TUM

TECHNISCHE UNIVERSITAT MUNCHEN
INSTITUT FUR INFORMATIK

A Comparative Evaluation of Current
HTML5 Web Video Implementations

Martin Hoernig, Andreas Bigontina, Bernd Radig

TUM-11411

A Comparative Evaluation of Current HTML5
Web Video Implementations

Martin Hoernig, Andreas Bigontina, Bernd Radig
Image Understanding and Knowledge-Based Systems
Technische Universitat Miinchen
Boltzmannstr. 3, 85748 Garching, Germany
{hoernig,bigontia,radig}@in.tum.de

June 20, 2014

Abstract

HTMLS video is the upcoming standard for playing videos on the World Wide Web. Although
its specification has not been fully adapted yet, all major browsers provide the HTMLS5 video el-
ement and web developers already rely on its functionality. But there are differences between
implementations and inaccuracies that trouble the web developer community. To help to improve
the current situation we draw a comparison between the most important web browsers. We focus
on the event mechanism, since it is essential for interacting with the video element. Furthermore
we compare the seeking accuracy, which is relevant for more specialized applications. Our tests
reveal varieties of differences between browser interfaces and show that even simple software so-
lutions may still need third-party plugins in today’s browsers.

Keywords: HTML5 video, events, seeking, user agents, browser, evaluation

1 Introduction

HTML5 [BFL*14] introduces a standard for the integration of videos or movies into web pages:
HTML5 video. Before HTML5, browser plugins (like Adobe Flash or Microsoft Silverlight) were
usually used. Now, given a modern web browser, a web developer should be able to achieve
comparable or even better results with native techniques. To examine the situation, we focus
our experiments to the most popular browsers and operating systems which have a market
share of over 95% (see, for instance, [Net14] for a browser usage statistic). Hence, Microsoft
Internet Explorer, Mozilla Firefox and Google Chrome are tested on Microsoft Windows and
Apple Safari on Apple OS X. The HTML5 standard does not specify a video format for user
agents. Therefore, the supported video formats vary. We decided to perform our experiments
with MP4 video (h264 AVC and AAC encoded data in MP4 containers), which is the only video
format supported by all user agents within our test set. Furthermore, it is a widely used industry
standard for applications like broadcast TV or video on mobile devices.

To test the browser integrations, we perform a comparison of two major features, an usual
application has to deal with: events and seeking. In Section 2 the defined flow of events for
an example scenario is shown based on the HTML5 specification [BFL*14]. This flow is then
compared with outputs the test browsers produced. Section 3 addresses the seeking capabilities.
In particular, we check whether the shown frame changes appropriately, when the seeked event
occurs, by examining the frame number and measuring any deviation from the expected one.

2 Events

Events are an important link between HTML and JavaScript and are part of the HTML spec-
ification. They are used to communicate all kinds of user input and user agent (respectively
browser) occurrences to the running web application. In the case of the video element, events
are used to treat incidents occurring during the playback of a video. A collection of events
important in this section and their appearance is shown in Table 1.

To check the different browsers against a wrong event behavior, we created a semi-automatic
test setup comnsisting of a video playback with buffer underrun and seeking. Because we had to
force the buffer underrun via a reduction of the network bandwidth with an external application,
we tested this part manually. Our test procedure contains the following commands (1, 2, 5) and
conditions (3, 4):

1. load: Load a test video, assure that the network bitrate is high enough for interruption-free
playback. Note that autoplay is disabled.

2. start: Start playback (via JavaScript) and play the first seconds.

3. underrun: Force a buffer underrun by slowing down the connection while the user-agent
tries to receive more data.

4. reset: Reestablish a connection with sufficient bandwidth for interruption-free playback.
(The playback should start automatically.)

5. seek: Seek forward to an unbuffered position. (The playback should start as data is
forthcoming.)

6. end: The video reaches the end.

A video element processed in a hypothetical standard conform user agent would fire an event
sequence according to Figure 1. This is not the only valid sequence as some options exist, e.g. a
user agent can suspend the loading step after it has loaded the meta data to reduce bandwidth
and fire the suspend event. A stall event could also be fired if the buffer underrun (4) did last
too long (user agent specific timeout) and “data is unexpectedly not forthcoming.” [BFL*114,
4.7.10.16 Event summary] However, the pretended buffer underrun (4) is defined to be short
enough not to evoke a stall event. Besides such exceptions, the events are mandatory and have
to occur in the given sequence. Since we know the network rate and the video bit rate, we can
take the canplaythrough event as mandatory as well.

