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Abstract

In this thesis, major new developments in the program SecDec are presented. SecDec
is a publicly available program for the numerical evaluation of multi-loop multi-scale
integrals and in this thesis it has been extended from Euclidean to physical kinematics.

The program SecDec is based on sector decomposition to extract dimensionally reg-
ulated singularities. To deal with integrable singularities due to mass thresholds, the
integrand is analytically continued to the complex plane. Further improvements are
shown, proving invaluable in the two applications within this thesis.
In the first application, numerical results for several massive two-loop four-point func-

tions are presented. In particular, results for two of the most complicated massive
non-planar two-loop box integrals entering the heavy-quark pair production at next-to-
next-to leading order in QCD are shown. A mixed analytical and numerical approach
proves beneficial in the evaluation of the most complicated diagram. It is shown that
the program can deal not only with scalar integrals, but also with tensor integrals of in
principle arbitrary rank.
In its second application within this thesis, the neutral MSSM Higgs-boson spectrum

is discussed. In particular, the calculation of the leading momentum-dependent order
O(αsαt) corrections using a mixed on-shell/DR renormalization scheme is presented. In-
tegrals which are available in analytic form have been implemented in a way allowing for
a stable numerical evaluation. Analytically inaccessible integrals are evaluated numer-
ically using the program SecDec. The combination of the new momentum-dependent
two-loop contribution with the existing one- and two-loop corrections in the on-shell/DR
scheme leads to an improved prediction of the light MSSM Higgs-boson mass and a corre-
spondingly reduced theoretical uncertainty. The effect of the newly included momentum-
dependent terms on the neutral CP-even Higgs-boson masses is discussed. The corre-
sponding shifts in the lightest Higgs-boson mass Mh are below 1 GeV in all scenarios
considered, but can extend up to the level of the current experimental accuracy. The
results are included in the code FeynHiggs, a publicly available program to calculate
parameters related to the Higgs-boson sector in the framework of the MSSM.
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1 | Introduction

Hadron colliders have set the stage to a whole new era of discovery. With the increas-
ing wealth of high energy collision data, physics up to the TeV scale is being explored.
Within the theoretical framework of the Standard Model of particle physics (SM) [8–14]
most of the observations made by past and present collider experiments can success-
fully be described. Its predictive power has lead to the discovery of almost all of its
constituents. These are three families of quarks and leptons, four gauge bosons me-
diating the electroweak and strong interaction, and the simplest manifestation of the
Brout-Englert-Higgs mechanism [15–18] - the Higgs-boson. Although the discovery of
the latter is still not fully confirmed, a particle behaving like the Standard Model Higgs-
boson has recently been observed [19, 20] in the ATLAS and CMS experiments at the
Large Hadron Collider (LHC). The characteristics of this new boson with a mass around
125 GeV have been determined already rather accurately [21–24]. If deviations with
respect to the SM characteristics are found with the collation of more data, this particle
must be interpreted within a different model. There are already several other reasons
to search for an embedding of the Standard Model as an effective theory into a more
general theoretical framework. Apart from the fact that gravity is not incorporated, the
indirect observation of dark matter [25–27] does not find a description in the Standard
Model either. Furthermore, the predicted violation of the CP symmetry is not large
enough as to explain the observed excess of matter over antimatter in the universe.
More peculiarities are related to the newly found boson. If it indeed is the SM Higgs-
boson, it is discussed [28–31] that the electroweak vacuum of the Standard Model may
not be absolutely stable and its low mass can only be accommodated for by assuming
an unnatural amount of fine-tuning [32]. Ideas for models beyond the Standard Model
in which the newly found boson is realized range from interpreting it as a dilaton [33,34]
or in the framework of a composite Higgs model [35, 36]. A different proposal for a
new framework is formulated as a supersymmetric extension to the Standard Model, in
particular the Minimal Supersymmetric Standard Model (MSSM) [37–39]. It has been
broadly discussed over the last few decades.
The motivation for supersymmetry (SUSY) [40–46] is twofold. On the one hand, it

can provide for a solution to the fine-tuning and the hierarchy problem, achieve a gauge
coupling unification and moreover accommodate for a dark matter candidate. On the
other hand, it allows for the embedding of present observations into a more generalized
mathematical framework. Supersymmetry arises as the only possible extension to the
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Chapter 1. Introduction

Poincaré algebra [47], evading the no-go-theorem found by Coleman and Mandula [48].
In supersymmetric theories, all known fermionic particles of the Standard Model are
assigned a scalar superpartner and all bosonic SM particles a fermionic one. The Stan-
dard Model contains one scalar doublet. In renormalizable supersymmetric models, the
necessity for an even number of scalar doublets arises. At least two Higgs doublets are
required, to give mass to respectively both, up-type and down-type particles and scalar
particles (sparticles) [49–55]. The MSSM contains two scalar doublets which conserve
hypercharge gauge invariance. Due to this invariance, all up-type particles and sparticles
couple exclusively to one scalar doublet, while all down-type (s)particles couple to the
other doublet. This evades constraints from flavor-changing neutral currents (FCNCs),
as was pointed out by Glashow and Weinberg [56]. The two scalar doublets of the MSSM
give rise to five physical Higgs-bosons. In lowest order, these are the light and heavy
CP-even, the CP-odd, and the charged Higgs-bosons. While the mass of the Higgs-boson
remains a free input parameter in the Standard Model, it is predicted within the MSSM.
Associating the newly observed boson with the lightest CP-even Higgs-boson h0, the
upper bound on its predicted mass mh0 at leading order (LO) is given by the Z gauge
boson mass. This would already have lead to the exclusion of the MSSM at past collider
experiments. Yet, higher-order quantum corrections to the MSSM Higgs-boson masses
lead to a shift in the upper limit towards mh0 . 135 GeV.
Higher-order corrections are not only decisive in the precise prediction of physics

beyond the Standard Model, but are of proven importance in the understanding of
SM processes at colliders. The state of the art of higher-order corrections to Standard
Model processes and a future wish list is summarized in the proceedings of the 2013 Les
Houches workshop [57]. The more accurate predictions are desired, the more involved
the calculations become. Leading order theoretical predictions can most commonly not
meet the current experimental precision. The calculation of perturbative corrections at
next-to-leading order (NLO) in the strong or electroweak coupling constant has reached
an impressive level of automation meanwhile. Corrections beyond NLO accuracy still
require quite some effort, both on the conceptual and on the technical side before they
can be performed in a largely automated way. There are a few processes measured at
the LHC where the need for next-to-next-to leading order (NNLO) QCD predictions
arises. One of them is top-quark pair production. Top-quark pair production is vital
for the precise measurements of the top-quark properties but also enters into other
measurements, e.g., of parton distributions. At the LHC top quarks are produced so
numerously that they also constitute a significant background to new physics signals. It
is therefore crucial to understand this background properly to be able to discriminate the
signal. A full NNLO prediction for the total cross section of top-quark pair production is
known in a semi-numerical form [58] along with many partial results in semi-numerical
and analytical form [59–71]. Soft gluon and Coulomb effects also have been taken into
account beyond the next-to-leading logarithmic accuracy and have been combined with
fixed order results to come up with predictions as precise as possible [72–79]. Among
the key ingredients of the full NNLO calculation are complicated two-loop integrals
entering the virtual corrections. Analytical expressions for these are known for diagrams
dependent on relatively few mass scales [60–62,69,80,81]. As soon as several mass scales
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are involved, numerical methods to calculate multi-loop integrals become increasingly
important.

The brief outline of this thesis is as follows: In Chapters 2-5, the basic concepts of
the author’s work presented in this thesis are established. In Chapter 6, the developed
version 2 of the program SecDec is described, laying the foundation for two applications
presented in Chapters 7 and 8.
More comprehensively, Chapter 2 covers an introduction of the tree-level Higgs-boson

sector of the MSSM. The scalar quark (squark) sector is discussed as well, focussing
on strong and Yukawa-type interactions. Afterwards, a motivation for higher-order cor-
rections to the Higgs-boson masses is discussed, along with an introduction to their
computation. The latter involves the evaluation of two-loop integrals with multiple
scales, leading to mass thresholds. Different methods to approach multi-loop multi-scale
integrals are reviewed in Chapter 3, before motivating the pursuit of a universal numer-
ical approach using Feynman parameterization. The method of sector decomposition is
used for the disentanglement of overlapping ultraviolet (UV), collinear and infrared (IR)
singularities, as discussed in Chapter 4. Various algorithms performing differently with
respect to this task are also reviewed.
In Chapter 5, the appearance of thresholds is discussed. To compute integrable thresh-

olds, the integrand needs to be analytically continued to the complex plane. Towards
this aim, a deformation of the integration contour, applicable in numerical calculations,
is explained. Finally, studies by the author are presented which tune the analytical
continuation further towards a stable evaluation of integrals containing thresholds.
In Chapter 6, the features incorporated in an upgrade of the open-source program

SecDec are presented. Based on the concepts introduced in Chapters 3-5, SecDec
allows the automated numerical computation of multi-loop multi-scale integrals, in ad-
dition to an evaluation of more general parametric integrals. Restricted to non-physical
kinematics in version 1, the extension to physical kinematics including thresholds is
achieved in version 2 of the program. The upgraded features are presented along with
diverse other improvements.
In Chapter 7, the full power of the program SecDec is shown in an application

to massive non-planar two-loop four-point functions, among them various ones where
analytical results are unknown. Several of the topologies shown are computed in a fully
automated way. For one topology which is of particular interest in the top-quark pair
production at NNLO, analytical transformations beforehand are shown, improving on
the numerical stability. In particular, the integration of one Feynman parameter of
a sub-loop is found to be beneficial. Furthermore, a transformation first introduced
by the author and collaborators, proves to allow for a simplification of the singularity
structure, leading to a reduction in the number of sub-functions to be integrated. The
transformation is presented in detail.
In Chapter 8, the calculation of the dominant neutral CP-even MSSM Higgs-boson

mass corrections at the two-loop order including momentum dependence is presented.
This requires the calculation of two-loop self-energies with a proper renormalization at
the two-loop level, using an overall mixed on-shell and DR scheme for the renormal-
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Chapter 1. Introduction

ization. The program SecDec is used in the evaluation of analytically unaccessible
integrals. The mass shifts resulting from the additional momentum-dependent contri-
butions are presented.
The conclusions are given in Chapter 9.
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2 | Higgs-bosons in the MSSM

In the following, the Higgs-boson, quark and scalar quark (squark) sector of the MSSM
are introduced. The tree-level mass matrices are derived from the MSSM Lagrangian.
All interactions appearing in the two-loop corrections to the MSSM Higgs-boson masses
discussed in Chap. 8 are shown as well. This includes supersymmetric QCD (SCQD)
interactions. The following two sections, Sec. 2.1 and 2.2, are based on Refs. [38,82–86].
Afterwards, the current status of higher-order Higgs-boson mass corrections in the MSSM
is reviewed in Sec. 2.3.

2.1 The Higgs-boson sector of the MSSM at tree-level

The Higgs-boson sector of the MSSM with real parameters (rMSSM) is part of the full
MSSM Lagrangian and consists of the following four components

LMSSM ⊃ LHfree + LHV + LHint + LHfix + LHghost , (2.1)

where LHfree contains the free-field kinetic terms, LHV is derived from the Higgs-boson
potential, and LHfix is the gauge-fixing term. With the introduction of a gauge-fixing
term, unphysical degrees of freedom arise which are compensated by Faddeev-Popov
ghost terms [87] in LHghost . The interaction part of the Higgs-boson sector Lagrangian
can be summarized as

LHint = LHHH + LHHHH

+ LHHV + LHVV + LHHVV

+ LHψψ̄ + LHs̃s̃ + LHHs̃s̃

+ LHχ̃χ̃ . (2.2)

All physical neutral and charged Higgs-boson fields are referred to with the index H,
the index V is short for vector boson fields, ψ and ψ̄ denote the Standard Model quarks
and leptons, s̃ denotes all squarks and scalar leptons (sleptons) and χ̃ symbolizes the
neutralinos and charginos. Adopting the Feynman-’t Hooft gauge, all ghost contributions
vanish.

The MSSM requires two doublets H1 and H2 of complex scalar fields, which are
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Chapter 2. Higgs-bosons in the MSSM

conventionally written in terms of their components as follows,

H1 =
(
H0

1
H−1

)
=
(
v1 + 1√

2(φ0
1 − iχ0

1)
−φ−1

)
, (2.3)

H2 =
(
H+

2
H0

2

)
=
(

φ+
2

v2 + 1√
2(φ0

2 + iχ0
2)

)
, (2.4)

with an associated hypercharge Y1 = −1 and Y2 = +1, respectively. Their vacuum
expectation values are given by v1 and v2, respectively. The fields φi and χi are still
unphysical, but are brought into the physical basis(

H0

h0

)
= A(α)

(
φ0

1
φ0

2

)
,
(
G0

A0

)
= A(β)

(
χ0

1
χ0

2

)
,
(
G±

H±

)
= A(β)

(
φ±1
φ±2

)
(2.5)

via orthogonal transformations of the type

A(x) =
(

cos(x) sin(x)
− sin(x) cos(x)

)
, (2.6)

giving rise to the particle spectrum of physical Higgs- and unphysical Goldstone-bosons,
compare Tab. 2.1.

2 neutral CP-even Higgs-bosons h0, H0

1 neutral CP-odd Higgs-boson A0

1 neutral CP-odd Goldstone boson G0

2 charged Higgs-bosons H+, H−
2 charged Goldstone bosons G+, G−

Table 2.1: Higgs- and Goldstone boson particle spectrum.

The kinetic part of the MSSM Higgs-boson sector Lagrangian reads

Lφfree =
2∑

a=1
∂µH†a∂µHa . (2.7)

Note the index φ instead of H in Eq. (2.7). It is introduced to distinguish between the
φ0

1-φ0
2 and the h0-H0 basis.

The potential part of the rMSSM Higgs-boson sector Lagrangian Vφ can be written
in terms of the supersymmetric F- and D-term contributions

VφF = |µ|2(Hi†1 Hi1 +Hi†2 Hi2), (2.8)

and

VφD = 1
8(g2 + g′2)(Hi†1 Hi1 −H

i†
2 H

i
2)2 + 1

2g
2|H i†

1 H
i
2|2 , (2.9)
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2.1. The Higgs-boson sector of the MSSM at tree-level

where i = 1, 2 from now on. In contrast to the Standard Model, the Higgs-boson self-
couplings in the MSSM, resulting from Eq. (2.9), are determined through the gauge
coupling constants. The dagger in Eqs. (2.8) and (2.9) indicates Hermitian adjoints, µ
is the higgsino (fermionic superpartner of the Higgs-boson) mass parameter, g is the
SU(2)L and g′ the U(1)Y coupling constant. The coupling constants g and g′ are related
to the electric charge e and the electro-weak mixing angle θW of the Standard Model by

g = e

sin θW
, g′ = e

cos θW
. (2.10)

Due to the non-observation of supersymmetric partners to the Standard Model particles,
supersymmetry must be broken. Various supersymmetry breaking mechanisms can be
considered [49–55, 88]. In the MSSM, explicit breaking terms [51, 88] parameterize the
effect of SUSY breaking. In order to accommodate for a solution to the hierarchy
problem, these terms may not introduce additional quadratic divergences. They must
have mass dimension less than four. These so called soft supersymmetry breaking terms
are added to the MSSM Higgs-boson potential

Vφsoft = m2
1(Hi†1 Hi1) +m2

2(Hi†2 Hi2)−m2
12(εijHi1H

j
2 + h.c.), (2.11)

where j = 1, 2 from now on, and with εij1 being totally antisymmetric, resulting in an
overall MSSM Higgs-boson potential of

Vφ = VφF + VφD + Vφsoft . (2.12)

Relating the MSSM Higgs-boson potential to the MSSM Lagrangian by

LφV = −
(∫

d2θ VφF +
∫∫

d2θd2θ̄ VφD + Vφsoft

)
, (2.13)

where the F-term part of the potential is integrated over the auxiliary superspace com-
ponent θ, while the D-term part of the potential is integrated over both superspace
components θ and θ̄. In the following, the notation∫

d2θ V = [V]F and
∫∫

d2θd2θ̄ V = [V]D (2.14)

is adopted.

Until now, the MSSM Higgs-boson potential, Eq. (2.12), contains four free parameters:
m1,m2,m12 and µ. Exploiting the fact that the two vacuum expectation values v1 and v2
need to minimize the potential and be nonzero at the same time, the following necessary
minimization conditions

∂

∂Hia
Vφ
∣∣∣lin = 0 , a = 1, 2 (2.15)

1Note the convention: εij = −εij , with ε12 = −1 and ε21 = 1.
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Chapter 2. Higgs-bosons in the MSSM

are required to hold. The minimization conditions originate from the equations of mo-
tion, compare Eq. (2.56). In Eq. (2.15), the linear part of the rMSSM potential reads

Vφ
∣∣∣lin =

√
2m̃2

1v1φ
0
1 +
√

2m̃2
2v2φ

0
2 +
√

2m2
12(v2φ

0
1 + v1φ

0
2)

+ 1
2
√

2
(g2 + g′2)(v2

1 − v2
2)(v1φ

0
1 − v2φ

0
2) , (2.16)

where m̃2
i ≡ mi + |µ|2. It should be noted that there are no contributions from the

fields χ0
a and φ±a to the linear part of the potential. This is due to the fact that the

MSSM potential is CP-conserving, meaning that it is invariant under the consecutive
application of a charge conjugation C and a parity transformation P. Without imposing
the minimization condition just yet, and writing the coefficients to the fields φ0

1, φ
0
2 in

Eq. (2.16) as tadpole parameters Ta instead, the parameters m̃1 and m̃2 can be expressed
in terms of experimentally accessible quantities (g, g′, v1, v2) and the parameter m12

m̃2
1 = 1√

2v1
T1 −

v2
v1
m2

12 −
1
4(g2 + g′2)(v2

1 − v2
2) , (2.17)

m̃2
2 = 1√

2v2
T2 −

v1
v2
m2

12 + 1
4(g2 + g′2)(v2

1 − v2
2) . (2.18)

Consequently, after making use of Eq. (2.15), the tadpole parameters Ta vanish

Ta = 0 . (2.19)

Turning to the part of the MSSM Higgs-boson potential which is bilinear in the fields, the
mass matricesM2

φ0 ,M2
χ0 andM2

φ± of the scalar fields of the neutral CP-even, the neutral
CP-odd and, respectively, the charged Higgs- and Goldstone-bosons can be identified

Vφ ⊃
1
2
(
φ0

1 φ0
2

)
M2
φ0

(
φ0

1
φ0

2

)
+ 1

2
(
χ0

1 χ0
2

)
M2
χ0

(
χ0

1
χ0

2

)
+
(
φ+

1 φ+
2

)
M2
φ±

(
φ−1
φ−2

)
, (2.20)

where φ−2 = (φ+
2 )∗ and φ+

1 = (φ−1 )∗. The tree-level mass matrix of the neutral CP-odd
bosons reads

M2
χ0 =

(
m̃2

1 + 1
4(g2 + g′2)(v2

1 − v2
2) m2

12
m2

12 m̃2
2 + 1

4(g2 + g′2)(v2
2 − v2

1)

)
(2.21a)

= m2
12

(
−v2
v1 1
1 −v1

v2

)
, (2.21b)

where in the last step, the relations of Eqs. (2.17-2.19) were used. Afterwards, the mass
matrix can be made diagonal

diag(m2
G0 ,m2

A0) = A(β)TM2
χ0A(β) (2.22a)

=
(

0 0
0 −m2

12(tan β + cotβ)

)
, (2.22b)
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resulting with the tree-level relation for the physical neutral CP-odd Higgs-boson mass
m2
A0 . Note that the tree-level A0-boson mass m2

A0 does not attain any dependence on
the Standard Model vector-boson masses mW or mZ . Defining the vacuum expectation
values v1 and v2 as

v1 ≡
√

2mW cosβ
g

, v2 ≡
√

2mW sin β
g

, (2.23)

the following relation results

tanβ = v2
v1

, 0 ≤ β ≤ π

2 . (2.24)

The lower and upper bound on the angle β result from the assumption that v1 and v2
are real and positive, compare Ref. [82].
Hereby, all free mass parameters are expressed in terms of physical observables and the
MSSM Higgs-boson potential is fixed by the parameters v1, v2, mA, g′ and g. With this
knowledge in mind, the masses of the neutral CP-even Higgs-bosons can be derived from
the mass matrix

M2
φ0 =

(
M2
φ0

1φ
0
1

M2
φ0

1φ
0
2

M2
φ0

2φ
0
1

M2
φ0

2φ
0
2

)
(2.25a)

=
(
m2
A0sin2β +m2

Zcos2β −(m2
A0 +m2

Z)sinβcosβ
−(m2

A0 +m2
Z)sinβcosβ m2

A0cos2β +m2
Zsin2β

)
, (2.25b)

being written in terms of the three parameters mA0 , mZ and the angle β. After bringing
the mass matrix into diagonal form, the physical CP-even Higgs-boson masses read

m2
H0,h0 = 1

2

(
m2
A0 +m2

Z ±
√

(m2
A0 +m2

Z)2 − 4m2
A0m2

Z cos2(2β)
)
. (2.26)

The mass of the light CP-even Higgs-boson is therefore bound from above through the
relation mh0 ≤ min(mZ ,mA0) |cos(2β)|.
For completeness, the masses of the charged Higgs-bosons can be derived via the mass
matrix of the charged-boson components

M2
φ± =

(
m̃2

1 + 1
4(g2 + g′2)(v2

1 − v2
2) + 1

2g
2v2

2 m2
12 − 1

2g
2v1v2

m2
12 − 1

2g
2v1v2 m̃2

2 + 1
4(g2 + g′2)(v2

2 − v2
1) + 1

2g
2v2

1

)
(2.27)

as

diag(m2
G± ,m

2
H±) = A(β)TM2

φ±A(β) (2.28a)

=
(

0 0
0 −m2

12(tan β + cotβ) +m2
W

)
, (2.28b)
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Chapter 2. Higgs-bosons in the MSSM

where relations Eqs. (2.17-2.18) are again useful. Similar to the SM relations, the gauge-
boson masses are given by

m2
W = 1

2g
2(v2

1 + v2
2) , m2

Z = 1
2(g2 + g′2)(v2

1 + v2
2) , m2

γ = 0 . (2.29)

The rich phenomenological implications of the real MSSM can be explored further, when
studying the dependence on the angles α and β. The angle β is linked to the vacuum
expectation values through Eq. (2.24). In turn, the angle α can be determined from the
rotation of Eq. (2.25b) into the physical basis. The following basic relation among the
two angles holds [83]

tan(2α) = tan(2β)
m2
A0 +m2

Z

m2
A0 −m2

Z

, − π

2 < α < 0 . (2.30)

Many more relations among the angles can be found, compare Ref. [82, 83]. When
expressing the couplings in terms of these, they can be formulated as angle suppression
factors with respect to Standard Model Higgs-boson couplings to, e.g., vector bosons

gh0V V

ghV V
∝ sin(β − α) , (2.31)

gH0V V

ghV V
∝ cos(β − α) , (2.32)

where h denotes the Standard Model Higgs-boson and h0, H0 the MSSM Higgs-bosons.

Besides, in order not to be a toy model, the features of the Standard Model must be
reproduced in the MSSM, at least in certain parametric limits. This is fulfilled in the
decoupling limit, taking the limit mA0 → ∞. Then, the physical Higgs-bosons A0, H0

and H± decouple from the theory and the Standard Model Higgs-boson sector consisting
of a single physical CP-even scalar h0 results. Additionally, a SUSY mass scale much
larger than the electro-weak scale can be assumed. Then, h0 becomes indistinguishable
from the Higgs-boson h of the Standard Model, since all Standard Model tree-level and
loop-induced couplings to Standard Model gauge bosons and fermions are reproduced.
A decoupling may also occur independent of the A0 boson mass in other regions of the
MSSM parameter space. For a discussion, see Refs. [85, 89].

2.2 The scalar quark sector and SQCD at tree-level
In light of the calculation to be discussed in detail in Chap. 8, an introduction of the
tree-level quark and squark interactions is necessary, including those of supersymmetric
Quantum Chromodynamics (SQCD). Interactions with the Higgs-boson sector are also
discussed.

The relevant parts of the MSSM Lagrangian regarding SQCD, the fermion ψ and the
scalar fermion (sfermion) s̃ sector, reads

LMSSM ⊃ Ls̃free + Lψfree + Ls̃int + Lψint + LG + Lg̃ , (2.33)

10



2.2. The scalar quark sector and SQCD at tree-level

superfield particle content spin sparticle content spin Y

Q̂ Q =
(
uL
dL

)
1
2 Q̃ =

(
ũL
d̃L

)
0 1/3

Û U = u†R
1
2 Ũ = ũ∗R 0 −4/3

D̂ D = d†R
1
2 D̃ = d̃∗R 0 2/3

L̂

(
νL
eL

)
1
2

(
ν̃L
ẽL

)
0 −1

Ê e†R
1
2 ẽ∗R 0 2

Ga Gaµ 1 g̃a 1
2 0

W W i
µ 1 W̃ i 1

2 2
B Bµ 1 B̃ 1

2 2
H1 H1 0 H̃1

1
2 −1

H2 H2 0 H̃2
1
2 +1

Table 2.2: The superfield content of the MSSM, the respective spin of the particles and
sparticles and the corresponding weak hypercharge Y . The index a labels
the different components. Neutralinos and charginos are formed from linear
combinations of the gauginos, B̃ and W̃ i, and the higgsinos H̃1,2.

where the first two terms on the righthand side of Eq. (2.33) are the free field equations
for the squarks and sleptons and the quarks and leptons, respectively. The last two terms
are the QCD and SQCD gauge field contributions. They can be combined as follows

LG + Lg̃ =
[ 1

16g2
s

W aα
s W a

sα + h.c.

]
F

+ Lg̃soft , (2.34)

whereW a
s in the first term on the righthand side is the supersymmetric SU(3) Yang-Mills

field-strength tensor defined as

W a
sα = −1

4D̄αD̄
α(e−2gstasGaDαe

2gstasGa) , (2.35)

compare Ref. [90]. Here, the tas denote the generators of SU(3)c, gs is the strong coupling
constant and the Ga represent the gluon and gluino fields, compare Tab. 2.2. The Dα

and D̄α are the covariant derivatives with respect to the superspace coordinates and are
defined as

Dα = ∂α − iσµαβ θ̄
β∂µ, D̄α = ∂̄α − iσ̄µαβθβ∂µ . (2.36)

While the gluon is massless, the gluino acquires a mass term from explicit but soft
supersymmetry breaking

Lg̃soft = −(1
2mg̃ g̃

†g̃ + h.c.) . (2.37)
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Chapter 2. Higgs-bosons in the MSSM

This type of mass term can rather generically be introduced for all fermions of a super-
gauge multiplet, compare Refs. [51, 88].
Following Ref. [82], the third and fourth term in Eq. (2.33) can be split into F-terms,
D-terms and soft breaking terms. Additionally, interactions between the gluino g̃, a
quark and a squark must be taken into account. Hence, the full potential reads

Ls̃int + Lψint = − [Vs̃F ]F − [Vs̃D ]D − Vs̃soft + Lψ + LqqG + Lsq̃q̃q̃q̃ + Lq̃q̃G + Lqq̃g̃ .
(2.38)

The F-term contributions are

Vs̃F = | − µ†Hi†1 + yuQ̃
i†Ũ |2 + |µ†Hi†2 + ydQ̃

i†D̃|2

+ y2
u |εijHi2Q̃j |2 + y2

d |εijHi1Q̃j |2

+ (yuHi†2 Ũ † − ydH
i†
1 D̃
†)(yuHi2Ũ − ydHi1D̃) (2.39)

where Yukawa interactions of the type Hs̃s̃, HHs̃s̃ and s̃s̃s̃s̃ can be read off. While the
Q̃, Ũ and D̃ denote the scalar superfields, see Tab. 2.2, the Yukawa couplings read

yu = gmu√
2mW sin β

, yd = gmd√
2mW cosβ

. (2.40)

The D-terms contributing to the scalar potential Eq. (2.38) read

Vs̃D =1
8g

2
(
4|Hi†1 Q̃i|2 + 4|Hi†2 Q̃i|2 − 2(Q̃i†Q̃i)(Hi†1 Hi1 +Hi†2 Hi2) + (Q̃i†Q̃i)2

)
+1

4g
′2(Hi†2 Hi2 −H

i†
1 H

i
1)(YqQ̃i†Q̃i + YuŨ

†Ũ + YdD̃
†D̃)

+1
8g
′2
(
YqQ̃

i†Q̃i + YuŨ
†Ũ + YdD̃

†D̃
)2

, (2.41)

where Yq = 1
3 , Yu = −4

3 and Yd = 2
3 are the hypercharges of the respective superfield.

The squarks couple not only weakly to each other, but also strongly via

Lsq̃q̃q̃q̃ = −1
2g

2
s

∑
a

(q̃†Lt
a
s q̃L − q̃

†
Rt
∗a
s q̃R)2 , (2.42)

compare e.g. Ref. [91]. The soft-breaking part of the potential reads

Vs̃soft =M2
Q̃
Q̃i†Q̃i +M2

ũ Ũ
†Ũ +M2

d̃
D̃†D̃

+m6(−εijyuAuH i
2Q̃

jŨ † + εijydAdH
i
1Q̃

jD̃† + h.c.) , (2.43)

where the products m6Au,d denote the trilinear couplings of the Higgs-bosons to the
squarks. In the following, m6 = 1 is chosen by convention. MQ̃ is the mass parameter
of the left-hand sparticles, Mũ and Md̃ are the mass parameters of the righthand up-
type and down-type sparticles, respectively. The soft breaking terms lead at most to
a logarithmically divergent behavior and gauge invariance is ensured, see Refs. [51, 88].
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2.2. The scalar quark sector and SQCD at tree-level

The slepton fields L̃, Ẽ are omitted here but can be included as well with an appropriate
choice of hypercharges. The Yukawa interaction of the quarks and leptons reads

Lψ = −εij(ydHi1QjD − yuHi2QjU + yeHi1LjE) + h.c. , (2.44)

where ye is the Yukawa coupling to the leptons. The quark and lepton masses purely
arise from the Yukawa interactions, therefore the quark and lepton mass matrices can be
directly deducted from the Yukawa terms. The interaction of two quarks with a gluon
reads

LqqG = −gsGaµ
∑
i=u,d

q̄jγ
µ(tas)jkqk , (2.45)

where j and k are color indices. Now, the squark-squark gluon interaction is

Lq̃q̃G = −igsGaµ
∑
i=u,d

q̃j†i (tas)jk∂µq̃ki , (2.46)

where the sums run over both left- and righthanded components, compare Ref. [38].
Finally, the squark-quark-gluino interaction reads

Lqq̃g̃ = −
√

2gs(tas)jk
∑
i=u,d

(g̃†aPLqki q̃
j†
iL + qj†i PRg̃aq̃

k
iL − g̃†aPRqki q̃

j†
iR − q

j†
i PLg̃aq̃

k
iR) , (2.47)

where the relative minus sign comes in with the negative sign of the color generator ta∗s of
the color antitriplets. Likewise, there are electroweak quark-squark-gaugino interactions.
They are not listed here because they are not needed in the calculation of Chap. 8.
The squark masses are composed of the soft breaking terms, but also the F- and

D-terms of the squark potential, when the Higgs-bosons acquire vacuum expectation
values. Altogether, the massive part of the squark sector in the MSSM reads

Lq̃,mass = −
(
ũ†L ũ†R

)
M2
ũLR

(
ũL
ũR

)
−
(
d̃†L d̃†R

)
M2
d̃LR

(
d̃L
d̃R

)
, (2.48)

where the up-type squark mass matrix is given by

M2
ũLR

=
(
M2
Q̃

+ y2
uv

2
2 + 1

4(g2 − Yqg′2)(v2
1 − v2

2) yuv2(A†u − µ cotβ)
yuv2(Au − µ† cotβ) M2

ũ + y2
uv

2
2 + 1

4g
′2Yu(v2

2 − v2
1)

)
,

(2.49)

with yuv2 = mu from previous definitions in Eq. (2.23) and Eq. (2.40). The parameter
µ is taken to be real in the rMSSM. A similar mass matrix can be set up for the down-
type squarks from the previously described parts of the Lagrangian. Using further the
definitions of Eq. (2.10) and of the hypercharges below Eq. (2.41), the up-type squark
mass matrix can be written as

M2
ũLR

=

M2
Q̃

+m2
u +m2

Z cos 2β (I3
u −Qu sin2 θW ) muXũ

muXũ M2
ũ +m2

u +m2
Z cos 2β Qu sin2 θW

 ,

(2.50)
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with Xũ = Au−µ cotβ and where Qu denotes their charge and I3
u the third component

of the isospin of the up-type squark, respectively. For completeness, the down-type
squark mass matrix is also given,

M2
d̃LR

=

M2
Q̃

+m2
d +m2

Z cos 2β (I3
d −Qd sin2 θW ) mdXd̃

mdXd̃ M2
d̃

+m2
d +m2

Z cos 2β Qd sin2 θW

 ,

(2.51)

with Xd̃ = Ad − µ tan β . The squark mass matrices can be rotated into the physical
basis

Lq̃,mass = −
(
q̃†1 q̃†2

)
M2
q̃12

(
q̃1

q̃2

)
, (2.52)

with the physical squark mass eigenstates m2
q̃1 and m2

q̃2 . The new mass eigenstates are
related to the unphysical masses via an orthogonal transformation

M2
q̃LR

= UTq̃ M
2
q̃12 Uq̃ (2.53a)

=
(

cos2θq̃m
2
q̃1 + sin2θq̃m

2
q̃2 sin θq̃ cos θq̃(m2

q̃1 −m
2
q̃2)

sin θq̃ cos θq̃(m2
q̃1 −m

2
q̃2) sin2θq̃m

2
q̃1 + cos2θq̃m

2
q̃2

)
, (2.53b)

where the unitarity matrix

Uq̃ =
(

cos θq̃ sin θq̃
− sin θq̃ cos θq̃

)
(2.54)

is parametrized by the mixing angle θq̃.
Matching the two mass matrices in Eq. (2.50) and Eq. (2.53b), an expression for the
parameter Xq̃ can be formulated as follows

Xq̃ =
sin θq̃ cos θq̃(m2

q̃1 −m
2
q̃2)

mq
. (2.55)

2.3 Higher-order Higgs-boson mass corrections within the real
MSSM

With the light neutral CP-even Higgs-boson tree-level mass mh0 being limited to mZ at
most, compare Eq. (2.26), the MSSM could already have been excluded at LEP due to
the lack of its observation. Yet, higher-order self-energy corrections shifted the upper
bound on the light Higgs-boson mass considerably. There are mainly three different
methods to approach higher-order mass corrections. They can be combined as well.
An exact calculation, invariant under different gauge-fixing terms, is achieved using the
Feynman-diagrammatic (FD) approach, where the self-energy diagrams are evaluated
explicitly. The second method uses an effective potential approximation further de-
veloped for higher loop calculations, compare Ref. [92]. In this approach, the scalar
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Higgs-boson fields are expanded around their vacuum expectation values. This allows
for the computation of the higher-loop effective potential, involving vacuum diagrams
of the given loop order. The results are compact, but also of limited accuracy. As this
approach expands around a constant value of the fields, the momentum dependence of
the two-loop self-energies cannot be taken into account. A third approach uses effective
Lagrangians capturing the dynamics and symmetries of a system in generic terms, while
the phenomenology is contained in their coefficients. Effective Lagrangians are often
used in model-independent analyses.
In the calculation presented in Chap. 8 of this thesis, the Feynman-diagrammatic

approach is adopted. In this approach, higher order mass corrections are computed by
allowing for perturbations to the propagators of the fields φ0

a, χ
0
a, φ

±
a which result from

the solutions to the equations of motion. For completeness

∂µ

(
∂L

∂(∂µxa)

)
− ∂L
∂xa

= 0 , (2.56)

where x = φ0, χ0, φ± and where a = 1, 2. Firstly, the equations of motion require
that the terms of the MSSM potential part of the Lagrangian linear in the CP-even
Higgs-boson fields φ0

a, see Eq. (2.16), must vanish. For this condition to be met, all
higher-order corrections up to lth order need to be seen as canceling. At tree level,
the terms linear in the fields are tadpole coefficients. Higher orders include additional
propagators to tadpole lines in terms of loops, where the coefficients are termed T (l)

a . In
conclusion, the statement reads

2∑
a=1

(Ta + T (1)
a + T (2)

a + . . . ) = 0 . (2.57)

Secondly, the bilinear free field and potential parts of the Lagrangian, Eq. (2.7) and
Eqs. (2.8)-(2.11), lead to the following contributions to the equations of motion

(∂µ∂µ +M2
xaxa) xa + εabM

2
xaxb

xb = 0 with a, b = 1, 2; a 6= b . (2.58)

Hence, those terms bilinear in the same field get solutions to the equations of motion in
terms of causal Green functions including a momentum and a massive part, while the
solutions to terms bilinear in two different fields contain only a massive part. Computing
higher orders in perturbation theory corresponds to adding one-particle irreducible terms
Σ(p2) to the propagators [93]

i

p2 −M2
xaxa

(2.59)

= i

p2 −M2
xaxa

+ i

p2 −M2
xaxa

(−iΣxaxa(p2)) i

p2 −M2
xaxa

+ i

p2 −M2
xaxa

(−iΣxaxa(p2)) i

p2 −M2
xaxa

(−iΣxaxa(p2)) i

p2 −M2
xaxa

+ . . . (2.60)

= i

p2 −M2
xaxa − Σxaxa(p2) , (2.61)
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where the bold-faced propagator is the one corrected to all orders in perturbation theory
and where each one-particle irreducible term can be split into its different orders,

Σxaxb = Σ(1)
xaxb

+ Σ(2)
xaxb

+ ... . (2.62)

A geometric series relation is used in the last step from Eq. (2.60) to Eq. (2.61). The
cases where different fields enter the time ordered two-point correlation functions can
be treated similarly. Assuming that the self-energy corrections in Eq. (2.62) can be
renormalized, the renormalized self-energies Σ̂xaxb(p2) enter as corrections to the inverse
propagator matrix of the field x,

(∆x)−1 = −i
(
p2 −m2

x1 + Σ̂x1x1(p2) −m2
x1x2 + Σ̂x1x2(p2)

−m2
x1x2 + Σ̂x1x2(p2) p2 −m2

x2 + Σ̂x2x2(p2)

)
. (2.63)

The loop-corrected masses Mx1 and Mx2 are determined by the real parts of the propa-
gator matrix of the field x. This is equivalent to solving the equation[

p2 −m2
x1 + Σ̂x1x1(p2)

] [
p2 −m2

x2 + Σ̂x2x2(p2)
]
−
[
−m2

x1x2 + Σ̂x1x2(p2)
]2

= 0 . (2.64)

The status of the available self-energy corrections to the real MSSM can be summarized
as follows.
At the one-loop level, the full corrections to the MSSM Higgs-boson masses are known,

including gauge bosons contributions and momentum dependence, see Refs. [94–101].
At two loops, a full result using an effective potential approach is known [102,103]. Pre-

ceding works used a two-loop renormalization group equation (RGE) improved one-loop
effective potential approach [104–108], or a two-loop effective potential approach [109–
116]. Furthermore, explicit computations have been performed in the Feynman-diagrammatic
approach, neglecting gauge contributions and assuming vanishing external momentum [117–
120]. The latter cover the dominant corrections of the order O(αsαt) and O(α2

t ) and the
sub-dominant two-loop contributions of the order O(αsαb), O(αtαb) and O(α2

b). The
orders are given in terms of the coupling factors entering the vertices of the loop di-
agrams. These are the strong coupling constant αs = g2

s
4π and the Yukawa couplings

αt = y2
t

4π and αb = y2
b

4π of the top and the bottom quark, respectively. The relative size
of a correction can be estimated a priori by assessing the relative size of its couplings.
Due to supersymmetry, the Yukawa couplings for the quarks and squarks are equivalent
αt̃,b̃ = αt,b. The soft supersymmetry breaking terms contributing in the coupling of the
Higgs-bosons to the squarks are proportional to the Standard Model Yukawa couplings
as well, compare Eq. (2.43). Therefore, no distinction between αq̃ and αq is needed.
Complementary to the Feynman-diagrammatic approach, higher-order corrections to

the Higgs-boson masses have been found using the effective Lagrangian approach [121–
126]. Other studies aim towards a combination of the existing two-loop results obtained
in different approaches, see Refs. [110–112,127,128].
Regarding the third order, the dominant corrections of the order O(α2

sαt) are avail-
able [129–131], where gauge contributions and a non-vanishing external momentum still
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need to be incorporated in future calculations. Also, third and higher order resummation
effects have recently been taken into account [132,133].

