluid is trans-
lated/converted to the initial configuration in equations 5.13-5.16, using equations
5.17 and 5.18. ∫

Γ

TΓ
s dΓ +

∫
γ

tγfdγ = 0 (5.13)∫
Γ

TΓ
s dΓ +

∫
Γ

tγf det(F)dΓ = 0 (5.14)∫
Γ

TΓ
s dΓ +

∫
Γ

TΓ
f

det(F)
det(F)dΓ = 0 (5.15)∫

Γ

TΓ
s dΓ +

∫
Γ

TΓ
fdΓ = 0 (5.16)

with
dγ

dΓ
= det(F) (5.17)

TΓ
f = det(F)tγf (5.18)

F is the deformation gradient of the interface grid. It can be derived analogously to
equation 3.6. The Galerkin weighted residual approach is finally applied to equation
5.16 and results in equation 5.19:∫

Γ

TΓ
s d̃dΓ +

∫
Γ

TΓ
f d̃dΓ = 0 (5.19)
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5.6 Discretization

5.6 Discretization

In this section, the discretization of the interface conditions and of the solution pro-
cess over time is presented. It has to be mentioned, that the software is completely
designed for non-matching grids. A matching grid scenario is included in the treat-
ment of non-matching grids; therefore no distinction is made in the discretization.

The discretization of the structural and the fluid fields have already been discussed
in sections 3.6 and 4.9.

5.6.1 Spatial Discretization
The discretization of the integral mapping equations 5.5 and 5.19 is performed using
the Mortar method [29, 87]. A discussion of different possibilities of interpolation
methods and Lagrange multiplier methods for FSI can be found in [29]. Using a
field discretization of all variables with linear space functions, the fields are ap-
proximated for a variable Φ(x) in equation 5.20:

Φ(x) ≈
∑
i

Ni(X
Γ)Φi(t) (5.20)

Φi(t) are the individual nodal results at each node i. The current environment uses
linear shape functions Ni(XΓ) for the fluid and the structure, therefore the defini-
tion is given in equations 3.16 - 3.19. Equation 5.21 results from the combination
of equations 5.20 and 5.5:∫

Γ

∑
i

Nf
i dgid̃dΓ−

∫
Γ

∑
i

Ns
i did̃dΓ = 0 (5.21)

The applied Mortar method uses for the test functions d̃ the same linear shape func-
tions as the fluid field with amplitude values of dj = 1.0. Therefore, the test
functions simplify to equation 5.22.

d̃ = d̃(XΓ) = Nf
j (XΓ) (5.22)

Consequently, equation 5.21 results in equation 5.23:∫
Γ

∑
i

Nf
j N

f
i dgidΓ−

∫
Γ

∑
i

Nf
j N

s
i didΓ = 0 (5.23)

Using the clipping procedure shown in [87, 118], an elementwise integration is per-
formed.

To fulfill the balance of traction forces at the interface, equation 5.6 also needs to
be discretized.
Equation 5.19 uses the same shape function and further discretization procedure as
equation 5.21. Therefore it results in equation 5.24:∫

Γ

∑
i

Nf
j N

f
i TΓ

sidΓ +

∫
Γ

∑
i

Nf
j N

s
i TΓ

fidΓ = 0 (5.24)
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The derived integral equations are computed using Gaussian integration analogously
to the structural dynamics in section 3.7.2.3.

5.6.2 Time Advancement

The single fields of CSD and CFD use the time discretization and integration that
has been introduced in the respective chapters. For the CFD, the BDF2 scheme is
used without exception in this chapter.
A model process for a Gauss-Seidel communication pattern using fix-point iteration
[64, 101] is shown in figure 5.3. In this figure, an iterative Gauss-Seidel scheme is
shown for the time progression reaching tn+1 starting from a time tn. S1 herein
represents the CSD, and S2 the CFD solution process. This could be the other way
around, as well. The arrows denote the transfer of discrete field information using
the Mortar mapping method presented above. More precisely, an arrow from S1

to S2 is a displacement mapping according to equation 5.4 respectively 5.23, and
an arrow from S2 to S1 is a traction force mapping according to equation 5.6 re-
spectively 5.24. The increasing numbering of the arrows denote the sequence of the
operations during the process. The Gauss-Seidel solution process is iterated until
the IICE convergence criterion of the iterative coupling process is reached at the
final iteration k. As already mentioned, the Dirichlet-Neumann partition of the FSI
uses force elimination. The force elimination implies that the computed forces at the
fluid surface are directly mapped to the structural surface (e.g., within arrow number
1,5, 9, and 13 in figure 5.3). Using iterative coupling, the computed displacements
of the structure are transfered to the fluid using an Aitken under-relaxation (e.g.,
within arrows number 3,7,11, and 15 in figure 5.3) [36, 64].

Using a loose coupling process as an alternative instead, arrow number 5 directly
enters S2 at t = tn+1 (cf. figure 5.4). In consequence no sub-iterations k and no
under-relaxation are performed between S1 and S2.

5.7 Formal Order of Accuracy

The errors of an FSI simulation in space and time result from three different parts
outlined in the following list:

• - Errors from the CSD

• - Errors from the CFD

• - Errors from the interface operations

Therefore, the formal order of the complete FSI process consist of the formal orders
of the three named parts. The formal order of accuracy of the CSD software Carat++
and the CFD software OpenFOAM R©have been discussed in detail in sections 3.7
respectively 4.11. The formal order of accuracy in space due to the mapping pro-
cedures and the formal order of accuracy over time due to the time progression are
presented in the following sections.
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Figure 5.3: Gauss-Seidel communication pattern for iterative coupling [101]
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Figure 5.4: Gauss-Seidel communication pattern for loose coupling

5.7.1 Spatial Approximation at the Interface

The Mortar method used in the available environment uses linear shape functions
for the approximation of the geometry, the solution fields, and the test functions.
The surface integration is performed using element-wise Gaussian integration cor-
responding to 3.7.2.3. For non-matching grids, the consistent clipping procedure is
used [87]. In consequence the spatial approximation of the mapping procedure of
equations 5.23 and 5.24 is formally second order accurate (p̂s = 2).

