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Abstract

Intrinsic neuron-like cells expressing the catecholamine-
biosynthetic enzyme tyrosine hydroxylase (TH) were re-
cently identified in the testis of the prepubertal rhesus
monkey. In this study, we characterized the neuron-like
nature of these cells and examined distribution and fre-
quency of neuronal elements in the testes of monkeys
during postnatal development, puberty and adulthood.
Using immunohistochemical methods, we detected both
nerve fibers and cell bodies, immunoreactive for the neu-
ronal markers neurofilament 200 (NF-200) and synapto-
somal associated protein of 25 kDa (SNAP-25), TH and
neuropeptide Y (NPY) in perivascular locations, inter-
mingled with interstitial cells and close to the wall of
seminiferous tubules. Marked age-related differences in
the numbers of these neuronal elements became appar-
ent, when we quantified NF-200-immunoreactive neu-
ronal elements. Thus, intrinsic neuron-like cell bodies
were found only in the testes from immature animals
(i.e., until about 3 years of age). Conversely, nerve fibers,

presumably representing mainly the extrinsic innerva-
tion, were observed at all ages although they became
more prominent after the pubertal increase in LH and
testosterone levels. Interestingly, another testicular cell
type known to contain potent regulatory substances,
mast cells, was found to be in close anatomical proximity
to nerve fibers. The number of these cells, positively
identified with an antibody to tryptase, increased signifi-
cantly after puberty following the same pattern as nerve
fibers. These results confirm that the testicular nervous
system of the monkey is composed of two components,
intrinsic nerve cells and extrinsic fibers, both of which
are catecholaminergic and peptidergic in nature. Fur-
thermore, both components show a marked degree of
plasticity during development, especially around the
time of puberty. The intratesticular locations of neuron-
like cells and fibers suggest that catecholamines and
neuropeptides are likely to have multiple sites of actions,
and may affect Leydig cells, cells of the tubular wall and
vascular cells directly and/or indirectly via intermedia-
tion of mast cells.
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Introduction

In addition to the crucial role of gonadotropins for the
regulation of testicular function, there is growing evidence
that other factors participate in the control of gonadal
functions. These factors include growth factors and neu-
rotransmitters, in particular the catecholamines norepi-
nephrine (NE) and epinephrine (EPI) [see summary and
additional references in 1, 2]. NE and EPI are able to acti-
vate catecholaminergic receptors present on Leydig cells,
Sertoli cells and smooth muscle cells in the testis [3-7].
The consequences are, as shown in vivo and in vitro,
changes in steroid production and LH receptors of Leydig
cells [cf. 6, 8—12], increased cyclic adenosine monophos-
phate (cCAMP) and lactate formation of Sertoli cells [cf. 5,
13] or altered smooth muscle/vascular tonus [cf. 3].
Whether other somatic cells of the testis, e.g. mast cells,
are among the targets for catecholamines is not known,
but studies in other organs have indicated such a possibili-
ty [14-16]. Since the mast cell products histamine and
serotonin affect testicular steroidogenesis, this aspect ap-
pears worth being investigated [17-20]. Despite these
well-established actions of catecholamines, the signifi-
cance of testicular catecholamines for the in vivo regula-
tion of testicular function is not clear. To have physiologi-
cal meaning, it would be required that these substances
can be delivered in sufficiently high levels close to their
receptor-bearing testicular targets. Several routes are pos-
sible: Adrenal catecholamines can travel from the adrenal
medulla via the bloodstream to their targets in the testis
and/or catecholamines can be released from primarily cat-
echolaminergic nerve fibers present in the testis [3, 4, 21—
24]. Compared to the bloodstream, the innervation may
allow a more precise way of delivery neurotransmitters to
target cell in the testis. Indeed testicular nerve fibers form
‘synapses en passant’ with Leydig cells and peritubular
cells in the human testis [25-27], implicating release of
neurotransmitters into the interstitial space in the close
neighborhood of the targets. Moreover, testicular innerva-
tion, appears also to be important for a functional direct
link between testes and brain [cf. 28].

