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Abstract 
 During my PhD study, I improved the performance of CS-Rosetta on protein structure 

determination by following routes: 1) I reported advances in the calculation of protein 

structures from chemical shift NMR data alone. I demonstrated that combination of a new 

and improved fragment picker and the iterative sampling algorithm RASREC yield significant 

improvements in convergence and accuracy. Moreover, I introduced improved criteria for 

assessing the accuracy of the models produced by the method. 2) I benchmarked the 

performance of AutoNOE-Rosetta, a novel and robust approach for automatic and 

unsupervised simultaneous nuclear overhauser effect (NOE) assignment and structure 

determination within the CS-Rosetta framework on 50 protein targets ranging from 50 to 200 

residues in size. The approach proved to be able to tolerate incomplete and raw NOE peak 

lists as well as incomplete or partially incorrect chemical shift assignments. 3) I studied the 

effect of incomplete and erroneous chemical shifts on automatic NOE assignments and 

protein structure determinations. With 3 automatic NOE assignment and protein de novo 

programs CYANA, ASDP and AutoNOE-Rosetta, the test was carried out on a benchmark of 

three proteins and 10 typical kinds of problems in chemical shift assignments. 
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Zusammenfassung	
  
 Während meiner Doktorarbeit verbesserte ich die Leistung von CS-Rosetta bei der 

Proteinstrukturvorhersage auf folgende Wege: 1) Ich verbesserte die Berechnung von 

Proteinstrukturen mit Hilfe von chemischen Verschiebungen der NMR-Spektroskopie. Ich 

zeigte, dass die Kombination eines neuen und verbesserten Fragment Pickers und dem 

iterativen Sampling-Algorithmus RASREC zu signifikanten Verbesserungen von Konvergenz 

und Präzision führen. Des Weiteren habe ich ein verbessertes Kriterium eingeführt um die 

Genauigkeit der von der Methode generierten Strukturmodelle zu beurteilen. 2) Ich habe die 

Effizienz von AutoNOE-Rosetta, einem neuen und robusten Ansatz zur automatischen und 

nicht überwachten Zuweisung  des Nuclear-Overhauser-Effekts (NOE) und gleichzeitigen 

Strukturbestimmung innerhalb des CS-Rosetta Frameworks, mit 50 verschiedenen 

Proteinen (mit Proteinlängen von 50 bis 200 Aminosäuren) bewertet. Es konnte gezeigt 

werden, dass sowohl unvollständige und unbearbeitete NOE Peak Listen als auch 

unvollständige und teilweise fehlerhafte Zuweisungen der chemischen Verschiebung von 

der Methode toleriert werden. 3) Ich untersuchte den Einfluss von unvollständigen und 

fehlerhaften chemischen Verschiebungen auf die automatische Zuweisung des Nuclear-

Overhauser-Effekts und auf Proteinstrukturvorhersagen. Hierfür wurden  die drei 

Programme zur automatischen NOE-Zuweisungs und de novo Proteinsturkturvorhersage 

CYANA, ASDP und AutoNOE-Rosetta auf einem Benchmark Datensatz von drei Proteinen 

und 10 typischen Problemen in der Zuweisung von chemischen Verschiebungen getestet. 

 



 

Chapter 1 Introduction 

1.1 Protein structure determination methods 

 Proteins are large molecules made up of one or more chains of amino acids. As main 

components, proteins play lots of important roles in organisms:  enzymes catalyzing 

chemical reactions in metabolic processes; receptor proteins on cell membranes getting 

extracellular signals and transmitting into cells; keratin protein making up nail plates of 

animals, etc. To recognize the molecular-scale functions(e.g. ligand binding) of proteins, 

their 3D structures should be determined and studied. Nowadays three methods, X-ray 

crystallography, nuclear magnetic resonance(NMR) spectroscopy and Cryo-electron 

microscopy(Cryo-EM) are usually employed to determine protein structures, and the 

determined structures are deposited in Protein Data Bank (PDB)(www.rcsb.org) which is a 

repository contains information about experimentally-determined structures of proteins, 

nucleic acids, and complex assemblies. Table 1.1 shows the statistics of current depositions 

in PDB( up to April, 2014).  

Exp. Method Proteins Nucleic Acids Protein/NA 

Complexes 

Other Total 

X-RAY 81610 1516 4249 4 87379 

NMR 9076 1076 204 7 10363 

EM 514 51 170 0 735 

HYBRID 59 3 2 1 65 

other 155 4 6 13 178 

Total 91414 2650 4631 25 98720 

Table 1.1: Numbers of deposited structures in Protein Data Bank by different 

methods(www.rcsb.org). 

 As shown in Table 1.1, nearly 90% of proteins are determined by X-ray 

crystallography since it's the most powerful method to obtain macromolecular 

structures(www.rcsb.org). The steps to determine high resolution structures of proteins by x-

ray are demonstrated in Figure 1.1. The proteins are purified and crystallized firstly, and 

normally this is the slowest step in the experiment(Pechkova and Nicolini 2003), particularly 

for membrane proteins. Once we have the crystal, we position it in X-ray beam and the 

crystal produces a diffraction pattern which is recorded and analyzed to determine the 

electron density distribution map of the molecule in the crystal.  Finally, the electron density 
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is interpreted to determine atom coordinates. To improve the accuracy of structures, an 

iterative refinement is carried out  by fitting the calculated diffraction pattern to the 

experimental patterns. Because there is no size limitation of molecules for X-ray 

crystallography determination, it can be applied to very large macromolecular 

complexes(>~100 kDa) and provide detailed atom locations. However, X-ray crystallography 

works only if the molecule could be crystallized but this step sometimes limit its applications 

to particular proteins, e.g. flexible proteins. In addition, we cannot study the dynamics of 

proteins in solutions by X-ray because the proteins are crystallized and in solid phase. 

 

Figure 1.1: Diagram of structure determination by X-ray crystallography 

 The second popular method to determine protein structures is nuclear magnetic 

resonance(NMR). Different from X-ray method, proteins should be purified and dissolved in 

solutions and then placed in a strong magnetic field. Conventionally two kinds of data are 

recorded in NMR experiment, the first is the nuclear magnetic resonances of protons and 

labeled carbons and nitrogens in the protein, the second is the nuclear overhauser 

effects(NOE)(Noggle 1971) which consist the intro-protein distance information. Traditionally 

these data are picked from NMR spectrum and assigned to atoms manually but lots of 

automatic peak-picking algorithms and peaks assignment methods are developed and 

implemented in recent years. With assigned resonances and NOEs, computational 

programs, for example CYANA, are employed to calculate the protein structures. Since the 

NOE distance restraints are not always super-precise, more than one models may match the 

NMR observation, so NMR structures are normally deposited as ensembles. Compare to X-

ray method, the major disadvantage of NMR is that it's normally not applicable to large 

proteins(weights > ~50 kDa) (Yu 1999) because of slower tumbling of the molecule in 

solution; as a consequence, the efficiency of magnetization transfer through bonds 

employed in NMR experiments decreases(Clore and Gronenborn 1998). What's more, large 

proteins will introduce more complexity, e.g. overlap peaks to the NMR spectrum and make 

it hard to analyze.  The major advantage of NMR method is that it determine structures in 

solution, and thus it's the premier method for studying the atomic structures of flexible 

Diffrac'on*pa,erns* Electron*density*map* Atomic*models*Crystals*
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proteins(Goodsell). Besides structures, NMR can also measure information on the dynamics 

of various parts of the proteins over wide time durations. 

 Start from the end of last century, Cryo-Electron microscopy is also employed to 

determine protein structures, especially for large protein complexes. The first protein 

resolved in atomic resolution is  bacteriorhodopsin which is determined by Richard 

Henderson(Henderson et al. 1990) in 1990. On one hand, the advantage of  Cryo-EM is that 

it is able to tackle very large or heterogeneous assemblies(Saibil 2000) and provides  3D 

image of molecules directly. On the other hand, several drawbacks of Cryo-EM limit it's 

application in structural biology field.  The main problem of Cryo-EM is that its resolution is 

still not as high as X-ray or NMR. And because Cryo-EM cannot provide the atom positions 

so it usually combine information from X-ray crystallography or NMR spectroscopy to sort 

out atomic details(Goodsell). 

1.2 Nuclear magnetic resonance (NMR) 

 Nuclear magnetic resonance, abbreviated as NMR is a physical phenomenon that 

nuclei of atoms absorb and release electromagnetic radiation in a static magnetic field. The 

resonance frequency depends on the intensity of the magnetic field and the spin quantum 

number. In detail, when nuclear spins are placed in an external magnetic field,  different spin 

states have different magnetic potential energies. according to the theory of Quantum 

mechanics, the states and energies are not continuous distribution, but have several energy 

levels. The number of nuclear spins in different states are approximately equal at thermal 

equilibrium. In the presence of the static magnetic field, a radio frequency signal of the 

proper frequency can induce a transition of nuclear spins from their lower to higher energy 

state. If the radio frequency signal is then switched off, the nucleus spins return to the 

thermodynamic state and produce radio frequency signals. Then the nuclear spins can be 

induced again and repeat the above process. 

1.2.1 NMR spectroscopy for protein determination 

 Nuclear magnetic resonance spectroscopy (Figure 1.2) is a powerful and 

theoretically technique that commonly used to determine the structures and properties of 

organic compounds. In a molecule, due to different chemical environments and shielding 

effect by neighbor atoms, the resonant frequencies of different nucleuses are various and 

occur as peaks in NMR spectroscopy. However, the difference between two nearby peaks 

are quite small so that the frequencies are measured as relative values to a standard which 

is usually Tetramethylsilane(TMS). This relative frequency called chemical shifts(𝛿) and 
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calculated by Eq. 1.1 where 𝜐!"#$%& is the frequency of sample and 𝜐!"# is the frequency of 

TMS. 

𝛿 = !!"#$%&!!!"#
!!"#

×10!                                                  (1.1) 

 

Figure 1.2: Example of 1D NMR spectroscopy of 1H provided by Diana C. Rodriguez 

Camargo. The experiment was recorded using a 500-MHz Bruker spectrometer equipped 

with a cryo-triple resonance probe. The proton chemical shift was referenced with respect to 

the water resonance frequency (4.78 ppm at 4°C). 

 If the sample is large organic molecule, most of the signals will be overlap heavily in 

1D NMR spectrum. To resolve this problem, people introduce additional spectral dimensions 

as high-dimensional spectra(Figure 1.3) which shows the correlation of atoms and provides 

more information about a molecule than 1D NMR spectra and are especially useful in 

determining the structure of a molecule. In the high-dimensional NMR spectroscopy, each 

cross peak shows a correlation between nucleus spins and the coordinates are the chemical 

shifts of spins. The common high-dimensional spectroscopies for protein structure 

determination include Heteronuclear single-quantum correlation spectroscopy (HSQC), 

correlation spectroscopy (COSY)(Noda and Ozaki 2005), total correlation spectroscopy 

(TOCSY) and nuclear overhauser effect spectroscopy (NOESY). Heteronuclear single-

quantum correlation spectroscopy (HSQC) discovers the correlations between 1H  and 

another type of nucleus spin( normally is 13C or 15N) which are directly coupled by one bond, 

for example 1H-15N HSQC. Correlation spectroscopy (COSY) is the simplest and most 

popular NMR experiment used for determining spin-spin couplings. Similar to HSQC, The 

correlation signals(cross peaks) appear when spins are directly coupled, and if there is no 

coupling, no correlation is expected to appear. However, this correlation is between the 

same type of spins. The total correlation spectroscopy(TOCSY) experiment is similar to the 

1H [ppm] 8.5  8.0  7.5  7.0 
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COSY experiment, on which signals (cross peaks) of coupled spins are observed. However, 

correlation signals are seen between distant spins coupled through a chain of spins. Based 

on this feature, TOCSY can be used to identify the large spin network of molecules. In the 

application of protein structure determination by NMR, the high-dimensional HSQC, COSY 

and TOCSY, e.g. HCCH-TOCSY(Olejniczak et al. 1992), HC(CC)(CO)NH(Montelione et al. 

1992) are generally employed to assign chemical shifts. Different from the above through-

bond spectroscopy, the through space nuclear overhauser effect spectroscopy (NOESY) 

shows the effect of dipolar interaction from one nuclear spin to another by cross-relaxation 

through space. Since NOE dipolar coupling interacts are throughout space, it provides 

structural information of molecules, then it becomes a very useful tool to study the 

conformation of proteins. 

 

Figure 1.3: Example of 2D NMR spectroscopy provided by Diana C. Rodriguez Camargo. 

1.2.2 NMR chemical shift assignment 

 The chemical shifts picked from NMR spectrum are raw data and not related to 

proteins. The assignment is to find out which chemical shift corresponds to which atom and 

this work can be carried out manually or automatically with the help of computers. 

Separately, the automatic backbone chemical shift assignment have been well-developed 

and generally easy to be done, but the automatic assignment of sidechain is relatively less 

explored and still a bottleneck in NMR structure determination(Zeng et al. 2011). 
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a) Manual NMR chemical shift assignment  

 In recent years, although lots of automatic chemical shift assignment methods have 

been developed and applied(Guerry and Herrmann 2011), most of the assignment work is 

still done manually. For backbone chemical shift assignment, HSQC and triple NMR spectra 

CBCANNH(GRZESIEK and Bax 1992a) and CBCA(CO)NNH(GRZESIEK and Bax 

1992b)(Figure 1.4) are necessarily adopted. As shown in Figure 1.4, in CBCANNH there is 

strong correlation among Cαi, Cβi, Ni and HNi (as detection) as well as weak correlation 

among Cαi-1, Cβi-1, Ni and HNi. In CBCA(CO)NNH the correlation happens only among Cαi-1, 

Cβi-1, Ni and HNi. From HSQC, we select a clear peak pi which is not overlapped as the 

original point. Start with it, we are guided to its corresponding peak rpi of the same residue in 

CBCANNH spectra according the chemical shift value. In parallel, we also locate the relative 

peak lpi in CBCA(CO)NNH spectra. To confirm the found peaks are consistent on the same 

residue, we compare rpi and lpi then we can assign the chemical shifts of Cαi and Cβi. From 

this new assigned Cαi and Cβi, in CBCA(CO)NNH locate new N-HN pairs and repeat the 

above steps. 

 There are various manual methods and NMR spectra e.g. HBHA(CO)ONH 

(GRZESIEK and Bax 1993), H(CCCO)NNH (Montelione et al. 1992; GRZESIEK et al. 1992), 

CC(CO)NNH (GRZESIEK et al. 1992), HCCH-TOCSY(Bax et al. 1989) available for 

sidechain chemical shift assignment. However, it is still much more challenging than the 

backbone resonance assignment because of its complexity  and serious overlap. 

 

Figure 1.4: CBCANNH and CBCA(CO)NNH spectra 

b) Automatic NMR chemical shift assignment 

 In the past two decades, not less than 44 publications for automated backbone 

and/or sidechain resonance assignment algorithms are published(Guerry and Herrmann 
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2011; Schmidt and Güntert 2012). Among them, only 19 programs can work purely based on 

NMR peaks, and all the others need additional input data like 3D structures(Jung and 

Zweckstetter 2004), residual dipolar couplings(Wang et al. 2011), assigned backbone 

chemical shifts, etc. In addition, many programs(Lukin et al. 1997; Buchler et al. 1997; 

Zimmerman et al. 1997; Leutner et al. 1998; Jung and Zweckstetter 2004) only focus on 

assigning the backbone and Cβ chemical shifts. Moreover, only 3 exclusively NMR peak 

based programs have been used to determine protein structures deposited in the Protein 

Data Bank(PDB). One is AutoAssign(Zimmerman et al. 1997) for automated backbone 

assignment and the other two, PINE(Bahrami et al. 2009) and GARANT(Bartels et al. 1997) 

are appropriate for full resonance assignment. In 2012, Schmidt E, Güntert P presented a 

new algorithm FLYA for reliable and general NMR resonance for both sidechain and 

backbone(Schmidt and Güntert 2012), which works much better than GARANT and PINE. 

The input of this new algorithm is only the sequence of proteins and any combination of 

peak lists from high-dimensional through-bond or through-space NMR spectra 

experiments(Schmidt and Güntert 2012). For each kind of NMR spectra, FLYA defines 

through-bond or through-space magnetization transfer network in the database, based on 

which FLYA generates expected peaks where each atom has chemical shift range from the 

BMRB statistics. Then FLYA maps the expected peaks to the measures peaks from 

experiment spectra by chemical shift match. With optimization, the accurate of FLYA is as 

high as 96−99% for the backbone and 90−91% for all resonances. 

1.2.3 Nuclear Overhauser effect (NOE) assignment 

 In order to extract distance information from the NOESY spectrum, the cross-peaks 

have to be assigned, in other words, the pairs of hydrogen atoms of the peak as well as 

labelled Carbon or Nitrogen need to be identified(Herrmann et al. 2002a). Because the 

precision of the chemical shift values of NOE peaks and assigned atoms are limited and 

there are usually about 0.03 ppm tolerance for Hydrogen and 0.3 ppm for carbon and 

nitrogen, so it's difficult to assign a NOE peak to a single hydrogen pair. The assignments 

will be either ambiguous or with serious errors. Nowadays, several programs for automatic 

NOE assignment and protein structure determination, such as ARIA(Linge et al. 2003; 

Rieping et al. 2007), CYANA(Güntert et al. 1997; Herrmann et al. 2002b), Auto-

Structure(Huang et al. 2005; Huang et al. 2006), UNIO(Serrano et al. 2012) and 

PASD(Kuszewski et al. 2004) are presented and applied. Among them, CYANA is most 

popular and widely used. The input of the NOE peak assignment algorithm 

CANDID(Herrmann et al. 2002b) for CYANA are protein sequence, assignment chemical 

shifts and raw NOE peak list without assignment. If there are conformational information 

from other sources available, CANDID also uses them(Kuszewski et al. 2004). Based on the 



CHAPTER 1 INTRODUCTION 

16 

chemical shift fitting within a pre-defined tolerance, a list of hydrogen pairs as well as their 

bonded Nitrogen or Carbon are assigned to each NOE peak initially. Then for each NOE 

peak, all assignments are sorted by some criteria and low ranking assignments are 

eliminated. The criteria for assignment ranking includes:1) the closeness of the chemical 

shifts of assigned hydrogen pairs fitting NOE peak. 2)Normally there are more than one 

NOE spectra are implemented for structure determination, and then there would be 

symmetric peaks between two relative peaks. 3)the distance of hydrogen pairs if prior 

structural knowledge, for example fragments for Rosetta exists. 4)In the NOE peaks, if the 

hydrogen pairs of one assignment are indirectly connected through a third atom, this 

assignment has high probability to be correct. After the assignment elimination, restraints 

are generated for each cross peak with at least 1 assignment. For the restraints, the upper-

distance bound is defined based on the intensity of the peak. Since there are noises and 

artifacts that are picked from NOE spectra as peaks, several filters are applied to eliminate 

spurious cross-peaks that should not be considered for restraint generation. For one peak, if 

all its assignments don't quite conform to the above criteria, it should be removed. In 

addition, the peak whose assignments exceed a maximum threshold is also eliminated. 

Third, peaks are also eliminated if the network anchoring score of their assignments remains 

low(Herrmann et al. 2002a). During the sampling, peaks are also eliminated if they are 

violated by decoy structures(Zhang et al. 2014). 

1.3 Macromolecular modeling program Rosetta 

The macromolecular modeling software Rosetta is initially presented in 1999 for 

protein structure prediction based on only the primary structures without experimental 

data(Simons et al. 1999). The predictions for protein domains with fewer than 125 amino 

acids regularly have a backbone root-mean-square deviation of better than 5.0 Å (Kaufmann 

et al. 2010). More impressively, there are several cases in which Rosetta has been used to 

predict structures with atomic level accuracy better than 2.5 Å (Kaufmann et al. 2010). In 

addition to de novo structure prediction, more functions has been developed and 

implemented in Rosetta in the past quarter century. Rosetta also has methods for protein-

protein docking(Zhang and Lange 2013), protein-ligand docking(Davis et al. 2009), 

homology modeling(Thompson et al. 2012), determining protein structures from 

experimental NMR(Raman et al. 2010; Lange et al. 2012; Schot et al. 2013), and protein 

design(Liu and Kuhlman 2006). 

Based on the sequence match, Rosetta picks hundreds of fragments for each 

segment (3-9 residues) of the proteins, and then it samples the conformations by switching 

fragments for every segment based on Monte Carlo algorithm(Rohl et al. 2004) to minimize 
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the knowledge-guided Rosetta energy functions. After a pre-defined trajectory of 

conformational sampling, thousands or even more structures are generated. Rosetta 

selected 10 structures with lowest energy as the final predicted models. 

The correlations between isotropic chemical shifts and structural information is 

largely based on empirical statistics gained from the mining of protein chemical shifts 

deposited in the BMRB as well as its corresponding 3D structures in the PDB. Building on 

top of Rosetta, Chemical-Shift-Rosetta (CS-Rosetta)(Schot et al. 2013) is a framework for 

structure calculation of biological macromolecules with the input of backbone NMR chemical 

shifts (13CA, 13Cβ, 13C', 15N, 1HA and 1HN) which are easily measured and assigned in NMR 

experiments as described in above. As shown in Figure 1.5, the main functions of chemical 

shifts in CS-Rosetta are to improve the accuracy of fragment picking and rescore the 

sampled structures. CS-Rosetta selects fragments from the PDB with both sequence and 

chemical shift match between fragments and target proteins. Then a regular Rosetta Monte 

Carlo assembly and relaxation procedure is carried out.  The all-atom models produced by 

Rosetta sampling are rescored by value match between experimental chemical shifts and 

computational chemical shifts of Rosetta models. The same to Rosetta, 10 structures with 

lowest energy are selected finally.  In the procedure of CS-Rosetta, the simulated chemical 

shifts of fragments and sampled models are both computed by SPARTA+ (Shen and Bax 

2010). 

 

Figure 1.5: Procedure of CS-Rosetta 

1.3.1 Fragment picking based on protein sequence and chemical 
shifts 

 In Rosetta, a fragment represents a small continuous segment (typically comprising 

3–15 residues) of protein with known 3D backbone structures, which is defined by φ, ψ and 

ω torsion angles(Figure 1.6). Based on the fragment library covering every residue position, 
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the fragment assembly algorithm can efficiently generate a wide variety of compactly folded 

structural models(Vernon et al. 2013). Among the fragment library, only a small percentage 

of accurate fragments are usually enough for de novo programs to generate a few models 

close to the native protein structure. 

 

Figure 1.6: torsion angles of protein backbone 

 The original fragment picking algorithm for CS-Rosetta was the multiple fragment 

replacement (MFR) method of the NMRPipe software package(Delaglio et al. 1995). From a 

large pool of crystal structures, MFR method scores all fragment candidates by 1) chemical 

shift similarity between the target’s values measured in NMR experiments and the shift 

values predicted by SPARTA+ for fragment candidates, 2) sequence match between target 

and the fragment candidates, 3) the torsion angle probabilities of fragment candidates. Then 

it selects low-score fragments to compose the fragment library for following structure 

predictions. The drawback of this method is that its chemical shift match score will decrease 

if the chemical shifts are incomplete in certain regions, and then it bias selects fragments 

whose secondary structure is alpha helix(Vernon et al. 2013). This problem was resolved by 

an upgrade of CS-Rosetta fragment picker(R2FP) (Simons et al. 1997; Rohl et al. 2004) 

which involves sequence based secondary structure prediction(Jones 1999; Meiler et al. 

2001; Karplus et al. 2003). In 2013, R. Vernon et al. presented a new fragment picking 

algorithm Rosetta3 Fragment Picker(R3FP) combining the advantages of both MFR and 

R32FP and introduce new concepts for scoring fragment candidates(Vernon et al. 2013). 

 In the new protocol, 200 fragments in both 3-residue and 9-residue size for each 

residue position are selected from a database of about 2.3 million fragment candidates 

generated from ~9,000 proteins. To improve the accuracy of fragments, following information 

of each residue in the database is analyzed or predicted: 1) sequence profiles from PSI-

BLAST(Altschul et al. 1997), 2) chemical shifts predicted by SPAETA+(Shen and Bax 2010), 

3) secondary structure assignment by DSSP(Kabsch and Sander 1983). To select the best 

match fragments, 5 independent scores are calculated for each residue in the database. 

φ"" ψ""" ω"""
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 CS-Score 𝑆!: this score only depends on the chemical shifts and use a sigmoid 

potential for the error between predicted and experimental chemical shifts. Then it can filter 

out badly matching data points. where 𝑁! and 𝑁!" are the number of available shifts that 

can be compared in the database or target, respectively. In Eq. 1.2, 𝛿!, 𝛿!" and ∆𝛿!" are the 

secondary shift of target, predicted secondary shift and prediction error, respectively. 

𝑆! =
!!
!!"

!

!!!
!!

!!!!!"
∆!!"

!!

!!"
!!!"#$                                                                (1.2) 

 Profile-Score 𝑆!: as described in Eq. 1.3, this score is to compare the sequence 

profile of target residues and candidates by Manhattan distance. 𝑃!  and 𝑃!" are the 

sequence profiles of target residue and candidate residue, respectively. 

𝑆! = |𝑃! − 𝑃!"|!!                                                                     (1.3) 

 Rama-Score 𝑆!: this score is to compute the probabilities of the candidate residues' 

backbone torsion angles in Ramachandran plot.  In Eq. 1.4, 𝑅(𝜙,𝜓, 𝑘, 𝑎𝑎)  is the 

Ramachandran density for residue type aa and secondary structure k,  weighted by the 

TALOS+(Shen et al. 2009) predicted secondary structure propensities 𝑃!""(𝑘). 

𝑆! =
!

!!!! !"#[!(!,!,!,!!)!!""(!)]!∈{!,!,!}
                                          (1.4) 

 SS-similarity-Score 𝑆!!: here, the secondary structure score from R2FP:NNMAKE is 

implemented, but the chemical shift based secondary structure propensities 𝑃!""(𝑘!""#) is 

used to instead secondary structure profile predicted based on sequence. Similar to CS-

Score, sigmoid potential is also used in this score function. 𝐶!!! represents the TALOS+ 

prediction confidence. 

𝑆!! = 𝐶!""
!

!!!!! !!""(!!""#) !!
                                                     (1.5) 

 Phi/Psi-Squarewell-Score 𝑆!": the last score compares the backbone torsion angles 

between candidates and targets whose backbone structure is predicted by TALOS+ based 

on chemical shift. 

𝑆!" =
!

!!!
!!

!"# !,!(!!,!!")!∆!!
!∗∆!!

!!
+ !

!!!
!!

!"# !,!(!!,!!")!∆!!
!∗∆!!

!!
                             (1.6) 

 In Eq. 1.6, 𝜙!, 𝜓! are predicted backbone torsion angles for targets and 𝜙!", 𝜓!" 

are candidates' torsion angles. ∆𝜙!, ∆𝜓! are the tolerances.  

 Overall, the final score function of a fragment at position k with N residues is: 

𝑆!"" = 𝑁!! 𝑆!(!) + 1.5𝑆!(!) + 𝑆!(!)+0.25𝑆!!
(!)𝑤(𝑟!!

(!)) + 5.0!!!!!
!!! 𝑆!"(!)𝑤(𝑟!"

(!))       (1.7) 
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1.3.2 Rosetta score 

 Rosetta scoring function is a model generated using various contributions that 

describe the protein-likelihood of a predicted structure, independent or dependent of the 

sequence (Simons et al. 1997; Simons et al. 1999). Two levels of conformations, centroid 

mode and full-atom mode(Figure 1.7), are utilized to represent protein side chains in Rosetta. 

In centroid mode, each side chain is represented by a centroid located at the side-chain 

center of mass(Rohl et al. 2004). consequently, the items comprising Rosetta score function 

are also divided into simple centroid scores and more sophisticated full atom scores. 

 

Figure 1.7: centroid mode and full-atom mode representations of proteins in Rosetta. 

 Following are typical items comprising the low-resolution Rosetta score function(Rohl 

et al. 2004): 

 vdw score:  generally, van der Waals' force is the sum of the attraction and repulsion 

between molecules. In Rosetta, only repulsive force is considered. D is the distance 

between two atoms and 𝑟!"# is the pre-determined van der Waals radius(Rohl et al. 2004).  

𝑣𝑑𝑤 = !!"#
! !!!

!

!!"#
!!!!!!"#

! ;                                                     (1.8) 

 env score: this score represents the probability of given residue in given environment. 

m is the residue index,  𝑎! is the amino acid type of residue m, 𝑛𝑛! is the number of 

residues surrounding  residue m(Rohl et al. 2004).  

𝑒𝑛𝑣 = − ln 𝑃(𝑎!|𝑛𝑛!)!                                                                      (1.9) 

 pair score: the interactions of each atom pair. m and n are the residue indices,  

𝑎! , 𝑎!  are the amino acid type of residue m and n, 𝑠𝑑!" is the sequence distance between 

residue m, n and  𝑐𝑑!" is the centroid-centroid space distance(Rohl et al. 2004). 

𝑝𝑎𝑖𝑟 = − ln !(!!,!!|!"!"!"!")
!(!!|!"!"!"!")!(!!|!"!"!"!")!!!!                                   (1.10) 
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 sheet score: this score represents the stand arrangement into sheets. 𝑛!!  is the 

number of sheets and 𝑛!" is the number of strands(Rohl et al. 2004). 

𝑠ℎ𝑒𝑒𝑡 = − ln 𝑃(𝑛!!|𝑛!")                                                                      (1.11) 

 cbeta score: this score stands for the neighbor frequency.  m and n are the residue 

indices, sh is the sell radius(6, 12 Å)(Rohl et al. 2004), 𝑃!"#!$%&!  is the probability in 

ensembles from fragments and  𝑃!"#$ is the probability randomly from fragments. nn is the 

number of neighboring residues within in the shell. 

 𝑐𝑏𝑒𝑡𝑎 = − ln !!"#!$%&!(!!!,!!)
!!"#$(!!!,!!)!!!                                                  (1.12) 

 rg score: The radius of gyration shows the root-mean-square distance between all 

atoms in a molecule and the centroid. N is the number of residues, m, n are the residue 

indices, 𝑟! is the position of residue m. 

 𝑟𝑔 = [𝑟! −
𝑟!

𝑁
!
!!! ]!/𝑁!

!!!
!/!

                                                (1.13) 

 In some situations, e.g. intro-protein pathway detection, high-resolution with full 

described sidechain is necessary. New sore items are also should be introduced into 

Rosetta score function. 

 rama score: the Ramachandran torsion angle probabilities.  𝜙! ,𝜓! are the backbone 

torsion angles, 𝑎! is the amino acid type, and 𝑠𝑠! is the secondary structure type. 

𝑟𝑎𝑚𝑎 = − ln[ 𝑃(𝜙! ,𝜓!|𝑎! , 𝑠𝑠!)]!                                                   (1.14) 

 hb score: the hydrogen bonding energies. m is the donor residue index, n is the 

acceptor residue index, 𝑑!"  is the acceptor-proton interatomic distance, ℎ!  is the 

hybridization, 𝑠𝑠!" is the secondary structure type 

ℎ𝑏 = − ln 𝑃(𝑑!"|ℎ!𝑠𝑠!")𝑃(cos𝜙!" |𝑑!"ℎ!𝑠𝑠!")𝑃(cos𝜓!" |𝑑!"ℎ!𝑠𝑠!")!!  (1.15) 

 dun score: the Rotamer self-energy.  m is the residue index, 𝑑𝑟! is the Dunbrack 

backbone-dependent rotamer(Shapovalov and Dunbrack 2011), 𝜙! ,𝜓!  are backbone 

torsion angles.  𝑎! is amino acid type. 

𝑝𝑎𝑖𝑟 = − ln !(!"!|!!,!!)!(!!|!!,!!)
!(!!)!                                               (1.16) 

 Besides the described score above, there are still more score items comprising 

Rosetta score function in both centroid and full-atom modes(Rohl et al. 2004). 
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1.3.3 Fragment assembly by Monte Carlo method 

 Rosetta assemble fragments into a protein-like structure by Monte Carlo simulation 

method starting from an fully extended conformation(Rohl et al. 2004). As shown in Figure 

1.8, the assembly process started with a random position in the sequence, A 9-residue 

fragment insertion segment is randomly located and from the fragment library a fragment for 

this window is randomly selected. In fact, Rosetta not really uses the selected fragment to 

replace the 9-residue segment in the protein chain, but just passes the backbone torsion 

angles. As a result, the protein structure and its Rosetta energy are changed. Rosetta 

retains or abandons the change according to Metropolis criterion(described below, Figure 

1.9). After decision, Rosetta randomly switches to another segment and repeats above steps.  

The 9-residue fragment insertions have 4 steps. In step 1, only Van der Waals score in 

evaluated, and this stage continues until all extended protein chain is replaced by fragments. 

In step 2, residue interaction scores and secondary structure scores, e.g., pair, env, sheet, 

ss_pair, hs_pair, are included and this step normally has 2000 fragment insertion attempts. 

In step 3, the secondary structure scores are increased to full weight to extensively search 

for secondary structure interactions and packing. Step 3 usually has 20,000 fragment 

insertion attempts. In the last step of 9-residue fragment insertion, the full centroid score 

function with all score items are evaluated. After the structure assembly from 9-residue 

fragments, short segment refinement by 3-residue fragment insertion is carried out to slightly 

compact the structures. To avoid the local minimum problem, many samplings start in 

parallel from different random positions to generate ensembles with both favorable local 

interaction and protein-like global properties(Rohl et al. 2004). 

Metropolis criterion: 

1) propose an unbiased random structure change 𝒎∗ = 𝒎!!! + 𝝐  

2) calculate the energy change: 𝛥𝐸 = 𝐸 𝒎∗ − 𝐸(𝒎!!!) 

3) always accept the change if  𝛥𝐸 < 0 

4) if step 3 doesn't pass, accept the change with probability 𝑝 =   exp(−𝛥𝐸 𝑘!𝑇)  

5) if accepted 𝒎! ≡ 𝒎∗, otherwise   𝒎! ≡ 𝒎!!!. 

 
Figure 1.8: Process of Rosetta fragment assembly 
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Figure 1.9: Metropolis criterion is used to determine the acceptance of structure change. 

Green means Rosetta energy decreases and acceptance; red means Rosetta energy 

increases and rejection; blue means Rosetta energy increases but acceptance. 