Besides the spatial approximations of the mapping procedures, the evaluation of the
surface traction forces at the interface needs to be mentioned (cf. equation 5.7). The
common interface in the context of FSI normally is represented by a non-permeable
moving wall. The boundary conditions for the pressure and the absolute velocities
are modeled as a zero gradient Neumann pressure BC and a Dirichlet velocity BC,
with a relative velocity to the wall equal to zero. Consequently the fluid at the
wall moves with the same velocity as the wall itself. For the interface traction
force calculation (cf. equation 5.7), the pressure and the velocity gradient at the
interface need to be extrapolated. This extrapolation is performed using an upwind
discretization from the cell midpoint to the surface. As presented in section 4.9.1.2,
the upwind procedure is formally first order accurate (p̂s = 1).

5.7.2 Time Advancement of the FSI Process

For the time advancement, the error depends on the coupling procedure, whether
loose or strong coupling are applied (cf. section 5.1).

For a strongly coupled process, the error at the interface is controlled by the criterion
for the convergence of the iterative process (cf. figure 5.3). The nature of this error
is equivalent as the error of IICE already discussed in the previous chapters. This
error must be kept very low in order to finally observe the discretization error as the
leading error of the simulation (cf. figure 2.4). As long as this is guaranteed, no
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additional noticeable error is introduced by the IICE. Following the error analysis
of the PISO procedure as a partitioned solution of a problem [37, 47, 48, 55], the
time error introduced by a partitioned solution process can be evaluated by the so-
called one-step error analysis shown in [67]. Therefore the order of the introduced
error is reducing linearly with the number of iterations starting at O(∆t). To give
an example this means that for two iteration steps the error is reduced to O(∆t3).
This knowledge can save a lot of time for an efficient simulation. Beside, the error
of a loose coupling process is directly identified as O(∆t). An overview of all
contributing formal orders of accuracy is outlined in table 5.1. Spatial rectangular
means that the grid stays rectangular during the whole simulation; therefore it is a
special case of the general spatial behavior. As mentioned above, the time accuracy
of the FSI time advancement depends on the iterations of the iterative coupling
process and is at least first order accurate.

Table 5.1: Formal orders of accuracy p̂ of the FSI process

Spatial general Spatial rectangular Time
Structure 2 2 2

Fluid 1 2 1
Coupling & Time Advancement 2 2 >1

Overall FSI Process 1 2 1

In table 5.1 it can clearly be seen that again the weakest link of the chain sets the
formal order of accuracy for the overall FSI process. Therefore, the weaker accu-
racy of the used CFD software in non-orthogonal grids and the time discretization
lowers the formal order of accuracy of the total FSI process in general to p̂ = 1 in
space and time. The higher accuracy of the CSM and the coupling processes do not
improve the results and the accuracy in the asymptotic range of the solution, as the
leading error is determined by the weakest part. From this observation it is obvious
that a homogenization of the formal orders p̂ in space and time would maximize the
solution accuracy with respect to computational costs.

5.8 Application of the MMS

5.8.1 Equilibrium Source Terms

In general, it is possible to enrich both interface equations (cf. equations 5.4 and 5.6)
with a source or a force term analogously to the source/force terms for the equations
of momentum and mass conservation of the structure and the fluid respectively. In
the present thesis the choice has been made that the compatibility condition at the
common interface (equation 5.4) should be fulfilled during the MMS simulation.
Consequently both grids are fixed together during the simulation and no source
term will be applied for this equation.
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5 Coupling and FSI

Therefore, only the balance of forces equation will be enriched with a manufactured
force term at the interface. It is shown later in section 5.9.4 that it is in general
possible to fulfill both interface equations by a smart choice of the field variables in
the fluid and the structure. As the current environment provides a very comfortable
access to the interface equations, this effort is not taken for the sake of flexibility of
the manufactured solutions. The manufactured traction force term of equation 5.6
is shown in 5.25:

t̂γFSI = t̂γs + t̂γf (5.25)

Using the strong form of equation 5.16, the manufactured traction force term can
be re-written in terms of the initial configuration in equation 5.26:

T̂Γ
FSI = T̂Γ

s + T̂Γ
f (5.26)

T̂Γ
s is the manufactured traction at Γ of the structure. It is directly computed anal-

ogously the manufactured traction for the structural dynamics part of chapter 3 in
equation 3.39. T̂Γ

f represents the manufactured traction of the fluid, which is eval-
uated with û and P̂ using equation 5.27 (cf. chapter 4):

T̂Γ
f =

(
−ρf P̂ I + 2νmρfD̂

)
· n̂γf · det(F̂) (5.27)

T̂Γ
FSI can be interpreted as the additional traction term of the interface to fulfill the

equilibrium of the traction forces at Γ. It is termed ’additional’ since it is combined
with the surface traction of the fluid T̂Γ

f . It should be noted that for the design
of the MMS benchmarks, the source term T̂Γ

FSI should not dominate the actual
force from the fluid T̂Γ

f in order to really assess the full FSI procedure. If T̂Γ
FSI

dominates the total force acting on the structure, errors due to the computation or
mapping of the fluid forces would be overpowered and therefore these errors would
possibly not be detected.

5.8.2 Framework
The framework to assess the partitioned FSI environment using EMPIRE is pre-
sented in this section. In total, six software components are used in this framework:

• Carat++ (already presented in chapter 3)

• OpenFOAM R©(already presented in chapter 4)

• Maple R©

• mmsFsiClient

• Emperor

• Matlab R©

An overview of the framework is presented in figure 5.5. The procedure and the
sequence of the program executions is shown in figure 5.6.
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Figure 5.5: Overview of the MMS framework for the assessment of the parti-
tioned FSI environment
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Figure 5.6: The MMS procedure for partitioned FSI analysis

5.8.2.1 Maple R©

The Maple R©code consists of three parts that are explained in the following.
The first part is the derivation of the manufactured solution of d̂ for the structural
solution. This manufactured solution contains the boundary conditions, the ini-
tial conditions, and the required force term T̂s to compute d̂ asymptotically using
Carat++. If the total membrane surface is attached to Γ, the derived source term of
the CSD (cf. equation 3.39) matches T̂Γ

s (T̂s = T̂Γ
s ). The detailed procedure is

derived in chapter 3.
The second part is the derivation of the manufactured solution of û and P̂ for the
fluid solution. This contains the boundary conditions, the initial conditions, and the
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5 Coupling and FSI

required source terms ŝf to compute û and P̂ asymptotically using OpenFOAM R©.
The detailed procedure is derived in chapter 4.
The third part is the derivation of the manufactured FSI traction T̂Γ

FSI at the com-
mon interface to satisfy the balance of forces at Γ (cf. equation 5.6) using equation
5.26. The last traction term T̂Γ

f is computed using equation 5.27. As already men-
tioned above the kinematic condition is directly fulfilled by the definition that the
grids are attached to each other at Γ. Therefore, no source term is necessary for the
compatibility condition.

