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Abstract

As a result of the growing miniaturization of electronic devices, scenarios
where large numbers of interconnected cameras can be feasibly deployed in
all manners of indoor environments are rapidly becoming more realistic. For
sophisticated camera systems capable of observing and tracking humans, ap-
plications are developing in domains like surveillance of private and public
spaces, ambient assisted living and human-robot interaction, which are cur-
rently advancing at an increasing pace.

This dissertation tackles the challenges of detecting, tracking and re-identify-
ing pedestrians across multiple camera views in an indoor environment. From
an algorithmic point of view, two characteristic challenges of multi-view
tracking problems are addressed: the changes in perspective and the resulting
variation in appearance of the target towards the sensor, as well as the view
transition challenge, which lies in reliably maintaining the identity of mov-
ing targets across multiple cameras. From a technical point of view, further
challenges are addressed in the correct placement of sensors, the calibration
of these sensors, and the setup of the system to accommodate operation on
the sensor data in real time.

To cope with the algorithmic challenges, a novel method to for appearance-
based modeling of non-transparent objects, based on an adaptive mixture
of color distributions, is introduced in this thesis and realized for pedestrian
targets. This adaptive appearance model employs a two-stage, simplified,
three-dimensional, geometric shape model, which is used to derive weights for
the color distributions of object parts based on the observation perspective of
the sensor towards the target, and allows for a refinement of the appearance
model during the tracking process.

To verify the proposed system setup, a large-scale experiment was conducted
on data recorded from a setup of 40 cameras observing a 10 × 10 m area
from a top-down perspective, connected to a cluster of 40 computers for
distributed image processing. Cameras were fully calibrated using a novel
method, achieving an average reprojection error of 0.13 pixels for the com-
plete system, which exceeds state-of-the art accuracy. Long-term testing has
the system running with at least 99.994% availability for up to two weeks.



Experimental participants performed a total of 80 short walking sequences,
during which they were tracked across the fields of view of a subset of the
aforementioned camera system. The performance of the tracking was evalu-
ated regarding the the accuracy of the predicted position and the success rate
of the transfer of targets between different camera fields of view. Comparison
of the evaluation results for the proposed adaptive appearance model and a
state-of the art static color distribution model yielded an improvement of up
to 12 percent in the error of the prediction precision, and 38 percent in the
error of target view transfer.

Keywords: camera system, appearance modeling, multi-view, distributed
image processing, pedestrian tracking



Zusammenfassung

Infolge der zunehmenden Miniaturisierung elektronischer Geräte werden Sze-
narien in denen miteinander verbundene Kamerasysteme effizient in allen
Arten von Innenräumen eingesetzt werden können immer mehr zur Real-
ität. Für komplexe Kamerasysteme, die dazu geeignet sind Menschen zu
beobachten und ihre Position in Bildfolgen nachzuvollziehen, eröffnen sich
Anwendungsmöglichkeiten in Bereichen wie der Überwachung privater und
öffentlicher Räume, dem umgebungsunterstützten Leben (AAL) und der In-
teraktion von Mensch und Roboter (HRI), welche sich gegenwärtig mit großen
Schritten voranbewegen.

Diese Dissertation nimmt sich der Herausforderungen des Erfassens, Ver-
folgens und Wiedererkennens von Fußgängern über multiple Kamerablick-
felder in Innenräumen an. Von algorithmischer Seite wird auf zwei charak-
teristische Problemstellungen der Blickfeldübergreifenden Objektverfolgung
Bezug genommen: Die Veränderungen in der Beobachtungsperspektive und
die daraus resultierende Veränderung im äußeren Erscheinen der Zielper-
son gegenüber dem Sensor, sowie das Problem des Blickfeldwechsels, welches
darin besteht die Identität sich bewegender Zielpersonen über mehrere Blick-
winkel hinweg verlässlich zu bewahren. Aus technischer Sicht wird auf weit-
ere Herausforderungen Bezug genommen, die aus der korrekten Platzierung
der Sensoren, der Kalibrierung derselben, und dem Systemaufbau zur Er-
möglichung einer Verarbeitung der Sensordaten unter Realzeitbedingungen
bestehen.

Um die algorithmischen Herausforderungen zu meistern, wird in dieser Ar-
beit eine neuartige Methode zur Modellierung des äußeren Erscheinens nicht-
transparenter Objekte vorgestellt, die auf einer adaptiven Mischung von Far-
bverteilungen beruht, und diese Methode zur Modellierung von Fußgängern
als Zielobjekten umgesetzt. Dieses adaptive Erscheinungsmodell bedient
sich eines zweistufigen vereinfachten dreidimensionalen geometrischen Um-
rissmodells, welches dazu verwendet wird die Gewichtungen der einzelnen
Farbverteilungen basierend auf der Beobachtungsperspektive des Sensors ge-
genüber dem Zielobjekt herzuleiten, und erlaubt darüberhinaus die Ver-
feinerung des Erscheinungsmodells während des Vorgangs der Zielverfolgung.



Um den vorgeschlagenen Systemaufbau zu verifizieren wurde ein umfangre-
iches Experiment auf Daten durchgeführt, die mit einem System aus 40 Kam-
eras aufgenommen wurden. Dieses System beobachtet eine 10 × 10 m große
Fläche aus von der Decke abwärts gerichteter Kameraperspektive beobachtet,
wobei die Sensoren an einen Verbund aus 40 Rechnern angeschlossen sind,
welche zur verteilten Verarbeitung der Bildfolgen eingesetzt werden. Die
Kameras wurden mittels eines neuartigen Verfahrens intrinsisch und extrin-
sich kalibriert, wobei ein durchschnittlicher Rückprojektionsfehler von 0.13
Pixeln für das Gesamtsystem erreicht wurde, was den gegenwärtigen Stand
der Technik bezüglich der Genauigkeit übertrifft. Langfristige Stabilitätstests
erfassen die Systemverfügbarkeit mit 99.994 Prozent über einen Zeitraum von
zwei Wochen.

Insgesamt 80 kurze Gehsequenzen wurden durch die Experimentsteilnehmer
durchgeführt, während der diese durch die Blickfelder einer Teilmenge der
oben erwähnten Sensoren verfolgt wurden. Das Ergebnis der Zielverfol-
gung wurde hinsichtlich der Genauigkeit der vorhergesagten Position und
der Erfolgsrate des Blickfeldübergangs der Zielpersonen ausgewertet. Ein
Vergleich der Auswertungsergebnisse des vorgeschlagenen adaptiven Mod-
ellierungsansatzes mit einem statischen farbbasierten Modellierungsansatz
nach Stand der Technik erbrachte eine Verbesserung von bis zu 12 Prozent
in der Schätzung der Position der Zielperson und von 38 Prozent in der
Fehlerquote des Blickfeldübergangs.

Schlagwörter: Kamerasysteme, Erscheinungsmodellierung, Mehrere Blick-
winkel, Verteilte Bildverarbeitung, Verfolgung von Fußgängern
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Chapter 1

Introduction

At the dawn of the third millennium, the pervasion of our living and working
environments with electronic devices is progressing at an ever-increasing pace.
Among the observations relating to this development, the prediction dubbed
Moore’s Law [196, 240] is certainly one of the most prominent. It states that
the number of components in integrated circuits doubles every year, and has
become synonymous with the exponential development in microelectronics
over the past five decades,

The increase in transistor density fuels two different but related trends, with
an increase of processing power for equal-size devices on the one hand, and an
increase in miniaturization of equal-power devices on the other. As a side-
effect, the price of equal-power, equal-size devices is continually dropping,
making those devices accessible to a higher number of individuals. Conse-
quently, Moore’s Law has spawned several scions regarding related develop-
ments with exponential growth, such as Kryder’s Law [165, 289] (hard disk
storage capacity), Butters’ Law [233] (network transmission capacity) and
Hendy’s Law [250] (camera and screen resolution).

Among the devices benefiting from the trend in miniaturization are CCD
cameras (cf. Tompsett et al. [275]). As those sensors are becoming ever
smaller and more affordable, the opportunity arises to furnish environments
like factory halls, offices, public spaces and even private homes with larger
numbers of optical sensors, an endeavor that is becoming increasingly afford-
able for small companies and private citizens alike. Combined with the in-
creasing computing power available to process all the generated data, a new
generation of surveillance systems, dubbed Smart Surveillance (cf. Ham-
papur et al. [110]) has been on the rise for the last decade.

An argument can be made for the installation of cameras over different kinds
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of sensors benefiting from the same developments, such as microphones or ra-
dio frequency identification (RFID) scanners, on grounds of their versatility.
Since preexisting public and private environments were fashioned with human
sensory capacities in mind, the use of visual sensors comes as a natural choice
given the reliance of humans on their visual perception. Furthermore, visual
surveillance systems, such as closed-circuit television (CCTV) systems, have
already been in place in many public environments for years, to serve as a
basis for real-time manual surveillance and recordings for post facto analysis.
In many cases these systems can be retrofitted or upgraded to accommodate
Smart Surveillance approaches.

Benefits to be gained from such surveillance systems are manifold, and largely
depend on the application domain, three of which are illustrated exempla-
tively in the following.

For the surveillance of public spaces and critical installations, applications of
particular interest in the security domain include the automated detection
of persons entering or leaving the target area (cf. Freer et al. [88], Snidaro
et al. [253]) , the identification of known persons using previously acquired
biometric information (such as face recognition or gait recognition, cf. Riaz et
al. [230] and Lee et al. [173]) and the detection of the presence of potentially
dangerous or absence of valuable objects (cf. Chuang et al. [47]).

Apart from the security aspect, research has also focused on the creation of
so-called assistive environments or smart rooms (cf. Pentland [216]), where
data gathered from sensors placed in the environment is used to decide when
automated tasks are to be performed by connected actuators. Examples
include automated control of lighting, heating or ventilation depending on
the presence or activities of persons detected within a smart environment (cf.
Focken et al. [87]).

From a roboticist’s point of view, the ability of robots to perform joint tasks
with humans has been a research focus for many years (cf. Kosuge et al. [162]
for a survey on the topic or Lenz et al. [174] for a more recent example). For
sophisticated cooperation between humans and mobile robots, the capacities
of the robots to understand their environment from data acquired by optical
sensors – analogous to what is termed visual perception (cf. Gibson [95, 96],
Cornsweet [57]) in humans – are often a crucial element, as Steinfeld et al.
[256] mention. Unlike humans, however, robots are not necessarily limited
to data from sensors mounted on their chassis. In locations where they can
be installed, access to data from external sensor arrays can greatly extend
the area perception of the robot beyond the limitations of its own platform,
and facilitate tasks like navigation towards targets not within the robots
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original line of sight. Thus, argumentatively speaking, the loop to the two
aforementioned application domains is closed.

A common denominator of those application domains is the existence of a
certain area that is under visual surveillance, which is termed target area or
area of observation in the following, where the former denotes the intended
area to be observed, while the latter denotes the effectively observed area.
Naturally, the exact topology of this area varies, and consequently so does the
ideal sensor configuration (cf. Hörster and Lienhart [119], Bodor et al. [24]).

More prominently, the above-mentioned application domains furthermore
share the challenge of detecting and tracking persons within said target area,
which are also termed pedestrians in the following in reference to their natural
method of locomotion. This challenge has remained a staple research subject
for many years, and the terms “person tracking” (cf. [164]) and “pedestrian
tracking” (cf. [65, 261]) have been coined to describe it.

Among others, application-centered research on multi-view visual pedestrian
tracking has focused on employing techniques in surveillance tasks [19, 134]
and safety applications [268]. Challenges specific to multi-view approaches
can be divided into two categories: technical challenges, pertaining to the
realization of the system and largely related to the scale of the system, and
algorithmic challenges, which stem from the requirement to coordinate the
use of multiple sensors simultaneously, establish consistency and avoid am-
biguity, especially with regard to varying perspectives.

The first challenge to mention regarding the technical side is posed by the
amount of data generated from such systems. A single state-of-the-art in-
dustrial camera usually generates between 25 and 30 images per second, a
number that is geared towards human sensory capacities and preferences (cf.
Apteker et al. [6]). From a data perspective, these digital images number
several megabytes each for high-resolution cameras. For the complete cov-
erage (i.e. without blind spots or static occlusion) of a small apartment,
however, the number of required sensors easily exceeds single digits, not to
mention large and complex target areas such as factory halls, train stations,
or airports. These considerations affect the network topology and bandwidth
requirements, as well as the amount of processors that have to be employed.

Another challenge, which affects both the technical and the algorithmic part
of the task, is posed by the requirement to perform the tracking in real time,
in order to allow for simultaneous use of the extracted tracks in other tech-
nical systems connected to the tracking system, such as robots (in human-
robot interaction (HRI)) or alarm systems (in surveillance contexts), and
in order to avoid latency-related coordination problems within the system
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itself. This can be expected to cause difficulties for approaches using high-
resolution models of the human body, approximating the position of single
limbs. For example, Caillette et al. [38] report a reconstruction time of
approximately 70 ms per frame for their visual full-body tracking approach
running on off-the-shelf hardware, which clearly exceeds the desired response
times for cameras operating at up to 30 fps. These considerations suggest al-
gorithmic approaches treating pedestrians as monolithic entities, using only
those features to describe their appearance which can be effectively extracted
and processed within the time frame allowed for by the hardware.

Furthermore, camera calibration is another challenge which touches upon
both the technical and the algorithmic. It has to be addressed in order for
the camera system to provide information about objects in real-world ge-
ometry, which are most convenient for exchange among different technical
systems (e.g. actuators or other sensors) as well as for interpretation by hu-
mans. Although, in general, this topic has been explored for many decades
for single cameras, the exact calibration of multiple cameras against a com-
mon world coordinate system remains a challenging task, the complexity of
which increases non-linearly with the number of cameras involved, which is
compounded by the fact that in most common cases, only a small percentage
of the cameras fields of view (FOVs) intersect with each other.

The second challenge related to the intersection of camera FOVs is the view
transition problem. When a target leaves the FOV of one camera and enters
that of another, the tracking has to continue within the new FOV, without
interruptions, or worse, target loss. Furthermore, the identity of the target
has to be verified, in order to avoid the confusion of targets in the moment
of transition. For targets which appear in multiple FOVs at the same time,
the camera with the optimal observation perspective, best suited to track
the target, has to be determined. Furthermore, a decision has to be made,
whether a target is tracked in the maximum number of possible FOVs and
the results merged using a data fusion approach, or if it is more efficient to
track a target only in a single FOV at a time.

Finally, when tracking pedestrians, the fact that their appearance varies with
the perspective the camera has on the target has to be taken into account.
To disambiguate, this perspective is termed the observation perspective in
the following. A robust approach has to be able to compensate for shifts
in observation perspective (and consequently, appearance) caused by target
movement within the limits of a single FOV, as well as transition of a target
between two neighboring or intersecting FOVs. This is especially important
when tracking multiple targets, since this introduces the possibility of con-
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fusing targets, consequently increasing the need for meaningful appearance
descriptors to avoid those confusions.

This thesis presents approaches to the mentioned challenges, realized in terms
of a vertically integrated pedestrian tracking system. An area of 10 by 10 m
is selected for observation. From the technical side, consistent area coverage
is achieved by mounting 40 cameras in a grid, facing top down at the observa-
tion area with interlocking fields of view. Flexibility regarding networking is
achieved by selecting GigE-Vision (GEV) camera technology, which operates
via Ethernet and allows for connections of up to 100 m. To provide sufficient
data processing power, these 40 cameras are connected to the same num-
ber of computers, located in a nearby server room. Off-the-shelf hardware
is employed to allow for flexible replacement and addition of components.
Collectively, these decisions address the challenge posed by the high amount
of generated image data, and provide a solid technical basis to perform the
algorithmic steps required for pedestrian detection and tracking in real time.

From a software architecture perspective, the technical groundwork is ex-
tended by building a two-layered distributed application system on top of
it. The service layer addresses the communication and synchronization be-
tween the connected hardware components. Furthermore, functionality such
as storage and replaying of multi-camera video sequences and real-time pre-
processing of images, e.g. removing lens distortion, is realized through this
layer. For inter-process communication (IPC) within the service layer, and
for cross-layer communication, the Real-Time Database for Cognitive Au-
tomobiles (KogMo-RTDB) (cf. Goebl and Färber [98, 99]) is employed,
which provides some data time stamping and synchronization functionality.
The service layer is realized as independent processes on each of the pro-
cessing clients. Communication between processes within the layer is only
employed for two purposes: Firstly, for synchronization of the processing
client system clocks, which is performed in regular intervals, and secondly,
for the purpose of camera calibration, which is a maintenance task requiring
operator initiative and conducted irregularly.

Situated on top of the service layer, the application layer provides a mod-
ular framework for applications, foremost of which to mention is pedestrian
tracking. In general, the large amounts of raw image data suggest a dis-
tributed approach to image processing, in order to reduce the amount of
network traffic generated by eliminating the need to transfer all raw image
data to a single location. and instead transmitting extracted high-level re-
sults. Therefore, not unlike the service layer, the application layer employs
a distributed image processing approach, with client modules for the differ-
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ent applications processing data from a single camera each. For intra-layer
IPC, the framework relies on the Internet Communications Engine (ICE)
(cf. Henning and Spruiell [116]). Two central administrative modules co-
ordinate the client modules: Firstly, the registration module provides setup
information and coordinates the IPC. Secondly, the server module integrates
the high-level results (i.e. world poses) obtained from different client mod-
ules, manages global target identities, and handles outgoing communication
to connected technical systems, i.e. result broadcast.

For the pedestrian tracking module itself, a two-step tracking approach is
employed. The pedestrian tracking step is preceded by a pedestrian detec-
tion step. For the purpose of detection, an adaptive background subtraction
approach using Gaussian mixture models (GMMs) (cf. Power and Schoones
[223]) is integrated, which provides an estimate of initial target positions,
as well as color descriptors for an initial target-specific appearance model.
For the subsequent tracking step, the Bayesian tracking approach suggested
by Panin (cf. [211]) is integrated. Accordingly, the tracking is performed
using a multi-target Markov chain Monte Carlo (MCMC) particle filter (cf.
Panin et al. [212]) to generate the tracking hypotheses, in combination with
the color-based appearance descriptors extracted in the detection step for
hypothesis verification. To address the challenge of tracking targets across
overlapping FOV boundaries, static transition areas are defined within the
overlapping FOV parts, which trigger a view transition for a target as soon
as the target enters these areas, switching the tracking of the target from
one camera (and connected tracking module) to the next, by transferring the
current pose and appearance descriptors to the appropriate tracking mod-
ule, and initializing another MCMC tracking sequence with the transmitted
data. The generation of the transition areas is performed through the use of a
target transfer tree, which partitions the observation area into responsibility
zones, and handles camera neighborhood relations.

Regarding the specifics of the appearance modeling, two different approaches
are employed. Firstly, a state-of-the-art static appearance approach is inte-
grated, where the initial color descriptors acquired at detection are used
throughout the entire lifetime of a target across several FOVs. In addition,
a novel adaptive appearance approach is presented, where color descriptors
are varied according to the observation perspective, thereby improving the
prediction of the color descriptors for tracking hypotheses. To that end, a
two-step modeling technique is employed to generate a static anthropometric
shape model consisting of regular polygons, which is exploited, in combina-
tion with the observation perspective, over the course of multiple observa-
tions, to refine the color predictions, and consequently improve the accuracy
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of the tracking under varying observation perspectives. Special attention is
given to the moment of FOV transition, where the observation perspective -
and consequently, the appearance model - displays the largest gradient.

To put the role of this dissertation in a wider perspective, the document at
hand provides two distinctive features which define its scope against the re-
lated work in this field. Firstly, the possibilities of distributed tracking and
surveillance systems with large numbers of cameras are explored in a pilot
experiment. As a proof of concept, an example system is assembled via inte-
gration of state-of-the-art hardware components, software components, and
Computer Vision methods. As a consequence, critical elements of the sys-
tem and challenges caused by the scale of the system, in contrast to systems
with comparable functionality but less area coverage and fewer sensors, are
identified and solutions to those challenges are presented.

Secondly, a novel adaptive appearance modeling approach is presented, which
is designed with the challenges of the previously mentioned system in mind.
This approach improves on state-of-the-art methods in color-based tracking
for objects of known object classes (i.e. with common geometric features
and, to a degree, color schemes) for camera systems with known camera
parameters and environmental geometry, i.e. topography of the plane that
the movement of those objects is restricted to. As a consequence, the area
of application of the presented approach is mostly for tracking within man-
made environments, such as within buildings. The improvement of the state-
of-the-art is achieved by the incorporation of the observation perspective
into the modeling of the appearance of the target using a non-deformable
geometric shape model, which results in a perspective-independent model
that can in turn be used to calculate appearance descriptors for a target
under varying observation perspectives which provide more accurate results
than the standard static appearance approach.

To provide a summary of these remarks, the following section reiterates the
scientific contributions of this thesis in a concise manner. A similarly concise
formulation of problem statements and solution ideas can be found in the
respective chapters (cf. Section 2.1 on page 11 and Section 3.1 on page 79).
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1.1 Scientific Contributions

In detail, the contributions of this thesis are as follows:

(1) A vertically integrated multi-camera system for pedestrian track-
ing in an indoor area is presented. The presented system distin-
guishes itself through its unique scale for camera systems of its type
regarding the coverage area and number of integrated components. It
is organized in a three-layered architecture, consisting of a hardware
layer with two software layers, one of which comprises service, system
maintenance and preprocessing tasks, while the second one provides
high-level image processing capabilities. Solutions are presented for
multiple challenges occurring in various stages of the system integra-
tion, e.g. sensor placement, synchronization of image processing, and
the transition of targets between multiple FOVs. The system is demon-
strated to be capable of tracking the movements of multiple pedestrians
across the target area in real time. Finally, the performance of the sys-
tem regarding pedestrian detection, pedestrian tracking and long-term
system stability is evaluated on the recorded data.

(2) A semi-automated camera calibration method suitable for the
calibration of a multi-camera system with overlapping FOVs
is presented. The presented approach is divided into two steps, and
employs a well-defined calibration object with circular marks. In the
first step, the calibration object is exposed to cameras in overlapping
and non-overlapping parts of the FOVs, while varying distance and
rotation around all three axes. Ideally, these degrees of freedom are
exploited to the maximum possible extent. Synchronized images from
all cameras are taken in regular intervals, and the local poses of the
calibration object for all successful detections are stored. In the sec-
ond step, both internal and external camera parameters are estimated
simultaneously from the stored poses. This is achieved by treating the
calibration as a bundle-adjustment problem, which is solved using a
sparse Levenberg-Marquardt (LM) optimization algorithm. The ap-
proach is experimentally evaluated on the framework described in (1).
Using the reprojection error as a metric, the accuracy of the presented
calibration method is compared against results obtained by other re-
searchers for multi-camera system calibration, as taken from related
work. The results of the comparison indicate superior performance of
the described approach.
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(3) A novel method to model the appearance of different objects
belonging to an object class with known geometric properties
for tracking is presented. As a restriction, the camera parameters
have to be known for the presented method to be applicable, and the
movement of the objects has to be restricted to a plane, the topography
of which has to be known. Consequently, the approach is best suited for
man-made environments, such as indoor areas. The approach employs
a non-deformable geometric model constructed from regular polygons
to model the shape of the object. The model is then divided into
parts which are expected to share certain appearance properties, such
as color statistics. Using multiple observations from varying observa-
tion perspectives, the appearance properties for the model parts are
computed from the appearance properties of the entire object, which
allows for an extrapolation of the appearance of the object under arbi-
trary observation perspectives. This information can in turn be used in
multiple ways, e.g. to refine the testing of hypotheses when employing
a particle-filter based approach for tracking. As a proof of concept, this
approach is exemplatively realized to model the appearance for clothed
pedestrians using normalized color histograms as appearance descrip-
tors, and tested against the state-of-the-art within the framework de-
scribed in (1). The experimental results indicate an improvement for
the categories of single-view tracking, multi-view tracking, and target
identity recognition.

1.2 Outline of the Thesis

To reflect the groups of contributions mentioned in the previous chapter, the
remainder of this thesis is organized in four chapters. Aside from the last
chapter, these chapters are thematically grouped, where each chapter focuses
on a specific part of the whole task, and follows a generic internal structure
with the presentation of challenge, solution idea, approach, experimental
evaluation, and results. In detail, the chapters are arranged as follows:

• Chapter 2 on page 11, titled “Real-Time Multi-View Pedestrian Track-
ing”, contains the complete top-to-bottom description of a distributed
camera system designed for real-time indoor surveillance, focusing on
scalability and modular design. The chapter describes hardware as
well as software components. This chapter provides the most general
overview over the whole challenge presented in the previous sections,
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and the following chapters integrate into the framework provided by it.
Its main contribution lies with the vertically integrated, three-layered
architecture composed of state-of-the art components and methods.

• Chapter 3 on page 79, titled “Appearance Modeling”, is focused around
a lean pedestrian appearance model, designed specifically with a real-
time multi-view tracking application in mind. This chapter integrates
with the previous chapter by providing improvements for the method-
ology employed for color-based pedestrian detection and tracking. The
contribution lies with the presentation and evaluation of a novel ap-
proach to adaptively model target appearance of multi-colored objects
based on observation perspective for use in color-based tracking.

• Chapter 4 on page 123, titled “Applications”, provides application ex-
amples for two modular extensions of the camera system presented in
this thesis. The contribution lies with the demonstration of the versatil-
ity and extensibility of the system described in Chapter 2 for additional
surveillance and action interpretation tasks, beyond its main applica-
tion focus of pedestrian tracking.

• Chapter 5 on page 135, titled “Summary and Outlook”, concludes the
thesis by summarizing results and scientific contributions from the pre-
vious chapters, and providing an outlook into further application and
research opportunities tying in with this work.



Chapter 2

Real-Time Multi-View
Pedestrian Tracking

The surveillance of large structured environments (e.g. train stations, fac-
tory halls or street sections) is a challenge that surpasses the limits of single-
camera smart surveillance approaches. Among other factors, occlusion and
camera resolution impose limitations on the maximum area that can be cov-
ered by a single monocular camera. For indoor environments, this is com-
pounded by the limitations of camera FOV induced by room size (e.g. wall-
to-wall distance, ceiling height). Consequently, when aiming for coverage of
a sufficiently large area, information gathered from multiple camera views
has to be combined. This chapter specifically focuses on the problem of
tracking pedestrians (cf. Section 2.3.1 on page 14) through multiple views
within such an environment, and the challenges to be expected under these
circumstances.

2.1 Problem Statement

From an algorithmic perspective, according to Cai et al. [37], the problem
of multi-view person tracking can be divided into a series of single-view per-
son tracking problems and view transition problems. The single-view track-
ing problem in turn can be broken down into the initial detection problem,
where a pedestrian has to be detected within an image without any previous
information, and a subsequent tracking problem, where information about
the existence of a pedestrian and its previous position within the target area
can already be considered.
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However, apart from the algorithmic perspective, concerns regarding hard-
ware and software architecture have to be addressed when considering a sys-
tem which is able to provide the tracks of several pedestrians across multiple
views in real-time. Efficient coverage of the target area requires a systematic
approach to sensor selection and placement, with the requirements intro-
duced by the desired applications already in mind. An efficient solution has
to be found for the provision of sufficient computing power to process the
large amount of image data generated by the cameras in real-time, and the
capacity of the system to operate for prolonged stretches of time has to be
ensured.

A final item to be kept in mind for the conceptual work is the facility with
which a surveillance system can be scaled to cover a larger area. Ideally, the
scaling process should not require the existing hardware installation to be
modified, but simply allow the addition of new parts to the existing config-
uration to extend the system without interference with the existing setup.

To summarize, the problem covered in this chapter of the thesis can be stated
as the design and implementation of a multi-camera vision system meeting
the following criteria:

(1) Optimal camera coverage of an indoor area with a planar floor level
(e.g. laboratory, factory hall, office), with regard to the tracking of
pedestrians, preferably referred to as target area in the following.

(2) Detection of pedestrians and tracking of their position on the target area
floor plane with two degrees of freedom (DOF), in real-time.

(3) Seamless transition of targets between fields of view of adjacent cameras
while preserving their identity (i.e. avoiding confusion of targets), also
in real-time.

(4) Capacity to operate for extended periods of time, i.e. several hours.

(5) Extensibility of the system, with regard to (a) coverage and (b) func-
tionality, requiring modular design and accessibility of data and results
to multiple modules.

2.2 Outline of this Chapter

The remainder of this chapter is organized as follows:
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Section 2.3 delivers a discussion of related work on visual pedestrian track-
ing and related topics, with a special emphasis on multi-view approaches
and real-time capable tracking systems.

Section 2.4 on page 26 outlines the solution approach presented in this
thesis, provides an overview of the architecture, and explains the ratio-
nale behind the design decisions taken.

Section 2.5 on page 29 describes the initial conditions under which the
implementation of the system had to be realized.

Section 2.6 on page 30 provides details and specifications for the hard-
ware components integrated in the CoTeSys Central Robotics Labo-
ratory (CCRL) installation.

Section 2.7 on page 42 focuses on the combined multi-camera calibration
method employed for the system, and provides a comparison of the
results with other state-of-the-art multi-camera calibration methods.

Section 2.8 on page 47 describes architecture and tasks for the first of
the two layers constituting the software part of the tracking system,
focusing on image buffering and preprocessing.

Section 2.9 on page 50 describes architecture and tasks for the second
software layer, focusing on pedestrian detection and tracking.

Section 2.10 on page 62 presents several experiments conducted to vali-
date the concepts and algorithms employed for the system described in
the previous sections.

Section 2.11 on page 77 provides a discussion of the work presented in
the chapter and summarizes the most important results and observa-
tions.

2.3 Related Work

The following is a survey of academic literature pertaining to the topics of ob-
ject detection and tracking, covering methodology, technical realization, and
applications. Special attention is given to the aspects of pedestrian detection
and tracking, multi-camera systems, and real-time compatible approaches.
The author’s observations and conclusions are found at the bottom of each
section.
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2.3.1 Definitions and Terminology

When delving into the wealth of academic literature pertaining to the topic,
it is quickly noted that some variations exist in the terminology. Therefore,
it seems prudent to clarify a few terms according to their use in this thesis.