1.3.4 RASREC protocol 

 As mentioned in chapter 1.1, NMR structure determination is a big challenge if the 

size of proteins are larger than 15 KDa. For larger proteins, there were two major problems 

from experiment aspect: first, the NMR spectra will be overlapped, and second, the 

resonance line widths are related to the size of the protein.(Bax 1994). As the result, large 

protein determinations will involve more ambiguous NOESY-derived distance 

restraints(Lange and Baker 2011). From computation aspect, large size and increased 

complexity are also challenges for protein structure ab initio programs(Bonneau et al. 2002; 

Kryshtafovych et al. 2005).  For Rosetta, its normal de-novo structure calculation usually 

works for proteins within 100 amino acids. With additional sparse NMR data—chemical 

shifts, RDCs, and backbone HN-HN contacts, the size of Rosetta sampling limitation 

increases slightly, to 120–130 amino acids(Shen et al. 2008b; Raman et al. 2010), and 

hence the original CS-Rosetta protocol abrelax does not have a robust success rate for 

proteins over 15 kDa(Raman et al. 2010; Lange and Baker 2011). To overcome the 

experimental problems, deuteration is introduced(Nietlispach et al. 1996). To resolve the de 

novo sampling limitations, O. Lange and D. Baker presented an iterative sampling protocol 

that recombines structural features found in intermediate structures, named as resolution-

adapted structural recombination (RASREC)(Lange and Baker 2011).  

 As shown in Figure 1.10, the new RASREC protocol has 6 sampling stages, on initial 

exploration stage(not shown in Figure 1.10) and 5 resampling stages, of which, the first 4 

stages use low-resolution(centroid) Rosetta score function and stage 5, 6 use high-

resolution(full-atom) Rosetta score function. With RASREC protocol, Rosetta firstly get the 

secondary structure from chemical shift and determine the beta-sheet region in stage 
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1(Figure 1.10-A) because strand is the difficult region in protein de novo prediction with 

following reasons(Bradley and Baker 2006): firstly, the random fragment insertion attempts 

hardly achieve the precise relative geometry of these long-range beta-sheet pairings; 

secondly, the beta-sheet pairings play core roles in the protein 3D structures, if they are 

changed, the Rosetta score will change significantly, thus they will be effectively fixed once 

they are formed; thirdly, the factual nonlocal beta-pairings are replaced by competing local 

beta-pairings, just because the latter are easier to sample; finally, the large number of 

possible nonlocal beta-sheet topologies expands the searching space of conformations. In 

stage 1, chain break is introduced to avid the cyclic fold-tree(Karplus et al. 2003; Bradley 

and Baker 2006; Leaver-Fay et al. 2011). Then Rosetta generates the possible beta-sheet 

topologies including the orders and directions, based on the determined strand pairings in 

stage 2(Figure 1.10-B). In stage 3-6, fragment resampling is carried out in parallel together 

with other operations (Figure 1.10-C). The fragment resampling here is the same as original 

Rosetta abrelax protocol. Since at the beginning of sampling, it's nearly impossible to predict 

which trajectory reaches the lowest-energies region, Rosetta launches several initial 

trajectories and samples different folds in stage 4(Figure 1.10-D1). Then Rosetta starts more 

trajectories from the earlier snapshot of trajectory which is lowest in energy since the 

assembly cannot be corrected once it's compacted(Figure 1.10-D2,D3). In the last two 

stages, the compacted protein is relaxed in high-resolution and removes chain-break by 

idealization or rebuilding. 
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Figure 1.10: Illustration of RASREC protocol. (A) strand sampling with random pairs 

protocol; (B) Beta-sheep topology sampling and topology resampling; (C) fragment 

resampling; (D1-D3) proto-fold resampling; (E) loop-rebuilding and all-atom refinement. 

(Lange and Baker 2011) 

1.4 Aims of the present thesis 

 In this thesis, the main tasks are to contribute to the understanding of 3D protein 

structure determination by Rosetta and NMR data by three different processes (1) 

improvement of 3D structure prediction from chemical shift data (chapter 2), (2) a new 

algorithm for automatic NOESY assignment and structure determination with Rosetta 

(chapter 3), and (3) testing the performance of automatic NOESY assignment and structure 

determination algorithms with scramble chemical shift data (chapter 4). Particular questions, 

corresponding reviews and additional background are detailed at the beginning of each 

study. 
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1.4.1 Structure prediction by Rosetta from chemical shift data  

 Fragment picking for ROSETTA was originally carried out using the MFR (molecular 

fragment replacement) method from  the NMRPipe software package which combined 

chemical shift information with peptide sequence matching to score fragment candidates. 

However, the drawback is that ROSETTA would outperform MFR for regions where no 

experimental data was present. In this project, a new kind of fragment picker named R3FP 

(ROSETTA3 Fragment picking)  combines salient features of MFR and chemical shifts is 

incorporated into CS-ROSETTA.  

 Compared to standard CS-ROSETTA algorithm, RASREC (resolution-adapted 

structural recombination) is an iterative sampling algorithm that has been shown to 

significantly increase the sampling efficiency for larger proteins (10-40kDa) when additional 

restraint data such as RDCs and NOEs are used. It is crucial for the performance of 

RASREC that pseudo-energies (e.g., from RDC and NOE restraint data) must be available 

to assist ROSETTA in predominantly selecting the structures with native features for this 

pool. In this project, I extend the RASREC algorithm to allow chemical shift rescoring of 

intermediate structures (CS-RASREC) and test the performance of this extended method.  

 Since the chemical shifts are dominated by local backbone conformations, CS-

ROSETTA structures based alone on chemical shifts tend to be locally correct while globally 

still unconverged. Hence a post-analysis procedure that identifies locally converged regions 

of the structure is introduced to CS-ROSETTA and converged CS-Rosetta structures have 

been shown to be generally accurate. However, with the decreasing convergence there is 

also an increasing probability that  the conformation of the converged regions becomes 

inaccurate. We address this issue here by testing a number of criteria including the quality of 

chemical shift data, the number of converged residues and the significance of the ROSETTA 

score gap to detect inaccurate predictions. These criteria are aggregated to annotate each 

CS-ROSETTA prediction as weak or strong, thereby providing users with a reliable metric to 

assess the results. 

1.4.2 New algorithm for automatic NOESY assignment and 
structure determination with Rosetta 

 The structure calculations of solution-NMR proteins are carried out based on 

following input: distance constraints from NOE spectroscopy(Kumar et al. 1980; Wüthrich 

1989), dihedral angle constraints (Güntert and Wüthrich 1991), residual dipolar 

couplings(Rohl and Baker 2002; Prestegard et al. 2005), chemical shifts, etc. Therein, one of 

the key information is NOE distance constraints(Herrmann et al. 2002b). To get this data, 
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two-dimensional or higher-dimensional heteronuclear-resolved H-H NOESY peaks are 

manually assigned to individual atoms based on assigned chemical shifts, which is a time-

consuming work and usually take several months to finish for only one protein. Nowadays 

automation of this process is a major goal for NMR structure calculation. Combined with 

structure de novo programs, a list of automated NOE peak assignment algorithms are 

recently developed(Mumenthaler et al. 1997; Herrmann et al. 2002b; Rieping et al. 2007; 

Zhang et al. 2014)  and proved to produce comparable structures as those solved manually. 

 However, there are several limitations for current programs. Firstly, These program 

must generate a sufficiently accurate model from the initial assignments, which usually limits 

their application to only small proteins with high quality NMR spectra, complete and accurate 

chemical shift assignments and well-refined cross-peaks. Secondly, manual hydrogen bond 

restraints are also usually needed by these programs. In this project, I focus on developing a 

NOE assignment and structure determination algorithm that can produce results that are 

both reliable and accurate within only chemical shift assignments and unassigned NOE 

peak-lists. 

1.4.3 Performance of automatic NOESY assignment and structure 
determination algorithms with scramble chemical shift data 

 The success of automated NOE assignment and structure calculation strongly relies 

on the completeness and precision of chemical shift assignments(Jee and Güntert 2003).  

Although lots of automatic semi-automatic methods for NOESY assignment have been 

developed in the past two years, only 3 exclusively NMR peak based programs have been 

used to determine protein structures deposited in the Protein Data Bank(PDB). Therefore, 

although the computational methods of automated chemical shift assignment have been 

developed significantly, most assignments are still done manually(Shen et al. 2008a) in 

practice and it has high probability to involve mistakes. In addition, the accuracy of side 

chain assignments are always much lower than those of backbone assignments(Moseley 

and Montelione 1999; Schmidt and Güntert 2012).  

 Until now, there are only a few systematic studies with respect to the influence of 

chemical shift assignments on NMR protein structure determination. In 2003, Jee and 

Güntert presented a study about the influence of resonance assignment on automated NOE 

assignment and NMR structure calculations(Jee and Güntert 2003). The limitation of this 

study is that it tested only one de novo program CYANA, one automated NOE assignment 

algorithm CANDID, and one kind of problem omission. In 2008, Shen et al.  stated a work 

about the protein structure determination from incomplete chemical shift assignments(Shen 
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et al. 2008a). Nevertheless, this work is not about the effect on NOE assignments but the 

effect on fragment picking and final model selection of CS-Rosetta. 

 In this project, I forward the research with two popular de novo programs 

CYANA(Güntert et al. 1997; Herrmann et al. 2002a) and ASDP(Huang et al. 2005; Huang et 

al. 2006) and contrast them with the new program AutoNOE-Rosetta(Zhang et al. 2014), as 

well as more types of missing or erroneous assignments. 
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Chapter 2 Improving 3D structure 
prediction from chemical shift data 

2.1 Introduction 

 Knowledge of the three-dimensional (3D) structure of proteins at atomic accuracy is 

important to understand protein function, protein-ligand interactions and for rational drug 

design. Over the last two decades nuclear magnetic resonance spectroscopy (NMR) has 

become an established complement to X-ray crystallography for the determination of 3D 

structures. The most challenging bottleneck in determining NMR structures, the assignment 

of side-chain chemical shifts and of NOE cross-peaks, can be avoided with methods for 

computing structures from backbone-only NMR experiments. Backbone chemical shift 

values reflect a wide array of structural information including backbone and side-chain 

conformations, secondary structure, hydrogen bond strength, and the position of aromatic 

rings. This information can be exploited to predict the 3D structure of proteins using software 

packages such as CS-ROSETTA, CHESHIRE and CS23D (Cavalli et al. 2007; Shen et al. 

2008; Wishart et al. 2008). 

  The convergence and reliability of CS-ROSETTA calculations have been shown to 

improve by utilizing additional NMR data, such as residual dipolar couplings (RDC) (Raman 

et al. 2010a), NOE-derived distance restraints (Lange et al. 2012) and pseudo-contact shifts 

(PCS) (Schmitz et al. 2012). In the context of available RDC and NOE data an iterative 

sampling scheme, RASREC (Raman et al. 2010a; Lange and Baker 2011; Lange et al. 

2012), was shown to greatly extend the applicability towards larger protein structures. Here 

we introduce a number of algorithmic advances whose cumulative effect significantly 

improves reliability, convergence and accuracy of final structures for chemical shift-only 

calculations. Moreover, we describe the WeNMR (Wassenaar et al. 2012) webserver that 

accesses the European Grid Initiative (EGI, www.egi.eu) computational resources, allowing 

efficient CS-ROSETTA computations via the simplicity of a web interface to academic users. 

 The CS-ROSETTA methodology consists of three stages: 1) fragment picking, 2) 

sampling, and 3) model selection. Originally, backbone chemical shift information was only 

used in stages 1) and 3). Fragment picking for CS-ROSETTA was originally carried out 

using the MFR method of the NMRPipe software package (Delaglio et al. 1995; Lange et al. 

2012) which combined chemical shift information with peptide sequence matching to score 

fragment candidates. However, for regions where no experimental data was present the 
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ROSETTA2 method (Rohl et al. 2004; Schmitz et al. 2012) outperformed MFR (Shen et al. 

2009b; Lange and Baker 2011). In the present work the chemical shift based fragment 

picking is incorporated directly into a new ROSETTA3 fragment picker. This new fragment 

picker (denoted R3FP in the following) combines salient features of both original algorithms 

(MFR and ROSETTA2)(RV, YS, DB and OFL; in preparation). The performance of the new 

method is benchmarked on a set of target proteins that have not been used for development 

or optimization of the R3FP protocol.  

 RASREC is an iterative sampling algorithm that has been shown to significantly 

increase sampling efficiency for larger proteins (10-40kDa), if additional restraint data such 

as RDCs and NOEs are used (Lange and Baker 2011; Lange et al. 2012). Instead of running 

10,000 or more independent structure calculations with increased cycle number as in CS-

ABRELAX (the standard CS-ROSETTA algorithm (Shen et al. 2008)), RASREC performs 

iterative batches of short simulations. Similar to a genetic algorithm, a pool of best 

performing structures is maintained throughout the iterative procedure and sampling is 

focused around previously identified conformations. It is crucial for the performance of 

RASREC that pseudo-energies (e.g., from RDC and NOE restraint data) be available to 

assist ROSETTA in predominantly selecting structures with native features for this pool. In 

this study we extend the RASREC algorithm to allow chemical shift rescoring of intermediate 

structures (CS-RASREC) and test the performance of this extended method.  

 Chemical shifts are dominated by local backbone conformations, and thus CS-

ROSETTA structures based solely on chemical shifts tend to be locally correct but globally 

unconverged. Here we introduce a post-analysis procedure that identifies locally converged 

regions of the structure, which have been shown to be generally accurate (Rohl et al. 2004; 

Shen et al. 2008; Raman et al. 2010a). However, with decreasing convergence there is an 

increasing probability that also the conformation of the converged part is inaccurate. We 

address this issue here by testing a number of criteria, including the quality of chemical shift 

data, the number of converged residues and the significance of the ROSETTA energy gap, 

to detect inaccurate predictions. These criteria are aggregated to annotate each CS-

ROSETTA prediction as weak or strong, thereby providing users with a reliability metric to 

assess the results.  

2.2 Materials and Methods  

 We benchmarked the performance of the new fragment picker (R3FP) and CS-

RASREC on a set of 39 proteins in the size range of 50-100 residues that have neither been 

used for training of the R3FP, nor in CS-ROSETTA, SPARTA+ or TALOS+ development 
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(Table 2.2+2.3). All input files (fragments, reference coordinate and chemical shift files) are 

available for download at www.csrosetta.org/benchmarks. 

2.2.1 Target Selection and Fragment Picking 

 The benchmark set was selected from a larger set of 206 proteins for which recently 

released chemical shift information from the BMRB was linked to coordinate information 

from the PDB in the CCPN framework (Vranken and Rieping 2009) and re-referenced using 

the VASCO protocol (Rieping and Vranken 2010). For NMR resolved structures, only 

proteins of sequence length 50-100 with at least 40% secondary structure were retained 

from this set. Homologous proteins using an e-value cutoff of 0.05 (sequence identity > 20 

%) were excluded from MFR and R3FP fragment picking. The resulting set of 39 proteins 

covers a wide range of secondary structure content, as determined by DSSP from the PDB 

deposited structures. Since TALOS+ is used to pre-filter CS-ROSETTA submissions, and 

because the TALOS+ predicted secondary structure content is similar to what DSSP 

determines from the coordinates (Figure 2.1), this set of 39 is expected to be representative 

of typical CS-ROSETTA input. 

 

Figure 2.1: The secondary structure content as predicted by TALOS+ from the chemical 

shifts versus the secondary structure content as determined by DSSP from the PDB-

deposited structures for 181 proteins for which sufficient heteronuclear chemical shift data 

was available to run TALOS+. 
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2.2.2 Structure Generation  

CS-ROSETTA (Server) 

 The latest version of the CS-ROSETTA webserver runs ROSETTA 3.3 including the 

new fragment selection method R3FP. For each target in the benchmark, 50,000 models 

were automatically generated by the CS-ROSETTA web server, using the standard CS-

ABRELAX protocol with the ABRELAX cycle factor (command-line flag -increase_cycles) set 

to 10 as in Ref (Shen et al. 2008). The jobs are automatically distributed to available 

computational resources part of the worldwide WeNMR grid under the European Grid 

Initiative (EGI). As input, only a backbone NMR chemical shift list is required, which can be 

supplied in any of the common NMRPipe (TALOS), NMR-Star 2.1, or NMR-Star 3.1 (BMRB) 

formats.  

 The webserver uses SPARTA+ (Shen and Bax 2010) for final model selection in 

analogy to the original procedure based on SPARTA (Shen et al. 2008). Additionally, the 

server can combine the chemical shifts score with the DP score (Huang et al. 2005) based 

on unassigned NOE data for model selection, which has been shown to improve model 

selection from CS-ROSETTA calculations (Raman et al. 2010b; Rosato et al. 2012). 

 An overview of the CS-ROSETTA web portal workflow can be found in Figure 2.2. 

 

Figure 2.2: Workflow of the grid-enabled CS-ROSETTA web portal (Wassenaar et al. 2012). 

Green indicates user-operated steps. Blue indicates calculations run locally at the cluster in 

Utrecht, and red indicates calculations run worldwide on the WeNMR grid (www.wenmr.eu). 

Step 1: The user submits a NMR chemical shift file and defines several input parameters in 

the web form; 2) Using these parameters, molecular fragments are selected for the query 
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protein; 3) the fragments are assembled using the ROSETTA ABRELAX protocol; 4) 

Optionally (as indicated in input form) the generated models are rescoring using several 

methods; 5) The user evaluates the top ten selected models. If prediction is reliable, the 

models are selected. 

RASREC 

 RASREC structure calculations (Lange and Baker 2011)  with a pool-size of 500 

conformers (command-line flag -iterative:pool_size 500) were started from the same 

fragment libraries as CS-ABRELAX calculations. As in the standard protocol (Lange and 

Baker 2011), Recombination-Stages were terminated when the acceptance ratio into the 

pool dropped below 10% (-iterative:accept_ratio 0.1) and the cycle factor was set to 2.0(-

increase_cycles 2). The protocol was modified to add chemical shift pseudo-energies with a 

weight of 5.0 to the ROSETTA energy to bias the RASREC pool of low-energy structures 

towards conformations in agreement with the experimental chemical shifts. Chemical shifts 

were computed from conformations using SPARTA+ (Shen and Bax 2010) and compared to 

the experimental chemical shifts to yield a pseudo-energy as described previously (Shen et 

al. 2008). To improve the prediction of chemical shifts from intermediate low-resolution 

structures a shortened refinement procedure was applied that uses only 1 of the usual 5 

relax cycles (Raman et al. 2010a). SPARTA+ was implemented as a module of ROSETTA 

to allow computation of chemical shift pseudo-energies during RASREC iterations. 

2.2.3 Calculation of converged regions  

 To determine the converged region of a protein structure predicted with CS-

ROSETTA an adaption of the Gaussian-weighted RMSD method (Damm and Carlson 2006) 

was implemented in ROSETTA. The 30 lowest energy structures were superimposed using 

a scaling factor of 2Å2  (Damm and Carlson 2006). This procedure iteratively determines a 

set of rigid residues on which the structures can be superimposed; residues with a root-

mean square fluctuation (RMSF) below 2Å are considered to be converged. Gaps of less 

than 3 residues between regions of low RMSF (<2 Å) are ignored.  

2.2.4 RMSD Calculations 

 All reported RMSDs are C!-RMSD to the PDB deposited reference structure or its 

first model. If the reference structure stems from an NMR solution ensemble only residues 

that superimpose within 1Å in the deposited ensemble were used. Where indicated, C!-

RMSD computations are further restricted to regions converged in the ROSETTA 

calculations (see Methods).  
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2.2.5 Criteria used for annotations 

 The criteria of strong/weak prediction annotation are slightly different between CS-

RASREC and CS-ABRELAX. cs-consensus, convergence and energy gap are used to 

annotate the prediction from CS-RASREC, and for CS-ABRELAX the criteria are cs-class, 

convergence and energy gap. cs-consensus is the fraction of residues for which TALOS+ 

finds more than 7 consensus matches in the database. cs-class is the fraction of residues 

annotated by TALOS+ with 'GOOD'. convergence is the fraction of residues which are 

converged with an RMSF cutoff of 2Å (see Methods). The energy gap is the difference in 

ROSETTA all-atom energy between the lowest energy decoys and the lowest energies 

obtained for decoys far away (>4Å) from the lowest energy decoys. Specifically, it is 

calculated as follows: the median energy of the 10 lowest energy structures is subtracted 

from the median energy of the 10 lowest energy structures within the subset of structures 

that are more than >4Å(converged region; see Methods) from the lowest energy structure. In 

CS-RASREC annotations, the raw energy gap is divided by the number of residues and 

mapped to an interval 0...1 using a sigmoidal function(Figure 2.3) with its inflection point at 

0.05 Rosetta Energy Units (REU) per residue (see Classification of 3D structure predictions). 

Differently, the raw energy gap is directly mapped to [0,1] using sigmoidal function in CS-

ABRELAX annotations. 

 

Figure 2.3: Choice of sigmoid parameters to map energy gap onto interval [0,1]. 

Panels a+c) The inflection point and slope of the sigmoid (dashed line), was chosen such 

that the steepest slope of the sigmoid (and thus the region of highest sensitivity) coincides 

−0.1 0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

score_gap

fr
e

q
u

e
n

cy

 

 

a RMSD<2A
RMSD>2A

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

1

2

3

4

5

score_gap_sigmoid

fr
e

q
u

e
n

cy

b

−0.1 0 0.1 0.2 0.3 0.4 0.5
−1

0

1

2

3

4

5

6

score_gap

fr
e
q
u
e
n
cy

 

 

c RMSD<2A
RMSD>2A

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.5

1

1.5

2

2.5

3

3.5

score_gap_sigmoid

fr
e
q
u
e
n
cy

d



CHAPTER 2 IMPROVING 3D STRUCTURE PREDICTION FROM CHEMICAL SHIFT DATA 

41 

with the transition zone between the distributions of energy gaps for good (RMSD <2Å, blue) 

and bad (RMSD >2Å, green) final models of CS-RASREC (a) and CS-ABRELAX (c).   

Panels b+d) Distribution of the sigmoid-enhanced output for energy gaps of good and bad 

final models. Clearly, the sigmoid has served to enhance the separation of the two 

distributions for CS-RASREC (b) and CS-ABRELAX (d) models.  

2.2.6 Classification of 3D structure predictions 

 For both CS-ABRELAX and CS-RASREC, we separately developed a classification 

of 3D structure predictions into strong and weak predictions based on the criteria cs-

consensus, convergence and energy-gap(CS-RASREC) or cs-class, convergence and 

energy-gap(CS-ABRELAX), as described in Methods of the main-text. The three criteria 

yield values in the range 0...1 and 

𝑃sum =   𝑤!𝑐!!
!!! ,                                                             (2.1) 

is used as predictor model. The classification strong is reached if 𝑃sum >   𝑇. The threshold T  

and weights   𝑤!   were determined using a cross-validated fit-procedure that optimized the 

receiver operator characteristics (ROC). To this end, the 39 structure prediction results for 

CS-ABRELAX and CS-RASREC were classified manually into strong and weak. Targets 

2jov, and 2k5c were excluded from this analysis, due to questionable packing quality of the 

respective reference structures (Figure 2.8). The remaining classifications were randomly 

separated into a Training set with 75% and a Test set with 25% of data points. A grid-search 

for the weights   𝑤! was performed and the set of weights with the largest area between 

diagonal and train-ROC curve were selected. The optimal weight set was evaluated on the 

Test set to yield the test-ROC curve. This procedure was repeated 100 times with different 

random separations into Training and Test sets. The resulting test-ROC curves were 

averaged and are shown as Figure 2.7.  

 Different statistics for   𝑐!   were evaluated as model 1-4. In Models 1-3 the energy gap 

was mapped to the interval 0...1 using a sigmoidal function, whereas in Model 4 the energy 

gap was taken directly. In Model 1 the the energy gap is  divided by the number of residues 

before the sigmoid is applied. In Model 3 we swapped cs_consensus (fraction of residues 

with more than 7 consensus matches in the database) against cs_class (fraction of residues 

annotated by TALOS+ with 'GOOD'). The cross-validated ROCs allowed to select Model 3 

for CS-ABRELAX and Model 1 for CS-RASREC as the procedure that yielded best 

prediction characteristics (Figure 2.7). Selecting thresholds by fixing the false positive rate to 

6% and 3% thresholds of 0.69±0.05 and 0.82±0.06 are obtained for CS-ABRELAX and CS-
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RASREC, respectively. A scatter plot of convergence and energy gap is shown in Figure 

2.6.  

 Additionally, we evaluated a fourth criterion, which counted the residues for which the 

RCI predicted S2 order parameter6 was above 0.7. However, this criterion was discarded, 

since its addition did not improve cross-validated ROC curves. 

 The parameters for the sigmoidal function were not fitted but were fixed to 5 Rosetta 

energy units (REU) for the mid-point and  the response parameter such that 10 REU above 

the mid-point yield a response of 90%. For energies normalized by number of residues the 

parameters were set such that energy gaps of 0.05 REU/residue and 0.2 REU/residue  yield 

50% and 90% response, respectively. These values were determined by visual inspection of 

a scatter plot of energy gap and CA RMSD (Figure 2.3).  

2.2.7 Weak/strong-classification with CS-Rosetta toolbox 

 To obtain the classification weak/strong for a finished CS-Rosetta calculation, run 

annotate_target from the CS-Rosetta Toolbox Version 2.x or higher (www.csrosetta.org).  

annotate_target  -type abrelax -pred 3cwi/pred.tab -run_folder 3cwi/abrelax/run/  

with the following inputs: 

1. type: algorithm type for structure calculation, it should be abrelax or rasrec. 

2. pred: the pred.tab file generated by talos+, it contains the cs-consensus of the 

target. 

3. run_folder: directory of the job. 

 The command firstly outputs the values of cs-consensus(or cs-class), convergence 

and energy gap of the structure and then the annotation result. 

Example output of annotation of CS-RASREC calculation: 

    #   cs-consensus       convergence      energy gap           classification 

                     0.937                   0.810                 0.978                    STRONG 

 

Example output of annotation of CS-ABRELAX calculation: 

    #   cs-class                 convergence      energy gap           classification 

          0.461                              0.670                 0.524                    WEAK 
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2.3 Results 

2.3.1 Performance of new fragment picker (R3FP) 

 Figure 2.4a shows the mean C!-RMSD of the best 10 generated models with respect 

to the reference structure for MFR and R3FP. As can be seen, more targets appear above 

the diagonal, i.e., ABRELAX samples closer to the native structure, if R3FP fragments are 

used. Necessary for the success of a CS-ROSETTA structure calculation is that sufficient 

conformations below a C!-RMSD of 2.0Å to the reference structure are generated (Shen et 

al. 2008). This is the case for significantly more targets, if R3FP fragments are used (Figure 

2.4a, Table 2.1).  

 We also compared the performance in sampling near-native conformations of 

ABRELAX between software versions Rosetta 2.6 (used here (Shen et al. 2008; Wassenaar 

et al. 2012)) and Rosetta 3.x (used here (Raman et al. 2010b; Schmitz et al. 2012)). As 

shown in Table 2.1, a performance gain is observed for Rosetta 3.x.  

Versiona Fragmentsb native sampling ratec RMSD (Å)d 

Rosetta2-ABRELAXe MFR 62% 1.12 ± 0.42 

Rosetta3-ABRELAXe MFR 72% 1.23 ± 0.48 

Rosetta3-ABRELAXe R3FP 77% 1.18 ± 0.39 

Rosetta3-RASREC R3FP 64%f 1.31 ± 0.41f 

Rosetta3-CS-RASREC R3FP 74%f 1.27 ± 0.43f  

Table 2.1: Success of structure generation for MFR and R3FP fragment picker 

Footnote: 
a Major version number of Rosetta 
b Fragment picking protocols 
c Success rate of the structural sampling step defined as the percentage of targets for 

which the mean C!-RMSD of the 10 lowest RMSD structures is lower than 2.0 Å;  

this reflects if the method samples the native structure, not how well it predicts it. C!-

RMSDs are calculated over all residues that are converged within 1Å in the reference 

NMR structural ensemble (Table 2.2). 
d Average and standard deviation of the distribution of mean C! -RMSDs, when 

restricted to those targets where the mean C!-RMSD of 10 lowest RMSD structures 

is lower than 2.0Å.  
e In CS-ABRELAX the chemical shifts are only used for final model selection. The 

native sampling rate is independent of final model selection, and thus CS-ABRELAX 
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and ABRELAX are equivalent in this analysis. Note, however, that chemical shifts are 

used for fragment picking for all protocols analysed in this table.  

f For RASREC protocols, the native sampling rate is systematically lower than for 

ABRELAX, since instead of 50,000 full-atom models in ABRELAX, only ca. 1,500 full-

atom models are generated in RASREC.  

 

Figure 2.4: Performance comparison. a) Comparison of MFR and R3FP fragment picking 

methods using the ABRELAX sampling protocol. Shown are the mean C!-RMSD of the 
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lowest 10-RMSD structures (Table 2.1). Dashed lines indicate the 2Å RMSD threshold, 

which is often predictive whether CS-Rosetta yields converged ensembles after energy-

based selection. b) Comparison of CS-RASREC(x-axis) and RASREC(y-axis). Shown are 

the median RMSDs of the ten lowest energy models selected by Rosetta energy and 

chemical shift score. c) Comparison of CS-RASREC (x-axis) with CS-ABRELAX(y-axis). 

Shown are RMSDs of 10 lowest energy models selected by Rosetta energy and chemical 

shift score as in b). 

2.3.2 RASREC with chemical shift rescoring 

 As shown previously (Rohl et al. 2004; Shen et al. 2008), chemical shift rescoring 

improves precision and accuracy of final target selection for the CS-ABRELAX method. We 

have now implemented SPARTA+ rescoring directly into ROSETTA which allows us to apply 

the chemical shift score as a filter between iterations of the RASREC method (Shen et al. 

2009b; Lange and Baker 2011). However, chemical shift rescoring is usually applied to fully 

refined structures, whereas intermediate structures in RASREC are without atomic detail 

(i.e., they use only a single centroid to represent the side-chain). To allow chemical shift 

rescoring nevertheless, a short refinement to atomic detail models that requires only ca. 

20% of the usual computer time is applied (see Methods). 

 We investigated whether chemical shift rescoring of intermediate structures improves 

the performance of the new CS-RASREC protocol on the benchmark set of 39 proteins. 

Indeed, a significant improvement in the RMSDs of the final energy selected models (Figure 

2.4b) is seen for CS-RASREC (points left of diagonal). Thus, CS-RASREC (but not 

RASREC) can further improve the accuracy of final models in comparison to CS-ABRELAX 

with R3FP fragments (Figure 2.4c).   

2.3.3 Restriction to converged regions 

 Figure 2.5a shows the C!-RMSD to the reference structure of the lowest 10 scoring 

models from CS-ABRELAX calculations. As can be seen, only a small fraction of targets 

(~25%) yields accurate (<2Å) solutions. The reason for this apparent bad accuracy of CS-

ROSETTA predictions is that RMSDs were computed on regions that are not converged in 

the CS-ROSETTA ensemble. To address this issue we added an auxiliary application called 

ensemble_analysis to the CS-ROSETTA toolbox (www.csrosetta.org), which detects 

residues whose RMSD fluctuations are less than 2Å (see Methods). Restriction of the 

structural prediction to these converged residues drastically changes the appearance of the 

results and shows that the converged regions are actually quite accurate for the majority of 

targets, with only five targets where the accuracy is worse than 2.5Å  (Figure 2.5b). 
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However, Figure 2.5b also reveals that for many targets significant portions of the structures 

remain unconverged in the CS-ABRELAX calculations. As can be seen in Figure 2.5c, the 

convergence is significantly improved in CS-RASREC calculations.  

 

Figure 2.5: Overview of accuracy of 10 lowest scoring structures from the 39 protein 

benchmark. C!-RMSD to the reference structure (circles) are calculated over a subset of 

residues (bars). Predictions annotated as weak are shown in red (convergence is more than 

50%) or pink (convergence is less than 50%) (Table 2.4+2.5).  a) The RMSDs are calculated 

over all residues that are converged within 1Å in the reference NMR structural ensemble 

(Table 2.2). The number of residues used for RMSD calculation are shown as fraction of 

total length freference (gray). b) The RMSD calculation is restricted to residues converged 

within 2Å in the CS-ROSETTA structural ensemble (and within 1Å in the references) (Table 

2.2). The additional restriction in RMSD calculation is given as ratio frosetta / freference (green). c) 

RMSD restriction as in b) but using the CS-RASREC method. 
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1 1ig5 XRAY 75 1-75 1-75 23-72g 2.2(2.0-2.6) 

2 1q02 NMR 52 1-52 10-49 27-49 1.9(1.8-2.1) 

3 2ckx XRAY 83 1-83 1-83 4-83 1.5(1.1-2.0) 

4 2dm2 NMR 110 8-104 8-103 17-19,54-59,65-
84,94-99 

3.5(3.3-3.7) 

5 2htj NMR 81 2-77 2-46,54-59f 2-45,56-59 4.1(4.0-4.5) 

6 2hx6 NMR 153 18-115 18-79,103-115 28-37 2.0(1.9-2.9) 

7 2ike NMR 54 1-54 1-28,36-43,49-
54 16-28 1.0(0.6-1.3) 

8 2jmb NMR 79 1-79 2-79 5-79 1.6(1.4-1.8) 

9 2jml NMR 81 1-80 6-35,44-77 46-77 2.1(2.0-2.2) 

10 2jmp NMR 100 2-100 3-22,31-83 31-83 2.0(1.7-2.5) 

11 2joq NMR 91 6-89 13-89 15-89 1.6(1.5-2.5) 

12 2jov NMR 85 2-79 3-74 27-45 1.0(0.7-1.3) 

13 2jpn NMR 79 4-79 12-72 49-71 1.2(1.0-1.5) 

14 2jq3 NMR 79 1-79 6-79 48-64 1.3(1.0-1.7) 

15 2jrm NMR 60 1-60 5-49 6-49 1.7(1.4-2.0) 

16 2jso NMR 88 1-88 1-84 3-72 1.6(1.3-2.6) 

17 2jsx NMR 95 3-88 5-75 5-75 0.9(0.7-1.1) 

18 2jt1 NMR 71 2-71 5-18,24-57,66-
70 5-18,24-57,66-70 0.9(0.7-1.0) 

19 2jtv NMR 65 1-64 2-64 2-64 1.3(1.1-1.6) 

20 2jub NMR 76 1-76 2-11,18-75 30-65 4.8(4.5-5.2) 

21 2jvf NMR 94 1-94 4-22,29-94 4-22,29-94 3.1(1.5-3.4) 

22 2jvr NMR 80 1-80 3-38,45-78 4-24,45-78 2.0(1.7-2.2) 

23 2jvw NMR 82 2-82 15-73 47-73 1.2(0.9-2.3) 

24 2jxt NMR 86 3-81 4-80 5-68 1.3(1.1-1.5) 
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25 2jz5 NMR 91 1-86 6-81 12-79 0.9(0.9-1.0) 

26 2k0m NMR 104 2-98 6-70,76-93 6-31 1.5(0.9-1.7) 

27 2k14 NMR 84 1-84 13-84 24-81 2.2(1.9-2.5) 

28 2k19 NMR 98 1-98 12-92 35-92 1.6(1.3-2.5) 

29 2k2p NMR 64 1-64 2-63 2-62 1.8(1.1-2.2) 

30 2k37 NMR 59 1-59 4-37 10-25 2.0(0.5-3.4) 

31 2k3d NMR 87 2-83 2-27,35-69,75-
80 3-27,36-69 2.1(0.8-2.3) 

32 2k4y NMR 86 2-83 4-78 4-47,54-78 1.6(1.3-2.7) 

33 2k52 NMR 74 1-74 1-71 2-71 1.1(1.0-1.5) 

34 2k5c NMR 88 1-88 1-88 2-68 2.3(2.1-3.0) 

35 2k5n NMR 74 2-69 2-66 2-50,60-66 1.4(1.2-1.9) 

36 2k5s NMR 73 1-69 1-69 7-49 1.3(1.1-1.9) 

37 2osq NMR 74 2-73 2-73 30-54 1.1(0.9-2.8) 

38 2ot2 NMR 90 2-90 4-71 4-70 2.8(2.6-3.5) 

39 2qmt XRAY 56 1-56 1-56 1-56 1.0(0.8-1.5) 

Table 2.2: Protein structures used to evaluate the performance of the CS-ABRELAX 

method. 