5.8.2.2 mmsFsiClient

The mmsFsiClient is an own created auxiliary tool to apply the generated loads
T̂Γ to Carat++ and to receive the computed displacement field d. Additionally, it
manages the FSI procedure and its time advancement approach (cf. section 5.6.2).
For the application of source terms for Carat++, a mapping with matching grids is
used to avoid the introduction of an additional mapping error.
The procedure for the application (sampling and mapping) of the forces to Carat++
is already shown in the explanations of the mmsClient in section 3.8.3.2.

As the FSI process is managed by this software, the mapping of the interface fields
dΓ and TΓ is in general performed for non-matching grids. Additionally, the imple-
mentation and the management of loose and iterative coupling is performed inside
this software.

The sampling procedure, the integration, and the mapping at non-matching grids
introduce additional errors to the FSI simulation. As similarly presented in chapter
3, these schemes have to be at least the order of accuracy of the actual discretization
of the single fields. As (at least) Carat++ is formally second order accurate in space
and time (cf. section 3.7.4 and table 5.1), the schemes at the interface must at least
be formally second order accurate.

The evaluation of the structural field errors is performed the same way as already
described for the mmsClient in section 3.8.3.2 inside this software.

5.8.2.3 Emperor

Emperor provides procedures to perform sampling, mapping and integration of
fields between the different contributing software components. In our case the dis-
crete solutions of equations 5.4 and 5.6 using the Mortar method are performed
inside Emperor.

5.8.2.4 Matlab R©

The software Matlab R©is used to finally apply the error norms 2.7 and 2.8 on the
resulting deviations of the fields d, TΓ

f , u and P at the probe locations. Using these
errors and the named error norms, graphs are illustrated for the error development
in a log-log diagram along with a diagram for the observed order of accuracy (cf.
figure 5.20).
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5.8.3 Procedure
The procedure applying the MMS for the partitioned FSI process is elaborated in
the following. The balance equations are based on the momentum equilibria of the
fluid and the structure (cf. equations 5.2, 5.3, and 5.1) and the interface equations
of the Dirichlet-Neumann coupling (cf. equations 5.4 and 5.6).
A detailed description of the refinement strategies for steady state or unsteady anal-
yses has been presented in 2.3.3.5 respectively 2.3.3.6.
The procedure is summarized in the following list and is additionally shown in
figure 5.6.
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1. Creation of a manufactured solution (cf. section 2.3.3) using Maple R©

- Creation of manufactured field solutions d̂, û and P̂
- Creation of all contributing constants

- Derivation of the traction forces T̂s resp. T̂Γ
s using equation 3.37

- Derivation of the interface traction forces T̂Γ
FSI using equation 5.26

- Derivation of the sources ŝf using equations 4.73-4.79
- Derivation of the initial condition using equations 3.42 and 4.83
- Derivation of the boundary conditions using equations 3.41, 4.81-4.82

2. Application of the MMS terms

- Application of the interface forces T̂Γ
FSI at the mmsFsiClient

- Application of the sources ŝf in OpenFOAM R©

- Application of the initial condition in Carat++ and OpenFOAM R©

- Application of the boundary conditions in Carat++ and OpenFOAM R©

3. Performing the FSI simulation

4. Field error evaluation
- Sampling of d, TΓ

f , u and P at the probe locations

- Error estimation with d̂, T̂Γ
f , û and P̂ using equations 2.7 resp. 2.8

5. Repetition of steps 2-4 with systematical refinement

6. Calculation of the observed order of accuracy p for the fields d, TΓ
f , u and

P using Matlab R©

- Comparison of the error evaluations at each refinement step
- Derivation of p with refinement using equation 2.13

7. Comparison of the formal order of convergence p̂ to the observed order of
convergence p

8. Assessment of the FSI environment
- If p matches p̂, all ordered functionalities are working as intended
- If p does not match p̂, the error source has to be investigated

5.8.4 Spatial and Time Resolutions
As already mentioned in chapter 2, the MMS deals with systematic refinement in
space and time. The quantities of grid size and resolution in general is almost ar-
bitrary. The presented numbers are only a suggestion for the reader. With these
numbers the later shown results have been produced. For the reason of limited
computational resources, the benchmarks for CFD generally are elaborated for two
dimensional computations. To guarantee the functionality in 3D, the 2D domain of
the examples is rotated in space and the tests are repeated. Finally, benchmark 3 of
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this chapter represents a fully 3D FSI benchmarks to complement the benchmark
sequence.

As elaborated in sections 2.3.3.5 and 2.3.3.6, the set of sampling points of a single
MMS study for the fields d, TΓ

f , u and P has to be kept constant. In the context
of this work, all nodal and time positions of the coarsest stage are used as sampling
points, independently of the individual grid or time resolution.
The coarsest CSD grid, which in parallel defines the sampling points for the com-
plete assessment, is chosen as a quadrilateral grid using 8 by 8 elements (cf. figure
3.6). As the complete structure is attached to the interface, the error of the surface
traction forces is evaluated at the probe locations of the CSD as well.
The cell midpoints of the coarsest CFD grid using 8 by 8 cells, define their sampling
points in space (cf. figure 4.4). In unsteady simulations, 8 timesteps are chosen as
coarsest resolution, which in parallel defines the sampling points over time.
The refinement in space and time is constantly chosen to rs = rt = r = 2.

5.8.5 Solution Accuracy

Recalling section 2.3.2, the discretization error should be isolated from the total nu-
merical error (cf. figure 2.4). Therefore, all software components (cf. figure 5.6) are
using double precision accuracy to minimize the round-off error. In order to keep
the IICE as small as possible, the solution tolerance in a non-normalized version of
the E2 norm of velocities and pressures (cf. equation 2.8) of the unsteady SIMPLE
projection method is set to 1.0 · 10−11. The solution tolerance in the inf norm of
displacements in Carat++ (cf. equation 2.8) of the nonlinear equation system (using
a Newton-Raphson procedure) is set to 1.0 · 10−14. In iterative coupling proce-
dures, an interface residuum tolerance in the non-normalized E2 norm is chosen to
1.0 · 10−10.