Another, as yet little examined potential source of cate-
cholamines exists in the interstitial spaces of the rhesus
monkey testis, which contains a population of phenotypi-
cally elongated neuron-like cells, immunoreactive for ty-
rosine hydroxylase (TH), the rate-limiting enzyme for cat-
echolamine biosynthesis [29]. Moreover, the gene for TH
is expressed in the monkey testis and similar cells were
found in the ovary of the monkey [30, 31], lending further
support for the existence of these cells at least in primates.
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This cell type may act alone and/or in concert with the
extrinsic sympathetic innervation of the testis. In contrast
to the ovary, the testicular TH cells were described to exist
mainly in prepubertal monkey testes and were not found
in adult testes in a previous study [29]. Whether the cell
expressing TH are indeed of neuronal nature is not clear.
To address this point, we therefore examined if they pos-
sess other neuronal proteins. We also examined the distri-
bution and frequency of the neuronal elements (cell bod-
ies and fibers) in the testes of monkeys during postnatal
development, puberty and adulthood using immunohis-
tochemical techniques. Special attention was paid to the
anatomical relationship between neuronal elements and
testicular cells including mast cells.

Materials and Methods

Tissue Collection

All tissues were obtained from animals involved in other unre-
lated studies. For our study, the testes were obtained from rhesus
monkeys (Macaca mulatta) aged 100-300 days (infantile group, n =
6), 1-2 years (juvenile group, n = 7), 3-4 years (peripubertal group,
n = 6), 68 years (adult group, n = 5). The animals were cared for by
the Oregon Regional Primate Research Center in accordance with
the NIH Guide for the Care and Use of Laboratory Animals. They
were housed in a 12L:12D photoperiod (i.e., 12 h of light per day)
and fed twice daily with Purina monkey chow; fresh fruit was also
provided daily and drinking water was made available ad libitum.
They were painlessly killed using an overdose of ketamine and pento-
barbital, according to procedure established by the Panel on Eutha-
nasia of the American Veterinary Society. For the purpose of this
study, the testes were fixed for at least 48 h in Bouin’s fluid, followed
by 70% ethanol, and then embedded in paraffin wax. Sections (5 um)
were prepared for immunohistochemistry. Serum was aliquoted and
stored at —20° C until assayed for LH and testosterone.

Hormone Assays

Bioactive LH concentrations were measured in serum samples
using a previously reported mouse Leydig cell bioassay [32], which
could detect as little as 3 ng LH/ml using the cynomologus LH RP-1
as the reference preparation. Testosterone concentrations in the
serum were measured by radioimmunoassay (RIA) as previously
described [33]. The antiserum used shows 67 % cross-reactivity with
dihydrotestosterone, but less than 4% with other steroids.

Immunohistochemistry

Avidin-Biotin-Peroxidase (ABC) Method. The testicular distribu-
tion of NF-200, TH, NPY, synaptosomal associated protein of
25 kDa (SNAP-25) and mast cells tryptase was examined in monkey
testes using an ABC-immunohistochemical method as described pre-
viously [31, 34, 35]. Specific antibodies were employed (mouse
monoclonal antibody anti-NF-200: Boehringer Mannheim Inc., In-
dianapolis, Ind., USA; dilution 1:50; rabbit polyclonal antibody anti-
TH: Chemicon International Inc., Temecula, Calif., USA, dilution
1:400; rabbit polyclonal antibody anti-NPY: Peninsula Laboratories
Inc., Belmont, Calif., USA, dilution 1:70,000; mouse monoclonal
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antibody directed against a synaptosomal associated protein of
25 kDa, SNAP-25: Sternberger Monoclonals Inc., Baltimore, Md.,
USA, dilution 1:500; mouse monoclonal antibody antitryptase:
Dako, Hamburg, Germany, dilution 1:50). Sections incubated in
buffer (without primary antibody) or sections incubated with buffer
containing mouse or rabbit normal serum, respectively, served as
controls for all samples.