Footnote: 
a The number of residues in the deposited structure 
b Residue range used for structure calculation in ROSETTA 
c Residues that superimpose within 1Å in solution NMR structures, if the experimental 

method is Xray, we consider it 100% converged. 
d The residues superimpose within 2Å in the 30 lowest-energy structures predicted by 

CS-ABRELAX. Predictions classified as weak (Table 2.4) are shown in red. 
e Median 𝐶!-RMSD of the 10 lowest-energy structures calculated on the residues 

converged in CS-ABRELAX. The lowest and highest 𝐶!-RMSD within the 10 lowest-

energy structures is given in parenthesis. Predictions classified as weak (Table 2.4) 

are shown in red.  
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f Target 2htj is an NMR structure, but only 1 model is deposited.  Residues with S2 

order parameter predicted from TALOS+ smaller than 0.7 are considered as flexible.  
g Results in red and italics indicate structure calculations that are annotated as weak 

predictions. 

 

PDB 

Exp. 

method 

Residue NO. 

RMSDe  lengtha trimmedb converged 
in NMRc 

converged in 
CS-RASRECd 

1 1ig5 XRAY 75 1-75 1-75 13-14,21-70g 2.3(1.8-2.8) 

2 1q02 NMR 52 1-52 10-49 14-49 2.3(2.2-2.3) 

3 2ckx XRAY 83 1-83 1-83 1-83 1.6(1.4-1.8) 

4 2dm2 NMR 110 8-104 8-103 11-103 2.1(2.1-2.6) 

5 2htj NMR 81 2-77 2-46,54-59f 2-47,55-62 1.7(1.3-2.0) 

6 2hx6 NMR 153 18-115 18-79,103-
115 58-74 2.5(1.7-3.6) 

7 2ike NMR 54 1-54 1-28,36-
43,49-54 

12-22,36-
43,50-54 

2.1(1.7-2.5) 

8 2jmb NMR 79 1-79 2-79 5-79 1.6(1.4-1.9) 

9 2jml NMR 81 1-80 6-35,44-77 34-35,44-77 2.2(2.2-2.3) 

10 2jmp NMR 100 2-100 3-22,31-83 31-83 1.8(1.7-3.2) 

11 2joq NMR 91 6-89 13-89 14-89 1.2(0.9-2.0) 

12 2jov NMR 85 2-79 3-74 4-70 2.9(2.4-3.6) 

13 2jpn NMR 79 4-79 12-72 29-71 1.4(0.9-2.1) 

14 2jq3 NMR 79 1-79 6-79 47-77 3.3(2.7-4.0) 

15 2jrm NMR 60 1-60 5-49 6-49 1.6(1.6-1.7) 

16 2jso NMR 88 1-88 1-84 1-71 1.3(1.2-1.8) 

17 2jsx NMR 95 3-88 5-75 5-75 0.8(0.8-1.4) 

18 2jt1 NMR 71 2-71 5-18,24-
57,66-70 

5-18,24-57,66-
70 

0.7(0.6-0.7) 
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19 2jtv NMR 65 1-64 2-64 2-64 1.1(1.1-1.2) 

20 2jub NMR 76 1-76 2-11,18-75 29-69 5.0(4.7-5.7) 

21 2jvf NMR 94 1-94 4-22,29-94 4-22,29-94 1.3(1.2-1.8) 

22 2jvr NMR 80 1-80 3-38,45-78 3-21,45-78 2.0(1.8-2.6) 

23 2jvw NMR 82 2-82 15-73 15-43 1.7(1.2-2.0) 

24 2jxt NMR 86 3-81 4-80 5-62 1.2(1.0-1.6) 

25 2jz5 NMR 91 1-86 6-81 11-81 0.9(0.8-1.0) 

26 2k0m NMR 104 2-98 6-70,76-93 20-51,59-
70,76-91 

1.4(1.1-1.9) 

27 2k14 NMR 184 1-84 13-84 23-82 2.0(1.8-2.3) 

28 2k19 NMR 98 1-98 12-92 12-92 1.3(1.3-1.7) 

29 2k2p NMR 64 1-64 2-63 2-63 1.1(0.9-1.9) 

30 2k37 NMR 59 1-59 4-37 12-24 1.3(0.5-2.6) 

31 2k3d NMR 87 2-83 2-27,35-
69,75-80 2-27,37-66 1.4(0.9-1.9) 

32 2k4y NMR 86 2-83 4-78 4-78 1.3(1.1-1.5) 

33 2k52 NMR 74 1-74 1-71 2-71 1.0(0.9-1.5) 

34 2k5c NMR 88 1-88 1-88 2-72 2.4(2.2-2.9) 

35 2k5n NMR 74 2-69 2-66 2-49,60-66 1.4(1.2-1.8) 

36 2k5s NMR 73 1-69 1-69 6-53 1.5(1.3-1.9) 

37 2osq NMR 74 2-73 2-73 24-35,42-72 1.2(1.0-2.5) 

38 2ot2 NMR 90 2-90 4-71 4-31,43-68 1.4(1.2-2.0) 

39 2qmt XRAY 56 1-56 1-56 1-56 0.9(0.7-1.3) 

Table 2.3: Protein structures used to evaluate the performance of the CS-RASREC method. 
a The number of residues in the deposited structure 
b Residue range used for structure calculation in ROSETTA 
c Residues that superimpose within 1Å in solution NMR structures, if the experimental 

method is Xray, we consider it 100% converged. 
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d The residues superimpose within 2Å in the 30 lowest-energy structures predicted by 

CS-RASREC. Predictions classified as weak (Table 2.5) are shown in red. 
e Median 𝐶!-RMSD of the 10 lowest-energy structures calculated on the residues 

converged in CS-RASREC. The lowest and highest 𝐶!-RMSD within the 10 lowest-

energy structures is given in parenthesis. Predictions classified as weak (Table 2.5) 

are shown in red.  
f Target 2htj is an NMR structure, but only 1 model is deposited.  Residues  with S2 

order parameter predicted from TALOS+ smaller than 0.7 are considered as flexible.  
g Results shown in red and italics indicate structure calculations that are annotated as 

weak predictions. 

2.3.4 Reliability measure: Annotation of weak/strong predictions 

 Originally, CS-Rosetta calculations were discarded if they did not converge on all 

residues (Shen et al. 2008; Schmitz et al. 2012). However, as shown above, some of the 

calculations that contain converged segments yield quite acceptable models. Thus, we 

looked for additional criteria to detect accurate predictions. We speculated that, in addition to 

a) the overall convergence of the calculation, also the significance of b) the chemical shift 

consensus or class (Shen et al. 2009a) and c) the ROSETTA energy gap (Raman et al. 

2010a; Fleishman and Baker 2012) should be informative on the likelihood of obtaining 

accurate structures. 

 To this purpose we define a predictor model that yields the signal strong if the 

weighted sum of the criteria 𝑐! 

𝑃sum =   𝑤!𝑐!!
!!!                                                          (2.2) 

exceeds a threshold of 0.82 or 0.69 for CS-RASREC and CS-ABRELAX calculations, 

respectively. Optimizing the predictor model against manual classifications of the benchmark 

results, we obtained for CS-RASREC the weights 0.58, 0.29 and 0.13 for the criteria cs-

consensus, convergence, and energy-gap, respectively. For CS-ABRELAX the weights 0.08, 

0.54 and 0.38 for criteria cs-class, convergence, and energy-gap.. The criteria are defined in 

Material and Methods section. In 100 rounds of cross-validated training using a different 

random selection of 25% of the data as test-set for each round, for CS-RASREC the cutoff 

was selected by fixing the false positive rate (FPR) to 3% and 6% for CS-RASREC and CS-

ABRELAX, respectively. The resulting thresholds of 0.82 ± 0.06 and 0.69 ± 0.05 yielded true 

positive rates (TPR) of (89 ± 20)%  and 80 ± 33 %, respectively. The standard deviation of 

the weights trained on the 100 different selections of training data during cross-validation 

were 0.08, 0.10 and 0.08, for CS-RASREC and 0.25, 0.13, 0.14 for CS-ABRELAX. The 
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higher variation of weights for CS-ABRELAX reflects the less pronounced energy gap and 

the lower rate of convergence observed in CS-ABRELAX simulations (Figure 2.6). 

Alternative predictor models were discarded based on inferior receiver operating 

characteristic (ROC) in the cross-validation and the compound predictor model outperforms 

the individual criteria(Figure 2.7). The final set of weights was obtained by optimizing the 

most successful predictor model against all data points. 

 

 

Figure 2.6: Energy gap and convergence of final models for a) CS-ABRELAX and b) CS-

RASREC. The convergence (fraction of converged residues; x-axis) and the energy gap per 

residue after application of the sigmoid function (y-axis). The accuracy of the final models 

(𝐶!-RMSD of converged residues against reference structure) is depicted by the color inside 
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the circle (colorbar). The outline of the circle is shown in red or blue, and depicts the given 

annotation for this run (legend).  

 

 

Figure 2.7: Receiver Operator Characteristics (ROC) for strong/weak classification of 3D 

structure predictions of a) CS-RASREC and b) CS-ABRELAX calculations. The ROCs of 

model 1-4 (solid-lines, legend) were obtained via 100 rounds of cross-validation with random 

separation into training and test data (75%/25%). The ROC of individual input criteria used 

for the predictor models 1-4 are shown as dashed lines. Clearly, the linear combination of 

the input criteria in the predictor models 1-4 does improve the ROC. Model 1 and Model 3 

are selected as the predictor for CS-RASREC and CS-ABRELAX, respectively, based on 

their highest area under the curve (AUC). 
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 Indeed, the classification scheme successfully annotates those predictions as weak 

that yield bad accuracy (red in Figure 2.5b+c). 20 of 39 targets (51%) listed in Table 2.4 

computed with CS-ABRELAX are considered as strong structure calculations. For 18 of 

these the accuracies range from 0.9Å to 2.0Å, and for the remaining two, accuracies are 

3.1Å and 2.1Å for targets #21(2jvf) and #31(2k3d), respectively. From the targets computed 

with CS-RASREC, 29 of 39 (74%) results are considered strong. For 26 of the strong 

targets, accuracies range from 0.7Å to 2.0Å and for the remaining three, targets #4 (2dm2),  

#12 (2jov) and #34 (2k5c), accuracies are 2.1Å, 2.9Å and 2.4Å, respectively (Table 2.5).  

PDB Annotation parameters final classd 

convergencea energy gapb cs-classc 

1 1ig5 0.67 0.52 0.46 weak 

2 1q02 0.46 0.72 0.72 weak 

3 2ckx 0.96 0.43 0.86 strong 

4 2dm2 0.36 0.93 0.78 weak 

5 2htj 0.63 0.76 0.67 weak 

6 2hx6 0.13 0.87 0 weak 

7 2ike 0.24 0.93 0.83 weak 

8 2jmb 0.95 0.92 0.82 strong 

9 2jml 0.40 0.78 0.61 weak 

10 2jmp 0.65 0.91 0.82 strong 

11 2joq 0.89 0.71 0.81 strong 

12 2jov 0.24 1.00 0.75 weak 

13 2jpn 0.30 0.67 0.78 weak 

14 2jq3 0.18 0.86 0.8 weak 

15 2jrm 0.83 0.65 0.72 strong 

16 2jso 0.80 0.89 0.78 strong 

17 2jsx 0.85 0.76 0.8 strong 

18 2jt1 0.96 0.83 0.83 strong 

19 2jtv 1.00 0.78 0.81 strong 

20 2jub 0.47 0.68 0.81 weak 

21 2jvf 0.99 0.49 0.83 strong 

22 2jvr 0.70 0.49 0.73 weak 
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23 2jvw 0.35 0.96 0.72 weak 

24 2jxt 0.81 0.61 0.9 strong 

25 2jz5 0.79 0.82 0.84 strong 

26 2k0m 0.33 1.00 0.82 weak 

27 2k14 0.69 0.24 0.69 weak 

28 2k19 0.59 0.94 0.79 strong 

29 2k2p 0.97 0.51 0.75 strong 

30 2k37 0.31 0.41 0.81 weak 

31 2k3d 0.76 0.90 0.83 strong 

32 2k4y 0.85 0.75 0.82 strong 

33 2k52 0.96 0.74 0.8 strong 

34 2k5c 0.76 0.14 0.81 weak 

35 2k5n 0.82 0.88 0.77 strong 

36 2k5s 0.62 0.77 0.85 strong 

37 2osq 0.35 0.55 0.77 weak 

38 2ot2 0.75 0.14 0.7 weak 

39 2qmt 1.00 0.91 0.77 strong 
Table 2.4: Automatic annotation result of CS-ABRELAX predictions 

a The fraction of residues which are converged in 30 lowest-energy structures 

predicted by CS-ABRELAX with an RMSF cutoff of 2 Å 
b The difference in ROSETTA all-atom energy between the lowest energy decoys 

and the lowest energies obtained for decoys far away (>4 Å) from the lowest energy 

decoys 
c The fraction of residues annotated by TALOS+ with 'GOOD' 
d Annotation of prediction reliability 

PDB 

Annotation parameters 

final classd 
convergencea energy gapb cs-consensusc 

1 1ig5 0.69 0.76 0.55 weak 

2 1q02 0.71 0.49 0.94 weak 

3 2ckx 1.00 0.81 0.98 strong 

4 2dm2 0.96 0.76 0.97 strong 

5 2htj 0.71 0.97 0.90 strong 
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6 2hx6 0.17 0.99 0.00 weak 

7 2ike 0.56 0.49 0.94 weak 

8 2jmb 0.95 0.98 0.94 strong 

9 2jml 0.58 0.77 0.78 weak 

10 2jmp 0.67 0.87 0.95 strong 

11 2joq 0.91 0.99 0.95 strong 

12 2jov 0.86 0.83 0.96 strong 

13 2jpn 0.57 0.84 0.88 weak 

14 2jq3 0.39 0.69 0.91 weak 

15 2jrm 0.85 1.00 0.90 strong 

16 2jso 0.81 0.98 0.94 strong 

17 2jsx 0.85 0.97 0.91 strong 

18 2jt1 0.97 0.99 0.96 strong 

19 2jtv 1.00 0.82 0.95 strong 

20 2jub 0.54 0.98 0.92 weak 

21 2jvf 0.99 0.89 0.95 strong 

22 2jvr 0.70 0.98 0.86 strong 

23 2jvw 0.36 0.35 0.93 weak 

24 2jxt 0.73 0.98 0.98 strong 

25 2jz5 0.86 0.96 0.95 strong 

26 2k0m 0.67 0.64 0.96 strong 

27 2k14 0.71 0.93 0.92 strong 

28 2k19 0.85 0.84 0.93 strong 

29 2k2p 0.98 0.90 0.89 strong 

30 2k37 0.34 0.85 0.95 weak 

31 2k3d 0.71 0.84 0.96 strong 

32 2k4y 0.92 0.99 0.95 strong 

33 2k52 0.96 0.90 0.93 strong 

34 2k5c 0.81 0.90 0.93 strong 

35 2k5n 0.81 0.97 0.91 strong 

36 2k5s 0.70 0.44 0.97 strong 

37 2osq 0.60 0.80 0.94 strong 
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38 2ot2 0.61 0.91 0.92 strong 

39 2qmt 1.00 0.91 0.95 strong 

Table 2.5: Automatic annotation result of CS-RASREC predictions 

a The fraction of residues which are converged in 30 lowest-energy structures 

predicted by CS-RASREC with an RMSF cutoff of 2 Å 
b The difference in ROSETTA all-atom energy between the lowest energy decoys 

and the lowest energies obtained for decoys far away (>4 Å) from the lowest energy 

decoys 
c The fraction of residues for which TALOS+ finds more than 7 consensus matches in 

the database 
d Annotation of prediction reliability 

 For these three targets(#4, #12, and #34), CS-RASREC predicted structures have 

the same fold as the reference structure, but show better packing with less and smaller 

solvent inaccessible cavities in the protein core (Figure 2.8)  (Sheffler and Baker 2008). 

Given the clear packing deficiencies in the deposited NMR ensembles, we believe that the 

2.1-2.9Å RMSDs do not actually reflect the accuracy of the CS-RASREC structures, and that 

these targets can be ignored for the overall assessment of CS-RASREC accuracy of strong 

predictions. Representative examples of the remaining strong predictions are shown in 

Figure 2.9. 
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Figure 2.8: Packing analysis of final RASREC (red) models and deposited NMR reference 

structures (blue) for targets #4(2dm2, Figure a+b), #12(2jov, Figure c+d) and #34(2k5c, 

Figure e+f), respectively. Cavities detected by RosettaHoles are illustrated as green 

spheres.  

 

Figure 2.9: Overview of structures obtained with RASREC structure calculations that 

passed the filter (i.e., annotated as strong prediction). Shown are the three best, 2jsx(0.8Å), 

2jt1(0.7Å) and 2qmt(0.9Å), respectively, and the three worst, 2jrm (1.6Å), 2jvr(2.0Å) and 

2k14(2.0Å), respectively. For each target, the reference structure is in blue and the predicted 

structures are in red with unconverged regions (see Methods) shown in gray. 

 2.3.5 The WeNMR CS-ROSETTA web server 

 The most time consuming part of a typical CS-ROSETTA run consists of a large 

number (500 to 2500) of independent Monte Carlo calculations to calculate in the order of 

10000 to 50000 structures. The WeNMR (www.wenmr.eu) CS-Rosetta web server 

(Wassenaar et al. 2012) conveniently distributes those calculations over the grid resources 

made available through the European Grid Infrastructure (EGI, www.egi.eu). The original 

server has now been extended to allow DP scoring and include the reliability measure 

f) 2k14(#27) 

c) 2qmt(#39) 

d) 2jrm(#15) 

a) 2jsx(#17) 

e) 2jvr(#22) 

b) 2jt1(#18) 

Three best predicted targets 

Three worst predicted targets 
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described above. Table 2.6 shows the results of the DP rescoring option (using the CS-

ABRELAX setup), using a different benchmark of 6 CASD-NMR targets (Rosato et al. 2009; 

Rosato et al. 2012). Consistent with previous observations (Raman et al. 2010b; Rosato et 

al. 2012) the combination of DP rescoring (Huang et al. 2005; Raman et al. 2010b) and CS 

rescoring outperforms the other rescoring option, including CS rescoring, both in successful 

predictions and reliability (100%).  

 Convergedb Not 
convergedc 

Reliabilityd 

Selectiona  TP FP  
 

raw 2 2 2 50% 

cs 3 1 2 75% 

dp 5 1 0 83% 

dpcs 5 0 1 100% 

Table 2.6: Reliability of different structure selection methods 
a Final structure selection methods, raw: rosetta score; cs: cs-rescoring; dp: dp-

rescoring; dpcs: cs-rescoring+dp-rescoring. 
b Number of targets for which the average RMSD of selected models is below the 

threshold of 2.0 Å and are counted as true/false positive. 
c N umber of targets for which the average RMSD of selected models is above the 

threshold of 2.0 Å. 
d Reliability of different structure selection methods 

2.4 Discussion 

 We have considerably improved the scope, convergence and reliability of CS-

ROSETTA calculations from chemical shifts only. On a representative benchmark of 39 

small proteins in the size range of 50-100 residue size range, we demonstrated that CS-

ROSETTA calculations yield successful and accurate 3D structure predictions in 74% of the 

cases when using the new CS-RASREC method. CS-ABRELAX is still successful in 51% of 

the cases but generally yields less converged residues per target. Most importantly, we 

introduced a classification scheme that can be used to detect whether a successful 

prediction has been made, which increases the reliability to >89% and >80% for CS-

RASREC and CS-ABRELAX calculations, respectively. Reliable predictions have accuracies 

of 2Å and better on the converged residues. This renders the presented CS-ROSETTA 

structure calculation protocols a reliable tool for rapid and accurate structure determination 

at atomic resolution.  



CHAPTER 2 IMPROVING 3D STRUCTURE PREDICTION FROM CHEMICAL SHIFT DATA 

60 

 CS-ROSETTA calculations entail a considerably computational effort; a reliable 

structure prediction requires 10000 or more models to be generated with an overall cost of 

several thousand CPU-hours. We implemented a webserver that utilizes the WeNMR grid 

infrastructure to farm out the time-consuming model generation part of CS-ROSETTA 

calculations. The service is available for the whole scientific community and is free of charge 

to academic users. It only requires a backbone chemical shift list as input and offers several 

options to re-evaluate the generated models, including NOE based rescoring with the DP-

score (Huang et al. 2005; Raman et al. 2010b).  

 Currently, the WeNMR grid cannot support CS-RASREC calculations due to the 

requirement of communication between RASREC processes that is not supported by the 

grid-infrastructure. However, RASREC calculations are considerably more time-efficient than 

CS-ABRELAX; for targets in the size range addressed here, they require on the order of 

200-1000 CPU hours, which is available on medium sized in-house clusters or at adjunct 

computer centers of universities. We made considerable advances to simplify running these 

calculations by providing a Python-based toolbox for pre- and post-processing of CS-

ROSETTA related data files and fragment picking. This allows easy setup of CS-ABRELAX 

and RASREC CS-ROSETTA structure generation runs including integrated support for 

queuing systems such as SLURM and MOAB. The computational infrastructure has to 

support jobs that utilize the common Message Passing Interface (MPI) protocol (e.g., 

openMPI, LAM, MPICH, MPICH2) for inter-process communication. Additionally, a website 

providing documentation and tutorials (www.csrosetta.org) has been launched in support of 

the growing user community.  

 The main advantage of CS-RASREC calculations over the CS-ABRELAX is that a 

larger fraction of residues converges and that the energy gap becomes more pronounced. 

This in turn generates a higher chance of a strong prediction. On the 39 benchmark cases, 

the average fraction of converged residues (as shown in Figure 2.5b/c (green bars) is 72% 

for CS-ABRELAX and 80% for CS-RASREC. From the 9 targets that are classified strong in 

CS-RASREC but weak in CS-ABRELAX, 4 have improved classification due to a drastic 

increase in convergence (from ~30% to >70%), whereas the remaining 5 have similar 

convergence but improved energy-gaps (Table 2.4+2.5). Finally, the mean accuracy 

(RMSD) for strong predictions is 1.76Å for CS-ABRELAX and 1.44Å for CS-RASREC. Thus, 

if local computer resources can be obtained it is advisable to run CS-RASREC rather than 

CS-ABRELAX, if such resources cannot be secured, running just the webservice-based CS-

ABRELAX remains a reasonable and valuable alternative. Adaption of the RASREC protocol 

to a grid or cloud computing platform is in principle possible as only very low-bandwidth 
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communication is required, but technically involved as the entire communication layer of the 

protocol has to be adapted.  

 A program to apply the reported classification scheme into strong and weak 3D 

structure predictions is provided with the CS-ROSETTA toolbox versions 1.5 and higher at 

www.csrosetta.org and is implemented in the CS-ROSETTA web server.  
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2.6 My contribution to this project 

 As one of the two first authors in the paper-improving 3D structure prediction from 

chemical shift data, my main contribution is calculating protein structures with RASREC-

Rosetta. I also carried out all the analysis of the final structures, e.g. RMSDs calculation, 

determination of converged region and packing analysis by RosettaHole. I developed the 

annotation method to classify the structure calculations and implemented the method into 

CS-Rosetta toolbox. I prepared nearly all the figures and tables in this paper except Figure 

2.1, 2.2 and Table 2.1. I also participated in the paper writing. 

 



 

Chapter 3 Robust and highly accurate 
automatic NOESY assignment and 
structure determination with Rosetta 

3.1 Significance Statement 

 NMR structure determination is next to X-ray crystallography the only available high-

resolution method for protein structure determination. NMR spectroscopy is conducted in 

aqueous solution and thus might be the only route towards high-resolution 3D structures for 

proteins that cannot be crystallized. However, the analysis of NMR data is very time-

consuming and can generally only be conducted by highly trained NMR experts, which 

require from weeks to several months to obtain accurate and precise structures. Here we 

provide a novel method to automate the analysis process and show that accurate structures 

can be obtained. Remarkably, the automatically generated structures are in a majority of the 

cases more accurate than the structures laboriously generated by NMR experts. The 

method promises to significantly increase the attractively and viability of NMR structure 

determination.  

3.2 Introduction 

 Structure determination by nuclear magnetic resonance (NMR) spectroscopy is 

largely driven by distance information gathered through Nuclear Overhauser Effect 

Spectroscopy (NOESY). To use such data as distance restraints, the NOESY crosspeaks in 

multidimensional spectra have to be assigned to individual atoms of the biomolecular system. 

NOESY cross-peak assignment and structure generation steps are usually performed in an 

integrated, iterative manner. This maximizes the number of conformational restraints, while 

guaranteeing self-consistency amongst distance restraints(Wüthrich 1986).  

 Many of the repetitive tasks in NMR structure determination have been successfully 

automated(Moseley and Montelione 1999; Baran et al. 2004; Güntert 2008; Guerry and 

Herrmann 2011). Two such crucial tasks in the chain of the data analysis are the assignment 

of NOE cross-peaks and the determination of accurate structural models. Popular programs 

that perform these two tasks are ARIA(Linge et al. 2003a), CYANA(Güntert et al. 1997; 
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Güntert 2008), AutoStructure(Huang et al. 2006) and UNIO(Serrano et al. 2012) and have 

recently been tested with good results in a blind-testing challenge(Rosato et al. 2012). 

However, a limitation of these programs is that they have to be able to generate a sufficiently 

accurate model from the initial set of assignments. This usually limits the methods to small 

proteins with high quality spectra, complete and accurate chemical shift assignments, and 

well-refined peak lists. When conditions are suboptimal, a calculation either does not 

converge, or worse, converges to a precise but inaccurate fold(Guerry and Herrmann 2011). 

Accordingly, these programs are not usually used unsupervised, and must instead be 

applied in combination with manual assignment and possibly peak list refinement by a skilled 

NMR expert. Indeed, in our own work on larger proteins, a few manual assignments were 

required to bootstrap the automated analysis with CYANA(Lange et al. 2012).  

 Here, we aim to develop a NOE assignment and structure determination algorithm 

that can – unsupervised – produce results that are both reliable and accurate. This algorithm 

should take chemical shift assignments and unassigned NOE peak lists as input and 

produce, without further user interaction, refined models of protein structures in atomic 

resolution.  

 To achieve this goal, we combine Rosetta structure prediction with automatic NOE 

assignment. It has been demonstrated that Rosetta, which searches for the lowest energy 

conformation of the polypeptide chain using physically realistic force fields, requires only 

very sparse NMR data to guide its search to accurate structures(Raman et al. 2010; Lange 

et al. 2012). The question we ask here is whether the very noisy automatically assigned 

NOE restraints might be able to provide sufficient guidance for Rosetta to yield accurate 

initial models. These models would then allow iterative refinement of NOE assignments until 

accurate high-quality structures and self-consistent assignments can be generated. Iteration 

of automatic NOE assignment with structural modeling is, however, also the basis of 

established algorithms. Thus, the crucial question to be explored in this study is not whether 

iteration between modeling and assignment is a successful strategy, but rather if a 

significant benefit is gained by using the improved, but computationally more demanding, 

ROSETTA structural modeling, and if we can solve the engineering challenge to render the 

ROSETTA structure calculation sufficiently robust against the very noisy automatically 

assigned NOE restraints of the initial assignment stage. In cases where established 

programs cannot find converged initial models, and thus fail, the new approach might 

converge and thus applicability is broadened to include more challenging cases. Additionally, 

the more accurate modeling provided by the ROSETTA energy function might render the 

method more robust against erroneous input data and yield more accurate final 3D models.  
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 To couple NOE assignment with ROSETTA, we build on the previously developed 

iterative structural modeling algorithm, RASREC, and extend it to become an algorithm for 

automatic NOE assignment. This entails the implementation of a new ROSETTTA module 

for automatic NOE assignment as well as the development of a robust protocol to couple the 

iterative search for the near-native protein structures in RASREC with iterative NOE 

assignment. The assignment module employs among other techniques, network 

anchoring(Herrmann et al. 2002),  ambiguous restraints(Nilges et al. 1997), covalent 

structure compliance(Herrmann et al. 2002; Huang et al. 2005), structure dependent and 

independent peak calibration, and restraint combination(Herrmann et al. 2002). In our final 

protocol, the calculation consists of multiple iterations of structural sampling guided by 

automatically assigned NOE restraints. In early iterations, cross-peak assignments 

compatible with preliminary models are reinforced, but incompatible assignments are not 

removed. In later iterations, incompatible cross-peak assignments are removed from the 

restraint list. Throughout the whole process, however, a pool of best fitting structures is 

maintained that is ranked by the initial NOE assignments. This is a major difference to 

existing programs and helps us to prevent convergence on inaccurate but self-consistent 

solutions. Implementation details of the new method will be described elsewhere(Lange).  

 To investigate the performance of the new methodology, we carried out a benchmark 

on 50 NOE data sets obtained from 41 protein samples of 63-370 residues length. To test 

the impact of difficult inputs on the performance of AutoNOE-Rosetta, we have included 

unrefined and automatically picked peak lists, as well as sparse data sets obtained from 

perdeuterated ILV-methyl labelled protein samples. To avoid unwittingly cherry-picking 

targets that work especially well for our method, we chose three pre-existing benchmark sets 

and used all monomeric proteins from each(Mao et al. 2011; Rosato et al. 2012; Lange et al. 

2012).  

 In the following we report on the results of the benchmark. First, we will contrast the 

performance of AutoNOE-Rosetta with CYANA. Subsequently, we compare the accuracy of 

the unsupervised method with the state of the art of expert guided NMR structure 

determination as reflected in PDB-deposited NMR models. This is followed by an analysis of 

structure validation metrics and NOE completeness scores. Finally, we stress test the 

method with non-ideal input data, such as raw or unrefined peak lists or incomplete and 

erroneous chemical shift assignments.  
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3.3 Results  

 We have defined a single set of parameters that is used to run all targets, including 

data preparation (e.g., automatic trimming of flexible tails), structure calculation and final 

model selection. Thus, results in similar quality as reported here should be achievable from 

application of the method to as yet unknown targets. We also provide a suite of scripts that 

allow the user to run the software in this unsupervised fashion. The entire benchmark set 

and the final models can be obtained from our website (www.csrosetta.org/benchmarks) and 

our results can be scrutinized by interested readers using our software and accompanying 

tool-chain.  

 The benchmark comprises 50 NOE data sets derived from 40 different proteins 

ranging in size from 5.5 kDa to 40 kDa.  Input data are the sequence, chemical shift 

assignments and NOE peak lists (Methods, Appendix Table S1). In 20 cases, RDC data of 

the N-H bond vectors in one or more alignment medium was also included (A Table S1).  

 Multiple calculations are carried out with different weighting of the NOE data against 

the Rosetta Energy. One is selected from these based on a combination of final Rosetta 

Energy and the intrinsic precision of the resulting models (Methods). Finally, to be accepted 

as a successful solution, the structures must fulfill two criteria: convergence and intrinsic 

NOE consistency (Appendix Methods Section A.3.2.2). AutoNOE-Rosetta was run 

successfully on 42 of 50 data sets, comprising 35 different proteins. Final models are shown 

in Appendix Figure S1 for all targets, and their accuracy is reported in Appendix Table S2 as 

C!-RMSD with respect to the reference structure. A number of targets have only been used 

after the AutoNOE-algorithm was finalized, including all parameters, and the run selection 

protocol. These targets are DrR147D, MrR110B, OR8C, PfR13A, PsR293, SR384, SgR42, 

VpR247, and HmR11 and display similar performance as the other targets (Appendix Table 

S2).   

 To provide a reference for the performance of AutoNOE-Rosetta, we chose to run 

the popular program CYANA 3.0, which obtained the most accurate models in a recent 

community-wide blind structure determination challenge (CASD)(Rosato et al. 2012). In 

analogy to AutoNOE-Rosetta we have defined an acceptance rule for CYANA. Based on 

suggestions of CYANA’s creator, Peter Güntert, we use a combination of convergence and 

CYANA’s target function (Appendix Methods Section A.3.2.1, Figure S2).  

 CYANA was successful for 31 of 50 data sets according to its acceptance rule 

(Methods). Thus, a significant improvement in both accuracy and radius of convergence for 
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AutoNOE-Rosetta is observed with respect to CYANA (Figure 3.1). All structures that failed 

the automatic acceptance criteria in AutoNOE-Rosetta also failed in CYANA, but eleven of 

the failing targets in CYANA were acceptable according to the criteria in AutoNOE-Rosetta, 

and yielded accurate structures below 2.5Å RMSD (Figure 3.1). Furthermore, 10 of 17 

inaccurate CYANA-structures (RMSDs >2.5Å) were determined accurately by AutoNOE-

Rosetta (RMSDs <2.5Å). Numerical values of the C!-RMSD against the reference structures 

for CYANA and AutoNOE-Rosetta can be found in (Appendix Table S2).  

 

Figure 3.1: Comparison of AutoNOE-Rosetta with CYANA. Shown are the median C!-

RMSDs of final models with respect to their reference structure on logarithmic scale. The 

diagonal line indicates points of equal performance, points above the line correspond to 

targets for which CYANA yields lower RMSDs, and points below the line correspond to 

targets for which AutoNOE-Rosetta yields lower RMSDs. The dashed lines mark 2.5Å 

RMSD. The size of the proteins is proportional to the area of the symbol as indicated by the 

legend. The color indicates whether for CYANA, AutoNOE-Rosetta or for both programs the 

final models are considered as success based on convergence and NOE consistency 

(Appendix Method Section A.3.2). RMSDs are capped at a maximum of 25 Å. Assignment 

statistics, convergence and accuracy of final models can be found in Appendix Table S7 and 

Appendix Table S8 for AutoNOE-Rosetta and CYANA models, respectively. Comparing 

heavy-atom RMSDs instead of C!-RMSDs yields a similar picture (Appendix Figure S6).  