5.8.6 Error Map

In this section, an overview of the errors in the FSI simulation is elaborated. On the
one hand, the general types of errors are described. The errors arise in the processes
of preprocessing of input data, during the solution of the governing equations, and
in the postprocessing of output data of the simulation. For the application of the
present software Carat++, the general sources of error and the specific error sources
of the software are shown in figure 5.7 left and right.
It is obvious that errors in the generation of input data will influence the total simu-
lation process. This indicates that the generation and application of the MMS proce-
dure (cf. figure 5.6) need to be at least as accurate as the solution of the simulation
itself. In the present case, the actual simulation of the fluid, the structure and the
coupling processes provide a formal order of accuracy between p = 1 and p = 2.
Therefore, the generation and application of the MMS sources and forces, the BC,
and the IC need to be at least second order accurate as well. Additionally, the out-
put generation, and the error evaluation in Matlab need to be at least second order
accurate, too. If this is not fulfilled, the total observed order of accuracy of the
simulation will lower to the accuracy of the weakest link of the chain.
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Figure 5.7: Error map of the presented FSI environment

5.8.7 Benchmarks
The following benchmark sequence for FSI is developed as a stairway in complex-
ity. The proposed benchmarks suite starts with the assessment of restricted function-
ality of the code and increases more and more in complexity through the benchmark
sequence (cf. figure 5.8). All functions and variables of the following examples are
listed in tables, such that the reader is able to construct the individual force and
source terms, and the boundary as well as the initial conditions. The choice of the
BC type (Dirichlet or Neumann) on the boundaries in general is left to the reader.
The only restriction is set for the boundaries at the common interface Γ. Here, a
non-permeable wall with a no-slip condition is set for the velocities, i.e. the ab-
solute velocity is equal to the grid velocity (uΓ = uΓ

g ). The same holds for the
displacements at the common interface Γ.
The input parameters of the benchmarks are all defined in the International Sys-
tem of Units (SI) and their derived expressions [81]. Therefore, units for the input
numbers of the benchmarks are generally omitted.

5.8.8 Benchmark 1: Sampling and Mapping Operations
As described above for (vector) field sampling exactly the same operations are per-
formed for all parameters, be it force, displacement or velocity field. Therefore, one
analytical manufactured field solution represents a representative benchmark for the
mapping of all types of the used fields.
As the sampling and mapping are purely geometric operations, a steady solution of
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2D Unsteady Navier Stokes with grid motion
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Figure 5.8: Hierarchical benchmark sequence for FSI

all types of fields used in the FSI analysis is sufficient to be benchmarked. For this
assessment, only a part of the FSI process is necessary. In detail, the solution of
the fluid is cut off, and the interface source force T̂Γ

FSI is used to apply the traction
force T̂.
Table 5.2 gives the overview of this benchmark of traction sampling, integration,
and mapping on an initially curved geometry.

Table 5.2: Benchmark 1: Overview table

init. config. field domain
x = θ1 T̂x = 4 · sin

(
θ1π
)
· cos

(
θ2π
)

θ1 ∈ [0..1]

y = θ2 T̂y = sin
(
θ1π
)

+ cos
(
θ2π
)

θ2 ∈ [0..1]

z = θ1 − θ12

T̂z = 16 · sin2
(
θ1π
)

cos2
(
θ2π
)

The traction forces T̂ of the benchmark are shown in the top view of the geometry
in figure 5.9.

Using this benchmark, different options for the assessment are possible:

• Matching grids

• Non-matching grids with one very fine grid

• Non-matching grids with a similar grid resolution
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Figure 5.9: Traction field T̂ of benchmark 1

5.8.8.1 Matching Grids

The matching grid assessment contains on both sides of the mapping exactly the
same grid. Therefore, both are refined the same way as well. As the grid points
are coincident, the discretization error due to mapping must vanish. The log-log
plot of this assessment is shown in figure 5.19. The numerical error completely
is in the range of machine accuracy which confirms the expectation of vanishing
discretization error.
As the IICE condition for the interface equations are defined in the non-normalized
E2 norm, the error produced by the IICE is increasing with the number of cells due
to refinement.

5.8.8.2 Non-Matching Grids with one very fine Grid

In this section, the receiving grid is chosen to be a superfine grid and the other grid
is systematically refined. The results are illustrated in figure 5.20.

5.8.8.3 Non-Matching Grids with a similar Grid Resolution

The second option to assess non-matching grids is to generate two grids with a sim-
ilar number of elements with non-matching grid points/elements. This is performed
using different grids with comparable grid resolutions. As the general procedure is
starting with a grid resolution of 8 by 8 elements, the coarser grid now starts with
a grid resolution of 7 by 7 elements and is also refined by a factor of rs = 2. The
results are illustrated in figure 5.21.

5.8.8.4 Statement and Results

The assessed sampling, mapping, and integration schemes at the interface level as-
sessed in this section are positively assessed and give an observed order of accuracy
of p ≈ 2, which corresponds to the formal order of accuracy of p̂ = 2. Thus one
can conclude that no remarkable additional error is introduced in the FSI process
due to mapping (cf. figure 5.7).
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5.8.9 Benchmark 2: The way to FSI
This benchmark has the task to design a fully coupled benchmark for the assessment
of the FSI environment. As shortly mentioned above, the structure and the fluid are
coupled by the structural displacements d and the surface traction forces TΓ at the
common interface Γ. This implies for a fully coupled FSI process, the computed
displacements are transferred to the fluid as a boundary motion and the computed
boundary surface traction forces of the fluid are transferred to the structure as a
boundary surface load. In terms of manufactured solutions, the processes S1 and
S2 of one Gauss-Seidel iteration (cf. figure 5.3) are defined in the following list of
equations:

S2 = S2(̂smomf , ŝmassf ,d) (5.28)

S1 = S1(T̂s, T̂
Γ
FSI ,T

Γ
f ) (5.29)

Here the coupling of the two fields can clearly be identified since d is the computed
displacement solution of S1, and TΓ

f is the computed surface traction solution of S2.