Remarkably, all these higher-order corrections lead to an approximate upper bound
of mh0 . 135GeV, where the maximal value for the light Higgs-boson mass depends
sensitively on the precise value of the top-quark mass, compare Refs. [119,128].
While the one-loop corrections relocate the upper bound towards higher masses, the
two-loop corrections enter with competing signs and the three-loop corrections further
stabilize the mass, entering with both signs. The overall dominant corrections come
from those self-energies involving the top quark and the scalar top (stop) quarks.
The remaining contributions of higher orders can be estimated based on the already

available results. To reach a theoretical precision matching or even surpassing the exper-
imental one, corrections beyond the above mentioned ones must be taken into account.
At two loops, the remaining uncertainties originate from neglecting gauge contributions
and momentum dependence [134]. Therefore, the calculation of the momentum depen-
dent two-loop corrections to the MSSM Higgs-boson self-energies is of interest. The
momentum dependence at the one-loop level is known to generally amount to less than
2 GeV, compare Ref. [135]. The dominant corrections at the two-loop level have been
calculated adopting a full DR renormalization scheme, see Refs. [136–138]. Higher-order
corrections to the tree-level MSSM Higgs-boson masses can only be applied consistently
if they are computed within the same renormalization scheme. It is therefore interesting
to analyze the momentum-dependent contribution again, but using an on-shell renor-
malization for all masses entering the calculation. Although the calculation becomes
more involved with this renormalization scheme choice, the benefit of being able to in-
corporate those corrections into the public program FeynHiggs [139–142] and thereby
making the corrections readily available, is outweighing.
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3 | Multi-scale integrals beyond
one loop

This chapter explores diverse techniques regarding the computation of multi-scale inte-
grals beyond one loop. In particular, a focus is laid on two-loop calculations, where fully
differential phenomenological predictions start to emerge for a variety of processes. The
chapter culminates in a motivation for the usage of Feynman parameterization in a tool
to compute multi-loop multi-scale integrals in an automated way.

3.1 The two loop frontier
Due to the high energies at present hadron colliders, processes at very small distances can
be resolved. At the Tevatron and the LHC, these dominantly involve quarks and gluons
(partons). While the Tevatron is a proton-antiproton collider, the dominant production
channel has qq̄ pairs in the initial state, at the LHC the gg channel is the dominant initial
state. Compared to e+e− annihilation processes at past colliders this is one additional
external leg when higher orders are computed. This greatly increases the complexity of
such a computation.

At next-to-leading order 1 in perturbative QCD, the frontier is looking at final states
with many particles and matching them with a parton shower. The motivation to go to
NNLO accuracy is at least twofold. First, the dependence on the renormalization scale
is expected to be reduced. Second, a process has more partons in the final state. This
initiates the reconstruction of the parton shower, thus approaching an experimental jet
reconstruction.

The forefront at NNLO is the computation of four-point processes, where various
complications can arise, one being a complicated singularity structure of individual dia-
grams, and the other the involvement of internal and external masses leading to multi-
scale problems. This can render the evaluation of sometimes just single diagrams a highly
non-trivial task. While multiple legs and scales can already be very complicated at NLO,
at NNLO completely new challenges arise in addition when generalizing the techniques
employed at NLO to NNLO and diverse conceptual differences must be acknowledged.

1It should be noted that the leading order usually encompasses tree-level diagrams, but there are LO
processes (e.g. Higgs production in gluon fusion) which start with loop diagrams.
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Beyond NLO, the renormalization procedure for the cancellation of ultraviolet (UV)
singularities involves not only counter-terms of the loop order to be considered but also
counter-terms of lower loop order with insertions. Finding the full but minimal set of
diagrams is non trivial but was solved and further developed by Bogoliubov, Parasiuk,
Hepp and Zimmermann, summarized in the (BPHZ) theorem, see Refs. [143–145].

(a) (b) (c)

Figure 3.1: Example diagrams for double virtual (a), real virtual (b) and double real
radiation (c) contributions entering an NNLO calculation are shown.

Furthermore, a mixture of real radiation and virtual corrections enter a cross section
at NNLO, in addition to double real and double virtual contributions. The typical in-
gredients of an NNLO calculation are depicted in Fig. 3.1. Given the fact that now three
pieces enter the calculation which are all part of different phase space dimensions, the
need for more discriminating and refined subtraction schemes emerges.
At NLO, subtraction schemes are already well established, see Refs. [146–148]. At NNLO
there are various subtraction schemes available, all with different aims and capabilities.
After the introduction of qT subtraction by Catani and Grazzini [149, 150], the idea of
using the sector decomposition algorithm [151,152] for a complete NNLO calculation was
originally proposed by Heinrich [153]. It was taken up and further developed into a full
subtraction scheme in Refs. [154–156], and first applied to a full process in Ref. [157].
The idea proposed by Czakon to combine sector decomposition applied to real emis-
sion integrals with phase-space partitioning from FKS subtractions, lead to the sector
improved residue subtraction [158], successfully applied, e.g., in Refs. [65, 159]. Fur-
ther, the antenna factorization introduced in Refs. [160–162] was explicitly worked out
and applied to full NNLO processes [163–166]. Lastly, a direct generalization of dipole
subtraction to NNLO processes was presented by Somogyi, Trocsanyi et al. [167,168].

While for the real radiation the computation of more and more legs is of interest,
for the virtual contributions higher-order loop integrals need to be solved. In light of
the fact that the number of diagrams contributing to higher-order processes increases
tremendously from one order to the next, and the diagrams themselves become more and
more complicated, it is desirable to find highly automatable procedures to tackle these.
At NLO, tools towards this aim are already highly developed and sophisticated. The
procedure of generating the real radiation and loop amplitudes contributing to a full
process is automated to a large extent by programs like aMC@NLO [169], Black-
Hat [170], FeynArts, FormCalc & LoopTools [171], GoSam [172], HELAC-
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NLO [173], HERWIG++ [174], Matchbox [175], MCFM [176], NJet [177] Open
Loops [178], POWHEG [179], RECOLA [180], Sherpa [181], VBFNLO [182]. There
are diverse tools allowing for an automated generation of the pure Feynman amplitudes.
The programs with loop capabilities are FeynArts [183,184] or QGRAF [185].
The full basis of irreducible master integrals is known at one-loop order. It comprises

scalar pentagon, box, triangle, bubble and tadpole diagrams which are known analyti-
cally or can be computed numerically [186–189]. Beyond one loop, the set of irreducible
integrals, so called master integrals, is not known which makes the decomposition more
difficult. Master integrals beyond one loop can have irreducible numerators which need
to be evaluated in addition. In the reduction of multi-loop amplitudes to a set of re-
sulting master integrals, integration by parts relations [190–192] and identities resulting
from Lorentz invariance [193] are indispensable. The former are based on the fact that
the integral over the total derivative with respect to any loop momentum kl vanishes in
dimensional regularization

0 =
∫

dDkl
∂

∂kµl
f(kl, . . . ) , (3.1)

where the integrand f may contain any combination of propagators, scalar products and
loop momentum vectors. Together with the exploitation of Lorentz invariance by

(pν1
∂

∂p1µ
− pµ1

∂

∂p1ν
+ · · ·+ pνn

∂

∂p1µ
− pµn

∂

∂p1ν
)G({p}, {m}) = 0 , (3.2)

where n is the number of external momenta pi and m the internal masses, the reduction
to master integrals can be achieved. The full reduction into less complicated integrals
can be done if the number of constraints matches or exceeds the number of unknown
integrals.
In the following, the general structure of the resulting master integrals is shown and

different methods to solve them are described.

3.2 Two and more loop integrals with multiple scales
The difficulty of such multi-loop integrals has led to their extensive study and the devel-
opment of various specialized integration techniques. In the following, a general multi-
loop integral is introduced before presenting a variety of techniques to tackle these.
A general Feynman loop integral G at L loops with N propagators, where the prop-

agators Pj can have in principle arbitrary powers νj and mass mj , has the following
representation in momentum space

Gµ1...µR
l1...lR

({p}, {m}) =
L∏
l=1

∫
dDκl

kµ1
l1
· · · kµRlR

N∏
j=1

P
νj
j ({k}, {p},m2

j )
(3.3)

dDκl =µ4−D
r

iπ
D
2

dDkl , Pj({k}, {p},m2
j ) = q2

j −m2
j + iδ , (3.4)
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where the qj are linear combinations of external momenta pi and loop momenta kl. While
the rank R of the integral is indicated by the number of loop momenta appearing in the
numerator, the indices li denote which of the L loop momenta belongs to which Lorentz
index µi. The factor of iπ

D
2 in κ is chosen by convention to remove any dependence on

π after the integration over the loop momenta within Feynman parameterization. The
renormalization scale is denoted by µr. The +iδ in Eq. (3.4) results from the solutions
of the field equations in terms of causal Green functions.

The integral is regulated dimensionally meaning that the integer dimension number
d is shifted by an infinitesimal quantity ε to the new dimension variable D = d − 2 ε.
Infrared or ultraviolet poles then appear as poles in the regulator ε. Careful distinction
has to be made between ultraviolet (ε > 0) and infrared regulators (ε < 0). Formally, the
theory is first renormalized dimensionally by going a little below the integer number d of
space-time dimensions and afterwards analytically continued to a little value above d to
regulate the mass singularities, see Ref. [194] for a comprehensive discussion. A modified
version of the dimensional regularization is the dimensional reduction (DR). It is of
particular interest in SUSY calculations, since it preserves global gauge invariance and
supersymmetry, also at the two loop level [195]. Adopting this regularization scheme first
introduced and applied in Refs. [196,197], all external particles and all gamma matrices
{γµ, γ5} appearing in the couplings are treated as quasi four-dimensional, while the loop
integrals are computed in D = 4−2 ε dimensions. For comparison, the introduction of a
cutoff Λ to the propagators to regulate UV divergences corresponds to the Pauli-Villars
regularization.

The complexity of the evaluation of loop integrals generally increases with the number
of loops and the number of legs. Massive internal lines further increase the level of
complexity by raising the number of involved scales. All masses and invariants formed
from external momenta are summarized in the term “kinematic invariants”. The sum
of independent kinematic variables corresponds to the number of scales involved in a
diagram. Already at one-loop many-scale integrals are hard to compute. Multi-loop
integrals involving multiple scales are particularly demanding. Further complexity arises
with the non-planarity of graphs. Such diagrams only appear beyond one loop. These
additional complications make the evaluation of multi-loop integrals an extremely non-
trivial task and shrewd and refined techniques need to be employed to tackle these.
Analytical techniques are very advanced, but when it comes to automation they very
often still reach their limit. Numerical methods are in general easier to automate but
issues here are the speed and the accuracy.

In the following, the main technical approaches towards the evaluation of multi-loop
and multi-scale integrals are reviewed. The main recent developments are sketched before
concluding with a motivation for the method chosen to be investigated in this thesis.
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3.3. Introduction of Feynman parametrization

3.3 Introduction of Feynman parametrization
A first method to deal with Feynman loop integrals is to introduce Feynman parameters
to every propagator. To prove that this technique indeed works, it is descriptive to have
a look at a two-propagator example [93]

1
AB

=
∫ ∞

0
dx1dx2 δ(1− x1 − x2) 1

(x1A+ x2B)2 , (3.5)

with the propagators A and B and the Feynman parameters x and y. Generalizing this
idea to multiple propagators is straightforward [152]

1
N∏
j=1

P
νj
j

= Γ(Nν)
N∏
j=1

Γ(νj)

N∏
j=1

∫ ∞
0

dxj x
νj−1
j δ

(
1−

N∑
i=1

xi
)  N∑

j=1
xjPj

−Nν , (3.6)

where Nν =
∑N
j=1 νj . An equivalent representation was derived by Schwinger. Pa-

rameters are usually referred to as Schwinger variables when they are assumed to have
values between zero and infinity, while values between zero and one are associated with
Feynman parameterization. The general form of a multi-loop integral reads

Gµ1...µR
l1...lR

= Γ(Nν)∏N
j=1 Γ(νj)

∫ ∞
0

N∏
j=1

dxj x
νj−1
j δ

(
1−

N∑
i=1

xi
) ∫

dDκ1 . . . dDκL

× kµ1
l1
· · · kµRlR

 L∑
i,j=1

kT
i Mij kj − 2

L∑
j=1

kT
j ·Qj + J + i δ

−Nν , (3.7)

where the propagators are written in terms bilinear in the loop momenta with coefficients
contained in the matrix M , terms linear in the loop momenta with coefficients Qj and
remaining terms included in J depending on the masses, external momenta and the
Feynman parameters only. To be able to integrate out the loop momenta, the terms
bilinear and linear in the loop momenta need to be brought into a quadratic form by a
shift

kl = k̃l + vl , vl =
L∑
i=1

M−1
li Qi . (3.8)

The integration of the quadratic form is then straightforward. After also integrating out
the radial coordinates the general loop integral reads

Gµ1...µR
l1...lR

= (−1)Nν∏N
j=1 Γ(νj)

N∏
j=1

∞∫
0

dxj x
νj−1
j δ(1−

N∑
l=1

xl)

×
bR/2c∑
m=0

(
−1

2

)m
Γ(Nν −m− LD/2)

[
(M̃−1 ⊗ g)(m) l̃(R−2m)

]Γ1,...,ΓR

× U
Nν−(L+1)D/2−R

FNν−LD/2−m
, (3.9)
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where

F(~x) = det(M)

 L∑
j,l=1

QjM
−1
jl Ql − J − i δ

 (3.10)

U(~x) = det(M), M̃−1 = UM−1 , l̃ = Uv . (3.11)

Note the sign of the infinitesimal imaginary part in Eq. (3.10). It results from factoring
an overall minus sign into the prefactor during Wick rotation. Each loop momentum
kli in the numerator is associated with a fixed Lorentz index µi. The Γi refer to the
combination of both indices Γi = (li, µi). For rank R = 0, the second line of Eq. (3.9)
reduces to the factor Γ(Nν − LD/2), containing overall UV divergences if present. In
the case of R = 1, the product (M̃−1 ⊗ g)(0) does not contribute and l̃(1) = l̃µ1

l1
. For

loop integrals of higher rank R > 1, products of the matrix element M̃−1
ij with the

metric tensor gµν contribute as a sum of all possible combinations with the vectors l̃ in
the double indices Γi. As an example of how to read the notation involving the metric
tensors, for rank R = 2 and correspondingly m = 1 it is

(M̃−1 ⊗ g)(1) = (M̃−1 ⊗ g)µ1µ2
l1l2

= M̃−1
l1l2
gµ1µ2 , l1, l2 ∈ {1, 2} . (3.12)

The functions U and F in Eq. (3.9) are the first and second Symanzik polynomial,
respectively, and are homogeneous (in the Feynman parameters). U is positive semi-
definite and F is negative semi-definite when all propagators are massless. The two

x2

p2

p1 p3

p4

x1

x3

x4

Figure 3.2: The one-loop box diagram with massless propagators.

functions can also be obtained using a graph-theoretical method, where the polynomials
are constructed from topological cuts of the corresponding Feynman graph. For the
construction of the function U , L lines of the graph are cut, whereas L+1 lines are cut to
arrive at the function F , see Refs. [152,198,199]. To illustrate this for a simple example,
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assume a massless one-loop box with all external legs being light-like, compare Fig. 3.2.
Then, the first Symanzik polynomial U is constructed from adding up all possible L line
cuts of propagators which lead to a tree-level diagram. Each cut propagator contributes
with its Feynman parameter, if more than one propagator needs to be cut (which happens
for L > 1), products of Feynman parameters, all of the same degree, enter the function
U . In the case of the one-loop box with massless propagators, this reads

+ + +

U = x1 + x2 + x3 + x4

The second Symanzik polynomial F is constructed from adding up all possible L+1 line
cuts of propagators. All L+1 cut propagators contribute with their Feynman parameter
and the squared momentum flowing into the resulting tree. In the case of the one-loop
box with massless propagators, the function F then reads

+ + + + +

F = −s12 x1x3 − s23 x2x4 − p2
1 x1x2 − p2

2 x2x3 − p2
3 x3x4 − p2

4 x4x1 .

While the prefactor Γ(Nν −m−LD/2) in Eq. (3.9) contains overall ultraviolet diver-
gences if present, the vanishing of the function U is related to ultraviolet sub-divergences
of the graph. The second Symanzik polynomial contains the occurring infrared singulari-
ties. The occurrence of these depends not only on the topology as in the UV case, but on
the kinematics as well. If some of the kinematic invariants are zero, e.g. when some ex-
ternal momenta are light-like, the vanishing of F may induce an infrared (IR) divergence.
Therefore general theorems about the IR singularity structure of multi-loop integrals are
sparse. For practical purposes sector decomposition can provide information about the
singularity structure and numerical results, because it offers a constructive algorithm to
extract the poles in 1/ε. When generalizing the kinematic invariants to physical space,
the second Symanzik polynomial can also vanish when linear combinations of Feynman
parameters and kinematic invariants vanish. A clever deformation of the integration
contour to the complex plane helps dealing with these physical poles and the integration
over thresholds.
For a diagram with only massless propagators, the function F does not contain any
squares in the Feynman parameters. If massive internal lines are present, terms of the
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type

F(~x) ∝ U(~x)
N∑
j=1

xjm
2
j (3.13)

appear. These are the source of complexity when it comes to the analytical evaluation
of multi-scale integrals, as many methods used for the simplifcation of an integrand can
no longer be applied.
This opens the field for a numerical treatment of multi-scale integrals, where squared
Feynman parameters are not a bottleneck to the calculation. Additionally, the intro-
duction of Feynman parameters is highly automatable paving the way towards a very
general solution to a large class of multi-scale integrals with arbitrary kinematics.
The problems occurring with this method and their solution will be explained in the next
two chapters. Beforehand, several other approaches towards solving multi-loop integrals
will be reviewed.

3.4 The virtues of a Mellin-Barnes representation

In analogy to Eq. (3.5), the main transformation to arrive at a Mellin-Barnes represen-
tation can be summarized in one line

1
(A+B)λ = 1

Γ(λ)
1

2πi

∫ +i∞

−i∞
dz Γ(λ+ z) Γ(−z) Bz

Aλ+z , (3.14)

with the difference, that now a sum in the denominator is transformed into a product.
The sum on the left-hand side can either be a massive propagator or a sum of two
propagators after Feynman parametrization. In the first case, massive propagators are
expressible as a continuous superposition of massless propagators. Considering that the
massive propagators introduce squares in the Feynman parameters, see Sec. 3.3, this
transformation can be very beneficial.
In general, a factorization of the type Eq. (3.14) can be used to achieve a representation

of loop integrals in terms of gamma functions, which are in general easier to evaluate.
This benefit comes at the cost of extra Mellin integrations. Within their integration
domain, poles in the variable z can occur. Taking these into account, the integration
contour must always be chosen such that the poles with a Γ(· · · + z) dependence are
placed left of the contour and the poles with a Γ(· · ·− z) dependence are situated on the
right-hand side with respect to the contour. Closing the contour to the right and taking
a series of residues, the integral can be evaluated. Yet, finding the appropriate contour
is non-trivial.
With the computation of the planar [200] and non-planar [201] massless two-loop

four-point diagram, Smirnov and Tausk pioneered the utilization of a Mellin-Barnes
representation finding an appropriate choice of contours for physical kinematics includ-
ing thresholds. Several software packages became available automating the analytical
procedure where possible, see Refs. [202–204]. The more scales are involved, the less
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easy it is to arrive at a fully analytical result. Numerical approaches have also been
considered [205–207], putting much effort in the automation of a proper analytical con-
tinuation of the integrand. Very recently an idea by Pilipp [208] was implemented with in
combination with Feynman parametrization to treat such contours in an automated way,
see Ref. [207]. It works as follows: The second Symanzik polynomial F is decomposed
as

F(x1, . . . , xn) = ρ F1(xi) + F2(xi) , (3.15)

where a small coefficient to terms in F is extracted into the parameter ρ and where all
terms contained in F1 and F2 are sufficiently large as not to contribute to a singularity.
The Mellin-Barnes representation is then introduced for the product

Γ(Nν − LD/2)
(ρF1 + F2)Nν−LD/2

= 1
2πi

∫ i∞

−i∞
dz ρzΓ(Nν − LD/2 + z)Γ(−z)

F−z1 F
Nν−LD/2+z
2

, (3.16)

After the application of sector decomposition which will be described in detail in Chap. 4,
the functions Fi and U are constant in the Feynman parameters xi, so that the singularity
structure is revealed in the exponents of the factorized xi

xni−1+biε+ciz
i , (3.17)

where the −1 enters with the Feynman parametrization, and where ni, bi and ci are
some coefficients resulting from the division into sectors. Allowing only those integrals
where ci < 0, the integration contour of the integral over the variable z can be closed
to the right, allowing for the application of Cauchy’s integral theorem. The residues
arising from terms of the type Γ(ni+ biε+ ciz) after xi integration need to be taken into
account. Afterwards, an expansion in the parameter ρ can be performed.
The usage of a Mellin-Barnes representation can be very beneficial in diverse contexts

and can even be applied in an automated way to the physical region with the computation
of asymptotic expansions in the Feynman integrals. Yet, a fully automated approach in
all regions of phase space is difficult.

3.5 The method of differential equations

As it turns out, a representation for the master integrals resulting from the reduction can
also be found by setting up differential equations in all kinematic invariants and solving
them with the appropriate boundary conditions. The method was first introduced by
Kotikov who related massive loop integrals to massless ones, see Ref. [209] and then
generalized to differential equations in all kinematic invariants, see Refs. [210,211].
Taking the derivative of an integral with respect to one of its invariants yields linear
combinations of integrals with at most one additional propagator in the denominator
and one additional scalar product in the numerator. The derivatives of the invariants
sij = (pi + pj)2 can be expressed in terms of derivatives in the external momenta, e.g.
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for box diagrams

sij
∂

∂sij
= 1

2

(
pµi

∂

∂pµi
+ pµj

∂

∂pµj
− pµk

∂

∂pµk

)
, i 6= j 6= k , i, j, k = 1, 2, 3 . (3.18)

This generates similar expressions as those resulting from IBP relations mentioned in
Sec. 3.1 and Lorenz invariance identities (LI) introduced by Gehrmann and Remiddi,
see Ref. [193]. Using the IBP and LI relations, the integrals which received an additional
propagator or scalar product can be reduced again to such an extent as to result in a
system of differential equations. In the example of box diagrams, one of the equations
reads

sij
∂

∂sij
It,t,0(sij , sjk, ski, D) =A(sij , sjk, ski, D) It,t,0(sij , sjk, ski, D)

+ F (sij , sjk, ski, D, It−1,Nν ,R(sij , sjk, ski, D)) (3.19)

where It,Nν ,R is an integral of a diagram with four external legs of t different propagators
and R scalar products and where the function A is rational. The function F plays the
role of an inhomogeneous term and the integral contained in it, It−1,Nν ,R, is one differing
propagator short compared to the It,Nν ,R integral. The boundary conditions can be
derived from kinematical limits, e.g. a vanishing invariant sij ,

It,t,0(0, sjk, ski, D) =−A(0, sjk, ski, D)−1

× F (0, sjk, ski, D, It−1,Nν ,R(0, sjk, ski, D)) , (3.20)

where A(0, sjk, ski, D) 6= 0. Afterwards, the differential equations can be solved by
introducing an integrating factor M of the type

M(sij) = e
∫
dsij A(sij ,sjk,ski,D) , (3.21)

yielding solutions to the inhomogeneous equation

It,t,0(sij ,sjk, ski, D) = 1
M(sij)

×
(∫

dsijF (sij , sjk, ski, D, It−1,Nν ,R(sij , sjk, ski, D)) M(sij) + C

)
,

(3.22)

where the integral over the function F and M is either known or relatively easy to inte-
grate and where the constant C is chosen such that it matches the boundary conditions.
The nice feature of this technique is that it can be applied to arbitrary multi-loop inte-
grals with arbitrary scales. However, the current bottleneck is related to the appearance
of elliptic integrals. These already appear in the rather simple but all-massive two-loop
bubble with different masses, see Fig. 3.3. After the developments summarized in this
thesis, such an integral is easily treated numerically for in principle arbitrary kinematics
and in a fully automated way.
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m1

m3

m2p

Figure 3.3: Two-loop two-point massive bubble diagram, also termed the "sunrise"
topology.

3.6 Further analytic developments

Apart from the multi-purpose techniques already mentioned in the previous sections,
there are many more specialized tricks to attack a special class of multi-loop integrals on
the one hand, and other ideas based on long-known mathematical concepts to simplify
the result on the other hand. Furthermore, intensive exploration of diverse mathematical
concepts uncovered new criteria and underlying structures to easier access scattering
amplitudes.

A presentation of analytic results in terms of generalized hypergeometric functions has
been found to yield very compact results. The evaluation of special cases of hypergeo-
metric functions, namely generalized Lauricella functions involving elliptic integrals are
not accessible by present analytical techniques. In contrast, for all results expressible in
terms of generalized harmonic polylogarithms (GHPLs) a fast, accurate and stable nu-
merical evaluation of the analytical expressions can be found. GHPLs are generalizations
of harmonic polylogarithms [212], introduced in Refs. [213,214] and applied in innumer-
able phenomenological applications. They are not all independent and relations among
them can become very complicated. A systematic approach to govern the complexity
of such relations is therefore highly desirable in the study of multi-loop integrals. One
such approach is the formulation of results in terms of symbols. The concept, introduced
by Zagier and Gonachrov in Refs. [215–217], allows for particularly simple and elegant
expressions. After the symbol calculus was applied in the context of N = 4 supersym-
metric Yang-Mills (SYM) theory, see Refs. [218–228], it was found to be also applicable
to diverse phenomenological problems, see Refs. [80, 81, 229–236]. The coproduct, as a
generalization of the symbol, allowed for the conservation of information on constants
with an associated weight, as was pointed out in Refs. [231,237,238].
As already mentioned in Sec. 3.1, beyond one-loop the basis of master integrals is not

fixed. Finding criteria for an optimal basis was therefore a major breakthrough in the
computation of multi-loop amplitudes. These were introduced by Henn, see Ref. [239],
and further explored and applied in Refs. [240–245]. They lead to a straightforward
iterative solution of the differential equations in the dimensional regulator ε.
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Chapter 3. Multi-scale integrals beyond one loop

While the formulation of results in terms of much simpler representations is of vital
importance in pushing the frontier towards the computation of higher loop integrals,
the introduction of completely different approaches to the computation of the master
integrals forms the second pillar in multi-loop computations. Conceptually, every mathe-
matical object constituting a loop integral can be reformulated using a different approach
which is more suitable in a specific calculation. Master integrals entering at higher order
in perturbation theory can be approached from a graph theoretical point of view, an
algebraic or a geometric point of view, to just name a few of the many areas of inter-
play between physics and mathematics that lead to attractive solutions to yet unsolved
integral representations. The liberation from calculations in strictly 4 dimensions, for
example, lead to plural ingenious approaches. The old concept of an infinitesimal ε shift
used in dimensional regularization is predominantly used in the computation of loop
integrals. It is also an old concept to shift the dimension by positive or negative integer
numbers, see Refs. [198, 246–250], but one may also benefit from an integral represen-
tation adopting a negative dimension. The latter was developed in Refs. [251–254] and
successfully applied in the computation of a massless two-loop five-propagator diagram,
where the expression of a sub-loop is derived using negative dimensions, see Ref. [255].
An abstraction to scalar one-loop vertex functions including internal masses, off-shell legs
and arbitrary propagator powers was achieved for general dimensions, see Ref. [256].
Another concept centers around the analysis of discontinuities across the branch cuts
of Feynman integrals. In the traditional approach, the integral might be reconstructed
directly from one of its discontinuities using a dispersion relation, see Refs. [257–260].
This technique can be generalized to the application of sequential unitarity cuts in dif-
ferent channels, reconstructing one- and multi-loop integrals, see Ref. [235].
Furthermore, the criterion of linear reducibility of a graph has been studied over the
past few years and recently used in the computation of diverse examples, compare
Refs. [261–268]. The examples, all being linearly reducible in the Feynman parameters,
can be integrated sequentially and analytical results can be given in terms of multiple
polylogarithms.

3.7 Motivation for adopting a numerical approach

One may realize that the quality of an employed technique to tackle multi-leg, -loop
and -scale integrals on the one hand lies in its applicability to very generic cases of loop
integrals, and on the other hand in the achieved accuracy within a given time span in ad-
dition to control over the parametric dependences. A fully automated elegant analytical
approach to compute all possibly existing loop integrals would therefore be the perfect
solution. Yet, analytical methods are still struggling with the appearance of elliptic inte-
grals, entering already in rather simple two-loop diagrams, while numerical approaches
need a better ratio of speed to accuracy to compete with the elegance of analytical re-
sults. The two main pillars therefore mutually enrich each other and methods including
analytical and numerical approaches push the boundaries of what is computable with
present techniques.
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While the achievements using analytical methods were analyzed in the previous sec-
tions, there are diverse groups who contributed highly non-trivial results to significant
phenomenological applications taking up a numerical approach, compare e.g. Refs. [58,
159,269–278].

In the work summarized in this thesis, a highly automated numerical approach is
adopted, filling the gap of the missing automated evaluation of multi-loop multi-scale
integrals including thresholds. To this end, a representation of the integrals of inter-
est in terms of plain Feynman parameters is used. Due to its generality, the Feynman
parametrization can serve as the most universal approach to a numerical treatment of
integrals with arbitrary kinematics. Divergences are regulated dimensionally and are
factorized using the method of sector decomposition. The program SecDec version 1
already implemented the automated formulation of integrals in terms of Feynman pa-
rameterization, integration of loop momenta and a series expansion in the dimensional
regulator ε, where the coefficients to each order in ε are integrated numerically. The
upgrade of this program to be able to deal with mass thresholds within the integra-
tion region is one of the main achievements of the work presented in this thesis. The
advancement is accomplished by an automated analytical continuation of the Feynman
parametrized integrand, building on work presented in Refs. [274, 275, 279–281]. With
the resulting version 2 of SecDec, valuable predictions and checks can be done, regard-
less of the number of scales involved. Contrary to analytical methods, it can even be
beneficial to include more scales. While purely finite integrals with multiple scales are
hard to access with analytical methods, it is comparatively easy using the numerical ap-
proach. Finally, it turns out that not only is the developed tool useful for checks against
analytical results, but it has also proven powerful in computing analytically unaccessible
integrals for phenomenological applications.
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4 | The method of
sector decomposition

As described in the introduction, a theory can be ultra-violet and infrared divergent,
The idea of renormalization is to subtract the divergent parts and thereby make the
theory finite. Finding the right subtraction terms for the UV divergent parts was a long
standing problem whose solution resulted in the BPHZ theorem. To this end Hepp used
a decomposition of higher order loop diagrams into sectors to disentangle overlapping
UV divergences [144]. Thirty years later, the idea was taken up by Denner and Roth for
a disentanglement of UV divergences [282].
The application to infrared singularities and a systematic treatment of these to ar-

bitrary loop order using sector decomposition was pointed out by Binoth and Hein-
rich [151]. It serves as a local subtraction procedure to separate infrared divergences
from individual diagrams.

4.1 Conceptual idea
The algorithm to find the subtraction terms of individual graphs works in three main
steps. In the first step, the singular components of an integral are disentangled by
iteratively decomposing the integral into sectors. In a second step, the pole coefficients
to each order in the poles of the dimensional regulator ε are extracted. In the last step,
the coefficients containing kinematic invariants and Feynman parameters are integrated
analytically or numerically if an analytical treatment is not accessible.

y

x

−→ + −→(2)

(1)

+

y

x

t

t

Figure 4.1: The basic idea of sector decomposition.

The idea of sector decomposition is essential for the first step of the algorithm. It is
based on splitting the integration region to achieve a disentanglement of the singularities.
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As a simple example, consider the following integral∫ 1

0
dx1

∫ 1

0
dx2

1
(x1 + x2)2+ε (4.1a)

=
∫ 1

0
dx1

∫ 1

0
dx2

1
(x1 + x2)2+ε (Θ(x1 − x2) + Θ(x2 − x1)) (4.1b)

=
∫ 1

0
dx1

∫ x1

0
dx2

1
(x1 + x2)2+ε +

∫ 1

0
dx2

∫ x2

0
dx1

1
(x1 + x2)2+ε (4.1c)

=
∫ 1

0
dx1

∫ 1

0
dx̃2

x1
(x1 + x1x̃2)2+ε +

∫ 1

0
dx2

∫ 1

0
dx̃1

x2
(x2x̃1 + x2)2+ε , (4.1d)

=
∫ 1

0
dx1

∫ 1

0
dx̃2

1
x1+ε

1 (1 + x̃2)2+ε +
∫ 1

0
dx2

∫ 1

0
dx̃1

1
x1+ε

2 (x̃1 + 1)2+ε , (4.1e)

where overlapping divergences appear in the limit of a vanishing of both Feynman pa-
rameters x1, x2 → 0 in the first line. In the second line, see Eq. (4.1b), the integration
region is split into one part where x1 is always bigger than x2 and a second part where
the hierarchy is reversed. The splitting can be translated into a change of the integration
boundaries, compare Eq. (4.1c). Using the transformation

x1 → x1 (4.2a)
x2 → x1x̃2 (4.2b)

in the first integral on the righthand side of Eq. (4.1c) and the transformation

x1 → x2x̃1 (4.3a)
x2 → x2 (4.3b)

in the second integral on the righthand side of Eq. (4.1c), both integrals are remapped
onto the unit hypercube, compare Eq. (4.1d). The transformations in Eqs. (4.2) and
(4.3) are known in the mathematical literature as blowing-up an affine N -dimensional
space, compare e.g. Ref. [283]. The number of variables participating in this blowing-up
is two, therefore N = 2 in this example. The blowing-up leads to two integrals with
disentangled (non-overlapping) singularities, compare Eq. (4.1e).