 The state-of-the-art in high-resolution NMR structure determination typically involves 

not just a single CYANA run, but performing several rounds of CYANA-based NOE 

assignment and refinement of the input peak lists (or even manual assignments, going 

through peak-by-peak), followed by simulated annealing in XPLOR or CNS (considered to 
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have a better force field than CYANA), and finally a high-resolution refinement in explicit 

water(Linge et al. 2003b), where RDCs are used if present. To directly compare AutoNOE-

Rosetta to this more complex structure determination protocol, we included 20 protein 

targets in our benchmark for which both a conventionally determined solution NMR structure 

and an X-ray crystal structure are available. We further assume that the state-of-the-art in 

NMR structure calculation is well reflected in these 20 PDB-deposited NMR solution 

structures. Indeed, all these structures were deposited in the last decade, the program CNS 

is listed in all PDB headers (except 1xpv), and whenever the respective remark section is 

provided in the PDB header (12 of 20 cases), water refinement is mentioned explicitly.  

 In this study, we assume that the X-ray structure is an accurate representation of the 

dominant solution structure; accordingly, the RMSD of atomic coordinates between NMR 

and X-ray structure provides a measure for the accuracy of the NMR structure. This view is 

supported by the NMR data (Appendix Table S3). Based on this criterion, AutoNOE-Rosetta 

significantly outperforms conventional supervised NMR structure determination (Figure 3.2a 

and Appendix Table S4). For 10 of 21 targets, accuracy is significantly improved, and only 

for 2 of 21 it is decreased (CcR55, partially converged; ER690 unconverged). Moreover, if 

we restrict the analysis to the 19 converged targets, accuracy never deteriorates more than 

33%, whereas it improves for 7 targets significantly beyond 33%. This is in stark contrast to 

the performance of established automatic assignment programs. Only 3 of the smallest 

targets of the benchmark set (<80 residues) yield sufficiently accurate results in CYANA to 

compete with PDB deposited NMR structures. For the other 18 of 21 targets, the structures 

obtained unsupervised with CYANA are >25% worse in accuracy than PDB-deposited NMR 

structures (Figure 3.2b). Of these 18 with deteriorated accuracy, 13 yield a tight structural 

bundle and 10 are acceptable according to the success criteria introduced above (Appendix 

Tables S2+S8).  
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Figure 3.2: Comparison of unsupervised automatic NOE models with expert-analyzed NMR 

solutions structures. The C!-RMSDs of PDB deposited NMR models is plotted against final 

models obtained with (a) AutoNOE-Rosetta and (b) CYANA. For AR3436a no X-ray 

structure is available as reference, but a new manually refined NMR solution structure, 

which supersedes 2kj6 (Figure 3.4 and Results). The solid diagonal line indicates points of 

equal performance, points above the line correspond to targets where PDB-deposited NMR 

structures have higher accuracy, and points below the line correspond to targets with higher 

accuracy of the AutoNOE-Rosetta models. Dashed lines mark +/- 25% accuracy. The size 

of the proteins is proportional to the area of the symbol as indicated by the legend. 

AutoNOE-Rosetta or CYANA runs that are not converged (<90% of residues converged) are 

shown in red. Comparing heavy-atom RMSDs instead of C!-RMSDs yields a similar picture 

(Appendix Figure S7).   

 In addition to a high accuracy, we generally would like to obtain 3D models of 

proteins with a high structural quality. This quality is generally assessed by structural 

validation packages through various metrics, such as packing quality, ramachandran 

consistency, and Janin-plots. NMR solution structures based on NOE distance restraints are 
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prone to show deficits(Doreleijers et al. 2012b), whereas un-restrained CS-Rosetta models 

were previously reported to show high structural quality but significantly lower accuracy than 

NOE-driven structure calculations(Rosato et al. 2012). We were curious to see whether 

AutoNOE-Rosetta preserves the high structural quality, despite being subjected to a large 

number of automatically assigned NOE restraints and yields more accurate structures than 

CS-Rosetta. To assess the structural quality of AutoNOE-Rosetta models we used the 

online validation server iCING(Doreleijers et al. 2012a), which performs WhatIF(Vriend 

1990), PROCHECK(Laskowski et al. 1996) and its own structural analysis.  

 The iCING-ROG score summarizes and integrates different validation measures into 

a single score and annotates individual residues as green, orange and red to convey an 

increasing level of alertness for unphysical local structure(Doreleijers et al. 2012a). 

AutoNOE-Rosetta models produce generally less red and orange residues than PDB NMR-

models or CYANA models(Figure 3.3a-c). WhatIF compares local structure of the protein 

against common structural knowledge derived from high-resolution X-ray structures(Vriend 

1990). Figure 3.3d-f shows the WhatIF structure Z-scores on Ramachandran plot 

appearance, backbone quality, 1st generation packing quality, and chi-1/chi-2 rotamer quality. 

AutoNOE-Rosetta models generally are of higher quality than PDB-NMR models or CYANA 

models.  



CHAPTER 3 ROBUST AND HIGHLY ACCURATE AUTOMATIC NOESY ASSIGNMENT 

AND STRUCTURE DETERMINATION WITH ROSETTA 

72 

 

Figure 3.3: Validation metrics for AutoNOE-Rosetta, CYANA and PDB-deposited NMR 

models. Metrics computed for AutoNOE-Rosetta and CYANA-models are compared to 

metrics computed on PDB-models, in panel-columns 1 and 2, respectively. Metrics between 

AutoNOE and CYANA are conmpared directly in panel-column 3. (a-c) Fraction of residues 

annotated as red, orange and green by the iCING server’s ROG score(legend). Less red 

and orange and more green residues is better. (d-f) WhatIF Z-scores for Ramachandran 

plot appearance, backbone-quality, packing and chi-1/chi-2 rotamer normality (legend). 

Higher Z-scores are better. (g-i) The number of NOE restraints violated by structural 

models. Structural models of CYANA and AutoNOE are analyzed together with the 

restraints produced by the respective algorithms. PDB-deposited models are analyzed with 

respect to the NOE restraints uploaded with the structures. (j-l) Completeness scores 

computed with AQUA(Doreleijers et al. 1999) and AutoStruct-DP(Huang et al. 2005). Higher 

numbers are better.  

0 0.5 1
0

0.2

0.4

0.6

0.8

1

PDB

a
u
to

N
O

E

 

 

...red

...orange

...green

0 0.5 1
0

0.2

0.4

0.6

0.8

1

PDB

C
ya

n
a

0 0.5 1
0

0.2

0.4

0.6

0.8

1

autoNOE

C
ya

n
a

−5 0 5 10

−5

0

5

10

PDB

a
u
to

N
O

E

 

 

rama

bb−quality

packing

rotamers

−5 0 5 10

−5

0

5

10

PDB

C
ya

n
a

−5 0 5 10

−5

0

5

10

autoNOE

C
ya

n
a

10
0

10
2

10
4

10
0

10
2

10
4

PDB

a
u
to

N
O

E

 

 

>0.1A

>0.3A

>0.5A

10
0

10
2

10
4

10
0

10
2

10
4

PDB

C
ya

n
a

10
0

10
2

10
4

10
0

10
2

10
4

autoNOE

C
ya

n
a

0 0.5 1
0

0.2

0.4

0.6

0.8

1

PDB

a
u
to

N
O

E

 

 

aqua

DP−score

0 0.5 1
0

0.2

0.4

0.6

0.8

1

PDB

C
ya

n
a

0 0.5 1
0

0.2

0.4

0.6

0.8

1

autoNOE

C
ya

n
a

CING ROG Scores
Fraction of residues
marked as...

WhatIF Z−Scores
(positive is better)

# NOE Violations

Completeness

a b c

d e f

g h i

j k l



CHAPTER 3 ROBUST AND HIGHLY ACCURATE AUTOMATIC NOESY ASSIGNMENT 

AND STRUCTURE DETERMINATION WITH ROSETTA 

73 

 Another popular criterion for judging NMR structure quality is a low count of restraint 

violations by the final models. Figure 3.3g-i shows how often the final models violate the 

NOE-derived restraints by >0.1 Å, >0.3 Å and >0.5 Å. Generally, NMR restraint-sets 

deposited with their corresponding PDB structures have less violations above >0.3 Å or 

>0.5Å than those obtained with CYANA or AutoNOE-Rosetta, but CYANA and AutoNOE-

Rosetta yield similar results. We found that, for AutoNOE-Rosetta ensembles, many of the 

violations occurred at side-chains that adopted multiple conformations. In these cases, each 

conformation would actually be consistent with a subset of the violated NOE restraints 

involving this side-chain, and it would be plausible that dynamic averaging causes the 

assigned NOE cross-peaks.  Since it is well possible that dynamic averaging might be the 

reason for some of the observed violations, as well as the fact that programs could trivially 

remove any violated restraint from the restraint-list, it is questionable whether the count of 

restraint violations is actually a valuable criterion for NMR structure validation. Indeed, we 

see no particular correlation between this measure and accuracy of the final models (C!-

RMSD) regardless whether they were downloaded from the PDB or generated with CYANA 

or AutoNOE-Rosetta (Appendix Figure S3). 

 Since the AutoNOE-Rosetta structures fit more accurately to X-ray structural models, 

a possible concern might be that Rosetta modeling is biased towards X-ray crystallographic 

artifacts rather than solution state structure. To verify that this is not the case we show that 

AutoNOE-Rosetta models yield a better or equivalent interpretation of the NMR data in 

comparison to conventional NMR solution structures, as quantified by the AQUA 

completeness(Doreleijers et al. 1999) and the AutoStruct DP score(Huang et al. 2005). 

AQUA reads the models and restraint list and checks how many of the proton-proton 

contacts in the model are actually observed as assigned NOEs. The more modern DP score 

uses chemical shift assignments and unassigned peak lists as input, and is thus 

independent of the specific restraint list. AQUA’s completeness score is systematically better 

for AutoNOE-Rosetta than for PDB-NMR or CYANA models (Figure 3.3j-l, black circles). For 

most targets the DP scores are comparable between the different methods (Figure 3.3j-l, 

blue crosses). However, for some PDB-NMR structures with low DP-scores (<0.6) 

AutoNOE-Rosetta was able to yield significant improvements. Overall these quality 

measures show that AutoNOE-Rosetta models yield as good or better an interpretation of 

the NMR data as the PDB-deposited NMR models.  

 Next, we were interested how AutoNOE-Rosetta behaves when provided with 

problematic data. Accordingly, we tested both automatic (raw) and refined peak lists for 8 

targets from round II of the blind, community-wide NMR structure determination challenge 
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(CASD)(Rosato et al. 2009). In addition to the 8 raw data sets, we use 7 unrefined data sets 

from previous work(Lange et al. 2012) and one from CASD round I. For these unrefined data 

sets, peaks have been picked manually and chemical shift assignments have been validated, 

but the peak lists and chemical shift assignments have not yet undergone iterative 

refinement using structural models. Of the unrefined data sets, 6 stem from ILV-methyl 

labeled perdeuterated protein samples. Restraints obtained from such ILV-samples are 

inherently sparse, rendering structure calculation more challenging due to a lower restraint 

density. Moreover, the sparser NOE networks render the automatic validation of NOE cross-

peak assignments via network anchoring less effective.   

 The availability of 9 targets with both raw/unrefined and refined data allows us to 

investigate the robustness of AutoNOE-Rosetta. AutoNOE-Rosetta turns out to be 

remarkably robust; for 7 of the 9 raw/unrefined peak lists differences in accuracy are 

insignificant(<0.3Å). In only two cases, StT322 and HR5460, was the accuracy significantly 

decreased. The automatic acceptance criteria successfully identified both these raw data 

sets as having produced untrustworthy results. Interestingly, AutoNOE-Rosetta tends to 

select a lower weight for the NOE-based pseudo-energy contribution for raw peak lists 

compared to refined peak lists (Table 3.1), which is consistent with the presumed lower 

quality of the data.  

      C!-RMSD (Å) to reference structure 

   Residue ranges  Raw peak list Refined peak list 

Target Referenc
e size 

of 
NMR 

sample 

used in 
Rosett

a 

RMSD 
analysis 

weight 

ratio1 CYANA AutoNOE
-Rosetta 

CYAN
A 

AutoNOE
-Rosetta 

StT322 2loj 38 1-63 26-63 26-63 0.04 8.3 3.2 1.4 1.7 

HR6470 2l9r 48 1-69 11-58 11-58 1.00 0.8 0.9 0.8 0.8 

OR135 2ln3 69 1-79 5-73 5-73 0.50 0.9 0.8 1.1 0.9 

AR3436a tbd3 80 1-97 14-93 14-93 0.40 3.4 1.0 1.7 1.0 

HR6430 2la6 89 1-99 11-99 11-99 1.00 1.4 1.0 1.5 0.9 

HR2876 2ltm 95 1-107 13-107 13-107 0.04 not 
converged 1.6 1.4 1.5 

YR313 2ltl 102 1-119 18-119 18-40, 
46-115 0.10 1.6 1.4 1.7 1.3 

OR36 2lci 128 1-134 1-128 1-128 0.50 2.0 1.5 n/a2 1.2 

HR5460 2lah 150 1-160 11-160 19-160 0.02 not 
converged 3.2 n/a2 1.8 
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Table 3.1: Impact of raw peak lists. 

Footnotes: 

1) Ratio of NOE-pseudo energy weights selected automatically by AutoNOE-

Rosetta for raw vs. refined data sets.  

2) a segmentation fault in CYANA 3.0 prohibited us from finishing the structure 

calculation 

3) The reference structure for AR3436a is a new NMR structure (PDB accession 

code: TBD) that results from a (manual) re-evaluation of the original NMR spectra.  

 Another type of challenging input is given by the 8 unrefined ILV data sets. 

AutoNOE-Rosetta succeeded on four of these data sets and yielded a partially converged 

structure for another (HmR11). CYANA, however, did not succeed on any of these 8 data 

sets. Is the deciding factor, which makes these data sets so challenging, the sparseness of 

the ILV data, the quality of the data sets (unrefined vs. refined), or the increased molecular 

weight (ILV data sets have a molecular weight between 15-21 kDa)? One can mostly 

exclude the increased molecular weight, as the driving factor for these failures, since both 

AutoNOE and CYANA were significantly more successful on the refined data sets in the 

same size range. Furthermore, we showed above that the influence of data quality (raw vs. 

refined) on AutoNOE-Rosetta is low for small, double-labeled data sets. Thus, the lower 

success rate is likely a result of the sparseness of the ILV data. 

 To run AutoNOE-Rosetta or CYANA unsupervised, it is important to have clear 

criteria to flag problematic runs. This filter mechanism has to catch most, if not all, 

problematic results. In other words, the filter should produce little or no false positives. Some 

false negatives, on the other hand, are not as worrisome, as human experts can inspect a 

few such calculations. Here, we have introduced clear definitions for such a filter rule based 

on convergence of structures and NOE self-consistency for CYANA and AutoNOE-Rosetta 

(Appendix Methods A.3.2). Of the eight declined calculations performed with AutoNOE-

Rosetta, four failed both criteria, and four (two each) failed only one of the criteria. The data 

sets that only failed the consistency criterion, are YR313(raw) and StT322(raw). While 

YR313 yielded accurate structures (1.4Å) in AutoNOE-Rosetta, StT322 did not (C!-RMSD 

3.2Å; Appendix  Figure S4). For CcR55, HR5460(raw), and HmR11(unrefined) only 88%, 

79% and 75% of residues converged, respectively, failing the criterion of 90% convergence 

by only a small margin. In these cases, the converged part of the structure is reasonably 

accurate (C!-RMSDs of 1.3Å, 2.0Å, and 3.1Å, respectively) and would provide an advanced 

starting point for further iterative and structure based refinement of the data set (Appendix 
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Figure S4). Hence, as intended, the filter has been successful in producing no false positives 

and only very few false negatives. 

 The data presented here shows that AutoNOE-Rosetta yields accurate results even 

when the peak lists are not well refined. In the following we discuss a fortuitous discovery 

that demonstrates that AutoNOE-Rosetta is not only robust against problematic peak lists, 

but also shows remarkable accuracy in the face of incomplete or erroneous side-chain 

chemical shift assignments. During our work on the here-presented benchmark we were 

initially puzzled by one outlier. For this outlier, AR3436a, AutoNOE-Rosetta yielded 

structures that were 3.8Å away from the PDB-deposited NMR solution structure (2kj6). The 

AR3436a data set stems from the CASD set, and was originally posed as a blind challenge 

to the community. The results of this competition seemed fairly standard except the CS-

Rosetta models were identified as an outlier(Rosato et al. 2012): all NOE driven programs 

produced structures close to the PDB-deposited structure (1.4-2.2 Å) and with acceptable, 

albeit slightly borderline, validation scores. However, a closer inspection of the NMR solution 

models (2kj6) reveals that the main helix is at an angle causing the hydrophobic core of the 

protein to be exposed (Figure 3.4a+c). In the AutoNOE-Rosetta models, in contrast, the helix 

is well packed against the core (Figure 3.4b+d), which is more consistent with our 

understanding of the physical chemistry of hydrophobic protein cores. Moreover, the CS-

Rosetta based submissions to the blind structure determination challenge also packed the 

helix against the core (with RMSD >4Å to the reference NMR structure), but did not 

converge to a high-precision structural bundle.  
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Figure 3.4: Structure determination of AR3436A from incomplete and erroneous input 

data. Shown are two models of AR3436A in space-fill (a,b) and cartoon visualization (c,d) to 

highlight the differences in packing of the hydrophobic core between the PDB-deposited 

NMR solution structure (a,c) and the structure obtained with AutoNOE-Rosetta from the 

same input data (b,d). Due to the incomplete and erroneous chemical shift assignments 

AutoNOE-Rosetta can only assign a few NOE-crosspeaks (yellow lines) that support the 

packing of the helix, nethertheless, these are sufficient to yield well packed structures. (d). 

The PDB-deposited models violate these NOE crosspeaks, demonstrating that the 

respective assignments were discarded because they didn’t fit initial models.  

 These observations prompted us to investigate whether the better-packed structure 

obtained with AutoNOE-Rosetta might actually be better supported by the raw NMR data as 

well. Indeed, a careful analysis of the raw input data conducted together with members of 

the laboratory that authored the original data set revealed a number of problems. Although 

the backbone assignment was nearly complete and correct, the side-chain chemical shifts 

were incomplete and had miss-assignments. Additionally, the NOESY data were under-

picked as indicated by the unbalanced Recall-Precision scores of the PSVS analysis, such 

PDB$Model$(2kj6)$ AutoNOE6Rose9a$Model$

a$ b$

c$ d$
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that many potentially well resolved peaks were not contained in the original peak list. These 

issues hindered the structure calculations of NOE-driven programs, but had no influence on 

the CS-Rosetta calculations. After correcting these issues with the input data, the structures 

obtained with conventional methods matched with the AutoNOE-Rosetta models obtained 

with either the original data (1.0Å) or the new data (1.0Å).  This shows that AutoNOE-

Rosetta is not only reliable with unrefined (raw) peak lists but also with raw (i.e., incomplete 

and erroneous) sidechain chemical shift assignments. We are now in the process of 

systematically investigating the influence of such raw chemical shift assignments on 

automatic NOE assignment methods and our preliminary results support the anecdotal case 

reported here. The advantage of this robustness of AutoNOE-Rosetta for the full NMR 

pipeline is obvious. Assignment of side-chain chemical shifts is often a major bottleneck to 

progress in an NMR structure determination project. Automatic methods, such as 

FLYA(Schmidt and Güntert 2012), might take the burden of manual assignment, but cannot 

be relied on to always yield the highest quality of resonance assignments. However, paired 

with AutoNOE-Rosetta, which is more fault-tolerant than other methods, an accurate 

structure might still be generated either as final result, or as a starting point for further 

refinement of the chemical shift assignments.  

3.4 Discussion 

 We developed a new method for automatic NOE assignment and NMR structure 

determination, which we tested on a benchmark of 50 data sets including 20 for which X-ray 

crystallographic reference structures were available. A final convergence and NOE 

consistency filter accurately discriminates between successful and failed runs, and all 42 

runs that pass this filter yield an accuracy better than 2.5Å C!-RMSD. Thus, we successfully 

combined the most important traits of CS-Rosetta with those of NOE-driven structure 

determination. The new algorithm is robust against missing or erroneous data as CS-

Rosetta, but in the end exploits the full NOESY data to achieve the optimal precision and 

accuracy in final structures. In particular the lack of precision is problematic for CS-Rosetta, 

even if NOE-based filtering is applied (CS-DP-Rosetta(Raman et al. 2010)), as shown by the 

community wide assessment of structure determination (CASD)(Rosato et al. 2012).  

 The usefulness of an automatic NOESY assignment algorithms hinges on its ability 

to handle a wide variety of data. In fact, the quality of NOESY peak lists can vary 

dramatically as a function of the quality of the raw data, the method of picking peaks, and 

the level of peak list refinement. With 50 data sets from 41 different proteins, we are 

confident that our benchmark covers a realistic range of NMR data quality. To enhance the 



CHAPTER 3 ROBUST AND HIGHLY ACCURATE AUTOMATIC NOESY ASSIGNMENT 

AND STRUCTURE DETERMINATION WITH ROSETTA 

79 

variety in the benchmark, we also included data sets at different stages of refinement 

(termed raw, unrefined, and refined). And in spite of this wide variety of input data quality 

AutoNOE-Rosetta yields accurate results with striking consistency, which demonstrates a 

remarkable robustness of the method against challenging input data. Thus, AutoNOE-

Rosetta is a significant advance in fully automatic analysis of NMR data. 

 We were able to compare AutoNOE-Rosetta ensembles with PDB-deposited NMR 

ensembles which reflect the state-of-the-art in NMR structure determination including final 

refinement in explicit water. Remarkably, the AutoNOE-Rosetta results are either very close 

in accuracy (within 25%) or significantly better (Figure 3.2) than the PDB-deposited models. 

The most significant improvements were from 9.6Å to 2.3Å for the double-labelled sample, 

DrR1470, and from 4.7Å to 2.1Å for the triple-labelled, ILV-protonated sample, SR10 for 

which our calculations started from an unrefined data set.   

 AutoNOE-Rosetta ensembles’ high accuracy—both relative and absolute—is 

especially remarkable considering that we are comparing an automated, unsupervised 

method with expert driven iterative and structure based refinement, as it is reflected in PDB 

deposited structures. For experts in NMR data analysis the method will provide better 

starting points for refining challenging data sets. For non-experts it will allow a safe and 

straightforward application of NMR structure determination to routine cases. Thus, we are 

confident that our method provides a significant progress towards unsupervised automatic 

NMR structure determination, which is likely to broaden the applicability of NMR for structure 

determination in academic and non-academic labs.  

3.5 Methods 

3.5.1 Benchmark 

 The 50 data sets comprising target sequence, assigned chemical shifts, and 

unassigned peak lists were obtained from three published sources (Appendix Table S1): 1) 

all data sets available by December 2012 at the community wide assessment of NMR 

structure determination (CASD) (Rosato et al. 2009; Rosato et al. 2012) (currently hosted at 

http://www.wenmr.eu/wenmr/casd-nmr-data-sets), 2) all monomer data sets from a recent 

molecular replacement (MR) benchmark(Mao et al. 2011) (http://psvs-1_4-

dev.nesg.org/MR/dataset.html) (Appendix Figure S5), 3) all targets from our previous 

work(Lange et al. 2012).  
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 Peak lists from the first prediction period of CASD (CASDI) are refined. For targets 

from the second prediction period of CASD (CASDII), both, refined and raw (automatically 

picked) peak lists are available. For MR targets, the status of the peak lists is unknown but 

assumed refined, and for ILV-targets the peak lists and chemical shift files are unrefined, 

that is chemical shift assignments have been verified and peaks have been picked by a 

human expert(Lange et al. 2012), but the data sets have not undergone iterative refinement 

using structural models.  

 To analyze the accuracy of final structures, we computed the C! -RMSD on all 

residues that are structured in the reference. Tails that were not well defined (flexible) in the 

reference structure are excluded from RMSD computation as specified in Table S1. For 11 

reference structures, also internal loop-regions were not well defined and had to be excluded 

from RMSD calculations. Detailed justifications for these exclusions are given in Table S9. 

For a given method, AutoNOE-Rosetta or CYANA, the ten final models are superimposed 

with the reference structures to compute C!-RMSDs and heavy-atom RMSDs.  

3.5.2 AutoNOE-Rosetta 

 AutoNOE-Rosetta structure calculations were run with parameters as detailed 

here(Lange). Fragments were picked by the Rosetta3 fragment picker(Vernon et al. 2013) 

using the provided chemical shift data. Homologous proteins using an e-value cutoff of 0.05 

(sequence identity > 20 %) were excluded from fragment picking. Tolerances for NOESY 

cross-peak assignment were set for all targets to 0.3, 0.3, 0.03 and 0.04 for C!" , N!" , direct 

H  ! , and indirect H!  dimension, respectively. Residual Dipolar Coupling data were used 

where available (Appendix Table S1).   

 For data sets with unrefined or refined peak lists, NOE-restraint strengths of 5, 10, 25 

and 50, respectively are chosen, and for targets with raw peak lists restraint strengths of 1, 2, 

5, 10, 25, and 50. For each restraint weight 3 independent runs were carried out with 

different random seeds. The 10 lowest energy structures yield the final ensemble of a given 

run.  

 To identify the optimal run the resulting ensembles were ranked as follows: The 

converged residues are identified as those with a C!-RMS fluctuation of less than 2 Å, as 

reported previously(Lange et al. 2012). The average pairwise RMSD is computed on 

converged regions (Appendix Methods), and an effective precision (EP) is computed from 

pairwise RMSD and fraction of converged residues. For each run with constraint weight 

wcst  a cumulative score S = E-­‐12 logwcst + 5EP is computed, where E denotes the median 
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Rosetta all-atom energy of the ensemble. If in any of the runs more than 2000 peaks with 

initial assignments are removed, because final models violate them, only E is considered for 

selection of runs, otherwise the final run is selected using S.  

 The models of the top-ranking ensemble are further relaxed against the automatically 

assigned NOEs including intra-residue and sequential NOEs using a 10-fold increased NOE-

restraint weight. If this procedure reduces the number of NOE violations to less than 40% of 

the violations counted in the ensemble of un-relaxed models, the relaxed models are 

accepted as final models, otherwise the un-relaxed models are kept as final models. This 

was the case for data sets HR2876(raw), YR313(raw), and CtR107. For all other data sets 

the relaxed models are kept as final models. This refinement step generally reduces NOE-

violations without significantly affecting backbone RMSD to the reference structure.  

 We established two criteria for successful calculations: 1) reasonable NOE 

consistency (target-function<500) and 2) convergence (Appendix Methods A.3.2.2). For the 

convergence criterion the number of well defined residues has to reach 90% or more of the 

total number of residues with random coil index (RCI) derived S2 order parameter(Berjanskii 

and Wishart 2005) larger than 0.7 (Methods and Appendix Table  S2d).  

 A few NOE data sets were recorded with reduced sweep width leading to peak 

folding. AutoNOE-Rosetta unfolds such frequencies on the fly, if the sweep-window is noted 

in the header of the respective peak list. For CYANA calculations we manually unfolded by 

replicating peaks with integer multiples of the sweep width subtracted or added to the 

respective frequencies. This applies to 4 peak lists of 2 proteins of our benchmark and the 

corresponding sweep-width parameters are given in (Appendix Table S6).  

 AutoNOE-Rosetta is parallelized for the MPI framework and runs were either carried 

out on our in-house cluster or on JUROPA at the Juelich Supercomputer center using 184 or 

192 parallel processes, respectively.  

 Instructions to run AutoNOE-Rosetta including command-lines can be found in the 

Manual or Tutorial sections of our website (www.csrosetta.org) and in Appendix Methods.  

3.5.3 Cyana structure calculations 

 Cyana 3.0 calculations were carried out to provide readers with a familiar reference 

for each target. TALOS+ restraints were generated from the chemical shift data, and 100 

initial, and 20 final models were generated using 20,000 steps of torsion angle dynamics. 

RMSDs were computed from the 20 final models using the same residues and reference 

structure as for AutoNOE-Rosetta models (Appendix Methods for example script). All 
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TALOS+ predicted phi and psi angels with prediction class ‘Good’ are used. Two schemes to 

derive torsion restraints from TALOS+ predictions were tested. ACO_TIGHT restraints were 

generated by computing the lower- and upper bound as ϕ ± Δϕ , where ϕ  denotes the 

TALOS+ predicted torsion angle in degree, and Δϕ  the TALOS+ estimated standard 

deviation. For ACO_LOOSE, we obtained bounds as ϕ ± 2max min Δϕ, 35 , 10 .   

ACO_TIGHT is the recommended protocol at the NMR facility of the Center for Advanced 

Biotechnology and Medicine (CABM) as described here 

(http://www.nmr2.buffalo.edu/enter/NMRWiki/images/2/2e/Talos2dyana_taloserrors.txt). 

ACO_LOOSE is the protocol that derives from applying the talos2dyana.com executable 

packaged with the TALOS+ software. A comparison of both protocols shows that 

ACO_TIGHT yields better accuracy over all targets (Appendix Figure S2a). Thus, 

ACO_TIGHT is used in all further CYANA calculations.  

 Where RDC data was available, CYANA runs were carried out both, with and without 

RDC data. A weight of 0.02 was used for the RDC restraint, and 0.2 as cutoff for RDC 

violation output. For each alignment medium 5 additional pseudo-residues of type LL5 and 1 

of type ORI are attached at the end of the protein sequence.  Alignment tensor parameters, 

Dzz and R, are estimated using the macro FindTensor.cya which employs the histogram 

method(Clore et al. 1998). This protocol was obtained from 

http://www.nmr2.buffalo.edu/nesg.wiki/CYANA. RMSDs of CYANA calculations with RDCs 

were generally higher than CYANA calculations without RDCs (Appendix Figure S2b), 

whereas RDC data leads to improved results for AutoNOE-Rosetta (Appendix Figure S2c). 

Thus, CYANA calculations without RDCs are compared to AutoNOE-Rosetta with RDCs 

throughout the study.  
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3.7 My contribution to this project 

 In the paper- Robust and highly accurate automatic NOESY assignment and structure 

determination with Rosetta, my main contribution is preparing of part of the test proteins and 

carring out part of AutoNOE-Rosetta calculations. I also validated the structures using DP-

score. 
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4.1 Introduction 

 Structure determination by nuclear magnetic resonance (NMR) spectroscopy is 

largely driven by distance information gathered through Nuclear Overhauser Effect 

Spectroscopy (NOESY). To use such data as distance restraints, the NOESY cross peaks in 

multidimensional spectra have to be assigned to interactions between individual atoms of 

the biomolecular system. Obtaining an almost complete list of the chemical shifts of each N, 

C, and H atom in the system usually precedes the assignment of NOE cross peaks. 

Obviously, wrong or missing chemical shifts have a negative impact on the subsequent NOE 

assignment and the resulting set of distance restraints.  

 Yet, such mistakes commonly occur. It has been estimated that for about 1% of all 

structures in the PDB at least 1 chemical shift assignment is wrong (Zhang et al. 2003). 

Moreover, the accuracy of side chain assignments is generally much lower than that of 

backbone assignments (Moseley and Montelione 1999; Schmidt and Güntert 2012). 

Computational methods of automated chemical shift assignment have been developed with 

remarkable advances in recent years (Schmidt and Güntert 2012), and yet do not routinely 

reach the completeness and accuracy of manual assignments in practice (Shen et al. 

2008a). Multiple iterations between NOE and chemical shift assignment could improve 

accuracy further, but are time-consuming, and hinder full automation of NMR structure 

determination.   

 We have recently introduced a new program for automatic assignment, AutoNOE-

Rosetta(Lange), which showed remarkable accuracy on a benchmark of 50 proteins(Zhang 

et al. 2014). Most notably, we found that AutoNOE-Rosetta also displayed a remarkable 

robustness against problems of incomplete or wrong chemical shift assignments. Indeed, 

one of the data sets, AR3436A, contained considerable errors in the chemical shift 

assignments. In a recent blind structure determination challenge (CASD), where this data 

set was introduced originally, these errors and missing resonances in the chemical shift 
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assignments caused all participating programs that use automatic NOE assignment to drive 

structure determination (i.e., CYANA, AutoStructure, UNIO, and ARIA), to generate models 

with its helix sticking out at an angle instead of packing against the core. These inaccuracies 

remained largely unnoticed in the original publication of the CASD results (Rosato et al. 

2012), because the reference structure suffered from the same packing deficiencies 

presumably caused by the same problems in the input data.  

 Later, however, when we tested the new program, AutoNOE-Rosetta, on this data 

set, we obtained a well-packed structure about 4 Å away from the hitherto known reference 

structure. This finding prompted us to revisit the raw NMR data, and we obtained a corrected 

set of chemical shift assignments and a new NOE peak list, with which CYANA and 

AutoStructure, two of the previously failing programs, generated the same well-packed 

structure as AutoNOE-Rosetta with the original erroneous data set (1Å C!-RMSD).   

 The strong effect that erroneous and missing chemical shift assignments had on the 

original structure calculations, and the obvious difficulty to detect these problems, as well as 

the remarkable robustness against these errors displayed by AutoNOE-Rosetta, prompted 

us to systematically study the effect of missing and erroneous chemical shifts on automatic 

NOE assignment with various programs. In 2003, Jee and Güntert studied the effect of 

missing resonance assignments on the automatic NOE assignment with the CANDID 

algorithm, and concluded that CANDID can tolerate about 10% missing chemical shifts if 

heteronuclear-resolved three-dimensional NOESY spectra are used(Jee and Güntert 2003). 

Here, we systematically studied the effect of actual errors in the assignments rather than just 

omissions. Moreover, we studied different patterns of missing or erroneous shifts, i.e., we 

ask whether it makes a difference if all shifts on a given side-chain are missing, or if the 

same amount of shifts is distributed uniformly across the protein.  