Still following the concept of increasing complexity for the assessment of the FSI
environment, the process starts with a simulation of uncoupled fields towards a fully
coupled simulation in the following three subsections.

The benchmark overview is presented in table 5.3:

Table 5.3: Benchmark 2: Overview table

fields material domain
d̂x = 0 ρs = 1 · 106 x ∈ [0, 1]

d̂y = sin(πx) · sin(πt) · t3 E = 1 · 106 y ∈ [0, 1]

ûgx = 0 B = 1 · 10−3 t ∈ [0, 1]

ûgy =
∂d̂y
∂t

Sps1,2 = 25

ûx = 0 νs = 0.3

ûy = ugy ρf = 1000

P̂ = −0.5 + 10 · cos (x+ y) · sin (πt) ·
[
y − d̂y

]2
νm = 1 · 10−5

Γg = 1.0

The tractions in y direction of the benchmark are shown in figures 5.10-5.11. The
initial and the deformed structure is shown in figure 5.12.
The fluid and the structure have their common boundary Γ initially at xΓ = x(x, y =
0). The set of boundary conditions are shown in figure 5.13. The current benchmark
is an initially flat and prestressed membrane in the x-z-plane. As it is actually a 2D
benchmark, the manufactured fields in z-direction are kept constant and therefore
do not influence the solution. The membrane is deformed in y-direction. As the
fluid itself has already been assessed in chapter 4, the fluid fields are kept relatively
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Figure 5.10: Traction field T̂s,y at t = 0.2 of benchmark 2
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Figure 5.11: Traction field T̂f,y at t = 0.2 of benchmark 2
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Figure 5.12: Initial and final geometry of the structure of benchmark 2 - scaled
with a factor of 20

simple. The main interest herein is in the surface coupling between the fluid and the
structure. These fields are sufficiently complex to be considered a valid benchmark
for the FSI environment. This benchmark also satisfies the demand that the fluid
tractions T̂Γ

f have the same magnitude as the demanded structural tractions T̂s.

5.8.9.1 Benchmark 2: Non-Coupled Fields

In this section, the fluid and the structural fields are solved completely separated.
This is necessary in order to assess whether the created benchmark can in general be
solved by the individual software components of the fluid and the structure. There-
fore, in this section, equations 5.28 and 5.29 change to 5.30 and 5.31:

S2 = S2(̂smomf , ŝmassf , d̂) (5.30)

S1 = S1(T̂s, T̂
Γ
FSI , T̂

Γ
f ) = S1(T̂s) (5.31)

As the boundary displacements of the fluid d and the surface traction of the structure
Ts are completely defined as a manufactured solution d̂ respectively T̂s, the solu-
tion fields are no longer dependent or coupled. As no coupling dependency exists,
the results are identical using a loose coupling or an iterative coupling procedure.
Figures 5.22-5.24 show the plots of convergence for all variable fields.
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Figure 5.13: Benchmark 2: Boundary conditions

5.8.9.2 Benchmark 2: Coupled Displacement Field

In the next consecutive step the computed displacements of Carat++ are applied
respectively mapped to OpenFOAM R©. The traction forces are still replaced by the
manufactured tractions identical to the previous section. Therefore, this step only
represents a one-way coupling of displacements from the structure to the fluid. In
terms of the solution of the fields S1 and S2, the equations change to 5.32 and 5.33:

S2 = S2(̂smomf , ŝmassf ,d) (5.32)

S1 = S1(T̂s, T̂
Γ
FSI , T̂

Γ
f ) = S1(T̂s) (5.33)

The process of the fluid solution S2 therefore is solved in its final way within the
FSI process (cf. equations 5.32 and 5.28).

The results for loose and iterative coupling are shown in figures 5.25-5.27 respec-
tively figures 5.28-5.30.

In this case, the loose coupling and the iterative coupling must lead to identical
results for the structural displacements d despite the coupling of displacements.
This expectation is based on the fact that S1 (Carat++) solves for d independently of
the computed fluid traction. Therefore Carat++ in every iteration step provides the
same computed solution d as in a loose coupling procedure (compare the similarity
of figures 5.25 and 5.28).

5.8.9.3 Benchmark 2: Fully Coupled

The third step in the increasing complexity for the FSI environment is the complete
coupling of the fields identical to a regular FSI simulation. In terms of the proce-
dures of S1 and S2, this reads as the initial equations 5.28 and 5.29, for the sake of
completeness repeated in equations 5.34 and 5.35.

S2 = S2(̂smomf , ŝmassf ,d) (5.34)

S1 = S1(T̂s, T̂
Γ
FSI ,T

Γ
f ) (5.35)

Compared to the previous section, the surface tractions computed by OpenFOAM R©

are now mapped to Carat++, i.e. the interface traction force field TΓ
s,total is applied

to Carat++ (cf. equation 5.36).

TΓ
s,total = T̂Γ

FSI −TΓ
f (5.36)

116



5 Coupling and FSI

In consequence TΓ
total is a traction force, consisting on the one hand of a manufac-

tured traction T̂Γ
FSI and on the other hand of a discrete computed traction TΓ

f .

The results for loose and iterative coupling are shown in figures 5.31-5.33 respec-
tively 5.34-5.36.

5.8.9.4 Benchmark 2: Fully Coupled Non-Matching Grids 1 (NMG1)

In this section, the benchmark is applied to non-matching grids. Here, the CSD grid
is always refined one more step than the CFD grid. Consequently at the coarsest
level the CFD grid has 8 elements per edge whereas the corresponding CSD grid
has 16 elements per edge. Both are then refined with a factor of r = 2 in space and
time.

The results of the iterative coupled simulations are shown in figures 5.37-5.39.

5.8.9.5 Benchmark 2: Fully Coupled Non-Matching Grids 2 (NMG2)

In this section, the benchmark is again applied to non-matching grids. In contrast
to the previous section, the CFD grid now is always refined one more step than the
CSD grid. In consequence at the coarsest level the CSD grid has 8 elements per
edge whereas the corresponding CFD grid has 16 elements per edge. Both are then
refined with a factor of r = 2 in space and time. Therefore this section can be seen
as the counterpart to the previous section.

