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Zusammenfassung

In einer Vielzahl von Sensornetzanwendungen steht nicht die Übertragung individu-
eller Messwerte im Vordergrund, sondern die zuverlässige und effiziente Berechnung
von Funktionen. Dabei kann es sich im Einzelnen um die Berechnung der maximalen
Kohlenmonoxid-Konzentration innerhalb von Gebäuden aus Gründen der Brandschutz-
überwachung handeln, um den mittleren Druck in einem Dampfkessel oder die min-
imale Feuchtigkeit in einem Gewächshaus. Der klassische Ansatz zur Lösung dieser
Probleme sieht vor, dass zunächst die gesamte Messwertinformation zu einem Aggrega-
tionspunkt übertragen wird, der anschließend den gewünschten Funktionswert ermittelt.
Um Kanalkollisionen während der Übertragung der Daten zu vermeiden, wird der Me-
dienzugriff von Sensorknoten üblicherweise in der Zeit oder der Frequenz koordiniert.

In der jüngeren Vergangenheit wurde gezeigt, dass diese Vorgehensweise in höchstem
Maße ineffizient sein kann, da sie vollständig ignoriert, dass die primäre Aufgabe des
Netzes eben nicht in der Übertragung einzelner Messwerte besteht. Insbesondere gilt,
dass für die Berechnung linearer Funktionen die Ausnutzung der Interferenz anstelle
deren Unterdrückung sogar zu erheblichen Performanzgewinnen führen kann. Die obi-
gen Beispiele deuten jedoch bereits darauf hin, dass einige der vielversprechendsten
Sensornetzanwendungen die effiziente Berechnung nichtlinearer Funktionen erfordern.

Dementsprechend widmet sich die vorliegende Arbeit linearen und nichtlinearen Be-
rechnungsproblemen in Sensornetzen. Der erste Teil behandelt zunächst einige grundle-
gende Fragestellungen, wie etwa der welche Funktionen prinzipiell durch das Ausnutzen
von Interferenz berechnet werden können und wie viele Kanalbenutzungen dafür not-
wendig sind. Um diesbezüglich eine systematische Untersuchung zu ermöglichen werden
Funkübertragungen als rauschfrei angenommen. Dabei stellt sich heraus, dass diese
Überlegungen in enger Beziehung zu dem berühmten 13ten Hilbert-Problem stehen.

Der zweite Teil der Arbeit schließt Empfängerrauschen in die Betrachtungen mit ein
und stellt diesbezüglich ein Übertragungsverfahren vor, das eine neuartige Datenvor-
und nachverarbeitung mit nested lattice codes kombiniert. Es wird gezeigt, dass diese
Kombination die zuverlässige Berechnung einer Vielzahl linearer und nichtlinearer Funk-
tionen erlaubt mit Raten die für klassische Verfahren weitgehend unerreichbar sind.

Das gezielte Ausnutzen von Interferenz erfordert naturgemäß eine präzise Synchro-
nisation. Dies zu gewährleisten kann in der Praxis einen unverhältnismäßig hohen
Aufwand bedeuten, weshalb im letzten Teil der Arbeit ein einfaches analoges Übertra-
gungsverfahren vorgeschlagen wird, das bereits mit einer groben Rahmensynchronisa-
tion auskommt. Die Performanz des Verfahrens wird analysiert und es wird erörtert
wie viel Kanalinformation für akkurate Funktionswertberechnungen notwendig ist.





Abstract

A major challenge in many wireless sensor network applications consists in the reliable
and efficient computation of some pre-defined function of the measurements taken by a
set of spatially distributed sensor nodes. The function of interest can be, for instance,
the maximum carbon-monoxide concentration in a building for fire detection, the av-
erage pressure inside a steam boiler, or the minimum humidity in a greenhouse. The
standard approach for solving such problems, the so-called separation-based approach,
is to transmit all the sensor readings to a nearby fusion center that computes the de-
sired function value afterwards. As a matter of fact, however, the wireless channel
is a shared broadcast medium so that a concurrent access to the common frequency
spectrum by distinct nodes results in interference. Since interference makes the reliable
reconstruction of individual transmit signals difficult, the channel access of sensor nodes
is typically coordinated in time or frequency in order to avoid channel collisions.

It was recently shown that this approach can be highly inefficient as it ignores that
the fusion center is not interested in individual sensor readings but rather in a function
thereof. In particular, if the fusion center wishes to compute a linear function, exploiting
interference rather than avoiding it can lead to huge performance gains. As the above
mentioned examples indicate, however, many promising sensor network applications
require the efficient computation of nonlinear functions.

Therefore, this thesis is devoted to linear and nonlinear computation problems over
sensor networks. The first part deals with some fundamental questions such as, for in-
stance, which functions are essentially computable over a wireless channel by harnessing
interference and how many channel uses are needed. In order to allow for a systematic
and in-depth treatment of these issues, we assume transmissions between sensor nodes
and fusion centers to be noise-free. It turns out that the considerations are closely
related to the famous 13th Hilbert problem.

In the second part of the thesis, we turn our attention to noisy networks and pro-
pose a corresponding computation scheme that combines a novel signal pre- and post-
processing strategy with nested lattice coding. We show that this particular combi-
nation allows for the computation of a variety of linear and nonlinear functions at
computation rates that are not achievable with separation-based methods.

Harnessing interference typically requires the precise synchronization of sensor nodes.
In practical networks, however, it may be unreasonably costly to ensure this. Therefore,
we propose in the last part a simple analog computation scheme that requires only
coarse frame synchronization. We then analyze its performance and determine how
much channel state information is needed in order to obtain accurate function values.
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Nomenclature

Throughout the thesis, we use lowercase italic letters to denote scalars, bold lowercase
italic letters to denote vectors, and bold uppercase italic letters to denote matrices,
respectively (e.g., x, x, X). Vectors that are involved in products with matrices or
other vectors have to be always considered as column vectors, even if we write them
often as row vectors (e.g., x = (x1, . . . , xn), y = (y1, . . . , yn), but xTy is a scalar).

Scalar random variables are described by uppercase italic letters and their realiza-
tions by lowercase italic letters (e.g., X and x). On the other hand, vector-valued
random variables are denoted as bold lowercase sans-serif letters and their realizations
as ordinary vectors (e.g., x and x), respectively.

The n-fold Cartesian product A×· · ·×A of some set or space A is compactly written
as An (i.e., the set of all n-tuples (a1, . . . , an) with ai ∈ A).

When dealing with random elements, we assume that they are defined over some
meaningful probability space (Ω,F ,P) without explicitly mentioning. Here, Ω denotes
the sample space, F the σ-algebra of subsets of Ω, and P : F → [0, 1] a corresponding
probability measure. For some positive integer n, we are mainly interested in the case
Ω = Rn along with F = Bn, where Bn represents the Borel σ-algebra of subsets of Rn

[Shi96, p. 144].
It is common practice to mark the end of a proof by the symbol �. As some of

the examples provided in this thesis are very detailed, we mark their end in a similar
manner by the symbol △ in order to improve clarity.

General Notations

:= equal by definition
≡ identically equal to (e.g., f ≡ 1 on X ⇔ f(x) = 1 for all x ∈ X)
∃ there exists
∀ for all
⊕p addition modulo p
⊕

summation modulo p
g ◦ f composition of functions f and g
grad(·) gradient of a multivariate function (i.e., the vector of partial derivatives)
(·)c complement of a set
| · | the absolute value (modulus) of a real or complex number or the cardinality

of a set
⌊·⌋ floor function that maps a real number to the largest previous integer



Nomenclature

⌈·⌉ ceiling function that maps a real number to the smallest following integer
(·)! factorial of a natural number (i.e., 3! = 1 · 2 · 3)
e Eulers number (i.e., limn→∞(1 + 1/n)n)
i imaginary unit (i.e., i2 = −1)
Re{·} real part of a complex number
Im{·} imaginary part of a complex number
(·)∗ conjugate of a complex number
(·)T transpose of a vector or matrix
(·)H Hermitian transpose of a vector or matrix
(·)−1 inverse of a matrix or function
(·)† left inverse of a matrix
det(·) determinant of a matrix
‖ · ‖2 Euclidean norm
‖ · ‖∞ supremum norm
In n× n identity matrix
0 vector of all zeros
1 vector of all ones
Vol(·) volume of a closed subset of an Euclidean space
E{·} expected value
EX{·} expectation with respect to random variable X
Var{·} variance
Cov{·, ·} covariance
P(·) probability

d−→ convergence in distribution
P−→ convergence in probability

a.s.−→ almost sure convergence (or convergence with probability one)
NR(·, ·) normal (or Gaussian) distribution
NC(·, ·) proper complex normal (or Gaussian) distribution
LN (·, ·) log-normal distribution
χ2

n Chi-squared distribution with n degrees of freedom

Sets and Function Spaces

C complex plane
E closed unit interval [0, 1]
N natural numbers (i.e., {1, 2, 3, . . . })
R real numbers
R+ nonnegative real numbers (i.e., {x ∈ R |x ≥ 0})
R++ positive real numbers (i.e., {x ∈ R |x > 0})
Rn Euclidean n-space (i.e., the set of all ordered n-tuples (x1, . . . , xn) with

xi ∈ R)
Z integers (i.e., {. . . ,−2,−1, 0, 1, 2, . . . })

xii
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Z+ nonnegative integers (i.e., {0, 1, 2, . . . })
Zp integers modulo p (i.e., {0, . . . , p− 1})
C

0(A) space of continuous functions f : A → R

F (A) space of all functions f : A → R

L
p(A) space of measurable functions f : A → R that are Lebesgue integrable to

the pth power, 1 ≤ p < ∞
N (A) space of nomographic functions f : A → R

N
0(A) space of nomographic functions with continuous pre- and post-processing

functions
N

0
d,ε(A) space of functions approximable with elements from N

0(A)
O(f) Big-O (i.e., O(f) := {g | ∃C > 0 ∃n0 ∀n > n0 : g(n) ≤ Cf(n)})

Special Functions

expa exponential function to base a
loga logarithm to base a
erf error function (i.e., erf : R → [−1, 1], x 7→ erf(x) = 2√

π

∫ x
0 exp(−t2)dt)

erfc error function complement (i.e., erfc : R → [0, 2], x 7→ erfc(x) = 1−erf(x))
idA identity map on set A (i.e., idA : A → A, idA(x) = x, for all x ∈ A)
1A indicator function on set A (i.e., 1A : A → {0, 1}, 1A(x) = 1 if x ∈ A and

0 otherwise)

Abbreviations

AWGN additive white Gaussian noise
CDMA code-division multiple access
CoMAC computation over multiple-access channels
CSI channel state information
FC fusion center
FDMA frequency-division multiple access
iid independent and identically distributed
IoT internet of things
MAC multiple access channel
MSE mean squared error
SNR signal-to-noise ratio
TDMA time-division multiple access
WBE Welch bound equality
WMAC wireless multiple-access channel
WSN wireless sensor network
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1
Introduction

1.1 Motivation

Over the last two decades, research and development activities in the realm of commu-
nications engineering were mainly driven by the demand for high speed wireless data
access anywhere and anytime. Starting in the early 90’s with data rates of not more
than 10 kbit/s, we recently arrived, with the advent of the 4th cellular generation, at
rates of up to 100 Mbit/s [FA14]. The lion’s share of data to be transmitted is currently
governed by human-generated high resolution image, audio, and video content. With
the ongoing advances in microelectronics, however, wireless communication technologies
increasingly find their way into other areas such as, for instance, industrial automation
[Wil08, ÅGB11]. This trend not only dramatically changes the way we interact with
our physical environment but also the type and amount of data to be transmitted. Ac-
cordingly, the 5th cellular generation is predicted to provide an Internet of Things (IoT)
that interconnects up to 1 trillion products, machines, and devices by 2022 [Pre14]. In
order to put this into practice, a plenty of smaller networks supporting various promis-
ing concepts (e.g., smart grids, smart factories, smart agriculture, eHealth) need to be
joined seamlessly together. As a consequence, wireless sensor networks are very likely
to be an integral part of the IoT.

A wireless sensor network is typically referred to as a set of low-cost devices with
on-board sensors, wireless transceiver, microcontroller, memory, and power supply that
are distributed over some geographical area [ZG04, SZHT07]. The devices, called sen-
sor nodes, gather information from their environment (e.g., temperatures, pressures,
humidities) and forward them to other nearby sensor nodes or a central fusion center
for further processing. Unlike conventional wireless networks in which the objective
is to provide high-capacity end-to-end connections for message transfer, the most ex-
citing applications for wireless sensor networks are satisfied with low data rates but
require that sensor nodes are powered by batteries. Thus, networking protocols for low-
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complexity and low-energy consuming wireless connectivity are crucial for ensuring a
long network lifetime. In order to enhance the network efficiency not only in terms of en-
ergy consumption but also in terms of reliability and sensing quality, it is vital to tailor
wireless sensor network solutions to specific application needs [ASSC02,ZG04,SZHT07].
Recently, this paradigm shift has also been drawing more and more attention when
designing next generation wireless data networks [SB14].

A vast number of wireless sensor network applications require an efficient and reli-
able computation of pre-defined functions of the sensor readings. Functions of interest
can be, for instance, the maximum carbon-monoxide concentration (or temperature) in
a building for fire detection, the average pressure inside a steam boiler, or the min-
imum humidity in a greenhouse. In this context, Giridhar and Kumar in [GK05]
(see also [GK06] for an overview) take first steps towards a theory-based framework
for solving such distributed computation problems with the aim of characterizing effi-
cient application-specific computation strategies. The work is focused on complexity
and protocol aspects and does not explicitly take into account the properties of wire-
less communication channels. A similar limitation is true for the considerations in
[YSD07,SGS07,KKK08,LD13,CWL14], which are mainly concerned with determining
how the computation performance or energy consumption scales with the network size,
the connectivity radii of nodes, and the cardinality of the sensing range (i.e., the set
from which the sensor readings are drawn). The work in [KK09, AFKZ11] provides
corresponding scaling laws for wired networks whereas computation problems from a
source coding perspective are addressed in [Yam82,OR01,DSME10,HS12].

Function computation in sensor networks is also envisioned as a fundamental building
block for gossip and consensus algorithms, a form of distributed in-network data pro-
cessing aiming at achieving some network-wide objectives based on local computations.
Such algorithms, which compute a global function of sensor readings and distribute
the function values among the nodes, have also attracted a great deal of attention (see
[MS06,BGPS06,OSFM07,DKM+10] and references therein).1

What is common to all of the above referenced works is that they follow, in one
way or another, a separation-based approach. Here, sensor nodes first transmit their
observations to a nearby fusion center, or some other intermediate node, that computes
the desired function-value afterwards. As a matter of fact, however, the wireless channel
is a shared broadcast medium so that a concurrent access to the common frequency
spectrum by distinct nodes results in interference. Since interference makes the reliable
reconstruction of individual transmit signals difficult, the channel access of sensor nodes
is typically coordinated in time or frequency in order to avoid channel collisions. It is
shown by Nazer and Gastpar in [NG07] that this approach can be highly inefficient as it
ignores that the fusion center is not interested in individual sensor readings but rather
in a function thereof. In particular, if the fusion center wishes to compute a linear

1Of course, distributed computation problems have a long history in computer science (see [BT89] and
references therein.). Here, however, we restrict ourselves to references that are primarily concerned
with computation problems in wireless sensor networks that have to face strict communication
constraints.
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function, exploiting interference rather than avoiding it can lead to huge performance
gains as the function of interest matches the algebraic structure of the wireless channel
(see Chapter 3 for further references).

Thus, separation-based approaches treat the processes of communication and compu-
tation as completely distinct processes so that the underlying function computation (i.e.,
the application of interest) is not adequately taken into account in the design of com-
munication strategies/protocols. As a consequence, wireless resources are wasted since
the fusion centers are not interested in individual measurements but only in functions
of them.

1.2 Contribution and Outline of the Thesis

This dissertation deals with various aspects of linear and nonlinear computation prob-
lems in wireless sensor networks, ranging from providing fundamental limits to incorpo-
rating practical constraints. Such as in [NG07], the leitmotif is to consider the interfer-
ence generated by sensor nodes that concurrently access the same frequency spectrum
not as a hindrance to be overcome but as a freely available computational resource.
With this in mind, in Chapter 2 we first introduce the wireless multiple-access chan-
nel as a reasonable model for concurrently transmitting nodes. Then, we provide a
formal description of what is meant throughout the thesis when referring to the com-
munication or the computation problem over a wireless multiple-access channel. Based
on two simple but insightful examples, we then demonstrate that the problems can be
substantially different from each other so that they should also be treated differently.

Motivated by this observation, Chapter 3 contributes to determine the fundamen-
tal limits of real-valued function computation in sensor networks. In order to allow a
corresponding in-depth and rigorous analysis, we consider an idealized wireless channel
model in the sense that transmissions between sensor nodes and fusion centers are as-
sumed to be noise-free. Based on this, in Section 3.1 we determine which functions are
in principle computable by harnessing interference in networks with a single fusion cen-
ter and how efficiently this can be done in terms of the number of channel uses/wireless
resources. It turns out that when each node applies an appropriate pre-processing func-
tion to its sensor readings and the fusion center an appropriate post-processing function
to the observed channel output, in fact every real-valued function can be computed with
a single channel use.

The achievable efficiency, however, strongly depends on the properties that are im-
posed on the pre- and post-processing functions. From an implementation point of view,
for instance, continuity can be a highly desirable property. We show that this property
in general requires additional channel uses/wireless resources for computations over the
channel. This is a consequence of a result proven by Kolmogorov in [Kol57] that solves
the famous 13th Hilbert problem stated in 1900 [Hil02]. In contrast to efficiency, it turns
out that computations over the channel can always be universally performed, regardless
of whether the pre-processing functions are continuous or not. Throughout the thesis,
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1 Introduction

universality refers to transmit strategies that are independent of the function to be
computed so that there is no need to inform the sensor nodes once the function to be
computed has changed.

Based on these results for networks with a single fusion center, in Section 3.2 we
consider a generalized sensor network model consisting of multiple fusion centers, each
of which aims to independently compute some function of the sensor readings of an
arbitrary subset of nodes (i.e., clusters). It turns out that all the previous properties
carry over to the generalized case except if pre- and post-processing functions are re-
quired to be continuous, in which case some coordination may be necessary. If, however,
the fusion centers perform a simple additional post-processing step, it is shown that co-
ordination is not required at all. In Section 3.3, we also show that the universality
property is preserved against changes in topology as a result of nodes dropping out of
the network (for instance due to failures or battery depletion) or new nodes joining the
network. Parts of the material in Chapter 3 are published in [7,9, 10,13,16].

In Chapter 4, we extend the considerations of Chapter 3 to clustered networks
in which the intra-cluster communication takes place over Gaussian multiple-access
channels. One of the basic facts in information theory teaches us that Gaussian channels
are of finite capacity if transmit powers and bandwidths are assumed to be finite. In
order to account for this, in Section 4.2 we propose an achievable computation scheme
that combines the pre- and post-processing strategy of Chapter 3 with a simple quantizer
and nested lattice coding. Because of their good algebraic and statistical properties,
nested lattice codes are well suited for protecting sums of codewords against the channel
noise, which constitutes a basic requirement for harnessing interference.

Section 4.3 is devoted to analyzing the performance of the scheme in terms of achiev-
able computation rates, where the computation rate is defined as the number of function
values that can be reliably computed per channel use. It turns out that the particular
combination of analog data pre- and post-processing with nested lattice codes allows
for the computation of numerous continuous real-valued functions at computation rates
that are not achievable with separation-based methods. In addition to the better rate
performance, the proposed scheme provides several other advantages that are essen-
tial for most wireless sensor network applications such as universality, lower decoding
complexity, less coordination, and the ability to deal with maximum decoding error
probabilities. Parts of the material in Chapter 4 are published in [14,20].

Harnessing interference in the way of Chapter 4 typically requires the precise syn-
chronization of sensor nodes on the symbol and phase level. In practical wireless sensor
networks, however, it may be unreasonably difficult and expensive in terms of resources
to ensure this. Therefore, in the first section of Chapter 5 we propose a novel ana-
log computation scheme that requires only coarse frame synchronization, which is by
far easier to establish and maintain. The basic idea of the scheme consists in letting
each sensor node transmit a complex-valued sequence of random symbols at a transmit
power that is proportional to the instantaneous pre-processed sensor reading. Under
some conditions and a suitable pre-processing strategy, the received energy at the fu-
sion center equals the sum of all the transmit energies corrupted by background noise.

4



1.2 Contribution and Outline of the Thesis

The application of an appropriately chosen post-processing strategy then results in an
immediate estimate of the sought function value.

In order to examine how an appropriate post-processing strategy has to look like, in
Section 5.2 we analyze the statistical properties of the proposed computation scheme
for two canonical function examples of great practical relevance: the arithmetic mean
and the geometric mean. In Section 5.3, we show the huge potential for performance
gains at a wide range of operating points by comparing the scheme with two standard
separation-based strategies. Parts of the material in Sections 5.1–5.3 are published in
[1,3, 15].

For the analog scheme in Section 5.1, it was assumed that perfect channel state
information (CSI) is available at sensor nodes prior to transmissions. Because this is,
similar to synchronization, difficult to provide in many wireless sensor applications, in
Section 5.4 we explore the question of how much CSI is actually needed to obtain reliable
function-values at the fusion center. In particular, we show that the knowledge of the
channel magnitudes is sufficient to achieve the same performance as with perfect CSI.
Moreover, we show that under certain conditions, CSI at sensor nodes is not needed
at all provided that the fusion center has some statistical a priori knowledge. If in
addition the fusion center is equipped with multiple antennas, spatial diversity can be
exploited to outperform the single-antenna scheme with perfect CSI at nodes. Our
findings suggest that the channel estimation effort for computational purposes can be
significantly reduced. Parts of the material in Section 5.4 are published in [2,18].

Finally, Chapter 6 concludes the thesis and provides suggestions for future research
directions whereas Appendices A and B recap some useful definitions and results of
multivariate calculus and probability theory.

Further Results that are not Part of the Thesis

During my time as a Ph.D. student and research assistant at Technische Universität
Berlin, Fraunhofer Institute for Telecommunications Heinrich Hertz Institute, and Tech-
nische Universität München, we were able to obtain a number of further results, which
are not part of this thesis:

• In a work with Rudi Abi Akl and Stefan Valentin [4], we study how strongly
the downlink in a multiuser orthogonal-frequency division multiplexing system
with single-cell scheduling and channel estimation suffers from feedback delay.
Unlike previous work, we study this degradation for optimal joint power and rate
allocation under fairness constraints. Comparing the performance of the ideal
case to delayed channel state information shows that adjusting the scheduler’s
fairness cannot mitigate the strong performance loss due to feedback delay but
simple linear channel prediction is a powerful tool to do so.

• In [8], we consider power-controlled wireless multiantenna sensor networks with
interference and study the general trade-off between energy consumption and

5
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quality of service. First, we develop a model for the energy consumption of mul-
tiantenna sensor nodes and study the corresponding costs for accurate channel
estimation. Then, in order to provide guidelines on the choice of strategies for
different applications, we numerically compare different multiantenna strategies
with the energy consumption and the achievable quality of service of a standard
single-antenna system.

• In a coauthored work with Meng Zheng and Haibin Yu [11], we propose a gos-
sip algorithm for average consensus in clustered wireless sensor networks where
the nodes in each cluster exploit the interference property of the wireless chan-
nel in order to significantly decrease local averaging times. The convergence of
the algorithm is proven provided that some connectivity condition between clus-
ters is fulfilled. This serves as a preliminary step for the novel class of so-called
nomographic gossip algorithms presented in [12], which partly allow to efficiently
achieve a rapid global consensus among nodes/agents with respect to an arbitrary
function of the initial states.

A complete list of publications can be found on pages 143–145.

Copyright Information

Parts of this thesis have already been published as journal articles and in conference
and workshop proceedings as listed in the publication list on pages 143–145. These
parts, which are, up to minor modifications, identical with the corresponding scientific
publication, are c©2009–2014 IEEE.
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2
Communication Versus
Computation

In this chapter, we first introduce the affine model of a time-discrete wireless multiple-
access channel as one of the main ingredients of our considerations. Subsequently, we
provide a formal description of what is meant throughout the thesis when referring to
the communication or the computation problem over a wireless multiple-access channel
in the context of wireless sensor networks. Based on two simple but inspiring examples,
we then demonstrate that the problems can be substantially different from each other
so that they should also be treated differently. Finally, these insights will lead us to
further interesting questions to be addressed in later chapters.

2.1 The Wireless Multiple-Access Channel

The multiple-access channel (MAC) is one of the fundamental building blocks of network
information theory as it models the scenario in which multiple users communicate with
a common receiver over a common channel [Ahl71, Lia72, CT06, GK11]. As illustrated
in Figure 2.1, the general model of a time-discrete MAC with N ≥ 2 users consists of
input alphabets X1, . . . ,XN (not necessarily discrete and finite), an output alphabet Y,
and a conditional probability distribution

PY |X1,...,XN
: X1 × · · · × XN → P(Y) ,

where P(Y) is used to denote the set of all probability distributions on Y. Here,
PY |X1,...,XN

assigns to every choice of fixed input symbols xi ∈ Xi, i = 1, . . . , N , for
which PX1,...,XN

(x1, . . . , xN ) > 0 a probability distribution PY (y|X1 = x1, . . . ,XN =
xN ) = PY |X1=x1,...,XN =xN

(y) on the output Y with PX1,...,XN
: X1 × · · · × XN → [0, 1]

denoting the joint distribution of the channel inputs. Writing PY (y|X1 = x1, . . . ,XN =
xN ) shortly as PY (y|x1, . . . , xN ) and using the channel n ∈ N times, a MAC is said to
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PY |X1,...,XN

X1 ∈ X1

X2 ∈ X2

XN ∈ XN

Y ∈ Y

Figure 2.1: General N -user multiple-access channel.

be memoryless if the output Y [t] ∈ Y at some channel use t ∈ {1, . . . , n} is distributed
according to

P
(
y[t]

∣
∣x

(t)
1 , . . . ,x

(t)
N ,y(t−1)) = PY

(
y[t]

∣
∣x1[t], . . . , xN [t]

)
,

where x
(t)
i := (xi[1], . . . , xi[t]) ∈ X t

i denotes the sequence of channel inputs of user i and
y(t−1) := (y[1], . . . , y[t−1]) ∈ Yt−1 the sequence of all previous channel outputs. Hence,
the memoryless property simply means that the current MAC output is determined by
the current inputs only.

From a system-theoretic perspective, each (memoryless) MAC can alternatively be
described by means of a channel operator

W : X1 × · · · × XN → Y
that maps each choice of input symbols to a random channel output Y . A corresponding
example that will be of particular interest in all that follows is the affine model of a
time-discrete wireless multiple-access channel defined as follows.

Definition 2.1 (WMAC). Let N ≥ 2 and X1 = X2 = · · · = XN = Y = K, with K

either R or C. If W : KN → K such that

Y = W (x1, . . . , xN ) =
N∑

i=1

Hixi + Z , (2.1)

then the corresponding time-discrete channel model is said to be a wireless multiple-
access channel (WMAC) with N users. Here and hereafter, Z refers to independent
additive white Gaussian noise with variance σ2

Z (i.e., Z ∼ NK(0, σ2
Z)) and H1, . . . ,HN to

some random fading coefficients with joint distribution function PH1,...,HN
: KN → [0, 1]

that are independent of the inputs and the noise. For the degenerate case σ2
Z = 0

and H1 = · · · = HN ≡ 1, W simplifies to the linear function (see Definition A.3 in
Appendix A)

y = w(x1, . . . , xN ) =
N∑

i=1

xi , (2.2)

which we call the ideal WMAC with N users.

Remark 2.1. In the definition, the case K = R refers to the WMAC modeled in the
real passband and K = C to the WMAC in the complex baseband (i.e., the lowpass
equivalent [Lap09,PS08]), respectively.
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2.1 The Wireless Multiple-Access Channel

x1

x2

xN

H1

H2

HN

Y

Z

W

Figure 2.2: Wireless multiple-access channel with N users.

Remark 2.2. For degenerate fading coefficients (i.e., Hi ≡ hi for some hi ∈ K, i =
1, . . . , N), the WMAC is also known as Gaussian MAC [GK11, p. 93]. In particular, for
K = R and for some fixed choice of input symbols we have

PY |X1=x1,...,XN =xN
= NR

(
N∑

i=1

hixi, σ
2
Z

)

∈ P(Y)

and

W (x1, . . . , xN ) =
N∑

i=1

hixi + Z ,

respectively.

The WMAC model depicted in Figure 2.2 is motivated by the fact that the wireless
channel is a shared broadcast medium so that a simultaneous access of multiple users to
the available frequency spectrum results in interference. In other words, the electromag-
netic waves radiated in the same frequency band by a set of distributed transmitters
superimpose constructively or destructively at a common nearby receiver. We refer to
this in the following as the interference property of the wireless channel. A prominent
example is the uplink of a 3rd generation cellular system in which the mobile users
within a cell may transmit concurrently to the associated base station [Stü11, p. 665].

Definition 2.1 implies that the WMAC is memoryless as it is for every channel use
free of intersymbol interference. This is usually the case in flat fading environments
in which the coherence bandwidth of the (physical) channel is much larger than the
signal bandwidth. Of course, this holds not in general since depending on the chosen
transmission system and the respective propagation environment, the delay spread in-
duced by multipath propagation may result in intersymbol interference and therefore
in a channel with memory. We do not consider MACs with memory in this thesis even
if some of the results could be extended to the frequency selective case.
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2 Communication Versus Computation

Sequences of symbols that form the inputs of time-discrete multiple-access channels
with infinite alphabets are typically constrained with respect to some nonnegative cost
function.

Definition 2.2 (Input Cost Constraint). Let n ∈ N be an arbitrary number of channel
uses and ̺n : Kn → R+ some input cost function that is common to all the WMAC
users. Then, for an arbitrary nonnegative real number Pi, the requirement

̺n
(
xi[1], . . . , xi[n]

) ≤ Pi ,

for all sequences of input symbols (xi[1], . . . , xi[n]) ∈ Kn, is referred to as the input cost
constraint of user i, i = 1, . . . , N .

The most relevant input cost constraints for wireless network applications are the
following transmit power constraints, which are primarily considered in later chapters:

• Average transmit power constraint:

̺n
(
xi[1], . . . , xi[n]

)
=

1
n

n∑

j=1

∣
∣xi[j]

∣
∣
2 ≤ Pi i = 1, . . . , N , (2.3)

• Maximum transmit power constraint:

̺n
(
xi[1], . . . , xi[n]

)
= max

1≤j≤n

∣
∣xi[j]

∣
∣
2 ≤ Pi i = 1, . . . , N . (2.4)

Thus, we summarize that the WMAC with input cost constraints is, for some fixed
n ∈ N, completely characterized by the triple (W,̺n, {Pi}N

1=1) or equivalently by the
pair (W, {X (n)

i }N
i=1), in which

X (n)
i :=

{(
x[1], . . . , x[n]

) ∈ K
n
∣
∣ ̺n

(
x[1], . . . , x[n]

) ≤ Pi

}

(2.5)

denotes the constrained input space of user i, i = 1, . . . , N .

Remark 2.3. Notice that in this thesis, we consider time-discrete WMACs only. This
restriction relies on the celebrated Shannon sampling theorem (or rather the Whittaker-
Kotel’nikov-Raabe-Shannon sampling theorem [Lük99,Mön11]) that allows to uniquely
determine every measurable bandlimited signal of finite energy (i.e., elements from
L

2(R) having a Fourier transform with finite support) by appropriately chosen samples.

2.2 The Communication Problem

The classical communication problem has a long standing history and its first systematic
treatment for point-to-point channels goes back to Shannon and his groundbreaking
work “A Mathematical Theory of Communication” [Sha48]. Since then, Shannon’s ideas

10
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y ∈ Yn

W

x1 ∈ X (n)
1

x2 ∈ X (n)
2

xN ∈ X (n)
N

Tx1sensor 1

TxN

sensor 2 Tx2
s2

sN

s1

sensor node 1

sensor N

Rx

ŝ1
...
ŝN

fusion center

Figure 2.3: The communication problem: A fusion center wishes to reliably and effi-
ciently reconstruct the sensor readings communicated over a WMAC by
a set of distributed sensor nodes.

have been extended in various directions and in particular in the early 70s by Ahlswede,
Liao, Slepian and Wolf to the problem of communicating independent and correlated
sources over MACs [Ahl71, Lia72, SW73]. Instead of a general information-theoretic
definition, however, we give in the following a formal description of the communication
problem over a WMAC in the context of wireless sensor networks.

Towards this end, consider a wireless sensor network (WSN) consisting of a des-
ignated fusion center (FC) and N ≥ 2 spatially distributed nodes that monitor the
environment, which results in sensor readings si ∈ S, i = 1, . . . , N . Here and hereafter,
S := [smin, smax] ⊂ R is used to denote some nonempty compact sensing range (e.g.,
a closed and bounded interval of temperatures, pressures, or humidities). Assuming
the sensing range, also called full scale range, to be compact is justified by the fact
that every commercial sensor device has a strictly limited range in which it is able to
quantify observations [Fra10].1

Now, the corresponding distributed communication problem is as follows: Given a
WMAC with fixed input cost constraints, (W,̺n, {Pi}N

i=1), then the FC intends to
reliably and efficiently receive s1, . . . , sN from the sensor nodes. To be more precise,
consider Figure 2.3 and let

Txi : S → X (n)
i , si 7→ xi (2.6)

be the transmitter of sensor node i, i = 1, . . . , N , which maps each element of S to
a length-n sequence of channel inputs xi :=

(
xi[1], . . . , xi[n]

)
. Correspondingly, the

1Note that a sensor is typically understood as a device that converts some physical input quantity into
a corresponding analog electrical output signal (e.g., voltage, current, charge) [Fra10]. In this thesis,
however, a sensor is considered as a “black box” that already provides at its output a time-discrete

signal. When referring to sensor readings, we do not explicitly distinguish between the physical
input values and the associated electrical output values. Finally, a “sensor node” is for simplicity
assumed to be a sensor along with a wireless transmitter (see Figure 2.3).
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2 Communication Versus Computation

mapping
Rx : Yn → SN , y 7→ (ŝ1, . . . , ŝN ) (2.7)

describes the receiver of the FC, where y :=
(
Y [1], . . . , Y [n]

)
denotes the length-n

sequence of channel outputs.2 Let ε > 0 be some given accuracy and

dSN : SN × SN → R+ (2.8)

some distortion measure. Then, the communication problem consists in designing the
transmitters Tx1, . . . ,TxN and the receiver Rx such that

P

(

dSN

(
(ŝ1, . . . , ŝN ), (s1, . . . , sN )

)
< ε

)

≥ 1 − δ , (2.9)

for some arbitrary small δ > 0. Provided a solution to this problem exists, a commu-
nications engineer is generally interested in those solutions (i.e., transmitter-receiver
combinations) that are efficient in the sense that (2.9) can be achieved with as little
communication between the sensor nodes and the FC as possible. That is, with as little
channel uses/wireless resources as possible.

Remark 2.4. The triple (dSN , ε, δ) is typically determined by the sensor network ap-
plication of interest.

The standard design philosophy to solve this problem (if feasible) is to divide each
transmitter (2.6) as well as the receiver (2.7) into two main parts by employing some
form of Shannon’s well-known separation theorem [GK11, p. 66]. This means that the
first part of each transmitter consists of a source encoder, which appropriately com-
presses each instantaneous sensor reading into a digital message (i.e., a sequence of
binary symbols), followed by a channel encoder that bijectively maps the source mes-
sages to adequate channel input sequences. At the receiving end, the system is built up
in reverse order where a channel decoder first reconstructs the N source messages from
the sequence of channel outputs and a source decoder subsequently provides estimates
ŝ1, . . . , ŝN at its output.

Remark 2.5. Even if separating source and channel coding is optimal in the point-to-
point case, it is generally suboptimal in multiuser scenarios [GK11, p. 336]. In those
cases, source and channel coding should be considered jointly.

It is intuitively clear that the communication problem given above is subject to a
fundamental trade-off between the desired accuracy (dSN , ε, δ), the channel input con-
straints (̺n, {Pi}N

i=1), and the number of channel uses n. Therefore, finding appropriate
solutions to the problem generally falls within the area of rate distortion theory where
our intuition is confirmed by some strong mathematical concepts [Ber71].

2We deliberately decided against denoting (2.6) and (2.7) as “encoder” and “decoder” in order to avoid
later confusion when introducing dedicated channel encoders and decoders.
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2.3 The Computation Problem

Instead of reconstructing s1, . . . , sN at the FC as in the previous problem, many wireless
sensor network applications require to reliably and efficiently compute some pre-defined
function thereof [GK05, GK06]. For instance, this can be the maximum temperature
(or carbon monoxide concentration) in a building for fire detection, the average pressure
in a steam boiler, or the minimum humidity in a greenhouse. In all that follows, we
denote this as the desired function.

Definition 2.3 (Desired Function). Let S ⊂ R be some compact sensing range and
si ∈ S the sensor reading of node i, i = 1, . . . , N . Then, every function

f : SN → R , (s1, . . . , sN ) 7→ f(s1, . . . , sN )

that has to be computed at the FC is called a desired function.

In accordance with the definition, whenever the sensor nodes measure some values
s1, . . . , sN , the FC would like to have a sufficiently accurate estimate f̂(s1, . . . , sN ) of the
corresponding function-value f(s1, . . . , sN ). The distributed communication problem
discussed in Section 2.2 therefore transforms into a distributed computation problem,
formally specified as follows: Let the receiver (2.7) be modified to

Rx : Yn → R , y 7→ f̂(s1, . . . , sN ) . (2.10)

Then, given a WMAC with fixed input cost constraints, a predefined accuracy ε > 0
and some distortion measure

dR : R × R → R+ , (2.11)

the computation problem consists in designing the transmitters (2.6) and the receiver
(2.10) such that the probability

P

(

dR
(
f̂(s1, . . . , sN ), f(s1, . . . , sN )

)
< ε

)

≥ 1 − δ , (2.12)

for δ > 0 arbitrary small. Analogously to the communication problem, efficient solutions
to the computation problem (if existent) are generally of particular interest, which
represent solutions that achieve (2.12) using as little channel uses/wireless resources as
possible. Note that developing such solutions requires to cope with a fundamental trade-
off between the tuples (dR, f, ε, δ), (̺n, {Pi}N

i=1), and the number of channel uses n.

Remark 2.6. Note that (2.12), as well as (2.9) for the communication problem, are
for our purposes of sufficient generality in the sense that they contain other commonly
used error criteria as a special case. For instance, let (2.11) be chosen as

dR
(

f̂(s), f(s)
)

=
∣
∣f̂(s) − f(s)

∣
∣
2
,

for all s := (s1, . . . , sN ) ∈ SN . Then, by appropriately setting ε and δ in (2.12), it
follows with Markov’s inequality (see Theorem B.1 in Appendix B) a mean squared
error (MSE) criterion. More precisely, it holds that

1 − P

(∣
∣f̂(s) − f(s)

∣
∣
2
< 1

)

= P

(∣
∣f̂(s) − f(s)

∣
∣
2 ≥ 1

)

≤ E

{∣
∣f̂(s) − f(s)

∣
∣
2
}

≤ δ .
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2.4 Two Insightful Examples

Having defined what is meant in this thesis when referring to the communication or
the computation problem over a WMAC, we want to demonstrate that the problems
substantially differ in general. Therefore, let us take a look on two simple but insightful
examples.