For the purpose of this thesis, a pedestrian is considered to be a human with
their posture limited to being upright, that is either standing or ambulating.
This coincides with the definition given by Gray et al. [102]. At some points
of this thesis, the terms person or human may be used synonymously to refer
to a pedestrian, e.g. person tracking refers to the tracking of pedestrians.
Note, that in contrast to this thesis, most research papers literally referring
to pedestrians are written from an automotive background, and therefore
almost exclusively regard pedestrians from a lateral perspective.

Tracking is the process of repeatedly locating an object over a period of time.
Consequently, the set of object locations obtained this way is called the track,
whereas a consecutive subset of the track is referred to as tracklet. For the
purpose of this thesis, unless stated otherwise, the term tracking is sloppily
used to refer to visual tracking, which refers to the process of tracking using
a visual sensor, such as an eye or a camera. In the sense of tracking, the
object that is being tracked is referred to by the term target in the following.

The term appearance refers to the properties of an object that can be visu-
ally observed (cf. Hunter and Harold [127]). The most important properties
falling under these definitions are properties of the object surface (color) and
shape. While in theory object surfaces might have transmissive as well as
reflective properties, for the purpose of this thesis, only reflective properties
are considered due to the nature of the objects being modeled. It should be
noted, that due to the optical sense relying on light reflected by the object,
appearance properties are subject to change upon variations in illumination
conditions. Consequently, the term appearance model refers to any approach
to modeling the appearance of an object, e.g. using color or brightness statis-
tics of its digital image. In the sense of employing appearance models in
tracking, a static appearance model refers to an appearance model that does
not vary over time, the opposite of which is termed an adaptive appearance
model here.

For further definitions and clarifications on the terminology employed in this
thesis, the reader is kindly referred to Chapter C on page 167.
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2.3.2 Methods of Pedestrian Tracking

The topic of visual pedestrian tracking merits an overview of the plethora of
methods devised to cope with its inherent challenges.

Regarding the difference between tracking and detection, there are two pos-
sibilities to approach visual object tracking in general that also transfer to
pedestrian tracking. On the one hand, each frame in a sequence can be
treated entirely as an individual image, applying the same detector algorithm
(e.g. Haar feature-based [286] or histogram of oriented gradients (HOG)-
based detectors [77], cf. Dollár et al. [68] for a survey comparing different
algorithms.) to every single frame, a method that is referred to as tracking-
by-detection [5, 30].

In contrast, Bayesian tracking utilizes the eponymous theorem [14] to exploit
the information about the prior state (i.e. estimated prior positions and
confidence) of the tracked pedestrian in every subsequent frame after the
initial detection. This method incurs the advantage of being less costly from
a computational perspective, as features only have to be sampled for a smaller
portion of subsequent images in contrast to a full-fledged detection approach.
Furthermore, the approach also has benefits when tracking multiple targets
with similar appearance, since confusions are less likely due to the fact that
previous tracks are being considered, cf. Kettnaker and Zabih [153].

As a further distinction, approaches are divided into marker-based approaches,
i.e. those using any type of fiducial or marker attached to the target, and
markerless approaches, which do not require any such expedients to oper-
ate, relying instead on descriptive features of persons that can directly be
extracted from the image.

Markers, or fiducials as they are also frequently referred to, are objects whose
properties are well defined, and that are attached to the target a priori.
They exist in different shapes and sizes, and depend on the exact type of
sensor used. Examples include infrared markers (cf. Maeda et al. [180]),
color markers (cf. Wang et al. [290]) or binary black/white patterns such
as ARToolkit or ARTag markers (cf. [83, 149]). As a general rule, it can
be stated that marker-based approaches are capable of supplying increased
robustness (i.e. reliability under adverse conditions) and accuracy at the cost
of a narrowed-down area of applicability. Therefore, these approaches are
especially suited for high-precision requirements in controlled environments,
such as human motion capture (cf. Moeslund et al. [194, 195] for a survey on
the topic, and Kirk et al. [157] for an application example.). Since they are
well defined and incur little risk of being confused with each other, markers
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are commonly tracked using tracking-by-detection approaches (cf. Zhang et
al. [301] for a comparative study).

Conversely, markerless approaches can be applied under a more varied set of
circumstances, which makes them especially suitable whenever there is little
to no control over targets. Examples include surveillance tasks, where targets
are usually non-compliant (cf. Fuentes et al. [89] or Wei et al. [205]), or the
analysis of images provided by third parties, such as television broadcasts
of sports events (cf. Watanabe et al. [291] or von Hoyningen-Huene and
Beetz [121] for televised soccer; Pingali et al. [218] for tennis matches).

Markerless approaches to pedestrian tracking can be further differentiated
into those operating solely on the image data, resulting in a track of two-
dimensional (2D) image positions (cf. Comaniciu et al. [49]), and approaches
operating on the three-dimensional (3D) position of objects, which can be
obtained using calibrated cameras (cf. Balan et al. [11]). While an approach
operating on real world position data allows for the inclusion of human motion
models (cf. Arechavaleta et al. [7] for unconstrained locomotion at floor level;
Urtasun et al. [278] for diverse activities) to improve hypothesis generation in
the prediction step, it should be noted that the frequent projections and re-
projections of target positions between world space and image space introduce
another possible source of numerical instability.

Regarding the features of pedestrians being tracked in markerless approaches,
one set of methods can be classified as holistic, where appearance descriptors
are used to describe the body as a single monolithic entity. Examples include
the approaches of Comaniciu et al. [50], using histograms on scale-invariant
ellipsoidal regions of kernel-transformed images, Gandhi and Rivedi [90],
using panoramic color appearance maps, and Allen et al. [2], using ratio
histograms in hue/saturation/intensity (HSI) color space for tracking with
the CamShift [28] algorithm. Those can be distinguished from atomistic
approaches, where different descriptors for different parts of the body are
employed. To provide an example, Izadinia et al. [129] propose a tracking
method where different body parts are tracked independently using tracking-
by-detection [77] with HOG [62] descriptors, and merged by flow network
optimization [219].

To conclude, the challenge of tracking pedestrians has been tackled under a
multitude of constraints with a plethora of methods, each of which have dis-
tinct advantages and disadvantages. The system investigated for this thesis
uses a holistic, markerless approach to visual tracking, employing Bayesian
tracking in the image domain with calibrated cameras to infer world po-
sition of targets. This kind of approach is well suited for semi-controlled
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environments, where there is free access to cameras, but not to targets. In
other words, this thesis describes an approach operating under typical cir-
cumstances for an indoor surveillance application.

2.3.3 Visual Tracking

Panin [211, p.8] proposes a tracking pipeline (cf. Figure 2.1 on the next
page) as general modus operandi for visual object tracking, consisting of the
following steps for every iteration:

Step 1: Data acquisition from sensors, providing image data and time stamps

Step 2: State prediction by Bayesian tracker at the given time stamp, pro-
viding multiple hypotheses

Step 3: Preprocessing of new sensor data, independent of hypotheses (e.g.
color space conversion, background subtraction etc.)

Step 4: Feature sampling from the target hypotheses.

Step 5: Data association, where the sampled features are matched against
the image data to produce measurements for the target.

Step 6: Data fusion, where target-associated data from all cameras and
modalities is combined to produce a global measurement vector.

Step 7: State update, where the maximum a-posteriori (MAP) likelihoods
for each target are computed to provide an output state.

Step 8: Feature update, where the model state is exploited to sample online
reference features for the subsequent frame.

Regarding adequate features applicable in Steps 4 and 8, van de Sande et al.
[239] provide a comprehensive evaluation of different types of color descriptors
to be used for object recognition. The work of Ozturk et al. [210] deserves
special attention here, since they tackle the problem of tracking pedestrians in
indoor environments from a similar top-view perspective as presented in this
paper. They employ histogram models in RGB color space with sequential
importance resampling (SIR) particle filtering. Additionally, they employ
scale invariant feature transform (SIFT) [178] flow vector matching against
manually annotated data to determine the orientation of tracked targets.
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Figure 2.1: Pipeline for visual object tracking, as proposed by Panin (cf. [211]).
In addition, the distinct steps have been assigned to the information levels, as
proposed by the author (cf. Figure 2.2 on the facing page).

2.3.4 Tracking and Data Association Algorithms

Regarding the state prediction and data association steps for Panin’s pipeline
model referenced in the previous section, the literature provides a plethora
of methods to choose from.

As mentioned in Section 2.3.2 on page 15, the underlying problem is the
estimation of the probability of a state regarding the given previous state.
this requires a Bayesian concept of probability [14] and is therefore often
referred to as Bayesian tracking or Bayesian application. For the tracking
of multiple targets, one major discriminating quality between methods is
whether the states of different targets are updated sequentially (e.g. SIR,
sequential Monte Carlo (SMC) [39]/ MCMC approach) or simultaneously
(e.g. joint probabilistic data association (JPDA) filter).

MCMC, which implements the Metropolis-Hastings Algorithm [112, 190] can
be considered one of the standard solutions for this particular problem (cf.
Geyer [94], Smith and Roberts [251] and Green [103] for tutorials on the
subject). On the other hand, Karlsson and Gustafsson [147] propose a
JPDA filter, while von Hoyningen-Huene and Beetz [122, 123] propose a
Rao-Blackwellized SIR particle filter. Vermaak et al. [282] compare Markov
chain JPDA filter, sequential sampling particle filter (SSPF), independent
partition particle filter (IPPF) regarding the applicability of the approaches
for multi-target tracking. They conclude, that the MC-JPDA filter outper-
forms the other proposed methods regarding convergence and ability to deal
with multiple targets.
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2.3.5 Tracking with Multiple Cameras and View Tran-
sition

Regarding the general problem tracking of targets across multiple cameras,
the paper of Cai et al. [37] can be considered a seminal work, in that it
proposes a comprehensive theoretical framework for multi-view transition
tracking and establishes the method of dissecting the multi-view tracking
problem into an alternating sequence of single view tracking problems and
view transition problems to be tackled individually, as already briefly touched
upon in Section 2.1 on page 11. Since techniques for single-view tracking
have been discussed comprehensively in the previous sections, approaches to
address the view transition challenge shift into focus at this point.

Observation I: Tracking across multiple cameras introduces the problem of
view transition. In this thesis, multi-view tracking is treated as an alternating
series of single-view tracking and view transition.

Image data level

Feature level

Appearance model level

World geometry level

Image acquisition

Feature extraction

Model building

Model detection/
tracking

Figure 2.2: Funnel model for information condensation during successive steps
of image processing, specifically object tracking. Information on the object of
interest is extracted and condensed from top to bottom, discarding redundant
parts while preserving relevant bits. This reduction in data significantly enhances
processing speed for certain operations (e.g. data fusion) when performed on
lower levels as opposed to higher ones.

The challenge of robust target transition between camera FOVs has been
tackled before under various conditions, yielding many different approaches.
For example, Khan et al. [154] consider the transition of targets between
intersecting camera FOVs by establishing intersection lines for uncalibrated
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cameras, while Javed et al. [132, 133] approach the problem of target tran-
sition between non-intersecting cameras by employing machine learning to
discern human path conformity, inter-camera relationships and inter-camera
brightness transfer functions. Kuo et al. [166] tackle the same challenge
using appearance affinity models which are learned during operation.

Observation II: The class of view transition problems can be divided
into two subclasses, transition of intersecting views and transition of non-
intersecting views. This thesis is primarily concerned with the former.

One distinction to be pointed out with regard to compatibility to real-time
result availability is whether identities of tracked targets are maintained dur-
ing tracking (cf. Javed et al. [131]; Nummiaro et al. [206]; Fleck et al. [85],
all of whom use SMC for that purpose), or whether they are assembled post
facto. The work of Zamir et al. [299] on multi-target tracking, using gener-
alized minimum clique (cf. Karp [148]) graphs to combine several tracklets
(i.e. partial tracks) with uncertain identities to tracks with a single unique
identity, serves as an example for the latter.

Observation III: Tracking targets in single views yields tracklets. These
can be combined to tracks either when view transition occurs, or during a
post-processing step. SMC is a preferred approach for the former. In this
thesis, it is selected to allow for the generation of tracking results in real-time.

2.3.6 Real-Time Multi-View Tracking Systems

In theory, the most convenient setup to process images from multiple cam-
eras would be centralized processing on a single computer. While this is
certainly a feasible approach in situations where processing speed is not crit-
ical, it becomes increasingly difficult to realize in real-time as soon as the
number of cameras exceeds a certain threshold, which is derived from one
of two bottlenecks. Either the combined data rate of the cameras exceeds
the networking capacity of the machine (e.g. four GEV cameras on a 1 Gbit
network interface controller (NIC)), or amount of processing required exceeds
the power of the central processing unit (CPU), or graphics processing unit
(GPU), respectively.

As a result of this, real-time image processing with multiple cameras usu-
ally requires a dedicated, distributed architecture, where different network
controllers and processing units supply sets of cameras. Different architec-
tures impose restrictions on the level of interaction between the processing
of images from different cameras, i.e. the level on which data from multi-
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ple cameras may be combined (e.g. image data, feature level, object poses;
cf. Figure 2.2 on page 19)

One approach to this challenge are smart cameras (cf. Belbachir [18]), where
image processing is performed directly on a dedicated processor built into the
camera. The resulting architecture leads to a very linear processing approach,
where images from all cameras are processed independently, without any
exchange of information beyond the result level.

The 3D Surveillance system proposed by Fleck et al. [85] implements an
architecture consisting of a server node and multiple camera nodes, realized
preferably as smart cameras, or alternatively as camera/personal computer
combination. The cameras are mounted statically in the environment, which
is exploited for target detection by application of foreground segmentation.
They use a color-based particle filter with histograms in HSI color space (cf.
again Fleck et al. [86]), and report a live frame rate of 15–17 Hz for single or
dual targets, respectively.

Regarding approaches using spatially separated image acquisition and pro-
cessing, Javed et al. [131] present an approach combining single camera
tracking with a voting algorithm based on color and shape cues, with auto-
mated FOV-line detection for view transition between uncalibrated cameras.
Their system follows a modular architecture (cf. Figure 2.4 on the following
page), runs the module for each camera on a separate PC, and is capable of
operating at 10 Hz.

To give a further example, Straw et al. [260] propose a system to track
the movements of flies and birds for neurobiological studies using 11 GEV
cameras supported by 9 Pentium 4/Core 2 Duo computers; using extended
Kalman filter [143, 144] and nearest neighbor standard filter [13] for data
association, reporting a cycle time of 40 ms, i.e. 25 Hz.

Nummiaro et al. [206] introduce a real-time multi-view tracker operating on
calibrated cameras, using color-based particle filtering [207] as in the previ-
ously described approach. They constrain their descriptors to human heads,
and use multiple a priori trained model histograms to account for perspective
changes. Their system is reported to run at 5–8 Hz on Pentium III personal
computers with 160× 120 px video feeds, with a 1:1 mapping of cameras and
computers.

Zhao et al. [304] published a real-time vision system using multiple cam-
era nodes realized by stereo-vision sensors, with monocular person detection
and result fusion for each camera node (cf. Figure 2.5 on page 23. They
address single view tracking through the expectation maximization (EM) al-
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Figure 2.3: Schematic of the architecture for the 3D Surveillance real-time
vision system, using smart cameras. Taken from [85].

Figure 2.4: Schematic of the modular architecture for the KNIGHT real-time
vision system. Taken from [131].
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gorithm [64] using shape, appearance and depth descriptors, and the view
transition problem by matching Kalman-filtered estimated object states (i.e.
position and velocity) in a decision module. The reported operating fre-
quency for the system is 15 Hz, with two camera nodes being connected to
a dual Pentium IV computer each for processing of the 160 × 120 px video
feeds.

Figure 2.5: Schematic of the architecture for the real-time vision system
proposed by Zhao et al., taken from [304].

Observation IV: A commonality of the examined real-time approaches
(with the exception of [132]) is their reliance on single camera nodes with
subsequent fusion of results, although these camera nodes can be realized as
stereo cameras as well [304]. This kind of architecture facilitates indepen-
dent distributed processing, and is therefore conducive to processing speed.
Regarding the technical realization, they either rely on smart camera ap-
proaches with on-board processing [85], or off-the-shelf (OTS) hardware [85,
206, 260].

The work presented in this thesis opts for the second approach regarding
the technical realization, and adopts the independent single-view tracking
approach with fusion on the object pose level. Regarding the scope of the
system, the work in this thesis exceeds the scope of all examined systems
in the categories of number of cameras, camera resolution, amount of data
processed, and operating frequency.
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2.3.7 Applications of Person Tracking

Intelligent camera surveillance is employed commonly both for security pur-
poses as well as for smart rooms, which can autonomously act on perceived
situations. Surveillance systems can operate both in real-time or focus on the
post-processing of previously acquired video data. The state of the art for
that kind of visual surveillance systems is described in several surveys, such
as Valera et al. [280] (with an emphasis on distributed systems) or Šegvić et
al. [247]. A multi-agent-based approach is presented by Patricio et al. [213].

Smart rooms also frequently employ visual tracking, such as Lanz et al. [171].
Teixeira et al. [267] present a camera sensor network for behavior recogni-
tion using address-event image sensors and sensory grammars in an assisted
living environment. Other approaches using smart-cameras with on-board
processing that directly deliver data instead of images are presented by Rin-
ner and Wolf [232] or in Hengstler et al. [115], with a focus on application
oriented design of the sensor network. A related approach, employing color
information and Monte-Carlo filtering while using distributed cameras for
processing, is described by Yamasaki et al. [297].

Regarding the field of HRI, most visual pedestrian tracking approaches de-
scribed in the literature are designed to work in real-time, and with cameras
installed on the robot’s platform. For example, the approach by Nickel and
Stiefelhagen [202] is based on using an a priori trained skin color model to
identify clusters of human skin in the image, which allows for the tracking
of head and hands by applying topographical reasoning (i.e. head on top).
This necessitates a lateral perspective, as applicable when used with mobile
robots. Their approach allows for the extraction of pointing gestures from
the data, which are of interest in HRI because of their potential to communi-
cate directions. Koenig [160] presents a hierarchical machine-learning-based
approach, that combines point cloud data from a time of flight (TOF) camera
(for close range, up to 5 m) with a HOG person detector for longer ranges,
while the tracking component is realized via Kalman filtering. This approach
yields only the position of pedestrians, comparably to the work described in
this thesis.

Furthermore, optical person tracking systems have been applied as human-
computer interfaces (HCIs), particularly for immersion in gaming, both with
single-camera and multi-camera systems. This area of application features
similarities with the previously discussed HRI, in that it requires real-time
processing of the tracking results. In contrast, however, in most cases the
coverage area is less extensive, tracking only single individuals. If multiple
cameras are employed in this domain, it is usually with largely overlapping
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FOVs, with the intention of improving accuracy or extracting depth infor-
mation (i.e. stereo vision). To provide an example, the PFINDER system
described by Wren et al. [294], uses a single camera facing a person top-
down in an approximate 45 degree angle. It is capable of estimating body
pose using statistical properties of extracted blobs (cf. Pentland [215]), and
processing at a frequency of 10 Hz. Among other applications, it has been
successfully employed as a control for video games, such as SURVIVE (cf.
Wren et al. [295]). Additional cameras are employed to add stereo vision
information for hand tracking and head tracking.

Stødle et al. [257] propose a multi-camera tracking system with application
in multi-user interaction. Their description is focused on the technical chal-
lenges of parallel processing of images from the 16 cameras employed, and
reach positive conclusions regarding the scalability of their system. Although
the paper is focused on object tracking rather than the algorithmic perspec-
tive on person tracking, it provides a good basis to understand the require-
ments for camera systems in the application domain of HRI. The authors
demonstrate the feasibility of multi-camera systems as an input device for
video games, which require high accuracy and very low latencies for input
processing.

Observation V: There is a broad spectrum of application domains where
person tracking approaches have been successfully employed, either with sin-
gle cameras or multiple-cameras. Areas of application for person tracking dif-
fer with respect to the specific requirements regarding coverage area, tracking
accuracy and processing speed requirements. Furthermore, as a consequence
of the different coverage requirements, they differ in the way multiple cam-
eras are commonly employed – either to extend the area of observation, or
to provide higher accuracy through the use of stereo information.

Although this thesis deals with multi-camera tracking for the most part,
similarities exist with single-camera approaches in that tracking is performed
in single camera views with little overlap. This constitutes a technique found
mostly in the surveillance application domain. On the other hand, the data
is processed in real time, in which the work described in this thesis exhibits
proximity to approaches found in the application domains of smart rooms,
HRI and HCI.
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2.4 Solution Idea

The initial abstract concept for the solution idea consists of an architecture of
three distinct layers: hardware layer, preprocessing/service layer, and image
processing/application layer. These layers aim to cope with the challenges
presented in the previous section, which is detailed out in the following para-
graphs. In addition to the three continuously operationable system layers,
maintenance operations such as photometric camera calibration [220] and
camera resectioning [277, 302], called camera calibration in the following in
accordance with standard nomenclature in the field, have to be performed
whenever changes are made to the camera setup.

As the goal consists of a system applicable on a setup of static cameras, the
next step toward a solution is to perform an accurate complete calibration of
the whole camera setup against a common coordinate system [74], determin-
ing intrinsic and extrinsic parameters, which can later be used in the different
system layers (cf. Figure 2.6 on the facing page) for image processing tasks.
Additionally, it is assumed that persons being tracked in the setup will move
on a plane, which can also be determined during the calibration procedure.

Hardware The issue of coverage extensibility is closely linked to the hard-
ware used in the setup. Installation of the cameras at maximum possible
height near the ceiling, facing top-down towards the floor plane of the target
area, ensures minimal occlusion with regard to pedestrian movement track-
ing, which has been emphasized in the problem statement as the key task
to be solved. In combination with arraying the cameras in a grid, this setup
allows for easy extension of the coverage area by adding more cameras at
the edges of the current observation area, without the need to modify the
existing setup.

To supply sufficient processing power for an increased number of cameras,
images from different cameras have to be processed on different computers.
The proposed system consists of multiple camera nodes, consisting of N cam-
eras connected to a processing node that handles the image processing, and
a single server node, similar to the systems showcased in Section 2.3.6 on
page 20 [131, 260, 304].

The ideal N for the mapping of cameras to computers depends on two fac-
tors, real-time processing constraints and networking constraints, which both
impose an upper limit for N . For complex and computing-intensive image
processing tasks such as pedestrian tracking, the real-time processing con-
straints are expected to outweigh the networking constraints, therefore it is
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Figure 2.6: Schematic of the layered modular architecture of the proposed
camera system.
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expected that N ≈ 1.

By using mainly off-the-shelf hardware for the processing and networking,
and by physically separating the coverage area and the space where the image
processing units are set up through the use of Ethernet-connected cameras,
extensibility in these domains is again facilitated.

Buffering and Preprocessing To address the issue of functional sys-
tem extensibility, a modular approach regarding the software architecture is
taken, splitting the architecture into two separate layers. From bottom to
top, the maintenance layer is responsible for the acquisition of the raw im-
ages from the cameras, as well as performing common preprocessing steps
required by modules in the following layer, e.g. removal of lens distortion
from the images [283]. Furthermore, this layer buffers the images, making
them available to several modules from a higher layer simultaneously, and al-
lows for the simultaneous recording and playback of images from all cameras.
One instance of the maintenance layer is to be active for each camera. By
means of the buffer, the layer also abstracts from camera to view V, since
images can also be buffered from another source, such as previously recorded
or artificial image data.

V = (I,E, I) (2.1)

Image processing On top of that, the image processing layer, which is
situated on the processing nodes, exhibits an essentially modular structure,
where each module receives their images from the maintenance layer buffer
for further processing. For the scope of this thesis, attention will be focused
on the development of a module capable of pedestrian tracking.

As stated above, the challenge of multi-view pedestrian tracking can be de-
composed into a series of single-view tracking challenges and view transi-
tion problems. Regarding a single view, the challenge of pedestrian track-
ing can be broken down into detection and data association. To approach
the real-time observation challenge efficiently, rather than implementing a
tracking-by-detection approach, a Bayesian approach, e.g. SMC [70], is used
in combination with Brownian motion, modeled by the Wiener process (cf.
Karatzas [145], Wiener [292], Brown [33]) and a color histogram model in
HSI color space for each pedestrian, to tackle the data association problem
and facilitate the detection problem past the initial detection step.

Taking the multi-view challenge into account, distributed processing has to
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be considered because of the constraints explained above. To provide an ab-
straction from the hardware layer, each camera is assigned its own instance
of the image processing module, even if multiple cameras are connected to
a single processing node. Inter-process communication between concurrent
modules is handled via middleware, e.g. Common Object Request Broker Ar-
chitecture (CORBA) [197] or ICE [116], regardless of the physical machine
the module is being run on. The view transition problem explicitly requires
modules to communicate, in order to preserve target identities in real-time.
The tracking module is initialized with the position and color model trans-
mitted from the module handling the previous view. This is made possible
because of the multi-camera calibration performed during system setup, and
serves to omit the time-consuming step of initial pedestrian detection for
tracking in subsequent views.

2.5 Conditions at the Laboratory

The CCRL was created in 2008 when the Cluster Cognition for Technical
Systems (CoTeSys) was approved as part of the German “Excellence Ini-
tiative” by the federal government. The work focus of the laboratory was
to provide an environment for research into human-robot interaction, involv-
ing scientists from different fields of engineering as well as computer science,
medicine and psychology. Figure 2.9 on page 32 depicts some example sce-
narios to illustrate the broader vision of interaction scenarios considered at
the laboratory. The remainder of this section describes the initial conditions
present in the CCRL prior to the installation of the camera system. These
conditions are are are relevant for design decisions taken during the camera
systems’ development and integration.

For this thesis, the relevant part of the CCRL is the area intended for ex-
periments into human-robot cooperation. The area is 10 × 10 m wide, and
it is part of an indoor laboratory 4 m high. It has been set up as a mock-up
of a small apartment, divided halfway by a wall 2.5 m in height. Figures 2.7
and 2.8 on the next page and on page 31 depict the area prior to sensor instal-
lation. A metal scaffolding has been attached to the ceiling in 3.2 m height
above the floor, to which cameras as well as other sensors, such as infrared
tracking devices and omnidirectional microphones, can be attached. At a
later date, a workshop mock-up with a used car on a hoisting platform was
added to the experimental area to allow for further demonstration scenarios.

The camera system was set up with the intention to provide smart video
surveillance of the experimental area over extended periods of time, allow-
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Figure 2.7: Experimental area at the CCRL, prior to the installation of the
camera system.

ing for real-time detection of the positions of humans, robots and relevant
objects. The information extracted from the image data can then be made
available to the mobile robots to enable them to adjust their behavior during
the experiments themselves (e.g. driving towards the position of a human
hidden behind a wall) as well as being collected for post-experimental anal-
ysis. As hinted on above, the major advantage of having a global sensor
system in addition to sensors mounted on the robot platforms is the ability
to “see everything” within the target area rather than being limited to the
line of sight (LOS) of the robots.

2.6 Hardware Layer Installation

The following section focuses on the hardware used in the camera system
setup. Over a period of 4 years, there were two phases to the hardware setup,
referred to in this section as initial setup and final setup. A large part of the
hardware initially installed was replaced by superior hardware in the second
phase. The adjustments were made in order to draw consequences from
lessons learned from the setup up to this point, and enable an improvement
in the overall performance of the final system (cf. Section 2.6.1.1 on page 33).

The different hardware components of the system are described in detail in
the following sections. Due to the changes made to the setup, the following
descriptions discriminate between the initial setup and the final setup at



2.6 Hardware Layer Installation 31

Living room area

Kitchen area

Workshop area

Car on
hoisting
platform

Sofa Shelf

Ta-
ble

Sink

Oven

Door

Figure 2.8: Schematic map of the experimental area at the CCRL, depicting
extent and obstacles. Thematically, the area can be roughly divided into three
areas serving as mock-ups for different HRI scenarios: Kitchen, living room and
car workshop. Note, that the objects on the map are not entirely up to scale.
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(a) (b)

Figure 2.9: Two examples to illustrate interaction between humans and robots
as envisioned at the CCRL: A robot assisting during a maintenance task on the
camera system (a), and a robot serving refreshments to humans relaxing on a
couch (b).

some points. During the remainder or the thesis, all mentions of the setup
refer to the final setup, unless specifically stated otherwise. In particular, the
entire experimental evaluation of the system (cf. Section 2.10 on page 62) was
conducted on the final setup. To anticipate briefly, the improvements for the
final setup consisted of an increase in computing power for image processing,
the addition of storage space for images to allow for the recording of images
and repeated experiments under similar conditions, and the standardization
of the cameras and lenses used in the setup.

2.6.1 Cameras

Several decisions have to be taken regarding the number and type of cameras
to be used, as well as the positioning of the cameras. Since one of the
main objectives of the system is to monitor the entire experimental area
without any gaps, the cameras are set up in a way that minimizes occlusion
of pedestrians, by having them face top-down at the experimental area floor
plane. This results in the cameras observing the pedestrians from what is
termed the supracranial perspective for the purpose of the thesis (cf. Table B.8
on page 153 for further explanation).
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2.6.1.1 Camera Types and Specifications

Although the exact number of cameras required is discussed in the subse-
quent section, it can be anticipated here that camera coverage of such a
comparatively large area without gaps produces a high amount of image
data. Consequently, the real-time processing of these images necessitates a
large amount of computing power. In further consequence, it is desirable for
image processing to be distributed among multiple computers rather than
centralized on a single machine. Since a large number of computers requires
sufficient space and a dedicated cooling system, it is advantageous in that re-
gard to set up a dedicated server room to concentrate the processing nodes.
Therefore, image generation and image processing are spatially separated,
and the camera technology to be employed has to reflect this fact. Alper [3]
provides an overview of the camera connectivity standards available, specifi-
cally CameraLink, GigE Vision and IEEE-1394b (i.e. FireWire). Comparing
the 100 m range of GigE Vision versus 10 m for CameraLink and 4.5 m for
FireWire, Gigabit Ethernet (GigE) [41] cameras are the technology of choice
under the above conditions.

These considerations limit the selection of sensors to industrial grade charge-
coupled device (CCD) cameras. In the initial setup, two different types of
cameras with a similar frame rate are used. a decision which was later revoked
in favor of greater uniformity in the system (Phase B). Table 2.1 provides
camera types and relevant specifications for the cameras used in both phases
of the setup.

Camera Type NA NB FPS Resolution

Baumer TXG08c 30 40 28 1024× 768 px

Basler Scout scA1000-30gc 10 0 30 1024× 768 px

Table 2.1: Specifications of the cameras used in the CCRL setup, and quan-
tities used in the initial setup (NA) and the upgraded setup (NB).