In the following, all three steps of the algorithm are discussed in more detail. When
treating Feynman loop integrals, a decomposition into primary sectors is beneficial and
performed before the iterated decomposition into sub-sectors. The description of the
algorithm is restricted to scalar multi-loop integrals for better readability, but the ex-
tension to multi-loop tensor integrals is straightforward. The discussion of the algorithm
is based on Refs. [151,152].

4.1.1 Generation of primary sectors
A general loop integral in Feynman parametrization, compare Eq. (3.3), contains a
δ-distribution, which can be formulated in various ways. To arrive at the simplest
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4.1. Conceptual idea

representation for a subsequent iterated sector decomposition, the representation of the
δ-distribution is chosen such that a definite hierarchy is introduced after integration,
where one Feynman parameter xl out of N is always larger than the rest. To this end,
the N dimensional unit hypercube is split into N sectors. In each of these so called
primary sectors, one Feynman parameter xl is chosen to be larger than all others

N∏
j=1

∫ ∞
0

dxj =
N∏
j=1

∫ ∞
0

dxj
N∑
l=1

Θ(xl ≥ xj ≥ 0) , (4.4)

where Θ is the Heaviside step function with values

Θ(x− y) =
{

1, x > y ,
0, x ≤ y .

(4.5)

In the distribution sense, it is a generalized function defined as

Θ(x− y) =
∫ ∞
y

dx ϕ(x) , (4.6)

where the derivative of ϕ(x) with respect to x gives the Dirac δ-distribution. After the
decomposition into primary sectors, the integral G is split into N integrals Gl with xl
the upper integration boundary of all integrals over xi (∀i 6= l), compare Eq. (4.1c). In
the next step, all integrals are remapped to the unit hypercube by using a blowing up
transformation on the Feynman parameters

xj =
{
xltj , j 6= l ,
xl, j = l .

(4.7)

The homogeneity of the functions U and F lead to a scaling behavior of U ∝ xLl and
F ∝ xL+1

l , where L is the number of loops of the diagram, see Sec. 3.3. Taking into
consideration all powers in xl appearing in one sector

Gl ∝
∫ ∞

0

N∏
j=1
j 6=l

(xN−1
l dtj) dxl (xltj)νj−1xνl−1

l x
L(Nν−(L+1)D/2)−(L+1)(Nν−LD/2)
l (4.8)

∝
∫ ∞

0

N∏
j=1
j 6=l

(tν−1
j dtj) dxl x

(∑N

k=1(νk−1)+N−1
)

l x−Nνl (4.9)

∝
∫ ∞

0

N∏
j=1
j 6=l

(tν−1
j dtj) dxl x−1

l , (4.10)

an overall factor of x−1
l remains. The integration of the δ-distribution

∫ ∞
0

dxl
xl
δ(1− xl (1 +

N−1∑
k=1

tk)) = 1 (4.11)
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then yields primary sectors of the type

Gl =
N∏
j=1
j 6=l

1∫
0

dtj t
νj−1
j

UNν−(L+1)D/2
l (~t)
FNν−LD/2l (~t)

, (4.12)

where the Gl are connected with the full integral G by

G = (−1)Nν∏N
j=1 Γ(νj)

Γ(Nν − LD/2)
N∑
l=1

Gl . (4.13)

4.1.2 Iterated sector decomposition
In the one-loop case, the first Symanzik sub-sector polynomials Ul are already brought

into the form Ul = 1 +
N∑

j=1, j 6=l
tj after the decomposition into primary sectors. This

is different at higher loop order L > 1 and also for the second Symanzik sub-sector
polynomials Fl. An iterative procedure allows for the successive disentanglement of all
singularities. It follows three steps which are performed until completion.

At first, a minimal set of parameters S = {tα1 , . . . , tαr} is assigned which leads to a
vanishing of the primary sector functions Ul and Fl in the limit of vanishing elements
of S. The success of the decomposition is dependent on the choice of S which is by no
means unique.

Then, the defined r-dimensional cube is split into sub-sectors
r∏
j=1

Θ(1 ≥ tαj ≥ 0) =
r∑

k=1

r∏
j=1
j 6=k

Θ(tαk ≥ tαj ≥ 0) . (4.14)

Next, the integration boundaries are transformed back to the unit cube by applying
a blowing up once more, leading to the following transformation rules for the Feynman
parameters

tαj =
{
tαktαj , j 6= k ,
tαk , j = k .

(4.15)

At least one of the functions Ul and Fl factorize in the parameter tαk with the exponent
of Ul or Fl, respectively. Taking the additional Jacobian factor of tr−1

αk
into account,

exponents of the type Ak − Bk ε result for each integration parameter tαk . Ak and Bk
are numbers independent of the regulator ε. The resulting sub-sector integrals are of
the form

Glk =
N∏
j=1
j 6=k

1∫
0

dtαj
(
tAk−Bkεαk

) UNν−(L+1)D/2
lk (~tαj )
FNν−LD/2lk (~tαj )

, k = 1, . . . , r . (4.16)

36



4.1. Conceptual idea

The three steps are repeated creating further sub-sectors Ulk1k2...kc and Flk1k2...kc , until
no further set S can be found after c iterations which leads to a vanishing of the sub-
sector functions. This is the case when they contain a constant term in form of a 1 in the
case of the first, and in form of a kinematic invariant in the case of the second Symanzik
polynomial

Ulk1k2... =1 + u(~tαj ) , (4.17)
Flk1k2... =s1 +

∑
β

(sβ)fβ(~tαj ) , (4.18)

where u(~tαj ) and fβ(~tαj ) are polynomials in the Feynman parameters and where kine-
matic invariants including masses are termed s1 and sβ.
The singular behavior is now contained in the exponent Ak and all overlapping diver-
gences are disentangled.

4.1.3 Extraction of the poles
It is now possible to find subtraction terms to extract poles in a Laurent series in the
regulator ε. Each obtained sub-sector integrand and all variables tαj with exponents
Aj −Bj ε can be written in the general form

Ij =
∫ 1

0
dtαj t

Aj−Bjε
αj I(tαj , {tαi 6=αj}, ε) , (4.19)

where I is a function of the decomposed sub-sector functions Ulk1k2...kc and Flk1k2...kc . If
the Feynman parameter is of positive or vanishing exponent, Aj ≥ 0, the integration is
finite in the regulator ε and no subtraction is needed. In all other cases, the integration
will lead to a logarithmic pole for Aj = −1 or a higher pole if Aj < −1 and in the limit
of a vanishing Feynman parameter tαj . To expand around the pole, an expansion into a
Taylor series around tαj = 0 can be performed

I(tαj , {tαi 6=αj}, ε) =
|Aj |−1∑
p=0

I(p)
j (0, {tαi 6=αj}, ε)

tpαj
p! +R(~t, ε) , (4.20)

where R(~t, ε) denotes the remainder term which does not contain any poles in the pa-
rameter tαj by construction and where

I(p)(0, {ti 6=j}, ε) = ∂p

∂tpj
Ij(tj , {ti 6=j}, ε)

∣∣∣
tj=0

. (4.21)

Reinserting Eq. (4.20) into Eq. (4.19) the only terms depending on the variable tαj are
powers of it and the remainder polynomial R. Expanding the whole integrand into
plus-distributions using the identity

x−1+κ ε = 1
κ ε

δ(x) +
∞∑
n=0

(κ ε)n

n!
[ lnn(x)

x

]
+
, (4.22)

37



Chapter 4. The method of sector decomposition

where∫ 1

0
dx f(x)

[g(x)
x

]
+

=
∫ 1

0
dx g(x)

[
f(x)− f(0)

x

]
, (4.23)

the integration over tαj can be performed straightforwardly for the first term on the
righthand side of Eq. (4.20), resulting with only the integration left in the finite remainder
term

Ij =
|Aj |−1∑
p=0

1
Aj −Bj ε+ p+ 1

I(p)
j (0, {ti 6=j}, ε)

p! +
∫ 1

0
dtjt

Aj−Bjε
j R(~t, ε) . (4.24)

In the case of a logarithmic divergence, the sub-sector integrand with poles subtracted
in the variable tαj would read

Ij =
∫ 1

0
dtαj t

−1−Bjε
αj I(tαj , {tαi 6=αj}, ε)

=−
I(0, {tαi 6=αj}, ε)

Bjε

+
∫ 1

0
dtαj t

−1−Bjε
αj (I(tαj , {tαi 6=αj}, ε)− I(0, {tαi 6=αj}, ε)) . (4.25)

4.1.4 Calculation of the pole coefficients
After repetition of these subtraction steps for all variables tαj∀ j and all obtained sub-
sectors, nested sums result where each summand can be dependent on the regulator ε.
The whole expression can be expanded in ε yielding a Laurent series with coefficients
Clk1k2...kc,m for each of the c(l) sub-sector integrals of the l-th primary sector

Glk1k2...kc =
n∑

m=−2L
Clk1k2...kc,mε

m +O(εn+1) (4.26)

which again enter the full result for a (scalar) loop diagram as

G = (−1)NΓ(Nν − LD/2)
N∑
l=1

c(l)∑
k=1

Glk1k2...kc . (4.27)

4.2 The choice of algorithm

4.2.1 Goals
The best suited sector decomposition algorithm may differ in view of the two aspects,
applicability and simplicity of the result. One algorithm may be applicable to every
multi-loop diagram, but result in very complicated expressions. Another one may lead
to relatively simple expressions, but is not guaranteed to stop.
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4.2. The choice of algorithm

A sector decomposition algorithm does not stop, as soon as it runs into an infinite
recursion. The appearance of such can be exemplified assuming the following function

f(x1, x2, x3) = x2
1 + x2

2x3 . (4.28)

When decomposing it first in the variables x1 and x3, two sub-sectors with opposite
hierarchy

f1(t1, x2, x3) =x3 (x3t
2
1 + x2

2) (4.29)
f2(x1, x2, t3) =x1 (x1 + x2

2t
2
3) (4.30)

are created by rescaling the Feynman parameter x1 = x3t1 in the first sub-sector of
function f , and x3 = x1t3 in the second sub-sector. Choosing the sub-sector f1 and the
set S = {2, 3} of Feynman parameters, the initial functional results

f11(t1, t2, x3) =x2
3 (t21 + x3t

2
2) (4.31)

f12(t1, x2, t3) =x2
2 t3 (t3t21 + x2) , (4.32)

augmented by an additional factor of Feynman parameters. The set S = {1, 2} would
instead lead to a termination of the algorithm. If chosen in an inconvenient way, de-
composition sequences can complicate integrand functions or even lead to an infinite
recursion. The occurrence of the latter limits the applicability. Manifestations of the
former have a direct influence on the numerical convergence.
The fewer decomposition steps are needed in an iterative algorithm, the fewer sub-

sectors are produced and the smaller the powers of factorized integration parameters
are.

4.2.2 A heuristic algorithm for slim results
A first algorithm, which is also the one employed in the program SecDec, is completely
heuristic. First, the primary sector decomposition is performed as described in Sec. 4.1.1.
Then, each individual primary sector is iteratively decomposed into sub-sectors until
both Symanzik polynomials are finite for vanishing Feynman parameters. The procedure
works as follows:

1) Determine which of the two polynomials Ul and Fl of the primary sector l turns
zero in the limit of vanishing Feynman parameters. Find the best decomposition
set S for this function. If both polynomials nullify, find the best decomposition set
for Ul.

2) Compute all possible subsets of Feynman parameters contained in one primary
sector.

3) Find the smallest set Smin that nullifies the function detected in 1). If two or more
such sets have equal but minimal length, proceed with step 4), otherwise continue
with step 5). The smallest set must contain more than one Feynman parameter,
otherwise it would factorize from the polynomials Ul and/or Fl.
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4) Discover which of the minimal sets maximizes the number of vanishing sub-sector
polynomials. If there are several minimal sets leading to the same maximal number
of vanishing polynomials, analyze the powers in the Feynman parameters of each
nullifying set for the function detected in 1). Choose the set with lowest powers in
the vanishing Feynman parameters.

5) Divide both, Ul and Fl into sub-sectors using the encountered best minimal set.

The procedure is iterated and more sub-sectors are produced as long as there is a set
that nullifies Ulk1...kc or/and Flk1...kc .
This heuristic strategy is found to produce the least sectors compared to strategies
described separately by Bogner, Weinzierl and Smirnov, Tentyukov, compare Ref. [284]
and Ref. [285], respectively. Yet, the algorithm is not guaranteed to stop. The probability
for running into an infinite recursion as described in the previous section can be reduced
by introducing an additional heuristic strategy to the algorithm. In the latter, a pre-
decomposition is carried out for all those Feynman parameters appearing quadratically or
in higher powers in the primary sectors. No selection of a subset of Feynman parameters
is performed. This treatment has proven to be very beneficial in many cases, especially
in the computation of two-loop integrals with massive internal lines, but can lead to
an increase in the number of produced sectors if it is always carried out. Applied to
inconveniently chosen sectors of complicated integrals, this additional strategy can even
introduce higher spurious negative powers in the factorized Feynman parameters.

4.2.3 Algorithms guaranteed to stop
There are examples of three-loop diagrams which cannot be treated with the heuristic
algorithms described in the previous chapter due to the occurrence of infinite recursion.
To this end, it is interesting to find algorithms which are guaranteed to stop, regardless
of the numbers of sectors produced.
The possibly simplest algorithm to that matter is the one introduced by Hepp [144],

where n! sectors are produced due to the fact that each sector is split in all Feynman
variables xn, thereby always choosing the maximal decomposition set. Although this
strategy will eventually terminate, the amount of sectors produced is by far too large.
The problem can be solved differently by formulating it in terms of the polyhedra game
introduced by Hironaka where the player A is supposed to win over player B after a
finite number of moves and independent of the reaction of player B, see Ref. [286]. The
relation to sector decomposition was found by Bogner and Weinzierl who also analyzed
three strategies leading to the termination of the sector decomposition algorithm, see
Ref. [284]. The first strategy analyzed there is based on work by Zeilinger [287], the
second on a strategy by the mathematician Spivakovsky [288], and the third strategy is
inspired by a proof of Encinas and Hauser, see Ref. [289]. The strategies are all based on
enforcing a sequence of decreasing decomposition sets of Feynman parameters used for
each step in the iterated decomposition into sub-sectors. It was found, that the heuristic
strategy always wins over the terminating algorithms in terms of the numbers of sectors
produced, see Ref. [284,290].
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This situation does not change with the introduction of another strategy S found by
Smirnov and Tentyukov, although it results with less sectors than the previously men-
tioned terminating strategies, see Ref. [285]. The strategy involves the computation of
normal vectors to facets of the convex hull of all weights, where the weights are found
by the exponents in the Feynman parameters of each monomial in the sub-sector poly-
nomial. If there is no facet which would lead to a, with respect to the lexicographical
ordering, smaller set of Feynman parameters to be decomposed in the next step, the
decomposition is finished using strategy which is guaranteed to stop, e.g. the one based
on work by Zeilinger. It was also found that strategy S produces the same number of
sectors as the strategy based on Speer sectors [291], which can process more information
about the graph to be computed. The introduction of Speer sectors leads to a higher
efficiency in the sector decomposition, regarding the speed and the memory intensity,
see Refs. [292,293].

Having introduced all these strategies, it would be nice to have a strategy which pro-
duces comparatively few sectors with regard to the heuristic strategy and is guaranteed
to terminate in a finite number of steps. Such a strategy was introduced by Kaneko and
Ueda [294,295]. They take a deterministic approach and reformulate the primary sectors
using convex and combinatorial geometry. By the construction of intersections of dual
cones to convex polyhedral cones a unique decomposition of the integration region can
be found for each polynomial. Some of the cones may still be too complicated for inte-
gration, therefore they can be cut into simplices using triangulation. The total number
of sectors produced depends on the triangulation algorithm. For the latter, there are
many implementations available in the literature, see e.g. Refs. [296,297]. Using the first
of the two, the resulting number of sectors is found to be even smaller compared to the
heuristic strategy and the algorithm is, by construction, always guaranteed to stop, see
Ref. [295]. The drawback is that the resulting functions are more complicated compared
to the integrands resulting from the heuristic strategy. This is due to the fact that it is
not an iterative algorithm. While currently only the heuristic strategy, augmented by
the option of applying a pre-decomposition, is implemented in the program SecDec,
the algorithm of Kaneko and Ueda will be included in the next improved version of the
program, see Sec. 6.6.
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5 | Singularity structure of
Feynman integrals

5.1 Euclidean vs. physical kinematics
In Sec. 3.3 it was already pointed out that both Symanzik polynomials are of definite
sign when computing integrals in the Euclidean region. This implies that the energy
component of the external momenta lies on the imaginary axis, leading to negative values
in the kinematic invariants sij < 0 and p2

i < 0 and an overall positive contribution in
the second Symanzik polynomial F . To verify this, compare e.g. with the one-loop
box example in Sec. 3.3. Then, together with masses entering with a positive sign,
F is positive semi-definite. After the application of sector decomposition, all possible
singularities appearing in F are factorized leading to only positive definite integrands.
Switching to physical kinematics, the invariants formed from external momenta can

be real and four-momentum conservation
n−1∑
i,j
i6=j

sij −
n∑
i

p2
i = 0 (5.1)

must hold, where n is the number of external legs of which n−1 are linearly independent.
Due to this fact, F is no longer definite and further singularities, though integrable, can
occur within the integration region.

m1

m3

m2p

Figure 5.1: Two-loop two-point "sunrise" graph with three internal masses.

An intuitive example are production thresholds which appear as internal particles go
on-shell. This means that the overall incoming external momentum reaches any sum
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Chapter 5. Singularity structure of Feynman integrals

of masses of internal propagators potentially leading to physical final states. A simple
example to demonstrate this is a two-loop two-point function with three internal masses,
see Fig. 5.1. The three-particle-cut discontinuity occurs for

p2 = (m1 +m2 +m3)2 . (5.2)

The analytical determination of the threshold locations gets more and more complicated,
the more external legs and propagators are involved. Writing an integral in Feynman
parametrization, thresholds may be parametrized at the integrand level, as a combination
of kinematic invariants and Feynman parameters. The full set of thresholds can be
determined solving the Landau equations of an integrand.

5.2 Landau equations
The Landau equations

xj (q2
j ({k}, {p})−m2

j ) =0 ∀ j ∈ {1, . . . , N} (5.3a)

∂

∂kµi

N∑
j=1

xj
(
q2
j ({k}, {p})−m2

j

)
=0 ∀ i ∈ {1, . . . , L} , (5.3b)

give the necessary (but not sufficient) conditions for a divergence, see Refs. [257,298,299].
In accordance with the notation of Sec. 3.2, the qj are linear combinations of external
momenta pi and loop momenta ki, N is the number of propagators and L the number
of loops. Paraphrasing Eqs. (5.3a), either the propagator q2

j − m2
j or their respective

Feynman parameter xj must vanish to potentially contribute to a singularity. Only
if Eqs. (5.3b), involving a derivative by the loop momenta, vanish simultaneously, the
conditions for a Landau singularity are fulfilled.

A solution to the system with xj 6= 0 ∀ j gives the leading Landau singularity, which is
not integrable forN > 2 whenD = 4−2ε, and real values of masses and momenta. Those
singularities where the vanishing of one Feynman parameter leads to a singular behavior
are termed sub-leading Landau singularities. These correspond to the thresholds of a
subgraph as a vanishing Feynman parameter can be associated with the removal of one
propagator and the junction of two vertices. These singularities are integrable and of
logarithmic or square-root type.

The Landau equations can be solved by contracting the momenta of Eq. (5.3b) with
those loop and external momenta the equation depends on, to get a system of equations
which can be solved by using the constraints arising from Eq. (5.3a). A nice example
analysis can be found in Ref. [271]. Another example is shown in Sec. 7.2.
The Landau equations can also be formulated as

F(~x, {p,m2}) = 0 , (5.4a)
∂

∂xj
F(~x, {p,m2}) = 0 ∀ j ∈ {1, . . . , N} , (5.4b)
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after having integrated out the loop momenta, see Ref. [300]. The leading Landau
singularity is again given by the solution to the system of equations assuming an empty
set of vanishing Feynman parameters.
How we deal with these singularities will be described in the following section.

5.3 Deformation of the integration contour

5.3.1 Cauchy theorem

Re(z)

Im(z)

10

Figure 5.2: Schematic picture of the closed contour avoiding poles on the real axis.

Unless the function F is of definite sign for all possible values of invariants and Feyn-
man parameters, the denominator of a multi-loop integral will vanish within the integra-
tion region on a hypersurface given by the solutions of the Landau equations. To avoid
the non-physical poles on the real axis, the Cauchy theorem

∮
c

N∏
j=1

dzjI(~z) =
∫ 1

0

N∏
j=1

dxjI(~x) +
∫ 0

1

N∏
j=1

dzjI(~z) = 0 (5.5)

can be exploited, where Re(~z) = ~x. To be able to use the theorem, the original integrand,
depending only on the real coordinates xj , is analytically continued to the complex plane.
The coordinate transformation reads∫ 1

0

N∏
j=1

dxjI(~x) =
∫ 1

0

N∏
j=1

dxj
∣∣∣∣(∂zk(~x)

∂xl

)∣∣∣∣ I(~z(~x)) , (5.6)

where the new complex coordinates ~z describe a path parametrized by the variables ~x.
With a given description of the coordinates ~z, the Cauchy theorem in Eq. (5.5) can be
formulated. It is valid in this form as long as the deformation is in accordance with
the causal iδ prescription of the Feynman propagators, as the region enclosed by the
integration contour then does not contain any singular points, compare Fig. 5.2. It is
important to keep in mind, that no poles should be crossed while changing the integration
path, otherwise Eq. (5.5) is no longer valid.

45



Chapter 5. Singularity structure of Feynman integrals

Finding the right analytical continuation to the coordinates ~z is equivalent to finding
the proper deformation to the integration contour. It is the crucial step for the success
of this method and will be treated in the following.

5.3.2 Deformation
The aim is to find a clever deformation which is well suited for an automated application
in numerical calculations. For its realization, a good parametrization of the complex
variables zi in Eq. (5.6) must be found which on the one hand preserves the causal iδ
prescription, and on the other ensures all physical thresholds to appear as such in the
result. As the latter are contained in the Landau equations, an inclusion of these in the
deformation is desirable. It is therefore required that all Landau equations, Eqs. (5.4), are
realized when the deformed function F(~z(~x)) vanishes. Furthermore, the iδ prescription
for the Feynman propagators requires that the contour deformation to the complex plane
is chosen such that the infinitesimal imaginary part is conserved. The negative sign of
the imaginary part of the second Symanzik polynomial F was discussed in Sec. 3.3. For
real masses and Mandelstam invariants sij , the following Ansatz [279–281] is therefore
convenient

~z(~x) = ~x− i ~τ(~x)

τk(~x) = λxk(1− xk)
∂F(~x)
∂xk

, (5.7)

where λ is an arbitrary real and positive parameter. A closed integration contour is
guaranteed by the factors xk and (1− xk), keeping the endpoints fixed. From Eq. (5.7),
the negative sign of the imaginary part is only guaranteed if the derivative by F(~x) is
not negative. Assuming the overall deformation to be small, the analytic continuation
of the integrand can be expanded into a series

F(~x)→ F(~z(~x)) = F(~x)− i
∑
k

τk(~x)
(
∂F
∂xk

)2
+O(τk(~x)2) , (5.8)

where the expansion is done individually in each component k. The physically motivated
requirement that all Landau equations, Eqs. (5.4), be fulfilled is met in Eq. (5.8), when
the deformed integrand F(~z(~x)) vanishes. Furthermore, the imaginary part of F(~z(~x))
is always negative due to an ever positive ( ∂F∂xk )2 term. While the absolute size of the
derivative parts are determined by the diagrams to be computed, λ is chosen to be
a free parameter determining the scale of the deformation. Following the analysis of
Ref. [279], the Ansatz for the analytical continuation must guarantee a full cancellation
of singularities in subtraction terms present in the remainder term of Eq. (4.24), see also
Eq. (4.25). If the analytic continuation is done only after computing the subtraction
terms, one Feynman parameter is deformed, while the one of the subtraction term is
not. Assume the deformation of a function I depending on one Feynman parameter

I =
∫ 1

0
dtα t−1+ε

α (I(tα, ε)− I(0, ε)) . (5.9)
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5.3. Deformation of the integration contour

Analytic continuation of the parameter tα → zα = tα + iτ(tα) yields

I =
∫ 1

0
dtα

(
1 + i

∂τ(tα)
∂tα

) I(tα + iτ(tα), ε)− I(0, ε)
(tα + iτ(tα))1−ε . (5.10)

The subtraction term I(0, ε) was set up to cancel the soft singularity in the real part.
This parameterization can introduce spurious poles in the imaginary part, which are
not taken care of in the limit of tα → 0, unless τ(tα) vanishes faster than linear in the
Feynman parameter tα. If the deformation vanishes faster than linear in the Feynman
parameter tα, the imaginary part vanishes faster than the real part, resulting in the
original subtraction term. This condition is no longer necessary, when the analytic
continuation is done prior to the construction of the subtraction terms. It is due to this
analysis that the analytic continuation of each Feynman parameter is done right after
the iterated sector decomposition procedure.

In summary, unless a kinematic point fulfills all Landau equations, where both F and
its derivatives with respect to xi vanish, the deformation of the integration contour leads
to a well behaved integral at the points where only the function F vanishes.

An implementation and further analysis of this deformation for numerical calculations
has already been worked out in Refs. [274, 275]. To assure a high numerical stability of
the evaluation of multi-loop integrals, necessary to make the implementation publicly
available, supplementary studies of the deformation are necessary which are presented
in the following.

Deformation studies

The aim of these deformation studies is to find an optimal procedure for an optimal choice
for the parameter λ which guarantees a good behavior of the integrand. To this end, the
terms of order O(τk(~x)), O(τk(~x))2 and O(τk(~x))3 are analyzed, assuming a decreasing
effect in higher orders, as is expected from a convergent Taylor series expansion.

The analytic continuation of F(~z(~x)) to the third power in the deformation reads

F(~z(~x)) =F(x)− i λ
∑
k

xk(1− xk)
(
∂F
∂xk

)2

− 1
2λ

2∑
k

x2
k(1− xk)2

(
∂F
∂xk

)2(∂2F
∂x2

k

)
(5.11)

+ i

6λ
3∑

k

x3
k(1− xk)3

(
∂F
∂xk

)3(∂3F
∂x3

k

)
(5.12)

which uncovers two non-trivial aspects of the deformation. One leads to the fact that
the term proportional to λ2 contributes to the real part of F(~z(~x)) and the other to an
ambiguity in the sign of the imaginary part.
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Figure 5.3: Influence of the deformation on the real part for the one-loop bubble and
m = 1, s = 4.5.
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Figure 5.4: Influence of the deformation on the imaginary part for the one-loop bubble
and m = 1, s = 4.5.

To show the effect on the real part, it is descriptive to look at the specific but simple
example of the massive one-loop bubble, where the leading Landau singularity is well
known to be situated at s = 4m2 when x = 1

2 . The function F(x) of the one-loop bubble
reads

F1L-bubble(x) = −s x (1− x) +m2 − iδ . (5.13)

The real part of F after the analytical continuation is shown in Fig. 5.3, where a point
above threshold was chosen, with a massm = 1 and s = 4.5 and assuming arbitrary units.
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5.3. Deformation of the integration contour

From its basic geometric properties, it is known that the derivative of F in Eq. (5.7) is
smallest in the extrema and largest where the slope is maximal. Around x = 0.5, the
function F is almost, but not exactly, vanishing. The size of the deformation coming
from the derivative of F is shown for λ = 1. One can notice that choosing a rather small
λ = 0.5 the function F never vanishes except at the endpoints of the integration region
x = 0, 1, while for the cases of λ = 1, 2 the function additionally vanishes in four points.
In principle, this should not be a problem, as the imaginary part is not vanishing in
any point beyond the end-points, see Fig. 5.4. But the larger the value for λ is chosen,
the closer the points where the real part is zero, get to the endpoints, where also the
imaginary part is small. This can easily lead to numerical instabilities, so the parameter
λ should not be chosen too large.
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Figure 5.5: Implications for the best choice of λ from the modulus of F(z(x)) for the
one-loop bubble and m = 1, s = 4.5.

It should be noted that a value for λ > 1 is still viable, as long as the overall deforma-
tion is small. Otherwise, the series in the deformation Eq. (5.8) is no longer converging,
leading to a wrong sign of the imaginary part.

After having settled that the deformation parameter should not be chosen too large,
it must be found that it should neither be chosen to small, see Fig. 5.5. Though never
striking zero, the modulus is extremely small for λ = 0.5, in particular in the vicinity of
x = 0.5, which is bad for the numerical convergence. A maximization of the modulus of
the function F(~z(~x)) close to the critical points where it becomes minimal stabilizes the
numerical evaluation.

In the case of the one-loop bubble, the term of order λ3 in Eq. (5.12) is zero. This is
not the case for more complicated integrals. In order for this term not to grow dominant
and by that spoil the overall minus sign of the imaginary part, either lambda must
be chosen below one or the terms proportional to the derivative must be |∂F(~x)

∂xk
| < 1.
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Chapter 5. Singularity structure of Feynman integrals

This task can be accomplished by performing a small sampling of the derivative terms for
each Feynman parameter in various values and divide the parameter λ by the maximally
achieved value for the derivative

λ→ λ̃ = λ

max(|∂F(~x)/∂x1|, . . . , |∂F(~x)/∂xN |)
. (5.14)

Then, the derivative parts are roughly normalized to one and the scale of the deformation
is again dominated by the value for the parameter λ.
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Figure 5.6: Implications for the best choice of λ from the minimization of the complex
argument of F(z(x)) for the one-loop bubble and m = 1, s = 4.5.

In order to further prevent the deformation to become too large, valuable information
on the right choice of λ can be extracted from the analysis of the complex argument

ϕF(~z(~x)) =

∣∣∣∣∣∣∣∣
−
∑
k
τk(~x)

(
∂F
∂xk

)2

F(~x)

∣∣∣∣∣∣∣∣ , (5.15)

where the numerator contains the coefficient of the imaginary part of order O(λ), see
Fig. 5.6. Minimizing the complex argument ϕF(~z(~x)) improves the numerical convergence
in the whole integration region when kinematically far from a critical point. When
the imaginary part is relatively small compared to the real part, the terms of order
λ2 contributing to the real part cannot become too large and those terms going with
λ3 cannot spoil the overall sign of the imaginary part. This can be advantageous for
speeding up a calculation and is especially interesting in the case of highly fluctuating
integrands. Close to a threshold, this additional check is however not advisable because
it clashes with the maximization of the modulus of F(~z(~x)).

For more technical details about the implementation of the deformation, see Sec. 6.2.3.
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Pinch singularities

If a singularity falls together with an endpoint of the integration region, it is trapped
and no proper deformation of the integration contour is possible. The same applies to
the case where two singularities fall together, where one singular point could only be
bypassed deforming the contour into the direction of the other singularity. The result
is a pinch in the integration contour. Both, pinch singularities and singularities at the
endpoint of the integration region, are described by the Landau equations, compare
Eqs. (5.4).

With the introduction of the analytical continuation to the complex plane and the
deformation of the integration contour, integrable singularities do not appear as diver-
gences in the coefficients of the Laurent series in ε. Nevertheless, the method leads to
numerical instabilities in the vicinity of either a pinch singularity or a singularity at the
endpoint of the integration region. This is due to the fact that the deformation of the
integration contour becomes negligible. Returning to the one-loop bubble of Eq. (5.13),
this behavior can be observed in Fig. 5.5, where the modulus of the function F can
become very small. The evaluation time and accuracy of an integral close to such a
singular point heavily depends on the chosen value for λ and the numerical integrator.
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6 | Extension of the program
SecDec to physical
kinematics

In the following, the public program SecDec version 2 [1,2,4–7] is presented. SecDec is
a program for the numerical evaluation of multi-scale multi-loop and multi-dimensional
polynomial parameter integrals. It is based on the sector decomposition algorithm de-
scribed in Chap. 4, where dimensionally regulated singularities are extracted. Even
though their coefficients are available in algebraic form, they are usually too compli-
cated to be integrated analytically. Therefore the final computation of the coefficients to
each order in the regulator ε is done by Monte Carlo integration. To deal with integrable
singularities due to mass thresholds, the integration contour is deformed to the complex
plane. Before the extension to arbitrary kinematics was achieved with SecDec version 2,
a first version of the program was publicly available [301]. Other public implementations
of the sector decomposition algorithm working in the Euclidean space are introduced in
Refs. [204, 284, 285, 293, 296]. Recently, a new version of the program Fiesta has be-
come available [207], including interesting and valuable new features. The extension to
arbitrary kinematics was also achieved there, though their approach is heavily based on
the one employed in SecDec, as mentioned in their publication.

The structure of this chapter is as follows: in Sec. 6.1, the functionality of the program
SecDec version 2 is reviewed. Its characteristic features are explained in Sec. 6.2,
further capabilities are elaborated in Sec. 6.3. The operational sequence of the program
is shown in Sec. 6.4, before studying two examples and discussing the computation times
in Sec. 6.5. Prospective future developments are discussed in Sec. 6.6.

6.1 Functionality
In this section, the functionality of the program SecDec is described. The program has
two main branches, one where the computation of any loop integral or integral with a
similar structure is possible. The user can start from a diagram knowing the propagators
involved, or can even feed some of their own functions into the program. All other steps
including the output of the final result are performed in a fully automated way. In the
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other branch, more general parametric functions can be computed, including the special
feature that additional finite functions can be left symbolic until shortly before numerical
integration.

Up to the step of the final integration, the coefficients are computed in a fully analytical
way, where all kinematic invariants are left symbolic by default. This feature allows for
a fast evaluation of multiple kinematic points, as only the integration step is left to be
done if any of the kinematic invariants change. If a user is interested in just the result
for one particular diagram for one set of kinematics, it is also possible to insert kinematic
values in the beginning.

Version 2 of SecDec contains the following new features, which will be described in
detail in the next sections.

Loop integrals and integrals of similar structure

• Multi-scale loop integrals can be evaluated without restricting the kinematics to
the Euclidean region. This has been achieved by performing a (numerical) contour
integration in the complex plane. The program automatically tries to find an
optimal deformation of the integration path. In addition, a kinematic threshold can
be defined symbolically. Above this threshold, a complex contribution is expected
and the deformation of the integration contour is automatically switched on.

• For scalar multi-loop integrals, the integrand can be constructed from the topo-
logical cuts of the diagram. The user only has to provide the vertices and the
propagator masses, but does not have to provide the momentum flow. 1

• Tensor integrals can be evaluated with (in principle) no limitation on the rank.
This means that a numerical approach in certain cases can help to alleviate or
even avoid the procedure of amplitude reduction to master integrals. 1

• Another new feature is the option to apply the sector decomposition algorithm and
subsequent contour deformation on user-defined functions which do not necessarily
have the form of standard loop integrals, but have a simliar structure.

• The files for the numerical integration of functions amenable to contour deforma-
tion (multi-scale multi-loop integrals, user-defined functions) are written in C++

rather than Fortran. For integrations in Euclidean space, the user can choose
between using Fortran or C++.

• A parallelization of the algebraic part for Mathematica versions 7 and higher is
possible if multiple cores are available. This is of special interest when computing
very complicated multi-scale multi-loop integrals, see e.g. Chap. 7.

• A rescaling of all kinematic invariants by the absolute value of the largest invariant
can be chosen to achieve a faster convergence of the numerical result.

1This new feature has been implemented in collaboration with J. Carter.
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• Looping over ranges of parameter values is automated, allowing scans over different
kinematic configurations within one topology. 1

• A stable and recent version of the Cuba library [302,303], Cuba-3.2, allowing for
a parallelized numerical integration is added to the program and used by default.