The behavior of the test browsers according to the points (1) to (6) is evaluated with the
event sequence a [BFL*14]-conform user agent evokes. A compilation of all events is shown in
Figure 1. Our primary test video is “Big Buck Bunny” from The Peach Open Movie Project
[Sun08], which is also used as a test video at W3C.

Event name

Fired when...

progress
suspend

stalled
loadedmetadata

loadeddata

canplay

canplaythrough

playing
waiting
seeking
seeked

ended
timeupdate

resize

The user agent is fetching media data.

The user agent is intentionally not currently fetching media data.

The user agent is trying to fetch media data, but data is unexpectedly

not forthcoming.

The user agent has just determined the duration and dimensions of the
media resource and the text tracks are ready.

The user agent can render the media data at the current playback position
for the first time.

The user agent can resume playback of the media data, but estimates that
if playback were to be started now, the media resource could not be
rendered at the current playback rate up to its end without having to stop
for further buffering of content.

The user agent estimates that if playback were to be started now, the
media resource could be rendered at the current playback rate all the way
to its end without having to stop for further buffering.

Playback is ready to start after having been paused or delayed due to lack
of media data.

Playback has stopped because the next frame is not available, but the
user agent expects that frame to become available in due course.

The seeking IDL attribute changed to true, and the user agent has started
seeking to a new position.

The seeking IDL attribute changed to false after the current playback
position was changed.

Playback has stopped because the end of the media resource was reached.
The current playback position changed as part of normal playback or in
an especially interesting way, for example discontinuously.

One or both of the videoWidth and videoHeight attributes have just been
updated.

Further events:

loadstart, abort, error, emptied, durationchange, play, pause, ratechange,
volumechange

Table 1: Summary of events, cited from [BFL*14, 4.7.10.16 Event summary]

Test part Events

pause

ended

)
loadstart
durationchange
loadedmetadata
]
loadeddata 4
&b
IS
—
m
canplaythrough
E
E
playing
—
Eﬁ)
8 =
- =
playing 0 2,
2
|| 2
canplaythrough 3
| —
)
timeupdate
w0
’qJ.J)
-
:
A
canplaythrough
<
- 2,
| —

Figure 1: Event sequence a standard conform user agent fires during loading (1), playing (2), buffer
underrun start (3) and end (4), seeking (5), and video end (6). Elements with rounded corners
illustrate the events fired during this process. Horizontally shown events are fired once in the given
order, vertical entries represent events fired repeatedly.

W

User agent,

version, 1. load 2. start 3. underrun 4. reset 5. seek 6. end
OS
Internet Explorer m: canplay,
11.0.9600.16521 m: resize v m: waiting playing, m: canplay, m: pause
Windows canplaythrough canplaythrough
Firefox
29.0 m: resize v m: waiting v WEONS o.r(.:ler; v
Windows wi: waiting
Chrome m: canplay,
34.0.1847.131 wf: timeupdate VvV m: waiting playing, v v
Windows canplaythrough
Safari m: waiting,
7.0 (9537.71) m: resize v’ um: waiting tHi canp lay canplay,
0S X playing canplaytﬁrough
playing

Table 2: Event test results. The user agents undergo our tests with some discrepancies. The
candidates showed the absence of expected events (missing m, unpredictably missing um) and

unexpected events (wrongly fired wf).

Unfortunately, not a single browser passes our test setup (see Table 2). Only Chrome fires
resize on load as required, but also sends a timeupdate event which should not be present. While
the video start is handled correctly, only Safari fires sometimes the waiting event if the playback
has stopped. We denoted such behavior as unpredictable missing (um) as we have not discovered
the pattern underneath. The playback resume on the other hand is done right by Firefox only.
Then again seeking is handled right on Chrome, but the most important events in this context,
seeking and seeked, are present all across the test set. In Internet Explorer a pause event is

missing when the video ends.

Remarks:

e Internet Explorer fires timeupdate events in waiting state (when no update has to be
committed). These events must be fired every 15 to 250 ms during the “time marches on”
steps [BFLT14, 4.7.10.8 Playing the media resource], which apply if the current playback
position changes, what is not the case in waiting state.

e Firefox unpredictably fires the canplaythrough event multiple times after seeking.

e Chrome uses an optional substep within the resource fetching algorithm [BFL*14, 4.7.10.5
Loading the media resource| which is designed for a conservative download strategy, if the
user does not request the resource actively (e.g. in a preload step). This is not true in our
case. The resource fetching fires a lot of suspend events to the video element, which is in

this sense a wrong behavior.

e Safari shows some unpredictable behavior if buffer underruns occur, for example:

— No audio is played after the playback starts again.