2.6.1.2 Lenses

The photographic objectives for the cameras were selected according to the
calculations regarding the number of cameras, cf. Section 2.6.1.3 on the next
page. It was decided to employ wide-angle lenses with a fixed focal length,
suitable for surveillance applications. The primary reason for using fixed-
angle lenses is that they are less prone to accidental tampering. This results
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in reduced maintenance requirements, i.e. manual corrections of the lens
angles and re-calibration of the system. Specifications for the precise types
of photographic objectives used are given in Table 2.2.

Lens Type NA NB Angle of view (at 1
3
′′) Focal length

Pentax H416(KP) 38 40 64.27 ◦ 4.2 mm

Tamron M12VM412 2 0 68.8× 51.0 ◦ 4.0–12.0 mm

Table 2.2: Specifications of the camera lenses used in the CCRL setup, and
quantities used in the initial setup (NA) and the upgraded setup (NB).

2.6.1.3 Placement and Number of Cameras

Generally speaking, the number of required cameras depends on the FOV
lenses being used, as well as the exact positioning of the cameras. With the
decision to have the cameras facing top-down at the target area, possible
variations are camera height hc and distance between cameras. The camera
height determines the number of cameras required to cover the area, greater
height means greater coverage per camera. The limiting factor for camera
height indoor environments is the height of the room, possibly further limited
by any ceiling installations such as ventilation (cf. Figure 2.7 on page 30).
Distance between cameras, on the other hand, has to be small enough to
allow the FOVs to overlap to a desired degree at the relevant observation
height ho. The optimal camera setup derived from this constraint consists of
a regular grid of cameras, arranged at maximum uniform height. However,
it has to be expected that slight aberrations from the optimal setup have to
be accepted because of the qualities of the target area itself, e.g. obstacles
such as the wall in the CCRL experimental area.

As the aspect ratio of the area covered by the camera is usually not equal
to 1:1, in the following the terms primary direction and secondary direction
denote the orientation of the longer and shorter axes of the FOV, respectively.
With the maximum height of the cameras hc given as 3.2 m above the floor by
initial constraints, the relationship between camera angle α and the covered
floor distance in the primary direction dx is as follows:

dx = 2 · tan
α

2
· hc (2.2)

Figure 2.10 on the facing page illustrates this calculation, as well as the
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Figure 2.10: Two-dimensional scheme of the camera FOV calculation for
the covered distance dx in the primary direction depending on camera angle α,
camera height hc and observation height ho.
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following calculations for dx. Assuming the use of a CCD chip with a common
aspect ratio a of 4:3, the covered distance in the secondary direction dy can
be deduced by

dy =
1

a
· dx =

3

4
· dx (2.3)

To reliably monitor humans and robots, complete coverage of the scene, with-
out gaps, at reference height ho above the floor plane is required. For the
following considerations, a reference height of ho = 1.7 m is assumed, which
equals the average height of an adult person (cf. Ogden et al. [208]). Con-
sequently, the equation for the covered distance dx at height ho reads as
follows:

dx = 2 · tan
α

2
· (hc − ho) (2.4)

Using a lens with an field of view of α = 64.27◦ (cf. Section 2.6.1.2 on
page 33), the equation yields a requirement of 5×7 cameras to cover the 10 m
distance in the respective directions. For the CCRL setup, it was ultimately
decided to use an array of 5× 8 cameras to cover a slightly larger area in the
secondary direction. Figure 2.11 on the facing page depicts the positions of
the cameras and their FOVs at ho = 1.7 m.

2.6.1.4 Sampling Density and Redundancy

To provide a metric of the sampling density of the camera system as a whole,
the number of pixels per area on a a reference plane with distance ho from
the floor plane is calculated. The sampling density ρi for a single camera Ci
is constant within the FOV, and is calculated as follows:

ρi =
(nx)2 · 1

a
(2 · tanα

2
· (hc − ho))2 · 1

a
(2.5)

where nx denotes the number of pixels in x-direction and a denotes the aspect
ratio. The term is reduced by multiplying both numerator and denominator
by a, consequently the aspect ratio is irrelevant to the pixel density.

As the height hc of the cameras varies slightly, so does the sampling density at
ho. To provide an exemplary sampling density, the value obtained for camera
C22 (at hc=3.26 m) using the above formula is 2.73 · 105 px

m2 . For comparison,
the camera’s sampling density at floor level is 6.25 · 104 px

m2 .
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Figure 2.11: Plan of camera positions within the target area, and their fields
of view at ho = 1.7 m from the floor plane. The conspicuous irregularity in the
setup grid to the left of the plan is the result of a wall extending into the target
area at this point.
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Note, however, that these calculations are slightly inaccurate, as they do
not factor in the radial image distortion caused by the lens, which is mea-
sured during camera calibration. As a consequence of radial distortion, the
sampling density is slightly skewed towards the intersection of the camera’s
principal axis with the reference plane, which is neglected in the above cal-
culation.

When calculating the pixel density for the complete system, the number is
affected by the intersecting areas between camera FOVs. Overlap causes
the sampling density to increase, therefore the sampling density is no longer
constant. The mean sampling density ρ for the whole camera system is
calculated as follows:

ρ =

∑nc

1 (nx)2 · 1
a

xt · yt
(2.6)

where nc = 40 denotes the number of cameras while xt = 10 m and yt = 9 m
denote the total dimensions of the area of observation at the reference plane.
With these values, the above formula yields a mean sampling density for the
system of 3.50 · 105 px

m2 .

From the mean sampling density and the mean camera height hc, the coverage
redundancy, i.e. the ratio of the combined overlapping FOV area of all
cameras to the total size of the area of observation, can be calculated as
follows:

D =
(nx)2 · ρ · nc

(2 · tanα
2
· (hc − ho))2

− ρ (2.7)

For a mean camera height of hc=3.21 m, this equation yields a coverage
redundancy of 0.20. Note, that this number for redundancy does not signify
the portion of the area that is covered by at least two cameras (which could
also be understood as a measure of redundancy), since parts of the area
where more than two FOVs overlap are incorporated more than twice in the
calculation.

2.6.2 Network Architecture

While the network architecture for the camera system changed with the dif-
ferent phases of the setup, a unifying feature remains that the architecture
is divided into two distinct networks, the client network and the camera
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network.

Server room Observation area

40 processing nodes

Display client(s)

Ethernet connections
(40 camera networks)

40 cameras

Server

Ethernet switch 
(client network)

Figure 2.12: Overview of the hardware setup that constitutes the camera
system, during the second phase of the setup.

The client network interconnects all of the processing clients (described in
Section 2.6.3 on page 41) and the server computer, which handles all cen-
tralized processing tasks, via an 48-port GigE switch. Data rates required
on this network are not critical, since images do not have to be streamed
continuously at high frame rates.

The camera network connects the processing clients to the cameras them-
selves, and is essentially not a single network but a set of uniform networks.
During Phase A, each distinct camera network consisted of a processing client
and 2 or 3 cameras, connected via 8-port GigE switches. Cameras with ad-
jacent FOVs were assigned to different camera networks, a choice that was
made due to the observed fact that human beings in social scenarios such as
the coffee-break demonstration scenario tend to flock together, rather than
distribute evenly over the target area. Furthermore, with the worst case in
mind, this setup reduces the likelihood of adjacent cameras becoming unavail-
able simultaneously in case of problems caused by single processing nodes,
thereby improving system robustness and load-balancing between the image
processing nodes.

However, with the increase in processing clients during Phase B, these consid-
erations became obsolete. The camera networks were dissolved, and switches
removed so that each processing node directly connects to a single camera.

An important factor for the camera network is the load the network can
handle to support continuous streaming of images from the cameras to the
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processing clients. Since GEV uses User Datagram Protocol (UDP) packets
on top of the GigE-Vision Streaming Protocol (GVSP) over Ethernet, a data
overhead of 54 bytes is created for each Ethernet packet, consisting of:

• Ethernet header (14 bytes)

• Internet Protocol (IP) header (20 bytes)

• UDP header (8 bytes)

• GVSP Header (8 bytes)

• Ethernet trailer (4 bytes)

With the header sizes at fixed values, the payload sp and gross Ethernet
packet size se depend on the maximum transmission unit (MTU) sm, i.e.
size of the IP packet:

sp = sm − 36 bytes (2.8)

se = sm + 18 bytes (2.9)

where the 36 bytes result from IP header, UDP header and GVSP header
and the 18 bytes stem from Ethernet header and trailer. This results in the
following equation for the gross data rate R:

R = nx
2 · 1

a
· np · f i ·

sp
se

(2.10)

where nx denotes the number of pixels in the primary image direction, a
denotes the aspect ratio, np denotes the number of bits used to encode each
pixel, and f i denotes the image frequency (i.e. number of images/frames per
second).

In the described setup, nx = 1024 px, a = 4
3
, np = 3 bytes

px
, f i = 30 Hz and

sm = 9000 bytes (i.e. jumbo frames, cf. Murray et al. [198]). Table 2.3
on the facing page illustrates the load on the client networks using different
numbers of cameras and different pixel formats.
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Pixel Format / Cameras 1 (Phase B) 2 (Phase A) 3 (Phase A)

8 bit per pixel (bpp) 23.7MB/s 47.5MB/s 71.2MB/s

16 bpp 47.5MB/s 95.0MB/s 142.5MB/s

24 bpp 71.2MB/s 142.5MB/s 213.7MB/s

Table 2.3: Gross data rates for continuous streaming on the camera network,
using different quantities of 1024×768 pixel cameras with varying pixel formats.
For comparison, the maximum data rate on a 1 Gbps connection is 125 MB/s.

2.6.3 Computers Used For Image Processing

For the image processing computers required, it was decided to employ off-
the-shelf hardware, which allow for easy extensibility and a flexible exchange
of single components in case of technical defects. Initially, 14 AMD Phenom
computers were installed to supply one camera group each (consisting of 2–3
cameras) in the first phase of the system layout. Table 2.4 lists the important
specifications for these computers.

Component Type

CPU AMD Phenom (4 cores)

GPU NVIDIA GeForce 8600 GT

RAM 2×Patriot 2GB DDR2

HDD none (diskless)

NIC Intel PRO/1000 GT Desktop Adapter, 1000 Mbps

Table 2.4: Specifications of the processing clients used during Phase A of the
hardware setup.

Similar to the aforementioned situation with the cameras, the setup of the
processing nodes was changed in Phase B in order to improve system stabil-
ity and performance. The old processing nodes were replaced by 40 AMD
Phenom II computers, now supplying only a single camera each. Their spec-
ifications can be seen in Table 2.5 on the following page.



42 Real-Time Multi-View Pedestrian Tracking

Component Type

CPU AMD Phenom II (6 cores)

GPU NVIDIA GeForce 580 GTX

RAM 4×RipJaws 2GB DDR3

HDD 6×Hitachi DeskStar 7K2000, 2000 GB, as RAID 0

NIC Intel Gigabit CT Desktop Adapter, 1000 Mbps

Table 2.5: Specifications for the processing clients used in the second phase
of the hardware setup.

2.7 Camera Calibration

When aiming for accurate global position estimation of any kind of objects
or subjects in the target area, camera calibration becomes a necessity. For a
multi-camera system, the calibration process proves to be more challenging
than for single-camera systems, since it becomes harder to spot errors in the
calibration, and manually re-calibrating the system is more time-intensive.
Therefore, this step deserves special attention, although it has to be per-
formed only once during the system integration, or in regular maintenance
intervals respectively.

According to Tsai [277], full calibration aims to solve a two-step optimization
problem:

Step 1: Estimation of the intrinsic camera parameters I, consisting of the
pinhole projection Π and the lens distortion D.

Step 2: Estimation of the pose of the camera within a global coordinate
system, also called the extrinsic camera parameters E.

There are several different angles from which to approach this problem for
a multi-camera system. It has to be decided which steps are to be solved
best independently for each camera, and which parts of the problem might
benefit from global optimization opportunities. A common approach for a
small number of cameras would be to calibrate the cameras independently
against an arbitrarily defined Cartesian world coordinate system, using ex-
ternal measuring to determine the position of the calibration object within
the world coordinate system, and subsequently performing the calibration
for each camera. For a system with a large number of cameras, however,



2.7 Camera Calibration 43

this process becomes increasingly cumbersome and error-prone because of
the high degree of manual intervention and input it necessitates. There-
fore, a combined multi-camera calibration method was employed, using the
HALCON [255] image processing libraries.

In HALCON, the i-th camera from a setup of N cameras is specified by two
sets of parameters Ei = (Ri,Ti) and Ii = (Πi,Di) modeling the projection of
3D points from the camera coordinate system into the camera image, where
i = 1 . . . N . Πi describe a standard linear pin-hole camera projection, whereas
Di define a non-linear radial and decentering distortion using a divisional
distortion model [170].

A 3D point Xw in world coordinates is transformed into the camera coordi-
nate system Xc = Ei ·Xw = RiX

w + Ti and then is projected in the camera
image p = Πi(X

c, Ii) (cf. [170, 255]).

P1

P2

P3

E3

E2 p

X

O

Figure 2.13: Multiple camera setup projection model for the calibration step.

A reference camera is selected, whose coordinate system is the world coordi-
nate system (cf. Fig Figure 2.13). To calibrate the setup, a known calibra-
tion object (as depicted in Figure 2.14 on the following page) with M control
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points (marks) is used. Each mark has known coordinates xm,m = 1 . . .M
in the local coordinate system of the calibration object. The object is ex-
posed in K different poses Pk, k = 1 . . . K, in front of the cameras. Thus the
calibration marks define KM control points Xw

(k,m) = Pk · xm in the world
coordinate system. For each Pk, all cameras simultaneously take an image.
Images in which the calibration object is not fully visible are ignored.

Figure 2.14: The calibration object used for the calibration of the camera
system equates to a standard quadratic HALCON calibration plate with side
length of 0.85 m and 49 circular marks. The orientation is disambiguated by the
black triangle-shaped mark in a single corner.

In the presented setup, the centermost camera, Camera 22, was selected as
reference camera (cf. Figure 2.11 on page 37). To obtain calibration data,
the calibration object was slowly moved across the entire experimental area
and exposed to the cameras, while varying height, pitch and roll. Concur-
rently, a total of 9071 synchronized images, representing K = 2910 poses,
was recorded, with the calibration plate being observed by up to five cam-
eras simultaneously.

The calibration of multiple cameras is formulated as a minimization problem:

ed(i,k,m) =
∥∥p(i,k,m) − Π(Ei · Pk · xm, Ii)

∥∥ (2.11)

ed =
N∑
i=1

K∑
k=1

v(i,k)

(
M∑

m=1

ed(i,k,m)

)
→ min (2.12)



2.7 Camera Calibration 45

Equation 2.11 is the reprojection error for control point m in pose k into
the i-th camera image and v(i,k) is 1 if pose k is visible from camera i, and 0
otherwise. This is a typical bundle-adjustment problem formulation, in which
an estimation for both the camera parameters and the calibration object pose
is found.

Typically, bundle adjustment problems are solved using numerical optimiza-
tion (cf. Triggs et al. [276] for a classical survey, Jeong et al. [135] for newer
approaches). For the iterative numerical approach employed here, initial val-
ues for Ii,Ei and Pk are required. Each Ii is initialized from the product
specifications of the respective camera. Then a pose, in which each cam-
era is observing the calibration object in its own coordinate system, can be
estimated. Finally, through a chain of shared observations from different
cameras on overlapping calibration object poses, the poses of cameras are
transformed into the reference coordinate system and used as initial values
for Ei. All poses of the calibration object Pk are similarly transformed. The
optimization is implemented by a general sparse LM algorithm as described
by Hartley and Zisserman [111], which scales linearly with the size of the
camera setup.

The circular calibration features of the calibration plate projected onto cam-
era images deform to ellipses, whose centers define the corresponding image
points p(i,k,m). Note that ellipse centers do not represent precisely the pro-
jection of the circular center due to perspective and radial distortions. The
distortion of the extracted marks is corrected with the calibrated Di, their
centers p(i,k,m) are are re-estimated and perspectively corrected (as proposed
by Heikkila et al. [114]) with the calibrated parameters Πi. Subsequently,
the calibration is performed again with the corrected p(i,k,m) and the cali-
brated setup parameters as initial values. The calibration procedure reports
the root mean square (RMS) of d as average error:

er =

√√√√√√
1

M

N∑
i=1

K∑
k=1

v(i,k)

ed (2.13)

2.7.1 Camera Calibration Accuracy

Camera calibration accuracy is usually specified by the average reprojection
error, which denotes the distance between an original image point and the
one projected using the estimated camera parameters. For the calibration
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performed on the described camera setup, an average reprojection error of
0.13 pixels was achieved, which compares favorably with results achieved for
multi-camera calibration by other researchers. See Table 2.6 for details.

Researcher Error er Number of cameras

Pollefeys et al. [222] 0.11–0.26 px 25–4

Svoboda et al. [264] 0.2 px 16

Devarajan et al. [66] 0.59 px 60 (simulated)

Kurillo et al. [167] 0.153 px 4

Waizenegger et al. [288] 0.1–0.26 px 16

This system 0.13 px 40

Table 2.6: Comparison of the reprojection error er for multi-camera systems
reported by different researchers. Note, that the reprojection error of 0.11 px
for [222] was achieved on synthetic data rather than a real-world camera system.

Several factors contribute to the high accuracy achieved by HALCON. Firstly,
using centers of circular features as control points provides a robust and ac-
curate method for extracting them in the camera images. Then the adopted
non-linear distortion models, both division and polynomial, correct the pro-
jection errors efficiently. In particular, re-estimating pikm with the calibrated
parameters corrects both projective and distortion bias and further improves
the information extracted from the projected marks. Finally, defining the
calibration as a bundle-adjustment problem yields a geometrically optimal
calibration for the entire camera setup, which scales well with respect to the
setup size because of the sparse LM optimization algorithm.

2.7.2 Calculation of the Floor Plane

For the majority of indoor environments, the floor can be assumed as being
planar with negligible error. The floor plane is defined as the plane in the
Cartesian world coordinate system (generated as described in Section 2.7 on
page 42) which corresponds to the floor of the target area. Its calculation can
be considered the final step of the system calibration process. Knowing the
floor plane is useful in pedestrian detection (cf. Section 2.9.2 on page 51), as
it allows for the elimination of 1 DOF from the target position estimation.

To determine the equation of the floor plane, which has 4 DOF, a 10×10 cm
fiduciary marker as depicted in Figure 2.15 on the next page is successively
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exposed to the cameras in N ≥ 4 poses at floor level.

Figure 2.15: Examples for the fiduciary markers used to determine the equa-
tion of the floor plane. The markers display a 16 bit binary black-and-white
pattern, where 4 bit are used to disambiguate the rotation and 12 bit encode the
identity of the marker.

The marker is detected in the image using a state-of-the-art marker detection
algorithm [82, 83], and its position in world coordinates estimated using the
previously determined camera parameters (I,E). For N > 4, this yields an
overdetermined equation system (in matrix form):

Ax = b (2.14)

and consequently:

arg min x ‖Ax− b‖ (2.15)

which is numerically solved using the ordinary least squares approach [227]
with QR decomposition [258, p. 415 ff.] to yield the planar equation for the
floor level.

2.8 Preprocessing Layer Implementation

As mentioned in Section 2.4 on page 26, the preprocessing layer, also termed
service layer, is the first of the two software layers situated on the processing
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nodes. In the CCRL installation, the preprocessing layer is realized by a
dedicated process for each camera, that communicates with the application
layer via the KogMo-RTDB (cf. Goebl [98, 99]), a real-time optimized
shared memory buffer originally developed for use in cognitive automobiles.
A schematic of the architecture for the preprocessing is depicted in Fig-
ure 2.16.

RTDBHALCON
Application

Raw Images Undistorted

3

Figure 2.16: Schematic for the architecture of the preprocessing layer. The
abbreviations refer to the KogMo-RTDB and the HALCON image processing
library (cf. Eckstein/Steger [72]; Steger et al. [255])used in the implementation.

The preprocessing layer addresses a series of three tasks, that are (a) image
acquisition from the GigE cameras via the GenICam [67] interface, (b) pre-
processing of the images and (c) storage of the preprocessed images in the
KogMo-RTDB. Additionally, in Phase B of the CCRL setup, it provides
the functionality to store timestamped images on hard disk and replay them
in real-time, which allows for simulated real-time experiments on the system.

2.8.1 Image Preprocessing

In the described implementation of the system, the single preprocessing step
performed at this layer consists of image rectification, i.e. removal of lens
distortion from the images. A divisional radial decentering distortion model
(cf. Brown [32], or specifically Lanser [170]) is assumed.

Calculating the distortion-corrected image is a computationally expensive
process. However, since the lens distortion is static, the resulting geometric
image transformation

dst(x, y) = src(fx(x, y), fy(x, y)) (2.16)

only has to be calculated once from the camera parameters, at system ini-
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tialization, and can be repeatedly applied to each image. To improve the
quality of the resulting image, bilinear interpolation [100, p.88] is applied
to compute the pixel values for the distortion-corrected image. Finally, the
camera parameters have to be adjusted, specifically D = 0.

2.8.2 Synchronization

To enable the synchronous replaying of pre-recorded image sequences, the
system clocks for the processing nodes have to be synchronized within the
order of magnitude of at least to < 5 ms, which constitutes a barely acceptable
offset of 1

6
frame. This task is addressed by the service layer using the network

time protocol (NTP) [191] to synchronize the clocks in intervals ti, monitoring
the reported temporal offsets, and adjusting ti until the offsets to are within
the desired bounds. A test consisting of N = 1579 measurements returned a
mean absolute offset of µ = 1.16 ms with a standard deviation of σ = 0.77 ms,
cf. Figure 2.17 for details.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2.17: Histogram for the distribution of NTP offsets for the processing
nodes. The x-axis denotes the offset in milliseconds.

To summarize, the service layer provides the application layer with Unix-
timestamped, distortion-corrected images in red/green/blue (RGB) color for-
mat via a real-time optimized shared memory implementation, the KogMo-
RTDB.

2.8.3 Monitoring and Stability

To monitor and recover minor problems with the application layer, a watch-
dog timer (cf. Namjoo and McCluskey [200]) is employed to supervise the



50 Real-Time Multi-View Pedestrian Tracking

processes in the application layer. If at any time one of the processes in the
application layer malfunctions, the watchdog timer re-initiates the correct
process and restores full functionality of the application layer.

2.9 Application Layer Implementation

The image processing layer, or application layer, consists of several modules
distributed on processing nodes and server node, that communicate via the
ICE [116]. A schematic for the communication between the modules is de-
picted in Figure 2.18, and the modules are described in the following section.

OpenTL 
clients 

Local targets 
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Global targets 
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Figure 2.18: Schematic for the modular architecture of the application layer.

2.9.1 Distribution and Communication

The registration module is located on the server node. The module manages
information on the system setup and camera parameters, which it provides
for the tracking server, client and display modules.

The tracking server module is located on the server node. It receives track-
ing results from different client modules, manages target identities, performs
tasks such as pose interpolation if necessary, assigns the correct client nodes
during view transition, and transmits the finalized tracking results, composed
of timestamped poses, to connected subscribers.

The tracking client modules are located on the processing node, operate on
the camera images provided by the service layer, and perform the local pedes-
trian detection and tracking. The distinct steps of these tasks are explained
in detail in the following sections. The system provides one dedicated track-
ing client module for each camera.
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Finally, the display module provides human-legible output for the pedestrian
tracker by displaying the FOV of all connected cameras and additional debug-
ging output, such as the positions of currently tracked targets and estimated
track history. An example for the display output is depicted in Figure 2.25
on page 62.

2.9.2 Person Detection

As stated in Section 2.3.3 on page 17, the tracking approach of Panin [211]
necessitates a successful detection of the target’s position for the initializa-
tion of the tracker. The goal of the detection step is to determine whether
a new potential target has entered the sensor FOV, and to determine its
approximate initial position in world coordinates. For the implementation
described in this thesis, a linear three-step approach to pedestrian detection
is applied: foreground-background segmentation, blob clustering, and target
association. All three steps are considered as single-view problems, and will
be examined in more detail in the following.

2.9.2.1 Foreground-Background Segmentation

For the segmentation of the foreground, two different background subtraction
strategies were evaluated: static background [105], and dynamic background
models using GMMs [223, 254]. In accordance with Piccardi [217], the lat-
ter was found to be more reliable with regard to variations in brightness
effected by shadows and changes in illumination, and is consequently em-
ployed thenceforth.

To eliminate possible noise artifacts in the segmentation, and to separate
neighboring blobs, morphological opening [249] is applied to yield the fore-
ground map. Subsequently, as a safeguard against duplicate detection, exist-
ing targets are re-projected into the image plane, and their area subtracted
from the foreground map using a simple elliptical shape model for the ap-
proximation.

The result of this step is a binary map of the image foreground relevant for
new target detection. Figure 2.19 on the following page depicts a sample
result for the applied foreground segmentation.
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(a) (b)

(c) (d)

Figure 2.19: Illustrating the different steps of the pedestrian detection process.
In (a), the input image is shown, depicting two pedestrians observed within
a camera FOV from above. In (b), foreground segmentation (as described in
Section 2.9.2.1 on page 51) has been performed, but the resulting binary image
still shows some noise and undesirable coherence between the two blobs. In (c),
morphological operations have been applied to remove the noise and separate
the two blobs. In (d), the original image is depicted with the foreground image
as a mask, which provides an impression of the regions used for color histogram
collection in the model initialization step (cf. Section 2.9.2.3 on the next page)
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2.9.2.2 Blob Clustering and Association

In the next step, the foreground map resulting from the segmentation is used
to calculate blobs, as proposed by Rocha et al. [234] using Hu Moments [125].
The mass center of each blob is used as a rough initial 2D position in the
image coordinate system. A rule-based binary classifier is applied to separate
valid blobs representing targets from invalid blobs, with the parameters for
this classifier being the blobs’ area and aspect ratio of their outer dimensions.
This process can result in detecting multiple targets simultaneously.

Subsequently, this initial 2D pose is used to approximate the 3D translatorial
pose of each valid target in world coordinates. The 3D translation pose can
be computed using the extrinsic camera parameters E, casting a virtual ray
given by the focal point and the computed mass center of a given blob,
and intersecting it with the floor plane, which was computed during the
calibration step (cf. Section 2.7.2 on page 46). Minor uncertainties arise
from the fact that information about person height is unavailable at this
point, therefore an average height of 1.7 m (cf. Section 3.5.4 on page 95) is
used. This does not cause any problems for the purposes of detection though,
since the goal of this step is to find a rough initial position which will later
be refined during tracking, and since the variation in height for humans is
comparatively small.

Since every blob that results from a suitable foreground region is classified as
a target, the described approach is restricted to human moving targets only,
in order to avoid erroneous detection caused by false-positive classifications.
Extension to different types of targets would necessitate adjustment of the
survival criteria applied to blobs, as well as sufficient difference in size and
shape to human targets.

To summarize, the clustering and association step results in a list of valid
targets and their approximate 3D position in world coordinates.

2.9.2.3 Model Initialization for Tracking

Although the previous step was already sufficient to address the problem of
pedestrian detection, in order for the tracker to be properly initialized, an
appearance model has to be generated for each newly detected target.

Pedestrian shape is modeled by a rigid 3D cylinder in the real-world coordi-
nate system, whose height and width approximately correspond to average
human measurements (cf. Section 3.5.4 on page 95). A statistical color model
is obtained by collecting the image pixels for the re-projection of the shape
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of the respective target into image coordinates. To improve the accuracy of
the histogram collection, the background map computed in the segmentation
step is used as a mask in this step.

To increase robustness versus variances in lighting and shadows cast by other
pedestrians or objects in the target area, the image is transformed into HSI
color space for the histogram collection process. Since intensity values reflect
the illumination conditions, different bin sizes were used for each channel to
increase the relative importance of the color attributes, hue and saturation.
For the final implementation, bin sizes of 16 bins each for hue and saturation
and 8 bins for intensity (i.e., 2048 bins in total) were used.

Summarily, the model initialization step results in a target-specific appear-
ance model for all valid targets, consisting of a histogram in HSI color space,
on top of the 3D positions extracted in the previous step.

2.9.2.4 Performance of the Detection Process

To evaluate the performance of the detection process, an experiment was
conducted by measuring the detection accuracy (i.e. percentage of successful
detections). A set of N = 360 detection tests was performed on single images
taken from the cameras (as described in Section 2.6.1 on page 32) using the
hardware described in Section 2.6.3 on page 41 for processing, i.e. matching
live conditions of the system at run-time. Table 2.7 lists the results obtained,
while Figure 2.20 on the next page depicts some sample images used for the
experiment.

Np Detection Rate t Ni

0 N/A 21.9 ms 50

1 1 38.0 ms 200

2 0.95 50.4 ms 50

3 0.938 66.1 ms 60

Table 2.7: Results for the evaluation of the pedestrian detection process.
Where applicable, mean and standard deviation for the respective values are
indicated. Np denotes the number of targets, i.e. pedestrians, while Ni denotes
the number of images of the respective type and t denotes the average processing
time recorded for the entire detection step.

The results of the detection performance test indicate that the detection
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process constitutes the most computationally demanding part of the entire
tracking pipeline. Furthermore, detection time increases approximately lin-
early with the number of targets, while the accuracy deteriorates, mostly
due to aggregation of targets causing problems with blob separation. As
a consequence, a tracking-by-detection approach is not real-time feasible in
this scenario, especially with regard to multiple targets. Therefore, “rou-
tine” detection (i.e. to detect new targets entering the FOV) is performed in
reasonable intervals. A pedestrian moving at an average speed of ≈ 1.34 m

s

(cf. Daamen and Hoogendorn [61]) traverses the full FOV in ho = 1.7 m in
≈ 1.5 s, which equates to ≈ 42 frames. An interval of 0.4 s or ≈ 10 frames
is selected for the detection, which means that in the worst case a target is
still detected if it traverses only a quarter of the FOV.

Figure 2.20: Sample images for the detection performance experiment, de-
picting one, two, and three targets respectively. Note, that the field of view gets
comparatively crowded for three targets, and it becomes difficult to avoid each
other’s personal space of r ≈ 0.46 m (cf. Hall [107, 108]). Therefore, simul-
taneous appearance of more than two targets within a single FOV is considered
unlikely for the sensor configuration described here.