General parametric integrals

• The user can define additional (finite) functions at a symbolic level. These can
be specified later, after the integrand has been transformed into a set of finite
parameter integrals, for each order in ε. 1

• Looping over ranges of parameter values is automated, allowing scans over param-
eter sets for more general polynomial functions. 1

Below, these new features are described in more detail, but also see Appendix A.2
for a user manual. Comprehensive documentation can be found with the code itself,
available at http://secdec.hepforge.org.

6.2 Characteristic features

6.2.1 Loop integrals
The program is capable of integrating general loop and multi-loop diagrams, including
kinematic thresholds, using Feynman parameters. In accordance with Sec. 3.3, such
a loop integral is composed of five parts, the two Symanzik polynomials U and F ,
the numerator, the δ-distribution and the powers of factorizing Feynman parameters.
While the numerator in a scalar integral is equal to unity, it can contain contractions
of loop momenta with each other or with external momenta when the integral is of
higher rank. While any kinematic invariant or scalar factor is treated as a constant in
the numerator, loop momenta appearing as contractions in the numerator influence the
singularity structure of the integrand, compare Eq. (3.9).
Tensor integrals up to in principle arbitrary rank can be computed with SecDec by

evaluating the coefficient functions of the Lorentz decomposed tensors. Take for example,
the Lorentz decomposition of a one-loop two-point (bubble) integral Bµ of rank R = 1
with one external momentum p

Bµ = pµB1 , (6.1)

where the coefficient function B1 reads

p2B1 = P

∫
dDq qµp

µ

(q2 −m2
1)((q + p1)2 −m2

2)
(6.2)

with P =
(

(2πµr)(4−D)

iπ2

)
. In the case of Bµ, the coefficient function B1 can be computed

with SecDec, thereby delivering a result for the whole tensor integral.
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The algorithms in SecDec are not restricted by any loop order, tensor rank or the
number of scales. Provided with the information on the diagram to be computed SecDec
calculates the Laurent series up to the desired order in the regulator ε in a fully auto-
mated way. For the iterated sector decomposition two heuristic strategies, described in
Sec. 4.2.2, are available. A diagram is specified by its propagators, loop momenta and
irreducible numerators, and by the number of external legs and their on-shell conditions.
The on-shell conditions become of special importance when external legs are light-like.
This is the minimal information needed. Yet, SecDec has several options allowing for a
more efficient evaluation tailored to specific integrals and/or a customization of the out-
put of the results. One of the features of SecDec is that all kinematic invariants are left
symbolic up to the numerical integration. This allows for a fast evaluation of integrals of
the same topology for different sets of kinematic values. If only one kinematic point is of
interest, it can be beneficial to set the values for the invariants already in the beginning
to allow for an additional simplification of the integrands prior to numerical integration.
This feature is included in SecDec as well, by abuse of the on-shell conditions, see
App. A.2.4. Furthermore, SecDec allows for the choice of the desired prefactor and
the maximal order in the regulator ε to be computed. Among further options regarding
the numerical integration, see Sec. 6.3.8, SecDec arranges for a user-adjustment of the
contour-deformation parameters for calculations in the physical region, see Sec. 6.2.3. A
removal of spurious divergences can be achieved using integration by parts, see Sec. 6.3.4.

6.2.2 Parametric integrals

The program SecDec can also factorise singularities from parameter integrals which
are more general than those in multi-loop integrals. The only restrictions are firstly that
the integration domain should be a unit hypercube, and secondly singularities should
reside only at the upper and/or lower integration boundary, i.e. at zero or one. Contour
deformation is not available for more general parametric functions, because it requires
the sign of the imaginary part to be known a priori in order not to give a wrong result.
Currently the singularities are assumed to be regulated by non-integer powers of the
integration parameters, e.g. the ε of dimensional regularization, or some other regulator.
The general form of such integrals is

I =
∫ 1

0
dx1 . . .

∫ 1

0
dxN

m∏
i=1

Pi(~x, {α})νi , (6.3)

where Pi(~x, {α}) are polynomial functions of the parameters xj , which can also contain
a set of symbolic constants {α}. The user can leave the parameters {α} symbolic during
the decomposition, assigning values only for the numerical integration step. This way
the decomposition and subtraction steps do not have to be redone if the values for the
constants are changed. In Eq. (6.3), the indices νi are of the form νi = ai + bi ε, with ai
such that the integral is convergent. Note that half integer powers are also possible.
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6.2.3 Implementation of Contour deformation
As explained in Sec. 5.3.1, singularities on the real axis can be avoided by a deformation of
the integration contour to the complex plane. The scale of the deformation is controlled
by the parameter λ defined in Eq. (5.7). The convergence of the numerical integration
can be improved significantly by choosing an “optimal” value for λ. As analyzed in
Sec. 5.3.2, values of λ which are too small lead to contours which are too close to the
poles on the real axis and therefore lead to bad convergence. Values of λ which are too
large can modify the real part of the function to an unacceptable extent, and could even
change the sign of the imaginary part if the terms of order λ3 become larger than those
terms linear in λ. This would lead to a wrong result. Therefore a four-step procedure is
implemented in SecDec to optimize the value of λ. These are

• Ratio check: To make sure that terms of order λ3 in Eq. (5.8) do not spoil the sign
of the imaginary part, the ratio of the terms linear and cubic in λ are evaluated
for a quasi-randomly chosen set of samples to determine λmax. The size of the set
can be chosen by the user.

• Modulus check: The imaginary part is vital at the points where the real part of F is
vanishing. In these regions, the deformation should be large enough to avoid large
numerical fluctuations due to a highly peaked integrand. Therefore the modulus
of each sub-sector function Fi is checked at a number of sample points. At the
points where the modulus is close to vanishing, the fraction of the value λmax is
picked which maximizes the modulus of Fi. Hereby, the value of λ which keeps Fi
furthest from zero is chosen.

• Individual λ(i, j) adjustments: If the discrepancy of the values of ∂Fi∂xj
for different

xj is very large among one sub-sector i, it can be convenient to have an individual
parameter λ(i, j) for each sub-sector function Fi and each Feynman parameter xj .
As was shown in Sec. 5.3.2, it is beneficial to have small overall deformations of
the integration contour. Therefore each individual parameter λ(i, j) is divided by
the largest value of ∂Fi∂xj

for all xj in one sub-sector i, decreasing the overall size of
the deformation. If the largest deformations is smaller or equal to one, the λ(i, j)
are left unchanged.

• Further optional λ(i, j) adjustments:
1) If the integrand is expected to be oscillatory and hence sensitive to small

changes in the deformation parameter λ, SecDec can minimize the argument
of each sub-sector function Fi by varying λ(i, j). The effect is shown in
Sec. 5.3.2.

2) If the integrand is expected to have (integrable) singularities close to the
endpoints of the integration (xj = 0, 1), the deformation should be as large as
possible in order to move the contour away from the problematic region. To
this end, each individual parameter λ(i, j) is multiplied by the largest value
of ∂Fi∂xj

for all xj in one sub-sector i.
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• Sign check: After the above adjustments to λ have been made, the sign of Im(F)
is again checked for a number of sample points. If the sign is ever positive, this
value of λ is disallowed.

The contour deformation can be switched on or off, see App. A.2.3. The calculation
takes longer if a deformation of the integration contour is performed, so if the integrand
is known to be positive definite, the contour deformation option should be switched off.
It must also be emphasized that for integrands with a complicated singularity structure,
the success of the numerical integration can critically depend on the parameters which
tune the deformation and on the settings for the Monte Carlo integration.

6.3 Additional capabilities

6.3.1 Evaluation of user-defined functions with arbitrary kinematics
To calculate a “standard” loop integral, it is sufficient to specify the numerator, the
loop momenta and the propagators. The program will construct the integrand in terms
of Feynman parameters automatically. It can also be desirable to take a mixed ap-
proach of computing an integral numerically after having manipulated it analytically.
An example approach is given in Chap. 7, where the numerical efficiency is shown to be
improved by a clever analytical preparation of the integrand for the subsequent Monte
Carlo integration. In this example, the preparation includes the analytical integration
of one sub-loop. This implies that the constraint δ(1 −

∑
i xi) has been already used

to achieve a convenient parametrization, and therefore no primary sector decomposition
is needed anymore to eliminate the δ-constraint. In such a case, the user can skip this
step in SecDec and insert the functions to be factorized directly into the Mathematica
template file, using the favored parametrization. More generally, this option offers more
flexibility regarding the functions to be integrated, such as expressions for loop integrals
which are not in the “standard form”. For example, analytic manipulations which have
already been performed on the integral can be dealt with as well. This includes the
possibility to perform a deformation of the integration contour to the complex plane.
To better understand the types of function a user could insert, the reader is invited
to look back to Eq. (3.9). A general loop integral in Feynman parametrization thus
contains a numerator function N non-divergent by construction, two Symanzik poly-
nomials U and F , whose exponent can have either sign and therefore singular points.
Furthermore, it contains a fully analytical, but arbitrary prefactor P allowed to con-
tain singularities in the regulator ε, factorizing powers of Feynman parameters, and a
δ-distribution constraint. A user-defined function, may contain any of the previously
mentioned components or none, with the only exception that the δ-constraint needs to
either not exist or have been integrated out already. In a more general form, such a
user-defined integral Guser may have any of the following components

Guser = P(ε)
N∏
j=1
{
∫ 1

0
dxj x

aj(ε)
j } N (ε) UexU (~x, {m}, {p}) FexF (~x, {m}, {p}) . (6.4)
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The functions N , U and F can be polynomials or products of polynomials with the only
condition that they share a common exponent, exU and exF . The factorizing Feynman
parameters can appear with exponents aj dependent or independent of ε. Any of the
exponents may in principle also contain fractional numbers. Details about the usage of
this option are given in the user manual, see App. A.2.6.

6.3.2 Topology-based construction of the integrand
As already mentioned in Sec. 3.3, the functions U and F can be constructed from the
topology of the corresponding Feynman graph, without the need to assign the momenta
for each propagator explicitly. The implementation in SecDec is such that the user
only has to label the external momenta, the vertices and the masses of a graph. An
example is given in Sec. 6.5 and more examples can be found in SecDec. This feature
of constructing the graph topologically is only implemented for scalar integrals so far.
The syntax is explained in App. A.2.5.

6.3.3 Looping over ranges of parameters
In phenomenological applications usually not just one kinematical point is of interest,
but looping over ranges of parameters becomes necessary. To this end, it is beneficial to
decrease the computation time where possible. The algebraic part of SecDec can deal
with symbolic expressions for the kinematic invariants, or other parameters contained in
the integrand. Consequently, the decomposition and subtraction need only be done once,
producing functions which contain general kinematics. The generality of these functions
allows for the computation of many sets of different values for the invariants. SecDec
allows for an automated calculation of many numerical points, minimizing the effort
for the user. Scripts are provided for “standard” loop, user-defined and more general
parametric integrals, see App. A.2.7.

6.3.4 Integration-by-parts relations
After the iterated sector decomposition has been performed, poles of the type

Gl(Aj , Bj ,~t, ε) ∝ I(Aj , Bj ,~t, ε) =
∫ 1

0
dtj t

Aj+Bjε
j R(~t, ε) (6.5)

can arise in an integral Gl of the sub-sector l, where I is a sub-sector integrand. An
exponent Aj = −2 is associated with a spurious linear pole, powers Aj < −2 correspond
to spurious poles of higher order. These terms must be artificial because a renormalizable
gauge theory must be integrable. The function R(~t, ε) denotes the residue integrand after
subtraction, compare Eq. (4.20). Choosing Aj = −2, it would read

R(~t, ε) = I(tαj , {tαi 6=αj}, ε)− I(0, {ti 6=j}, ε)− tj
[
I(1)(tj , {ti 6=j}, ε)

]
tj=0

. (6.6)

Even in the limit of a vanishing tj , the integrand will remain integrable and finite as-
suming the decomposition into plus-distributions has already been performed. While
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approaching tj = 0, both the numerator and the denominator will become very small.
This can introduce numerical instabilities resulting, e.g., from rounding errors. To mit-
igate this, the sub-sector integrand I can be integrated by parts

I(Aj , Bj ,~t, ε) =
[ t

1+Aj+Bjε
j

1 +Aj +Bjε
R(~t, ε)

]1
0
−

1
1 +Aj +Bjε

∫ 1

0
dtj t

1+Aj+Bjε
j

∂

∂tj
R(~t, ε) (6.7)

= 1
1 +Aj +Bjε

×
[
R(1, {ti 6=j}, ε)−

∫ 1

0
dtj t

1+Aj+Bjε
j

∂

∂tj
R(~t, ε)

]
, (6.8)

thereby reducing the negative power in the Feynman parameter tj by one and enhancing
numerical stability, see Ref. [304] for a more detailed description of the implementation.
This procedure is automated for arbitrary pole order.

6.3.5 Leaving functions implicit during the algebraic part

When evaluating general parametric functions, the user may wish to introduce a “dummy”
function depending on (some of) the integration parameters, specifying the actual form
of the function later at the numerical integration stage. There are a number of reasons
why one might want to leave functions implicit during the algebraic stage: for example,
squared matrix elements typically contain large but finite functions of the phase space
variables in the numerator, so the algebraic part of the calculation will be quicker and
produce much smaller intermediate files if these functions are left implicit. Also, one
might like to use a number of measurement functions and be able to specify or change
them without having to perform the decomposition more than once. Note that one may
use more than one implicit function at a time, and that these functions can have any
number of arguments. The syntax and usage are described in App. A.2.8.

6.3.6 Assessing the reliability of the numerical result

When dealing with numerical techniques, the knowledge of the reliability of the result
is of major importance. Although the integrands of all sectors are stored analytically, it
may, especially when dealing with complicated integrals, be time consuming to analyze
these, either due to the abundance of Feynman parameters appearing in one function,
or simply due to a large number of functions. And even then, the numerical integrator
may still appear to be a black box. It is therefore appealing to get an estimate for
the correctness of the stated uncertainty. The numerical integrators contained in the
Cuba library [302,303] return a probability for an estimated numerical uncertainty to
be erroneous. A maximal probability of 1 therefore means that the stated uncertainty
of a result cannot be trusted. The program collects the maximal probability for each
computed order in the dimensional regulator ε. The probability can be reduced by
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increasing the number of sampling points used in an evaluation. More options tuning the
numerical integration parameters are given in the user manual, see App. A.2. To prevent
a suffering from underestimation of the true error given by the numerical integrators, it
is beneficial to check a result with different integrators when dealing with complicated
integrands.

6.3.7 Automated remapping to one endpoint
The program is capable of remapping singularities in a Feynman parameter xj appearing
at the endpoint 1 of the integration region to zero. A remapping of the singularity to
zero becomes necessary, if one of the sub-sectors of U or F in the case of loop integrals,
or one of the Pi of Eq. (6.3) in the case of more general parametric functions, diverge in
the limit of one or more tj → 1. It works as follows. The integration region is split into
two parts at the point a, where a is chosen rather arbitrarily∫ 1

0
f(x)dx =

∫ a

0
f(x)dx+

∫ 1

a
f(x)dx (6.9)

=
∫ 1

0

1
a
f( x̃
a

)dx̃+
∫ 1

0

1
a
f(1− x′

a
)dx′ . (6.10)

From Eq. (6.9) to Eq. (6.10) the substitutions x→ x̃
a and x→ (1− x̃

a ) are applied to the
first and the second integral of the right-hand side, respectively. Hereby, a remapping of
the integration boundaries to the unit hypercube is achieved. The resulting functions f
either vanish for limx̃→0 or do not vanish at all.

In SecDec, the integration region of those integrals over Feynman parameters tji
leading to a divergence at the upper integration boundary, is split at 1/2 and the result-
ing two integrals are remapped to the unit interval.
This splitting of the integration region is performed before the iterated sector decompo-
sition. It increases the number of primary sectors by 2n, where n is the number of split
integration variables, in favor of improved numerical convergence. After all singulari-
ties at the endpoint are remapped to the lower integration boundary, an iterated sector
decomposition can be applied. The occurrence of singularities at both endpoints is typ-
ically encountered in massless diagrams. In Sec. 7.1.1, the integration of one sub-loop
prior to the treatment of the full integral serves as an example.

6.3.8 A word on the numerical integration
The numerical integration forms a crucial part in the calculation of any type of integrand
function resulting from a Laurent series expansion in ε. SecDec contains interfaces to six
different numerical integrators, Bases [305], Vegas, Suave, Divonne and Cuhre contained
in the Cuba library [302,303], and NIntegrate contained in Mathematica [306]. The
user is offered to choose one of these in the input files, see App. A.2.3. It is crucial to
have the parameters for the numerical integrator under control. SecDec incorporates
several options, allowing for a good adjustment of these parameters. Two of them are the
desired relative and absolute accuracy, where the desired absolute accuracy is necessary
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for integrals close to zero. If the real or imaginary part of the integral tends to zero, the
relative accuracy can never be reached. The numerical integrators therefore attempt to
find an estimate Î of the integral I that fulfills

Î − I ≤ max(εabs, εrelI) , (6.11)

see e.g. Ref. [302]. For vanishing values of the integral, the integration time then
heavily depends on the value chosen for the desired absolute accuracy. When looping
over ranges of kinematic invariants, points below threshold have a zero imaginary part.
This can artificially increase the computation times, if the absolute accuracy goal was
set to a reasonable, but small value. This artifact can be circumvented by setting
the lowest threshold symbolically when specifying the integrand. This new feature is
incorporated in SecDec, switching off the contour deformation below the user-defined
threshold. Hence, unnecessarily long calculations are avoided in kinematic regions where
the imaginary part is known to be zero.

The other selectable parameters are described in the manuals of the different numerical
integrators, Bases [305] and the Cuba library [302, 303], and in the user manual in
App. A.2. Regarding the advantages of these integrators, Bases is a Fortran compatible
Monte Carlo integrator that allows for a sequential evaluation only. In the sequential
mode it is fast, producing reliable results. The four integrators included in the Cuba
library can run in parallel mode and are usable with Fortran and C/C++. While Vegas
gives very stable results and tends to overestimate the numerical integration uncertainty,
Divonne is extremely adaptive but occasionally underestimates integration uncertainties.
The latter is very useful for very complicated integrands and is especially good in regions
close to a threshold. Suave is heuristically found to converge slowly, but gives very stable
results. While Vegas, Suave and Divonne are mainly Monte Carlo integrators which can
sample pseudo and quasi-random numbers, Cuhre is a fully deterministic integrator, able
to reach high accuracy if the integrand is comparatively simple.

In the integration phase, SecDec allows for different choices regarding the number
of integrands to be summed before integration. Setting togetherflag=0 and grouping=0
at the same time leads to the separate integration of each sector in all different pole
structures Piljhk and orders ord in the regulator εord. Here i denotes the number of
logarithmic poles, j the number of linear poles and k the number of higher poles in
ε. The summation of some integrand files before integration is enabled by entering the
allowed summed size of the grouped files in bytes, e.g. grouping=2000000 corresponds
to a grouping of integrands with a maximal total file size of around 2 MB. Switching
on togetherflag=1, all integrands leading to the full coefficient of a certain order in the
regulator are first summed up and then integrated numerically.
The uncertainty resulting from the Monte Carlo integration is expected to be bigger when
each sector is integrated individually before summing up all sectors. Yet, the difference
turns out not to be large, as the numerical integrator can tackle single functions much
better and yield more accurate results. Grouping files before integration can also lead
to a faster convergence if the integrand contains highly oscillating terms which cancel
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each other out, but will in general slow down the numerical calculation if the polynomial
structure is rather smooth.

6.4 Operational sequence

Feynman loop integral

(generated automatically)

any integral matching
loop integral structure

more general
parametric function

(inserted by user) (inserted by user)

primary sector
decomposition

loop directory general directory

contour
deformation

multiscale?multiscale? yes yes

nono

subtraction of poles

expansion in numerical integration
result:

iterated sector
decomposition

iterated sector
decomposition

iterated sector
decomposition

Laurent series in

factorization

Figure 6.1: The operational sequence of SecDec. This flowchart shows the main steps
the program performs to produce the result as a Laurent series in the regu-
lator ε.

The program is divided into two main directories, loop and general, respectively.
They have the same global structure, only individual files are specific to either loop
integrals and integrals of loop structure or to more general parametric functions. The
directories contain a number of Perl scripts steering Mathematica [306] modules (lo-
cated in the subdirectory src), writing the files necessary for numerical integration and
executing them. The scripts use further Perl modules contained in the subdirectory
perlsrc.
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To calculate a loop integral within the standard or user-defined setup, the user needs to
enter the loop directory in SecDec, while for the computation of parameter integrals the
user is referred to the general directory. When operating SecDec in either of the two
directories, the program works through algebraic and numerical parts. The algebraic part
uses Mathematica code and performs the sector decomposition, the subtraction of the
singularities, the expansion in ε and the generation of the files necessary for the numerical
integration. In the numerical part, Fortran or C++ functions forming the coefficient of
each Laurent series term in ε are integrated using the Monte Carlo integrators contained
in the Cuba library [302,303], Bases [305] or NIntegrate [306].

The flowchart of SecDec shows the basic building blocks to calculate multi-loop
or more general parametric integrals, see Fig. 6.1. The Mathematica source files are
located in the subdirectories src/deco (files used for the decomposition), src/subexp
(files used for the pole subtraction and expansion in ε) and src/util (miscellaneous
useful functions). The Robodoc [307] documentation is located in the subdirectory doc.
It contains an index to look up a documentation of the source code in html format by
loading masterindex.html into a browser. The program comes with example input
and template files in the subdirectories loop/demos and general/demos, respectively.
Further details on the installation and operation are found in App. A.2.1 and App. A.2.2.

6.5 Selection of checks and examples

In the following, two loop topologies are looked at in more detail. The first exam-
ple is a two-loop three-point function which serves as the default graph when running
SecDec without an alteration of the myparamfile.input, mytemplatefile.m in the
loop directory. The second example is the two-point two-loop function with five massive
propagators. Different cases of numerators and numbers of mass scales are discussed.
Further highly non-trivial two-loop examples are discussed in Chap. 7. For a detailed de-
scription of examples in the general directory, see the directory SecDec/general/demos
and Refs. [1, 301,304].

6.5.1 A two-loop three-point function

p3

p1

p2

1

2

3

4

5

Figure 6.2: Two-loop vertex graph P126, containing a massive triangle loop. Solid lines
are massive, dashed lines are massless. The vertices are labeled to match the
construction of the integrand from the topology as explained in the text.
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In this example, three of the new features of SecDec version 2 are demonstrated:
the construction of the two Symanzik polynomials U and F from the topology of the
graph and the evaluation of the graph in the physical region. Finally, it is shown how
results for a whole set of different numerical values for the kinematic invariants can be
produced and plotted in an automated way. The diagram under discussion is a two-loop
three-point function, see Fig. 6.2. It has been studied extensively adopting either an
analytical [308], or a numerical [309, 310] approach. The name for the diagram, P126,
was introduced in Ref. [308].
The template file templateP126.m in the loop/demos subdirectory contains the fol-

lowing lines
proplist = {{ms[1],{3,4}},{ms[1],{4,5}},{ms[1],{5,3}},{0,{1,2}},{0,{1,4}},{0,{2,5}}};
onshell = {ssp[1] → 0, ssp[2] → 0, ssp[3] → sp[1,2]};
where each entry in proplist corresponds to a propagator of the diagram; the first
entry is the mass of the propagator and the second entry contains the labels of the two
vertices which the propagator connects. The labels for the vertices are as shown in
Fig. 6.2. For vertices containing only internal propagators the labeling is arbitrary. The
onshell conditions in the above example state that p2

1 = p2
2 = 0, p2

3 = s12 = s. Results
for the finite ε0 part of graph P126 agree very accurately with the analytic prediction,
compare Fig. 6.3. The calculation time for the numerical integration of the finite part is
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Figure 6.3: Comparison of analytic and numerical results for the diagram P126 using
m2 = 1 and varying s. Due to the high accuracy of the numerical integration,
error bars are barely seen.

around 5 secs, for a relative accuracy of about 1% and an absolute accuracy of 10−5 using
the integrator Divonne of the Cuba library. This is for a typical point far from the
s = 4m2 threshold on an Intel R©CoreTM i7-2600 CPU at 3.40GHz using two cores. For
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a point close to threshold (s/m2 = 3.9), the timings are similar. To run this example,
from the loop directory, issue the command ‘./launch -d demos -p paramP126.input -t
templateP126.m’. The diagram P126 can also be computed using the user-defined setup,
see App. A.2.6 for a detailed explanation.

Producing data files for sets of numerical values

To loop over a set of numerical values for the invariants s and m2 once the C++ files
are created, issue the command
‘perl multinumericsloop.pl -d demos -p multiparamP126.input’.
This will run the numerical integrations for the values of s and m2 specified in the
file demos/multiparamP126.input. The files containing the results will be found in
demos/2loop/P126, and the files p-2.gpdat, p-1.gpdat and p0.gpdat will contain the
data files for each point, corresponding to the coefficients of ε−2, ε−1 and ε0, respectively.
These files can be used to plot the numerical results using gnuplot, see Fig. 6.3 for an
exemplary result.
The same steps can be performed using the user-defined option, where the command
reads ‘perl multinumericsuserdefined.pl -p multiparamuserdefined.input’ and where the
values for s and m2 are given in the multiparamuserdefined.input file.

6.5.2 Massive tensor two-loop two-point functions

In this subsection the option to evaluate integrals with a non-trivial numerator is demon-
strated by calculating two-loop two-point functions involving different mass scales. This
implies that a reduction to only scalar (master) integrals is not necessarily needed. The

m1 m2

m1 m2

p pm3

Figure 6.4: Two-loop bubble diagram with different masses

exemplary diagram considered here contains up to four different scales, see Fig. 6.4. As
an example, a non-trivial numerator a coefficient function resulting from a rank three
integral Lorentz decomposition is chosen

GB =
( 1

iπ
D
2

)2 ∫
dDk1 dDk2

(k1 · k2) (k1 · p1)
D1 . . . D5

, (6.12)

D1 = k2
1 −m2

1, D2 = (k1 + p1)2 −m2
1, D3 = (k1 − k2)2 −m2

3, (6.13)
D4 = (k2 + p1)2 −m2

2, D5 = k2
2 −m2

2 , (6.14)
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where the causal iδ prescription is omitted. The fact that this tensor integral is reducible
does not play a role here, as the purpose is to demonstrate that a reduction may become
obsolete, when considering the short integration times for the tensors.

Results for the scalar and tensor integrals with m3 = 0 are shown in Fig. 6.5, while
results for m2

3 = 3 are shown in Fig. 6.6.

The timings are expected to be higher for the rank three coefficient function because
its leading pole is of order O(ε−2), while the scalar integral is finite. In the case of finite
integrals, less functions need to be integrated, leading to a faster result. A comparison
of the timings of the scalar massive two-point integrals with the rank three two-loop
two-point coefficient function shows, that for values of p2 above the mass threshold
at p2 = 4m2

2, the timings for the rank three integral coefficient function do not differ
much from the ones for the scalar integrals, compare Fig. 6.7(a) for the m2

3 = 0 case
and Fig. 6.7(b) for m2

3 = 3. A relative accuracy of 0.1% and an absolute accuracy of
10−5 was required for the Monte Carlo integration in scalar and rank 3 integrals alike.
With the new feature of symbolically defining a threshold below which the contour
deformation is switched off, unnecessarily long calculations are avoided in kinematic
regions where the imaginary part is known to be zero. In the case of the rank three
two-loop bubble with two masses, no threshold appears in the O(ε−2) coefficient, a
threshold at p2 = 4m2

2 appears in the sub-leading pole and the lowest threshold of the
finite part is located at p2 = 4m2

1. As only the lowest threshold is incorporated in the
user-definition, the computing times of this integral are largest, where the imaginary
part in the pole coefficients is zero, compare Fig. 6.7(a) and Sec. 6.3.8. The minimal
numerical integration time for a kinematic point below threshold is 0.6ms for the scalar
two-loop bubble with m2

3 = 0. Above threshold, the scalar two-loop bubble integrals
minimally take 0.1 secs for m2

3 6= 0 and 0.03 secs for m2
3 = 0. In Fig. 6.7(b), a small

peak in the timings can be observed for p2 = 12. When solving the Landau equations
for the two-loop two-point function with two masses, a sub-threshold can be detected
at exactly p2 = 12. Given this observation, it may sometimes be of interest to have a
closer look at the timings and possibly learn something about the singularity structure
of the integrand.

6.6 Future developments
The upgraded version 2 of the program SecDec was presented. The main new feature,
an implementation of an automated deformation of the integration contour to analyti-
cally continue the integrand, was described along with other new capabilities. It allows
for the computation of multi-loop integrals with in principle no limitation on the num-
ber of scales involved. Examples to show its full power are discussed in Chap. 7, where
numerical results for diverse two-loop four-point topologies are shown.
Although comparatively fast, the numerical evaluation of multi-loop diagrams can,

in general, still not compete with the evaluation time of analytical results. Including
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Figure 6.5: Results for the real (blue) and imaginary (red) parts of the two-loop two-
point topology of Fig. 6.4 are shown in the scalar case (a) and for the the
rank three coefficient function GB (b) with numerator (k1 · k2) (k1 · p1). The
masses are m2

1 = 2,m2
2 = 4,m3 = 0.

more analytical calculations would therefore be very beneficial. A future version of
the program could therefore integrate functions analytically where possible. Especially
for the pole parts, the integration of several Feynman parameters prior to numerical
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Figure 6.6: Results for the real (blue) and imaginary (red) parts of the two-loop two-
point topology of Fig. 6.4 are shown for three non-vanishing masses in the
scalar case (a) and for the the rank three coefficient function GB (b) with
numerator (k1 · k2) (k1 · p1). The masses are m2

1 = 2,m2
2 = 4,m2

3 = 3.

integration is feasible. This can lead to a significant decrease in the numerical integration
times, as became apparent in the discussion of the timings in Sec. 6.5.2.
Furthermore, a decrease in the numerical integration times can be achieved using the
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Figure 6.7: Comparison of evaluation times between scalar and rank three tensor inte-
grals corresponding to a two-loop two-point function with (a) two, and (b)
three masses. The red points are the evaluation times in seconds for the
scalar integral at a given kinematic point, the timings for the rank three
tensor integral are marked in blue. The timings were obtained on computers
with Intel i7 processors and 4 cores.
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fastest Monte Carlo integrator available for one-dimensional parameter representations,
Quadpack which is included in the GNU scientific library. Currently, the integrators
Vegas or Suave are used in such cases, although they only rise to their full power when
multiple integration parameters are involved.
Another missing piece, as mentioned in Sec. 4.2.3, is the implementation of an algo-

rithm which is guaranteed to stop. It should set in automatically (if not already chosen
in the beginning) when the heuristic algorithm runs into an infinite recursion.

Although some of the mentioned new features are already implemented in a private
version of the code, they will be made publicly available as a whole in version 3 of
SecDec.

Besides new features accelerating SecDec, further technological developments are
needed, e.g., for kinematic configurations very close to pinch singularities. An extensive
treatment of line singularities within the integration region or singularities appearing
close to the endpoints of the integration region is still to be found.
Beyond improvements on the computation of the multi-loop integrals, interfaces to

other programs are highly desirable. For example, the construction of interfaces to ex-
isting amplitude reduction programs would mean another cornerstone towards the long-
term goal of assembling a highly automated program for the computation of processes
beyond one loop.

71





7 | Non-planar two-loop
four-point integrals with
external or internal masses

In this chapter, the program SecDec is used to make predictions for two-loop four-point
integrals, with massive external legs and/or massive internal propagators, see Fig. 7.1.
The diagrams considered are non-planar with a single planar case. The focus lies on the
non-planar diagrams as they are usually more complicated. In this way the power of
the program SecDec can be explored and its limits extended. Contrary to analytical
calculations, where several mass scales lead to unaccessible elliptic integrals, the limits
for numerical integration are rather reached when spurious higher than logarithmic di-
vergences occur. Such spurious divergences lead to more complicated subtraction terms
which in turn may lead to numerical instabilities if the divergence canceling terms are
not fully resolved by the numerical integrator.
Such spurious divergences appear, for example, in the case of the non-planar seven-

propagator two-loop topology with a massive bracket/square bend and all other lines
massless, see Fig. 7.1(a). To achieve a convenient representation for this integral (termed
ggtt2), analytical transformations are performed prior to starting the sector decompo-
sition algorithm; this way reducing the number of produced sub-sectors, leading to im-
proved numerical behavior.
The ggtt2 diagram is the most complicated master topology occurring in the com-

putation of the light fermionic two-loop corrections of tt̄ production in the gg channel.
Analytic results are available, see Ref. [69,81]. Conversely, the master topology contain-
ing a massive sub-loop (termed ggtt1, see Fig. 7.1(b)) is not available in analytic form.
It enters the heavy fermionic corrections to top-quark pair production in the gluon fu-
sion channel. While the leading pole of ggtt2 is of the order O(1/ε4), and intermediate
expressions during sector decomposition show (spurious) pole structures with a higher-
than-logarithmic degree of divergence, the integral ggtt1 has only finite contributions.
The same is true for the all-massive two-loop diagrams MP

7 and MNP
7 , where "P" refers

to planar and "NP" to non-planar, see Figs. 7.1(c) and 7.1(d). To show the predic-
tive power of the program, the MP

7 diagram is shown in a toy mass configuration with
thirteen mass scales, a configuration which is not even close to being accessible in an
analytic calculation. To compare with other numerical predictions, the two all-massive
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Figure 7.1: All diagrams considered in this chapter: the massive non-planar two-loop
box diagrams entering the light (a) and heavy (b) fermionic correction to
the gg channel, the all-massive planar MP

7 (c) and non-planar MNP
7 (d)

seven-propagator diagram and the non-planar six-propagator diagram BNP
6

(e). The thick lines denote massive particles.

diagrams are also shown with three different scales involved. Lastly, a prediction for the
non-planar six-propagator diagram of Fig. 7.1(e) is made, studied in the massless case
by Tausk, see Ref. [201].

The diagrams BNP
6 , ggtt1, MP

7 and MNP
7 are evaluated with SecDec 2.1 in a fully

automated way. Apart from scalar master integrals, results for an irreducible tensor
integral of rank two for the ggtt1 diagram are given. In the case of the ggtt2 diagram
it is advantageous to make some analytical manipulations beforehand. The results,
presented in Ref. [2] were useful as checks in the analytic result presented in Ref. [81].

The structure of this chapter is as follows: in Sec. 7.1, an expression serving as a
starting point for evaluating the ggtt2 diagram is derived, and a novel type of transfor-
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mation is described which can be used to reduce the number of sector decompositions
and improve numerical stability. To check consistency, the expected thresholds are de-
rived from the Landau equations, see Sec. 7.2. In Sec. 7.3, numerical results are given
for all four-point diagrams previously described, where the dependence of the evaluation
on the number of mass scales, the singularity structure and integrals of higher rank are
explored.

7.1 Analytical preparation of the non-planar seven propagator
integral ggtt2

This section explores the possibilities arising from a mixed approach, where reformu-
lating the integral before sector decomposition algorithm can lead to a large gain in
numerical efficiency. The ggtt2 diagram has four poles in the regulator ε and two spu-
rious linear divergences in the Feynman parameters of the type t−2−ε

i . The available
numerical integrators can deal with logarithmic divergences efficiently, while the con-
vergence of higher-than-logarithmic singularities depends heavily on the kinematics and
the number of Feynman parameters involved.
After integrating out the δ-constraint, the sub-sector functions of the ggtt2 diagram
contain six Feynman parameters and subtraction terms from two spurious linear diver-
gences. The numerical integrator fails convergence in this case. Decreasing the number
of Feynman parameters or the degree of divergence would therefore be beneficial. Meth-
ods for the latter are already implemented by means of integration by parts, where the
exponent of a factorized pole is increased. Though a solution for many integrand topolo-
gies, the tradeoff in the case of ggtt2 are long decomposition times (approximately one
week on a multi-core, 16 GB computer), resulting in an order of O(6000) functions to
be integrated. Integrating so many expressions leads to computational problems: either
large cancellations when terms are integrated in isolation, or memory/convergence issues
when terms are grouped by summation prior to integration.