Example 2.1. For K = R, consider the ideal WMAC (2.2) without input cost con-
straints3 and let the desired function be the sum of the sensor readings, that is,

f(s1, . . . , sN ) =
N∑

i=1

si . (2.13)

Furthermore, let the sequence of channel inputs of node i be of the form

xi = Txi(si) =
(
ai[1], ai[2], . . . , ai[n]

)T
si i = 1, . . . , N , (2.14)

(ai[1], . . . , ai[n]) ∈ Rn, which leads due to the memoryless property of the WMAC to
the channel output sequence

y =









y[1]
y[2]

...
y[n]









=
N∑

i=1

xi =









a1[1] a2[1] · · · aN [1]
a1[2] a2[2] · · · aN [2]

...
...

. . .
...

a1[n] a2[n] · · · aN [n]









︸ ︷︷ ︸

=:A









s1

s2
...
sN









. (2.15)

For computing the desired function-value (2.13) at the FC, we intend to first uniquely
infer the N unknowns s1, . . . , sN from y. It is one of the basic facts of linear algebra
that a unique solution to the nonhomogeneous linear system (2.15) exists if and only if
A = (ai[j]) ∈ Rn×N is square and of full rank. Thus, the number of channel uses has to
be equal to the number of nodes in the network (i.e., n = N) and the transmitters (2.14)
have to be designed such that the vectors (a1[1], . . . , a1[N ])T, . . . , (aN [1], . . . , aN [N ])T

span RN . Two corresponding computation strategies are the following, provided that
the FC a priori knows Tx1, . . . ,TxN and therefore A.

• Time Division Multiple-Access (TDMA): Let (2.14) be chosen as

Txi(si) =
(

0, . . . , 0
︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

n−i

)T
si i = 1, . . . , N ,

which reflects a coordinated activation of nodes and therefore an interference
avoiding strategy. As a consequence, A is equal to IN so that the receiver (2.10)
is simply given by

Rx(y) = 1Ty = f(s1, . . . , sN ) . (2.16)
3Because the ideal WMAC is a noiseless channel, it is not necessary here to explicitly incorporate input

cost constraints as we can scale channel input and output signals arbitrarily without performance
degradation.
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2.4 Two Insightful Examples

TxN

Tx1
s1

W

x1

sN xN

y

ŝ1

ŝN

Rx f
f̂(s1, . . . , sN )

(a) Separation-based computation

TxN

Tx1
s1

f̂(s1, . . . , sN )
RxW

x1

sN xN

y

(b) Computation over MAC

Figure 2.4: Separation-based computation vs. computation over MAC.

• Code Division Multiple-Access (CDMA): For instance, let (2.14) be chosen for
each i, i = 1, . . . , N , such that A results in a Hadamard matrix of order N (if
existent)4 and therefore in an invertible element of {−1, 1}N×N . Then, (2.16)
modifies to

Rx(y) = 1TA−1y = f(s1, . . . , sN ) , (2.17)

which represents an interference cancellation strategy.

△

The example shows that a solution to the communication problem may have the
potential to also provide a solution to the computation problem. We call such strategies
in all that follows separation-based computation strategies as they separate the process
of communicating the data from the process of computing the desired function. In
other words, a separation-based computation strategy first solves the communication
problem and (if feasible) the computation problem afterwards. See Figure 2.4(a) for an
illustration.

Example 2.2. In contrast to the previous example, consider now a single use of the
ideal WMAC (i.e., n = 1) with transmitters chosen to be the identity function on S:

xi[1] = Txi(si) = idS(si) = si i = 1, . . . , N . (2.18)

4A Hadamard matrix H of order N is an element of {−1, 1}N×N for which HHT = NIN . A necessary
condition for a Hadamard matrix of order N > 2 to exist is that N = 4k, k ∈ N. It is conjectured
that this is also sufficient but during the writing of this thesis a proof was not known [CS10, p. 87].
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2 Communication Versus Computation

Since the corresponding channel output is

y[1] =
N∑

i=1

xi[1] =
N∑

i=1

si ,

choosing the receiver to be the identity function on R results in

Rx
(

y[1]
)

= idR

(

y[1]
)

= y[1] = f(s1, . . . , sN ) (2.19)

and therefore immediately in the desired function-value (2.13). △

The moral of the above examples is that separation-based computation strategies
can be highly inefficient. In particular, the strategies of Example 2.1 are capable of
computing 1/N function-values per channel use in a distortion-free manner whereas
the strategy of Example 2.2, referred to as computation over MAC (CoMAC), allows
to distortion-free compute one function-value per channel use. Thus, in the considered
example, the efficiency is improved by a factor of N (i.e., the number of nodes in the
network). The reason is that the strategy of Example 2.2 exploits the interference of the
ideal WMAC for computing (2.13) rather than avoiding or canceling it and therefore
merges the communication with the computation step (see Figure 2.4(b)).

Remark 2.7. For completeness, we point out that if it would be a priori known that
in Example 2.1 at most k < N/2 of the sensor readings s1, . . . , sN are nonzero (i.e.,
the vector of sensor readings is k-sparse), then there would exist, at least in theory,
transmitters Tx1, . . . ,TxN and a receiver Rx such that f(s1, . . . , sN ) can be computed
by a separation-based strategy with n = 2k < N channel uses only. This follows
from the theory of compressive sensing, which allows to find unique sparse solutions of
underdetermined systems of equations [FR13, Ch. 2].

At first glance it may seem somewhat surprising that interference can be helpful in
order to obtain better performance: in the field of wireless network design it is typically
regarded as a hindrance to be overcome. Essential for the fact, however, that harnessing
the interference leads in Example 2.2 to an N -fold increase in efficiency compared with
the strategies of Example 2.1 is that the desired function perfectly matches the algebraic
structure of the ideal WMAC. According to Definition 2.1, the algebraic structure of
the ideal WMAC is (K, w), which is either R or C together with the N -ary operation
w : KN → K, (x1, . . . , xN ) 7→ w(x1, . . . , xN ) =

∑N
i=1 xi.5 Under a perfect match, we

therefore understand in view of (2.18)

∀(s1, . . . , sN ) ∈ SN : w
(
x1, . . . , xN ) = f(s1, . . . , sN ) . (2.20)

In short, the WMAC itself computes the desired function.
5It can be shown that (K, w) forms an algebraic structure that is in the field of universal algebra

known as a “reducible N-ary group” as it is a straighforward generalization of the ordinary additive
group (K, +) [Dud01]. Note that when referring to the linear structure (or simply the structure) of
the WMAC, we exclusively mean (K, w).
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2.4 Two Insightful Examples

The above insight that a perfect match between the desired function and the alge-
braic structure of an underlying MAC can be beneficially exploited was first made by
Nazer and Gastpar in their seminal paper “Computation Over Multiple-Access Chan-
nels” [NG07]. Since their results are mainly limited to the efficient computation of
linear functions over MACs having linear structure, there immediately arise a couple of
further interesting questions that will be addressed in the next chapter. One of those
questions is, for instance, whether there is a chance that harnessing interference can be
advantageous over separation-based computation strategies even if the desired function
does not perfectly match the structure of the WMAC.

Remark 2.8. Note that in general every function can be reliably computed over the
WMAC by using, for instance, a separation-based approach. Crucial is, however, the
question how efficiently this can be done in terms of the number of channel uses.

Remark 2.9. In the context of wireless sensor network design, energy efficiency is
commonly considered as one of the major concerns [ASSC02, ZG04]. If we have been
talking of efficiency so far, however, we had in mind achieving a certain objective with
as little transmissions as possible. Therefore, a computation strategy is said to be more
efficient than a competing strategy if it requires less channel uses per function-value at
fixed input cost constraints. Under the simplifying assumption that the sensor nodes’
energy consumption is mainly determined by the transmit energy, higher efficiency in
terms of the number of transmissions implies higher efficiency in terms of energy.
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3
Computation Over the Wireless
Channel – Fundamental Limits

“ Das Instrument, welches die Vermittlung bewirkt zwischen Theorie
und Praxis, zwischen Denken und Beobachten, ist die Mathematik;
sie baut die verbindende Brücke und gestaltet sie immer tragfähiger.
Daher kommt es, dass unsere ganze gegenwärtige Kultur, soweit sie auf
der geistigen Durchdringung und Dienstbarmachung der Natur beruht,
ihre Grundlage in der Mathematik findet. ”

David Hilbert, 1930

Over the last decade it has been increasingly recognized by research groups from dif-
ferent fields such as information theory, signal processing, and communications that
the interference property of the wireless channel can be helpful in order to fulfill cer-
tain tasks much more efficiently. For instance, Gastpar and Vetterli propose in [GV03]
(see also [Gas08] and [GVD06]) an analog joint source-channel communication scheme
that harnesses the interference property of the Gaussian MAC in order to estimate
some parameter of interest from a collection of sensor readings that are corrupted
by independent Gaussian sensing noise. The approach outperforms separation-based
strategies as the Gaussian MAC itself computes the optimal linear estimation func-
tion (i.e., the arithmetic mean) if the nodes are allowed to transmit concurrently in
the same frequency band. This observation initiated many research activities that ex-
tended the analog joint source-channel approach to more general distributed estimation
problems such as those in [MT06,BHSN07,XCLG08,BTS10,BTS12], whereas references
[DS98, LD07, MNT07, LS07, TD11, LED12, BSTS12] are devoted to the detection coun-
terparts.



3 Computation Over the Wireless Channel – Fundamental Limits

The basic idea of physical-layer network coding is also to benefit from the interfer-
ence caused by transmitters that actively share the same spectrum. Unlike the tra-
ditional network coding paradigm applied across data packets on the network layer
[ACLY00, LYC03, KM03], physical-layer network coding generates linear combinations
of packets instantly “in the air” while on the way to their receivers, which are then
simply forwarded to the intended destinations [ZLL06, PY06, KGK07, NG11b]. This
principle can be also applied to two-way relaying, also known as bidirectional relaying,
in which users exchange messages with each other by means of a relay that is located
somewhere in between [WNPS10,NCL10,NG11a].

Within the realm of resource allocation for wireless networks, Stańczak, Wiczanowski,
and Boche propose in [SWB05] (see also [SWB07]) an interesting analog transmission
scheme that harnesses interference in order to efficiently obtain linear combinations of
some local measurements over a network of interfering fading channels. Knowing the
linear combinations then allows for the distributed computation of a transmit power
allocation (across users) that maximizes some aggregate network utility.

In a nutshell, each of the above referenced works makes, in one way or another, use
of interference to compute at a designated receiver a function that is dictated by some
underlying application. Starting from this generic perspective, Nazer and Gastpar in
[NG07] lay the information-theoretic foundation of computing arbitrary functions over
arbitrary MACs. As already mentioned at the end of Chapter 2, however, their main
results are concerned with the special case of reliably computing linear functions over
MACs having a linear structure. In this regard, they show that in many cases, the
performance gains over separation-based computation strategies are proportional to N
(i.e., the number of concurrently active nodes/users). Less information-theoretic but
no less interesting, in [KKF10] Keller, Karamchandani, and Fragouli provide conditions
under which linear and specific nonlinear functions are computable over error-free linear
vector-channels with finite alphabets. A similar holds true for [KKFF13].

In order to allow a systematic and in-depth analysis, in this chapter we follow a similar
approach and consider the ideal WMAC model of Definition 2.1 in greater detail.1 In
particular, we answer the following fundamental questions:

(Q1) Which functions are efficiently computable over an ideal WMAC?

(Q2) What is the highest possible computation efficiency expressed in terms of the
number of channel uses that are necessary to compute such functions?

(Q3) What are the properties of corresponding computation networks with regard to
node complexity and coordination effort?

As Example 2.2 and the results in [NG07,KKF10] already suggest, (Q1) and (Q2) have
a trivial answer when linear functions are to be computed. Many promising WSN
applications, however, require the efficient computation of nonlinear functions [GK06]

1True to the motto “something that does not work in the ideal case will, a fortiori, does not work in
the noisy case”.

20



3.1 Computation Over Ideal WMACs

so that in Section 3.1 we first examine what is achievable when desired functions are not
perfectly matched to the structure of the ideal WMAC. It turns out that these efforts
are closely related to the famous 13th problem posed by David Hilbert in 1900 [Hil00].
Certainly a surprising fact that not only draws attention to a beautiful mathematical
theory that is perhaps a little less known in communications engineering but also leads
to some surprising and fruitful insights.

Based on the results of Section 3.1, in Section 3.2 we consider a generalized sensor
network model consisting of multiple FCs, each of which aims at independently comput-
ing some function of the sensor readings of an arbitrary subset of nodes (i.e., clusters).
Thus, we attempt to answer questions (Q1)–(Q3) in the context of clustered sensor
networks, where the intra-cluster communication is modeled by ideal WMACs. Spe-
cial attention is paid to those networks in which clusters overlap so that the WMACs
interfere with each other.

As already mentioned, sensor nodes are typically subject to strict resource constraints
such as finite energy and processing capabilities and often lack the support of an estab-
lished infrastructure [ZG04]. Therefore, in order to maintain the basic functionality, a
WSN as whole has to independently deal with variations in network topology due to
sensor nodes that drop out of the network (e.g., battery depletion, link failures) or new
sensor nodes that join the network. Accordingly, we analyze in Section 3.3 how varia-
tions in network topology affect the results of Sections 3.1 and 3.2. Finally, Section 3.4
concludes the chapter.

Convention

In what follows, F (A) denotes the space of all real-valued functions f : A → R with
arbitrary domain A and C

0(B) the space of real-valued continuous functions defined
over some topological space B, respectively. Without loss of generality, the sensing
range, S, is in this chapter for simplicity assumed to be equal to the closed unit interval
E := [0, 1].

3.1 Computation Over Ideal WMACs

Recall from the definition of the N -user ideal WMAC in Section 2.1 of Chapter 2 that
the signal received at the FC is of the form

y[j] = w
(
x1[j], . . . , xN [j]

)
=

N∑

i=1

xi[j] j = 1, . . . , n , (3.1)

where we assume w : RN → R (see Remark 2.1). In order to answer questions (Q1)
and (Q2) in a satisfying way, in Sections 3.1.1 and 3.1.2 we first examine what is
fundamentally possible with a single channel use (i.e., n = 1), whereas computations
with n > 1 channel uses are considered in detail in Section 3.1.3.
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3 Computation Over the Wireless Channel – Fundamental Limits

3.1.1 Computation With a Single Channel Use

Karamchandani, Niesen, and Diggavi show in [KND13] that if there is a structural
mismatch between a given ideal MAC and some desired function (i.e., condition (2.20)
is not satisfied for a given w), then separation-based computation is almost always
optimal with respect to the number of channel uses. In other words, for almost all
mismatched combinations of MACs and desired functions, an attempt of exploiting
interference to increase the computation efficiency fails.2

The result of Karamchandani et al. may appear a little discouraging but at least
for the ideal WMAC in which we are interested, we provide in the following a kind of
remedy by employing transmitters and receivers that are able to appropriately settle
mismatches. More formally, each node in the network transforms its sensor readings
prior to transmission by an individual pre-processing function defined as follows:

Definition 3.1 (Pre-Processing Functions). We define the univariate function

ϕi : E → R , si 7→ ϕi(si) (3.2)

to be a pre-processing function of node i, i = 1, . . . , N .

In addition, the FC treats the received symbols with a certain post-processing func-
tion:

Definition 3.2 (Post-Processing Function). Let y ∈ R be the output of the ideal
WMAC at an arbitrary channel use. Then, we define the univariate function

ψ : R → R , y 7→ ψ(y) (3.3)

to be a post-processing function.

According to these definitions, we simply choose the computation transmitter of node i
to

Txi(si) = xi[1] =
(

idR ◦ϕi

)

(si) = ϕi(si) i = 1, . . . , N (3.4)

and the computation receiver to

Rx
(
y[1]

)
=
(
idR ◦ψ)(y[1]

)
= ψ

(
y[1]

)
, (3.5)

respectively.3 It is obvious that this particular strategy allows the FC to compute every
desired function f : EN → R for which there exist N pre-processing functions as well
as a post-processing function such that f can be represented for all (s1, . . . , sN ) ∈ EN

as

f(s1, . . . , sN ) = ψ

(
N∑

i=1

ϕi(si)

)

. (3.6)

2“Almost always” in the sense that exploiting interference is optimal only for a set of mismatched
combinations of MACs and desired functions that is of measure zero.

3It may seem exaggerated to additionally mention mappings Txi and Rx in (3.4) and (3.5) as they are
identical to the pre- and post-processing functions. In later chapters, however, Txi, i = 1, . . . , N ,
and Rx consist of further components.
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ϕ1
s1

y

w(x1, . . . , xN)

ideal

Matched ideal WMAC

WMAC ψ
f(s1, . . . , sN )

x1

x2ϕ2
s2

xNϕN
sN

Figure 3.1: The ideal WMAC matched to the desired function f by appropriately
chosen pre- and post-processing functions ϕ1, . . . , ϕN , ψ. The resulting
overall channel has sensor readings as inputs and provides the desired
function-value at its output.

Remark 3.1. The pre- and post-processing functions transform the ideal WMAC such
that the resulting overall channel is matched to the desired function, which relaxes the
stringent notion of a perfect match in (2.20) to

∀(s1, . . . , sN ) ∈ E
N : Rx

(
w(x1, . . . , xN )

)
= f(s1, . . . , sN ) . (3.7)

See Figure 3.1 for an illustration.

It is an interesting coincidence that the function space consisting of all f ∈ F (EN )
having a representation (3.6) is in the realm of multivariate calculus and functional
analysis known as the space of nomographic functions [Buc79]. In what follows, we
denote this space as N (EN ), that is,

N (EN ) :=

{

f : EN → R

∣
∣
∣
∣ ∃(ϕ1, . . . , ϕN , ψ) ∈ F (E) × · · · × F (E) × F (R)

∀(s1, . . . , sN ) ∈ E
N : f(s1, . . . , sN ) = ψ

(
N∑

i=1

ϕi(si)

)}

. (3.8)

The elements from N (EN ) are called nomographic functions because they are the
basis of nomographs.4 Nomographs are graphical aids that have primarily been used
before the digital age to manually solve complicated equations [Eps58, Eve82, Doe09].
Figure 3.2, for instance, depicts the simple nomograph of an affine function of two

4Originating from “nomos (νóµoς)”, the Greek term for “law”.
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Figure 3.2: Nomograph of function f(s1, s2) = ψ
(
ϕ1(s1) + ϕ2(s2)

)
= 2s1 + 3.5s2 − 1,

with pre-processing functions ϕ1(s1) = 2s1, ϕ2(s2) = 3.5s2, and post-
processing function ψ(y) = y − 1. In order to read off a specific function-
value from the middle scale one has to simply connect the corresponding
arguments located on the outer scales by a straight line, as it is demon-
strated for f(0.1, 0.85) = 2.175.

variables drawn with Leif Roschier’s freeware PyNomo [Ros09]. Another popular exam-
ple is the Smith chart, which is often used for circuit design in microwave engineering
[Poz05, p. 64].

Remark 3.2. In favor of historical correctness, we point out that the notion “nomo-
graphic function” is not unique as the polish mathematician Mieczysław Warmus gave
an early definition in his postdoctoral dissertation [War59] (see also [Eve82, Sec. 4.4])
that is different from that in (3.6). To those who are interested, we provide his idea of
a nomographic function in Definition A.13, Appendix A.

Example 3.1 (Nomographic Functions). Let si ∈ E, i = 1, . . . , N .

• Arithmetic Mean: f(s1, . . . , sN ) = 1
N

∑N
i=1 si, with ϕi(s) = s, i = 1, . . . , N , and

ψ(y) = y/N .

• Weighted Mean: f(s1, . . . , sN ) =
∑N

i=1 λisi/
∑N

i=1 λi, with ϕi(s) = λis, λi ≥ 0,
i = 1, . . . , N , and ψ(y) = y/(

∑N
i=1 λi).

• Harmonic Mean: f(s1, . . . , sN ) = N/
∑N

i=1 s
−1
i , with ϕi(s) = s−1

i , i = 1, . . . , N ,
and ψ(y) = N/y.

• Polynomial: f(s1, . . . , sN ) = a0 + a1s
ℓ1
1 + a2s

ℓ2
2 + · · · + aNs

ℓN
N , with ϕi(si) = ais

ℓi
i ,

ℓi ∈ {0, . . . , N} arbitrary, i = 1, . . . , N , and ψ(y) = y + a0.
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3.1 Computation Over Ideal WMACs

• Euclidean Norm: f(s1, . . . , sN ) =
√

s2
1 + · · · + s2

N , with ϕi(s) = s2, i = 1, . . . , N ,
and ψ(y) =

√
y.

• Number of Active Nodes: f(s1, . . . , sN ) = N , with ϕi(s) ≡ C for some C ∈ R,
i = 1, . . . , N , and ψ(y) = y/C.

△

A closer look at the examples reveals that the pre-processing functions depend on
the particular choice of f so that a desirable property is the following.

Definition 3.3 (Universality). A set of fixed pre-processing functions ϕ1, . . . , ϕN is
said to be universal with respect to some function space A (EN ) if and only if they
allow to represent every f ∈ A (EN ) in the form of (3.6) by a proper choice of the
post-processing function ψ.

Remark 3.3. Universality in the sense of Definition 3.3 is a highly desirable property
for all-purpose computation networks because it mainly defines the communication
structure within the network as well as to what extent coordinating feedback is required.

Definition 3.3 along with the observation that (3.8) is exactly the space of nomo-
graphic functions leads us to the following powerful theorem, which completely deter-
mines the functions that are computable over an ideal WMAC and therefore entirely
answers questions (Q1) and (Q2).

Theorem 3.1. Let N ∈ N be arbitrary. Then, every desired function f : EN → R

is universally computable over an ideal WMAC with a single channel use and zero
distortion.

Proof. The assertion is an immediate consequence of a result proven by Sprecher in
[Spr65], which states that every f ∈ F (EN ) is nomographic (i.e., N (EN ) = F (EN )).
In order to make the interested reader familiar with the corresponding proof tech-
nique, we present an expanded and slightly modified version of Sprecher’s proof in
Appendix 3.A.1 at the end of the chapter.

The denotation “universally computable” refers to the fact that the pre-processing
functions can be chosen at sensor nodes to be universal and therefore independent of
the function to be computed. For the communication between the FC and the nodes
this means that no additional feedback5 is necessary to inform the nodes when the
FC modifies the desired function during network operation. The FC decides by an
appropriate choice of ψ which f shall be computed. The universality property therefore
offers the potential to significantly reduce in practice the amount of coordination as
well as the hardware complexity of sensor nodes. In Section 3.2, the property will play
a key role in improving the efficiency of more general computation networks.

5Additional to the feedback that is mandatory in practical wireless systems (e.g., for providing channel
state information).
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3 Computation Over the Wireless Channel – Fundamental Limits

Remark 3.4. In the meaning of Section 2.3, every computation problem can be solved
by using the ideal WMAC only once.

Note that in Theorem 3.1, there are no restrictions on pre- and post-processing func-
tions imposed so that they can be arbitrary. Since continuity can be a useful property
for practical implementations as well as for appropriately evaluating the computation
error (2.12) in later chapters, it is interesting to ask if Theorem 3.1 is also true when pre-
and post-processing functions are required to be continuous. In this regard, we denote
in contrast to (3.8) the space of nomographic functions with the additional property

(ϕ1, . . . , ϕN , ψ) ∈ C
0(E) × · · · × C

0(E) × C
0(R) (3.9)

as N
0(EN ).

In order to answer the question, we first point to the fact that the pre-processing
functions constructed in the proof of Theorem 3.1 (see (3.40) in Appendix 3.A.1) are
universal but merely continuous almost everywhere.6 An essential part of the proof is
then to show that this choice of pre-processing functions results in a bijective correspon-
dence

(s1, . . . , sN ) 7→
N∑

i=1

ϕi(si) .

That this is necessary and sufficient for universality is stated by the following theorem.

Theorem 3.2. Let N ≥ 2 be arbitrary and

g : EN → Υ , (s1, . . . , sN ) 7→ g(s1, . . . , sN ) =
N∑

i=1

ϕi(si) , (3.10)

with Υ ⊆ R denoting the range of g. Then, ϕ1, . . . , ϕN are universal pre-processing
functions with respect to F (EN ) if and only if g is bijective.

Proof. The proof is deferred to Appendix 3.A.2 at the end of the chapter.

From the proofs of Theorems 3.1 and 3.2, we conclude that for (3.10) to be bijective,
the pre-processing functions have to be chosen such that for all s(1) := (s(1)

1 , . . . , s
(1)
N ) ∈

EN and s(2) := (s(2)
1 , . . . , s

(2)
N ) ∈ EN , s(1) 6= s(2),

N∑

i=1

ϕi
(
s

(1)
i

) 6=
N∑

i=1

ϕi
(
s

(2)
i

)
(3.11)

holds (see Figure 3.3), which means that the ranges of the pre-processing functions have
to be appropriate. To illustrate that this is possible in general, we consider the special
case N = 2 and construct a field K ⊂ R that has the cardinality of the continuum

6A pre-processing function is “continuous almost everywhere” if it is discontinuous only on a set of
Lebesgue measure zero.
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Figure 3.3: A line grid of points ϕ1(s1) + ϕ2(s2) = const. illustrating the bijectivity
requirement of the function g. The pre-processing functions have to be
chosen such that ∀(s(1)

1 , s
(1)
2 ) 6= (s(2)

1 , s
(2)
2 ) : ϕ1(s(1)

1 ) +ϕ2(s(1)
2 ) 6= ϕ1(s(2)

1 ) +

ϕ2(s(2)
2 ). That means in the depicted example that only the black points

are allowed in the range of g whereas the white ones have to be avoided.

without containing every real number.7 More precisely, we consider some real number
α that is not in K (i.e., α ∈ R\K) and define K as the range of ϕ1. Furthermore, we
define the range of ϕ2 to be the field 1

αK. Then, for every (s(1)
1 , s

(1)
2 ), (s(2)

1 , s
(2)
2 ) ∈ E2

with (s(1)
1 , s

(1)
2 ) 6= (s(2)

1 , s
(2)
2 ), it follows

ϕ1

(

s
(1)
1

)

+ ϕ2

(

s
(1)
2

) 6= ϕ1

(

s
(2)
1

)

+ ϕ2

(

s
(2)
2

)

.

Would this not be the case,

ϕ1
(
s

(1)
1

)− ϕ1
(
s

(2)
1

)

︸ ︷︷ ︸

∈K

= ϕ2
(
s

(2)
2

)− ϕ2
(
s

(1)
2

)
=

1
α

(

y(2) − y(1)
)

︸ ︷︷ ︸

∈K

would follow and thus α ∈ K, which is a contradiction since α ∈ R\K.
This simple example already reveals that the necessary separation of all points in the

range Υ of g can unfortunately never be achieved for every f ∈ F (EN ) with continuous
pre-processing functions so that g and ψ are discontinuous in general. This observation
is completed by the following theorem.

7In [vN28], von Neumann constructs an example of such a field without using the axiom of choice.
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Theorem 3.3. There exists a nonempty compact subset D of EN such that for all
f ∈ C

0(EN ) vanishing on and only on D there exists ε = ε(f) > 0 such that

inf
f ′∈N

0(EN )
sup

(s1,...,sN )∈D

∣
∣f(s1, . . . , sN ) − f ′(s1, . . . , sN )

∣
∣ ≥ ε .

That is, the space of nomographic functions with continuous pre- and post-processing
functions, N

0(EN ), is nowhere dense in the space of continuous functions C
0(EN ).

Proof. The constructive proof for arbitrary N is given by Buck in [Buc82]. For the
special case N = 2, however, the theorem was previously proven by Arnol’d in [Arn57].

Remark 3.5. In simple terms, the theorem states that for continuous desired func-
tions having D as its level set there do not exist (with a neighborhood) nomographic
representations in which pre- and post-processing functions are continuous.

Example 3.2 (Geometric Mean). Let the desired function be the “geometric mean”

f : EN → R , (s1, . . . , sN ) 7→ f(s1, . . . , sN ) =

(
N∏

i=1

si

) 1
N

. (3.12)

In the following, we prove that (3.12) does not belong locally to the closure of N
0(EN ).

To this end, let

D =

{

(s1, . . . , sN ) ∈ E
N

∣
∣
∣
∣

N∏

i=1

si = 0

}

denote the closed subset of EN on (and only on) which (3.12) vanishes. Furthermore,
let

E :=
{

(1, 0 . . . , 0
︸ ︷︷ ︸

N−1

), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)
}

∪ (0, . . . , 0) ⊂ E
N+1

and suppose that there exist continuous pre- and post-processing functions such that

∀(s1, . . . , sN ) ∈ E
N :

(
N∏

i=1

si

) 1
N

= ψ

(
N∑

i=1

ϕi(si)

)

.

Now, each pair of points taken from E can be connected by a polygonal line lying
entirely in D as well as by a polygonal line lying in the complement Dc := EN\D,
except at the end points (i.e., the elements of E). Suppose that at the end points the
continuous function8 ∑N

i=1 ϕi(si) takes different values ξi, i = 1, . . . , N + 1. Then, this
leads to a contradiction because

∑N
i=1 ϕi(si) would take the intermediate values ξk+ξℓ

2 ,
k, ℓ = 1, . . . , N + 1, k 6= ℓ, on D and on Dc so that

ψ

(
ξk + ξℓ

2

)

= 0 and ψ

(
ξk + ξℓ

2

)

> 0

8Every finite sum of continuous functions is continuous [Rud76, Thm. 4.9].
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simultaneously.9 We therefore conclude that
∑N

i=1 ϕi(si) takes the same value at each
(s1, . . . , sN ) ∈ E, that is,

ϕ1(1) + ϕ2(0) + · · · + ϕN (0) = ϕ1(0) + ϕ2(1) + · · · + ϕN (0) = · · ·
· · · = ϕ1(0) + ϕ2(0) + · · · + ϕN (1) .

By a simple calculation, it follows that

ϕ1(0) + · · · + ϕN (0) = ϕ1(1) + · · · + ϕN (1)

as well as
ψ
(
ϕ1(0) + · · · + ϕN (0)

)
= ψ

(
ϕ1(1) + · · · + ϕN (1)

)
.

This, however, is in contradiction to

0 = f(0, . . . , 0) 6= f(1, . . . , 1) = 1

so that we conclude that there do not exist continuous functions ϕ1, . . . , ϕN , ψ ensuring
that the “geometric mean” (3.12) belongs to N

0(EN ). △

3.1.2 Approximation With a Single Channel Use

According to Theorem 3.3, requiring pre- and post-processing functions to be continuous
significantly reduces the amount of functions that are computable over an ideal WMAC
with a single channel use. A strict prerequisite of this statement is that the computations
are distortion free, which means in terms of Section 2.3 that for some given distortion
measure dR it holds that

dR
(
f(s1, . . . , sN ), f̂(s1, . . . , sN )

) ≡ 0 .

However, if we tolerate some small distortion ε > 0, the problem turns into a mul-
tivariate approximation problem that is determined by what we call a nomographic
approximation.

Definition 3.4 (Nomographic Approximations). Let ε > 0 be arbitrary but fixed.
Then, we define

N
0

d,ε(E
N ) :=

{

f ∈ F (EN )
∣
∣
∣
∣ ∃(ϕ1, . . . , ϕN , ψ) ∈ C

0(E) × · · ·

· · · × C
0(E) × C

0(R) : dR

(

f(s1, . . . , sN ), ψ
(∑

i
ϕi(si)

))

≤ ε

}

,

as the space of approximable nomographic functions with respect to the distortion
measure dR and accuracy ε. If f ∈ N

0
d,ε(EN ) for all (s1, . . . , sN ) ∈ EN , we write

f(s1, . . . , sN ) ≈ ψ
(∑

i ϕi(si)
)
.

9From the intermediate value theorem [Rud76, Thm. 4.23] we know that a continuous real-valued
function defined on a continuum takes all values between any pair of given points.
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An adequate characterization of the spaces N
0

d,ε(E
N ) is still a difficult problem. How-

ever, if we go back, for instance, to Example 3.2, then there exists for every ε > 0 a
p0 = p0(ε) such that

∀p ≥ p0 ∀(s1, . . . , sN ) ∈ E
N :

∣
∣
∣
∣
∣
∣
∣

(
N∏

i=1

si

) 1
N

− expe

(

1
N

N∑

i=1

loge

(

si +
1
p

))
∣
∣
∣
∣
∣
∣
∣

≤ ε .

The desired function “geometric mean” is therefore the uniform limit of the sequence
of nomographic functions

{

ψ

(
N∑

i=1

ϕ
(p)
i (si)

)

= expe

(

1
N

N∑

i=1

loge

(

si +
1
p

))}

p∈N

, (3.13)

with pre-processing functions

ϕ
(p)
i (s) = loge

(

s+
1
p

)

i = 1, . . . , N

and post-processing function

ψ(y) = expe

(
y

N

)

,

respectively. Roughly speaking, the “geometric mean”, which is indeed an element of
the function space N (EN ) but unfortunately not of N

0(EN ) (see Example 3.2), can
be uniformly approximated with arbitrary precision by a nomographic function that
consists of continuous pre- and post-processing functions. Therefore, when choosing
the distortion measure as

dR
(
f(s1, . . . , sN ), f ′(s1, . . . , sN )

)
= sup

(s1,...,sN )∈EN

∣
∣
∣f(s1, . . . , sN ) − f ′(s1, . . . , sN )

∣
∣
∣

=
∥
∥f − f ′∥∥

∞ , (3.14)

the “geometric mean” belongs to N
0

‖·‖∞,ε(E
N ) for every ε > 0.

Remark 3.6. The example “geometric mean” demonstrates that the WMAC is appar-
ently able to multiply so that the wireless channel can be regarded as a “computer” that
is capable of performing all basic arithmetic operations.

With these thoughts in mind, the following proposition is an immediate consequence
of Definition 3.4.

Proposition 3.1. Let ε > 0 be some desired accuracy and dR an arbitrary but fixed
distortion measure. Then, every f ∈ N

0
d,ε(EN ) can be computed over the ideal WMAC

within accuracy ε (with respect to dR) by a single channel use.
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3.1 Computation Over Ideal WMACs

Example 3.3 (Nomographic Approximations). Let ε > 0 be arbitrary but fixed, the
distortion measure dR as in (3.14), and p0 = p0(ε) be chosen such that f ∈ N

0
d,ε(E

N )
for all p ≥ p0.

• Cosine of the Product: f(s1, . . . , sN ) = cos
(∏N

i=1 si
) ≈ ψ

(∑N
i=1 ϕi(si)

)
, with

ϕi(s) = loge

(
s+ 1/p0

)
, i = 1, . . . , N , and ψ(y) = (cos ◦ expe)(y) = cos(ey).

• Monomial: f(s1, . . . , sN ) = asℓ1
1 s

ℓ2
2 · · · sℓN

N ≈ ψ
(∑N

i=1 ϕi(si)
)
, for arbitrary a ∈ R

and ℓi ∈ Z, with ϕi(s) = loge

(
sℓi + 1/p0

)
, i = 1, . . . , N , and ψ(y) = expe(ay).

• Maximum Value: f(s1, . . . , sN ) = max1≤i≤N {si} ≈ ψ
(∑N

i=1 ϕi(si)
)
, with ϕi(s) =

sp0, i = 1, . . . , N , and ψ(y) = y
1

p0 .10

• Minimum Value: f(s1, . . . , sN ) = min1≤i≤N{si} ≈ ψ
(∑N

i=1 ϕi(si)
)
, with ϕi(s) =

s−p0, i = 1, . . . , N , and ψ(y) = y
− 1

p0 .

△
Even if the desired functions in Example 3.3 are not universal nomographic approxi-

mations, especially the maximum and minimum value can be relevant for alarm-driven
sensor network applications. To make this more precise, consider a wireless sensor
network that is used for fire detection in a factory by periodically computing the maxi-
mal temperature or carbon monoxide concentration at a FC and comparing the result
with a predefined threshold. Due to safety reasons, this has certainly to be done with
a minimum transmission delay, which can be achieved by letting all nodes transmit
their pre-processed measurements simultaneously to approximate the maximum over
the channel in the sense of Example 3.3. Since this requires only a single channel use,
the delay is N -times smaller than that of a separation-based approach, in which all the
sensor readings are communicated to the FC (see Section 2.3).

Remark 3.7. Note that the functions given in Examples 3.1 and 3.3 do not consist
of universal pre-processing functions, from which it is obvious that such nomographic
representations are not necessarily unique.

3.1.3 Computation With Multiple Channel Uses

In the previous two subsections, we have seen that the continuity of pre- and post-
processing functions crucially impacts the space of computable functions. In particular,
if the pre- and post-processing functions are required to be continuous, a single use
of the ideal WMAC is not sufficient to compute every f ∈ C

0(EN ). To get a more
complete understanding of this behavior, we extend our considerations in this subsection
to multiple channel uses (i.e., n > 1). This allows for further harnessing the interference
property of the WMAC and simultaneously having more degrees of freedom.

10This is based on the well-known fact that ∀(s1, . . . , sN ) ∈ E
N : limp→∞

(∑N

i=1
s

p
i

)1/p
= max1≤i≤N si

uniformly.
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Towards this end, let n > 1 and the computation transmitter (3.4) be modified to

Txi(si) =
(
xi[1], . . . , xi[n]

)
=
(
ϕi1(si), . . . , ϕin(si)

)
i = 1, . . . , N , (3.15)

with ϕij ∈ C
0(E), j = 1, . . . , n, being some pre-processing functions to be specified

later. Then, the corresponding length-n sequence of ideal WMAC outputs follows to

y[1] =
N∑

i=1

ϕi1(si), y[2] =
N∑

i=1

ϕi2(si), . . . , y[n] =
N∑

i=1

ϕin(si) . (3.16)

If the FC applies an individual post-processing function ψj ∈ C
0(R) to each of the

outputs, a meaningful computation receiver can be

Rx
(
y[1], . . . , y[n]

)
= Ψ

(

ψ1
(
y[1]

)
, . . . , ψn

(
y[n]

))

, (3.17)

where the purpose of the continuous function Ψ : Rn → R is to appropriately combine
the sequence of post-processed ideal WMAC outputs. Therefore, providing (3.15) and
(3.17) with a proper choice of pre- and post-processing functions allows the FC to
precisely compute every element of

{

f ∈ F (EN )
∣
∣
∣ ∃(ζ1, . . . , ζn) ∈ N

0(EN ) × · · · × N
0(EN ) ∃Ψ ∈ C

0(Rn)

∀(s1, . . . , sN ) ∈ E
N : f(s1, . . . , sN ) = Ψ

(

ζ1(s1, . . . , sN ), . . . , ζn(s1, . . . , sN )
)}

.

(3.18)

In order to characterize the rather abstract space (3.18) in greater detail by deter-
mining essential properties of its elements (e.g., continuity, differentiability), there are
different approaches. For instance, we could fix the number of channel uses to some
n > 1 and then try to construct elements with certain additional properties. On the
other hand, we could also assume some fixed, and perhaps well-understood, function
space (e.g., C0(EN )) and then try to figure out how to choose n (if feasible) such that
every member of this space can be represented as on the right-hand side of (3.17).