2.9.3 Person Tracking

With the target successfully detected, the next challenge is to track its move-
ment across multiple camera FOVs. As stated before in Section 2.3.5 on
page 19, the multi-view person tracking process is divided into alternating
phases of single-view person tracking and view transition. For the single-
view tracking step, a MCMC filter is used in combination with statistical
color models as described in Section 2.9.2.3 on page 53, whereas for the view
transition problem, two different approaches were investigated. Both steps
are detailed out in the following.
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2.9.3.1 Multi-target MCMC filter

The task of the single-view tracker is to continuously update the world po-
sition of each target until it leaves the camera FOV, while avoiding the con-
fusion of multiple simultaneous targets. Initially, each target is considered
separately.

Tracking operates on a pre-defined set of DOF. Since the targets are assumed
to walk on the previously determined floor plane, and since a rigid 3D shape
model is used, each target t possesses 2 DOF in the x and y translation on
the floor plane. Therefore, the state vector of the i − th target is given by
si = (tix, t

i
y).

For the tracking process, each target’s appearance model has to be matched
against histograms collected from the current camera image at the re-projected
predicted target positions in the image. The procedure for histogram collec-
tion is consistent with the procedure used for appearance model generation,
and is described in Section 2.9.2.3 on page 53. Since a calibrated camera
model is being used, perspective effects are taken into account when comput-
ing the target silhouette in the camera image. Because of the relative distance
between the camera and the person being comparable with the depth exten-
sion of the target (i.e. the person’s height), these effects have a compara-
tively high impact for the described implementation. Therefore, they cannot
be neglected, especially for people in the peripheral view field. The impact
of perspective effects on histogram collection merits further inspection, and
is covered at length in Chapter 3 on page 79.

Figure 2.21: Illustrating the monocular MCMC tracker. Here, the rigid cylin-
drical shape model is visible, which is used as a coarse but sufficiently approxi-
mated representation of the human body, as it is observed from a supracranial
perspective.
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In order to estimate the state for each of the n targets within the camera
FOV, a Bayesian Monte-Carlo tracking approach is implemented, as proposed
by Panin et al. [212]. This methodology employs a particle filter to maintain
the global system state, s = (s1, ..., sn) by means of a set of hypotheses sh, the
eponymous particles. In the described implementation, particles are updated
in successive frames using MCMC sampling.

In particular, the Markov chain generation proceeds by iterating two steps,
that equate to the Metropolis-Hastings algorithm [45], for each particle n =
1, ..., N :

1. Prediction: propose a new state s′t from the previous one sn−1t by sam-
pling from a proposal density Q

(
s′t| sn−1t

)
2. Correction: Compute the acceptance ratio

a =
P (s′t|Zt)

P
(
sn−1t

∣∣Zt
)Q (s′t| sn−1t

)
Q
(
sn−1t

∣∣ s′t) (2.17)

3. If a ≥ 1, accept the proposed state snt ← s′t. Otherwise, accept it with
probability a; in case of rejection, the old state is kept snt ← sn−1t

The proposal distribution Q can be arbitrary to some extent, and for this
purpose the dynamical model itself is chosen P (st| st−1). Since this model is
symmetric, the second ratio in Equation 2.17 is canceled out. The efficiency
of the MCMC formulation is due to the fact that only a single randomly
chosen target i is updated at a time, and the resulting consequence that
the proposal ratio P (si,t| si,t−1) has to be calculated for this target only.
Under the assumption of independent measurements for each target, the
two likelihoods P (zt| s′t) and P

(
zt| sn−1t

)
differ only for a single target as

well. Figure 2.22 on the following page provides a graphical overview of the
hypothesis update step.

The first b samples of this chain are the so-called burn-in samples, obtained
before the Markov chain reaches its steady state, and will be discarded from
the sample. This set is usually a small percentage of the overall sample set.

2.9.3.2 View Transition

The view transition problem can be broken down into three sub-problems.
The decisions that have to be taken are as follows:
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Figure 2.22: Hypotheses update for the multi-target MCMC tracker, according
to [211]. This illustrates the serial nature of the MCMC update (walk) for
multiple targets, where each hypothesis is tested during a single step pertains to
only a single target. Each walk-move is accepted with probability a, as described
by Equation 2.17.
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(a) when to transfer a target to another view, i.e. when a target leaves the
current view

(b) where to transfer the target, i.e. which view is adjacent and suitable to
continue the tracking

(c) what to transfer, i.e. which information is used to instantiate the target
in the tracker for the other view

Initially during the system implementation, the view transition problem was
addressed by a target transfer tree, which is generated from the camera pa-
rameters and handles the decision where to transfer a target leaving the view,
in combination with the transition areas, which address the problem of when
a target will leave the view, and therefore has to be transferred. Both of
those concepts are detailed out below, and unlike the solution to the third
sub-problem, were not varied throughout the development of the system.

Target Transfer Tree For a set of 40 camera tracking modules operating
at 28 Hz, constant intercomparison of all camera positions to evaluate the
transfer decision is a waste of processing power, given the fact that the camera
positions are known to be static. To speed up the evaluation of the decision
when and where to transfer a target, a transfer tree is generated from the
evaluation of the camera parameters at system start.

The transfer tree is a quad tree, which is obtained by projection of the camera
centers and FOV on the floor plane (cf. Section 2.7.2 on page 46), and
successive division of the floor plane into quarters, until only a single camera
remains per node. This transfer tree can be efficiently evaluated at each
position update, and returns the decision if and where to transfer the target.
Figure 2.23 on the following page depicts an exemplary target transfer tree
for a section of the CCRL installation.

Transition Areas Transition areas are a direct result of the transfer tree
explained in the previous section, and are derived by a space discrete test
of points in the floor plane against the transfer tree at system initialization.
They are not strictly necessary for successful operation of the tracking, but
can be depicted in the display module to enhance legibility of the system op-
eration. Figure 2.24 on the next page depicts these transition areas overlayed
in the FOV of two adjacent cameras in the CCRL installation.
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Figure 2.23: Scheme of the transfer tree generation scheme for the CCRL
camera installation. The area is successively divided (a)⇒ (b), and the depicted
node insertion step (c)⇒ (d) repeated until each leaf node contains only a single
camera.

Figure 2.24: Transition areas overlayed in the FOVs of a cameras in the
CCRL installation. The dots represent valid transfer points between cameras,
resulting from a grid test with 0.05 m intervals on the floor plane against the
target transfer tree. Additionally, the track of a pedestrian target during view
transition is depicted, illustrating the point of transition.
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Transmitted Data Regarding the problem of what to transfer, it has to
be kept in mind that in the described implementation, processing for different
views occurs on different machines and in real-time. Therefore, the amount
of data required to be transferred between target origin and destination to
solve the view transition problem has to be kept in check. This becomes a
factor, for example, when considering approaches which would require entire
images to be transferred during this step.

For the solution to this part of the view transition challenge, three different
approaches were implemented and qualitatively evaluated:

Approach I: Only the information that a new target has entered the view
is transferred to the camera node supposed to take over the tracking, as
determined by the transfer tree. This signal initiated a local detection
process (cf. Section 2.9.2 on page 51), in which the target was detected
in the corresponding view and a new model generated for the initializa-
tion of the local tracker (cf. Section 2.9.3 on page 55). However, due
to the comparatively high computational cost of the detection process
(cf. Table 2.7 on page 54), this procedure proves to be inconvenient for
real-time processing, as it introduces undesirable delays in the system.

Approach II: In addition to the steps involved in Approach 1, a fast frame
differencing [51] is performed in the view for the new camera node to
narrow down the region of interest (ROI) for the detection process.
This serves to speed up the entire transition process by addressing its
most time-intensive step.

Approach III: The entire target information available, i.e. world position,
position history and color model, is sent to the next responsible camera
node. Complete multi-camera calibration with a common coordinate
system (cf. Section 2.7 on page 42) greatly facilitates the view transi-
tion problem, since the pose information can be used to instantiate the
tracking module of that camera node directly in combination with the
color model, eliminating the need for a further detection process and
in consequence significantly speeding up the transition process.

In concordance with the expectations, Approach III yielded the most desir-
able results regarding speed, since it does not require the time-consuming
detection process to be repeated. As lack of spatio-temporal consistency has
a significant negative impact on the accuracy of the Bayesian tracking ap-
proach, the effect of the speed-up in the transition process is advantageous
enough to decide in favor of this design approach. For an impression of the
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tracking of a target across multiple cameras, Figure 2.25 provides a glimpse
of the human-readable output produced by the tracking system.

(a) (b)

Figure 2.25: Illustrating the tracking at the CCRL installation. Here, the
human-readable output for the display unit is depicted, with views for all 40
cameras shown in a grid. Identified targets and estimated tracks are overlaid.
From left to right, a target transitioning between camera views (a), and tracks
after several transitions can be seen in the images (b).

2.10 Experimental Evaluation

Several aspects of the real-time multi view person tracking system presented
in this chapter were evaluated experimentally to verify the system’s function-
ality.

While the experiments relating to the technical features (e.g. stability, up-
date rate) of the system were conducted on the live system, due to economic
reasons it was decided to use a prerecorded data set to test the algorithmic
parts of the system rather than testing in situ in real-time. Since, under most
circumstances, algorithmic properties can be more easily varied, this proce-
dure ensures a higher degree of comparability between subsequent test runs
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of the system by keeping the variances low. It is worth mentioning though,
that repeated experiments were not entirely deterministic, due to the prob-
abilistic nature of the SMC algorithm used for tracking. As an additional
benefit of this method, the recorded data is preserved, and can be used in
the future to test enhancements made to the current algorithms under the
most similar conditions possible.

2.10.1 Recording the Data set

For the recording of the data set, a section of the area covered by the system
was deemed sufficient to prove algorithmic concepts, which allowed for reduc-
tion of the image data required for storage. The selected section measures
approximately 5× 7 m and is covered by 16 cameras (cf. Figures Figure 2.27
on page 65 and Figure 2.28 on page 66).

The data set for the evaluation of the multi-view tracker consists of three
types of short video sequences depicting clothed pedestrians. The first type
shows a single pedestrian crossing the area, moving between the FOVs of sev-
eral different cameras. The second type of sequence depicts two pedestrians
crossing the area simultaneously in opposite directions, with their trajectories
approaching each other near the center. Finally, the third type of sequence
has two pedestrians crossing the area simultaneously in the same direction,
which their trajectories being approximately parallel.

Additionally, image sequences for the evaluation of the pedestrian detection
(cf. Section 2.9.2.4 on page 54) and the single-view part of the tracking (cf.
Section 2.10.2) were recorded, which are described in the respective sections
of this chapter. Table 2.8 on the next page provides further details about the
recorded sequences.

Table 2.9 on the following page provides details about the subjects partici-
pating in the experiment.

2.10.2 Single-View Tracking Accuracy

For the evaluation of single-view tracking accuracy, two image sequences with
circular trajectories were recorded, to allow for continuous evaluation through
looping of the image data. Two different circular shapes were recorded for
the trajectories: ellipsoid and lemniscatoid (cf. Figure 2.29 on page 66),
both with the center of the trajectory situated approximately on the camera
principal axis.
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Np Action Test case NV Ni Ns

1 walking tracking ≥ 2 ≈ 600 (≈ 21 s) 12

2 walking, opposite direction tracking ≥ 2 ≈ 600 (≈ 21 s) 12

2 walking, same direction tracking ≥ 2 ≈ 600 (≈ 21 s) 12

1 walking, ellipse tracking 1 3000 (≈ 107 s) 3

1 walking, lemniscate tracking 1 3000 (≈ 107 s) 2

1 standing/walking detection 1 10 (≈ 1
3

s) 20

2 standing/walking detection 1 10 (≈ 1
3

s) 5

3 standing/walking detection 1 10 (≈ 1
3

s) 6

Table 2.8: Statistics for the recorded image sequences in the evaluation data
set. Np denotes the number of pedestrians, Nv the number of views (multiple-
view or single-view), Ni the number of images per sequence, and Ns the number
of sequences of the respective type in the data set.

Participant Height Color, torso Color, legs Color, hair

P1 1.83 m black dark blue bald(ish)

P2 1.74 m red dark blue black

P3 1.72 m light green blue brown

Table 2.9: Statistics for the participants recorded in the evaluation image
sequences. Note, that the colors stated in the table correspond to the consensus
of visual inspection by the investigator and the participants.
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(a) (b) (c)

Figure 2.26: Example pictures from the image data collected for the evalu-
ation of the multi-view tracking system. From left to right: Single pedestrian
crossing (a), two pedestrians in opposite directions (b), and two pedestrians with
concordant direction (c).

Figure 2.27: Impression of the experimental area, used for recording of the
evaluation data set. Start and end positions for the paths taken by the partici-
pants were marked with small tape markings on the floor. The flooring consists
of parquet, and has a comparatively high reflectance with a light reflectance value
(LRV) of ≈ 30. Some specular reflections are clearly visible.
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Figure 2.28: Schematic of the area used for the recordings, showing the
camera positions and fields of view at ho = 1.7 m.

(a) (b)

Figure 2.29: Schematic trajectories for the two sequences recorded for monoc-
ular pedestrian tracking evaluation, overlaid on camera images. The first trajec-
tory (a) resembles an ellipse, while the second trajectory (b) resembles a Bernoul-
lian lemniscate [169] (i.e. eight-shape).
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Ground truth data for these sequences was annotated manually in the form
of target positions in image coordinate space. This type of annotation was
chosen since the goal of the experiment was to measure the performance of
the tracker, which operates with hypotheses on the image coordinate level.
Furthermore, to provide a fair evaluation of the tracking process, the result
of the detection process (cf. Section 2.9.2 on page 51) was used as ground
truth position in the initial frame, and the correspondence point manually
annotated in subsequent frames. This procedure helps to alleviate additional
errors in measurement possibly introduced by disparities between manual
ground truth annotation and detection process.

For evaluative purposes, the advantage of the lemniscatoid trajectory com-
pared to the ellipsoid trajectory is that while the perspective of the camera
towards the pedestrian remains approximately constant for the circular tra-
jectory, it undergoes almost the full range of perspectives possible under the
setup constraints for the lemniscatoid path. Although not particularly rele-
vant for the evaluation of the tracking accuracy at this point, this fact is of
particular interest with regard to the work described in the subsequent chap-
ter, since the same image sequences are also used to evaluate the adjustments
made to the appearance model to compensate for perspective effects.

2.10.2.1 Error metric

To measure the performance of the single-view tracking, a suitable metric
for the tracking error has to be defined. To define a meaningful metric, the
conditions under which the experiment is conducted have to be considered.
For example, Maggio and Cavallaro [181] use the density of true positive
pixels as a metric for the accuracy of tracking objects with highly variable
distance from the camera, e.g. objects approaching the camera. While such
a metric makes sense in their case, it would be unnecessarily complicated in
the case of the experiment described here, since the distance between camera
and object remains within the same order of magnitude. Similarly, a varying
image size would require normalization of the error by image size to produce
meaningful results, et cetera.

For the experiment discussed here, the Euclidean distance between the ground
truth target position tg and the target candidate tc in the image plane pro-
vides the basis for a suitable error metric, and constitutes the absolute track-
ing error :

da = |tg − tc| (2.18)



68 Real-Time Multi-View Pedestrian Tracking

However, the disadvantage of this error metric is the fact that it takes into
account neither the size of the image (nx, ny) nor the size of the target.
Therefore, the error metric is adjusted by the average size of the target (di-
ameter 2r of the of the circumcircle of the blob) in pixels, which accounts for
both the size of the image and the size of the target, to provide the relative
tracking error :

dr =
da
2r

(2.19)

(a) (b)

Figure 2.30: Illustrating the error metrics used to evaluate single-view tracking
performance. (a) depicts the absolute tracking error da (yellow), measuring the
distance between ground truth position (red) and candidate position (blue). (b)
depicts the current circumcircle of the target blob (turquoise), used to calculate
the relative tracking error dr.

2.10.2.2 Results

Table 2.10 on the next page provides mean and standard deviation of dr
for both the ellipsoid and the lemniscatoid trajectory, measured over looped
sequences with a normalized length of Ni = 1000 images. As the results
indicate, the accuracy of the tracking is slightly better for the lemniscatoid
path.

To provide an explanation for this observation, it has to be taken into account
that for the camera configuration in the experiment, where the orientation
of the camera coincides with the normal of the floor plane, the position of
the center of a tracked target is less ambiguous when the target is located
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near the principal axis of the camera. This is because the center of gravity
of the silhouette of the target, the reprojection of the center of gravity of the
target in world space, and the reprojection of the standpoint of the target
(the average of the position where both feet touch the floor plane) all coincide
at this point, whereas they diverge increasingly with greater distance from
the center.

The average distance of the target from the principal axis, on the other hand,
is larger for the ellipsoid path, where the target moves near the borders of the
camera’s FOV, while for the lemniscatoid path, the target repeatedly crosses
the center of the FOV.

Sequence Trajectory µ(dr) σ(dr) Ni

S42 ellipsoid 0.237 0.09 1000

S43 ellipsoid 0.210 0.08 1000

S44 ellipsoid 0.242 0.08 1000∑42
i=44Si ellipsoid 0.229 0.08 3000

S45 lemniscatoid 0.186 0.08 1000

S46 lemniscatoid 0.165 0.06 1000∑45
i=46Si lemniscatoid 0.176 0.07 2000∑42
i=46Si lemn./ellipt. 0.208 0.08 5000

Table 2.10: Accuracy evaluation for the MCMC pedestrian tracker for single-
view tracking, mean µ and standard deviation σ for the relative tracking error
dr (cf. Equation 2.19). Ni denotes the number of video frames for which the
accuracy was measured.

2.10.2.3 Adjusted Error Metric and Results

To compensate for the effect of precision gradient in the FOV inherent to
the setup as explained in the previous paragraph, a second measure for the
relative tracking error is introduced, where the diameter 2r of the circumcircle
of the target blob the current position is used to compute the error, instead
of the mean diameter 2r calculated from the entire track:

dr =
da
2r

(2.20)
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Sequence Trajectory µ(dr) σ(dr) Ni

S42 ellipsoid 0.228 0.09 1000

S43 ellipsoid 0.206 0.08 1000

S44 ellipsoid 0.229 0.07 1000∑42
i=44Si ellipsoid 0.221 0.08 3000

S45 lemniscatoid 0.214 0.09 1000

S46 lemniscatoid 0.201 0.08 1000∑45
i=46Si lemniscatoid 0.208 0.09 2000∑42
i=46Si lemn./ellipt. 0.216 0.08 5000

Table 2.11: Accuracy evaluation for the MCMC pedestrian tracker for single-
view tracking, mean µ and standard deviation σ for the relative tracking error
dr (cf. Equation 2.19). Ni denotes the number of video frames for which the
accuracy was measured.

Table 2.11 depicts the updated results, using the new error metric for the
relative tracking error with the above equation.

In comparison to the preliminary results from Table 2.10 on page 69, the mean
error µ(dr) for the lemniscatoid paths increases significantly, from 0.176 to
0.208, while the effect on the error for the ellipsoid path is hardly affected by
the change in metric.

To summarize, the updated metric for the relative tracking error leads to
significantly closer values for µ(dr) on the lemniscatoid and ellipsoid paths,
and appears to have successfully leveled the effect of the precision gradient
induced by the perspective variation in the FOV, as theorized above.

2.10.3 Multi-View Tracking Performance

As the multi-view tracking method employed differs from the single-view
tracking method only in the added transition process, the accuracy of the
track is not expected to differ significantly. Therefore, the evaluation of the
multi-view tracking is not focused on the exact accuracy of the track, but
rather application-centered, that is with the suitability of the result for appli-
cation in e.g. human-robot interaction in mind. Consequently, the evaluation
of the multi-view tracking performance looks at the overall performance of
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the system, with the question in mind if the tracking manages to yield a
target position within a tolerable error range.

2.10.3.1 Performance metric

To measure the performance of the multi-view tracking as a whole, the success
of tracking a target in a sequence of images is defined as the target candidate
tc being within dm of the ground truth tg in the final frame In of the sequence.

|tg − tc| ≤ dm (2.21)

In accordance with the results from single view tracking, the maximum tol-
erable error distance dm was set at 2 ·µ(da) i.e. ≈ 136 px for the experiment.

In theory, this definition of a tracking success implies that the target can
be lost and recovered during the tracking process, which is a less restrictive
definition than requiring da ≤ dm ∀ I i. However, it is considerably eas-
ier to test, as annotation, which is especially time-intensive for multi-view
sequences, is only required for the final frame of the sequence.

In addition, manual inspection of the experimental data indicates that:

P(R)� P(L)� P(L) (2.22)

where R indicates the event that a target was lost and recovered, L indicates
the event that a target was lost, and consequently L indicates the comple-
mentary event that a target was never lost during tracking. All events refer
to the tracking of the target over the whole sequence. This observation serves
as a further argument in favor of the proposed performance metric.

With success and failure of a tracking a single target in an image sequence
defined, the success rate

R =
S

N
(2.23)

is used in the following to measure the performance of tracking multiple
targets over multiple sequences, where S denotes the number of successfully
tracked targets, whereas N denotes the total number of targets.



72 Real-Time Multi-View Pedestrian Tracking

Targets Relative Direction N S R

1 N/A 12 12 1.00

2 ≈ ↑↓ (antiparallel) 24 23 0.96

2 ≈ ↑↑ (parallel) 24 20 0.83

< 3 all of the above 60 55 0.92

Table 2.12: Performance evaluation for the MCMC pedestrian tracker for
multi-view tracking. N denotes the total number of targets in all sequences,
whereas S denotes the number of targets tracked successfully and R denotes the
success rate.

2.10.3.2 Results

2.10.4 Target Identity Maintenance and Recovery

For the evaluation of the capacity of the appearance model to maintain the
identity of a target when the track is lost (e.g. when a pedestrian leaves the
target area entirely and later returns), a sequence of images where several
pedestrians repeatedly cross the FOV of a single camera, while varying direc-
tion and speed, was synthesized from the image data recorded (cf. Table 2.8
on page 64).

The procedure for the identity recovery experiment is displayed in Figure 2.31
on the next page. Essentially, it can be considered a very basic machine
learning experiment, or precisely, a multi-class classification experiment with
M = 4 classes, where the four classes result from the number of three par-
ticipants, with one additional class constituted by previously unseen targets.
Accordingly, the process consists of two distinct steps, training step and test
step, which are detailed out in the following paragraph.

As a prerequisite to test the identity recovery properties of the appearance
model, the appearance models for all potential targets must first be acquired
once. This is done in the training step, on separate image sequences for each
target (more precisely, the image sequences already used in Section 2.10.2
on page 63), and the resulting models are referred to as reference models in
the following. Subsequently, in the test step, these appearance models are
compared against the candidate models, i.e. the appearance models obtained
from targets detected in the test sequence. Depending on the result of the
comparison, the candidates are classified either as one of the previously ac-
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Figure 2.31: Scheme for the identity recovery experiment, depicting the se-
quence of processing steps for the experiment conducted on the respective image
sequences.
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quired targets, or as a new target, whose model does not match any of the
reference models acquired during the training step.

To solve the classification task, a similarity metric for the appearance models
is required. Here, the same method is employed as during the testing of
hypotheses during the tracking step (cf. Section 2.9.3 on page 55). Since the
appearance models constitute discrete color distributions, the Bhattacharyya
distance DB (cf. Kailath [142]; based on Bhattacharyya [21]) is employed, as
a state-of-the-art measurement of the similarity between two distributions:

DB(p, q) = −ln

(∑
x∈X

√
p(x)q(x)

)
(2.24)

where p and q denote the reference model and candidate model (i.e. color
histograms), respectively, and X denotes the k,m, n-bin partition of the HSI
color space.

2.10.4.1 Performance metric

The multi-class classification problem described above is considered as a series
of binary classification problems for the purpose of the evaluation: Each
target is classified either correctly or incorrectly. Consequently, the recall
rate of successfully identified targets:

fr(C) =
fa(C)

N
, (2.25)

where fa(C) denotes the number of true positives and N denotes the total
number of targets, provides an adequate metric for the performance of the
target recognition. Note, however, that this metric does not discriminate
between confusion of two targets from the test set and the confusion of a
target from the test set with a new target. Here, it is implicitly assumed
that both types of errors are equally undesirable.

2.10.4.2 Results

Table 2.13 on the facing page provides the results of the evaluation. It is
apparent that the results leave some room for improvement. Some of this
can be attributed to the fact that the reference models for the recognition are
generated from a single initial detection, which does lead to a low robustness
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of the initial approach. To anticipate, this is one of the deficiencies of the
approach that is addressed by the improvements suggested in the subsequent
chapter.

Participant N fa(C) fr(C)

P1 8 7 0.88

P2 8 6 0.75

P3 8 8 1.00

P1...3 24 21 0.88

Table 2.13: Results for the evaluation of target identity management and
recovery. N denotes the total number of targets, and fr(C) denotes the recall
rate of successfully re-identified targets. P1...3 denote the participants, as listed
in Table 2.9.

2.10.5 System Uptime and Robustness

Since from a design perspective, assembling a robust and highly available
system was a critical concern, an experiment was conducted to measure the
continuous uptime tu of several system components, in order to gain a mea-
sure for system availability.

Data was collected using the Xymon system monitor [259] on the updated
setup (Phase B) of the CCRL installation (cf. Section 2.5 on page 29) during
a period of 14 days, by sampling the state of various system components in
30 s intervals.

Hardware components investigated for long-term availability were the server
computer and the connected processing clients, as well as the Ethernet-
connected cameras. Regarding the software layers, both the implementation
of the preprocessing layer (cf. Section 2.8 on page 47) and the implementa-
tion of the person tracking module from the application layer (cf. Section 2.9
on page 50) were investigated.

Table 2.14 on the following page lists the inherent availability V of the im-
portant system components over the course of the experiment period with:

V i =
tui

tdi + tui
(2.26)
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for each component, where tui signifies the uptime of a system component
while tdi signifies the downtime.

For the downtimes experienced during the experiment, no manual interven-
tion or repair was required. All outages could be recovered by monitoring
the software modules and automatically initiating a restart for any module
that became unavailable.

Component Server Client Camera Preprocessing Tracking

V 1 1 0.99996 1 0.99994

td/ d, avg. 0 s 0 s 3.46 s 0 s 5.19 s

Table 2.14: Availability and average downtimes per day of selected system
components, hard- and software, as recorded during a continuous two-week sys-
tem test.

The results indicate, that while the two-week test period allows for results
regarding the availability of camera and tracking modules, it proves too short
to provide any insights into the availability of the used server and processing
nodes. These results are to be expected considering the fact that server
and processing nodes consist of OTS hardware components. According to
several studies from Schroeder et al. [243–245], the two components most
likely to cause outages in architectures comparable to that of the server and
processing nodes are hard disks and memory, with probability for failure
within the order of magnitude of 0.033 annualized failure rate (AFR) for
hard disks [243] and 0.0022 AFR for memory modules [245]. For a period
of two weeks, 164 memory modules and 246 hard disk drives (HDDs), the
expected probability of at least one failure occurring during the experiment
therefore was within the region of ≈ 0.0139 (memory) and ≈ 0.312 (hard
disk). However, the comparatively high value for HDD failure is based on
the assumption of almost continuous HDD access, as it occurs in web servers.
For the proposed system, such a high frequency of HDD access would only
occur if image data was recorded indiscriminately, which was not the case
during the experiment.

Note, that the test period of two weeks exceeds the usual demands on the
system for continued surveillance of human-robot experiments, by a factor of
at least 20. Since

V ≈
N∏
i=1

V i (2.27)
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for N components with independent availability, the total availability V of
the system can be stated as at V ≈ 0.99990, or, to put it in different terms,
within the order of magnitude of “four nines” (regarding the terminology, cf.
Bottomley [27]).

2.11 Summary and Discussion

In this chapter, a vertically integrated system using multiple static cam-
eras to track multiple pedestrians across a target area in real-time was pre-
sented. Evaluation results demonstrate that the system is capable of address-
ing this task with an update rate and accuracy suitable for applications in
HRI (cf. Section 2.10.2.2 on page 68) over extended periods of time (cf. Sec-
tion 2.10.5 on page 75).

Among the different steps performed for the successful implementation of
the system, the multi-camera calibration deserves some special note, as it
exceeds the state of the art regarding accuracy, measured by the reprojection
error, as evidenced by the comparison with results from other multi-camera
calibration routines (cf. Section 2.7.1 on page 45).

The modeling of pedestrians for tracking using histograms in HSI color space,
which is commonly used for pedestrian tracking from planar views, i.e. pos-
terior, lateral and anterior perspectives, proves to be an effective method
from a supracranial perspective as well. However, for conditions comparable
to those presented for the experimental area described in this chapter, where
the depth extension (i.e. height) of the targets is within the same order of
magnitude as the distance between target and sensor, perspective effects on
the color distribution exhibited by pedestrians merit a closer inspection. This
issue is addressed in the subsequent chapter.





Chapter 3

Appearance Modeling

As mentioned in Section 2.3 on page 13, the multi-view tracking task can be
broken down into a single detection task, and a subsequent alternating series
of single-view tracking tasks and view transition tasks. Basic solutions for
the challenges presented by those tasks have been fleshed out in the previous
chapter (Sections 2.9.2 to 2.9.3.2).

A common feature linking single-view tracking and view transition tasks is
their dependence on how the appearance of the tracking targets is being
modeled. In the following chapter, a closer look is taken at appearance
modeling for pedestrian tracking, and the static color distribution approach
for appearance modeling presented in the aforementioned sections is improved
upon.

3.1 Problem Statement

The color model initially used in tracking humans on the CCRL camera setup,
as explained in Section 2.9.2.3 on page 53, can be categorized as a static
appearance model. Pedestrian appearance is modeled as a static histogram
in HSI color space, which is acquired at person detection. Static appearance
constitutes a standard approach for modeling the appearance of pedestrians
in tracking and identification tasks (cf. Bird et al. [23], Bazzani et al. [15]).

In most cases these tasks are performed within images depicting pedestrians
from a predominantly lateral perspective, where the face of the pedestrian
towards the camera varies mostly from turning around the vertical axis. Since
most articles of clothing display similar statistical properties (e.g. regarding
their color or texture) from all directions, variations in pedestrian appearance
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originating from rotation around the vertical axis do not cause complications
with the statistical color modeling approach.

Figure 3.1: The same person standing at different points within the camera
field of view. Note the differences in the area ratio of visible colored parts,
especially clothing.

