Bootstrapped Gradient Temporal-Difference Learning

Dominik Meyer!

Abstract—1In this work we aim at providing a overview
on gradient based temporal difference learning methods in
reinforcement learning. We will look at three different cost
functions, the mean squared Bellman error, the mean squared
projected Bellman error and the norm of the expected update.
Finally we will derive two new on-line gradient algorithms for
TD learning, that base on the idea of bootstrapping.

Index Terms— Reinforcement Learning (RL), Stochastic Gra-
dient Descent, Bootstrapping, Gradient Temporal-Difference
(GTD)

I. INTRODUCTION

Reinforcement Learning (RL) is a machine learning tech-
nique, which is especially well suited to solve control
problems in systems, where sequential actions have to be
taken. The basis for RL, Markov Decision Processes and
Dynamic Programming have been well studied in the fields
of engineering and operations research. Since the field of
Artificial Intelligence (Al) picked up these topics, alternative
and approximative solution methods have been contributed
to this field.

Here we consider learning to take place in the framework
of a Markov Reward Process (MRP). It consists of a tuple
(Z,P,R,Y), where . is the set of possible state of the
environment, P : . x . — [0,1] the conditional transition
probabilities P(s,s’) to go from state s to s', R:.¥ - R a
reward function, assigning immediate reward r to a state s
and y € [0, 1] a discount factor.

One central goal in RL is the estimation of the so called
value function, which is the expectation of future reweards
Y Yralso= s] (1)
1=0

V:/ =R V(s):=E

for all states of the environment.
It is known, that the Bellman equation holds for the value
function

V(s) =R(s) +y2P(s,s’)V(s’).)

The right hand side of equation (2) is often referred to as
the Bellman operator, denoted as .7V (s). The value function
V(s) is a fixed point of the Bellman operator 7V (s), i.e.
V(s)=TV(s).

In may application scenarios, the state space is to large to
be represented by a simple table. Function approximation is
therefore a valuable tool to enable learning in such scenarios.
A very common approach is to construct a set of features

*This work was partly supported by the International Graduate School
of Science and Engineering, TUM

The authors are with the Institute for Data processing, Technische Uni-
versitit Miinchen, Germany. <firstname.lastname>@tum.de

Martin Knopp!

Hao Shen!

¢ ;.7 — R¥ on the perceived states and then approximate
the value function with a linear model. For a given state the
value function will be approximated by

V(s)~ (¢(s))"0=:Vp€.Z, 3)

where 0 € R is a parameter vector and .% := {®0|6 € RF}
is the hypothesis space of possible value function approxima-
tions, i.e. the span of the features @ := ¢ (.¥). As a shorthand
we will write ¢ and ¢’ instead of ¢ (s) and ¢ (s”), respectively.

II. DERIVATION OF GRADIENT TEMPORAL DIFFERENCES

In the setting of on-line Temporal Difference (TD) learn-
ing, tuples (s;,r;,s;) of state transitions are sampled and the
parameter vector 6 is updated at each time step .

This formulation allows us to formulate the problem as
a supervised learning problem, where we aim at finding the
parameter vector 6. By using the fixed point property V =
R+ YyPV = JV of the Bellman operator the Mean Square
Bellman Error is defined as

JURES R 11(0) = 1|V — TVl
= 3(E[%])* (MSBE),
with 89 = 8(8) :=r+ 0" (y9' — ¢) being the TD error. Un-
fortunately, .7V might not lie in .%, but can be projected in

to the hypothesis space by the projector [T=& " (CIDCDT) o,
This leads to our second objective function

LRES R (0) =1V —T1T V|
= JE[890] "E[¢¢ '] 'E[8 9]

“4)

&)

which is called the Mean Squared Projected Bellman Error.

Recall, that in TD(0) learning with linear function approxi-
mation the parameter vector is updated as 6,1 = 6;+ ¢ 0, ¢,
where o; > 0 is a sequence of step size parameters. The last
part E[8g¢] € R¥ can be regarded as the remaining error for
a given 0. This should be zero and we can therefore derive
a third cost function

JiRESR O 3(0) = L|E[Se0

= 3E[80¢] ' E[So¢] (NEU),

(6)

which is called the Norm of the Expected Update.

To minimize the above three cost functions, we employ a
stochastic gradient descent algorithm. Generally this can be
denoted by

041 =0+ 0,VoJi(6). (N

Therefore we need to derive the gradients to our three
objective functions.

(MSPBE),

The TD error 8y contains two occurences of the
parametrized value function, one for the state s and one for
the state s’ to which we transited to. If we now introduce
two independent parametrizations 0; and 6,, we arrive at a
TD error like

0, ¢. (8)

In each case we can choose to set 6; = 6, = 0 and derive with
respect to 6, or consider 8; = 6,_; being fixed and derive
with respect to 8, = 6. The latter is called bootstrapping,
where we use estimates of the value function with informa-
tions from the previous iteration.