— The specification states that a user agent must show the last rendered frame in the
waiting state [BFL*14, 4.7.6 The video element|, but Safari unpredictably shows a
loop of the last frames.

— The canplaythrough event is fired together with a waiting event, but canplaythrough
should only be fired if the new internal ready state is HAVE_ENOUGH_DATA
[BFL'14, 4.7.10.7 Ready states]. It is a strange behavior if the ready state alternates
between HAVE_ENOUGH _DAT A and something else without reason, particularly
within a buffer underrun.

Considering today’s conditions, a web application cannot rely on a unified user agent behav-
ior. While video loading and end detection are no noteworthy problems, the treatment of buffer
underruns paints a different picture. Every tested browser showed problems with the handling of
the waiting event to signal that “playback has stopped because the next frame is not available,
but the user agent expects that frame to become available in due course.” [BFLT14, 4.8.10.15
Event summary] In this situation, a proper buffer underrun handling is not possible. In addition
resize is handled correctly only in Chrome .

Nevertheless the events seeking and seeked were present across all tested user agents. In the
next section, we are going to examine how reliable they are.

3 Seeking

In this section we will examine the seeking capabilities of the selected user agents. An imple-
mentation compatible with the standard will set the seeking attribute to true and fire a seeking
event when the currentTime attribute is changed. When the video data at the requested time
is available, seeking has to be set to false and a seeked event must be fired.

In a first series of tests this basic behavior is examined. We use a video of 10 minutes length
and jump to 1000 positions in that video. We repeat that procedure 10 times with different
positions. These positions were chosen at random at a preparation step, but are the same for all
user agents. Results are shown in Table 3.

User agent, Operating seeking seeked
version system event event

Windows 100% 100%

Internet Explorer
11.0.9600.16521

Firefox Windows 100% 100%
98.0

Chrome .

29301750154 "vindows 100% 100%
Safari

7.0 (9537.71) O0S X 100% 100%

Table 3: seeking and seeked events are fired appropriately in all tested user agents.

These events are crucial for seeking in videos, and indeed, as mentioned above, all tested user
agents pass this test. Though, a different question is if firing these events correlates with the
changes of the displayed segment of the video. Is the requested frame already available when
the seeked event is fired?

A different aspect is the accuracy of the seeking implementation. In some scenarios the frame
rate is known to the application and it intents to step through the video in a frame-by-frame
manner. Another application might store the position in a video to return to it later. Will the
user be able to see exactly the same frame again, or will there be a deviation?

To answer those questions, we created a video that stores the frame number in each image.
This is simply done by a binary coding of this number and drawing it as black and white blocks
onto the image. Some additional checksum bits ensure the correctness of the encoding. When
playing this video with a user agent, we can retrieve the frame number by drawing the video
onto a canvas element and examining the pixel data.

As before we seek to 1000 positions in the video and check the frame number when the seeked
event is fired. This procedure is repeated ten times with different positions. Various issues have
been observed, depending on the user agent. The results are summarized in Table 4.

User agent, Operating seeked event fired without
version system change of the image? (e.g. too early)
Internet Explorer

11.0.9600.16521 Windows Happens in 86.17% of all cases.
Firefox . Happens when seeking to
28.0 Windows the last frame of the video or beyond.
Chrome .
33.0.1750.154 Vv mdows Never
Safari 0S X Happens when seeking
7.0 (9537.71) as reaction to a loadedmetadata event.

Table 4: We examine whether a seeked event actually indicates a change of the displayed frame and
observe several issues.

Using Interent Explorer, in 86.17 % of all cases it was not possible to retrieve the expected
frame number from a video when the seeked event was fired. However, when checking again later
a change in the frame number could be observed (the latencies differed depending on video and
test system). It is thereby likely that the seeked event is fired while the video element is still
decoding or rendering the requested frame.

When trying to seek to the last frame or any frame beyond, Firefox does not seek at all.
Nevertheless, it does fire the secked event. Note that [BFLT14, 4.8.10.9 Seeking] says “If the
new playback position is later than the end of the media resource, then let it be the end of the
media resource instead.”

With Safari we observe a too early fired seeked event, when seeking as callback to the loaded-
metadata event. From the statement of the specification that says about the HAVE_METADATA
ready state that “The API will no longer throw an exception when seeking.” [BFL™14, 4.7.10.7
Ready states] we conclude that seeking must be possible with the occurrence of the loadedmeta-
data event.