Below, a different approach is presented, reducing the number of Feynman parameters,
the degree of divergence and the total number of functions to be integrated numerically.
It is based on Ref. [2]. Firstly, a representation where one integration parameter of
the ggtt2 diagram factorizes naturally is derived, such that it can be integrated out
analytically. A subsequent remapping and the application of the recently introduced
backwards transformation [2] to single sectors allows for an automated evaluation in
arbitrary kinematics. The new feature allowing for a treatment of user-defined functions
in the program SecDec was developed for this particular computation and is explained
in Sec. 6.3.1. It was tested, that an important byproduct of the backwards transfor-
mation is the reduction in the total number of functions by two thirds to be integrated
numerically, compared to the initial sector decomposition approach and without usage
of integration by parts relations.
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7.1.1 Integration in a sub-loop
The expression for the scalar integral ggtt2 in momentum space is given by

Gggtt2 =
( 1

iπ
D
2

)2 ∫ dDk1 dDk2
DR1DR2DR3DR4DB1DB2DB3

(7.1)

where D = 4 − 2ε. The Feynman propagators DRi corresponding to the “rhombus"
sub-loop in Fig. 7.1(a) are given by

DR1 = (k1 − k2)2 + iδ , DR2 = (k1 − k2 + p2)2 + iδ , (7.2a)
DR3 = (k2 + p4)2 + iδ , DR4 = (k2 + p1 + p4)2 + iδ , (7.2b)

where the pi are the external momenta with p2
3 = p2

4 = m2 and p2
1 = p2

2 = 0, and k1, k2
are the loop momenta. All external momenta are assumed to be ingoing. Integrating
out the loop momentum k2 first, we are left with an expression containing only k1 and
external momenta, to be combined with the propagators

DB1 = (k1 − p3)2 + iδ , DB2 = (k1 + p4)2 + iδ , DB3 = k2
1 −m2 + iδ . (7.3)

This procedure is not limited to our particular example, but requires an analytical step
of introducing a convenient parametrization which can not be found when the sub-loop
contains massive propagators. For the rest of this chapter, the causal iδ will be omitted
and the renormalization scale is set to µR = 1 for simplicity.
The introduction of Feynman parameters for the one-loop subgraph IR constructed

from all propagators containing the loop momentum k2 leads to

IR = 1
iπD/2

∫ dDk2
DR1DR2DR3DR4

=Γ(2 + ε)
∫ 4∏

i=1
dxi δ(1−

4∑
j=1

xj) F(~x, k1)−2−ε , (7.4)

with the second Symanzik polynomial reading

−F(~x, k1) = DB1x1x2 + (k1 + p1 + p4)2x1x3 + (k1 + p2 + p4)2x2x4 +DB2x3x4 . (7.5)

During integration of the δ-distribution in Eq. (7.4), the first Symanzik polynomial
reduces to unity. The substitutions

x1 = t2(1− t3) , x2 = t1t3 , x3 = (1− t1)t3 , (7.6)

facilitate a factorization of the parameter t3 which is integrated out analytically. This
yields

IR = −2
ε

Γ(2 + ε)Γ2(1− ε)
Γ(1− 2ε)

∫ 1

0
dt1

∫ 1

0
dt2 F̃(~t, k1)−2−ε (7.7)
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with

−F̃(~t, k1) = DB1t1t2 + (k1 + p1 + p4)2t1t̄2 + (k1 + p2 + p4)2t̄1t2 +DB2 t̄1t̄2 , (7.8)

where the shorthand notation t̄i = 1 − ti is introduced. The expression for the 1-loop
rhombus IR is combined with the remaining k1-dependent propagators, treating the
expression of Eq. (7.8) as a fourth propagator with power 2 + ε, to obtain,

GNP =2
ε

Γ(3 + 2ε)Γ2(1− ε)
Γ(1− 2ε)

∫ 1

0
dt1

∫ 1

0
dt2 ×

4∏
i=1

∫ 1

0
dzi z1+ε

4 δ(1−
4∑
j=1

zj) FNP(~z, t1, t2)−3−2ε UNP(~z)1+3ε (7.9)

after integration of k1 and where

UNP(~z) =
4∑
j=1

zj and (7.10)

FNP(~z, ti) = −s12z2z3 − Tz1z4 − S1z2z4 − S2z3z4 +m2z1(z1 + z4Q) , (7.11)

with

T = s13t̄1t2 + s23t1t̄2 , S1 = s12t1t2 , S2 = s12t̄1t̄2

Q = t1t̄2 + t̄1t2 , sij = (pi + pj)2 . (7.12)

The full integral GNP is in total one Feynman parameter short. A primary sector de-
composition in the newly introduced Feynman parameters z1, . . . , z4 is performed to
obtain

GNP =2
ε

Γ(3 + 2ε)Γ2(1− ε)
Γ(1− 2ε)

∫ 1

0
dt1

∫ 1

0
dt2

4∑
i=1

GiNP , (7.13)

with

G1
NP =

∫ 1

0
dz2 dz3 dz4 z1+ε

4 (1 + z2 + z3 + z4)1+3ε F1(~z, ti)−3−2ε , (7.14a)

F1(~z, ti) = −s12z2z3 − Tz4 − S1z2z4 − S2z3z4 +m2(1 + z4Q) , (7.14b)

G2
NP =

∫ 1

0
dz1 dz3 dz4 z1+ε

4 (1 + z1 + z3 + z4)1+3ε F2(~z, ti)−3−2ε , (7.14c)

F2(~z, ti) = −s12z3 − Tz1z4 − S1z4 − S2z3z4 +m2z1(z1 + z4Q) , (7.14d)

G3
NP =

∫ 1

0
dz1 dz2 dz4 z1+ε

4 (1 + z1 + z2 + z4)1+3ε F3(~z, ti)−3−2ε , (7.14e)

F3(~z, ti) = −s12z2 − Tz1z4 − S1z2z4 − S2z4 +m2z1(z1 + z4Q) , (7.14f)

G4
NP =

∫ 1

0
dz1 dz2 dz3 (1 + z1 + z2 + z3)1+3ε F4(~z, ti)−3−2ε , (7.14g)

F4(~z, ti) = −s12z2z3 − Tz1 − S1z2 − S2z3 +m2z1(z1 +Q) , (7.14h)
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where the δ-distribution is naturally integrated out.
Observing the primary sectors, the first sector F1(~z, ti) is of the form m2 + func(zi, ti),
and does not need iterations of the decomposition into further sectors. Primary sector
three can be remapped to primary sector two by exchanging z2 ↔ z3 and S1 ↔ S2. The
sectors two and four are therefore the only ones needing further treatment. This is a
benefit from the prior integration of one sub-loop of the full integral. This treatment
has a small drawback though: with the introduction of the substitutions in Eq. (7.6),
singularities at the second endpoint are introduced. The integrals G2,3,4

NP can diverge
both at zero and one in t1 and t2. With the sector decomposition algorithm, only
singularities at zero are factorized automatically. Consequently, the singularities located
at the upper integration limit are remapped to the origin of parameter space by splitting
the integration region at 1

2 and transforming the integration variables to remap the
integration domain to the unit hypercube, see Sec. 6.3.7.
This procedure results in 12 integrals, some of which are already finite, such that no
subsequent sector decomposition is required. Other integrals lead to linear divergences
of the type

∫ 1
0 dxx

−2−ε in two Feynman parameters after sector decomposition. These
singularities are spurious and can be subtracted by expanding the Taylor series in the
subtraction procedure up to the second term, see Sec. 4.1.3. This procedure is prone
to introducing large cancellations between subtraction terms and a large number of
sectors and therefore challenges numerical stability. Avoiding this type of singularity
from scratch is therefore a highly desirable goal.
The next subsection describes a strategy which can help to reduce the number of higher
than logarithmic divergences and functions to be integrated numerically.

7.1.2 Backwards transformation
The aim of the procedure described in this section is to achieve a transformation of
potential linear divergences into logarithmic divergences as far as possible. A different
procedure towards this goal based on integration-by-parts identities, has been described
in Ref. [301] and Sec. 6.3.4. The latter method however can increase the number of
functions to be integrated substantially, while the method described below in general
reduces the number of further iterations and therefore the number of produced functions.
Yet another method to reduce the number of functions produced during factorization
has been suggested in Ref. [311], where a non-linear transformation in the Feynman
parameters aims at a reduction of the exponent of the second Symanzik polynomial.
Although an attractive idea, it was not beneficial in the case of the ggtt2 as further
singularities at the upper integration limit are introduced with the transformation. A
subsequent remapping of the divergences at the endpoint one to zero restores, or even
deteriorates the original singularity structure with spurious linear divergences in two
Feynman parameters.
Due to the fact that the iterated decomposition of the integral into sub-sectors in-

troduces higher powers in the Feynman parameters, the desire to undo some of those
decomposition steps before the final integration is rather natural. Yet, in most cases this
is not possible without the introduction of unacceptable new divergences which have to

78



7.1. Analytical preparation of the non-planar seven propagator integral ggtt2

be subtracted before integration. Although it does not seem beneficial to “undo” single
sector decomposition steps, there may still be a transformation that does a similar trick.
Such a transformation was introduced and utilized by the author and collaborators in
Ref. [2]. It relies on the possibility of blowing down an affine N -dimensional space as
opposed to the blowing up used in the sector decomposition approach. After perform-
ing the blowing down, the splitting of the integration region as performed in the sector
decomposition approach can be applied backwards. The original function is thereby
split into two again. It may at first seem counter-intuitive to achieve a reduction in the
number of sectors to be integrated, when a splitting of one primary sector using the
backwards transformation doubles the number of functions. However, in spite of these
arguments, it turns out that when applied in the right way, a reverse splitting of the
integration region can rearrange the Feynman parameters, such that the double linear
divergences of primary sectors two and three are transformed into logarithmic ones. This
leads to an overall reduction in the number of functions describing GNP by two thirds.

Below, the necessary preconditions for the application of such a backwards transfor-
mation and the transformation itself are analyzed in more detail.

Preconditions

To explain the backwards transformation in more detail, it is convenient to recall the
sector decomposition and highlighting the important aspects necessary for the transfor-
mation.

In the sector decomposition algorithm, the integration region is split into at least as
many parts as there are integration variables. This splitting is done such that a clear and
definite hierarchy can be observed among the integration parameters. As recollection,
the example splitting of Sec. 4.1 reads

∫ 1

0

∫ 1

0
dx1 dx2

1
(x1 + x2)2+ε

=
∫ 1

0

∫ 1

0
dx1 dx2

1
(x1 + x2)2+ε (Θ(x1 − x2) + Θ(x2 − x1)) , (7.15)

where it is evident that x1 in the first summand on the righthand side must always be
bigger than x2, otherwise the integral is zero. In the second summand of Eq. (7.15) the
hierarchy between x1 and x2 is reversed. Both integrals in the second line of Eq. (7.15)
are of definite hierarchy. In the sector decomposition example of Eqs. (4.1), a blowing up
is applied to these two functions, leading to a factorization of the previously overlapping
singularities. The hierarchy among the Feynman parameters is implicitly kept. Assum-
ing one of the resulting functions with non-overlapping singularities to be the starting
point of the backwards transformation, the sector decomposition of Eqs. (4.1) can be
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reversed. It reads

∫ 1

0
dx1

∫ 1

0
dx̃2

1
x1+ε

1 (1 + x̃2)2+ε (7.16a)

=
∫ 1

0
dx1

∫ x1

0
dx2

1
(x1 + x2)2+ε (7.16b)

=
∫ 1

0
dx1

∫ 1

0
dx2

1
(x1 + x2)2+ε (Θ(x1 − x2) + Θ(x2 − x1))

−
∫ 1

0
dx2

∫ x2

0
dx1

1
(x1 + x2)2+ε (7.16c)

=
∫ 1

0
dx1

∫ 1

0
dx2

1
(x1 + x2)2+ε −

∫ 1

0
dx2

∫ 1

0
dx̃1

1
x1+ε

2 (x̃1 + 1)2+ε . (7.16d)

Although the equations are just rearranged, the implications are different. While the
factorization of singularities works due to the application of blowup sequences, here the
prerequisite is the possibility of applying a blowing down. Looking at the transition
from Eq. (7.16a) to Eq. (7.16b) more thoroughly, one finds

∫ 1

0

∫ 1

0
dx1 dx̃2

1
x1+ε

1 (1 + x̃2)2+ε (7.17a)

=
∫ 1

0

∫ 1

0
dx1 dx̃2

1
x1+ε

1 (1 + x̃2)2+ε Θ(x1 − x1x̃2) (7.17b)

=
∫ 1

0

∫ 1

0
dx1

dx2
x1

1
x1+ε

1 (1 + x2
x1

)2+ε Θ(x1 − x2) (7.17c)

=
∫ 1

0
dx1

∫ x1

0
dx2

1
(x1 + x2)2+ε . (7.17d)

From Eq. (7.17b) to Eq. (7.17c) the integration parameters x1 and x̃2 are transformed
as

x1 → x1 , (7.18a)
x1x̃2 → x2 . (7.18b)

Having examined a symmetric and simple example, it should be noted that it is not trivial
to a priori know that an equality of the type between Eqs. (7.17a) and (7.17b) indeed
holds. In general polynomial integrals, the implicit hierarchies among the Feynman
parameters must be made explicit through the introduction of Heaviside Θ functions.

In the following, a realistic example is presented, uncovering the advantages of such a
backwards transformation.
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Application to the ggtt2

Returning to the non-planar double box integral GNP , the following structure can be
identified for the function of Eq. (7.14d) in sector two (and three) after remapping

I =
N∏
i=1

{∫ 1

0
dti
}[
tj
(
P (~tjk) + tkQ(~tjk)

)
+R(~tjk)

]−α
, (7.19)

where N = 5, tj = z4 and tk = z1 and α > 0. P , Q and R are polynomials of arbitrary
degree in the Feynman parameters ~tjk = (t1, . . . , t̂j , . . . , t̂k, . . . , tN ) and kinematic invari-
ants. The carets denote those Feynman parameters which are not part of the vector of
Feynman parameters. This definition of a vector of Feynman parameters with double
index ~tjk will be used throughout this subsection.

In Eq. (7.19), all terms multiplied by the Feynman parameter tk are also multiplied by
the Feynman parameter tj . An explicit hierarchy exists, allowing for a transformation of
the type tjtk → tk̃. The splitting of the integration region can be performed backwards
as

I =
∫ 1

0
d~tk dtk̃

1
tj

[
tjP (~tjk̃) + tk̃Q(~tjk̃) +R(~tjk̃)

]−α
(7.20a)

−
∫ 1

0
d~tj̃k̃ dtj̃ dtk̃

1
tj̃

[
tk̃

(
tj̃P (~tj̃k̃) +Q(~tj̃k̃)

)
+R(~tj̃k̃)

]−α
. (7.20b)

To explain this in more detail, a rearrangement of the terms leads to the well-known
sector decomposition∫ 1

0
d~tk dtk̃

1
tj

[
tjP (~tjk̃) + tk̃Q(~tjk̃) +R(~tjk̃)

]−α
[Θ(tj − tk̃)︸ ︷︷ ︸

(1)

+ Θ(tk̃ − tj)︸ ︷︷ ︸
(2)

] (7.21a)

=
∫ 1

0
d~t
[
tj
(
P (~tjk) + tkQ(~tjk)

)
+R(~tjk)

]−α
(7.21b)

+
∫ 1

0
d~tj̃k̃ dtj̃ dtk̃

1
tj̃

[
tk̃

(
tj̃P (~tj̃k̃) +Q(~tj̃k̃)

)
+R(~tj̃k̃)

]−α
, (7.21c)

where tk̃ → tj tk was substituted in sector (1) and tj → tk̃ tj̃ in sector (2).

The effect of the backwards transformation is twofold: The degree of the polynomial in
tjtk is reduced in Eq. (7.20a), and in Eq. (7.20b) the degree of divergence in tj is reduced
if α > 1. It can be beneficial in the reduction of the number of functions as compared
to the custom sector decomposition procedure, and can be particularly advantageous if
the factor Q is much simpler than P .

After all transformations of this type, the result is a total of 15 functions partly needing
an iterated sector decomposition. Together with the introduction of the new feature of
user-defined functions in SecDec 2.1 described in Sec. 6.3.1, the computation of the
ggtt2 diagram is now possible in a reasonable amount of time. The timings are discussed
in Sec. 7.3.1.
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7.2 Expected thresholds from the Landau equations

Before turning to the numerical evaluation of the ggtt2 diagram and diverse other non-
planar double box integrals, it should be analyzed roughly where the thresholds of the
ggtt2 diagram are expected, to have a measure for the trustworthiness of the result. To
this end, it is useful to analyze the Landau equations as described in Sec. 5.2, although
the resulting singularities do not necessarily lead to a divergence in the integral. The
first set of equations resulting from applying Eq. (5.3a) to ggtt2 reads

x1 (k1 − k2)2 =0 , (7.22a)
x2 (k1 − k2 + p2)2 =0 , (7.22b)

x3 (k2 + p4)2 =0 , (7.22c)
x4 (k2 + p1 + p4)2 =0 , (7.22d)

x5 (k1 + p1 + p2 + p4)2 =0 , (7.22e)
x6 (k1 + p4)2 =0 , (7.22f)
x7 (k2

1 −m2) =0 , (7.22g)

where the ki are again the loop momenta, pi are the external momenta and m is the
mass appearing in the propagators of the ggtt2 diagram. The second set of equations
resulting from Eq. (5.3b) is

I : x1(k1 − k2)µ + x2(k1 − k2 + p2)µ + x5(k1 + p1 + p2 + p4)µ+
x6(k1 + p4)µ + x7k1µ = 0 , (7.23a)

II : − x1(k1 − k2)µ − x2(k1 − k2 + p2)µ + x3(k2 + p4)µ+
x4(k2 + p1 + p4)µ = 0 . (7.23b)

Now, Eqs. (7.22a)-(7.22g) are either true when the xi are vanishing or when the scalar
products composed of the loop momenta ki and external momenta pi are either equal
to a mass, see Eq. (7.22g) or vanish altogether. Now, if one Feynman parameter xi is
zero, the graph to be considered is a subgraph of the original one because the propagator
connecting two vertices was removed. To analyze the singularities of the original graph
it is therefore sufficient to assume xi 6= 0∀ i. This means, Eqs. (7.22a)-(7.22g) all serve
as constraints on the scalar products to appear in Eq. (7.23a) and Eq. (7.23b) when
contracting them with the loop kµi and respectively external momentum vectors pµi .
Some of these are used to express the missing scalar products in terms of other scalar
products. The resulting equations containing the Landau singularities for those sets of
kinematic invariants and Feynman parameters for which the equations hold, then read

0 = s12 (x1 x5 − x2 x6) + x7
[
x1 (m2 − s23) + x2 (m2 − s12 − s23)

]
, (7.24a)

0 = s12 (x2 x5 − x1 x6) + x7
[
x2 (m2 − s13) + x2 (m2 − s12 − s13)

]
, (7.24b)
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0 = s12 x2 (x1 − x4) , (7.24c)
0 = s12 x1 x2 , (7.24d)
0 = s12 (x1 x3 − x2 x4) , (7.24e)
0 = (s13 −m2)x2 x3 + (s23 −m2)x1 x4 +

(s13 + s23 − 2m2)
[
x5 (x1 + x3 + x4) + x2 (x4 + x5)

]
+

(−2m2)x7 (x1 + x2 + x3 + x4) , (7.24f)
0 = s12 x1 x2 (x1 + x2) + (s12 + s13 −m2)x1 x2 x3 + (s13 −m2)x2

2 x3 +
(s23 −m2)x4 x1 (x1 + x2) +

(s13 + s23 − 2m2)x2
[
x2 x4 + x5 (x1 + x2 + x3 + x4)

]
−

x7 (x1 + x2)
[
x2 (3m2 − s13) + 2m2(x1 + x3) + x4 (s23 +m2)

]
, (7.24g)

0 = (m2 − s13)x2 x3 (x1 + x2)− s12 x1 x2 (x1 + x2 + x3) +

x4
[
(m2 − s23)x1 (x1 + x2) + (2m2 − s13 − s23)x2

2

]
+

2m2 x7 (x1 + x2)(x1 + x2 + x3 + x4) (7.24h)

Still assuming all Feynman parameters xi 6= 0, a leading Landau singularity cannot be
detected in the above equations. The graph is regulated by its mass parameter. Yet,
there are many sub-leading Landau singularities. These are given when one or more
of the above displayed kinematic conditions are fulfilled. One such Landau singularity
appears at s13 = m2, when the Feynman parameters xi with i = 1, 4, 5, 6, 7 vanish
simultaneously. Another one appears at s12 = 0 when xj → 0 for j = 3, 4, 5, 7.

7.3 Numerical evaluation

In this section, numerical results for several two-loop four-point functions are presented,
in the same order as is shown in Fig. 7.1. The results for the analytically prepared ggtt2
diagram are shown first. All other results are obtained using the custom SecDec setup.

7.3.1 The ggtt2 diagram

Analytic results for the pole coefficients of the 1/ε4 and 1/ε3 part of the diagram ggtt2
shown in Fig. 7.1(a) have been provided in Ref. [312]. Using the mixed analytic and
numerical approach presented in the work summarized in this thesis, the results of
the purely analytical pole predictions can be numerically confirmed, see Fig. 7.2. The
numerical results for the remaining pole coefficients and the finite part of ggtt2 are shown
in Figs. 7.3 and 7.4. For Figs. 7.2 - 7.4, an overall factor of −16 Γ(1 + ε)2 is extracted.
Two Landau singularities can be observed, one is at s12 = 0 and the other at s13 = m2.

All other Landau singularities do not appear in the plot, as the values for s23 and m2

are kept fixed.
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Figure 7.2: Comparison of (a) the leading and (b) the next-to-leading pole coefficients
between the analytic result from [312] and the SecDec result. The real
part is shown in blue, the imaginary part in red. As numerical values p2

3 =
p2

4 = m2 = 1, s23 = −1.25 is chosen, assuming four-momentum conservation
s13 = 2m2 − s12 − s23.
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Figure 7.3: Results for (a) the 1/ε2 and (b) the 1/ε coefficients of the integral ggtt2. The
kinematics are the same as in Fig. 7.2.

The numerical result presented here was compared to the fully analytical result in
two selected phase space points [313] for all Laurent coefficients up to the finite part,
finding agreement within the numerical precision. The full prediction obtained from the
numerical result of Figs. 7.2 - 7.4 were useful as a cross-check in Ref. [81]. The timings
for the leading and next-to-leading pole coefficients of the diagram ggtt2 range between
fractions of a second and around 20 seconds. The coefficients of the 1/ε2 pole take 13
- 300 seconds, while the coefficients of the 1/ε pole take between 75 seconds and 50
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7.3. Numerical evaluation

minutes, depending on their distance to thresholds. For the finite part, the integration
times range from 250 seconds to 67 minutes. For all Laurent coefficients, a relative
accuracy of 5× 10−3 has been stipulated, which was not always reached for the 1/ε and
ε0 coefficients. It should also be noted that the timings for points close to threshold are
rather sensitive to the Monte Carlo integration parameters.
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Figure 7.4: Results for the finite part of the scalar integral ggtt2, for a larger kinematic
range (a), and a region further away from threshold (b). The kinematics are
the same as in Fig. 7.2. The vertical bars display the uncertainty of the
numerical result.
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Chapter 7. Non-planar two-loop four-point integrals with external or internal masses

7.3.2 The ggtt1 diagram

Numerical results for the diagram ggtt1 with two massive external legs are shown for
the scalar integral and an irreducible rank two tensor integral, compare Fig. 7.1(b) for
the corresponding diagram and Fig. 7.5 for the numerical results.
The integral representation of the diagram ggtt1 is given by

Gggtt1 =
( 1

iπ
D
2

)2 ∫ dDk1 dDk2
D1 . . . D7

, (7.25a)

(7.25b)

with the corresponding Feynman propagators

D1 = k2
1 −m2

2, D2 = (k1 + p1)2 −m2
2, D3 = k2

2 −m2
2, (7.25c)

D4 = (k2 + p2)2 −m2
2, D5 = (k1 − k2 + p1)2, (7.25d)

D6 = (k1 − k2 − p2)2, D7 = (k1 − k2 + p1 + p3)2 −m2
1 , (7.25e)

where the infinitesimal iδ is omitted for brevity, and where the convention of all external
momenta being ingoing was used. The dimension is denoted by D. Two external legs
p3 and p4 are massive and equal, p2

3 = p2
4 = m2

1. For the results shown in Fig. 7.5, the
numerical values m2

1 = m2
2 = m2 = 1, s23 = −1.25, s13 = 2m2 − s12 − s23 were used. In

Fig. 7.5, the two masses are set to m2
1 = m2

2, as this is the topology appearing in the
process gg → tt̄ at NNLO if the b-quarks are assumed to be massless. While numerical
results for the scalar integral are shown in Fig. 7.5(a), (b) corresponds to a rank two
tensor integral with the same propagators as (a), with a scalar product of loop momenta
k1 · k2, in the numerator.

The timings for one kinematic point for the scalar integral in Fig. 7.5(a) range from
11-60 secs for points far from threshold to 27 minutes that are very close. In the vicinity
of the threshold, the average is around 500 secs. A relative accuracy of 10−3 has been
specified for terminating the numerical integration, while the absolute accuracy has been
set to 10−5. For the tensor integral, the timings are better than for the scalar case, as
the numerator present in this case smoothes out the integrand. A phase-space point far
from threshold takes around 5-10 secs, while points very close to threshold do not exceed
1 hour for the rank 2 tensor integral. The results were obtained on a single 8 core Intel
i7 machine.
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Figure 7.5: (a) Results for the scalar integral ggtt1 shown in Fig. 7.1(b), and (b) the
corresponding rank two tensor integral ggtt1 with the factor k1 · k2 in the
numerator. The invariant s12 is varied, the invariants s23 = −1.25, m2 = m1,
p2

3 = p2
4 = m2

1 = 1 are fixed. The uncertainties from numerical integration
are shown as horizontal markers on the vertical lines. The absence of such
markers means that the numerical uncertainty is not visible at this scale.
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Chapter 7. Non-planar two-loop four-point integrals with external or internal masses

Numerical results with m1 6= m2 are shown in Fig. 7.6 to demonstrate that adding
another mass scale is extremely straightforward with our approach, whereas analytical
calculations would suffer from enormous additional complications.
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Figure 7.6: Results for the scalar integral ggtt1 shown in Fig. 7.1(b), with two different
masses. The second mass m2 is varied, the other kinematic invariants are
fixed with the values s12 = 5, s23 = −1.25 and p2

3 = p2
4 = m2

1 = 1.
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7.3.3 Planar seven-propagator all massive graph MP
7

To demonstrate the possibility to compute diagrams with arbitrarily many scales, a
planar seven-propagator toy graph involving the maximal amount of 13 independent
scales is computed, compare Fig. 7.1(c). The diagram has no poles in the regulator ε.
All propagators are assumed to have different masses, all external legs are chosen to be
massive as well. While keeping s23 = −0.25 fixed, numerical values of the finite part of
the MP

7 diagram are shown, see Fig. 7.7, where s12 and s13 are varied using the physical
constraint s12 + s23 + s13 = p2

1 + p2
2 + p2

3 + p2
4.
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Figure 7.7: Results for the all massive planar seven-propagator graph MP
7 with all prop-

agators and external legs massive, using m2
1 = 2, m2

2 = 6, m2
3 = 7, m2

4 = 8,
m2

5 = 9, m2
6 = 10, m2

7 = 12, p2
1 = 1, p2

2 = 3, p2
3 = 4, p2

4 = 5 and s23 = −0.25.

The timings for the numerical integration range between 10 and 180 secs with a relative
accuracy of 10−3 or an absolute accuracy of 10−8 if the imaginary part is zero, see
Sec. 6.3.8 for a discussion on the relative vs absolute accuracy.
These results show that there is in principle no constraint on the number of scales
involved.

7.3.4 Non-planar seven-propagator all massive graph MNP
7

In this example, a seven-propagator non-planar two-loop box integral is considered,
where all propagators are massive, using m2 = m4 = m5 = m7 = m, m1 = m3 =
m6 = M , p2

1 = p2
2 = p2

3 = p2
4 = m2. The labeling is as shown in Fig. 7.8. Numerical

results for this integral were obtained by Fujimoto et al. [314], where solutions are found
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m1

m2

m3

m4

m6

m5m7

Figure 7.8: Labeling of the masses for the non-planar graph MNP
7 .

by extrapolation in the iδ parameter. For comparison, results produced with SecDec
are shown for the same mass configuration using m = 50,M = 90, s23 = −104, see
Fig. 7.9. They are in agreement with Ref. [314]. The computation time for the longest
sub-function (for both real and imaginary parts) for a relative accuracy of one per mil
vary between about 20 secs for a point far from and about 500 secs close to the threshold.
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Figure 7.9: Results for the non-planar 7-propagator graph MNP
7 with all propagators

massive, using m = 50, M = 90 and s23 = −104.

7.3.5 Non-planar six-propagator diagram

First, the non-planar six-propagator two-loop four-point diagram is considered, compare
Fig. 7.1(e). For light-like legs and massless propagators, the analytic result has been
calculated, see Ref. [201]. The name of the graph BNP

6 , is adopted from this reference.
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In the following, two different mass configurations of the graph BNP
6 are studied

p1

p3
p2

p4

(a) BNP,a
6

p1

p3
p2

p4

m4m3

m1

m2

(b) BNP,b
6

Figure 7.10: The two non-planar 6-propagator topologies studied here: (a) BNP,a
6 and

(b) BNP,b
6 . The thick lines denote massive external legs and propagators,

respectively.

BNP,a
6 : Two external legs, p2

1 and p2
2, are massive, all propagators are massless. The

leading pole of this topology is of order O(1/ε4).

BNP,b
6 : All external legs are light-like, four propagators are massive with m1 = m2 =

m3 = m4 6= 0, the other two are massless. This topology contains poles starting
from order O(1/ε).

For the topology with light-like legs as considered in Ref. [201], the leading pole is of the
order O(1/ε2). The difference in the pole structure is due to cancellations related to the
high symmetry of the graph. See Figs. 7.11 and 7.12 for numerical results of the finite
parts of BNP,a

6 and BNP,b
6 and Fig. 7.10 for the corresponding diagrams.

In accordance with Ref. [201], an overall prefactor of Γ(1 + 2ε)Γ(1− ε)3/Γ(1− 3ε)/(1 +
4ε) has been extracted in all numerical results. Also, for all the values given, s13 is
determined by the physical constraint s12 + s23 + s13 = p2

1 + p2
2.

For Fig. 7.11, the numerical value s12 = 3 was adopted while scanning over s23. The
massive external legs are set to p2

1 = p2
2 = 1. In Fig. 7.12, numerical values for the

finite part of the BNP,b
6 diagram are shown, where the mass scale is set to m = 0.5. The

kinematic invariant s12 is varied, choosing s23 = −0.4.
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The error bars are barely seen in the figures as the numerical accuracy is
about one per mil.
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Figure 7.12: The non-planar 6-propagator graph BNP,b
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The error bars are barely seen in the figures as the numerical accuracy is
about one per mil.
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7.4 Summary
In this chapter the evaluation of diverse non-trivial two-loop diagrams, including planar
and non-planar topologies with six or seven propagators, was shown. It was found that
their evaluation with the upgraded version of the program SecDec is not restricted
by the number of involved scales. Complicated diagrams hardly or not accessible with
analytical techniques can easily be computed, proving the program SecDec a powerful
tool for checks, comparisons and predictions. Yet, an evaluation can become difficult if
the singularity structure is very complicated such that spurious linear divergences oc-
cur. In the example of the massive non-planar two-loop box ggtt2 which exhibits such
an extremely complicated singularity structure, it has proven beneficial to do an an-
alytical preparation of the integral prior to numerical integration. A simplification of
the functions to be integrated numerically can be achieved by a reduction in the num-
ber of Feynman parameters to integrate over numerically or in the removal of spurious
divergences. The former was achieved by integration of one Feynman parameter in a
sub-loop. Towards the latter a new type of transformation, introduced by the author
and collaborators and summarized in this thesis, facilitated a trading of linear diver-
gences for logarithmic ones, thereby achieving a reduction by two thirds in the total
number of functions to be integrated. As was shown, the analytical preparation leads
to an overall improved numerical convergence. Exploiting the newly developed feature
of including user-defined functions into the SecDec setup, an automated evaluation of
the ggtt2 diagram was possible. The examples demonstrated in this chapter may serve
as a guideline for the evaluation of very complicated integrals, to become of importance
in future phenomenological applications.
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8 | Neutral MSSM Higgs-boson
spectrum at the two-loop level

The momentum-dependent two-loop contributions to the neutral CP-even MSSM Higgs-
boson masses are computed at order O(αsαt). This requires the calculation of two-loop
self-energies with a proper renormalization at the two-loop level. The calculation is
performed using the Feynman-diagrammatic approach. An effective potential approach,
though leading to compact expressions, does not allow for the incorporation of momen-
tum dependence.
All relevant two-loop self-energy diagrams and those one- and two-loop diagrams con-

tributing to the renormalization are generated using FeynArts [183, 184, 315]. From
a diagrammatic point of view, the diagrams involved in the calculation including the
momentum-dependence remain the same with respect to the calculation at zero mo-
mentum transfer. This is due to the fact that the diagrams are selected by coupling
factors. The sole difference is in the dependence of the self-energy diagrams on the
external momentum. Yet, this difference is non-trivial because analytical expressions
involve the evaluation of elliptic integrals which can presently not be performed yielding
fully analytical results. As numerical evaluations are generally more time-consuming,
the number of diagrams involved needs to be reduced considerably, to a minimal set of
master integrals.
A reduction of tensor integrals and the evaluation of traces is performed with the

packages TwoCalc [316] and FormCalc [186,317,318]. While the package TwoCalc
condenses the two-loop amplitudes to only scalar master topologies, FormCalc reduces
all one-loop counter-terms and counter-term insertions to a basis of scalar integrals and a
small number of tensor coefficients. In the reduction, the method of partial fractioning is
used where applicable. Also the cancelation of denominators after taking the derivative
with respect to a kinematic invariant is exploited, in addition to the application of
symmetry relations. An important feature of TwoCalc is benefitting from the extension
of the idea of a tensor decomposition introduced by Passarino and Veltman [319] as a
reduction technique at one-loop. In TwoCalc, the latter is applied to a sub-loop of
an integral before the remains of the integral can be further decomposed and simplified
with the before mentioned techniques.
After studying the one- and two-loop counter-terms renormalizing the masses as well

as the fields, and assuring a consistent cancellation of all divergences, the resulting
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finite terms are evaluated. Where possible, analytic results are used, all other integral
topologies are computed numerically using the program SecDec. The resulting self-
energy corrections are added to the inverse propagator matrix, as discussed in Sec. 2.3,
and the resulting mass shifts to the neutral CP-even Higgs-boson masses are computed.
The two-loop calculation is performed in the φ1-φ2 basis. The rotation into the physical
h0-H0 basis according to Eq. (2.5) is performed afterwards.

8.1 Dominant momentum-dependent two-loop QCD
corrections

To compute the dominant momentum-dependent two-loop contributions to the neutral
MSSM Higgs-boson spectrum, only those self-energy diagrams with couplings strictly of
the order O(αsαt) are taken into account. While electro-weak gauge contributions are
incorporated up to the one-loop level, they are assumed negligible at the two-loop level.
The corrections involving squares in the top Yukawa coupling, Eq. (2.40), dominate
the electro-weak higher-order contributions, as m2

t � m2
Z,W . Contributions involving

couplings to gauge bosons are therefore expected to be relatively small.
Although the top Yukawa coupling is much larger than the bottom Yukawa coupling,

yt � yb, it might be argued that the scalar bottom (sbottom) quark mass could be
significantly larger than the bottom mass, when supersymmetry is broken. This region
of parameter space could then lead to corrections of similar size with respect to the cou-
plings proportional to y2

t . However, the couplings of the squarks to the Higgs-bosons are
all proportional to Yukawa couplings, see Sec. 2.2. They are composed of the fully super-
symmetric F-term and the non-supersymmetric soft-breaking contributions, where fully
supersymmetric refers to the relation yt̃,b̃ = yt,b. The relevant soft-breaking terms are
proportional to the trilinear couplings At,b and the Standard Model Yukawa couplings.
Assuming no inverse hierarchy among the trilinear couplings, the up-type Yukawa terms
dominate over the down-type ones. Therefore, all bottom and sbottom contributions
can be assumed to be negligible.

8.2 Self-energy diagrams

Twelve different two-loop topologies contribute to the MSSM Higgs-boson self-energy
corrections at the order O(αsαt), see Fig. 8.1. They match Eq. (2.62) choosing the scalar
fields φ0

1 and φ0
2 for xa. Every vertex of Yukawa type involving a Higgs-boson and quarks

or squarks contains a square root factor of αt. All quark or squark interactions with a
gluon or gluino and the 4-squark vertices contribute with a factor of √αs. Products of
these coupling factors lead to an overall order of αsαt for each diagram. The squared one-
particle irreducible diagrams and reducible two-loop diagrams (Σ(1)

φiφj
)2 do not contribute

to the corrections because their amplitudes are not of the order αsαt.
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Figure 8.1: Generic two-loop self-energy diagrams contributing at the order O(αsαt),
with φ = φ1, φ2, A

0 and i, j, k = 1, 2. The A0 boson self-energies enter the
two-loop counter terms during renormalization. Stop particles t̃ carry indices
1 and 2, in accordance with the Feynman rules.