Let us illustrate the difference at the example of two very
well known algorithms, which can be derived from the first

591’92 =r-+ ’}/GIT¢)/ —

cost function Jy. If we now choose to set 6 = 6, = 0 and
derive the gradient, we arrive at
VJi(0) =E[S(9'—9¢)], (BRM) ©)

which is the Bellman Residual Minimization [4]. On the
other hand, with setting 8; = 6,_ and 6, = 6, we can derive

—E[6p 9],

which is the original Temporal Difference algorithm for
linear value function approximation [3].

The same can be done with the third cost function, and
by deriving the gradient without using bootstrapping, we get

(E[(y9'—)9 "]) "E[Se9], (11)

which is the recently introduced Gradient Temporal Differ-
ence learning algorithm [1], which is known to be convergent
in off-policy settings with function approximation, which
unfortunately does not hold for BRM.

If we now introduce bootstrapping to the third cost func-
tion and derive the gradient, we get an update in the form
of

Vi(6) = (TD) (10)

VJ3(6) = (GTD)

VJ3(6) = ~E[¢p¢ '|E[5e9],

which we will call Bootstrapped Gradient Temporal Dif-
ference learning. These two gradient updates unfortunately
have the property to be biased, if calculated with only
one sample at a time. In BRM, therefore, double sampling
was introduced, where for each update, two independent
samples have to be collected. Of course, this is only possible,
if we have a model or simulator of the learning process
at hand. In [1] the authors therefore introduced a trick,
to avoid this double sampling. They introduced a set of
secondary weights, which will be used to estimate one of
the expectation terms in the gradient update

(BS-GTD) (12)

w = E[5p¢]. (13)

The gradient updates for the third cost function, therefore
consist of

VJ3(0) = (E[(y9'—¢)9'])'w, (GTD)

(14)
VJ3(0)= —E[p¢ 'lw. (BS-GTD)

For the second cost function, we arrive at analogous results
and can obtain the Gradient Temporal Difference 2 (GTD2)
algorithm [2] and a bootstrapped version of it

VL(0) = (E[(y9'—9)0 ') (E[¢¢]) ' E[Se9]
~E[(y9'—)¢ lu, (GTD2)
Vh(0)=—E[p0 |(E[p¢"]) 'E[S9] (15)
= —[E[69]
~ —E[¢p¢ Ju. (BS-GTD2),

with u~ (E[¢9T]) " E[5,9].

Two things are here to notice: First, we also need a set of
secondary weights, to not have to double sample. Second, it
is to notice, that for the bootstrapped version of GTD2, we
either arrive at the same update, as classical TD learning, or
by approximating again two of the expectations we arrive at
the same update, as we already had for BS-GTD. Therefore,
we have only gained new insight into the derivation of those
two algorithms, and their relation to the MSPBE.

III. EMPIRICAL RESULTS

We compared the new bootstrapped versions to their non-
bootstrapped counterparts with respect to their empirical
convergence. All experiments were run on a 14 state “Boyan
chain” with 4 features. Further details about this MRP
environment can be found in [5]. The learning rates were
fixed through the whole learning process and if there were
two learning rate parameters, their relation was o = - 3.

-~ -~ BS-GTD a=0.5 p=0.1
N -~ GTD a=1 u=0.01
250 N TD(0) a=0.3
' . —— GTD2 a=0.9 u=0.3
) — BS-GTD2 a=0.1 u=6
o AN — RGa=09 1

05

0.0
Episodes

REFERENCES

[1] R. S. Sutton, Csaba Szepesvdri, and H. R. Maei. A convergent
O(n) algorithm for off-policy temporal-difference learning with linear
function approximations. In NIPS 21, pages 1609—-1616. The MIT Press,
2008.

[2] R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver,
C. Szepesvari, and E. Wiewiora. Fast gradient-descent methods for
temporal-difference learning with linear function approximation. In
Proceedings of ICML 2009, pages 993-1000, 2009.

[3] R. S. Sutton, and A. G. Barto. Reinforcement Learning: An Introduc-
tion, Cambridge, MA, USA: MIT Press, March, 1998.

[4] L. C.Baird. Residual algorithms: Reinforcement learning with function
approximation. In Proceedings of ICML 1995 pages 30-37, 1995.

[5] J. Boyan. Technical update: Least-squares temporal difference learning.
In Machine Learning, 49:233-246, 2002.

	Introduction
	Derivation of Gradient Temporal Differences
	Empirical Results
	References