 As discussed above, AutoNOE-Rosetta displayed remarkable robustness compared 

to established programs on the erroneous data set of protein AR3436A. In this study we 

explore the generality of the robustness of AutoNOE-Rosetta to incorrect sidechain 

resonance assignments.  Using three proteins of known structure and diverse fold-classes 

covering i) HR5537A (alpha-helical), ii) OR135 (alpha-beta), and iii) PfR193A (beta), we 

generate resonance assignment lists with missing or scrambled resonance assignments and 

systematically compare the performance of AutoNOE-Rosetta(Zhang et al. 2014) with the 

performance of two other well-established programs for automatic NOE assignment and 

structure determination: CYANA (Güntert et al. 1997; Herrmann et al. 2002) and 

AutoStructure-DP (ASDP) (Huang et al. 2005; Huang et al. 2006). The original experimental 

chemical shifts for these three proteins are highly complete and sufficiently correct such that 
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all programs yield highly accurate structures (<1.7Å C! -RMSD to reference). Since 

backbone chemical shift assignment is generally highly reliable (Moseley and Montelione 

1999; Baran et al. 2004; Jung and Zweckstetter 2004; Schmidt and Güntert 2012)., we focus 

here on problems with side-chain resonances. Thus, we kept the resonances H!, N, C!, H!, 

and CO fixed and artificially modified the sidechain resonance assignments with various 

levels of severity and scramble types to simulate incompleteness and errors. Based on 

these comparisons we conclude that the AutoNOE-Rosetta program is less sensitive than 

either CYANA or AutoStructure to errors in resonance assignments or missing resonance 

assignments.  The improved robustness to errors in assignments results from the power of 

the Rosetta force field to correctly model protein structures even when some restraints are 

incorrectly interpreted from the experimental data.   

4.2 Materials and Methods 

4.2.1 Preparation of benchmark datasets 

 We selected three proteins PfR193A(Tejero et al. 2013), HR5537A(Liu et al. 2009) 

and OR135(Koga et al. 2012) from our previous benchmark set of 50 proteins(Zhang et al. 

2014). Chemical shift assignments are sufficiently complete and accurate to yield high-

quality 3D models with all tested programs for all selected test proteins. The protein data 

sets were selected such that major fold-classes are covered (Table 4.1): a purely alpha 

helical protein, a beta-protein and an alpha-beta-protein.  

name PDB 
residue

s 

residues 

for RMSD 

NOE 

peaks 

chemical 

shifts 
RDC 

LR 

NH-

NH1 

LR NH-

Methyl2 LR Methyl-

Methyl3 

PfR193A 2KL6 114 1-108 6191 1252 NaN 38 118 51 

HR5537A 2KK1 135 
39-104, 

118-134 
13995 1122 NaN 0 125 74 

OR135 2LN3 83 5-73 6359 933 101 13 94 54 

Table 4.1: The proteins selected for the benchmark and some statistics about the available NMR data 

for these test cases. The NMR data was originally published by NESG and is publically available on 

the website http://psvs-1_4-dev.nesg.org/MR/dataset.html (Mao et al. 2011; Mao et al. 2014).  
1 Long Range(>4 residues) NH-NH restraints. 
2 Long Range(>4 residues) NH-Methyl restraints. 
3 Long Range(>4 residues) Methyl-Methyl restraints. 
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 Flexible terminal residues were predicted using TALOS+ (Shen et al. 2009) and all 

tail residues with predicted SRCI
!  order parameter lower than 0.7 were removed (Schot et al. 

2013).  Internal residues of HR5537A with a predicted SRCI
!  order parameter smaller than 0.7 

were excluded from RMSD calculations (Table 4.1). 

4.2.2 Datasets with incomplete chemical shift assignments 

 Incomplete chemical shift data sets were generated in sub-categories METHYL, 

SIDECHAINS and PROTONS as detailed below. For these sub-categories the severity 

levels were determined by the percentage of resonances within each sub-category that were 

removed from the data sets. We tested 0%(CONTROL), 10%, 30%, 50%, 70%, and 90% 

omission rates.  

 For sub-category METHYL, a given percentage of all methyl-bearing residues (ALA, 

LEU, ILE, VAL, MET and THR) were selected and the chemical shifts of all their methyl 

protons were removed. For sub-category SIDECHAINS, a given percentage of all residues 

were selected and the chemical shift of all sidechain atoms were removed. For sub-category 

PROTONS, a certain percentage of all protons on sidechains were selected and their 

chemical shifts were removed.  

4.2.3 Datasets with swapped chemical shift assignments 

 In this error category, pairs of atoms were formed randomly and their respective 

chemical shifts swapped. Swapped chemical shift data sets were generated in the sub-

categories METHYL, C-H, STEREO, CARBON, and SIDECHAIN.  

 To generate the sub-category METHYL, we randomly paired all methyl groups in the 

protein and selected 3, 6, 9, 12, and 15, pairs respectively to swap their resonances. The 

sub-category C-H is designed to test whether a swap of resonances of a carbon and its 

proton together has a more severe effect than independent swaps of protons and carbon 

atoms. Thus, we randomly paired side-chain carbon atoms and selected 6, 12, 18, 24 and 

30 of these pairs, respectively, to swap their resonances as well as the resonances of one of 

their respective protons. In sub-category STEREO we tested the effect of erroneous 

stereospecific assignments, and swapped the resonances of 10%, 30%, 50%, 70% and 90% 

of all diastereotropic protons in the data sets.  For sub-category CARBON, we randomly 

paired all sidechain carbon atoms that have the same atom name (i.e., CB’s are paired with 

other CB’s). Subsequently, we picked 10%, 30%, 50%, 70% or 90% of these pairs and 

swapped their chemical shifts. Finally, for sub-category SIDECHAIN, we randomly paired 
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residues with the same amino-acid type. Subsequently, we selected 1, 2, 3, 4 or 5 of these 

pairs and swapped the resonances of all side-chain atoms. 

4.2.4 Datasets with combined chemical shift assignments 

 In this error category for specific pairs of atoms or atom groups one member of the 

pair is replaced with the chemical shifts of the corresponding atom(s) of the other member of 

the pair. For sub-category METHYL, we selected 10%, 30%, 50%, 70%, or 90% of all LEU, 

ILE and VAL residues. For all selected residues we combined the proton and carbon 

resonances of their two methyl groups. For sub-category STEREO, we selected 10%, 30%, 

50%, 70%, or 90% of diastereo specifically assigned protons and combined their 

resonances.  

4.2.5 Structure generation with CYANA  

 Seven cycles of 20,000 steps of torsion angle dynamics were run in CYANA 3.0 

generating 100 initial, and 20 final models. All TALOS+ predicted phi and psi angels with 

prediction class ‘Good’ are used for torsion restrains by computing the lower- and upper 

bound as ϕ ± Δϕ, where ϕ  denotes the TALOS+ predicted torsion angle in degree, and Δϕ 

the TALOS+ estimated standard deviation. All CYANA calculations were distributed on 48 

processes.  

4.2.6 Structure generation with AutoNOE-Rosetta 

 AutoNOE-Rosetta structure calculations were run as described in Ref(Zhang et al. 

2014). Chemical shift based fragments were picked using the Rosetta3 fragment 

picker(Schot et al. 2013; Vernon et al. 2013). The standard protocol for AutoNOE-Rosetta 

prescribes to run 4-6 calculations for each data set using NOE-restraint weights ranging 

from 2 to 100. For this study we have generated a total of 720 chemical shift data sets, such 

that running 4-6 calculations per data set would be prohibitively expensive. Thus, we abstain 

from scanning NOE-restraint weights and instead fix this weight to 10 in all runs, accepting 

thus somewhat diminished performance for AutoNOE-Rosetta with respect to a real 

application. All AutoNOE-Rosetta calculations were distributed on 178 processes. 

 We recorded 3 parameters to facilitate detection of failed AutoNOE-Rosetta 

calculations. These were 1) the number of initially assigned NOE peaks, 2) the number of 

finally assigned NOE peaks, and 3) the number of converged residues in the final models 

(Rohl et al. 2004; Shen et al. 2008b; Raman et al. 2010; Schot et al. 2013). 
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4.2.7 Structure generation with ASDP 

  ASDP (Huang et al. 2005; Huang et al. 2006) utilizes (1) a topology-based algorithm 

to build secondary structures including anti-parallel and parallel beta-sheets from the 

unassigned NOEs and resonance assignments in the first cycle, and (2) a bottom-up 

iterative strategy to assign NOE peaks and generate distance restraints from the list of 

resonance assignments and the unassigned NOEs. In the current version of ASDP, the DP 

score (Huang et al. 2005; Huang et al. 2006) is used to rank and filter intermediate 

structures which are used direct the trajectory of NOESY assignment process. 

 Input files for ASDP included resonance assignments, dihedral angle restraints, 3D 

N15-NOESY and C13-NOESY peak lists, and/or RDC. RDC data were only used here to 

calculate the OR135 structure. The dihedral angle restraints were generated from the 

chemical shifts using TALOS+(Shen et al. 2009). Only the dihedral angles from the regions 

predicted to be α-helices or β-strands and also classified to be ‘good’ by TALOS+ were used 

as restraints. The ranges of these dihedral angles were set by TALOS+ default. 100 

structures were calculated by CYANA using the distance, dihedral angle, and hydrogen 

bond restraints provided by the ASDP, together with RDC data when available. Among 

these 100 structures, 20 structures with the best combined scores of DP and CYANA's 

target function [e.g. target function/weight)-DP, where weight = min(target function of 100 

models)*100], were selected and iteratively calculated for additional five cycles of NOE 

analysis (Huang et al. 2005; Huang et al. 2006). Subsequently, the generated structures 

were refined with the WaterRefCNS protocol(Brünger et al. 1998) with slow cooling steps 

(tsc) = 0.001. RDC weight (wrdc1) = 0.2 was used in the WaterRefCNS refinement for 

OR135.  

 For CYANA, ASDP and AutoNOE-rosetta, 20, 20 and 10 structures with best scores 

were selected to compose the final ensembles, respectively. For comparison within the three 

programs, we recorded the median C!-RMSD of the final structures with respect to the 

reference structure evaluated on the residue ranges as given in Table 4.1.  

4.3 Results 

 The goal of this study is to test robustness of automatic NOE assignment methods 

against problems in chemical shift input files. Thus, we keep the peak-lists as in the original 

data sets and introduce errors into the chemical shift inputs in a systematic manner. The 

original chemical shift files are used as CONTROL.  
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 To generate the test cases we started from the respective original data set and 

introduced three distinct categories of errors, which are inspired from our experiences with 

existing errors in real-world chemical shift assignments. To study the effect of 

incompleteness, we remove chemical shifts entirely from the data set. To study the effect of 

miss-assigned chemical shifts we swap chemical shifts between two distinct atoms of similar 

type. Furthermore, as a combination of the previous error categories we generate data sets, 

where two entities with distinct resonances are combined and are both assigned the same 

resonance, whereas the other resonance is omitted from the data set. The details, on how 

these error categories are generated, are given in Methods. Furthermore, within each of the 

three error categories outlined above, we define sub-categories based on which groups of 

atoms are affected. Finally, to allow a systematic study of the effect of each error sub-

category, we define a severity level, which controls the amount of errors of the respective 

type. Accordingly, we generated data sets for a range of severity levels ending either at a 

value, where each program fails to yield 3D models of any reasonable quality, or at 100% 

severity. Within each error sub-category and for a given severity level the respective atoms 

or groups of atoms to affect are chosen randomly. To obtain sufficient statistics we 

generated 6 independent scrambled data sets at each severity level of each error sub-

category. As a particular choice of scrambled resonances can have a drastically different 

impact on the accuracy than other choices, we do not regenerate scrambled data sets for 

each program, but instead use each scrambled data set with all three programs.  

 Figure 4.1 shows a performance overview across all different error categories. 

Clearly,  AutoNOE-Rosetta shows a remarkable improvement in final accuracy for structure 

calculations from erroneous chemical shift data. In the following, we present the results for 

each individual error category. See also Appendix Table S9-S17 for the complete set of C!-

RMSDs of final structures generated for scrambled data sets by CYANA, ASDP and 

AutoNOE-Rosetta, respectively.  
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Figure 4.1: C! -RMSD comparison of AutoNOE-Rosetta, ASDP and CYANA using 

incomplete and/or erroneous chemical shift lists. Figure 4.1A shows the comparison of 

ASDP and AutoNOE-Rosetta, Figure 4.1B shows the comparison of CYANA and AutoNOE-

Rosetta, and Figure 4.1C shows the comparison of ASDP and CYANA. 
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4.3.1 Effect of missing chemical shift assignments 

 
Figure 4.2: Cα-RMSDs statistics of final structures generated with CYANA (red), ASDP 

(green) and AutoNOE-Rosetta (blue) from missing methyls (A-C). X-axis shows the 

percentage of swapped fraction. For each severity level, 6 independent runs for  AutoNOE-

Rosetta, CYANA and ASDP were performed.  

 Figure 4.2 shows the effect of missing a fraction of the methyl chemical shifts on the 

programs CYANA, ASDP and AutoNOE-Rosetta, respectively. For HR5537A and OR135, 

we defined that structures with RMSDs < 1.5Å is accurate, RMSDs <4 Å but > 1.5 Å is 

inaccurate and RMSDs >4Å is failed. For PfR193A, the cutoffs are 2.25Å and 6Å because its 

RMSD with original chemical shifts is a little higher than HR5537A and OR135. This 

description regulation is appropriate for all analysis in this paper. for the three proteins in our 

benchmark set. Generally, missing the chemical shifts of methyls has no severe effect on 

the structure calculations with AutoNOE-Rosetta. For two of the three proteins, these 

missing data also had little impact on the performance of CYANA and ASDP. However, for 

protein target HR5537A, which is an alpha-helical protein, the performance of both CYANA 

and ASDP deteriorates drastically, when methyl chemical shifts are missing. For only 10% 

and 30% missing methyls the deterioration is still minor, but at and beyond 50% of missing 

methyls, both programs frequently fail to generate accurate structures. This suggests that for 

alpha-helical proteins methyl resonances are more important than for proteins with 

substantial fraction of beta content. This reliance of ASDP and CYANA on methyl contacts 

for alpha-helical proteins seems greatly reduced in AutoNOE-Rosetta, at least for proteins in 
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the <15kDa size range.  To support this general conclusion we tested a further alpha-helical 

protein SR213 with CYANA and found very similar results (Appendix Figure S10).  

 
Figure 4.3: Cα-RMSDs statistics of final structures generated with CYANA (red), ASDP 

(green) and AutoNOE-Rosetta (blue) from missing side-chain proton resonance 

assignments (A-C) and complete omission of sidechain resonance assignments (D-F). X-

axis shows the percentage of swapped fraction. For each severity level, 6 independent runs 

for  AutoNOE-Rosetta, CYANA and ASDP were performed.  

 Next, we removed individual side-chain proton resonance assignments (Figure 4.3, 

left panels) or removed all assignments from entire sidechains at once (Figure 4.3, right 

panels). Naturally, the severity of this change is systematically higher than that of missing 

methyls, since in these new error categories at 100% severity all protons are removed such 

that no distance restraints at all can be derived from the NOE data.  

 All three programs are quite sensitive to such missing sidechain data. AutoNOE-

Rosetta was the least sensitive to these classes of errors, followed by ASDP and CYANA. 

For the alpha-helical protein HR5537A data set analyzed with CYANA or ASDP, significant 

deterioration of structural accuracy is observed with as little as 10% of missing sidechain 

protons. At 30% missing assignments, most of the data sets result in inaccurate structure 

calculations, and with more than 50% missing all calculations fail. For the other two proteins 

the situation is somewhat better. For these proteins ASDP and CYANA remain mostly robust 

at 10% missing protons, with the exception of a single data set for which CYANA produced 

an inaccurate structure. At 30% missing, ASDP and CYANA produce inaccurate structures 

some times for OR135 and all the time for PfR193A. For PfR193A, CYANA calculations 

frequently fail already at 30% missing protons. Across all protein, AutoNOE-Rosetta can 
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handle 20-30% more missing protons than the other two programs before deteriorating. It 

remains accurate up to 30%, 50% and 30% for HR5537A, OR135 and PfR193A. However, 

for PfR193A at 30% missing protons a significant deterioration of the accuracy is already 

noticeable.  

 Generally, the deterioration in performance of all three programs due to removal of 

entire sidechains concertedly and removal of protons independently, parallel one another. 

However, in some cases it seems that removing entire sidechains is less severe than 

removing protons independently. This behavior is observed for  PfR193A at 30% removed 

protons for CYANA and for OR135 at >70% missing assignments for ASDP and AutoNOE-

Rosetta. 

4.3.2 Effect of swapping chemical shift assignments 

 
Figure 4.4: C!-RMSDs statistics of final structures generated with CYANA (red), ASDP 

(green) and AutoNOE-Rosetta (blue) from swapped chemical shifts in SWAP-CARBON(A-

C), SWAP-C-H(D-F). X-axis shows the severity level, as percentage of swapped fraction(A-

C) or number of swapped pairs(D-F). For each severity level, 6 independent runs for  

AutoNOE-Rosetta, CYANA and ASDP were performed.  

 Above, we have studied the effect of incomplete chemical shifts and found that 

programs are generally robust against a small fraction of missing shifts. Conceivably, it's 

much more dangerous if chemical shifts are miss-assigned rather than just incomplete. To 

simulate such errors, one could randomize some chemical shifts. However, such an 

approach would yield mostly chemical shifts that are not reflected at all in any of the NOE 

cross-peaks, and thus would not be assigned. Thus, such a randomization of chemical shifts 
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would be more similar to missing chemical shifts than to miss-assigned chemical shifts. 

Instead, we chose to simulate miss-assignments by swapping chemical shifts. To be close to 

reality we further swapped shifts of atoms that have similar characteristics, i.e., same amino-

acid type and same position in the side-chain, as such swaps probably reflect realistic 

assignment errors more closely. The different swapping types are CARBON, C-H, METHYL 

and SIDECHAIN as detailed in Methods. 

 The results of automatic NOE assignment based on chemical shift data sets with 

swapped resonances are shown in Figure 4.4. Overall, swapping carbons does not appear 

to be a highly severe error category. For OR135 and PfR193A, CYANA and AutoNOE-

Rosetta remain stable up to about 50% and 70% of swapped sidechain carbons, 

respectively. For HR5537A, the programs performance is more different, and CYANA and 

ASDP start to incur inaccuracies above 10%, whereas AutoNOE-Rosetta remains stable up 

to 70% of swapped sidechain carbons. Surprisingly, ASDP is affected significantly more 

strongly by this error class than CYANA. ASDP calculations frequently fail at 50% and 70% 

for OR135 and PfR193A, respectively. In both cases, CYANA remains accurate at most 

cases. Also for HR5537A, ASDP shows a stronger deterioration of its results than CYANA. 

As ASDP was more similar to CYANA in other error categories, this might point to a possible 

avenue of improvement for ASDP.  

 Swapping protons together with their bound carbons has a much more detrimental 

effect on the structure calculations than swapping isolated carbons and thus we evaluated 

the effect on a scale of individual swapping events rather than a percentage of swapped 

resonances. For HR5537A, at six pairs of swapped C-H (equivalent to 5% of swapped 

entities), some scrambled data sets cause failure of CYANA and ASDP, whereas other data 

sets with six swapped C-H pairs cause no deterioration at all (Figure 4.4D). Similar to the 

previous error category, ASDP seems somewhat more sensitive to this error. At 12 pairs and 

more, that is at >10%, both CYANA and ASDP start to have systematic problems in 

producing accurate structures. AutoNOE-Rosetta, in contrast, remains nearly unperturbed, 

and only at severities of >50% did we see deterioration of accuracy for AutoNOE-Rosetta 

(Figure 4.4D and Appendix Figure S12). For OR135 and PfR193A, robustness of CYANA 

and ASDP is improved compared to HR5537A (Figure 4.4E-F), and only at higher variation 

(>= 18 swaps ) significant deterioration of the results is observed. For OR135, AutoNOE-

Rosetta is unperturbed even at high severity levels of >97% (Figure 4.4E, Appendix Figure 

S13), and for PfR193A it shows a small deterioration effect >24 pairs (17%), and significant 

deterioration at >40 pairs (29%) (Appendix Figure S14). 
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Figure 4.5: C!-RMSDs statistics of final structures generated with CYANA (red), ASDP 

(green) and AutoNOE-Rosetta (blue) from swapped chemical shifts in SWAP-METHYL(A-C) 

and SWAP-SIDECHAIN(D-F). X-axis shows the number of swapped pairs. For each severity 

level, 6 independent runs for  AutoNOE-Rosetta, CYANA and ASDP were performed.  

 Figure 4.5A-C shows the effect of swapping pairs of methyls on CYANA, ASDP and 

AutoNOE-Rosetta. Similar to other error types, CYANA and ASDP are more sensitive to 

errors when applied to the alpha-helical protein HR5537A than to the other two test proteins. 

For HR5537A, inaccuracies already appear at 10% of swapped methyls and failures at 

>25%. For OR135 and Pfr193A individual scrambled data sets already cause inaccuracies 

at ~10% of swapped methyls, but real failures only occur above 15 or more swapped pairs. 

For HR5537A, we even found individual swaps of methyls can cause deterioration in the 

accuracy of CYANA calculations (Appendix Figure S11).  

 Among all swapping error categories, the swapping of entire sidechains has the most 

severe effect (Figure 4.5D-F). If a whole sidechain is switched, network-anchoring filters, 

which are supposed to filter out spurious cross peak assignments, are less effective. When  

all sidechain resonances are swapped consistently, a putative NOE networks stays intact. 

Indeed, CYANA and ASDP calculations might fail already with a single pair of swapped 

sidechains for HR5537A. For both proteins, HR5537A and OR135, CYANA and ASDP are 

likely to generate inaccurate structures if only 1 pair of sidechains is swapped. For PfR193A, 

the beta-protein of the test set, sidechain swapping is less severe, and CYANA and ASDP 

remain fairly robust until 4-5 swapped sidechains. AutoNOE-Rosetta, in contrast, yields 

accurate results for both HR5537A and OR135 with up to 5 swapped sidechains and shows 

only minor performance deterioration with 5 and more swapped pairs for PfR193A. In fact, 
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AutoNOE-Rosetta remains stable until 15, 15, 5 pairs of swapped sidechains for the proteins 

HR5537A, OR135 and PfR193A, respectively (Figure 4.5F, Appendix Figure S15-16).  

 In addition to the four types of swapping errors discussed above, we also tested 

SWAP-STEREO, which swaps diastereotropic protons in the dataset (Appendix Figure S9). 

Except a single ASDP run at 30% severity, all calculations were robust against these errors. 

This reflects, that the programs are usually interpreting the input data of diastereotropic 

protons as ambiguous. 

4.3.3 Effect of combining chemical shift assignments 

 
Figure 4.6: Cα-RMSDs statistics of final structures generated with CYANA(red), 

ASDP(green) and AutoNOE-Rosetta(blue) from combined chemical shifts in STEREO(A-C) 

and METHYL(D-F). X-axis shows the percentage of combined fraction. For each severity 

level, 6 independent runs for  AutoNOE-Rosetta, CYANA and ASDP were performed. 

 In addition to missing and miss-assigned resonances, one also commonly observes 

errors in which one NMR resonance is assigned to two (or more) atoms, when in fact the two 

(or more) atoms have different resonance frequencies.  This problem occurs most often 

within groups of similar atoms, e.g., for diastereotropic protons, or for the isopropyl methyl 

groups of Leucine, Isoleucine or Valine sidechains. We simulated this problem by combining 

chemical shifts in sub-category STEREO and METHYL (Methods). 

 Also for sub-category COMBINE-STEREO (Figure 4.6A-C), the programs are more 

affected by the errors in the purely alpha helical protein HR5537A. CYANA and ASDP start 

to deteriorate significantly as early as a severity of 10%, with individual failed calculations 

above 30% severity. Surprisingly, ASDP recovers at 90% severity. For the other proteins, 
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effects of the scrambling are weak but noticeable at >30% severity for OR135 and > 50% for 

PfR193A. For PfR193A at >50% severity ASDP calculations are worst.  

 In line with the other error categories, AutoNOE-Rosetta is more robust. For 

COMBINE-STEREO it shows nearly no effect for proteins OR135 and PfR193A at all 

severity levels, and only weak effect for HR5537A at 70%. At 90% of HR5537A, however, 

AutoNOE-Rosetta calculations also fail.  

 At any given severity level the expected effect of COMBINE-METHYL is generally 

less severe than that of COMBINE-STEREO, since there are fewer protons in methyl-groups 

than there are diastereotropic protons. Indeed, a loss of performance with COMBINE-

METHYL is only observed for HR5537A at levels above 50% or 10% with CYANA or ASDP, 

respectively. 

4.3.4 Effect of missing resonances with low-fidelity assignments 

 Above we have analyzed the effects of missing or erroneous assignments on protein 

structure determinations. A practical situation that might arise in the process of NMR 

structure determination is that a certain number of assignments have been made, but they 

are far from complete. However, the accuracy of the assignments is quite high. At this point 

in the process the NMR expert has three choices: a) accept the achieved structural quality, 

b) obtain more experimental data to improve assignment coverage, or c) run computational 

methods to obtain missing assignments. Whereas choice b) is costly, choice c) might incur a 

substantially higher error rate in the new sub-set of assignments compared to the already 

available set of assignments. To understand, whether choosing c) improves performance 

despite the substantial error rate in the automatic assignments, we re-analyzed our data in 

this way. Indeed, as seen in Figure 4.7, when starting from incomplete assignments, adding 

more resonance assignments (even with a substantial assignment error rate) might actually 

still lead to an overall improvement of final structural accuracy when interpreted with 

AutoNOE-Rosetta. To find the critical proportion where improved accuracy can still be 

expected, we simulate cases where a substantial fraction (50%/70%) of all chemical shifts 

are correctly assigned but the rest of the assignments are provided by a method with a 

higher error rate (10%/20%).  

 As expected more data is better at any base error rate, and with a higher quality of 

the assignments, calculations are more accurate with less complete data sets (solid lines, 

Figure 4.7). If we now combine data sets of different qualities to simulate the scenario 

motivated above, we see that under most circumstances an improvement in final accuracy 
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can be gained, if incomplete assignments of high quality are supplemented by additional 

low-quality assignments (dashed lines, Figure 4.7). 

 
Figure 4.7: Effect of assigning missing resonances with a low-fidelity assignment method. 

Here we show the effect of combining incomplete but high-fidelity chemical shift 

assignments with further assignments that are less correct. The solid curves show expected 

the accuracy given a base error rate in the assignments. Dashed curves that start from the 

solid curves at 50% and 30% missing resonances, respectively, show the expected 

accuracy, if the remaining resonance assignments are provided by a method with a higher 

error rate (Legend). One can see, for instance, that final accuracy is significantly improved if 
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a fully-correct (e.g., manual) half-assigned data set is complemented with an erroneous 

assignment method (e.g., computations) that is expected to produce ca. 20% of errors.  

4.3.5 Indicating problematic runs of AutoNOE-Rosetta 

 As shown above, the calculation of protein structures will be various if the precision 

of chemical shifts are different, so it's quite necessary to have clear criteria to indicate the 

problematic calculations. In a previous paper(Zhang et al. 2014), two automatically  

computed criteria: convergence and intrinsic NOE consistency are presented to flag 

inaccurate calculations for AutoNOE-Rosetta. Although highly inaccurate structures may 

exhibit good convergence(Huang et al. 2005), but particularly for Rosetta, adopting 

convergence to identify the structure accuracy has been proved to be generally 

accurate(Rohl et al. 2004; Shen et al. 2008b; Raman et al. 2010; Schot et al. 2013). Intrinsic 

NOE consistency is an empirical criterion  which works quite well in previous research but is 

proved to be inappropriate to current cases. In 2005, Huang et al. presented  RPF(Recall, 

Precision, and F-measure) score for structure quality assessment(Huang et al. 2005). Here, 

a new criterion similar to the Recall score, the percentage of NOE peaks matched to final 

structures is introduced to filter out problematic runs. For classification, it's significant that a 

reliable classification method tries to output few false positives and false negatives. Among 

the two, false positives are prior to be avoided. Therefore, we manually determine a linear 

separatrix in this research, which can filter out all high RMSD calculations(0 false positive) 

with only a few false negatives(Figure 4.8-10). 
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Figure 4.8: Distinguish of questionable calculations of AutoNOE-Rosetta on target 

HR5537A. Y-axis is the percentage of converged residues and x-axis value is described by 

follow: number of NOE cross peaks explained by final structures divided by number of initial 

assigned peaks. Each dot represents one calculation of AutoNOE-Rosetta and color shows 

the value Cα RMSDs. The black solid line described by y = -­‐0.63x + 1.26  classifies all 

calculations into success(above the lines) and failure(below the lines). 
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Figure 4.9: Distinguish of questionable calculations of AutoNOE-Rosetta on target OR135. 

Y-axis is the percentage of converged residues and x-axis value is described by follow: 

number of NOE cross peaks explained by final structures divided by number of initial 

assigned peaks. Each dot represents one calculation of AutoNOE-Rosetta and color shows 

the value Cα RMSDs. The black solid line described by y = -­‐0.63x + 1.26  classifies all 

calculations into success(above the lines) and failure(below the lines). In the sub-figure of 

miss proton, there is one case with poor convergence but low RMSD which is infrequent. 

The reason for this situation is that 9 of 10 finally selected structures are accurate and 

similar to native structure(Appendix Figure S17). However, the rest 1 is quite far away from 

the native structure and its RMSD is higher than 8Å, then the convergence of this case is 

low but its mean RMSD is still good. 
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Figure 4.10: Distinguish of questionable calculations of AutoNOE-Rosetta on target 

PFR193A. Y-axis is the percentage of converged residues and x-axis value is described by 

follow: number of NOE cross peaks explained by final structures divided by number of initial 

assigned peaks. Each dot represents one calculation of AutoNOE-Rosetta and color shows 

the value Cα RMSDs. The black solid line described by y = -­‐0.63x + 1.26  classifies all 

calculations into success(above the lines) and failure(below the lines). 
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4.4 Conclusion 

 We studied the effect of incomplete and erroneous chemical shifts on automatic NOE 

assignments and protein structure determinations. With 3 automatic NOE assignment and 

protein de novo programs CYANA, ASDP and AutoNOE-Rosetta, the test was carried out on 

a benchmark of three proteins whose structures are known and their original experimental 

chemical shifts are highly complete and correct. We started from the original data set and 

introduced three distinct categories of errors missing, swapping and combining to the correct 

chemical shifts.  

 The results in this paper confirm our general intuition that miss-assignments are 

worse than missed assignments. About 9-10% of swapped sidechains have already caused 

serious deterioration to structural accuracy obtained with CYANA and ASDP but at 10% 

missing sidechains the programs still yield accurate structures with only minor deteriorations. 

For methyls, at 90% missing methyls CYANA and ASDP still produce accurate structures for 

the proteins with beta- or alpha-beta fold class, and AutoNOE-Rosetta for all fold-classes, 

whereas already at ca. 10% of swapped methyls, CYANA and ASDP can be affected 

unfavorably. In particular, for alpha-helical proteins errors in the methyl-groups have a high 

impact. Indeed, even AutoNOE-Rosetta fails to produce accurate structures at more than 

40% of swapped methyls, whereas it is unaffected by more than 90% missing methyls even 

for the alpha-helical proteins tested here. 

 Among the three proteins, the purely alpha helical protein HR5537A is more likely to 

be influenced by scrambled assignments of sidechains. We can rationalize this result by its 

purely alpha-helical nature, such that the tertiary structure of the protein is mostly 

determined by long-range restraints involving sidechain protons. In contrast, for beta-sheet 

containing proteins their tertiary structure is determined to a large extend by NOEs involving 

backbone protons. 

 Comparing the performances of the three programs CYANA, ASDP and AutoNOE-

Rosetta, AutoNOE-Rosetta generally outperforms the others when there is an extensive 

resonance assignment incompleteness and/or error rate. For the cases of missing and 

swapping methyls, AutoNOE-Rosetta, yielded accurate structures at all runs. For the other 

“scramble-type” errors, the scramble level where AutoNOE-Rosetta starts to fail is always 

higher than that of CYANA and ASDP. For the same protein with the same scrambled 

resonance list, structures of CYANA and ASDP are generally less accurate than AutoNOE-

Rosetta structures. CYANA and ASDP also proved to be quite sensitive to some key 

chemical shift assignments. In some cases, a minor number of missing or swapped chemical 
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shifts can deteriorate these calculations, whereas the corresponding AutoNOE-Rosetta 

calculation would still produce accurate results. The structure calculation algorithm in 

CYANA is based on the torsion angle dynamics(Güntert et al. 1997), ASDP uses 

XPLOR/CNS(Huang et al. 2006) for 3D structure determination and the sampling protocol 

for AutoNOE-Rosetta is RASREC-Rosetta(Zhang et al. 2014). within these three protocols, 

only RASREC-Rosetta could predict accurate structures without any experimental restraints 

because of its fragment-based sampling method. Since the methods of initial NOE 

assignment and constraint distance calibration of CYANA, ASDP and AutoNOE-Rosetta are 

similar, their different sampling algorithms are probably the main reason of different 

performances on incorrect data. 

 For reliable NOE assignment and structure calculation, CYANA and ASDP generally 

require 90% correct sidechain resonance assignments, whereas only 70% correct 

assignments are enough for AutoNOE-Rosetta. With erroneous chemical shift list, CYANA 

and ASDP cannot guarantee accurate results because even minor miss-assign errors would 

deteriorate their calculations. AutoNOE-Rosetta, on the other hand, can yield correct 

structures beyond 10% severity for nearly all types of miss-assignment errors.  

 In the course of this work, several features of the ASDP program were identified 

which make it sensitive to resonance assignment errors. Code modifications to correct these 

aspects of the algorithm were observed to significantly improve the performance of ASDP 

with incomplete or scramble resonance assignment lists.  These improvements in ASDP 

benchmarked on the scrambled data sets introduced in this current study will be described 

elsewhere. 

 Besides the statistic research of performances of CYANA, ASDP and AutoNOE-

Rosetta on incomplete/incorrect chemical shifts, this paper also introduces a new scheme to 

classify AutoNOE-Rosetta calculations into success or failure based on percentages of 

converged residues and number of assigned NOE peaks, which is proved to be reliable and 

can filter out all calculations with high RMSD structures.   

 A program to artificially scramble chemical shifts with kinds of problems and severity 

levels is available within the CS-ROSETTA toolbox versions 2.x and higher at 

www.csrosetta.org. 