After performing a tensor reduction with TwoCalc, the resulting amplitudes are
given in terms of a few scalar master integrals. Those involve factorizing one-loop tad-
pole A(m2), one-loop bubble B(p2,m2

1,m
2
2) and two-loop bubble T (p2, {m2

i }) topologies,
compare Fig. 8.2. While the resulting one-loop integrals can only become UV divergent,
the two-loop integrals can be ultraviolet and infrared divergent. As the gluons are the
only massless particles in this calculation and appear singly, no infrared singularities arise
in any of the two-loop diagrams. This remains valid throughout the whole calculation,
even though some sub-topologies contain more than one massless internal line. In these
cases, the integrand structure is such that an IR singularity does not occur. Though
IR divergences are absent, additional sub-ultraviolet divergences can arise depending on
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Figure 8.2: Two-loop master topologies resulting after tensor reduction. Some of the
internal lines may also be massless.

the structure of the integrand. This is true for the diagrams T1234, T11234 and T234.
The integral T12345 is finite in all mass configurations appearing in this calculation. To
summarize, the previously shown two-loop self-energies may contain single and double
UV poles. The newly included momentum-dependence gives rise to additional divergent
terms. It is desired to find the correct counter-terms for their renormalization.

It is beneficial to analyze which diagrams carry momentum dependence, and which
contribute with additional divergent parts. First of all, the topologies 8, 9 and 10 of
Figs. 8.1(h)-(j) do not contribute with an additional momentum dependence at the two-
loop level. Taking a diagrammatic point of view, these diagrams appear as tadpoles with
two external legs pinched to one vertex, and all tadpoles are independent of the external
momentum. All other diagrams carry momentum dependence in the loop and contain
momentum-dependent single UV divergent pole contributions. The diagram in Fig. 8.1(l)
is the only one to contain a single UV pole, all other diagrams have the double amount.
Only three diagrams contain momentum-dependent double UV divergent terms, namely
8.1(b), (e) and (g).

With the additional contributions stemming from momentum dependence being ex-
posed, the divergent terms can be eliminated, before the momentum-dependent contri-
butions in the finite self-energies can be analyzed.

8.3 Renormalization
As mentioned in the previous section, up to two UV poles appear in the unrenormalized
self-energies. These can contain local divergences in a sub-loop. To renormalize these,
one-loop self-energies with counter-term insertions have to cancel those divergences aris-
ing in a sub-loop of the two-loop diagrams. In addition, two-loop counter terms need to
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cancel the rest of the divergences. In this calculation, a mixed on-shell and DR scheme
is used. Within the DR renormalization scheme, conventional dimensional reduction,
see Sec. 3.2, is imposed. The bar in DR denotes that an additional factor of γE and
log(4π) stemming from prefactors to loop integrals is absorbed into the renormalization
scale µr.

In a renormalized theory, all ultraviolet poles have to be canceled and physical quan-
tities need to be finite. The proof of the existence of a set of counter-term vertices ren-
dering any theory of superficial divergence finite is summarized in the BPHZ theorem,
see Refs. [143–145]. While the renormalization of a sub-loop of two-loop self-energies is
constructed from vertex corrections, their two-loop counter terms are determined from
the Lagrangian. The latter can be derived by looking at corrections to the fields and
masses. To this end, each scalar doublet gets a multiplicative field renormalization,

Ha → Ha
√
ZHa , (8.1)

where

ZHa = 1 + δZ
(1)
Ha + δZ

(2)
Ha + ... . (8.2)

Similarly, the masses get renormalization constants. This is implemented by adding
counter-terms to the tree-level mass matrices

M2
x →M2

x + δM2(1)
x + δM2(2)

x + . . . , (8.3)

with x = φ0, χ0, φ±. Recapitulating Sec. 2.1, the Higgs-boson masses are determined
from both, the bilinear part of the Lagrangian, compare Eq. (2.20), and the linear part,
see Eqs. (2.16)-(2.18). They contain parametric dependences on mA0 , mZ , mW , the
charge e, the electroweak mixing angle θW , the angle relating the vacuum expectation
values β and the tadpole coefficients T1 and T2, compare Eqs. (2.16), (2.23) and (2.25b).
Reformulating the kinetic part of the Lagrangian including field renormalization con-
stants yields

LHfree =
2∑

a=1
∂µ

(
Ha
√
ZHa

)†
∂µHa

√
ZHa (8.4a)

=1
2(|∂µφ0

1

√
ZH1 |2 + |∂µχ0

1

√
ZH1 |2) + |∂µφ−1

√
ZH1 |2

+ 1
2(|∂µφ0

2

√
ZH2 |2 + |∂µχ0

2

√
ZH2 |2) + |∂µφ+

2

√
ZH2 |2 . (8.4b)

Examining those parts of the potential part of the Lagrangian contributing to the Higgs-
boson masses, the following substitutions appear in the formulation of UV finite quan-
tities,

LHmass = −1
2
(
x1
√
ZH1 x2

√
ZH2

)
(M2

x + δM2(1)
x + δM2(2)

x + ...)
(
x1
√
ZH1

x2
√
ZH2

)
, (8.5)
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where the tree-level terms and the one, two and higher loop counter-terms can be iden-
tified. An expansion of the square root becomes necessary when the fields x1 and x2
mix,

x1
√
ZH1x2

√
ZH2 =x1 (1 + 1

2(δZ(1)
H1

+ δZ
(2)
H1

)− 1
8(δZ(1)

H1
)2 + ...)

× x2 (1 + 1
2(δZ(1)

H2
+ δZ

(2)
H2

)− 1
8(δZ(1)

H2
)2 + ...) (8.6a)

=x1x2 (1 + 1
2(δZ(1)

H1
+ δZ

(1)
H2

) + 1
2(δZ(2)

H1
+ δZ

(2)
H2

)

− 1
8(δZ(1)

H1
− δZ(1)

H2
)2 + . . . ) (8.6b)

where a record of the expansion is only kept until second order. As mentioned before,
the terms linear in the field need to vanish at all orders. Looking at these after the
application of the equations of motion Eq. (2.56), the dependence on the fields drops
out, meaning that there is no field renormalization involved here. This is in agreement
with the fact that tadpoles do not carry momentum dependence. Therefore, the only
counter-term correction needed in Eq. (2.57) arises from the corrections to the tadpoles
themselves

Ta → Ta + δT (1)
a + δT (2)

a + . . . . (8.7)

The solution to the equations of motion including counter-terms therefore reads

Ta + T (1)
a + T (2)

a + δT (1)
a + δT (2)

a + . . .
!= 0 . (8.8)

8.3.1 Two-loop counter terms for the renormalization at O(αsαt)
Applying field and parameter renormalization yields the renormalized self-energies in
terms of the scalar fields φ0

1 and φ0
2

Σ̂(2)
φ0

1φ
0
1
(p2) = Σ(2)

φ0
1φ

0
1
(p2) + δΦ(2)

1 − δV
(2)
φ0

1φ
0
1

(8.9a)

Σ̂(2)
φ0

2φ
0
2
(p2) = Σ(2)

φ0
2φ

0
2
(p2) + δΦ(2)

2 − δV
(2)
φ0

2φ
0
2

(8.9b)

Σ̂(2)
φ0

1φ
0
2
(p2) = Σ(2)

φ0
1φ

0
2
(p2)− δV (2)

φ0
1φ

0
2
. (8.9c)

The counter-terms δΦa arise from the kinetic Lagrangian, see Eq. (8.4b), and δVxaxb
from the potential part of the Lagrangian, see Eq. (8.5).

The counter-terms originating from perturbative expansions to the free fields φ0
1 and

φ0
2 read

δΦ(2)
a = p2

(
δZ

(2)
Ha −

1
4(δZ(1)

Ha)2
)

, (8.10)

as deducible from Eqs. (8.2) and (8.4b). In the calculation of the self-energies of the two
orders αs and αt, the squared one-loop field renormalization constants do not contribute.
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They would be needed, e.g., in an order O(α2
t ) calculation. This reduces the field

renormalization counter-terms to

δΦ(2)
1 = p2δZ

(2)
H0

1
(8.11)

δΦ(2)
2 = p2δZ

(2)
H0

2
. (8.12)

Based on the derivation from the beginning of Sec. 8.3, the counter-terms arising from
the renormalization of the potential part of the Lagrangian are given by

δV
(2)
φ0

1φ
0
1

= M2
φ0

1φ
0
1
δZ

(2)
H0

1
+ δM

2(2)
φ0

1φ
0
1

(8.13)

δV
(2)
φ0

2φ
0
2

= M2
φ0

2φ
0
2
δZ

(2)
H0

2
+ δM

2(2)
φ0

2φ
0
2

(8.14)

δV
(2)
φ0

1φ
0
2

= 1
2M

2
φ0

1φ
0
2
(δZ(2)

H0
1

+ δZ
(2)
H0

2
) + δM

2(2)
φ0

1φ
0
2
, (8.15)

where δM2(2)
φ0 is computed from the Taylor series expansion of the mass matrix M2

φ0

in its parameters up to second order. Recalling the mass matrix M2
φ0 of Eq. (2.25b),

the vanishing of the tree-level tadpole parameters due to the minimization of the MSSM
Higgs-boson potential, Eq. (2.15), was already incorporated. Tadpole contributions must
be taken into account at higher orders, as their coefficients do not necessarily vanish, see
Eq. (2.57) and Eq. (8.8). Yet, they only enter in the renormalization of the momentum
independent part. The mass matrix is then parametrized by mA0 , mZ , mW , the charge
e, the electroweak mixing angle θW , the angle relating the vacuum expectation values β
and the tadpole coefficients T1 and T2. The computation of the Taylor series expansion
of the mass matrix up to second order corresponds to a perturbative expansion in these
parameters,

m2
A0 → m2

A0 + δm
2(1)
A0 + δm

2(2)
A0 , T1 → T1 + δT

(1)
1 + δT

(2)
1 ,

m2
Z → m2

Z + δm
2(1)
Z + δm

2(2)
Z , T2 → T2 + δT

(1)
2 + δT

(2)
2 ,

tan β → tan β
(
1 + δ tan β(1) + δ tan β(2)

)
. (8.16)

With the computation performed in the “gaugeless” limit, all counter-terms including
electroweak gauge particles and their contributions are discarded. Furthermore, squares
of one-loop renormalization constants appearing in δM

2(2)
φ0 do not contribute, as they

are proportional to electroweak coupling factors but they are not of the order O(αsαt).
For a full explicit presentation of δM2(2)

φ0 , see e.g. Ref. [86]. The final counter-terms for
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the potential in the quadratic φ0
a terms are

δV
(2)
φ0

1φ
0
1

= δm
2(2)
A0 sin2β

− δT (2)
1

e

2MW sin θW
cosβ (1 + sin2β)

+ δT
(2)
2

e

2MW sin θW
sinβ cos2β

+ 2 δtanβ(2) cos2β sin2β m2
A0

+ δZ
(2)
H0

1
m2
A0 sin2β , (8.17a)

δV
(2)
φ0

2φ
0
2

= δm
2(2)
A0 cos2β

+ δT
(2)
1

e

2MW sin θW
cosβ sin2β

− δT (2)
2

e

2MW sin θW
sinβ (1 + cos2β)

− 2 δtanβ(2) cos2β sin2β m2
A0

+ δZ
(2)
H0

2
m2
A0 cos2β , (8.17b)

δV
(2)
φ0

1φ
0
2

=− δm2(2)
A0 sinβ cosβ

− δT (2)
1

e

2MW sin θW
sin3β

− δT (2)
2

e

2MW sin θW
cos3β

− δtanβ(2)cosβ sin β cos(2β)m2
A0

− 1
2(δZ(2)

H0
1

+ δZ
(2)
H0

2
) sinβ cosβ m2

A0 . (8.17c)

With the derived counter-terms at hand, the renormalization constants entering them
need to be defined. As mentioned previously, these are renormalization scheme depen-
dent. To be consistent with previous calculations incorporated in the public program
FeynHiggs, all masses and the tadpole parameters are renormalized using the on-shell
scheme, and all field contributions using the DR scheme [140, 320–323]. In the latter,
a dependence on the renormalization scale µr is exhibited. The two-loop renormaliza-
tion constants entering the mass renormalization counter-terms are known for vanishing
external momentum, see Refs. [109, 117–119]. Taking the momentum dependence into
account, only the tadpole contributions remain unchanged. The tadpole renormaliza-
tion constants can be deduced from Eq. (8.8). To meet the condition that the sum of all
tadpole contributions must vanish, it must follow

δT (2)
a = −T (2)

a , (8.18)

adopting an on-shell renormalization. To obtain the renormalization constants δT (2)
a ,

thus two-loop tadpole diagrams have to be computed, matching the right order in the
couplings, compare the diagrams in Fig. 8.3.
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Figure 8.3: Two-loop tadpole diagrams contributing in the two-loop counter terms to the
O(αsαt) self-energies, φ = φ1, φ2 and i, j, k = 1, 2.

For the renormalization constants δZH1 , δZH2 and δ tan β several choices are possible,
see the discussion in [140, 324]. As shown there, the most convenient choice is a DR
renormalization of δ tan β, δZH1 and δZH2 . The field renormalization constants can
be extracted by taking the derivative of the renormalized self-energies, Eqs. (8.9), with
respect to the external momentum squared, yielding in DR renormalization

δZ
(2)
Ha = Re

[
∂

∂p2 Σ̂φ0
aφ

0
a
(p2)− ∂

∂p2 Σφ0
aφ

0
a
(p2)

]
p2=0

(8.19)

=− Re
[
∂

∂p2 Σφ0
aφ

0
a

]div
p2=0

. (8.20)

The formulation of the field renormalization constants in the DR scheme has the ad-
vantage that all ultraviolet divergences of the momentum-dependent integrals contained
in the Σφ0

aφ
0
a
self-energies are known analytically. The derivative with respect to p2 can

therefore be performed in a fully analytical way. Adopting an on-shell field renormal-
ization, the derivatives of some integrals in the finite part for which closed analytical
expressions are not available, are expected to be less straightforward. It could be argued
that the calculation can be simplified even further adopting a full DR scheme, compare
Refs. [136–138]. Yet, the dependence on the renormalization scale is decreased adopting
a hybrid renormalization scheme, physical effects of higher order in the DR scheme al-
ready appear at the current order in the on-shell scheme, and predictions are given with
pole masses as input parameters.
Due to the fact that tan β is defined in terms of the two vacuum expectation values v1

and v2, Eq. (2.24), minimizing the MSSM Higgs-boson potential according to Eq. (2.15),
the field renormalization also enters here. The renormalization of tan β follows from

va →
√
Za(va + δv

(1)
1 + δv

(2)
1 ) , (8.21)
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yielding in DR

δtanβ(2) = 1
2 tanβ (δZ(2)

H2
− δZ(2)

H1
) . (8.22)

The term in Eq. (8.22) is in general not the proper expression beyond one-loop order
even in the DR scheme. In the approximation with only the top Yukawa coupling at the
two-loop level, it is the correct DR form, see Refs. [325,326].

Finally, the two-loop renormalization constant of the A0-boson mass is determined in
the on-shell scheme as

δm
2(2)
A0 = Re

[
Σ(2)
A0A0(p2 =m2

A0)
]
, (8.23)

in terms of the unrenormalized two-loop A0-boson self-energy Σ(2)
A0A0 evaluated at the

pole mass; see Fig. 8.1 for the generic A0-boson self-energy diagrams at the two-loop
level. The appearance of a non-zero momentum in the self-energy goes beyond the
O(αtαs) corrections evaluated in Refs. [109,117–119]. Fixing the external momentum of
the self-energy to the A0-boson mass is necessary to cancel additional divergent terms
arising from the two-loop counter-terms involving tan β, compare Eqs. (8.17a)-(8.17c).
The latter contain a dependence on m2

A0 , giving rise to divergences which do not cancel
any divergence arising in the neutral CP-even Higgs-bosons. The latter are independent
of the A0-boson mass. These additional divergences must therefore be cancelled by
δm

2(2)
A0 .

8.3.2 Renormalization at the sub-loop level
With the two-loop counter terms at hand, there is only one missing piece left in the
renormalization procedure. Filling this gap, those one-loop diagrams with counter-term
insertions are computed, which renormalize a sub-loop of the two-loop self-energies and
of the two-loop tadpole diagrams. The latter are needed for the two-loop counter-terms,
compare Eq. (8.18). The one-loop amplitudes with counter-term insertions are generated
with the program FeynArts [183,184,315], using the model file including counter-terms
from Ref. [327].
One-loop corrections x(1) to the field x with one-loop counter-term insertions δP (1)

of a given parameter P were already shown in Eqs. (8.4b) and (8.5). The contributions
there, however, are of the order O(α2

t ) and lack a dependence of αs. To find the proper
sub-loop renormalization terms, the particle interactions proportional to αs, listed in
Sec. 2.2, need to be taken into account. They amount to five different counter-term
structures, see Fig. 8.4, required for the insertions in the one-loop amplitudes of order
O(αt) in Fig. 8.5. The latter involve the one-loop neutral CP-even and CP-odd Higgs-
boson amplitudes. The CP-odd amplitude is needed for the sub-loop renormalization of
the A0-boson self-energy entering the two-loop counter-terms. Furthermore, the tadpole
diagrams entering the two-loop counter-terms need a proper sub-loop renormalization.
Their one-loop amplitudes must be computed as well, see the diagrams in Fig. 8.6. The
one-loop diagrams are either of orderO(αt) orO(√αt), see Figs. 8.5 and 8.6, respectively.
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Figure 8.4: One-loop diagrams for the quark and squark counter-term insertions with
i, j, k = 1, 2.
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Figure 8.5: One-loop counter-term contributions to the sub-loop renormalization of the
O(αsαt) self-energies, with φ = φ1, φ2, A and i, j = 1, 2.

An additional factor √αt comes in with the prefactor to the tadpole renormalization
constants, compare Eqs. (8.17a)-(8.17c). The program FormCalc [186] is used to
perform the reduction of the one-loop diagrams to one-, two-, and three-point master
integrals A, B and C, respectively. In addition, tensor coefficients to the two- and
three-point integrals can arise.

The counter-term insertions contain quark and squark field-renormalization compo-
nents as well as terms resulting from the renormalization of the tree-level top-quark and
squark mass matrices. The renormalization of the top and stop sector at the one-loop
level as discussed below, has been analyzed in detail in Refs. [86, 119, 135, 320–323].
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Figure 8.6: One-loop counter-term diagrams with insertions, needed in the sub-loop
renormalization of the two-loop tadpoles, φ = φ1, φ2 and i, j = 1, 2.

One-loop counter-terms to the stop mass matrix M2
t̃12

and the fields t̃L and t̃R read

m2
ti → m2

t̃i
+ δm

2(1)
t̃i

, (8.24a)

θt̃ → θt̃ + δθ
(1)
t̃

, (8.24b)

t̃L,R → t̃L,R
√
Zt̃L,R ≈ t̃L,R (1 + 1

2δZ
(1)
t̃L,R

) . (8.24c)

The stop fields are transformed into the physical components t̃1 and t̃2 via

(
t̃1

t̃2

)
= Ut̃

(
t̃L

t̃R

)
, (8.25)

where Ut̃ is the stop mixing matrix defined in Eq. (2.54). The free-field kinetic terms
of the stops are bilinear in the fields t̃i and when computing the field renormalization
counter-terms ∝ |∂µt̃i|2; these receive contributions from both the left-hand and right-
hand components. To disentangle them, it is beneficial to introduce the field renormal-
ization in the mass eigenstate basis

(
t̃1

t̃2

)
→ Zt̃12

(
t̃1

t̃2

)
=

1 + 1
2δZ

(1)
t̃1

1
2δZ

(1)
t̃12

1
2δZ

(1)
t̃21

1 + 1
2δZ

(1)
t̃2

(t̃1
t̃2

)
. (8.26)

Now, a transformation of coordinates of the left- and right-handed field renormalization
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matrix can be performed

Ut̃

1 + 1
2δZ

(1)
t̃L

0
0 1 + 1

2δZ
(1)
t̃R

UTt̃ (8.27a)

=

1 + 1
2(cos2 θt̃δZ

(1)
t̃L

+ sin2 θt̃δZ
(1)
t̃R

) 1
2 sin θt̃ cos θt̃(δZ

(1)
t̃R
− δZ(1)

t̃L
)

1
2 sin θt̃ cos θt̃(δZ

(1)
t̃R
− δZ(1)

t̃L
) 1 + 1

2(sin2 θt̃δZ
(1)
t̃L

+ cos2 θt̃δZ
(1)
t̃R

)

 ,

(8.27b)

where a comparison of the coefficients with Eq. (8.26) yields

δZ
(1)
t̃1

= cos2 θt̃δZ
(1)
t̃L

+ sin2 θt̃δZ
(1)
t̃R

, (8.28a)

δZ
(1)
t̃2

= sin2 θt̃δZ
(1)
t̃L

+ cos2 θt̃δZ
(1)
t̃R

, (8.28b)

δZ
(1)
t̃12

= δZ
(1)
t̃21

(8.28c)

= sin θt̃ cos θt̃ (δZ(1)
t̃R
− δZ(1)

t̃L
) (8.28d)

= sin θt̃ cos θt̃
cos2 θt̃ − sin2 θt̃

(δZ(1)
t̃2
− δZ(1)

t̃1
) . (8.28e)

Now, the one-loop free field renormalization terms in the physical basis read

δt̃
(1)
1 = p2 δZ

(1)
t̃1

, (8.29a)

δt̃
(1)
2 = p2 δZ

(1)
t̃2

, (8.29b)

δt̃
(1)
12 = p2 δZ

(1)
t̃12

. (8.29c)

In analogy to the previous sections, the counter-terms arising from the squark potential
get a field and a mass renormalization contribution. The one-loop squark potential
counter-terms result from

Lrent̃,mass ⊃ −
(
t̃†1 t̃†2

)
ZTt̃12

M2
t̃12
Zt̃12

(
t̃1

t̃2

)
, (8.30)

where M2
t̃12

is defined in Eq. (2.53) and Zt̃12 in Eq. (8.26). Expanding them up to the
first order they read

δV t̃1 t̃1 = m2
t̃1
δZ

(1)
t̃1

+ δM
2(1)
t̃1 t̃1

, (8.31a)

δV t̃2 t̃2 = m2
t̃2
δZ

(1)
t̃2

+ δM
2(1)
t̃2 t̃2

, (8.31b)

δV t̃1 t̃2 = 1
2(m2

t̃1
+m2

t̃2
)δZ(1)

t̃12
+ δM

2(1)
t̃1 t̃2

. (8.31c)

As the field renormalization matrices Zt̃12 are not diagonal, contributions from tree-level
masses enter in the off-diagonal squark potential counter-terms, even though the mass
matrix M2

t̃12
is in diagonal form. The mass renormalization counter-terms read

δM
2(1)
t̃12

= Ut̃ δM
2(1)
t̃LR

UTt̃ (8.32)
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where the total differential of the matrixM2
t̃LR

defines the one-loop counter-terms. Writ-
ten out in explicit form, each contribution reads as follows,

δM
2(1)
t̃1 t̃1

= δm
2(1)
t̃1

, δM
2(1)
t̃2 t̃2

= δm
2(1)
t̃2

, δM
2(1)
t̃1 t̃2

= (m2
t̃1
−m2

t̃2
) δθ(1)

t̃
. (8.33)

Collecting all counter-terms, the renormalized one-loop squark self-energies are given by

Σ̂(1)
t̃1 t̃1

(p2) = Σ(1)
t̃1 t̃1

(p2) + δt̃
(1)
1 − δV

(1)
t̃1 t̃1

, (8.34a)

Σ̂(1)
t̃2 t̃2

(p2) = Σ(1)
t̃2 t̃2

(p2) + δt̃
(1)
2 − δV

(1)
t̃2 t̃2

, (8.34b)

Σ̂(1)
t̃1 t̃2

(p2) = Σ(1)
t̃1 t̃2

(p2) + δt̃
(1)
12 − δV

(1)
t̃1 t̃2

. (8.34c)

While the sum of all field renormalization contributions concerning inner fields vanishes,
the massive contributions do not. All self-energies are renormalized on-shell where the
following renormalization conditions were used, following Refs. [119,320–323]

Re[Σ̂(1)
t̃1 t̃1

(m2
t̃1

)] = 0 , (8.35a)

Re[Σ̂(1)
t̃2 t̃2

(m2
t̃2

)] = 0 , (8.35b)

Re[Σ̂(1)
t̃1 t̃2

(m2
t̃2

)] + Re[Σ̂(1)
t̃2 t̃1

(m2
t̃1

)] = 0 , (8.35c)

Re[ ∂
∂p2 Σ̂(1)

t̃1 t̃1
(m2

t̃1
)] = 0 , (8.35d)

Re[ ∂
∂p2 Σ̂(1)

t̃2 t̃2
(m2

t̃2
)] = 0 . (8.35e)

These lead to the following determinations for the renormalization constants entering
the mass counter-terms,

δm
2(1)
t̃i

= Re[Σ(1)
t̃i t̃i

(m2
t̃i

)] with i = 1, 2 , (8.36)

δθ
(1)
t̃

=
Re[Σ(1)

t̃1 t̃2
(m2

t̃1
)] + Re[Σ(1)

t̃1 t̃2
(m2

t̃2
)]

2 (m2
t̃1
−m2

t̃2
)

, (8.37)

and the field counter terms

δZ
(1)
t̃1

= −Re[ ∂
∂p2 Σ̂(1)

t̃1 t̃1
(m2

t̃1
)] , (8.38)

δZ
(1)
t̃2

= −Re[ ∂
∂p2 Σ̂(1)

t̃2 t̃2
(m2

t̃2
)] . (8.39)

δZ
(1)
t̃12

was already defined in Eq. (8.28e). In addition to the squarks, also the quark sector
has to be renormalized. The top-quark mass is defined on-shell, yielding the one-loop
counter-term

δmt = mt

2
(
Re[ΣL

t (m2
t )] + Re[ΣR

t (m2
t )] + 2Re[ΣS

t (m2
t )]
)
, (8.40)
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where ΣL,R
t are the left- and right-handed components of the quark self-energy, respec-

tively. The latter can be decomposed according to its Lorentz structure,

Σt(k) =6pΣV
t (p2)+ 6pγ5ΣA

t (p2) +mtΣS
t (p2) , (8.41)

where it is split into the scalar part of the quark self energy ΣS
t , the vectorial ΣV

t and
the axial vectorial part ΣA

t .
The renormalization of the stop-mixing soft breaking term Xt̃, defined in Eq. (2.55),

reads

δX
(1)
t̃

= Xt̃

1− 2 sin2 θt̃
sin θt̃ cos θt̃

δθ
(1)
t̃

+
δm

2(1)
t̃1
− δm2(1)

t̃2

m2
t̃1
−m2

t̃2

− δm
2(1)
t

mt

 , (8.42)

where the fact that neither δµ(1) nor δ tan β (1) have couplings of the order O(αs) was
already taken into account. The renormalization constant δX(1)

t̃
enters in counter-term

vertex insertions, e.g. in Fig. 8.5(d). All renormalization constants are independent
of an external momentum, while the one-loop diagrams containing the counter-term
insertions carry momentum dependence.

8.4 Treatment of the integrals
In Sec. 8.2, some relevant two-loop topologies have already been introduced diagram-
matically, compare Fig. 8.2 in Sec. 8.2. Below, the following notation

Ti1i2...in(p2,m2
i1 ,m

2
i2 , . . . ,m

2
i5) = (2πµr)2(4−D)

×
∫∫ dDq1

iπ2
dDq2
iπ2

1
(k2
i1
−m2

i1
+ iδ)(k2

i2
−m2

i2
+ iδ) · · · (k2

in
−m2

in
+ iδ)

, (8.43)

for the scalar two-loop integrals is adopted, where p is the external momentum, the qi
are the loop momenta, µr is the renormalization scale and the mi denote the masses of
the propagators. To comply with DR renormalization, an additional factor of γE and
log(4π) is absorbed into the renormalization scale µr as

log(µr)→ log(µ′r) = log(µr) + log(4π)− γE . (8.44)

The momenta are continued to D dimensions. The number n of indices of the two-
loop integral Ti1i2...in corresponds to the number of propagators involved. The indices’
numbers i1, . . . , in = 1, . . . , 5 label which propagator type appears in the integral. There
are five different propagator types k1, . . . , k5, where the ki read

k1 = q1, k2 = q1 + p, k3 = q2 − q1, k4 = q2, k5 = q2 + p. (8.45)

In accordance with Ref. [328], the letters A, B and C are used to describe one-loop
integrals with one, two and three external legs, respectively. Hence, a one-loop tadpole
integral A can have one momentum-independent propagator of type k1 or k4. A one-loop
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bubble integral B is composed of two propagators of type k1 and k2 or k4 and k5. The
three-point vertex integrals C can carry dependence of two different external momenta
p1 and p2 and have three propagators. In this calculation, however, being part of a self-
energy computation, they depend on one external momentum p only and are therefore
always reducible to two-point one-loop functions B.

8.4.1 Analytically known integrals

A series representation in the regulator ε of all one-loop integrals entering the sub-loop
renormalization is known in analytical form and a variety of different representations is
available. In this calculation, the approaches of Refs. [328–333] are used. At two loops,
the resulting integrals from the reduction are mostly factorizing one-loop diagrams. Also
all ε-divergent parts and a few finite parts of the two-loop integrals appearing in the
calculation are known from Refs. [330–332,334,335]. Knowing the analytical representa-
tions of the divergent parts is vital in finding exact cancellation of all divergences. The
full analytical cancellation of all divergences is achieved with the above mentioned inte-
gral representations, taking into consideration all counter-terms of Secs. 8.3.1 and 8.3.2,
with their proper renormalization constants. The integral representations have all been
cross-checked intensively with SecDec and the Golem95 integral library [188, 336].
Especially for the imaginary parts these two tools were very useful.

Due to the occurrence of factorizing one-loop integrals, these must be known to first
order in ε as they can contribute to the finite part through terms of the type

(a1
ε

+ b1 + c1ε)(
a2
ε

+ b2 + c2ε) = a1a2
ε2 + a1b2 + a2b1

ε
+ b1b2 + a1c2 + a2c1 + ... . (8.46)

All necessary parts for the one-loop integrals are known analytically [329–332]. As men-
tioned in the previous section, three-point integrals C result from the tensor reduction
in the sub-loop renormalization part. The A and B integrals are UV divergent, the C
integrals appear as finite integrals only because possible IR singularities are regulated
by the massive propagators. Additionally, the third external leg occurs in the context
of counter term insertions and therefore always has a vanishing external momentum,
compare Figs. 8.4(a) and 8.4(c). It is due to this fact, that all three-point functions can
be reduced to derivatives of two-point functions. A general three-point function reads

C0(p2
1, p

2
2,m

2
1,m

2
2,m

2
3) =

∫
dDq 1

(q2 −m2
1)((q + p1)2 −m2

2)((q + p1 + p2)2 −m2
3)

.

(8.47)

Here, the notation of Ref. [328] is adopted. One example of a C integral occurring in
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the calculation, to be reduced to the derivative of a two-point function, reads

C0(p2, 0,m2
1,m

2
2,m

2
2) =

∫
dDq 1

(q2 −m2
1)((q + p1)2 −m2

2)((q + p1)2 −m2
2)

(8.48a)

= ∂

∂m2
2

∫
dDq 1

(q2 −m2
1)((q + p1)2 −m2

2)
(8.48b)

= ∂

∂m2
2
B0(p2,m1,m2) . (8.48c)

From the derivative in the last line, the finiteness of the C integral becomes apparent;
the divergent part of the two-point function does not depend on the masses.
The reduction to purely A and B integrals is especially useful as derivatives of all in-

tegrals occurring in the self-energies are required in the calculation of the field renormal-
ization constants. Products of C integrals with A and B integrals, entering through the
counter-term insertions, lead to finite three-point function contributions to the deriva-
tives. Now, the derivatives of C integrals can be easily computed for simpler cases, but
for the very general case of arbitrary masses in the loop and external momentum, analyt-
ical results are much more involved. For cross checks, the derivatives of the C integrals
for the simpler cases could be computed using the algebraic output from SecDec and
integrating the expressions analytically.
Furthermore, the method of partial fractioning can be exploited, see Ref. [337]. It

is used for the reduction of B integrals to one-point integrals. The method works at
arbitrary loop order. At two loops, e.g., the vacuum integral T1134 function can be
reduced as follows

T1134(0,m2
1,m

2
2,m

2
3,m

2
4)

= 1
m2

1 −m2
2
(T134(0,m2

1,m
2
3,m

2
4)− T134(0,m2

2,m
2
3,m

2
4)) , (8.49)

where the first entry in the integrals denotes a zero external momentum, in accordance
with the notation set up in Eq. (8.43).
The additional relation

T div
1234(p2,m2,m2,m2

3,m
2
4) = Bfin

0 (p2,m2,m2) + 1
2 , (8.50)

is of use, where T div
1234 denotes the coefficient to the singly divergent 1

ε term in the Laurent
expansion of the T1234 integral in the regulator ε, and Bfin

0 the finite part of the B0
integral. Relation Eq. (8.50) can be found as a direct consequence of the formulas in the
appendix of Ref. [330]. Furthermore, the relation

C0(0, p2,m2,m2,m2) =
∫

dDq 1
(q2 −m2)2((q + p)2 −m2) (8.51a)

= 1
2

∂

∂m2B0(p2,m2,m2) , (8.51b)
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deduced from

∂

∂m2B0(p2,m2,m2) (8.52a)

=
∫

dDq 1
(q2 −m2)((q + p)2 −m2)2 +

∫
dDq 1

(q2 −m2)2((q + p)2 −m2) (8.52b)

= 2
∫

dDq 1
(q2 −m2)2((q + p)2 −m2) , (8.52c)

helps achieving a stable cancellation of the UV poles. A momentum shift was performed
in the first integral of Eq. (8.52b).
The tensor coefficients C2 and B1 can be treated by expanding their numerators. To

give an example, the C2 tensor coefficients appearing in this calculation are of the type

C2(0, p2,m2,m2,m2) (8.53a)

= 1
p2

∫
dDq q · p

(q2 −m2)2((q + p)2 −m2) (8.53b)

= 1
2p2

∫
dDq (q + p)2 − q2 − p2 +m2 −m2

(q2 −m2)2((q + p)2 −m2) (8.53c)

= 1
2p2

(
B0(0,m2,m2)−B0(p2,m2,m2)

−p2C0(0, p2,m2,m2,m2)
)

. (8.53d)

Similarly, the B1 coefficient can be reduced to B0 and A0 integrals.

After the cancellation of all divergent parts, the finite parts must be treated. These
maximally include finite terms of two-loop integrals and terms up to the order O(ε) in
the one-loop case. As is visible from Eq. (8.50), the finite part of the one-loop bubble is
part of a sub-divergence of the two-loop integral T1234. This fact suggests that one-loop
terms of order O(ε) may contribute to the finite parts of some of the two-loop integrals.
As a matter of fact, O(ε) parts of the integral

∂

∂m2
1
B0(p2,m2

1,m
2
2) =

∫ dDq1
iπ2(2πµ)D−4

1
(k2

1 −m2
1)2(k2

2 −m2
2)

, (8.54)

appear in sums and subtractions with the finite part of the integral

T11234(p2,m2
1,m

2
1,m

2
2,m

2
3,m

2
4) = ∂

∂m2
1
T1234(p2,m2

1,m
2
2,m

2
3,m

2
4) . (8.55)

An analytic result of the finite part of the latter is not available. As the unknown inte-
grals are computed numerically with version 2 of SecDec, analytic and numeric results
enter the self-energies and their counter-terms. A stable evaluation of the analytically
available and the numerically computed functions is required. The analytically available
integrals appearing in the final result are the one-point functions A0, the scalar two-point
integral B0, the derivative of B0 by one mass, Eq. (8.54), the two-loop vacuum diagram
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with arbitrary masses T134, and the two-loop bubble diagram T234 with two massive
propagators of the same mass and one massless propagator. Explicit expressions for the
integrals are given in App. A.1. For the evaluation of the analytical integrals beyond
threshold, the proper analytical continuation into the complex plane is essential. Square
roots, as well as logarithms, get an imaginary part as soon as their arguments are neg-
ative. The correct prescription for the analytical continuation is given by the causal iδ
appearing in the Feynman propagators. For the kinematic invariants, they separately
read

m2 → m2 − iδ , (8.56a)
p2 → p2 + iδ , (8.56b)
sij → sij + iδ . (8.56c)

In practice, the infinitesimal quantity δ must be assigned a tiny, but not infinitesimally
small value. This can lead to numerical instabilities in the evaluation of an analytical
result. These can be evaded by explicitly choosing a Riemann sheet of the square root

√
a2 ± iδ =

{√
a2 , a2 > 0
±i
√
−a2 , a2 < 0 ,

(8.57)

and the logarithm

log(a2 ± iδ) =
{
log(a2) , a2 > 0
log(−a2)± iπ , a2 < 0 ,

(8.58)

as shown, e.g., in Ref. [332]. At the one-loop level, thresholds can be parametrized by
square roots of the fully symmetric Källén function

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz , (8.59)

which frequently appears in the analytic expressions. Its sign in different parameter
regions is

λ(x, y, z)


< 0 , (y + z)− 2√yz < x < (y + z) + 2√yz
= 0 , x = (y + z)± 2√yz
> 0 , else

. (8.60)

With this knowledge at hand, all thresholds entering from the on-shell renormalization
of the sub-loop can be explained as the square root of the Källén function becomes
complex for a negative λ(x, y, z).