The results of the iterative coupled simulations are shown in figures 5.40-5.42.

5.8.9.6 Benchmark 2: Fully Coupled Non-Matching Grids 3 (NMG3)

In this section, the benchmark is again applied to non-matching grids. The grid
generation matches the grids of the non-matching mapping benchmark shown in
section 5.8.8.3. The coarsest grid of the CSD is chosen to 8 elements per edge, and
the coarsest grid of the CFD is chosen to 7 elements per edge. Therefore, almost no
grid points coincide during the refinement. Both grids are refined with a factor of
r = 2 in space and time.

The results of the iterative coupled simulations are shown in figures 5.43-5.45.

5.8.9.7 Statement and Results

The presented Benchmark 2 gives a full 2D benchmark for the partitioned FSI envi-
ronment. The results are satisfying, as the observed order of accuracy in space and
time matches the formal order of accuracy of p̂ = 1 in space and time.

5.8.10 Benchmark 3: FSI 3D
In order to complete the benchmark sequence for FSI a fully three dimensional
benchmark is used to prove the expandability of the previously discussed two di-
mensional benchmarks. Following the concept of increasing complexity for the
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assessment of the FSI environment, this benchmark presents the closure of the de-
signed benchmark sequence for the FSI environment.
The benchmark overview is presented in table 5.4. The fluid and the structure have
their common boundary Γ at xΓ = x(x, y = 0, z). The set of boundary conditions
is shown in figure 5.14. The elaborated benchmark is an initially flat and prestressed
membrane in the x-z-plane which is deformed in y-direction and the fluid is fully
developed in 3D. It should be noted that this benchmark also satisfies the demand for
the same magnitude of the computed fluid tractions TΓ

f and the prescribed structural
tractions T̂s.

Table 5.4: Benchmark 3: Overview table

fields material domain
d̂x = 0 ρs = 5 · 105 x ∈ [0, 1]

d̂y = sin(πx) · sin(πt) · t2 E = 1 · 106 y ∈ [0, 1]

d̂z = 0 B = 1 · 10−3 z ∈ [0, 1]

ûgx = ∂d̂x
∂t

= 0 Sps1,2 = 25 t ∈ [0, 0.2]

ûgy =
∂d̂y
∂t

νs = 0.3

ûgz = ∂d̂z
∂t

= 0

ûx = ugx + sin(x+ y + z) · [y − d̂y] ρf = 1000

ûy = ugy νm = 0.5

ûz = ugz + sin(x+ y + z) · [y − d̂y] Γg = 1.0

P̂ = (cos (x+ y) + sin(z)) sin (πt) ·
[
y − d̂y

]2
− 1

2

x
y

u

N

N

D

N
x

y P

N0

D

D

D

ddx = dy = 0

xz
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Figure 5.14: Benchmark 3: Boundary conditions

To guarantee the compatibility condition at the common interface Γ (cf. equation
5.4), the fluid velocities in x and z direction are set such that this requirement is
fulfilled. This procedure is adapted from [73]. As d̂y describes the position of the
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5 Coupling and FSI

interface at every time in the global y-direction, the term [y−d̂y] modifies the actual
fields. With ’actual’, e.g., the sin(x + y + z) field of the velocities ûx and ûz , is
meant. For y = d̂y the term in brackets is canceled out and therefore the velocity at
the bottom boundary becomes equal to the grid velocity field, which in the present
case is zero for ûx and ûz . In terms of boundary conditions, the multiplication with
the named bracket term creates a zero Dirichlet condition for the relative velocities
at the interface Γ. Furthermore, the square of the term in brackets, [y − d̂y]2, cre-
ates a zero Neumann boundary condition of the ’actual’ field as well, besides the
already mentioned zero Dirichlet boundary condition. In the current benchmark, a
zero Dirichlet condition is set for the relative velocities and a zero Gradient condi-
tion is set for the pressure at the interface. As this is equal to the regular modeling
of a non-permeable interface wall for FSI, this benchmark can be considered repre-
sentative for FSI problems.

The traction forces of the benchmark are shown in figures 5.15-5.16. The deformed
structure is shown in figure 5.17. The fluid velocities û and the pressure P̂ are
shown in figure 5.18. In figure 5.18 one can see that the (absolute) velocities in x-
and z-direction are zero at γ (bottom), and the y-velocity of the bottom is equal to
the velocity of γ and therefore equal to the velocity of the structure.

The results of the error evaluation of this benchmark are illustrated in figures 5.46-
5.48.

T̂s,x

x

z

1490

0.00

0.00

0.00

0.00

0.00x

z

x

z

T̂s,y T̂s,z

Figure 5.15: Traction field T̂s at t = 0.2 of benchmark 3

5.8.11 Statement and Results for the used FSI Environment
Summarizing this chapter, the elaborated benchmarks complement the previous
benchmarks of CSD, CFD, and the interface coupling procedures to a rigorous
benchmark sequence for the complete partitioned FSI environment. The challeng-
ing topic of non-matching grids in partitioned FSI analyses has extensively been
assessed.

It can be stated that all solution fields of the benchmarks are converging. The par-
titioned FSI environment for incompressible flows is assessed to work - at least in
large parts - as intended. The limitation of the qualitiy of the produced results and
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Figure 5.16: Traction field T̂f at t = 0.2 at the structure of benchmark 3

y

x

Figure 5.17: Initial and deformed shape of the structure at t = 0.2 of benchmark
3 - scaled with a factor of 5

the performance of the environment is set by the CFD software (cf. chapter 4). The
time advancement and the traction force computation at the common interface have
been mentioned in particular. The order of accuracy for a full FSI simulation there-
fore lowers to one. Despite the fact that the CSD solver is actually second order in
space and time, the overall order of accuracy is oriented to the weakest member of
the simulation. This (formal and observed) first order load computation of TΓ

f is
applied to the CSD with the same order of accuracy of one; therefore the total CSD
is restricted to the performance of its load representation. Consequently the accura-
cies of the CSD and therefore the total FSI simulation results lower to an observed
order of p = 1 as well.