It is somewhat surprising that the latter approach is closely related to the 13th of
the famous list of 23 problems published by David Hilbert in 1900 [Hil00, Vit04].11

The original problem involves the study of solutions of algebraic equations and Hilbert
conjectured that a solution of the general equation of degree seven cannot be represented
as a superposition of continuous functions of two variables. In his own words [Hil00,
pp. 280–281]:

. . .Wahrscheinlich ist nun die Wurzel der Gleichung 7ten Grades eine solche
Function ihrer Coefficienten, die nicht zu der genannten Klasse nomogra-
phisch construierbarer Functionen gehört, d. h. die sich nicht durch eine

11Hilbert presented a selection of the problems in a lecture held at the 1900 International Congress of
Mathematicians in Paris [Rei96, p. 82].
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endliche Anzahl von Einschachtelungen von Functionen zweier Argumente
erzeugen läßt. Um dieses einzusehen, wäre der Nachweis dafür nötig, daß
die Gleichung 7ten Grades

f7 + xf3 + yf2 + zf + 1 = 0

nicht mit Hilfe beliebiger stetiger Functionen von nur zwei Argumenten lös-
bar ist. Daß es überhaupt analytische Functionen von drei Argumenten
x, y, z giebt, die nicht durch endlich-malige Verkettung von Functionen von
nur zwei Argumenten erhalten werden können, davon habe ich mich, wie ich
noch bemerken möchte, durch eine strenge Ueberlegung überzeugt.

In the jargon of wireless communications engineering, Hilbert’s conjecture states that for
every finite number of channel uses, n, the computation of all continuous desired func-
tions by harnessing the interference property of the WMAC is not possible. Fortunately,
the conjecture is disproven by Kolmogorov in his landmark paper [Kol57]. We use a
remarkable refinement of Kolmogorov’s result to state the following theorem, which
gives, in analogy to Theorem 3.1, a complete answer to the question which functions
are generally computable over the WMAC when pre- and post-processing functions are
required to be continuous.

Theorem 3.4. Let N ≥ 2 be arbitrary. Then, every continuous desired function of
N variables is universally computable over an ideal WMAC with 2N + 1 channel uses,
continuous pre- and post-processing functions, and zero distortion.

Proof. The proof follows from [BG09], where it is constructively shown that every f ∈
C

0(EN ) is representable as

f(s1, . . . , sN ) =
2N+1∑

j=1

ζj(s1, . . . , sN ) , (3.19)

with ζj ∈ N
0(EN ), j = 1, . . . , 2N + 1, defined as

ζj(s1, . . . , sN ) := ψj

(
N∑

i=1

αiϕ
(

si + (j − 1)β
)

)

. (3.20)

Here, ϕ : E → R is a continuous and monotone increasing function and {αi}N
i=1, β are

appropriate nonnegative real constants. Only the post-processing functions ψj ∈ C
0(R),

j = 1, . . . , 2N + 1, depend on f , whereas the N(2N + 1) continuous pre-processing
functions ϕij(si) := αiϕ

(
si + (j − 1)β

)
do not.

Representation (3.19) reveals that Ψ in (3.17) can be chosen to be simply the sum
over the post-processed ideal WMAC outputs,

Ψ
(

ψ1
(
y[1]

)
, . . . , ψ2N+1

(
y[2N + 1]

))

=
2N+1∑

j=1

ψj
(
y[j]

)
,

so that the function space (3.18) is equal to C
0(EN ).
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Remark 3.8. Representations in the form of (3.19) along with (3.20) are called Kol-
mogorov’s superpositions.

A geometric interpretation of Theorem 3.4 is the following [Lor66, p. 169], [Kha97,
p. 13]. Using 2N + 1 distinct wireless resources (channel uses) results in a continuous
and bijective12 correspondence

(s1, . . . , sN ) 7→









y[1]
y[2]

...
y[2N + 1]









=









∑N
i=1 αiϕ(si)

∑N
i=1 αiϕ(si + β)

...
∑N

i=1 αiϕ(si + 2Nβ)









∈ Γ , (3.21)

between sensor readings and ideal WMAC output-signals. As a result of the fact that
EN is a compact space, the range of this mapping, Γ ⊂ R2N+1, is compact as well.
In other words, (3.21) describes a homeomorphism between EN and Γ so that EN is
continuously embedded into the Euclidean space R2N+1.13 Thus, there exists a bijec-
tion between all continuous functions f(s1, . . . , sN ) defined on EN and all continuous
functions F (y[1], . . . , y[2N + 1]) defined on Γ (i.e., between C

0(EN ) and C
0(Γ)).

Due to the proof technique used by Kolmogorov in [Kol57] for solving David Hilbert’s
13th problem, the statement of Theorem 3.4 that every continuous desired function can
be computed with 2N + 1 channel uses by exploiting interference initially provides a
sufficient condition on the number of channel uses. In algebraic topology it was previ-
ously known from the Menger-Nöbeling theorem [HW48, Thm. V2] that every compact
space of finite dimension lower or equal to N is homeomorphic to a compact subset
of R2N+1.14 However, the fact that every space of dimension N can be topologically
embedded into a compact space of dimension lower than 2N+1 [HW48, Thm. V6] (e.g.,
EN can be embedded into RN by the identity map) suggests that the number of channel
uses in Theorem 3.4 can perhaps be decreased to save wireless resources. Unfortunately,
it is proven by Sternfeld in [Ste85] that this is not possible, which inevitably leads us
to the following proposition.

Proposition 3.2. Let the transmitters at sensor nodes be chosen as in (3.15) and the
receiver at the FC as in (3.17), respectively, with pre- and post-processing functions
required to be continuous. Then, in order to universally compute every f ∈ C

0(EN ) at
zero distortion by harnessing the interference, n ≥ 2N + 1 channel uses are necessary.

12Note that according to Theorem 3.2, bijectivity is necessary and sufficient for universality.
13A function between two topological spaces is said to be a “homeomorphism” if it is continuous,

bijective, and if its inverse is continuous as well [HW48, p. 159]. Two topological spaces are therefore
“homeomorphic” if there exists a homeomorphism between them, which means, from a topological
perspective, that they are the same. The surface of a sphere in three-dimensional Euclidean space,
for instance, is homeomorph to the surface of a three-dimensional cube as they can be converted
into each other by simply pushing and stretching.

14The “dimension” of an arbitrary topological space X is defined to be the least m ∈ Z such that
every x ∈ X has arbitrary small neighborhoods whose boundaries are of dimension less than m

[HW48, p. 24].
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Remark 3.9. From [VK67], for instance, one can conclude that if we further restrict
the pre-processing functions to be continuously differentiable, then Theorem 3.4 is no
longer valid (i.e., 2N + 1 channel uses are not sufficient to universally compute every
continuous desired function of N variables over the channel by harnessing interference).
Roughly speaking, restricting the choice of pre- and post-processing functions costs
wireless resources or rather reduces the space of functions that are computable by
means of the wireless channel.

Although for n ≥ N there exist separation-based approaches (see Example 2.1) in
order to appropriately compute desired functions over sensor networks (e.g., in an ideal
TDMA protocol the entire analog sensor readings are conveyed interference free to the
FC), using n = 2N+1 channel uses can lead to huge performance gains in more general
network topologies, which is shown in the next subsection. Note for completeness that
when dropping the demand for universality, n = 2N+1 can sometimes be reduced even
if the function of interest is not in N

0(EN ).

Example 3.4. Let N = 2 and consider the continuous desired function

f : E2 → R , (s1, s2) 7→ s2
1 + s1s2 + s2

2 + 2s1 + s2 .

Furthermore, let
Uε :=

{
(s1, s2) ∈ E

2
∣
∣ |s1| ≤ ε, |s2| ≤ ε

}

denote a compact neighborhood of the point (0, 0) ∈ E2, for some ε > 0. Then, it can
be shown that [Buc82]

∀ 0 < ε < 10−2 : inf
g∈N

0(E2)
‖f − g‖Uε >

ε3

10
,

with ‖f‖Uε
:= max(s1,s2)∈Uε

|f(s1, s2)|. That is, there does not exist a nomographic
function with continuous pre- and post-processing functions that approximates f with
arbitrary precision. On the other hand, however, it can be easily seen that f can be
represented as the superposition of two nomographic functions:

f(s1, s2) = f1(s1, s2)+f2(s1, s2) = exp (log(s1 + 2) + log(s2 + 3))+(s2
1−s1+s2

2−s2−6) ,

where obviously f1, f2 ∈ N
0(E2). Thus, in this particular example, the sum of two

nomographic functions suffices whereas the corresponding Kolmogorov’s superposition
would require to add up 2N + 1 = 5 elements from N

0(E2). In simple terms, there is
something between n = 1 and n = 2N + 1. △

3.2 Computation Over Clustered Networks

In our previous considerations, the spatially distributed sensor nodes communicated
over a WMAC with a single FC so that we implicitly assumed a simple star network
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C1

C4

fusion center common nodes
C3

C2f1
f2

f3
f4

Figure 3.4: A clustered wireless sensor network consisting of N = 25 nodes and L = 4
clusters for computing some desired functions f1, . . . , f4 at the FCs. Nodes
belonging to some overlap Cℓ ∩ Cm, ℓ 6= m, are called common nodes.

topology. If the distances are large, however, this can be comparatively costly in terms of
energy consumption as the nodes have to increase their transmit powers to compensate
the higher path attenuation. In such cases, re-organizing the network into clusters
turns out to be a reasonable approach to prolong the network lifetime (in some sense)
while maintaining connectivity [HCB02, YF04, YKR06]. On the other hand, one could
think of scenarios in which different FCs with individual tasks aim at exploiting the
observations of all the nodes in the network but are limited to local neighborhoods (i.e.,
node clusters) due to reachability constraints. Therefore, we extend our considerations
in this section to a more general network topology and assume that the network is
organized into L ∈ N clusters, where the set of nodes belonging to cluster ℓ is denoted
by Cℓ, ℓ = 1, . . . , L. In particular, we focus on those clustered networks in which for
each ℓ there exists at least one m 6= ℓ such that Cℓ ∩Cm 6= ∅. Furthermore, each cluster
is assumed to have a designated FC that acts as the cluster head (see Figure 3.4 for a
qualitative example).

In order to describe the intra-cluster communication, we continue to use the model
of a real-valued ideal WMAC so that the symbol received by FC ℓ at channel use j can
be written as

yℓ[j] =
∑

i∈Cℓ

xi[j] ℓ = 1, . . . , L . (3.22)

Instead of reconstructing individual sensor readings from the sequence of channel
outputs (3.22), each FC, say FC ℓ, aims at reliably and efficiently computing some
desired function

fℓ : E|Cℓ| → R ,
(
sℓ1
, . . . , sℓ|Cℓ|

) 7→ fℓ

(
sℓ1
, . . . , sℓ|Cℓ|

)
(3.23)

thereof, where |Cℓ| denotes the number of nodes in cluster ℓ (i.e.,
⋃L

ℓ=1 |Cℓ| = N).
This is obviously equivalent to the problem of efficiently computing the vector-valued
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function

f : EN → R
L , (s1, . . . , sN ) 7→ f(s1, . . . , sN ) =









f1
(
s11
, . . . , s1|C1|

)

f2
(
s21
, . . . , s2|C2|

)

...
fL
(
sL1

, . . . , sL|CL|

)









, (3.24)

over a sensor network that is organized into L clusters. In order to treat this problem,
we start in Section 3.2.1 with the case where only continuous pre- and post-processing
functions are allowed whereas in Section 3.2.2 no restrictions on pre- and post-processing
functions are imposed.

Remark 3.10. The main difference to the previously studied problem is that the ideal
WMACs (3.22) interfere with each other in the sense that the common nodes (see
Figure 3.4) can be heard by more than one FC.

3.2.1 Continuous Pre- and Post-Processing Functions

From Proposition 3.2, we recap that in order to universally compute every continuous
function of N ≥ 2 sensor readings by means of interference and with continuous pre- and
post-processing functions, at least n = 2N + 1 channel uses are necessary. The reason
is that the N -dimensional space of sensor readings, EN , has to be homeomorphically
mapped onto a compact set Γ of dimension 2N + 1 (see (3.21)). Since this can be
achieved by using the ideal WMAC 2N + 1 times, we interpret it as collecting the
dimensions of Γ via distinct wireless resources. If the FC, however, can only receive
signals from a subset of the N nodes (i.e., some summands on the right hand side of
(3.21) are missing), then the image (3.21) is not necessarily in Γ, which in turn implies
that not every F ∈ C

0(Γ) is computable. This is exactly what happens in a clustered
network, in which the nodes cannot reach all FCs so that each component of f depends
only on a subset of the nodes. See Figure 3.4 for an illustration.

Fortunately, due to the structural properties figured out in Section 3.1.3, this can be
easily and independently resolved at each FC. To demonstrate this, let ϕij , i = 1, . . . , N ;
j = 1, . . . , 2N + 1, be N(2N + 1) continuous functions such that according to the proof
of Theorem 3.4 every continuous f : EN → R can be represented as

f(s1, . . . , sN ) =
2N+1∑

j=1

ψj

(
N∑

i=1

ϕij(si)

)

=
2N+1∑

j=1

ψj

(
N∑

i=1

αiϕ
(
si + (j − 1)β

)

)

(3.25)

through a proper choice of the continuous functions ψ1, . . . , ψ2N+1. Suppose that each
node in the network is uniquely assigned one of the function sets {ϕij ∈ C

0(E)}2N+1
j=1 ,

i = 1, . . . , N , to generate the individual transmitters (3.15). Now, summarize the ideal

37



3 Computation Over the Wireless Channel – Fundamental Limits

WMAC outputs (3.22) to the vectors

yℓ =









yℓ[1]
yℓ[2]

...
yℓ[2N + 1]









=









∑

i∈Cℓ
xi[1]

∑

i∈Cℓ
xi[2]

...
∑

i∈Cℓ
xi[2N + 1]









=









∑

i∈Cℓ
αiϕ(si)

∑

i∈Cℓ
αiϕ(si + β)

...
∑

i∈Cℓ
αiϕ(si + 2Nβ)









,

ℓ = 1, . . . , L, and note that they are generally not contained in Γ. However, if we
consider the shifted versions

zℓ := yℓ + γℓ , (3.26)

with

γℓ =









γℓ[1]
γℓ[2]

...
γℓ[2N + 1]









:=









∑

i/∈Cℓ
αiϕ(0)

∑

i/∈Cℓ
αiϕ(β)
...

∑

i/∈Cℓ
αiϕ(2Nβ)









, (3.27)

then unlike the original yℓ, the shifted zℓ = (zℓ[1], . . . , zℓ[2N + 1]) is always contained
in Γ, for all ℓ = 1, . . . , L.

Remark 3.11. It is important to realize that γℓ ∈ R2N+1 is, for each ℓ, a constant
and therefore independent of the sensor readings.

In contrast to (3.25), however, none of the desired functions in (3.23) depends on all
N sensor readings. But this is not a limitation since we are able to conclude from (3.26)
and (3.27) a simple post-processing strategy described as follows. After receiving at
channel use j, j = 1, . . . , 2N + 1, the symbol yℓ[j], FC ℓ adds the correction term γℓ[j],
applies an appropriate post-processing function ψℓj ∈ C

0(R), that is,

ψℓj

(
zℓ[j]

)
= ψℓj

(
yℓ[j] + γℓ[j]

)
= ψℓj




∑

i∈Cℓ

αiϕ
(
si + (j − 1)β

)
+ γℓ[j]



 , (3.28)

and stores this intermediate result in a buffer. Then, if all 2N + 1 channel output-
symbols are received and post-processed, the FC finally sums up the respective buffer
content, which results in the function-value

fℓ

(
sℓ1
, . . . , sℓ|Cℓ|

)
=

2N+1∑

j=1

ψℓj




∑

i∈Cℓ

αiϕ
(
si + (j − 1)β

)

︸ ︷︷ ︸

=ϕij(si)

+γℓ[j]



 . (3.29)

According to this, the receiver structure of FC ℓ is given by

Rxℓ(yℓ) =
2N+1∑

j=1

ψℓj

(
yℓ[j] + γℓ[j]

)
ℓ = 1, . . . , L (3.30)
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ideal

WMAC

xℓ1
[j]

ϕ
sℓ1

αℓ1(j − 1)β

sensor node ℓ1

xℓ|Cℓ|
[j]

ϕ
sℓ|Cℓ|

αℓ|Cℓ|(j − 1)β

sensor node ℓ|Cℓ|

γℓ[j]

yℓ[j]

fusion center ℓ

ψℓj buffer

Figure 3.5: Block diagram of computations in cluster ℓ, ℓ = 1, . . . , L, at channel use
j, j = 1, . . . , 2N + 1. The cluster consists of |Cℓ| transmitting sensor
nodes and a FC. After 2N +1 transmissions, the FC sums up the buffered
post-processed receive-signals, which results in the desired function value
fℓ(sℓ1

, . . . , sℓ|Cℓ|
).

from which we infer for the representation of the desired vector-valued function (3.24)

f(s1, . . . , sN ) =









Rx1(y1)
Rx2(y2)

...
RxL(yL)









=









∑2N+1
j=1 ψ1j

(

z1[j]
)

∑2N+1
j=1 ψ2j

(
z2[j]

)

...
∑2N+1

j=1 ψLj
(
zL[j]

)









. (3.31)

A corresponding block diagram that illustrates the computation in cluster ℓ for some
channel use j is depicted in Figure 3.5.

Remark 3.12. Since the pre-processing functions are independent of the components of
f , the FCs determine by appropriately choosing the L(2N+1) post-processing functions
{ψℓj} which continuous functions f1, . . . , fL are to be universally computed.

Remark 3.13. Note that the constants αi in (3.28) need not to be different for all N
nodes in the network so that they can be reused in different clusters without any kind
of arrangement between them.

We can conclude that with the post-processing described above, all properties of
Section 3.1.3 carry over to arbitrary clustered sensor networks, which we summarize in
the following theorem:

Theorem 3.5. Let N ≥ 2 be the total number of nodes in a sensor network that is
organized into L ∈ N node clusters C1, . . . , CL. Suppose that

∀ℓ ∈ {1, . . . , L} ∃m 6= ℓ : Cℓ ∩Cm 6= ∅
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and that the intra-cluster communication takes place over ideal WMACs (3.22). Then,
by harnessing interference, every vector-valued function f : EN → RL that is composed
of functions fℓ ∈ C

0(E|Cℓ|), ℓ = 1, . . . , L, can be computed with 2N + 1 channel uses,
continuous pre- and post-processing functions, and zero distortion.

3.2.2 Arbitrary Pre- and Post-Processing Functions

If no restrictions on pre- and post-processing functions are imposed, the situation is
much less complicated than in the last subsection, since from Theorem 3.1 we conclude
that already a single concurrent transmission of the nodes in each cluster is sufficient to
universally compute every f ∈ F (E|C1|)×· · · ×F (E|CL|). In order to see this, consider
the L coupled ideal WMAC output-symbols

yℓ[1] = gℓ

(
sℓ1
, . . . , sℓ|Cℓ|

)
=
∑

i∈Cℓ

ϕi(si) (3.32)

received by the FCs, which are mappings gℓ : E|Cℓ| → Υℓ ⊂ R, ℓ = 1, . . . , L. Then,
the post-processing at the FCs merely consists in the application of appropriate post-
processing functions such that every f ∈ F (E|C1|) × · · · × F (E|CL|) can be represented
as

f(s1, . . . , sN ) =









ψ1
(
y1[1]

)

ψ2
(
y2[1]

)

...
ψL
(
yL[1]

)









. (3.33)

What, however, is the difference to the previous case where continuous pre- and post-
processing functions are required?

We conclude from Theorem 3.2 that a necessary and sufficient condition to univer-
sally compute every vector-valued function (3.33) is that the functions gℓ, ℓ = 1, . . . , L,
defined in (3.32), are bijective. Since this can never be achieved for every f with
continuous pre- and post-processing functions, it was necessary in Section 3.1.3 to ap-
propriately embed EN into a higher dimensional space, resulting in a bijection between
C

0(EN ) and C
0(Γ) instead. If pre- and post-processing functions are allowed to be

discontinuous, however, such an embedding is dispensable.

3.2.3 Performance Comparison

In order to evaluate the properties of wireless computation networks that harness in-
terference rather than avoiding it, in this section we highlight the advantages of the
computation approach depicted in Figure 3.5 over standard TDMA protocols.

If no restrictions on pre- and post-processing functions are imposed, we conclude
from Theorem 3.1 as well as from Section 3.2.2 that in fact every function on each FC
can be universally computed without significant coordination. This can be achieved
by harnessing the natural interference property of the wireless channel (i.e., without
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Computation

Coordination
Layer

f1 f2

f3
f4

f4 f3

f2

f1

Layer

Figure 3.6: The clustered sensor network example from Figure 3.4 with an additional
coordination layer that coordinates the medium-access of clusters such as
in a standard TDMA approach. This requires a bidirectional interface
between both layers as well as wireless communication links between the
nodes and the FC in each cluster (represented by arrows with two heads).

interference avoidance). The required number of channel uses is of the order O(1) and
therefore independent of the number of nodes and clusters. Alternatively, when a stan-
dard TDMA protocol is employed to compute functions at FCs in a clustered wireless
sensor network, besides the orthogonalized medium-access of the nodes in each cluster,
the clusters themselves have to be appropriately separated in time, which requires a
significant amount of coordination (see Figure 3.6 for an illustration). A naive TDMA
protocol would therefore need at least Lmax1≤ℓ≤L |Cℓ| separated transmissions to con-
vey the entire raw sensor readings interference-free to the L FCs, which subsequently
compute the desired functions f1, . . . , fL. Thus, it requires O(Lmax1≤ℓ≤L |Cℓ|) channel
uses. In contrast, we conclude from Section 3.2.1 that O(2N + 1) channel uses are suf-
ficient for computing every f ∈ C

0(E|C1|) × · · · × C
0(E|CL|) if pre- and post-processing

functions are required to be continuous. Obviously, the number 2N + 1 does not scale
directly with the number of clusters, L, so that significant performance gains are possi-
ble for L > 1. Moreover, an additional coordination layer as in Figure 3.6 is not needed
since all clusters can transmit concurrently.

The attentive reader might note that according to Theorem 3.4, already O(2|Cℓ| + 1)
channel uses are sufficient to universally compute in each cluster, say cluster ℓ, every
fℓ ∈ C

0(E|Cℓ|) by harnessing interference. Since

max
1≤ℓ≤L

{2|Cℓ| + 1} ≤ 2N + 1

holds for arbitrary clustered networks, seemingly further channel uses could be saved.
Because of the couplings between clusters due to the common nodes, however, this
would require a constant adaptation of the pre-processing on the common sensor nodes
and therefore a large amount of coordination. In order to illustrate this, recall from the
geometric interpretation of Theorem 3.4 that there exist homeomorphisms

(
sℓ1
, . . . , sℓ|Cℓ|

) 7→ (
yℓ[1], . . . , yℓ[2|Cℓ| + 1]

)
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between E|Cℓ| and Γℓ ⊂ R2|Cℓ|+1 that enable each cluster to compute every fℓ ∈
C

0(E|Cℓ|) because of the existence of Kolmogorov’s superpositions

fℓ

(
sℓ1
, . . . , sℓ|Cℓ|

)
=

2|Cℓ|+1
∑

j=1

ψℓj




∑

i∈Cℓ

ϕ
(ℓ)
ij (si)



 ℓ = 1, . . . , L . (3.34)

Unfortunately, since the compact sets Γℓ will differ in general, the pre-processing func-
tions in (3.34) also depend on ℓ. For nodes whose transmit signals can only be received
by a single FC it does not matter. Nodes that can be heard by more than one FC
(i.e., the common nodes between clusters), however, have to adapt their pre-processing
functions in dependency of the FC that they want to address. Such as in the case of
standard TDMA, this in turn would require the separated activation of clusters (see
Figure 3.6) so that in total O(

∑L
ℓ=1(2|Cℓ| + 1)) channel uses are required.

Remark 3.14. Note that the TDMA protocol considered above is said to be “standard”
in the sense that it takes no advantage of the underlying network topology. If some of
the clusters are disjoint (see Figure 3.4 for an example), for instance, it is clear that the
number of channel uses could be reduced by employing a TDMA protocol that activates
disjoint clusters concurrently. This, however, would further increase the coordination
effort.

3.2.4 A Short Note About Additional Interference

At the beginning of Section 3.2 one particular motivation for the transmission model
(3.22) was that due to the connectivity radii of sensor nodes, the overlap between
clusters is determined by the spatial position of FCs. Thus, the FCs compute functions
of subsets of freely accessible measurements. The results of Section 3.2, however, also
remain valid in a scenario in which distinct computation sensor networks interfere with
each other. In order to illustrate this, consider, without loss of generality, the example
depicted in Figure 3.7, which consists of two interfering sensor networks deployed to
compute the individual desired functions f1 : E|C1| → R and f2 : E|C2| → R at the two
FCs. More precisely, let C1 and C2 denote the finite sets of nodes belonging to network
one and two, respectively, and let the corresponding sensor readings be summarized in
the vectors s1 =

(

s11
, . . . , s1|C1|

) ∈ E|C1|, s2 =
(

s21
, . . . , s2|C2|

) ∈ E|C2|. The difference
to our previous studies (cf. (3.32)) is that the overlap region denoted as C0 contains
nodes from both networks so that uncoordinated transmissions may result in the symbol

yℓ[1] =
∑

i∈Cℓ

ϕi(si) +
∑

i∈Ck∩C0

k 6=ℓ

ϕi(si)

︸ ︷︷ ︸

interference

, (3.35)

received at FC ℓ, ℓ ∈ {1, 2}.
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C2

s8

C0

s4

f1

s7C1
s1

s2

s3 s5

s6

f2

Figure 3.7: Two interfering (i.e., overlapping) wireless sensor networks. Sets C1 and
C2 summarize the nodes belonging to network one (black dots) and net-
work two (white dots), respectively, whereas the dashed regions are the
connectivity radii of the corresponding FCs. The signals transmitted by
nodes in the shaded overlap C0 are received at both FCs and therefore
generate additional (i.e., unwanted) interference.

First, it seems that the mutual interference prevents the adequate computation of
arbitrary functions

f1(s1) = ψ1




∑

i∈C1

ϕi(si)



 , f2(s2) = ψ2




∑

i∈C2

ϕi(si)



 .

However, if the first FC has knowledge about the interfering nodes in C2 ∩ C0 (i.e.,
about their pre-processing) and the other FC about the nodes belonging to C1 ∩ C0,
respectively, the problem is equivalent to the problem of computing functions of fewer
variables as available. This knowledge provided, there always exist post-processing
functions ψ̃1, ψ̃2 ∈ F (R) such that ψ̃1

(
y1[1]

)
= f1

(
s11
, . . . , s1|C1|

)
, for all s1 ∈ E|C1|

and all {si ∈ E}i∈C2∩C0
as well as ψ̃2

(
y2[1]

)
= f2

(
s21
, . . . , s2|C2|

)
, for all s2 ∈ E|C2| and

all {si ∈ E}i∈C1∩C0
. From Theorem 3.2, we already know that to achieve this, the

pre-processing functions have to be chosen in both networks such that every choice of
sensor readings s

(1)
ℓ , s

(2)
ℓ ∈ E|Cℓ|, with s

(1)
ℓ 6= s

(2)
ℓ , leads to separated receive signals

y
(1)
ℓ [1] 6= y

(2)
ℓ [1], ℓ = 1, 2.

Remark 3.15. If it is not possible to provide knowledge about the nodes of interfering
sensor systems to the respective FCs, the unwanted part of the interference in (3.35)
has to be treated as an additional noise term.

3.3 Robustness Against Changes in Topology

In Theorem 3.1, we have shown that every f ∈ F (EN ) is computable over an ideal
WMAC with a single channel use. The surprising fact is that the computations are
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universal (see Definition 3.3) and thus the pre-processing functions are independent
of the choice of f . However, the corresponding proof in Appendix 3.A.1 depends on
the number N of nodes in the network. As a consequence, transmitting sensors nodes
have to adapt their pre-processing functions if the network topology changes (i.e., the
universality is not robust against modifiedN), which would be highly undesired in sensor
networks. Hence, we want to know if this holds in general. Therefore, we analyze in
this section the robustness of universality against variations in network topology due to
sensor nodes that drop out of the network or new sensor nodes that join the network.

3.3.1 Dropped Out Nodes

Let us first consider the case in which a number of sensor nodes drops out of the
network due to, for instance, failures or battery depletion. The question is whether the
universality property is preserved when an arbitrary subset of nodes leaves the network.
The following theorem provides the answer:

Theorem 3.6. The universality of computing arbitrary desired functions over an ideal
WMAC with a single channel use is robust against dropped nodes. That is, there exists
a set of fixed pre-processing functions {ϕ1, . . . , ϕN } that is universal with respect to

F (EN ) such that the subset {ϕ1, . . . , ϕm} is universal with respect to F (Em), for all
m < N .

Proof. The proof is postponed to Appendix 3.A.3 at the end of the chapter.

The Theorem implies the fact that it is not necessary to update the remaining active
sensor nodes (i.e., the pre-processing functions) if some nodes drop out of the network,
which has the potential to significantly improve the flexibility of computation networks.

Remark 3.16. It should be emphasized that even if according to Theorem 3.6 the pre-
processing functions do not depend on the desired function and the number of active
nodes, the post-processing function does. In other words, if nodes drop out of the
network, the pre-processing functions at the remaining nodes remain the same whereas
the post-processing functions have to be updated by the FCs.

3.3.2 Additional Nodes

We now consider the opposite case where an existing sensor network for computation
purposes is enlarged by adding a finite number of active nodes. More precisely, assume
that we connect J −N ∈ N, N < J < ∞, transmitting sensor nodes to the network in
order to universally compute every desired function

f : EJ → R , (s1, . . . , sN , . . . , sJ) 7→ f(s1, . . . , sJ) ,

of the measurements. Then, the following theorem answers the question whether the
universality property is preserved if the existing N active nodes were already able to
universally compute every f ∈ F (EN ).
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Theorem 3.7. The universality of computing arbitrary desired functions over an ideal
WMAC with a single channel us is robust against a fixed enlargement of the network.

Proof. The proof is deferred to Appendix 3.A.4 at the end of the chapter.

In accordance to the theorem, it is not necessary to update the existing transmitting
nodes (i.e., the pre-processing) if the network is enlarged by adding further active
transmitting sensor nodes.

Note that the term “fixed” in Theorem 3.7 as well as the idea of the proof refers to
the fact that in the current form, the robustness of universality holds if the original
network was already designed for J > N nodes but only N nodes are deployed to the
measuring field. Then, adding up to J − N nodes during network operation has no
impact on the previous N nodes. The more general case in which the original network
was designed for at most N nodes but extended to J nodes afterwards is therefore still
an open problem.

We would like to emphasize, however, that this limits the practical significance of
Theorem 3.7 only marginally. A robust network for computation purposes can always be
designed without knowing the exact number J−N in advance by choosing J sufficiently
large (according to the application needs) and using only N out of J nodes in practice.

Remark 3.17. Such as in the case where nodes drop out of the network, only the
post-processing function has to be updated if new nodes are added to the network.

Remark 3.18. Note that even if Theorems 3.6 and 3.7 refer to single-cluster networks,
they remain valid for arbitrary clustered networks. The only small difference is that if
common nodes drop out of the network, then all affected FCs have to update their post-
processing functions. On the other hand, when continuous pre- and post-processing
functions are employed in order to compute some continuous desired function with
2N + 1 channel uses, the FCs have to additionally adjust the correction terms (3.27) by
appropriately adding further constants that correspond to the dropped out nodes.

3.4 Summary and Conclusions

In this chapter, we studied the problem of computing functions at FCs in clustered wire-
less sensor networks where nodes transmit simultaneously to harness the interference
property of the wireless channel. By applying appropriate pre-processing functions on
sensor readings and post-processing functions on the superimposed signals received by
the FCs, in addition to linear functions even nonlinear functions are computable over
the channel.

If no restrictions on pre- and post-processing functions are imposed, we have shown
that in fact every function can independently be computed at each FC, where the num-
ber of required channel uses is of the order O(1). A standard TDMA, however, requires
O(Lmax1≤ℓ≤L |Cℓ|) channel uses. The latter scales with the number L of clusters and
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the number of nodes belonging to the largest cluster so that huge performance gains
are possible when performing computations over the channel instead.

Although implementing continuous pre- and post-processing functions in practice is
generally less complex, a corresponding restriction generates the need for an additional
post-processing step at FCs to ensure the computability of at least every continuous
function of sensor readings. However, requiring pre- and post-processing functions to be
continuous generally needs additional channel uses. In particular, we have shown that
the number of required channel uses in order to simultaneously compute some continu-
ous functions at distinct FCs is then of the order O(2N + 1). Since this is proportional
to the number N of nodes but not to the number of clusters, the proposed computation
scheme still offers significant performance gains in comparison to a standard TDMA.

A remarkable property of the considered approach is that the computations can
always be universally performed. Here, “universal” means that the pre-processing func-
tions are independent of the functions to be computed at the FCs so that they do not
need to be updated if these functions change. This implies that the feedback overhead
between nodes and FCs can be reduced since corresponding coordination is not needed.
Therefore, the architecture of sensor nodes for computation purposes is universal and
of reduced complexity, which makes them cheap and easy to handle. In this regard,
we have shown that the universality property is preserved even if the network topology
varies because of nodes that leave or enter the network. The results of this chapter
form the basis for the computation schemes presented in the upcoming two chapters.

An interesting open problem results from our considerations in Section 3.1.2, which
can be stated as follows: Given a distortion measure dR, some fixed accuracy ε > 0 and
some desired function f ∈ C

0(EN ). Then, find the best nomographic approximation
f̂⋆ ∈ N

0
d,ε(E

N ) to f (if existent), that is,

f̂⋆ ∈ argmin
f̂∈N

0
d,ε

(EN )

dR
(
f, f̂

)
.

The sequence (3.13), for instance, solves this problem for f being the “geometric mean”
and dR the supremum norm (3.14). Such solutions have the charm that continuous
desired functions that normally require at least N channel uses for a distortion free
computation can be approximated with merely a single channel use by harnessing the
interference (see Proposition 3.1).

Another open problem is to find a proof to Theorem 3.7 that is more general. The
current proof unfortunately requires to start with an arbitrary large J > N in order to
guarantee universality when up to J −N nodes are added to the network.
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Appendix 3.A Proofs

3.A.1 Proof of Theorem 3.1

To prove the theorem, we have to show that

∃(ϕ1, . . . , ϕN ) ∈ F (E) × · · · × F (E) ∀f ∈ F (EN ) ∃ψ ∈ F (R) : f ∈ N (EN ) .

Towards this end, we first have to prove that there exists a fixed set of pre-processing
functions that are universal with respect to F (EN ) (see Definition 3.3). That is, there
exist ϕ1, . . . , ϕN such that the function

g : EN → R , (s1, . . . , sN ) 7→ g(s1, . . . , sN ) =
N∑

i=1

ϕi(si) (3.36)

fulfills
∀(s1, . . . , sN ) 6= (s′

1, . . . , s
′
N ) : g(s1, . . . , sN ) 6= g(s′

1, . . . , s
′
N ) (3.37)

and therefore separates all points of EN . To achieve this, we use the following lemma
from [Kul08, Thm. 5.2].

Lemma 3.1. Let q ≥ 2 be some natural number. Then, every s ∈ R is uniquely
represented by a q-adic expansion

s = (−1)η
∞∑

k=−v

wk

qk
, (3.38)

where η ∈ {0, 1}, wk ∈ {0, . . . , q − 1}, and wk 6= q − 1 for infinitely many k.

Since the lemma states that there is a bijection between R and (3.38), we conclude
that there is, for every fixed N ≥ 2 and each i, i = 1, . . . , N , a bijection between the
set of sensor readings E and the infinite series

si =
∞∑

k=1

wikN
−k i = 1, . . . , N (3.39)

as long as wik 6= N − 1 for infinitely many k, unless wik = N − 1 for all k.
With this in mind, let us define the pre-processing functions as

si 7→ ϕi(si) = N1−i
∞∑

k=1

wikN
−Nk i = 1, . . . , N , (3.40)

which is nothing else than representing elements in E to base NN . Since every sequence
{wik}k∈N uniquely determines both si and ϕi(si), we have that (3.40) is bijective, for
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all i = 1, . . . , N . With this choice of pre-processing functions, it follows for g in (3.36)

g(s1, . . . , sN ) =
N∑

i=1

N1−i
∞∑

k=1

wikN
−Nk

= N1−N
∞∑

k=1

N∑

i=1

wikN
N−i

︸ ︷︷ ︸
=:vk

N−Nk . (3.41)

Now, we have to show that (3.41) is a unique representation of real numbers to base
NN as well. This requires to prove that the condition wik 6= N − 1 for infinitely many
k, unless wik = N − 1 for all k, implies vk 6= NN − 1 for infinitely many k, unless
vk = NN − 1 for all k. Accordingly, we conclude from the definition of vk in (3.41)

0 ≤
N∑

i=1

wikN
N−i ≤ (N − 1)

N∑

i=1

NN−i (3.42)

= (N − 1)NN−1
N−1∑

i=0

(
1
N

)i

(3.43)

=
(
NN −NN−1) ·

1 −
(

1
N

)N

1 − 1
N

(3.44)

= NN − 1 ,

where the right-hand side of (3.42) follows from wik ∈ {0, . . . , N − 1}, for all i and k,
and (3.44) from the fact that the sum in (3.43) is a partial sum of a geometric series.
Since wik 6= N − 1 for infinitely many k, we have

0 ≤ vk < NN − 1 (3.45)

for infinitely many k, except when wik = N −1 for all i and k, so that the infinite series
(3.41) indeed uniquely represents real numbers to base NN . The next step in proving
the theorem is therefore to show that g as defined in (3.41) is bijective (i.e., g fulfills
(3.37)).

In order to fulfill (3.37), the equality

g(s1, . . . , sN ) = N1−N
∞∑

k=1

vkN
−Nk = N1−N

∞∑

k=1

v′
kN

−Nk = g(s′
1, . . . , s

′
N ) (3.46)

should only hold when vk = v′
k for all k ∈ N. Suppose that (3.46) is fulfilled. Then,

this is equivalent to

v1 − v′
1 =

∞∑

k=2

(v′
k − vk)NN(1−k) . (3.47)
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As an intermediate step note that
∣
∣
∣
∣
∣

∞∑

k=2

(v′
k − vk)NN(1−k)

∣
∣
∣
∣
∣

≤
∞∑

k=2

|v′
k − vk|NN(1−k) (3.48)

≤ (
NN − 1

)
∞∑

k=2

NN(1−k) (3.49)

=
(
NN − 1

)

[ ∞∑

k=0

NN(1−k) − (
1 +NN )

]

(3.50)

=
(
NN − 1

)

[

NN

1 − 1/NN
− (

1 +NN )
]

(3.51)

= 1 ,

with equality if and only if |v′
k − vk| = NN − 1 for all k ≥ 2. Here, the right-hand side

of (3.48) follows from the triangle inequality,15 (3.49) from (3.45), and (3.51) from the
fact that the sum in (3.50) is a converging geometric series. The inequality, however,
is strict since otherwise the uniqueness condition vk 6= NN − 1 for infinitely many k,
unless vk = NN − 1 for all k ∈ N, would lead together with (3.47) to the contradiction

|v′
1 − v1| = NN − 1 = 1 .