For a multi-view setup, this observation holds true as well, and static appear-
ance modeling produces favorable results as long as the perspective remains
predominantly lateral. From supracranial perspectives, however, variation in
perspective has a larger effect on the appearance of pedestrians, especially
if the distance between pedestrian and camera is comparatively short. Ac-
cordingly, the perspective variation of view transitions has a greater effect on
appearance in such setups.

Consider, for example, the person depicted in Figure 3.1. If the person is
standing directly below one camera, the visible face, in a geometric sense of
the term, consists mainly of the top of the head and shoulders of the person.
Due to self-occlusion, certain clothing surfaces (e.g. trousers, shoes) are more
likely to become occluded than others. Should the person move towards the
edge of the camera’s FOV, however, torso and legs gradually become more
visible. In the most likely case, that the colors of head, torso and legs of the
person are different from each other, this will also cause the color distribution
of the observed person as a whole to change.

As a consequence, it would be desirable to describe the appearance of a
clothed pedestrian not as a static model, but with an adaptive approach, to
be able to more closely reflect the changes occurring during those perspective
shifts and in turn improve the robustness and accuracy during tracking and
re-identification tasks.

In short, the problem covered in this chapter can be summarized as the design
of an appearance modeling approach for the tracking of pedestrians with the
following qualities:
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(1) The appearance should be modeled adaptively, so that changes in cam-
era perspective towards a pedestrian can be taken into account during
single-view tracking.

(2) The model should be applicable to multi-view tracking, and consider the
resulting view transition task specifically.

(3) The approach should be sufficiently generic to be applicable to objects
other than pedestrians with the appropriate modifications, e.g. consid-
ering their geometric properties in the approach.

3.2 Outline of this Chapter

The remainder of the chapter is divided into the following sections:

Section 3.3 discusses related work on appearance modeling, statistical prop-
erties of color and histogram collection with regard to the work pre-
sented in this chapter.

Section 3.4 on page 85 explains the rough idea of the solution for the
problem stated in the previous section.

Section 3.5 on page 90 includes the exact specifications of the proposed
appearance model, and explains its integration into the tracking, de-
tection and reacquisition tasks, as described in the previous chapter.

Section 3.7 on page 108 evaluates the proposed appearance model regard-
ing its performance in tracking and detection tasks.

Section 3.8 on page 116 includes a comparison of the evaluation against
the results achieved with the basic appearance model (cf. Section 2.10
on page 62), further discussion, and outlook.

3.3 Related Work

Since related work on most of the tracking pipeline has already been dis-
cussed in Section 2.3 on page 13, this section will focus solely on the topics
of appearance modeling, statistical color descriptors, and their respective
applications in tracking.
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3.3.1 Statistical Color Descriptors

The use of statistics to describe the color of objects in digital images reaches
back more than twenty years, where seminal work was conducted by Swain
and Ballard [265, 266], who first report the use of color histograms for object
indexing and identification.

A variety of methods has been proposed to model the color distribution of
images or image ROIs. The straightforward method consists of determining
the frequencies of pixel values for each channel within a certain color space
(e.g. RGB, luminance/chrominance (YUV), HSI), dividing them into n bins,
usually equally sized, and combining the statistics for each channel into a
single 3D color histogram. Variations include the omission of channels, e.g.
modeling hue and saturation while discarding intensity (cf. Sebastian et
al. [246]).

Statistical color models have been applied to a wide range of challenges in
computer vision, that can be roughly divided into three larger categories –
detection tasks, classification tasks, and indexing – and a smaller number of
miscellaneous applications.

To provide some examples regarding detection tasks, statistical color model-
ing has been applied to skin color detection (cf. Jones and Rehg [139], Lee
and Yoo [172]), which is an important sub-task in many face detection or
face image analysis approaches, fire detection (cf. Celik et al. [43], Cho et
al. [46]), with application in surveillance systems for building security, and
many different approaches to object detection (cf. Kim et al. [156], Cucchiara
et al. [58], Mason and Duric [184], Utsumi et al. [279], Okuma et al. [209],
and Juang et al. [140])

Classification and identification tasks – as a binary subtype of the former – are
commonly solved using a machine learning technique, such as support vector
machines (SVMs), in combination with statistical features of an image or
image region to generate models of the objects or classes of interest. Among
similar applications, statistical color modeling has been employed to provide
features for the classification of plants (cf. Burks et al. [35]) and recognition
of household objects (cf. Gevers and Smeulders [93]). Furthermore, similar
techniques involving color modeling have been used to distinguish synthetic
images from photographic images (cf. Chen et al. [44]), and to distinguish
face images from images depicting nudity (cf. Duan et al. [71]).

A diverse set of further applications of miscellaneous type has been reported.
For instance, Tian [271] reports an application for automatic focus window
selection in digital cameras, by employing skin color segmentation with sta-
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tistical color models to calculate focus ROI. Varma and Zisserman [281] apply
statistical color models to texture classification, using frequency histograms
of textons to assemble texton dictionaries used in the classification, whereas
Fine et al. [84] describe a biomimetic approach, where statistical color models
are employed in surface segmentation.

To summarize, statistical color descriptors have been used in computer vision
in a great variety of forms and applications for over a decade. Statistical color
modeling is a proven and well-described state-of-the-art technique for the
description of surfaces. Therefore, it is employed in this thesis as the starting
point of the search for viewpoint-aware adaptations for clothed pedestrians,
which display a set of different surfaces that can easily be distinguished by
human visual perception.

3.3.2 Appearance Modeling

In the terminology of this thesis, an appearance model is any underlying
hypothesis about an objects qualities, such as brightness, color, or geometry,
that results in assumptions about the object’s representation in an image.
Mathematical or statistical properties of this representation, called features,
are used to link model and representation.

Appearance modeling is relevant to several related challenges in surveillance
applications, namely detection, recognition, reacquisition and tracking. Since
models are used to describe specific objects, models of similar structure de-
scribing different objects can be referred to as classes of models. Over time,
such classes have been proposed in great variety.

The first group of appearance models do not account for any geometric fea-
tures of the modeled object, relying instead solely on properties of the ob-
ject’s surface, like color or brightness. Common examples for such appearance
models include models based on color histograms [265].

Appearance modeling with color histograms has been proposed in various
nuances. Gray et al. [102] evaluate different approaches regarding their per-
formance on specific data sets. Color histograms have been used to model
appearance for a broad variety of objects, for example in skin detection by
Jones et al. [139] or head tracking by Birchfield et al. [22]. For tracking per-
sons, specifically, improvements can be made by adapting the model during
operation, a technique used e.g. by Nummiaro et al. [207] in combination
with a particle filter.

Regarding the advantageousness of different color spaces with regard to track-
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ing, Sebastian et al. [246] investigate the effect of statistical modeling in
several color spaces (grayscale, RGB, luminance/chrominance (YCbCr), and
HSI) on tracking robustness. They conclude, that the highest performance
is consistently achieved for HSI color space, and that performance can be in-
creased further by disregarding the intensity value altogether, i.e. modeling
properties of hue and saturation exclusively.

Appearance models based on the HOG approach were originally introduced
by Dalal and Triggs [62] to detect humans in varying poses, but have also
been generalized to accommodate different objects, e.g. by Felzenswalb et
al. [78]. To circumvent the comparatively large computational complexity
of the approach, Geismann and Schneider [92] combine HOG with Haar-like
features (cf. Viola and Jones [284] for the original features, Lienhardt and
Maydt [176] for an extended feature set) into a two-step detector, where
Haar-like features are used to identify pedestrian candidates while the HOG
features are used to verify those in the second step. However, since the HOG
approach considers the orientation of gradients, the results vary with changes
in observation perspective (especially from lateral/anterior perspectives to
supracranial perspectives, cf. B.8). Therefore, HOG do not constitute a par-
ticularly advantageous set of features for the purpose of modeling pedestrians
under the conditions presented here.

As a further sophistication, the tracked object’s geometric and topological
properties can also be taken into consideration, through the use of a so-
called shape model. Shape models come in different varieties, of which the
rigid shape model is the most basic. For example, Lanz et al. [171] transition
from considering only surface properties to including shape properties in
pedestrian tracking by using a simplified human shape model, with different
color distributions for different body parts. In contrast to the approach
proposed in this chapter, however, they track each body part separately and
merge the tracking results, as opposed to merging the color distributions and
tracking the person as a monolithic entity.

Another super-class of models are geometrically deformable shape models.
These models have a high number of degrees of freedom, and during operation
their deformation parameters have to be optimized to fit the model to the
image. Active Shape Models [55, 56] and Active Appearance Models [54]
constitute two well-known examples for these classes of models. Originally
introduced to be used to model faces and facial expressions, they have also
been extended to other applications, particularly in the medical field [17,
192].

While these models are specifically suited to model complex, deformable
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objects, one of their drawbacks is the complexity of the model fitting and
parameter adjustment process, which can render their application difficult
when low response times are required, e.g. for real-time tracking. On the
other hand, similar approaches are especially suited if not only the object
itself but its full body pose or activity state has to be detected. For example,
Bandouch et al. [12] use a deformable geometric model with 51 degrees of
freedom to track and analyze human motions. Another example for such
use of geometrically deformable models, applied to the problem of facial
expression recognition, is provided by Mayer [185].

Summarily, it is striking that the topic of appearance modeling is mostly
researched on in combination with research on its applications like object
tracking, detection and recognition. There are relatively few publications
that explicitly and exclusively consider appearance modeling, as a separate
discipline. Consequently, there is a dearth of research infrastructure on the
topic, as evidenced by the lack of image databases and accepted evaluation
metrics specifically published with appearance modeling in mind. This is a
factor which complicates efforts to conduct substantiated performance com-
parisons of different modeling techniques.

3.4 Solution Idea

An object consisting of surfaces that exhibit different appearance properties
(e.g. color, texture) changes its appearance toward the viewer significantly in
different perspectives. Examples are provided in Figure 3.2 on the following
page. Therefore, an adaptive appearance modeling approach is used to model
these changes and provide an increase in modeling accuracy compared to
static appearance modeling. To that end, the appearance of the object of
interest is considered as a combination of models of the appearance of its
parts.

In the following, the solution idea is sketched out twice. The first part aims
to be a general description of the concept behind the solution idea, and is
put in abstract terms, without restriction to specific classes of appearance
models or objects. The second part of the description, on the other hand,
constitutes a concretization of the ideas sketched out in the first part, with
specific application to the task of pedestrian tracking in different perspectives.
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(a) (b) (c)

Figure 3.2: Illustrating the solution idea. Depicted are several objects with
vertical appearance patterns, for which the described technique can be applied.
From left to right, clothed pedestrians (a), a colored table with dark tabletop (b)
and a car with “beauty stripes” on top.

3.4.1 Abstract Solution Idea

The realization of the solution idea requires two steps to be performed man-
ually in preparation, along with knowledge about the geometry and surface
areas with similar appearance of the object of interest. Although the ex-
act appearance (e.g. color, texture) of these surface areas is unknown, it is
known that the areas are relatively uniform with respect to appearance (e.g.
torso clothing in a pedestrian, colored stripes on a car, or a tabletop).

Firstly, the visual appearance A of a reflective object is considered as a
weighted sum of the appearance of its parts, where the weights w are de-
termined by the size of the respective parts in the camera projection. The
descriptors to model the appearance are selected accordingly, so that addi-
tion of models and multiplication of models with scalars are defined (e.g.
histograms, Gaussian distributions). Consequently, the appearance model A
of the object can be expressed as a linear combination of partial appearance
models Ap:

A =
∑

wiAp (3.1)

In a second step, the shape of the object of interest is considered. A coarse,
rigid, three-dimensional model of its surface, the shape model is constructed
of simple shapes (called shape atoms in the following) that can be described
geometrically, e.g. circles or regular polygons. Subsequently, N different
shape model parts are defined, that correspond to the partial appearance
models. The model parts are defined in such a way that they are expected
to be relatively uniform in appearance, and each shape atom is assigned to
a model part.
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Consider the situation where a target has just been detected and is to be
tracked in subsequent images. Its current world position is known, as well as
its appearance model A0 for the current perspective, which has been created
at detection. At this point, the partial appearance models are unknown.
The intermediate goal is to obtain the partial appearance models, which will
subsequently allow for refinement of the composite appearance model with
regard to perspective.

The initial period of tracking constitutes the burn-in phase for the appearance
model. During that phase, the processing step for a single image is as follows:
Firstly, the shape atoms are projected into the image plane using the camera
projection Π. The self-occlusion of the shape model, i.e. the occlusion of
shape atoms by others, is considered in this step. From the area of the
projected shape atoms on the image plane, and the assignment of shape
atoms to shape model parts conducted in the preparation step, the ratio of
the areas P p

i of each projected model part to the area P of the projected
model is obtained. This ratio provides the weights of the partial appearance
models for the current perspective:

wi =
P p

i

P
∀i ∈ {1, . . . , N} (3.2)

In the following, this entire procedure is referred to as weight computation.
Finally, weights and appearance model are stored, and processing moves on
to the next image. During the burn-in phase, the initial appearance model
A0 is used to test the tracking hypotheses (cf. 2.9.3)

The exact number of images required for the burn-in period depends on
the number of model parts. After a sufficient number of K images with
K > N has been processed, the weights and appearance models constitute
an overdetermined system of K linear equations of the form:

Ak =
N∑
i=1

w(i,k)Ap
(i,k) ∀i ∈ {1, . . . , N} ∧ k ∈ {1, . . . , K} (3.3)

This marks the start of the operational phase for the model adaptation. The
system of linear equation is now solved numerically, using an appropriate
technique such as ordinary least squares [227], yielding the partial appear-
ance models Ap for the shape model parts. This procedure is termed the
model decomposition step. From this point on, the appearance model used
to test hypotheses is generated for each image depending on the perspec-
tive, by combining the partial appearance models with the weights that are
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computed for the respective hypothesis using the method described in the
previous paragraph, which is termed the model composition step. A sliding
window of the K most recent weights and appearance models for the last
K images continues to be stored, and the partial appearance models Ap are
re-computed in regular intervals.

3.4.2 Application to Pedestrian Tracking

For the concretization of the approach, a suitable modeling technique has to
be selected, which allows for the computation of partial appearance models
Ap from weights w and appearance model Ac. For pedestrians wearing dif-
ferent items of clothing which are distinguishable in color, statistical color
modeling is selected as a good fit. The color distributions C are represented
as color histograms H in HSI color space. Histograms allow for addition,
subtraction and multiplication with scalar values, and consequently fit the
necessary criteria for model composition and decomposition. The properties
of color histograms and normalized color histograms are discussed in detail
in Section 3.5.2 on page 92.

As the selected tracking approach does not provide orientation information
(cf. 2.9.3) for the targets, the shape of the tracking target (i.e. the pedes-
trian) is modeled from a combination of frusta and cylinders, which share the
quality of cylindrical symmetry, i.e. they are invariant to rotation around
their central axis. The frusta and cylinders constitute the model parts: head,
torso and legs. The exact sizes of the model parts are derived from average
measurements for the corresponding body parts stated in literature. Subse-
quently, these frusta and cylinders are approximated with a mesh of triangles
in the model refinement step, which is done to exploit the facility of the pro-
jection of triangles in the weight computation step. The model refinement is
described in Section 3.5.5 on page 99.

A graphical overview of the approach is depicted in Figure 3.3 on the next
page.

3.4.3 Assumptions and Constraints

Some assumptions are made about the targets to further specify the condi-
tions under which the proposed method is expected to operate. The method
described here is designed with the tracking of pedestrians in mind, that is
to say humans with their pose restricted to being upright. To extend the
method to targets of different shape, e.g. cars or certain animals, a different
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Figure 3.3: Illustrating the solution idea. Schematic presentation of the adap-
tive appearance modeling approach, exemplatively integrated into a Bayesian
tracking framework for pedestrian tracking.
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geometric model (cf. Section 3.5.3 on page 94) would have to be manually
designed matching the proportions of the intended target.

As a further constraint, it is assumed that the targets’ overall outward ap-
pearance does not change significantly over the course of the tracking. Fore-
most, this means that the targets do not change their clothing during the
operation of the tracking. Furthermore, it is assumed that the clothing on
the relevant body parts is relatively uniform in color and does not look com-
pletely different from varying angles, e.g. light blue in the front and dark red
in the back.

For the expected body proportions of the tracked humans, proportions ex-
hibited by adult persons without any health-related modifications, such as
published by Nakanishi et al. [199], are assumed for the general case. In
cases where body proportions vary greatly from these numbers, for exam-
ple due to certain diseases like achondroplasia [120, 231] (the most common
cause for dwarfism), the method described in the following would have to be
applied with an a priori customized model, with adjusted proportions (cf.
Section 3.5.4 on page 95).

3.5 Appearance Model

As far as the pedestrian tracking approach considered here is concerned, a
target t is represented by its translation TW

t ∈ R3, which is defined as the
translation of the model origin Om ∈ R3 from the world origin Ow ∈ R3,

TW
t ≡ Om −Ow (3.4)

and the appearance model A, which represents properties of the part of its
surface that is visible from the camera. As an additional constraint, the
translation TW

t is restricted to a two-dimensional translation of the target
on the floor plane, since only upright (i.e. standing or walking) targets are
considered.

t ≡ (TW
t ,A) (3.5)

For the purpose of this thesis, only statistical color properties are considered
for the appearance of t:

A ≡ C (3.6)
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where C is a statistical model of the target’s color which satisfies the criteria
required of A (addition and multiplication with scalars defined, cf. Sec-
tion 3.4.1 on page 86). Consequently, the target is represented by the dyad
of translation and color:

t = (TW
t , C) (3.7)

3.5.1 Combined Color Distribution

The normalized color distribution C of the image of a surface can be expressed
as a linear combination of N weighted color distributions Cp

i for a partition
of the surface into N sub-surfaces:

C =
N∑
i=1

wiC
p
i (3.8)

where the Cp
i signify the normalized color distributions of the images of the

surface parts.

The general assumption is that pedestrians wear differently colored articles
of clothing, with the most significant color differences usually being between
clothing worn on legs and upper body, since these constitute the largest
visible surfaces. In most cases, the third-largest significant surface area can
be assumed to be the head, although this attribution may vary depending on
hair length and style. In accordance with these considerations, a tri-partition
of the pedestrian surface into head, torso and legs is employed:

C = w1C
h + w2C

t + w3C
l (3.9)

where Ch, Ct and C l constitute the color distributions of the respective body
parts, and wi constitute the respective weights, signifying their relative area
in the image of the pedestrian surface.

From a modeling point of view, this approach presents two challenges. Firstly,
an appropriate method has to be selected to model the color distributions
C in digital images. This can be done via the color histogram approach as
proposed by Sural et al. [262]. The color distribution C is modeled as a
three-dimensional histogram in HSI color space. The approach is detailed
out in Section 3.5.2 on the next page.

Secondly, a method is needed to obtain the image area ratio for arbitrary
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observation perspectives, i.e. combinations of target translation TW
t , target

vertical orientation as represented by the normal of the floor plane F and
camera pose E. This step requires modeling of the geometric properties of
a pedestrian, also referred to as shape. It results in a two-fold benefit, as
the ratios (also called weights in the following) allow for estimation of the
color distributions Cp of the parts from the overall distribution C, as well
as for an approximation of C from Ch, Ct and C l for hypothesis generation
(cf. Section 3.6.1 on page 102). To determine the size of the area of each
model part in the image, and consequently the weights for the normalized
color distributions, a rigid pedestrian shape model consisting of three body
parts is designed, which is explained in detail in Section 3.5.3 on page 94.

3.5.2 Color Histograms

For the calculations in the subsequent sections, color histograms, as proposed
by Sural et al. [262], are used to model the color distribution within a region
R of a digital image in a certain color space.

C ≡ H (3.10)

In the following, a three-channel color space (e.g. RGB, HSI) is assumed,
where pixel values v are ∈ [0, 1] for each channel. The color histogram op-
erator H(R) is used to create a color histogram for R. Each channel of the
color space is independently partitioned into disjoint intervals A: k intervals
for the first channel, m for the second, and n for the third channel. In the
following, the intervals are obtained by partition of [0,1] into equal-length
subintervals.

H ≡ H(R) (3.11)

A color histogram constitutes a three-dimensional data cube, consisting of
k ×m × n entries, called bins. The value of each bin b(u,v,w) corresponds to
the frequency of pixels whose values v are within the the u-th interval for the
first channel, v-th interval for the second channel and w-th interval for the
third channel.
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b(u,v,w) =
∑

fa(v(c,i)) ∀


vc ∈

[
u−1
k
, u
k

[
, if c = 1

vc ∈
[
v−1
m
, v
m

[
, if c = 2

vc ∈
[
w−1
n
, w
n

[
, if c = 3

∀u ∈ [1, k] ∀v ∈ [1,m] ∀w ∈ [1, n]

(3.12)

where fa is the (absolute) frequency function, v(c,i) is the value of the c-th
channel of the i-th pixel , and b is the corresponding bin.

For the color histograms in this thesis, the HSI color space (cf. Kender [151],
Smith [252]) is used during histogram collection.

3.5.2.1 Properties of Color Histograms

The sum of two k×m×n color histograms yields another k×m×n histogram,
which is obtained by addition of all bins with identical indices:

b3(u,v,w) = b1(u,v,w) + b2(u,v,w) ∀u ∈ [1, k]; v ∈ [1,m]; v ∈ [1, n] (3.13)

The set H of k × m × n bin color histograms forms a vector space over
Rwith vector addition + and scalar multiplication. The addition of two color
histograms is associative:

H1 + (H2 + H3) = (H1 + H2) + H3 ∀H1,H2,H3 ∈ H (3.14)

as well as commutative:

H1 + H2 = H2 + H1 ∀H1,H2,∈ H. (3.15)

H possesses an identity element 0:

H1 + 0 = H1. (3.16)

and each H has an additive inverse in H:

H1 +−H1 = 0 (3.17)

The histogram operator is distributive, meaning that the histogram of the
union of two disjoint regions equals the sum of the histograms of both regions:
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H(R1 ∪R2) = H(R1) + H(R2) ∀{R1,R2|R1 ∩R2 = ∅} (3.18)

The norm of a color histogram is defined as the sum of all its bins:

‖H‖ =

k,m,n∑
u,v,w=0

b(u,v,w) (3.19)

For the purpose of this thesis, a general normalized color histogram Ĥ of a
region R of a digital image I is obtained by applying the histogram opera-
tor H : R → H, and subsequently normalizing the histogram, dividing the
amount of pixels in each bin by the total number of pixels in all bins, i.e. the
norm of the histogram:

Ĥ = H · 1

‖H‖
(3.20)

The advantage of working with normalized color histograms, as opposed to
the original color histograms, is their independence from the size of the region
R, which allows for easier comparison of histograms of regions of different
sizes.

3.5.3 Shape Model

As stated before, from the perspective of the tracking algorithm, the posi-
tion of a person is represented as a 2D point TF

t on the floor plane, which
corresponds to the model origin Om in world coordinates.

Therefore, the observation perspective possesses twelve degrees of freedom
with regard to the world coordinate system, with a possible thirteenth. Of
these degrees of freedom,

• three originate from the camera translation vector Ts,

• three from the camera rotation matrix Rs,

• three from the target translation vector TW
t ,

• and three from the floor plane normal vector FW (in world coordinates),
which represents the vertical orientation of the target.
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Alternatively, the last two items can be substituted by four DOF from the
floor plane F and two from the translation of the target on the floor plane
TF

t .

The potential thirteenth degree of freedom originates the target heading η,
which is the rotation of the target around its vertical axis. For reasons stated
below, the heading is not considered for the current target shape model.
The inclusion of the floor plane for the model is relevant since the persons
vertical orientation can be obtained by assuming the person to be upright.
Any major changes in body pose, such as kneeling or sitting down, are not
modeled explicitly. Consequently, any variable geometric properties of the
proposed shape model can only depend on these twelve degrees of freedom,
unless the tracking process itself is altered. Since none of these DOF relate
in any way to the shape of a pedestrian, the shape model is considered to be
static with regard to the temporal progression of tracking, and the pedestrian
is treated as a rigid, non-deformable shape.

As color differences between front and back are expected to be less pro-
nounced than those between head, torso and legs, the target heading η can
be disregarded for the purpose of modeling. Consequently, the pedestrian
shape model has to be symmetric towards its vertical axis, which results in
a generalized cylinder shape, approximately comparable to the pedestrian
shape model employed by Isard et al. [128]. Figure 3.4 on the following page
depicts a schematic configuration of the model.

3.5.4 Shape Model Proportions

For the proportions of the shape model, Da Vinci’s proportions from his notes
on his famous Vitruvian Man [60] drawing (cf. Figure 3.5 on page 97) are
used, which in turn refer to Vitruvius [287, pages 3.1.2-3]. Vitruvius states
the proportions of the different parts of the body in sevenths of the total
height. Accordingly, the proportions for the model are set at 3

7
of the total

height ht for the legs, 3
7

for the torso and 1
7

for the head. These proportions
roughly concur with more recent anthropometric data, such as Nakanishi et
al. [199], and are therefore considered to be a sufficient approximation for
average values. For the total body height ht, an average value of 1.7 m is
assumed, as given by Ogden et al. [208] for healthy adults.

In addition to the heights, the radii of the shape model at the horizontal
junctions of the model parts have to be specified. A shoulder radius rs of
0.21 m is used for the shape model, again based on Da Vinci and Vitruvius [60,
287]. As neither author provides further proportions for hips, feet or head
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Om

rb

rh

rs

rt

(a)

Head

Torso

Legs

(b)

Figure 3.4: Schematic of the generalized cylinder model used to approximate
human shape, (a) displaying the radii at different height segments and (b) colored
to exemplify a typical distribution for clothing colors. Note, that the schematic
is not up to scale.
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circumference, different sources are required. The hip radius rh is set at
0.17 m, based on the hip circumference stated in [199]. The foot radius rb of
0.13 m is also based on [199] while the head radius rt is based on [36].

Effectively, this means that the model consist of a cylinder for the head, and
a frusta for torso and legs each. A comprehensive list of the resulting shape
model measurements can be found in Table 3.1 on the following page.

(a) (b)

Figure 3.5: Bust of Marcus Vitruvius Pollio, known as Vitruvius, at the main
entrance of TUM (a). The measurements of the shape model are based on
the observations in his work De Architectura [287], one of the most important
surviving contemporary works on roman architecture. Drawing of the Vitruvian
Man by Da Vinci [60] (b), based on the body proportions stated by Vitruvius.

The origin Om of the local coordinate system of the shape model is located
at the center of the model base, and its z-axis is equal to the vertical model
axis. As the model is circular, the x and y axes are chosen arbitrarily, as
long as all axes remain orthogonal to each other. Within the local coordinate
system, the surface of the generalized cylindrical pedestrian shape model is
described by the following equations:
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Radii Symbol Value

Top/head radius rt 0.09 m

Shoulder radius rs 0.21 m

Hip radius rh 0.17 m

Base/foot radius rb 0.13 m

Heights Symbol Value

Total height ht 1.70 m

Head height hh 0.24 m

Upper body height hu 0.73 m

Leg height hl 0.73 m

Table 3.1: Specifications for the generalized cylindrical approximated pedes-
trian shape model.

x2 + y2 = r2 (3.21)

for x and y in each circular model section (where the intersecting plane is
orthogonal to FW ) and

r(z) =


rb + z · rh−rb

hl
, if 0 ≤ z < hl

rh + (z − hl) · rs−rhhu
if hl ≤ z < hl + hu

rt if hl + hu ≤ z < ht

(3.22)

for the radius r of the circular model sections.

To summarize, the shape model generation step results in a rigid three-
dimensional shape model, composed of three body parts: head, torso and
legs. Each body part is composed of either a cylinder (head) or a conical
frustum (torso and legs). The measurements of the model parts are based
on average human body proportions, as reported in the literature. However,
the model in its current form is inconvenient, since the self-occlusion of the
model is difficult to compute. Consequently, the model is further adjusted,
as described in the subsequent section.
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3.5.5 Polygon Mesh Shape Model

As mentioned in Section 3.4 on page 85, the generalized cylinder shape model
is approximated with shape atoms to produce a second-level shape model,
convenient for further processing. In the following, shape atoms are realized
as triangles.

Processing of polygon meshes, particularly triangle meshes, is a common
technique in the domain of computer graphics (cf. Botsch et al. [26]). A
mesh consists of polygonal faces and vertices, which span the faces. To
convert the shape model into a triangle mesh, circles are transformed into
regular polygons, which creates a structure composed of prismatoids (n-gonal
prism and frusta) for the body parts. A set of two techniques, known as
triangle strips and triangle fans is employed to transform the faces of these
prismatoids into triangles, a process also referred to as tessellation.

Triangle strips are created by evenly distributing n vertices V(i,s), i ∈ [0, n
2
]∨

s ∈ [0, 1] ∨ i, s ∈ N0 along the longer edges of a rectangle, so that the first
and last vertices align with the corners of the rectangle. Subsequently, trian-
gles are created from vertices V(i,0),V(i,1),V(i+1,0) and V(i+1,0),V(i+1,1),V(i,1)

∀{i|imod2 = 0}. Triangle fans, on the other hand, are created by inserting
vertices at the corners and center of a polygon, and creating one triangle
each from the center and two neighboring corners, so that all triangles meet
in the center. Both techniques are illustrated in Figure 3.6 on the following
page.

To determine the exact size of the triangles used for the tessellation, the
sampling density of model vertices has to be specified. To that end, the
approximate vertex distance dv is introduced. From dv, the number of edges
of polygons approximating circles ne is derived by inspecting the largest circle
to be transformed, which in case of the shape model presented here is the
circle at shoulder height level:

ne =

⌊
2rsπ

dv

⌉
(3.23)

Consequently, the vertex density increases for smaller circles, such as at the
base or top of the model. However, although this method produces a higher
number of triangles, it is more convenient than operating with different num-
bers of polygon edges for all circles. The rectangular faces of the prismatoids
(facing laterally) for the body parts are tessellated using the triangle strip
technique.
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(a)

⇒

(b)

(c)

⇒

(d)

Figure 3.6: From top to bottom, triangle strip technique, used during the tes-
sellation process to convert the majority of faces of the prismatoids into triangles
(a,b) and the triangle fan technique, used to convert the innnermost polygons
on the top and bottom of the prismatoids (c,d).
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With ne determined, the number of vertices nv and number of faces nf can
be calculated using the following equations:

nf = 2ne

(⌊
rt
dv

⌉
+

⌊
rs − rt
d

⌉
+

⌊
hh
dv

⌉
+

⌊
hu
dv

⌉
+

⌊
hl
dv

⌉
+ 1

)
(3.24)

nv = ne

(⌊
rt
dv

⌉
+

⌊
rs − rt
d

⌉
+

⌊
hh
dv

⌉
+

⌊
hu
dv

⌉
+

⌊
hl
dv

⌉)
+ 2 (3.25)

Figure 3.7: Illustrating the tessellation of the shape model faces, depicting the
resulting polygon mesh with an exemplary vertex distance of dv = 20 cm. The
closest faces have been colored according to their assignment to the respective
body parts.