Double Staining: A Combination of ABC and Immunogold-Silver
Methods. Co-location of TH-immunoreactive fibers and tryptase-
positive mast cells was assayed by a double staining immunohisto-
chemical method described originally by van der Loos and Becker
[36]. Commercially available antibodies (rabbit polyclonal antibody
anti-TH: Chemicon International Inc.; mouse monoclonal antibody
anti-tryptase: Dako, Denmark) were employed. In brief, sections
were first deparaffinized, endogenous peroxidase reactivity was
quenched by a 10-min pretreatment with 10% methanol, 0.3% H,0,
in 0.01 M phosphate-buffered saline (PBS, pH 7.4), and residual
aldehyde groups present after aldehyde fixation were inactivated by
pretreatment with 0.05 M glycine and 0.1% NaBH,; in PBS for
15 min. The cells were permeabilized by a 5-min incubation with
0.5% saponin in PBS and nonspecific proteins were blocked by sub-
sequent incubation with protein block buffer (5% bovine serum albu-
min, 0.1% fetal calf serum and 5% goat normal serum in PBS) for
30 min. After several wash steps the incubation with a TH antisera
(1:100) and tryptase antibody (1:50) diluted in incubation buffer
(0.2% BSA-acetylated: Biotrend, Cologne, Germany; 20 mM NaNj
in PBS, pH 7.4) was carried out overnight in a humidified chamber at
4°C. The second day, testicular sections were washed and incubated
with biotinylated secondary antisera (goat anti-rabbit IgG preab-
sorbed against human proteins; 1:500 diluted: Camon, Wiesbaden,
Germany) and a gold conjugate reagent (goat anti-mouse, gold parti-
cle diameter 0.8 nm: Immuno Gold Aurion, Wageningen, The Neth-
erlands, 1:100 diluted) for 2 h at room temperature. The specimens
were postfixed in 2% glutaraldehyde in PBS and enhanced by silver
stained (R-GENT, Biotrend) followed by a commercial ABC kit
(Vectastain, Camon, Burlingame, Calif., USA). TH immunoreaction
was visualized with 0.01% H,0, and 0.05% 3,3-diaminobenzidine
(DAB) solution (in 0.05 M Tris-HCI, pH 7.6). For control purposes
the first antiserum was omitted. Sections were examined with a Zeiss
Axiovert microscope (Oberkochen, Germany) with a 400 x magnifi-
cation using a combination of epipolarization for immunogold-silver
and transmitted light for ABC staining that allow to visualize both
reaction products simultaneously.

Quantification of NF-200-Immunoreactive Elements and

Tryptase-Positive Mast Cells

Because the monoclonal antibodies against the neuronal marker
NF-200 and the tryptase mast cells produced a strong staining with-
out significant background staining, we used these antibodies to eval-
uate the frequency of neuronal elements (single nerve fibers, nerve
fiber bundles and cell bodies) and mast cells in monkey testes during
the postnatal development and sexual maturation. The number of
NF-200-immunoreactive structures and tryptase-immunopositive
cells were quantified with a Leica microscope with a 250 X magnifi-
cation and a gridded eyepiece. In each testicular section, 4-5 fields
were evaluated for the presence of immunoreactive neuronal ele-
ments or mast cells and for the seminiferous tubules sectioned. The
results were expressed as immunoreactive nerve fibers/tubule, im-
munoreactive neuron-like cells/tubule and immunoreactive mast
cells/tubule as described previously [see 37]. Results obtained were
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Fig. 1. Nerve fibers in the monkey testis. A NF-200-immunoreactive
nerve fiber bundle in the interstitial space of a monkey testis. Note
that interstitial cells (asterisks) and seminiferous tubules (T) are in
close proximity (age 30 months, bar ca. 40 um). B Similar area as in
A: TH-immunoreactive nerve fiber bundle is seen (age 38 months,
bar ca. 40 um). € Example of perivascular (BV, blood vessel) and
interstitial nerve fibers immunoreactive for NPY (age 38 months,
bar ca. 60 um). D Two SNAP-25-immunoreactive nerve fibers of dif-
ferent sizes are seen in the testis of a 16-month-old monkey (bar ca.
50 um).

statistically analyzed using ANOVA and Fisher PLSD test. Data
were expressed as mean = SEM. p < 0.05 was considered signifi-
cant.