Thus, we have
|v′

1 − v1| < 1 . (3.52)

Now, to prove that (3.46) is indeed only possible if vk = v′
k for all k ∈ N, we proceed

inductively. It is obvious that |v′
1 − v1| is either a natural number or zero so that we

conclude from (3.52) that |v′
1 − v1| is equal to zero and therefore v1 = v′

1. For the
inductive step, suppose that vk = v′

k for all k ≤ ℓ, with ℓ ∈ N arbitrary. Then, it
follows from (3.46)

vℓ+1 − v′
ℓ+1 =

∞∑

k=ℓ+2

(v′
k − vk)NN(ℓ+1−k)

and hence |vℓ+1 − v′
ℓ+1| ≤ 1. The above argument concerning the basis case shows that

vℓ+1 = v′
ℓ+1 also holds. Since ℓ was arbitrarily chosen, this completes the induction.

Now, let

v′
k =

N∑

i=1

w′
ikN

N−i .

Then, the fact that vk = v′
k for all k ∈ N allows us to write

0 ≤ wik = w′
ik +

[

N
N−1∑

i=1

(w′
ik − wik)NN−i−1

]

≤ N − 1 .

15It is easy to verify that the triangle equality applies to an infinite series that converges.
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However, except when wik = w′
ik for all i = 1, . . . , N , this is impossible because w′

ik is
nonnegative and the number in brackets is an integer multiple of N . As a consequence,
vk 6= v′

k unless wik = w′
ik for all i = 1, . . . , N so that (3.41) bijectively maps EN onto

the interval [0, N1−N ].
For the final step note that for every g(s1, . . . , sN ) ∈ [0, N1−N ] and every ψ ∈

F ([0, N1−N ]),

ψ
(

g(s1, . . . , sN )
)

= ψ

(
N∑

i=1

N1−i
∞∑

k=1

wikN
−Nk

)

is uniquely defined. Hence, choosing ψ for some given f ∈ F (EN ) such that

∀(s1, . . . , sN ) ∈ E
N : ψ

(
g(s1, . . . , sN )

)
= f(s1, . . . , sN )

shows that every desired function has a nomographic representation, which proves the
theorem.

3.A.2 Proof of Theorem 3.2

The proof is a generalization of an idea from [Bie32].
“⇐=”: Let s(1), s(2) ∈ EN , with s(1) 6= s(2), and f ∈ F (EN ) be arbitrary. Assuming

that g is bijective, it follows that g(s(1)) 6= g(s(2)) and from the fact that EN has the
cardinality of the continuum, Υ has the cardinality of the continuum as well. Now, let
g(s) = s ∈ Υ and g⋆ be a vector-valued function such that g⋆ ◦ g = idEN , that is,

g⋆ : Υ → E
N , s 7→ g⋆(s) =






g⋆
1(s) = s1

...
g⋆

N (s) = sN




 .

Then, we conclude

f(s1, . . . , sN ) = f
(
g⋆

1(s), . . . , g⋆
N (s)

)

=
(
f ◦ g⋆)(s)

= ψ(s) = ψ
(

g(s)
)

= ψ

(
N∑

i=1

ϕi(si)

)

,

with ψ := f ◦ g⋆.
“=⇒”: Suppose that g is not bijective. Then, there exist at least two points s(1), s(2) ∈

EN such that s(1) 6= s(2) but g(s(1)) = g(s(2)) as well as an f ∈ F (EN ) with f(s(1)) 6=
f(s(2)). This, however, leads to a contradiction because of

f
(

s(1)) = ψ
(

g(s(1))
)

= ψ
(

g(s(2))
)

= f
(

s(2)) ,

from which follows that ϕ1, . . . , ϕN are not universal pre-processing functions in the
sense of Definition 3.3.
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3.A.3 Proof of Theorem 3.6

Let N ≥ 2 be arbitrary and ϕ1, . . . , ϕN ∈ F (E) be fixed universal pre-processing
functions to compute every f(s1, . . . , sN ) ∈ F (EN ). Furthermore, let I 6= ∅ be some
subset of IN := {1, . . . , N}. Then, we have to prove that {ϕk}k∈I are also universal
pre-processing functions to compute every f(s1, . . . , sk) ∈ F (Ek), k ∈ I. Since the
problem is permutation invariant, the numbering of nodes does not matter. Hence, we
assume I = Im = {1, . . . ,m} with m < N (since otherwise there is nothing to prove).

If we proceed inductively, we have to show that ϕ1, . . . , ϕN−1 are universal pre-
processing functions for nodes {1, . . . , N − 1} to compute every f(s1, . . . , sN−1) ∈
F (EN−1). If this is successful, we arrive in N −m steps at Im ⊂ IN .

We prove the induction hypothesis by contradiction. Assume ϕ1, . . . , ϕN−1 are not
universal pre-processing functions. Then, due to Theorem 3.2, the function

(s1, . . . , sN−1) 7→
N−1∑

i=1

ϕi(si)

is not bijective and hence there exist at least two points s(1) := (s(1)
1 , . . . , s

(1)
N−1) ∈ EN−1

and s(2) := (s(2)
1 , . . . , s

(2)
N−1) ∈ EN−1, s(1) 6= s(2), such that

N−1∑

i=1

ϕi
(
s

(1)
i

)
=

N−1∑

i=1

ϕi
(
s

(2)
i

)
.

Now, we choose an arbitrary ŝN ∈ (0, 1) and consider the points

ŝ(1) =







ŝ
(1)
1
...

ŝ
(1)
N







:=

(

s(1)

ŝN

)

and ŝ(2) =







ŝ
(2)
1
...

ŝ
(2)
N







:=

(

s(2)

ŝN

)

.

Of course ŝ(1) 6= ŝ(2) and therefore

N∑

i=1

ϕi
(
ŝ

(1)
i

)
=

N−1∑

i=1

ϕi
(
s

(1)
i

)
+ ϕN

(
ŝN
)

=
N−1∑

i=1

ϕi
(
s

(2)
i

)
+ ϕN

(
ŝN
)

=
N∑

i=1

ϕi
(
ŝ

(2)
i

)

contradicts the universality of ϕ1, . . . , ϕN when N nodes are active, which proves the
preservation of universality for IN → IN−1. Proceeding essentially along the same lines
shows that the property is preserved for IN−1 → IN−2 → · · · → I1.
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3.A.4 Proof of Theorem 3.7

The proof follows immediately from the proof of Theorem 3.6 by considering all subsets
Im = {1, . . . ,m} of IJ = {1, . . . , J}, with N ≤ m < J .

Starting with the assumption that {ϕk}1≤k≤J are fixed universal pre-processing func-
tions to compute every f ∈ F (EJ), the induction arrives in J −N steps at m = N so
that {ϕk}1≤k≤m are universal pre-processing functions to compute every f ∈ F (Em),
for all N ≤ m ≤ J .
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4
Reliable Computation Over
Clustered Gaussian Networks

In this chapter, we extend the considerations of the previous chapter to clustered sensor
networks in which the intra-cluster communication takes place over Gaussian MACs
(see Remark 2.2). One of the basic facts in multiuser information theory declares that
Gaussian MACs are finite capacity channels if transmit powers and bandwidths are
assumed to be finite [GK11, p. 98]. Communicating arbitrary real values with infinite
precision is therefore not possible in any practically relevant manner. To account for this,
we propose an achievable computation scheme in which each node first quantizes its real-
valued pre-processed sensor readings into a digital message followed by a nested lattice
encoder. On the receiving end, upon successfully decoding the sum of their intended
messages, the FCs apply the corresponding individual post-processing functions in order
to obtain reliable estimates of the sought function values.

It turns out that this combination of analog data pre- and post-processing with
nested lattice coding allows for the computation of numerous nomographic functions at
computation rates that are within certain limits not achievable with separation-based
methods. The computation rate is thereby defined as the number of function values
that can be reliably computed per channel use. Furthermore, if some finite number of
different nomographic functions is allowed to be computed over the channel one after
another, then even every continuous function of the sensor readings can be handled.
In addition to the improved rate performance, the proposed scheme provides several
other advantages that are essential for wireless sensor network applications such as
universality, lower decoding complexity, less coordination, and the ability to deal with
maximum decoding error probabilities.

A remarkable fact is that the gains over separation-based strategies are achievable by
employing the same quantizer along with the same linear channel code at each sensor
node. Already in the late 70’s, Körner and Marton observed that in specific multi-
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terminal scenarios, pure random codes can be significantly outperformed by codes with
certain structure [KM79] (see also [NG08a, Zam11]). In particular, they consider the
problem of distributively compressing two correlated binary sources such that their
modulo-two sum can be losslessly recovered at a decoder. If in this connection both
terminals employ the same linear source encoder, the resulting compression rate region
strictly contains the Slepian-Wolf region, which is based on the random binning principle
[GK11, p. 260].

In [NG07], Nazer and Gastpar carry over the result of Körner and Marton to the
scenario in which a single receiver wishes to reliably compute some linear function of
distributed sources over a linear finite-alphabet MAC. It turns out that even if the
sources are statistically independent, huge performance gains are possible if transmit-
ters utilize linear source and channel codes instead of ordinary random ensembles. Re-
garding the computation of linear functions over Gaussian MACs (or more generally
WMACs), the aforementioned class of nested lattice codes are well suited because in ad-
dition to their linear structure they achieve the capacity of the point-to-point additive
white Gaussian noise (AWGN) channel [NG07, WNPS10, NG11a, NA11, SV12]. This
finding, based on the seminal articles [EZ04,ELZ05], serves as a fundamental building
block for efficiently computing functions by means of interference over more general
networks. For instance, Zhan et al. examine in [ZPGS13] the computation of linear
functions over unreliable wired and wireless multi-hop networks that consist of multiple
destinations. Closely related to our considerations in this chapter, however, are the
studies in [WJG13, JWG13]. There, Wang, Jeon, and Gastpar deal with the problem
of computing type-threshold functions of finite-alphabet sources over a network of FCs
that are connected with a set of sensor nodes via Gaussian MACs. In contrast, we are
interested in computing real-valued continuous functions of real-valued sensor readings
over noisy clustered networks.

Accordingly, we formally introduce our clustered Gaussian sensor network model in
Section 4.1, followed by a corresponding coding scheme in Section 4.2. We then study
in Section 4.3 the performance of the scheme in terms of achievable computation rates
and conclude the chapter with a short summary in Section 4.4.

Convention

For some positive integer p, Zp = {0, . . . , p − 1} denotes the set of integers modulo p,
⊕p addition modulo p, and

⊕
summation modulo p. The volume of a closed subset A

of the Euclidean space Rn is described by Vol(A) and log+
2 (x) := max{log2(x), 0}.

4.1 Network Model and Problem Statement

Consider the clustered sensor network model of Section 3.2 expanded in the following
manner. The spatially distributed nodes periodically monitor the environment resulting
in sequences of sensor readings {si[t] ∈ S}t∈N, i = 1, . . . , N , where S ⊂ R again denotes
some compact sensing range and t, inter alia, a discrete time or the index of a memory
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cell. Each node, say node i, maps its sensor readings to a length-n sequence of transmit
symbols, xi[1], . . . , xi[n], subject to the average input cost constraint (2.3), that is,

∀i ∈ {1, . . . , N} : ̺n
(
xi[1], . . . , xi[n]

)
=

1
n

n∑

m=1

x2
i [m] ≤ P (4.1)

for some P > 0. Then, the real-valued symbol received by FC ℓ at channel use m ∈
{1, . . . , n} is given by1

Yℓ[m] =
∑

i∈Cℓ

xi[m] + Zℓ[m] ℓ = 1, . . . , L , (4.2)

which is (3.22) complemented by independent and identically distributed (iid) AWGN
of variance σ2

Z > 0 (i.e., Zℓ ∼ NR(0, σ2
Z) for all ℓ). Thus, the communication in each

cluster is modeled by a special WMAC, namely, a Gaussian MAC with unit fading
coefficients (see Remark 2.2). In all that follows, we call such a network a clustered
Gaussian sensor network.

Now, the problem to be solved in this chapter is to efficiently compute, at some
pre-defined accuracy, arbitrary continuous desired functions

fℓ : S |Cℓ| → R ,
(
sℓ1
, . . . , sℓ|Cℓ|

) 7→ fℓ

(
sℓ1
, . . . , sℓ|Cℓ|

)
ℓ = 1, . . . , L (4.3)

over a clustered Gaussian sensor network. This is challenging due to the following
reasons.

(i) The common nodes (i.e., nodes that belong to some overlap between adjacent
clusters) can be heard by more than one FC, which results in interference between
clusters.2

(ii) The superposition of channel input symbols is corrupted by Gaussian noise.

To account for these facts, we need to devise an achievable computation scheme
that combines an adaptive data pre- and post-processing with a coding strategy that
fundamentally differs from those designed for standard message transfer. In particular,
to address (ii), we employ a nested lattice code that is well suited for protecting sums of
codewords, whereas (i) is accounted for by exploiting the universality of Kolmogorov’s
representations of continuous functions such as examined in the previous chapter.

4.2 Coding Scheme

The basis for the achievable computation scheme proposed in this section will be the
pre- and post-processing strategy given in Section 3.2.1 (see Figure 3.5). In order to
facilitate the understanding, we briefly recap this strategy in Section 4.2.1 whereas its
extension to Gaussian MACs is presented in Sections 4.2.2 and 4.2.3.

1For ease of exposition, the considerations in this chapter are made under the assumption of real-valued
Gaussian MACs. The extension to the complex baseband is straightforward.

2Recall that each cluster overlaps with at least one of its neighboring clusters, that is, ∀ℓ ∈
{1, . . . , L} ∃ℓ′ 6= ℓ : Cℓ ∩ Cℓ′ 6= ∅ (see Figure 3.4 for an example).
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4.2.1 Outline

Let ϕij , i = 1, . . . , N and j = 1, . . . , 2N + 1, be a set of universal continuous pre-
processing functions. Then, in accordance with (3.29) and Proposition 3.2, every con-
tinuous desired function (4.3) to be computed at FC ℓ can be expressed as

fℓ

(

sℓ1
[t], . . . , sℓ|Cℓ|

[t]
)

=
2N+1∑

j=1

ψℓj

(
∑

i∈Cℓ

ϕij

(

si[t]
)

+ γℓj

)

ℓ = 1, . . . , L (4.4)

through an appropriate choice of the continuous post-processing functions ψℓj . Just as
in Section 3.2.1, the terms γℓj ∈ R are defined as

γℓj :=
∑

i/∈Cℓ

ϕij(0) j = 1, . . . , 2N + 1 , (4.5)

which are independent of the sensor readings.
Suppose that each sensor node is uniquely assigned one of the sets of pre-processing

functions {ϕij ∈ C
0(S)}2N+1

j=1 , i = 1, . . . , N . Moreover, suppose that FC ℓ a priori

knows the set {ψℓj ∈ C
0(R)}2N+1

j=1 of post-processing functions as well as the set of

constants {γℓj}2N+1
j=1 . Then, the computation scheme described in detail in the following

subsections can shortly be outlined as follows:

• With sensor nodes transmitting concurrently in the same frequency band, each
FC, say FC ℓ, reliably reconstructs for every t ∈ N the sequence

∑

i∈Cℓ

ϕi1
(
si[t]

)
, . . . ,

∑

i∈Cℓ

ϕi,2N+1
(
si[t]

)

of superimposed pre-processed sensor readings.

• The FCs add the constants (4.5), apply their post-processing functions

ψℓ1, . . . , ψℓ,2N+1

and finally sum up all intermediate results to yield the desired function values
(4.4).

Remark 4.1. We would like to emphasize again that by Theorem 3.4, the pre-pro-
cessing functions in each cluster do not depend on the choice of fℓ, ℓ = 1, . . . , L, so
that they do not need to be updated if the desired functions change during network
operation. The same applies in case of a changing network topology (see Theorems 3.6
and 3.7).

In contrast to the ideal case discussed in the previous chapter, realizing the above
two-step procedure in a reliable manner requires the application of coding techniques
because we have to deal with the additive noise in (4.2). A generic information-theoretic
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framework that is well suited for this kind of problems is computation coding, which is
introduced by Nazer and Gastpar in [NG07]. We adapt their notions of computation
code, achievable computation rate, and computation capacity to our specific needs as
follows.

Definition 4.1 (Computation Code). Let T, n ∈ N, and P > 0 be chosen arbitrarily
and let W (n) : X (n) → Rn be the nth extension of some given WMAC W where

X (n) :=
{(
x[1], . . . , x[n]

) ∈ R
n
∣
∣ ̺n

(
x[1], . . . , x[n]

) ≤ P
}

denotes, with respect to some fixed input cost function ̺n (see Definition 2.2), the
constrained channel input alphabet. An (f, T, n) computation code for W consists of:

• A desired function f : SN → R.

• N transmitters (encoding functions)

Txi : ST → X (n) ,
(
si[1], . . . , si[T ]

) 7→ xi :=
(
xi[1], . . . , xi[n]

)
(4.6)

that map T sensor readings to n channel input symbols.

• A receiver (decoding function)

Rx : Rn → R
T ,

(
Y [1], . . . , Y [n]

) 7→
(

f̂
(
s1[1], . . . , sN [1]

)
, . . . , f̂

(
s1[T ], . . . , sN [T ]

))

that assigns T estimates of desired function-values to each length-n sequence of
channel output symbols.

The performance of a computation code is typically determined in terms of an achiev-
able computation rate, which specifies how many function values can be computed per
channel use within a predefined accuracy.

Definition 4.2 (Computation Rate). Let f ∈ F (SN ) be some fixed desired function,
f̂ a corresponding estimate at the FC, and W a given WMAC. Furthermore, let dR be
some distortion measure and ε > 0 an arbitrary but fixed accuracy. Then, with respect
to (dR, ε), RC(f, dR, ε) ∈ R+ is said to be an achievable computation rate for f if for
every rate

R′ :=
T

n
< RC(f, dR, ε)

function values
channel use

and every δ > 0 there exists an (f, nR′, n) computation code for W such that the error
probability fulfills for n sufficiently large

P

(
T⋃

t=1

{

dR
(

f̂
(
s1[t], . . . , sN [t]

)
, f
(
s1[t], . . . , sN [t]

))

< ε
}
)

≥ 1 − δ . (4.7)
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4 Reliable Computation Over Clustered Gaussian Networks

Definition 4.3 (Computation Capacity). For given f ∈ F (SN ) and (dR, ε), the com-
putation capacity of a WMAC W is defined to be the supremum over all achievable
computation rates.

Remark 4.2. As already pointed out in Chapter 2, the main difference to the standard
information-theoretic setting is given by (4.7), which clearly states that we only require
to reliably decode function values rather than individual sensor readings.

For the remainder of this chapter, let dR be chosen to be the supremum norm ‖ · ‖∞.
Then, in connection with Definitions 4.1 and 4.2, we need L computation codes (fℓ, T, n)
(i.e., one for each cluster) that guarantee

P

(
T⋃

t=1

L⋃

ℓ=1

{∥
∥f̂ℓ − fℓ

∥
∥

∞ < ε
}
)

≥ 1 − δ (4.8)

for some given ε, δ > 0, and sufficiently large block length n. Therefore, in the following
two subsections we devise N transmitters (4.6) as well as L receivers

Rxℓ : Rn → R
T , yℓ :=

(
Yℓ[1], . . . , Yℓ[n]

) 7→
(

f̂ℓ

(
sℓ[1]

)
, . . . , f̂ℓ

(
sℓ[T ]

))

, (4.9)

sℓ[t] := (sℓ1
[t], . . . , sℓ|Cℓ|

[t]), that are capable of achieving (4.8) at computation rates
that are, to some extent, not achievable with separation-based strategies. Since the
transmitters and receivers have to respect the particular pre- and post-processing strat-
egy outlined at the beginning of this subsection as well as the linear structure of the
channel, we decompose them into multiple components each.

4.2.2 Data Pre- and Post-Processing

As already mentioned at the beginning of the chapter, the Gaussian MAC is a finite
capacity channel (see Theorem 4.2 below) so that we have to first quantize the pre-
processed sensor readings. Since the sensing range S is a compact interval, it follows
that the range of each pre-processing function is a compact interval as well and we
denote these sets by Πij ⊂ R (i.e., ∀s ∈ S : ϕij(s) ∈ Πij for all i, j) in the following.3

As a consequence, the union

Π :=
N⋃

i=1

2N+1⋃

j=1

Πij

is compact and by
πmax := max

ξ∈Π
|ξ| , (4.10)

we denote the unique maximal element in absolute value.

Remark 4.3. To keep the notation simple, we assume in the following that the elements
of Π are nonnegative. This is without loss of generality as Π can be shifted to the
nonnegative reals by adding πmax to every ξ ∈ Π.

3Please recall that the pre-processing functions are continuous.
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4.2 Coding Scheme

We assume that all nodes in the network employ the same quantizer

Q : Π → {0, 1}b (4.11)

that forms for each t ∈ N the 2N + 1 length-b binary representations

wij [t] := Q
(

ϕij

(

si[t]
))

i = 1, . . . , N , (4.12)

where b is some positive integer to be specified below. To better understand how
quantizer Q works, recall first from Lemma 3.1 in Section 3.A that every ξ ∈ Π has a
unique dyadic expansion

ξ =
∞∑

r=−v

wr

2r
= lim

η→∞

η
∑

r=−v

wr

2r
,

with wr ∈ {0, 1} and wr 6= 1 for infinitely many r, unless wr = 1 for all r. Observe
that v depends on the largest integer part of ξ. With this in mind, consider for each
i = 1, . . . , N and j = 1, . . . , 2N +1 the instantaneous approximation (in the sense given
in the proof of Lemma 4.4 below)

ϕij
(
si[t]

) ≈ ϕ̃ij
(
si[t]

)
=

η
∑

r=−v

w
(r)
ij [t]

2r
(4.13)

by terminating the dyadic expansion. Then, setting b := η + v + 1 with

v :=
⌊
log2(πmax)

⌋
(4.14)

fixed, quantizer Q simply forms the length-b binary representations in (4.12) by extract-
ing the digits from (4.13).

Each quantizer is followed by the same source encoder

E1 : {0, 1}bT → Z
k
p , (4.15)

which combines T ∈ N of the binary representations (4.12) to a length-k message
over Zp:

wij = E1
(
wij[1], . . . ,wij [T ]

)
, (4.16)

i = 1, . . . , N and j = 1, . . . , 2N + 1. Here and hereafter, k is a natural number and p is
assumed to be prime.4 See Fig. 4.1 for a block diagram.

Now, in order to compute the desired function (4.4) over the Gaussian MAC (4.2),
the ℓth FC first needs for each fixed t, t = 1, . . . , T , reliable estimates of the 2N + 1
inner sums

g̃ℓj

(

sℓ1
[t], . . . , sℓ|Cℓ|

[t]
)

:=
∑

i∈Cℓ

ϕ̃ij

(

si[t]
)

. (4.17)

4We construct the encoder (4.15) explicitly in the proof of Theorem 4.1.
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Q

Q

Q

si[t]

ϕi,2N+1

ϕi1

ϕi2

Txi

E1

E1

E1

wi1

wi2

wi,2N+1

wij E2
xij

Figure 4.1: Block diagram of the ith computation-transmitter, Txi, i = 1, . . . , N , con-
sisting of adequate data pre-processing as well as of nested lattice encod-
ing.

As long as p is in (4.16) chosen sufficiently large, this can be achieved by reliably
computing the modulo p sums of the messages (4.16):

gℓj :=
⊕

i∈Cℓ

wij . (4.18)

Remark 4.4. Requiring p to be sufficiently large is necessary in order to avoid a
wraparound in (4.18).

Once FC ℓ knows {gℓj}2N+1
j=1 , a source decoder

D1 : Zk
p → {0, . . . , N}bT

first decomposes each gℓj into modulo p sums of the corresponding binary representa-
tions (4.12):

D1(gℓj) =
(

gℓj [1], . . . ,gℓj[T ]
)

:=




⊕

i∈Cℓ

wij[1], . . . ,
⊕

i∈Cℓ

wij [T ]



 , (4.19)

j = 1, . . . , 2N + 1 and ℓ = 1, . . . , L. Afterwards, the inverse quantizer

Q−1 : {0, . . . , N}b → NΠ := {ξ1 + · · · + ξN | ξ1 ∈ Π, . . . , ξN ∈ Π} (4.20)

evaluates the right hand side of (4.13) for each t, t = 1, . . . , T , at the digits gℓj [t] ∈ Zk
p.

Then, adding the constants γℓj (see (4.21)), applying the post-processing functions
{ψℓj}2N+1

j=1 , and summing over all intermediate results provides FC ℓ with an approxi-
mation of (4.4) given by

f̃ℓ

(

sℓ1
[t], . . . , sℓ|Cℓ|

[t]
)

:=
2N+1∑

j=1

ψℓj

(
∑

i∈Cℓ

ϕ̃ij

(

si[t]
)

+ γℓj

)

ℓ = 1, . . . , L . (4.21)
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ψℓ,2N+1

ψℓ1

ψℓ2

γℓ2

Q−1

Q−1

Q−1

γℓ1

γℓ,2N+1

f̂ℓ

(

sℓ[t]
)

ĝℓ1

ĝℓ2

ĝℓ,2N+1

Rxℓ

ĝℓjD2

yℓj

D1

D1

D1

Figure 4.2: Block diagram of the ℓth computation-receiver, Rxℓ (i.e., of FC ℓ, ℓ =
1, . . . , L), consisting of adequate data post-processing as well as of nested
lattice decoding.

The corresponding quantization error, ‖fℓ − f̃ℓ‖∞, crucially depends on the explicit
choice of the quantization parameter b (see (4.11)). As this will also have a significant
impact on the achievable computation rate, the relationship between b and some given
accuracy ε > 0 is provided in Section 4.3.5

See Figure 4.2 for a block diagram of the described data post-processing.

Remark 4.5. Strictly speaking, Q−1 such as defined in (4.20) is not the inverse function
of (4.11) because Q maps to {0, 1}b whereas Q−1 has {0, . . . , N}b as its domain. In order
to illustrate what is actually meant by the symbol Q−1, let us consider a very simple
two-node example (i.e., N = 2, L = 1) in which we intend to compute the real sum
s1 + s2 = 3 + 2 = 5 of sensor readings over the channel. In this regard, we choose
without loss of generality k = 3 and p = 3. Then, adding the quantized sensor readings
w1 = Q(s1) = Q(3) = 011 and w2 = Q(s2) = Q(2) = 010 modulo 3 results in
g = w1 ⊕3 w2 = 011 ⊕3 010 = 021. Putting this back into a dyadic expansion provides
Q−1(g) = Q−1(021) = 0 · 22 + 2 · 21 + 1 · 20 = 5 as desired.

Remark 4.6. The two-node example considered in Remark 4.5 can also be used to
demonstrate the significance of the condition that p has to be sufficiently large. Let
p = 2 and everything else as before. Then, it follows that Q−1(g) = Q−1(w1 ⊕2 w2) =
Q−1(001) = 1 6= 5 = s1 + s2.

4.2.3 Nested Lattice Coding

Reading through Section 4.2.2 reveals that the crucial step in achieving reliable com-
putations is the protection of (4.18) against Gaussian noise. In order to ensure this,

5Note that for the general case, the quantization error has to be evaluated with regard to the distortion
measure dR.
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4 Reliable Computation Over Clustered Gaussian Networks

we employ sequences of nested lattice codes from [NG11a, NDG11] as they possess fa-
vorable structural properties. Towards this end, we first briefly recap some necessary
notions on nested lattices from [EZ04,ELZ05,For03,NG11a].

Basic Facts and Definitions

Definition 4.4 (Lattice). An n-dimensional lattice Λ is a discrete additive subgroup
of the Euclidean space Rn that is closed under addition and subtraction (i.e., λ1,λ2 ∈
Λ ⇒ λ1 ± λ2 ∈ Λ). For every lattice Λ there exists a full-rank generator/basis matrix
G ∈ Rn×n so that

Λ = {λ = Gµ | µ ∈ Z
n} =: GZ

n .

Definition 4.5 (Lattice Quantizer). A quantizer associated with a lattice Λ is a map
that assigns every point µ ∈ Rn to the nearest lattice point in Euclidean distance, that
is,

QΛ : Rn → Λ , µ 7→ QΛ(µ) = argmin
λ∈Λ

‖µ − λ‖2 ,

where ties are dissolved in a systematic way.

Definition 4.6 (Voronoi Region). The fundamental Voronoi region of some n-dimen-
sional lattice Λ, denoted as V, is the set of all points in Rn that quantize to the zero
vector:

V := {µ ∈ R
n |QΛ(µ) = 0} .

Definition 4.7 (Modulo Operation). The modulo operation with respect to a lattice Λ
provides, for every µ ∈ Rn, the quantization error

[µ] mod Λ := µ −QΛ(µ) ,

which is always in V.

Definition 4.8 (Moments). The second moment (per dimension) of some lattice Λ ⊂
Rn is defined as

σ2(Λ) :=
1
n

∫

V ‖x‖2
2 dx

Vol(V)
, (4.22)

where Vol(V) =
∫

V dx denotes the volume of the fundamental Voronoi region of Λ,
whereas the normalized second moment is defined as

G(Λ) :=
σ2(Λ)

Vol(V)2/n
. (4.23)

Definition 4.9 (Goodness). Let {Λ(n)} be a sequence of lattices indexed by their
dimension and z ∼ NR(0, σ2

ZIn) multivariate Gaussian noise. Then, {Λ(n)} is said to
be good for AWGN channel coding if

P
(
z /∈ V(n)) → 0
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Vs

Vc
0

Figure 4.3: Part of a nested hexagonal lattice Λs ⊂ Λc in Euclidean space R2 with Vs

the fundamental Voronoi region of the shaping lattice Λs (black dots) and
Vc the fundamental Voronoi region of the coding lattice Λc (white dots).

exponentially fast with growing n whenever

Vol
(V(n))2/n

> 2πeσ2
Z .

On the other hand, the sequence {Λ(n)} is said to be good for shaping if

lim
n→∞

log2

(
2πeG(Λ(n))

)
= 0 .

Definition 4.10 (Nested Lattices). A lattice Λs is nested in some lattice Λc if Λs is a
sublattice of Λc (i.e., Λs ⊂ Λc). The lattice Λs with fundamental Voronoi region Vs is
called shaping lattice whereas Λc with fundamental Voronoi region Vc is called coding
lattice.

Figure 4.3 depicts an example of a two-dimensional nested hexagonal lattice pair, in
which

Λc = GZ
2 =

(√
3/2 0

1/2 1

)

and Λs = 3GZ
2 .

The modulo operation such as defined in Definition 4.7 has the following useful prop-
erties.

Lemma 4.1. For all µ,ν ∈ Rn, all α ∈ R+, and every pair of nested lattices Λ ⊂ Λ′ ⊂
Rn, the modulo operation of Definition 4.7 fulfills:

a) [µ + ν] mod Λ =
[
[µ] mod Λ + [ν] mod Λ]

]
mod Λ (distributivity)
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4 Reliable Computation Over Clustered Gaussian Networks

b) [QΛ′(µ)] mod Λ = [QΛ′([µ] mod Λ)] mod Λ (commutativity)

c) α[µ] mod Λ = [αµ] mod αΛ.

Proof. The proof is provided in Appendix 4.A.1 at the end of the chapter.

Remark 4.7. Note that part a) of the lemma implies

[µ + ν] mod Λ =
[
[µ] mod Λ + ν

]
mod Λ =

[
µ + [ν] mod Λ

]
mod Λ .

In the context of nested lattices, we distill from Erez and Zamir’s main theorem in
[EZ04] the following lemma, which will be essential for proving our results in Section 4.3.

Lemma 4.2 (Erez-Zamir). There exists a sequence of nested lattices {Λ(n)
s ⊂ Λ(n)

c }
indexed by their dimension in which {Λ(n)

s } is simultaneously good for AWGN channel

coding and shaping and {Λ(n)
c } for AWGN channel coding.

Definition 4.11 (Nested Lattice Code). Given some pair of n-dimensional nested lat-
tices Λs ⊂ Λc, a nested lattice code C(n) is defined as

C(n) := Λc ∩ Vs (4.24)

with rate

RC =
1
n

log2

(∣
∣C(n)

∣
∣
)

=
1
n

log2

(
Vol(Vs)
Vol(Vc)

)

. (4.25)

Remark 4.8. The essential algebraic property of a nested lattice code is linearity, which
means that each sum of lattice codewords modulo the shaping lattice is a codeword itself:

x1, . . . ,xN ∈ C(n) ⇒
[

N∑

i=1

xi

]

mod Λs ∈ C(n) . (4.26)

Channel Encoding

In order to protect the modulo sums in (4.18) against Gaussian receiver noise, each
sensor node employs the same n-dimensional nested lattice code C(n) based on a nested
lattice pair taken from Lemma 4.2. The shaping lattice is scaled such that the second
moment equals the transmit power constraint (i.e., σ2(Λs) = P ). Thus, each node is
equipped with the same channel encoder (see Figure 4.1)

E2 : Zk
p → C(n) ⊂ R

n , (4.27)

which maps each message, wij , to a length-n lattice codeword. That is, for each j =
1, . . . , 2N + 1,

xij =
(
xij[1], . . . , xij [n]

)
= E2(wij) i = 1, . . . , N .
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4.2 Coding Scheme

Due to the scaling of the shaping lattice, each codeword meets the average power
constraint and the message rate (4.25) (in bits per channel use) is

R =
k

n
log2(p) . (4.28)

In what follows, we assume that the encoder (4.27) is a bijection that preserves linearity:

E−1
2








∑

i∈Cℓ

E2(wij
)



 mod Λs



 =
⊕

i∈Cℓ

wij . (4.29)

The existence of nested lattice codebooks with bijective linearity preserving encoders is
guaranteed by the following lemma.

Lemma 4.3 (Nazer-Gastpar). Let Λs ⊂ Λc be a nested lattice pair taken for some fixed
n ∈ N from the sequence of Lemma 4.2 and let C(n) = Λc ∩ Vs be the corresponding
nested lattice code. Then, there exists an encoder (4.27) that is bijective and satisfies
(4.29).

Proof. Since the lemma provides the crucial fact that we can map real sums of lattice
points back to modulo p sums of messages, we reproduce in Appendix 4.A.2 a slightly
modified version of Nazer and Gastpar’s proof (i.e., Lemmas 5 and 6 of [NG11a]) for
the sake of completeness.

Channel Decoding

After the Gaussian MACs have been used by the sensor nodes n times, the ℓth FC is
aware of the length-n receive vector

yℓj =
∑

i∈Cℓ

xij + zℓj , (4.30)

where zℓj ∼ NR(0, σ2
ZIn), j = 1, . . . , 2N + 1 (see Figure 4.2). To obtain estimates of

the modulo p sums (4.18), the FC applies a channel decoder

D2 : Rn → Z
k
p

that consists of an Euclidean nearest neighbor decoder (also known as lattice decoder
[EZ04]) followed by the inverse of the channel encoding function. Thus, by (4.29) we
have

ĝℓj = D2

(

yℓj

)

= E−1
2

([

QΛc

(

yℓj

)]

mod Λs

)

. (4.31)

Obviously, the nearest neighbor decoder quantizes a receive vector onto the coding
lattice and then reduces the outcome to the shaping lattice in order to guarantee that
the resulting lattice point is a valid codeword (see Figure 4.4). Inserting (4.30) in (4.31)
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QΛc mod Λs E−1
2

D2

yℓj ĝℓj

Figure 4.4: Block diagram of the Euclidean nearest neighbor decoder (lattice decoder),
D2, which is part of the receiver at FC ℓ (i.e., Rxℓ, ℓ = 1, . . . , L) depicted in
Figure 4.2. At its output, the decoder provides an estimate of the modulo
p sum of messages.

shows together with Lemma 4.1 that

ĝℓj = E−1
2







QΛc




∑

i∈Cℓ

xij + zℓj







 mod Λs





= E−1
2







QΛc








∑

i∈Cℓ

xij



 mod Λs + zℓj







 mod Λs





= E−1
2

([
QΛc

(xℓj + zℓj)
]

mod Λs

)

, (4.32)

where xℓj :=
[
∑

i∈Cℓ
xij

]

mod Λs. Because of (4.26), we have xℓj ∈ C(n), for all ℓ, j, so
that (4.30) is essentially a codeword corrupted by Gaussian noise. The computation
over a clustered Gaussian sensor network can therefore be seen as L point-to-point
links in which each transmitter, say transmitter ℓ, aims at reliably communicating the
codewords xℓ1, . . . ,xℓ,2N+1 to its intended receiver.

Decoding Error Probability

Let δ > 0 be arbitrary. Then, the modulo p sums of messages are said to be decoded
with error probability δ if

P (n)
e := P





L⋃

ℓ=1

2N+1⋃

j=1

{
ĝℓj 6= gℓj

}



 ≤ δ . (4.33)

To demonstrate that this can be considered as a maximum probability of error, we
establish in the following the upper bound

P (n)
e ≤

L∑

ℓ=1

2N+1∑

j=1

P
(
ĝℓj 6= gℓj

) ≤ L(2N + 1)P(z /∈ Vc) , (4.34)

with z ∼ NR(0, σ2
ZIn). Towards this end, note that each node chooses for each j one

out of pk codewords so that at FC ℓ, the modulo-p sums gℓj can take on at most

Uℓ :=

(

pk + |Cℓ| − 1
|Cℓ|

)

=
(pk + |Cℓ| − 1)!
|Cℓ|!(pk − 1)!
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different values g
(u)
ℓj , u = 1, . . . , Uℓ. Thus, the conditional probability of error given

that g
(u)
ℓj is the correct sum leads with (4.32) to

λ
(u)
ℓj := P

(

ĝℓj 6= gℓj

∣
∣
∣ gℓj = g

(u)
ℓj

)

= P

([
QΛc

(xℓj + zℓj)
]

mod Λs 6= E2
(
gℓj

)
∣
∣
∣ gℓj = g

(u)
ℓj

)

= P (zℓj /∈ Vc) . (4.35)

Observe that (4.35) is independent of u, which follows from the symmetry of the coding
lattice Λc. Then, upper bounding the total probability as

P

(

ĝℓj 6= gℓj

)

:=
Uℓ∑

u=1

λ
(u)
ℓj P

(

gℓj = g
(u)
ℓj

)

≤ max
1≤u≤Uℓ

λ
(u)
ℓj = P (zℓj /∈ Vc) (4.36)

shows with (4.35) that the decoding error probability at FC ℓ, ℓ = 1, . . . , L, is essentially
a maximum probability of error for each j ∈ {1, . . . , 2N + 1}. Since the receiver noise
is iid across time and FCs, (4.36) is equal for all codewords so that (4.34) follows with
Theorem B.2 of Appendix B (i.e., with the union bound).

Remark 4.9. Note that in the network model given in Section 4.1, we did not introduce
a probability distribution on the sensor readings, which requires the decoding error
probability to be small for every codeword and thus for every choice of {ϕij(si) ∈ Π}.
According to (4.34), this can be ensured because if P(z /∈ Vc) ≤ δ

L(2N+1) , we have

P
(n)
e ≤ δ, which justifies to consider (4.33) as a maximum probability of error.

4.3 Achievable Computation Rates

In the following, our objective is to characterize the computation rates achievable with
the scheme proposed in the previous section. To gain first insights, we start with a
single cluster network in Section 4.3.1, followed by the general case in Section 4.3.2.
Towards this end, we first prove a lemma that determines the quantization error caused
by the approximation of the desired function (4.4) by (4.21).