8.4.2 Analytically unknown integrals
The evaluation of some of the integrals entering the calculation are not known. This
concerns different topologies of the integrals T234, T1234, T11234 and T12345, depicted in
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Fig. 8.2. While the evaluation is straightforward in the massless cases, the all-massive
cases are very hard to compute in a full analytical way. This is due to the fact that
neither the T234 nor the T12345 can be expressed in terms of polylogarithms, see Refs. [338,
339] and references therein. An analytical description of the diagram T234 in terms of
generalized Lauricella functions was found in Ref. [338]. The Appell functions appearing
in their result are extremely hard to evaluate in a full analytical way, compare, e.g.
Ref. [340]. Up to date, only one-dimensional integral representations are available for
the evaluation of the T234 integral with arbitrary masses. Special cases (large momentum
expansion, equation of masses) of the T234 integral are available, see Refs. [330,331,341,
342]. The general result for different masses in the three propagators is still discussed
today, among physicists [343–345] and mathematicians [346] alike. A description of the
finite T12345 function in terms of a double integral representation [347], and in terms
of a single integral representation [335], is also available. Furthermore, special cases
and asymptotic limits are known, see Refs. [330, 348–350]. The numerical evaluation of
integrals not accessible with purely analytical methods can be achieved, benefitting from
the automated setup of the program SecDec.

Numerical computation of two-point two-loop integrals

The aforementioned four integral topologies T234, T1234, T11234 and T12345 appear in 34
different mass configurations. These involve up to four different masses, in addition
to the mass scale given by the external momentum p2. They are all computed with
SecDec. For the whole evaluation, the integrator Divonne contained in the Cuba li-
brary [302, 303] is used. The integrator uses a deterministic algorithm and can reach
very accurate results in integrations of few, but more than one, Feynman parameters. An
additional acceleration was achieved by introducing user-defined thresholds to the pro-
gram SecDec, see Secs. 6.3.8 and A.2. This allows the user to define a lowest threshold
condition. Once it is met, SecDec switches to a deformation of the integration contour
into the complex plane. The kinematic values can differ by up to 14 orders of magnitude.
The evaluation of a single phase space point for the most complicated topology, to reach
a relative accuracy of at least 10−5, ranges between 0.01 and 100 seconds on an Intel
i7 processor, where the larger timings are for points very close to a kinematic thresh-
old. The huge differences in the kinematic invariants enter, for instance, when choosing
a small value for the squared external momentum, while testing large squared masses.
These configurations were of special interest in the performance of checks against the
results obtained for vanishing external momenta. For two representative results, see
Fig. 8.7. The configuration in Fig. 8.7(a) has three different mass scales where the first
two masses can be associated with the top mass m1 = m2 = 173.2 GeV, the third mass
with one possible value for a stop mass m3 = 826.8 GeV and the fourth mass to a value
for the gluino m4 = 1.5 TeV. In Fig. 8.7(b), the numerical values m1 = 1173.2 GeV,
m2 = 826.8 GeV, m3 = 1.5 TeV and m4 = 173.2 GeV are chosen. The relative accuracy
of the plots is beyond 10−5. When evaluating a specific scenario, some integrals needed
to be evaluated up to a numerical relative accuracy of at least 10−5 to make up for can-
cellations appearing between analytically evaluated integrals and numerical ones. For
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Figure 8.7: Two representative numerical SecDec results for the integrals of type 8.2(d)
in (a), and of type 8.2(e) in (b), with three and four different masses, respec-
tively. In (a), the values m1 = m2 = 173.2, m3 = 826.8 and m4 = 1.5 are
used. In (b), the numerical values m1 = 1173.2, m2 = 826.8, m3 = 1.5
and m4 = 173.2 are chosen. Due to the high accuracy of the numerical
integration, error bars are barely seen.

the evaluation of an arbitrary scenario with arbitrary rMSSM parameters, this accuracy
was therefore demanded for every SecDec integral.

8.5 Evaluation of the additional shifts to the Higgs-boson
masses

The calculation is performed in the φ1-φ2 basis. To be consistent with all other higher-
order contributions to the Higgs-boson masses incorporated in the public program Feyn-
Higgs, the renormalized self-energies in the φ1-φ2 basis can be rotated into the physical
h0-H0 basis, where the tree-level propagator matrix is diagonal, via

Σ̂(2)
H0H0 = cos2α Σ̂(2)

φ0
1φ

0
1

+ sin2α Σ̂(2)
φ0

2φ
0
2

+ sin(2α) Σ̂(2)
φ0

1φ
0
2
, (8.61a)

Σ̂(2)
h0h0 = sin2α Σ̂(2)

φ0
1φ

0
1

+ cos2α Σ̂(2)
φ0

2φ
0
2
− sin(2α) Σ̂(2)

φ0
1φ

0
2
, (8.61b)

Σ̂(2)
h0H0 = sinα cosα (Σ̂(2)

φ0
2φ

0
2
− Σ̂(2)

φ0
1φ

0
1
) + cos(2α) Σ̂(2)

φ0
1φ

0
2
, (8.61c)

where α is the tree-level mixing angle and using Eq. (2.5). The former is expressible
in terms of the parameters tan β, mA0 and mZ , see Eq. (2.30). The resulting new con-
tributions to the neutral CP-even Higgs-boson self-energies, containing all momentum-
dependent and additional constant terms, are assigned to the differences

∆Σ̂(2)
ab (p2) = Σ̂(2)

ab (p2)− Σ̃(2)
ab (0) , ab = {H0H0, h0H0, h0h0} . (8.62)
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Note the tilde (not hat) on Σ̃(2)(0), which signifies that not only the self-energies are
evaluated at zero external momentum but also the corresponding counter-terms, follow-
ing Refs. [117–119]. A finite shift ∆Σ̂(2)(0) therefore remains in the limit p2 → 0 due to
δm

2(2)
A0 = Re Σ(2)

A0A0(m2
A0) being computed at p2 = m2

A0 in Σ̂(2), but at p2 = 0 in Σ̃(2), as
discussed in Sec. 8.3.1.
Subtracting the finite shift of δm2(2)

A0 , the ∆Σ̂(2)
ab (p2) in Eq. (8.62) must vanish. This

limit was tested numerically, see Sec. 8.4.2. Moreover, the zero momentum limit was
checked analytically, deriving expressions for the vacuum diagrams T1134, T11134 and
T11344 and using an available expression for T134. The relations were computed from
T134 using derivatives of the integral by the masses and partial fractioning as mentioned
in Ref. [337]. Expressions for the vacuum diagram T134 with different mass configura-
tions can be found in Refs. [349,351]. All deduced integrals were checked with SecDec,
including the three-propagator vacuum bubble T134. For further comparison, the expres-
sion for the T1134 integral of Ref. [352] could be used.

The higher-order corrected CP-even Higgs-boson masses in the MSSM are obtained
from the corresponding propagators dressed by their self-energies. Inserting the fields
h0 and H0 in Eq. (2.64), the inverse propagator matrix in the h0-H0 basis is given by

(∆Higgs)−1 = −i
(
p2 −m2

H0 + Σ̂H0H0(p2) Σ̂h0H0(p2)
Σ̂h0H0(p2) p2 −m2

h0 + Σ̂h0h0(p2)

)
. (8.63)

The CP-even Higgs boson masses are determined by the poles of the h0-H0-propagator
matrix. This is equivalent to solving the equation[

p2 −m2
h0 + Σ̂h0h0(p2)

] [
p2 −m2

H0 + Σ̂H0H0(p2)
]
−
[
Σ̂h0H0(p2)

]2
= 0 , (8.64)

yielding the loop-corrected pole masses, Mh and MH .

8.5.1 Phenomenological motivation for two different scenarios

Suitable scenarios to analyze the influence of the new self-energies on the Higgs-boson
mass shifts should cover a range of experimentally allowed parameter space, in addition
to maximizing the resulting additional shifts. It should be noted, that a complete param-
eter scan over the in principle more than one hundred free parameters of the MSSM is
not feasible and the experimental sensitivity to collectively constrain many parameters
is not sufficient with present experiments. In practice, parameter scans are therefore
done for a smaller set of parameters with the highest phenomenological impact on the
rMSSM Higgs sector, see e.g. Ref. [353]. These reflections result in an mmax

h and a light
stop scenario, motivated in and following analyses from Refs. [353,354].

The MSSM input parameters entering the calculation are

mg̃, mt̃1 , mt̃2 , θt̃, mt, µ, mA0 , tan β .
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8.5. Evaluation of the additional shifts to the Higgs-boson masses

The benchmark scenarios of Ref. [354] are given in terms of the following set of MSSM
input parameters

mg̃, Xt, MSUSY, mt, µ, mA0 , tan β .

In the conversion to the latter parameters, the left- and right-handed soft SUSY breaking
stop mass parameters are equated and set to the soft SUSY breaking scale

MSUSY := Mt̃L
= Mt̃R

. (8.65)

The two stop masses mt̃1 , mt̃2 and the angle θt̃ are expressed in terms ofMSUSY, the soft
SUSY breaking mixing parameter Xt̃, the top-quark mass mt and mZ using Eq. (2.50)
with ũ = t̃. The value for the top mass mt = 173.2 GeV is used in both scenarios
and taken from the latest combination of all top-mass measurements undertaken by the
D0 and CDF collaborations [355], in agreement with the top mass resulting from the
combination of the latest ATLAS, CMS results, see Ref. [356,357]. For the computation
of the Higgs-boson mass shifts, a value of mZ = 91.1875 GeV [358] is used. 1

Keeping the top and Z boson mass fixed, the stop masses can be plotted with respect
to the ratio Xt̃/MSUSY. For the limit Xt̃ → 0, the squark mass eigenstates are equal.
Following the analyses in Ref. [353], degenerate stop masses are excluded, if the observed
new particle at the LHC is associated with the light Higgs-boson at around mobs

h ≈ 125.7
GeV. Therefore, a maximal mixing of Xt̃ = 2MSUSY is assumed in all scenarios, varying
only the SUSY breaking scale MSUSY between 500 GeV and 1 TeV.

The gluino mass parameter mg̃ enters the MSSM Higgs-boson mass predictions from
two-loop order on. It is therefore of special interest to analyze its impact on the MSSM
Higgs-boson masses. The gluino mass can be indirectly constrained from the hitherto
non-observation of a second neutral Higgs-boson.

The higgsino parameter µ enters the self-energies through the trilinear coupling. In
all scenarios considered, it is chosen µ = 200 GeV, in accordance with Ref. [353,354] .

The CP-odd A0 boson mass and tan β are left as free parameters and can be varied
between 90 GeV ≤ mA0 ≤ 1 TeV and 1 ≤ tan β ≤ 60 respectively, compare Ref. [353].
When choosing mA0 to be rather light, the observed particle mobs

h GeV can be associated
with the heavy Higgs-boson leaving room for an additional lighter state.

The corresponding renormalization scale, µr, is set to µr = mt in all numerical eval-
uations. The scale uncertainties are expected to be much smaller than the parametric
uncertainties due to variations of parameters like tan β,mA0 ,mg̃,mt̃.

1For simplicity, the Z boson mass contribution is not taken into account in the Figs. 8.8, 8.9, 8.10 and
8.11.
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8.5.2 Renormalized O(αsαt) self-energies

Scenario 1: mmax
h scenario

Scenario 1 is oriented at the mmax
h scenario described in Ref. Ref. [354]. The following

values are assigned to the MSSM parameters,

mt = 173.2 GeV, MSUSY = 1 TeV, Xt = 2MSUSY ,

mg̃ = 1500 GeV, µ = 200 GeV , (8.66)

leading to stop mass values of

mt̃1 = 826.8 GeV, mt̃2 = 1173.2 GeV .

With the introduction of the momentum dependence, thresholds occur in the self-
energy diagrams when the external momentum p =

√
p2, in the time-like region, is such

that a cut of the diagram would correspond to the on-shell production of the massive
particles of the cut propagators, compare the discussion of Sec. 5.1. The resulting
imaginary parts will enter in the search for the complex poles of the inverse propagator
matrix of the Higgs-bosons. Therefore it is interesting to study the behavior of the
real and imaginary parts of the self-energies. The momentum-dependent parts of the
renormalized two-loop self-energies are shown in the physical basis, Eq. (8.62), for two
different values of tan β, tan β = 5 and tan β = 20, at a fixed A0-boson mass mA0 = 250
GeV, see Fig. 8.8. The data points are not connected by a line in order to show that
each numerical point is obtained from a calculation of the 34 analytically unknown
integrals with the program SecDec. The inlays in Fig. 8.8 magnify the region p2 ≤
(125 GeV)2, where it can be observed that for p2 → 0, the subtracted self-energies are
not exactly zero. As mentioned at the beginning of this section, this is due to the
fact that the on-shell renormalization condition for the A0-boson self-energy is defined
differently with regard to the calculation without momentum dependence. The resulting
constant contributions are additionally suppressed by factors sin2β, sin β cosβ and cos2β

appearing in the counter-terms δV (2)
φ0

1φ
0
1
, δV (2)

φ0
2φ

0
2
and δV (2)

φ0
1φ

0
2
, respectively, see Eqs. (8.17).

The imaginary part is independent of the A0-boson mass, as this mass parameter solely
appears in the counter-terms of DR renormalized quantities and the δm2(2)

A0 counter-term,
where only the real part contributes. Therefore, the imaginary parts do not contain
additional constant terms, compare Fig. 8.8. As to be expected, the imaginary parts are
zero below the tt̄ production threshold at p = 2mt, which results from the fact that the
top mass is the smallest mass appearing in the loop diagrams. Beyond this threshold, the
imaginary parts are nonzero but of the same order of magnitude as the real parts. From
these observations, the mass shifts in the region below the first threshold at p = 2mt

are expected not to be large.
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Figure 8.8: Momentum dependence of the real (left column) and imaginary (right col-
umn) parts of the two-loop selfenergies ∆Σ̂h0h0 ,∆Σ̂h0H0 ,∆Σ̂H0H0 , within
scenario 1, for tan β = 5 (red squares) and tan β = 20 (blue crosses) and
mA0 = 250 GeV. One can see that the selfenergies change substantially
beyond the threshold at p2 = (2mt)2.
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Figure 8.9: Momentum dependence of the real part of the two-loop self-energies ∆Σ̂h0h0 ,
∆Σ̂h0H0 , ∆Σ̂H0H0 , within scenario 1, for two different values of tan β and a
range of mA0 values.
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Similar results, now including a variation of mA0 are shown in Fig. 8.9. In the upper
plot for ∆Σ̂h0h0 and in the middle plot for ∆Σ̂h0H0 the solid lines depictmA0 ∼ 100 GeV,
while the dashed lines are formA0 ∼ 900 GeV. In these plots the light shading covers the
range for tan β = 5, while the dark shading for tan β = 20. In the lower plot for ∆Σ̂H0H0

results for mA0 ∼ 100, 250, 600, 900 GeV are shown as solid, dotted, dot-dashed, dashed
lines, respectively (and shading has been omitted). For ∆Σ̂h0h0 at low values of the
momentum p only a small variation with mA0 can be observed. For p and mA0 large,
the contributions to the self-energy are bigger. In ∆Σ̂h0H0 larger effects are observed
at smaller mA0 for both, small and large p values. For ∆Σ̂H0H0 , on the other hand,
at low p values, large effects can be observed for large mA0 due to the aforementioned
counter-term contribution ∼ δm2(2)

A0 = Re Σ(2)
A0A0(m2

A0). At large p, as before, small mA0

values give a more sizable contribution.

Scenario 2: Light stop scenario

Scenario 2 is oriented at the “light-stop scenario” of Ref. [354]2. The following values
are assigned to the MSSM parameters

mt = 173.2 GeV, MSUSY = 0.5 TeV, Xt = 2MSUSY ,

mg̃ = 1600 GeV, µ = 200 GeV , (8.67)

leading to stop mass values of

mt̃1 = 326.8 GeV, mt̃2 = 673.2 GeV .

Scenario 2 is analyzed with the same set of plots shown for scenario 1. The effects of
the new momentum-dependent two-loop contributions on the renormalized Higgs-boson
self-energies, ∆Σ̂ab(p2), are shown in Fig. 8.10. As before, separate results are shown
for the real and imaginary parts of the self-energies. An additional threshold beyond
the top-mass threshold appears at p = 2mt̃1 . Analogously to scenario 1, the largest
contributions in the region below 200 GeV arise in the real part of ∆Σ̂h0h0 amounting
to about 15 GeV2 at p = 125 GeV, where the dependence on the value of tan β is rather
weak. The imaginary part equals the one of scenario 1 up to the p = 2mt̃1 threshold.
The discontinuity at the latter enters through the integral involving the derivative of the
B0 function with respect to m2

t̃1
, ∂
∂m2

t̃1
B0(p2,m2

t̃1
,m2

t̃1
), see Sec. 8.4.1 and Eq. (8.51b)

therein.
The dependence of ∆Σ̂ab(p2) on mA0 is shown in Fig. 8.11, using the same line styles

as in Fig. 8.9. The curves show the same qualitative behavior as in Fig. 8.10, exhibiting
again the new threshold at p = 2mt̃1 . In general, outside the threshold region the effects
in scenario 2 are slightly smaller than in scenario 1.

2While the original scenario in Ref. [354] is challenged by recent scalar-top searches at ATLAS and
CMS, a small modification in the gaugino-mass parameters (which play no or only a very minor role
here) to M1 = 340 GeV, M2 = µ = 400 GeV leads to a SUSY spectrum that is very difficult to test
at the LHC.
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Figure 8.10: Momentum dependence of the real and imaginary parts of the two-loop self-
energies ∆Σ̂h0h0 , ∆Σ̂h0H0 , ∆Σ̂H0H0 within scenario 2, with tan β = 5, 20
and mA0 = 250 GeV with the same color coding as in Fig. 8.8.
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Figure 8.11: Momentum dependence of the real parts of the two-loop self-energies
∆Σ̂h0h0 , ∆Σ̂h0H0 , ∆Σ̂H0H0 in scenario 2 for two different values of tan β
and various values of mA0 (see text).
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8.5.3 Neutral CP-even Higgs-boson mass corrections
The numerical evaluation to derive the physical masses for h0, H0 as the poles (real
parts) of the dressed propagators proceeds on the basis of Eq. (8.64) in an iterative way.

• In a first step, the squared massesM2
h,0,M

2
H,0 are determined by solving Eq. (8.64)

excluding the new terms ∆Σ̂(2)
ab (p2) from the self-energies. The masses Mh,0,MH,0

are computed based on the higher-order contributions of Refs. [119, 128, 132, 135,
139,141].

• In a second step, the shifts ∆Σ̂(2)
ab (M2

h,0) ≡ chab and ∆Σ̂(2)
ab (M2

H,0) ≡ cHab are calcu-
lated and added as constants to the self-energies in Eq. (8.64), Σ̂ab(p2)→ Σ̂ab(p2)+
c
h(H)
ab .

• In the third step, Eq. (8.64) is solved again, now including the constant shifts ch(H)
ab

in the self-energies, to deliver the refined massesMh (with chab) andMH (with cHab).

This procedure can be repeated for improving the accuracy; numerically it turns out
that going beyond the first iteration yields only marginal changes. Below, results are
shown for the mass shifts

∆Mh = Mh −Mh,0, ∆MH = MH −MH,0 . (8.68)

The mass shifts, in particular ∆Mh for the light CP-even Higgs-boson, can directly be
compared with the current experimental uncertainty as well as with the anticipated
future ILC accuracy [359] of

δM exp,ILC
h

<∼ 0.05 GeV . (8.69)

The results are obtained for two different scenarios, varying parameters like tan β,mA0 ,mg̃,
and illustrate the impact of these parameters via the new two-loop corrections on the
neutral CP-even Higgs-boson masses, Mh and MH .

Implementation in the program FeynHiggs

The corrections of Eq. (8.62) are incorporated in FeynHiggs3 by the following recipe,
which is more general and in principle applicable also to the case of the complex MSSM
with CP-violation.

1. Determine the Higgs-boson massesMhi,0 without the momentum-dependent terms
of Eq. (8.62); the index i = 1, . . . , 4 enumerates the masses of h,H,A,H± in the
real MSSM. This is done by invoking the FeynHiggs mass-finder.

2. Compute the shifts chkab = ∆Σ̂(2)
ab (M2

hk,0) with a, b, hk = h,H.
3The embedding of these corrections into the FeynHiggs code was performed with substantial support
by Thomas Hahn.
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3. Run FeynHiggs’ mass-finder again including the chkab as constant shifts in the
self-energies to determine the refined Higgs masses Mh and MH .

This procedure could conceivably be iterated until full self-consistency is reached; yet
the resulting mass improvements turn out to be too small to justify extra CPU time.

On the technical side, an interface for an external program to FeynHiggs was added,
which exports relevant model parameters to the external program’s environment, cur-
rently

FHscalefactor ren. scale multiplicator, FHTB tan β,
FHAlfasMT αs(mt), FHGF GF ,
FHMHiggs2i M2

hi,0, i = 1 . . . 4 , FHMSti mt̃,i, i = 1, 2,
FH{Re,Im}USt1i Ut̃,1i, i = 1, 2, FHMGl mg̃ ,
FH{Re,Im}MUE µ , FHMA0 MA,

where the Ut̃,1i denote the elements of the stop mixing matrix, αs(mt) the running
strong coupling at the scale mt, and GF the Fermi constant. The renormalization scale
is defined within FeynHiggs as µr = mt · FHscalefactor. Invocation of the external
program is switched on by providing its path in the environment variable FHEXTSE. The
program is executed from inside a temporary directory which is afterwards removed.
The output (stdout) is scanned for lines of the form ‘se@m cr ci’ which specify the

correction cr + ici [with cr = Re(chkab ), ci = Im(chkab )] to self-energy se in the computation
of mass m, where m is one of Mh0, MHH, MA0, MHp, and se is one of h0h0, HHHH, A0A0,
HmHp, h0HH, h0A0, HHA0, G0G0, h0G0, HHG0, A0G0, GmGp, HmGp, F1F1, F2F2, F1F2. The
latter three, if given, substitute

HHHH = cos2 α F1F1 + sin2 α F2F2 + sin 2α F1F2 , (8.70a)
h0h0 = sin2 α F1F1 + cos2 α F2F2− sin 2α F1F2 , (8.70b)
h0HH = cos 2α F1F2 + 1

2 sin 2α (F2F2− F1F1) , (8.70c)

in accordance with Eq. (8.61). Self-energies not given are assumed zero.
The zero-momentum contributions Σ̃(2)

ab (0) with ab = {H0H0, h0H0, h0h0}, defined in
Eq. (8.62) are subtracted if the output of the external program contains one or more
of ‘sub asat’, ‘sub atat’, ‘sub asab’, ‘sub atab’ for the αsαt, α2

t , αsαb, and αtαb
contributions, respectively. All other lines in the output are ignored.

Scenario 1: mmax
h scenario

The effects of the newly computed momentum-dependent two-loop corrections on the
Higgs-boson masses Mh,H via the mass shifts ∆Mh and ∆MH are now studied. In
Fig. 8.12, ∆Mh (upper plot) and ∆MH (lower plot) are shown as a function of mA0

for tan β = 5 (blue) and tan β = 20 (red). For mA0 >∼ 200 GeV, the additional shifts
from momentum-dependence of up to ∆Mh ∼ −60 MeV are of the size of the expected
future experimental precision, see Eq. (8.69). The contribution to the heavy CP-even
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Figure 8.12: Variation of the mass shifts ∆Mh,∆MH with the A0-boson massmA0 within
scenario 1, for tan β = 5 (blue) and tan β = 20 (red). The small peak in
∆MH originates from a threshold at 2mt.

Higgs-boson mass is of similar order of magnitude. Around the threshold at mA0 = 2mt,
the heavy Higgs-boson mass is shifted upwards.

Finally, the dependence ofMh andMH on the gluino massmg̃ is examined. The results
are shown in Fig. 8.13 for ∆Mh (upper plot) and ∆MH (lower plot) for mA0 = 250 GeV,
with the same color coding as in Fig. 8.12. In the upper plot one can observe that the
effects are particularly small for the default value ofmg̃ in scenario 1. More sizeable shifts
occur for larger gluino masses, by more than −400 MeV for mg̃

>∼ 4 TeV, reaching thus

126



8.5. Evaluation of the additional shifts to the Higgs-boson masses

the level of the current experimental accuracy in the Higgs-boson mass determination.
The corrections to MH , for the given value of mA0 = 250 GeV do not exceed −50 MeV
in the considered mg̃ range.
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Figure 8.13: Variation of the mass shifts ∆Mh,∆MH with the gluino mass, within sce-
nario 1, for two different values of tan β = 5, 20 and mA0 = 250 GeV.

Scenario 2: Light stop scenario

The effects on the physical neutral CP-even Higgs-boson masses are now analyzed within
scenario 2. The results are shown for ∆Mh (upper plot) and ∆MH (lower plot) as a
function of mA0 (with the same line styles as in Fig. 8.12), see Fig. 8.14. As can be
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expected from the previous figures, below the p = 2mt threshold, the effects on Mh

and MH are in general slightly smaller in scenario 2 than in scenario 1, where ∆mh still
reaches the anticipated ILC accuracy, see Eq. (8.69). Above the p = 2mt threshold,
the variation of ∆MH is larger than in scenario 1 for tan β = 5. Around the threshold
p = 2mt̃1 a shift in the GeV range towards lower masses is found, reaching the level of
about 0.2%. Beyond this threshold, the heavy Higgs-boson mass can be shifted towards
higher masses. The latter shift is also roughly in the GeV range.
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Figure 8.14: Variation of the mass shifts ∆Mh,∆MH with the A0-boson massmA0 within
scenario 2, for two different values of tan β = 5, 20.

Finally the dependence on mg̃ is examined, see Fig. 8.15. In the upper plot ∆Mh is
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shown for tan β = 5 and tan β = 20, where both values yield very similar results. As
in scenario 1, “accidentally” small values of ∆Mh are found around mg̃ ∼ 1600 GeV.
For larger gluino mass values the shifts induced by the new momentum-dependent two-
loop corrections exceed −500 MeV and are thus larger than the current experimental
uncertainty. The results for ∆MH are shown in the lower plot. While they are roughly
twice as large as in scenario 1, they do not exceed −100 MeV.
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Figure 8.15: Variation of the mass shifts ∆Mh,∆MH with the gluino mass, within sce-
nario 2, for two different values of tan β = 5, 20 and mA0 = 250 GeV.
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8.6 Summary and Perspectives

The calculation and respective results for the leading momentum-dependent O(αsαt)
contributions to the masses of neutral CP-even Higgs-bosons in the MSSM were pre-
sented. They are obtained by calculating the corresponding contributions to the dressed
Higgs-boson propagators in the Feynman-diagrammatic approach.
The required two-loop self-energy diagrams and one-loop counter-terms with counter-

term insertions are generated using FeynArts, and reduced to a set of basic integrals
with the help of TwoCalc and FormCalc.
The mass and field renormalization is performed adopting a mixed on-shell/DR renor-

malization scheme. More precisely, the field renormalization part is renormalized in the
DR scheme, the on-shell scheme is used for the remaining mass renormalization. This
scheme choice has been beneficial in other contexts [140,320–323] and proved construc-
tive in this calculation as well. Furthermore, the on-shell renormalization of the two-loop
A0-boson mass counter-term lead to an additional physical shift in the self-energies which
has not been found in the calculation at zero momentum. The scheme choice is in con-
trast to Ref. [136, 137], where the same contribution was computed using a full DR
scheme.
The renormalized momentum-dependent two-loop Higgs-boson self-energies contain

analytically inaccessible two-loop integrals. These are computed numerically using the
program SecDec. The new momentum-dependent contributions are incorporated in
the public program FeynHiggs, including an interface to SecDec. The analysis of the
mass shifts is performed with the upgraded version of FeynHiggs.
The numerical analysis showed that the effects on the light CP-even Higgs boson mass,

Mh, depend strongly on the value of the gluino mass, mg̃. For values of mg̃ ∼ 1.5 TeV
corrections of about −50 MeV are found, at the level of the anticipated future ILC
accuracy. If the gluino mass is assumed very large, mg̃ & 4 TeV, the corrections are
substantially larger and at the level of the current experimental accuracy [360]. The
shifts in the heavy CP-even Higgs-boson mass, resulting from the incorporation of the
momentum dependence are mostly below current and future anticipated accuracies. Only
close to thresholds, e.g. around p = 2mt̃1 , the corrections are larger but do not exceed
0.2%.

The evaluation times for the computation of the CP-even Higgs-boson masses in-
cluding the new momentum-dependent two-loop contributions strongly depend on the
performance of SecDec. They range between one minute for a point far, and maxi-
mally one hour for a point very close to a threshold. Being able to compute multi-loop
multi-scale integrals, the program SecDec reaches far beyond the applicability to two-
loop two-point functions which are required for the self-energy corrections of the MSSM
Higgs-boson masses. Yet, it is due to its universal applicability that a program specifi-
cally tailored to the desired two-loop two-point functions may perform better in terms of
evaluation times. One such alternative could be a package provided by Bauberger [332],
which contains the desired loop integrals in terms of one-parameter integral representa-
tions.
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With the computation of the renormalized CP-odd Higgs-boson self-energy at hand,
it could be interesting to extend the analysis of the mass shifts resulting from momen-
tum dependence to the charged Higgs-bosons. Furthermore, it could be interesting to
compute the effective couplings to gauge bosons.
As a further improvement on the precision of the prediction of the Higgs-boson masses,

the contributions involving couplings to the electroweak gauge bosons can be included.
Moreover, the computation of the leading QCD corrections at the three-loop order to be
incorporated into FeynHiggscan be considered.
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9 | Conclusions

The upgrade of the program SecDec towards the automated computation of multi-loop
multi-scale Feynman graphs in the physical region including thresholds was presented,
thereby lifting the restriction to the Euclidean region.
The program allows for an automated algebraic factorization of dimensionally regu-

lated singularities and a numerical evaluation of the resulting pole coefficients. These
can be multi-loop Feynman integrals with up to several mass scales and with in principle
no limitation on the tensor rank, or more general parametric functions with singularities
only at the endpoints of the integration region. Additionally, the program was enhanced
by allowing for the automated evaluation of user-defined functions in the physical region.
The extension to physical kinematics was achieved by the implementation of an au-

tomated analytical continuation of the integrand. An algorithm to find the optimal
according deformation of the integration contour was further developed, allowing for a
stable evaluation of integrals over large regions of values for the kinematic invariants.

Provided with the upgraded version of the program, a plethora of new applications
are feasible. Two applications were shown in this thesis.

In the first application, massive planar and non-planar six- and seven-propagator
integrals with four external legs were computed. It was shown that the method is in
principle independent of the number of involved scales by providing numerical results
for a planar four-point seven-propagator diagram with internal and external lines all
massive.
Furthermore, and in contrast to analytical evaluation techniques, adding massive lines

to a topology proved beneficial in terms of evaluation times. This was shown for two of
the most complicated massive non-planar seven-propagator double box integrals, enter-
ing in the NNLO prediction for top-quark pair production. Differing in the massive sub-
loop topology, the singularity structure of the diagram involved in the heavy fermionic
corrections is significantly simpler than the diagram entering the light fermionic correc-
tions. While the custom SecDec setup can be used in the computation of the former,
the latter diagram challenges the automated setup of the program. Therefore, an analyt-
ical preparation of this diagram prior to its treatment in SecDec was explored, leading
to an improved numerical behavior.
A systematic improvement of the numerical convergence can be achieved through a re-

duction in the number of integration parameters involved and the elimination of spurious
divergences. The analytical preparation of the massive non-planar box diagram entering
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the light fermionic corrections follows these aims, reducing the number of involved pa-
rameters by integration of one Feynman parameter in a sub-loop of the integral. Hereby,
singularities are mapped to both ends of the integration region and spurious linear sin-
gularities appear in pairs. While a remapping cures the occurrence of singularities at
both endpoints of the integration region, a newly introduced backwards transformation
serves in distributing the linear divergences more evenly among the Feynman parame-
ters, thereby achieving a total reduction by two thirds in the number of functions to be
integrated numerically.
In its second application, the new features of the program are demonstrated in the

computation of the the leading momentum-dependent two-loop QCD corrections to the
masses of neutral CP-even Higgs-bosons in the MSSM. These are obtained by calculat-
ing the corresponding contributions to the dressed Higgs-boson propagators using the
Feynman-diagrammatic approach and adopting a mixed on-shell/DR renormalization
scheme.
A revised two-loop mass and field renormalization has to be carried out for the mass of

the neutral Higgs-bosons to cancel the additional divergences arising from incorporating
the momentum dependence. An additional shift with respect to previous calculations
of the order O(αsαt) at zero momentum transfer appears from evaluating the CP-odd
Higgs-boson mass counter-term at its pole mass, m2

A0 .
The effect of the new momentum-dependent two-loop corrections on the predictions

for the CP-even Higgs boson masses were analyzed numerically. The program SecDec
is used in the evaluation of the finite parts of analytically unaccessible two-loop integrals
with several mass scales.
The obtained mass shifts of the light CP-even Higgs-boson mass exhibit an overall

strong dependence on the mass of the gluino. For values of mg̃ ∼ 1.5 TeV corrections of
about −50 MeV are found, at the level of the anticipated future ILC accuracy. For very
large gluino masses, mg̃ & 4 TeV, on the other hand, substantially larger corrections are
found, at the level of the current experimental accuracy at the LHC. Additional shifts in
the heavy CP-even Higgs-boson mass, are mostly below current and future anticipated
accuracies. Only close to thresholds, e.g. around p = 2mt̃1 , the corrections are larger
but do not exceed 0,2%. The new momentum-dependent two-loop contributions have
been incorporated into the program FeynHiggs.
In conclusion, the leading momentum-dependent two-loop QCD corrections to the

neutral CP-even Higgs-boson masses should be taken into account in precision analyses
interpreting the discovered scalar particle as a Higgs-boson in the MSSM.
Especially in this last application of the upgraded version of the program SecDec

within this thesis, it was shown that the program can be used in the computation of
phenomenological quantities. Yet, for an application where Monte Carlo sampling of an
amplitude at millions of phase-space points is required, the speed in the evaluation has
to be improved.
Nonetheless, in its new version SecDec has proven an invaluable tool in independent

checks to analytical calculations of very complicated two-loop topologies involving masses
and multiple scales.
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Based on the observation that the numerical evaluation in SecDec is rather limited
in the cases of diagrams with very complicated singularity structures than limited by
the number of mass scales involved, this numerical method forms a vital counter part
to purely analytical approaches. Its extremely high potential needs to be exploited
further in the future. Considering the fact that the method is very suitable for intense
parallelization, the program has the potential to be further applicable in a multitude of
higher-order corrections in quantum field theories.
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A.1 Analytical formulae

All following formulae are based on Refs. [328–332, 334, 335, 337] and were either recal-
culated analytically or checked numerically with SecDec or Golem95 [188,336].

The prefactor at loop order L reads

PL =
(

(2πµr)(4−D)

iπ2

)L
, (A.1)

where the dimension D = 4 − 2 ε contains the dimensional regulator ε. The fully sym-
metric Källén function reads

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz . (A.2)

The following definitions facilitate numerical stability of analytic results. They are based
on work of, e.g., Refs. [280,332].

√
λ(p2,m2

1,m
2
2) =


√

(p2 −m+
12)(p2 −m−12), p2 < m+

12 and p2 ≤ m−12,

i
√

(p2 −m−12)(m+
12 − p2), p2 < m+

12 and p2 > m−12 ,√
(p2 −m+

12)(p2 −m−12), p2 ≥ m+
12 .

(A.3)

where

m+
12 = (m1 +m2)2 , (A.4)

m−12 = (m1 −m2)2 . (A.5)

Furthermore, the Riemann sheet of the logarithm can be chosen explicitly as

log(x)+ = log(x+ iδ) =
{
log(x), x > 0 ,
log(−x) + iπ, x < 0 ,

(A.6)

or

log(x)− = log(x− iδ) =
{
log(x), x > 0 ,
log(−x)− iπ, x < 0 .