The identification and localization of deficiencies define a task or a challenge for the
code developer on the way to improve the software environment. At this point it is
mentioned again that the MMS is not only well suited for the confirmation of code
functionalities but also very helpful for the precise identification and localization of
errors or even mistakes in the software code.
Besides the loss of accuracy it can be concluded that the sampling, the mapping,
and the integration at the interface work as intended, i.e. second order accurately.
The CSD software itself is confirmed to work second order accurately in space and
time in the FSI environment, as long as it receives from the fluid second order accu-
rate tractions. This has been presented in the non-coupled and the one-way coupled
cases of benchmark 2 (cf. sections 5.8.9.1 and 5.8.9.2 with figures 5.22-5.30)

It can be concluded that all governing equations of the assessed FSI environment are
solved consistently. Therefore, the positively assessed parts of the environment can
be used for further investigations in the context of V&V in order to finally reach a
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Figure 5.18: Fluid velocities û and pressure P̂ at t = 0.2 and z = 0.5 of
benchmark 3

predictive capability of the FSI environment to complement the experimental wind
tunnel (cf. [9, 57, 75, 79] and chapter 2).

5.9 Adaptation of the FSI Framework

As elaborated in this chapter, the MMS framework is applied to a particular parti-
tioned FSI environment for the modeling and simulation of lightweight membranes
interacting with an incompressible fluid flow. Beyond that, the general concept of
the framework makes it very attractive for adaptations to assess other FSI environ-
ments or extensions of the assessed FSI environment.
In the next sections, a few examples of potential adaptations are outlined. These
examples focus on the required adaptations within the presented MMS environment.
The actual modeling and simulation functionalities regarding the solution of the
considered field or the internal data handling are not part of the description, as they
should be anyway available independent of an MMS assessment.
It is evident that if the environment is changed, the modified parts require separate
investigation in order to derive the formal order of accuracy. This investigation is
necessary prior to the execution of the individual benchmarks, in order to correctly
set and adjust the refinement factors (cf. section 5.8.4).
It will be shown that only moderate changes are necessary in order to adapt the
MMS framework for the assessment of slightly adapted, or even completely differ-
ent, FSI software environments.
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5.9 Adaptation of the FSI Framework

It may be concluded that the MMS framework lives up to its promised flexibility,
adaptivity, and modularity.

5.9.1 Adaptation for Monolithic FSI
The definition of partitioned FSI compared to a monolithic FSI approach is pre-
sented above in section 5.1. As the definition of a partitioned approach with itera-
tive coupling is representing the monolithic approach, the topic of the assessment of
monolithic FSI environments is similar to the presented partitioned one. Assuming
the same basic balance and interface equations of the monolithic approach as the
presented one, the assessment framework processes stay the same. Regarding the
procedure shown in figure 5.6, step number 3 containing Carat++ and OpenFOAM,
is just replaced by the monolithic FSI simulation environment.
Besides the change of the actual FSI environment (e.g., the discretization and the
solution method), no changes are required for the MMS framework to assess the
monolithic FSI environment with the elaborated benchmark sequences presented in
chapters 3, 4, and 5.

5.9.2 Adaptation of the Mapping Schemes
If the mapping procedure is changed or adapted to another surface coupling scheme,
no changes at all would be necessary, as long the underlying equations of the
Dirichlet-Neumann surface coupling are not changed in their differential form (cf.
equations 5.4 and 5.6). As soon as the interface conditions change, the framework
has to adapt the source terms according to the underlying equations.

5.9.3 Adaptation of the Time Advancement
As already explained in the previous sections of this chapter, the solution of the FSI
problem should be independent of the solution strategy. Therefore, the same MMS
setup has been used in the presented FSI benchmarks, independent of the choice of
loose or iterative coupling schemes. This behavior also holds for the choice of a
different communication pattern (e.g., a Jacobian based FSI communication instead
the Gauss-Seidel communication [101]).

5.9.4 Creating Force-Free Benchmarks at the Interface
If the interface equation of surface traction forces is not accessible or should not be
accessed, equation 5.6 must be fulfilled by the definition of the manufactured fields.
This means that the structure and the fluid must be in equilibrium at the common
interface Γ. If this requirement is fulfilled the term T̂Γ

FSI of equation 5.26 vanishes.
One possible way to create benchmarks without additional interface traction forces
would be the definition of the pressure with respect to the demanded structural force
T̂Γ
s . Using equations 5.18 and 5.7, the equilibrium forces at the interface Γ can be

written as shown in equation 5.37.(
−ρf P̂ γI + 2νmρfD̂

)
· n̂γf · det(F̂) + T̂Γ

s = 0 (5.37)
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With the assumption of νm = 0 at the interface Γ, equation 5.37 simplifies to
equation 5.38.

−ρf P̂ γn̂γf · det(F̂) + T̂Γ
s = 0 (5.38)

Assuming T̂Γ
s as any given function of d̂ (what is obviously the case in the bal-

ance of momentum of the structure), the required traction can be computed using
equation 5.39.

P̂ γn̂γf = T̂Γ
s

1

ρf · det(F̂)
(5.39)

The kinematic pressure in equation 5.39 has to be set as the manufactured solution
at the interface. In order to generate a pressure of the total field, the procedure
proposed in section 5.8.10 is used. P̂ γ is the manufactured solution of the field
P̂ at the interface γ. A pressure field definition is suggested in equation 5.40 for a
moving wall which is located at the initial time step at XΓ = X(x, y = 0, z, t = 0).

P̂ = P̂ γ + cos (x+ y + z) · sin (πt) ·
[
y − d̂y

]2
(5.40)

The expression
[
y − d̂y

]
cancels the second term for the position of the wall at ev-

ery timestep. Therefore, the pressure at the wall is equal to P̂ γ at every timestep. As
the shear stresses are zero at the wall due to νm = 0, the velocities can be chosen
along benchmark 3 presented in table 5.4, without any further restriction.

Another possibility would be the adaptation of the molecular viscosity νm = νm(x, t)
in terms of the required traction forces of the structure. This procedure has been de-
veloped and demonstrated in [26].