Lemma 4.4. Let (f1, . . . , fL) ∈ C
0(S |C1|) × · · · × C

0(S |CL|) be some choice of L Kol-
mogorov’s superpositions. Then, each fℓ can be uniformly approximated with arbitrary
precision ε > 0 if the common quantizer (4.11) is configured with sufficiently large
b = b(f1, . . . , fL, ‖ · ‖∞, N, ε). That is,

∀ε > 0 ∃b0 ∀b ≥ b0 ∀ℓ ∈ {1, . . . , L} : sup
sℓ∈S|Cℓ|

∣
∣
∣fℓ(sℓ) − f̃ℓ(sℓ)

∣
∣
∣ < ε ,

where sℓ := (sℓ1
, . . . , sℓ|Cℓ|

).
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Proof. Observe that an expansion in the way of (4.13) represents along with (4.14) the
pre-processed sensor readings up to precision

∣
∣ϕij(s) − ϕ̃ij(s)

∣
∣ < 2−η = 2−b+v+1 ≤ πmax2−b+1 , (4.37)

for all s ∈ S, i = 1, . . . , N , and j = 1, . . . , 2N + 1. Hence, we can bound the accuracy
of the sum of pre-processed sensor readings (4.17) by virtue of the triangle inequality
to

∣
∣
∣
∣
∣

∑

i∈Cℓ

ϕij(si) −
∑

i∈Cℓ

ϕ̃ij(si)

∣
∣
∣
∣
∣

≤
∑

i∈Cℓ

∣
∣ϕij(si) − ϕ̃ij(si)

∣
∣ < |Cℓ|πmax2−b+1 , (4.38)

for all sℓ ∈ S |Cℓ|, ℓ = 1, . . . , L, and j = 1, . . . , 2N + 1.
Since the constants in (4.5) are bounded, we conclude from (4.38) along with the

Heine-Cantor Theorem (see Theorem A.2 in Appendix A) that6

sup
sℓ∈S|Cℓ|

∣
∣
∣
∣
∣
∣

ψℓj




∑

i∈Cℓ

ϕij(si) + γℓj



− ψℓj




∑

i∈Cℓ

ϕ̃ij(si) + γℓj





∣
∣
∣
∣
∣
∣

< εℓj(b) , (4.39)

for some εℓj(b) > 0 and for all ℓ, j. Now, let ε > 0 be arbitrary but fixed. Then, there
exists b0 = b0(f1, . . . , fL, ‖ · ‖∞, N, ε) such that for all b ≥ b0

max
ℓ,j

εℓ,j(b) <
ε

2N + 1
.

As a consequence, we have for all sℓ ∈ S |Cℓ|, ℓ = 1, . . . , L, and b ≥ b0

∣
∣
∣fℓ(sℓ) − f̃ℓ(sℓ)

∣
∣
∣ ≤

2N+1∑

j=1

∣
∣
∣
∣
∣
∣

ψℓj




∑

i∈Cℓ

ϕij(si) + γℓj



− ψℓj




∑

i∈Cℓ

ϕ̃ij(si) + γℓj





∣
∣
∣
∣
∣
∣

< ε ,

which proves the lemma.

Remark 4.10. In words, the quantization parameter b0 = b0(f1, . . . , fL, ‖ · ‖∞, N, ε)
denotes the smallest number of bits with which f1, . . . , fL can be represented within
accuracy ε. We point out, however, that it is not a particular property of the scheme
presented in Section 4.2 that b0 generally also depends on the number of nodes. In
fact, all computation schemes that approximate a real-valued multivariate function by
quantizing its arguments suffer from this. Hence, we drop the corresponding indication
in what follows.

6Because every finite sum of compact spaces is compact, it follows from the compactness of the Πij

(i.e., the ranges of pre-processing functions) that the ranges of the sums
∑

i∈Cℓ

ϕij(si), ℓ = 1, . . . , L;
j = 1, . . . , 2N + 1, are compact as well.
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Figure 4.5: Block diagram of the entire transmission chain for computing a nomo-
graphic function over a Gaussian multiple-access channel.

Remark 4.11. Due to Remark 4.9, (4.7) represents a maximum error probability,
which is therefore independent of the statistics of sensor readings. Because of the
considerations in Lemma 4.4, it can therefore be written as

P

(
T⋃

t=1

{

f̂
(

s[t]
) 6= f̃

(

s[t]
)}
)

,

with f̃ being the quantized version of f (see 4.21).

4.3.1 The Single Cluster Case

Consider a single cluster consisting of N nodes, which means that L = 1 and |C1| = N .

Nomographic Functions

We start with the computation of a single nomographic function such as depicted in
Figure 4.5. Hence, (4.30) simplifies to

y =
N∑

i=1

xi + z (4.40)

whereas the decoding error probability (4.33) reduces to P (n)
e = P(ĝ 6= g).

The following theorem, which is an extension of [NDG11, Thm. 2], provides an achiev-
able rate at which elements from N

0(SN ) can be reliably computed through harnessing
the interference in (4.40). Note that according to (4.19), the estimate f̂ of some given
f ∈ N

0(SN ) is defined to be

f̂
(
s[t]
)

=
(
ψ ◦Q−1)(

ĝ[t]
)

t = 1, . . . , T . (4.41)

69



4 Reliable Computation Over Clustered Gaussian Networks

Theorem 4.1. Given f ∈ N
0(SN ), let f̂ be its estimate defined by (4.41). Let ε > 0

be some given desired accuracy and b0(f, ‖ · ‖∞, ε) be specified as in Lemma 4.4. Then,

RC(f, ‖ · ‖∞, ε) =

1
2 log+

2

(

P
σ2

Z

)

b0(f, ‖ · ‖∞, ε) + log2(N)
(4.42)

is, under the distortion measure ‖ · ‖∞, an achievable computation rate for f and ε.

Proof. The proof is deferred to Appendix 4.A.3 at the end of the chapter.

Remark 4.12. Note that in accordance with the proof of the theorem, (4.42) can even
be slightly improved if the bound in (4.66) is applied instead of (4.67).

Proposition 3.1 immediately leads to the following corollary.

Corollary. Let the computation accuracy, ε, be chosen such that ε ≥ ε′ for some
arbitrarily small ε′ > 0. Then, Theorem 4.1 also applies to every nomographic approx-
imation f ∈ N

0
‖·‖∞,ε′(SN ).

The theorem reveals that if the channel is noisy, the number of required channel uses
per function value depends on the function to be computed, which is in stark contrast to
the results obtained for the ideal WMAC in Chapter 3. The obvious reason is that the
nonzero noise variance forces us to perform quantization at the sensor nodes in order
to represent function-values up to a certain accuracy by finite bit strings. In simple
terms, “bad” functions require more bits for sufficiently accurate representations (i.e.,
b0(f, ‖ · ‖∞, ε) has to be larger) whereas “good” functions require less. In the following,
we present some examples of functions that are reliably computable over the Gaussian
MAC with rate (4.42).

Example 4.1 (Arithmetic Mean). Let the desired function be the arithmetic mean
f(s1, . . . , sN ) = 1

N

∑N
i=1 si (see Example 3.1), S = E, and ε > 0 some desired accuracy.

Then, we conclude from (4.38)

1
N

∣
∣
∣
∣
∣

N∑

i=1

si −
N∑

i=1

s̃i

∣
∣
∣
∣
∣

≤ 1
N

N∑

i=1

|si − s̃i| < πmax2−b+1 = 2−b+1 ,

where the last equality follows from the fact that the pre-processing functions are iden-
tities on E (i.e., πmax = maxi maxs∈E |ϕi(s)| = maxs∈E idE(s) = 1). Therefore, in order
to satisfy 2−b+1 ≤ ε, we require

b ≥ b0 =
⌈

log2

(
1
ε

)⌉

+ 1 bits .

△
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Example 4.2 (Geometric Mean). Let the desired function be the geometric mean

f(s1, . . . , sN ) =
(∏N

i=1 si
)1/N = expe(

1
N

∑N
i=1 loge(si)) , S = [smin, 1] for some 0 <

smin < 1, and ε > 0. Note that f is an element of ∈ N
0([smin, 1]N ) but not of N

0(EN )
(see Example 3.2). Now, let g(s) := 1

N

∑N
i=1 loge(si) for some fixed s = (s1, . . . , sN ) ∈

[smin, 1]N and g̃(s) the quantized version. Then, due to the mean value theorem there
exists between every pair of points g(s) and g̃(s) a ξ(s) such that with (4.37)

∣
∣
∣eg(s) − eg̃(s)

∣
∣
∣ = eξ(s)

∣
∣g(s) − g̃(s)

∣
∣ < eξ(s)πmax2−b+1 . (4.43)

Without loss of generality, let g̃ ≤ ξ ≤ g so that (4.43) can be upper bounded as

eξ(s)πmax2−b+1 ≤ eg(s)πmax2−b+1

= f(s)πmax2−b+1

≤ max
s∈[smin,1]N

f(s)πmax2−b+1

= πmax2−b+1

=
1
N

∣
∣loge(smin)

∣
∣2−b+1 , (4.44)

where (4.44) follows from πmax = maxs∈[smin,1] | loge(s)| = | loge(smin)|. With regard to
this bound, we require

b ≥ b0 =

⌈

log2

(∣
∣loge(smin)

∣
∣

Nε

)⌉

+ 1 bits

in order to represent the geometric mean within accuracy ε. △

Example 4.3 (Euclidean Norm). Let the desired function be the Euclidean norm

f(s1, . . . , sK) =
√

s2
1 + · · · + s2

N (see Example 3.1), S = E, and ε > 0. Furthermore,

let g(s) :=
∑N

i=1 s
2
i for some fixed s = (s1, . . . , sN ) ∈ EN and g̃(s) the corresponding

quantized version. It is a matter of fact that the square root is a (1, 1/2)-Hölder con-
tinuous function over R+ (see Definition A.8 along with Example A.2 for the definition
of Hölder continuity) so that

∣
∣
∣
∣

√

g(s) −
√

g̃(s)
∣
∣
∣
∣ ≤

√
∣
∣g(s) − g̃(s)

∣
∣ ≤

(
N∑

i=1

∣
∣ϕ(si) − ϕ̃(si)

∣
∣

)1/2

<
√

Nπmax2−(b−1)/2 .

Since πmax = maxs∈E s
2 = 1, we require

b ≥ b0 =
⌈

log2

(
N

ε2

)⌉

+ 1 bits

in order to represent the Euclidean norm within accuracy ε. △
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Figure 4.6: Achievable computation rates in a cluster with N = 5 nodes for the nomo-
graphic functions of Examples 4.1–4.3, where the aimed computation ac-
curacy is set to ε = 10−3. The dashed upper bounds correspond to (4.47).

Figure 4.6 depicts for N = 5, smin = 10−20, and ε = 10−3 the achievable computation
rates of Examples 4.1–4.3 (i.e., (4.42)). It turns out, for instance, that at a signal-to-
noise ratio (SNR) of 15 dB, the “arithmetic mean” can be computed approximately
1.3 times faster than the “geometric mean” and approximately 2 times faster than the
“Euclidean norm”, respectively.

Consider now the standard separation-based computation approach in which the FC
reliably decodes all quantized sensor readings individually from the Gaussian MAC
output in order to compute the desired function-values afterwards. Then, the corre-
sponding rate performance is limited by the MAC capacity region, which is for the
general Gaussian MAC (see Remark 2.2) given by the following fundamental theorem
[GK11, p. 98].

Theorem 4.2. The capacity region of the real-valued Gaussian MAC with N users
consists of the set of all rate tuples (R1, . . . , RN ) ∈ RN

+ for which

∀I ⊆ {1, . . . , N} :
∑

i∈I
Ri ≤ 1

2
log2

(

1 +
∑

i∈I |hi|2Pi

σ2
Z

)

bits
channel use

, (4.45)

where Pi ∈ R+, |hi|2, and σ2
Z > 0 denote the transmit power constraint of user i, the

channel gain between user i and the receiver, and the noise variance, respectively.

The region (4.45) forms a polymatroid in Euclidean space RN with N ! vertices [TH98].
Each vertex can be achieved by using Gaussian single-user codebooks in combination
with successive cancellation decoding that is performed in the decoding order that
corresponds to the preferred vertex.
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As a special case of Theorem 4.2, the capacity region of the Gaussian MAC considered
in this section (see (4.40)) follows to

∀I ⊆ {1, . . . , N} :
∑

i∈I
Ri ≤ 1

2
log2

(

1 +
|I|P
σ2

Z

)

,

where we have taken into account that the transmit power constraint is uniformly P .
From this, we conclude that the best computation rate achievable with any separation-
based approach is limited to

RC(f, ‖ · ‖∞, ε) =

1
2N log2

(

1 + NP
σ2

Z

)

b0(f, ‖ · ‖∞, ε)
. (4.46)

Comparing (4.46) with (4.42) reveals that many linear and nonlinear functions of sensor
readings can be reliably computed, with the coding scheme of Section 4.2, at a rate that
is significantly higher than every rate achievable with separation, except for small SNRs
(see Section 4.3.3 for a more detailed discussion).

It is easy to see that (4.42), for P/σ2
Z → ∞, achieves an upper bound given by the

normalized single-user AWGN capacity:

R̄C(f, ‖ · ‖∞, ε) :=

1
2 log2

(

1 + P
σ2

Z

)

b0(f, ‖ · ‖∞, ε) + log2(N)
. (4.47)

Up to the writing of this thesis, however, it was unknown whether this bound can also
be achieved for finite SNRs. See Figure 4.7 for an example.

Remark 4.13. The additional logarithmic term in the denominators of (4.42) and
(4.47) is the penalty for avoiding wraparounds in the modulo p addition of the messages
(see Remark 4.4).

Kolmogorov’s Superpositions

Although Examples 4.1–4.3 demonstrate that N
0(SN ) contains many functions of prac-

tical relevance, it has to be emphasized that by Theorem 3.3, N
0(SN ) is a nowhere

dense subset of all continuous functions. By Theorem 3.4, however, every continuous
function of N variables can be composed of 2N + 1 elements from N

0(SN ). Now, we
use this fact in order to provide the computation rate that is achievable for reliably
computing Kolmogorov’s superpositions with the scheme depicted in Figures 4.1 and
4.2. Given some f ∈ C

0(SN ), the corresponding estimate is of the form

f̂
(
s[t]

)
=

2N+1∑

j=1

(
ψj ◦Q−1)(

ĝj [t]
)

t = 1, . . . , T . (4.48)
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Figure 4.7: Achievable computation rates in a cluster with N = 10 nodes where the FC
wants to evaluate the arithmetic mean (see Example 4.1) within accuracy
ε = 10−3, which requires b0(f, ‖·‖∞, ε) = 11 bits. The dashed upper bound
represents the single-user AWGN capacity normalized by 11 + log2(10)
whereas TDMA refers to naive time-sharing between nodes [GK11, p. 96].

Theorem 4.3. Given f ∈ C
0(SN ), let f̂ its estimate defined by (4.48). Let ε > 0 be

some given desired accuracy and b0(f, ‖ · ‖∞, ε) be specified as in Lemma 4.4. Then,

RC(f, ‖ · ‖∞, ε) =

1
4N+2 log+

2

(

P
σ2

Z

)

b0(f, ‖ · ‖∞, ε) + log2(N)
(4.49)

is, under the distortion measure ‖ · ‖∞, an achievable computation rate for f and ε.

Proof. Representing f as its Kolmogorov’s superposition (see Theorem 3.4) suggests
that it can be computed at the FC by successively computing the corresponding 2N +
1 nomographic functions over the Gaussian MAC. Hence, given some fixed ε > 0,
choose b = b0(f, ‖ · ‖∞, ε) in accordance with Lemma 4.4 sufficiently large such that the
quantization error is smaller than ε. Now, due to (4.34), we have for the decoding error
probability

P (n)
e ≤

2N+1∑

j=1

P(ĝj 6= gj) .

Therefore, the theorem follows from Theorem 4.1 by taking into account that for each
j, P(ĝj 6= gj) goes to zero exponentially fast in the block length n as long as (4.49) is
fulfilled.

Remark 4.14. Comparing (4.49) with (4.42) illustrates that when harnessing the su-
perposition property of the Gaussian MAC, universality with respect to the number of
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4.3 Achievable Computation Rates

computable functions and the pre-processing strategy costs additional wireless resources.
See Section 4.3.3 for a more detailed discussion.

4.3.2 The Multiple Cluster Case

Consider now the general network model introduced in Section 4.1, in which N sensor
nodes are divided into L overlapping clusters Cℓ with the objective to compute at FC
ℓ, ℓ = 1, . . . , L, some desired function fℓ ∈ C

0(E|Cℓ|) of the associated sensor readings.

Nomographic Functions

From Section 3.2.1 we know that when restricted to nomographic functions with continu-
ous pre- and post-processing functions, the pre-processing functions can never be chosen
to be universal. This is due to the fact that each cluster overlaps with at least one of
its neighboring clusters. Therefore, the clusters have to be activated in a time-division
manner whenever the functions to be computed at adjacent FCs are different. As a
consequence, the average computation rate achievable in cluster ℓ, ℓ = 1, . . . , L, under
a naive time-division strategy that schedules clusters in time follows from Lemma 4.4
and Theorem 4.1 to7

RC
ℓ (f1, . . . , fL, ‖ · ‖∞, ε) =

1
2L log+

2

(

P
σ2

Z

)

b0(f1, . . . , fL, ‖ · ‖∞, ε) + log2

(
maxℓ |Cℓ|

) . (4.50)

In contrast to the single cluster case, the rates depend on f1, . . . , fL as the error prob-
ability (4.7) extends in the multi-cluster case to

P





L⋃

ℓ=1

T⋃

t=1






sup

sℓ[t]∈E
|Cℓ|

∣
∣
∣f̂ℓ

(
sℓ[t]

)− fℓ

(
sℓ[t]

)
∣
∣
∣ > ε









 .

This means that the computation accuracy has to be within ε for all ℓ so that b0 depends
on f1, . . . , fL (see Remark 4.10).

Following a similar reasoning for a separation-based approach results in the achievable
computation rate

RC
ℓ (f1, . . . , fL, ‖ · ‖∞, ε) =

1
2L|Cℓ| log2

(

1 + |Cℓ|P
σ2

Z

)

b0(f1, . . . , fL, ‖ · ‖∞, ε)
ℓ = 1, . . . , L , (4.51)

which is significantly smaller than (4.50), except for small ratios P/σ2
Z .

Remark 4.15. Observe that the rate in (4.50) is independent of ℓ and therefore equal
for all clusters.

7It is assumed that the time is divided into L slots of equal duration.
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Remark 4.16. In clustered networks in which Cℓ ∩ Cℓ′ 6= ∅ for all ℓ, ℓ′, (4.50) and
(4.51) cannot be increased by, for example, more clever time-sharing. The reason is
that the common nodes transmit continuously and would therefore violate the average
power constraint when increasing their transmit powers by a factor of L. If, on the
other hand, some of the clusters are disjoint (see Figure 3.4 for an example), the rates
could be improved by designing a time-division protocol that activates these clusters
simultaneously. This, however, would further increase the coordination effort and is
part of future work.

Kolmogorov’s Superpositions

Now, let us consider the general case of computing arbitrary continuous functions over
arbitrary clustered Gaussian sensor networks. Since the pre-processing functions in
(4.21) are universal and therefore independent of fℓ, the function that FC ℓ, ℓ = 1, . . . , L,
computes is determined by the choice of the post-processing functions ψℓ1, . . . , ψℓ,2N+1

only. As a consequence, the pre-processing and lattice encoding is fixed, and therefore
an additional protocol for coordinating the activation of clusters, as it was required for
achieving (4.50) and (4.51), is not necessary. Therefore, the computation rate achievable
with the scheme of Section 4.2 follows from Theorem 4.3 to

RC
ℓ (f1, . . . , fL, ‖ · ‖∞, ε) =

1
4N+2 log+

2

(

P
σ2

Z

)

b0(f1, . . . , fL, ‖ · ‖∞, ε) + log2

(

maxℓ |Cℓ|
) , (4.52)

for all ℓ = 1, . . . , L.

4.3.3 Discussion of the Results

The results for the single cluster case in Section 4.3.1 show that when harnessing the
superposition property of the Gaussian MAC, nomographic functions with continuous
pre- and post-processing functions can be computed significantly faster than with any
separation-based strategy, except for small SNRs (see Figure 4.7 for an example). On
the other hand, when considering the computation of arbitrary continuous functions
of the sensor readings, the corresponding computation rates scale down by a factor of
2N + 1 (see (4.49)).

In a network of multiple clusters, as considered in Section 4.3.2, the computation rate
achievable at all nodes when considering an individual continuous nomographic func-
tion in each cluster is reduced by a factor of L (see (4.50) and (4.51)) since additional
coordination is necessary in the form of time sharing between clusters. In contrast, due
to the universality of pre-processing functions and the particular data post-processing
strategy described in Section 4.2.2, the rate at which a different Kolmogorov’s super-
position can be computed in each cluster is given by Theorem 4.3, regardless of the
coupling between clusters.

In the domain of wireless sensor networks, achieving high rates is generally not the
only concern. Due to limited energy and processing capabilities, computation schemes
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of low complexity are also of particular interest. Considering the results of Section 4.3.2
from this perspective reveals that the proposed computation scheme has not only in
the case of continuous nomographic functions several advantages over separation-based
approaches. For example, when computing a set of individual Kolmogorov’s superpo-
sitions in a clustered network, any coordination of nodes or clusters is not necessary
as it would be the case for continuous nomographic functions and separation-based ap-
proaches. Especially for large networks with many clusters this may lead to significant
savings in complexity such that computing Kolmogorov’s superpositions (i.e., continu-
ous functions) over the channel can be an option even if the achievable computation
rate is not maximal. It is clear from the structure of nomographic functions, and there-
fore Kolmogorov’s superpositions, that the computation of only one-variable functions
is required at the FCs, which can be less demanding than computing the multivari-
ate desired function given the entire set of raw sensor readings such as in the case of
separation based computation.

If the underlying application is satisfied with the computation of continuous nomo-
graphic functions, then in addition to the superior rate performance, the scheme pro-
posed in this chapter has a significantly lower decoding complexity, which is essentially
the complexity of a single-user lattice decoder. As a consequence, the decoding com-
plexity in cluster ℓ, ℓ = 1, . . . , L, is |Cℓ|-fold less than for separation-based computation
in which the FC has to reliably decode all the sensor readings gathered in cluster Cℓ.
The latter has also the drawback of a higher sensitivity regarding decoding errors since
already a single wrongly decoded sensor reading results in a faulty function-value. We
would like to emphasize that the computation rates presented in this chapter are all
achievable under a maximum probability of error criterion as it is indispensable for
most sensor network applications.

When additionally using common randomness at sensor nodes and FCs in combina-
tion with minimum mean square error estimation prior to decoding [NG11a,WNPS10,
NA12], slightly higher computation rates could be achieved than those presented in
Theorems 4.1 and 4.3. However, this would have the drawback that only average error
probabilities could be handled together with uniformly distributed sensor readings.

4.4 Summary and Conclusions

In this chapter, we considered the reliable computation of arbitrary continuous real-
valued functions of the measurements in clustered Gaussian sensor networks. Towards
this end, we proposed a coding scheme that combines a suitable data pre- and post-
processing strategy with a simple quantizer and nested lattice coding. Such as in
Chapter 3, the pre- and post-processing strategy matches the desired function to the
algebraic structure of the channel whereas the remaining components are concerned
with the Gaussian receiver noise. Based on this scheme, it has been found that when
harnessing the interference property of the underlying Gaussian MAC, a certain subset
of all continuous functions (i.e., the space of nomographic functions with continuous pre-
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4 Reliable Computation Over Clustered Gaussian Networks

and post-processing functions) can be computed at considerably higher rates than those
achievable with an approach that intends to decode all associated sensor readings at the
FCs for computing the function-values afterwards. Since many continuous functions
of practical relevance are nomographic, the result extends the known results for the
computation of linear functions to numerous nonlinear functions.

When the computation of arbitrary continuous functions is desired, then the presented
approach requires the successive computation of multiple nomographic functions, which
scales down the achievable computation rates accordingly. Even though these rates can
be inferior to those achievable with standard multiple-access schemes, the proposed
approach provides several other advantages that are indispensable in many sensor net-
work applications such as lower decoding complexity, less coordination and the ability of
controlling maximum error probabilities. As a consequence, the results of this chapter
partially carry over the results of Chapter 3 to noisy networks.

Note that the clustered Gaussian sensor network model considered in this paper
assumes that the channel gains between nodes and FCs are all equal to one (see (2.1)).
For many applications, however, the propagation conditions are more challenging as
corresponding wireless transmissions may be subject to fading effects. In networks with
non-overlapping clusters this is not a big issue as nodes could invert their channels by
employing channel state information. In contrast, when clusters allowed to overlap some
nodes can be heard by more than one FC, which generally results in different channel
gains. Since this can have a detrimental impact on the computation rate performance,
it has to be figured out in future work how to appropriately cope with this.

Another direction for future work could be the following. Note that the computation
capacity such as defined in Definition 4.3 refers, for some given f and (dR,ε), to the
supremum of all achievable rates of a given WMAC W . On the other hand, one could
think of defining it with respect to some given function space (e.g., C

0(SN ), N
0(SN ))

in the sense that it denotes, for given (dR,ε), the supremum of all achievable rates
at which every function of that function space can be reliably computed. This could
somehow be related to Kolmogorov’s notion of ε-entropy, which is defined as follows
[Lor66, pp. 150].

Definition 4.12 (ǫ-Entropy). Let ε > 0 and G ⊂ X be an arbitrary function space
that is compact with respect to some fixed norm ‖ · ‖ so that there exists an ε-net for
G , that is, a finite set of functions NG ,ε = {ĝ ∈ X } such that

sup
g∈G

min
ĝ∈NG ,ε

‖g − ĝ‖ ≤ ε .

Let Nε(G ) denote the smallest such ε-net. Then, the Kolmogorov ε-entropy for G is
defined as

Hε(G ) = log2 Nε(G ) .

The ε-entropy therefore denotes the least number of bits that are required in order
to describe every g ∈ G within accuracy ε > 0. Since the simple quantizer employed in
the coding scheme of Section 4.2 has to be adapted every time a desired function in the
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network changes, it would be interesting to consider universal quantizers. It appears
likely that the ε-entropy could provide corresponding bounds on the performance of
such quantizers as well as to the mentioned modified notion of computation capacity.
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Appendix 4.A Proofs

4.A.1 Proof of Lemma 4.1

Let µ,ν ∈ Rn and α ∈ R+ be arbitrary and let Λ ⊂ Λ′ ⊂ Rn be some fixed pair of
nested lattices.

a):

[µ + ν] mod Λ = µ −QΛ(µ) + ν −QΛ(ν) −QΛ(µ + ν) +QΛ(µ) +QΛ(ν)

= [µ] mod Λ + [ν] mod Λ −QΛ

(
µ −QΛ(µ) + ν −QΛ(ν)

)
(4.53)

= [µ] mod Λ + [ν] mod Λ −QΛ

(
[µ] mod Λ + [ν] mod Λ

)

=
[
[µ] mod Λ + [ν] mod Λ

]
mod Λ ,

where (4.53) follows from the fact that QΛ(µ) and QΛ(ν) are points in Λ.
b):

[

QΛ′(µ)
]

mod Λ =
[

QΛ′(µ) −QΛ(µ)
]

mod Λ (4.54)

=
[
QΛ′

(
µ −QΛ(µ)

)]
mod Λ (4.55)

=
[
QΛ′

(
[µ] mod Λ

)]
mod Λ ,

where (4.54) follows from a) along with the fact that QΛ(µ) ∈ Λ and (4.55) because
Λ ⊂ Λ′ implies QΛ(µ) ∈ Λ′.

c):

α[µ] mod Λ = αµ − αQΛ(µ)

= αµ − α argmin
λ∈Λ

‖µ − λ‖2

= αµ − argmin
λ∈Λ

‖αµ − αλ‖2 (4.56)

= αµ − argmin
λ∈αΛ

‖αµ − λ‖2

= αµ −QαΛ(αµ)

= [αµ] mod αΛ ,

where (4.56) follows from the absolute homogeneity of ‖ · ‖2.

4.A.2 Proof of Lemma 4.3

The proof by Erez and Zamir in [EZ04] on the existence of sequences of good nested
lattices (good in the sense summarized in Lemma 4.2) is based on a lattice construction
known as Construction A [CS10,Loe97]. We follow this construction in order to generate
a lattice codebook that is based on a good pair of nested lattices and then show that
the corresponding encoder satisfies (4.29).

Towards this end, let p be prime, ℓ ∈ {1, . . . , L}, and n, k, T ∈ N be arbitrary but
fixed. Furthermore, let Gs ∈ Rn×n denote the full-rank generator matrix of a given
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(good) shaping lattice (i.e., Λs = GsZ
n). Then, Construction A mainly consists in

generating a codebook over Zp at random that is subsequently embedded into the
Euclidean space Rn. The construction works as follows:

1) Draw a matrix Gc ∈ Zn×k
p at random with elements uniformly iid over Zp.

2) Use Gc to generate a linear codebook over Zp as follows:

C̃(n) :=
{

x̃ = Gcw
∣
∣w ∈ Z

k
p

}

,

where all operations are carried out modulo p.

3) Embed C̃(n) into Rn by
Λ̃c := p−1C̃(n) + Z

n .

4) Generate the coding lattice Λc by rotating Λ̃c with Gs so that Λs ⊂ Λc:

Λc := GsΛ̃c .

5) Define the nested lattice codebook:

C(n) := Λc ∩ Vs .

According to this procedure, the corresponding nested lattice encoder is of the form

E2 : Zk
p → C(n) , w 7→ E(w) =

[
p−1GsGcw

]
mod Λs . (4.57)

In order to proof the properties of (4.57) stated in the lemma, we focus on showing
(4.29) while skipping the bijectivity part (see [NG11a, Lem. 5] for a proof). In this
context, let

x :=




∑

i∈Cℓ

xi



 mod Λs ,

with xi = E(wi) ∈ C(n). Observe that G−1
s Λs = Zn due to the fact that Gs (i.e., the

generator matrix of Λs) is of full rank. Thus, we have

[

G−1
s x

]

mod Z
n =



G−1
s

∑

i∈Cℓ

xi − G−1
s QΛs




∑

i∈Cℓ

xi







 mod Z
n (4.58)

=



G−1
s

∑

i∈Cℓ

xi



 mod Z
n (4.59)

=



p−1Gc

∑

i∈Cℓ

wi − G−1
s QΛs

(

p−1GsGcwi

)



 mod Z
n (4.60)

=



p−1Gc

∑

i∈Cℓ

wi



 mod Z
n , (4.61)
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where (4.59) and (4.61) follow from the fact that

∀µ ∈ R
n : QΛs

(µ) ∈ Λs ⇒ G−1
s QΛs

(µ) ∈ Z
n

and (4.60) by incorporating (4.57). Now, observe that

∀w1, . . . ,w|Cℓ| ∈ Z
k
p ∃v ∈ Z

n
+ : Gc

∑

i∈Cℓ

wi = Gc

⊕

i∈Cℓ

wi + pv ,

due to the modulo p arithmetic, so that multiplying (4.58) by p results, along with part
c) of Lemma 4.1, in

p
[

G−1
s x

]

mod Z
n =



Gc

⊕

i∈Cℓ

wi + pv



 mod pZn = Gc

⊕

i∈Cℓ

wi . (4.62)

Erez, Litsyn and Zamir show in [ELZ05, Sec. III] that matrices resulting from step 1)
of Construction A are, for sufficiently large n, of full rank with probability that is close
to one. Therefore, assume Gc is full-rank so that its left inverse

G†
c :=

(

GT

c Gc

)−1
GT

c

exists. Multiplying the right-hand side of (4.62) by G†
c yields

G†
cGc

⊕

i∈Cℓ

wi =
⊕

i∈Cℓ

wi .

As a final step, we merely have to put all the above pieces together in order to obtain
the inverse

E−1(x) = pG†
c

[
G−1

s x
]

mod Z
n ,

which proves that (4.57) preserves linearity and concludes the lemma.

4.A.3 Proof of Theorem 4.1

For some T ∈ N to be specified below, consider some sequence

f
(
s[1]

)
= ψ

(
N∑

i=1

ϕi
(
si[1]

)

)

, . . . , f
(
s[T ]

)
= ψ

(
N∑

i=1

ϕi
(
si[T ]

)

)

of nomographic function-values with continuous pre- and post-processing functions and
let

f̃
(
s[1]

)
= ψ

(
N∑

i=1

ϕ̃i
(
si[1]

)

)

, . . . , f̃
(
s[T ]

)
= ψ

(
N∑

i=1

ϕ̃i
(
si[T ]

)

)

denote the corresponding approximations in accordance with (4.17). Let ε > 0 and
and choose the quantization parameter b = b(f, ‖ · ‖∞, ε) as in Lemma 4.4 to b0 =
b0(f, ‖ · ‖∞, ε) so that

∥
∥f − f̃

∥
∥

∞ = sup
s∈SN

∣
∣f(s) − f̃(s)

∣
∣ < ε .
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In order to prove the theorem, we have to first construct the source encoder (4.15).
To this end, each of the binary representations (4.12) is equivalently considered as an
element of the set of integers {0, 1, . . . , 2b0 −1}, which we denote in the following as wi[t]
to avoid confusion with the vector notation. With this in mind, for each t ∈ {1, . . . , T},
the sum of these integers is bounded above as

N∑

i=1

wi[t] ≤ N(2b0 − 1) =: q − 1 . (4.63)

Now, for some τ ∈ N to be specified below, we form the length-k messages (4.16) in
the following way

wi =

(
τ∑

t=1

wi[t]q
t−1, . . . ,

τ∑

t=1

wi[t + (k − 1)τ ]qt−1

)

,

i = 1, . . . , N , with q as defined in (4.63). Note that the sum over i of each component
is bounded above as

N∑

i=1

τ∑

t=1

wi[t]qt−1 =
τ∑

t=1

N∑

i=1

wi[t]qt−1 ≤ qτ − 1 . (4.64)

Hence, for every fixed q and alphabet size p (see (4.15) and (4.27)), choosing τ such
that

qτ − 1 ≤ p− 1 (4.65)

avoids wraparounds when messages add up over the channel. Thus, with the right-hand
side of (4.63) we have

τ ≤ log2(p)
log2

(
2b0(f,‖·‖∞,ε) − 1

)
+ log2(N)

. (4.66)

Now, consider the more conservative bound

τ ≤ log2(p)
b0(f, ‖ · ‖∞, ε) + log2(N)

(4.67)

by ignoring the −1 in the denominator of (4.66). Then, as the number of encoded sensor
readings is T = kτ , we conclude for the computation rate (see Definition 4.2)

R′ =
T

n
≤ k log2(p)
n
(

b0(f, ‖ · ‖∞, ε) + log2(N)
) =

R

b0(f, ‖ · ‖∞, ε) + log2(N)
.

Letting the nodes transmit their corresponding codewords

xi = E(wi[1], . . . ,wi[T ]) i = 1, . . . , N
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4 Reliable Computation Over Clustered Gaussian Networks

simultaneously over the Gaussian MAC results, by (4.34), in the decoding error proba-
bility

P(ĝ 6= g) ≤ P(z /∈ V(n)
c ) .

Since our coding scheme employs a code-sequence, {C(n)}n∈N, based on a sequence of
nested lattices chosen from Lemma 4.2 (see Section 4.2.3), we have that P(z /∈ V(n)

c ) → 0
exponentially fast in n as long as the message rate fulfills at each node

R =
k

n
log2(p) =

1
n

log2

(

Vol(V(n)
s )

Vol(V(n)
c )

)

=
1
2

log2

(

P

G(Λ(n)
s ) Vol(V(n)

c )2/n

)

(4.68)

<
1
2

log+
2

(

P

σ2
Z

)

− 1
2

log2

(

2πeG
(

Λ(n)
s

))

. (4.69)

Here, (4.68) follows from Definition 4.8 and the fact that each shaping lattice Λ(n)
s

is scaled such that its second moment equals the power constraint P , whereas (4.69)
is a consequence of the sequence of coding lattices {Λ(n)

c }n∈N being good for AWGN
channel coding (see Definition 4.9). Because the sequence {Λ(n)

s }n∈N is simultaneously
good for shaping (i.e., limn→∞ log2(2πeG(Λ(n)

s )) = 0), we therefore have P(ĝ 6= g) → 0
exponentially fast with growing n if

R <
1
2

log+
2

(

P

σ2
Z

)

.

Consequently, letting T , and thus k and p, grow appropriately with n, expression

P

(
T⋃

t=1

{

ĝ
(
s[t]

) 6= g̃
(
s[t]

)}
)

(4.70)

vanishes exponentially fast in n as well, provided that the computation rate

R′ <

1
2 log+

2

(

P
σ2

Z

)

b0(f, ‖ · ‖∞, ε) + log2(N)
= RC(f, ‖ · ‖∞, ε) , (4.71)

where g̃(s[t]) =
∑N

i=1 ϕ̃i(si[t]) and ĝ(s[t]) = Q−1(ĝ[t]), t = 1, . . . , T , are the correspond-
ing estimates at the FC.

Now, recall that D1(ĝ) = (ĝ[1], . . . , ĝ[T ]) and choose ĝ[t] = ĝ[t] for some fixed t ∈
{1, . . . , T} such that

ψ
(
ĝ
(
s[t]
)) 6= ψ

(
g̃
(
s[t]
))
.

Then, this choice implies
ĝ
(
s[t]

) 6= g̃
(
s[t]

)
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because ψ is a function. Summarizing all such outage events into the sets

A :=
{

ĝ ∈ Z
k
p

∣
∣
∣ ĝ(s) 6= g̃(s)

}

and B :=
{

ĝ ∈ Z
k
p

∣
∣
∣ψ
(
ĝ(s)

) 6= ψ
(
g̃(s)

)}

,

we have B ⊆ A and therefore P(B) ≤ P(A) due to the monotonicity of probability and
the measurability of ψ. Hence, we can conclude from (4.70) that for each t ∈ {1, . . . , T},

P

(

ψ
(
ĝ
(
s[t]
)) 6= ψ

(
g̃
(
s[t]

)))

= P

(

f̂
(
s[t]
) 6= f̃

(
s[t]

))

goes to zero exponentially fast in n, regardless of the choice of s[t] ∈ SN . Since almost
sure convergence implies convergence in probability (see Theorem B.4 in Appendix B),
we have for every δ > 0 that

T∑

t=1

P

(

sup
s[t]∈SN

∣
∣f̂
(
s[t]
)− f

(
s[t]

)∣
∣ > ε

)

< δ

if n is sufficiently large, which implies (4.7) due to the union bound.
From this, we conclude that the function-values f(s[1]), . . . , f(s[T ]) can be computed

with high probability within accuracy ε at a computation rate that is as close to the
right-hand side of (4.71) as desired. This proves the theorem.
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5
Robust Analog Computation of
Nomographic Functions

In light of practical constraints, a drawback of the considerations in the previous chap-
ters can be the implicit assumption that if spatially distributed transmit symbols are
put on the channel input, then the corresponding decoder observes the sum of these in-
puts at the channel output. Obviously, this is only satisfied with sensor nodes perfectly
synchronized on the symbol and phase level. In practical wireless sensor networks, how-
ever, it may be unreasonably difficult and expensive in terms of resource consumption
to ensure such a perfect synchronization [SBK05]. Hence, the question that remains
is how to beneficially exploit the interference property of the wireless channel in the
presence of practical impairments.