To provide a concrete example, an approximate vertex distance of dv = 10 cm
results in a polygon mesh shape model consisting of ne = 13, ne = 236
and nf = 494. Compared to state-of-the-art applications in the computer
graphics domain, where several million polygons have to be projected in every
frame (e.g. Mudbox, a 3D sculpting application, cf. Kermanikian [152]),
this is a very low number which does not cause any problems regarding
performance, but still guarantees sufficient accuracy.
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To summarize, the mesh generation step results in a rigid three-dimensional
geometric shape model of a pedestrian, which is an adjusted version of the
model created in the previous step. The reason for the adjustment is in-
creased convenience for the employment of the model during the operation
of the tracker. The surface of the shape model is composed of a set of trian-
gles, which in turn are defined by a set of vertices and edges. Each triangle
is assigned to one of three body parts.

3.6 Model Usage During Tracker Operation

While the previous sections have focused on the architecture of the shape
model, the following section is concerned with its usage in a tracking system
in general, and the tracking system described in Chapter 2 on page 11 in
particular. This includes the projection of the shape model, the generation
of partial appearance models for the body parts, and the resulting synthesis
of partial appearance models for hypothesis testing in the tracker.

The constraint that has to be imposed for the method to work is that the
target walks perpendicular to the floor plane, i.e. is in an upright position at
all times. This corresponds to the definition of a pedestrian (cf. Section 2.3.1
on page 14) and is an assumption that can be made regardless of the camera
setup.

This constraint is essential to the proposed method, and deviation (e.g. the
person crawling instead of walking) will cause the described method to fail,
at least when using the model described in the previous section. However,
as far as the ability to transfer the method to other targets is concerned,
the important constraint here is that the pose of the target to be tracked is
sufficiently static and known. As long as these two requirements are fulfilled,
the model can be designed to reflect this knowledge, e.g. in case of a crawling
person, an animal, or a car.

3.6.1 Model Reprojection and Weight Computation

To reiterate, the goal of the shape model is to provide an estimate for the
ratio of the visible surface area of different body parts during tracking. To
that end, the shape model has to be reprojected from the current estimated
position of the target into the image plane. This task has to be performed
once per frame of the pedestrian tracker for the partial model estimation
(cf. Section 3.6.2 on page 104), and once for every particle of the tracker for
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the generation of the hypothesis models (cf. Section 3.6.3 on page 107).

At this point, the advantage of the polygon mesh model becomes apparent.
The projection of the triangular faces into the image plane is a straightfor-
ward task. As before, a pinhole camera model [111, p. 153] is assumed. Each
face is projected into the image plane by the perspective projection Π ∈ R4×3:

V′i = V · Π ∀i ∈ [1, 3] (3.26)

where V1...3 are the vertices defining the triangular face 4(V1...3). Conse-
quently, the area of the projected triangle P4 can be stated as:

P4 =
1

2
|(V′2 −V′1)× (V′3 −V′1)| (3.27)

In addition to the calculation of projected triangle surfaces, a technique used
for managing self-occlusion of the model is required to determine the visibility
of the surface parts represented by the triangles. For the purpose of the
modeling, visibility is treated as a binary decision on a per-triangle basis,
a process commonly referred to as polygon culling. For further reading,
Sutherland et al. [263] provide a survey on various approaches to the hidden
surface problem in general.

There are several prevalent approaches to the visibility problem that involve
culling, e.g. view frustum culling (relevant for clipping at the edges of the
camera fov; cf. Assarsson and Möller [9, 10]), backface culling (relevant for
directed faces; cf. Zhang and Hoff [300], Johannsen and Carter [137]) and
occlusion culling (cf. Coorg and Teller [53], Hudson et al. [126]).

For the purpose of the described shape model, the approach of culling poly-
gons by hierarchical depth buffer scan conversion (cf. Greene et al. [104]) is
selected. In short, this algorithm employs a comparison of the depth (dis-
tance) of faces from the camera to solve the visibility decision, and faces at
least partly occluded are marked as invisible and discarded. Consequently,
a full run of the culling algorithm results in the visible faces of the model,
and the accuracy of the calculated visible surface depends on the resolution
of the tessellation, as discussed in the previous section.

The area of the reprojection of a shape model part P p
i is calculated as follows:

P p
i =

∑
v4 · P4 ∀4 ∈ P p

i ∀i ∈ [1, N ] (3.28)

where v4 is the binary visibility of the triangle. Consequently, the total area
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of the target is derived from the sum of the area of all parts:

P =
N∑
i=1

P p
i (3.29)

In turn, the weights are calculated from areas of the model parts and the
total area of the reprojection:

wi =
P p

i

P
(3.30)

On a side note, by adding a view frustum culling approach, partially visible
targets, i.e. targets that move very close to the borders of the field of view,
can be accounted for. This is an additional benefit of the approach which
has not yet been included in the current implementation.

To summarize, at the end of this step, the weights w(i,j) and the appearance
model Cj have been obtained for the position of the target at the current
frame. To that end, the faces of the polygon mesh shape model are repro-
jected into the camera, occlusion culling is applied to obtain the visible faces,
the visible faces assigned to the corresponding body parts, and the visible
area of the body parts in the reprojection is calculated. The weights are
subsequently derived from the ratio of the visible areas of each body part.

3.6.2 Determining the Appearance Models for Body
Parts

After the target has been detected and the initial appearance model has been
acquired, for the first n frames, the initial appearance model continues to be
employed for the tracking.

However, after each tracking step, the current appearance model Cj for the
target is collected, using a ROI obtained from the segmentation of the image
from the preprocessing of the frame. After a sufficient number of appearance
models Cj at different positions have been acquired, and the correspond-
ing weights have been computed from the reprojection of the shape model,
the next step is the calculation of the partial appearance models from the
acquired data.

The exact method of the calculation of the partial appearance models is as
follows. Using Equation 3.9, an overdetermined system of J equations is
obtained:
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Figure 3.8: Example composite histogram of a clothed pedestrian. The size
of the spheres represents the number of pixels within the corresponding bin in
HSI color space, while the color represents the average color of the pixels in that
bin.
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Cj =
I∑

i=1

w(i,j) · Cp
i (3.31)

where Cj are the complete appearance models, w(i,j) are the weights for each
model part for each , and Cp

i are the appearance models for the respective
model parts, and I > J .

At this point, a least squares approach (as described in previous sections,
e.g. Section 2.7.2 on page 46) is employed to solved the overdetermined sys-
tem of equations, yielding estimates for the Ci:

C1 = w(1,1)C
p
1 + w(1,2)C

p
2 + w(1,3)C

p
3

C2 = w(1,2)C
p
1 + w(2,2)C

p
2 + w(2,3)C

p
3

...

CJ = w(1,J)C
p
1 + w(2,J)C

p
2 + w(3,J)C

p
3

(3.32)

As the color distributions are modeled as histograms, and the values of the
histograms’ bins are assumed to be independent according to this model, this
system of equations can be split into a set of n overdetermined systems where
n is the number of bins in the histogram. Effectively, this means that the
value of each bin is computed independently. For the color histogram models
employed in this work, n = 16× 16× 8 = 2048.

During the further operation of the tracker, this procedure is repeated in
regular intervals to refine the distributions. However, due to increasing com-
puting time for the solution of the overdetermined system, there is an upper
limit Jmax to the number of samples J processed. Therefore, only a fraction
of the weights w(i,j) and appearance models Cj are kept for processing.

To achieve good results for the approximation of the Cp
i, the selection of

the correct samples from the available samples is important. At some point
during the tracking, the number of observations made exceeds Jmax, and a
subset of samples is determined.

Ideally, should be selected where the weights are not too similar, in order to
avoid the model adaptation from driving itself into local maxima. To that
end, the following algorithm is applied when adding a new observation:

• in the initial state, there are J observations, and the Euclidean distance
of their weights w(i,j) to each other is known
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• calculate the Euclidean distance of the weights w(i,J+1) of the J + 1th
observation to each of the J previous observations

• for each of the J + 1 observations, calculate the sum of the two least
distances of its weights from the ones of other observations

• discard the observation for which the above step yields the smallest
value, consequently ending up with J observations again

Over time, the model is refined further, as observations from the entire possi-
ble range of perspectives are being processed, and the sampled observations
are distributed evenly across the full range of observations.

To summarize, the step described in this section yields the appearance mod-
els Cp

i for each body part, by solving an overdetermined system which in
turn was obtained from the weights provided by the shape model and the
appearance models Cj collected.

3.6.3 Generating the Color Distribution for Tracking
Hypotheses

Once estimates for Cp
i have been obtained, assembling an appearance model

C used to test a tracking hypothesis (cf. Section 2.9.3.1 on page 56) at po-
sition TW

t is straightforward. The weights w(i,j) are calculated from TW
t

via the shape model reprojection, as described in Section 3.6 on page 102.
Subsequently, the values obtained are applied to Equation 3.9, which yields
the predicted appearance model for the hypothesis. The remainder of the
hypothesis test is unchanged from the method described in Section 2.9.3.1.

3.6.4 Transition of a Target Between Views

If a target transitions between camera FOVs, the estimates for Cp
i are re-

tained. This is done assuming that neither disparities in illumination, nor in
camera properties create the requirement to use any kind of intensity balanc-
ing or color balancing, such as a color brightness transfer function (BTF) [69],
or that these methods have previously been applied in the preprocessing step,
which would otherwise have to be applied to the appearance models Cp

i as
well, in an appropriate form.

At the point of transition, the target translation TW
t and floor plane F remain

constant, while the translation of the sensor Ts is varied. As a consequence,
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the weights wi change, and the combined distribution C has to be recalculated
using Equation 3.3.

This procedure results in an appearance model C which more closely reflects
the appearance of the person under the changed perspective, providing an
advantage when compared to simply using the combined distribution from
the last observation in the previous FOV.

Floor

Cameras

v
Cp

2

Cp
3

Cp
1

C1

C2

Figure 3.9: A two-dimensional scheme depicting the transition of a tracked
pedestrian from one camera field of view to another for a top-down camera grid
layout, illustrating the change in perspective and visible pedestrian surface parts.

3.7 Experimental Evaluation

The experiments described in this section were performed on the same image
data as the evaluation described in the previous chapter (Section 2.10 on
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page 62), therefore the experimental setup and method are not reiterated at
length at this point.

The performance of the complete tracking system regarding accuracy in single
view, multi-view transition and identity recovery is evaluated, on the exact
same data as the evaluations in Section 2.10. In that, the relevant differ-
ence from the previous evaluations is constituted by the fact that the static
appearance model for the tracking targets is replaced with the adaptive ap-
pearance model described at length in this chapter. Afterward, conclusions
on the relative performance of the adaptive appearance modeling approach
versus the static appearance modeling approach can be drawn by comparing
the results of both evaluation runs.

3.7.1 Single-View Tracking Accuracy

The evaluation of the single view tracking accuracy of the adaptive appear-
ance modeling approach follows the same process as its counterpart in Sec-
tion 2.10.2 on page 63. To reiterate, the error metric used for the accuracy
of the single view tracking is the relative tracking error dr, where:

dr =
da
2r

(3.33)

and

da = |tg − tc| (3.34)

with tg and tc being the positions of ground truth and target candidate,
respectively, in the image coordinate system, and 2r being the average size
of the circumcircle of the target silhouette in the image.

Table 3.2 on the following page and Table 3.3 on the next page list the results
of the evaluation for dr and dr, respectively.

When comparing the results to the results for the static appearance model
(cf. Section 2.10.2.2 on page 68), several observations stick out. The obser-
vations for dr shall be considered first. Comparing the overall performance
as measured by dr over all sequences, there is only a slight increase of 4 per-
cent, from 0.208 to 0.200. However, the improvement is more pronounced
when considering only the lemniscatoid tracks. Here, an improvement from
0.176 to 0.156 is observed, amounting to a significant increase in accuracy of
approximately 11 percent. In comparison, the performance of the tracking
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Sequence Trajectory µ(dr) σ(dr) Ni

S42 ellipsoid 0.233 0.09 1000

S43 ellipsoid 0.208 0.08 1000

S44 ellipsoid 0.246 0.07 1000∑42
i=44Si ellipsoid 0.229 0.08 3000

S45 lemniscatoid 0.158 0.06 1000

S46 lemniscatoid 0.154 0.05 1000∑45
i=46Si lemniscatoid 0.156 0.06 2000∑42
i=46Si lemn./ellipt. 0.200 0.08 5000

Table 3.2: Accuracy evaluation for the MCMC pedestrian tracker for single-
view tracking, mean µ and standard deviation σ for the relative tracking error dr.
Ni denotes the number of video frames for which the accuracy was measured.

Sequence Trajectory µ(dr) σ(dr) Ni

S42 ellipsoid 0.224 0.08 1000

S43 ellipsoid 0.203 0.07 1000

S44 ellipsoid 0.235 0.07 1000∑42
i=44Si ellipsoid 0.221 0.08 3000

S45 lemniscatoid 0.181 0.07 1000

S46 lemniscatoid 0.188 0.06 1000∑45
i=46Si lemniscatoid 0.184 0.07 2000∑42
i=46Si lemn./ellipt. 0.206 0.08 5000

Table 3.3: Accuracy evaluation for the MCMC pedestrian tracker for single-
view tracking, mean µ and standard deviation σ for the relative tracking error dr.
Ni denotes the number of video frames for which the accuracy was measured.
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on the ellipsoid paths remains unchanged at a relative error dr of 0.229.

Similarly, for dr, the performance of the tracking on the ellipsoid paths re-
mains unchanged at 0.221, while the performance on the lemniscatoid paths
improves from 0.208 to 0.184, which constitutes an increase in accuracy of 12
percent. If the overall increase in performance is slightly larger in 0.216 to
0.206, it is only due to statistical reasons, since the weight of the lemniscatoid
paths in the performance over all tracks is higher for dr than for dr because
of the increased error values.

Consequently, the improvement in the overall performance of the tracking
can be attributed unequivocally to the increase in accuracy on the lemnis-
catoid tracks, which is interpreted in the following. Since every other part
of the tracking pipeline remains unchanged, the increase in accuracy conse-
quently has to be linked to the changes in the appearance model. Therefore,
the changes in the appearance model have to account for two separate ob-
servations:

(A) Tracking using the adaptive appearance model proposed in this chapter
exhibits a significant reduction in the tracking error, and consequently
an increase in performance, on the image sequences where the target
moves in a lemniscatoid paths.

(B) Under the same circumstances as in (A), tracking does not exhibit a
significant change in performance on the image sequences where the
target moves in an ellipsoid path.

From the viewpoint of pedestrian tracking, the main difference in the ellipsoid
and lemniscatoid paths under the current experimental setup is found in
the perspective the camera has on the target in both tracks. As discussed
previously, the silhouette of the target is larger when the target moves toward
the edges of the FOV, caused by the perspective change. Similarly, the central
axis of the target aligns with the camera principal axis near the FOV center,
whereas the angle between these two axes increases monotonically towards
the FOV borders.

The spatial relation between camera and target for the ellipsoid tracks, taking
direction into consideration, varies only by the z-rotation of the target when
considering an ideal elliptic track. In comparison, an ideal lemniscatic path
exhibits considerable variation of the angle between camera principal axis
and target, almost the full range of variation possible within the camera
FOV without truncating the visual representation of the target at the FOV
edges. Naturally, it has to be considered that some deviation from the ideal
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paths occurs in the image data. Still, the lemniscatoid paths display a much
more profound variation in the perspective than their ellipsoid counterparts.

There are three items resulting from the differences in perspective which
pertain to the interpretation of the experimental results, and these are as
follows:

(1) The center of gravity of the target’s silhouette, standpoint of the target
(i.e. model origin Om) and center of gravity of the target in world space
align near the center of the FOV and diverge towards the edges of the
FOV. This observation has been used previously to explain the higher
average accuracy (i.e. lower pixel error da and relative pixel error dr)
for the lemniscatoid tracks compared to the ellipsoid tracks.

(2) The size of the silhouette of a target increases monotonically from the
center of the FOV towards the edges. Consequently, the size of the
silhouette is approximately constant for the ellipsoid tracks, while it
varies strongly for the lemniscatoid tracks. This fact has been exploited
previously to design the error metric dr in Section 2.10.2.3 on page 69
to compensate for (1).

(3) The appearance of the target, as represented by its color distribution
C is considerably less varied for the ellipsoid paths than it is for the
lemniscatoid paths.

The effects of (1) and (2) on tracking accuracy have already been discussed
in Section 2.10.2.2 on page 68, and none of them relate in any way to the
changes made to the appearance model between the experiments described
at that point and the experiments described here. Consequently, (3) is left
to explain for (A) and (B).

To summarize, given the fact that the goal of the work described in this
chapter was to improve the performance of the tracking under varying per-
spectives, there is a strong indication that

(α) the increase in accuracy is explained by the improved capacity of the
adaptive appearance model presented here to predict the appearance
of the target under varying perspectives compared to the static appear-
ance model acquired at target detection and that

(β) this improved capacity directly results in an improved performance of
tracking of the target when the perspective deviates from the perspec-
tive present at target acquisition.
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3.7.2 Multi-View Tracking Performance

As stated before (cf. Section 2.10.3 on page 70) , for the approach taken in
this thesis, the relevant difference between single-view tracking and multi-
view tracking is the point of view transition between multiple views, and
therefore multi-view tracking is evaluated holistically, with the view transi-
tion process in mind. Experimental setup and matters of performance mea-
surement have already been covered in Section 2.10.3.1 on page 71.

3.7.2.1 Results

Table 3.4 displays the results of the evaluation for multi-view tracking with
the adaptive appearance model. In comparison to the results for the static
appearance model (cf. Table 2.12 on page 72), the success rate fr(S) of
targets being tracked successfully through an entire sequence improved from
0.92 to 0.95, or 3 percent. At first glance, this difference might seem negligibly
small. However, if you compare the differences in failure rate

fr(F ) = 1− fr(S) (3.35)

instead of the success rate, the improvement from 0.08 to 0.05 constitutes an
improvement of ≈ 38 percent.

Targets Relative direction N t NS fr(S) fr(F )

1 N/A 12 12 1.00 0.00

2 ≈ ↑↓ (antiparallel) 24 23 0.96 0.04

2 ≈ ↑↑ (parallel) 24 22 0.92 0.08

< 3 all of the above 60 57 0.95 0.05

Table 3.4: Performance evaluation for the MCMC pedestrian tracker for multi-
view tracking. N t denotes the total number of targets in all sequences, NS
denotes the number of targets tracked successfully, fr(S) denotes the success
rate (cf. 2.23), and fr(F ) denotes the failure rate.

Another way to illustrate the significance of the difference between both
results is to consider the situation where targets have to be tracked over
larger distances, with a significantly higher amount of view transitions. To
that end, the approximate transition success probability
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P(St) = Nv
√

fr(S) (3.36)

is calculated, where fr(S) is the success rate of the experiment and Nv is the
mean number of transitions occurring for one target during a single try of
the experiment. For reasons of simplicity, the potential of identity recovery
or track recovery is not considered here, which equates to a single failed tran-
sition leading to a failed experiment try. This allows for an extrapolation of
fr(S) for an experiment with a significantly higher number of transitions N v

per track. Table 3.5 and Figure 3.10 on the facing page provide a comparison
of the resulting success rates for different orders of magnitude of transitions
per track.

Method / N v 1 5 10 50 100 250

Static 0.97 0.88 0.77 0.28 0.08 0.00

Adaptive 0.98 0.92 0.85 0.45 0.21 0.02

Relative 0.99 0.95 0.91 0.61 0.37 0.09

Table 3.5: Extrapolation of tracking success rate fr(S) for increased transition
counts N v per track, based on the experimental results for the static appearance
approach (cf. Table 2.12 on page 72) and for the adaptive appearance approach
(cf. Table 3.4 on page 113). For the experiments conducted here, Nv = 3.27.

3.7.3 Target Identity Maintenance and Recovery

The general procedure for the evaluation of the capacity of the appearance
model to recover the identity of a lost target has previously been described in
Section 2.10.4 on page 72. To summarily reiterate, a classification experiment
with M = 4 classes is conducted, consisting of a training step to assemble
the reference appearance models, and a test step, in which these models
are compared against candidate appearance models obtained from the test
data using Bhattacharyya distance DB (cf. Equation 2.24) as a measure of
similarity. To evaluate the success of the experiment, classification for each
class of test targets is treated as a binary classification task, and the recall
rate of the classification (cf. Section 2.10.4.1 on page 74) is employed as a
measure of performance.

Although the experimental procedure remains constant, two effective differ-
ences are caused by the switch from static appearance model to adaptive
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Figure 3.10: Illustrating the extrapolation of tracking success rate fr(S) for
increased transition counts N v per track. Here, the extrapolated success prob-
ability of the static appearance approach is depicted as a percentage of the
corresponding success probability of the adaptive appearance approach, based on
the numbers in Table 3.5 on page 114. The x-axis denotes the varying transition
counts N v per track, while the y-axis denotes the relation of success probabilities.

appearance model. During the training phase, the reference model is no
longer assembled from a single detection, but from multiple histogram col-
lections over the course of the entire training phase. Therefore, training phase
actually holds meaning beyond the first frame, as opposed to the situation
for the static appearance model.

During the test phase, on the other hand, the candidate model is still assem-
bled from a single frame. The reference model it is tested against, however,
is generated from the partial appearance models Ap using Equation 3.9. This
way, a more accurate representation of the appearance model of the reference
target at the current position can be used in the comparison.

3.7.3.1 Results

Table 3.6 on the following page provides the results of the evaluation. In
comparison to the results for the static appearance model (cf. Table 2.13),
the overall performance has increased slightly, from 0.88 to 0.92. Certainly,
it is debatable whether this constitutes a significant improvement or merely
a statistical outlier, since due to the small N , the difference is caused by a
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single instance. Again, however, the increase can be put into perspective by
comparing the rates of erroneously classified instances

fr(I) = 1− fr(C), (3.37)

where a reduction from 0.12 to 0.08 caused by the switch from static to
adaptive appearance modeling constitutes an improvement of ≈ 33 percent.

Participant N fa(C) fr(C)

P1 8 7 0.88

P2 8 7 0.88

P3 8 8 1.00

P1...3 24 22 0.92

Table 3.6: Results for the evaluation of target identity management and re-
covery. N denotes the total number of instances (i.e. targets), fa(C) denotes
the number of correctly classified instances, and fr(C) denotes the recall rate
(cf. Equation 2.25). P1...3 denote the participants, as listed in Table 2.9.

3.8 Summary and Discussion

In this chapter, an adaptive method to refine color distribution models for
tracking pedestrians by incorporating perspective information was demon-
strated. Several related experiments were conducted to evaluate the de-
scribed approach versus a static appearance modeling approach. To briefly
summarize the result of the detailed analysis conducted in the previous sec-
tion, the adaptive appearance modeling approach proposed here outperforms
the static appearance approach in all three categories that were evaluated.
Figure 3.11 on the next page provides an overview of the relative perfor-
mances in these areas.

The initial shape modeling approach providing the groundwork for the re-
mainder of the appearance modeling process is based on BraMBLe (cf. Is-
ard and MacCormick [128]). In contrast to their approach, however, a proper
projection model is employed in lieu of the simplified projection model which
Isard and MacCormick propose (cf. Figure 3.12 on page 118). This incurs
the advantage of being able to vary the floor plane with regard to the ob-
servation perspective, so that the model can be employed for images from
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Figure 3.11: Comparison of the tracking performance for the static (red) and
adaptive (blue) appearance approaches presented in this thesis, across the three
evaluated performance categories of single-view tracking (left), view transition
and multi-view tracking (center), and target identity management and recovery
(right). Note, that the single view tracking performance was measured by the
relative tracking error dr, where a smaller value signifies superior performance.
Contrarily, multi-view tracking and view transition performance was measured in
success rate fr(S), where a higher value signifies superior performance.
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cameras tilted against the floor plane, as well as being able to model per-
spective changes in non-lateral views. Both of these capacities have been
demonstrated by the evaluation in the previous section, where the majority
of images employed in the evaluation were taken from supracranial observa-
tion perspectives, and the relation of observation perspective and floor plane
varies as well, as evidenced by the extrinsic camera parameters found in the
appendices (cf. Table B.3 on page 148 and Table B.4 on page 149).

yi

ri

(x,y,z)

(a) (b)

Figure 3.12: Generalized cylinder pedestrian shape model, as proposed by Isard
and MacCormick [128]. The pedestrian shape model used in this dissertation was
developed with Isard and MacCormick’s model as a starting point. To the left, a
schematic of the generalized cylinder model and its projection (a). To the right,
the projection of the shape model overlaid on an image depicting a pedestrian
(b). Images taken from [128].

A substantiated performance comparison of the appearance modeling ap-
proach presented in this thesis versus other approaches found in related work
proves to be difficult for two reasons. Firstly, approaches on appearance
modeling are strongly interconnected with their intended application environ-
ment, and often tailored to accommodate a specific observation perspective.
Secondly, the experiments described in the previous section were conducted
on the camera system described in Chapter 2 on page 11, which has not been
available to other research groups.

Consequently, comparison of the results with those found in related work
could only provide a very rough impression of the relative performance of
the approaches. However, what can be stated with high confidence regarding
the performance of the approach presented here, is that it outperformed the
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static appearance approach during evaluation in all relevant categories, as
illustrated by Figure 3.11 on page 117.

Several further areas of application where the described approach can be put
to use come into mind. Take, for example, a typical camera configuration for
the surveillance of underground train platforms, as depicted in Figure 3.13
on the next page. The peculiar overlap pattern in the camera FOVs causes
repetitive gradual shift in observation perspective for a pedestrian walking
the length of the platform within a single FOV, and sharp change for a target
crossing from one FOV into the next one. The adaptive appearance approach
presented in this chapter would provide a great benefit to color-based tracking
under these conditions, especially during view transition.

Further areas of application present themselves when looking beyond pedes-
trians as potential targets. One characteristic trait which qualifies clothed
humans as targets for this approach is the fact that regarding their color
properties, they consist of different parts which feature relatively uniform
color distributions. By modifying the shape of the geometric model, the ap-
proach can be customized for targets which share that quality, although in
some cases, the orientation of the target would have to be considered as well.
Some examples are provided in Figure 3.14 on page 121. The concretization
of this, however, is beyond the scope of this thesis and would have to be
investigated further at a later date.

If one considers the plethora of scientific image and video databases for pedes-
trian tracking, such as those published by Krinidis et al. [163] or those used
for the regular Performance Evaluation of Tracking and Surveillance (PETS)
challenges [76, 80, 81], or evaluation frameworks such as the CLEAR MOT
metrics [20], it is obvious that the research infrastructure in that domain
is well developed. A similar abundance does exist for detection and object
recognition tasks. On the other hand, universally accepted performance met-
rics and frameworks for the evaluation of appearance modeling are currently
lacking in the scientific community, for the reasons stated above. It stands
to hope, that future work on this topic will see the emancipation of appear-
ance modeling from tracking, detection and recognition as a separate dis-
cipline with its own infrastructure of comprehensive evaluation frameworks
and databases.
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PlatformPedestrian

(a)

(b)

Figure 3.13: Illustrating a typical camera configuration for surveillance of train
underground platforms. (a) depicts a two-dimensional scheme of an example
camera configuration for the surveillance of an underground train platform. The
cameras’ FOV overlap similar to scales. (b) provides a real-world example of a
similar camera configuration at an underground train station in Munich. Cameras
are highlighted for improved visibility.
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(a) (b) (c)

Figure 3.14: Examples for potential targets where color-based tracking can
benefit from the adaptive appearance modeling approach described in this chap-
ter, given an appropriate model. From left to right, a police car (a), a boat (b)
and a tapir (c). All these potential targets feature well-defined vertical orien-
tations and geometric proportions, and display different color distributions from
varying perspectives.





Chapter 4

Applications

Although the system described in Chapter 2 on page 11 has been designed
primarily with the end application of pedestrian tracking in mind, further op-
portunities present themselves regarding the analysis of the observed pedes-
trians. This is one of the reasons for the modular architecture of the ap-
plication layer (cf. Section 2.9 on page 50), which facilitates the flexible,
independent addition of different end applications, provided that the pro-
cessing power of the hardware is not stressed beyond the point where the
satisfaction of the real-time requirements is no longer possible. With respect
to the sensor configuration employed (cf. Section 2.6.1.3 on page 34), the
observation perspective also has to figure into the considerations of which
end applications can reasonably be integrated into the existing framework,
since some interpretation tasks prove to be incompatible with a top-down
perspective, such as the interpretation of facial imagery (cf. Mayer [185] and
Riaz [229]).

From a survey of the body of literature on the broader category of human
action recognition and interpretation, several manifest possibilities for such
applications come to mind. These can be grouped into larger sub-categories,
the first of which to mention is the recognition of gestures. As one of the most
active fields in Computer Vision, there are numerous reports on applications
falling into that category, ranging from head gestures (cf. Kjeldsen [159])
via full body gestures (cf. Tollmar et al. [274]) to complex hand gestures,
such as sign language interpretation (cf. Cooper et al. [52]). Goals of ges-
ture recognition applications vary from the facilitation of HCI (cf. Jaimes
and Sebe [130]) to the inference of targets’ mental and emotional states (cf.
Castellano et al. [42] ; El Kaliouby and Robinson [75]).

As opposed to analytic approaches in gesture recognition, work on full-body
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pose recognition aims at simultaneous holistic inference of human joint con-
figurations. However, most full-body pose estimation algorithms require a
high amount of processing, which is why to a large degree, they are not com-
patible with real-time processing. The work of Amin et al. [4] constitutes a
recent example. Prevalent goals of full body pose estimation are the infer-
ence of emotional states (cf. Schindler et al. [241]) or providing input for
the generation of action and activity models, as described in the following
paragraph.