5.10 Results
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Figure 5.19: Benchmark 1: Convergence plot using matching grids
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Figure 5.20: Benchmark 1: Convergence plot using one very fine grids
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Figure 5.21: Benchmark 1: Convergence plot using a similar grid resolution
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Figure 5.22: Benchmark 2 non-coupled: Convergence plot for structural dis-
placements d
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Figure 5.23: Benchmark 2 non-coupled: Convergence plot for fluid fields u and
P
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Figure 5.24: Benchmark 2 non-coupled: Convergence plot for fluid surface trac-
tion TΓ
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Figure 5.25: Benchmark 2 displacement coupled loose: Convergence plot for
structural displacements d
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Figure 5.26: Benchmark 2 displacement coupled loose: Convergence plot for
fluid fields u and P
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Figure 5.27: Benchmark 2 displacement coupled loose: Convergence plot for
fluid surface traction TΓ
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Figure 5.28: Benchmark 2 displacement coupled iterative: Convergence plot for
structural displacements d
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Figure 5.29: Benchmark 2 displacement coupled iterative: Convergence plot for
fluid fields u and P
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Figure 5.30: Benchmark 2 displacement coupled iterative: Convergence plot for
fluid surface traction TΓ
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Figure 5.31: Benchmark 2 fully coupled loose: Convergence plot for structural
displacements d
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Figure 5.32: Benchmark 2 fully coupled loose: Convergence plot for fluid fields
u and P
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Figure 5.33: Benchmark 2 fully coupled loose: Convergence plot for fluid sur-
face traction TΓ
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Figure 5.34: Benchmark 2 fully coupled iterative: Convergence plot for struc-
tural displacements d
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Figure 5.35: Benchmark 2 fully coupled iterative: Convergence plot for fluid
fields u and P
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Figure 5.36: Benchmark 2 fully coupled iterative: Convergence plot for fluid
surface traction TΓ
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Figure 5.37: Benchmark 2 NMG1 fully coupled iterative: Convergence plot for
structural displacements d
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Figure 5.38: Benchmark 2 NMG1 fully coupled iterative: Convergence plot for
fluid fields u and P
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Figure 5.39: Benchmark 2 NMG1 fully coupled iterative: Convergence plot for
fluid surface traction TΓ
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Figure 5.40: Benchmark 2 NMG2 fully coupled iterative: Convergence plot for
structural displacements d
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Figure 5.41: Benchmark 2 NMG2 fully coupled iterative: Convergence plot for
fluid fields u and P
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Figure 5.42: Benchmark 2 NMG2 fully coupled iterative: Convergence plot for
fluid surface traction TΓ
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Figure 5.43: Benchmark 2 NMG3 fully coupled iterative: Convergence plot for
structural displacements d
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Figure 5.44: Benchmark 2 NMG3 fully coupled iterative: Convergence plot for
fluid fields u and P
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Figure 5.46: Benchmark 3 fully coupled loose 3D: Convergence plot for struc-
tural displacements d
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Figure 5.47: Benchmark 3 fully coupled loose 3D: Convergence plot for fluid
fields u and P
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CHAPTER 6

Conclusion and Outlook

6.1 Conclusion

In this thesis, a flexible and modular framework for a stringent Code Verification
was developed and applied for a partitioned Fluid-Structure Interaction (FSI) envi-
ronment. The particular application was the simulation of lightweight and elastic
membranes in the wind.
The main methodical focus of this thesis was on the FSI modeling in a partitioned
FSI environment, in contrast to a monolithic approach. In this context the topic of
non-matching grids is of interest, which has been discussed in chapter 5.
The structural dynamics, the fluid dynamics, and the coupling within the FSI are as-
sessed in a hierarchical manner. This assessment has been performed for the single
fields of the fluid and the structure individually, but also altogether for a fully cou-
pled FSI in chapters 3, 4, and 5. The hierarchical order of the proposed benchmarks
has successfully been used to precisely detect deficiencies and reveal possible im-
provements of the software, which influence the order of accuracy. The order of
accuracy tests, concentrating on the Method of Manufactured Solutions, confirmed
their character of a rigorous and strict tool for the assessment of consistency of soft-
ware. Especially the independence of the discretization method and the ability to
assess every software implementation based on a balance equation turned out as a
major virtue of the method.

The developed framework with its benchmark applications very precisely shows
the abilities and limits of the investigated software for CSD, CFD, and FSI. The
assessed CSD software Carat++ confirmed its formal accuracy of second order in
space and time. Therefore it can be stated that the governing equations are im-
plemented in a consistent way. The assessed CFD software OpenFOAM R©showed
convergence of at least first order in space and time. Due to incomplete implementa-
tions, the formal orders of accuracy dropped to a lower level than the schemes could
theoretically achieve. The assessed coupling procedures confirmed their formal ac-
curacy of second order. The complete FSI process clearly showed an accuracy of
first order in space and time. Although most of the contributing software codes per-
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6.2 Outlook

form second order accurate, the CFD software, as the weakest part of the simulation
environment, lowered the total order of accuracy to one.
In order to increase the accuracy of the fully coupled FSI simulations with the
present environment, some possible improvements have been identified and sug-
gested in chapter 4 and 5.

6.2 Outlook

To conclude it shall once more be mentioned that the presented framework with
its hierarchical benchmark suite provides a powerful method for the assessment of
CFD, CSD, and FSI environments. The method can equally be used for partitioned
and for monolithic simulation environments equally. The modularity of the de-
veloped method and the elaborated framework encourage for modifications of the
benchmark suite and for extensions to other parts of the simulation environment
like, e.g., other balance equations. The elastic structures in mind can be composed
of different elements. For example, umbrella structures often consist of steel rods
in combination with membranes and edge cables. This combination of elements
could be tackled in a series of elementwise individual hierarchical benchmarks, and
a benchmark series combining all elements in an unsteady flow regime.
The assessment of software for heat transfer, compressible fluids, contact problems,
or the fluid solution using the Lattice-Boltzmann method also represent interesting
future investigations regarding Code Verification.
Furthermore, one could also think of the Verification of grid or solution depen-
dent balance equations, such as Detached Eddy Simulations (DES), the modeling
of near wall behavior of turbulent flows (wall functions), or sub-grid scale models
for Large-Eddy Simulations (LES).

Once the confidence in the simulation environment is set – here the presented frame-
work can contribute its share - the next logical step should be to turn towards phys-
ically realistic problems. Simulations in the application of interest have to be per-
formed, the numerical errors have to be evaluated, and comparisons with measure-
ments have to be made in the context of Validation in order to finally obtain confi-
dence in the simulation results of flexible structures in the numerical wind tunnel.
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