Results

Testicular Catecholaminergic/Peptidergic Nerve Fibers

in the Testis

Nerve fibers immunoreactive for NF-200, TH and
NPY were identified in the interstitial spaces and within
the neighborhood of the seminiferous tubules and blood
vessels at all ages studied. This staining was robust and
observed in all sections (fig. 1A-C). In contrast, the
SNAP-25 antibody was less robust (i.e. not detected in
every section) but specific staining was seen in the same
locations in some of the sections (fig. 1D). Mast cells
immunoreactive for tryptase were seen in the same areas
as nerve fibers (not shown). Double immunocytochemical
staining methods allowed to clearly identify close anatom-
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Fig. 2. Anatomical proximity between nerve fibers and mast cells.
Immunohistochemical detection of a mast cell (antitryptase; epipo-
larization) in close contact with TH-immunoreactive nerve fibers (ar-
row) (16 months, bar ca. 30 um); T, seminiferous tubule. Note that
the original color of the mast cell was blue, the color of the TH fibers
brown.

ical proximity between mast cells (tryptase-positive) and
nerve fibers (TH-positive) (fig. 2).

Catecholaminergic/Peptidergic Neuron-Like Cells

In the interstitium of seven testes of immature mon-
keys (infantile and juvenile animals, from birth to about 3
years old, and in one case of a 46-month-old monkey), but
not those from adult monkeys, we found elongated cells
with a mainly bipolar and occasionally multipolar pheno-
type, which stained with specific antibodies against
SNAP-25, NF-200, NPY and TH (fig. 3A-D). These neu-
ron-like cells were similar in phenotype to the TH-posi-
tive cells previously described and identified by confocal
scanning laser microscopy analysis in the prepubertal
monkey testis by Mayerhofer et al. [29].

Developmental Pattern of Nerve Fibers, Neuron-Like

Cells and Mast Cells — Correlation with Hormone

Levels

The changes in serum LH and testosterone levels are
indicated in figure 4A. Thus a marked increase of LH lev-
els was found at 3-4 years of age. Levels remained con-
stant during the adult period. Circulating testosterone lev-
els were significantly elevated in the adults. The number
of nerve fibers/tubule and neuron-like cells/tubule, was
studied by immunohistochemistry using a monoclonal
antibody against NF-200 in one set of slides from all ani-
mals (fig. 4B). The number of nerve fibers/tubule was
unchanged from birth to 3 years of age (infantile and juve-
nile groups), then exhibited a significant rise (peripubertal
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Fig. 3. Identification of neuron-like cells in monkey testes. A The
arrows point to the unstained nuclei of elongated bipolar cells show-
ing cytoplasmatic SNAP-25 immunoreactivity. The cells are located
in the interstitial space of a testicular section (age 16 months, bar
ca. 30 um). B A small NF-200-immunoreactive neuron-like cell (ar-
row) is seen in the interstitial space in close association with inter-
stitial cells of a testicular section (age 16 months, bar ca. 30 um).
C Example of a cell expressing NPY (interstitial space of 38-month-
old monkeys, bar ca. 15 um). D Immunoreactive cell body expressing
TH (interstitial space of 46-month-old monkeys, bar ca. 15 um).

group), and a subsequent gradual increase during adult-
hood. After birth until about 2 years of age the number of
neuron-like cells/tubule remained nearly constant, how-
ever after about 3—4 years of age, these neuronal cells were
not detected in the monkey testis. The number of mast
cells/tubule remained constant in the infantile and juve-
nile groups, but exhibited a significant increase at peripu-
bertal time (3-4 years of age), and adulthood (fig. 4C).

Discussion

In the rat testis, NPY and NPY receptors have been
detected in the tunica albuginea and around the intracap-
sular blood vessels [24, 38-40] and NPY has profound
effects on testicular blood flow [41]. Furthermore, it has
been demonstrated that monoamines and neuropeptides
can coexist in nerve fibers of the rat testis [24, 42, 43]. To
our knowledge, however, in monkey testes neither inner-
vation nor neuron-like cells have been well characterized,
although TH-positive fibers and cells have previously
been described [29] and were also found in this study. The
present study indicates moreover that both the extrinsic
nerve fibers and the intrinsic neuron-like cells contain
SNAP-25, a protein present in synaptic vesicles, chromaf-
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Fig. 4. Summary of hormone levels, frequency of testicular neuronal
elements and testicular mast cells during ontogeny. Graphic repre-
sentation of the hormone values (A) and frequency of NF-200-posi-
tive neuronal elements (B), as well as mast cells (C) in corresponding
testicular sections. Immunohistochemical results were obtained from
one set of randomly selected slides from 24 monkeys (infantile group:
age 100-300 days, n = 6; juvenile group: age 1-2 years, n = 7; peripu-
bertal group: age 3-4 years, n = 6; adult group: age 6—8 years, n = 5)
immunostained for NF-200 and tryptase. Results shown represent
means = SEM. Different letters denote statistically significant differ-
ences between groups (p < 0.05).