Finally, possible applications also include the field of human activity recog-
nition, which is achieved by combining identified atomic actions or states
of the observed targets (such as “hand movements” or “standing still”) into
higher order activities (such as “communicating”, “waiting” or “working”).
Generally speaking, these approaches employ machine-learning techniques to
pre-recorded data to generate activity models, which can subsequently be
used to classify ongoing activities from real-time observations. Examples in-
clude the work of Beetz et al. [16], with a focus on action hierarchies, and
Bodor et al. [25], with a focus on activity recognition from vision data.

This chapter presents two exemplative applications, which are both themati-
cally located within the field of gesture recognition, a sub-field of automated
human action interpretation. They were realized and integrated into the sys-
tem described in Chapter 2 as proofs of concept, to demonstrate its versatility
and extensibility.

4.1 Outline of this Chapter

The remainder of this chapter is organized as follows:

Section 4.2 on the facing page showcases the modular extensibility of the
system described in Chapter 2 on page 11 for action and activity recog-
nition, by adding a module for the recognition of handshakes occurring
between pedestrians within the target area.

Section 4.3 on page 127 provides another extensibility showcase by de-
scribing a module for the recognition of pointing gestures performed by
pedestrians within the target area.
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4.2 Handshake Recognition

The shaking of hands can hold several meanings, the most significant of which
in western culture is greeting another person. From a HRI perspective, the
information that a person was greeted by another person can be an indicator
that this person might have newly arrived or hold a special importance.

A handshake between two persons can be divided into two subsequent phases.
In the first phase, the handshake request, both individuals extend their hands
toward each other, with the extension motion from the requesting party lead-
ing. According to Jindai and Watanabe [136], who analyze the handshake
request motion with the goal of transfer to a robot, this phase takes approx-
imately 1.1 s. Assuming a resting position of the arm next to the body, the
request motion has vertical and horizontal components, with the arm being
raised and extended. In the second phase, the palms are clasped and the
actual shaking occurs, a primarily vertical movement. The horizontal and
vertical components of the motion are of note regarding the perspective of
the camera towards the persons, since while a lateral perspective displays
horizontal and vertical components clearly, a supracranial perspective means
that horizontal motion is easier to identify than vertical motion.

4.2.1 Related Work

Gesture recognition in general has been one of the most active fields in com-
puter vision research over the past years, as evidenced by multiple surveys
on the subject, such as the ones by Daugman [63] (with a focus on faces),
Gavrila [91], who also includes work on tracking and detecting humans, Wu
and Huang [296], or more recently Mitra and Acharya [193].

Regarding handshake gestures specifically, some attempts have been made at
detection of these gestures from camera images, but the body of literature
on the subject is comparatively sparse. Work on the subject appears more
focused on identifying intent to shake hands in humans than the execution
of the actual process. Sakagami et al. [238] report a handshake detection
system developed for the ASIMO robot, which detects the extended hand of
a single person in order to allow ASIMO to shake it. Unfortunately, they do
not report any details with regard to their approach, with the exception of
the fact that the feature extraction is performed in 2D.

Similarly, Kim et al. [155] regard handshake gestures from a humanoid
robot’s point of view, in order to distinguish them from several other gestures
using a multilayer perceptron (MLP) based approach. They use the results of
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Haar-cascade face detection [284, 285] to initialize a skin color model, which
is subsequently used to identify the position of the hands. The information
thus obtained constitutes the training data for a three-layer perceptron with
squared instantaneous error backpropagation [168]. They report a success
rate of 83% at recognizing handshake gestures on unknown data.

(a) (b)

Figure 4.1: Two persons shaking hands, as seen from a supracranial per-
spective. In (a), the optical flow fields extending from the tracked pedestrian
positions towards each other can be seen, before the handshake occurs. In (b),
the handshake has occurred and was detected by the system, which is signified
by the icon in the upper left corner in the display unit for human-readable output.

4.2.2 Method

As the distance between a dyad of targets A and B falls below a pre-
determined value dmin, a cone-shaped field of sparse optical flow is generated
extending from each person towards the other, sampling 984 points using the
Lucas-Kanade method [179]. Subsequently, principal components analysis
(PCA) [138, 214] is applied to reduce the dimensionality of the data, which
allows for a reduction of the data by 60% without negative impact on the
classification rate.

The PCA data from annotated image sequences, depicting handshake ges-
tures and persons not exhibiting any particular gesture, is used to train a
C4.5 binary decision-tree classifier (cf. Quinlan [224, 225]) with the WEKA
machine learning suite [109]. To obtain test data for the classifier, n-fold
stratified cross-validation [161] is employed. As a result of the evaluation,
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83.45% correct classification rate was achieved on a per-image basis, similar
to that reported by Kim et al. [155].

4.2.3 Integration

Regarding the system architecture as described in Section 2.4 on page 26,
the handshake detection module is situated within the application layer and
requires approximately 22 ms for the computations on a single core of the
hardware described in Section 2.6.3 on page 41. Image data and timestamps
are provided by the service layer via the KogMo-RTDB, while the position
of the persons shaking hands is provided via the pedestrian tracking module
(cf. Sections Section 2.9.2 on page 51–Section 2.9.3 on page 55).

The work was conducted as a student project supervised by the author, and
is described in greater detail in [201].

4.3 Pointing Gesture Recognition

Among their seven principles for efficient HRI, Goodrich and Olsen [101]
postulate that robots should be capable of using non-verbal communication
channels in order for humans and robots to be able to communicate intu-
itively, and thus efficiently. Pointing gestures are among the most impor-
tant non-verbal communication channels, which human infants are capable
of employing at the early age of 12 months, contemporaneously with the
development of speech (cf. Thompson/Massaro [270]).

Consequently, pointing gesture recognition and extraction is among the first
applications that come to mind regarding enhancing the system described in
Chapter 2 on page 11 with functionality to support HRI. At first glance, the
supracranial perspective of the cameras at the CCRL installation appears
particularly well-suited for pointing gesture extraction since these gestures,
if applied to objects distributed across a larger area, tend to have a strong
horizontal component and only little vertical variation.

4.3.1 Related Work

As it happens, the literature is ripe with examples for a wide range of ap-
proaches on pointing gesture extraction. One of the earlier works is the
PERSEUS system by Kahn and Swain [141], developed for use with cameras
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mounted on robotic platforms and therefore perceiving humans from a lat-
eral/anterior perspective. It combines intensity, edge, motion and disparity
features to segment the person and assign body parts (hand and head) using
reasoning based on anatomical properties. Pointing gestures are assumed
to occur when the position of head and hand remains constant for several
seconds, and the direction is extracted as the line of sight between head and
hand.

In contrast to that, Carbini et al. [40] present a system operating on im-
ages from cameras from an anterior/supracranial perspective, which is more
comparable with the perspective in the CCRL setup. As in the approach
of Kahn and Swain, the positions of face and hands are extracted (using a
neural-network based face detector [79] and skin color models for the hands),
and the pointing direction is assumed as the line between head and hand. As
an additional constraint, gestures are only assumed to occur if the distance
between head and hand is sufficient, i.e. the hands are not held close to the
body.

Kehl and van Gool [150] present an approach for use in immersive environ-
ments. They use an entire array of cameras focused on a person to extract
pointing gestures, one of which is facing the person from a supracranial per-
spective. After applying foreground segmentation (cf. Mester et al. [189]),
this perspective is used to extract the head position as the center of gravity
in the overhead silhouette of a person, and the hand position, as being the
point with maximum distance from this center, as an initial estimate for es-
tablishing point correspondences with the remaining cameras to extract the
3D position. Again, the direction of the gesture is estimated as the vector
between head and hand.

From a household robotics perspective, Nickel and Stiefelhagen [203] use
a stereo camera system to track hand and head position using skin color
clusters (cf. Yang/Ahuja [298]) and disparity features, and head orientation
using a three-layered artificial neural network (ANN) [106] with downsampled
intensity and disparity histograms. The feature set obtained this way is
employed to train a hidden Markov model (HMM) [226], using temporal
data to identify whether a pointing gesture has occurred following a begin-
hold-end pattern. Finally, the extracted features were evaluated regarding
its descriptiveness for the pointing gesture direction using three approaches:
(a) head-to-hand line (b) forearm line and (c) head orientation. The authors
conclude, that the highest percentage of targets was correctly identified using
the head-hand line approach.

Martin et al. [183] also approach pointing gesture extraction from an anterior
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perspective in monocular images, with the application of directing a robot
towards a certain point on the floor in mind. They apply cascade-boosted
face detection as proposed by Viola and Jones [284, 285] to detect persons
in the image and calculate a ROI for the extraction of Gabor features [188].
They evaluate different machine-learning strategies regarding their perfor-
mance at the task of estimating the correct pointing angle ϕ and radius r,
concluding that the MLP [237] outperformed the other tested algorithms for
their purposes.

4.3.2 Method

At the body pose exhibited when performing a pointing gesture, the underly-
ing skeletal structure of the relevant arm and shoulder regions can be clearly
identified from the supracranial perspective by the human eye. Because of
earlier positive experiences with modeling approaches considering anatomi-
cal properties, particularly with regard to facial muscle structure (cf. Mayer
et al. [185–187]), it was decided to follow an approach that tries to model
the rough skeletal structure underlying shoulders and extended arms from a
top-down view.

Figure 4.2: Illustrating the pointing gesture extraction. In this picture, the
output of the shoulder/arm tracker with the 8 tracked anatomical landmarks is
depicted.

To that end, a two-dimensional model with 17 degrees of freedom, classified
into bone lengths and joint angles, was designed. Alternatively, the model
parameters can be defined by the image coordinates of 8 points, as listed in



130 Applications

Table 4.1, and is depicted in Figure 4.2 on page 129. It should be noted that
the model is specifically tailored to the supracranial view, and therefore not
applicable to images of pointing gestures taken from e.g. a lateral perspective.

Landmark Shoulder Elbow Wrist Fingertip

Left 1 5 6 7

Right 0 2 3 4

Table 4.1: List of anatomical landmarks modeled and tracked for the pointing
gesture extraction approach.

To determine the correct model parameters within each image, the model
has to be fitted to the appearance of the person depicted, a task that was
approached using a displacement expert (cf. Williams et al. [293]), which
constitutes a relevance vector machine (RVM) [272, 273] that tracks a certain
ROI within the image by estimating its displacement. Several constraints
are imposed on the possible values for the different classes model parameters
(angles and bone length) according to anatomical reasoning, e.g. the elbow
angles cannot be greater than 180 ◦.

For the training of the displacement expert, different types of feature transfor-
mations were evaluated to eventually settle on intensity and distance-to-edge
features. Features were extracted from 10 × 10 px regions at the landmark
points, and equidistant sampling of the lines connecting these landmarks
with perpendicular lines. An example for the feature sampling is depicted in
Figure 4.3 on the facing page.

Because of the use of images taken from image sequences rather than in-
dependently obtained images, employing n-fold stratified cross-validation to
obtain test data for the training of the displacement expert would likely intro-
duce overfitting (cf. Hawkins [113] for a detailed explanation), and thus be
counterproductive. Therefore, different sets of sequences were recorded for
testing and training purposes, and cross-database evaluation (Minus-1-DB
Method, cf. Livhsin et al. [177]) was performed. The resulting displacement
expert function is used to fit the model parameters to unknown data during
the application of the gesture recognition module.

For the final interpretation of the model parameters regarding the pointing
direction, the direction of the forearm proved to be more reliable than the
direction of the hand or fingertip, respectively, since the fitting accuracy for
this part of the model was found to be superior during operation on unseen
data. For an assertively performed pointing gesture, as depicted in Figure 4.2
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(a) (b)

(c) (d)

Figure 4.3: Feature extraction for 2D model fitting. In (a), the sampling points
for the upper arm length parameter are depicted within the edge-transformed
image. In (b), the sampling points for the elbow angle parameter are shown
within the same image. Features sampled at these points are (c) intensity and
(d) distance to edge, which are depicted in the bottom row.
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on page 129, the difference between both directions is negligible regarding the
intended target of the pointing gesture.

4.3.3 Integration

Similarly to the previously described handshake detection module, the point-
ing gesture recognition module is located within the application layer (cf.
Section 2.4 on page 26), receives timestamped images from the service layer
via the KogMo-RTDB and pedestrian positions from the multi-view track-
ing module.

The work was conducted as a student project supervised by the author, and
is described in greater detail in [158].

4.4 Discussion

In this chapter, two application examples for the camera system presented in
Chapter 2 on page 11 were presented, where optional additional functionality
was added to the system in the form of modules integrated in the application
layer (cf. Section 2.9 on page 50). The capacity to employ the system to
perform selected gesture recognition and extraction tasks was demonstrated,
in the form of handshake gestures executed by two persons, and in the form
of pointing gestures performed by a single person.

Combining applications such as those presented in this chapter with pedes-
trian tracking systems are a step towards the vision of completely integrated
scene observation systems, which combine the extraction of multi-modal in-
formation from observed targets within the scene, in order to produce more
efficient automated surveillance and assistance systems. The modular ap-
proach, with separate modules for each application task, communicating via
IPC middleware, provides an extensible framework for such systems.

However, the modular architecture also leads to redundancy in several image
transformation tasks (e.g. background subtraction), and consequently to un-
necessary processing overhead. This issue is only partially alleviated by the
transfer of shared image transformation tasks to the preprocessing layer (e.g.
lens distortion removal, cf. Section 2.8.1 on page 48). A conceivable future
solution, following current trends in Computer Vision, would be to gener-
ate the source code for the required modules automatically, similar to the
approach of Herrmann et al. [117], and implement redundancy optimization
within the code generation.
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Although the architecture of a system with full scene observation capabili-
ties is beyond the scope of this thesis, these small examples demonstrate the
general role of the described system within the context of anticipated devel-
opments in smart surveillance and ambient-assisted living, and demonstrate
the extensibility of the general approach.





Chapter 5

Summary and Outlook

As is inherent in the scientific process, gaining some answers always leads to
at least as many new questions. This chapter is dedicated to rounding off
the dissertation by providing a retrospective summary of the contributions
and results, discussing them in the context of related work and recent trends
in the connected scientific fields, and outlining some ideas and thoughts on
future work and further developments.

5.1 Discussion

In this dissertation, three major scientific contributions were presented. Firstly,
a vertically integrated pedestrian tracking system, consisting of three layers
ranging from hardware configuration to high-level application modules, was
engineered and implemented in a laboratory area, covering an indoor area of
100 m2 (cf. Section 2.4 to Section 2.11). Secondly, a semi-automated cali-
bration approach for extensive multi-camera systems was implemented and
evaluated, with the results comparing quite favorably against the state of
the art reported by other researchers on multi-camera calibration (cf. Sec-
tions 2.7 and 2.7.1). Thirdly, a novel adaptive approach to color-based ap-
pearance modeling was conceptualised and implemented for the modeling
of pedestrian appearance, and subsequently evaluated within the framework
provided by the first system (cf. Section 3.4 to Section 3.8), with the perfor-
mance exceeding that of state of the art color-based static modeling.

The structure of the following sections is selected in accordance with these
contributions.
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5.1.1 Camera System Concept and Architecture

As already hinted on in Section 3.8 on page 116, comparing the camera
system described in this dissertation to other systems described in related
work proves complicated, since the system is unique in its scale, with regard
to the number of cameras employed (at 40) in combination with the area
covered (at 100 m2).

Overall, the evaluation results for the system, as detailed in Section 2.10.2.2
on page 68 demonstrate the capability to operate for extended periods of
time.

One of the trends manifesting themselves during recent years is the increas-
ingly prevalent use of red/green/blue-depth (RGB-D) cameras, such as the
cheaply available Microsoft Kinect (cf. Zhang [303]), in experimental surveil-
lance setups. In retrospect, this has been one of the hardware developments
which overtook the work on the surveillance system described in this the-
sis, and consequently merits some discussion at this point. To provide a
few application examples, Collazos et al. employ RGB-D sensors to detect
abandoned objects in controlled scenes, such as railroad cars [48]. Similarly,
Hsieh et al. employ RGB-D sensors to count pedestrian flow at doorways,
to monitor the number of persons in a building [124]. All of these exam-
ples constitute surveillance applications, in which the RGB-D sensors is uses
similarly to how RGB cameras are used in the work described in this the-
sis. Finally, the work of Gill et al. [97] employs the RGB-D sensor for the
recognition of individuals. Additionally, they refer to the advantages and
disadvantages of the RGB-D sensor versus traditional RGB-cameras, such as
those employed in the work described in this thesis. Apart from the low cost
and the obvious advantage in the additional depth information, they em-
phasize the capacity to operate in otherwise unfavorable lighting conditions.
Conversely, they identify the limited range and poor performance in natural
and halogen light as disadvantages of the RGB-D sensor. In addition, the
structured light pattern projected by the Kinect sensor specifically causes
image quality to degrade when multiple sensors face the same surface (cf.
Schröder et al. [242]). Conseqeuently, the emergence of of RGB-D sensors
does not herald the decline of traditional RGB cameras, rather both cam-
era types are complementary regarding their application opportunities. In
further consequence, research with RGB cameras is not invalidated by this
development.

The fact that the system provides functionality for timed storage and re-
play of the image data renders it especially suited for use in research on
real-time Computer Vision algorithms for multi-camera systems, where the
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reproduction of identical conditions for test runs is paramount for objective
comparison. This is evidenced by the evaluation of the work performed on
the third contribution mentioned above, the work on color-based appearance
modeling, which would not have been possible in that manner without the
infrastructure provided by the multi-camera system. As such, the camera
system not only constitutes a proof of concept, but, perhaps even more im-
portantly, an invaluable research tool.

5.1.2 Automated Multi-Camera Calibration

Camera calibration remains a crucial topic for the real-world applicability of
multi-camera systems, a fact that the author was painfully reminded of at
several points during the practical work on this thesis. In case of a system
like the one presented in Chapter 2 on page 11, where FOVs overlap only
partially, severe miscalibration of the system not only invalidates the results
produced for a single view, but also negates any chance of obtaining valid
correspondences between views, and perform successful view transitions of
moving objects. Regarding lessons learned from the work on the system, one
of those is certainly that the importance of accurate and regular calibration
of the system cannot be overstated.

For this reason, the efforts to equip the system with facile methods to perform
the camera calibration, have proven to greatly enhance the flow of working
with the system by reducing the time needed to perform the calibration and
allowing for more frequent re-calibration of the system. This, in turn, was
experienced to be beneficial since the manipulation-sensitive hardware com-
ponents of the system – mainly, the cameras – were not sufficiently safe from
accidental tampering by other activities within the observation area to ex-
clude any manipulations over the course of several months. Although this
might be avoided in theory for static multi-camera systems, it is a com-
mon problem with experimental systems such as those employed in research.
What would render a higher degree of automation in calibration even more
appealing is the use of non-static multi-camera systems, such as proposed by
Senior et al. [248], where multiple pan-tilt-zoom (PTZ) cameras are employed
with varying configurations.

Summarily, the multi-camera calibration procedure presented here has proven
itself to be both highly accurate, as evidenced by the comparisons in Sec-
tion 2.7.1 on page 45, as well as convenient in day-to-day use, as evidenced
by the researcher’s experiences stated above.
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5.1.3 Shape-Aware Adaptive Appearance Modeling

While a direct performance comparison versus radically different approaches
proves difficult without extensive re-implementation, which would go beyond
the scope of this thesis, the results from Section 3.7 on page 108 evidence that
the novel approach for adaptive color-based appearance modeling presented
here outperforms the state-of-the art in color-based appearance modeling.
However, as already mentioned before, this state of affairs underlines the im-
portance of an increase in public research infrastructure for appearance-based
modeling, consisting of extensive image and video databases, evaluation met-
rics, and regular performance challenges, similar to those found in the object
tracking community. For further discussion of those topics, the reader is
kindly referred to Section 3.8 on page 116.

5.2 Future Work and Outlook

Unfortunately, the effort that can be put into a project such as the one
detailed in this thesis in the time frame available for its completion has its
limits. Consequently, some ideas for improvements on the work detailed in
the previous chapters persist, either because realizing them would have been
beyond the scope of the thesis, or because they result from the conclusions
drawn therein. These directions of future development on the concepts and
the more palpable aspects presented in this dissertation are briefly sketched
out in the following.

Starting with the overall architecture of the system, a possible direction of in-
vestigation would be to change the mapping of image processing tasks (from
the application layer) to processing nodes (from the hardware layer). To re-
capitulate, in the current system configuration, the applications are grouped
by their image sources (i.e. cameras) and all applications processing images
from one camera run on the same processing node. However, regarding the
extensibility of the system, a contrary design paradigm is conceivable, where
applications are grouped by functionality instead. This allows for the addi-
tion of functionality to the system without touching the system core (i.e. the
existing hardware layer and service/preprocessing layer), beyond the limita-
tions otherwise imposed by the 1:1 mapping of cameras to processing clients.
The expected benefit, compared to the approach realized for this thesis, is
constituted by a longer lifetime of the entire system due to higher versatility
in the addition of new features.

Regarding the semi-automated calibration approach discussed in Section 2.7
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Figure 5.1: Illustrating an approach for future work on the architecture of
the application layer (cf. Section 2.9 on page 50). Applications are grouped
by functionality instead of by image source. This allows for more flexible exten-
sion of the system, especially where processing power constitutes a bottleneck.
However, the drawback of the depicted architecture is the increased strain on
communication resources, due to the requirement to transfer high-resolution im-
ages or image segments in real time between the image acquisition nodes and
image processing nodes.
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on page 42, the next important step would be to eliminate the need for
manual contribution to the calibration process entirely. Although several
self-calibration approaches have been published (e.g. by Armstrong et al. [8]
or Pollefeys et al. [221]), which do not require calibration objects but instead
use natural correspondences within the observed scene, these approaches gen-
erally lag behind with regard to the precision achieved. Furthermore, the
existing approaches require moving cameras for the estimation of the in-
ternal parameters, which is also inconvenient for minimizing inter-camera
re-projection error in a multi-camera system.

To promote automation while maintaining the precision allowed for by a well-
defined calibration object, a possible future approach would be to attach
said calibration object to an autonomous vehicle, such as a mobile robot
or a unmanned aerial vehicle (UAV), which then follows a pre-defined path
across all camera FOVs. Examples are depicted in Figure 5.2. This procedure
would eliminate the need for a human to intervene in the calibration process
by manually moving the calibration object, and would allow consequently
allow for effortless re-calibration of the system in regular intervals.

(a) (b)

Figure 5.2: Illustrating approaches for future work on automation of the cal-
ibration routine. To the left, a ground-based mobile robot with a calibration
object attached, that could be used to substitute manual intervention in the cal-
ibration process, taken from [228] (a). To the right, the AR.Parrot commercial
UAV (cf. Bristeau et al. [31]) with a calibration object attached, which has the
additional advantage of being able to vary the distance from the cameras, and
has a higher variability regarding its pitch and yaw when navigating (b).

In the case of tracking on the CCRL camera setup, since the cameras are
quasi-parallel, a pedestrian moves across multiple fields of view with a very
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similar relation of camera and floor plane, finding himself in repetitive geo-
metric positions in relation to the respective cameras. A practical direction
for further enhancement of the proposed appearance modeling technique
would be to exploit the regularity of the configuration to reduce the com-
putational effort by performing the weight calculations based on the shape
model (cf. Section 3.6.1 on page 102) in advance for a regular grid of po-
tential target positions, and subsequently using radial interpolation between
the acquired data points to obtain the weights during the operation of the
tracker. The design of this augmented model takes the conditions at the
CCRL into account, but could be applied at a wider range. It is assumed to
be especially beneficial in all cases where a target with a non-uniform color
distribution should be tracked across several quasi-parallel cameras using its
color properties. The subway platform surveillance setup (cf. Figure 3.13
on page 120) provides a further example of a camera configuration meeting
these requirements.

Another item that merits further investigation regarding its effect on the
precision of the adaptive appearance modeling approach described in Chap-
ter 3 on page 79 is the degrees of freedom of the pedestrian shape model (cf.
Section 3.5.3 on page 94). Currently, the geometry of the model is static,
generated using average body proportions, and not adjusted specifically to
the size of the target. By combining the approach described here with an
approach to estimate certain parameters (e.g. total height, radius) of the
model based on the observations of the target, the accuracy of the weight
calculations (cf. Section 3.6.1 on page 102) could potentially be improved.
An example for a suitable approach to deformable model fitting can be found
in the work of Mayer et al. [185, 186], where machine learning techniques are
employed to estimate the deformation parameters of the CANDIDE-III 3D
deformable face model [1], using Haar-like features (cf. Viola and Jones [284])
as image descriptors.

As of the state described in this thesis, the concrete realization of the ap-
proach presented in Chapter 3 on page 79 is restricted to pedestrians, that is
human targets with an upright body pose. Within the presented application
domain, one possible avenue of improvement is constituted by the concrete
extension of the approach to humans displaying other body poses. Briefly
put, this could be achieved by using different shape models for a pre-defined
set of possible body poses (e.g. standing, sitting, crouching, prone), and then
implementing a classifier for each frame, which determines the pose in that
specific frame, and chose the corresponding shape model for all remaining
computations for that frame. End applications made possible by such an ex-
tension include the detection of toppled elderly persons in ambient assisted
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living (AAL) contexts (cf. Cucchiara et al. [59]).

Integration of a full body pose estimation approach, though more computa-
tionally demanding and therefore more suited to post-processing than real
time application in the current state, could constitute an alternative to the
procedure described above. The report by Amin et al. [4] provides a detailed
overview of a full body pose estimation approach applied to images from a
database of cooking activities (cf. Rohrbach et al. [235]), recorded from
a supracranial observation perspective, and consequently similar in that re-
gard to the images provided by the camera system described in Chapter 2 on
page 11. Figure 5.3 depicts the full body model applied to images obtained
from the camera system described in this thesis.

Figure 5.3: Example pictures for full body pose estimation on images obtained
from the camera system described in Chapter 2, depicting the annotated full
body poses used to train the estimator. The poses consist of 15 points with a
combined 30 DOF: head, collarbone, left and right shoulders, elbows and wrists,
lower torso, left and right hips, knees and ankles.

Further directions in the development of applications for the camera system
have already been mentioned in Section 4.4 on page 132. To recapitulate,
the ultimate goal for the system would be completely integrated smart scene
observation, combining pedestrian tracking with body pose, gesture recogni-
tion and facial image analysis, provided the current observation perspective
allows for these application, and using the acquired data to classify states and
activities of the observed targets (cf. Tenorth [269] for high-level reasoning
with actions and plans, Rohrbach et al. [236] for activity scripts).

Barring catastrophes on a global scale, it is beyond the author’s doubt that
the miniaturization-fueled trends mentioned in the introduction will continue
in the coming decades, providing the basis for the development for ever more
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sophisticated surveillance and monitoring systems. It stands to hope that
these systems will be employed in an ethical manner, and that the benefits
contributed to society will outweigh the dangers inherent in the capacities
provided by such systems. One way or the other, the author remains confi-
dent that the coming years will bring exciting opportunities for scientific and
public discussion regarding the topics touched upon in this thesis, and looks
forward to the developments of the upcoming decades.
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Publications

The following is a list of publications referencing the work conducted by
the author leading up to this thesis, with a brief description of the relevant
content each.

• Brščić et al. [34] contains a technical description of the first phase
of the camera system setup at the CCRL, providing an insight into
the research environment that the work described in this thesis was
embedded into.

• Lenz et al. [175] contains a description of the system setup, software
architecture and tracking algorithm.

• Eggers et al. [74] contains an updated technical description of the
camera system, and details about the camera calibration, as well as
an accuracy comparison to state-of-the art multi-camera calibration
approaches (cf. Section 2.7 on page 42).

• Nierhoff et al. [204] contains a brief technical description of the camera
system, and illustrates its application within a scenario where a mobile
robot is used to change tires on a car. The camera system is used to
track a human coordinating with the robot.

• Eggers et al. [73] contains an updated and extended version of the work
presented in [74], comprising performance and stability evaluations.
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Additional Tables

Style Used for Example

Italic Scalars, events and various others N

Bold Vectors x

Sans serif Matrices C

Fraktur Tuples, sets, and sequences E

Calligraphy Complex objects (e.g. images, regions) I

Table B.1: Use of different typesetting in mathematical formulae.

Style Used for Example

Small capitals Company and product names MVTec

Italic Foreign words and abbreviations, emphasis et al.