Towards this end, in this chapter we propose and analyze a novel computation scheme
that requires only a coarse frame synchronization and is therefore robust against syn-
chronization errors. It is a simple analog scheme in which

(i) each sensor node encodes its instantaneous real-valued message (sensor reading)
in the transmit power of a series of random signal pulses, and

(ii) the receiver estimates the function value directly from the corresponding received
real-valued sum energy.

As the WMAC output might be corrupted by fading, we assume for our initial con-
siderations that the sensor nodes carry out a transmitter-side channel inversion. This
generally requires that perfect channel state information (CSI) is available at sensor
nodes prior to transmission, which is difficult to provide in many WSN applications.
Therefore, in this chapter we also examine how much CSI is actually needed at the sen-
sor nodes in order to obtain accurate function-values. In this context, we consider FCs
that are equipped with multiple antennas so that spatial diversity can be utilized for en-
hancing the estimation quality. This is similar to the considerations in [BSTS12,JCS14],
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where the authors are interested in reliably detecting some environmental parameter
from the superimposed transmit signals observed by a multiantenna FC.

A computation scheme that is related to the one proposed in this chapter is given by
Mohammadi, Gohari, and Aghaeinia in [MGA12]. There, each node spreads its sensor
readings, modeled as binary random variables, prior to transmissions with a binary
signature waveform that is generated from the parity check matrix of some linear code.
Jakimovski, Schmidtke, Sigg, Weiss Ferreira Chaves, and Beigl follow a similar approach
in [JSS+12,SJB12] where the spreading sequences are chosen as sufficiently long pseudo-
random bit vectors instead.

The chapter is organized as follows. In Section 5.1 we present our novel analog
computation scheme for estimating nomographic functions over the wireless channel
and study its statistical behavior in Section 5.2. This analysis is used to define appro-
priate computation-receivers (i.e., estimators) for two canonical function examples of
great practical importance: the arithmetic mean and the geometric mean. Numerical
examples in Section 5.3 illustrate the statistical performance of the proposed scheme
and compare it with TDMA and CDMA-based computation methods. The question of
how much channel knowledge is actually needed at sensor nodes is then discussed in
Section 5.4. Finally, Section 5.5 provides a short summary and concludes the chapter.

Convention

A random variable X that is conditioned on a realization s of some random vector s

is shortly written as X|s. The log-normal distribution is denoted as LN (·, ·) whereas
χ2

m describes the Chi-squared distribution with m ∈ N degrees of freedom. The error
function and error function compliment are denoted as erf : R → [−1, 1], x 7→ erf(x)
and erfc : R → [0, 2], x 7→ erfc(x), respectively. The indicator function on some set A

is denoted as 1A : A → {0, 1}, where 1A(x) = 1 if x ∈ A and zero otherwise, and the
imaginary unit is denoted by the symbol i.

5.1 Random Sequences with Information Bearing

Transmit Powers

In this chapter, we model the sensor readings as continuous random variables Si ∈ S,
i = 1, . . . , N , where S := [smin, smax] ⊂ R again denotes some underlying compact
sensing range, and assume that the corresponding joint probability density

pS1,...,SN
: SN → R+ , (s1, . . . , sN ) 7→ pS1,...,SN

(s1, . . . , sN )

exists. For ease of notation, we shortly write ps(s) with s := (S1, . . . , SN ) ∈ SN denoting
the corresponding vector-valued random variable.

Each node, say node i, employs a computation-transmitter

Txi : S → C
n , Si 7→ x :=

(
Xi[1], . . . ,Xi[n]

)
(5.1)
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5.1 Random Sequences with Information Bearing Transmit Powers

that maps an instantaneous sensor reading to a sequence of n complex-valued channel
input symbols, subject to the maximum input cost constraint (2.4), that is,

∀i ∈ {1, . . . , N} : ̺n
(
xi[1], . . . , xi[n]

)
= max

1≤j≤n

∣
∣xi[j]

∣
∣
2 ≤ P (5.2)

for some P > 0. In relation to the WMAC in the complex baseband (see Definition 2.1
along with Remark 2.1), the FC receives the complex-valued sequence

Y [j] =
N∑

i=1

Hi[j]Xi[j] + Z[j] j = 1, . . . , n (5.3)

in which Hi[j] ∈ C and Z ∼ NC(0, σ2
Z) (iid over channel uses), for some σ2

Z > 0.

Remark 5.1. The WMAC is a symbol-synchronous channel similar to the standard
synchronous CDMA channel studied for instance in [VAT99, Ver98]. We would like to
emphasize, however, that the computation scheme proposed in this section does not
require such a synchronous channel and the only reason for assuming perfect synchro-
nization is to simplify the error analysis in Section 5.2 as well as the notation throughout
the chapter.

Now, let f ∈ N
0(SN ) be some given desired function. Then, the FC maps each

block of n channel output symbols to an estimate of a desired function-value, that is,

Rx : Cn → R ,
(
Y [1], . . . , Y [n]

) 7→ f̂(s) . (5.4)

In what follows, we choose the distortion measure (2.11) to be

dR
(
f̂(s), f(s)

)
=

∣
∣
∣
∣
∣

f̂(s) − f(s)
fmax − fmin

∣
∣
∣
∣
∣
, (5.5)

where fmax := maxs∈SN f(s) and fmin := mins∈SN f(s).1 In accordance with the
problem formulation given in Section 2.3, our objective is to design the computation-
transmitters (5.1) along with the computation-receiver (5.4) such that

P

(

dR
(
f̂(s), f(s)

) ≥ ε
)

< δ (5.6)

is fulfilled for some application-dependent constants ε, δ > 0 and all s ∈ SN .2 Note
that practical systems may tolerate distortions provided that they are small enough.
However, in many applications, the requirement cannot be met permanently due to, for

1Since SN is assumed to be a compact subset of RN and f ∈ N
0(SN) is continuous, it follows from

Theorem A.3 that fmax and fmin exist.
2Even though this outage constraint is, using the distortion measure (5.5), weaker than the supremum

distortion considered in the previous chapter (see for instance (4.8)), it will suffice for the needs in
this chapter.

89



5 Robust Analog Computation of Nomographic Functions

t′t

1 nnode 3

1 nnode N

1 nnode 2

1 nnode 1

Figure 5.1: Transmit sequences of nodes sent between two arbitrary measurement
times t and t′ without precise symbol- and phase-synchronization. The
shaded area depicts the region of maximum overlap.

instance, some random influences. In such cases, the main figure of merit is the outage
probability (5.6).

Computing nomographic functions over (5.3) seemingly requires a receiver-side con-
structive superposition of the transmit signals from different sensor nodes. However,
such a perfect synchronization at the symbol and phase level is notoriously difficult
to realize in wireless networks and in particular in large-scale wireless sensor networks
[SBK05]. Therefore, in the following we propose an analog computation scheme, consist-
ing of a computation-transmitter given in Section 5.1.1 as well as a computation-receiver
given in Section 5.1.2, that tolerates a coarse frame synchronization at the FC. This
is by far easier to establish and maintain than the perfect synchronization required by
traditional approaches.

The basic idea of the scheme consists in letting each sensor node transmit a distinct
complex-valued sequence of length n ∈ N at a transmit power that depends on the
pre-processed sensor reading. Under some conditions and employing a suitable pre-
processing strategy, the received energy at the FC equals the sum of all the transmit
energies corrupted by Gaussian noise. The application of an appropriately chosen post-
processing function then results, together with some simple arithmetic calculations (to
ensure certain estimation properties), in an immediate estimate of the desired func-
tion of the sensor readings. The coarse block-synchronization is needed to ensure a
sufficiently large overlap of the different signal frames, and accordingly of the different
transmit energies, as illustrated in Figure 5.1.

5.1.1 Analog Computation-Transmitter

Data Pre-Processing

As each pre-processed sensor reading is to be encoded in transmit power only, it is
necessary to apply a suitable bijective continuous mapping

gϕ : [ϕmin, ϕmax] → [0, P ]
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from the set of all pre-processed sensor readings onto the set of all feasible transmit
powers. Here and hereafter,

ϕmin := min
1≤i≤N

min
s∈S

ϕi(s)

ϕmax := max
1≤i≤N

max
s∈S

ϕi(s) ,

which both exist by Theorem A.3 because the pre-processing functions are continuous.
Note that even though the mapping gϕ depends on the pre-processing functions and
the sensing range, it is independent of i. This is necessary as the FC does not have
access to individual transmit signals but only to the WMAC output given by (5.3). We
call the quantity

Pi := gϕ
(
ϕi(Si)

)
(5.7)

the transmit power of node i and point out that it is a random variable whenever Si

is random. Moreover, we have Pi ≤ P and thus the information to be conveyed to the
FC is, for each i ∈ {1, . . . , N}, encoded in Pi.

Random Sequences

The transmit power (5.7) modulates a sequence of random symbols. In what follows, we
use vi :=

(
Vi[1], . . . , Vi[n]

) ∈ Cn to denote a sequence of random transmit symbols that
are independently generated by node i. The symbols of the sequence are assumed to
be of the form Vi[j] = expe(iΘi[j]), j = 1, . . . , n, where {Θi[j]} are continuous random
phases that are uniformly iid on [0, 2π). This implies ‖vi‖2

2 = n, for all i = 1, . . . , N , and
a constant envelope (i.e., |Vi[j]|2 = 1 for all i, j), which is a vital practical constraint.
We have two remarks.

Remark 5.2. Instead of optimizing the sequences assigned to different nodes, we con-
sider sequences

vi =
(

expe

(
iΘi[1]

)
, . . . , expe

(
iΘi[n]

))

i = 1, . . . , N

with random phases and constant envelope in order to reduce the overhead for coordi-
nation and to improve scalability when compared to systems with optimized sequences.
It is worth pointing out that the sequence design should be different from that for tra-
ditional asynchronous CDMA systems [Ver98, VAT99, SWB06], where the objective is
to eliminate or mitigate the detrimental impact of inter-user interference. In contrast,
sequences for CoMAC schemes should be designed to harness interference for a common
goal, which is the computation of functions of sensor readings.

Remark 5.3. Note that the assumption of continuous random phases is not necessary
for our CoMAC scheme to be implemented. Without loss of performance, the phases
can take on values on any discrete subset of [0, 2π) provided that the resulting sequences
are zero-mean.
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gϕϕi
Si Pi

Txi

√·

eiΘi[j]

1/Hi[j]

Xi[j]

Figure 5.2: Block diagram of the analog computation-transmitter of sensor node i,
i = 1, . . . , N .

Transmitter-Side Channel Inversion

According to (5.3), the WMAC output, and thus the computation result, is contam-
inated by fading. Since a receiver-side elimination of this is generally infeasible, we
suggest that each transmitter corrects the fading impact by inverting its channel to the
FC. To this end, CSI is necessary at each transmitter, which can be estimated from
a known pilot signal transmitted by the FC. In practical systems, the pilot signal can
also be used to wake up sensor nodes and initiate the computation process. Assume
Hi[j] 6= 0 for all i, j. Then, with CSI available at the nodes and the transmit powers
given by (5.7), the WMAC input of node i at some channel use j takes the form

Xi[j] =

√
Pi

Hi[j]
Vi[j] =

√

gϕ

(

ϕi(Si)
)

Hi[j]
expe

(
iΘi[j]

)
, (5.8)

from which we conclude for the transmit vector if node i (see (5.1))

x = Txi(Si) =
√

Pi

(

Hi[1]−1eiΘi[1], . . . ,Hi[n]−1eiΘi[n]
)

.

See Figure 5.2 for a block diagram.

Remark 5.4. In Section 5.4 it is shown that dividing by the channel magnitude |Hi[j]|
is sufficient. Hence, estimating the channel phase is generally not necessary.

Remark 5.5. Notice that each node i with Pi/|Hi[j]|2 > P for some j cannot invert
its channel under the power constraint and must therefore be excluded from transmis-
sions associated with the current measurement instant. One possibility to mitigate the
problem is to scale down all transmit powers by the same constant so that the power
constraint is satisfied. Of course, this impacts the performance in noisy channels and
requires some degree of coordination. We are not going to dwell on this point and
assume in the following that the set of nodes is chosen such that each node can invert
its own channel without violating the power constraint.

5.1.2 Analog Computation-Receiver

As mentioned before (see Remark 5.1), in order to avoid cumbersome notation and to
simplify the error analysis in the next section, we assume a perfect synchronization
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5.1 Random Sequences with Information Bearing Transmit Powers

of signals from different nodes at the FC. The reader, however, may easily verify that
the proposed computation scheme based on a simple energy estimator is insensitive to
the lack of synchronization provided that a significant overlap of different signal frames
(i.e., a coarse frame-synchronization) is ensured as illustrated in Figure 5.1. We also
point out that the assumption of perfect synchronization has been widely used when
analyzing asynchronous CDMA systems [Ver98].

Equivalent WMAC

With this assumption, the vector of receive symbols follows from (5.3) with (5.8) to

y =
(
Y [1], . . . , Y [n]

)
=

N∑

i=1

√

Pi v + z , (5.9)

where z := (Z[1], . . . , Z[n]) ∼ NC(0, σ2
ZIn), 0 < σ2

Z < ∞. The observation vector
in (5.9) is a basis for estimating the desired function value f(S1, . . . , SN ). Note, how-
ever, that the information about the pre-processed sensor readings is contained in the
transmit powers (5.7) so that on the basis of the observation y, the sum-energy given
by

‖y‖2
2 = n

N∑

i=1

Pi +
N∑

i=1

N∑

i′=1
i′ 6=i

√

PiPi′ v
H

i vi′

︸ ︷︷ ︸

=:∆1∈R

+ 2
N∑

i=1

√

Pi Re
{
v

H

i z
}

︸ ︷︷ ︸

=:∆2∈R

+ z
H

z
︸︷︷︸

=:∆3∈R+

(5.10)

is a sufficient statistic for the sum
∑N

i=1 ϕi(si) of pre-processed sensor readings. As
a consequence, instead of (5.3), we can equivalently consider the real-valued additive
noise channel (5.10), which is formally expressed as

W ′ : RN
+ → R+ , (P1, . . . , PN ) 7→ W ′(P1, . . . , PN ) = Y ′ = n

N∑

i=1

Pi + ∆ , (5.11)

where ∆ := ∆1 +∆2 +∆3 ∈ R and Y ′ := ‖y‖2
2. Note that in all that follows, we consider

the channel in (5.11).

Signal Post-Processing

Before applying the post-processing function to the equivalent channel output Y ′, the
receiver has to remove the influence of the function gϕ, which was used at the transmit-
ting nodes in order to map the sensing range onto the set of feasible transmit powers.
In other words, if ∆ ≡ 0, an application of the post-processing function has to perfectly
reconstruct the sought function value, which is expected from every computation or
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‖ · ‖2
2

y

Rx

ψhϕ

1

2

f̂(S1, . . . , SN )

1/E
{

ψ
(

∆3

αgeon

)}

−E

{

ψ
(

∆3

αaritn

)}

Figure 5.3: Block diagram of the analog computation-receiver for computing either
the arithmetic mean (switch position 1) or the geometric mean (switch
position 2). Functions hϕ and ψ depend on the choice of the desired
function and should be chosen according to Definitions 5.1 and 5.2.

transmission scheme. Now, an examination of (5.11) with (5.7) shows that given gϕ, ψ
and ϕ1, . . . , ϕN , we need to apply a function hϕ : R → R to (5.11) such that

ψ

(

hϕ

(

n
N∑

i=1

gϕ
(
ϕi(si)

)

))

≡ ψ

(
N∑

i=1

ϕi(si)

)

. (5.12)

Thus, given the respective pre- and post-processing functions, we can compute every
desired function f ∈ N

0(SN ) at zero distortion if ∆ ≡ 0 and the pair (gϕ, hϕ) satisfies
(5.12). The following proposition provides a necessary and sufficient condition for the
functions to fulfill (5.12).

Proposition 5.1. Let N ≥ 2 and f ∈ N
0(SN ) be arbitrary. Then, (5.12) holds for

some given ψ,ϕ1, . . . , ϕN if and only if gϕ and hϕ are affine functions with hϕ ≡ g−1
ϕ −c,

where the constant c ∈ R depends on gϕ.

Proof. The proof is deferred to Appendix 5.A.1 at the end of the chapter.

In addition to the components mentioned above, the signal post-processing requires
a further component that takes into account the statistics of the transformed effective
noise ∆ (transformed by hϕ and ψ), as it is illustrated in Figure 5.3. A more detailed
explanation of this part of the computation-receiver as well as examples of the data
pre-processing and the signal post-processing functions for the arithmetic mean and
the geometric mean are given in Sections 5.2.2 and 5.2.3.

5.2 Outage Analysis

This section is devoted to the performance analysis of the proposed analog computa-
tion scheme in terms of the outage probability (5.6). First, we show that for sufficiently
many channel uses n, the distribution of the computation noise ∆ can be approximated
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5.2 Outage Analysis

by a normal distribution. Since the distortion (5.5) is strongly influenced by the post-
processing function ψ, and with it by the choice of the desired function f , we confine our
attention in the following subsections to two special cases of great practical importance:
the arithmetic mean and the geometric mean. Note that these two functions are canon-
ical representatives of the basic arithmetic operations summation and multiplication.
For both cases, we define appropriate receivers/estimators (5.4) by taking statistical
properties of the transformed effective noise ∆ (transformed by hϕ and ψ) into account,
prove some properties and provide accurate approximations of the corresponding outage
probabilities.

5.2.1 Approximation of the Effective Noise Distribution

The statistics of the effective noise in (5.11) play a key role when defining an estimator
f̂ for some desired function f ∈ N

0(SN ) as well as when evaluating the performance
of the proposed CoMAC scheme. Since the exact distribution of ∆ = ∆1 + ∆2 + ∆3

conditioned on the sensor readings s = s is difficult to determine, we focus on suitable
asymptotic approximations.

Towards this end, let us first compute the first and second statistical moments of ∆1,
∆2 and ∆3. As far as ∆1 is concerned, we have

∆1 =
N∑

i=1

N∑

i′=1
i′ 6=i

n∑

j=1

√

PiPi′ V ∗
i [j]Vi′ [j] = 2

K∑

k=1

n∑

j=1

√

P ′
k cos

(
Θ′

k[j]
)

︸ ︷︷ ︸

=:Ck[j]

, (5.13)

where K := N(N − 1)/2, P ′
k := PiPi′ and Θ′

k[j] := (Θi′ [j] − Θi[j]) mod 2π the random
phase difference between nodes i and i′ at channel use j. The mapping (i, i′) 7→ k is
obtained by

k = k(i, i′) = i′ + (i− 1)N − i(i+ 1)/2 ,

i = 1, . . . , N − 1 and i′ = i+ 1, . . . , N , respectively.
By convolution of the densities of Θi′ [j] and Θi[j], Θ′

k[j] is uniformly iid over [0, 2π).
Hence, the probability density of each Ck[j] in (5.13) is3

pC(c) =
1

π
√

1 − c2
1(−1,1)(c) , (5.14)

which is symmetric around zero. This implies ∀j, k : E{Ck[j]} = 0 and therefore

E{∆1} = 2
K∑

k=1

n∑

j=1

E

{√

P ′
k

}

E
{
Ck[j]

}
= 0 .

Furthermore,

Var{∆1} = 4
K∑

k=1

n∑

j=1

E
{
P ′

k

}
Var

{
Ck[j]

}
= 2n

K∑

k=1

E
{
P ′

k

}
(5.15)

3Note that by the definitions, all the probability density functions and expected values in this section
exist.
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since ∀j∀k 6= k′ : Cov{Ck[j], Ck′ [j]} = 0 and ∀j, k : Var{Ck[j]} = 1/2, where the latter
can be concluded by considering (5.14).

As for the second noise component ∆2, we have

∆2 = 2
N∑

i=1

√

Pi Re
{

v
H

i z
}

= 2
N∑

i=1

2n∑

j=1

√

Pi UijZ
′
j ,

where

Uij :=

{

cos
(
Θi[j]

)
j odd

sin
(
Θi[j]

)
j even

and Z ′
j :=

{

Re
{
Z[j]

}
j odd

Im
{
Z[j]

}
j even

.

Notice that ∀j : Z ′
j ∼ NR(0, σ2

Z/2) and the probability density of Uij is given by
(5.14). Because Uij and Z ′

j are zero mean and independent for all i, j, it follows for the
expectation value

E{∆2} = 2
N∑

i=1

2n∑

j=1

E
{√

Pi

}

E{Uij}E{Z ′
j} = 0 .

Arguing along similar lines as in the case of ∆1, the variance of ∆2 can be easily shown
to be

Var{∆2} = 4
N∑

i=1

2n∑

j=1

E{Pi}Var{Uij}Var{Z ′
j} = 2nσ2

Z

N∑

i=1

E{Pi} . (5.16)

Since ∆3 =
∑n

j=1 |Z[j]|2 ∼ χ2
2n, we finally conclude E{∆3} = nσ2

Z and

Var{∆3} = nσ4
Z . (5.17)

Lemma 5.1. ∆1, ∆2 and ∆3 are mutually orthogonal (in the Hilbert space of random
variables with the inner product defined to be 〈∆j ,∆j′〉 ≡ E{∆j∆j′}).

Proof. Since the sensor readings, the sequence symbols and the noise are mutually
independent random variables with E{Z[j]} = 0 for all j, a straightforward calculation
of the covariances between ∆1 and ∆2 as well as between ∆2 and ∆3 proves the lemma.

The above derivations show that E{∆} = nσ2
Z whereas by Lemma 5.1, the variance

of ∆ is the sum of the variances (5.15), (5.16) and (5.17). Thus,

σ2
∆ := Var{∆} = 2n

K∑

k=1

E
{

P ′
k

}

+ 2nσ2
Z

N∑

i=1

E
{

Pi

}

+ nσ4
Z . (5.18)

96



5.2 Outage Analysis

Note that when conditioned on a realization of the sensor readings (i.e., s = s), the
variance in (5.18) yields

σ2
∆|s := E

{

(∆ − E{∆})2 ∣∣ s = s
}

= 2n
K∑

k=1

p′
k + 2nσ2

Z

N∑

i=1

pi + nσ4
Z . (5.19)

As mentioned at the beginning of this section, we were not able to determine the
exact distribution of the effective noise ∆, which includes various terms with different
distributions. However, since the number of summands J := N(N − 1)n/2 + 2Nn+ 2n
in the definition of ∆ is, already for small values of N and n, relatively large, we argue
that it is well-founded to invoke the central limit theorem so as to approximate the
conditional distribution by a normal distribution. The following proposition proves the
corresponding convergence as n → ∞.

Proposition 5.2. Let ∆|s be the effective noise according to (5.10) and (5.11) condi-
tioned on the sensor readings s = s with E{∆ | s = s} = nσ2

Z, 0 < σ2
Z < ∞, and σ2

∆|s
as defined in (5.19). Then, for every fixed N,P < ∞ and some compact sensing range
S, we have

∀s ∈ SN :
∆|s − nσ2

Z

σ∆|s

d−→ NR(0, 1)

as n → ∞, where
d−→ denotes the convergence in distribution.4

Proof. The proof is postponed to Appendix 5.A.2.

According to Remark B.1 in Appendix B, Proposition 5.2 implies the uniform conver-
gence of the sequence of distribution functions associated with {∆|s}n∈N. Therefore, we
can conclude that the distribution of ∆|s can be approximated by a normal distribution
provided that n is sufficiently large. This is summarized in a corollary.

Corollary 5.1. If the block length, n, is sufficiently large, ∆|s is close to ∆̃|s ∼
NR(nσ2

Z , σ
2
∆|s) in distribution.

Remark 5.6. It turns out by a simple but lengthy calculation that for finite N,P, σ2
Z ,

the conditions of the Berry-Esseen theorem (see Theorem B.8) are satisfied, which allows
us to conclude, with regard to (B.3), that the convergence rate in Proposition 5.2 is of
the order O(1/

√
n). Our numerical experiments in Section 5.4.3 demonstrate that the

approximation stated in Corollary 5.1 is already justified for small values of n and most
cases of practical interest.

Remark 5.7. The equivalent channel given in (5.11) is asymptotically, in the block
length n, a Gaussian MAC.

4See Definition B.5 in Appendix B.
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5.2.2 Arithmetic Mean Analysis

First, we define a suitable arithmetic mean receiver based on the observation of the
equivalent channel output Y ′ (see (5.11)). Subsequently, we analyze the corresponding
outage performance.

Definition 5.1 (Arithmetic Mean Receiver). Let f be the desired function “arithmetic
mean” (see Example 3.1) and let the expected value E{ψ(∆3/(αaritn))} = σ2

Z/(αaritN)
be known a priori to the FC, where αarit := P

smax−smin
. Then, given some block length

n ∈ N, the estimate f̂n(s) of f(s) is defined to be

f̂n(s) = Rx(Y ′) := ψ
(
hϕ(Y ′)

)− E
{
ψ
(
∆3/(αaritn)

)}
. (5.20)

Writing n
∑

i gϕ(ϕi(si)) = n
∑

i pi =: y′, we have

• Data pre-processing: ∀i ∈ {1, . . . , N} : ϕi(s) = s, gϕ(s) = αarit(s − smin), ϕmin =
smin, ϕmax = smax,

• Signal post-processing: hϕ(y′) = y′

nαarit
+Nsmin =: y′′ and ψ(y′′) = y′′/N .

The arithmetic mean receiver is depicted in Figure 5.3 with the switch in position 1.
Now, we provide two statements in order to show that the arithmetic mean receiver

of Definition 5.1 is meaningful as it has the two most desired properties: unbiasedness
and consistency.

Proposition 5.3. The computation-receiver of Definition 5.1 is unbiased. That is, we
have

∀n ∈ N ∀s ∈ SN : E
{

f̂n(s)
∣
∣
∣ s = s

}

= f(s) .

Proof. The proof is given in Appendix 5.A.3.

Proposition 5.4. Let N,P, σ2
Z < ∞ be arbitrary but fixed and let f̂1, f̂2, . . . be a se-

quence generated from (5.20). Then, the arithmetic mean receiver of Definition 5.1 is
consistent. That is,

∀s ∈ SN : f̂n(s) P−→ f(s) ,

where
P−→ denotes convergence in probability (see Definition B.3 in Appendix B).

Proof. The proof is deferred to Appendix 5.A.4.

Proposition 5.4 permits us to conclude that for every given pair ε, δ > 0 there exists
n0 = n0(ε, δ) such that the outage constraint (5.6) is fulfilled for all n ≥ n0 and all
s ∈ SN . Since this is only a qualitative statement based on the rather loose bound
(5.46) provided in the proof of Proposition 5.4, it tells little about how rapidly the
outage probability vanishes with growing n. It turns out that a better approach is
to invoke Proposition 5.2 in order to approximate the outage probability by using a
transformed normal distribution. Note that as we have fmax = smax and fmin = smin,
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the distortion of the arithmetic mean conditioned on the sensor readings s = s has the
form (see (5.5))

∣
∣Dn|s

∣
∣ := dR

(
f̂n(s), f(s)

)
=

∣
∣
∣
∣
∣

f̂n(s) − f(s)
smax − smin

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∆|s − nσ2
Z

nNP

∣
∣
∣
∣
∣
. (5.21)

The Mann-Wald theorem (see Theorem B.5 of Appendix B) guarantees that for every

real-valued continuous function h, one has h(Xn) d→ h(X) whenever Xn
d→ X. We can

therefore conclude from Corollary 5.1 that for sufficiently large values of n, Dn|s can
be approximated (in distribution) by a random variable

D̃n|s ∼ NR

(

0 ,
σ2

∆|s
(nNP )2

)

with conditional distribution function

PD̃n|s : R → [0, 1] , ξ 7→ PD̃n|s(ξ) := P

(

D̃n ≤ ξ
∣
∣ s = s

)

=
1
2

[

1 + erf

(

nNPξ

σ∆|s
√

2

)]

.

Since the absolute value is a continuous function as well, we obtain for arbitrary ε > 0
and sufficiently large n

P

(

dR
(

f̂(s), f(s)
) ≥ ε

∣
∣ s = s

)

≈ P

(∣
∣D̃n

∣
∣ ≥ ε

∣
∣ s = s

)

= 1 − PD̃n|s(ε) + PD̃n|s(−ε)

= erfc

(

nNPξ

σ∆|s
√

2

)

, (5.22)

where we used the fact that erf(−x) = − erf(x) for all x ∈ R.
Now, one could examine the accuracy and the behavior of (5.22) for different values

of n and s. We find it more convenient, however, to consider, in the numerical examples
Section 5.3, the average with regard to some density ps(s), that is, the total probability

P
(∣
∣Dn

∣
∣ ≥ ε

)
= Es

{

P

(

dR
(
f̂(s), f(s)

) ≥ ε
∣
∣ s

)}

≈
∫

SN
erfc

(

nNP ξ

σ∆|s

√
2

)

ps(s) ds .5 (5.23)

Remark 5.8. Note that by compactness of S, it follows from Proposition 5.4 along
with the theorem on dominated convergence (see Theorem B.6) that

lim
n→∞

Es

{

P

(

dR
(
f̂(s), f(s)

) ≥ ε
∣
∣ s

)}

= Es

{

lim
n→∞

P

(

dR
(
f̂(s), f(s)

) ≥ ε
∣
∣ s

)}

= 0 .

5The right-hand side is a compact notation for the multiple Riemann integral
∫

S

· · ·

∫

S

erfc(·)pS1,...,SN
(s1, . . . , sN ) ds1 · · · dsN ,

which exists as the integrand is bounded.
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5.2.3 Geometric Mean Analysis

As in the preceding subsection, we first define a geometric mean receiver including the
required data pre-processing and signal post-processing functions.

Definition 5.2 (Geometric Mean Receiver). Let the sensing range be S = [smin, smax]
with smin > 0 and f the desired function “geometric mean” be defined as in Example 3.2.
Furthermore, let the expected value E{ψ(∆3/(αgeon))} be a priori known to the FC (see
Lemma 5.2 below) with αgeo := P

loge(smax)−loge(smin) . Then, given n ∈ N, the estimate

f̂n(s) of f(s) is defined to be

f̂n(s) = Rx(Y ′) :=
ψ
(
hϕ(Y ′)

)

E
{
ψ
(
∆3/(αgeon)

)} = f(s)
ψ
(
∆/(αgeon)

)

E
{
ψ
(
∆3/(αgeon)

)} . (5.24)

Writing n
∑

i gϕ(ϕi(si)) = n
∑

i pi =: y′, we have

• Data pre-processing: ∀i ∈ {1, . . . , N} : ϕi(s) = loge(s), ϕmin = loge(smin), ϕmax =
loge(smax), and gϕ(loge(s)) = αgeo(loge(s) − loge(smin)).

• Signal post-processing: hϕ(y′) = y′

nαgeo
+N loge(smin) =: y′′ and ψ(y′′) = expe

(
y′′

N

)

.

The geometric mean receiver is shown in Figure 5.3 with the switch in position 2.
As mentioned in the definition, our computation-receiver requires to know the ex-

pected value E{ψ(∆3/(αgeon))} in advance, which is explicitly given in part (i) of the
following lemma. Part (ii) is used in the proof of Proposition 5.5.

Lemma 5.2. Let αgeo be such as in Definition 5.2. Suppose that σ2
Z < αgeoNn. Then,

(i) λn := E
{
ψ
(
∆3/(αgeon)

)}
=
(

αgeoNn
αgeoNn−σ2

Z

)n

(ii) lim
n→∞

λn = expe

(
σ2

Z
αgeoN

)

.

Proof. The proof is deferred to Appendix 5.A.5.

We point out that the expected value λn exists if σ2
Z < αgeoNn holds, which is usually

fulfilled in practical situations and therefore assumed in what follows.
With (5.24), the distortion of the geometric mean conditioned on the sensor readings

s = s becomes

∣
∣Dn|s

∣
∣ := dR

(
f̂n(s), f(s)

)
=

∣
∣
∣
∣
∣

f̂(s) − f(s)
fmax − fmin

∣
∣
∣
∣
∣

=
∣
∣
∣
∣

1
γ(s)

Ξ|s − β(s)
∣
∣
∣
∣ =

∣
∣
∣
∣β(s)

(
Ξ|s
λn

− 1
)∣
∣
∣
∣ ,

(5.25)
where we used the following notation: fmax = smax, fmin = smin, β(s) := f(s)/(smax −
smin), γ(s) := λn/β(s) and Ξ|s := ψ(∆|s/(αgeon)).
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Note that the receiver of Definition 5.2 is not necessarily unbiased but it offers the
advantage of a simple implementation in practical systems. In contrast, the receiver

f̂ ′
n(s) = Rx

′(Y ′) :=
ψ
(

hϕ(Y ′)
)

E
{
ψ
(
∆/(αgeon)

)} (5.26)

is unbiased but not applicable in practice because, opposed to the expected value in
(5.24), E

{

ψ
(

∆/(αgeon)
)}

depends on the effective noise and thus on the distribution
of the sensor readings, which is usually unknown at the FC. Although (5.24) is not
unbiased, the following proposition shows that it is consistent.

Proposition 5.5. For some fixed N,PZ , σ
2
Z < ∞ and arbitrary s ∈ SN , the sequence

f̂1, f̂2, . . . of geometric mean receivers proposed in Definition 5.2 is consistent.

Proof. The proof can be found in Appendix 5.A.6.

Remark 5.9. Notice that the proposition implies that the proposed geometric mean
receiver (5.24) is asymptotically unbiased, that is, we have

∀s ∈ SN : lim
n→∞

E

{

f̂n(s)
∣
∣ s = s

}

= f(s) .

As a consequence, (5.24) and (5.26) are asymptotically equivalent. Additionally, the
proposition implies, in conjunction with the compactness of S and Theorem B.6, that

lim
n→∞P

(|Dn| ≥ ε
)

= lim
n→∞Es

{

P

(

|Dn| ≥ ε
∣
∣ s

)}

= Es

{

lim
n→∞P

(

|Dn| ≥ ε
∣
∣ s

)}

= 0 .

Unfortunately, P(|Dn| ≥ ε) cannot be exactly evaluated because we are not able to
determine the exact distribution function of |Dn| =

∣
∣ 1

γ(s)Ξ−β(s)
∣
∣. For this reason, as in

the preceding subsection, we approximate the distribution of Ξ|s by a transformed nor-
mal distribution since in contrast to the arithmetic mean case Ξ|s depends nonlinearly
on the conditioned effective noise ∆|s.

Lemma 5.3. Let N < ∞, S be compact and n sufficiently large. Then, Ξ|s can
be approximated (in distribution) by a random variable Ξ̃|s ∼ LN (µΞ, σ

2
Ξ|s), where

µΞ := σ2
Z/(αgeoN) and σ2

Ξ|s := σ2
∆|s/(αgeoNn)2, respectively.

Proof. The proof is deferred to Appendix 5.A.7.

With Lemma 5.3 in hand, we are now in a position to provide an approximation of
P(|Dn| ≥ ε), which is given in the following proposition.

Proposition 5.6. Consider the proposed geometric mean receiver (5.24) and suppose
that |Dn| is the corresponding distortion. For some s ∈ SN , let µΞ and σ2

Ξ|s be given

by Lemma 5.3 and let β(s), γ(s) > 0 such as defined in (5.25). Then, for n sufficiently
large, the outage probability P(|Dn| ≥ ε) can be approximated, for arbitrary ε > 0, by

P
(∣
∣Dn

∣
∣ ≥ ε

) ≈ P

(∣
∣D̃n

∣
∣ ≥ ε

)

=
∫

SN
P

(∣
∣D̃n

∣
∣ ≥ ε

∣
∣ s = s

)

ps(s) ds (5.27)
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with P
(|D̃n| ≥ ε | s = s

)

equal to

1
2

[

2 + erf

(

loge

(
ρ−(s, ε)

)− µΞ√
2σΞ|s

)

− erf

(

loge

(
ρ+(s, ε)

) − µΞ√
2σΞ|s

)]

(5.28)

for 0 < ε < β(s) and equal to

1
2

erfc

(

loge

(
ρ+(s, ε)) − µΞ√

2σΞ|s

)

(5.29)

for β(s) ≤ ε < ∞, respectively, where ρ−(s, ε) := γ(s)
(
β(s) − ε

)
and ρ+(s, ε) :=

γ(s)
(
β(s) + ε

)
.

Proof. The proof is postponed to Appendix 5.A.8.

In Section 5.3.1, we choose a particular density ps(s) and evaluate (5.27) numerically
to indicate the accuracy of the approximation for different network parameters.

5.3 Numerical Examples

The objective of this section is twofold. First, in Section 5.3.1 we show that the ap-
proximations of Section 5.2 are sufficiently accurate, and second, in Section 5.3.2 we
compare the proposed analog computation scheme with a TDMA-based and a CDMA-
based scheme (i.e., two separation-based strategies) in order to show the huge potential
for performance gains in typical sensor network operating points.

As a basis, we consider a classical environmental monitoring scenario in which the FC
is interested in the arithmetic mean or geometric mean of temperature measurements
carried out by a number of sensor nodes that are distributed over some geographical area.
Towards this end, we assume that all nodes are equipped with a low-power temperature
sensor operating in a typical sensing range S = [−55 ◦C, 130 ◦C] [STM09].

5.3.1 Approximation Accuracy

To assess the accuracy of the approximated outage probabilities, we consider two sce-
narios: one in which the FC estimates the arithmetic mean, and another where the
geometric mean is desired. Accordingly, we compare the approximations (5.23) and
(5.27) with Monte Carlo evaluations of the true outage probability P(|Dn| ≥ ε) based
on 104 realizations. Note that for both simulation examples, the power constraint P and
the noise variance σ2

Z have been chosen in agreement with commercial IEEE 802.15.4
compliant sensor platforms [Ins07].

Example 5.1 (Arithmetic Mean). Let the number of channel uses chosen to be n =
25, 50, 150, 250, the number of nodes as N = n, and the sensor readings uniformly iid
on the interval [1 ◦C, 30 ◦C], which is a subset of the above-specified sensing range S.
The resulting experimental data is depicted in Figure 5.4. △
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Figure 5.4: Monte Carlo evaluation of the outage probabilities (104 simulation runs)
versus analytical results for the desired function “arithmetic mean” and
different values n = N .

The plots in Figure 5.4 show that the approximation (5.23) closely matches the
true outage probability P(|Dn| ≥ ε) for all ε > 0. Notice that already for relatively
few channel uses n differences between the analytical expression and the Monte Carlo
simulations are negligible. Furthermore, the plots confirm the consistency statement of
Proposition 5.4 because the probability curves tend to the ordinate axis with growing n.

Example 5.2 (Geometric Mean). Let S ′ := [0.5 ◦C, 130 ◦C] ⊂ S be the restricted
sensing range for desired function “geometric mean”, the sensor readings uniformly iid
on [1 ◦C, 30 ◦C] ⊂ S ′, and all other simulation parameters as in Example 5.1.6 The
resulting experimental data is depicted in Figure 5.5. △

Similar as for Example 5.1, the plots in Figure 5.5 indicate that expression (5.27), in
conjunction with (5.28) and (5.29), approximates the true outage probability sufficiently
accurate with a deviation that is negligible also for small values of n. Even though
the geometric mean receiver (5.24) is applicable in practice, it has the drawback that
unbiasedness is achieved only asymptotically as the number of channel uses, n, tends to
infinity. To quantify this drawback, Figure 5.5 also depicts Monte Carlo evaluations of
P(|Dn| ≥ ε) based on the unbiased (but impractical) computation receiver (5.26). Note
that the drawback vanishes quickly with increasing n, which confirms the statements
of Proposition 5.5 and Remark 5.9.