fin vesicles and in neuronal plasmalemma [44-46], and
also NF-200, an intermediate filament specific for neu-
rons. Moreover, at least some interstitial and perivascular
nerve fibers and neuron-like cells also contain NPY. The
fact that electron-dense vesicles coexist with clear vesicles
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in varicosities of nerve fibers in the monkey testis [29]
indicates that catecholamines and peptides, as well as oth-
er yet unidentified neurotransmitters, are present in mon-
key testicular nerve fibers and presumably also in testicu-
lar neuron-like cells.

To determine whether testicular neuronal elements
change during development, a point raised by our pre-
vious finding [29], the presence of NF-200-immunoposi-
tive nerve fibers (single fibers and fiber bundles) and neu-
ron-like cells was evaluated in one randomly selected set
of testicular sections. Immunoreactive structures and
seminiferous tubules in the same viewing area were
counted and results expressed per seminiferous tubule, as
described previously [37]. The evaluation of larger sec-
tions or whole testes was not possible, but since the num-
ber (in contrast to the diameter) of tubules in the testes
presumably is the same in young versus adult testes, this
approach provided an appropriate semiquantitative way
of evaluating neuronal elements. The data indicate that
the number of testicular nerve fibers significantly in-
creases throughout life. On the other hand, neuron-like
cells were detectable only in immature gonads, but not in
the adult testes, suggesting an unexpected neuronal plas-
ticity during sexual maturation (i.e., despite the apparent
loss of neuron-like cells, an overall enrichment of the tes-
tis by neuronal elements with age was apparent). Al-
though previously the ontogeny of neuronal elements in
the testis was not studied in detail, there are some reports
which hint at changes in nerve fiber density and changes
in the levels of testicular catecholamines. Namely, a
marked increase in the number of testicular nerve fibers
was observed during the neonatal and prepubertal period
in the human testis by Prince [27]. Also, alterations in the
testicular content of catecholamines during sexual devel-
opment of humans and rodents were noted by Zieher et al.
[47] and by Mayerhofer et al. [11]. It is plausible that these
previous results reflect changes in the composition and
function of the gonadal nervous system, suggesting that
testicular neuronal plasticity may also occur in nonpri-
mate species.

The plasticity observed in our study occurred both at
the level of neuron-like cells, which disappeared, and at
the level of nerve fibers, which increased with age. How-
ever, it is important to bear in mind that the fibers
observed could be processes of intrinsic neuron-like cells
or branches of extrinsic fibers, an issue which can
presently not be resolved. Our data also do not allow us to
draw conclusions to the reason(s) and the mechanism(s)
underlying the observed plasticity. High levels of andro-
gens present only after puberty in the testis might have
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caused neuronal cell death, as described in certain brain
areas [48]. Alternatively, the state of activation of intra-
testicular neuron-like cells and/or neurons residing out-
side the testis (presumably in the para-aortic ganglia and
possibly pelvic and accessory ganglia [see 24]) may change
around puberty. Consequently, secretory products like
neurotransmitters, neuropeptides and components of the
secretory machinery may not be visible any more close to
the nucleus, but rather in the processes of neuron-like
cells. It is plausible that we therefore did not detect immu-
noreactive cell bodies of testicular neuron-like cells using
immunohistochemical staining methods. Neurotrophic
factors (nerve growth factor, NGF [cf. 49-52]) or other
growth factors [50] may be involved in such an activation
process. Especially in neuron-like cells in the monkey ova-
ry [30] and in sympathetic nerve fibers of human testis
[49] receptors for NGF were described. The striking cor-
relation between testicular neuronal changes and the on-
set of puberty in the present study may be indicative of a
hormone dependency, possibly involving LH. In neurons
of the fetal and adult rat brain, which express LH recep-
tors [53], LH or hCG acted as a neurotrophic factor in
vitro and promoted neurite outgrowth [53]. Assuming
that neuron-like cells of the testis may contain LH recep-
tors, the peripubertal rise in LH might have activated tes-
ticular neuron-like cells. Additional studies are required
to clarify this point.