CHAPTER 4 EFFECT OF INCORRECT CHEMICAL SHIFT ASSIGNMENTS ON 

AUTOMATED NOE ASSIGNMENTS AND NMR STRUCTURE CALCULATION 

108 

4.5 References 

Baran MC, Huang YJ, Moseley HNB, Montelione GT (2004) Automated analysis of 

protein NMR assignments and structures. Chem Rev 104:3541–3556. doi: 

10.1021/cr030408p 

Brünger ATA, Adams PDP, Clore GMG, et al. (1998) Crystallography & NMR system: A 

new software suite for macromolecular structure determination. Acta Crystallogr D Biol 

Crystallogr 54:905–921. doi: 10.1107/S0907444998003254 

Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure 

calculation with the new program DYANA. Journal of Molecular Biology 273:283–298. doi: 

10.1006/jmbi.1997.1284 

Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with 

automated NOE-identification in the NOESY spectra using the new software ATNOS. J 

Biomol NMR 24:171–189. 

Huang YJ, Powers R, Montelione GT (2005) Protein NMR recall, precision, and F-

measure scores (RPF scores): structure quality assessment measures based on information 

retrieval statistics. J Am Chem Soc 127:1665–1674. doi: 10.1021/ja047109h 

Huang YJ, Tejero R, Powers R, Montelione GT (2006) A topology-constrained distance 

network algorithm for protein structure determination from NOESY data. Proteins 62:587–

603. doi: 10.1002/prot.20820 

Jee J, Güntert P (2003) Influence of the completeness of chemical shift assignments on 

NMR structures obtained with automated NOE assignment. J Struct Funct Genomics 4:179–

189. 

Jung YS, Zweckstetter M (2004) Backbone assignment of proteins with known structure 

using residual dipolar couplings. J Biomol NMR 30:25–35. 

Koga N, Tatsumi-Koga R, Liu G, et al. (2012) Principles for designing ideal protein 

structures. Nature 491:222–227. doi: 10.1038/nature11600 

Lange OF Implementation of automatic NOE assignment in Rosetta. J Biomol NMR  

Liu G, Huang YJ, Xiao R, et al. (2009) NMR structure of F-actin-binding domain of 

Arg/Abl2 from Homo sapiens. Proteins 78:1326–1330. doi: 10.1002/prot.22656 



CHAPTER 4 EFFECT OF INCORRECT CHEMICAL SHIFT ASSIGNMENTS ON 

AUTOMATED NOE ASSIGNMENTS AND NMR STRUCTURE CALCULATION 

109 

Mao B, Guan R, Montelione GT (2011) Improved Technologies Now Routinely Provide 

Protein NMR Structures Useful for Molecular Replacement. Structure 19:757–766. doi: 

10.1016/j.str.2011.04.005 

Mao B, Tejero R, Baker D, Montelione GT (2014) Protein NMR structures refined with 

Rosetta have higher accuracy relative to corresponding X-ray crystal structures. J Am Chem 

Soc 136:1893–1906. doi: 10.1021/ja409845w 

Moseley HN, Montelione GT (1999) Automated analysis of NMR assignments and 

structures for proteins. Curr Opin Struct Biol 9:635–642. doi: 10.1016/S0959-

440X(99)00019-6 

Raman S, Lange OF, Rossi P, et al. (2010) NMR structure determination for larger 

proteins using backbone-only data. Science 327:1014–1018. doi: 10.1126/science.1183649 

Rohl CA, Strauss CEM, Misura KMS, Baker D (2004) Protein Structure Prediction Using 

Rosetta. In: Methods in enzymology. Elsevier, pp 66–93 

Rosato A, Aramini JM, Arrowsmith C, et al. (2012) Blind testing of routine, fully automated 

determination of protein structures from NMR data. Structure 20:227–236. doi: 

10.1016/j.str.2012.01.002 

Schmidt E, Güntert P (2012) A New Algorithm for Reliable and General NMR Resonance 

Assignment. J Am Chem Soc 134:12817–12829. doi: 10.1021/ja305091n 

Schot G, Zhang Z, Vernon R, et al. (2013) Improving 3D structure prediction from 

chemical shift data. J Biomol NMR. doi: 10.1007/s10858-013-9762-6 

Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting 

protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223. doi: 

10.1007/s10858-009-9333-z 

Shen Y, Vernon R, Baker D, Bax A (2008a) De novo protein structure generation from 

incomplete chemical shift assignments. J Biomol NMR 43:63–78. doi: 10.1007/s10858-008-

9288-5 

Shen Y, Zhang Z, Delaglio F, et al. (2008b) Consistent blind protein structure generation 

from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685–4690. doi: 

10.1073/pnas.0800256105 

Tejero R, Snyder D, Mao B, et al. (2013) PDBStat: a universal restraint converter and 

restraint analysis software package for protein NMR. J Biomol NMR 56:337–351. doi: 

10.1007/s10858-013-9753-7 



CHAPTER 4 EFFECT OF INCORRECT CHEMICAL SHIFT ASSIGNMENTS ON 

AUTOMATED NOE ASSIGNMENTS AND NMR STRUCTURE CALCULATION 

110 

Vernon R, Shen Y, Baker D, Lange OF (2013) Improved chemical shift based fragment 

selection for CS-Rosetta using Rosetta3 fragment picker. J Biomol NMR 57:117–127. doi: 

10.1007/s10858-013-9772-4 

Zhang HY, Neal S, Wishart DS (2003) RefDB: A database of uniformly referenced protein 

chemical shifts. J Biomol NMR 25:173–195. 

Zhang Z, Porter J, Lange OF (2014) Robust and highly accurate automatic NOESY 

assignment and structure determination with Rosetta. J Biomol NMR  



 

Chapter 5 Conclusion and Discussion 
 The scope of this work is the investigation of automotive protein structure calculation 

by NMR data and CS-Rosetta. In this dissertation, I improved  the performance of structure 

calculation by CS-Rosetta and extend its functions by the following routes. 1. I improved CS-

Rosetta for computing structures from backbone-only chemical shifts by introducing CS-

Score to RASREC-rosetta and a new calculation annotation method. 2. I presented a new 

NOE assignment and structure determination algorithm that can—unsupervised—produce 

results that are both reliable and accurate. 3. I tested the robustness and reliability of de 

novo programs against low quality chemical shift assignments. 

 Firstly, I report advances in the calculation of protein structures from chemical shift 

nuclear magnetic resonance data alone. Our previously developed method, CS-Rosetta, 

assembles structures from a library of short protein fragments picked from a large library of 

protein structures using chemical shifts and sequence information. Here I demonstrate that 

combination of a new and improved fragment picker and the iterative sampling algorithm 

RASREC yield significant improvements in convergence and accuracy. Moreover, I 

introduce improved criteria for assessing the accuracy of the models produced by the 

method. The method was tested on 39 proteins in the 50–100 residue size range and yields 

reliable structures in 70 % of the cases. All structures that passed the reliability filter were 

accurate (<2Å RMSD from the reference). 

 Secondly, I have developed a novel and robust approach for automatic and 

unsupervised simultaneous nuclear Overhauser effect (NOE) assignment and structure 

determination within the CS-Rosetta framework. Starting from unassigned peak lists and 

chemical shift assignments, auto- NOE-Rosetta determines NOE cross-peak assignments 

and generates structural models. The approach tolerates incomplete and raw NOE peak lists 

as well as incomplete or partially incorrect chemical shift assignments, and its performance 

has been tested on 50 protein targets ranging from 50 to 200 residues in size. We find a 

significantly improved performance compared to established programs, particularly for larger 

proteins and for NOE data obtained on perdeuterated protein samples. X-ray 

crystallographic structures allowed comparison of Rosetta and conventional, PDB-deposited, 

NMR models in 20 of 50 test cases. The unsupervised AutoNOE-Rosetta models were often 

of significantly higher accuracy than the corresponding expert- supervised NMR models 

deposited in the PDB. We also tested the method with unrefined peak lists and found that 

performance was nearly as good as for refined peak lists. Finally, demonstrating our 
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method’s remarkable robustness against problematic input data we provided correct models 

for an incorrect PDB-deposited NMR solution structure. 

 Thirdly, I investigates the influence of incomplete and wrong chemical shifts on the 

reliability of NMR structures obtained with automated NOE assignment. Three programs: 

CYANA, ASDP and AutoNOE-Rosetta were used for automatic NOE assignment and 

structure determination based on chemical shifts with various levels of severity and scramble 

types to simulate incompleteness and errors. The result proves that AutoNOE-Rosetta 

generally outperforms CYANA and ASDP with incompleteness and/or erroneous  resonance 

assignments. Among the three types of proteins, the purely alpha helical protein is more 

likely to be influenced by incomplete or wrong assignments of sidechains. In addition, a new 

discriminating protocol to flag inaccurate calculations for AutoNOE-Rosetta is also 

presented. 
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Appendix 

A.1 Supplementary Figures 
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Figure S1: Final structures (red) are shown superimposed with the reference structure 

(blue). The same structures are shown with hydrophobic and aromatic sidechains as sticks 

in the right-hand panel. If the AutoNOE-Rosetta calculation is not converged, the panel for 

sidechain details is omitted.  
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Figure S2: Supporting data for choices in the CYANA structure determination protocol. A-C) 

𝐶!-RMSD against a PDB deposited reference structure. A) CYANA calculations carried out 

with dihedral restraints derived from TALOS+ using either the ACO_LOOSE or the 

ACO_TIGHT protocol (Methods main text). B) CYANA was run with and without the RDC 

data for the 17 targets, where RDC data was available. Targets for which an Xray structure 

was available as reference are shown in blue, all other targets in red. Targets with data type 

raw or unrefined are shown with closed faces, whereas targets with refined data are shown 

as open faced circles. As shown here, CYANA generally performs worse with RDC data, 

and hence AutoNOE-Rosetta (with RDC) is compared to CYANA (without RDC) throughout 

the study. C) AutoNOE-Rosetta withand without the RDC data (colors and symbols as in 

panel B). D) Failure of CYANA runs can best be seen after the first cycle (P. Güntert, private 

communication). Shown are the target function (x-axis, log) and intrinsic bb-RMSD (y-axis, 

log) after cycle 1. The color of the points is given by the 𝐶!- RMSD against the reference 

structure of the final CYANA structures after cycle 7 (colorbar). By manual inspection we 

determined the linear decision boundary described by  𝑦 = 10!!.!!log!" ! !!.!",  that yields the 

optimal classification into failed and successful runs, such that runs above the line are 
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classified as failures. This classification has been used do classify CYANA runs. From this 

data it follows that for a successful run  10!!.!!log!" x !!.!" − y>0, where x denotes the target-

function after cycle 1, and y the backbone RMSD after cycle1. These values can be found 

using the command cyanatable. 

 

Figure S3: Scatter plots of number of violations above 0.3Å vs. the 𝐶!-RMSD against the 

reference structure computed for models obtained from AutoNOE-Rosetta, CYANA, and the 

PDB. The numbers of violations are computed for the NOE restraint sets generated by the 

respective methods (AutoNOE-Rosetta, CYANA) or for the NOE restraint set downloaded 

from the PDB. For CYANA and AutoNOE calculations that passed the automatic acceptance 

criteria of the respective method are shown in blue, the others in red (Appendix Method 

A.3.2). For PDB only targets with an X-ray reference structure are shown. As obvious from 

the plots, no correlation between RMSD and number of violations can be detected, whereas 

the automatic acceptance criteria succeed quite well in discriminating failed calculations.  
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Figure S4: Results for the raw data sets of targets StT322 (A-C) and HR5460 (D-E). Final 

ensembles (red) are compared to the respective reference ensemble (blue). Ensemble 

generated with AutoNOE-Rosetta (A+D), ensembles generated with CYANA (B+E). C) 

NRG-CING report(Doreleijers et al. 2012) of reference structure shows many residues with 

warnings (red, orange). D) Black arrows mark the positions of the C-terminal helix in the 

AutoNOE-Rosetta models. In 4 models the helix is not packed against the remainder of the 

structure (up), in the remaining 6 models, the helix is packed against helix 4+5 in the same 

location as in the reference structure (down).    
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Figure S5: Targets marked MR in Table S1 have been taken from the website http://psvs-

1_4-dev.nesg.org/MR/dataset.html. As more targets or missing data to already featured 

targets might be added later, we provide here a screenshot of the state of the website on 

January the 31st 2013. 

 

Figure S6: Median heavy-atom   RMSDs (log-scale) of final models with respect to the 

reference structure. The diagonal line indicates points of equal performance, points above 

the line correspond to targets for which CYANA yields lower RMSDs, and points below the 

line correspond to targets for which AutoNOE-Rosetta yields lower RMSDs. The dashed 
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lines mark 3.5Å RMSD. The size of the proteins is proportional to the area of the symbol as 

indicated by the legend. The color indicates whether for CYANA, AutoNOE-Rosetta or for 

both programs the final models are considered as success (Appendix Methods A.3.2). 

RMSDs are capped at 25 Å.  

 

Figure S7: Comparison of AutoNOE-Rosetta with manually solved best-effort PDB-

deposited NMR structures. Shown are the median heavy RMSDs of final models vs. the 

median 𝐶!-RMSDs of all PDB deposited models computed against the reference structure. 

For all targets but AR3436a an Xray structure is used as reference; 2kj6/AR3436a is 

compared to a new manually refined NMR solution structure, which supersedes 2kj6. The 

diagonal line indicates points of equal performance, points above the line correspond to 

targets with higher accuracy of  the PDB-deposited models, points below the line to targets 

with higher accuracy of the AutoNOE-Rosetta models. Dashed lines mark +/- 25% accuracy. 
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The size of the proteins is proportional to the area of the symbol as indicated by the legend. 

The color indicates whether final AutoNOE-Rosetta models are considered as success 

based on intrinsic convergence criteria (>90% of residues converged).  

Figure S8: Error analysis of AutoNOE-Rosetta. We have carried out three runs of AutoNOE-

Rosetta at each NOE restraint weight (1, 2, 5, 10, 25, 50). The green dots represent the 

reported RMSD values (main text) obtained by selecting from all generated runs together 

according to the described procedure. The boxplot shows the expected statistics of 𝐶!-

RMSD if only a single run per NOE restraint weight were carried out. To obtain these 

statistics, we randomly selected one of the 3 runs with identical parameter settings before 

applying the selection criterion. This procedure was repeated 1000 times with new random 

selections and the boxplot illustrates the obtained statistics. The box extends from the lower 

to upper quartile values of the data, with a line at the median. The whiskers extend from the 

box to show the range of the data but do not extend more than half the box size. Any data 

point beyond whisker range is considered an outlier and shown as  flier point. The post-

selection relaxation protocol to reduce NOE violations (Suppl. Methods S1.11) is not applied 

here, and numerical values of the green-dots thus can differ from reported values in 

Appendix Table  S2 
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Figure S9: Cα-RMSDs statistics of final structures generated with CYANA(red), 

ASDP(green) AutoNOE-Rosetta(blue) from swapping stereos(A-C). X-axis shows the 

percentage of swapped fraction. For each severity level, 6 independent runs for  AutoNOE-

Rosetta, CYANA and ASDP were performed. In addition to the four types of swapping errors 

discussed above, we also tested SWAP-STEREO, which swaps diastereotropic protons in 

the dataset . Except a single ASDP run at 30% severity, all calculations were robust against 

these errors. This reflects, that the programs are usually interpreting the input data of 

diastereotropic protons as ambiguous. 
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Figure S10: Cα-RMSDs statistics of final structures generated with CYANA for protein 

SR213. 

 

Figure S11: Cα-RMSDs statistics of final structures generated with CYANA for HR5537a 

from low severity levels of swapping methyls. 
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Figure S12: Cα-RMSDs statistics of final structures generated with AutoNOE-Rosetta for 

HR5537a from high severity levels of swapping C-H. 

 

Figure S13: Cα-RMSDs statistics of final structures generated with AutoNOE-Rosetta for 

OR135 from high severity levels of swapping C-H. 

 

Figure S14: Cα-RMSDs statistics of final structures generated with AutoNOE-Rosetta for 

PfR193A from high severity levels of swapping C-H.  
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Figure S15: Cα-RMSDs statistics of final structures generated with AutoNOE-Rosetta for 

HR5537A from high severity levels of swapping side-chain. 

 

Figure S16: Cα-RMSDs statistics of final structures generated with AutoNOE-Rosetta for 

OR135 from high severity levels of swapping side-chain. 

 

Figure S17: Final structures of OR135 with 90% missing protons at run 5. The blue 

structure is native OR135 and Red shows the calculated structures.  
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A.2 Supplementary Tables 

No: 
NESG-

Code 

NMR-

PDB 
Source1 

mol. 

weigh

t 

(kDa) 

referenc

e 

structur

e 

peak-

quality2  
RDC Data3 

chemical 

shift 

complete

ness4 

1 StT322 2loj CASDII 7.1 NMR raw - 97.4% 

2 StT322 2loj CASDII 7.1 NMR refined - 97.4% 

3 SR384 2jvd MR 5.5 XRAY - - 98.7% 

4 HR6470 2l9r CASDII 8.4 NMR raw - 98.6% 

5 HR6470 2l9r CASDII 8.4 NMR refined - 98.6% 

6 CtR69a 2kru CASDI 7.4 NMR - - 97.1% 

7 SgR42 2jz2 MR 7.7 XRAY - - 99.7% 

8 GmR137 2k5p MR 8.6 XRAY - PEG, Phage 98.6% 

9 OR135 2ln3 CASDII 9.9 NMR raw PEG, Phage 99.8% 

10 OR135 2ln3 CASDII 9.9 NMR refined PEG, Phage 99.8% 

11 PgR122a 2kmm CASDI 8.2 NMR - - 96.2% 

12 XcR50 1xpv MR 8.8 XRAY - - 97.3% 

13 HR3646e 2khn MR 13.7 XRAY - PAG,PEG 93.1% 

14 AR3436a 2kj6 CASDI 10.9 NMR raw5 - 93.9% 

15 AR3436a 2kj6 CASDI 10.9 NMR refined5 - 98.9% 

16 HR6430 2la6 CASDII 11.1 NMR raw - 99.2% 

17 HR6430 2la6 CASDII 11.1 NMR refined - 99.2% 

18 MrR110B 2k5v MR 10.9 XRAY - - 99.8% 

19 HR2876 2ltm CASDII 12.3 NMR raw PEG,Phage 99.4% 

20 HR2876 2ltm CASDII 12.3 NMR refined PEG,Phage 99.4% 

21 NeR103a 2kpm CASDI 12.0 NMR - - 92.5% 

22 StR65 2jn8 MR 12.2 XRAY - - 98.1% 

23 VpR247 2kif CASDI 11.6 NMR - - 99.2% 

24 HR5537 2kk1 CASDI 14.7 NMR - - 98.2% 

25 YR313 2ltl CASDII 13.7 NMR raw PEG,Phage 98.7% 

26 YR313 2ltl CASDII 13.7 NMR refined PEG,Phage 98.7% 

27 ET109 2kky CASDI 11.4 NMR - - 98.6% 

28 PfR193 2kl6 MR 12.1 XRAY - - 99.3% 

29 CcR55 2jqn MR 12.8 XRAY - - 98.4% 

30 SR213 2hfi MR 14.6 XRAY - - 93.1% 

31 OR8C 2kkz MR 15.2 XRAY - - 99.1% 

32 AtT13 2knr CASDI 13.4 NMR - - 98.8% 

33 SsR10 2jpu MR 15.2 XRAY - - 98.8% 
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34 PsR293 2kfp MR 14.9 XRAY - - 95.9% 

35 OR36 2lci CASDII 16.1 NMR raw PEG,Phage 97.0% 

36 OR36 2lci CASDII 16.1 NMR refined PEG,Phage 97.0% 

37 CgR26a 2kpt CASDI 16.0 NMR - - 99.7% 

38 HR1958 1xpw MR 16.3 XRAY - - 97.9% 

39 SR10 2kzn ILV 17.3 XRAY unrefined 
PAG,PEG, 

Phage 
93.9% 

40 DrR1470 2kcz MR 17.5 XRAY - - 84.8% 

41 
HR4660

B 
2lmd ILV 20.9 NMR unrefined PAG 91.8% 

42 CtR107 2kcu MR 18.3 XRAY - PEG,Phage 93.1% 

43 HR5460 2lah CASDII 19.3 NMR - Phage 98.3% 

44 HR5460 2lah CASDII 19.3 NMR - Phage 98.3% 

45 HR41 2k07 MR 20.7 XRAY - - 96.1% 

46 SgR145 2kw5 ILV 22.6 XRAY unrefined PEG, Phage 90.7% 

47 HsR50 2lok ILV 20.9 NMR unrefined PEG, Phage 81.7% 

48 HmR11 2lnu ILV 21.6 NMR unrefined PEG, Phage 95.3% 

49 WR73 2loy ILV 21.0 NMR unrefined Phage 97.2% 

50 ER690 1ezp ILV 41.1 XRAY unrefined Phage 91.7% 

      

ta
rg

et
s 

no
t u

se
d6 

   reason to ignore target  

BeR31  MR no peak lists available  

CsR4  MR dimer  

CtR148A  MR dimer  

MbR242E  MR dimer  

SR478  MR dimer  

SoR77  MR dimer  

StR70  MR no peak lists available  

ZR18  MR no peak lists available  

Table S1: List of data sets used to benchmark AutoNOE-Rosetta.  

Footnotes: 

1) The data was taken from published lists (1+2) and our own work (3). 1) CASDI, 

CASDII: http://www.wenmr.eu/wenmr/casd-nmr-data-sets (Rosato et al. 2012), 2) 

MR: http://psvs-1_4-dev.nesg.org/MR/dataset.html (Mao et al. 2011),  3) ILV(Lange 

et al. 2012). All data sets available by January 31st 2013 at these sources were 

considered.  



APPENDIX 

128 

 

2) For CASDII targets raw and refined data sets are available: raw data sets comprise 

automatically picked peak-lists. ILV data sets are unrefined: peaks have been picked 

manually and chemical shift assignments have been validated, but the peak-lists and 

chemical shift assignments have not yet undergone iterative refinement using 

structural models. In all other cases the quality of the peak-lists is unspecified and is 

denoted as ‘-‘ in the table. 

3) RDC data were in the calculations. Some of the RDC sets linked on the MR website 

were not downloadable or not assigned; some RDC sets could be retrieved directly 

from the responsible researchers, or from the BMRB.  

4) Chemical Shift completeness is computed by CYANA for non-ILV targets. For ILV-

targets we expect shifts for backbone atoms C, CA, CB, N, H and both 𝛿 (𝛾) methyls 

for Leucine (Valine), and the 𝛿1-methyl for Isoleucine.  

5) This data set was manually re-analyzed by us and then by the original authors of the 

structure. Both independent re-analyses led to consistent corrections in the sidechain 

chemical shift assignments and a new manually picked peak-list. The original data 

set is denoted as raw, the new data set as refined. 

6) Data sets that are dimers were ignored for the current study. For three of the MR 

data sets no peak-list was available.  
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Residue ranges 

𝐶!-RMSD (Å) to 

reference structure1 

No: Target 
data 

type2 

Referenc

e PDB-Id 
Size 

of 

reference 

AutoNO

E-

Rosetta 

RMSD3 CYAN

A 
PDB 

AutoNO

E-

Rosetta 

1 StT322 raw 2loj 38 1-63 26-63 26-63 8.3 - 3.2 

2 StT322 - 2loj 38 1-63 26-63 26-63 1.4 - 1.7 

3 SR384 - 3bhp 39 1-48 1-39 1-39 1.2 1.2 0.8 

4 HR6470 raw 2l9r 48 1-69 11-58 11-58 0.8 - 0.9 

5 HR6470 - 2l9r 48 1-69 11-58 11-58 0.8 - 0.8 

6 CtR69a - 2kru 57 1-63 1-57 4-52 0.8 - 0.8 

7 SgR42 - 3c4s 54 1-66 1-54 1-54 1.4 0.9 0.6 

8 GmR137 - 3cwi 66 1-78 1-66 1-66 1.9 2.4 1.3 

9 OR135 raw 2ln3 69 1-79 5-73 5-73 0.9 - 0.8 

10 OR135 - 2ln3 69 1-79 5-73 5-73 1.1 - 0.9 

11 PgR122a - 2kmm 73 1-73 1-73 1-64 1.5 - 1.3 

12 XcR50 - 1ttz 73 1-78 2-74 2-74 1.8 1.2 1.1 

13 HR3646e - 3fia 89 1-121 24-112 24-99 2.4 1.7 0.9 

14 AR3436a raw 2kj6 80 1-97 14-93 14-93 3.4 3.9 1.0 

15 AR3436a - 2kj6 80 1-97 14-93 14-93 1.7 - 1.0 

16 HR6430 raw 2la6 89 1-99 11-99 11-99 1.4 - 1.0 

17 HR6430 - 2la6 89 1-99 11-99 11-99 1.5 - 0.9 

18 MrR110B - 3e0e 92 1-98 1-92 

1-29, 36-78, 

83-90 1.3 0.8 0.8 

19 HR2876 raw 2ltm 95 1-107 13-107 13-107 (+) - 1.6 

20 HR2876 - 2ltm 95 1-107 13-107 13-107 1.4 - 1.5 

21 NeR103a - 2kpm 99 1-105 1-99 23-82,90-96 1.5 - 1.3 

22 StR65 - 2es9 99 1-109 10-108 10-108 2.4 1.9 2.0 

23 VpR247 - 2kif 99 1-102 1-99 1-99 1.5 - 0.8 

24 HR5537 - 2kk1 101 1-135 35-135 

39-104,118-

134 1.0 - 0.8 

25 YR313 raw 2ltl 102 1-119 18-119 18-40, 46-115 1.6 - 1.4 

26 YR313 - 2ltl 102 1-119 18-119 18-40, 46-115 2.1 - 1.3 

27 ET109 - 2kky 102 1-102 1-102 2-101 1.3 - 1.4 

28 PfR193 - 3idu 106 1-116 11-118 11-118 1.5 1.1 1.0 

29 CcR55 - 2o0q 112 1-116 2-113 2-113 (+) 1.9 2.5 
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30 SR213 - 2im8 113 1-123 7-119 7-119 1.6 1.2 1.5 

31 OR8C - 2rhk 116 1-134 5-120 5-120 1.8 1 1.1 

32 AtT13 - 2knr 118 1-118 1-118 2-53,70-114 0.9 - 0.8 

33 SsR10 - 2q00 118 1-129 6-123 6-55,58-123 4.5 1.9 1.4 

34 PsR293 - 3h9x 117 1-117 1-117 1-117 9.9 1.7 1.6 

35 OR36 raw 2lci 128 1-134 1-128 1-128 2.0 - 1.5 

36 OR36 - 2lci 128 1-134 1-128 1-128 (*) - 1.2 

37 CgR26a - 2kpt 131 1-148 1-131 15-130 1.0 - 0.7 

38 HR1958 - 1tvg 133 1-143 5-137 5-137 1.9 1.3 1.3 

39 SR10 unr 3e0o 141 1-147 1-141 1-141 (+) 4.7 2.1 

40 DrR1470 - 3ggn 142 1-155 3-144 3-110,127-144 14.5 9.6 2.4 

41 HR4660B unr 2lmd 144 1-174 31-174 

39-106, 114-

136, 142-154 (+) - (+) 

42 CtR107 - 3e0h 147 1-166 9-155 9-155 (+) 2.6 2.0 

43 HR5460 - 2lah 150 1-160 11-160 19-160 8.0 - 3.2 

44 HR5460 - 2lah 150 1-160 11-160 19-160 (*) - 1.8 

45 HR41 - 3evx 158 1-175 5-162 5-162 2.8 1.7 2.0 

46 SgR145 unr 3mer 177 1-202 21-197 

21-173,184-

197 4.3 2.7 1.9 

47 HsR50 unr 2lok 177 1-191 11-188 

11-23,55-

157,167-181 (+) - (+) 

48 HmR11 unr 2lnu 181 1-185 1-181 4-180 6.1 - 4.3 

49 WR73 unr 2loy 183 1-183 1-183 1-37,66-180 6.4 - 2.4 

50 ER690 unr 1dmb 366 1-370 5-370 5-370 (+) 3.5 (+) 

Table S2: Complete list of 𝐶!-RMSDs against reference structure for CYANA, best-effort 

PDB-deposited NMR structure and AutoNOE-Rosetta. This table is reproduced in parts by 

main-text Table 3.1. 

Footnotes: 

1) In these columns, the symbols ‘(+)’ and ‘(*)’ mark unconverged (<60% residues 

converged) and crashed structure calculations, respectively. We assume that the two 

crashed CYANA calculations would yield accurate models, if succeeded.  

Calculations that failed the final acceptance criteria (Appendix A.3.2) are shown in 

red.   

2) Data quality (raw, unrefined or refined) is abbreviated as raw, unr and -, respectively.  

3) Residues used for RMSD calculation. Tails or loops that are not well defined in the 

reference structures were removed. For removed loops explicit justifications are 

given in Table S9. 
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PDB accession 

codes 
DP-Scores 

Target NMR X-ray NMR Xray  AutoNOE 

SR384 2jvd 3bhp 0.72 0.74 0.75 

SgR42 2jz2 3c4s 0.59 0.64 0.62 

GmR137 2k5p 3cwi 0.62 0.67 0.64 

XcR50 1xpv 1ttz 0.67 0.72 0.66 

HR3646e 2khn 3fia 0.43 0.52 0.46 

MrR110B 2k5v 3e0e 0.71 n/a1 0.73 

StR65 2jn8 2es9 0.64 0.56 0.69 

PfR193 2kl6 3idu 0.82 0.81 0.80 

PsR293 2kfp 3h9x 0.62 0.61 0.58 

CcR55 2jqn 2o0q 0.76 0.79 0.72 

SR213 2hfi 2im8 0.58 0.62 0.57 

OR8C 2kkz 2rhk 0.61 0.63 0.62 

SsR10 2jpu 2q00 0.46 n/a1 0.49 

HR1958 1xpw 1tvg 0.63 0.68 0.63 

SR10 2kzn 3e0o 0.59 0.55 0.59 

DrR1470 2kcz 3ggn 0.36 n/a1 0.37 

CtR107 2kcu 3e0h 0.26 0.36 0.26 

HR41 2k07 3evx 0.68 0.71 0.61 

SgR145 2kw5 3mer 0.36 n/a1 0.36 

ER690 1ezp 1dmb 0.29 0.36 0.22 

Table S3: The AutoStruct DP-Score(Huang et al. 2005) has been computed on PDB-

deposited and AutoNOE-Rosetta structures. All models were trimmed  to match the 

sequences, used in AutoNOE-Rosetta (Appendix Table S1).  

Footnotes:  

1) missing density in X-ray structure. DP-score not calculated.  
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  residue ranges PDB accession codes 
𝐶!-RMSD to Xray structure 

(Å) 

Target 

molecula

r weight 

(kDa) 

modelled
1  

RMSD 

analysis 

convention

al NMR 

structure 

Xray 

reference 

structure 

AutoNO

E 

conventional 

NMR structure 

SR384 5.5 1-39 1-39 2jvd 3bhp 0.8 1.2 

SgR42 7.7 1-54 1-54 2jz2 3c4s 0.6 0.9 

GmR137 8.6 1-66 1-66 2k5p 3cwi 1.3 2.4 

XcR50 8.8 2-74 2-74 1xpv 1ttz 1.1 1.2 

HR3646E 13.7 24-99 24-99 2khn 3fia 0.9 1.7 

AR3436A 10.9 14-93 14-93 2kj6 n/a7 1.0 3.9 

MrR110B 10.9 1-92 
1-29, 36-

78, 83-902 2k5v 3e0e 0.8 0.8 

StR65 12.2 10-108 10-108 2jn8 2es9 2.0 1.9 

PfR193 12.1 11-118 11-1163 2kl6 3idu 1.1 1.1 

PsR293 14.9 1-117 1-117 3h9x 2kfp 1.6 1.75 

CcR55 12.8 2-113 2-113 2jqn 2o0p 2.58 1.9 

SR213 14.6 7-119 7-119 2hfi 2im8 1.5 1.2 

OR8C 15.2 5-120 5-120 2kkz 2rhk 1.1 1 

SSR10 15.2 6-123 
6-55, 58-

1234 2jpu 2q00 1.4 1.9 

HR1958 16.3 5-137 5-137 1xpw 1tvg 1.3 1.3 

SR10 17.3 1-141 1-141 2kzn 3e0o 2.1 4.79 

DrR1470 17.5 3-144 
3-110, 

127-1445 2kcz 3ggn 2.4 9.610 

CtR107 18.3 9-155 9-155 2kcu 3e0h 2.0 2.6 

HR41 20.7 5-162 5-162 2k07 3evx 2.0 1.7 

SgR145 22.6 21-197 
21-173, 

184-1976 2kw5 3mer 1.9 2.7 

ER690 41.1 5-370 5-370 1ezp11 1dmb 19.211 3.511 

Table S4: Accuracy of AutoNOE structures vs. PDB-deposited NMR structures 

Footnotes:  

1) target sequences are trimmed automatically to remove flexible tails based on 

TALOS+ RCI S2 prediction. All numbering is relative to the respective NMR sample.  

2) residues 31-34 and 80-81, have missing density in Xray reference structure 

3) residues 117-118 have missing density in Xray reference structure 

4) residues 55-58 are unconverged in conventional NMR structure. This is consistent 

with high flexibility predicted by TALOS+ 
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5) residues 115-129 have missing density in Xray reference structure  

6) residues 174-183 have missing density in Xray reference structure 

7) An independent expert analysis of the raw NMR data yielded a more accurate NMR 

reference structure for this target, which supersedes 2kj6. 

8) The AutoNOE-Rosetta calculation did not fully converge. The accuracy of the 

converged residues (88% of total length) is 1.3Å.  

9) The pdb-deposited NMR ensemble is of low precision. Nevertheless, in at least two 

regions the Xray reference is not within the structural bundle of the ensemble. These 

regions have high (>0.7) TALOS+ calculated RCI S2  values, suggesting that they are 

well-structured in solution. 

10) Major parts of the pdb-deposited NMR models are not well converged, giving rise to 

the high RMSD. 

11) The AutoNOE-Rosetta structure calculation did not converge. The pdb-deposited 

NMR ensemble has been obtained from different NMR data(Mueller et al. 2000). No 

NMR solution structure was deposited for the ER690 data set.  
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No: Target 
modeled 

residues1 

residues used 

for RMSD 

Reason for excluding internal regions from RMSD 

calculations 

17 MrR110B 1-92 
1-29, 36-78, 

83-90 

residues 31-34 and 80-81, have missing density in 

Xray reference structure 

20 NeR103a 1-99 23-82,90-96 
residues 83-89 have RCI-S2 of less than 0.7 

according to TALOS+. 2 

23 HR5537 35-135 
39-104,118-

134 

residues 105-116 have RCI-S2 of less than 0.7 

according to TALOS+. 3 

24 YR313 18-119 18-40, 46-115 
residues 41-45 are heterogeneous in NMR 

reference ensemble 

25 YR313 18-119 18-40, 46-115 
residues 41-45 are heterogeneous in NMR 

reference ensemble 

31 AtT13 1-118 2-53,70-114 
residues 54-69 are heterogeneous in NMR 

reference ensemble 

32 SsR10 6-123 6-55,58-123 
residues 56-57, missing density in the Xray 

reference structure 

39 DrR1470 3-144 3-110,127-144 
residues 111-126, missing density in the Xray 

reference structure 

40 HR4660B 31-174 
39-106, 114-

136, 142-154 

residues 107-113 and 137-141 are heterogeneous 

in NMR reference ensemble 

45 SgR145 21-197 
21-173,184-

197 

residues 175-183, missing density in the Xray 

reference structure 

46 HsR50 11-188 
11-23,55-

157,167-181 

residues 24-53, and 158-166 are heterogeneous in 

NMR reference ensemble 

48 WR73 1-183 1-37,66-180 
residues 38-65 are heterogeneous in NMR 

reference ensemble 

Table S5: Justification for omitting internal residues from RMSD calculation: In some cases 

internal regions had to be excluded from RMSD calculations due to missing density in Xray 

structures or flexible regions in NMR structures. Justifications for individual cases are given 

in this table.   