(A.7)
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Similarly, two choices for an analytical continuation of the dilogarithm read

Li2(x)+ = Li2(x+ iδ) , (A.8)
Li2(x)− = Li2(x− iδ) . (A.9)

Furthermore, the following expressions can be abbreviated

Lm(m2) = γE + log
(
m2

4πµr

)−
, (A.10)

Lp(p2) = γE + log
(
−p2

4πµr

)−
. (A.11)

A.1.1 One-loop representations

One-loop tadpole

The one-loop one-point function reads

A(m2) =P
∫

dDq 1
(q2 −m2) (A.12)

=−m2
(
m2

4πµr

)−ε
Γ (ε− 1) (A.13)

=m2

ε
+m2(1− Lm(m2)) +O(ε) . (A.14)

One-loop bubble

The one-loop two-point function is defined as follows

B(p2,m2
1,m

2
2) =P

∫
dDq 1

(q2 −m2
1)((q + p1)2 −m2

2)
(A.15)

=1
ε

+Bfin(p2,m2
1,m

2
2) +O(ε) . (A.16)

Special cases of the finite part read

Bfin(0,m2, 0) = Bfin(0, 0,m2) , (A.17)

Bfin(0, 0,m2) = 1− Lm(m2) , (A.18)

Bfin(0,m2,m2) = −Lm(m2) , (A.19)

Bfin(0,m2
1,m

2
2) = Afin(m2

1)−Afin(m2
2)

m2
1 −m2

2
, (A.20)
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Bfin(p2, 0, 0) = 2− Lp(p2) , (A.21)

Bfin(m2, 0,m2) = 2− γE − log
(
m2

4πµr

)+

, (A.22)

Bfin(p2, 0,m2) =Bfin(p2,m2, 0) , (A.23)

=2− m2

p2 Lm(m2) + m2 − p2

p2 Lm(m2 − p2) , (A.24)

For a general representation of the finite part Bfin(p2,m2
1,m

2
2), see Ref. [330]. For the

coefficient of order O(ε), see Refs. [329,330,332].

Derivative of the one-loop bubble

The derivative of the one-loop two-point function with respect to the first mass reads

∂

∂m2
1
B(p2,m2

1,m
2
2) =∂m2

1
B(p2,m2

1,m
2
2) (A.25)

=P
∫

dDq 1
(q2 −m2

1)2((q + p1)2 −m2
2)

(A.26)

=∂m2
1
Bfin(p2,m2

1,m
2
2) +O(ε) . (A.27)

It is finite as the divergent terms are independent of the masses. Special cases read

∂m2
1
Bfin(0,m2

1, 0) =− 1
m2

1
, (A.28)

∂m2
1
Bfin(0,m2,m2) =− 1

2m2
1
, (A.29)

∂m2
1
Bfin(0,m2

1,m
2
2) = 1

m2
2 −m2

1
+ m2

2
(m2

1 −m2
2)2 log

(
m1
m2

2

)
, (A.30)

∂m2
1
Bfin(p2,m2

1, 0) = 1
p2 log

(
m2

1 − p2

m2
1

)−
. (A.31)

For a representation of the general case with arbitrary masses, see Ref. [329,332].
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A.1.2 Two-loop representations

Two-loop vacuum diagram

The two-loop three-propagator vacuum integral corresponding to the diagram in Fig. 8.2(a)
reads

T134(m2
1,m

2
2,m

2
3) =P 2

∫∫ dDq1dDq2
(k2

1 −m2
1 + iδ)(k2

3 −m2
2 + iδ)(k2

4 −m2
3 + iδ)

(A.32)

= 1
ε2 T

div2
134 (m2

1,m
2
2,m

2
3) + 1

ε
T div

134(m2
1,m

2
2,m

2
3) +

T fin
134(m2

1,m
2
2,m

2
3) +O(ε) (A.33)

= 1
2ε2 (m2

1 +m2
2 +m2

3) + 1
ε

[ 3
2 (m2

1 +m2
2 +m2

3)−

m2
1 Lm(m2

1)−m2
2 Lm(m2

2)−m2
3 Lm(m2

3)
]
+

T fin
134(m2

1,m
2
2,m

2
3) +O(ε) . (A.34)

A representation of the finite part T fin
134(m2

1,m
2
2,m

2
3) is included in Ref. [331].

Two-loop two-point three-propagator (sunrise) diagram

The two-loop two-point three-propagator function corresponding to the diagram in
Fig. 8.2(b) reads

T234(p2,m2
1,m

2
2,m

2
3) = P 2

∫∫ dDq1dDq2
(k2

2 −m2
1 + iδ)(k2

3 −m2
2 + iδ)(k2

4 −m2
3 + iδ)

. (A.35)

The special case of one massless propagator reads

T234(p2,m2
1,m

2
2, 0) = 1

2ε2 (m2
1 +m2

2) + 1
ε

(T fin
134(m2

1,m
2
2, 0)− 1

4p
2) + (A.36)

T fin
234(p2,m2

1,m
2
2, 0) +O(ε) . (A.37)

A representation of the finite part T fin
234(p2,m2

1,m
2
2, 0) is included in Ref. [331].

Two-loop two-point four-propagator diagram

The two-loop two-point four-propagator function corresponding to the diagram in Fig. 8.2(c)
reads

T1234(p2,m2
1,m

2
2,m

2
3,m

2
4)

= P 2
∫∫ dDq1dDq2

(k2
1 −m2

1 + iδ)(k2
2 −m2

2 + iδ)(k2
3 −m2

3 + iδ)(k2
4 −m2

4 + iδ)
. (A.38)

The divergent part can be expressed as

T1234(p2,m2
1,m

2
2,m

2
3,m

2
4)

= 1
2ε2 + 1

ε

(
Bfin(p2,m2

1,m
2
2) + 1

2

)
+ T fin

1234(p2,m2
1,m

2
2,m

2
3,m

2
4) +O(ε) . (A.39)
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A result for the finite part is not available in analytical form.

Two-loop two-point five-propagator diagram

The two-loop two-point five-propagator function corresponding to the diagram in Fig. 8.2(d)
reads

T11234(p2,m2
1,m

2
2,m

2
3,m

2
4) (A.40)

= ∂

∂m2
1
T1234(p2,m2

1,m
2
2,m

2
3,m

2
4) (A.41)

= P 2
∫∫ dDq1dDq2

(k2
1 −m2

1 + iδ)2(k2
2 −m2

2 + iδ)(k2
3 −m2

3 + iδ)(k2
4 −m2

4 + iδ)
. (A.42)

The divergent part can be expressed as

T11234(p2,m2
1,m

2
2,m

2
3,m

2
4)

= 1
ε
∂m2

1
Bfin(p2,m2

1,m
2
2) + T fin

11234(p2,m2
1,m

2
2,m

2
3,m

2
4) +O(ε) . (A.43)

A result for the finite part is not available in analytical form.

A.2 SecDec User Manual

A.2.1 Installation
The program can be downloaded from http://secdec.hepforge.org.
Unpacking the tar archive via ‘tar xzvf SecDec-2.x.tar.gz’ will create a directory called
SecDec-2.x with the subdirectories as described in the previous section. Changing to
the directory SecDec-2.x, the program is installed by running ‘./install’.
Prerequisites are Mathematica, version 6 or above, Perl (installed by default on most
Unix/Linux systems), a Fortran compiler (e.g. gfortran, ifort) or a C++ compiler if the
C++ option is used.
In order to use the program, the user only has to edit the two files param*.input
and template*.m. SecDec has three different setups, the user might be interested
in. This is the setup to compute standard loop integrals, termed ‘Loop setup’ in the
following, generalized parametric functions, termed ‘General setup’ in what follows, and
and functions with a similar structure as loop integrals, referred to as ‘User-defined
setup’.

Loop setup

• paramloop.input: (text file, Perl readable format)
In this file the user needs to specify paths, the type of integrand, the desired
order in ε, the output format, the parameters and kinematic values for numerical
integration, the parameters for contour deformation and further options.
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• templateloop.m: (Mathematica syntax)
Here enters the specification of the loop momenta and propagators, resp. of the
topology; optionally a numerator different from 1, non-standard propagator pow-
ers, parameters to be split in the middle of the integration region and the space-
time dimension.

General setup

• param.input: (text file, Perl readable format)
In this file the user needs to specify paths, the type of integrand, the symbols and
dummy functions utilized in the template file, the desired order in ε, the output
format, the parameters and values for numerical integration and further options.

• Template.m: (Mathematica syntax)
Here enters the specification of the integration variables, the factors of the inte-
grand, variables to be split in the middle of the integration region and the space-
time dimension.

User-defined setup

• paramuserdefined.input: (text file, Perl readable format)
In this file the user needs to specify paths, the type of integrand, the desired
order in ε, the output format, the parameters and kinematic values for numerical
integration, the parameters for contour deformation and further options.

• templateuserdefined.m: (Mathematica syntax)
Here enters the specification of the user-defined functions, the list of powers of the
original propagators (optional), the rank of the integrand, the variables to be split
in the middle of the integration region and the space-time dimension. As the file is
read in by Mathematica, additional functions needed to evaluate the user-defined
functions can be included without further specification in the parameter file.

A.2.2 Operation

1. Change to the subdirectory loop for the calculation of a loop or a user-defined
integral or to the subdirectory general to evaluate a more general parameter
integral.

2. Copy the files param*.input and template*.m to create your own parameter and
template files myparamfile.input and mytemplatefile.m, respectively. These
two files serve to define the integrand and the parameters for the numerical inte-
gration.

3. Set the desired parameters in myparamfile.input and specify the integrand in
mytemplatefile.m.
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4. Issue the command ‘./launch -p myparamfile.input -t mytemplatefile.m’ in the shell.
If you run the command with an additional ‘-u’ the user-defined setup is used.
If you omit the option ‘-p myparamfile.input’, the file param.input,
paramloop.input or paramuserdefined.input will be taken as default, depend-
ing on the current directory (either general or loop) and whether the user-defined
setup was chosen by adding the ‘-u’. Likewise, if you omit the option ‘-t mytem-
platefile.m’, the file Template.m, templateloop.m or templateuserdefined.m will
be taken as default. If your files myparamfile.input, mytemplatefile.m are in a
different directory, say, myworkingdir, use the option -d myworkingdir. The shell
command then reads ‘./launch -d myworkingdir -p myparamfile.input -t mytem-
platefile.m’, executed from the directory SecDec/general or SecDec/loop.

5. Collect the results. Depending on whether you have used a single machine or
submitted the jobs to a cluster, the following actions will be performed:
• If the calculations are done sequentially on a single machine, the results will
be collected automatically (via results.pl, resultsloop.pl or
resultsuserdefined.pl called by launch). The output file will be displayed
with the text editor specified in the myparamfile.input.
• If the jobs have been submitted to a cluster, execute the command ./results*.pl
[-d myworkingdir -p myparamfile] when all jobs have finished. This will write
the final results to files in the graph subdirectory specified in the input file.

6. After the calculation and the collection of the results is completed, you can use
the shell command ./launchclean[graph] to remove obsolete files.

It should be mentioned that the code starts working on the most complicated pole
structure, which also takes longest. When the jobs expected to take longest are submitted
to a cluster first, the time the user has to wait for the results is minimized.

A.2.3 Program input parameters
The user manual is for loop diagrams; the input files in the subdirectory general to
compute more general parametric functions are very similar.

For the computation of an arbitrary loop integral the user should switch to the di-
rectory loop, copy the files paramloop.input and templateloop.m and rename them
arbitrarily to arrive at myparamloop.input and mytemplateloop.m, respectively. In the
file myparamloop.input which is written in Perl readable format, the user then needs to
name the graph to be computed and specify its number of propagators, external legs and
loops. Furthermore, the kinematic invariants sij , p2 and m2 need to be given numeric
values. Apart from these definitions only one further flag (cutconstruct=0 or 1) needs
to be set which decides how the user chooses to define the propagators of the diagram
at hand in the mytemplateloop.m file, compare Sec. 6.3.2 for further explanations. All
other parameters do not need to be specified, default values will be chosen.
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The following parameters can be specified:

subdir specifies the name of the subdirectory to which the graph should be written to. If
it does not exist yet, it will be created. The specified subdir contains the directory
specified in outputdir.

outputdir The name for the desired output directory can be given here by specifying the
full path to the desired output directory. If outputdir is not specified, the default
directory for the output will have the graph name (see below) appended to the
directory subdir.
The output directory will contain all the files produced during the decomposition,
subtraction, expansion and numerical integration, and the results. The output of
the decomposition into sectors is found in the outputdir directly. The functions
from subtraction and expansion and the respective files for numerical integration
are found in subdirectories. The latter are named by the pole structure and con-
tain subdirectories named after the order in ε to which the Laurent coefficients
contained in these folders contribute.

graph The name of the diagram or parametric function to be computed is specified here.
The graph name can contain underscores and numbers, but should not contain
commas.

propagators Here, the number of propagators the diagram has is specified. This spec-
ification is mandatory in the computation of loop integrals using the automated
setup. When utilizing the user-defined setup, the number of propagators only
needs to be specified if the exponent of the two Symanzik polynomials should be
computed in an automated way.

legs The number of external legs the diagram has is specified here (mandatory).

loops The number of loops the diagram has is specified here (mandatory).

cutconstruct If the graph to be computed corresponds to a scalar integral, the integrand
(F and U) can be constructed via topological cuts. In this case set cutconstruct=1,
the default is =0. If cutconstruct is switched on, the input for the graph structure
(*.m file) is just a list of labels connecting vertices, as explained in Secs. 6.3.2 and
A.2.4.

epsord The order to which the Laurent series in ε should be expanded, starting from
ε−maxpole, can be specified here. The default is epsord=0 where the Laurent series is
cut after finite part ε0. If epsord is set to a negative value, only the pole coefficients
up to this order are computed.

prefactorflag Possible values for the prefactorflag are 0 (default), 1 and 2.
• 0: The default prefactor (−1)N Γ[N −Nloops ∗Dim/2] is factored out of the

numerical result.
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• 1: The default prefactor (−1)N Γ[N − Nloops ∗ Dim/2] is included in the
numerical result.
• 2: Give the desired prefactor in prefactor= to be factored out in the final
result.

prefactor If option 2 has been chosen in the prefactorflag, write down the desired prefac-
tor in Mathematica syntax. In combination with options 0 or 1 in the prefactorflag
this entry will be ignored. Use Nn, Nloops and Dim to denote the number of prop-
agators, loops and dimension (Dim=4-2*eps by default).

IBPflag Set IBPflag=0 if the integration by parts option should not be used and =1
if it should be used. IBPflag=2 is designed to use IBP relations when it is more
efficient to do so.
Using the integrations by parts method takes more time in the subtraction and
expansion step and generally results in more functions for numerical integration.
However, it can be useful if (spurious) linear poles of the type x−2−bε are found in
the decomposition, as it reduces the power of x in the denominator.

compiler Choose a Fortran compiler (tested with gfortran, ifort, g77) if language=Fortran.
Left blank, the default is gfortran.

exeflag The exeflag can be used to execute the program in steps within one calculation.
• 0: The iterated sector decomposition is done and the scripts to do the sub-
traction, the expansion in epsilon, the creation of the Fortran/C++ files and
to launch the numerical integration are created (scripts batch* in the subdi-
rectory graph) but not run. This can be useful if a cluster is available to run
each pole structure on a different node.
• 1: In addition to the steps done in 0, the subtraction and epsilon expansion
is performed and the resulting functions are written to Fortran/C++ files.
• 2: In addition to the steps done in 1, all the files needed for the numerical
integration are created.
• 3: In addition to the steps done in 2, the compilation of the Fortran/C++

files is launched to make the executables.
• 4: In addition to the steps done in 3, the executables are run, either by batch
submission or locally.

clusterflag The clusterflag determines how jobs are submitted. Setting clusterflag=0
(default) the jobs will run on a single machine, setting it =1 the jobs will run on
a cluster (a batch system to submit jobs).

batchsystem If a cluster is used (clusterflag=1), this flag should be set to 0 to use the
setup for the PBS (Portable batch system). If the flag is set to 1 a user-defined
setup is activated. Currently this is the submission via condor, but it can be
adapted to other batch systems by editing perlsrc/makejob.pm.
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maxjobs When using a cluster, specify the maximum number of jobs allowed in the
queue here.

maxcput Specify the estimated maximal CPU time (in hours). This option is only used
to send a job to a particular queue on a batch system.

pointname The name of the point to calculate is specified here. It should be either
blank or a string and is useful to label the result files in case of different runs for
different numerical values of the Mandelstam variables, masses etc.

sij The values for Mandelstam invariants sij = (pi + pj)2 in numbers are specified here
(mandatory). The sij should be ≤ 0 in the Euclidean region.

pi2 Massive external legs p2
1, p2

2,... are specified here (mandatory). p2
i should be ≤ 0

in the Euclidean region. Light-like external legs must be specified in the onshell=
conditions in the mytemplatefile.m, see Sec. A.2.4.

ms2 Specify the masses of propagators m2
1, m2

2,... using the notation ms[i] for m2
i

(mandatory). The masses should not be complex numbers.

integrator The program for numerical integration can be chosen here. BASES (inte-
grator=0) can only be used in the Fortran version. Vegas (integrator=1), Suave
(integrator=2), Divonne (integrator=3, default) and Cuhre (integrator=4) are part
of the Cuba library and can be used in both the Fortran and the C++ version.
In practice, Divonne usually gives the fastest results when using the C++ version.
In the following we therefore concentrate on the adjustment of the parameters
needed for numerical integration using Divonne. For more details about the Cuba
parameters, the reader is referred to Ref. [302].

cubapath The path to the Cuba library can be specified here. The default directory is
[your path to SecDec]/Cuba-3.2. Cuba-3.2 uses parallel processing during the nu-
merical evaluation of the integral. The older version (Cuba-2.1) is still supported
and can be used.

maxeval Separated by commas and starting with the lowest order coefficient in ε, specify
the maximal number of evaluations to be used by the numerical integrator for each
order in ε. If maxeval is not equal to mineval, the maximal number of evaluations
does not have to be reached.

mineval Separated by commas and starting with the lowest order coefficient in ε, specify
the number of evaluations which should at least be done before the numerical
integrator returns a result. The default is 0.

epsrel Separated by commas and starting with the lowest order coefficient in ε, specify
the desired relative accuracy for the numerical evaluation.

epsabs Separated by commas and starting with the lowest order coefficient in ε, spec-
ify the desired absolute accuracy for the numerical evaluation. These values are
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particularly important when either the real or the imaginary part of an integral is
close to zero. Note, epsabs= must be chosen smaller than the resulting values for
the integral.

cubaflags Set the cuba verbosity flags. The default is 2 which means, the Cuba input
parameters and other useful information, e.g. about numerical convergence, are
echoed during the numerical integration.

key1 Separated by commas and starting with the lowest order coefficient in ε, specify
key1 which determines the sampling to be used for the partitioning phase in Di-
vonne. With a positive key1, a Korobov quasi-random sample of key1 points is
used. A key1 of about 1000 (default) usually is a good choice.

key2 Separated by commas and starting with the lowest order coefficient in ε, specify
key2 which determines the sampling to be used for the final integration phase
in Divonne. With a positive key2, a Korobov quasi-random sample is used. The
default is key2=1 which means, the number of points needed to reach the prescribed
accuracy is estimated by Divonne.

key3 Separated by commas and starting with the lowest order coefficient in ε, specify
the key3 to be used for the refinement phase in Divonne. Setting key3=1 (default),
each subregion is split once more.

maxpass Separated by commas and starting with the lowest order coefficient in ε, specify
how good the convergence has to be during the partitioning phase until the program
passes on to the main integration phase. A maxpass of 3 (default) is usually
sufficient to get a quick and good result.

border Separated by commas and starting with the lowest order coefficient in ε, specify
the border for the numerical integration. The points in the interval [0, border] and
[1− border, 1] are not included in the integration but are extrapolated from a few
points of the excluded range. This can be useful if the integrand is known to be
peaked close to endpoints of the integration variables.

maxchisq Separated by commas and starting with the lowest order coefficient in ε,
specify the maximally allowed χ2 at the end of the numerical integration.

mindeviation Separated by commas and starting with the lowest order coefficient in ε,
specify the deviation two sample averages in one region can show without being
treated any further.

These parameters are advanced options:

primarysectors Specify a list of primary sectors to be treated here. If left blank, pri-
marysectors defaults to all, i.e. primarysectors=1,...,N will be assumed, where N
is the number of propagators. This option is useful if a diagram has symmetries
such that some primary sectors yield the same result.
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multiplicities Specify the multiplicities of the primary sectors listed above. List the
multiplicities in same order as the corresponding sectors above. If left blank, a
default multiplicity of 1 is set for each primary sector.

infinitesectors The alternative heuristic sector decomposition strategy, compare
Sec. 4.2.2, is activated when specifying, separated by commas, those primary sec-
tors which should get a pre-decomposition. Writing
infinitesectors=2,3
results in the application of the alternative sector decomposition strategy to pri-
mary sectors 2 and 3. infinitesectors must be left empty for the default strategy
to be applied to all primary sectors.

togetherflag This flag defines whether to integrate subsets of functions for each pole
order separately togetherflag=0 (default) or to sum all functions for a certain pole
order prior to integration togetherflag=1. The latter will allow cancellations be-
tween different functions and thus give a more realistic error, but should not be
used for complicated diagrams where the individual functions are very large.

grouping Even though togetherflag=0 is chosen, it can be beneficial to first sum a few
functions before integrating them. Choosing a value for the grouping which is
unequal to zero, defines how many bytes a summed function may have. The number
of bytes is set by grouping=#bytes. Setting grouping=0, all functions f*.f resp.
f*.cc are integrated separately. In practice, a grouping=0 has proven to lead to
faster convergence and more accurate results. When considering integrals where
large cancellations among the different functions occur, the grouping value should
be chosen 6= 0. The log files *results*.log in the results directory contain the
results from the individual sub-sector integration. They can be viewed to spot
cancellations between the individual functions.

editor Choose here which editor should be used to display the result. If editor=none
is set, the full result will not be displayed in an editor window at the end of the
calculation.

language The choice between Fortran and C++ can be made in the myparam.input file
by choosing either language=Cpp (default) or language=Fortran. For diagrams
with purely Euclidean kinematics, both languages can be chosen. In combina-
tion with contourdef=True, language=Cpp must be used, as the inclusion of an
imaginary part in the result is implemented in C++ only.

rescale If all invariants are very small or very large it is beneficial to rescale them to
reach faster convergence during numerical integration. The rescaling (scaling out
the largest invariant in the numerical integration part) can be switched on with
rescale=1 and switched off when set to 0 (default). If switched on, it is not possible
to set explicit values for any non-zero invariant in the onshell= conditions in the
Mathematica template file mytemplate.m.
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contourdef The contour deformation can be switched on or off, by choosing contour-
def=True/False in the input file myparamloop.input. For multi-scale problems,
respectively diagrams with non-Euclidean kinematics, set contourdef=True (de-
fault is False). In this case, a deformation of the integration contour in the form
of Eq. (5.7) is done. In addition to the functions f*.cc to be integrated, aux-
iliary files g*.cc are produced which serve to optimize the deformation for each
integrand function.

lambda The initial value for λ can be set for the deformation of Eq. (5.7) by assign-
ing a value to lambda=. The program takes the λ value given by the user in the
myparam.input file as a starting point. During the checks listed in Sec. 6.2.3, the
appropriate value for λ is found automatically by the program. The user should
pick an initial value which is rather too large than too small. A too large initial
value for λ can easily be accommodated to have the right size during the compu-
tation, while a too small initial value can not be increased anymore. lambda=3.0
usually serves as a good initial value. Without any knowledge about the charac-
teristics of the integrand, lambda=1.0 is a good choice. If the diagram contains
mostly massless propagators and light-like legs, it can be useful to choose the initial
λ larger (e.g. lambda=5.0), in order to compensate for cases where the remain-
ders of the IR subtraction lead to large cancellations for xi → 0. For diagrams
with mostly massive propagators the initial lambda can be chosen smaller, e.g.
lambda=0.1.

smalldefs If the integrand is expected to be oscillatory and hence sensitive to small
changes in the deformation parameter λ, smalldefs should be set to 1 (default is
0). If switched on, the argument of each sub-sector function F is minimized.

largedefs If the integrand is expected to have (integrable) endpoint singularities at
xj = 0 or 1, the deformation should be maximized. If largedefs=1, the program
maximizes the deformation. The default is largedefs=0.

optlamevals The number of pre-samples to determine the optimal contour deforma-
tion parameter λ can be chosen by assigning a number to optlamevals= in the
myparam.input. The default value is 4000.

A.2.4 Input for the definition of the integrand

The Mathematica input file should be called *.m. The following parameters can be
specified in Mathematica readable format

momlist If cutconstruct=0 is set in the input file, specify the names of the loop momenta
here.

proplist Specify the diagram topology here (mandatory). The syntax for cutconstruct=1
is described in Section A.2.5. If cutconstruct=0 has been chosen, the propagators
have to be given explicitly. An example propagator list could be
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proplist={kˆ 2-ms[1],(k+p1)ˆ 2-ms[1]}
with the loop momentum k, the propagator mass m2

1 and external momentum p1.

numerator If present, specify the numerator of the integrand here. If not given, a
numerator={1} is assumed. Please note that the option cutconstruct=1 is not
available in combination with numerator functions.

powerlist The propagator powers must be specified. If all propagators are raised to the
power one, an example syntax reads powerlist=Table[1,{i,Length[proplist]}]; .

onshell Specify replacements for kinematic invariants here. The specification of light-
like external legs is of specific importance in the generation of the correct integrand
topology. These can be assigned by writing
onshell={ ssp[1] -> 0},
where ssp[1] denotes the first external momentum squared, p2

1. The kinematic
invariants can be assigned other specific values, e.g. ssp[1] -> 0.25. Furthermore,
relations among the invariants can be set (e.g. ssp[1]→sp[1,3]). This option can
not be used in combination with rescale=1.

Dim Set the space-time dimension. The default is Dim=4-2*eps. The symbol for the
regulator, eps, must be kept.

threshold This option works in combination with C++ and contourdef=True. Specify
a kinematical threshold condition above which, an imaginary part is expected.
For the calculation below this threshold, the imaginary part is set to zero and
the contour deformation parameter λ is decreased to a very small value. Set
threshold=none, remove or comment the line out if the threshold option should
not be used (default). Usage of constants and kinematic invariants ms[i], ssp[i]
and sp[i,j] is allowed. An example syntax reads threshold = sp[1,2] > 0;.

splitlist The integration region of those integrals over Feynman parameters tji , specified
in a splitlist={ j1, j2, . . . , jn } in the mytemplatefile.m is split at 1/2 and the
resulting two integrals are remapped to the unit interval. The procedure follows
the explanations of Sec. 6.3.7.

A.2.5 Topology based construction of an integrand

The implementation of the topology based construction of an integrand in the program
SecDec is such that the user only has to label the external momenta pi, the vertices
i and the masses ms[k] of a graph. It is selected by choosing cutconstruct=1 in the
input file. If an external momentum pi is part of a vertex, this vertex needs to carry
the label i. The labeling of vertices containing only internal lines is arbitrary. In the
mytemplate.m file, the user has to specify the proplist as a list of entries of the form
{ms[k], {i, j}}, where ms[k] is the mass squared of the propagator connecting vertex i
and vertex j. The mass label k must correspond the the kth entry of the list of masses
given in paramloop.input. While k needs to be the number labeling the masses, ms[k]
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(with k being an integer) can be left symbolic until numerical integration. If the mass
is zero, the user has to put {0, {i, j}}, because this changes the singularity structure
at the level of the decomposition into sectors. More examples can be found in the
Mathematica template files templateP126.m, templateBnp6*.m, templateJapNP.m,
templateggtt*.m in the subdirectory loop/demos. The original form of specifying the
propagators by their momenta and including numerators different from one, as done in
SecDec 1.0 [301], is still operational. To use the latter option, the flag cutconstruct=
must be set to zero.

A.2.6 Utilization of the user-defined setup

When the functions U and F are already known and the δ-distribution is integrated
out, a user-defined setup can be considered. The integrand could then be defined in the
mytemplateuserdefined.m file. First, the two known Symanzik polynomials, the nu-
merator and the rank of the integral are written to the template file. Taking the diagram
P126 as an example, compare Sec. 6.5.1, the input in the mytemplateuserdefined.m file
reads

U[z_] := z[1]*z[2] + z[2]*z[3] + z[1]*z[4] + z[2]*z[4] + z[3]*z[4] + z[1]*z[5] + z[2]*z[5] +
z[3]*z[5] + z[1]*z[6] + z[2]*z[6] + z[3]*z[6]

F[z_] := -(sp[1, 2]*z[1]*z[2]*z[3]) - sp[1, 2]*z[1]*z[3]*z[4] - sp[1, 2]*z[1]*z[3]*z[5] - sp[1,
2]*z[2]*z[3]*z[5] - sp[1, 2]*z[1]*z[2]*z[6] - sp[1, 2]*z[1]*z[3]*z[6] - sp[1, 2]*z[1]*z[5]*z[6] -
sp[1, 2]*z[2]*z[5]*z[6] - sp[1, 2]*z[3]*z[5]*z[6] + (ms[1]*z[1] + ms[1]*z[2] + ms[1]*z[3])*
(z[1]*z[2] + z[2]*z[3] + z[1]*z[4] + z[2]*z[4] + z[3]*z[4] + z[1]*z[5] + z[2]*z[5] + z[3]*z[5]
+ z[1]*z[6] + z[2]*z[6] + z[3]*z[6])

Num = 1;
rank = 0;

The naming of these functions is arbitrary and only needed for a clearer presentation of
the functions in the functionlist, to be explained now. The diagram P126 has six propa-
gators and is therefore assumed to have six primary sectors after having integrated out
the δ-distribution. The primary sectors are counted in the first entry of each function. In
a more general application, the first entry just lists those functions of equal exponents in
the Symanzik polynomials which should be grouped together. The second entry of each
function in the functionlist gives the exponents of each Feynman parameter, starting
with the exponent of t1. The total number of Feynman parameters occurring here (and
to be integrated over afterwards) is 5 because the δ-distribution was already integrated
out. The third entry in the list is the function, corresponding to the first Symanzik
polynomial in the first primary sector, followed by its exponent and a flag whether the
function needs further sector decomposition or not. Here, B denotes that further de-
composition is necessary while A means that the function is already fully decomposed
into sectors.
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functionlist = {
{1, {0,0,0,0,0}, {{(U[t]/.t[1]->1)/.t[6]->t[1],XU , B}, {(F[t]/.t[1]->1)/.t[6]->t[1],XF , B}, Num},
{2, {0,0,0,0,0}, {{(U[t]/.t[2]->1)/.t[6]->t[2],XU , B}, {(F[t]/.t[2]->1)/.t[6]->t[2],XF , B}, Num},
{3, {0,0,0,0,0}, {{(U[t]/.t[3]->1)/.t[6]->t[3],XU , B}, {(F[t]/.t[3]->1)/.t[6]->t[3],XF , B}, Num},
{4, {0,0,0,0,0}, {{(U[t]/.t[4]->1)/.t[6]->t[4],XU , B}, {(F[t]/.t[4]->1)/.t[6]->t[4],XF , B}, Num},
{5, {0,0,0,0,0}, {{(U[t]/.t[5]->1)/.t[6]->t[5],XU , B}, {(F[t]/.t[5]->1)/.t[6]->t[5],XF , B}, Num},
{6, {0,0,0,0,0}, {{U[t]/.t[6]->1, XU , B}, {F[t]/.t[6]->1, XF , B}, Num}};

Choosing XU and XF , the exponents of the functions U and F , respectively, are
computed automatically by the program using the information about the number of
loops, the number of propagators, their powers, the rank and the space-time dimension.
To run this example, from the loop directory, issue the command ‘./launch -p para-
muserdefined.input -t templateuserdefined.m -u’. The demo files paramuserdefined.m
and templateuserdefined.m in the loop directory come with the code.

A.2.7 Looping over ranges of parameters

A looping over ranges of parameters in SecDec is put into practice using the perl
script multinumerics*, where the * stands either for loop.pl, userdefined.pl or just
.pl, depending on whether a standard loop, a user-defined integral or a more general
parametric integral should be computed for ranges of parameters. The sets of parameters
to be evaluated are specified in a text file mymultiparam.input in myworkingdir, to be
read by the multinumerics*-script.
The following information must be contained in this textfile:

• paramfile = myparam.input: Specify the name of the parameter file containing the
graph info.

• pointname = my_prefix (optional): Specify a name which is used as prefix to each
kinematical point. To distinguish different kinematical points, each gets a different
name using the prefix and sequential number, e.g. my_prefix1 for the first point,
my_prefix2 for the second and so on.

• lines = a (optional): Specify the number a of points you wish to calculate - if
omitted all points (listed in separate lines) will be calculated.

• xplot = b (optional): If this option is set, a tab-separated data file is written with
a variable of choice in the first column, the numeric result for the real part in the
second column, the uncertainty in the third column, the numeric result for the
imaginary part in the fourth column and its uncertainty in the fifth. The integer
b defines the number of the column in the multiparam.input file containing the
values which should be stored in the first column of the data file (default is 1). The
resulting data files can directly be used for producing plots with, e.g., gnuplot.
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The subsequent specifications are different for parametric integrals and loop (or similar)
integrals.

multinumericsloop.pl and multinumericsuserdefined.pl:

When computing either a standard loop or a user-defined integral, the number of values
given for sij , p2

i and m2
i need to be specified by

numsij=
numpi2=
numms2= .
Numerical values of the parameters for each point to calculate need to ensue these defi-
nitions. Examples come with the code of the program, one is found in
loop/demos/multiparam.input. The perl script helpmulti.pl can be used to gener-
ate multiparam.input files automatically, to avoid typing large sets of numerical values.

multinumerics.pl:

When computing a more general parametric function, depending, for instance, on the
two symbols a and b (defined as such in the param.input file), values for these can either
be specified explicitly in the multiparam.input file as
values1=0.1,0.2,0.4
values2=0.1,0.3,0.6 ,
where values1 is linked to the first symbol specified in the param.input file, values2 to
the second symbol and so on. Or, if the user desires to calculate the integrand for values
of parameters at incremental steps, the following syntax applies
minvals=0.1,0.1
maxvals=0.3,0.7
stepvals=0.1,0.2 .
This input would calculate each combination of a = 0.1, 0.2, 0.3 and b = 0.1, 0.3, 0.5, 0.7,
where a and b are specified first and second in the list of symbols in the param.input
file. Further examples can be found in general/demos/multiparam.input.

Before executing the script multinumerics*, the functions generated by Mathematica
must already be in place. The simplest way to guarantee this is to run the launch script,
choosing exeflag=1 in the myparamfile.input and subsequently issue the command
‘./multinumerics* [-d myworkingdir -p multiparamfile]’ .
In the single-machine mode (clusterflag=0) all integrations are performed sequentially,
in the batch mode, they are run in parallel.
Running the script again with the additional argument “1” as
‘./multinumerics* [-d myworkingdir -p multiparamfile] 1’ ,
all results are collated before writing the output as *.out files into the graph directory
specified in the myparamfile.input. If specified in the multiparam.input file, an
additional *.gpdat file is written, containing the results of all computed points.
The script generates a parameter file for each numerical point calculated. To remove
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such intermediate parameter files, issue the command
‘./multinumerics* [-d myworkingdir -p multiparamfile] 2’.
This should only be done after the results have been collected.

A.2.8 Leaving functions implicit during the algebraic part
To use this option, the Mathematica template file can contain a function which is left
undefined, but needs to be listed with the option dummys= in the myparam.input file.
If symbolic parameters are used in addition, these do not need to be listed as arguments
of the implicit function.
Once the template and parameter files are set up, the functions need to be defined
explicitly so that they can be used in the calculation. The simplest way to do this
is to prepare a Mathematica syntax file for each implicit function, and place them in
the output directory specified as outputdir= in the myparam.input file. For a function
named dum1 of two variables, defined as dum1(x1, x2) = 1 + x1 + x2, the following lines
would need to be inserted in a file dum1.m named after the dummy function
intvars = {z1, z2};
dum1 = 1 + z1 + z2;
where z1, z2 can be replaced by any variable name you wish, as long as they are used
consistently in dum1.m. Once these Mathematica files are in place, issue the command
‘createdummyfortran.pl [-d myworkingdir -p myparamfile]’ .
This triggers the generation of the necessary Fortran files for the user-defined dummy
functions. The files are stored in the same subdirectory as the originals.
It is equally possible to write these Fortran files oneself instead of having them generated
by the program, although the automated procedure is recommended. An example of this
can be found in the directory general/demos, comprised in the files paramdummy.input,
templatedummy.m and in the directory /testdummy.
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