Remark 5.10. Propositions 5.4 and 5.5 as well as Examples 5.1 and 5.2 demonstrate
that the block length n (i.e., the number of channel uses) is the crucial design pa-

6Notice that S ′ is necessary since the geometric mean cannot be continuously extended onto the entire
sensing range S = [−55 ◦C, 130 ◦C].
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Figure 5.5: Monte Carlo evaluation of the outage probabilities (104 simulation runs)
versus analytical results for the desired function “geometric mean” and
different values n = N .

rameter that determines the trade-off between computation accuracy and achievable
computation rate.

5.3.2 Comparisons with TDMA and CDMA

The numerical examples in the preceding subsection indicate the general behavior of
the proposed analog computation architecture without concrete evidence regarding the
computation performance compared to standard separation-based strategies. Therefore,
in this subsection we demonstrate the advantage of the proposed analog computation
architecture over idealized uncoded TDMA and CDMA schemes. In both cases, each
node quantizes its sensor readings uniformly over S with k ∈ N bits and transmits them
to the FC as bipolar symbol streams. The FC then reconstructs all individual readings
in order to compute the sought function value afterwards.

TDMA

To ensure fairness between CoMAC and TDMA, with fixed degrees of freedom (e.g.,
bandwidth, symbol duration), both schemes should induce the same costs per function
value computation with respect to transmit energy and transmit time. Therefore, let
T ∈ R++ be the common symbol duration and let PTDMA,i ∈ R++ denote the TDMA
transmit power of node i, i = 1, . . . , N . Then, the transmission times per function value
are TCoMAC = nT and TTDMA = kNT whereas the transmit energies can be written
as ECoMAC,i = nPiT and ETDMA,i = kPTDMA,iT , respectively. Now, from the fairness
conditions TCoMAC = TTDMA and ECoMAC,i = ETDMA,i, for all i, it follows n = kN for
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Figure 5.6: CoMAC vs. TDMA: outage probabilities for computing the “arithmetic
mean” in a network of N = 25 nodes, quantization with k = 10 bits (in the
case of TDMA), n = kN channel uses, and SNRdB

TDMA = 0, 2, 4, 6, 8, 10.

the number of channel uses and

PTDMA,i =
nPi

k
=
ngϕ

(
ϕi(Si)

)

k
i = 1, . . . , N

for the required TDMA transmit powers.
In addition to the fairness aspect, an adequate comparison requires the determination

of a common system operating point, which can be done in terms of an average SNR.
Assume for simplicity that the sensor readings, Si, are iid on S for all i = 1, . . . , N such
that the average received TDMA-SNR per node can be defined as7

SNRTDMA :=
2nE{P1}
kσ2

Z

. (5.30)

Example 5.3 (Small Network Size). Let N = 25, k = 10 bits, the number of channel
uses n = kN , and let P and σ2

Z be chosen such that

SNRdB
TDMA := 10 log10 (SNRTDMA) ∈ {0, 2, 4, 6, 8, 10} .

Furthermore, let the sensor readings be uniformly iid over [5 ◦C, 30 ◦C], which is a proper
subset of the sensing range, and let the desired function be the “arithmetic mean”. The
corresponding simulation data is depicted in Figure 5.6. △
Example 5.4 (Medium Network Size). Let N = 250, the desired function be “geomet-
ric mean” with S ′ = [1 ◦C, 130 ◦C] ⊂ S, and let all other simulation parameters as in
Example 5.3. The corresponding simulation data is shown in Figure 5.7. △

7The factor of 2 in (5.30) and (5.31) results from the fact that the considered TDMA- and CDMA-
based approaches use, in contrast to the analog computation scheme presented in this chapter, only
one real dimension per transmission.
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Figure 5.7: CoMAC vs. TDMA: outage probabilities for computing the “geometric
mean” in a network of N = 250 nodes, quantization with k = 10 bits (in
the case of TDMA), n = kN channel uses, and SNRdB

TDMA = 0, 2, 4, 6, 8, 10.

Figures 5.6 and 5.7 indicate the huge potential of the proposed analog CoMAC scheme
for efficiently computing linear and nonlinear functions over the wireless channel. In
both examples, CoMAC entirely outperforms TDMA with respect to the computation
accuracy for different network parameters. It should be clear that the shown perfor-
mance gains can be traded off for better computation rate or higher energy efficiency.

Remark 5.11. It is important to emphasize that the shown performance gains are
quite conservative since the simulated TDMA scheme was idealized in many ways. For
example, a realistic TDMA would require an established protocol stack with consid-
erable amount of overhead per frame (e.g., header, synchronization information, check
sum) so that the overall TDMA transmission time would extend to TTDMA = (k+k′)NT
for some k′ ∈ N.

CDMA

In contrast to the TDMA-based approach in which the sensor readings are transmitted
to the FC in an interference-free manner, the nodes can employ the direct-sequence
CDMA principle [Rap02, pp. 331-333] to also transmit concurrently in the same fre-
quency band. Therefore, to compare a CDMA-based approach with our analog Co-
MAC scheme, for CDMA let each node spread its quantized sensor readings prior to
transmission with an individual fixed bipolar Welch-bound-equality (WBE) sequence
of length ñ ∈ N. In particular, we assume that the WBE sequences are constructed
according to [MM93] from some maximum-length sequence.8 The FC estimates all sen-

8A maximum-length sequence (or m-sequence) is a binay pseudo-noise sequence that is generated by
means of a linear feedback shift register with m states, m ∈ N. They owe their name from the fact
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Figure 5.8: CoMAC vs. CDMA: outage probabilities for quantization with k =
10 bits (in the case of CDMA), N = 256 nodes, n = 150 channel uses,
SNRdB

CDMA = 0, 2, 4, 6, 8, 10 dB, and desired function “geometric mean”.

sor readings from the received signal using the standard CDMA matched-filter receiver
[Ver98, pp. 56-60], which in conjunction with WBE sequences becomes an optimal linear
minimum mean square error receiver.

To make the comparison fair, we again assume that both schemes induce the same
costs per function-value computation, from which it follows that CoMAC has to use
the channel exactly n = kñ times. This in conjunction with equally set transmit
powers (i.e., PCDMA,i = Pi = gϕ(ϕi(Si)), i = 1, . . . , N), and Si uniformly iid over
[5 ◦C, 30 ◦C] results in equal transmit energy consumptions per transmitted symbol and
in the average CDMA-SNR (per node)

SNRCDMA :=
2E{P1}
σ2

Z

(5.31)

at the output of the matched filter.

Example 5.5. Let N = 256, k = 10 bits, ñ = 15 (⇒ n = 150), and the desired function
be the “geometric mean”. Furthermore, let P and σ2

Z chosen such that

SNRdB
CDMA := 10 log10(SNRCDMA) ∈ {0, 2, 4, 6, 8, 10} ,

and all other simulation parameters such as in Example 5.4. The corresponding achiev-
able outage probabilities are depicted in Figure 5.8. △

The plots show that in the considered range of typical sensor network operating
points, our analog CoMAC scheme also entirely outperforms a computation approach

that they are periodic with period 2m − 1, which corresponds to the maximal number of different
shift register states apart from the state where all bits are zero [PS08, pp. 461-463].
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that is based on the CDMA principle.9 The reader should notice that even if the
proposed CoMAC scheme seems to be quite similar to the CDMA concept from a
transmitter-side perspective, the huge performance gains result from estimating the
desired function immediately from the WMAC output instead of trying to reconstruct
all individual sensor readings by multiuser detection.

Remark 5.12. In the terminology of CDMA represents Example 5.5 an overloaded case
(i.e., n < N). This was considered because signature waveforms can always be chosen
to be mutually orthogonal whenever n ≥ N so that the resulting outage performance
would at best be the same as for TDMA (see Figures 5.6 and 5.7), and would therefore
not provide new insights. Note that the overloaded case was the reason for letting the
nodes spread their quantized sensor readings with WBE sequences since for n < N
they are optimal in the sense that they can achieve the lower bound on the sum of
cross-correlations between spreading sequences [MM93].

5.4 On the Channel Estimation Effort

A crucial assumption in the previous sections was that perfect CSI is available at the
sensor nodes prior to transmissions, which is called “Full CSI” in what follows. Because
“Full CSI” is difficult to provide in many WSN applications, we explore in this section
the question of how much CSI is actually needed to obtain reliable function estimates.
In particular, we show that the knowledge of the channel magnitudes (called “Modulus
CSI”) is sufficient to achieve the same performance as with “Full CSI”. Moreover, we
show that under certain conditions, no CSI is needed at the sensor nodes provided that
the FC has some a priori statistical knowledge. If in addition the FC is equipped with
multiple antennas, it is shown that spatial diversity can be exploited to outperform the
single-antenna scheme with “Full CSI”. Our findings suggest that the channel estimation
effort at the sensor nodes can significantly be reduced.

5.4.1 Multiantenna Fusion Centers

We slightly extend the system model of Section 5.1 in order to incorporate multiple
antennas at the FC. Accordingly, let the FC be equipped with M ∈ N antennas so that
the complex-valued time-discrete signal received at antenna element m can be written
as

Ym[j] =
N∑

i=1

Hmi[j]Xi[j] + Zm[j] j = 1, . . . , n . (5.32)

Here and hereafter, Hmi[j] 6= 0 is used to model the complex-valued frequency-flat
fading channel from node i to antenna m and Zm ∼ NC(0, σ2

Z) the mth receiver noise

9The CoMAC plots in Figure 5.8 coincide with each other due to the fact that the CoMAC outage
performance is, in the considered parameter range, mainly determined by the cross-correlations
between the random transmit sequences and less by the receiver noise.
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Figure 5.9: N sensor nodes communicate with a FC that is equipped with M an-
tenna elements, which can be modeled as M parallel (equivalent) WMACs
W ′

1, . . . ,W
′
M , where Pi ∈ [0, P ] for all i = 1, . . . , N .

process (iid over time and antennas). If we collect the receive symbols into vectors

ym := (Ym[1], . . . , Ym[n]) ∈ C
n m = 1, . . . ,M ,

the communication between the sensor nodes and the FC can alternatively modeled by
M parallel WMACs (cf. (5.11))

W ′
m : RN

+ → R+ , (P1, . . . , PN ) 7→ Y ′
m := ‖ym‖2

2 =
N∑

i=1

n∑

j=1

∣
∣Hmi[j]

∣
∣
2
Pi + ∆m , (5.33)

which is illustrated in Figure 5.9. Note that in contrast to (5.11), the effective noise at
antenna m, m = 1, . . . ,M , is of the form

∆m =
n∑

j=1

N∑

i=1

N∑

i′=1
i′ 6=i

H∗
mi[j]Hmi′ [j]X∗

i [j]Xi′ [j]

︸ ︷︷ ︸

=:∆1m

+ 2
n∑

j=1

N∑

i=1

Re
{

Hmi[j]Xi[j]Z
∗
m[j]

}

︸ ︷︷ ︸

=:∆2m

+
n∑

j=1

∣
∣Zm[j]

∣
∣
2

︸ ︷︷ ︸

=:∆3m

. (5.34)

Remark 5.13. The equivalent WMACs W ′
1, . . . ,W

′
M could also be seen as a distributed
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multiple-input multiple-output system represented by the linear equation






Y ′
1
...
Y ′

M




 =







∑n
j=1

∣
∣H11[j]

∣
∣
2

. . .
∑n

j=1

∣
∣H1N [j]

∣
∣
2

...
. . .

...
∑n

j=1

∣
∣HM1[j]

∣
∣
2

. . .
∑n

j=1

∣
∣HMN [j]

∣
∣
2












P1
...
PN




+






∆1
...

∆M




 .

Now, based on the channel outputs Y ′
1 , . . . , Y

′
M , a corresponding computation-receiver

makes a guess on the desired function-value, that is,

Rx : RM
+ → R ,

(
Y ′

1 , . . . , Y
′

M

) 7→ f̂(s) . (5.35)

In what follows, we choose (5.35) as

Rx
(

Y ′
1 , . . . , Y

′
M

)

= Ψ

[

ψ

(

hϕ

(
M∑

m=1

Y ′
m

))]

, (5.36)

where the antenna outputs are simply accumulated before the signal post-processing is
applied (see Figure 5.3). Note that the continuous function Ψ : R → R represents the
part of the computation-receiver that is responsible for certain estimation properties
such as unbiasedness and consistency. In the case of the desired function “arithmetic
mean”, for instance, χ ist of the form (cf. Definition 5.1)

Ψ(ξ) = ξ − E
{
ψ
(
∆3/(αaritn)

)}
.

5.4.2 How Much Channel Knowledge is Needed?

In this section, we analyze the impact of transmitter CSI on the computation perfor-
mance. More precisely, we assume three different types of CSI at the sensor nodes,
resulting in different transmit signals summarized in Table 5.1. Accordingly, “Full CSI”
refers to the case considered in Sections 5.1–5.3 where each node perfectly knows its
own complex-valued channel coefficients. In contrast, “Modulus CSI” corresponds to
a scenario in which each node knows only the modulus of its coefficients whereas “No
CSI” means that nodes have no channel state information at all. Notice that here the
FC does not need any instantaneous channel knowledge but may has access to some
statistical CSI.

Full CSI Versus Modulus CSI at Sensor Nodes

First, we assume that the FC has a single receive antenna (i.e., M = 1) and consider the
“Modulus CSI” case, which stands in contrast to Sections 5.1–5.3 where “Full CSI” was
assumed for sensor nodes to perfectly invert their channels. The goal is to show that
with regard to (5.6) there is no performance loss compared to the “Full CSI” case. We
conjecture this because, by the first term on the right-hand side of (5.33), fading impacts
the computation over the channel only through the instantaneous channel gains.
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Table 5.1: Transmit signals at node i, i = 1, . . . , N , depending on the available CSI.

Full CSI Xi[j] =
√

Pi
H1i[j]e

iΘi[j]

Modulus CSI Xi[j] =
√

Pi
|H1i[j]|e

iΘi[j]

No CSI Xi[j] =
√
Pi eiΘi[j]

With “Full CSI” at sensor nodes and M = 1, (5.33) reduces to

Y ′
1 = n

N∑

i=1

gϕ
(
ϕi(Si)

)
+ ∆1 , (5.37)

where the statistical moments of ∆1 = ∆11 + ∆21 + ∆31 are independent of fading
(see Section 5.2.1). Proposition 5.7 guarantees that this is also fulfilled in the case of
“Modulus CSI”.

Proposition 5.7. Regardless of the distribution of fading coefficients, the first and
second moment of (5.37) under “Modulus CSI” are identical to those under “Full CSI”.

Proof. The proof is deferred to Appendix 5.A.9.

By Proposition 5.7, the full channel knowledge at sensor nodes in Sections 5.1–5.3
can be replaced without any difference10 by the knowledge of instantaneous channel
magnitudes. This will significantly reduce the channel estimation effort in practical
systems as costly phase tracking is superfluous.

Note that “Full CSI” and “Modulus CSI” are considered for the single-antenna case
only because for M > 1 there exists a single-input multiple-output channel between
each sensor node, say node i, and the FC. This channel is for some fixed channel use j
characterized by the M channel coefficients

(

H1i[j],H2i[j], . . . ,HMi[j]
)

i = 1, . . . , N . (5.38)

Even if we assume that node i has “Full CSI” (i.e., node i is aware of all M channel
coefficients (5.38)), it is not clear how to appropriately employ this information. Node
i is only able to invert a single channel per transmission, which corresponds to the
case M = 1. Of course, one can think of transmission schemes in which each node
generates some statistical CSI out of (5.38). This, however, would significantly increase
the channel estimation effort as each node would have to estimate M complex-valued
channel coefficients prior to transmission instead of simply one. Since the focus of this
section is to reduce the channel estimation effort rather than to increase it, we did not
consider the cases “Full CSI” and “Modulus CSI” for M > 1.
10Due to Markov’s inequality (see Theorem B.1), the behavior of the outage probability is mainly

determined by the first and second moment.
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No CSI at Sensor Nodes

Let us now consider a FC with M ≥ 1 antennas in order to show that for a large
class of fading distributions, there is no need for instantaneous CSI at the sensor nodes,
provided that the FC has some a priori knowledge about the fading statistics. Towards
this end, we model the channel gains in (5.33) as

∣
∣Hmi[j]

∣
∣
2 := r−αi

i

∣
∣Fmi[j]

∣
∣
2
.

Here and hereafter, each r−αi
i describes the slow-fading part of the channel (i.e., the

slowly varying mean path attenuation) where αi ≥ 2 is the path-loss exponent and
ri ≥ 0 is the distance between node i, i = 1, . . . , N , and the FC. On the other hand,
Fmi[j] ∈ C captures the random fast-fading part induced by multipath propagation.
The notion of performance loss is defined in this subsection as follows.

Definition 5.3 (Performance Loss). The loss of performance due to the lack of CSI at
nodes is quantified by

λ(L) :=

∣
∣
∣
∣
∣
∣

κH

M∑

m=1

N∑

i=1

n∑

j=1

∣
∣Hmi[j]

∣
∣
2
Pi − 1

N

N∑

i=1

Pi

∣
∣
∣
∣
∣
∣

, (5.39)

where L := nNM and κH ∈ R denotes some statistical CSI to be specified later. For
given κH , we say that the performance loss vanishes if λ(L) → 0 (in a probabilistic
sense) as L → ∞.

Remark 5.14. The intuition behind (5.39) is to have a reasonable measure of distance
between

∑

m,i,j |Hmi[j]|2Pi and
∑

i Pi when employing statistical CSI at the FC, since
∑

i Pi =
∑

i g(ϕi(Si)) contains all the relevant information about f(s).

Block-Fading With Equal Mean Path Losses Suppose that the channel gains
are constant for the duration of n channel uses so that Hmi[1] = · · · = Hmi[n] for all
m, i. Furthermore, suppose that the coefficients are iid over nodes and antennas with

E

{∣
∣Hmi[1]

∣
∣
2
}

= r−αi
i E

{∣
∣Fmi[1]

∣
∣
2
}

= r−α1
1

(

(σ(1)
11 )2 + |µ(1)

11 |2
)

< ∞ .

Here, µ(1)
11 := E{F11[1]} ∈ C captures the line-of-sight components and (σ(1)

11 )2 :=
Var{F11[1]} > 0 denotes some finite variance of fast-fading effects. Prominent examples
among others are Rice fading as well as Rayleigh fading (i.e., if µ(1)

11 = 0).
This model reflects a homogeneous propagation environment with nodes located at

similar distances to the FC, which results in equal mean path losses. Then, under
mild conditions, the averaging property of (5.33) allows a simple correction of fading
effects at the FC, which further reduces the channel estimation effort in comparison to
“Modulus CSI”.
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Proposition 5.8. Suppose that the FC scales the sum of channel outputs,
∑

m Y ′
m, by

κH :=
(

Lr−α1
1

(

(σ(1)
11 )2 + |µ(1)

11 |2
))−1

.

Then, for some given ε > 0 and N ∈ N there exists L0 = L0(ε,N) such that λ(L) ≤ ε
with probability one for all L′ := L/n = NM ≥ L0.

Proof. The proof is deferred to Appendix 5.A.10.

Proposition 5.8 requires that κH is a priori known to the FC. This information can be
obtained from an unbiased estimation of r−α1

1 ((σ(1)
11 )2 + |µ(1)

11 |2): During an initialization
phase, all nodes concurrently transmit with unit power (i.e., pi ≡ 1 for all i = 1, . . . , N)
and block length n large enough so that the FC can obtain a sufficiently good estimate
of the second moment directly from the sum of channel outputs,

∑M
m=1 Y

′
m.

Corollary 5.2. Assume “No CSI” at the sensor nodes (see Table 5.1) and let

r−α1
1

(

(σ(1)
11 )2 + |µ(1)

11 |2
)

= 1 . (5.40)

Then, λ(L) → 0 with probability one as L′ := L/n = NM → ∞. In other words,
if condition (5.40) is fulfilled, for sufficiently large L′ there is no need for channel
estimation, neither at the sensor nodes nor at the FC.

Remark 5.15. Although Definition 5.3 and Proposition 5.8 consider only the first term
on the right-hand side of

M∑

m=1

Y ′
m =

M∑

m=1

N∑

i=1

n∑

j=1

∣
∣Hmi[j]

∣
∣
2
Pi +

M∑

m=1

∆m , (5.41)

with the computation receiver of (5.36) modified to

Rx
(
Y ′

1 , . . . , Y
′

M

)
= f̂(s) = Ψ

[

ψ

(

hϕ

(

κH

M∑

m=1

Y ′
m

))]

,

the results remain valid if we would also incorporate the effective noise κH
∑

m ∆m.

The results above indicate that for sufficiently large values of NM (or, equivalently,
L = nNM for some given n), CSI at sensor nodes is not necessary, provided that
some knowledge about the channel statistics is available at the FC. From the proof
of Proposition 5.8 and with the law of the iterated logarithm (see Theorem B.15 in
conjunction with Remark B.4), we can conclude that

λ ∈ O




√

loge loge NM

NM





almost surely. The numerical examples in Section 5.4.3 will demonstrate that already
M = 2 antennas at the FC lead to a noticeable performance gain compared with the
“Full CSI” case with a single antenna at the FC.
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Independent and Identically Distributed Fading If we have flat fading with a
sufficiently short coherence time, then the first term on the right-hand side of (5.41)
has L = nNM iid channel gains. By Proposition 5.8, we therefore have

λ ∈ O




√

loge loge nNM

nNM



 (5.42)

almost surely. This implies that rapid changes of the fading environment can be bene-
ficial when no CSI is available at nodes.

Since almost sure convergence implies convergence in probability, (5.42) leads us,
along with Theorem 5.41, to the conclusion that at least λ ∈ O(1/(nNM)) in prob-
ability. On the other hand, Theorems B.11 and B.12 provide conditions for a faster
convergence. For instance, if and only if the fading distributions are such that for all
ε > 0 there exist positive constants C(ε) and τ(ε) such that

∀t ∈ [−τ(ε), τ(ε)] : E






expe



t
M∑

m=1

N∑

i=1

n∑

j=1

|Hmi[j]|2Pi










≤ C(ε)eε|t|n ,

then we even have that (5.39) vanishes exponentially fast in probability, that is,

λ ∈ O
(

1
ρnNM

)

in probability for some 1 < ρ < ∞.

Independent but not Identically Distributed Fading Now, we consider a het-
erogeneous propagation environment in which the fading coefficients are independent
but have different distributions. More precisely, we assume

E

{∣
∣Hmi[j]

∣
∣
2
}

= r−αi
i

(

(σ(j)
mi)

2 + |µ(j)
mi|2

)

< ∞

(σ(j)
mi)

2 := Var
{

Fmi[j]
}

> 0 ,

for m = 1, . . . ,M , i = 1, . . . , N , and j = 1, . . . , n.

Proposition 5.9. Let ∀m, i, j : Umi[j] := |Hmi[j]|2Pi with finite second moments and

∞∑

m=1

∞∑

i=1

∞∑

j=1

Var
{
Umi[j]

}

(mij)2
< ∞ . (5.43)

Suppose that the FC scales the sum of channel outputs,
∑

m Y ′
m, by

κH :=





M∑

m=1

N∑

i=1

n∑

j=1

r−αi
i

(

(σ(j)
mi)

2 + |µ(j)
mi|2

)





−1

,

which is known a priori. Then, for any ε > 0 there exists L0(ǫ) such that λ(L) ≤ ε with
probability one for all L = nNM with min{n,N,M} ≥ L0.
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Proof. The proof is deferred to Appendix 5.A.11.

Note that if 1/κH is too small, the noise amplification due to the scaling of (5.41)
may be unacceptable. In such cases, the mitigation of fading effects can be divided into
two parts:

(i) Each sensor node estimates its r−αi
i , i = 1, . . . , N , in order to appropriately adapt

to the slowly varying path attenuation by power control.

(ii) The FC scales (5.41) by

κH :=





M∑

m=1

N∑

i=1

n∑

j=1

E

{∣
∣Fmi[j]

∣
∣
2
}





−1

.

Remark 5.16. Note that such a two-step procedure is necessary if the channel gains
vary too fast, since then reliably tracking and applying CSI at sensor nodes may not be
possible.

5.4.3 Numerical Examples

Now, we provide two numerical examples in order to validate the results of Section 5.4.2.
Similar to Section 5.3, we consider the scenario in which the sensor nodes measure
temperature-values that are uniformly iid in the interval [5 ◦C, 25◦C]. The performance
measure is again chosen to be the outage probability (5.6) along with the distortion
measure (5.5), that is, for ε > 0

P
(|Dn| ≥ ε

)
= P

(∣
∣
∣
∣

Rx(Y ′
1 , . . . , Y

′
M ) − f(s)

fmax − fmin

∣
∣
∣
∣ ≥ ε

)

. (5.44)

Example 5.6. Consider the homogeneous case of iid Rician fading with unit mean
path attenuations: r−αi

i = 1 and Re{Fmi[j]}, Im{Fmi[j]} ∼ NR(
√
.125, .375) for all

m, i, j. The network consists of N = 25 nodes, the block length is n = 15, the desired
function is chosen to be the “arithmetic mean”, and P = σ2

Z = 1. A comparison of
the block-fading case with the iid fading case for a FC with M = 1, 2, 4 antennas is
depicted, with regard to (5.44), in Figure 5.10. △

Figure 5.10 confirms that there is no benefit from having “Full CSI” instead of “Modu-
lus CSI”, as stated in Proposition 5.7. Moreover, the plots show that already for M = 2
antenna elements and relatively small values of n,N , “No CSI” outperforms the “Full
CSI” case (with a single antenna). Since the assumptions on the fading coefficients
fulfill the conditions of Corollary 5.2, there was no need for channel estimation neither
at the sensor nodes nor at the FC.

Example 5.7. Let N = 250, the block length n = 100, and “geometric mean” be
the desired function. Consider a heterogeneous Rician fading environment in which
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Figure 5.10: Full CSI and Modulus CSI (M = 1) vs. No CSI (M = 1, 2, 4) for the
desired function “arithmetic mean” in a network of N = 25 sensor nodes.

Re{µ(j)
mi}, Im{µ(j)

mi}, and (σ(j
mi)

2 are uniformly drawn from [0.1, 1], for all m, i, j. A
comparison of “Full CSI” with “No CSI” for different numbers of antennas at the FC
is depicted, with regard to (5.44), in Figure 5.11. △

The plots in Figure 5.11 demonstrate that if n,N are appropriately chosen, CSI at
the nodes provides no advantage already for M = 1 antenna elements at the FC. This
fact can be used to significantly reduce the complexity of sensor nodes.

5.5 Summary and Conclusions

In this chapter, we proposed a simple analog transmission scheme for reliably and effi-
ciently computing nomographic functions of measurement data over a wireless multiple-
access channel. In order to relax the need for perfect synchronization as it was assumed
in the previous chapters, the nodes transmit some random sequences of symbols at a
transmit power that is proportional to the individual pre-processed sensor readings. As
a consequence, only a coarse frame synchronization is required so that the scheme is
robust against synchronization errors on the symbol and phase level. The second essen-
tial part of the scheme consists of an analog computation-receiver that is designed to
appropriately estimate desired function values from the post-processed received sum of
transmit energies. Since the estimator has to be matched to the desired function, we
considered two canonical function examples and proposed corresponding receivers with
good statistical properties. We are strongly convinced that other functions of practical
relevance can also be computed in a beneficial manner using the proposed technique.

Numerical comparisons with a TDMA- and a CDMA-based approach have shown
that in terms of computation accuracy, the proposed analog computation scheme has
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Figure 5.11: Full CSI and Modulus CSI (M = 1) vs. No CSI (M = 1, 2, 4) for the
desired function “geometric mean” in a network of N = 250 sensor nodes.

the potential to achieve huge performance gains over separation-based strategies. In
addition to the weaker requirements regarding the synchronization of sequences, the
scheme needs no explicit protocol structure, which significantly reduces overhead. Com-
putation schemes following the described design rule are therefore energy and complex-
ity efficient and can be easily implemented in practice. Finally, the hardware-effort
is reduced as well since energy consuming digital components (e.g., analog-to-digital
converters, micro-controllers, registers) are not necessarily needed.

For the main part of the chapter, it was assumed that the sensor nodes have full access
to complex-valued channel state information prior to transmissions in order to invert
their channels. Since accurately estimating complex-valued channel state information
at sensor nodes is generally a difficult and costly task, we devoted the remaining part of
the chapter to the central question of how much channel knowledge is actually needed
and how the channel estimation effort can significantly be reduced. In this context, we
first have shown that knowing the channel magnitude at the sensor nodes is sufficient to
achieve the same performance as with full (complex-valued) channel state information.
It was further shown that for a wide range of fading distributions, no channel state
information is needed at the transmitters provided that the FC has access to some
statistical channel knowledge and is equipped with multiple antennas.

Instead of computation rates, the main figure of merit in this chapter was the achiev-
able outage performance with regard to some predefined distortion. Even though this
constitutes a reasonable measure of robustness, an open problem for future work could
be to determine the computation rates that are achievable with the proposed analog
scheme. Comparing these rates with those provided in Chapter 4 would then help to
better understand the trade-off between synchronization effort and achievable compu-
tation rate performance.
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Appendix 5.A Proofs

5.A.1 Proof of Proposition 5.1

Let g′
ϕ := ngϕ and h′

ϕ := hϕ/n so that we have to show that

h′
ϕ

(
∑

i

g′
ϕ(ξi)

)

=
∑

i

ξi ,

with ξi ∈ [ϕmin, ϕmax], i = 1, . . . , N , holds if and only if gϕ and hϕ are affine functions.
The “⇐” direction is trivial whereas the other direction is shown by contradiction.
Suppose g′

ϕ is bijective and continuous but not affine. Then, there exist at least two
points (ξ1, . . . , ξN ) and (ξ̃1, . . . , ξ̃N ) in [ϕmin, ϕmax]N with

∑

i

ξi 6=
∑

i

ξ̃i but
∑

i

g′
ϕ(ξi) =

∑

i

g′
ϕ(ξ̃i) .

By the last equation, we have

∑

i

ξi = h′
ϕ

(
∑

i

g′
ϕ(ξi)

)

= h′
ϕ

(
∑

i

g′
ϕ(ξ̃i)

)

=
∑

i

ξ̃i ,

which however contradicts
∑

i ξi 6= ∑

i ξ̃i. Hence, g′
ϕ is affine and so is gϕ. Moreover,

we have hϕ(
∑

i g
′
ϕ(ξi)) = hϕ(ngϕ(

∑

i ξi) + c̃) for some c̃ ∈ R, from which we conclude
that hϕ is an affine function as well, with hϕ ≡ g−1

ϕ − c and some constant c ∈ R that
depends on gϕ.

5.A.2 Proof of Proposition 5.2

Since the sum terms of ∆|s are neither identically distributed nor independent, the
convergence to a normal distribution is not clear. Therefore, let us, for some fixed
s ∈ SN , rearrange the sum in order to obtain:

∆|s = ∆1|s + ∆2|s + ∆3

=
K∑

k=1

n∑

j=1

√

p′
kCk[j] + 2

N∑

i=1

2n∑

j=1

√
piUijZ

′
j +

n∑

j=1

∣
∣Z[j]

∣
∣
2

=
n∑

j=1





K∑

k=1

√

p′
k cos

(
Θ′

k[j]
)

+
N∑

i=1

√
pi

(

Re
{
Z[j]

}
cos
(
Θi[j]

)

+ Im
{
Z[j]

}
sin
(
Θi[j]

))

+
∣
∣Z[j]

∣
∣
2





=
n∑

j=1

Λj .
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This makes clear that Λ1, . . . ,Λn are iid nondegenerate (see Definition B.1) random
variables. Moreover, for every N,P, σ2

Z < ∞ and every compact set S it follows that

E
{
Λ2

1

∣
∣ s = s

}
= 2

(
K∑

k=1

p′
k + σ2

Z

N∑

i=1

pi + σ4
Z

)

is finite. Hence, the assertion follows from Theorem B.7 with (5.19) and E{∆ | s = s} =
nσ2

Z .

5.A.3 Proof of Proposition 5.3

With the notions introduced in Definition 5.1 in mind, we can write (5.20), for some
fixed n ∈ N, as

f̂n(s) = f(s) +
1

αaritNn

(

∆ − nσ2
Z

)

.

From this, we immediately conclude

E

{

f̂n(s)
∣
∣ s = s

}

= f(s) +
1

αaritNn

(

E{∆ | s = s} − nσ2
Z

)

so that the proposition follows since ∀s ∈ SN : E{∆ | s = s} = E{∆3} = nσ2
Z .

5.A.4 Proof of Proposition 5.4

According to Definition B.3, we have to prove that

∀ε > 0 ∀s ∈ SN : lim
n→∞P

(∣
∣
∣f̂n(s) − f(s)

∣
∣
∣ ≥ ε

)

= 0 .

To this end, let s ∈ SN , c := 1/(αaritN) > 0 and ε > 0 be arbitrary but fixed. By the
proof of Proposition 5.3, we know that

En(s) := f̂n(s) − f(s) =
c

n

(

∆|s − E{∆3}
)

.

Hence, as E{∆} = E{∆3}, we obtain

P (|En(s)| ≥ ε) = P

(

En(s)2 ≥ ε2
)

= P

(

c2

n2

(
∆|s − E{∆3})2 ≥ ε2

)

≤ c2

(nε)2
E

{

(∆ − E{∆})2 ∣∣ s = s
}

(5.45)

=
c2

(nε)2
σ2

∆|s , (5.46)

where (5.45) follows from Markov’s inequality (see Theorem B.1). By (5.19), we have
for N,P, σ2

Z < ∞ that σ2
∆|s ∈ O(n) so that the right-hand side of the above inequality

goes to zero as the block length n tends to infinity. Since ε > 0 and s ∈ SN are both
arbitrary, this completes the proof.
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5.A.5 Proof of Lemma 5.2

Since ∆3 ∼ χ2
2n, the probability density of ∆3 is given by

p∆3
: R → R+ , ξ 7→ p∆3

(ξ) =
1

σ2n
Z Γ(n)

ξn−1e−ξ/σ2
Z1[0,∞)(ξ) ,

where Γ(z), with Re{z} > 0, denotes the Gamma function [AS64, p. 255]. Hence, one
obtains

E
{
ψ
(
∆3/αgeon

)}
=

1
σ2n

Z Γ(n)

∫ ∞

0
ξn−1 expe

(

−
(

αgeoNn−σ2
Z

σ2
Z

αgeoNn

)

ξ

)

dξ . (5.47)

Now, assume σ2
Z < αgeoNn and note that

Γ(z) =
∫ ∞

0
ξz−1e−ξdξ = kz

∫ ∞

0
ξz−1e−kξdξ ,

Re{z} > 0, which holds for every k ∈ C with Re{k} > 0 [AS64, p. 255]. Substituting
this into (5.47) with an appropriately chosen k proves (i). As for (ii), if σ2

Z < αgeoNn,
then it follows from (i) that

lim
n→∞

(

αgeoNn

αgeoNn− σ2
Z

)n

= lim
n→∞

(

1 +
u

n

)−n

= e−u ,

where u := − σ2
Z

αgeoN . This proves the lemma.

5.A.6 Proof of Proposition 5.5

Let N,P, σ2
Z < ∞ and ε > 0 be arbitrary but fixed and let {f̂n}n∈N be the sequence

of receivers given by (5.24). We show that for every s ∈ SN , the outage probability
P(|Dn| ≥ ε | s = s) goes to zero as the block length n tends to infinity. Towards this
end, note that f(s) > 0, β(s) > 0, λn > 0, and Ξ|s > 0 for all s ∈ SN . By (5.25), we
have

P

(

|Dn| ≥ ε
∣
∣ s = s

)

= P

(
Ξ
λn

≥ 1 +
ε

β(s)

∣
∣
∣ s = s

)

+ P

(

1 − Ξ
λn

≥ ε

β(s)

∣
∣
∣ s = s

)

.

An application of Theorem B.1 yields an upper bound on the first sum term:

P

(
Ξ
λn

≥ 1 +
ε

β(s)

∣
∣
∣ s = s

)

= P

(

loge

(
Ξ
λn

)

≥ loge

(

1 +
ε

β(s)

) ∣
∣
∣ s = s

)

≤ E
{
loge(Ξ|s)

}− loge(λn)

loge

(
1 + ε/β(s)

) . (5.48)

By part (ii) of Lemma 5.2, we have

lim
n→∞ loge(λn) = loge

(

lim
n→∞λn

)

=
σ2

Z

αgeoN
.
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Due to the results on the distribution functions of random variables that are functions
of other random variables [Shi96, pp. 239–240], we obtain

E
{
loge(Ξ|s)

}
=

E {∆|s/(αgeon)}
N

=
σ2

Z

αgeoN
,

where we used E{∆ | s = s} = nσ2
Z in the last step. Combining the results shows that

the upper bound in (5.48) tends to zero as n → ∞.
As for P(1 − Ξ/λn ≥ ε/β(s) | s = s), note that we can focus on ε/β(s) < 1 since

Ξ|s/λn > 0. With this in mind, we have

P

(

1 − Ξ
λn

≥ ε

β(s)

∣
∣
∣ s = s

)

= P

(
λn

Ξ
≥ 1

1 − ε/β(s)

∣
∣
∣ s = s

)

.

Proceeding essentially along the same lines as above shows that this probability goes
to zero with n → ∞ and therefore

∀ε > 0 ∀s ∈ SN : lim
n→∞P

(

|Dn| ≥ ε
∣
∣ s = s

)

= 0 .

As ε > 0 was chosen arbitrarily, this completes the proof.

5.A.7 Proof of Lemma 5.3

Let S be an arbitrary compact set and N < ∞ any fixed natural number. In accordance
with Definition 5.2, we have that

Ξ|s = ψ

(

∆|s
αgeon

)

= expe

(

∆|s
αgeoNn

)

,

where N,αgeo > 0. Since the exponential function is continuous and strictly increasing,
it follows for the conditional distribution function PΞ|s : R++ → [0, 1],

PΞ|s(ξ) = P
(

Ξ ≤ ξ | s = s
)

= P
(

∆ ≤ αgeoNn loge(ξ) | s = s
)

= P∆|s
(

αgeoNn loge(ξ)
)

.

With Corollary 5.1, we conclude that for n sufficiently large, ∆|s can be approxi-
mated (in distribution) by a random variable ∆̃|s ∼ NR(Nσ2

Z , σ
2
∆|s). An immediate

consequence of this is that for sufficiently large values of n, the conditional distribution
function of ∆|s can be approximated by

P∆̃|s : R → [0, 1] , ξ 7→ P∆̃|s(ξ) =
1
2

+
1
2

erf

(

ξ − nσ2
Z

σ∆|s
√

2

)

,

that is,

∀s ∈ SN ∀δ > 0 ∃n0(s, δ) ∀n ≥ n0 :
∥
∥
∥P∆|s − P∆̃|s

∥
∥
∥

∞
< δ .
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Writing this shortly as P∆|s ≈ P∆̃|s, we conclude that for n large enough, along with
Theorem B.5, that

PΞ|s(ξ) ≈ PΞ̃|s(ξ) = P∆̃|s
(

αgeoNn loge(ξ)
)

=
1
2

+
1
2

erf

(

αgeoNn loge(ξ) − nσ2
Z

σ∆|s
√

2

)

.

(5.49)
Observe that (5.49) describes the distribution function of a log-normally distributed

random variable with parameters
σ2

Z
αgeoN =: µΞ and

(
σ∆|s/(αgeoNn)

)2 =: σ2
Ξ|s. Thus, for

some s ∈ SN , Ξ|s can be approximated (in distribution) by Ξ̃|s ∼ LN (µΞ, σ
2
Ξ|s).