Footnotes: 

1) Residues modeled in the CYANA and AutoNOE-Rosetta calculations. The 

numbering is relative to the corresponding NMR PDB structure (column 6 in Table 

S2).  

2) Heterogeneity in NMR ensemble is moderate. Including the loop in RMSD 

calculation, increases the 𝐶!-RMSD by 0.2 Å for both, AutoNOE and CYANA final 

models. 
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3) Heterogeneity in NMR ensemble is moderate. Including the loop in RMSD 

calculation, increases the 𝐶!-RMSD by 0.6 Å for both, AutoNOE and CYANA. 
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Target peak-list dimension 
sweep window (ppm) 

start  end  

AR3436 (raw) CHH-ali 𝐶!"   30.0 54.0 

HR1958 CCHH 𝐶!" -1 13.6 34.5 

HR1958 CCHH 𝐶!" -2 13.6 55.4 

HR1958 CHH-ali 𝐶!"   23.1 47.0 

Table S6: A small subset of peak-lists contained aliased frequencies. The parameters to set 

the folding window are given in columns start and end. To set the folding window in 

AutoNOE-Rosetta the line  
#FOLD 1 30.0 54.0  

is added to the respective peak-file, where 1 would be the index of the dimension that is 

folded. 

  



APPENDIX 

137 

 

No: Target 

peaks 

availabl

e 

diagonal

and 

zero 

intensity 

un-

assigne

d 

long-

range 
violated 

prec. 

(Å)1 conv’d2 target3 rmsd (Å) 

1 StT322 12437 266 9683 376 2261 0.6 1.00 1599.7 3.2 

2 StT322 2727 215 953 194 155 0.7 1.00 9 1.8 

3 SR384 2626 225 1075 48 82 0.4 1.00 9 0.8 

4 HR6470 4262 429 802 121 240 0.5 1.00 8.9 0.9 

5 HR6470 4262 490 700 147 214 0.6 1.00 19.1 0.8 

6 CtR69a 1975 0 210 159 126 1.3 1.00 4.4 0.8 

7 SgR42 1658 0 327 152 106 0.7 1.00 18.9 0.7 

8 GmR137 2604 218 394 147 167 0.7 1.00 3.9 1.2 

9 OR135 7749 357 3508 401 629 0.5 1.00 76.5 0.8 

10 OR135 6359 578 1283 467 317 0.4 1.00 12.1 1.0 

11 PgR122a 3515 232 742 286 229 2.3 1.00 10.9 1.3 

12 XcR50 4156 499 636 277 228 0.8 1.00 27.7 1.1 

13 HR3646e 6372 2126 2067 183 232 0.8 1.00 46.6 0.9 

14 AR3436a 2076 182 223 109 147 0.6 1.00 36.5 1.0 

15 AR3436a 2453 8 305 243 171 0.7 1.00 17.4 0.9 

16 HR6430 6825 627 1023 758 327 0.9 1.00 13.7 1.1 

17 HR6430 6643 621 967 775 271 0.8 1.00 12.6 1.0 

18 MrR110B 4270 478 722 299 186 0.7 1.00 8.3 0.9 

19 HR2876 14102 341 13530 6 179 1.4 1.00 46.5 1.6 

20 HR2876 7054 678 1265 708 299 0.6 1.00 11.3 1.3 

21 NeR103a 4658 346 809 422 368 2.4 1.00 53.5 1.3 

22 StR65 3428 114 1764 61 108 1.3 1.00 3.8 2.1 

23 VpR247 5756 580 925 436 321 0.8 1.00 19 0.9 

24 HR5537 13995 1462 4755 773 855 1.5 1.00 32.7 0.8 

25 YR313 12303 330 8518 394 2082 1.4 1.00 1658.7 1.4 
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26 YR313 6592 776 1508 393 273 0.9 1.00 8.8 1.3 

27 ET109 6752 79 1103 761 439 0.7 1.00 21.6 1.3 

28 PfR193 6191 603 837 726 364 0.9 1.00 29.9 1.1 

29 CcR55 3756 267 1703 124 156 2.2 0.88 9.6 2.5 

30 SR213 5980 1065 1439 264 310 1.6 0.99 8.9 1.5 

31 OR8C 6092 652 1444 325 325 1.0 1.00 22.2 1.2 

32 AtT13 8036 670 1643 837 548 2.0 1.00 27.4 0.9 

33 SsR10 5131 715 1498 121 253 1.4 1.00 9.3 1.5 

34 PsR293 6870 518 2694 469 486 1.4 1.00 39.9 1.6 

35 OR36 13794 338 9517 479 1718 1.1 1.00 258.9 1.5 

36 OR36 9459 1036 3980 367 435 1.0 1.00 9.8 1.2 

37 CgR26a 5131 3 896 539 301 1.6 1.00 11.3 0.7 

38 HR1958 8712 503 3514 836 660 1.2 0.97 123.7 1.3 

39 SR10 2100 330 315 382 119 1.7 0.98 13.6 2.1 

40 DrR1470 8579 4888 2053 169 313 2.5 0.92 167.8 2.3 

41 HR4660B 9200 573 5184 170 2524 17.2 0.14 2000 8.6 

42 CtR107 7180 3475 931 243 338 1.8 1.00 180.8 2.0 

43 HR5460 17250 248 14205 329 2568 7.7 0.79 3092 3.2 

44 HR5460 12015 1073 4689 685 881 1.1 1.00 21.6 1.9 

45 HR41 10879 1507 3456 669 696 1.8 0.95 36.6 2.2 

46 SgR145 4302 453 974 847 415 2 0.98 345.7 2.0 

47 HsR50 5058 546 3253 160 1184 3.9 0.51 496.5 15.5 

48 HmR11 10348 708 3433 1016 855 3.3 0.65 601.2 4.3 

49 WR73 2740 379 349 411 188 2.9 1.00 45.1 2.4 

50 ER690 7153 780 3420 346 2262 9 0.19 1466.8 19.2 

Table S7: Assignment Statistics for AutoNOE-Rosetta. 

Footnotes: 

1) precision calculated with ROSETTA as described in Methods. Runs that failed the 

convergence criterion of 90% are marked in red. 
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2) fraction of converged residues: The converged residues are determined as described 

in Appendix Methods A.3.1.8. The number of converged residues is divided by the 

total number of non-flexible residues. A residue is considered as flexibility if TALOS+ 

predicted RCI S2<0.7.  If the fraction of drops below 90% the calculation is 

considered a failure. Accuracy of the converged part is not guaranteed anymore.  

3) target function: The target function value is computed as described in Appendix 

Methods A.3.2.2. Values above 500 are considered dangerous and the 

computational results might not be accurate.  
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No: Target 

peaks 

availabl

e 

un-

assign

ed 

long-

range 

target-function,  preciscion (Å) fractio

n 

conv-

erged 

rms

d 

(Å) cycle 1 
cycle 

7 

cyana our1 

cycle 

1 
cycle 7 

1 StT322 12437 10056 356 5483.4 110.9 3.3 0.01 0 1.00 8.3 

2 StT322 2727 1010 355 62.1 3.8 0.6 0.09 0.1 1.00 1.4 

3 SR384 2626 854 188 0.1 0.0 0.6 0.33 0.5 1.00 1.2 

4 HR6470 4262 665 293 14.4 0.8 0.3 0.23 0.3 1.00 0.8 

5 HR6470 4262 494 379 10.7 1.1 0.3 0.16 0.2 1.00 0.8 

6 CtR69a 1975 80 253 1.2 0.3 1.3 1.21 1.9 1.00 0.8 

7 SgR42 1658 245 271 4.7 0.1 0.6 0.35 0.5 1.00 1.4 

8 GmR137 2604 264 290 5.4 0.2 1 0.39 0.6 1.00 1.9 

9 OR135 7749 3148 690 130.9 3.1 0.8 0.07 0.1 1.00 0.9 

10 OR135 6359 527 994 51.1 10.2 0.5 0.06 0.1 1.00 1.1 

11 PgR122a 3515 250 634 28.7 0.8 3.2 4.24 6.5 1.00 1.5 

12 XcR50 4156 507 419 43 11.2 1.1 0.37 0.6 1.00 1.8 

13 HR3646e 12744 9037 261 173.7 4.5 2.1 0.62 0.9 1.00 2.4 

14 AR3436a 6282 4425 137 4.9 0.0 2.8 1.2 1.8 0.96 3.7 

15 AR3436a 2453 195 416 8 0.1 0.9 0.45 0.7 1.00 1.7 

16 HR6430 6825 302 1341 70.6 14.1 0.6 0.11 0.1 1.00 1.4 

17 HR6430 6643 184 1314 35.4 14.6 0.5 0.15 0.2 1.00 1.6 

18 MrR110B 4270 340 610 3 0.4 1 0.42 0.6 1.00 1.3 

19 HR2876 14102 13473 3 2.6 0.8 10.2 12.14 29.9 0.22 17.9 

20 HR2876 7054 319 1247 41.2 26.0 0.4 0.1 0.1 1.00 1.4 

21 NeR103a 4658 561 697 50.3 1.6 8.2 6.23 9.9 1.00 1.5 

22 StR65 3428 1658 168 2.4 0.3 2.6 1.08 1.6 1.00 2.4 

23 VpR247 5756 281 804 17.3 2.1 0.7 0.31 0.5 1.00 1.5 

24 HR5537 13995 2256 940 398.1 10.9 1.5 0.07 0.1 1.00 1.0 
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25 YR313 12303 7977 701 2027.6 6.3 3.8 0.36 0.5 1.00 1.6 

26 YR313 6592 586 731 14.8 10.3 1.6 0.49 0.8 1.00 1.7 

27 ET109 6752 650 1418 227.8 45.9 0.7 0.36 0.5 1.00 1.3 

28 PfR193 6191 289 1249 55.2 10.5 0.7 0.15 0.2 1.00 1.5 

29 CcR55 3756 1681 90 5.5 0.6 8.8 9.54 25.3 0.18 19.3 

30 SR213 5980 571 520 58.2 3.7 1.5 0.74 1.2 1.00 1.6 

31 OR8C 6092 735 697 64.4 1.1 1.6 0.4 0.6 1.00 1.8 

32 AtT13 8036 933 1472 236.8 66.3 1.2 0.28 0.4 1.00 0.9 

33 SsR10 5131 326 381 9 1.5 1.3 0.79 1.2 1.00 4.5 

34 PsR293 6870 2415 529 211.8 5.9 3.4 0.62 0.9 1.00 9.9 

35 OR36 13794 7830 1198 886.7 7.9 1.6 0.44 0.7 1.00 2.0 

36 OR362 9459 

   

  

    37 CgR26a 5131 88 1103 5 1.2 3 2.55 4.2 1.00 1.0 

38 HR1958 8712 15527 989 137.3 8.0 0.8 0.33 0.5 1.00 1.9 

39 SR10 2100 590 236 197.7 11.4 9 8.46 21.2 0.27 15.5 

40 DrR1470 17158 13190 109 1451.4 12.4 7.7 2.31 3.7 0.61 14.5 

41 HR4660B 9200 7681 242 249.4 7.1 8.9 5.6 10.1 0.45 7.2 

42 CtR107 7180 1864 143 659.8 6.5 8.8 8.35 20.9 0.47 17.1 

43 HR5460 17250 12675 693 4090.7 80.2 3.8 0.33 0.5 1.00 8.0 

44 HR54602 12015 

   

  

    45 HR41 10879 1164 1129 168.1 10.2 1.5 0.87 1.3 0.99 2.8 

46 SgR145 4302 1637 430 1229.7 12.9 8.2 1.76 2.8 0.93 4.3 

47 HsR50 5058 3781 119 150.8 3.3 12.8 12.74 33.7 0.14 19.8 

48 HmR11 10348 2397 1344 704.1 12.7 4 0.54 0.8 1.00 6.1 

49 WR73 2740 536 335 191.2 5.3 7.8 3.52 5.7 0.87 6.4 

50 ER690 7153 6377 2 108 4.8 29.9 51.01 0 0.00 106 

Table S8: Assignment Statistics for CYANA. The assignment statistics are computed with 

the command cyanatable in the CYANA run directory.  

Footnotes: 
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1) precision calculated with ROSETTA as described in Methods, comparable with 

column 7 in Appendix Table S7  

2) CYANA calculations crashed on this data set. 
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  RMSD (A) 
Severity Level 0 1 2 3 4 5 
 Repetition ID       
 

 

miss_methyl 

1 0.92 0.97 0.84 1.01 1.14 0.93 
2 0.92 0.92 0.93 0.86 0.94 1.27 
3 0.92 1.02 0.97 0.82 0.94 0.93 
4 0.92 0.99 0.93 0.88 0.93 1.18 
5 0.92 0.93 0.95 0.98 0.78 0.96 
6 0.92 0.93 0.97 0.93 0.91 1.67 

 

 

miss_sidechain 

1 0.92 1.11 1.78 2.57 10.47 11.22 
2 0.92 0.88 1.03 8.35 10.19 12.13 
3 0.92 0.93 1.70 7.05 9.09 12.65 
4 0.92 1.08 0.79 2.75 10.09 11.84 
5 0.92 1.04 0.95 3.07 10.95 12.07 
6 0.92 0.96 1.96 2.49 10.88 12.40 

 

 

miss_proton 

1 0.92 1.00 1.03 4.75 10.81 13.09 
2 0.92 0.86 0.95 9.71 8.63 12.26 
3 0.92 1.09 0.86 1.57 10.37 12.78 
4 0.92 0.87 0.98 9.03 10.56 13.21 
5 0.92 0.95 1.30 9.05 9.57 12.94 
6 0.92 0.94 1.08 7.16 7.03 14.28 

 

 

swap_methyl 

1 0.92 1.00 0.84 1.47 1.05 7.31 
2 0.92 0.91 0.89 0.97 0.95 1.17 
3 0.92 0.84 1.24 1.09 1.36 1.35 
4 0.92 0.90 0.86 1.11 1.31 2.15 
5 0.92 0.85 0.97 0.95 1.76 1.18 
6 0.92 0.90 0.95 0.99 1.10 1.67 

 

 

swap_coupled 

1 0.92 0.93 0.94 1.05 0.98 1.53 
2 0.92 0.89 1.15 0.92 1.25 0.88 
3 0.92 0.96 0.83 1.38 1.17 1.28 
4 0.92 0.90 0.95 0.95 1.31 1.01 
5 0.92 0.89 0.95 1.32 1.28 0.88 
6 0.92 0.96 1.05 1.11 0.84 1.07 

 

 

swap_stereo 

1 0.92 0.91 1.05 0.90 0.92 0.88 
2 0.92 0.96 1.00 0.95 1.12 1.00 
3 0.92 0.92 0.96 0.97 0.86 0.92 
4 0.92 0.89 0.85 0.88 1.08 0.88 
5 0.92 0.88 1.01 0.90 1.01 0.93 
6 0.92 0.87 0.86 0.91 0.98 0.99 

 

 

swap_carbon 

1 0.92 0.97 0.89 1.31 1.35 2.61 
2 0.92 0.89 0.90 1.07 1.21 1.94 
3 0.92 0.88 0.90 0.97 1.19 1.35 
4 0.92 0.86 0.96 0.92 1.50 2.67 
5 0.92 0.92 0.93 0.88 0.96 1.29 
6 

 

 

 

 

 

0.92 0.82 0.96 0.92 0.90 1.88 
swap_sidechain 1 0.92 0.97 0.86 1.02 1.20 0.91 

2 0.92 0.87 0.98 1.28 1.06 0.90 
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3 0.92 1.05 0.99 0.88 1.09 0.98 
4 0.92 0.86 0.97 0.93 0.91 0.87 
5 0.92 1.05 0.89 0.87 1.22 1.10 
6 0.92 0.92 0.92 1.39 0.83 0.93 

 

 

combine_methyl 

1 0.92 0.91 0.76 0.92 0.93 1.06 
2 0.92 0.85 0.96 0.84 0.84 1.00 
3 0.92 0.91 0.92 1.10 0.99 1.06 
4 0.92 0.83 0.92 0.86 1.02 0.91 
5 0.92 0.94 0.91 0.90 0.93 0.93 
6 0.92 0.89 0.96 0.95 1.01 0.94 

 

 

combine_stereo 

1 0.92 0.97 0.98 1.10 1.01 10.07 
2 0.92 0.86 0.90 1.20 1.12 9.99 
3 0.92 0.90 0.89 1.20 2.49 9.48 
4 0.92 1.01 0.90 1.05 0.97 9.71 
5 0.92 0.956 0.95 1.05 0.992 4.838 
6 0.92 1.058 1.047 1.931 2.11 10.04 

Table S9: Cα-RMSDs of HR5537A structures calculated by AutoNOE-Rosetta on different 

scramble types and severity levels.  
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  RMSD (A) 
Severity Level 0 1 2 3 4 5 
 Repetition ID       
 

 

miss_methyl 

1 0.93 0.94 0.90 1.00 0.97 1.13 
2 0.93 0.90 0.95 0.88 0.92 1.06 
3 0.93 0.83 0.90 0.87 0.92 0.96 
4 0.93 1.01 0.86 0.86 0.84 0.93 
5 0.93 0.93 0.93 0.98 0.91 0.97 
6 0.93 0.87 0.96 0.88 0.87 0.93 

 

 

miss_sidechain 

1 0.93 0.85 0.90 1.53 1.43 2.99 
2 0.93 0.91 1.07 1.16 2.07 1.63 
3 0.93 0.83 0.98 1.64 1.48 1.74 
4 0.93 1.01 0.93 1.10 3.45 3.03 
5 0.93 0.89 1.04 0.97 2.32 7.79 
6 0.93 0.95 0.96 1.03 2.15 2.21 

 

 

miss_proton 

1 0.93 0.83 1.14 1.11 1.57 2.24 
2 0.93 0.94 1.04 1.16 1.87 6.80 
3 0.93 0.86 0.81 1.09 1.35 1.56 
4 0.93 0.90 0.90 1.22 6.81 8.55 
5 0.93 1.01 0.95 0.85 1.73 1.76 
6 0.93 0.87 0.91 1.01 1.63 1.81 

 

 

swap_methyl 

1 0.93 0.81 0.95 0.89 1.03 1.01 
2 0.93 0.90 0.96 0.96 1.08 0.94 
3 0.93 0.86 0.97 1.12 0.93 1.18 
4 0.93 0.94 0.86 1.05 1.07 1.15 
5 0.93 0.99 0.91 0.87 0.90 1.21 
6 0.93 0.98 1.03 0.94 0.98 1.07 

 

 

swap_coupled 

1 0.93 0.86 0.92 0.93 0.88 0.90 
2 0.93 0.95 0.93 0.90 0.95 0.87 
3 0.93 0.81 0.94 0.95 0.86 0.92 
4 0.93 0.87 0.89 0.95 0.92 0.91 
5 0.93 0.85 0.92 1.03 0.95 0.88 
6 0.93 0.93 0.91 0.86 0.91 0.91 

 

 

swap_stereo 

1 0.93 0.90 0.90 0.89 0.89 0.89 
2 0.93 0.87 0.98 0.89 0.85 0.91 
3 0.93 0.93 0.91 0.97 0.89 0.92 
4 0.93 0.94 0.91 0.90 0.99 0.98 
5 0.93 0.95 0.91 1.00 0.94 1.02 
6 0.93 0.97 0.92 0.92 0.80 0.95 

 

 

swap_carbon 

1 0.93 0.97 0.87 0.92 0.81 0.87 
2 0.93 0.87 0.98 0.95 0.80 0.87 
3 0.93 0.88 0.91 0.85 0.98 0.93 
4 0.93 0.93 0.89 0.85 0.91 0.84 
5 0.93 0.98 0.93 0.86 0.93 0.89 
6 0.93 0.92 0.88 0.83 0.88 0.90 

swap_sidechain 1 0.93 0.97 0.96 1.00 0.94 1.02 
2 0.93 0.90 0.85 0.83 0.85 0.89 
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3 0.93 0.79 1.01 0.91 1.05 0.87 
4 0.93 0.84 0.87 0.87 0.94 0.87 
5 0.93 1.01 0.85 1.01 0.91 0.87 
6 0.93 0.93 0.85 0.98 0.88 1.00 

 

 

combine_methyl 

1 0.93 1.00 0.94 0.95 0.96 0.93 
2 0.93 0.93 0.96 0.93 0.95 0.92 
3 0.93 0.83 0.87 1.03 0.92 1.03 
4 0.93 0.88 1.01 0.90 0.95 0.90 
5 0.93 0.89 0.99 0.96 0.95 0.86 
6 0.93 0.93 0.92 1.00 0.88 0.98 

 

 

combine_stereo 

1 0.93 0.95 0.86 0.83 0.99 0.98 
2 0.93 1.01 0.90 0.87 0.87 0.96 
3 0.93 0.90 0.81 0.93 0.89 0.99 
4 0.93 0.92 0.99 0.85 0.89 0.96 
5 0.93 0.853 0.849 0.849 0.903 0.871 
6 0.93 0.891 0.968 0.903 0.819 0.836 

Table S10: Cα-RMSDs of OR135 structures calculated by AutoNOE-Rosetta on different 

scramble types and severity levels.  
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  RMSD (A) 
Severity Level 0 1 2 3 4 5 
 Repetition ID       
 

 

miss_methyl 

1 1.62 1.68 1.83 1.66 1.81 1.77 
2 1.62 1.79 1.97 1.78 1.91 1.56 
3 1.62 1.66 1.96 1.65 1.80 1.52 
4 1.62 2.00 1.38 1.89 1.80 1.56 
5 1.62 1.66 1.78 1.59 1.66 1.69 
6 1.62 1.63 1.66 1.61 1.58 1.59 

 

 

miss_sidechain 

1 1.62 1.74 2.26 2.46 5.23 9.85 
2 1.62 1.48 2.44 5.59 7.18 6.35 
3 1.62 1.68 2.22 4.06 6.01 10.13 
4 1.62 1.76 2.11 3.68 5.08 8.17 
5 1.62 2.02 2.47 2.88 5.28 7.26 
6 1.62 1.94 2.07 4.29 8.26 12.52 

 

 

miss_proton 

1 1.62 1.53 2.29 3.13 5.63 6.24 
2 1.62 2.19 2.55 3.70 4.11 12.86 
3 1.62 1.36 3.35 3.22 9.91 4.97 
4 1.62 1.85 1.90 4.06 14.99 7.76 
5 1.62 2.15 1.84 4.83 5.54 10.80 
6 1.62 1.89 2.34 4.22 5.36 13.29 

 

 

swap_methyl 

1 1.62 1.52 1.50 1.63 1.51 2.06 
2 1.62 1.95 1.73 2.04 1.61 1.59 
3 1.62 2.05 1.50 2.05 1.56 1.73 
4 1.62 1.86 1.91 1.89 1.85 1.97 
5 1.62 1.58 1.65 2.07 2.15 2.59 
6 1.62 1.68 2.00 1.66 1.66 1.64 

 

 

swap_coupled 

1 1.62 1.72 1.74 1.86 1.76 2.33 
2 1.62 1.48 1.77 1.98 2.34 2.19 
3 1.62 1.54 1.48 1.94 1.98 2.09 
4 1.62 1.94 1.68 1.56 2.03 2.35 
5 1.62 1.76 1.86 2.15 2.57 1.87 
6 1.62 1.76 1.70 1.74 2.21 2.17 

 

 

swap_stereo 

1 1.62 1.65 1.80 1.87 1.79 1.82 
2 1.62 1.66 1.35 1.49 1.76 1.54 
3 1.62 1.91 1.42 1.66 1.56 1.73 
4 1.62 1.47 1.64 1.54 1.96 1.41 
5 1.62 1.87 1.53 1.75 1.47 1.58 
6 1.62 1.64 1.74 1.41 1.80 1.43 

 

 

swap_carbon 

1 1.62 1.68 1.75 1.66 1.74 2.16 
2 1.62 1.50 2.14 1.54 2.08 2.49 
3 1.62 1.79 1.87 1.75 1.68 1.61 
4 1.62 1.87 1.38 1.86 2.04 1.70 
5 1.62 1.78 1.63 1.62 2.16 1.56 
6 1.62 1.70 1.67 2.46 1.80 1.97 

swap_sidechain 1 1.62 1.67 1.65 2.15 2.09 1.70 
2 1.62 1.98 1.60 1.66 2.18 1.84 
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3 1.62 1.73 1.66 1.74 1.97 1.88 
4 1.62 1.88 2.08 1.65 1.95 2.71 
5 1.62 1.67 1.65 1.88 1.41 1.71 
6 1.62 1.52 1.63 2.31 2.04 1.85 

 

 

combine_methyl 

1 1.62 1.70 1.75 1.68 1.75 1.44 
2 1.62 1.91 1.62 1.58 1.83 1.64 
3 1.62 1.82 1.74 1.46 1.50 1.83 
4 1.62 1.71 1.59 1.50 1.60 1.60 
5 1.62 1.70 1.61 1.71 1.79 1.66 
6 1.62 1.69 1.74 1.52 1.37 1.89 

 

 

combine_stereo 

1 1.62 1.65 1.82 2.18 2.11 1.99 
2 1.62 1.41 1.60 2.14 1.99 2.30 
3 1.62 1.69 1.77 2.61 2.18 1.95 
4 1.62 1.55 1.86 1.92 1.91 2.18 
5 1.62 1.62 1.78 1.867 1.792 2.76 
6 1.62 1.815 1.781 2.367 2.062 2.146 

Table S11: Cα-RMSDs of PfR193A structures calculated by AutoNOE-Rosetta on different 

scramble types and severity levels. 
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  RMSD (A) 
Severity Level 0 1 2 3 4 5 
 Repetition ID       
 

 

miss_methyl 

1 1.03 0.94 1.01 1.56 5.53 5.99 
2 1.03 1.17 1.53 1.41 2.11 4.13 
3 1.03 0.92 1.30 1.80 3.85 5.53 
4 1.03 1.24 1.12 4.32 1.54 1.56 
5 1.03 1.13 2.28 1.18 5.14 1.78 
6 1.03 1.24 1.11 3.19 1.73 5.85 

 

 

miss_sidechain 

1 1.03 1.62 3.89 4.70 9.82 11.99 
2 1.03 1.03 3.97 7.45 12.17 8.66 
3 1.03 1.89 4.61 7.13 10.97 12.78 
4 1.03 1.73 1.55 10.07 9.90 9.88 
5 1.03 1.27 3.71 4.15 11.26 7.43 
6 1.03 0.89 7.83 4.41 8.90 10.02 

 

 

miss_proton 

1 1.03 1.40 2.93 7.65 10.42 13.14 
2 1.03 1.13 2.04 10.94 10.47 10.55 
3 1.03 1.38 3.11 7.84 8.83 13.01 
4 1.03 4.36 3.58 9.47 12.74 13.73 
5 1.03 1.43 3.31 8.07 10.50 11.18 
6 1.03 2.95 7.05 9.98 10.69 13.64 

 

 

swap_methyl 

1 1.03 1.22 2.47 1.06 1.18 4.06 
2 1.03 1.00 2.08 2.58 1.21 1.39 
3 1.03 2.10 1.19 5.27 1.13 2.20 
4 1.03 1.00 2.23 1.23 1.09 3.72 
5 1.03 0.95 1.08 1.72 1.44 3.60 
6 1.03 1.35 3.05 1.61 2.12 2.84 

 

 

swap_C-H 

1 1.03 1.66 1.54 1.32 1.42 3.56 
2 1.03 1.16 0.96 5.23 2.63 3.22 
3 1.03 1.42 1.43 2.26 3.51 7.65 
4 1.03 1.09 1.05 6.31 3.71 5.42 
5 1.03 1.00 6.65 1.76 4.99 2.16 
6 1.03 0.99 1.56 1.03 3.04 1.23 

 

 

swap_stereo 

1 1.03 1.05 1.21 1.04 1.02 0.98 
2 1.03 1.09 0.92 1.30 1.74 0.92 
3 1.03 1.02 1.18 0.88 1.03 0.98 
4 1.03 1.13 1.17 1.21 1.00 1.04 
5 1.03 0.93 1.11 1.20 0.99 1.14 
6 1.03 0.99 1.24 1.01 0.97 1.15 

 

 

swap_carbon 

1 1.03 1.32 1.06 1.17 3.87 10.10 
2 1.03 1.38 1.06 4.27 1.61 4.19 
3 1.03 0.84 2.96 1.66 2.99 8.23 
4 1.03 1.27 1.19 2.97 2.27 12.08 
5 1.03 1.22 1.28 2.06 2.43 6.57 
6 1.03 1.81 1.75 3.46 3.00 5.81 

swap_sidechain 1 1.03 1.01 1.26 1.18 5.04 1.61 
2 1.03 1.11 5.17 2.28 5.28 1.67 
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3 1.03 1.39 2.32 1.36 0.94 1.96 
4 1.03 1.54 1.17 1.34 1.57 1.55 
5 1.03 4.12 3.17 2.60 2.60 4.84 
6 1.03 4.74 3.35 2.80 1.07 1.97 

 

 

combine_methyl 

1 1.03 1.30 1.28 3.67 1.15 1.74 
2 1.03 0.93 0.92 2.47 1.29 2.77 
3 1.03 1.03 1.18 1.08 1.56 3.20 
4 1.03 0.94 1.47 1.21 1.83 2.65 
5 1.03 1.04 1.08 1.12 1.96 1.63 
6 1.03 1.05 1.24 1.48 2.16 2.76 

 

 

combine_stereo 

1 1.03 1.70 1.68 2.41 6.03 6.63 
2 1.03 2.51 2.16 4.12 5.57 6.06 
3 1.03 0.89 1.33 4.58 4.42 5.44 
4 1.03 1.61 1.18 5.42 1.65 6.49 
5 1.03 1.26 1.75 3.41 3.04 5.85 
6 1.03 1.26 1.56 6.23 5.48 6.42 

Table S12: Cα-RMSDs of HR5537A structures calculated by CYANA on different scramble 

types and severity levels.  
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  RMSD (A) 
Severity Level 0 1 2 3 4 5 
 Repetition ID       
 

 

miss_methyl 

1 0.95 1.15 0.92 1.11 0.98 1.01 
2 0.95 0.85 0.97 0.99 1.16 1.15 
3 0.95 1.02 0.81 0.71 0.94 0.96 
4 0.95 0.96 0.77 1.01 0.91 1.00 
5 0.95 1.06 1.04 0.90 1.15 1.19 
6 0.95 1.00 1.06 0.90 0.90 1.07 

 

 

miss_sidechain 

1 0.95 1.32 1.48 2.63 1.86 9.28 
2 0.95 1.20 1.30 4.08 6.10 9.40 
3 0.95 0.85 1.23 3.10 9.81 3.16 
4 0.95 1.34 1.37 3.63 9.60 11.22 
5 0.95 0.93 1.57 3.56 8.98 10.23 
6 0.95 0.75 1.08 3.28 11.01 9.94 

 

 

miss_proton 

1 0.95 0.80 1.78 4.34 9.34 11.61 
2 0.95 0.91 1.30 9.20 4.62 10.11 
3 0.95 1.16 1.32 2.73 5.98 4.42 
4 0.95 0.92 2.68 3.34 4.90 10.56 
5 0.95 2.47 2.05 10.25 9.01 10.47 
6 0.95 0.92 1.49 4.75 10.84 11.21 

 

 

swap_methyl 

1 0.95 0.97 2.39 1.01 1.22 1.29 
2 0.95 0.89 1.43 1.31 1.28 1.29 
3 0.95 1.10 1.27 1.19 0.79 1.51 
4 0.95 1.05 0.90 1.28 2.42 0.87 
5 0.95 0.94 1.11 1.18 1.11 2.26 
6 0.95 1.31 0.96 0.96 1.35 1.14 

 

 

swap_C-H 

1 0.95 0.94 0.94 1.58 0.98 0.99 
2 0.95 0.75 1.24 1.39 1.47 0.78 
3 0.95 0.97 1.03 1.15 0.96 0.86 
4 0.95 1.14 0.86 0.90 1.75 0.81 
5 0.95 1.43 1.16 1.23 1.10 0.86 
6 0.95 1.40 1.03 0.89 0.89 4.09 

 

 

swap_stereo 

1 0.95 0.84 0.89 0.88 1.23 0.90 
2 0.95 0.87 0.86 0.96 0.81 0.98 
3 0.95 0.85 1.04 0.81 0.93 1.10 
4 0.95 0.81 0.88 0.84 1.07 0.97 
5 0.95 1.13 1.09 1.01 0.99 0.95 
6 0.95 1.08 0.79 0.93 1.01 0.90 

 

 

swap_carbon 

1 0.95 1.06 1.19 0.84 1.29 2.27 
2 0.95 0.88 0.91 1.36 1.18 1.58 
3 0.95 0.95 0.83 1.00 1.57 1.27 
4 0.95 1.22 0.95 1.05 0.77 1.15 
5 0.95 0.95 1.11 0.85 0.97 1.52 
6 0.95 0.85 1.18 1.10 1.00 3.12 

swap_sidechain 1 0.95 1.20 1.28 1.29 4.89 2.24 
2 0.95 3.34 1.25 2.23 2.55 5.73 
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3 0.95 0.83 2.63 2.79 3.18 4.00 
4 0.95 0.83 2.73 1.74 3.76 9.99 
5 0.95 2.21 5.76 1.51 8.44 1.40 
6 0.95 5.53 0.79 2.05 1.35 0.94 

 

 

combine_methyl 

1 0.95 1.02 1.04 0.94 1.05 1.03 
2 0.95 1.26 0.94 0.85 0.86 0.93 
3 0.95 1.28 0.96 1.05 0.86 1.15 
4 0.95 0.95 1.05 1.07 1.39 1.67 
5 0.95 0.88 1.47 1.02 0.83 0.95 
6 0.95 0.79 1.03 1.13 1.29 1.19 