The role of neuronal elements and the one of neuro-
transmitters released from these structures in the testis is
far from being understood. The pure presence of the tes-
ticular neuronal elements in immature monkey testes, i.e.
during a time when the pituitary-gonadal axis is not yet
functional, implies however involvement in as yet un-
known testicular functions or in testicular development.
In other systems, growth-promoting effects of neurotrans-
mitters are established [cf. 54, 55] and for example in the
ovary, catecholamines and the neuropeptide vasoactive
intestinal peptide (VIP) induce functional maturation of
small follicles and expression of receptors for FSH [56].
The increase of nerve fibers after puberty leads to an
enrichment of neuronal elements in the testicular intersti-
tium in the adult testis and suggests a different role of neu-
ronal elements now. That substances, such as catechol-
amines and neuropeptides in general can affect testicular
cells in the absence and in the presence of pituitary hor-
mones, is supported by a number of studies [9-13, 29,
57-59]. Documented close anatomical proximity between
neuronal elements and testicular cells (Leydig cells, cells
of the tubular wall and vascular cells [cf. 25-27]) in vivo,
make testicular cells direct targets of catecholamines and

48 Neuroendocrinology 2000;71:43-50

neuropeptides and provide further evidence for a func-
tional link. It is possible that while all Leydig cells in the
adult may be subjected to regulation by LH, some, the
ones contacted by neuronal element in particular, may be
subjected to dual regulation, one by pituitary LH and one
by catecholamines and/or neurotransmitters.

While little is known about testicular neuronal ele-
ments, even less is known about testicular mast cells and
their function. It is thought that progenitor cells migrate
to peripheral tissues including the testis and undergo pro-
liferation and differentiation to typical mast cells appar-
ently under the influence of local factors [60]. Importantly
in this context is that neurotransmitters, neuropeptides
and NGF are able to induce proliferation, but also degran-
ulation of mast cells as well as induction of expression of
cytokines [61-64]. On the other side, mast cells have been
shown to be a source of NGF and produce neuropeptide-
degrading proteases [65, 66]. These results indicate a
mutual interaction between neuronal elements and mast
cells.

We found that not only the testicular distribution of
neuronal elements and mast cells were strikingly similar,
but also demonstrated close anatomical proximity be-
tween mast cells and catecholaminergic nerve fibers in
monkey testes, similar to a relation in skin and gut [14-
16]. In addition, both the number of mast cells and the
number of nerve fibers in monkey testes increased after
puberty and are thus inversely related to the number of
neuron-like cells. Previous reports described age-depen-
dent increases in the number of testicular mast cells
occurring around puberty in hamster, rat and human
testes [20, 25, 67], and mast cells and Leydig cells, which
developed simultaneously after chemical destruction of
Leydig cells in the rat [67]. Mast cells produce biologically
highly active substances, including proteases, cytokines,
histamine and serotonin, which can be released in re-
sponse to different stimuli[19, 67]. For some of these sub-
stances a possible role in the testis was shown. Thus, hista-
mine and serotonin can affect Leydig cells and regulate
testosterone production [17-20]. The present paper clear-
ly indicates that at least the anatomical prerequisites for
interactive mutual paracrine influences to occur between
testicular neuronal elements on one side, mast cells and
Leydig cells on the other side exist in the monkey testis.

In summary, our study presents evidence that the testis
of the rhesus monkey contains catecholaminergic/peptid-
ergic extrinsic nerves and intrinsic neuron-like cells, as
well as mast cells, all of which undergo marked age-related
changes during postnatal development and sexual matu-
ration. Although the mechanisms governing these changes
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are currently unexplored, these results in conjunction

with a host of data from in vitro and in vivo studies, imply

that neuronal signals may act directly and/or indirectly,
e.g. via mast cells, to regulate testicular function and

development.
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