5.A.8 Proof of Proposition 5.6

Note that it is sufficient to show (5.28) and (5.29). Let s ∈ SN be arbitrary but fixed.
Because

∣
∣Dn|s

∣
∣ =

∣
∣γ(s)−1Ξ|s − β(s)

∣
∣ is continuous in Ξ|s, Lemma 5.3 in combination

with Theorem B.5 allows for the approximation of
∣
∣Dn|s

∣
∣ (in distribution) by

∣
∣D̃n|s

∣
∣ =

∣
∣
∣
∣

1
γ(s)

Ξ̃|s − β(s)
∣
∣
∣
∣ ,

where the probability distribution function of Ξ̃|s ∼ LN (µΞ, σ
2
Ξ|s) is given by the right-

hand side of (5.49). Since 0 < β(s), γ(s) < ∞, we have

P

(

|Dn| ≥ ε
∣
∣ s = s

)

≈ P

(

|D̃n| ≥ ε
∣
∣ s = s

)

= 1 − P

(

−ε < D̃n < ε
∣
∣ s = s

)

= 1 − P

(

−ε < γ(s)−1Ξ̃ − β(s) < ε
∣
∣ s = s

)

.

This immediately leads to

P

(∣
∣D̃n

∣
∣ ≥ ε

∣
∣ s = s

)

=







1 − PΞ̃|s
(
ρ+(s, ε)

)
+ PΞ̃|s

(
ρ−(s, ε)

)
0 < ε < β(s)

1 − PΞ̃|s
(
ρ+(s, ε)

)
β(s) ≤ ε < ∞

(5.50)

with

ρ+(s, ε) := γ(s)
(
β(s) + ε)

ρ−(s, ε) := γ(s)
(
β(s) − ε

)
.

Inserting the right-hand side of (5.49) into the expression (5.50) and using the fact that
erfc(x) = 1 − erf(x), for all x ∈ R, shows (5.28) and (5.29) and thus completes the
proof.
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5.A Proofs

5.A.9 Proof of Proposition 5.7

For simplicity, we consider here only the first moment. The second moment can be
treated in a similar manner. Towards this end, we show that the expected value

E{∆1} = E{∆11} + E{∆21} + E{∆31} (5.51)

is independent of fading so that we have to analyze the error terms ∆11 and ∆21 in
(5.34), which depend on the channel coefficients.

Obviously, E{∆21} ≡ 0 always holds due to the independence of transmit signals,
fading and noise. As far as ∆11 is concerned, the following lemma from [Sch83] is
helpful.

Lemma 5.4 (Schatte). Let A,B be real independent random variables. If A or B is
uniformly distributed in [0, 2π), then the reduced sum C = (A+B) mod 2π is uniformly
distributed in [0, 2π) as well.

We write the random fading coefficient between sensor node i, i = 1, . . . , N , and the
FC at channel use j, j = 1, . . . , n, in polar form as

H1i[j] =
∣
∣H1i[j]

∣
∣eiΛ1i[j] ,

where Λ1i[j] is used to denote the corresponding random phase. Then, in the case of
“Modulus CSI”, ∆11 becomes

∆11 = 2
n∑

j=1

N∑

i=2

i−1∑

i′=1

√

PiPi′ cos
(

∆Λii′ [j] + ∆Θii′ [j]
)

with ∆Λii′ [j] := Λ1i[j] − Λ1i′ [j] and ∆Θii′ [j] := Θi[j] − Θi′ [j]. Note that the moduli
of the channel coefficients are removed but the phases are still present. Let Dii′ [j] :=
∆Λii′ [j] + ∆Θii′ [j] and Cii′ [j] := cos(Dii′ [j]).

A sufficient condition for E{∆11} to be zero is that for all i, i′, j and any distribution
of ∆Λii′ [j], E{Cii′ [j]} = 0 holds. Since Θi[j] and Θi′ [j] are uniformly iid in [0, 2π) for
all i 6= i′, Lemma 5.4 implies that the differences ∆Θii′ [j] are uniformly iid in [0, 2π)
as well. Moreover, since ∆Θii′ [j] and ∆Λii′ [j] are independent for all m, i′, i 6= i′, we
conclude from Lemma 5.4 that all Dii′ [j] are uniformly distributed in [0, 2π). Since
E{cos(X)} =

∫ 2π
0

1
2π cos(x)dx = 0 with X being uniformly distributed in [0, 2π), it

follows E{Cii′ [j]} = 0, for all i′ and i 6= i′. Finally, considering the linearity of the
expectation operator, we conclude E{∆11} ≡ 0 so that (5.51) behaves as in the case of
“Full CSI”, regardless of the fading distribution.

5.A.10 Proof of Proposition 5.8

In order to show that (5.39) vanishes with probability one as L′ = L/n = NM goes to
infinity,

κH

M∑

m=1

N∑

i=1

n∑

j=1

∣
∣Hmi[1]

∣
∣
2
Pi =

∑M
m=1

∑N
i=1

∑n
j=1

∣
∣Hmi[1]

∣
∣
2
Pi

Lr−α1
1

(
(σ(1)

11 )2 + |µ(1)
11 |2)

=

∑M
m=1

∑N
i=1

∣
∣Hmi[1]

∣
∣
2
Pi

L′r−α1
1

(
(σ(1)

11 )2 + |µ(1)
11 |2)
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has to tend to 1
N

∑N
i=1 Pi with probability one. Let Umi[1] := |Hmi[1]|2Pi and note that

∀m, i : E
{∣
∣Umi[1]

∣
∣
}

= r−αi
i E

{∣
∣Fmi[1]

∣
∣
2
}

Pi = r−α1
1

(

(σ(1)
11 )2 + |µ(1)

11 |2
)

Pi < ∞

because Pi is finite for all i = 1, . . . , N . Since this is a necessary and sufficient condition
of Kolmogorov’s strong law of large numbers for iid variables (see Theorem B.13 along
with Remark B.3), it follows that

∑M
m=1

∑N
i=1 Umi[1]

L′r−α1
1

(
(σ(1)

11 )2 + |µ(1)
11 |2)

a.s.−→
E

{∣
∣H11[1]

∣
∣
2
}

ξ

r−α1
1

(
(σ(1)

11 )2 + |µ(1)
11 |2)

= ξ ,

for L′ → ∞, where ξ is either 1
N

∑

i Pi or limN→∞
1
N

∑

i Pi (the limit exists and is finite
with probability one). As a consequence, λ(L) vanishes almost surely so that for every
fixed ε > 0 and N , there exists an L0(ε,N) such that λ(L) ≤ ε with probability one for
all L′ ≥ L0, which proves the proposition.

5.A.11 Proof of Proposition 5.9

Let ∀m, i, j : Umi[j] := |Hmi[j]|2Pi so that

κH

M∑

m=1

N∑

i=1

n∑

j=1

∣
∣Hmi[j]

∣
∣
2
Pi =

∑M
m=1

∑N
i=1

∑n
j=1 Umi[j]

∑M
m=1

∑N
i=1

∑n
j=1 r

−αi
i

(
(σ(j)

mi)
2 + |µ(j)

mi|2
) .

If condition (5.43) is fulfilled, Kolmogorov’s strong law of large numbers for independent
but not identically distributed variables (see Theorem B.14) yields

∑

m

∑

i

∑

j Umi[j]
∑

m

∑

i

∑

j r
−αi
i

(

(σ(j)
mi)

2 + |µ(j)
mi|2

)
a.s.−→

∑

m

∑

i

∑

j E
{|Hmi[j]|2

}
ξ

∑

m

∑

i

∑

j r
−αi
i

(

(σ(j)
mi)

2 + |µ(j)
mi|2

) = ξ

as min{n,N,M} → ∞, where ξ = limN→∞
1
N

∑

i Pi. As a consequence, (5.39) vanishes
almost surely so that for every fixed ε > 0, there exists an L0(ε) such that λ(L) ≤ ε
with probability one for all L with min{n,N,M} ≥ L0. This completes the proof.
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6
Conclusion

“ Wir wissen nichts – das ist das Erste. Deshalb sollen wir sehr beschei-
den sein – das ist das Zweite. Dass wir nicht behaupten zu wissen,
wenn wir nicht wissen – das ist das Dritte. ”

Karl R. Popper, Alles Leben ist Problemlösen, 1994

In this thesis, we dealt with the problem of reliably and efficiently computing real-
valued linear and nonlinear functions of the measurements in wireless sensor networks.
Instead of avoiding the interference that occurs when distinct sensor nodes concurrently
access the same frequency spectrum, we considered it as a freely available computational
resource. In this context, we first asked the fundamental question which real-valued
functions of several variables can essentially be computed directly in the air. To our
own surprise, this question can shortly be answered with every. The reason is that by
using an appropriate signal pre- and post-processing strategy, in fact every function of
the sensor readings can be matched to the linear structure of the wireless channel. In
other words, the wireless channel is capable of performing all basic arithmetic operations
over the reals and can therefore be regarded as a computer.

Of course, this insight alone is not sufficient in order to evaluate if harnessing in-
terference is a superior paradigm because separation-based approaches also allow for
computing every function of the sensor readings: transmit all the data to the fusion
center by employing some form of interference avoidance/cancellation and compute the
desired function-value afterwards. Towards this end, we proposed two novel transmis-
sion schemes (digital and analog) and studied their properties as well as their achievable
performance. It turns out that both schemes can be used to compute a variety of linear
and nonlinear real-valued functions at computation rates that are in a wide range of



6 Conclusion

network operating points not achievable with separation-based methods. As a conclu-
sion, we therefore advise harnessing interference for efficiently and reliably computing
real-valued functions in wireless sensor networks.

Outlook

In Sections 3.4, 4.4, and 5.5, which concluded Chapters 3–5, we already outlined some
open problems and future research directions. Instead of repeating them here, we
provide some further topics that can be of interest for future work.

• Proof of Concept: As mentioned above, we proposed in this thesis a digital
and an analog transmission scheme for efficiently computing real-valued functions
over the wireless channel. A next natural step would therefore be to provide a
first proof of concept in order to demonstrate that the shown performance gains
can be realized in practice. Towards this end, the computation schemes have
to be implemented on, for instance, software defined radio devices that establish
an appropriate testbed. It is expected that the corresponding system design
fundamentally differs from that for standard message transfer. In this context,
one has also to think about appropriate wake-up strategies, which are necessary
to initiate function computations.

• Secure Function Computation: As the wireless communication channel is an
open and freely accessible medium, it is inherently vulnerable to eavesdropping.
Currently used security methods heavily rely on higher-layer implementations of
cryptographic concepts, which typically require that users share a private key. If
the key is not yet available, a dedicated secure channel between prospective com-
munication partners has to be established for private key exchange. In contrast,
physical layer security methods, which are gaining more and more importance
[SCW+11,BB11], do not need such an additional channel. They provide security
(in some sense) by explicitly taking into account the properties of the wireless
channel. This paradigm can also be relevant for secure function computation
since many wireless sensor network applications not only require to efficiently
compute function-values at fusion centers but also to keep them secret from non-
legitimate receivers. Some very recent considerations in this direction can be
found in [TNG11,LA14,DDMP14].

• The Reverse Computation Problem: Consider a fusion center that already
knows all the raw sensor readings s1, . . . , sN but does not have enough compu-
tational capabilities in order to compute the desired function-value f(s1, . . . , sN ).
An approach that is related to the studies in this thesis is to distribute the in-
formation into the neighborhood, which then helps to compute the function by
simultaneously transmitting the (processed) information back. One of the cor-
responding challenges is to determine the exact trade-off between the required
computation and communication resources.
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• Theory of Implementation: The results of Chapters 3 and 5 demonstrate that
analog systems can be well suited for efficiently solving computation problems in
wireless sensor networks. Indeed, Boche and Mönich show in [BM11,BM14] that
with ordinary sampling, purely analog linear time-invariant systems are not al-
ways stably representable in discrete time domain. Moreover, sampling is usually
followed by quantization, which generates additional instabilities that are not al-
ways controllable by oversampling [BM10,BM12]. Thus, digital signal processing
has some fundamental limits and analog systems are gaining more and more atten-
tion in the sensor network community. Under these circumstances, some results
of this thesis can also be seen in a much broader context as they provide a step
towards a general theory of implementation. The development of such a theory
is certainly a big challenge but it would be invaluable for practice as it would
give a comprehensive answer to the question: With which kind of technology (i.e.,
analog, digital, hybrid) communication systems should be implemented and what
are the corresponding costs in terms of energy and hardware [BM14].

Note that the results of this thesis are general in the sense that they are not limited
to wireless sensor networks. In particular, the proposed computation schemes can
be used as a building block for complex in-network processing schemes and wireless
networking protocols. Furthermore, they can be well suited for establishing efficient
machine type communication in next-generation cellular networks, which are expected
to handle the massive access of machines, objects, and devices of any kind by a very
dense infrastructure (i.e., cell densification).
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A
Real-Valued Functions of Several
Variables

As real-valued functions of several variables are the main point of interest in this thesis,
we recap on the following pages some useful definitions and relationships in order to
make the thesis more self-contained. A comprehensive treatment of the topic can be
found for instance in [Wol66,Lan73,Fle77] as well as in the standard analysis textbook
[Rud76].

To this end, let ‖ · ‖2 be the ordinary Euclidean norm, which induces a metric on the
Euclidean N -space RN . Then, the notion of a convergent sequence in RN is as follows.

Definition A.1 (Convergent Sequence). A sequence x1,x2, . . . of elements xk ∈ RN ,
k ∈ N, is called convergent, if there exists some x ∈ RN such that

∀ε > 0 ∃k0(ε) ∈ N ∀k ≥ k0(ε) : ‖xk − x‖2 < ε . (A.1)

If (A.1) applies, we call x the limit of the sequence and write limk→∞ xk = x or xk → x

for k → ∞, respectively.

The following theorem can be used to examine properties of sequences in RN by
examining properties of sequences on the real line.

Theorem A.1. The sequence x1,x2, . . . of elements xk := (x(k)
1 , . . . , x

(k)
N ) ∈ RN con-

verges to the limit x := (x1, . . . , xN ) ∈ RN if and only if for each fixed i, i = 1, . . . , N ,

limk→∞ x
(k)
i = xi.

Proof. The statement follows immediately from the inequalities [Wol66, p. 4]

max
{∣
∣x

(k)
1 − x1

∣
∣, . . . ,

∣
∣x

(k)
N − xN

∣
∣

}

≤ ‖xk −x‖2 ≤ N max
{∣
∣x

(k)
1 − x1

∣
∣, . . . ,

∣
∣x

(k)
N − xN

∣
∣

}

.



A Real-Valued Functions of Several Variables

Now, we provide the essential definition of a real-valued function of N variables.

Definition A.2 (Real-Valued Function of N Variables). Let N ∈ N, N ≥ 2, and D

be some subset of RN . An instruction f that assigns every x := (x1, . . . , xN ) ∈ D to
exactly one element

y = f(x) := f(x1, . . . , xN ) ∈ R

is called real-valued function of N variables.

Remark A.1. We denote real-valued functions of N variables often shortly as multi-
variate functions or as real-valued functions of several variables.

Special cases that are frequently mentioned throughout the thesis are linear functions
of several variable variables.

Definition A.3 (Linear Function). A multivariate function f : D ⊆ RN → R is said
to be linear (or R-linear) if and only if

f(α1x1 + α2x2) = α1f(x1) + α2f(x2)

for all x1,x2 ∈ D and all α1, α2 ∈ R.

Example A.1. Let f : RN → R with f(x1, . . . , xN ) = f(x) =
∑N

i=1 xi. Then, f is
linear since for all x1 = (x(1)

1 , . . . , x
(1)
N ) ∈ RN , all x2 = (x(2)

1 , . . . , x
(2)
N ) ∈ RN and all

α1, α2 ∈ R, we have

f(α1x1 + α2x2) =
N∑

i=1

(

α1x
(1)
i + α2x

(2)
i

)

= α1

N∑

i=1

x
(1)
i + α2

N∑

i=1

x
(2)
i

= α1f(x1) + α2f(x2) .

△

In contrast to the notion of the limit of a sequence in RN such as provided in Defini-
tion A.1, the limit of a multivariate functions is defined as follows.

Definition A.4 (Limit of a Multivariate Function). Let f : D ⊆ RN → R be a
multivariate function and x0 ∈ RN some accumulation point of D. If there exists c ∈ R

such that for every sequence {xk}k∈N, xk ∈ D, xk 6= x0, the implication

lim
k→∞

xk = x0 ⇒ lim
k→∞

f(xk) = c

holds true, then c is called the limit of f at x0.
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Definition A.5 (Continuity). A multivariate function f : D ⊆ RN → R is said to be
(pointwise) continuous if

∀x0 ∈ D∀ε > 0 ∃δ > 0 ∀x ∈ D : ‖x − x0‖2 < δ ⇒
∣
∣f(x) − f(x0)

∣
∣ < ε .

This so called (ε, δ)-definition goes back to Weierstrass. An equivalent definition of
(pointwise) continuity, which is more related to the limit of functions given in Defini-
tion A.4, is the following.

Definition A.6 (Continuity). A multivariate function f : D ⊆ RN → R is said to be
continuous at x0 ∈ D if

∀{xk}k∈N ⊂ D : lim
k→∞

xk = x0 ⇒ lim
k→∞

f(xk) = f(x0) .

If f is continuous at every point of D, then f said to be (pointwise) continuous.

Remark A.2. Note that continuity requires in contrast to Definition A.4 that f is
defined at x0, which means that x0 has to be an element of D. If f is continuous at x0,
then we are allowed to exchange the order of the limits, that is,

lim
x→x0

f(x) = f
(

lim
x→x0

x
)

.

If some function f : D ⊆ RN → R is continuous, then it is said to belong to the space
C

0(D).

A definition of continuity that is stronger than pointwise continuity is that of uniform
continuity.

Definition A.7 (Uniform Continuity). A multivariate function f : D ⊆ RN → R is
said to be uniformly continuous if

∀ε > 0 ∃δ > 0 ∀x,x0 ∈ D : ‖x − x0‖2 < δ ⇒
∣
∣f(x) − f(x0)

∣
∣ < ε .

Remark A.3. The obvious difference to (pointwise) continuity (cf. Definition A.5) is
that δ depends only on the choice of ε but not on the choice of x0.

The following theorem relates pointwise and uniform continuity by imposing some
restriction on the domain D.

Theorem A.2 (Heine·Cantor). Let f : D ⊂ RN → R be some multivariate continuous
function and D a compact set. Then, f is uniformly continuous.

Proof. A proof of the theorem, which is a corollary of the more general fact that every
continuous function between two metric spaces is uniformly continuous if the domain
is compact, can be found for instance in [Rud76, p. 91].
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Another property of continuous functions that are defined on some compact subset
of the Euclidean N -space provides the following theorem, which is also known as the
extreme value theorem.

Theorem A.3 (Weierstrass). Let f : D ⊂ RN → R for some N ∈ N and D a compact
set. If f is continuous, then it attains a minimum and a maximum. That is,

∃x1,x2 ∈ D∀x ∈ D : f(x1) ≤ f(x) ≤ f(x2) .

Proof. The proof of the theorem can be found for instance in [Rud76, pp. 89].

Besides pointwise and uniform continuity, there exist some other notions of continuity
such as, for instance, Hölder continuity.

Definition A.8 (Hölder Continuity). A multivariate function f : D ⊂ RN → R is
called (L,α)-Hölder continuous if and only if there exist positive real constants L and
α, where 0 < α ≤ 1, such that

∀x,x0 ∈ D :
∣
∣f(x) − f(x0)

∣
∣ ≤ L‖x − x0‖α

2 .

Example A.2. Let f : R+ → R, f(x) =
√
x. Then, f is (1, 1/2)-Hölder continuous.

To see this, let x, x0 ∈ R+ be chosen without loss of generality such that x ≥ x0 ≥ 0.
It follows

|x− x0| = x− x0 =
(√
x− √

x0

) (√
x− √

x0

) ≥ (√
x− √

x0

)2 =
∣
∣
√
x− √

x0

∣
∣
2

and thus
∣
∣
√
x− √

x0

∣
∣ ≤

√

|x− x0| .
△

Remark A.4. It can be easily verified that Hölder continuity implies uniform continu-
ity. To this end, let f : D ⊂ RN → R be (L,α)-Hölder continuous and set δ := (εL−1)1/α

for ε > 0 arbitrary but fixed. Then, ‖x − x0‖2 < δ implies |f(x) − f(x0)| < ε for all
x,x0 ∈ D. The converse, however, is not necessarily true.

Whereas the above given definitions of limits and continuity for functions of several
variables are virtually simple extensions of the univariate case, the notion of differen-
tiability fundamentally differs. Therefore, in order to introduce the meaning of differ-
entiability of a function of several variables, we have to first provide the concept of a
partial derivative.

Definition A.9 (Partial Derivative). Let f : D ⊂ RN → R and D an open set.
Then, f is said to be partial differentiable at x := (x1, . . . , xN ) ∈ D with respect to xi,
i = 1, . . . , N , if the limit

lim
h→0

f(x1, . . . , xi−1, xi + h, xi+1, . . . , xN ) − f(x1, . . . , xN )
h

exists. The limit is called the partial derivative of f at x with respect to xi and is

written as ∂f
∂xi

∣
∣
∣
x
.
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The partial derivative (if existent) reflects the behavior of a multivariate function in
a certain direction and therefore does not provide information about the behavior in
the neighborhood of some given point. This fact leads us to the following definition.

Definition A.10 (Differentiability). Let f : D ⊂ RN → R and D an open set. The
multivariate function f is said to be differentiable at x0 ∈ D if there exists a point
a ∈ RN and a function g : RN → R that is defined on a neighborhood U(x0) of x0

such that1

(i) ∀x ∈ U(x0) : f(x) = f(x0) + aT(x − x0) + g(x)‖x − x0‖2

(ii) limx→x0
g(x) = 0 .

If f is differentiable at every x0 ∈ D, then f is said to be differentiable.

Remark A.5. If a multivariate function f is differentiable at some point x0 of its open
domain, then a in Definition A.10 coincides with the vector of partial derivatives, that
is, the gradient

a = (a1, . . . , aN ) = gradf(x0) :=

(

∂f

∂x1

∣
∣
∣
∣
x0

, . . . ,
∂f

∂xN

∣
∣
∣
∣
x0

)

.

Based on the partial derivatives, the following theorem provides a simple way to check
whether a multivariate function is differentiable or not.

Theorem A.4. Let f : D ⊂ RN → R and D an open set. Assume that all N par-
tial derivatives of f exist at every x ∈ D and that they are continuous. Then, f is
differentiable.

Proof. A proof of the theorem can be found for instance in [Lan73, p. 68].

Remark A.6. It has to be emphasized that the pure existence of partial derivatives
does not necessarily imply differentiability.

Throughout the thesis, the notion of a nomographic function in the sense of Buck
[Buc79] plays an important role. Under the same designation, however, Warmus gave
an alternative definition already in 1959 [War59] (see also [Eve82, Sec. 4.4]). In order to
make the differences clear, we provide Warmus’s idea of a nomographic function below.
As a preliminary, we have to first introduce the concept of the rank of a function of two
or three variables.

Definition A.11. Let D1 and D2 be subsets of the real line and f : D1 × D2 → R.
Then, f is said to be of rank n > 1 if and only if there exist n functions ϕi : D1 → R

as well as n functions ψi : D2 → R such that

f(x1, x2) = ϕ1(x1)ψ1(x2) + ϕ2(x1)ψ2(x2) + · · · + ϕn(x1)ψn(x2) ,

1Recall that U(x0) is said to be a neighborhood of x0 ∈ R
N if it contains an open neighborhood

Uε(x0) := {x ∈ R
N | ‖x − x0‖2 < ε} for some ε > 0.
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where n cannot be reduced. That is, there do not exist functions ϕ′
i : D1 → R and

ψ′
i : D2 → R, i = 1, . . . , n− 1, such that

f(x1, x2) = ϕ′
1(x1)ψ′

1(x2) + ϕ′
2(x1)ψ′

2(x2) + · · · + ϕ′
n−1(x1)ψ′

n−1(x2) .

Definition A.12. Let D1,D2,D3 be subsets of the real line and i ∈ {1, 2, 3} be fixed.
A function f : D1 × D2 × D3 → R is said to be of rank n with respect to xi if and only
if it is of rank n when considered as a function of the two variables xi and (xj , xk),
j 6= k 6= i.

Definition A.13 (Warmus’s Nomographic Function). Let f : D1 ×D2 ×D3 → R with
Di ⊂ R, i = 1, 2, 3, some compact intervals. Then, f is said to be a nomographic
function (in the sense of Warmus) if and only if there exist functions ϕij : Di → R,
xi 7→ ϕij(xi), such that the following two conditions are satisfied:

(i) f(x1, x2, x3) = det






ϕ11(x1) ϕ12(x1) ϕ13(x1)
ϕ21(x2) ϕ22(x2) ϕ23(x2)
ϕ31(x3) ϕ32(x3) ϕ33(x3)






(ii) With respect to each of the variables x1, x2, x3, f is of rank greater than 1.

Comparing the determinant representation above, written out in full as

f(x1, x2, x3) = ϕ11(x1)ϕ22(x2)ϕ33(x3) + ϕ12(x1)ϕ23(x2)ϕ31(x3)

+ ϕ13(x1)ϕ21(x2)ϕ32(x3) − ϕ11(x1)ϕ23(x2)ϕ32(x3)

− ϕ12(x1)ϕ21(x2)ϕ33(x3) − ϕ13(x1)ϕ22(x2)ϕ31(x3) ,

with
f(x1, x2, x3) = ψ

(
ϕ1(x1) + ϕ2(x2) + ϕ3(x3)

)

(see (3.6)) reveals the difference between the two concepts, even if both are closely
related to nomography, which is the almost forgotten field dealing with nomographs
[Eve82].
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B
Some Standard Results of
Probability Theory

For quick reference, we summarize in this appendix some standard definitions and
results from probability theory. To this end, let (Ω,F ,P) be a probability space that is
rich enough in the sense that it supports all occurring random elements.

Definition B.1. A random variable X is said to be degenerate if and only if there
exists some fixed c ∈ R such that P(X = c) = 1. Otherwise, X is called nondegenerate.

According to the definition, a random variable is degenerate if and only if it is with
probability one concentrated on a set of measure zero, which implies that a degenerate
random variable is with probability one equal to its expected value and thus of zero
variance. The notion can immediately be extended to the multivariate case.

Definition B.2. A multivariate random variable is said to be degenerate if and only
if it is with probability one concentrated on some set of measure zero.

Obviously, a multivariate random variable is degenerate if it lies with probability one
on a hyperplane and thus if its covariance matrix is not positive definite [Mui05, pp. 3–
4].1

One of the most frequently used inequality in probability theory is the following.

Theorem B.1 (Markov’s Inequality). Let X be a nonnegative random variable (i.e.,
P(X ≥ 0) = 1). Then,

∀ε > 0 : P(X ≥ ε) ≤ E{X}
ε

.

1Note that the converse is not true because hyperplanes are not the only sets of measure zero in higher
dimensions.
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Proof. Let 1A denote the indicator function on set A and note that

X = X1[ε,∞)(X) +X1(−∞,ε)(X) ≥ X1[ε,∞)(X) ≥ ε1[ε,∞)(X) ,

for all ε > 0, since X is nonnegative. Then,

E{X} ≥ εE
{

1[ε,∞)(X)
}

= εP(X ≥ ε) ,

for all ε > 0, which proves the theorem.

An immediate consequence of Markov’s inequality is the not less important Cheby-
shev’s inequality.

Corollary B.1 (Chebyshev’s Inequality). Let X be a nondegenerate random variable
with finite expected value and finite variance. Then,

∀ε > 0 : P
(∣
∣X − E{X}

∣
∣ ≥ ε

) ≤ Var{X}
ε2

.

Another fruitful inequality is the so-called union bound (or Boole’s inequality)

Theorem B.2 (Union Bound). Let A1, A2, . . . be a countable set of events for which
Ai ∈ F , i = 1, 2, . . . , and

⋃

iAi ∈ F . Then,

P

(
⋃

i

Ai

)

≤
∑

i

P(Ai) .

Proof. The bound follows from the σ-subadditivity of probability measure P. See [Shi96,
p. 134] for a complete proof.

Before dealing with sequences of random variables, we first recap some of the various
kinds of the convergence of random variables.

Definition B.3. The sequence X1,X2, . . . of random variables converges in probability

to the random variable X, denoted as Xn
P−→ X, if

∀ε > 0 : lim
n→∞

P (|Xn −X| ≥ ε) = 0 .

Definition B.4. The sequence X1,X2, . . . of random variables converges almost surely
(or with probability one) to the random variable X, denoted as Xn

a.s.−→ X, if

P

(

lim
n→∞

Xn 6= X
)

= 0 .

A necessary and sufficient condition for a sequence to converge almost surely is given
by the following theorem, which therefore provides an equivalent definition.
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Theorem B.3. Let X1,X2, . . . be a sequence of random variables. Then, Xn
a.s.→ X,

for some random variable X, if and only if

∀ε > 0 : lim
n→∞P

(

sup
n′≥n

∣
∣Xn′ −X

∣
∣ ≥ ε

)

= 0 .

Proof. For a proof, we refer to [Shi96, pp. 253–254].

Definition B.5. The sequenceX1,X2, . . . of random variables converges in distribution

to the random variable X, denoted as Xn
d−→ X, if

∀x ∈ C(FX) : lim
n→∞

FXn(x) = FX(x) .

Here, FXn and FX are the cumulative distribution functions of Xn and X, respectively,
and C(FX) denotes the continuity set of FX (i.e., the set of points at which FX is
continuous).

Theorem B.4. Let X1,X2, . . . be a sequence of random variables that converges to the
random variable X almost surely. Then, we have the following implications:

Xn
a.s.→ X ⇒ Xn

P→ X ⇒ Xn
d→ X .

Proof. The proof can be found for instance in [Shi96, p. 256].

In applied probability theory, it is often of particular interest to infer from the con-
vergence behavior of a sequence of random variables on the convergence of the sequence
processed by some function.

Theorem B.5 (Mann-Wald). Let X and {Xn}n∈N be random variables that take on
values in a separable metric space (Θ, E , PX ). Furthermore, let g = g(x), x ∈ Θ, be
some measurable function that maps (Θ, E , PX) into another separable metric space
(Θ′, E ′, P ′

X) with P(X ∈ D(g)) = 0, where D(g) denotes the discontinuity set of g (i.e.,
the set of points at which g is discontinuous). Then,

a) Xn
a.s.→ X ⇒ g(Xn) a.s.→ g(X)

b) Xn
P→ X ⇒ g(Xn) P→ g(X)

c) Xn
d→ X ⇒ g(Xn) d→ g(X) .

Proof. The proof of the theorem, which is also known as the continuous mapping theo-
rem, can be found for instance in [vdV98, pp. 7–8], [Shi96, p. 357], [Bil99, p. 21].

Theorem B.6 (Dominated Convergence). Let X1,X2, . . . be a sequence of random
variables such that |Xn| ≤ Y almost surely for all n ∈ N and some random variable Y
with finite expected value. Then, if Xn

a.s.→ X,

lim
n→∞

E{Xn} = E{X} .
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Proof. The theorem, which is a consequence of Lebesgue’s theorem on dominated con-
vergence, is proven for instance in [Shi96, p. 187] and [Bil95, p. 77].

As one of the most important results in probability theory, the central limit theorem
for iid variables states that the corresponding (normalized) sum converges under rather
mild conditions to a standard normal random variable.

Theorem B.7 (Central Limit Theorem). Let X1,X2, . . . be a sequence of nondegen-
erate iid random variables with finite second moment (i.e., E{X2

1 } < ∞). If Sn :=
∑n

i=1Xi, then
Sn − E{Sn}
√

Var{Sn}
d−→ X ∼ NR(0, 1) .

Proof. For a proof, we refer to [Shi96, p. 326] and [Bil95, Sec. 27].

Remark B.1. The cumulative distribution function FX : R → [0, 1] of a random
variable X ∼ NR(0, 1) is of the form

FX(x) = P(X ≤ x) =
1√
2π

∫ x

−∞
e− 1

2
t2

dt . (B.1)

Since (B.1) is continuous over R, the convergence in Theorem B.7 (see Definition B.5)
is uniform, that is,

lim
n→∞ sup

x∈R

|FTn(x) − FX(x)| = 0 ,

with FTn(x) = P(Tn ≤ x), x ∈ R, the cumulative distribution function of

Tn :=
Sn − E{Sn}
√

Var{Sn} . (B.2)

The uniform convergence of the cumulative distribution functions of (B.2) to (B.1)
gives rise to the question how rapidly this occurs. The following theorem provides an
answer for those sequences of iid random variables that have finite second and finite
third absolute moments.

Theorem B.8 (Berry-Esseen). Let X1,X2, . . . be a sequence of iid nondegenerate ran-
dom variables with finite E{X2

1 } and E{|X1|3}. Then, for n ∈ N

sup
x∈R

|FTn(x) − FX(x)| ≤ C0
β√
n
, (B.3)

where β := E
{|X1|3} /Var{X1}3/2 and C0 a finite absolute constant.

Proof. See [Shi96, pp. 374-375] for a proof in which 1/
√

2π ≤ C0 < 0.8. A recent proof
of the inequality that improves the upper bound on the absolute constant to C0 < 0.4784
is given by Korolev and Shevtsova in [KS12].
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Another family of limit theorems whose importance cannot be overestimated are the
laws of large numbers. In this family a distinction is made between weak and strong
laws.

Theorem B.9 (Weak Law of Large Numbers). Let X1,X2, . . . be a sequence of iid
random variables with finite expected values and Sn :=

∑n
i=1Xi. Then,

Sn

n
P−→ E{X1}

as n tends to infinity.

Proof. The proof can be found for instance in [Shi96, p. 325]. When additionally assum-
ing Var{X1} < ∞, then the theorem is a trivial consequence of Definition B.3 together
with Chebyshev’s inequality, that is,

∀ε > 0 : P
(∣
∣
∣
∣

Sn

n
− E{X1}

∣
∣
∣
∣ ≥ ε

)

≤ Var{Sn}
n2ε2

=
Var{X1}
nε2

→ 0 (B.4)

as n tends to infinity.

As for the central limit theorem, we are also interested in estimating the rate of
convergence in the weak law of large numbers, which precisely means that we ask how
rapidly P

(∣
∣Sn/n− E{X1}

∣
∣ ≥ ε

)
tends to zero with growing n. One of the simplest

results is the following.

Theorem B.10. Let X1,X2, . . . be a sequence of iid random variables with finite vari-
ance and let Sn :=

∑n
i=1Xn. Then,

∀ε > 0 : P
(∣
∣
∣
∣

Sn

n
− E{X1}

∣
∣
∣
∣ ≥ ε

)

∈ O
(

1
n

)

.

Proof. As can be seen from (B.4), the assertion follows immediately from Chebyshev’s
inequality.

A similar theorem can be proven if higher moments are assumed to exist.

Theorem B.11. Let X1,X2, . . . be a sequence of independent random variables for
which the (t + 1)th moments exist, t = 2, 3, . . . , and

∃C > 0 ∀n ∈ N : E
{|Xn|t+1} ≤ C .

Then,

∀ε > 0 : P
(∣
∣
∣
∣

Sn − E{Sn}
n

∣
∣
∣
∣ ≥ ε

)

∈ O
(

1
nt

)

,

where Sn :=
∑n

i=1 Xn.

Proof. The proof can be found for instance in [Rév68, p. 54].
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A necessary and sufficient condition to even achieve exponential convergence is given
by the following.

Theorem B.12 (Baum-Katz-Read). Let X1,X2, . . . be a sequence of independent ran-
dom variables and let Sn :=

∑n
i=1 Xi. Then,

∀ε > 0 : P
(∣
∣
∣
∣

Sn − E{Sn}
n

∣
∣
∣
∣ ≥ ε

)

∈ O
(

1
ρn

)

, 1 < ρ < ∞ ,

if and only if for all ε > 0 there exist positive constants C(ε) and τ(ε) such that

∀t ∈ [−τ(ε), τ(ε)] :
n∏

i=1

E
{
etXi

}
= E

{
etSn

} ≤ C(ε)eε|t|n . (B.5)

Proof. For a proof, the reader is referred to [BKR62].

The following corollary, also given by Baum, Katz, and Read in [BKR62], demon-
strates how condition (B.5) simplifies when a sequence of independent Gaussian random
variables is considered.

Corollary B.2. Let X1,X2, . . . be a sequence of independent Gaussian random vari-
ables with bounded expected values. Then, for all ε > 0, P(|Sn − E{Sn}|/n ≥ ε) → 0
exponentially fast with growing n, if and only if there exists C ∈ R such that

∀n ∈ N :
1
n

n∑

i=1

Var{Xi} ≤ C ,

that is, the sequence of averaged variances is bounded.

Remark B.2. Note that in general, P(|Sn −E{Sn}|/n ≥ ε) cannot vanish more rapidly
than with the order O(1/ρn), for some p ∈ (1,∞) [Rév68, p. 56].

The strong laws of large numbers are a family of propositions in which the convergence
in probability occurring in the weak laws is replaced by almost sure convergence. A
well-known example is the following, proposed by Kolmogorov.

Theorem B.13 (Kolmogorov’s Strong Law of Large Numbers for iid Variables). Let
X1,X2, . . . be a sequence of iid random variables with finite first absolute moment (i.e.,
E{|X1|} < ∞). Then,

Sn − E{X1}
n

a.s.−→ 0

as n tends to infinity, where Sn :=
∑n

i=1 Xi.

Proof. For a proof see for instance [Shi96, p. 391].

Remark B.3. It can be shown that the condition E{|X1|} < ∞ is also necessary for
(Sn − E{X1})/n to converge to 0 with probability one [Shi96, p. 393].

140



Provided that the second moments exist as well, the sequence of random variables
need not be identically distributed, which was also proven by Kolmogorov.

Theorem B.14 (Kolmogorov’s Strong Law of Large Numbers). Let X1,X2, . . . be a
sequence of independent random variables with finite second moments and

∞∑

n=1

Var{Xn}
n2

< ∞ .

Then,
Sn − E{Sn}

n
a.s.−→ 0

as n tends to infinity, where Sn :=
∑n

i=1Xi.

Proof. The proof can be found for instance in [Rév68, p. 63] and [Shi96, p. 389].

For the special case of iid random variables, an answer to the question at which rate
(Sn − E{Sn})/n converges to 0 with probability one can be inferred from Hartman’s
and Wintner’s version of the law of the iterated logarithm.

Theorem B.15 (Hartman-Wintner). Let X1,X2, . . . be a sequence of nondegenerate
iid random variables with finite second moment. Then,

P

(

lim sup
n→∞

Sn − E{Sn}
√

2Var{X1}n loge loge n
= 1

)

= 1

Proof. For a proof, the reader is referred to for instance [Bil95, p. 154].

Remark B.4. Since the Theorem states that

lim sup
n→∞

Sn − E{Sn}
n

√

n

2Var{X1} loge loge n
= 1

almost surely, we can immediately specify the corresponding convergence rate to

∀ε > 0 : P

(

sup
n′≥n

∣
∣
∣
∣

Sn′ − E{Sn′}
n′

∣
∣
∣
∣ ≥ ε

)

∈ O




√

loge loge n

n



 .
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