 

 

combine_stereo 

1 0.95 0.97 1.05 0.94 1.26 2.45 
2 0.95 0.89 1.40 1.73 1.33 1.56 
3 0.95 0.73 0.94 1.18 1.24 1.13 
4 0.95 0.75 0.81 1.44 1.67 1.31 
5 0.95 0.87 0.77 0.89 1.40 2.13 
6 0.95 0.87 1.33 1.57 1.50 1.30 

Table S13: Cα-RMSDs of OR135 structures calculated by CYANA on different scramble 

types and severity levels. 
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  RMSD (A) 
Severity Level 0 1 2 3 4 5 
 Repetition ID       
 

 

miss_methyl 

1 1.62 1.71 1.54 1.74 1.66 1.73 
2 1.62 1.52 1.84 1.59 1.75 1.75 
3 1.62 1.65 1.64 1.74 1.78 1.52 
4 1.62 1.65 1.64 1.54 1.83 1.79 
5 1.62 1.65 1.71 1.87 2.28 1.56 
6 1.62 1.63 1.66 1.83 1.55 2.33 

 

 

miss_sidechain 

1 1.62 1.66 2.47 5.16 9.77 13.46 
2 1.62 1.54 2.25 11.39 12.92 11.91 
3 1.62 1.64 1.97 4.81 10.87 15.41 
4 1.62 1.57 2.39 2.32 5.92 16.90 
5 1.62 2.61 2.56 2.94 7.08 11.92 
6 1.62 2.34 1.92 7.91 13.26 11.47 

 

 

miss_proton 

1 1.62 1.57 2.45 8.21 8.52 18.34 
2 1.62 1.73 10.16 12.66 11.42 14.70 
3 1.62 1.63 2.86 9.44 10.11 5.70 
4 1.62 1.91 2.88 11.89 11.59 25.21 
5 1.62 1.87 2.91 14.30 13.71 16.91 
6 1.62 1.46 9.72 10.81 13.15 11.37 

 

 

swap_methyl 

1 1.62 1.59 1.70 4.29 1.72 1.73 
2 1.62 1.76 1.55 1.72 1.67 1.53 
3 1.62 1.60 1.68 1.86 1.61 1.87 
4 1.62 1.60 1.60 1.68 1.66 1.95 
5 1.62 1.47 1.75 1.91 1.60 1.62 
6 1.62 1.63 1.59 1.75 1.59 1.62 

 

 

swap_C-H 

1 1.62 1.97 1.90 2.35 1.51 14.81 
2 1.62 1.60 1.59 1.60 1.61 1.85 
3 1.62 1.71 1.50 1.50 2.17 1.73 
4 1.62 1.62 1.54 1.91 3.88 1.88 
5 1.62 1.55 1.63 1.79 2.33 1.57 
6 1.62 2.93 1.74 1.49 1.98 3.24 

 

 

 

swap_stereo 

1 1.62 1.61 1.55 1.76 1.66 1.78 
2 1.62 1.73 1.69 1.79 1.68 1.75 
3 1.62 1.60 1.52 1.72 1.80 1.55 
4 1.62 1.64 1.69 1.61 1.65 1.52 
5 1.62 1.53 1.55 1.60 1.64 1.74 
6 1.62 1.55 1.49 1.69 1.64 1.67 

 

 

swap_carbon 

1 1.62 1.53 1.75 1.70 2.57 12.41 
2 1.62 1.68 1.69 1.74 3.10 2.24 
3 1.62 1.78 1.91 1.87 1.80 2.45 
4 1.62 1.61 1.67 1.74 1.86 10.04 
5 1.62 1.66 1.58 2.12 1.88 3.41 
6 1.62 1.73 1.59 1.72 2.64 10.17 

swap_sidechain 1 1.62 1.77 1.56 1.92 1.55 3.08 
2 1.62 1.52 1.71 2.01 2.67 12.82 
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3 1.62 1.69 1.71 1.60 2.71 1.75 
4 1.62 1.70 1.72 2.11 1.55 9.44 
5 1.62 1.65 1.69 1.53 1.66 7.80 
6 1.62 1.67 1.86 2.70 1.81 1.83 

 

 

combine_methyl 

1 1.62 1.49 1.65 1.74 1.70 1.80 
2 1.62 1.51 1.62 1.50 1.56 2.01 
3 1.62 1.63 1.91 1.56 1.73 1.62 
4 1.62 1.65 1.72 1.75 1.78 1.53 
5 1.62 1.58 1.46 1.65 1.71 1.63 
6 1.62 1.65 1.77 1.55 1.55 1.91 

 

 

combine_stereo 

1 1.62 1.58 1.67 2.61 1.66 1.89 
2 1.62 1.61 1.84 1.84 1.79 4.17 
3 1.62 1.74 1.75 1.72 2.31 2.78 
4 1.62 1.65 1.93 3.13 1.82 1.94 
5 1.62 1.55 1.73 1.93 2.19 2.41 
6 1.62 1.64 1.66 1.76 1.67 2.15 

Table S14: Cα-RMSDs of PfR193A structures calculated by CYANA on different scramble 

types and severity levels.  
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  RMSD (A) 
Severity Level 0 1 2 3 4 5 
 Repetition ID       
 

 

miss_methyl 

1 1.29 1.78 1.59 2.81 3.12 3.09 
2 1.29 2.09 3.57 1.82 4.09 2.04 
3 1.29 2.03 1.96 1.88 2.18 3.87 
4 1.29 1.37 1.26 2.83 2.22 4.18 
5 1.29 1.39 1.52 2.17 3.10 2.40 
6 1.29 1.39 1.53 2.83 1.37 2.44 

 

 

miss_sidechain 

1 1.29 2.23 2.13 10.62 10.19 7.43 
2 1.29 1.30 2.77 6.71 13.37 9.74 
3 1.29 1.39 7.78 3.17 10.81 11.51 
4 1.29 2.72 2.66 7.56 9.03 11.94 
5 1.29 2.04 2.35 6.38 10.23 13.34 
6 1.29 2.36 8.97 8.50 5.09 10.91 

 

 

miss_proton 

1 1.29 1.94 2.41 9.64 9.89 11.28 
2 1.29 1.94 2.61 7.94 7.93 13.13 
3 1.29 1.30 4.19 2.80 7.49 10.59 
4 1.29 1.54 3.89 11.01 9.28 9.48 
5 1.29 1.39 5.32 7.18 7.86 13.13 
6 1.29 1.40 8.79 4.66 7.49 13.47 

 

 

swap_methyl 

1 1.29 1.35 9.90 3.33 7.04 6.72 
2 1.29 1.62 1.41 6.34 6.45 3.12 
3 1.29 1.18 4.48 2.27 2.50 9.36 
4 1.29 1.41 1.49 4.92 3.68 6.45 
5 1.29 2.06 3.90 2.76 8.84 7.91 
6 1.29 1.89 1.45 2.91 9.52 7.09 

 

 

swap_C-H 

1 1.29 9.22 2.79 1.69 4.63 7.56 
2 1.29 8.46 1.41 9.91 2.62 3.49 
3 1.29 1.25 11.69 2.66 3.43 3.04 
4 1.29 1.28 2.14 6.28 9.21 7.28 
5 1.29 2.37 2.23 9.13 2.98 3.57 
6 1.29 1.97 5.61 3.36 2.51 8.54 

 

 

swap_stereo 

1 1.29 1.45 1.91 1.43 1.72 1.72 
2 1.29 1.59 1.32 1.71 1.33 1.54 
3 1.29 1.30 1.70 1.22 1.88 1.57 
4 1.29 1.29 9.14 1.90 1.38 1.50 
5 1.29 2.03 1.44 1.53 1.63 1.38 
6 1.29 1.82 1.70 1.95 1.21 1.72 

 

 

swap_carbon 

1 1.29 8.19 10.58 2.16 12.11 10.71 
2 1.29 1.37 3.53 7.49 2.27 9.15 
3 1.29 1.56 1.81 2.48 4.13 7.24 
4 1.29 1.62 9.28 1.68 5.11 12.10 
5 1.29 1.85 8.76 4.42 11.98 8.66 
6 1.29 1.24 4.82 8.03 3.09 9.27 

swap_sidechain 1 1.29 1.73 2.08 6.83 5.72 2.12 
2 1.29 2.23 4.03 1.89 2.00 2.75 
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3 1.29 1.94 7.61 1.28 2.29 2.86 
4 1.29 2.45 11.23 1.70 1.58 1.92 
5 1.29 5.02 5.10 2.64 5.29 6.52 
6 1.29 9.62 1.92 1.42 1.46 4.33 

 

 

combine_methyl 

1 1.29 1.51 1.73 7.15 2.64 1.58 
2 1.29 1.90 2.65 2.65 2.05 5.56 
3 1.29 1.76 3.08 1.69 1.34 2.06 
4 1.29 1.27 2.93 1.72 4.25 1.69 
5 1.29 1.62 3.42 2.39 2.88 1.89 
6 1.29 2.75 1.23 2.28 2.28 2.10 

 

 

combine_stereo 

1 1.29 1.54 2.10 2.69 3.34 1.89 
2 1.29 1.67 9.00 1.57 1.56 1.66 
3 1.29 1.90 2.48 1.26 7.73 2.58 
4 1.29 1.70 2.51 1.71 2.77 1.46 
5 1.29 1.12 1.60 1.12 1.88 1.36 
6 1.29 1.57 1.10 1.08 1.55 2.94 

Table S15: Cα-RMSDs of HR5537A structures calculated by ASDP on different scramble 

types and severity levels.  



APPENDIX 

157 

 

  RMSD (A) 
Severity Level 0 1 2 3 4 5 
 Repetition ID       
 

 

miss_methyl 

1 0.93 0.93 1.09 1.04 1.19 1.07 
2 0.93 0.99 1.04 1.25 1.18 1.26 
3 0.93 1.00 1.01 1.00 1.03 1.02 
4 0.93 1.18 1.38 0.98 1.15 1.09 
5 0.93 1.04 0.98 1.05 1.04 1.11 
6 0.93 0.99 0.94 1.09 0.98 1.35 

 

 

miss_sidechain 

1 0.93 1.95 1.52 1.93 1.58 7.85 
2 0.93 0.97 1.18 1.89 5.37 2.02 
3 0.93 0.99 2.42 1.66 2.39 8.30 
4 0.93 1.13 1.25 2.27 2.86 7.55 
5 0.93 1.42 1.62 1.55 2.95 9.72 
6 0.93 1.23 1.08 2.27 2.92 7.23 

 

 

miss_proton 

1 0.93 1.01 1.11 1.70 3.82 10.17 
2 0.93 1.07 1.77 1.18 5.98 9.61 
3 0.93 1.07 1.11 1.79 7.60 8.08 
4 0.93 1.09 1.82 1.95 2.65 8.92 
5 0.93 1.02 1.44 1.47 2.01 7.83 
6 0.93 1.00 0.99 1.80 1.76 8.50 

 

 

swap_methyl 

1 0.93 1.10 1.52 1.42 2.54 1.42 
2 0.93 1.10 0.99 1.31 1.07 6.38 
3 0.93 1.16 1.86 1.22 1.33 2.08 
4 0.93 1.13 1.12 1.34 1.47 1.91 
5 0.93 2.10 1.04 3.38 1.52 2.56 
6 0.93 1.25 0.95 1.35 1.35 3.02 

 

 

swap_C-H 

1 0.93 1.21 1.15 NaN NaN NaN 
2 0.93 0.93 1.76 NaN 1.61 NaN 
3 0.93 0.97 0.95 NaN 2.35 NaN 
4 0.93 1.12 1.70 1.01 NaN NaN 
5 0.93 1.01 1.24 NaN NaN NaN 
6 0.93 1.08 1.27 NaN NaN NaN 

 

 

swap_stereo 

1 0.93 0.93 0.98 1.08 0.97 0.97 
2 0.93 0.99 1.00 0.98 0.98 0.97 
3 0.93 0.99 0.99 0.99 0.99 0.98 
4 0.93 0.93 0.99 0.97 1.00 0.97 
5 0.93 0.93 0.98 0.97 0.98 0.97 
6 0.93 0.94 0.99 1.01 0.97 0.97 

 

 

swap_carbon 

1 0.93 1.03 1.30 1.13 NaN NaN 
2 0.93 0.95 1.03 1.77 NaN NaN 
3 0.93 0.94 0.90 NaN NaN NaN 
4 0.93 1.04 1.07 1.56 NaN NaN 
5 0.93 1.04 1.27 1.54 NaN NaN 
6 0.93 0.93 1.11 NaN NaN NaN 

swap_sidechain 1 0.93 1.43 1.64 0.98 2.77 1.48 
2 0.93 2.56 2.31 0.96 2.26 3.37 
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3 0.93 1.26 1.37 2.33 2.47 2.26 
4 0.93 1.03 1.18 1.16 2.95 1.90 
5 0.93 1.87 1.72 1.45 5.01 1.08 
6 0.93 1.28 3.59 2.00 1.39 0.96 

 

 

combine_methyl 

1 0.93 1.05 1.06 0.97 1.01 0.88 
2 0.93 0.93 1.42 1.38 1.01 1.14 
3 0.93 1.04 1.16 1.06 1.06 1.57 
4 0.93 1.05 1.21 1.04 1.20 1.12 
5 0.93 1.14 1.02 1.59 1.29 1.76 
6 0.93 1.02 1.01 0.93 0.97 1.22 

 

 

combine_stereo 

1 0.93 1.06 0.99 1.08 1.25 1.23 
2 0.93 1.06 1.49 1.15 1.20 1.23 
3 0.93 0.97 1.07 1.07 1.23 1.17 
4 0.93 1.17 1.51 1.26 1.22 1.12 
5 0.93 0.94 1.59 1.11 1.09 1.47 
6 0.93 0.91 1.08 1.00 1.08 1.13 

Table S16: Cα-RMSDs of OR135 structures calculated by ASDP on different scramble types 

and severity levels.  
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  RMSD (A) 
Severity Level 0 1 2 3 4 5 
 Repetition ID       
 

 

miss_methyl 

1 1.34 1.39 1.46 2.36 1.36 1.40 
2 1.34 1.35 1.66 1.41 1.52 1.89 
3 1.34 1.31 1.40 1.60 1.95 1.71 
4 1.34 1.47 1.59 1.34 2.91 1.95 
5 1.34 1.34 1.32 1.40 2.32 2.31 
6 1.34 1.25 1.68 1.61 1.37 1.51 

 

 

miss_sidechain 

1 1.34 1.76 2.43 4.54 4.88 11.01 
2 1.34 1.59 3.18 4.35 6.46 5.80 
3 1.34 1.50 1.70 3.71 7.18 11.89 
4 1.34 1.37 1.75 4.07 5.75 9.40 
5 1.34 1.68 1.76 3.38 5.81 9.32 
6 1.34 1.70 4.64 3.49 8.42 11.00 

 

 

miss_proton 

1 1.34 1.49 3.58 7.00 5.22 11.07 
2 1.34 1.50 2.59 5.38 12.60 9.34 
3 1.34 1.75 3.70 4.63 5.62 7.97 
4 1.34 1.38 3.38 5.85 12.30 8.71 
5 1.34 2.04 2.81 12.07 6.87 7.29 
6 1.34 1.48 3.71 7.36 4.82 8.27 

 

 

swap_methyl 

1 1.34 3.00 1.37 3.54 3.94 2.77 
2 1.34 1.50 1.41 1.54 1.59 1.97 
3 1.34 1.77 1.79 1.75 1.47 1.57 
4 1.34 1.40 1.20 1.53 3.56 3.68 
5 1.34 1.56 1.71 2.69 1.70 2.70 
6 1.34 1.58 1.81 2.04 4.52 1.57 

 

 

swap_C-H 

1 1.34 1.79 1.53 1.40 2.86 2.93 
2 1.34 1.42 1.72 2.30 6.39 4.58 
3 1.34 1.45 1.82 3.03 4.80 1.96 
4 1.34 1.75 1.72 1.67 3.94 6.16 
5 1.34 1.39 1.65 2.19 3.55 2.76 
6 1.34 1.90 1.82 7.91 4.70 6.27 

 

 

swap_stereo 

1 1.34 1.41 1.33 1.37 1.64 1.36 
2 1.34 1.34 1.50 1.27 1.45 1.30 
3 1.34 1.66 1.41 1.35 1.32 1.39 
4 1.34 1.21 1.43 1.30 1.72 1.57 
5 1.34 1.29 1.39 1.78 1.32 1.23 
6 1.34 1.42 1.50 1.53 1.23 1.51 

 

 

swap_carbon 

1 1.34 1.78 1.46 1.77 2.62 3.98 
2 1.34 1.47 5.88 1.40 1.76 9.86 
3 1.34 1.30 1.74 2.36 2.78 3.08 
4 1.34 1.87 1.35 1.62 NaN 3.66 
5 1.34 1.36 1.88 2.02 NaN 4.15 
6 1.34 1.73 1.81 2.27 NaN 2.91 

swap_sidechain 1 1.34 1.57 1.86 2.02 2.14 2.47 
2 1.34 1.59 1.48 1.66 3.92 1.87 
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3 1.34 2.38 1.60 2.06 1.43 1.65 
4 1.34 1.52 1.33 1.64 1.69 5.85 
5 1.34 1.46 1.36 1.88 2.73 6.51 
6 1.34 1.41 1.58 3.70 2.25 4.00 

 

 

combine_methyl 

1 1.34 1.46 1.24 1.60 1.33 1.68 
2 1.34 1.51 1.29 1.31 2.60 1.38 
3 1.34 1.25 1.51 1.52 1.45 1.47 
4 1.34 1.59 1.26 1.53 1.30 1.38 
5 1.34 1.47 1.49 1.27 1.47 1.59 
6 1.34 1.48 1.28 1.37 1.49 1.68 

 

 

combine_stereo 

1 1.34 1.38 1.47 4.17 1.54 3.96 
2 1.34 1.31 2.06 2.26 3.94 4.00 
3 1.34 1.38 1.31 2.00 3.50 4.19 
4 1.34 1.52 1.51 4.76 4.67 3.97 
5 1.34 1.49 1.46 4.73 4.30 4.30 
6 1.34 1.46 1.78 4.26 4.21 2.12 

Table S17: Cα-RMSDs of PfR193A structures calculated by ASDP on different scramble 

types and severity levels. 
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A.3 Supplementary Methods 

A.3.1 AutoNOE-Rosetta calculations 

The following method section is written in the style of a tutorial, and reflects exactly what 

has been done for each target. The benchmark set can be downloaded from our website 

(www.csrosetta.org/benchmarks/). To run targets in the benchmark set, proceed directly with 

Section 1.5. Note, that for a given target multiple different setups can be maintained by using 

the flag –label. This has been used in the benchmark set to differentiate between raw and 

refined peak-lists, if omitted the label defaults to standard. 

Rosetta applications are denoted in the following with the extension <.ext>, which should 

be replaced with the system and compiler dependent extension. For instance, for gcc 

compiled Rosetta on a linux system use .default.linuxgccrelease. Commands shown here without 

extension are python programs from the csrosetta toolbox and do not require an extension 

for their execution (pick_fragments, setup_target, ... ). 

A.3.1.1 Pre-requisites 

The CS-Rosetta toolbox version 2.0 or higher has to be downloaded and installed from 

(www.csrosetta.org/downloads/). The Rosetta software package version 3.6 or higher has to 

be obtained from (www.rosettacommons.org).  

A.3.1.2 Fragment Selection 

We have run the fragment picker(Vernon et al. 2013) for all targets as follows 

pick_fragments –cs t000.tab –trim -nohom 

The flag –nohom,  leads to exclusion of fragments from homologous proteins. This flag 

should be omitted when AutoNOE-Rosetta is not used for benchmarking. The flag –trim leads 

to automatic removal of flexible tails based on TALOS+ computed RCI S2 values.  The 

pick_fragments application will correct chemical shifts if TALOS+ complains about referencing 

problems. For instance TALOS+ output like this 

[...] 

Estimated Referencing Offset for CA/CB:  1.138 +/-  0.162ppm Size:  78  

will lead to subtraction of 1.138 from all CA and CB shifts. The fragment picker will write the 

file t000.corrected.tab. The reference-corrected chemical shifts are used for fragment picking 

and chemical shift rescoring, but not for automatic NOE assignment.  
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Automatic correction of referencing issues can be turned of, using flag –nocheck. Referencing 

can be manually corrected using the command correctCSoffset.  

A.3.1.3 Preparing Shift Assignment Files 

The shift-assignment files (typical extension .prot), are obtained from BMRB files using 

bmrb2prot and trimmed to the sequence determined by the auto-trim method of the fragment 

picker using renumber_prot. 

A.3.1.4 Preparing Peak Files 

The peak-files have to be prepared to be read-able with AutoNOE-Rosetta. This can be 

done with the provided tool clean_peak_files, which reads column based peak data and converts 

it into a file-format similar to XEASY and CYANA peak-list formats, including an appropriate 

header. Please refer to the application reference (http://www.csrosetta.org/reference) for 

details.   

A.3.1.5 Starting the runs 

Using the automated setup tools (www.csrosetta.org) we combine all input data files for 

one target (e.g., t000) as follows 

setup_target –method autoNOE –target t000 \\ 

-fasta t000.fasta \\ 

-frags t000.frags3.nohom.dat.gz t000.frags9.nohom.dat.gz \\ 

-peaks ali.peaks aro.peaks n.peaks \\ 

-shifts t000.prot \\ 

-cs t000.tab \\ 

[-label raw] 

[-rdc t000_med1.rdc t000_med2.rdc] \\ 

[-native native.pdb [–native_restrict reference.rigid]]  

and start a run from this setup with the command (BASH-syntax) 

for cst in 5 10 25 50; do  

setup_run –method autoNOE –target t000 [-label raw]\\ 

-dir . \\ 

-run_label run_cst$cst \\ 

-noesy_cst_strength $cst \\ 

-job slurm 

done 

This will start runs at constraint weights 5, 10, 25 and 50, respectively. For raw peak-files we 

changed these to 1,2,5,10, 25, and 50, respectively. The flag –job is used to indicate which 

queuing system to use (here SLURM). Template files for different queuing systems are 
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provided in the csrosetta-toolbox (see www.csrosetta.org for more information on how to 

adapt these templates to your own queuing system).  

A.3.1.6 Final model selection per run 

RASREC calculations are finished when the directory fullatom_pool_stage8 is created. 

The final decoys of the structural pool are found in fullatom_pool/decoys.out. Using the command  

extract_decoys -formula 'score-atom_pair_constraint-rdc' -N 10 -verbose 0  > low_10.out 

we extract the 10 best models with Rosetta-energy only. The atom_pair_constraint and rdc 

pseudo-energies are contained in score of final decoys and thus have to be subtracted. 

Alternatively, one could pick final structures by the weighted sum of Rosetta Energy and 

restraint energy, that is contained in column score. This is done with the command 

extract_decoys -score 10 -verbose 0  > low_10.out.  

On our benchmark set both selection methods yield comparable results.  

A.3.1.7 Median energy of a run  

The command 

silent_data low_10.out score atom_pair_constraint rdc|awk '{print $1-$3-$2}' | median  

yields the median Rosetta energy of the lowest 10 models in the first column of the output 

(for instance): 

  median       Q1       Q3       hi       lo 

-221.831 -223.333 -220.377 -219.375 -223.906  

This example yields the median energy ME=-221.831. 

A.3.1.8 Convergence of a run 

In this step we figure out which residues remain unconverged and what the precision 

(measured as pairwise RMSD) is on the remaining (converged) residues. To this end, use 

ensemble_analysis.<ext> -residues:patch_selectors replonly -in:file:silent low_10.out -wRMSD 2 -calc:rmsd –out:levels 

all:error main:info  

which yields (for example) 

main: (0) make rigid with cutoff 2 and calculate RMSD 

main: (0) computer RMSD on RIGID 2 6 0 0 0 

main: (0) RIGID 16 76 0 0 0 

main: (0) RIGID 82 113 0 0 0 

main: (0)  

main: (0) number of atoms from 116 for mean RMSD: 93 

main: (0) mean RMSD to average structure: 1.45 

main: (0) mean pairwise RMSD: 2.15 
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main: (0) mean pairwise RMSD * superposed_fraction_of_atoms^-1: 2.68 

 

The converged residues are given by the lines starting with RIGID, and are residues 16-

76 and 82-113 in the example output. For 𝑁  models with 𝑀  residues  of  which  𝐶   have 

converged, the mean pairwise RMSD is computed as 

𝑃 =
2

𝑁(𝑁 − 1)
𝐶!! 𝑤! 𝒙!,! − 𝒙!,!

!
!

!!!

  
!

!!!!!

!

!!!

,  

where N denotes the number of conformers, 𝒙!,! denotes the 𝑘th 𝐶!-atom of conformation 𝑗, 

and the 𝑤!  are 1 for converged residues and 0 for unconverged residues. An effective 

precision (EP) is computed from 𝑃  by multiplying with the inverse of the fraction of 

converged residues  

  𝐸𝑃 = 𝑃
𝐶
𝑀

!!
 

A.3.1.9 Analysis of final NOE assignment of a run 

To use the NOE assignments and resulting restraints in further work or for deposition 

with the models, the NOE assignment module of ROSETTA has to be applied to the final 

models. To this end, a script is generated when the run directory is created (setup_run). 

Moreover, the assignments can also be used to provide statistics about the peaks and their 

assignments with command noeout2txt  

To use the final models for NOE assignment run the two provided scripts 

./final_assignments.sh fullatom_pool/low_10.out 

noeout2txt -peaks final_assignment/NOE_final.out -split_level 0 

Which will provide output as follows: 

Peaks: 

  picked........................................................................|     3705 

  zero intensity................................................................|        0 

  assigned......................................................................|     2766 

  with more than 5 assignments..................................................|      194 

  unassigned....................................................................|      939 

    without assignment possibility..............................................|      139 

    eliminated due to Network...................................................|        6 

    eliminated due to MinPeakVol................................................|       64 

    eliminated due to DistViol..................................................|      341 

    eliminated due to MaxAssign.................................................|      389 

Assignments: 

  with unique assignment........................................................|       59 
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  with short-range assignment |i-j|<=1..........................................|     2273 

  with medium-range assignment 1<|i-j|<5........................................|      206 

  with long-range assignment |i-j|>=5...........................................|      247 

  violated by conformers........................................................|      341 

    between 0.0 and 0.5 A.......................................................|       23 

    between 0.5 and 2.0 A.......................................................|      109 

    between 2.0 and 5.0 A.......................................................|       93 

    above 5.0 A.................................................................|      116 

This output provides some statistics about the assignment. We have found that these 

statistics do not allow to systematically select the most accurate runs. The only result used 

for run-selection is whether violated by conformers (VIOL) is below or above 2000. Here, this 

number is far below the threshold (shown in red in the example output).  

A.3.1.10 Selection of best run  

For each target we perform simulations with different constraint weights. 

CST=1,2,5,10,25,50. (where 1 and 2 is only used for raw data sets). It is possible to add 

more runs with other constraint weights, and one can also perform multiple runs at the same 

constraint weight. However, we recommend to stay below 50, as higher restraint weights 

seem to yield slightly worse accuracy on our benchmark. The selection procedure presented 

here is responsible for selecting a single run from all performed runs. Alternatively, one can 

select several top-ranking runs. To rank, we use from Section 2.2, 2.3 and 2.4 the values 

ME, EP and VIOL, that have been computed fore each run. If VIOL is larger than 2000 we 

use only ME to rank runs, otherwise we rank by  

𝑆 = 𝑀𝐸 − 12log  (𝐶𝑆𝑇) + 5𝐸𝑃,  

where the correction −12log  (𝐶𝑆𝑇) + 5𝐸𝑃 allows to trade-off small differences in Rosetta 

energy for gaining higher preciscion and using stronger constraint weights. We usually find a 

general agreement between runs if the input data is easy. If the data is difficult, runs may 

differ in convergence.  

A.3.1.11 Violation reduction in final models 

During structure generation with AutoNOE-Rosetta restraint weights are kept relatively 

low, and final structure selection is mainly based on Rosetta energy. Moreover, NOE 

restraints that are intra-residue or between neighboring residues are usually ignored. This 

means that we will usually find some residual heterogeneity for rotamers that is not 

consistent with the automatic NOE restraints. Typically, the majority of the final models 

adopt a rotamer that is consistent with the NOE restraints, whereas the remainder adopt an 

alternative rotamer, which violates NOE restraints. To remove this unnecessary 

heterogeneity, we run a short relaxation of the 10 final models with all NOE restraints 
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(including intra-residue) and with increase restraint weight. The backbone structure usually 

does not move significantly during this final refinement cycle. The  median 𝐶! -RMSD 

between models before and after this relaxation remained below 1 Å for all converged 

targets in the benchmark.  Changes to the reported median 𝐶!-RMSD against the reference 

structure were below <0.3 Å for all targets.  

For refinement issue the command post_relax in the run folder of the selected run. This 

produces the output  

[...] 

violations in          raw-decoys: 176 

violations in post-relaxed decoys: 63 

reduction of violations to 36%.  

 

If the reduction of violations remains above 40% we recommend to not using the post-

relaxed structures, but the un-relaxed models as final structures. This case occurred for 4 of 

44 converged targets. 3 of these cases were raw data sets. The 4th was CtR107, where the 

reduction was only down to 63%.  

 A.3.2 Checking for unsuccessful calculations 

For unsupervised methods it is important to raise flags if the final result is not solid. 

These flags should not be triggered too often, as then the method would be without value, 

but should be triggered as often as needed to not have inaccurate results slip through 

unnoticed.  

A.3.2.1 Detecting failures in CYANA  

Based on discussions with Peter Güntert we looked at the value of the target function 

and the level of convergence (measured by intrinsic RMSD) after cycle1 of a CYANA 

calculation to construct a criterion for failure. As shown in Figure S2-D, if either convergence 

is low (high RMSD) or the target function is high, the calculation is likely to produce 

inaccurate results (high RMSD to reference structure). A simple choice would be to 

determine an individual cutoff for both values and discard runs that fail either one. However, 

as seen in Figure S2-D, that would result in a poor discrimination. Hence, we introduced the 

linear separatrix described by  𝑓(𝑥, 𝑦) = 10!!.!!log!" ! !!.!" − 𝑦, where 𝑥 denotes the target 

function, and y the backbone RMSD. Both values can be obtained by executing the 

command cyanatable in the directory of the CYANA calculation.  Only if 𝑓 𝑥, 𝑦 > 0 the run 

can be accepted.  
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It is important to note, that the final value of the target function after cycle 7, is not 

informative towards the success of a calculation. Moreover, the final bundle of structures of 

failed calculations can be highly converged and yet inaccurate. 

A.3.2.2 Detecting failures in AutoNOE-Rosetta 

In contrast to CYANA we usually don’t find highly converged structures that are 

inaccurate. Thus, we calculate the fraction of converged residues and divide by the fraction 

of residues that are expected to be rigid based on TALOS+ computed RCI S2 order 

parameter. If this ratio is above 0.9 the calculation is considered converged.   

The only data set where this convergence criterion is fullfilled despite inaccurate 

structures is the raw peak list of StT322 from the CASDII set. In this case the topology of the 

structure is correct, but a 3.2Å 𝐶!-RMSD to the reference is inacceptable. Generally, this 

data set seems particular in many ways. For most raw peak lists, we find about twice the 

number of peaks than for the refined peak list. However, for StT322 five times as many 

peaks were picked. Both methods, CYANA and AutoNOE, produce an unnaturally tight 

structural ensemble (intrinsic RMSD 0.0Å). Because all other CASD contributors reported 

problems with this data set, and also the reference structure has bad validation scores, the 

CASD community tentatively decided to remove this target from the CASD set.  

Overall, it is not entirely clear which lessons should be drawn from the fact that 

AutoNOE-Rosetta converged on StT322(raw). As this is the single outlier with these peculiar 

characteristics (see above), it is difficult to give a definite answer what is wrong with this data 

set. However, fact remains, that this is a calculation, which requires further attention of an 

expert despite full convergence of the Rosetta calculation. Thus, we included a second 

criterion and calculated a target-function equivalent as follows: MFS*STR/CST > 500, where 

MFS is the lowest restraint score after StageIV, CST the restraint weight of the run (Section 

1.10) and STR the strength of individual restraints. These values are obtained as follwos: 

MFS) Relative to the run-folder of the selected run you’ll find the file 

centroid_pool_stage4/decoys.out. Obtain the lowest score from the output of command 

silent_data decoys.out noesy_autoassign_cst. STR)  in file 

initial_assignment/noe_auto_assign.cst this is the third parameter behind the keyword 

BOUNDED.   

Using this criterion StT322 gets red-flagged with MFS*STR/CST=1500, whereas most 

other data sets yield values <100. This criterion also raises the red-flag for YR313(raw), 

HR5460(raw), HmR11(unrefined) and ER690(unrefined). From these only YR313(raw) did 

actually not fail the convergence criterion. YR313(raw) is converged well and yielded a 
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formidable accuracy with 1.4Å 𝐶!-RMSD to the reference structure. Similarly, CYANA runs 

were classified as failure, although an accurate structure was obtained (1.6Å). Thus, the 

second criterion serves to detect problematic (raw/unrefined) data sets, which deserve 

further attention. In the case of YR313 the final structures are accurate, and yet intervention 

of an expert is required to either improve the quality of the input data or to make the decision 

to ignore the red-flag. 

A.3.3 Robustness of AutoNOE-Rosetta in repeated runs 

AutoNOE-Rosetta uses non-determinstic sampling algorithms and thus might yield 

different results for the same input data. Moreover, small differences in the Rosetta energies 

of final models might lead to a switch between competing restraint weights, thus potentially 

further amplifying differences. To check that the reported results are robust we repeated all 

individual runs three times, and generated 1000 random sets that consist of a single 

AutoNOE-Rosetta calculation per restraint weight. The final run selection method is applied 

to these sets. This analysis shows that the results are robust for all successful runs and 

variations in RMSD are generally low between different sets of runs (Appendix Figure S8). 

Thus, we expect that a user would get results in accordance with the benchmark if a single 

calculation is performed at each recommended restraint weight and the final selection 

procedure is applied. The only striking variation between different randomly chosen sets of 

runs is seen for the data set, HR5460(raw). This target, however, is already considered as 

failure in the analysis and discussion of the benchmark results in the maintext. The final 

RMSD for this data set varies between 2Å and 8Å depending on the ability of AutoNOE-

Rosetta to converge the C-terminal helix.  

The final selection procedure can be applied to any number of runs and usually 

succeeds in selecting the runs with highest or near optimal accuracy. We recommend, 

however, keeping the NOE restraint strength parameter between 1 and 50, as smaller or 

larger parameters did not lead to improved results in our tests.   
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