User agent Operatin Average Maximal
.g ’ p & Wrong frames absolute absolute

version system c . C .
deviation deviation

Internet Explorer

11.0.9600.16521 VY mdows 100% 2 5
Firefox .
28.0 Windows 0% 0 0
Chrome '
33.0.1750.154 Vindows 1.45% 1.8966 3
Safari 08 X 0o .)

7.0 (9537.71)

Table 5: The seeking accuracy is tested by measuring any deviation from the expected frame
number.

Except for these special cases Firefox and Safari fire the seeked event as required. Chrome
also performs these tests without problems. Next, we analyze the accuracy of the seeking imple-
mentation. We give every user agent enough time to actually finish seeking before we check the
frame number. The results can be found in Table 5.

We find that Internet Explorer has a constant deviation from the expected frame by two
frames. Looking at this problem in detail we can see that the first frame of the video is displayed
three times as long as the others, which leads to the observed offset of two frames. Chrome fails
to seek to the correct frame in 1.45% of all cases. When the wrong frame is shown, it is one,
two or three frames off in our experiments. This might be close enough for some applications,
but might trouble others. Finally, Firefox and Safari both seek to the expected frames without
deviations.

Results

The experiments show that the seeked event is not very reliable. What is the benefit of a seeked
event, if we cannot be sure that a new frame is shown when it is fired? Furthermore, we have
shown small deviations from the expected frame. These are usually not important, and most
users won’t even take notice of this issue. However, it prevents the emergence of application that
rely on frame-precise seeking.

4 Improvements to HTTMLS5 video

As we are interested in a powerful HTML5 video platform to supersede third party plugins as the
leading internet video technology, the portfolio of possible applications should not suffer from a
transition to HTML5. Examples for possible media-oriented tasks are:

e video post-processing (edit the pixel data manually, e.g. to change the contrast),

e audio equalization, and

e audio spectrum visualization.

Unfortunately, these applications are currently not possible using pure HTML5. Though the
video buffer can be obtained and drawn to a canvas (timer-based), it is not possible to ensure this
for every frame, since the frame rate is unknown. The audio data cannot be accessed anyway.
We suggest the following improvements to HTML5:

e Querying detailed meta data information (e.g. frame rate, bit rate, etc.)
e Frame-wise stepping, querying frame number
e Audio buffer access and manipulation

e Manipulating pixel data of the video (e.g. introducing a new newframe event to control
the manipulation on a canvas)

5 Conclusion

HTML5 video is an important step towards the goal of having a unified way of displaying
videos on the web without requiring third party plugins. However, when trying to interact with
the element via JavaScript and create a user agent independent solution, several issues become
apparent. We took a close look at the event system of the browsers and compared their behavior.
The comparison between user agents and the specification showed missing events and differences
of implementations. As a consequence among other issues, there is no reliable way of handling
an underrun.

The analysis of seeking implementations reveals further problems. The seeked event that
is fired too early in Internet Explorer prohibits web applications, for instance, too seek to a
position and take a snapshot of the video. The inaccuracies in seeking in Chrome prevent
meaningful frame by frame stepping through the video. In Firefox it is not possible to jump
to the end of the video. Those and other bugs force web developers to find browser-dependent
workarounds. As this is a contradiction to the paradigm of feature-detection, HTML5 video
needs a more consistent application interface in today’s browsers. If special applications like
web video cutting are planned, we have to recommend (based on today’s level of knowledge) the
usage of third party plugins as seeking accuracy and completion are in general no trustworthy
data.

We are offering user agent tests, test cases and test data to developers to evaluate and improve
new implementation. We hope the next versions of the tested browsers stand our tests. With
a growing distribution of an unified and standard conform video interface, we will see more
advanced online multimedia applications and user experiences.

References

[BFL*14] Robin Berjon, Steve Faulkner, Travis Leithead, Erika Doyle Navara, Edward
O’Connor, Silvia Pfeiffer, and Ian Hickson. HTML5. Candidate Recommendation
29 April 2014, W3C, April 2014. http://www.w3.org/TR/html5/.

[Net14] NetApplications. http://www.netmarketshare.com/report.aspx?qprid=
0&gptimeframe=M&qpsp=184&qgpcustomd=0, 2014. Accessed: 2014-06-10.

[Sun08] Sun Microsystems. Sun’s Network.com Renders Computer-Animated Movie “Big
Buck Bunny”. Press Release, June 2008.