Table B.2: Use of different typesetting in text.
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No. x y z ϕ θ ψ

1 -3.367 m 3.599 m 0.143 m 358.03 ◦ 0.25 ◦ 359.89 ◦

2 -3.443 m 2.518 m 0.043 m 358.54 ◦ 359.37 ◦ 357.47 ◦

3 -3.343 m 1.223 m 0.097 m 359.13 ◦ 359.08 ◦ 359.67 ◦

4 -3.447 m 0.01 m 0.023 m 356.88 ◦ 1.22 ◦ 358.19 ◦

5 -3.448 m -1.363 m 0.101 m 359.46 ◦ 1.09 ◦ 0.48 ◦

6 -3.408 m -2.501 m 0.029 m 358.13 ◦ 0.3 ◦ 356.96 ◦

7 -3.514 m -3.703 m 0.115 m 0.17 ◦ 2.04 ◦ 359.28 ◦

8 -3.421 m -4.919 m 0.102 m 1.08 ◦ 0.57 ◦ 0.1 ◦

9 -1.73 m 3.522 m 0.113 m 358.64 ◦ 0.41 ◦ 2.41 ◦

10 -1.729 m 2.51 m 0.021 m 359.24 ◦ 0.74 ◦ 357.03 ◦

11 -1.763 m 1.018 m 0.098 m 0.05 ◦ 1.21 ◦ 2.36 ◦

12 -1.718 m 0.001 m -0.0 m 357.59 ◦ 1.83 ◦ 359.75 ◦

13 -1.755 m -1.274 m 0.104 m 358.85 ◦ 2.94 ◦ 358.91 ◦

14 -1.725 m -2.506 m 0.005 m 0.15 ◦ 1.49 ◦ 1.08 ◦

15 -1.704 m -3.764 m 0.11 m 0.31 ◦ 3.02 ◦ 356.57 ◦

16 -1.721 m -4.924 m 0.083 m 0.41 ◦ 359.55 ◦ 1.23 ◦

17 -0.894 m -1.801 m -0.005 m 359.12 ◦ 1.07 ◦ 359.47 ◦

18 -1.099 m -4.267 m 0.1 m 359.66 ◦ 1.49 ◦ 1.14 ◦

19 -0.014 m 3.607 m 0.078 m 359.89 ◦ 358.95 ◦ 359.96 ◦

20 -0.003 m 2.512 m 0.015 m 357.88 ◦ 0.07 ◦ 357.9 ◦

Table B.3: Poses of the CCD sensors of the first set of 20 cameras used in the
setup in a Cartesian world coordinate system, computed according to the global
multi-camera calibration procedure described in Section 2.7 on page 42. See
Table B.4 on the facing page for the poses of the remaining cameras, including
the reference camera, Camera 22.
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No. x y z α β γ

21 -0.023 m 1.16 m 0.063 m 0.28 ◦ 1.55 ◦ 0.11 ◦

22 0.0 m 0.0 m 0.0 m 0.0 ◦ 0.0 ◦ 0.0 ◦

23 0.936 m -1.506 m -0.013 m 1.68 ◦ 358.08 ◦ 2.34 ◦

24 0.806 m -4.207 m -0.057 m 357.47 ◦ 0.25 ◦ 359.18 ◦

25 1.76 m 3.538 m 0.091 m 0.76 ◦ 0.77 ◦ 358.96 ◦

26 1.72 m 2.509 m -0.012 m 359.32 ◦ 0.82 ◦ 358.77 ◦

27 1.749 m 1.115 m 0.08 m 0.64 ◦ 1.98 ◦ 1.26 ◦

28 1.792 m -0.017 m -0.02 m 0.13 ◦ 1.53 ◦ 0.02 ◦

29 1.759 m -1.514 m 0.082 m 0.45 ◦ 1.9 ◦ 1.89 ◦

30 1.777 m -2.536 m -0.003 m 359.77 ◦ 359.74 ◦ 357.86 ◦

31 1.746 m -3.775 m 0.095 m 358.99 ◦ 1.73 ◦ 359.13 ◦

32 1.69 m -4.939 m 0.082 m 0.27 ◦ 0.22 ◦ 0.32 ◦

33 3.449 m 3.5 m 0.072 m 1.48 ◦ 359.71 ◦ 359.64 ◦

34 3.418 m 2.493 m -0.018 m 359.62 ◦ 0.3 ◦ 359.47 ◦

35 3.401 m 1.087 m 0.067 m 0.82 ◦ 0.1 ◦ 0.56 ◦

36 3.413 m -0.019 m -0.021 m 358.04 ◦ 1.44 ◦ 358.55 ◦

37 3.375 m -1.531 m 0.065 m 358.93 ◦ 2.67 ◦ 358.08 ◦

38 3.409 m -2.539 m -0.011 m 0.75 ◦ 0.49 ◦ 358.58 ◦

39 3.42 m -3.802 m 0.089 m 359.1 ◦ 359.18 ◦ 359.91 ◦

40 3.389 m -4.955 m 0.078 m 359.51 ◦ 1.02 ◦ 0.57 ◦

Table B.4: Poses of the CCD sensors of the second set of 20 cameras used
in the setup in a Cartesian world coordinate system, computed according to the
global multi-camera calibration procedure described in Section 2.7 on page 42.
Note, that the origin coordinate system is the sensor of Camera 22. See Table B.3
on page 148 for the poses of the remaining cameras.
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Des. Ni Dur. T Cut NV Desc. Dir.

S0 571 20.3 s None ≥ 2 Empty sequence for
background training

N/A

S1 577 20.5 s P1 ≥ 2 Target walking, cross-
ing multiple views in
single direction

≈ ↑

S2 569 20.3 s P1 ≥ 2 — ” — ≈ ↑
S3 583 20.8 s P1 ≥ 2 — ” — ≈ ↑
S4 587 20.9 s P1 ≥ 2 — ” — ≈ ↑
S5 578 20.6 s P2 ≥ 2 — ” — ≈ ↑
S6 568 20.2 s P2 ≥ 2 — ” — ≈ ↑
S7 581 20.7 s P2 ≥ 2 — ” — ≈ ↑
S8 574 20.4 s P2 ≥ 2 — ” — ≈ ↑
S9 588 20.9 s P3 ≥ 2 — ” — ≈ ↑
S10 565 20.1 s P3 ≥ 2 — ” — ≈ ↑
S11 579 20.6 s P3 ≥ 2 — ” — ≈ ↑
S12 584 20.8 s P3 ≥ 2 — ” — ≈ ↑

S13 566 20.2 s P1,P2 ≥ 2 Targets crossing the
area simultaneously in
opposite directions

≈ ↑↓

S14 591 21.0 s P1,P2 ≥ 2 — ” — ≈ ↑↓
S15 572 20.4 s P1,P2 ≥ 2 — ” — ≈ ↑↓
S16 578 20.6 s P1,P2 ≥ 2 — ” — ≈ ↑↓
S17 577 20.5 s P1,P3 ≥ 2 — ” — ≈ ↑↓
S18 561 20.0 s P1,P3 ≥ 2 — ” — ≈ ↑↓

Table B.5: Complete list of the image sequences used during the evaluation
procedures for detection, tracking, and appearance modeling, part I. Ni denotes
the number of images in the sequence, T denotes the targets in the sequence
(cf. Table 2.9 on page 64 for details), and NV denotes the number of views.
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Des. Ni Dur. T Cut NV Desc. Dir.

S19 579 20.6 s P1,P3 ≥ 2 Targets crossing the
area simultaneously in
opposite directions

≈ ↑↓

S20 569 20.3 s P1,P3 ≥ 2 — ” — ≈ ↑↓
S21 565 20.1 s P2,P3 ≥ 2 — ” — ≈ ↑↓
S22 582 20.7 s P2,P3 ≥ 2 — ” — ≈ ↑↓
S23 560 19.9 s P2,P3 ≥ 2 — ” — ≈ ↑↓
S24 594 21.2 s P2,P3 ≥ 2 — ” — ≈ ↑↓

S25 599 21.3 s P1,P2 ≥ 2 Targets crossing the
area simultaneously
in the same direction
(side-by-side)

≈ ↑↑

S25 600 21.4 s P1,P2 ≥ 2 — ” — ≈ ↑↑
S26 599 21.3 s P1,P2 ≥ 2 — ” — ≈ ↑↑
S27 600 21.4 s P1,P2 ≥ 2 — ” — ≈ ↑↑
S28 599 21.3 s P1,P2 ≥ 2 — ” — ≈ ↑↑
S29 589 21.0 s P1,P3 ≥ 2 — ” — ≈ ↑↑
S30 583 20.8 s P1,P3 ≥ 2 — ” — ≈ ↑↑
S31 579 20.6 s P1,P3 ≥ 2 — ” — ≈ ↑↑
S32 591 21.0 s P1,P3 ≥ 2 — ” — ≈ ↑↑
S33 581 20.7 s P2,P3 ≥ 2 — ” — ≈ ↑↑
S34 588 20.9 s P2,P3 ≥ 2 — ” — ≈ ↑↑
S35 573 20.4 s P2,P3 ≥ 2 — ” — ≈ ↑↑
S36 592 21.1 s P2,P3 ≥ 2 — ” — ≈ ↑↑

Table B.6: Complete list of the image sequences used during the evaluation
procedures for detection, tracking, and appearance modeling, part II. Ni denotes
the number of images in the sequence, T denotes the targets in the sequence
(cf. Table 2.9 on page 64 for details), and NV denotes the number of views.
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Des. Ni Dur. T Cut NV Desc. Dir.

S37 3000 106.8 s P1 1 Target walking in el-
lipsoid path in a single
view

≈ ©

S38 3000 106.8 s P2 1 — ” — ≈ ©
S39 3000 106.8 s P3 1 — ” — ≈ ©
S40 3000 106.8 s P1 1 Target walking in lem-

niscatoid path in sin-
gle view

≈ ∞

S41 3000 106.8 s P2 1 — ” — ≈ ∞

S42 1000 35.7 s P1 3 1 Looped normalized se-
quence; from S37

≈ ©

S43 1000 35.7 s P2 3 1 — ” —; from S38 ≈ ©
S44 1000 35.7 s P3 3 1 — ” —; from S39 ≈ ©
S45 1000 35.7 s P1 3 1 — ” —; from S40 ≈ ∞
S46 1000 35.7 s P2 3 1 — ” —; from S41 ≈ ∞

S47 3100 110.7 s P1...3 3 1 Training se-
quence; from
{S0,S42 . . .S46}

≈ ©

S48 2500 89.3 s P1...3 3 1 Test sequence; from
{S0,S1 . . .S24}

≈ ↑↓

S49 . . .S69 10 0.4 s P2 1 Single target stand-
ing/walking in the
camera FOV

N/A

S70 . . .S74 10 0.4 s P1...3 1 Two targets standing
in the camera FOV

N/A

S75 . . .S80 10 0.4 s P1...3 1 Three targets stand-
ing in the camera FOV

N/A

Table B.7: Complete list of the image sequences used during the evaluation
procedures for detection, tracking, and appearance modeling, part III. Ni denotes
the number of images in the sequence, T denotes the targets in the sequence
(cf. Table 2.9 on page 64 for details), and NV denotes the number of views.
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Perspective Description Example

Supracranial
Viewed from the top, above the
head facing downwards.

Anterior Viewed from the front.

Posterior Viewed from behind.

Lateral Viewed from the side.

Table B.8: Terminology for camera perspectives with regard to pedestrians,
derived from terminology commonly used in human anatomy [182, pp. 12–19].
Note, that the camera system described in this thesis primarily delivers images
from the supracranial perspective.
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Name Version Author Pub. Used in

OpenCV 2.0–2.3 WillowGarage [29] Image processing

HALCON 9.0–11.0.1 MVTec [72, 255] Image processing

ICE 3.4 ZeroC [116] Middleware

WEKA 3.7.1 U. of Waikato [109] Machine learning

ntpd 3–4 D. Mills [191] Synchronization

Ubuntu 12.04 LTS Canonical [118] Operating system

Boost 1.39–1.46.1 Boost [146] Various

KogMo-RTDB N/A M. Goebl [98] Real-time processing

OpenTL 0.8–0.9 TU Munich [211] Image processing

Table B.9: Information on the software packages and libraries used in in the
implementations of the different parts of this dissertation.
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Glossaries of Terms

List of Operators

x ≈ y x (left side) is approximately equal to y (right side). Operator is
commutative.

x ≡ y x (left side) is defined as y (right side); x is equal to y by definition.
Operator is non-commutative.

H(R) The histogram operator, which produces a color histogram from an
image region (cf. Equation (3.12) on page 93).

x The arithmetic mean of x.

‖x‖ Vector norm of x = (x1, . . . , xn), ‖x‖ =
√∑n

i=1 x
2
i .

x̂ Normalization of vector x, x̂ = x
‖x‖ .

x · y The product of two scalar values x and y. Operator is commutative.

x · y The inner product (scalar product) of two vectors x and y. Operator
is commutative.

x× y The cross product (vector product) of two vectors x and y. Operator
is anticommutative.

bxe x rounded to the nearest integer.
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MT The transposition of matrix M.
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List of Symbols

A The visual appearance of a reflective object, termed appearance for
short.

Ac The appearance of an object as composed of the appearances of its
parts, i.e. the composite appearance.

A0 The appearance of an object at detection, i.e. the initial appearance.

Ap The appearance of an object part, i.e. a partial appearance.

Ch The color distribution of the head of a tracked pedestrian, modeled
as a k×m×n bin color histogram in HSI color space. See the entry
for C for details.

C l The color distribution of the legs of a tracked pedestrian, modeled
as a k×m×n bin color histogram in HSI color space. See the entry
for C for details.

Ct The color distribution of the torso of a tracked pedestrian, modeled
as a k×m×n bin color histogram in HSI color space. See the entry
for C for details.

Cp The color distribution of a part of a target, modeled as a n×m× k
bin color histogram in HSI color space, so that C =

∑I
i=1wi × Cp.

See the entry for C for details on the color histogram.

C The color distribution of a tracking target, modeled as a k ×m× n
bin color histogram (i.e. discretization) in HSI color space. Each
bin contains the number of pixels in the respective sub-range of HSI.
From a computational perspective, C is represented as a k ×m× n
matrix. For the dynamic appearance model proposed in Chapter 3
on page 79, C = w1C

h + w2C
t + w3C

l

w A weight, which is a scalar that represents the share of a partial
appearance Ap in the total appearance A. Regarding indices, wi

denotes the weight of the i-th partial appearance Ap
i for a single

frame, while w(i,k) denotes the weight of partial appearance i at frame
k for objects in image sequences.

C A camera, whose properties can be mathematically described by the
camera parameters P for single images I. Regarding indices, Ci
denotes the i-th numbered camera in the CCRL setup.

ed The reprojection error, ed = ‖p− Π(E · P · x, I)‖
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er The RMS error for the reprojection:

er =

√√√√√√
1

M
N∑
i=1

K∑
k=1

vik

ed

.

D The image distortion caused by the camera lens, modeled as non-
linear radial and decentering distortion. It is described by the triple
of radial distortion parameters Ki∀i ∈ {1, 2, 3}, tangential distortion
parameters Pi∀i ∈ {1, 2} and principal point (i.e. distortion center)
C.

Rs The 3 DOF rotation of a sensor (i.e. camera) within the world
coordinate system, represented by the rotation matrix.

Ts The 3 DOF translation of a sensor (i.e. camera) within the world
coordinate system.

C The image center, i.e. the principal point where the principal axis
intersects with the image plane.

f The focal length of a camera.

α The angular field of view, i.e. the angle between the edges of vision
of the camera. It is determined by the photographic objective of the
camera.

P The pair of camera parameters, consisting of extrinsic parameters
and intrinsic parameters, P = (E, I).

E The extrinsic camera parameters, describing the world pose of the
camera. They are defined as the pair of translation and rotation of
the camera, E = (Ts,Rs)

I The intrinsic camera parameters, describing the optical properties of
the camera. They are defined as the 4-tuple of focal length f , image
format F, principal point C and distortion D, I = (f,F,C,D)

Π A pinhole camera perspective projection, which is represented by the
camera matrix:

Π =

 f 0 0 0

0 f 0 0

0 0 1 0





List of Symbols 159

V A view, which is an abstraction from a camera for a single image,
and is denoted as a triple consisting of image, extrinsic parameters,
and intrinsic parameters, V = (I,E, I)

H A color histogram for the visible surface of an object. The histogram
consists of k×m× n bins in HSI color space. Each bin contains the
number of pixels in the respective sub-range of HSI.

b A bin of a color histogram H.

H The set of k×m×n bin color histograms. With histogram addition,
H forms a vector space over R.

0 The identity element of H with respect to addition.

A The disjoint intervals each color channel is partitioned into to create
the color histogram.

Ĥ A normalized color histogram for the visible surface of an object,
where each bin b is weighted by the total number of entries in all
bins, so that ‖Ĥ‖ = 1.

H The color histogram operator. H(R) = H

DB The Bhattacharyya distance, which provides a measure for the
similarity of two probability distributions p and q. DB(p, q) =

−ln
(∑

x∈X

√
p(x)q(x)

)
.

M The total number of classes for a classification task.

N The total number of instances for a class.

N The total number of instances for a classification experiment.

fa(C) The number of true positives, i.e. the absolute frequency of correctly
classified instances of a class.

fr(C) The classification rate, which is the relative frequency of correctly
classified instances.

fr(I) The classification error rate, which is the relative frequency of incor-
rectly classified instances.

fr(C) The recall rate, which provides a measure for the performance of a

classification task. fr(C) = fa(C)

N .

NF The failure count, which is the absolute count of failed tries (or in-
stances) in an experiment.

NS The success count, which is the absolute count of successful tries (or
instances) in an experiment.
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N t The total count, which is the absolute count of tries (or instances) in
an experiment.

N v The transition count, which is the amount of view transitions for a
single of track in an experiment.

Nv The mean transition count, which is the mean amount of view tran-
sitions for a single track over multiple experiments.

da The absolute tracking error, i.e. the distance between the target
ground truth and the target candidate in the image plane, measured
in pixels.

dr The relative tracking error, i.e. the absolute tracking error da, scaled
by the average diameter of the target.

dr The relative tracking error, i.e. the absolute tracking error da, scaled
by the current diameter of the target.

dm The maximum acceptable absolute tracking error, i.e. the maximum
distance between the target ground truth and the target candidate
that is accepted without the track being considered lost.

C The event that a certain instance was classified correctly during a
classification experiment.

F The event of failure, of a certain experiment or try.

I The event that a certain instance was classified incorrectly during a
classification experiment.

S The event of success, of a certain experiment or try.

f The frequency function.

fa The absolute frequency function.

fr The relative frequency function, also called a-posteriori probability.

P The probability function.

P(St) The transition success probability, which is the probability of the
event that a single view transition is successful.

fr(F ) The failure rate, is the relative frequency of erroneous tries (or in-

stances) occurring in an experiment. fr(F ) =
NF
N t

= 1− fr(S)

fr(S) The success rate, is the relative frequency of successful tries (or in-

stances) occurring in an experiment. fr(S) =
NS
N t

= 1− fr(F )

tc The target candidate, which is the highest probability hypothesis
provided by the MCMC algorithm. It is represented by a point in
the image plane: tc = (x, y)T.
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tg The target ground truth, which is a point in the image plane: tg =
(x, y)T.

O The origin of a coordinate system.

Om The origin of the model coordinate system.

Ow The origin of the world coordinate system.

p A two-dimensional point in an image, specified in image coordinates,
p = (x, y)T. For x ∈ N∧ y ∈ N, p corresponds to a pixel. Otherwise,
it specifies a point with subpixel accuracy.

x A 2D point in the local coordinate system of the calibration object,
x = (x, y)T

X A three-dimensional point, X = (x, y, z)T

Xc A three-dimensional point, specified in a camera coordinate system.

Xw A three-dimensional point, specified in the world coordinate system.

P The pose of an object, which is represented by a 3× 4 homogeneous
transformation matrix:

P =

(
R T

0T 1

)

R The rotation of an object within the world coordinate system, which
has 3 DOF. It is represented by the 3× 3 rotation matrix:

R =

 1 0 0

0 cosϕ − sinϕ

0 cosϕ cosϕ


 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


 cosψ − sinψ 0

sinψ cosψ 0

0 0 1


where ϕ, θ and ψ are the Euler angles with extrinsic z-x-z rotation
(i.e. around the original axes).

η The 1 DOF heading of a target, represented by the rotation around
its vertical axis, which is perpendicular to the floor plane. It is
equivalent to the Euler angle ϕ.

T The 3 DOF translation of an object within the world coordinate
system.

TW
t The 3 DOF translation of a tracking target (e.g. a pedestrian) within

the world coordinate system.
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TF
t The 2 DOF translation of a tracking target (e.g. a pedestrian) within

the floor plane F .

a The aspect ratio of an image, nx
ny

nx The horizontal resolution of a digital image, i.e. the number of pixels
in the horizontal direction.

ny The vertical resolution of a digital image, i.e. the number of pixels
in the vertical direction.

np The amount of data used to encode each pixel of an image, measured
in bits.

F The image format of a digital image, consisting of the pair of hori-
zontal and vertical resolution, F = (nx, ny).

I A digital image.

v The value of a pixel for a certain channel. v ∈ [0, 1]

R A region within a digital image I, sometimes also called region of
interest.

S A sequence of N digital images, S = (I1, . . . , In), where t(I i+1) >
t(I i).

f i The temporal frequency of images delivered by an image source, such
as a camera. Sometimes referred to as frame rate or frames per
second (FPS).

R The data rate transmitted on a network, R = s
t
.

s The size of an amount of data, measured in bits.

se The size of an Ethernet packet.

sm The size of the MTU

sp The payload of a GVSP packet, i.e. the size of the packet less the
size of the headers.

v The boolean visibility of a point or object from a camera C, v = 1
for all points that are visible from that camera, 0 otherwise. For
objects, e.g. the calibration plate or pedestrians, v = 1 if no part of
the object lies outside of the camera FOV.

xt The extension of the area of observation in x-direction.

yt The extension of the area of observation in y-direction.



List of Symbols 163

nc The total number of cameras Ci constituting the camera setup.

V The availability of a hard- or software component, V = tu

td+tu
.

td The downtime of a hard- or software component, i.e. the time during
which the component is not active or working.

tu The uptime of a hard- or software component, i.e. the time during
which the component is active or working.

D The coverage redundancy for the area of observation, i.e. the differ-
ence of the ratio of the combined FOVs of all cameras Ci to the size
of the area of observation on a reference plane.

ρi The sampling density of a camera Ci at reference height ho, i.e. the
ratio of pixels to FOV area.

ρ The mean sampling density of the camera system at ho, i.e. the ratio
of pixels to combined FOV area.

dx The distance covered by a camera in the primary direction, i.e. the
x-extension of the camera’s FOV.

dy The distance covered by a camera in the secondary direction, i.e. the
y-extension of the camera’s FOV.

F The 3 DOF normal vector of the floor plane.

F The 4 DOF floor plane, represented by its normalized normal vector
F̂ and distance d from the world origin, in the Hesse normal form:

F̂ · r− d = 0

.

hc The distance between a camera Ci and the floor plane, i.e. the camera
height.

hc The mean distance between camera and the floor plane, for all Ci
ho The distance between the reference plane (i.e. observation level) and

the floor plane, i.e. the observation height.

P p
i Visible area of the reprojection of the surface of a shape model (body)

part into the image plane, cf. P .

ht The total height of the generalized cylinder model, from base to top.

hh The height of the head segment the generalized cylinder model.

hl The height of the leg segment of the generalized cylinder model.

hu The height of the upper body segment of the generalized cylinder
model.
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dv The approximate vertex distance, i.e. the approximate distance be-
tween vertices in the mesh. It is used to determine ne, the exact
geometry of the mesh, and consequently nf and nv.

ne The number of edges for the polygon used to approximate circles in
the mesh shape model.

nf The number of faces for the polygon mesh shape model.

nv The number of vertices for the polygon mesh shape model.

V A shape model vertex, represented by its 3-DOF translation.

rb The radius of the generalized cylinder model at h = 0.

rt The radius of the generalized cylinder model at h = ht.

rh The radius of the generalized cylinder model at h = hl.

rs The radius of the generalized cylinder model at h = ht − hh.

P Visible area of the reprojection of the entire shape model surface of
a target into the image plane. The area is measured in pixels.

P4 Visible area of the reprojection of a single face of the polygon mesh
model into the image plane.

Q The proposal distribution for the MCMC tracking algorithm.

sh A hypothesis, i.e. a proposed state of the MCMC tracking algorithm.

s The state vector of a tracking target t.

t A target being tracked by the MCMC tracking algorithm.
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List of further Terms

appearance refers to the properties of an object that can be visually ob-
served (cf. Hunter and Harold [127]). The most important properties falling
under these definitions are properties of the object surface (color) and shape.
While in theory object surfaces might have transmissive as well as reflective
properties, for the purpose of this thesis, only reflective properties are consid-
ered due to the nature of the objects being modeled. It should be noted, that
due to the optical sense relying on light reflected by the object, appearance
properties are subject to change upon variations in illumination conditions.

appearance model refers to any approach to modeling the appearance of
an object, e.g. using color or brightness statistics of its digital image. In the
sense of employing appearance models in tracking, a static appearance model
refers to an appearance model that does not vary over time, the opposite of
which is termed an adaptive appearance model here.

area of observation denotes the unification of the FOVs of all cameras Ci
in a camera system, and consequently, the area that can be observed by the
camera system.

floor plane denotes a plane which represents the floor of the area of observa-
tion. Since for most indoor environments, the floor of the area of observation
can be expected to be planar, it is an important special case (or approxima-
tion) of the floor surface.

floor surface denotes a two-dimensional topological manifold that represents
the floor of the area of observation. In that, it is the generalization of the
floor plane.

frame denotes a single iteration of an image processing system, correspond-
ing to the processing of one image I.

image position of an object denotes the position of the projection of the
object in image space.

image space denotes the set of all points that a camera can project to (i.e.,
the image points), forming a surface. For a pinhole camera model, all of
these points lie in the image plane. The distinction from the world space is
relevant e.g. when evaluating the precision of position predictions of objects.
The position of a point in image space is denoted using the image coordinate
system, and distances are measured in pixels.
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observation perspective denotes the perspective the camera has on an
object. This perspective can be represented by the combination of target
translation, vertical orientation, and camera pose. For targets with a defined
vertical and horizontal orientation, the observation perspective is described
in this thesis as lateral, anterior, posterior or supracranial (cf. Table B.8 on
page 153).

anterior perspective denotes an observation perspective where the
camera is located in front of the target, specifically for pedestrian targets.

lateral perspective denotes an observation perspective where the cam-
era is located besides the target, specifically for pedestrian targets. In
the strictest sense of the term, the camera is next to the target, and the
camera principal axis and the object lateral axis are aligned. For relaxed
use of the term, the angle between the camera principal axis and the
lateral axis of the target is smaller than the angle between the camera
principal axis and the vertical axis of the target and smaller than the
angle between the camera principal axis and the horizontal axis of the
target.

posterior perspective denotes an observation perspective where the
camera is located behind of the target, specifically for pedestrian targets.

supracranial perspective denotes an observation perspective where
the camera is located above the target, specifically for pedestrian targets.
In the strictest sense of the term, the camera is located directly above
the target (i.e., above the head) and the camera principal axis and object
vertical axis are aligned. For relaxed use of the term, the angle between
the camera principal axis and the vertical axis of the target is smaller
than the angle between the camera principal axis and the horizontal axis
of the target and smaller than the angle between the camera principal
axis and the lateral axis of the target.

observation plane denotes the planar special case (or approximation) of
the observation surface.

observation surface denotes a two-dimensional topological manifold which
is parallel to the floor surface, where the distance between observation surface
and floor surface is the observation height ho. The observation surface is
used to describe the surface in which the objects that are being observed are
positioned. Thus, contrary to the floor surface, it does not represent a real
surface in the physical sense.
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pedestrian denotes a person who is in an upright position, either standing
or ambulating. This corresponds to the general definition given by Gray et
al. [102]. In contrast to common usage of this term in other context, for this
thesis there is no implication of participation of a pedestrian in road traffic.

shape model refers to any approach to modeling the shape of an object,
e.g. using 3D geometric primitives or polygon meshes. While a rigid shape
model displays only a single configuration for an entire class of objects (e.g.
pedestrians, cars), a deformable shape model (e.g. the CANDIDE-3 face
model, cf. Ahlberg [1]) may display several variations, depending on the
current state (e.g. walking, standing) or specific properties (e.g. height,
size) of the object.

target area is short for target area of observation and denotes the intended
area of observation. It may differ from the real area of observation due to
constraints in the available number or possible placement of cameras.

track denotes the sequence of positions of an object over multiple sequential
measurements. Unless specifically stated otherwise, for this thesis this is
to mean the sequence of positions of an object in a series of timestamped
images.

tracker denotes a program or program part which performs the process of
visual tracking by realizing the tracking pipeline, cf. Section 2.3.3 on page 17.

tracking denotes the process of repeatedly determining the position of an
object over several subsequent measurements. Unless otherwise indicated,
tracking is used short for visual tracking, which restricts the measurements
to camera images.

tracklet denotes a shorter track that is part of a longer track, e.g. the track
of an object in a single field of view.

world position of an object denotes the physical position of the object in
world space.

world space denotes the set of all physical points in the real world, of which
– unless specifically stated otherwise – only those that can be projected by a
camera are relevant in the context of this thesis. The position of a point in
world space is denoted using the world coordinate system and distances are
measured in the SI (sub-)multiples of the meter.



168 List of further Terms



Bibliography

[1] J. Ahlberg. Candide-3. An updated parameterised face. English. Tech-
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[114] J. Heikkilä.“Geometric camera calibration using circular control points”.
English. In: Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on 22.10 (2000), pages 1066–1077. issn: 01628828. doi: 10.
1109/34.879788 (cited on page 45).

[115] S. Hengstler and H. Aghajan. “Application-Oriented Design of Smart
Camera Networks”. English. In: Distributed Smart Cameras, 2007.
ICDSC ’07. First ACM/IEEE International Conference on. Edited by
H. Adhajan and R. Kleihorst. Vienna: IEEE, Sept. 2007, pages 12–19.
isbn: 978-1-4244-1353-9. doi: 10.1109/ICDSC.2007.4357500 (cited
on page 24).

[116] M. Henning and M. Spruiell. Distributed Programming with Ice. En-
glish. Technical report. ZeroC Inc., 2007 (cited on pages 6, 29, 50,
154).

http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1109/ICICS.2003.1292637
http://dx.doi.org/10.1016/S0143-8166(01)00145-2
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1021/ci0342472
http://dx.doi.org/10.1109/34.879788
http://dx.doi.org/10.1109/34.879788
http://dx.doi.org/10.1109/ICDSC.2007.4357500


184 BIBLIOGRAPHY

[117] M. Herrmann, C. Mayer, and B. Radig. “Automatic Generation of
Image Analysis Programs”. English. In: Pattern Recognition and Im-
age Analysis. Advances in Mathematical Theory and Applications.
Samara: SP MAIK Nauka/Interperiodica, 2013 (cited on page 132).

[118] B. M. Hill, M. Helmke, and C. Burger. The Official Ubuntu Book.
English. 5th edition. Prentice Hall, 2010. isbn: 978-0137081301 (cited
on page 154).

[119] E. Hörster and R. Lienhart. “On the optimal placement of multiple
visual sensors”. In: Proceedings of the 4th ACM international workshop
on Video surveillance and sensor networks. VSSN ’06. New York, NY,
USA: ACM, 2006, pages 111–120. isbn: 1-59593-496-0. doi: 10.1145/
1178782.1178800 (cited on page 3).

[120] W. A. Horton, J. G. Hall, and J. T. Hecht. “Achondroplasia”. English.
In: Lancet 370.9582 (July 2007), pages 162–72. issn: 1474-547X. doi:
10.1016/S0140-6736(07)61090-3 (cited on page 90).

[121] N. von Hoyningen-Huene and M. Beetz.“Importance Sampling as One
Solution to the Data Association Problem in Multi-target Tracking”.
English. In: Computer Vision, Imaging and Computer Graphics. The-
ory and Applications. International Joint Conference, VISIGRAPP
2009, Lisboa, Portugal, February 5-8, 2009. Revised Selected Papers.
Edited by A. Ranchordas, J. M. Pereira, H. J. Araújo, and J. M. R.
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